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EPIGRAPH

None but ourselves can free our minds.

—Bob Marley
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ABSTRACT OF THE DISSERTATION

Algorithms for Interactive Machine Learning

by

Stefanos Poulis

Doctor of Philosophy in Computer Science

University of California San Diego, 2019

Professor Sanjoy Dasgupta, Chair

In interactive machine learning, the learning machine is engaged in some fashion

with an information source (e.g. a human or another machine). In this thesis, we study

frameworks for interactive machine learning.

In the first part, we consider interaction in supervised learning. The typical model

of interaction in supervised learning has been restricted to labels alone. We study a

framework in which the learning machine can receive feedback that goes beyond labels of

data points, to features that may be indicative of a particular label. We call this framework

learning with feature feedback and study it formally in several settings.

In the second part, we study interaction in unsupervised learning, in particular,

xiv



topic modeling. Topic models are popular tools for analyzing large text corpora. However,

the topics discovered by a topic model are often not meaningful to practitioners. We

study two different interactive protocols for topic modeling that allow users to address

deficiencies and build models that yield meaningful topics.

In the third part, we study interactive machine teaching. Different from traditional

machine teaching, in which teachers do not interact with the learners, we study a framework

in which interactive teachers can efficiently teach any concept to any learner.
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Chapter 1

Introduction

The standard process of learning from data is typically done through a two-step

process: first, a dataset of examples is collected; second, a learning machine is instructed to

process the collected dataset and output a low-error hypothesis, as measured by closeness

to some target. In supervised learning for instance, the target may be a linear separator

or a decision tree and the machine is instructed to find the target by processing labeled

examples. Likewise, in unsupervised learning the target may be some structure, such as a

particular clustering of the dataset. This process of learning from data is well-understood

by now: for supervised learning, a plethora of sample complexity bounds tell us how many

labeled examples would suffice to learn various types of concept classes; for unsupervised

learning, (eg. clustering, topic modeling) there are several algorithms with guarantees that

tell us that the target structure will be provably recovered.

Despite the substantial progress several statistical and algorithmic challenges remain.

For example, the number of examples that need to be labeled in order to learn a low-error

classifier might be prohibitively large. Similarly, say a domain expert collects a dataset

wherein certain patterns are expected. The expert might want to do some exploratory

analysis and might decide to run a clustering algorithm on the dataset. How can the

algorithm magically know what the patterns that the expert expects are?

In addition to such challenges and limitations, the standard process of learning

1



from data may not at all reflect how machine learning systems are deployed in the real

world today. In contemporary applications of machine learning, e.g. virtual assistants,

self-driving cars etc., learning machines are constantly interacting with some source of

information. To deal with such situations, a rather different pipeline for learning is needed.

1.1 Interactive machine learning

In recent years, there has been substantial interest in interactive machine learning,

wherein the learning machine is engaged adaptively with a source of information (e.g. a

human or another machine). The hope in interactive machine learning is that interaction

will make learning faster or even better. In this thesis, we will study several frameworks

for interactive machine learning. We describe these frameworks below.

1.1.1 Learning with feature feedback

In supervised learning, perhaps the most well-studied area of interactive machine

learning is active learning of classifiers, in which the learning machine requests only the

labels of informative examples. It has been shown that active learning algorithms can

learn a low-error classifier with substantially fewer labels than those needed by standard

supervised learning algorithms.

In several settings however, the interaction between the learning machine and the

source of information is much richer than that of active learning. When labeling a dataset

for instance, a human can provide labels along with explanations for them. In a document

labeling scenario say, the human labeler can highlight a few words that are indicative

of the label of the document. This type of interaction that is complimentary to active

learning can be called feature feedback.

In the first part of this thesis we study several models of feature feedback and give

learning algorithms for each of them. We will see that, in certain cases, learning with

feature feedback requires substantially fewer examples than standard supervised learning.
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Figure 1.1. Annotation with feature feedback

1.1.2 Interactive topic modeling

Topic modeling is a popular method for learning thematic structure from large

collections of documents, without any human supervision. The model is simple: documents

are modeled as mixtures of topics, which are in turn modeled as distributions over a

vocabulary of words.

The natural interpretation of topics, that they somehow represent the main themes

of a corpus, has motivated their use by practitioners. The most common way to summarize

a topic model is with a list of their most probable words, and topic models are then

evaluated according to how well these lists align with a user’s intuition, domain knowledge

or understanding of the corpus. In this sense, a user expects to interpret and also evaluate

a topic model via a small collection of words. However, traditional topic models may

include poor quality topics or can be misaligned with the understanding of the corpus.

3



For instance, while examining the most probable words under learned topics a user may

complain that two topics seem to be the same; or that they seem conflated; or that they

seem random.

Interactive topic modeling aims to solve these problems by allowing a user to

directly interact with the learned model and iteratively refine it.

In the second part of this thesis we study different frameworks for interactive topic

modeling. We will see that in some cases, users can efficiently build customized and

interpretable topic models, using our proposed frameworks.

Figure 1.2. Examination of a topic model by a user.

1.1.3 Interactive machine teaching

In machine teaching, the model of learning postulates that a “student” receive data

from a “teacher”. In this setting, we have a student, who might be a machine learning

algorithm, and a teacher that has some target concept h∗ it needs to communicate to the

student through training examples. The goal of the teacher is to help the learner (here,

we use student and learner interchangeably) find the target hypothesis by providing as few

4



teaching examples as possible.

It can be shown that when learning from a teacher, the number of examples required

maybe significantly smaller, when compared to simply learning from random examples,

i.e. passive learning. As an example, consider thresholds on the line. Let X denote the

instance space and H = {hw : w ∈ R} denote the hypothesis class, with

hw(x) =

 1 if x ≥ w

0 otherwise.

In passive learning, O(1
ε
) training items are generally required to achieve an error

within ε from the target threshold w∗. When the desired error is say, 0.001 the number of

examples required in passive learning are in the order of 1000. But in the case of learning

from a teacher, who in addition knows the target threshold w∗, only two points in X are

required, the ones nearest w∗, on either side of it:

This example illustrates the benefits of teaching over passive learning but also

illustrates a significant issue with this particular notion of teaching: it requires the teacher

to know H, the learner’s hypothesis class. This can be unrealistic in many scenarios.

To put this into context, consider a geologist who may want to teach students

to categorize rocks into igneous, sedimentary, metamorphic etc. and teaches by picking

informative rock samples to show the students. There are two important points to make

here. First, the geologist may know the target hypothesis but cannot “transmit” it into

the students’ minds. Second, the geologist and the students may be using different models

to categorize rocks, maybe even different representations. Thus, one could say that the

students’ model is a black-box to the teacher.

In the third part of this thesis we study interactive machine teaching. We will see

that when a teacher is allowed to interact with a learner who is a black-box, substantially

5



fewer teaching examples are needed, when compared to non-interactive teaching.

1.2 Summary of results

In Part I, we study learning with feature feedback. In Chapter 3 we develop some

theory on learning with feature feedback. We study several models of feature feedback

that deal with various levels of ambiguity and demonstrate their benefits in learning a

concept. Then, in Chapter 4 we turn our attention to applications and develop practical

algorithms that make use of feature feedback. Finally, we perform experiments illustrating

the benefits of feature feedback, both in simulations on benchmark datasets, as well as in

a study with real users.

In Part II, we study two protocols for interactive topic modeling. The first protocol,

which is presented in Chapter 6, formalizes user interaction in the form of constraints. This

protocol is studied specifically for Latent Dirichlet Allocation and yields an interactive

algorithm that can be implemented efficiently. We show the benefits of this protocol in a

series of simulation experiments. Then, in Chapter 7 we present our second interactive

protocol for topic modeling, which makes use of anchor words: words that appear under

only one topic. This protocol is efficient in terms of user interaction and allows users to

build topic models that are interpretable and help them understand the main themes of the

corpus. We illustrate the benefits of this protocol in simulations, as well as in experiments

with real-users.

In Part III, we study interactive machine teaching. We are interested in whether an

optimal teaching set exists when the teacher does not know the learner’s hypothesis, that

is, when the learner is a black-box to the teacher. In Chapter 9, we first illustrate through

an example that a teacher who does not know the learner’s hypothesis must, in general,

provide labels on all the available data points. Then, we present an interactive protocol

for black-box teaching. In this protocol, the teacher provides one teaching example at a

6



time, and in the interim is allowed to probe the predictions of the learner’s current model,

rather like giving the learner a quiz. We show that such a teacher can efficiently pick a

teaching set that provably contains logarithmically as many examples when compared to

a non-interactive teacher. We also demonstrate the efficacy of our interactive teaching

protocol in a series of simulation experiments.
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Part I

Learning with feature feedback
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Chapter 2

Introduction

Annotating a data set is often a costly affair because a human is needed to scrutinize

each data point and determine its label. One approach to reducing this effort and expense

is active learning: the learner has access to a pool of unlabeled data points and adaptively

decides which ones should be labeled. There are now several active learning algorithms that

provably require only logarithmically as many labels as random querying, thus reducing

the amount of labeling effort significantly [16, 18, 55] .

2.1 Feedback beyond the label

While scrutinizing a data point in order to provide its label, the human labeler can

also provide some additional, richer feedback such as an explanation. This is complimentary

to active learning and comes at essentially no extra cost. Here, we consider a strategy

where this feedback is in the form of features: can the human, while examining the data

point, provide not just the label but also the identity of one or more relevant features?

To put this into context, consider a document classification problem in which

a labeler assigns each document x to a category y (“sports”, “politics”, and so on).

While making this determination, the labeler might also be able to highlight a few

words that are highly indicative of the label (e.g. “Congress”, “Obama”, “filibuster”).

Figure 2.1 illustrates annotation with and without feature feedback. Some early work in
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Figure 2.1. Annotation with and without feature feedback.

information retrieval that advocates this kind of auxiliary feedback is that of [17]. Since

then, there have been several experimental studies of different methods for exploiting this

feedback [45, 19, 22, 44, 50].

Alternatively, consider a computer vision system that is learning to recognize

different animals. Whenever it makes a mistake – classifies a “zebra” as a “horse”, say – a

human labeler corrects it. While doing this, the labeler can also highlight a part of the

image (the stripes, for instance) that distinguishes the two animals. This feedback incurs

little additional cost but is potentially very informative for classifier learning. Recent work

on recognizing different species of birds, for instance, has used this effectively [12].

Feature feedback may at first seem intuitive but it is not trivial to model as it may

vary according to the specific requirements of the learning problem. In the document

example, the feedback yields predictive features: the presence of words like “Congress”,

“Obama”, “filibuster” are predictors of the label “politics”. In contrast, in the vision
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example the feedback (i.e. highlighting the stripes) yields a discriminative feature, whose

presence distinguishes the class of zebras from the class of horses. Which feedback is

appropriate for different kinds of learners?

Another difficulty with modeling feature feedback is that it can often be erroneous.

Say the label of a document is “finance” and the labeler identifies the word “bank” as

predictive. But “bank” has different meanings, some of which have nothing to do with

“finance”. Thus, it is interesting to ask what assumptions can be made on the labeler. Is

the labeler able to identify all the relevant features or just some of them?

As feature feedback has only been seen in specific applications and has not been

studied in any formality such questions are yet to be answered. In this part of the thesis, we

formalize feature feedback and study it rigorously. Next, we discuss how feature feedback

can be modeled, in various scenarios.

2.1.1 Modeling feature feedback

Let’s return to the example of a document about “politics”, in which the labeler

highlights a few specific words. How can a classifier use this? One idea is to somehow

boost the importance of the provided words, say in the high-dimensional feature space

of bags-of-words. But what happens when the labeler highlights a very rare word, like

“filibuster”? This word is, indeed, predictive of the label, but it is also so specific that it

might not apply to very many documents. Should then “filibuster” be treated as a proxy

for a whole collection of words that co-occur with it, or possibly a proxy for an entire

topic? This seems reasonable, but what is the right level of granularity for the topic, or

the cluster of co-occurring words?

Similarly, in the computer vision example, suppose a labeler decides that a bird is a

particular type of robin and provides additional feedback by clicking on its breast (whose

color, for instance, might be a deciding factor). The learner may have some higher-level

representation of the image, for instance a hierarchical parts decomposition, in which

11



Figure 2.2. Vague feature feedback: selecting a word in x indirectly and noisily triggers
a subset of the latent features z.

case it will in general be unclear which of these features the user is referring to—several

features, at different scales, might be candidates.

In both the text classification and vision examples above, we see that labeler’s

feedback can be quite ambiguous. In order to model this ambiguity, we will think of feature

feedback as follows. We assume that there is a raw input x (document, image) and possibly

an intermediate representation z (clusters of words, hierarchical parts decomposition) that

the labeler cannot access directly. After deciding on the label y, the labeler may indicate

one or more coordinates in x. In the absence of the intermediate features z, this feedback

is explicit: the features that the labeler indicates at the x level will directly be used by the

classifier. But when an intermediate representation z is available, the labeler’s feedback in

x can also indirectly and noisily reference a subset of features in z, of which some might

be relevant to y and some not. We call this type of feature feedback vague. Figure 2.2

illustrates vague feature feedback for the example of document classification.

2.1.2 Overview

In Part I we focus specifically on predictive feature feedback and present several

models that can accomodate both explicit and vague feature feedback. The rest of Part I

is organized as follows. First, in Section 2.1.3 we review previous work in feature feedback.
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In Chapter 3 we study feature feedback for various abstract settings. We start with

illustrating feedback feedback for the case of learning disjunctions in Section 3.1. Then,

we move to models that are substantially more flexible and practical.

In Section 3.2.2 we study a model that is a probabilistic generalization of disjunctions.

We define this model specifically in the document-topic setting, but it applies more generally

to the x-z-y situation described above: the label y of each document x is assumed to be

probabilistically generated from the unnamed intermediate-level features z. We call this

the probabilistic disjunction model (PDM). We show that if we only had documents and

labels, we could try to find a maximum-likelihood fit for the generative model, but we show

that this is an NP-hard problem. On the other hand, feature feedback makes learning

tractable. We give an efficient algorithm that exploits this feedback to learn a PDM.

In Section 3.3 we study learning linear seperators with feature feedback. We

suggest a straightforward approach to incorporating information that a particular feature

is relevant: reducing the degree of regularization on that feature. This is algorithmically

simple and we show that it leads to better generalization bounds.

In Chapter 4 we turn our attention to applications and develop two practical

algorithms that make use of feature feedback.

In Section 4.1 we develop our first practical algorithm, which is a support vector

machine. This algorithm is very simple and is derived directly from our regularization

approach described above. We find that the regularization approach to feature feedback,

despite its simplicity, has the drawback of not directly modeling vagueness in the labeler’s

intent. To address this, the second algorithm that we develop is a bootstrapped PDM

algorithm, in which a PDM is first fit to data, using a small amount of feature feedback, and

is then used to label whichever documents it is confident about. This augmented training

set is then used to train any other model of interest. The bootstrap PDM algorithm is

presented in Section 4.2.

In Section 4.3 we present a series of simulation experiments that illustrate our
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methods, along with a real user study.

In Section 4.4 we discuss directions for future work and conclude.

2.1.3 Related work

Incorporating domain knowledge into learning is not a new idea. Several works have

considered using this knowledge to construct a preliminary classifier or to set Bayesian

hyperparameters [48, 59, 19].

For predictive feature feedback more specifically, the feedback model closest in

spirit to our approach is probably that of [21], whose generalized expectation criteria

framework incorporates user-supplied feature-label relationships into the objective function

for learning. Another line of work develops the idea of annotator rationales [62, 61, 20],

in which the labeler highlights regions of the document that serve as explanations of the

label; these are then used to generate contrast examples (same document, but with these

regions removed) and the learning procedure asks for each document to be distinguished

from its contrasting version. This framework involves denser annotation than we have in

mind. A related form of “contrast example” is considered by [54], who incorporate this

into an SVM framework and provide generalization bounds—though these are weaker and

less general than our bounds, which have less requirements on the feedback and apply

to any linear model. Later work by [53] developed the constrained weight-space SVM

framework by allowing annotators to provide ranked features. One further research thread

includes work developed in [40, 39, 46, 52], where active learning is used to incorporate

feature feedback into learning. The framework there is to identify the most informative

features to be shown to the human, when asked to label an example.

Discriminative feature feedback has only studied in [49], where an elegant algorithm

that solicits feedback that distinguishes true labels from mistaken predictions is presented.

It is shown that the algorithm can provably learn whenever the target concept is a decision

tree, or can be expressed as a particular type of multi-class DNF formula.
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Chapter 3

Theory on feature feedback

In this chapter, we study feature feedback for different concepts. We first study

the case where the target concept is a disjunction of boolean variables. Our analysis is

under the mistake bound model of Littlestone [33], which we describe next.

3.0.1 The mistake bound model

Let X be any finite instance space and Y any label space. Also, let H be any finite

set of concepts on X , so that each h ∈ H is of the form h : X → Y. Let h∗ ∈ H denote

the target concept, that is h∗ is the only concept in H that is consistent with the labeled

examples. Learning in the mistake bound model proceeds in rounds:

For t = 1, 2, . . . , :

1. The learner receives a data point xt ∈ X .

2. The learner makes a prediction ht(xt) = ŷt.

3. The correct label yt is revealed.

4. The learner updates its hypothesis to ht+1.

Under the mistake bound model, the goal is to bound the total number of mistakes

the learner commits, no matter how long the sequence.
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3.1 Learning disjunctions with predictive feature

feedback

For instance space X = {0, 1}d and label space Y = {0, 1}, let Hd,k denote the

class of k-sparse monotone disjunctions, that is,

Hd,k = {xi1 ∨ xi2 ∨ · · · ∨ xij : 1 ≤ i1 < · · · < ij ≤ d, 0 ≤ j ≤ k}.

3.1.1 Learning without feature feedback

The Winnow algorithm of Littlestone [33] learns the target disjunction h∗ with

O(k log d) mistakes. In several domains however, d could be quite large and potentially

infinite. Thus, it is of interest to remove the dependence on d. Can we achieve this with

feature feedback? In the next section, we will see that we can.

3.1.2 Learning with feature feedback

In the simplest model of feature feedback, each label is accompanied by the index

of a relevant feature, if appropriate. This is particularly easy to formalize in the case of

learning disjunctions:

At round t:

1. If an instance xt satisfies the target disjunction, then the learner receives
a positive label as well as the index of a feature that is in the disjunction
and is set in xt.

2. If xt does not satisfy the target disjunction, then the learner receives
only a negative label.

Formally, for any R ⊂ [d], write

hR(x) =
∨
i∈R

xi,
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and let R∗ be the index set corresponding to the target disjunction h∗ (that is, h∗ = hR∗).

Then feature feedback on a positive instance x consists of any member of R∗ ∩ pos(x).

As discussed in the introduction, in many scenarios the feature feedback is vague,

that is, the features that labeler identifies may not all be relevant. In order to model this

we consider a weaker form of feature feedback: instead of getting the index of a specific

relevant feature, the learner receives a small set of features of which at least one is relevant.

That is, the learner is given a set S ⊂ pos(x) such that S ∩R∗ 6= ∅. When the size of this

set is (at most) a constant c, we call this c-vague feature feedback. When all the features

in S are relevant or when c = 1, the feedback is explicit.

Here’s a simple online algorithm for learning k-sparse disjunctions with vague

feature feedback. The algorithm, makes a prediction before seeing each label, and requires

feature feedback only on mistakes.

Initialize R = ∅

Repeat:

See instance x and predict hR(x)

Receive label y

If y = 0 but hR(x) = 1: (false positive)

Set R = R \ pos(x)

If y = 1 but hR(x) = 0: (false negative)

Receive a subset S ⊂ [d] and set R = R ∪ S

Lemma 3.1. Suppose the labeler provides c-vague feature feedback, for some positive

integer c. Then this method makes at most ck mistakes.

Proof. A false negative occurs only when none of the target features in the current instance

are in the set R. And when a target feature is added to R, it is never removed. Therefore,

there are at most k false negatives; call this number f .
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During these f false negatives, a total of at most cf variables are added to R; at no

other point does R grow. During a false positive, at least one variable is eliminated from

R. Therefore, the number of false positives is at most (c− 1)f . Thus the total number of

mistakes is at most cf ≤ ck.

The class of disjunctions is interesting for theory but are not expressive enough

for many practical situations. Thus we next develop a probabilistic generalization of

disjunctions that is substantially more flexible. For concreteness, we define this model

specifically in a document classification setting, but it applies more generally to the x−z−y

situation described in the introduction.

3.2 The Probabilistic Disjunction Model (PDM)

Let’s define a stochastic model that generates the label y ∈ {1, 2, . . . , k} of any

document d. The model makes use of an intermediate-level representation that, for

concreteness, we think of as referring to topics.

Suppose we have a set of T “topics” as well as a procedure for representing any

document as a convex combination θ = (θ1, . . . , θT ) of these topics (so the θt are nonnegative

and sum to 1). The details of how this is done are irrelevant. We will assume that every

topic t ∈ {1, 2, . . . , T} either has an associated label `(t) ∈ {1, 2, . . . , k} or has `(t) = ?.

In the former case, the topic is a strong predictor of the corresponding label. In the latter

case, the topic is ambiguous, for instance, an overly general topic. We will denote the set

of predictive topics as P = {t : `(t) 6= ?} and we will assume that every document assigns

non-zero probability to at least one predictive topic, that is,
∑

t∈P θt > 0.

The probabilistic disjunction model is a generative process for the label of a document:

• Let θ = (θ1, . . . , θT ) be the topic representation of the document.

• Pick a predictive topic at random: choose t ∈ P with probability proportional to θt.
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• The label of the document is `(t).

3.2.1 Learning without feature feedback

Suppose there is no feature feedback; that is, the learner has access only to a

collection of (document, label) pairs. A reasonable objective, under the above stochastic

model, is to find the assignment ` : {1, 2, . . . , T} → {1, 2, . . . , k, ?} that maximizes the

likelihood of the data. But we can show that merely finding an assignment with non-zero

likelihood is NP-hard.

Theorem 3.2. The following problem is NP-complete: Given a collection of labeled

documents, where each document is represented as a distribution over topics, and where

k = 2 (binary labels), find an assignment ` : [T ]→ {0, 1, ?} with non-zero likelihood.

(Proof in Appendix A.1.1.) Feature feedback makes this intractability go away, as

we will see next.

3.2.2 Learning with feature feedback

The interactive labeling process works as follows:

Repeat until the budget for human interaction runs out.

1. The labeler gets a batch of (say) 10 documents.

2. For each document: he/she assigns it a label and chooses a predictive
word (or maybe several words).

The goal of the learner is to identify the correct mapping ` : [T ]→ {1, 2, . . . , k, ?}.

A scheme for doing this is shown in Algorithm 1. Roughly, when the user tags a document

with label y and identifies relevant words w1, . . . , wc, the algorithm picks a set of topics

S ⊆ [T ] triggered by these words and increments a counter nty for each t ∈ S. This nty

counts how many times the user has suggested that topic t is predictive of label y.

The specific mechanism for choosing the set S based on the feedback, corresponding

to the function select-topics in the pseudocode, is not relevant for the theoretical
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results we establish below. In our experimental work, we use the following strategy: given

feedback words w1, . . . , wc for document x, obtain topic distributions for each of these

words in the context of document x; call these p1, . . . , pc (distributions over T topics).

Add topic t to the selected set S if the tth entry of (p1 + · · ·+ pc)/c exceeds a predefined

threshold.

Algorithm 1. Probabilistic Disjunction Model (PDM)

Input: Collection of unlabeled documents U

Initialize: nty = 0,∀t, y

Labeled data set L = ∅

repeat

Draw next batch B ⊂ U of documents at random

U = U \B

for each document x ∈ B do

Receive label y, relevant words w1, . . . , wc

Add (x, y) to L

S = select-topics(x,w1, . . . , wc)

for t ∈ S do

nty = nty + 1

end for

end for

until budget runs out

Assigning a label to each topic. This is summarized in Algorithm 2. The total

amount of feedback received for topic t is nt =
∑

y nty. If this exceeds some fixed amount

no, and moreover there is a specific label y for which nty ≥ λnt, then we assign ̂̀(t) = y.

Here λ is a fixed fraction. In all other cases, we set ̂̀(t) =?.

Labeling a new document. This prediction rule is shown in Algorithm 3. Once

topics are labeled, the estimated set of predictive topics is P̂ = {t : ̂̀(t) 6=?}. Let θ be the
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Algorithm 2. Topic labeling assignment (TLA)

Input: nty∀t, y, λ, no
for each topic t dồ(t) =?
nt =

∑
y nty

if nt ≥ no then
y = argmaxy′ nty′

if nty ≥ λnt then̂̀(t) = y
end if

end if
end for

Algorithm 3. PDM prediction rule

Input: Topic representation θ ∈ [0, 1]T of document d
Initialize: π = 0k

Label topics according to TLA (Algorithm 2)
for each topic t do

if ̂̀(t) 6= ? then
π(̂̀(t))← π(̂̀(t)) + θt

end if
end for
Normalize π to sum to 1

topic distribution for the new document. The conditional probability that this document

has label y is estimated as

π(y) =

∑
t:̂̀(t)=y θt∑
t∈P̂ θt

.

3.2.3 Theoretical Guarantees

Correctness of topic labeling

In order to show that the topic labeling algorithm recovers the true labels `(t) with

high probability, we do not need the full strength of the PDM assumption. What we

require is that the topics selected by the user are not systematically misleading. On each

round, the machine associates a set of user-selected topics S with a label y. Some of these

associations may be spurious, for instance, due to polysemy that the user inadvertently
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overlooks. But the same spurious associations should not occur repeatedly.

To formalize this, first observe that the two sources of randomness in topic labeling

are: (1) the random selection of documents for labeling, and (2) the possibly stochastic

mechanism by which the human selects helpful words from a document.

Assumption 3.1. For any topic t and any label y 6= `(t), if we pick a document at random,

ask the human for the label and for helpful words, and look at the induced set of selected

topics,

Pr(label = y | topic t is selected) ≤ λ/2.

Meanwhile, for any predictive topic t ∈ P ,

Pr(label = `(t) | topic t is selected) ≥ 2λ.

Theorem 3.3. Pick any 0 < δ < 1. Suppose Assumption 3.1 holds and that we set

no ≥ (6/λ) ln(Tk)/δ. Then with probability at least 1− δ, for all t ∈ [T ] with nt ≥ no, we

have ̂̀(t) = `(t).

(Proof in Appendix A.1.2.)

Label complexity

In order to quantify the amount of feedback needed to recover the true labels `, we

require that the user doesn’t systematically avoid any informative topics, as follows.

Assumption 3.2. There is an absolute constant co for which the following holds. Pick

any t, y such that `(t) = y. Then for any document with topic distribution θ and label y, if

we solicit feature feedback and look at the induced set of topics,

Pr(topic t is selected) ≥ co
θt∑

t′:`(t′)=y θt′
.
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Let θ(x) = (θ1(x), . . . , θT (x)) be the topic distribution for any document x. We

define the prevalence of a predictive topic t ∈ P as

γt = Ex
[

θt(x)∑
t′∈P θt′(x)

]
,

where the expectation is over a uniform-random choice of x from the corpus. Roughly, γt

tells us how common topic t is relative to other predictive topics, and thereby how easy it

is to estimate `(t).

Theorem 3.4. Suppose documents are labeled according to the PDM process. Under

Assumption 3.2, for any t ∈ P , the expected number of labels needed for `(t) to be set is at

most no/(coγt).

(Proof in Appendix A.1.3.) For fixed constants λ and δ, we need no = O(lnTk). If

all predictive topics are equally prevalent then they each have γt = 1/|P |. In this case, the

number of rounds of interaction needed is O(|P | ln(Tk)). This shows the benefit of feature

feedback when only a small fraction of the topics are predictive (that is, |P | � T ).

3.3 Learning linear thresholds with feature feed-

back

We now study feature feedback in the setting where the goal is to learn a linear

classifier by minimizing a loss function and a regularization penalty. Given a data set

{(xi, yi)}ni=1 ⊂ Rp × Y , the optimization is:

ŵ = argmin
w

1

n

n∑
i=1

`(w · xi, yi) + λ‖w‖2,

where `(·) is a loss function and ‖ · ‖ is some norm. For SVMs, for instance, ` is the hinge

loss and ‖ · ‖ is the 2-norm.
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We propose a simple scheme for incorporating information about relevant features:

reduce the regularization along those specific dimensions. To achieve this, we take the

regularization norm ‖ · ‖ to be a Mahalanobis norm, given by a p × p positive definite

matrix A:

‖x‖A =
√
xTAx = ‖A1/2x‖2.

In the absence of feature feedback, A is the identity matrix Ip, giving the 2-norm. But if

we find that features R ⊂ [p] are relevant, we downweight the diagonal matrix in those

dimensions: we set Ajj = 1/c for relevant features j and Ajj = 1 otherwise, for some

c > 1. In spirit, this regularization reweighting is analogous to increasing the prior on

these features in a Bayesian model, as was done in [50].

We next study the statistical benefit of this estimator.

3.3.1 Improved Generalization Error Bounds

Let’s start with a generalization bound for learning linear classifiers chosen from

some set F . Write the empirical loss function as

L̂(w) =
1

n

n∑
i=1

`(w · xi, yi)

(regularization is incorporated by restricting F to vectors of bounded norm). When the

training data (xi, yi) comes i.i.d. from an (unknown) underlying distribution, the following

seminal result shows the relation of L̂(w) to the true loss L(w) = Ex,y`(w · x, y):

Theorem 3.5. [9] Suppose the loss function ` is Lipschitz in its first argument and is

upper-bounded by a constant M`. Then for any δ > 0, with probability ≥ 1− δ over the

choice of data,

∀f ∈ F : L(f) ≤ L̂(f) + 2Rn(F) +M`

√
log 1/δ

2n
,
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where Rn(F) is the Rademacher complexity of F .

The key term here is Rn(F). In our setup, let w∗ be a sparse target classifier of

interest and define a feature as being relevant if it is set in w∗. Using a powerful result of

[29], we obtain the following.

Theorem 3.6. Let R = {j ∈ [p] : w∗i 6= 0} denote the relevant features of w∗.

• We can write any x in terms of its relevant and other components, x = (xR, xo).

• Let A be the diagonal matrix whose jth entry is 1/c if j ∈ R and 1 otherwise.

Then, for the family of linear separators F = {w : ‖w‖A ≤ ‖w∗‖A}, we have

Rn(F) ≤ ‖w∗‖2 ·max
x∈X

√(
1

c
‖xo‖2

2 + ‖xR‖2
2

)√
2

n
.

(Proof in Section A.2.1.) In situations where the xo (the irrelevant portion of the

data) has significant norm, this downweighting by a factor of c substantially reduces the

generalization error bound.

Chapter 3 contains material as it appears in “Learning with feature feedback: from

theory to practice.” S. Poulis and S. Dasgupta. International Conference on Artificial

Intelligence and Statistics 2017. The dissertation author was the primary investigator.
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Chapter 4

Practical models of feature feedback

In the previous chapter we studied the benefits of feature feedback in abstract

settings, for various concepts. In this chapter we turn our attention to applications.

4.1 Learning a support vector machine with feature

feedback

Given training data {(xi, yi)}ni=1 ⊂ Rp × Y consider the SVM problem with our

Mahalanobis regularizer:

minimize
w

1

2
‖w‖2

A + C
N∑
i=1

ξi

subject to ξi ≥ 0, yi(x
T
i w + b) ≥ 1− ξi, ∀i.

A straightforward derivation shows the following.

Lemma 4.1. Pick any positive definite p× p matrix A. Then, learning a linear SVM on

instances {(xi, yi)}ni=1 with Mahalanobis regularizer ‖w‖A is equivalent to learning a linear

SVM on modified instances {(A−1/2xi, yi)}ni=1 with ‖w‖2 regularization.

(Proof in Section A.3.) An SVM algorithm with feature feedback (SVM-FF) is

given in Algorithm 4. For each supplied feature, the corresponding diagonal entries of A

are set to a particular value c < 1 and every labeled and unlabeled example is weighted by
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A−1/2. Then, a standard linear SVM is trained on the weighted labeled instances.

Algorithm 4. SVM with feature feedback (SVM-FF)

Input: c < 1, unlabeled data set U

Initialize: L = ∅, A = Ip

repeat

Draw next batch B ⊂ U of documents

U = U \B

for each document x ∈ B do

Receive label y, words s

Add (x, y) to L

for j ∈ s do

Ajj = c

end for

Train linear SVM on {(A−1/2x, y) : (x, y) ∈ L}

end for

until budget runs out

4.2 Bootstrapping PDM

The feedback in the regularization approach is explicit: the regularization will only

be applied to features that the labeler selects. Let’s return to the “filibuster”–“politics”

example in the introduction. Even though the word “filibuster” is a good predictor for

“politics” it is a fairly uncommon word. Hence, not that many documents will be affected

by reducing the regularization on it. On the other hand, vague feature feedback facilitated

by the PDM is richer: feedback on “filibuster” propagates to other words in the same topic.

To incorporate vague feedback into a linear classifier, we introduce the bootstrapped PDM

(Algorithm 5). Given a labeled data set L and an unlabeled data set U , the algorithm fits

a PDM to L and uses this PDM to predict on U . It then infers the labels of a set I ⊆ U
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of data points for which it is confident. We say that the PDM is confident on an instance

x if its prediction ŷ has estimated conditional probability π(ŷ) ≥ τ0 (recall the notation

of Algorithm 3), where τ0 is a parameter to be set. One can then train any classifier on

L ∪ I. If the classifier of choice is a linear SVM, one can apply the mixed regularization,

by multiplying every example by A−1/2 and training a linear SVM on this weighted data

set of labeled and inferred points.

Algorithm 5. Bootstrap PDM

Input: Unlabeled data set U, τ0 (optionally, c < 1)

Initialize: L = ∅ (optionally, A = Ip)

repeat

Draw next batch B ⊂ U of documents

L = L ∪B; U = U \B

Train PDM (Algorithm 1) on L

(optionally, update A as in Algorithm 4)

for each document x ∈ U do

I = ∅ (documents with inferred labels)

Predict π(·) over labels according to Algorithm 3

Predict ŷ = argmaxy′∈{1,...,k} π(y′)

if π(ŷ) ≥ τ0 then

Add (x, ŷ) to I

end if

end for

Train any classifier on {(x, y) : (x, y) ∈ L ∪ I}

(optionally, train linear SVM as in Algorithm 4)

until budget runs out
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4.3 Experiments

We conducted experiments on the following 6 benchmark text categorization data

sets. 20 NewsGroups: Set of approximately 20,000 documents, partitioned evenly across

20 newsgroups, containing postings about politics, sports, technology, religion, science

etc. Reuters-21578: Another widely used collection for text categorization research.

Documents with less than or with more than one label were eliminated, resulting in R8 (8

classes) and R52 (52 classes). webkb: Data set that contains web pages collected from

computer science departments of various universities. cade: Web pages from the CADE

Web Directory, which points to Brazilian web pages classified by human experts in 12 classes,

including services, education, sciences, sports, culture etc. ohsumed: Medical abstracts

from the MeSH (Medical Subject Headings) data set, belonging to 23 cardiovascular

disease categories. For further details on the data sets, see section A.4.1 of the Appendix.

The first five data sets were already processed [14]; we processed ohsumed in the same

manner (stemming, removal of stop words and words shorter than two characters). As

we are interested in single label documents, we only kept data points that had only one

label. For each document we obtained its tf-idf and topic representations. For the latter

we trained a Latent Dirichlet Allocation model using the collapsed Gibbs sampler [26].

The number of topics was 10 times the number of classes in each data set.

Oracle features

To simulate the labeler’s feedback, we first generated a list of oracle features for each

class as follows. We first trained a logistic regression classifier with `1 regularization and

took all the feature weights that were positive. We then looked at the level of correlation

between these features and the class labels. Specifically, for various thresholds α, we

considered feature j as feedback for class k if P (k|j), the conditional probability of label k

given the presence in the document of word j, was at least α. We then tested our models
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for various values of α. Feature feedback on a document applied if it contained any of the

words in the list of its label. An example of feature feedback for the 20ng dataset using

the PDM is shown in figure A.2 in the appendix.

Experimental setup

We compared our models to a linear SVM without feedback. To choose the cost C

of all SVM classifiers, we only tuned the SVM without feedback by optimizing the macro-F1

score on the grid {1, 10, 100, 1000}. We then set C for the SVM-FF and bootstrap PDM

models to that value. On the first few batch iterations we used 2-fold cross validation

and continued with 5-fold in later iterations. We set the rest of the parameters for PDM,

SVM-FF, and bootstrap PDM as follows: λ = 1
10

, no = 2, c = 1
20

and τ0 = .75.

Discussion of simulation results

Figures 4.1 (a-c) show learning curves for the first 500 data points for each training

data set, divided into 20 batches. For each batch iteration, we report macro-F1 score on

the test set. (See A.4.2 for a more detailed exposition of the experimental results.) Across

the board, we find that feedback on a few predictive words helps significantly. To get

a feel of the amount of feature feedback see figures A.9- A.10 in A.4.2. Vague feature

feedback (PDM, bootstrap PDM) is particularly helpful when the labeled data set is small.

Generous feature feedback (i.e. α ≥ .5) helps fast convergence when data are scarce but

has a somewhat adverse effect when plenty of labeled samples are available. However,

this improves for α ≥ .9. Interestingly, in addition to its superior performance, SVM-FF

produces a solution that is much sparser than that of the SVM, as seen in figure 4.1d.

This makes sense intuitively, as feature feedback helps the learning algorithm to focus on

important dimensions.
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(a) 20ng-Webkb (b) R8-R52

(c) cade-ohsumed
(d) Number of Support vectors of SVM vs SVM-
FF

Figure 4.1. (a) to (c): Learning Curves at Different Values of α. (d): Number of Support
Vectors.
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Small vs large data regimes

The simulation results illustrate that the benefits of feature feedback diminish

asymptotically. We note that since we are learning a linear classifier, in the limit of enough

labeled data, we can simply run SVM. Also, the degree of regularization in the SVM-FF

can be adjusted so that c→ 1 as the sample grows. Hence, our methods are well suited to

the fairly common situation where the amount of labeled data is limited.

Human experiment

To get a sense of the feature feedback that humans tend to provide and to quantify

the difference in the benefits of a selected feature vs a random feature, we conducted a

small human study involving 5 annotators. We considered a subset of the 20ng data set

that included points with classes talk.politics.mideast, comp.graphics, sci.med, rec.autos

and misc.forsale. The annotators provided the labels of a randomly chosen set of 50 points

along with a number of features via an interface. (See A.4.3 for details). For class k,

call Sk, Nk the set of features that annotators selected and did not select, respectively.

In table 4.1 we show p̄Sk
= 1
|Sk|
∑

j∈Sk
P (k|j) and p̄Nk

= 1
|Nk|

∑
j∈Nk

P (k|j), where the

P (k|j)’s are the conditional probabilities described earlier.

Table 4.1. Results of Human Experiment

p̄Sk
p̄Nk

misc.forsale 0.63 0.76

rec.autos 0.95 0.82

sci.med 0.96 0.78

comp.graphics 0.83 0.66

talk.politics.mideast 0.98 0.74

Note that p̄Sk
is smaller than p̄Nk

only for the class misc.forsale because some anno-

tators confused documents about items for sale with documents with class comp.graphics
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and rec.autos. This is not a surprising effect and we expect to diminish with more labeled

data and with a larger pool of annotators. Across the board, we find that humans tend to

provide words that are highly predictive of the label.

4.4 Conclusions and future work

In this part the thesis, we formalized feature feedback, a problem that has been

largely studied empirically. We established models of feature feedback that dealt with

ambiguity in the intent of the labeler and in several cases were able to quantify its benefits.

Our experiments demonstrated that feature feedback can be very useful when labeled data

is not abundant or when is difficult to obtain. There are several directions for future work.

One potential direction is to develop models of feature feedback that operate in

the active learning setting, where the learner is able to solicit feedback for labels and

features actively and adaptively, by making requests only when needed. Thus, it would be

interesting to explore whether the logarithmic improvements of active learning can pushed

even further.

Another interesting direction is to extend the work done in [49] for discriminative

feature feedback and study further applications. One such application is to study models

of discriminative feature feedback in a setting where data points may have multiple labels,

such as images with several objects in them.

Finally, it may be of interest to extend our framework of learning linear thresholds

with feature feedback. Under our framework, all relevant features were disclosed to the

learner in advance. In the future, we envision a setting in which relevant features are

gradually disclosed during rounds of interaction.

Chapter 4 contains material as it appears in “Learning with feature feedback: from

theory to practice.” S. Poulis and S. Dasgupta. International Conference on Artificial

Intelligence and Statistics 2017. The dissertation author was the primary investigator.
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Part II

Interactive topic modeling
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Chapter 5

Introduction

Topic models [11, 26, 32, 10] are an unsupervised approach to modeling textual

data. Given a corpus of documents, topic modeling seeks a small number of probability

distributions over the vocabulary, called topics, so that each document is well-summarized

as a mixture of topics.

Topic models are most easily described by their generative process, the imaginary

random process by which the model assumes the corpus of documents arose. The most

common formulation for the document generating process is the following: each word is

generated by first, selecting a topic from a document-specific distribution, and then by

selecting a specific word from that topic-specific distribution.

There are two main algorithmic methods in fitting a topic model. The first method

seeks to find the latent topic assignment for every word-document pair that maximizes some

likelihood objective. This is done via approximate inference methods, such as variational

techniques [11] or Markov Chain Monte Carlo (MCMC) [26]. The second and most

recent method treats the topic model fitting problem as one of statistical recovery: recover

the parameters that generated the corpus with a reasonable amount of samples; several

algorithms that assume data are generated by a collection of topics and aim to provably

recover these topics have been proposed [4, 5].

Regardless of the specific algorithmic method used to fit a topic model, the natural
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Figure 5.1. Topic models as interpreted by users: most probable words under each topic
and how users interpret them.

interpretation of topics, that they represent the main themes of a corpus, has perhaps

most motivated their use by practitioners [41, 30, 38]. Indeed, the most common way to

summarize topics is with a short list of their most probable words, and topic models are

judged according to how well these lists align with a user’s intuition [15]. In this sense, a

user expects to interpret a topic model via a small collection of words. Figure 5.1 shows

an example of how topics may be interpreted by a user.

Model fit and interpretability form two, sometimes opposing, objectives in topic

modeling, and it can be difficult to strike a balance between the two. Consider the challenge

of granularity: should there be different topics for “football”, “Olympics” and “basketball”

or is a single topic over “sports” sufficient? Obviously more topics will be able to describe

the corpus more easily, but a particular user may not care to make the distinction between

three sports-related topics. Clearly no unsupervised method can be expected to always

make the correct choice here.

To deal with such ambiguities, researchers have considered methods to introduce
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interaction into topic modeling algorithms. There are two main approaches in introducing

user interaction into a topic model. Naturally, each approach corresponds to one of the

two algorithmic methods for fitting a topic model described above.

The first approach, which corresponds to the approximate inference methods for

fitting a topic model, has been to encode positive and negative word correlations into prior

distributions in the form of constraints. The idea is that by biasing models to group words

a user knows should be together and separate words a user knows should remain apart, an

algorithm can converge on a topic model that better reflects a user’s preferences. This

approach which can be called constraint-based has been studied in several works [2, 28, 43].

The second approach, which corresponds to the statistical recovery method to

fitting a topic model is to introduce interaction through anchor words — words which only

occur with significant probability in a single topic [4, 5]. See Figure 5.2 for an illustration

of anchor words. Because anchor words occur only in a single topic, users can treat

them as proxies for entire topics, allowing large changes in a topic model with only a few

interactions. This approach which may be called anchor word-based was first proposed by

[38].

In this part of the thesis we will develop interactive topic modeling frameworks

under both the constraint-based and the anchor word-based approaches. We start by

motivating these frameworks below.

5.0.1 Our constraint-based framework

Let’s focus our attention on Figure 5.3 where we show a scientific article. Here

we have highlighted different words used in the article with different colors. For example

words about “data analysis”, such as “computer” and “prediction” are highlighted in blue;

words about “evolutionary biology”, such as “life” and “organism” are highlighted in pink;

words about “genetics”, such as “sequenced” and “genes” are highlighted in yellow. If we

took the time to highlight every word in the article (other than stop words like “and”,
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Figure 5.2. Anchor words are words that are very specific to a certain topic, thus
are expected to have non-zero probability only under that topic. Anchor word-topic
probabilities are the red-colored boxes to the right.

“but” , “if” etc., which contain little topical content) we can obtain the admixtures of

topics for this article. Fitting a topic model is very much like this highlighting process:

the inferencing algorithm will find the most likely topic assignment zw for each word w.

Now suppose that the inferencing algorithm mistakenly assigns the word “genome”

to the blue topic which is about “data analysis” instead of assigning it to the yellow topic,

which is about “genetics”. How can a user intervene and correct this? Naturally, the user

can step in and highlight “genome” in yellow. The algorithm could then incorporate this

feedback as a constraint and in the next round the word “genome” will be assigned to the

yellow “genetics” topic. In theory, our user could correct every mistaken assignment, just

by highlighting each word with the appropriate color.

Our constraint-based interactive protocol formalizes the above intuition. We think

of a topic model as a K-clustering of the words: we assume that for each word w there

is a target assignment z∗w ∈ {1, . . . , K}. A topic modeling algorithm will produce an

estimate zw and each time z∗w 6= zw a user can intervene and provide feedback in the form

of constraints. The algorithm will then incorporate this feedback and will output a new
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Figure 5.3. Topic assignments are illustrated with different colors. Aggregating all topic
assignments induces the topic proportions for this document. Picture taken by [11].

topic assignment that obeys the user provided constraints.

5.0.2 Our anchor word-based framework

An anchor word for a topic Aj is a word that has positive probability under topic

Aj and 0 probability under any other topic. Given the assumption that every topic has an

associated anchor word, there is a natural algorithm to recover the topic matrix [5]. The

algorithm proceeds in two steps: first, it selects anchor words for each topic; and second,

in the recovery step, it reconstructs topic distributions given those anchor words. The

input for the algorithm is the second-order moment matrix of word-word co-occurrences.

Anchor words have the leverage to trigger the large changes in a topic model that

a user may be hoping for. Moreover, they may allow a user to address specific deficiencies

in a topic model. To see this, recall our earlier example about the “football”, “Olympics”

and “basketball” topics. Each of these topics will be associated with an anchor word,

say “goal” for the football topic, “medal” for the Olympics topic and “jumpball” for the

basketball topic. Now a user might be satisfied with just a single “sports” topic but the

corpus itself will not look like it has the ideal sports topic that the user wants. What can

be done in this case? Naturally, the user can group all three anchor words together, thus
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Figure 5.4. Interactive topic modeling with anchor words. Anchor words that may be
in the same topic are merged together to form the idealized topic that a user may desire,
while other anchor words may be ignored.

creating the ideal sports topic.

Our anchor word-based framework for interactive topic modeling is based on this

idea. We present an anchor word-based interactive protocol wherein users are shown

anchor words and are given the opportunity to create the idealized topics that they may

desire, by grouping anchors if they should belong to the same topic, while removing others

that are uninteresting. Figure 5.4 illustrates this. A topic is then created for each group.

We have designed the interaction to be efficient in its use of human feedback by reducing

the number of anchor words a user must examine to create a group. Figure 5.5 shows an

example of our interactive system.

5.0.3 Overview

The rest of Part II is organized as follows. In Section 5.0.4 we review previous work

on interactive approaches to traditionally unsupervised tasks.

In Chapter 6 we present our constraint-based approach to interactive topic modeling.

Our interactive protocol, which is developed in Section 6.2, views the topic modeling

problem as one of clustering: each word w in the corpus must be assigned to a target

cluster z∗w ∈ {1, . . . , K}. Interaction is then designed to solicit user feedback in the form
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of “must-link” and “cannot-link” constraints so that the target cluster for each word is

respected. We develop this protocol specifically for Latent Dirichlet Allocation [11] and

present a version of the Gibbs sampler that incorporates the user-provided constraints

and returns a topic model that obeys them. Finally, in Section 6.3 we conduct a series of

simulation experiments that show that our interactive approach yields topic models that

better aligned with a target, when compared to a non-interactive approach.

In Chapter 7 we present our anchor word-based approach to interactive topic

modeling. In our approach, we require that the user is allowed to only interact with

anchor words and not with arbitrary words that may seem interesting or descriptive. In

Section 7.2.1, we show that this requirement is crucial by illustrating the potential pitfalls

of a previous proposal for anchor word-based topic modeling that allows users to interact

with arbitrary words.

In Section 7.2.2, we argue that the assumption that documents are generated by a

small number of topics that are succinct, descriptive, and interpretable by a user is often

unrealistic. To model the mismatch between the idealized view a user has in mind and

the actual data generating process, we introduce a new model of data generation. We call

this model the subtopics model : for each “ideal” topic there is a number of “subtopics”;

documents are then generated as admixtures of these subtopics. We show that under

this model, it is difficult to recover the idealized topics and continue by presenting an

interactive protocol based on anchor words that is able to recover them.

In Section 7.3 we present a series of experiments. We first demonstrate the efficacy

of our anchor-word based approach with simulated user interaction and then present a

real user study on an interactive system that implements our protocol.

5.0.4 Related work

The observation that unsupervised learning objectives rarely align completely with

a user’s intentions is not a new one. Nor is the solution of introducing human feedback
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Figure 5.5. A view of our interactive anchor based system: a user is creating an “election
hacking” topic by providing the words “computer”, “fbi”, “emails”, “messages” as anchors
to the system.

to mitigate this issue. The approaches that have been studied thus far can be generally

broken into two categories: constraint-based and higher-order.

In constraint-based interactive learning, a structure is found by optimizing some cost

function subject to certain constraints. In flat clustering, for example, these constraints

are pairs of data points which either must belong to the same cluster (must-link) or

cannot belong to the same cluster (cannot-link) [58, 6]. For hierarchical clustering, these

constraints take the form of triplets of data points ({x, y}, z) wherein x and y must be

closer to each other in tree-distance than either is to z [57].

In the context of topic modeling, constraint-based interaction has typically focused

on probabilistic models where constraints are either down-weighted or eliminated. Whether

these constraints are introduced all at once [2, 43] or in interactive rounds [28], the focus

of these methods has been on modifying the prior distribution over topics so that they

favor certain word correlations. Thus, the user feedback in such methods is translated

into soft constraints.

In contrast, our approach differs in that we allow for hard constraints. We think

of a topic model as a clustering of the elements of the corpus. We have designed the

interaction so that the user can directly affect the model in a way that respects a target

clustering. In principal, our interactive approach allows a user to completely specify a

target clustering.

Higher-order feedback seeks to effect large changes in a model by modifying aspects
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of the model directly. As such, the types of feedback considered are highly dependent

on the task at hand. In clustering, for example, researchers have considered split and

merge requests in which a user indicates that a certain cluster ought to be broken up into

smaller clusters (a split request) or that several clusters should be grouped together into a

single cluster (a merge request). Given certain assumptions on the target clustering, upper

bounds can be given on the number of rounds of interaction needed to find the target

clustering [8, 7].

Perhaps the most convincing use of higher-order feedback in topic modeling is via

anchor words. Because each anchor word has a unique topic associated with it, actions

performed on anchor words have the potential to effect large changes in the topic model.

[38] proposed a protocol in which a user creates a group of words that they feel are

representative of a topic and these words are aggregated into a single pseudo-anchor word.

These pseudo-anchor words are then used to create a topic model in the same way that

actual anchor words would be used.

The anchor word-based interactive protocol considered in this work is similar to

that considered by [38] in its reliance on anchor words. However, our method differs

considerably both in the types of words a user can interact with (we only allow a user

to interact with geometrically-meaningful anchor words) and in the way we utilize the

user-created groups (we sidestep the creation of pseudo-anchor words).
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Chapter 6

Constraint-based interactive topic
modeling

In this chapter we present our constrained-based approach to interactive topic

modeling. As we study this model specifically for Latent Dirichlet Allocation (LDA), we

start by specifying the LDA model.

6.1 Latent Dirichlet Allocation

A corpus is a collection of documents d1, . . . , dm, each of which is represented in

the bag-of-words representation as a vector in ZV+, where V is the size of the vocabulary.

In LDA the stochastic model that generates the corpus is the following:

For each document dj:

1. Draw a document-topic Dirichlet distribution with parameter α, θj ∼
Dir(α).

2. Draw a topic-word Dirichlet distribution with parameter β, φk ∼
Dir(β).

3. For each word w in position i of document dj:

(a) Draw a topic zij ∼ Multinomial(θj)

(b) Draw a word wij ∼ Multinomial(φzij)

We can now represent the corpus as N pairs (wi, dj) and can think of a topic

model as a vector z of N random variables taking values in {1, . . . , K}. Each value of z
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corresponds to the topic of (wi, dj). We can also pack all the elements of the corpus into a

vector w. We are then interested in estimating the posterior distribution P (z|w). It can

be shown that

Pr(z|w) ∝
K∏
k=1

(∏
w Γ(n

(w)
k (z) + β)

)(∏
d Γ(n

(d)
k (z) + α)

)
Γ(nk(z) +Wβ)

where Γ(·) is the gamma function and

nk(z) = |{i, j : zij = k}|

n
(w)
k (z) = |{i, j : zij = k, wi = w}|

n
(d)
k (z) = |{i, j : zij = k, dj = d}|.

An algorithm for sampling from the LDA posterior distribution is the Gibbs

sampler [26]. We can also show that the updates for the Gibbs sampler are

Pr(zij = k | z−ij) ∝
(n

(wi)
k (z−ij) + β)(n

(dj)
k (z−ij) + α)

nk(z−ij) +Wβ
,

where nk(z−ij) is a count the does not include the assignment of z−ij.
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6.2 An interactive protocol

Let’s return to our highlighting experiment from the introduction and suppose that

we have a helpful user who is able to provide corrective feedback to the topic model. To

formalize this we will assume that there is a ground truth topic vector z∗. The user does

not know the values of z∗ but is able to provide feedback in the form of constraints: after

seeing a pair (wi, dj), (wp, dq) the user says “must-link” if z∗ij = z∗pq or “cannot-link” if

z∗ij 6= z∗pq. Here is the interactive protocol that we consider.

Initialize a set of constraints C.
Repeat:

1. The user is presented with a pair (wi, dj), (wp, dq) along with labels
zij, zpq.

2. If z∗ij 6= z∗pq but zij = zpq, the user provides a cannot-link constraint
that is added to C.

3. If z∗ij = z∗pq but zij 6= zpq the user provides a must-link constraint that
is added C.

4. The algorithm (approximately) samples a topic model which satisfies
the provided constraints C.

6.2.1 An interactive Gibbs sampler

Given feedback in the form of must-link and cannot-link constraints C, what form

does the updated posterior take? Observe that if C contains a must-link constraint for

(wi, dj) and (wp, dq), then

Pr(zij = k |z−ij, C) =


1 if k = zpq

0 else.

While easy to implement, the above suffers from two issues: (1) we will need to

keep track of O(N2) quantities where N is the size of the corpus and (2) there is no way

to explicitly incorporate hard constraints into a Gibbs sampler: any Markov chain with
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such behavior will not be irreducible and therefore will not converge to the stationary

distribution. To overcome these two difficulties, we will propose a modification to the

Gibbs sampler and will instead compute the conditional probabilities for the connected

components induced by C, which we denote by CC(C) = {s1, . . . , sm}.

For s ∈ CC(C) let N(s) ⊂ C denote the set of cannot-link neighbors of s, i.e.

s′ ∈ N(s) if and only if there exists a cannot-link constraint in C for some (wi, dj) ∈ s and

some (wp, dq) ∈ s′. Then it is not too hard to observe

Pr(zs = k |z−s, C) ∝


0 if ∃ s′ ∈ N(s) s.t. k = zs′

Pr(zs = k |z−s) else

The following lemma shows that the conditional probabilities of the constrained posterior

distribution can be easily computed.

Lemma 6.1. For a given connected component s and topic k, if it is the case that there

are no cannot link edges between s and any other component with topic assignment k, then

Pr(zs = k |x, z−s, C) ∝


0 if ∃ s′ ∈ N(s) s.t. k = zs′

p
(w)
k (s,z−s) p

(d)
k (s,z−s)

pk(s,z−s)
else

where

p
(w)
k (s, z) =

∏
w∈s

Γ
(
n

(w)
k (z) + n(w)(s) + β

)
Γ
(
n

(w)
k (z) + β

)
p

(d)
k (s, z) =

∏
d∈s

Γ
(
n

(d)
k (z) + n(d)(s) + α

)
Γ
(
n

(d)
k (z) + β

)
pk(s, z) =

Γ (nk(z) + nk(s) +Wβ)

Γ (nk(z) +Wβ)

(Proof in Section 6.1 of Appendix B.)
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Figure 6.1. An interactive system that implements the constrained-based protocol. Here,
the user has grouped words related to “presidential elections” in a bucket and words
related to “terrorism” in another bucket

6.2.2 An interactive system

How can our interactive protocol be implemented? An example of a system that

implements the protocol is shown in Figure 6.1. The system works follows:

• Initialize a topic model vector z(0)

• For t = 1, 2, . . . :

1. The user is shown a pair of documents. Topic labels according to
z(t−1) can displayed by the different colors.

2. The user puts must-link words in the same“bucket” and cannot-link
words in different buckets. This induces a constraint set C.

3. A topic model vector z is sampled according to Lemma 6.1.

4. z(t) = z
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6.3 Experiments with an oracle user

In this section, we compare the performance of our interactive LDA model with that

of vanilla LDA in the setting of document retrieval. Here, a test document is considered

as the query and used to retrieve similar documents by performing k-NN classification.

We assume that user interaction is aimed towards producing document representations θ

that will put documents with the same label close in some distance and documents with

different labels further apart. Using labeled documents, we create an “oracle” user that

provides sets of constraints that respect the labels of documents. To generate must-link

constraints, we consider words whose level of correlation with the label is high. Specifically,

for various thresholds α, we considered word j as feedback for class k if P (k|j), the

conditional probability of label k given the presence in the document of word j, is at least

α. So, every time a new pair of documents is seen, the oracle will select word j from a

document with label k, such that P (k|j) ≥ α. This method was employed in 7.3. If the

labels in the pair are different, we create two buckets of must-link constraints. Then we

generate cannot-link constraints between words in the two different buckets. Now if both

labels in the pair are the same, we only create one bucket of must link constraints. We

experimented with the 20ng and webkb corpora that were described in 7.3 using 10,

20, and 50 topics. The level of correlation α was set to .5. Results are shown in figures

6.3- 6.2

6.3.1 Discussion of simulation results

In Figures 6.3 and 6.2 we display precision and recall curves (first 6 panels in

each figure) at various stages of the simulation. Also, in the last panel of each figure we

display results throughout all the rounds of the simulation, in terms of the area under the

precision-recall curve. As it can be seen, our interactive protocol outperforms Vanilla LDA

in all our experiments.
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(a) 10 topics (b) 20 topics

(c) 50 topics

Figure 6.2. Experiments on the 20ng data set. The first six panels in each figure show
precision and recall curves in the various rounds. The last panel shows area under the
precision and recall curve.
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(a) 10 topics (b) 20 topics

(c) 50 topics

Figure 6.3. Experiments on the Webkb data set. The first six panels in each figure show
precision and recall curves in the various rounds. The last panel shows area under the
precision and recall curve.
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One downside to our interactive approach is the amount of feedback that is required.

Although our protocol allows a user to directly affect the latent topic assignments, it may

not practical for real-world applications. In the next section, we present our anchor word -

based interactive protocol, which is substantially more practical.

Chapter 6 contains material that is currently being prepared for submission for

publication of the material. S. Poulis, S. Dasgupta, C. Tosh. The dissertation author was

the primary investigator.
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Chapter 7

Interactive topic modeling with an-
chor anchors

In this chapter we will present an approach that overcomes the limitations of our

previous approach using anchor words. We start with some preliminaries in below.

7.1 Preliminaries

A corpus is a collection of documents d1, . . . , dm, each of which is represented in

the bag-of-words representation as a vector in ZV+, where V is the size of the vocabulary.

A word-topic matrix is a V ×K matrix A such that each column Ai corresponds to a topic

and is represented as an element of ∆V , the V -dimensional probability simplex.

Given a word-topic matrix A and a prior distribution τ ∈ ∆K , here is the generative

model for a corpus:

• For each document d = 1, 2, . . .:

– Draw a topic distribution pd ∼ τ

– For word i in document d, draw its topic zi ∼ pd and then draw the vocabulary

word wi ∼ Azi .

Together, the matrix A and distribution τ induce a word co-occurrence matrix
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Q ∈ RV×V and topic co-occurrence matrix R ∈ RK×K satisfying

Qi,j = Pr(w1 = i, w2 = j) and

Rk,k′ = Pr(z1 = k, z2 = k′)

for a randomly generated document with words w1 and w2 with associated topics z1 and

z2.

We say that a word i is an anchor word for topic k if Ai,k � 0 and Ai,k′ = 0 for all

other topics k′ 6= k. Further, we say that the topic matrix is separable if each topic k has

an associated anchor word sk.

Given such a corpus, several algorithms have been designed to provably recover the

anchor words of a topic model and the topics associated with them [4, 47, 5]. The general

approach is given in Figure 7.1. In this work, we will assume that we have access to such

procedures and their subroutines.

1. Compute normalized word co-occurrences. Form the V × V matrix Q̄, where
Q̄ij = Pr(w2 = j|w1 = i). The rows of Q̄ lie in ∆V .

2. Identify the anchor words. Find K rows of Q̄, say s1, . . . , sK , such that the rest
of the rows lie approximately in the convex hull of the Q̄si . These are the anchor
words.

3. Express all rows as convex combinations of anchor rows. For each word i,
find positive weights Ci,1, . . . , Ci,K summing to 1 such that Q̄i ≈ Ci,1Q̄s1 + · · · +
Ci,KQ̄sK . Then Ci,k ≈ Pr(z = k|w = i).

4. Recover the topic distribution. By Bayes’ rule: Ai,k = Pr(w = i|z = k) ∝
Ci,kPr(w = i).

Figure 7.1. The generic anchor words algorithm.
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7.2 An anchor word based interactive protocol

As pointed in the introduction, there are many difficulties associated with topic

modeling as a purely unsupervised task. These include the identification of the correct

number of topics, filtering out noise, and dealing with the inherent ambiguities of language.

Moreover, different users may have different desiderata in a topic model that may not be

possible to satisfy simultaneously.

To address these issues, several methods have been considered for injecting human

knowledge into topic modeling. The approach with the closest resemblance to our own

is the recently proposed anchor facet approach [38]. In this method, a user synthesizes

pseudo-anchor words by averaging together subsets of words the user chooses. As we will

see, these pseudo-anchors disregard the underlying geometry of the data in ways that can

lead to problems in topic recovery.

The remainder of this section is organized as follows. We first give an example where

the anchor facet approach leads to identifiability issues. Next, we present a generative

model for which standard unsupervised techniques cannot recover the desired topics, even

in the infinite data limit. Finally, we present our interactive protocol which can, in fact,

find good estimates of the desired topics.

7.2.1 An anchor facet problem

In the anchor facet model, a user chooses a set of words G from the vocabulary that

they feel should represent a topic. For instance, they might choose games and computer

to indicate a ‘computer games’ topic. The corresponding word co-occurrence vectors (rows

of Q̄) are then aggregated to form a pseudo-anchor g, by taking their harmonic mean

(among other options), and this g is added to the set of anchor words. After the user has

created the pseudo-anchors, a topic model is recovered using steps 3-4 of Figure 7.1.

This approach is intuitively appealing but hard to justify geometrically. The
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Figure 7.2. Illustration of anchor facet shortcoming. Here the user combines anchor
words ‘computer’ and ’games’ which results in a point ‘computer-games’ somewhere in the
middle of the simplex spanned by s1, s2 and s3.

correctness of the anchor words algorithm depends on the anchors being at the corners of

the simplex containing all the word vectors. Pseudo-anchors violate this in two ways: (1)

they don’t have a clear meaning in terms of co-occurrence probabilities (if, as suggested,

the harmonic mean is used for aggregation) and (2) they may well lie near the center of

the simplex. For instance, it could easily happen that a large fraction of the remaining

words are not well-approximated as convex combinations of pseudo-anchors; in which case,

these words will be assigned to topics in a fairly arbitrary manner.

7.2.2 A subtopic view of document generation

The topic modeling view of data generation, that a corpus is generated by a

relatively small number of topics that are easily interpretable by a human, is often an

oversimplification. In reality, documents on similar subjects can vary wildly in their choice

of language due to authorship, the times they were written, etc. A topic model that

accurately fits a real corpus must necessarily contain many topics.

To see this, imagine a corpus of news documents collected over the course of a year,

in which a small but significant percentage of articles deal with weather. A user wishing

to analyze this corpus via topic modeling might be satisfied with a single weather topic.

However, the corpus itself will not look like it only has a single weather topic. Indeed, the

distribution of words in a weather article written in September during hurricane season
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will look significantly different from the distribution of words in a weather article written

in January during blizzard season, which in turn will look significantly different from the

distribution of words in a weather article written in July during drought season. Thus,

accurately modeling the weather-related aspects of the corpus requires several topics. And

that is just the weather! Conceivably, other aspects of the corpus for which a user might

imagine a single topic sufficing can in turn be broken into components that actually model

the data.

On the other hand, a model with hundreds or thousands overlapping and highly

correlated topics is not easy to work with. Many users would prefer a significantly simpler

model that may not perfectly describe the data but summarizes the core subjects well.

To model the mismatch between the idealized view a user has in mind and the

actual data generating process, we introduce the subtopics view of data generation. It is

described by the following generative model.

• There are several ‘ideal’ topics M1, . . . ,MK along with some topic-topic co-occurrence

matrix RM ∈ RK×K .

• For each ideal topic Mk, some number of ‘subtopics’ indexed by the set Gk are drawn

i.i.d. from a distribution satisfying E[At] = Mk for each t ∈ Gk.

• The corpus is generated according to the new topic matrix A and some topic-topic

co-occurrence matrix RA satisfying
∑

t∈Gk

∑
t′∈G′k

RA
tt′ = RM

kk′ .

Here we call the topic model induced by M and RM as the idealized model and

the topic model induced by A and RA the subtopics model. Intuitively, the idealized

model is the model that would have generated the corpus in an ideal world, e.g. an ideal

weather topic. However, the corpus is actually generated by the subtopics model with a

larger number of more specific topics, e.g. hurricane, blizzard, and drought topics. As

57



the following lemma shows, the co-occurrence matrix induced by a subtopic model is

intrinsically biased away from the idealized model in expectation.

Lemma 7.1. If QM is the co-occurrence matrix induced by the idealized model and QA is

the co-occurrence matrix induced by the subtopics model, then

EA[QA] = QM +
∑
k

RM
k,kΣ

(k)

where Σ(k) is the covariance matrix of the subtopic distributions generated under ideal topic

k.

Proof. Fix words i, j and subtopic matrix A. Then

QA
i,j = Pr(w1 = i, w2 = j)

=
∑
t,t′

Pr(w1 = i|z1 = t) · Pr(w2 = j|z2 = t′)

· Pr(z1 = t, z2 = t′)

=
∑
t,t′

RA
t,t′Ai,tAj,t′ .

Taking expectations of this with respect to the A’s and noting that (i) At and At′ are

independent for t 6= t′ and (ii) E[AtA
T
t ] = Σ(k) +MkM

T
k for all t ∈ Gk, we have

E
[
QA
i,j

]
=
∑
k,k′

∑
t∈Gk

∑
t′∈Gk′

E
[
RA
t,t′Ai,tAj,t′

]
=
∑
k 6=k′

RM
k,k′Mi,kMj,k′ +

∑
k

∑
t,t′

E
[
RA
t,t′Ai,tAj,t′

]
=
∑
k

∑
t6=t′

RA
t,t′Mi,kMj,k +

∑
k

∑
t

RA
t,t

(
Mi,kMj,k + Σ

(k)
i,j

)
+
∑
k 6=k′

RM
k,k′Mi,kMj,k′
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=
∑
k,k′

RM
k,k′Mi,kMj,k′ +

∑
k

RM
k,kΣ

(k)
i,j

The above lemma shows that in general the co-occurrence matrix generated by the

subtopics model is biased away from the co-occurrence matrix that would be generated

by the idealized model. Indeed, in the special case where Σ(k) = Σ for k = 1, . . . , K, the

above reduces to

EA[QA] = QM + tr(RM) · Σ.

Thus, directly fitting a topic model based on these statistics should not in general recover

the ideal topics. Rather, some other approach is needed.

7.2.3 An interactive protocol

How do we recover the idealized topics M? Returning to our weather example, we

could start by fitting a model with say, 500 topics. Next, we could ask a user to peruse

these, form a group of some good weather subtopics e.g. hurricane, blizzard, drought, etc.,

and then average subtopics in the group to get an estimate of an ideal weather topic. But

the way the topics are displayed presents a challenge: perusing 500 topics and finding their

salient groupings might place an overwhelming cognitive load on a user. Indeed, even if

each subtopic is uniquely identified by its top 10 words (which often is not the case), a

prospective user would have to wade through 5000 words! What is needed, then, is a way

to ensure we have a unique representation for each topic and to present these to the user

as succinctly as possible.

Our approach is to utilize anchor words. Assuming each subtopic is associated

with an anchor word, we find an ‘overcomplete’ list of anchor words s1, . . . , sT and present

these to a user as proxies for entire topics. The user can quickly sort through this list and

easily identify subtopics by their component anchor words. After a few rounds, the user

will form K groupings of selected anchor word indices Ĝ1, . . . , ĜK ⊂ {1, . . . , T}.
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It is possible that there are anchor words that a user simply does not recognize as

significant, perhaps because they are uninteresting background topics. Thus, we do not

require a complete partition of the anchor words from the user.

Given a corpus generated by the subtopic model, our interactive protocol for

estimating the Mk’s is relatively simple and it is given in Figure 7.3. It is not hard to see

that if our estimates of the subtopics A are unbiased and the user correctly identifies each

true subtopic group Gk, then each estimate M̂k will be close to the ideal topic Mk.

Issues arise when, due to undersampling, the set of candidate anchor words contains

words that are not true anchor words. These ‘spurious’ anchor words disrupt our ability to

estimate the subtopics, leading to errors in our estimates of the ideal topics. To counter

this issue, we consider an alternative procedure that replaces step (c) with the following:

(c’) Using only the anchor words selected by the user, estimate the topic vectors Âj for

each j ∈ G1 ∪ · · · ∪ GK by running a topic recovery algorithm.

We call the algorithm that uses step (c’) partial interactive recovery to distinguish

it from the full interactive recovery algorithm that uses step (c).

(a) Identify the ‘candidate’ anchor words s1, . . . , sT via a standard anchor-finding algo-
rithm.

(b) Present these to the user and receive K groupings of selected anchor word indices

Ĝ1, . . . , ĜK ⊂ {1, . . . , T}.

(c) Using all the anchor words, estimate the topic vectors Â1, . . . , ÂT by running a topic
recovery algorithm.

(d) For each group Ĝk, average the associated topic vectors M̂k = 1

|Ĝk|

∑
j∈Ĝk Âj.

Figure 7.3. Full interactive recovery algorithm

60



7.3 Experiments

In this section we study real and simulated users in a variety of experiments. First,

we simulate a user looking to recover the ideal topics from a synthetic dataset of documents

generated by our subtopic model. Next, we look at a real dataset and simulate a user

seeking to produce a topic model that results in meaningful document representations,

that is, documents that share similar subjects should have similar representations. In

our final experiment we explore if real users, equipped with our interactive tools, can

understand the main aspects of the corpus that they are analyzing and can create topic

models that are interpretable.

7.3.1 Topic recovery in simulated subtopic model

We considered the problem of recovering an ideal topic model, given data generated

by a subtopic model. To do this, we generated K ideal topics φ1, . . . , φK from a symmetric

Dirichlet(α) distribution. For each topic φi, we generated m subtopics, drawn from the non-

symmetric Dirichlet(φi/σ) distribution. Finally, we generated D documents using these

subtopics and a symmetric Dirichlet(β) distribution over the document-topic distributions.

We compared the anchor group approach of this paper against the non-interactive

anchor word approach of [5], the anchor facet approach of [38], and the constraint-based

approach of [28]. For the anchor group and anchor facet approach, we generated m ·K

anchor words and grouped together anchor words whose resulting topics are closest to each

of the corresponding underlying topics. For the constraint-based approach, we created the

SPLIT and MERGE constraints based on the highest probability words of each of the K

underlying topics. For the experiments involving the constraint-based approach, we ran

the tree-structured Gibbs sampler between 100-200 iterations as in [28].

Figure 7.4 displays the average errors of the resulting models. For both `1 and `2

error, the anchor group approach of this paper performed the best.
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Figure 7.4. Recovery of underlying topics using different forms of interaction. Subtopic
average is the topic model created by averaging together all of the underlying subtopics.

7.3.2 Document representation experiment

To compare the quality of the topic models produced by the various algorithms,

we conducted an experiment on the inferred document representations produced by these

models. We used the 20 Newsgroups dataset,1 which consists of ≈ 18K documents each

belonging to one of 20 categories.

We again compared our anchor group approach against the anchor facet approach

of Lund et al. [38] and the constraint-based approach of Hu et al. [28]. We ran the anchor

finding algorithm of Arora et al. [5] to generate 500 candidate anchor words. For the

interactive anchor-based approaches, we calculated

g(a, c) =
# times a occurs in document with label c

# times a occurs in corpus

for each anchor word a and each news group category c; and for each category c, we

selected the 10 anchors words a with the highest g(a, c) value. Table 7.1 shows the anchors

for each news group. For topic recovery, we used RecoverL2 of [5].

For the constraint-based approach, we calculated g(a, c) for all words a, not just

anchor words, and selected the 10 words a with the highest g(a, c) value for each category

c. For the resulting grouping, we generated all of the corresponding SPLIT and MERGE

constraints.

1http://qwone.com/ jason/20Newsgroups
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Table 7.1. Simulated anchors for each news group category

alt.atheism: cco amus rice tek contradict wisc philosoph islam satan sincer
graphics: viewer svga hidden bitmap vga gif render pointer transform routin

os.ms-windows.misc: cica desktop challeng diamond beta swap zip icon ati brett
sys.ibm.pc.hardware: gatewai motherboard isa jumper bio ati cach interrupt viru slower

sys.mac.hardware: centri quadra horizont slot simm ethernet newer iii soni connector
windows.x: sparc motif pointer xterm client bitmap compil patch athena widget

misc.forsale: forsal stereo dual speaker super genesi soni bag gold sam
rec.autos: valv transmiss bird truck turbo honda steer ecn cylind tight

rec.motorcycles: rider honda helmet drink steer shaft shoulder chain dog infant
rec.sport.baseball: hitter philli giant era baltimor bond morri relief plate talent

rec.sport.hockey goali bruin penguin nhl quebec winnipeg jersei leaf ranger tie
sci.crypt: sternlight pgp den cellular lobbi eff colost transmit graham perri

sci.electronics: amp motorola audio isol nois batteri uga transform filter acid
sci.med: geb physician cure diet sensit skin aka infect russel nose

sci.space: zoo alaska spacecraft digex flight solar astronomi uxa apollo jpl
soc.religion.christian: gospel revel resurrect uga hebrew prayer vers prai inspir soc

talk.politics.guns: dividian cdt handgun cnn reno packet boulder cult bullet cco
talk.politics.mideast: melkonian serdar propaganda holocaust jerusalem slaughter hatr carter

bosnia bosnian
talk.politics.misc: cramer partner reform libertarian decad incom sexual ncr acc reno
talk.religion.misc: sandvik albert mormon cult inspir miracl gospel contradict promis arizona

To evaluate the quality of the competing topic models we looked at the local

neighborhood structure of the resulting document representations using a k-nearest neighbor

(k-NN) classifier. For a given topic model with m topics, we embedded the documents

into the m-dimensional probability simplex using LDA [26]. We then computed the

leave-one-out cross-validation (LOOCV) accuracy of the k-NN classifier over a sample of

2K embedded documents. Table 7.2 presents the performances of the resulting k-NN’s

for varying values of k on several interactive and non-interactive methods. All interactive

methods had 20 topics (one for each news group category), whereas the number of topics

varied for the non-interactive ones.

We observed that for all values of k, our interactive algorithms (Full and partial)

outperformed all other interactive and non-interactive approaches.
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Table 7.2. K-NN accuracy under various algorithms.

Model k = 10 k = 20 k = 50 k = 100
full 20 0.330 0.324 0.309 0.273
partial 20 0.337 0.337 0.321 0.287
Lund et al. 20 0.236 0.223 0.197 0.173
Hu et al. 20 0.221 0.212 0.196 0.178
all 500 0.218 0.193 0.155 0.126
select 200 0.228 0.199 0.158 0.130
vanilla 20 0.144 0.140 0.133 0.121

7.3.3 User study

We conducted a small-scale user study to evaluate the anchor group interactive

algorithm. Five users were asked to create their own topic model based on a corpus of

recent news articles. All users were doctoral students in computer science, three of whom

had past experience with topic modeling.

Data collection and preprocessing We used a collection of news articles crawled

from the CNN website as its corpus; it was provided to us by a commercial search engine.

The corpus contained about 10K articles, starting from around April 2016 and spanning

about year. The articles covered a diverse range of subjects including politics, economy,

sports, technology, science, and law. It also spanned several notable events such as the

2016 U.S. presidential debates and election, the 2016 Olympics games, and the Brexit

referendum. It is also worth noting that since the dataset was created by a crawler, some

articles contain boilerplate content such as advertisements and links to other irrelevant

articles, which we did not take any steps to remove. We also did not perform any stemming.

We only removed stop words and kept words that occurred in at least 10 documents. The

final vocabulary contained about 17K words. After running an anchor word algorithm [47],

we had a list of about 500 anchor words as the basis of our interactive interface.
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Interactive process User feedback was collected via a web-based interface. At the

beginning, users were prompted to select an element from the list of anchor words. After

a word was selected, the user was taken to a separate screen where they created a topic by

grouping words they felt were similar enough to the originally selected word. Figure 5.5

shows an instance of a user that has chosen to create a topic by merging the words ‘hackers’,

‘computer’,‘fbi’ and ‘messages’. The box to the right displays a suggestion of 10 anchor

words that are closest in `1 distance to the group of anchor words already in the topic.2

This component of the interface made topic creation more efficient by reducing the number

of anchor words a user scanned to create a group.

Perusing a list of 500 words many times can be taxing on a user. To help users

better traverse the space of anchor words, the interface had four additional features.

• Complete topic: After merging anchors into a topic, the user could complete the

topic with anchors suggested by the system. The suggested words were sorted by `1

distance.

• Merge topics: The user was given the option to merge two or more created topics

into one.

• Delete topic: The user was given the option to delete a grouping they had created.

• Suggest topics: When creating a new topic the user was given the option to hit a

button that suggested new anchors. The system highlights words that are further

away in `2 distance from the space spanned by the words already selected by the

user.

Appendix B contains a step-by-step instance of the interactive procedure, including

the starting list of anchor words and each of the above functions.

2For a group of words S already in the topic, we sort each word w 6∈ S according to their distance
from the set S: d(w, S) = min{‖w − w′‖1 : w′ ∈ S}.
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Figure 7.5. Left : Log-likelihood per token, coherence, % unique words, average entropy
of topics. Right : Per-user performance on word intrusion task. Users were tested on all
user-created topics they created.

Results Before starting the process, users were given some brief information about the

dataset and then asked to create topics that would best summarize it. Using the interactive

process described above, users created groupings of anchor words. Some examples of these

groupings are given in Table 7.3.

Table 7.3. Examples of user anchor groupings.

1 russian putin intelligence agencies

2 olympics rio olympic athletes brazil sport winner

3 hollywood movie entertainment star film
character original awards controversy

4 joe politics vice rubio cruz kasich ballot
campaigns convention voting poll delegates
elections pennsylvania

5 israel peace region council terrorist terror isis
suicide iraqi falluja iraq troops syrian syria
aleppo refugees turkey

After collecting the feedback that users provided, we used the partial interactive

recovery algorithm of Section 7.2.3 with the RecoverL2 of [5] to learn a topic model for

each user. We call models created by user interactions Interactive. For each user, we

also learned a topic model with the same number of topics without any interaction using
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Algorithm 1 from [5]. We call these models Regular.

Qualitative assessment of topics Shaded rows of Table 7.4 give the most probable

words under topics learned using the user feedback of Table 7.3. Unshaded rows show the

most probable words under the topic of the regular method that was closest in `1 distance

to the one above it.

Table 7.4. Most probable words for the user created topics shown in Table 7.3.

1 Interactive russian putin russia intelligence obama
Regular obama president trump clinton visits

2 Interactive rio olympic olympics games athletes
Regular minister prime company million published

3 Interactive film star show awards disney
Regular trump comedy show company million

4 Interactive cruz kasich president clinton convention
Regular trump clinton donald campaign trumps

5 Interactive falluja isis battle syrian forces
Regular attacks brussels terror airport police

Across the board, the interactive method resulted in better quality topics that

seemed to align with the intentions of the user that created them. Moreover interactive

topics seemed more easily interpretable and more general than the topics of the regular

method. For example, looking at topics 1 and 2 in Table 7.4, one can see that the interactive

method yielded topics that matched what the user was trying to achieve. (See groupings 1

and 2 in Table 7.3.) We observe a similar situation for topic 5, for which the interactive

method yielded a topic related to current events in the Middle East, while the regular

method yielded a very specific topic about the Brussels terror attack. Tables B.1-B.5 in

Appendix B show a complete comparison for all users.

Word intrusion user evaluations As noted in the introduction, a popular way to

understand the gist of a topic is to look at its n most probable words and try to find their

common theme. Word intrusion seeks to quantify how easily one can interpret a topic
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model in this way [15]. Roughly, for each topic, its list of n most probable words will be

intruded by a word that is in the n most probable words of another topic. Humans are

asked to find the intruding words and models are then scored according the % of intruding

words found by humans. One would expect that in a semantically coherent list of words,

intruding words will be more easily detected.

To measure word intrusion, each user that participated in the study was asked to

evaluate a mix of their own and of other users’ topics, as well as the topics of the regular

method. The number of words that were shown was n = 10. Figure 7.5 (right) shows

the results of this experiment. Across the board, users performed better on the word

intrusion when they were evaluating an interactive topic as opposed to one found by purely

unsupervised methods, even when those interactive topics were created by other users.

Quantitative metrics We also compared the two methods across different metrics. We

looked at log-likelihood, semantic coherence, which was introduced by Mimno et al. [41],

proportion of unique most probable words, and entropy. To calculate log-likelihood, we

ran 100 iterations of the Gibbs sampler while keeping the topics of each method fixed.

Figure 7.5 (left) shows the different metrics. Averaged across users, the interactive method

has slightly higher per token log-likelihood but slightly worse topic coherence at the top

n = 10 words. Also, the interactive method has more unique most probable words per

topic (again for n = 10), indicating models that capture topics that are different from each

other. Finally, the interactive method has lower entropy, indicating that on average, its

topics concentrate on a smaller number of words than the regular method.
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7.4 Discussion and future work

In this part of the thesis we considered interactive topic modeling. We studied

two different protocols: constraint-based and anchor word-based. Our constraint-based

protocol treats the task of topic modeling as one of clustering. It enables a user to perform

corrections to a topic model on the spot and if the user took enough time, the desired

target clustering could be specified completely. In contrast to previous work where user

feedback was incorporated only as soft constraints, our interactive Gibbs sampler allows

us to translate this feedback into hard constraints.

The drawback of the contraint-based approach is that the amount of feedback it

requires might be prohibitive. Our anchor word-based protocol allows users to trigger large

structural changes into a topic model and enables them to quickly create interpretable

topics.

One interesting future research direction is to combine the two approaches. For

instance, one could restrict the constraint-based interaction to anchor words. Because

the presence of an anchor word in a document is sufficient evidence that the subject

of document is at least partially about the topic of the anchor word, an interactive

user may only need to focus on those. This formulation has the potential to make our

constraint-based protocol more efficient.

Chapter 7 contains material as it appears in “Interactive topic modeling with anchor

words.” International Conference on Machine Learning 2019. S. Poulis, S. Dasgupta, C.

Tosh. The dissertation author was the primary investigator.
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Part III

Interactive machine teaching
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Chapter 8

Introduction

Machine teaching [25, 51, 3] is the problem of efficiently constructing a dataset

that a student’s model will learn from. In principle, machine teaching aims to construct

an optimal (usually minimal) such dataset. In contrast to traditional machine learning

where training data come from an underlying distribution, as in the statistical learning

framework of [56] or are chosen in arbitrary and possibly adversarial manner, as in the

online learning framework of [33], data in machine teaching are chosen by a teacher, who

knows how to select helpful training examples.

Machine teaching is found in several real-world applications. One example is

utilizing a teacher (e.g. a domain expert) to train a text classifier. The teacher can teach

either by selecting documents from a corpus or even by writing some new ones. These

will be used as training data by the text classifier’s learning algorithm. The teacher could

conceivably come up with plenty of teaching examples but how can the teacher construct

an optimal set?

8.0.1 Cases of machine teaching

In the example above the teacher is a human and the learner is a machine. More

generally, machine teaching has the form “Teacher teaches Student” and applications may

differ depending on who the teacher and who the student is. In addition to the “Human

teaching Machine” example of the text classifier, here are some more cases of machine
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teaching.

• “Machine teaching Human”: intelligent tutoring systems, say when the system is

teaching vocabulary of a foreign language. The system may ask the student questions

about any unmastered vocabulary words.

• “Machine teaching Machine”:

– Sample compression: given an arbitrary list of labeled examples, retain only a

subset of them in a way that allows to recover the labels of all other examples

in the list [34, 42].

– Model compression: given a large, slow, but accurate model, compress it into a

much smaller, faster, yet still accurate model [13].

• “Human teaching Human”: psychology, pedagogy. Modeling cognition by choosing

which examples to present and in which order to present them.

To model such situations several notions of teaching have been developed. One

influential model, introduced independently by [25], [51], and [3], is based on the notion of

a teaching set. Here is a formal definition.

Definition 8.1. Let X be any finite instance space and H any finite set of concepts on

X , so that each h ∈ H is of the form h : X → {0, 1}. Let h∗ ∈ H denote a target concept.

We say S ⊂ X is a teaching set for (h∗,H) if h∗ is the only concept in H that is consistent

with the labeled examples {(x, h∗(x)) : x ∈ S}.

An optimal teacher is then one who provides the learner with the smallest possible

teaching set. The size of this minimal teaching set is often called the teaching dimension

of the learner’s model.
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8.0.2 How much the teacher knows about the student?

Perhaps the most illustrative motivating example for machine teaching is that of

thresholds on the line. Here, the target concept is simply a threshold w∗ ∈ R; the input

space consists of real numbers, so X ⊂ R, and the hypothesis class is H = {hw : w ∈ R},

where

hw(x) =

 1 if x ≥ w

0 otherwise

In this case, the optimal teaching set consists of the two points in X nearest w∗,

on either side of it.

In this example the teacher is required to know H, the learner’s hypothesis class

(here, we will use the terms hypothesis and model interchangeably). This however, may be

too strong of an assumption for certain scenarios. When teaching a human for instance,

one generally has no idea what the underlying hypotheses might be!

To put this into context, consider a geologist who may want to teach students

to categorize rocks into igneous, sedimentary, metamorphic etc. and teaches by picking

informative rock samples to show the students. The geologist may know the target

hypothesis but there is no way to “transmit” it into the students’ minds.

Similarly, when teaching a machine, the general type of concept might be known (a

neural net, for instance), but the specifics (number of layers, number of nodes per layers,

other parameter settings) may be opaque; and even if they were known, it is unclear how

they would be used in choosing a teaching set.

The above scenarios show that requiring the teacher to know the learner’s model

H may be unrealistic. Teaching may arguably be more realistic when the teacher does not

know the learner’s model, i.e. when the learner is a black-box. How can a teacher teach

when the learner is a black-box?
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When H is known (i.e. when the learner is not a black-box), teaching does not

need to be interactive: the teacher just needs to construct a batch of teaching examples

beforehand and provide them to the learner in one shot; thereafter, the teacher does not

need to see what the learner does with the provided teaching examples.

In this part of the thesis we study the problem of teaching a black-box learner.

In particular, we illustrate that teaching such a learner can only be achieved with an

interactive teacher. We consider a setting in which the teacher interacts with the learner

in rounds: in each round the teacher is allowed to probe the predictions of the learner’s

current model, rather like giving the learner a quiz and provides teaching examples

accordingly. Intuitively, this strategy allows the teacher to get a better sense of where the

learner’s model is and to pick teaching examples more intelligently. Figure 8.1 contrasts

non-interactive teaching to the interactive teaching setting that we consider here. We show

that without knowing H, an interactive teacher can pick a teaching set of size at most

O(t · log |X | · log |H|), where t is the optimal teaching set size for H.

Figure 8.1. Left: A non-interactive teacher that provides examples in one shot. Right:
An interactive teacher.

8.0.3 Overview

The rest of Part III is organized as follows. In Section 8.0.4 we start by reviewing

previous work.

In Section 9.1 we continue by demonstrating through an example a negative result

for non-interactive teaching. We consider a scenario in which there are multiple hypothesis

classes H1, . . . ,Hk that all contain the target h∗. We require that the teacher only knows
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that the learner’s hypothesis is one of H1, . . . ,Hk but not which one and continue by

showing that under this scenario, a non-interactive teacher must construct a teaching set

that consists of all of X .

In Section 9.2 we present interactive teaching. We consider scenarios in which the

teacher has no knowledge of the learner’s hypothesis class other than an upper bound on its

size or VC dimension. It does not, for instance, have a shortlist of possibilities H1, . . . ,Hk

as above. We first illustrate that teaching can be viewed as a set cover problem: each

teaching example eliminates or “covers” some bad hypothesis. Then we use this idea to

design an interactive teaching algorithm in which the teacher, by probing the learner’s

predictions, incrementally constructs a teaching set that eventually eliminates all bad

hypotheses.

One interesting use of our teaching algorithm is in shrinking a training set T :

finding a subset S ⊂ T that yields the same final classifier. This can be useful in situations

where the computational complexity of training scales poorly (e.g. quadratically) with the

number of training instances. In Section 9.3, we illustrate this in experiments with kernel

machines and neural nets.

8.0.4 Related work

The literature on teaching can be organized along two main threads: whether the

learner is required to be consistent with all teaching examples and whether the teacher

has full knowledge of the learner [64].

These two requirements, namely consistency and full knowledge have been focal in

earlier theoretical work on teaching. For example, the classic teaching dimension [25, 51],

the recursive teaching dimension [65, 27] and the preference-based teaching dimension [24]

all assume both consistency and full knowledge.

Recently, there has been growing interest in settings where these requirements are

relaxed. For instance, the work in [35] relaxes consistency by allowing the learner to be an
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empirical convex loss minimizer. Work in [63] studies a setting where the teacher targets

multiple learners with unknown models. Additional work in [36] relaxes the full knowledge

requirement by allowing the teacher to be agnostic to the learner’s hyper-parameters or

hypothesis space [36].

Of particular relevance is recent work by [37], which assumes the teacher and the

learner use different linear feature spaces. The teacher cannot fully observe the learner’s

linear model but knows the learner’s algorithm and can employ active querying to learn

the mapping between feature spaces.

Here, we assume the learner is consistent with teaching examples but we do not

require knowledge of its concept class or learning algorithm. This setting offers a crisp

characterization of teaching black-box learners.

The notion of sample compression was introduced by [34] and has been the subject

of much further work [e.g., 23, 42]. It is centered on an intriguing question: for a given

concept class H, is it possible to design (1) a learning algorithm A that operates on

labeled samples of some fixed size k, and (2) a procedure that, given any labeled data

set, chooses a subset of size k such that when A is applied to this subset, it produces a

classifier consistent with the full data set? A recent result of [42] showed that if H has VC

dimension d, then k = d2d is always achievable. Our results can be thought of as a form

of adaptive sample compression, where the concept class H is unknown and the learning

algorithm A is fixed in advance and also unknown.
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Chapter 9

Interactive machine teaching

We start by demonstrating our negative result for the non-interactive teacher. In

this case, our teacher is agnostic to the learner’s model.

9.1 Teaching without interaction

A simple teacher, human or machine must somehow come up with informative

teaching examples for the learner. Intuitevely, if the learner’s concept class H is known in

advance, the teacher only needs to pick influential or “boundary examples”. In our example

of thresholds on the line, the teacher knows the threshold w∗ and thus, can construct a

teaching set that consists of just two data points. We will see shortly that there are cases

in which the “boundary examples” are so many that they essentially constitute the entire

instance space!

Suppose that we have k concept classes H1, . . . ,Hk, each of which consists of

thresholds along individual coordinates: Hi consists of all functions hi,w : X → {0, 1} of

the form

hi,w(x) =

 1 if xi > w;

0 otherwise.

where w ∈ R. That is, the hypotheses in Hi only use the ith coordinate of the data.

Here, we will assume that our teacher knows only that the learners concept class is one of
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H1, . . . ,Hk, but not which one.

The instance space is a finite set X ⊂ Rk specified as follows. Every point in X has

either all positive coordinates or all negative coordinates. The target concept h∗ is 1 if the

coordinates are all positive and 0 if all negative. Thus h∗ lies in every Hi: in particular,

h∗ = hi,0 for all i. Set X = {x(1), x(2), . . . , x(k),−x(1), . . . ,−x(k)}, where the x(i) ∈ Rk
+ are

defined as follows:

• The values of the k features of x(i) are 2, 3, 4, . . . , k, in that order, with a 1 inserted

in the ith position.

• Thus x(1) = (1, 2, 3, . . . , k), x(2) = (2, 1, 3, . . . , k), x(3) = (2, 3, 1, . . . , k), and x(k) =

(2, 3, 4, . . . , k, 1).

Along any coordinate i, the correct threshold is 0. How can a helpful teacher teach such a

concept?

Following the intuition that we established at the beginning of this section, a helpful

teacher can construct a teaching set that consists of just two “boundary examples” for

each Hi. These are −x(i), x(i), whose ith coordinates have values −1, 1 respectively. In

other words: for Hi, the optimal teaching set consists of −x(i) and x(i).

However, the only teaching set that works for every Hi simultaneously is all of X .

We summarize this in the following theorem.

Theorem 9.1. In the construction above, the concept classes H1, . . . ,Hk each have teach-

ing set size 2. If a non-interactive teacher does not know which of these concept classes is

being used by the learner, the smallest possible teaching set it can provide is all of X , of

size 2k.

Proof. Consider any teaching set that leaves out some point in X , say x(i). Then, if

the learner happens to have concept class Hi, it can consistently set the threshold to be

1.5 along the ith coordinate, since the k − 1 positive instances it has seen all have ith

coordinate ≥ 2. Thus it will get x(i) wrong.
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9.2 Teaching with interaction

In the previous section we saw that it is possible to construct hypothesis classes

for which the identities of the “boundary examples” can change dramatically from one

hypothesis class to the next. This caused problems for the non-interactive teacher who is

agnostic to target. Next, we will that an interactive teacher can teach a learner whose

representation, concept class, and learning algorithm are unknown. Our formulation treats

teaching as a set cover problem. We begin by giving the specifics to the set cover problem.

9.2.1 The online set cover problem

The set cover problem is defined as follows. Let X = {1, 2, . . . , N} be a set of N

elements and let S be a family of subsets of X, where |S| = m. A cover is a collection of

sets such that their union is X. Each s ∈ S has a non-negative cost cs associated with

it. The goal is to find a cover of minimum total cost. The set cover problem is a known

NP-hard problem.

Luckily, there is an alternative online version of the set cover problem and an

elegant algorithm that was given in [1] that finds a set cover within a factor logN · logm

of optimal. Under this formulation elements from X appear one at a time. The family of

subsets S is known in advance to the algorithm and in each round, the algorithm must

cover the element that appears by picking some subset s ∈ S. The objective is then to

minimize the total cost of the sets that are chosen. For completeness, we describe the

details of this algorithm next.

The algorithm maintains a weight ws > 0 for each subset s ∈ S. Initially, ws = 1
2m

,

for each s ∈ S. The weight of each element j ∈ X is defined as wj =
∑

s∈Sj
ws, where Sj

is the collection of sets containing j. The algorithm starts with an empty set cover C = ∅.

Define C to be the set of elements covered by each s ∈ C. (Initially C = ∅.) The following

potential function is also used throughout the algorithm.
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Φ =
∑
j∈C

N2wj .

Now when an element j appears the algorithm will choose a set that covers it as

follows:

If wj < 1

1. Let k be the minimal integer for which 2k · wj > 1.

2. For each s ∈ Sj, ws ← 2k · ws.
3. Add to C at most 4 log n elements from Sj at so that Φ does not exceed

its value before step 2.

It can be shown that at the end of the algorithm, the cover C will contain

O(logm logN) elements. Here is the formal theorem statement.

Theorem 9.2. ([1]) Let COPT denote the optimal set cover of X, where |X| = N and let

S be a family of subsets of X, where |S| = m. At the end of the online set cover algorithm,

|C| is O(|COPT | logm logN).

9.2.2 Teaching as a set cover

How does teaching relate to set cover? We can think of each teaching example as

one that eliminates some sub-optimal hypotheses in H, and a teaching set is a collection

of examples that eliminate, or “cover”, all sub-optimal hypotheses. By this view, optimal

teaching is equivalent to minimum set cover. We will see shortly that the algorithm for

online set cover of the previous section can be simulated for interactive teaching. We

consider the following model in which the teacher and learner interact.

On each round,

• The teacher supplies one or more teaching examples (x, y) ∈ X ×{0, 1}
to the learner.

• The learner gives the teacher a black-box classifier h : X → {0, 1} that
is consistent with all the teaching examples it has seen so far.
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The idea here is that the teacher cannot look inside the black-box classifier, but

can test it on examples to get a sense of where its mistakes lie. On each round, the teacher

comes up with teaching examples that will help the learner improve on these mistakes.

In other words, on each round, a chosen teaching batch will cover bad hypotheses that

the learner may have. Next, we present an interactive teaching algorithm that is provably

within a factor log |X | · log |H| of optimal, just like the algorithm for online set cover we

described in the previous section!

9.2.3 An interactive protocol

The resulting learning algorithm is shown in Figure 9.1. It is a randomized procedure

that begins by drawing values Tx, one for each x ∈ X , from a suitable exponential

distribution. Then the interaction loop begins. A key quantity computed by the algorithm,

for any learner-supplied black-box classifier h, is the set of misclassified points,

∆(h) = {x ∈ X : h(x) 6= h∗(x)}.

Roughly speaking, the points x that are most likely to be chosen as teaching examples are

those that have been misclassified multiple times by the learner’s models, and for which

Tx happens to be small.

Theorem 9.3. Let t be the size of an optimal teaching set for H. Pick any 0 < δ < 1.

With probability at least 1− δ, the algorithm of Figure 9.1 halts after at most t log(2|X |)

iterations. The number of teaching examples it provides is in expectation at most

(1 + t lg(2|X |)) ·
(

ln |H|+ ln
1

δ

)
.

The algorithm of Figure 9.1 is efficient and yields a teaching set of size O(t · log |X | ·
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1. Let S = ∅ (teaching set)

2. For each x ∈ X :

• Initialize weight w(x) = 1/m

• Choose threshold Tx from an exponential distribution with rate λ = ln(N/δ)

3. Repeat until done:

• Learner provides some h : X → {0, 1} as a black box

• By probing the black box, determine ∆(h) = {x ∈ X : h(x) 6= h∗(x)}
• If ∆(h) = ∅: halt and accept h

• While w(∆(h)) < 1:

– Double each w(x), for x ∈ ∆(h)

– If this doubling causes w(x) to exceed Tx for the first time, add x to S
and provide (x, h∗(x)) as a teaching example to the learner

Figure 9.1. The teacher’s algorithm. Here m = |X | and N = |H|. For S ⊂ X , we define
w(S) =

∑
x∈S w(x).

log |H|), despite having no knowledge of the concept class H. This can be significantly

better than a teaching set of all |X | points, as we have seen would be needed by a

non-interactive teacher.

9.3 Experimental illustration

In this section, we use Algorithm 9.1 to shrink several synthetic and real datasets,

that is, to find subsets (teaching sets) of the data that yield the same final classifier. This

can be useful for reducing storage/transmission costs of training data, or in situations

where the computational complexity of training scales poorly with the number of samples.

Suppose the learning algorithm has running time T (n), where n is the size of the

training set. Algorithm 9.1 builds a teaching set incrementally, in iterations that involve

adding a few points, invoking the learning algorithm, and evaluating the classifier that

results. If the teaching set sizes along the way are t1 < t2 < · · · < tk, the total training
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time is T (t1) + · · ·+ T (tk), which can be much smaller than T (n).

Synthetic data We looked at synthetic data in the form of moons, circles, and mixtures.

For each, we generated two-dimensional separable and non-separable datasets of 4000

points each, by varying the level of noise. We then tested Algorithm 9.1 using SVM

learners with linear, quadratic, and RBF kernels. For each simulation we report: (1) the

support vectors (SVs) of each learner; (2) the teaching points (TPs), as decided by the

algorithm; (3) the points that are both support vectors and teaching points (TPs AND

SVs); and (4) teaching curves.

For a support vector machine, it is always possible to create a teaching set of

size two by choosing the points so that their perpendicular bisector is the boundary; the

maximum-margin objective function will then yield exactly the target classifier. However,

any given data set is unlikely to contain such a pair of points. Thus in our examples, the

size of the optimal teaching set is not known, although it is certainly upper-bounded by

the number of support vectors.

Some of the results are shown in Figure 9.2. For instance, the top left-hand panel

shows the result of the teaching algorithm on the moon-shaped data. There are 123

support vectors in the full data set, but a teaching set of just 19 points is found. As can

be seen on the right, these points are picked in five batches: the first batch has two points

and already brings the accuracy above 75%. Overall, the learning algorithm is called five

times, on data sets of size 2, 10, 13, 17, 19; and we get the same effect as calling it on the

entire set of 4000 points.

The full range of experiments on synthetic data can be seen in Figures C.1 to C.17

in Appendix C.

Real datasets We also looked at the MNIST and fashion MNIST [60] datasets, both

with 60K points.
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1. On MNIST, we used an SVM with a quadratic kernel. This data has 32,320 support

vectors, and a teaching set of 4,445 points is found (almost all support vectors).

2. On fashion MNIST, we used a convolutional network with 4 different layers of 2d

convolutions (32, 64, 128, 128) each followed by a ReLU and a max pooling layer.

The bottom panel of Figure 9.2 shows the teaching curves for these two data sets. In

either case, the accuracy achieved on the full training set is below 100%.

For all experiments we used the same termination criterion: the algorithm termi-

nated when it got within .01 of the accuracy of the learner that was trained using the full

data. Also, to initialize the weight Tx of each data point we set the confidence parameter

δ of Algorithm 9.1 to .1.

Chapter 9 contains material as it appears in “Teaching a black-box learner.” Inter-

national Conference on Machine Learning 2019. S. Dasgupta, D. Hsu, S. Poulis, X. Zhu.

The dissertation author was the primary investigator.
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Figure 9.2. Top: ‘Moon’ data with RBF kernel SVM; Middle: ‘Mixtures’ data with
quadratic kernel; Bottom: MNIST (quadratic SVM) and Fashion MNIST (CNN).
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Appendix A

Supplementary material for Part I

A.1 Theoretical results for the probabilistic disjunc-

tion model

A.1.1 Proof of Theorem 3.2

Proof. The problem is clearly in NP. To show hardness, we will use a reduction from

3SAT.

Given a 3SAT instance φ(x1, . . . , xq) = C1 ∧ C2 ∧ · · · ∧ Cp, where each clause Cj is

a disjunction of three literals, create the following topic labeling problem:

• There are 2q topics: t1, . . . , tq, t
′
1, . . . , t

′
q. Think of ti as corresponding to the positive

literal xi and t′i the negative literal xi.

• For each variable xi, create a document di whose topic distribution θ(di) has proba-

bility 1/2 on ti and on t′i and zero elsewhere.

• For each clause Cj , create a document d′j whose topic distribution puts 1/3 probability

on (the ti or t′i corresponding to) each of the literals in Cj.

• The data set consists of document-label pairs (di, 0), (di, 1), (d′j, 1): a total of p+ 2q

labeled documents.

Now, suppose there is an assignment ` : {t1, . . . , tq, t′1, . . . , t′q} → {0, 1, ?} with

86



nonzero likelihood. Then for each labeled document (d, y) there is at least one topic t such

that θ
(d)
t > 0 and `(t) = y. Now, document di appears with label 0 as well as with label 1.

Therefore, one of `(ti), `(t
′
i) must be 0 and one of them must be 1. If `(ti) = 0, `(t′i) = 1,

we will assign xi = 0. If `(ti) = 1, `(t′i) = 0, we will assign xi = 1. To see that this is a

satisfying assignment, pick any clause Cj. The corresponding document d′j has label 1;

therefore at least one of the three topics corresponding to its literals must be assigned

label 1 under `(·). Hence that literal is assigned a value of 1.

Conversely, if φ is satisfiable, then the mapping

`(ti) = 0, `(t′i) = 1 if xi = 0

`(ti) = 1, `(t′i) = 0 if xi = 1

has nonzero likelihood.

A.1.2 Proof of Theorem 3.3

Proof. First, fix any t, y with `(t) 6= y. Under Assumption 3.1, each time topic t is selected,

there is less than a λ/2 probability that the label is y. Conditioned on nt, the expected

value of nty is therefore at most λnt/2, and by a multiplicative Chernoff bound,

Pr(nty ≥ λnt) ≤ e−ntλ/6,

which is ≤ δ/(Tk) if nt ≥ no.

Likewise, for any predictive feature t ∈ P , the expected value of nt,`(t) is at least

2λnt. Again using a multiplicative Chernoff bound,

Pr(nt,`(t) < λnt) ≤ e−ntλ/6.

Taking a union bound over all pairs (t, y) ∈ [T ] × [k], we conclude that with
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probability at least 1− δ, the following holds whenever nt ≥ no:

• If y 6= `(t) then nty < λnt.

• If t ∈ P then nt,`(t) ≥ λnt.

Therefore, ̂̀(t) = `(t) for t ∈ P and ? otherwise.

A.1.3 Proof of Theorem 3.4

Proof. Pick any predictive topic t ∈ P , and let y = `(t). For a document x chosen at

random,

Prx(topic t selected) ≥ Prx(document label = y)Prx(topic t selected | document label = y)

≥ Ex

[∑
t′:`(t′)=y θt′(x)∑
t′∈P θt′(x)

· co
θt(x)∑

t′:`(t′)=y θt′(x)

]
= coγt.

Therefore, the expected number of documents that need to be seen before nt reaches no is

at most no/(coγt).

A.2 Incorporating feature feedback through regular-

ization

A.2.1 Proof of Theorem 3.6

Recall that we wish to bound Rn(F). The powerful results of [29] achieve this for a

wide range of cases: for any F = {w : ‖w‖ ≤ W}, where ‖ · ‖ satisfies a strong convexity

property. Specifically, they show

Rn(F) ≤ W ·max
x∈X
‖x‖∗ ·

√
2

n

where X is the input space, and ‖ · ‖∗ is the dual norm of ‖ · ‖.

88



We now apply this bound to our setting, where our regularizer norm is ‖ · ‖A for

positive definite A.

Lemma A.1. Pick any positive definite p × p matrix A and consider the Mahalanobis

norm ‖ · ‖A on Rp.

1. The function ‖ · ‖2
A is 2-strongly convex. In particular, for any u, v ∈ Rp and

0 ≤ α ≤ 1,

α‖u‖2
A + (1− α)‖v‖2

A − ‖αu+ (1− α)v‖2
A = α(1− α)‖u− v‖2

A.

2. The dual norm of ‖ · ‖A is ‖ · ‖A−1.

Proof. The first assertion follows directly by expanding the expression. For the second,

we note that the dual norm of ‖ · ‖A is defined by

‖x‖∗ = sup
‖y‖A≤1

x · y.

We will show that this is ‖x‖A−1 .

First, take

y =
A−1x√
xTA−1x

.

Then

‖y‖2
A = yTAy =

xTA−1AA−1x

xTA−1x
= 1

so ‖y‖A = 1. Moreover, x · y =
√
xTA−1x = ‖x‖A−1 .

Conversely, pick any y with ‖y‖A ≤ 1. Then

x·y = xTA−1/2A1/2y = (A−1/2x)T (A1/2y) ≤ ‖A−1/2x‖2‖A1/2y‖2 = ‖x‖A−1‖y‖A ≤ ‖x‖A−1 .
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If w∗ is the sparse target classifier, the function class of interest is F = {w : ‖w‖A ≤

‖w∗‖A} and by [29] we have

Rn(F) ≤ ‖w∗‖A ·max
x∈X
‖x‖A−1

√
2

n

Let R = {i ∈ [p] : w∗i 6= 0} denote the relevant features. We can split any x into its relevant

and other components, x = (xR, xo), and when we downweight the diagonal R-entries of

A by a factor of c, we get

‖x‖2
A−1 = ‖xo‖2

2 + c‖xR‖2
2

whereas

‖w∗‖2
A =

1

c
‖w‖2

2

(assuming we have captured all the features on which w∗ is non-zero). Thus

Rn(F) ≤ ‖w∗‖2 ·max
x∈X

√(
1

c
‖xo‖2

2 + ‖xR‖2
2

)√
2

n
.

A.3 Proof of Lemma 4.1

Proof. Consider the optimization problem for computing the support vector classifier using

the Mahalanobis regularizer.

minimize
w

1

2
‖w‖2

A + C
N∑
i=1

ξi

subject to ξi ≥ 0, yi(x
T
i w + b) ≥ 1− ξi, ∀i.

(A.1)
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The Lagrangian of (A.1) is

L(w, b, ξ, µ, α) =
1

2
‖w‖2

A + C
N∑
i=1

ξi −
N∑
i

µiξi

−
N∑
i

αi[yi(x
T
i w + b)− (1− ξi)],

where the αi, µi are the Lagrange multipliers. It easy to see that the Lagrange dual

function LD is

LD(µ, α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i A
−1xj.

which corresponds to the `2-regularized SVM with data (A−1/2xi, yi).
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A.4 Experiments

A.4.1 Data sets

20 NewsGroups: The 20-Newsgroups collection is a set of approximately 20,000

newsgroup documents, partitioned evenly across the 20 different newsgroups. The docu-

ments are postings about politics, sports, technology, religion, science etc., and contain

subject lines, signature files, and quoted portions of other articles. Some of the newsgroups

are very closely related to each other (e.g., IBM computer system hardware vs Macintosh

computer system hardware), while others are unrelated (e.g., misc for sale vs social religion

and christian). A processed version of the data set was obtained. The original data set

can be found on Jason Rennie’s website. 1.

Reuters-21578: This is another widely used collection for text categorization

research. The documents appeared on the Reuters newswire in 1987 and were manually

classified into several topics by personnel from Reuters Ltd. See [31] for further details

on the data set. Sub-collections R10 (10 classes with the highest number of topics)

and R90 (at least one positive and one training example) are usually considered for

text categorization tasks. As our goal here was to consider single-labeled data, all the

documents with less than or with more than one label were eliminated, resulting in R8 (8

classes) and R52 (52 classes).

webkb: This data set contains web pages collected from computer science depart-

ments of various universities in January 1997 by the World Wide Knowledge Base project

of the CMU text learning group 2.

cade: The documents in this collection correspond to web pages extracted from the

CADE Web Directory, which points to Brazilian web pages classified by human experts in

12 classes, including services, education, sciences, sports, culture etc.

1http://qwone.com/ jason/20Newsgroups/
2http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-4/text-learning/www/index.html
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ohsumed: This data set includes medical abstracts from the MeSH (Medical

Subject Headings) categories of the year 1991 3 on 23 cardiovascular disease categories.

We only considered documents with a single label.

For each data set we only considered tokens that occurred at least 3 times. Figure A.1

below provides a summary of the data as they were used in the experiment.

# tokens # training docs # test docs # topics # classes

20 NewsGroups (20ng) 33,223 11,293 7,528 200 20
Reuters 8 (R8) 7,744 5,485 2,189 80 8

Reuters 52 (R52) 8,868 6,532 2,568 520 52
cade 68,983 27,322 13,661 120 12

webkb 7,644 2,803 1,396 40 4
ohsumed 13,627 3,357 4,043 230 23

Figure A.1. Summary of the datasets and the number of topics used in the experiment

3ftp://medir.ohsu.edu/pub/ohsumed
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A.4.2 Results

An example of a PDM from the 20ng dataset is shown in figure A.2. Figures A.3

- A.8 show our experimental results for each one of the data sets in more detail. Figures A.9-

A.10, show the amount of feedback over time.
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Topic 1 Topic 2 Topic 3 Topic 4

1 gener air unit bike

2 process heat engin dod

3 thi temperatur cross ride

4 sinc water bnr motorcycl

5 effect cold adjust bmw

6 anoth pressur link rider

7 requir hot pre helmet

8 real fan replac sun

9 result effect nick drink

10 case ga put biker

Figure A.2. Top : Topic representation of a document with the class rec.motorcycles
before and after feature feedback on bike and biker. Bottom: Descriptive words of the
topics that are present in the document.
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Figure A.3. 20ng
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Figure A.4. webkb
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Figure A.5. R8

98



Figure A.6. R52
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Figure A.7. Cade
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Figure A.8. Ohsumed
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Figure A.9. Amount of Feature Feedback
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Figure A.10. Amount of Feature Feedback
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A.4.3 Human Experiment.

Figure A.11 depicts the interface that was used to solicit labels and feature feedback

from human annotators. Annotators were given the option to select a number of features

from a list. They were also given the ability to insert a feature from the document that

was not in the list.

Figure A.11. Interface used in Human Experiment
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Appendix B

Supplementary material for Part II

Proof of Lemma 6.1

Proof. Recall from LDA that the posterior probability of a topic vector z given a corpus

x can be written as

Pr(z |x) ∝
K∏
t=1

(∏
w Γ
(
n

(w)
t (z) + β

))(∏
d Γ
(
n

(d)
t (z) + α

))
Γ (nk(z) +Wβ)

=

rw(z)︷ ︸︸ ︷(
K∏
t=1

∏
w

Γ
(
n

(w)
t (z) + β

)) rd(z)︷ ︸︸ ︷(
K∏
t=1

∏
d

Γ
(
n

(d)
t (z) + α

))
K∏
t=1

Γ (nt(z) +Wβ)︸ ︷︷ ︸
r(z)

Suppose s ∈ CC(C). Say k ∈ {1, . . . , K} and z satisfy that for all s′ ∈ N(s), zs′ 6= k.

And let ẑ be the topic vector that satisfies ẑs = k and ẑ−s = z−s. Then by the posterior

probability of LDA, we have

Pr(zs = k | z−s, x, C) ∝ Pr(zs = k, z−s |x)

= Pr(ẑ |x)

=
rw(ẑ)rd(ẑ)

r(ẑ)
.
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We can work out each of the above terms separately.

rw(ẑ) =
K∏
t=1

∏
w

Γ
(
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(w)
t (ẑ) + β

)
=

(∏
w∈s

K∏
t=1

Γ
(
n

(w)
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)
We can do similar derivations for rd(ẑ).
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Finally, we can do the same exact thing to r(z).

r(ẑ) =
K∏
t=1

Γ (nt(ẑ) +Wβ)

= Γ (nk(ẑ) +Wβ)
∏
t6=k

Γ (nt(ẑ) +Wβ)

=
Γ (nk(z−s) + n(s) +Wβ)

Γ (nk(z−s) +Wβ)

K∏
t=1

Γ (nt(z−s) +Wβ)

∝ Γ (nk(z−s) + n(s) +Wβ)

Γ (nk(z−s) +Wβ)

Putting the above together, we get the lemma.

Figure B.1. The initial list of candidate anchor words that was presented to users. Users
initialized topics that they wanted to create by dragging and dropping a candidate anchor
in the dotted box labeled as ‘Merge words’.
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Figure B.2. (a) Merge anchor words view. (b) Complete groups view. (c) Merge and
trash groups view. (d) Suggest anchor words view.
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Table B.1. Topics created by user 1

Interactive verizon yahoo warner internet company deal tech billion media mayer
Regular tech company netflix million stock billion investors market published companies

Interactive police black protests african government march protesters mass anti law
Regular police officers dallas shot protest officer killed shooting man law

Interactive rio gold olympic brazil olympics games athletes zika training team
Regular zika health rio virus olympics games states house president government

Interactive students college school schools kids student education university pay program
Regular scenes show marshall left work back national published clinton media

Interactive britain brexit england british pound european europe london france goal
Regular winners golden million series back published globes company home film

Interactive rate banks rates bank fed interest stocks jobs debt economy
Regular fed trump rates economy rate market yellen jobs president growth

Interactive fargo buffett wells million jobs stock bank company ceo clinton
Regular wells fargo bank banks million accounts employees company sales stumpf

Interactive uber drivers driving cars car vehicles driver ride traffic safety
Regular uber company china million drivers companies tech published billion chinese

Interactive trump nbc million donald clinton viewers campaign fox cbs president
Regular trump clinton president campaign donald trumps republican presidential hillary house

Interactive plane aircraft obama flight passengers seat boeing fuel security airlines
Regular korea korean china military government march nuclear report president company

Interactive disney show company film movie twitter media star china box
Regular comedy show ladies fey night live series film host awards

Interactive tesla car cars electric auto vehicles musk driving teslas loans
Regular tesla car musk company cars teslas published electric driving million

Interactive workers rate unemployment jobs manufacturing wage job prices recession cuts
Regular fed trump rates economy rate market yellen jobs president growth

Interactive computer hackers system systems feature information screen technology security assistant
Regular company windows tech microsoft published million work twitter police security

Interactive debate million trumps debates vice viewers election elect night fox
Regular trump clinton donald campaign trumps republican president presidential hillary cruz

Interactive trump lewandowski market trumps donald clinton campaign investors president tech
Regular trump clinton donald campaign trumps republican president presidential hillary cruz

Interactive japan china japanese trade global countries international chinese worlds asia
Regular company tech amazon sales market billion companies stock published walmart

Interactive netflix oil tech china entertainment energy screen show shows original
Regular tech company netflix million stock billion investors market published companies

Interactive nfl players football games team game league season sports fans
Regular winners golden million series back published globes company home film

Interactive obamacare health care insurance plan benefits coverage federal pay exchanges
Regular zika health rio virus olympics games states house president government

Interactive nuclear korea korean weapons iran kim defense military ballistic foreign
Regular korea korean china military government march nuclear report president company

Interactive1 israel form peace class israeli freewheel national rail sync foreign
Regular sync rail freewheel trump class form clinton input banner div

Interactive cnn viewers media cbs kelly journalists sources fox network coverage
Regular trump dylan clinton media bob campaign president twitter show published

Interactive ford cars car auto vehicles jobs mexico manufacturing driving trade
Regular ford car cars mexico company sales million published president police

Interactive space station international moments attacks launch president company home tech
Regular space station international moments trump notable crew clinton russian campaign

Interactive immigrants law immigration children trumps plan dream place living wall
Regular clinton trump president campaign harry hillary donald sanders potter back

Interactive6 twitter tweet tweets web anti gawker fake tweeted hogan harassment
Regular trump dylan clinton media bob campaign president twitter show published

Interactive boy girl family mother parents child children baby girls unfolds
Regular prince remembers purple princes music city police family home death

Interactive police officers shot shooting shootings victims suspect dallas gun killed
Regular police officers dallas shot protest officer killed shooting man law

Interactive russian putin russia election court opposition political obama foreign states
Regular trump clinton president campaign donald trumps republican presidential hillary house

Interactive venezuela economy government prices brexit production european country president crude
Regular oil prices production million saudi market energy barrels billion company

Interactive1 falluja isis battle forces syria attacks attack syrian military government
Regular syrian isis city forces aleppo march syria government refugees group

Interactive trump kasich cruz rubio clinton republican sanders delegates freewheel campaign
Regular trump clinton donald campaign trumps republican president presidential hillary cruz

Interactive google apple note devices iphone phones phone samsung software app
Regular apple iphone company tech apples million sales published phone stock

109



Table B.2. Topics created by user 2

Interactive france obama french attacks paris european germany attack brexit england
Regular brussels attacks terror airport police attack march paris security isis

Interactive trump clinton donald campaign journalists media president national magazine republican
Regular trump clinton donald campaign trumps republican president presidential hillary cruz

Interactive puerto island sea obama house back debt coast states class
Regular president obama memorial american national police clinton happening watched updated

Interactive music song voice group freewheel records rail sync form class
Regular trump dylan clinton media bob campaign president twitter show published

Interactive amazon netflix internet tech company google disney stock movie investors
Regular tech company netflix stock million investors billion market media published

Interactive obamacare fargo benefits health insurance care plan wells federal coverage
Regular wells fargo bank banks million accounts employees company stumpf sales

Interactive uber drivers app driving car cars ride company million cities
Regular tesla car musk company cars teslas electric published driving autopilot

Interactive airport plane flight travel aircraft airlines security passengers international brussels
Regular brussels attacks terror airport police attack march paris security isis

Interactive study researchers science national studies natural million research school found
Regular earth live star planet space system water show light back

Interactive students college school schools kids student education university high pay
Regular scenes show marshall left work back national published media film

Interactive police trial judge prison court hearing officers attorney department charges
Regular police officers dallas shot protest officer shooting killed man law

Interactive food restaurant company chipotle sales million market restaurants fast customers
Regular company amazon tech sales market billion stock companies walmart investors

Interactive protests protesters anti brazil government march law protest called violence
Regular president obama memorial american national police clinton happening watched updated

Interactive birth child children family baby mother health form care work
Regular scenes show marshall left work back national published media film

Interactive economy government published companies clinton banks president country billion economic
Regular fed trump rates economy rate market yellen jobs growth president

Interactive female womens house party election men things updated found unfolds
Regular trump clinton president campaign donald trumps republican presidential hillary house

Interactive climate change natural conditions exxon gas power prices museum water
Regular earth live star planet space system water show light back

Interactive gender transgender sex law carolina court rights gay parents men
Regular million actors highest show star company published clinton president work

Interactive immigrants trumps mexico trade border jobs immigration plan society wall
Regular trump students mexican missing clinton trumps donald campaign mexico president

Interactive cancer health medical doctors hospital patients care study drug disease
Regular zika health rio virus olympics games states house president government

Interactive tax income clinton workers jobs rate economy job americans fed
Regular fed trump rates economy rate market yellen jobs growth president

Interactive iran oil opec production saudi prices deal crude barrels energy
Regular oil prices production million saudi market energy barrels billion company

Interactive retirement budget savings request billion government financial campaign plan security
Regular fed trump rates economy rate market yellen jobs growth president

Interactive michelle move obamas obama program lady house president visits speech
Regular trump clinton president campaign donald trumps republican presidential hillary house

Interactive device images camera photo videos video caught body hands features
Regular scenes show marshall left work back national published media film

Interactive book kelly page magazine fox show host photo led allegations
Regular trump dylan clinton media bob campaign president twitter show published

Interactive china korean korea chinese chinas japan region military japanese beijing
Regular korea korean military china nuclear march government report security company

Interactive trump cnn debate nbc million clinton donald viewers campaign network
Regular trump clinton donald campaign trumps republican president presidential hillary cruz

Interactive victims assault sexual victim company fox orlando watched rape attack
Regular police officers dallas shot protest officer shooting killed man law

Interactive gun president shooting mass assault weapons shot nuclear killed officers
Regular police officers dallas shot protest officer shooting killed man law

Interactive apple iphone phone devices phones note samsung smartphone company tech
Regular apple iphone company tech apples sales million phone published stock

Interactive music prince star song fans show fargo wells awards live
Regular prince remembers purple princes music city twitter death minnesota family

Interactive devices users smartphone microsoft app google zuckerberg phone internet apps
Regular google company tech million companies app published billion googles business

Interactive russian computer fbi system hackers putin information russia intelligence systems
Regular korea korean military china nuclear march government report security company

Interactive game nfl games team football players rio olympic league sports
Regular winners golden series million back globes published film won home

Interactive cruz kasich debate trumps politics convention rubio pence party democratic
Regular trump clinton donald campaign trumps republican president presidential hillary cruz

Interactive syrian refugees isis syria forces turkey military city aleppo government
Regular syrian isis forces city aleppo march syria government refugees military
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Table B.3. Topics created by user 3

Interactive russian putin russia intelligence obama election information president foreign report
Regular obama president trump clinton visits house march india january barack

Interactive china chinas chinese products beijing global kong hong trade foreign
Regular trump fed economy rates market rate president clinton jobs published

Interactive dallas police shot officers protest officer shooting department killed man
Regular police officers dallas shot protest officer law killed man back

Interactive rio olympic olympics games athletes brazil zika team gold park
Regular minister prime company million published justin trudeau police government president

Interactive transgender law gender president carolina court sex school public bill
Regular trump clinton company president million dylan published media campaign back

Interactive water storm weather florida coast emergency hurricane damage city area
Regular fire police india deadly temple officials company man million published

Interactive puerto debt island states back house bill home oil job
Regular trump fed economy rates market rate president clinton jobs published

Interactive film star show awards disney entertainment director series movie actor
Regular trump comedy show company million published president back series work

Interactive film internet netflix media cable tech million fox disney sanders
Regular trump clinton company president million dylan published media campaign back

Interactive trade mexico jobs border trumps tariffs mexican immigrants canada american
Regular trump students mexican clinton missing trumps donald president campaign mexico

Interactive gas natural prices oil infrastructure fed fuel lines construction security
Regular oil prices million market company production saudi published billion companies

Interactive1 muslim trump clinton campaign muslims immigrants trumps attack attacks american
Regular trump clinton donald campaign trumps president republican presidential hillary election

Interactive famous fashion million design worlds auction brands stores home buildings
Regular company tesla car million published cars musk tech market billion

Interactive prince music song rock purple death records minnesota group young
Regular prince company million city published police home back twitter family

Interactive bank buffett fargo wells oil stock banks market investors financial
Regular wells fargo bank million company banks published accounts employees sales

Interactive google apple yahoo verizon phone devices apples note iphone phones
Regular apple iphone company tech million published billion sales stock companies

Interactive cruz kasich president clinton convention politics rubio party delegates voters
Regular trump clinton donald campaign trumps president republican presidential hillary election

Interactive falluja isis battle syrian forces syria government refugees turkey attacks
Regular attacks brussels terror airport police attack march isis security paris

Interactive space station international moments study live found attacks natural school
Regular company live earth million trump published president back star american

Interactive trump debate cnn fox nbc cable media lewandowski network trumps
Regular trump clinton donald campaign trumps president republican presidential hillary election
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Table B.4. Topics created by user 4

Interactive apple internet iphone company tech phone note phones apples billion
Regular apple iphone company tech apples sales phone million stock published

Interactive google yahoo verizon microsoft tech workers mayer data app quarter
Regular google company tech million companies app published billion googles search

Interactive china obama india president canada trade countries global asia international
Regular china philippines city police duterte president things chinese government million

Interactive britain brexit france obama european british london europe attacks french
Regular winners golden series globes back film published million won home

Interactive banks rates fed rate treasury assets interest campaign government losses
Regular fed rates trump economy rate market yellen jobs growth interest

Interactive politics million democratic election sanders debate party political vote trumps
Regular clinton trump sanders campaign hillary democratic president donald clintons bernie

Interactive korea japan china military japanese defense region trade international global
Regular korea korean military china nuclear march government report security company

Interactive michelle obama move obamas program lady house kids visits girls
Regular trump president clinton campaign reagan republican house presidential ronald court

Interactive mexico trade border tariffs canada jobs tariff countries goods wall
Regular ford car cars mexico sales company published market trade police

Interactive carolina law virginia sanders house democratic freewheel michigan senate water
Regular clinton trump sanders campaign hillary democratic president donald clintons bernie

Interactive college students school schools student university education high job program
Regular scenes show marshall left work back film national published media

Interactive cruz kasich politics bush rubio republican florida trumps delegates party
Regular trump donald campaign trumps clinton republican president cruz presidential election

Interactive china chinese chinas overseas beijing trade global international kong worlds
Regular china philippines city police duterte president things chinese government million

Interactive black african brown family man country poor police children americans
Regular memorial obama president police american national happening service family updated

Interactive rio brazil president government protests olympics games march anti mass
Regular zika health rio virus olympics games states house government olympic

Interactive city hotel police battle mayor homes forces president iraqi residents
Regular memorial obama president police american national happening service family updated

Interactive internet computer hackers million online system russian technology access software
Regular google company tech million companies app published billion googles search

Interactive gun black victims shooting shot assault weapons nuclear officers family
Regular police officers dallas shot protest officer shooting killed man law

Interactive mexico border trade trumps canada jobs national united region american
Regular syrian isis forces city aleppo march syria government refugees military

Interactive fbi information journalists emails intelligence letter law documents court statement
Regular dylan media bob twitter show fox published company voice president

Interactive politics vice pence indiana freewheel form rail sync nominee class
Regular clinton trump sanders campaign hillary democratic president donald clintons bernie

Interactive disney park film company show national twitter back movie media
Regular scenes show marshall left work back film national published media

Interactive internet users zuckerberg mark online facebooks technology access free app
Regular google company tech million companies app published billion googles search

Interactive transgender gender schools school sex president law public court gay
Regular harry potter president back published show house part work twitter

Interactive hate sources freewheel twitter rail attack attacks sync tweet form
Regular dylan media bob twitter show fox published company voice president

Interactive stores amazon sales company products store tech retail macys profit
Regular company amazon tech sales market billion stock companies walmart investors

Interactive jobs workers infrastructure products rate manufacturing job economy overseas growth
Regular fed rates trump economy rate market yellen jobs growth interest

Interactive health drug patients drugs hospital care disease study heart death
Regular zika health rio virus olympics games states house government olympic

Interactive property home estate housing battle prices taxes homes prince company
Regular uber china company drivers million companies published tech billion chinese

Interactive trump cnn media nbc fox clinton donald network journalists campaign
Regular trump million trumps donald campaign clinton president worlds republican media

Interactive drone space drones launch tech damage happening city government including
Regular korea korean military china nuclear march government report security company

Interactive loans debt tax clinton income published government assets billion campaign
Regular fed rates trump economy rate market yellen jobs growth interest

Interactive fed dow market rates stocks investors rate economy markets interest
Regular fed rates trump economy rate market yellen jobs growth interest

Interactive oil gas iran prices opec production saudi energy deal arabia
Regular oil prices production million saudi market energy barrels billion company

Interactive retirement funds budget savings fees fund investing request benefits social
Regular windows company microsoft tech published work police twitter security back

Interactive banks oil bank goldman campaign government financial pay billion published
Regular fed rates trump economy rate market yellen jobs growth interest

Interactive journalists twitter media tweets hate group web attack attacks anti
Regular dylan media bob twitter show fox published company voice president

Interactive police judge victims court trial prison officers enforcement department man
Regular police officers dallas shot protest officer shooting killed man law

Interactive president laws national hillary public states presidential happening messenger bill
Regular trump president clinton campaign reagan republican house presidential ronald court
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Table B.5. Topics created by user 5

Interactive isis syrian refugees attacks terror syria military attack forces city
Regular syrian isis city forces aleppo march syria government refugees group

Interactive google apple iphone phone note phones apples device devices users
Regular apple iphone company tech apples million sales published phone stock

Interactive trumps mexico border trade mexican immigrants tariffs jobs immigration wall
Regular trump students mexican missing clinton trumps donald campaign mexico president

Interactive muslim trump clinton campaign muslims attack donald hate attacks president
Regular trump clinton donald campaign trumps republican president presidential hillary cruz

Interactive trump debate donald clinton cooper class campaign president kelly cnn
Regular trump clinton president campaign donald trumps republican presidential hillary house

Interactive players game nfl football league season games team night national
Regular scenes show marshall left work back national published clinton media

Interactive rio players olympic olympics sports games athletes golf team gold
Regular winners golden million series back published globes company home film

Interactive water storm weather damage florida coast conditions hurricane city rain
Regular zika health rio virus olympics games states house president government

Interactive fbi russian intelligence putin russia information cnn emails clintons security
Regular trump clinton president campaign donald trumps republican presidential hillary house

Interactive retirement savings benefits older bonds social obamacare age stocks insurance
Regular zika health rio virus olympics games states house president government

Interactive students college school student schools university education high program job
Regular scenes show marshall left work back national published clinton media

Interactive gun police victims shooting government weapons mass president judge officers
Regular police officers dallas shot protest officer killed shooting man law

Interactive black protests mass african march anti government protesters back protest
Regular police officers dallas shot protest officer killed shooting man law

Interactive yahoo verizon company tech deals billion deal business million published
Regular company tech amazon sales market billion companies stock published walmart

Interactive tax income workers rate clinton unemployment manufacturing benefits jobs gap
Regular fed trump rates economy rate market yellen jobs president growth

Interactive tax banks bank funds income rates returns clinton jobs stock
Regular fed trump rates economy rate market yellen jobs president growth

Interactive debt loans losses loan published payments pay interest auto company
Regular company tech amazon sales market billion companies stock published walmart

Interactive rio olympic zika olympics brazil games virus brain disease health
Regular zika health rio virus olympics games states house president government

Interactive banks economy market fed jobs rate investors bank hike companies
Regular fed trump rates economy rate market yellen jobs president growth

Interactive uber drivers car driving cars tesla driver electric ride musk
Regular tesla car musk company cars teslas published electric driving million

Interactive cancer study health heart patients researchers brain care drug medical
Regular earth live star planet space system water company million back

Interactive korean nuclear iran korea weapons deal kim military defense foreign
Regular korea korean china military government march nuclear report president company

Interactive airport flight plane aircraft airlines passengers international security american worlds
Regular brussels attacks terror airport police attack march paris security isis

Interactive oil gas prices opec production energy saudi fuel crude barrels
Regular oil prices production million saudi market energy barrels billion company

Interactive museum art million design visitors work london history national part
Regular earth live star planet space system water company million back

Interactive fbi computer system hackers intelligence systems information security cnn email
Regular korea korean china military government march nuclear report president company

Interactive players williams team cup career won title teams womens player
Regular scenes show marshall left work back national published clinton media

Interactive film star music prince show disney rock song awards company
Regular prince remembers purple princes music city police family home death

Interactive india obama china president global trade africa poor delhi march
Regular korea korean china military government march nuclear report president company

Interactive chinas chinese china beijing products quality kong hong growth region
Regular uber company china million drivers companies tech published billion chinese

Interactive transgender gender law sex assault sexual fox gay men media
Regular trump dylan clinton media bob campaign president twitter show published

Interactive trump cruz politics bush kasich trumps rubio party freewheel convention
Regular trump clinton donald campaign trumps republican president presidential hillary cruz

Interactive court judge president supreme hearing ruling laws justice public federal
Regular trump clinton president campaign donald trumps republican presidential hillary house

Interactive brexit european obama britain british london germany england vote europe
Regular winners golden million series back published globes company home film
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Appendix C

Supplementary material for Part III

C.1 Vapnik-Chervonenkis dimension

Definition C.1. For any hypothesis class H and any S ⊆ H,

ΠH(S) = {h ∪ S : h ∈ X}.

Equivalently, if S = {x1, . . . , xm} then we can think of ΠH as the set of vectors

ΠH ⊆ {0, 1}m defined by

ΠH(S) = {h(x1), . . . , h(xm) : h ∈ H}.

Thus. ΠH(S) is the set of all the behaviors on S that are realized by H.

Definition C.2. If ΠH(S) = {0, 1}m (where m = |S|), then we say that S is shattered by

H. Thus, S is shuttered by H if H realizes all possible behaviors S.

Definition C.3. The Vapnik-Chervonenkis (VC) dimension of H, is the cardinality d of

the largest set S shattered by H.
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C.2 Proof of Theorem 9.3

The proof of Theorem 9.3 follows that of the original online set cover algorithm [1].

We provide it here for reference and because it differs on several small details.

Lemma C.4. Let t be the size of an optimal teaching set for H. Then the total number of

doubling steps performed by the algorithm is at most t · lg(2m), and at any point in time,

∑
x∈X

w(x) ≤ 1 + t · lg(2m).

Proof. First, w(x) ≤ 2 for all x, always. This is because w(x) increases only during a

doubling step, which happens only if x belongs to a subset of X of total weight < 1.

Let T ∗ ⊂ X denote an optimal teaching set, of size t. By definition, T ∗ must

intersect ∆(h) for all h 6= h∗. Now, a doubling step doubles the weight of each x ∈ ∆(h),

and thus some element of T ∗. And since the weight of an individual point begins at 1/m

and never exceeds 2, the total number of doubling steps cannot exceed t · lg(2m).

During each doubling step, w(∆(h)), and thus
∑

xw(x), increases by at most 1.

The lemma follows by noting that the initial value of this summation is 1, and there are

at most t · lg(2m) doubling steps.

Lemma C.5. With probability at least 1− δ, at the end of any iteration of the main loop,

any hypothesis h 6= h∗ with w(∆(h)) ≥ 1 is invalidated by the teaching examples.

Proof. Fix any h 6= h∗ and consider the first point in time at which w(∆(h)) ≥ 1. Recall

that the thresholds Tx are drawn from an exponential distribution with rate λ = ln(N/δ).

Thus the probability, over the random choice of thresholds, that no point in ∆(h) is chosen
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as a teaching example is

∏
x∈∆(h)

Pr(w(x) ≤ Tx) =
∏

x∈∆(h)

exp(−λw(x))

= exp(−λw(∆(h)))

≤ exp(−λ) =
δ

N
.

Now take a union bound over all N hypotheses in H.

Lemma C.6. The expected total number of teaching examples provided is at most (1 +

t lg(2m)) ln(N/δ).

Proof. The probability that any particular x ∈ X is eventually provided as a teaching

example is

Pr(final value of w(x) exceeds Tx)

= 1− Pr(Tx > w(x))

= 1− exp(−λw(x)) ≤ λw(x)

where λ = ln(N/δ) is the rate parameter of the exponential distribution from which Tx is

chosen. Thus

E[|S|] ≤
∑
x∈X

λw(x) ≤ λ(1 + t lg(2m)),

where the last inequality invokes Lemma C.4.
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Figure C.1. Moon-shaped dataset (separable), Linear kernel

Figure C.2. Moon-shaped dataset (separable), Quadratic kernel

C.3 Experimental results

Below, we give the full set of experimental results on synthetic and real datasets.
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Figure C.3. Moon-shaped dataset (separable), RBF kernel

Figure C.4. Moon-shaped dataset (non-separable), Linear kernel
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Figure C.5. Moon-shaped dataset (non-separable), Quadratic kernel

Figure C.6. Moon-shaped dataset (non-separable), RBF kernel
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Figure C.7. Circular dataset (separable), Linear kernel

Figure C.8. Circular dataset (separable), Quadratic kernel
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Figure C.9. Circular dataset (separable), RBF kernel

Figure C.10. Circular dataset (non-separable), Linear kernel
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Figure C.11. Circular dataset (non-separable), Quadratic kernel

Figure C.12. Circular dataset (non-separable), RBF kernel
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Figure C.13. Mixtures of Gaussians dataset (separable), Linear kernel

Figure C.14. Mixtures of Gaussians dataset (separable), Quadratic kernel
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Figure C.15. Mixtures of Gaussians dataset (separable), RBF kernel

Figure C.16. Mixtures of Gaussians dataset (non-separable), Linear kernel
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Figure C.17. Mixtures of Gaussians dataset (non-separable), Quadratic kernel
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Figure C.18. (a) MNIST data set, quadratic kernel SVM (b) Fashion MNIST data set,
convolutional neural network

Table C.1. Number of SVs, TPs, and points that are both SVs and TPs on MNIST.

# SVs 32,320
# TPs 4,445

#TPs AND SVs 4,357
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