
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Meeting the Challenges of Software-Based Networks and Services

Permalink
https://escholarship.org/uc/item/0qj759df

Author
Mohammadkhan, Ali

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0qj759df
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Meeting the Challenges of Software-Based Networks and Services

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Ali Mohammadkhan

September 2019

Dissertation Committee:

Prof. K.K. Ramakrishnan, Chairperson
Prof. Nael Abu-Ghazaleh
Prof. Jiasi Chen
Prof. Srikanth V. Krishnamurthy

Copyright by
Ali Mohammadkhan

2019

The Dissertation of Ali Mohammadkhan is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I would like to use this opportunity to thank everyone who has helped and sup-

ported me during my Ph.D..

First, I would like to thank my advisor, Prof. K. K. Ramakrishnan who had a

crucial role in directing and steering me during my studies. In addition, I would like to

thank the other Professors of my committee who helped me with their invaluable comments.

Prof. Jiasi chen, Prof. Nael Abughazaleh, Prof. Srikanth Krishnamurthy, Prof. Vassilis J.

Tsotras, Porf. Laxmi N. Bhuyan, and Prof. Nanpeng Yu, thank you for accepting to be a

part of my committee during different stages of my Ph.D..

I would like to thank my wife, Sheida Ghapani, not only because of her uncondi-

tional support in my personal life, but also because of the time she spent to teach me about

optimization and helped me to learn how to formulate problems for optimization.

I am grateful for all the friends I had in our group and in our lab, they wholeheart-

edly helped me during these years. Space will not be enough to list them all but at least

I would like to name a few: Mohammad Jahanian, Shahryar Afzal, Sourav Panda, Aditya

Dhakal, and Sameer G. Kulkarni, thank you all.

I would like to thank our collaborator that I was lucky to experience the collabo-

ration with them. From George Washington University, Prof. Timothy Wood, Wei Zhang,

and Grace Liu. From Norwegian University of Science and Technology, Y.T. Woldeyohannes

and Prof. Yuming Jiang. From Future Networks, Huawei Technologies, Uma Chunduri, and

Kiran Makhijani.

iv

The text of this dissertation, in full (unless explained otherwise in the detailed

description of each publication below), is a reprint of the material as it appears in the

following publications. The co-author, Prof. K. K. Ramakrishnan, listed in all the publi-

cations, directed and supervised the research which forms the basis for this thesis. For the

sake of brevity, I mentioned his key role here and I will not repeat this sentence for all the

publications one by one.

• ”CleanG - Improving the Architecture and Protocols for Future Cellular Networks

with NFV, submitted to ACM/IEEE Transaction on Networking Journal, 2019. I was

the main author of this work and this work was done under Prof. Ramakrishnan’s

supervision.

• ”Re-Architecting the Packet Core and Control Plane for Future Cellular Networks,

The 27th IEEE International Conference on Network Protocols, 2019. I was the main

author of this work and this work was done under Prof. Ramakrishnan’s supervision.

• ”P4NFV: P4 Enabled NFV Systems with SmartNICs, in Proc. of IEEE Conference

on Network Function Virtualization and Software Defined Networks, 2019, beside I

as the main author and Prof. Ramakrishnan, we had the opportunity to work with

Sameer G. Kulkarni and Sourav Panda. Sameer G. Kulkarni helped us by providing his

technical expertise for shaping a better paper and Sourav Panda contributed specially

in SmartNIC component of the architecture and its evaluation.

• ”Re-Architecting the Packet Core and Control Plane for Future Cellular Networks,”

in Proc. of 27th IEEE International Conference on Network Protocols (ICNP), 2019.

Authors of this work were Prof. Ramakrishnan and I.

v

• ”Improving Performance and Scalability of Next Generation Cellular Networks,” in

IEEE Internet Computing, vol. 23, 2019. Beside I as the main author and Prof.

Ramakrishnan, Uma Chunduri and Kiran Makhijani from Huawei Technologies mostly

contributed to the transportation protocol section and improving the paper based on

their technical expertise. The transportation protocol part is removed from this thesis.

• ”A scalable resource allocation scheme for NFV: Balancing utilization and path stretch,”

Y. T. Woldeyohannes is the main author of this work. Mostly, I helped with overall

problem formulation and few suggestions for example in the heuristic part to improve

the perform ace of the suggested approach.

• ”ClusPR: Balancing Multiple Objectives at Scale for NFV Resource Allocation,”. Y.

T. Woldeyohannes is the main author of this work. Similar to the previous work,

mostly, I helped with overall problem formulation and few suggestions, for example in

the heuristic part to improve the performance of the suggested approach. In addition,

I helped with evaluation part as well.

• ”CleanG: A Clean-Slate EPC Architecture and Control Plane Protocol for Next Gen-

eration Cellular Networks”. I was the main author and it was done under Prof. Ra-

makrishnan’s supervision. Ashok Sunder Rajan, and Christian Maciocco from Intel

helped with estimating the load for the next generation of cellular networks.

• ”SDNFV: Flexible and Dynamic Software Defined Control of an Application- and

Flow-Aware Data Plan”. Wei Zhang is the main author of this work. I mostly helped

with the placement challenges in this framework.

vi

• Considerations for Re-Designing the Cellular Infrastructure Exploiting Software-Based

Networks. I was the main author of this work and this work was done under Prof.

Ramakrishnan’s supervision. Ashok Sunder Rajan, and Christian Maciocco from In-

tel helped with their estimating expected load in next generation of cellular network

base on their experience in the cellular network field.

• Protocols to Support Autonomy and Control for NFV in Software Defined Networks. I

was the main author of this work and this work was done under Prof. Ramakrishnan’s

supervision. We used the expertise of other authors in the software defined networking

and network function virtualization challenges.

• Virtual Function Placement and Traffic Steering in Flexible and Dynamic Software

Defined Networks. I was the main author of this work and this work was done under

Prof. Ramakrishnan’s supervision. We used the expertise of other authors in the

software defined networking and network function virtualization challenges.

My work was partially supported by following grants:

– NSF grants CNS-1522546, CRI-1823270, and CNS-1763929.

– ARO DURIP grant W911NF-15-1-0508.

– and a grant from Futurewei Inc. (Huawei Tech. Co. Ltd.s HIRP Grant)

vii

This thesis is dedicated to my wife, my parents, and my sister

who have always supported and encouraged me.

viii

ABSTRACT OF THE DISSERTATION

Meeting the Challenges of Software-Based Networks and Services

by

Ali Mohammadkhan

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2019

Prof. K.K. Ramakrishnan, Chairperson

Nowadays, it is possible to have high-performance software-based network func-

tions. This concept, known as Network Function Virtualization (NFV), enables us to run

network functions on-demand and where they are needed. Another aspect of network soft-

warization is Software-defined networking (SDN), which separates data and control plane

and a logically centralized controller controls data plane. The computer network enabled

by SDN and NFV has unique and interesting challenges and opportunities. In these net-

works, network functions can be instantiated all over the network, and the flows are steered

through them, which is known as service chaining. In one branch of our work, we showed

how jointly solving routing, and network function placement problem outperforms tradi-

tional placement solutions. Next step was designing a protocol for service chaining in these

networks. Hence, we showed that efficient use of available information in the centralized

controller makes the protocol more efficient with a reduces the number of messages and

bits in the headers. Thus far, we had considered nodes as black boxes, but in the next

branch of our work, we focused on each node. We proposed a solution for the architec-

ix

ture of a protocol-free software switch equipped with SmartNICs and the optimization of

resources to carry out different tasks within each node. Based on the lessons we learned

in the projects above, we worked on the application of these technologies in the cellular

domain. We proposed an NFV-based architecture and protocol for the cellular packet core.

Our proposed architecture, CleanG, is simple, scalable, and efficient. In addition, in the

CleanG protocol, the number of control messages exchanged is reduced dramatically, and

packets are forwarded through more efficient tunneling. This reduction in messages lowers

the delay and the load on control plane components, which increases the system capacity

dramatically. In conclusion, software-based networks provide a plethora of opportunities for

the next generations of networks. However, to leverage them efficiently, we believe merely

implementing hardware components as a software piece is not the answer. Thus, it is crucial

to rethink the architecture and protocols, and the specific challenges and opportunities of

software-based networks should be considered.

x

Contents

List of Figures xiv

List of Tables xvi

1 Introduction 1

2 Virtual function placement and traffic steering in flexible and dynamic
software defined networks 5
2.1 Introduction . 6
2.2 System Description . 7
2.3 MILP Formulation . 9

2.3.1 Variations in Formulation . 13
2.4 Developing simple Heuristics . 14
2.5 Evaluation . 17

2.5.1 Evaluation of Heuristics . 23
2.6 Related Work . 26
2.7 Conclusions . 28

3 P4NFV: P4 Enabled NFV Systems with SmartNICs 29
3.1 Introduction . 30
3.2 Architecture . 32

3.2.1 OpenNetVM . 33
3.2.2 Overview of SmartNIC architecture and capabilities 35
3.2.3 SDN Agent on the host . 37
3.2.4 Interfacing with SmartNIC . 39

3.3 Optimization of task assignment between Host and SmartNIC 39
3.4 Evaluation . 46

3.4.1 sNIC and Software P4 Switch Performance 46
3.4.2 Optimization Engine . 47

3.5 Related work . 54
3.6 Conclusion . 55

xi

4 Protocols to support autonomy and control for NFV in software defined
networks 56
4.1 Introduction . 57
4.2 System Components . 59
4.3 Handling service chaining . 65

4.3.1 Static Chains . 65
4.3.2 Dynamic Chains . 67

4.4 Protocol and interfaces . 71
4.4.1 Protocol between NF Manager and SDN controller 71
4.4.2 Communication between SDNFV Application, SDN Controller and

NF orchestrator . 74
4.5 Evaluation . 76

4.5.1 Network with only NFs that don’t alter headers 77
4.5.2 Network with NFs altering headers 77

4.6 Related Work . 79
4.7 Summary . 81

5 Considerations for Re-Designing the Cellular Infrastructure Exploiting
Software-Based Networks 83
5.1 Introduction . 84
5.2 Current 3GPP Architecture . 86
5.3 Overview of SDN and NFV . 91
5.4 Cellular deployment topology, workloads, system impact and 5G implications 93
5.5 Overview of Efforts to Re-architect 5G Cellular EPC 100
5.6 Discussion . 103

6 CleanG: A Clean-Slate EPC Architecture and Control Plane Protocol for
Next Generation Cellular Networks 105
6.1 Introduction . 106
6.2 Data/Control Plane Load . 108

6.2.1 Control and Data Plane Workload 109
6.2.2 Implications of Signaling Transactions on Data Plane 109

6.3 Other Efforts . 111
6.4 Clean-G Architecture . 112
6.5 Control Protocols . 114

6.5.1 EPC Forwarding of Data Packets . 117
6.5.2 CleanG Control Plane Protocol . 118
6.5.3 Comparing the Overhead of Protocols 123

6.6 Summary and Future work . 124

7 Re-Architecting the Packet Core and Control Plane for Future Cellular
Networks 125
7.1 Introduction . 126
7.2 Background . 129

7.2.1 5G Considerations . 131

xii

7.3 Background . 133
7.4 Improving cellular control plane protocol . 137
7.5 Proposed CleanG Architecture . 141

7.5.1 Deployment Considerations . 144
7.6 Proposed CleanG Protocol . 145

7.6.1 Forwarding data packets in CleanG 147
7.6.2 CleanG control plane protocol . 151

7.7 Evaluation . 156
7.7.1 Total number of supported users . 159
7.7.2 Maximum data plane rate . 160
7.7.3 Total UE event completion times . 161
7.7.4 Data packet forwarding latency . 164
7.7.5 Detailed timing of different events 164
7.7.6 Comparison with PEPC . 167

7.8 Related Work . 168
7.9 Conclusion . 170

8 Our other efforts 172
8.1 SDNFV: Flexible and Dynamic Software Defined Control of an Application-

and Flow-Aware Data Plan [239] . 172
8.2 A scalable resource allocation scheme for NFV: Balancing utilization and

path stretch [228] . 173
8.3 ClusPR: Balancing Multiple Objectives at Scale for NFV Resource Alloca-

tion [227] . 174

9 Conclusions 175

Bibliography 179

xiii

List of Figures

2.1 NF Service Graph Map across Multiple Hosts 8
2.2 An example of service placement for two flows 9
2.3 Maximum number of fitted flows for different objective functions 18
2.4 Max. core utilization for problems with different objective functions 19
2.5 Number of solver iterations for different objective functions 20
2.6 Status of found solution for each problem 21
2.7 Max. link utilization for problems with different objective functions 22
2.8 Max. core and link utilization for different objective functions 22
2.9 Maximum delay of flows for different objective functions 23
2.10 Maximum number of fitted flows for different algorithms 24
2.11 Maximum number of fitted flows for different network capacities 25
2.12 Maximum flows’ delay for different algorithms 26

3.1 P4NFV Architecture . 33
3.2 SmartNIC - Typical Blocks and Processing pipeline (based on Netronome

NFP-Agilio4000) design [166] . 35
3.3 PCIe RTT measured from sNIC (varying burst size) 48
3.4 NF Processing delay . 49
3.5 Total delay based on the number of flows 50
3.6 Maximum supported flows based on the update rate 51
3.7 PCI Express transfer delay based on packet composition 52
3.8 Comparison of observed delay of P4NFV Vs. UNO [131] 53

4.1 System components and their interactions (All the other switches are similar
to the entrance switch but they do not have the Flow Mapper in them.) . . 60

4.2 A sample cluster of service chains . 63
4.3 A set of three service chains traversing NFs at four SDNFV Switches. . . . 66
4.4 Number of tags necessary for managing varying numbers of flows 76
4.5 Number of messages sent to controller for SDNFV and FlowTags 78

xiv

5.1 Typical end to end wireless infrastructure.(SEGW: Serving Edge Gateway
MME: Mobility Management Entity HSS: Home Subscription Server SGW:
Serving Gateway PGW: Packet Gateway PCRF: Policy Controls and Rules
Function) . 87

5.2 5G SDN based Network Infrastructure . 103

6.1 CleanG Architecture . 115
6.2 Current attach protocol . 116
6.3 Proposed attach protocol . 116
6.4 Current protocol for Service Request (Idle to Active) protocol 119
6.5 Proposed protocol for Service Request (Idle to Active) protocol 119
6.6 Current protocol for Handover . 120
6.7 Proposed protocol for handover . 120

7.1 LTE system architecture . 126
7.2 5G system architecture . 127
7.3 5G system architecture [213] . 134
7.4 Messages exchanged for service request event in 5G among 5GC components

and UE & (R)AN [5] . 140
7.5 CleanG architecture . 142
7.6 Downstream forwarding tables . 148
7.7 Attach protocol . 150
7.8 Idle-to-active protocol . 153
7.9 Handover protocol . 154
7.10 Transitions for each UE at workload generator 157
7.11 Components involved in implementation of each scenario 158
7.12 Maximum data packet rate in Mpps and maximum number of supported users161
7.13 Events completion time for 1M users . 162
7.14 Events completion time for 100K users . 163
7.15 Events completion time for SDN-based . 163
7.16 Data forwarding delay comparison . 165
7.17 Detailed completion time for LTE EPC. Call-outs specify the receiver of that

messages and where the timestamp is recorded 166
7.18 Detailed completion time of CUPS-based architecture 168
7.19 Maximum data plane rate based on the number of users in thousands . . . 169

xv

List of Tables

2.1 Definition of variables of MILP formulation 11

3.1 Table entry modification response time on sNIC and P4 OpenNetVM switch 47

4.1 Number of tags in network with NFs altering headers 78

5.1 Table caption text . 94
5.2 5G stress vectors . 95

6.1 Comparing Overheads of control plane protocol with 3GPP vs. CleanG . . 124

7.1 Approximate number of control plane messages received (R) and sent (S) for
different events in 5G. (B= baseline, O = optional messages) 137

xvi

Chapter 1

Introduction

Softwarization of computer networks is affecting different aspects of these networks

and two of its main manifestations are software-defined networking and network function

virtualization.

Software-Defined Networking (SDN) provides a logically centralized control plane

for network service providers, enabling them to program and control the network forwarding

plane (for example, SDN controller like ONOS [27]). Software-defined networking promises

to provide greater flexibility for precisely directing packet flows using a software-based

control plane for the network. The underlying assumption is that the data plane is simple,

comprising commodity switches, with little or no state other than the forwarding table of

‘match-action’ rules populated by a logically centralized SDN controller. Software-defined

networking introduces the concept of separation between the data plane and control plane,

to provide more flexibility in how individual flows are handled [74, 7].

1

However, today’s networks are much more than just packet forwarding entities,

with complex network services prevalent in custom-built middlebox systems at the edges

of the network. Network Function Virtualization (NFV) has emerged as a technique to

run high-performance network services as software running in virtual machines (VMs) on

commodity servers. Improved techniques for packet processing in virtualized platforms run-

ning on commercial off the shelf (COTS) systems make it possible to run network functions

on software-based platforms rather than purpose-built hardware appliances [108, 98, 142].

NFV thus enables easy deployment of software-based network functions dynamically in the

network, at a much lower cost. Both these technologies promise to radically alter how net-

works are deployed and managed, offering greater flexibility and enabling network services

to be added on demand.

One of the primary outcomes of SDN and NFV is an effortless service chaining.

Packet flows of different may need to go through a different sequence of services. For

example, a flow may need to be checked by the firewall, and intrusion detection system and

later be compressed by another network function (NF). The procedure of running different

sequence of NFs on different flows is called service chaining. By using SDN, it is possible to

have centralized control over the flow path, and by using NFV, it is possible to instantiate

different Network Functions when and where it is necessary. Hence, these two techniques

provide the opportunity for an easy and configurable service chaining.

As we mentioned, SDN and NFV provide flexibility and dynamic capability in the

control and data planes and make it possible to have service chaining for different flows.

Service chaining is crucially depending on dynamic instantiation and placement of network

2

functions (NF) in the network and flexible routing of the flows through them. In Chapter 2,

we proposed a mixed integer linear formulation of the problem, and we proposed heuristics

for a faster solution to the problem.

While in Chapter 2, we worked on the placement problem to place different func-

tions on different processing nodes, in Chapter 3, we studied the optimization of placement

within a node. To improve the performance and to free CPU resources on a software

switch, it is possible to assign some of the tasks to the SmartNIC and handle the rest by

the main host. In this chapter, we propose a new architecture for software-based protocol-

independent switches and NF hosts. In this architecture, a major component, called SDN

Agent, abstract the node as a single entity to the SDN controller. However, this node can

be made of a software switch and a SmartNIC. This component breaks the P4 component

to the tables and actions that can be carried out by the software host or the SmartNIC.

This problem is complex as it depends on lots of different constraints, such as PCI Express

bandwidth, delay, and data dependency. We formulated this problem as another mixed

integer linear problem and tried to minimize delay the processing within each node.

After deciding for the routing of the flows and placing the NFs, and optimal

handling of the flow within a node, a protocol is needed. The role of this protocol is to

specify the set of NFs for each flow, recording the progress of the flows in the service chain.

For example, a flow may visit a processing node twice for receiving two different services.

We need to differentiate the first and the second visit to provide different services each time.

in Chapter 4 we investigate this problem in depth.

3

In the first three chapters, we mentioned the challenges and opportunities of

software-based networks. In the rest of the thesis, we focus on the application of the tech-

niques that we mentioned on the cellular network domain. Cellular networks have evolved

from just providing voice communication between people to ubiquitous data, video, and

voice connectivity for people as well as supporting machine-to-machine (M2M) and Inter-

net of Things (IoT) communication. However, cellular networks continue to face significant

capacity, latency, and scalability challenges. While some of these concerns are being ad-

dressed in the 5G networks currently being deployed, fundamental problems remain, and

the current solution that involve implementing each traditional component as a separate

Network Functions is not efficient enough and more efficient use of Network Function Virtu-

alization is necessary. We believe it is highly desirable to take a new look at the architecture

and associated protocols with the goal of improving performance to meet upcoming chal-

lenges. In Chapter, 5, we investigate the requirement and necessary performance needs

in the next generations of the cellular network. In the next chapter, 6, we explained the

motivation and initial design of protocol and architecture. In Chapter 7, we completed the

picture with the in-depth explanation and details of the proposed architecture and protocol

for the next generation of cellular networks. Before concluding this dissertation, in Chap-

ter 8 we have briefly covered other works that are related to the subject of this thesis that

I was a co-author in them but I was not the main author unlike the other chapters.

4

Chapter 2

Virtual function placement and

traffic steering in flexible and

dynamic software defined networks

The integration of network function virtualization (NFV) and software defined

networks (SDN) seeks to create a more flexible and dynamic software-based network en-

vironment. The line between entities involved in forwarding and those involved in more

complex middle box functionality in the network is blurred by the use of high-performance

virtualized platforms capable of performing these functions. A key problem is how and

where network functions should be placed in the network and how traffic is routed through

them. An efficient placement and appropriate routing increases system capacity while also

minimizing the delay seen by flows.

5

In this chapter, we formulate the problem of network function placement and rout-

ing as a mixed integer linear programming problem. This formulation not only determines

the placement of services and routing of the flows, but also seeks to minimize the resource

utilization. We develop heuristicsto solve the problem incrementally, allowing us to support

a large number of flows and to solve the problem for incoming flows without impacting

existing flows.

2.1 Introduction

A service provider network rarely consists of just forwarding entities like switches

and routers [201]. Current networks commonly include middlebox functions such as fire-

walls, proxies, caches, policy engines, etc. Switches and middlebox functionality can also

coexist on the same COTS platform with the use of NFV. Flows have to be routed through

these network functions in a pre-defined order, and SDN provides the necessary power and

flexibility to achieve this. A network function (NF) can be dynamically instantiated in a

host as long as there is enough computational power for hosting the service. Flows steered

through switches and NFs, with the goal of executing the needed service functions in the

required order. This could potentially result in the flow having to traverse a given link

multiple times (i.e. even having loops as perceived by the network layer, [15]). Thus, the

placement of the NFs and steering flows through them need to be done judiciously. The

focus of this paper is on placing the NFs and routing of flows, ensuring that each flow’s

path starts from an entry switch, meets all the necessary NFs in sequence, and ends at the

exit switch.

6

Multiple studies on middlebox or virtual machine (VM) placement consider the

placement problem independent from how flows utiize these functions and the routing of

flows. Some, such as [243, 81] consider both placement and steering of flows, but solve them

separately. For instance, a heuristic is used for placement and use its result as an input for

flow steering. However, a placement solution that does not leverage the information about

the flows can be inefficient.

In this paper we have formulated the service placement and flow steering problems

jointly in a single mixed integer linear problem (MILP) formulation. This formulation

results in the optimal placement of services and the routing of the flows. It seeks to minimize

the maximum link and CPU core utilization and the maximum delay of flows in the network.

This approach also offers the opportunity to solve problems incrementally, as flows are

added. This means that instead of solving a large problem which may be intractable, the

problem is partitioned and solved in smaller pieces, and the final result is still close to the

optimal solution. Another benefit of the incremental solution is that after adding new flows

to the network, we only have to solve the partial problem of newly added flows without

impacting existing flows.

2.2 System Description

Network nodes in our software-based network play multiple roles – providing the

conventional role of forwarding packets, and supporting network services such as firewalls,

proxies, policy engines etc.. A COTS system CPU comprising multiple cores could be

assigned to forwarding or to provide network functions. To avoid the overheads of Non-

7

SDN+NFV Host 2SDN+NFV Host 1

DDoS Scrubber

Quality

Detector

Video
Detector

Policy
Engine

CacheQuality
Detector

Policy

Engine

Video

Detector

Transcoder

Cache

Shaper

Firewall Sampler

IDS

Scrubber

IDS

Transcoder Shaper

Firewall
Sampler

Figure 2.1: NF Service Graph Map across Multiple Hosts

uniform memory access (NUMA), we assume that a core is dedicated to a single VM that

supports a network service or forwarding function.

The desired functions are instantiated in the network based on the requirements

of each flow and the placement decisions are made based on the estimated per-packet com-

putation requirement for the function and the link bandwidth as well as the maximum

tolerable delay for the flow. In addition, the set (or chain) of network services and their

order is the same for all packets of the flow.

Two examples of the services chains are depicted in Figure 2.1. Each service has

its computational requirements, so we set a limit on maximum number of flows a service

can support on a specified hardware. Making placement decision for services need to take

all of these factors into consideration. For example, in Figrue 2.2 we have a network with

8 switches (we will henceforth use the term switches and network nodes interchangeably).

8

Figure 2.2: An example of service placement for two flows

All the switches except S4 have just one free core, while switch S4 has two available cores.

The assigned services at each switch is shown in parentheses. The service chain for F1 is

”ABDEFIC” and the service chain for F2 is ”DEFGHI” (each letter represent a service like

a firewall or a proxy.) The difficulty for efficient placement increases dramatically with the

growth in the number of flows or network nodes.

2.3 MILP Formulation

A goal of the formulation is to obtain an ’efficient’ placement of services and

routing of the flows without violating the constraints of the maximum capacity of the links

and tolerable delays of flows. The ’efficient’ placement seeks to minimize the utilization

of the links and of the available CPU cores, thus maximizing system capacity. This is

especially important when we need to solve the problem incrementally as new flows and

9

functionality may be dynamically added to the network. Our proposed problem formulation

is as follows:

Minimize U subject to:

∀k ∈ Flows,∀i,m ∈ Switches,∀j ∈ Services, ∀l ∈ Ok,

∀l′ ∈ O′k :∑
j

Mij ≤ Ci (2.1)

XKil
= MijSkjl (2.2)

Nkil = XKil
◦Wkil (2.3)∑

i

Nkil =
∑
j

Skjl (2.4)

Fk = [IkNkEk] (2.5)∑
m

Vkl′
im

−
∑
m

Vkl′
mi

= Fkil′ − Fki(l′+1)
(2.6)

∑
l′

∑
i,m

Vkl′
im

Dim ≤ Tk (2.7)

Ak = SkN
T
k (2.8)∑

k

Akji ≤ Pji (2.9)

∑
k

∑
l′

(Vkl′
im

◦Bk) ◦ (1/Him) ≤ U (2.10)

∑
k

Akji/Pji ≤ U (2.11)

The definition of variables in this formulation is provided in Table 2.1. After

obtaining the solution, the placement result is stored in variable M and the routing steps

10

Var. Definition

U Maximum utilization of links and switches
Mij Number of running instances of service j on switch i
Ci Number of available cores on switch i
Nkil Selected switch for order l of the flow k’s service chain
Skij This value is one, if i is the jth service in flow k’s service chain;

zero otherwise
Wk Binary decision variable for satisfying constraint (2.4)
Iki Equal to 1, if i is the entrance switch for flow k
Eki Equal to 1, if i is the exit switch for flow k
Dij Delay of the link between switches i and j
TK Maximum delay tolerated by flow k
Pij Maximum number of supported flows, if switch i runs service j
BK Bandwidth usage of flow k
Hij Capacity of the link between switch i and j
Ok A range from 1 to length of service chain for flow k
O′k A range from 1 to length of service chain for flow k plus one
Vklim Is one, if the link between switches i and m is used, to reach to

the lth service in service chain of flow k
Akji Is one, if switch i processes service j for flow k

Table 2.1: Definition of variables of MILP formulation

in V . In this formulation we are minimizing the maximum utilization of the links and CPU

cores of the network nodes (i.e., of the bottleneck). Core utilization is the number of flows

using a CPU core over the maximum number of flows that can be simultaneously supported

by a service on that CPU core. By minimization of the utilization, load is distributed more

evenly in the network, avoiding hot spots and increasing residual system capacity. It also

results in lower overall delay for flows.

Equation (2.1) is a constraint on the maximum number of services that can be

supported on a switch. To avoid NUMA overhead, at most one service is assigned to a

core. Consequently the number of services on a switch should be less than or equal to

11

the number of free cores on that switch. The next equation, Equation (2.2) reflects the

process of selecting the necessary switches for a flow. M represents the available services

on switches, and S stores the necessary services and their order of execution. Thus, X

represents the possible switches for each order of execution of a particular flow (k). For

each order, only one switch is needed for a service, but multiple choices may exist in X.

Equation (2.3) selects one instance using the binary variable W . A limit on the number of

selected switches is set in (2.4). Although for readability and clarity we show Equation (2.3)

as a multiplication, it is not a non-linear constraint, because it can be re-written as follows:

Nkil ≤ XKil

Nkil ≤Wkil

Nkil ≥ XKil
+Wkil − 1

The legitimacy of this conversion is because both sides of the multiplication are binary

variables. For the flow k, the selected switches for each order are stored in N . Entry and

exit switches are added to the selected switches N , resulting in F as shown in Equation (2.5).

For each order in flow k, the right hand side of Equation (2.6) is equal to zero except for

the source (+1) and destination (-1) switches. The left hand side of this equation shows the

difference between out-degree and in-degree of each switch, so each zero or one for V shows

the selection of a link between two switches for a particular order and flow. To make sure

that selected routes in Equation (2.6) are not very long and they do not exceed maximum

tolerable delay for a flow, Equation (2.7) is used.

The maximum number of flows using a service on a switch simultaneously depends

on the nature of a service such as the computation needed for that service, and the hardware

12

capabilities of the switch running it. P reflects this for each combination of service and

switch. This may be specified a priori or obtained experimentally. Equation (2.8) stores

the mapping between switches and services for the flow k in variable A. A is limited to

the maximum number of flows defined for a service in Equation (2.9). Equation (2.10) and

Equation (2.11) set the variable U to the maximum value of link or core utilization and

finally Link utilization is enforced by Equation (2.10).

2.3.1 Variations in Formulation

The formulation above is the foundation, and we consider a few alternatives below.

Consider only Link or Core utilization

Equation (2.11) or Equation (2.10) may be omitted so that we seek to just optimize

either the core or link utilization. This variation is helpful if one of the objectives, link or

core utilization, has a high value and cannot be decreased at all. Hence it is better to just

minimize the other one and increase the available capacity in the network.

Combined formulation with a penalty function for delay

The combined formulation, which covers link and core utilizations at the same

time does not seek to minimize the delays experienced by flows, but just ensures the delay

is below the tolerable value. After minimizing the utilization of the links and cores, it may

be desirable to minimize the delay as well. For this, we can change the objective function

to the following:

Minimize: U +MaxDelay/LV

13

LV is a large enough integer to reduce the effect of MaxDelay to an amount lower than the

minimum variance of U. For example if the finest granularity of variance in U is equal to

0.01, LV may be two orders larger than the possible MaxDelay. Therefore the effect of the

delay will be limited to one percent. With an equal value of U, the solution with smaller

MaxDelay is chosen. MaxDelay, the maximum delay observed by a flow, is:

∑
l′

∑
i,m

Vkl′
im

Dim ≤MaxDelay (2.12)

This constraint reflects the fact that MaxDelay is larger or equal to the total delay of any

flow.

2.4 Developing simple Heuristics

The solution time for the optimal placement with the MILP grows exponentially

with the number of flows, thus limiting the scale of the problem that can be solved. More-

over, once the optimal placement is arrived at, any changes in the set of flows or the assigned

services at the switches requires the problem to be solved all over again, which may not be

practical . We seek heuristic approaches to solve these problems.

Heuristic-A

This heuristic is a multi-step greedy algorithm without using the MILP. At first

we select flows one by one and try to place their required services on free cores along their

shortest path. In the next step, we seek to share the already assigned cores on the shortest

path. In step three, we then look further at the neighboring switches and use their free cores

to accommodate necessary services. In the next step we try to share already assigned cores

14

in the neighboring switches with flows whose requirements are not yet satisfied. If after all

these previous steps a flow still does not have all the necessary services, Heuristic-A adds a

node from the neighboring switches to the shortest path and repeats all the aforementioned

steps.

Heuristic B, B+, and B+COR

For these heuristics, instead of solving the problem for all the flows at the same

time, we divide the flows into the groups. We start from the first group, and solve the

optimization problem for it. Based on the solution, the problem is updated again and we

solve the updated problem for the next group. We continue this process until all flows are

supported. We call this heuristic B. To be able to use information from a previous step, we

have defined new set of variables and have changed some of the constraints of the MILP

formulation. We call these variables preM , preUL, and preUC. The first, preM , represents

the union of assignments of services to the cores in the previous rounds. The M variable

in the formulation is replaced with M + preM throughout. preUL and preUC represent

the link utilization and core utilization respectively. preUL is added to the left hand side

of (2.11) and preUC is added to the left hand side of (2.9).

In the MILP formulation we are not minimizing the number of used cores, so as

a result some cores may be assigned but not used. To make this heuristic more efficient,

we add a pre-processing phase which eliminates unused cores from preM . In the rest of

the paper, this enhanced version is called B+. It is efficient in curing the both drawbacks

of original formulation: if we do the processing in small groups, the problem is solved very

15

fast; and this method can be used to avoid solving the problem all over again. Just the

problem for the added flows can be solved.

After studying the results with B+, we found that other methods of partitioning

flows may help get better results. The most effective was B + COR. In first step, the

shortest path between entry and exit switches for different flows is chosen. Then, the

number of flows who have a common switch in their shortest path is counted and assigned

to that switch. Then switches are sorted in ascending order based on the number of flows

passing through them. Less crowded switches are selected first. The reason for efficiency

of this algorithm is that trying to minimize utilization of bottleneck switches overuse lots

of resources of neighboring switches in the hope of lowering the overall utilization. But if

we place flows at crowded switches last, the necessary resources at neighboring switches are

allocated and are used to satisfy the needs of hotspot flows. In other words, starting from

the least crowded switches, helps us to have a more even distribution of resources in the

network.

Heuristic C

The default formulation doesn’t support minimizing the number of used cores,

because the original formulation seeks to minimize the utilization at the bottlenecks. But

with Heuristic C, similar to the B, flows are processed in groups. Therefore having more

unassigned cores provides a greater opportunity for placing subsequent flows. It provides

the flexibility to define the type of a service that has to run on a core for incoming flows.

So Heuristic C is similar to B, except that the objective function is changed to: Minimize

U+ (MaxDelay / LV) + (TotalCores / VLV)

16

The value of TotalCores is calculated based on the following expression:

∑
i,j

Mij ≤ TotalCores

VLV is defined similarly to LV. The LV should be large enough that the maximum variance

of TotalCores over LV should be smaller than minimum variance of MaxDelay over LV.

2.5 Evaluation

We evaluate the effectiveness of our MILP formulation on an example network

topology, and initially use a default where all the flows have the same service chain com-

prising 5 services. All services support up to 10 flows on a single core, with the exception

of Service4 which only supports up to 4 different flows on a switch core. We use an off-the-

shelf solver to solve the MILP and the non-optimization components are developed in Java.

All the switches have homogeneous processing capability with 2 available CPU cores. The

default topology in experiments is the network topology of AS-16631 from Rocketfuel [164]

with 22 nodes and 64 links. We run a total of 12 experiments, with varying number of flows:

5 to 60 in steps of 5.

First we investigate different objective functions, C, L and M , each minimizing

CPU load, traffic load on the links or both CPU and link load, respectively. They can

also minimize the maximum flow delay, after minimizing its main objective and this is

represented by a D suffix. To show that the optimization approach can support additional

flows as they arrive, we generated random flows in groups of five each. We then placed these

flows using the MILP with the different objective function. If the placement was feasible,

17

 0

 10

 20

 30

 40

 50

None Link Core Mix

M
a

x
.

N
u

m
b

e
r

o
f

S
u

p
p

o
rt

e
d

 F
lo

w
s

Optimization Function

Without Delay Optimization
With Delay Optimization

Figure 2.3: Maximum number of fitted flows for different objective functions

another group of five was added to the network. The results of this experiment is depicted

in Figure 2.3. Each objective function with and without maximum delay minimization are

shown as distinct bars. ’None’ represents a placement without any optimization, and ’Mix’

shows the results with the objective function M combining link and core utilization. The

significant improvement in capacity by minimizing delay in the ’None’ and ’Core’ cases shows

that minimizing the maximum delay can be useful. However, minimizing the maximum

link utilization is effective as seen with the M (Mix) objective function, which has a higher

capacity than both the ’Core’ cases. Enhancements by adding delay minimization to the

Mix case shows even better performance. Figures 2.4, 2.7 and Figure 2.8 show the maximum

utilization of the most highly utilized core, link and the link or core for the solution with

the 3 different objective functions C, L and M . When only one metric (core or link

18

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
o

re
 U

ti
liz

a
ti
o

n

Number of Flows

Optmial_L
Optmial_C
Optmial_M

Optmial_LD
Optmial_CD
Optmial_MD

Figure 2.4: Max. core utilization for problems with different objective functions

utilization) is minimized, the utilizations of the other resource grows quickly, resulting in

that resource also not being used by additional flows and reducing the flexibility for the

placement algorithm. The combined objective function (M) is able to compensate for the

shortage in one of the resources by increase in the usage of the other resource. The core

and link utilization thus increase together.

As shown in Figure 2.8, when delay minimization is also used, we observe higher

utilization compared to the case where there is no delay minimization (even though delay

minimization is a second level optimization). This is because we only achieve a suboptimal

MILP solution. In some cases, especially for large number of flows, the solver is not able to

reach to the optimal solution even after running the solver for a long time. In these cases, we

have reported the best achieved (suboptimal) solution for that problem. Figure 2.6 shows

19

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 0 10 20 30 40 50 60

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

Number of Flows

Optmial_L
Optmial_MD

Figure 2.5: Number of solver iterations for different objective functions

which problems produced solutions within a ”gap” percentage of the optimal solution. For

example if we reached to a solution with an objective function with 17% higher value than

the possible optimal answer, we mark it as ’solved’ if the gap is 25%. It is marked as

’unsolved’ for a gap of 0, 5, and 10 percent. The figure shows that the optimal solutions

are reachable for all the cases up to 10 flows. However, we are not able to find the optimal

solution even for 15 flows in some cases. This challenge is because of the exponential nature

of this problem. The number of iterations needed for getting the optimal solution is shown

in Figure 2.5. Optimal MD needs substantial computation time even for 15 flows. As a

result, we propose heuristics to overcome this scalability challenge. Figure 2.9 shows the

20

Figure 2.6: Status of found solution for each problem

21

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

L
in

k
 U

ti
liz

a
ti
o

n

Number of Flows

Optmial_L
Optmial_C
Optmial_M

Optmial_LD
Optmial_CD
Optmial_MD

Figure 2.7: Max. link utilization for problems with different objective functions

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 10 20 30 40 50 60

M
a

x
.

o
f

C
o

re
 a

n
d

 L
in

k
 U

ti
liz

a
ti
o

n

Number of Flows

Optmial_L
Optmial_C
Optmial_M

Optmial_LD
Optmial_CD
Optmial_MD

Figure 2.8: Max. core and link utilization for different objective functions

22

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

M
a

x
im

u
m

 D
e

la
y

Number of Flows

Opt_L
Opt_C
Opt_M

Opt_LD
Opt_CD
Opt_MD

ShortestPath

Figure 2.9: Maximum delay of flows for different objective functions

maximum delay of flows in the network, which is below 100 (the value set in the constraint

for the maximum delay tolerated). Using the delay in the objective function does help in

reducing the maximum delay of flows, and the maximum delay is less that three times the

maximum delay of the shortest path even in the worst case.

2.5.1 Evaluation of Heuristics

Our main goal is to support as large a number of flows as possible in a network.

The maximum number of supported flows by each method is illustrated in Figure 2.10. We

are able to solve the original optimization problem, which returns the optimal placement,

for up to 60 flows in this network. However, the time needed for computation of optimal

solution in this network with 22 switches and 60 flows, is more than a day even on a server.

23

 10

 20

 30

 40

 50

 60

A B B+ B+COR C Optimal-MD

M
a

x
.

N
u

m
b

e
r

o
f

S
u

p
p

o
rt

e
d

 F
lo

w
s

Algorithm

Figure 2.10: Maximum number of fitted flows for different algorithms

We therefore look at using the various heuristics described in the previous section.

The most scalable method, B + COR, can fit 55 flows in the network, while solving the

placement in a matter of seconds. Based on the bandwidth required for flow, the link

capacities in the network and the maximum number of flows supported on each switch, the

maximum number of flows that can be carried in this network is 60 flows, even with optimal

placement and steering,. With our heuristics, we could fit up to 55 flows (92% of optimal

solution). To show the scalability of our heuristic approach, we increased the capacity of

network by a factor of 10 and then 100, by changing the available bandwidth and the flow

capacity of each service. The resulting number of fitted flows in the network by heuristic

B+ is shown in Figure 2.11.

24

 10

 100

 1000

 10000

1X 10X 100X

M
a

x
.

N
u

m
b

e
r

o
f

S
u

p
p

o
rt

e
d

 F
lo

w
s

Available Resources

Figure 2.11: Maximum number of fitted flows for different network capacities

25

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70

M
a

x
im

u
m

 D
e

la
y

Number of Flows

A
B

B+
B+COR

C
Opt_MD

ShortestPath

Figure 2.12: Maximum flows’ delay for different algorithms

The comparison between maximum delay of algorithms and optimal solution is

in Figure 2.12 shows the delay of the proposed heuristics is comparable to delay value of

optimal solution (even lower in some cases). Since the optimizer first optimizes the core

and link utilization and delay only as a second step.

2.6 Related Work

A large body of work exists for object placement and traffic steering. In our

context, some recent approaches are:

26

CoMb[202]

CoMb is an architecture supporting consolidated middleboxes. Its optimization

problem places services along the pre-defined paths of flows, leveraging the common parts

of different services. One consequence is that it lacks the dynamic nature of placing NFVs

in the network and the corresponding routing.

Stratos [81]

Stratos is an orchestration layer for virtual middleboxes in clouds. It uses an ILP

formulation to decide how to steer flows through middleboxes, with a binary cost function

between switches. Decisions about placement are made by an online rack-aware heuristic.

SIMPLE [185]

They use both an online and offline formulation. The main focus of the offline

formulation is to keep limiting the size of forwarding rules due to the limits in the TCAM

memory of SDN switches. The online formulation is for online load balancing on the avail-

able switches. However, it does not address the possibility of dynamic instantiation of

services.

StEERING [243]

This work describes a system to dynamically instantiate a service at a desired

network node and route traffic through such a service. The placement of the service is

primarily through a heuristic.

27

T-Storm [232]

T-Storm is an online scheduler for Storm stream processing. There are some

similarities between this scheduler and the placement and steering needed in an SDN-

NFV network. For example, assigning executors to slots on workers resembles the service

assignment to switches. However the proposed algorithm in T-Storm does not satisfy our

needs as it primarily allocates executors based on the incoming traffic load and does not

consider the network topology for decision making.

2.7 Conclusions

NFVs supported by an SDN protocol suite, provide a great opportunity to have

higher level of flexibility and dynamicity in networks. However they introduce new chal-

lenges of joint service placement and traffic steering. In this paper, we provided a MILP

formulation for this problem, which not only determines the placement of services and rout-

ing of the flows, but also seeks to minimize network link and network node core utilizations.

We have devised heuristics to provide the opportunity to perform the placement incremen-

tally without imposing a significant penalty. Our ongoing work is to enhance the scalability

of our solution approach and to implement and demonstrate the use of the placement ap-

proach in practice.

28

Chapter 3

P4NFV: P4 Enabled NFV Systems

with SmartNICs

Software Defined Networking (SDN) and Network Function Virtualization (NFV)

are transforming Data Center (DC), Telecom, and enterprise networking. The programma-

bility offered by P4 enables SDN to be more protocol-independent and flexible. Data Cen-

ters are increasing adopting SmartNICs (sNICs) to accelerate packet processing that can

be leveraged to support packet processing pipelines and custom Network Functions (NFs).

However, there are several challenges in integrating and deploying P4 based SDN control

as well as host and sNIC-based programmable NFs. These include configuration and man-

agement of the data plane components (Host and sNIC P4 switches) for the SDN control

plane and effective utilization of data plane resources.

P4NFV addresses these concerns and provides a unified P4 switch abstraction

framework to simplify the SDN control plane, reducing management complexities and lever-

29

aging a host-local SDN Agent to improve the overall resource utilization. The SDN agent

considers the network-wide, host, and sNIC specific capabilities and constraints. Based on

workload and traffic characteristics, P4NFV determines the partitioning of the P4 tables

and optimal placement of NFs (P4 actions) to minimize the overall delay and maximize

resource utilization. P4NFV uses Mixed Integer Linear Programming (MILP) based opti-

mization formulation and achieves up to 2.5X increase in system capacity while minimizing

the delay experienced by flows. P4NFV considers the number of packet exchanges, flow

size and state dependency to minimize the delay imposed by data transmission over PCI

Express interface.

3.1 Introduction

To overcome OpenFlow’s limitations on being protocol specific and not being able

to match on arbitrary packet fields [119], programmability using P4 [31] has been introduced.

P4 enables simple networking devices to be programmed to support custom protocols and

functionality [95]. This programmability provides flexibility to implement a custom net-

working stack and to quickly adapt (upgrade) to new protocols in the field. In addition, P4

being protocol-independent allows the implementation of custom switching pipelines and

provides an API for the SDN controller to populate tables. Thus, P4 augments OpenFlow

and extends SDN’s capability to offer a new level of control and flexibility to dynamically

configure and adapt the network forwarding plane to perform custom match-action process-

ing.

30

To ease the burden on the computing resources (CPU processing, data move-

ment) as network link bandwidths increase (going from 10 to 100 Gbps), smart Network

Interface Cards (sNICs) are becoming increasingly common. Modern sNICs provide pro-

grammable multi-core processors that enable the host to offload custom-built packet pro-

cessing functions dynamically. These include OpenFlow and P4 match-action processing

capabilities. They also support custom NF processing that can be offloaded from the host

to the sNIC [131]. However, effectively leveraging the sNIC capabilities and integrating

the sNIC into the SDN control domain poses several challenges, namely i) Configurability:

The hypervisor or the host software switch needs to be aware of the sNIC capabilities and

provide the necessary flow routing configuration to ensure the traffic is routed appropriately

between the host and sNIC through specific virtual (SR-IOV) ports. ii) Manageability: An

SDN controller now has to control and program both the switch instances (in the host hy-

pervisor) and the attached sNICs to configure the data plane operations. This increases the

complexity of the SDN controllers. iii) Utilization: Since sNICs have limited computation

and memory capabilities, not all NFs and switching can be realized on sNICs. Complex

NFs, including stateful NFs, still need to be realized in the host. Further, chaining different

NFs across the host and sNIC may result in a packet making multiple traversals across

the host PCIe bus. This can result in high latency and excessive overhead [152]. To over-

come these challenges, we have designed and implemented P4NFV, which offers a unified

host and sNIC data plane environment to the SDN controller. Our framework takes into

account both host and sNIC capabilities (viz., compute and memory resources), commu-

nication considerations (sNIC to host virtual port mappings, PCIe bandwidth, and delay)

31

and SDN policies (service chain configuration, service level objectives) to provide a unified

view of a P4 capable NFV processing engine. The key contributions of P4NFV are:

• We create a DPDK [55] based P4 NFV framework to facilitate and configure SR-IOV

based virtual ports for accessing the sNIC [129].

• We present a unified SDN-agent for the host and sNIC P4 switch. The SDN controller

does not need to be aware of the differences between the host and the sNIC P4

capabilities.

• We provide an optimization framework for partitioning the P4 pipeline across the

host and sNIC, accounting for the sNIC compute and memory constraints and the

NF chain processing requirements.

3.2 Architecture

P4NFV is a framework that abstracts a server that benefits from a SmartNIC

as a single entity to the SDN controller. In this framework, different Network Functions

(NFs) that can be executed by the OpenNetVM NFV host [240] or the SmartNIC are sent

to the SDN controller as possible external P4 actions which enables the central controller

to shape the desired service chain within a P4 pipeline (hereon we use NFs and actions

interchangeably) . When SDN Agent of this framework receives the pipelines configurations

from the controller, it optimizes the placement of network functions and P4 tables between

the host and sNIC. The decision is made locally, thus avoiding the overheads and complexity

on the SDN controller. The design also minimizes communication between the host and

32

Thrift RPC P4 server

SDN Agent/P4 Runtime Server

NF Manager (DPDK)

O
penN

etVM

P4 rule Optimization Engine

SharedMemoryPoolONVM (Host) Match Action tables

PCI Express

Host Server

Network
Functions

ONVM Manager

Thrift P4
RPC Client

SDN Controller (ONOS)

Network
Functions

Network
Functions

Network
Functions

Network
Functions

SmartNIC

 OpenNetVM API/DPDK API

Match
Action
Tables

Match
Action
Tables

Match
Action
Tables

Match
Action
Tables

Match
Action
Tables

Match
Action
Tables

Figure 3.1: P4NFV Architecture

sNIC, thus judiciously managing PCIe bus overheads. The overall architecture is depicted

in Fig. 3.1.

3.2.1 OpenNetVM

We build P4NFV on top of OpenNetVM [240], which is a scalable and efficient

NFV framework that supports dynamic steering of packets through NF service chains.

Routing packets to appropriate NFs is performed by an NF Manager in OpenNetVM,

while packet data stays in shared memory. The NF Manager mediates packet access by

NFs through packet descriptors. First, we extend OpenNetVM to support sNICs that

33

require the host device to interface with Single Root-I/O Virtualization (SR-IOV) based

virtual ports (vport). OpenNetVM was initially designed with simpler DPDK-enabled

NICs (that support multiple, 64-128 queues per port), where it maintains a fixed mapping

between Ethernet port queues and the host Rx/Tx threads that poll one-or-more of the

port queues. However, this design cannot support SR-IOV based vports, especially the

Netronome sNIC [166] which limits to only queue per vport, entailing a strict restriction of

1 Tx and 1 Rx thread per vport. This greatly limits the throughput of the NF processing

pipeline. To overcome this limitation, we design a scalable Tx Gateway component (thread

with dedicated ring buffer) based on the Facade architectural pattern [78]. Tx Gateway

thread can serve packets from different NFs and forward to dedicated vport queues.

Second, we extend OpenNetVM to provide the P4 switch capabilities conforming

to the P416 switch specifications [33, 172], i.e., include the P4 based tables (match-action

processing pipeline) to process and route the packets. The p4 switch reads the input JSON

file and generates the respective pipeline and tables. The progress through the tables is

recorded by storing the pointer to the next table in the metadata of each packet. When

a packet needs to be processed by an NF, the packet is sent to that NF’s queue, receives

the service, and then is processed in the switch by using the next table pointer. Hence, the

p4 switch can keep processing other packets while a packet is processed in an NF. The p4

forwarding tables are stored in the shared memory and SDN agent can update the rules

directly to lower update delay in the tables.

34

OUT

SmartNIC

IN Flow
Cache

P4
Ingress
Parser

Match
Action
Tables

C
Sandbox

P4
Egress
Parser

Micro EnginesMicro EnginesMicro EnginesME Island (Flow Processing Cluster)

Cluster
Target

Memory

Micro
Engine

Micro
Engine

Cluster
Local

Storage

IMEM
4MB Internal
MEM

IMEM
4MB IMEM
4MB External
MEM

External DRAM

Micro
Engine

Micro
Engine

Figure 3.2: SmartNIC - Typical Blocks and Processing pipeline (based on Netronome NFP-

Agilio4000) design [166]

3.2.2 Overview of SmartNIC architecture and capabilities

sNICs accelerate network processing by offloading some or all of the network pro-

tocol processing functions usually performed by the server CPU. Beyond the on-chip net-

work acceleration capabilities of traditional NICs, for example, checksum, segmentation

and reassembly, sNICS provide several programmable processing cores that can be used to

implement complex network functions usually part of server processing.

We used the Netronome SmartNIC [166], as part of the P4NFV framework. The

sNIC comprises of 60 flow processing cores also known as Microengines, running at 633MHz

that is shared by eight threads running the same program. The sNIC also has a hierar-

chical memory subsystem, providing memory for a FlowCache, and custom user-defined

data structures, and match action tables through memory transactions. Different mem-

ory subsystem components in the sNIC vary in capacity and also result in different access

delays.

35

The sNIC Microengines can support MicroC programs that are written as actions

in the packet processing pipeline as well as separate functions that can be executed asyn-

chronously, invoked e.g., by timer expiration. Typically stateful actions are carried out in

MicroC. This allows the programmer to select the appropriate memory subsystem on the

sNIC for custom data structures. To fully utilize the sNIC, the host-resident SDN agent

must be aware of the capabilities of the attached sNIC, including partitioning tasks between

P4 packet pipeline vs. MicroC programs, and then place data structures on on-chip (of the

order of MBytes) memory vs. DRAM.

We focus on providing SDN support for sNICs, paying attention to the modifica-

tion of rules in the P4 match action table, and handling the effects of caching those rules

in a FlowCache. While the logical P4 pipeline is mapped to the sNIC and the table entries

drive the selected action set, a FlowCache, similar to the Unified Flow Table fast path [76]

and OVS megaflow [180], is employed to achieve high throughput. Since the sNIC supports

P4, it allows for programmable parsing, including the definition of new headers. The packet

processing cores conduct parsing (or header extraction) along with checksum verification.

Subsequent packet processing is load balanced across available flow processing cores (Mi-

croengines) for match action processing. Based on the actions selected, packets may be

DMA’d to the host using the PCIe DMA or sent to the egress packet processing cores that

deliver the packets to the MAC buffer.

Typical flow processing pipelines involve multiple table lookups (hash key and

index computation) for each packet at each stage of the table pipeline and executing the

specified actions. These activities are generally repeated for subsequent packets. To acceler-

36

ate the data-path processing, sNICs can also include a dedicated cache (called a FlowCache)

to store the flow lookup information. However, using such a FlowCache comes with its lim-

itations. The caching of packet processing actions is not suitable for the cases where the

action set for different packets of the same flow can differ (such as sampling, when a timer

or a metric of interest reaches a certain threshold) because only the first packet’s action-set

is applied to all the subsequent packets.

3.2.3 SDN Agent on the host

We construct an SDN agent in the host to communicate with the central SDN

controller, presenting a unified view of the host-based P4 switch and the P4 switch in the

sNIC. As shown in Fig 3.1, SDN agent is a module in the OpenNetVM P4 switch and

maintains the host P4 tables in shared memory which is accessible by P4NFV P4 switch.

Upon startup, the SDN Agent gathers information on the capabilities of the sNIC

and the software-based OpenNetVM P4 switch and provides it to the SDN controller. The

controller uses the P4 Runtime interface to sent the unified packet pipeline to the SDN

agent. The SDN Agent also receives the set of tables and actions proactively for expected

flows. When the SDN agent receives this information, it uses its optimization engine to

decide the placement of the NFs (P4 actions) and division of tables between the host and

sNIC. The optimization engine (see Section 3.3) seeks to minimize overall packet latency

by accounting for the data dependencies, whether the functions best execute at the sNIC

or the host and provides the SDN agent the information on the tables to populate on the

host and the sNIC (some tables of a pipeline may be on both the host P4 switch and the

sNIC). While the SDN controller views the host and sNIC as a unified packet processing

37

pipeline (and associated tables), the SDN agent will need to update the rules appropriately

on the host and the sNIC based on its initial partitioning. This may require inserting

or updating additional rules in the intermediate table entries, or tagging additional state

information through the chaining of multiple actions for same rules across the sNIC and

host P4 tables. E.g., suppose we have the rule in Table 3 (on both host and sNIC) to send

all the TCP packets with destination port 80 to a firewall (FW) NF (i.e., FW is run on

both sNIC and host). The optimization engine may have partitioned the FW functionality

so that those packets that need to undergo deep packet inspection (rule in Table 4 of host)

- a compute intensive function run only on the host, are sent to the host through an entry

in Table 2 of sNIC, while rest of the packets are processed within the sNIC. Thus, in this

case, the SDN agent will have to add new rules for sending the subset of the flows to the

host by adding an entry into Table 2, with a corresponding action to DMA the packets

to the host. However, these rules need some changes before being applied on the tables

of the OpenNetVM P4 switch or the tables on the SmartNIC because the rules are sent

based on the original pipeline and tables. The SDN Agent finds proper tables based on the

assignment it has done before and update the rules accordingly. The act of sending packets

to the other device can be done by using intermediate tables between original tables and

add an action to send to the other device or by defining a specific action in p4 architecture.

Also, when the SDN controller seeks statistics from different tables, the SDN

Agent does the aggregation of the results obtained from both devices (host and sNIC)

before sending to the controller. Note: it is possible to infer such required state dependency

based on the P4 code provided by the SDN controller. Overall, the SDN Agent ensures the

38

different switching components (host P4 switch and sNIC) are opaque to the SDN controller

and optimizes resource usage to reduce the packet latency by intelligent assignment of NFs

and tables to different P4 switches within the node.

3.2.4 Interfacing with SmartNIC

The SDN Agent administers rules for the sNIC’s P4 Match action tables via a

Thrift Remote Procedure Call (RPC) interface. As Apache Thrift [141] is a cross-language

code generation engine, we generate a Thrift client in C and integrate it with the Host’s SDN

Agent to add, delete, edit, and retrieve table entries. To add a table entry to the sNIC, the

Thrift client first creates an instance of a table entry object. The client then populates the

instance’s match attribute with a JSON string that indicates which packets should match

this rule and the action attribute with a JSON string that indicates the action to undertake

and the corresponding arguments to pass to the action subroutine. The client must also

specify whether this is default rule and the rule name. Once the object is constructed, the

runtime API is invoked with the table ID and entry instance as arguments. The API runs

over Thrift’s binary protocol with a blocking socket I/O protocol.

3.3 Optimization of task assignment between Host and Smart-

NIC

The optimization engine is a subcomponent of SDN Agent, responsible to efficiently

partition and assign packet processing tasks across the host and sNIC P4 switches. It

accounts for the forwarding latency, packet processing cost, PCIe bus bandwidth, and packet

39

data dependency constraints. We formulate a Mixed Integer Linear Programming Problem

(MILP) to guide the partitioning of the pipeline and functions between the host P4 switch

and the sNIC. Overall the optimizer has the following features:

• Considers the delay caused by the number of PCIe traversal

• Considers the update rate of the rules governing different flows (sNIC update rate is

limited)

• Considers the data dependency and delay caused by the amount of data exchanged

over PCIe.

• Satisfying the maximum tolerable delay of each flow and minimizes the overall delay

of the flows.

• Decides the place of different actions and path of the flows.

• If possible, runs NF clones on both (Host and sNIC) devices.

We assume N flows are being served. Our objective is to minimize the total delay observed

by all the flows:

Obj :

N∑
f=1

TotalDelayf =

N∑
f=1

(ProcessingDelayf+

PCIFixedDelayf + PCITransDelayf)

Each packet is being processed through a number of tables (t) of the pipeline, where L

denotes the length of the pipeline. CH
a & CS

a denote the time needed to perform action

(a) on the packet by the host and sNIC respectively. Note that the time for performing

40

different actions vary and the time for the same action when performed on host differs from

the time it takes to perform the same action on sNIC. E.g., large state manipulation is

faster on the host, while simpler actions like forward to next table are faster on sNIC. If

only primitive actions are being performed on the packet, then it is one of the special cases

of the actions which the delay is dominant by the forwarding delay on the tables for that

device. The delay for forwarding on each table is represented as TH and TS for the host

and sNIC respectively. If the device does not support a specific type of action, then the

delay for this action can be defined as infinity. Finally, Si, j, k shows the action k is applied

for flow i in table j and A shows the total number of actions. We define the Processing

delay as:

ProcessingDelayf =
L∑

t=1

A∑
a=1

Df,t ∗ Sf,t,a ∗ (CH
a + TH)+

(1−Df,t) ∗ Sf,t,a ∗ (CS
a + TS)

Df,t is a decision variable that determines that what device serves table t for flow f . If Df,t

is one, it is served by host, otherwise it is served by sNIC ((1−Df, t) = 1) .

Df,1 = Df,L = 0

41

Each traversal over the PCIe imposes additional delay on the packets. This delay is reflected

in PCIFixedDelayf .

∀f ∈ 1..N, ∀t ∈ 1..(L− 1) :

D′f,t = Df,t+1 −Df,t

D′′f,t ≥ D′f,t , D′′f,t ≥ −1 ∗D′f,t

Uf =
L−1∑
t=1

D′′f,t

PCIFixedDelayf = Uf ∗ E

To achieve the delay caused by PCIFixedDelayf , the number of PCIe traversal is needed.

As a first step, we define D′. This helping variable shows the changes in the serving

place of the flow, from sNIC to host (it will be equal to 1) and from host to sNIC (with

value −1) or showing no change with value 0. To count the number of traversals, we need

to the absolute value of this variable and a summation over the number of ones in this

variable. However, using absolute value function makes the problem nonlinear, which is not

desired. To avoid using absolute value function, we used D′′ binary variable. By having

the introduced constraints, whenever D′’s index is one or minus one, D′′ will be equal to

one for those elements. The only other problem is that other elements can be either zero

or one, so an over reporting on the number of PCIe traversal can be expected. However,

this miscalculation will not happen, as we are minimizing the overall delay and optimizer

will choose zero instead of one for non-constrained elements to keeps the number of PCIe

traversal minimum.

In addition, to the fixed delay for crossing the PCIe interface, we also add a term

42

for the delay caused by the transmission over this interface, which is dependant on the data

size.

PCITransDelayf =
L−1∑
t=1

(Pf +Mf,t) ∗D′′f,t ∗ ED

Mf,t shows the amount of state needed in table t + 1 for the flow f from previous steps.

For example, forwarding data in this step may be depending on the metadata stored in the

previous table. Pf is the average packet size for this flow and ED is the delay in microsecond

per byte for the data transfer over PCIe.

So far, we introduced constraints which are related to the objective directly.

Hereon, we cover the constraints used to provide the correctness of the solution. The

first constraint in this group is to assure the PCIe bandwidth is not violated.

BE ≥
N∑

f=1

L−1∑
t=1

((Pf +Mf,t) ∗D′′f,t) ∗Bf/Pf

In this constraint, we adjust the bit rate of the flow (Bi), base on the overhead of necessary

state (M) and calculate the overall bandwidth usage of the traversal between sNIC and

the host. The summation over all the bandwidths of the flows, should be less than the

bandwidth of the PCIe (BE).

In addition to the bandwidth limit of PCIe, each flow is required to meet its

maximum delay requirement, which is received as input:

TotalDelayf ≤ DelayRequirementf

43

Each action instance can serve a limited number of flows:

ActHCapacitya ≥ NumActHa =
N∑

f=1

L∑
t=1

Df,t ∗ Sf,t,a

ActSCapacitya ≥ NumActSa =
N∑

f=1

L∑
t=1

(1−Df,t) ∗ Sf,t,a

Each device can accommodate several actions at the same time. For example, in Open-

NetVM, it is suggested to dedicate a CPU core to each NF. Hence, the number of actions

can be limited to the number of available cores. To count the number of actions run-

ning on each device, we need a binary representation of the above variable to be able to

run summation over them. To convert these variables (NumActH&S) to binary variables

(IsActH&S), we define the first four of the following constraints. The next two constraints

are for applying the maximum number of actions that can be running on the host (RH)

and the SmartNIC (RS). Finally, the last one does not allow to have multiple instances of

the action on two devices if that action is not cloneable. The values for NotCloneablea, a

binary vector, is provided by the system admin. If shared state between different flows is

used in an action, we cannot have multiple instances of that action. If an action is stateless

44

or its state is only related to the flows currently using the action, it is cloneable.

NumActHa ≥ IsActHa

NumActSa ≥ IsActSa

NumActHa ≤ IsActHa ∗N

NumActSa ≤ IsActSa ∗N

RH ≥
A∑

a=1

IsActHa

RS ≥
A∑

a=1

IsActSa

1 ≤ (IsActHa + IsActSa)NotClonablea

Another consideration for deployment of p4 tables on the host and sNIC is maximum rate of

the updates that can be handled by each device. Especially in our experiment the maximum

rate for the rule update on sNIC was limited. To ensure that device will not be overwhelmed

by the amount of rule updates, following constraints need to be considered:

MaxHostUpdates ≤
N∑

f=1

L∑
t=1

ExpUpdatesf,t ∗Df,t

MaxSnicUpdates ≤
N∑

f=1

L∑
t=1

ExpUpdatesf,t ∗ (1−Df,t)

MaxHostUpdates and MaxSnicUpdates show the capacity of the devices in rules updates.

ExpUpdatesf,t shows how many updates we expect for flow f on table t, and as we explained

earlier, decision variable D shows if host or sNIC is selected for serving flow f on table t.

45

3.4 Evaluation

We evaluate the P4NFV framework on a server with 40 Intel Xeon 2.20GHz CPU

cores and 256GB memory and Netronome Agilio4000 CX Dual-Port 10 Gigabit sNIC.

3.4.1 sNIC and Software P4 Switch Performance

In the first experiment, we evaluate the elapsed time between the table entry

modification request and when it took effect. The delay incurred before observing the

impact of the new rule on the traffic can be found in Table 3.1. The updates are drastically

slower on the sNIC, which limits the sNIC’s ability to host flows with a higher rate of rule

updates. In the next set of experiments, we demonstrate the processing delay for various

NFs resident on the sNIC and host.

In Figure 3.4, we show that the processing delay experienced by packets in the

host NFs are lower compared to that of the sNIC NFs. This can be attributed to the higher

frequency of the CPU core that is 2.2 GHz vs. 633 MHz attained from sNIC flow processing

cores. However, we observe the latency overhead of one round-trip over PCIe incurs approx.

15µs. Furthermore, the sNIC exploits parallelism by load balancing packets, for processing,

on all of its 60 Microengines.

In Figure 3.3 we compare the total round trip time over the PCIe, observed from

the sNIC, for varying burst sizes of 1500-byte packets. sNIC sends these batches of the

packets and host returns the packets to the sNIC. We observe a linear relationship between

the amount of sent data and the total round trip time. By assuming a linear trend equation

46

Operation sNIC (µs) Host (µs)

Insert 221± 11 0.42± 0.69
Edit 220± 18 0.31± 0.61

Delete 169± 20 0.31± 0.61

Table 3.1: Table entry modification response time on sNIC and P4 OpenNetVM switch

and using the least square method, the slope of 1.66 and intercept of -4.27 is obtained. These

values are used to minimize the overhead of PCIe traversal in the optimization engine.

3.4.2 Optimization Engine

We used the Gurobi MILP solver to implement and solve the optimization formu-

lation. In the first experiment, two of the actions have a limit on the maximum number of

flows that they can support on the sNIC. The limit for the first action is 100 flows (state-

less) and 300 flows for the second (stateful). The first, stateless, action can be scaled out as

needed by having instances on the host as well as the sNIC. Increasing the number of flows

from 50 to 400, we see that the delay for all the flows goes up, as seen in Fig. 3.5. With

50 to 100 flows, all flows are served by the sNIC. Above 100 flows, the instance for the first

action reaches the sNIC limit. The overflow of flows is sent to the host. Thus, the delay

increases more rapidly. Once we reach 300 flows, the limit for the second action on the sNIC

is reached. Since this action cannot be split across the host and sNIC, we observe a sharp

increase in the total delay. Beyond this, the delay increases depending on the service time

for both actions to be executed on the host. Thus, the optimizer decides to forward packets

between the sNIC and host intelligently as needed, leveraging on the ability to instantiate

47

20 40 60 80 100
Number of packets

0

50

100

150

D
el

ay
 (

s)

Figure 3.3: PCIe RTT measured from sNIC (varying burst size)

48

Forwarding
AddHeader

LoadBalancer
LinearProbing

Network Function

0.0

0.5

1.0

1.5

2.0

2.5

Pr
oc

es
si

ng
 D

el
ay

 (
s)

Target
sNIC (633 MHz)
Host (2.2 GHz)

Figure 3.4: NF Processing delay

49

0

200

400

600

800

1000

0 100 200 300 400

To
ta

l d
el

ay
 (

m
s)

Number of flows

Figure 3.5: Total delay based on the number of flows

multiple instances of stateless NFs. It initially chooses to instantiate an NF on faster sNIC,

but will switch to the host because of its higher capacity, while sharing the execution of

actions across both when possible.

Since the rule update rate is lower on the sNIC compared to the host, we then

measured the maximum number of flows that can be served in the network. For the update

workload, we vary the number of updates for each flow using a uniform distribution varying

from 1 to 10 updates per second for each table. Based on our measurement, the maximum

update rate of the sNIC is set to 10000 updates per second based on the order of 100 micro

seconds to update the rules in tables of sNIC (Table 3.1). The result for this experiment

is illustrated in Fig. 3.6. It is possible to serve up to 2.5 times more flows if update rate is

one of the considerations for the placement of the NFs and routing of the flows.

50

0

500

1000

1500

2000

2500

0 2 4 6 8 10

M
ax

. n
u

m
b

er
 o

f
fl

o
w

s

Updates per second

Non-optimized

Optimizer engine

Figure 3.6: Maximum supported flows based on the update rate

51

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

0

200

400

600

0% 25% 50% 75% 100%

P
C

Ie
 t

ra
n

sf
er

 d
el

ay
 (

µ
s)

Percentage of large packets with state

No data transfer optimization

Complete optimization engine

Figure 3.7: PCI Express transfer delay based on packet composition

As we observed in Fig. 3.1, the delay over PCIe is depending on the amount of

data transmission. Fig. 3.7 shows if a number of the flows with different average packet

sizes and data dependency need to be exchanged between the host and sNIC, the optimizer

will select flows with smaller packet size and state dependency to traverse the PCIe. In this

experiment, some of the NFs in the sNIC can handle half of the flows and packets of the

rest of flows are sent to the host. In addition, packets are separated into two groups. In

one group, packets are larger (1500 bytes) and they need 1kB of state from the previous

tables. In the other group, packets are smaller (64 bytes) and they do not need any state

from previous tables. By selecting the smaller packets with smaller data dependency, the

optimizer reduces the delay imposed by PCIe transmission.

Finally, we compared the performance of the proposed optimization engine with

one of the related work, UNO [131]. We implemented UNO’s optimization formulation for

52

80

130

180

230

280

330

0 5 10 15 20

To
ta

l d
el

ay
 (

M
ic

ro
 s

ec
o

n
d

s)

Amount of resources on sNIC

UNO-More resource

UNO-Same resource

P4NFV

Figure 3.8: Comparison of observed delay of P4NFV Vs. UNO [131]

the same solver that we used to solve our problem. We considered a scenario that 20 NFs

serve a single flow (UNO does not support multiple flows in its formulation). Six of these

NFs are complex NFs which are faster on the host (10µs processing delay on the host and

40 µs on the sNIC, 4x difference is based on our observation in Fig. 3.4). Other actions

are faster on sNIC (1µs on the sNIC and 2µs on the host). The result of this comparison

is depicted in Fig. 3.8. We have considered two different scenarios for UNO. In UNO-

More resources, complex actions need more resources in comparison to other actions and in

UNO-Same resources, they use a similar amount of resources. UNO focuses on minimizing

resource usage on the host, while our engine considers all the available resources on both

host and sNIC, and uses resources on the host if they are available for different NFs. This

difference allows P4NFV engine to minimize the delay caused by the processing of the

packets and PCIe traversal.

53

3.5 Related work

sNIC as VNF accelerators and Optimization frameworks for offloading: Several

works [131, 152, 162, 62] address NF acceleration by offloading NFs from the CPU to sNIC.

Uno [131] presents an ILP based NF placement algorithm. They proposed an intuitive NF

migration solution to alleviate overloads by identifying the bottleneck NF with maximum

processing capacity and migrating it to CPU. However, this approach may adversely im-

pact the latency of the service chain due to increased cross PCIe bus data transfers and not

considering the differences in processing delays. In [152], authors propose the NF selection

scheme, PAM, that tries to reduce the service chain latency by alleviating the hot spots on

the SmartNIC by pushing only the border NFs (i.e., either the start or end of chain NFs on

sNIC) or their immediate neighbor NFs. They again seek to minimize the cross-PCIe trans-

fers, but do not account for the difference in the processing delay of NFs, data dependency,

or delay constraints of individual flows that we account for in our work. Also, the details on

supporting the SDN controller to set up rules on sNIC and host are not considered. Unlike

offloading an entire NF, authors of [162] identify a set of candidate operations e.g., TCP

connection setup and teardown, connection splicing and packet filtering and coalescing op-

erations for stateful middleboxes that can be dynamically offloaded to programmable NICs,

and gauge the expected benefits in terms of CPU load reduction, throughput, and latency

improvements.

Virtualization on P4 platforms: The focus of another body of the work, such as [96],

[95], [236] , and [237] is on providing the virtualization on P4 platforms. They facilitate

serving multiple pipelines on a single P4 switch. While because of the virtualization, they

54

are close to the area of this paper and our framework can benefit from these approaches to

support multiple pipelines in parallel, the focus of this paper is on designing an efficient sNIC

enabled P4 switch which differentiates the focus point of this paper. Another contribution

of the studies, such as [236] and [237], is providing uninterrupted reconfigurability of data

plane in P4 switches. Similar techniques are applicable on P4NFV as well.

3.6 Conclusion

We identified key challenges (configuration, management, and utilization), in in-

corporating P4 capability into NFV platforms, including both the host and sNICs. We

propose P4NFV as a framework to provide a unified P4 data plane component, including

both the host and sNIC P4 switches that can be managed by an SDN controller. P4NFV

incorporates local intelligence to efficiently partition the packet processing tables and NF

functionality on both the host and sNIC. P4NFV accounts for both networking i.e., band-

width, workload and packet forwarding latency of the unified host device (sNIC and the

host P4 switches) specific constraints in a MILP formulation. We consider the packet pro-

cessing cost, PCIe bus bandwidth, and latency for crossing the PCIe boundary as well as

packet data dependencies. We demonstrate that P4NFV can achieve 2.5x improvement in

system utilization and throughput, and minimize overall latency by up to 4x compared to

the placement engine of [131].

55

Chapter 4

Protocols to support autonomy

and control for NFV in software

defined networks

The use of Network Function Virtualization to run network services in software

enables Software Defined Networks to create a largely software-based network. We envision

a dynamic and flexible network that can support a smarter data plane than just simple

switches that forward packets. This network architecture needs to support complex stateful

routing of flows where processing by network functions (NFs) can dynamically modify the

path taken by flows, without unduly burdening or depending on the centralized SDN con-

troller. To this end, we specify a protocol across the different components of an SDN-NFV

environment to support the creation of NFs required by a service graph specification, using

an orchestrator speaking to an NF Manager running on each host. We take advantage of,

56

and extend, the concept of the SDN controller-to-node protocol (OpenFlow being the most

popular) and tagging flows to support complex stateful routing. Output generated by NFs

processing packets may be returned to the NF Manager to influence dynamic route changes

based on a priori rules defined through a service graph specification provided by network

administrators. We envisage the SDN controller setting up these rules based on the output

from NFs, the flow specification as well as global tags. By not treating tags as an indepen-

dent component for routing, we show that we can dramatically reduce the number of tags

required across the entire network. Further, by providing the right autonomy in decision

making at the NF Manager and the individual NFs in our hierarchical control framework,

we significantly reduce the load on the SDN controller.

4.1 Introduction

In our SDNFV architecture [71], we use the SDN controller and the NF orchestra-

tor, coordinated by an SDNFV Application to create a more flexible and dynamic network:

the SDN controller manages the network control plane [74] and the NF Orchestrator man-

ages NFV instances and their flow state [82]. The SDNFV architecture is consistent with

ETSI NFV architecture [108], with some differences, as we extend the ETSI model’s adher-

ence to the stricter control plane - data plane separation espoused by the SDN architecture.

For example orchestration roles of NFV Management and Orchestration unit is assigned

to the NF Orchestrator and management duties are assigned to SDN controller. A place-

ment engine decides how functions are instantiated across the network, and the NF VMs

on each host are controlled by an NF Manager. This paper focuses on the protocols that

57

split control across this hierarchy—exploiting the application-awareness of individual NFs,

the host-level resource management capabilities of the NF Manager, and the global view

provided by the SDN Controller and the SDNFV Application.

One of the approaches for managing complex middlebox deployments considered

in the previous work [185, 72] is to introduce additional information in the form of tags

to mark packets processed by a middlebox, and use the tag to indicate the result of the

processing to the SDN controller. The SDN controller may then use this information to

re-route the flow, potentially on a path that might appear to have loops when viewed at the

network layer, but is required to route the flow through different middleboxes connected to

the same switch [185]. In the FlowTags approach [72], an NF first receiving a tagged flow

will ‘consume’ the tag after contacting the controller to elicit its meaning. However, existing

approaches result in significant overhead due to the need for frequent communication with

the SDN controller to generate and interpret tags. Further, the amount of packet header

space dedicated to tags may become unreasonable since a large number of unique tags are

needed to differentiate each hop in the path, for all the flows in the network.

To achieve our goal of having hierarchical control where both a smarter data plane

and a logically centralized SDN controller have the capability to route flows appropriately

as well as dynamically instantiate functions in the network, we also leverage the idea of

using tags as in FlowTags [72], but suitably enhanced. We use the tags only when their

existence is crucial and a forwarding decision would be ambiguous without using the tags.

We have designed a set of protocols so that NFs can impact the route for a flow (or a class

of flows), as well as communicate information such as the flow’s state to the higher levels

58

in the control hierarchy (the NF Manager and the SDN Controller). Our work makes the

following contributions:

• A hierarchical architecture to efficiently and flexibly combine SDN and NFV.

• An approach for supporting diverse NF service chains that support dynamic routing

of flows based on the output of the NFs, even for NFs changing headers such as a

NAT or for NFs affecting upstream NFs in the chain.

• Leveraging an SDN controller’s knowledge about network topology and NF placement

to limit the use of tags only to essential cases, where routing is ambiguous without

their existence.

• Protocols across the SDN/NFV hierarchy that minimize the amount of communication

with the SDN controller by exploiting the intelligence in the software-based data plane.

We evaluate the benefits provided by our architecture in terms of reducing SDN control

message overhead and the number of distinct tags (and thus the additional header space)

required network-wide.

4.2 System Components

Our SDNFV architecture provides a hierarchy of control with NFs at the bottom

and the SDNFV Application at the top, as illustrated in Figure 4.1. In this section, we

explain the role of the components in the architecture.

SDNFV Switches: The commodity servers running NFs in our platform are called SD-

NFV Switches, since we view them as “smart switches” that can be deployed in the net-

59

SDNFV Application

Entrance SDNFV Switch

SDN
Controller

Placement
Engine

NF
Orchestrator

Flow
Mapper

NF Manager

Service Chain
Manager

NF 0

NF 1

OpenFlow
Switching
and table

Flow Mapper

Figure 4.1: System components and their interactions (All the other switches are similar to

the entrance switch but they do not have the Flow Mapper in them.)

60

work to not only forward packets, but also apply complex functionality to packet flows.

As software based switching achieves near-wire-rate performance [193, 54]—even in virtual

environments [98, 194]—the distinction of having NFs in COTS servers versus specialized

switching hardware is likely to blur, and our SDNFV architecture recognizes this evolution.

SDNFV switches interact with both the SDN controller and the NF orchestrator.

Network Functions (NFs)

Today’s networks comprise many different functions beyond simple forwarding.

These include middleboxes such as firewalls, proxies, network address translators (NAT),

etc. In our architecture, NFs are able to generate an output when they process a packet.

This output is send to NF Manager by using the shared memory between the NFs and the

NF Manager.

NF Manager

Each SDNFV Switch may run multiple NFs coordinated by a single NF Manager

on that host. The NF Manager is a software layer between the NFs and the operating

system of the SDNFV switch. The NF Manager is responsible for managing NFs residing

on the host (creating instances, forwarding packets to and between NFs), and controls

the OpenFlow-like forwarding table. All the interaction to external network components

(such as the SDN Controller, the NF Orchestrator) with NFs is mediated through the NF

Manager.

SDNFV Application: At the top of the hierarchy is the SDNFV Application. This

is where the network administrator specifies the overall application logic that will control

61

where NFs are instantiated and how packet flows will be routed through them. The SDNFV

Application has four main components:

Service Chain Manager

This provides an interface to define sequences of NFs (e.g., middlebox functions)

traversed in a specified order. These service chains can be dynamic, in that the output of an

NF can result in forwarding the packet (or subsequent packets of the flow) to one of several

different NFs. Thus, the chain is actually a graph with branches based on NFs outputs,

rather than a linear sequence. Several example service chains are shown in Figure 4.2. Each

service chain is given a Chain ID and a priority. When a packet flow matches the criteria

for multiple service chains, the service chains are applied in priority order.

Flow Mapper

After defining a service chain, we need to assign it to the appropriate packet flows.

In its simple form, the mapping may be predetermined by a network administrator based

on the IP 5-tuple, including the wild-carding of some fields. For more complex situations,

where the decision has to be based on the state of the flow (or related to multiple flows),

the flow mapping may be done dynamically as packets arrive. This task is carried out by

a flow-to-service chain mapping engine implemented as a part of the SDNFV Application

or as one of the NFs in the entry switches. In the former case, new flows are sent to SDN

controller and in the latter, the result of flow mapper NF is sent to SDN controller. Using

62

Firewall

IDS

Deep
Packet

Inspection

Video
Detector

Policy
Engine

cache

Transcoder Shaper

Suspicious

Clean

Restricted

Normal

Miss

Hit

ChainID = 10, Priority = 1 ChainID = 11, Priority = 2

Clear
-IDS:Suspicious

Remove Policy

Firewall(Remove Policy)

NAT

Figure 4.2: A sample cluster of service chains

63

NFs to perform flow classification, as shown in Figure 4.1, may be preferable if detecting

the flow type is computationally intensive.

Placement and Routing Engine

The Placement Engine receives information about the flows, the service graph

for those flows and the current network conditions (e.g., available capacity, topology) to

decide where to instantiate NFs. We have proposed a mixed integer linear programming

(MILP) solution for this complex problem, as well as heuristics to obtain results close to the

optimal solution, in reasonable time [156]. The heuristics also enable us to solve the problem

incrementally so that assignment of NFs to already established flows are not impacted by

new incoming flows.

NF Orchestrator

The NF Orchestrator receives instantiation or migration requests from the Place-

ment Engine (e.g., when a new service chain is deployed) and from NF Managers (e.g.,

when a server is becoming overloaded and a new replica NF is needed). It then deploys

new VMs to run the appropriate functionality. It also handles the movement of state and

syncing of the state between different replicas of an NF in conjunction with the respective

NF Managers [82].

SDN Controller: The SDN Controller learns of the overall network goals from the SDNFV

Application via its northbound interface, and communicates with NF Managers via its

southbound interface. The protocol between the controller and the SDNFV switch needs

to be enhanced, so that stateful control can be exercised by the NF Manager.

64

As is becoming the common practice, we favor a proactive setting up of the default

forwarding (’match-action’) rules by the SDN controller rather than reacting to the first

packet of newly recognized flows. We also proactively set up the different alternate paths

defined by the service chain for a flow that would be chosen dynamically as a result of the

processing at an NF.

4.3 Handling service chaining

In this section we focus on the characteristics and special requirements of different

service chains. As mentioned earlier, a service chain is a sequence of services that a flow

needs to pass before leaving the network. We discuss the details of our protocol messages

in Section 4.4.

4.3.1 Static Chains

A service chain is static when the sequence of NFs in the service chain is defined

in advance, and it is not dependent on the output of NFs. Otherwise, a service chain is

dynamic. F1 and F2 in Figure 4.3 are examples of static service chain and F3 is an example

of dynamic service chain. While static chains may at first seem trivial to handle, in fact

they may still require flow tags to properly route flows if the implementation of the service

chain includes a cycle, causing a switch to be visited more than once.

Unambiguous static flows

We first address the simplest case where the static flow is recognized unambigu-

ously at an SDNFV switch. This occurs when the flow just traverses this switch once, or

65

NF1 NF2 NF3

NF7 NF8 NF9 NF10 NF11 NF12

NF4 NF5 NF6

F1

F2

F3

SDNFV Switch 1 SDNFV Switch 2

SDNFV Switch 4SDNFV Switch 3

Figure 4.3: A set of three service chains traversing NFs at four SDNFV Switches.

if it is traversed multiple times, each visit is distinguishable from other visits. For example

the input interface may be different between different visits. In this case, the forwarding

decision can be made using available information and without any need for additional tags.

Note that this applies even if a flow has to be processed consecutively at multiple NFs

that reside on the same SDNFV Switch as a virtual port can be leveraged to recognize the

flow’s state. This is shown in Figure 4.3 where flow F1 traverses three different NFs on

two different SDNFV Switch hosts; on each host the NF Manager enforces the correct NF

processing order.

Ambiguous static flows

When a flow has to visit the same SDNFV switch more than once and the input

port is the same, there is a need to differentiate the arrivals so as to forward the packet to

the NFs correctly. For example, if Flow F2 in Figure 4.3 does not have a tag (or some kind

66

of persistent state in the NF, which we avoid) there is no way to determine which NF is

supposed to examine the packet next since its n-tuple will be identical both times it arrives

at the host.

To solve this problem we use a flow tag carried in the packet to indicate the stage

of processing. Rather than use a unique tag for each stage (as has been done in previous

work [72]), we only generate a tag for the ambiguous hops in a path where they are needed,

and we interpret the tags in conjunction with the flow identified by the n-tuple in the packet

header and the switch input port. This reduces the number of tags required across all the

flows in the network.

Tags that assist with routing across SDNFV Switches are added to packets by

the NF Manager. When the SDN Controller configures the flow table rules in the SDNFV

Switch, for example to make Flow F2 send packets from NF8 to NF2, it will include

a tagging action as part of the flow table entry. Likewise, the flow rules on the switch

receiving the packet will be configured to include the tag as part of the match criteria to

determine processing. We call this tag a global tag or GTag since it is not local to a single

host, but transmitted as part of the packet.

4.3.2 Dynamic Chains

Active NFs can produce different outputs for different packets. For example, a

cache may produce a Hit or a Miss as outputs. Flows may need to go to different NFs

based on a Hit or Miss. The chain containing these active NFs is called a dynamic chain.

In this paper, the outputs of active NFs are called NFOutputs. The NFOutput

is written to the packet descriptor, a software data structure in the NFV platform, not

67

in the packet itself, since it is only used locally at that host. (An approach similar to E2

[70] can be used.) The NF Manager, using rules defined in the SDNFV Application and

installed by the SDN Controller, knows how to interpret this output to select one of the

possible next hops. This allows NFs to provide input on how packets should be routed, but

leaves the SDNFV Application in charge of determining how those outputs are interpreted.

It also reduces communication overheads by eliminating excessive and unnecessary calls to

the SDN Controller.

Ambiguity in routing can arise, in a manner similar to static chains. We use the

following solution. The SDN Controller is aware of all the possible paths of a flow. It

creates a union of all the paths of this flow, and executes an algorithm similar to what was

used for a static chain, on the resulting set. Thus, we can recognize the points where there

is ambiguity for a flow for which a global tag is needed. For example, in a static chain, if a

flow were going from Switch 1 to Switch 3 twice, we would consider it an ambiguity, needing

a tag to resolve the ambiguity. With dynamic chains, even if some packets of a flow first go

from Switch 1 to Switch 3 in Path 1, while other packets of that same flow go from Switch

1 to Switch 3 in Path 2, there is still a point of ambiguity needing global tags to resolve it.

NFs may affect the routing of flows in different ways. For example, they can

affect the routing at an upstream or downstream node. Also they can affect the routing

temporarily or permanently. The temporary impact on routing by the output of an NF

is only on the current packet. Whilst an NF’s output may affect the routing of a flow

permanently such that all the packets of the flow follow a different route until another

output from an NF is observed. Underlined edges in Figure 4.2 show the permanent edges

68

in those chains. Affecting the downstream means the route to subsequent NFs for the flow

is altered. Upstream implies the routing to NFs upstream of the NF that produces the

output is altered, for future packets of this flow. Dashed lines in Figure 4.2 indicates the

upstream edges, while the other edges are downstream edges. Handling downstream and

temporary actions is done in a manner similar to static chains. Here, we only focus on

persistent and upstream actions.

Persistent Actions

In some cases, it is desirable for an NF to make a decision not only on a single

packet, but on all the remaining packets in the flow. For example, an IDS NF may mark

individual packets as being ’clean’ using temporary actions, but when it detects something

’suspicious’, it may wish to send all remaining traffic to a Deep Packet Inspection engine

for further analysis. Our platform supports this through persistent actions, which allow an

NF to produce an NFOutput that will be used by the NF Manager to adjust the flow table

entry, causing all subsequent packets to bypass the NF which produced the tag and proceed

directly to the next NF.

Upstream Actions

Sometimes it is necessary to change the routing upstream based on the output

of an NF downstream. In this case, the NF Manager may have rules set by the SDN

controller to forward information back to the SDN controller. The SDN controller uses this

information to indicate that a prior NF in the chain should cancel its persistent action, or

cause a new action to take place. For this, we extend the OpenFlow messaging framework

69

to enable the SDN controller to send the name of the NF to the upstream NF Manager,

and include in it the identity of the flow (IP n-tuple) and the specification of the new action

(which we describe in the next section). Upstream actions can work in two ways. First

they can reverse the effect of persistent output like the ”Clear” edge in Figure 4.2). They

can also simply change the path from an upstream switch (e.g., ”remove policy” edge in

Figure 4.2).

Handling header changing NFs

There are circumstances where an NF may change the packet header (e.g., network

address translation (NAT)), thus requiring additional information to ensure the flow is

handled appropriately. However, unlike [72], we divide the service chain into multiple

segments—the first is from the entry switch to the first NF that changes the header. The

flow is routed through SDNFV switches normally using the n-tuple of the packet. For the

segment of the service chain after the ’header changing NF’, tags are added to the packet

as necessary. Note that not all of the fields of a header might be changed by the NF.

For example, a NAT does not change the destination IP address and port number for an

outgoing packet (towards the public Internet). Thus, given that the tag can be associated

with specific fields of a packet, we associate it with the destination IP and port. Thus,

the same tag value can be re-used for different destination IP and port pairs, thus again

resulting in a significant reduction in the number of tags required (especially as there is

likely to be diversity in the destinations of the flows traversing the NAT). Our solution can

support multiple service chain segments if needed, although we expect this to be a rare

situation.

70

4.4 Protocol and interfaces

We now describe the interfaces and protocol primitives for information exchange

among SDNFV’s system components. We note that instead of making changes and adding

new fields and matching rules to OpenFlow to support concepts such as GTag and NFOut-

put, it is possible to reuse unused fields in the OpenFlow protocol. This is possible because

the number of unique GTags and the number of bits necessary for communicating the

NFOutput needed in our proposed method is small compared to existing approaches.

4.4.1 Protocol between NF Manager and SDN controller

The OpenFlow protocol addresses a number of interactions between an SDN Con-

troller and a network switch. These are also used in SDNFV switches for setting up flow

tables. We now look at the functionality needed in the context of the SDNFV switch host-

ing NFs. The administrator, and thus the SDNFV Application, SDN Controller and NF

Orchestrator know a priori the capabilities of the network nodes and links. We anticipate

that most of the Flowtable rules would be set proactively and the necessary NFs for flows

based on defined service chains have been instantiated by the orchestrator in coordination

with the SDNFV application.

Unambigious static flow routing

When routing flows from a passive NF that is part of a static service chain, the

SDNFV switches use the OpenFlow tables set up by the SDN controller with the existing

OpenFlow protocol primitives (e.g., based on a match-action rule using the IP 5-tuple)

71

through SDNFV switches as in a typical switch. This would be the case also when the flow

is routed through a static path on the SDNFV switch, since the flow’s route is unchanged.

Note, we use a different logical port at the SDNFV switch to enable forwarding to the

different local NFs.

Unambigious dynamic flow routing

With active NFs, we use NFOutputs to modify the route out of an SDNFV switch.

The match-action rule would be enhanced by the SDN controller as:

{5-tuple, NFOutput, In port} → outPort

Thus, the NF Manager includes the NFOutput produced by the NF and uses this to assist

in selecting the next stage in the service chain.

Routing ambiguous flows

Global tags or GTags are used to enable NFs to influence the path of dynamic

flows and to handle a flow arriving at the same SDNFV switch multiple times. In the latter

case, when an SDNFV switch is shared among the different paths of a flow, a global tag

is used to carry the current ’state’ (visit) of the flow to enable the switch to forward the

packet to the proper next hop. Rather than having a packet with a tag be forwarded to the

controller as in [72], we depend on the SDNFV switch to make the routing decision using

the tag. The forwarding table rule from the SDN controller to the NF Manager is enhanced

as:

{5-tuple, NFOutput, GTag, In port, Push, Pop} → outPort

72

GTag is the global tag. When an SDNFV switch has to insert a tag header as the packet

leaves the switch, the Push flag is set in the flow table. When Push is 0, an SDNFV switch

simply forwards based on the tag header. The tag header is removed by the NF Manager

at a switch where the flow table entry has the Pop flag set to 1, possibly based on the GTag

value. GTag is added to the packet before the switch where the ambiguous visits of the

packets occur. For example if the packets of a flow go from Switch 1 to Switch 5 two times

in different parts of their path, routing in switch 5 is ambiguous and GTag is added to the

packet on Switch 1 and it is used at Switch 5 for routing the packet to next steps. GTag

may be changed to another GTag later, based on need, to address further ambiguities. The

GTag is removed by the last switch in the path.

Request for a change upstream

The output of an NF that changes routing upstream or decisions of upstream NFs

has to be mediated by the SDN controller. The reversal of a decision at an upstream NF is

communicated by the downstream NF (through its NF Manager) to the controller, to then

be used to set the flow table entry at the upstream SDNFV switch as:

{5-tuple, NFOutput, GTag, In port, persistent} → outPort

The flow is identified by the 5-tuple, potentially along with GTag. The NFOutput is used to

communicate information to the local (downstream node’s) NF Manager. The ’persistent’

flag when set to 1 is used to indicate that the persistent decision at the upstream NF (as

defined by the service chain) must be changed. Otherwise, it is a request for a normal

change (without the tag) at the upstream NF.

73

Information for header-changing NFs

When an NF changes the header of the packet (e.g., by a NAT) and routing

decisions at subsequent SDNFV switches have to be set by the controller, a global tag has

to be added by the NF Manager at that switch. As discussed before, the global tag (GTag)

is interpreted along with the unchanged parts of the packet header’s 5-tuple, to effectively

re-use the global tags. The controller sets the rules, as before:

{5-tuple, NFOutput, GTag, In port, Push, Pop} → outPort

4.4.2 Communication between SDNFV Application, SDN Controller and

NF orchestrator

Network status to placement engine

The information about available SDNFV switches, their capacity to run different

NFs, the NFs currently running on switches and the link capacities, has to be communicated

by the SDN controller to the SDNFV Application, and in particular to the placement engine.

This will also include current performance information, such as load and traffic statistics

to enable the placement engine to make incremental placement decisions, as described in

[156].

Instantiation request to orchestrator

When the placement engine needs to create a new instance of an NF or the NF

Manager wants to instantiate a new NF, the orchestrator needs to be involved. The request

74

to the orchestrator includes:

{SwitchID, NFName}

Orchestrating an NF Move

The SDN controller may initiate the move of an NF from one SDNFV switch to

another for reasons of load balancing or to optimize the routing for a flow. For this the

controller provides to the orchestrator:

{Src-SwitchID, Dest-SwitchID, NFName}

to cause the move of NFName from Src-SwitchID to Dest-SwitchID. The orchestrator and

controller coordinate to perform a ’make-before-break’ for re-routing the flow prior to re-

moving the old NF instance.

Placement request for a flow

When a new flow arrives and the NF instances have not been created a priori, the

SDN controller needs to make a placement request for the flow to the SDNFV Application

(i.e., placement engine), with the flow information of the entry switch, the exit switch, and

the assigned service chain. Upon creation of the NF instances by the NF orchestrator in

coordination with the placement engine, the SDN controller updates the corresponding NF

Managers with the flow table entries.

75

 1

 10

 100

 1000

 10000

50 500 5000

N
u

m
b

e
r

o
f

N
e

e
d

e
d

 T
a

g
s

Number of Flows

SDNFV-Unique Tags
SDNFV-All Tags

FlowTags

Figure 4.4: Number of tags necessary for managing varying numbers of flows

4.5 Evaluation

We evaluate the protocol framework for the SDNFV architecture proposed here

along two dimensions: the number of tags necessary network-wide and the number of mes-

sages exchanged with the SDN controller. The first is important to ensure that we use the

limited number of available bits in packet headers wisely, by effectively using the global tags

when it is necessary. The second is to reduce the load on the SDN controller as much as

possible. Both of these seek to make our architecture scale better.

The topology for our evaluation is from Rocketfuel [164] (AS-16631) with 22 nodes

and 64 links. All the flows go through a service chain of length five and start at a random

node in the topology and exit at another random node. Each SDNFV switch is able to

76

support two NFs and the placement and routing are decided by our placement engine [156].

We use a Java-based simulator to estimate the number of global tags needed.

4.5.1 Network with only NFs that don’t alter headers

We first look at a network that only has NFs that do not alter the packet headers.

The global tags then are used only for clearing ambiguities in the routing of the flows.

Then we compare the number of tags needed in our approach with described method in

FlowTags [72]. The result is shown in Figure 4.4. Since FlowTags needs a new tag for each

flow on an NF, it needs 25000 tags for managing 5000 flows in this network when we have

a static service chain of length 5. However in our approach, the number of tags needed

depends on the paths of the flows. A tag is used only if an ambiguity exists in routing of

the flow. As a first step, this itself reduces the number of tags needed. Furthermore, the

number of unique tags needed can be reduced significantly by re-using the tag for different

flows. For example if 10 flows need 2 tags each, the total number of necessary tags is 20,

however we can use the same tags for all these 10 flows. Hence, the number of necessary

unique tags is 2. The decision to route a flow then is based on the combination of the packet

header’s 5-tuple and the global tag. The consequence is that the number of unique tags is

much smaller for SDNFV-Unique Tags, as shown in the Figure 4.4.

4.5.2 Network with NFs altering headers

For this case, the third NF in the service chain alters the packet header. We did

two experiments. In the first one, the NF does not change the destination address. This

is therefore leveraged to further reduce the number of tags necessary. In the second case,

77

SDNFV FlowTags
No. of Flows All tags Unique Tags

Dst. Dst.+Ports Dst. Dst.+Ports

50 7 2 1 1 250
500 285 8 1 1 2500
5000 4681 65 3 2 25000

Table 4.1: Number of tags in network with NFs altering headers

 100

 1000

 10000

 100000

50 500 5000

M
e

s
s
a

g
e

s
 S

e
n

t
to

 C
o

n
tr

o
lle

r

Number of Flows

SDNFV
FlowTags

Figure 4.5: Number of messages sent to controller for SDNFV and FlowTags

the destination and the destination port are unaltered. In our experiment, the port number

was uniformly distributed across 56K port numbers. The dramatic reduction in the number

of tags needed, to just 2 or 3, is shown in Table 4.1. Finally, an important criterion for

scalability is the number of messages sent to SDN controller. Our approach and FlowTags

are compared in Figure 4.5. In SDNFV, each flow needs to contact the SDN controller once.

However, with FlowTags each switch contacts the SDN controller to first get the necessary

78

rules for that FlowTag. Further, each middlebox contacts the SDN controller twice, first to

generate the tag and secondly to consume the tags for a flow. SDNFV’s hierarchical control

dramatically reduces the overhead on the controller.

4.6 Related Work

Recently there has been work to increase packet performance on COTS servers [98,

143]. NetVM[98] uses zero-copy transfer packets from/to VM and between VMs at wire-

speed. ClickOS [143] maps packets buffers to the VM’s address space to reduce overhead

for achieving high performance packet forwarding.

While there has been a large body of work on the core SDN protocols, we focus here

on the work that examines SDN-control of middleboxes and network functions, especially

for the dynamic use of middlebox functionality in the network.

SIMPLE[185] is an SDN-based policy enforcement framework for steering the traf-

fic of middleboxes. The primary goal is to support complex routing to have flows traverse

middleboxes. SIMPLE uses tags in a packet assigned to recognize a routing loop. However,

SIMPLE does not address the need to support dynamic service chains and the necessary

routing through them, especially when the service functions for a flow (or a class of flows)

has to be updated based on the processing at a network (middlebox) function. The use of

flow tags minimizes the size of the flow tables, which is a desirable characteristic we exploit

in this work as well. However, our view is that tags can serve a much wider purpose of

NFs communicating to the controller or to downstream NFs the result of their processing

79

so as to exploit the flexibility that is provided in our framework to support dynamic service

chains.

Steering [243] is an SDN-based framework for dynamic routing of traffic through

middleboxes. While it supports changing the service chains based on the output of the

middleboxes, such an action is always mediated through the SDN controller which updates

different tables in different switches. The framework is much simpler in that complex routing

(e.g., loops) is not supported. Further, there is no support to dynamically place multiple

replicas of an NF in a large network.

FlowTags [72] is an architecture for dynamically managing flows through middle-

boxes in the network. It also uses tags for complex, stateful routing of flows. A new tag

is utilized for each branch of a service chain. Tags are not re-used across flows, hence they

should be unique unless the flows are temporally or geographically separated. Packets of

flows marked with tags are routed only based on the tags. A middlebox contacts the SDN

controller to create the tag and for interpreting and consuming the tag. When the service

chains are long and middleboxes have a large number of possible outputs, the number of

tags required can be very large. In contrast, the autonomy we provide with our hierarchical

control at the NF and NF manager levels avoids overloading the SDN controller and is thus

more efficient. Moreover, by combining the tag and the full n-tuple in the flow table along

with the input port and SwitchID for routing, our approach requires far fewer tags.

Slick [13] is a network programming architecture that provides the opportunity for

the SDN controller and middleboxes to communicate with each other. The main feature

of interest to us here is that it provide triggers for network functions to contact the SDN

80

controller. However, the framework continues to retain the ’master-slave’ relationship be-

tween the network data plane and the SDN controller, unlike our approach of providing a

hierarchy of control across the components.

Besides the aforementioned works which are done in SDN field, some other works

such as Network Service Header (NSH) [68] of IETF are done in other fields too. However

because of lacking a centralized controller, making a global optimal decision on different

aspects such as assigning flows to different instances of NFs is not possible. Moreover, the

dynamicity introduced in this work is limited in comparison to our selected approach. In our

approach, the flows path is completely based on the dynamic output of the NFs and even

an output of an NF may change the path of next packets in upstream. In NSH classifiers

are separated from network functions and they cannot affect the next packets in upstream.

The last difference that we want to point out is that NSH adds a variable size header to

the packet, whereas in our approach because of a limited number of bits needed for defined

fields, we are able to reuse the existing unused fields in other protocols.

4.7 Summary

Our SDNFV architecture seeks to achieve our vision of a dynamic and flexible

network with a smarter data plane. The protocols we develop also enable NFs to update

a flow’s forwarding rules dynamically, subject to constraints specified by the service graph,

without burdening the centralized SDN controller. This allows SDNFV to base flow man-

agement decisions on characteristics that cannot be determined at flow startup. It allows

changing traffic characteristics across multiple flows to affect routing behavior, for example

81

by detecting DDoS attacks or other anomalous flows, or network policy and load-dependent

modifications. Our architecture supports a rich set of NF types that dynamically modify

the path of flows both upstream and downstream and ones that change packet headers, such

as NATs. SDNFV enables dynamic instantiation of NFs by an orchestrator. The SDNFV

architecture uses tags for NFs to communicate their output and the state of the flow by

leveraging the idea of “FlowTags” but use it in conjunction with the knowledge of the net-

work at the SDN controller, to dramatically reduce the number of tags used network-wide.

We substantially reduce the overhead on the SDN controller by taking advantage of the

hierarchical control possible with the smarter data plane. The smarter data plane includes

the NFs, the NF Manager and ultimately, the SDN controller, in decision making.

Acknowledgment

This work was supported in part by NSF grants CNS-1422362 and CNS-1522546.

82

Chapter 5

Considerations for Re-Designing

the Cellular Infrastructure

Exploiting Software-Based

Networks

As demand for wireless mobile connectivity continues to explode, cellular network

infrastructure capacity requirements continue to grow. While 5G tries to address capacity

requirements at the radio layer, the load on the cellular core network infrastructure (called

Enhanced Packet Core (EPC)) stresses the network infrastructure. Our work examines the

architecture, protocols of current cellular infrastructures and the workload on the EPC. We

study the challenges in dimensioning capacity and review the design alternatives to support

the significant scale up desired, even for the near future.

83

We breakdown the workload on the network infrastructure into its components-

signaling event transactions; database or lookup transactions and packet processing. We

quantitatively show the control plane and data plane load on the various components of

the EPC and estimate how future 5G cellular network workloads will scale. This analysis

helps us to understand the scalability challenges for future 5G EPC network components.

Other efforts to scale the 5G cellular network take a system view where the control plane

is separated from the data path and is terminated on a centralized SDN controller. The

SDN controller configures the data path on a widely distributed switching infrastructure.

Our analysis of the workload informs us on the feasibility of various design alternatives and

motivates our efforts to develop our clean-slate approach, called CleanG.

5.1 Introduction

There are two new drivers that are likely to be of concern to cellular operators.

The first is the shift to small cells, as a way to increase system capacity. If this is designed by

retaining the current architecture and protocols, it is likely to cause a dramatic increase in

the amount of hand-offs from user and device mobility that will place a considerable load on

the control plane of the cellular network. There will also be significant signaling load from

lower power devices, shutting down or going to idle states and connecting periodically as

predicated by the services/applications running on them. Secondly, with new use cases such

as Internet of Things (IoT) and Machine to Machine (M2M) communication, cellular traffic

is likely to grow significantly, with the traffic mix and communication patterns expected

to change significantly. In a lot of these new use cases a large number of control messages

84

and control events are generated for transferring small chunks of data, unlike traditional

applications.

This shift in the control plane load is of concern to service providers. In the

past, the provisioning of the cellular network control plane was based on traditional voice

applications where the control plane load (based on call arrivals) was much smaller. For

example, in the current cellular protocol design, there are over 15 control plane messages

exchanged between the cellular end-device (user equipment (UE)) and the Evolved Packet

Core (EPC) every time a UE transitions from idle to active state, and slightly over 30

control plane messages when a UE moves from being associated with one base station to

another. With typical IoT traffic loads, service providers will need to scale their control

plane capacity significantly to be able to handle a much larger number of control plane

events per second.

A number of efforts to scale the 5G cellular network take a system view where

the control plane is separated from the data path. To help understand the feasibility of

different design alternatives, we carefully study the architecture and protocol processing

of current cellular infrastructure, with particular focus on the workload on the EPC. We

estimate control plane and data plane load on the various components of the EPC with

the current 3GPP architecture for a representative instantiation of the EPC in the United

States (basing the topology and design based on the aggregate traffic statistics seen in the

US cellular network).

Our analysis justifies a need to re-think how cellular networks are designed to

support mobility, IoT and data traffic better, with lower latency, higher throughput, and

85

higher overall system capacity. Current cellular networks have separate purpose-built hard-

ware appliances for the Evolved Packet Core (EPC). A newer trend has been to build

software-based platforms. Software-based platforms have also exploited virtualization that

allows dynamic scaling. Virtualization not only enables scalability, but offers flexibility to

dynamically move resources from one function to another. We show that a software EPC

offers much needed flexibility and evolvability however, supporting a high volume of control

traffic in conjunction with the data plane still continues to be a challenge.

To address these issues, we are currently working on an approach called CleanG,

where we propose to simplify the components and the control protocol while keeping all

the essential functionality supported in the current cellular network. By simplifying the

protocol and taking advantage of a virtualization-based EPC, we can substantially scale up

network capacity.

5.2 Current 3GPP Architecture

Figure 5.1 details a typical end to end wireless infrastructure. Traffic to and from

devices or User Equipment (UE) connecting through a cellular base station (eNB) is ag-

gregated and carried over backhaul links into the wireless core infrastructure, also called

the Evolved Packet Core (EPC). The EPC core mainly comprises the MME, SGW, PGW,

Home Subscription Server (HSS), Policy Control and Rules Function (PCRF) and the Pol-

icy Control Enforcement Function (PCEF). Each of these functions is generally instantiated

on dedicated hardware racks distributed across the network deployment geography. Dis-

86

MME

SGW PGW

HSS PCRF

Aggregation
RoutersSEGW ISP

Peering
Routers

Internetwww.app
_server.c

om

Wireless Core- EPCBackhaul SGi-LAN
IMS

VPN

VoD

DPI

UE eNB

TA

UE eNB

TA UE eNB

TA

Figure 5.1: Typical end to end wireless infrastructure.(SEGW: Serving Edge Gateway

MME: Mobility Management Entity HSS: Home Subscription Server SGW: Serving Gate-

way PGW: Packet Gateway PCRF: Policy Controls and Rules Function)

tribution of these hardware racks implementing the different functions is based on system

capacity utilization and traffic engineering principles.

We now examine how traffic is handled. Traffic to and from the UE is filtered

through templates (TFT), classified into flows identified by Quality Class Identifiers (QCI)

and then metered through routers peering onto the Internet Backbone. Traffic metering is

per maximum bit rate (MBR) value defined by the QoS associated with the flow. In addition

to this, application- Application Detection Control (ADC) or carrier specific- Policy Control

and Charging (PCC) rules based on flow identifiers may be applied to administer traffic

into rate groups which can then be charged per billing policies.

The TFT, QCI, QoS prioritization, MBR, ADC, PCC flow characteristics need

to be negotiated and defined before the flow can be established, i.e., before any data can

87

be sent or received by the UE. Therefore for a successful connection to be opened by an

application on the UE, the signaling stack on the UE will need to go through a series of

message exchanges with the EPC to negotiate and establish the characteristics of the flow

that an application on the UE is attempting. For e.g., consider an Android application

making a Http URL Connection call. For this call to return successfully, the signaling stack

should have already negotiated the flow characteristic with the EPC.

A significant protocol overhead is the current architecture is in establishing the

flow context in the cellular network, which we detail now. The end to end connection is

identified by the typical 5-tuple- src IP, src Port, dst IP, dst Port and a defined transport

protocol, TCP in the example above. The src IP, src Port is a UE IP address and Port on

the UE IP stack and dst IP, dst Port is the remote service IP address and Port. The UE IP

address is provided to the UE by the EPC core through a create session message sequence

exchanged with the core. Another application on the UE e.g., VoLTE or an email client

will need to establish a connection on a different Port. This connection context, uniquely

identified by the 5 tuple, is maintained end to end between the application on the UE and

the service hosted on the Internet and is carried in the IP Protocol Data Unit (IP PDU)

header. It is mirrored in the Packet Data Convergence Protocol (PDCP) between the UE

and the eNB. This is encapsulated into a tunnel header with end points being established

and maintained between the eNB and the EPC core as long as the application on the

UE is active. Flow characteristics (TFT, QCI, QoS prioritization, MBR, ADC, PCC) are

communicated to the tunnel end points for appropriate treatment of the application context

at the EPC core.

88

Each application session will need the creation of the tunnel and associated context

or flow characteristics between the eNB and the EPC core. The establishment of the

tunnels is negotiated through the MME in the EPC core by eNB. The flow characteristics

are negotiated between the EPC core elements internally. At the time of flow creation or

modification by the UE, the eNB signals the MME which then propagates these messages for

tunnel establishment to the SGW after verifying the subscription policies for the UE with

the Home Subscription Server (HSS). The SGW forwards the flow characteristic requests to

the PGW. The PGW, in turn, queries the Policy Control and Rules Function (PCRF) and

sets the internal Policy Control Enforcement Function (PCEF). The PGW then sends the

UE IP address to SGW to be used for the session. The UE IP address finds its way back

to the UE through the MME and the eNB. At this point, UE IP stack will have the UE IP

address for the application to open a connection. The eNB and SGW will have the tunnel

end point identifiers (TEID) to carry the traffic flow for the application connection. The

PGW will have the TFT, QCI, QoS prioritization, MBR characteristics to match against

the flow and enforce the ADC and PCC rules. Refer Table IV [66].

All of the control protocol/signaling overhead above is primarily between the eNB

and the EPC core. The flow characteristics for the IP PDU are extracted to be applied

on a bearer that carries the traffic for the session. In this manner, each session can have

many bearers, the equivalent of many ports that can be opened on a single IP address by

an application on the UE. Each bearer of a session has a tunnel established between the

eNB and the SGW. Each session will need to have in addition an IP address provisioned

by the PGW. According to the 3GPP specifications [154], each UE can establish up to 11

89

bearers. These bearers can all belong to a single session or can each be associated with a

different session. In such a case, the UE will have been assigned up to 11 IP addresses.

In the Internet backbone beyond the EPC, QoS treatment of traffic is based on

fields in the IP header. The justification for the overhead of extracting flow characteristics in

the cellular network was done with few key intentions: a) the path for the flow was signaled

ahead of time so an appropriate resource reservation could be made. This is particularly

true for management of precious (limited) radio resources between the UE and the eNB.

Further, resources need to be provisioned in the EPC core to ensure compliance with Service

Level Agreements (SLAs). Resources to be reserved for a flow include switching, routing

bandwidth, memory for storing flow characteristics, CPU processing capacity, memory and

IO bandwidth for handling the packet flow; b) Correspondingly, signalling releases resources

when not required so they could be assigned to another flow, to optimize capacity utilization,

c) the IP PDU itself is not touched, instead the packets are enveloped and carried over the

EPC core for distribution to the Internet end points.

The cellular distribution of the eNB, the mobility of the UEs across these cell

boundaries, transient activity of applications on the UE driven by battery life considerations,

require connections to be constantly torn down, re-established or activated. This means that

the creation of the tunnels and flow characteristics associated to the application session

context will have to be re-set or refreshed multiple times between the eNB and the EPC

core re-triggering the internal negotiations among the EPC core functions- MME, HSS,

SGW, PGW, and PCRF.

90

5.3 Overview of SDN and NFV

Software Defined Networking (SDN) is changing networks, particularly data cen-

ters, by providing a logically centralized control plane capable of using carefully designed

rules that are specific to each individual flow[74]. SDN separates the networks control plane

from the data plane, with a goal to allow flexible flow management by a logically centralized

SDN controller. The control plane, implemented in the SDN controller, has complete au-

thority in the determination of the path for individual flows, in conjunction with a minimal

network data plane. SDN’s separation of the control plane is an effective way for determin-

ing the actions to be performed on a flow when a network switch sees packets of a flow,

by having the controller set up the match/action rules for the switch to use in forwarding

packets. SDN applications perform traffic engineering, QoS, monitoring, and routing, and

provide inputs to the SDN controller (through its North-bound interface(s)). The SDN

controller then signals network elements to configure flow tables via standardized proto-

cols such as OpenFlow [170] (via its South-bound interface(s)) based on the first packet or

rules that are defined ahead of time. The data plane refers to these flow tables and sends

packets according to the specified actions for matched rules. As we detail in Section 5.5,

we outline several efforts in research and industry that seek to exploit this philosophy of

SDN in re-designing the control plane for cellular networks. These efforts seek to make the

SDN controller responsible for setting up the path, managing resources and addresses for

UE sessions.

Another technology direction is the development of Network Function Virtualiza-

tion (NFV), a technique to run high performance network services as software running in

91

virtual machines (VMs) on commodity servers [98, 143]. By using commercial off-the-shelf

(COTS) servers and virtualization technologies, NFV provides network and cloud operators

greater flexibility for using network-resident functions at lower cost (riding the lower cost

vs. performance curve of standardized high-volume servers). Using a virtualized architec-

ture greatly improves the ease with which new network functions (NFs) can be deployed;

each is given its own isolated virtual environment (be it VMs, or the newer approach of

using Containers), providing performance isolation and simplifying resource management.

Services residing in NFs can be easy to develop user-space software applications.

Together, SDN and NFV promise to increase the flexibility of networks at both

the control and data plane levels. In this paper, we carefully examine the benefits and

limitations provided by these technologies in meeting the challenges posed by the imminent

changes and scaling up of the load for cellular networks. It is important to keep in mind

that the control plane in the cellular network needs to be much more tightly coupled with

the data plane because of the limited resources in the air-interface, requiring an admission-

controlled handling of individual flows. This is another motivation to examine carefully, the

applicability of SDN and NFV for virtualized EPC environment, based on a quantitative

understanding of the workloads seen in current cellular networks and projecting a scale

up of these workloads for future 5G networks. We observe below that unlike a typical

data center (or even IP network) where there are a large number of data packets for a

flow, the number of data packets that are processed for each control event in a cellular

network is relatively small. In an IP network, the SDN controller is involved in a control

processing event (e.g., at the beginning of the flow) that is amortized across a large number

92

of data packets for that flow. Thus, the load on the centralized SDN controller is more

manageable. However, as we observe in the section below, the cellular network sees a much

larger number of control events (i.e., transactions) for each UE, with a relatively small ratio

of the number of data packets for each control event. Moreover, there is a tight coupling, as

the data flow may block the completion of the processing of the control event. It is for this

reason that a straightforward implementation of the control plane on an SDN controller is

difficult to scale up. While we state this as intuition here, we provide a detailed quantitative

justification that validates this determination regarding the right partitioning between the

control plane and the data plane in cellular networks. This is the motivation for our current

work on a clean-slate re-architecting of the cellular infrastructure with our proposed CleanG

architecture.

5.4 Cellular deployment topology, workloads, system impact

and 5G implications

To understand the implications of control signaling protocol overhead on the EPC

core, we look at a typical nationwide deployment first, with the full understanding that

these are estimates (as individual cellular operator infrastructure characteristics are highly

proprietary). We then break down the dimensions of the workload and infer the stress

vectors at the EPC core.

Consider the United States: we estimate the number of UEs to be 400M, round-

ing off to having 1 UE per every person in the country. Based on the current cellular

93

EPC core
workload
dimension

Stress Vector System Impact Comments

Control Plane

Signaling termina-
tions:
2000 UE : 1 eNB
1340 eNB : 1 MME |
3 MME : 1 SGW;
1 SGW : 1 PGW;

2.7M UE : 1
MME|
8M UE : 1 SGW;
8M UE : 1 PGW;

n : m relationships between EPC core and eNB
infrastructure and intra EPC core functional
elements.
200K eNB : 150 MME :: 1340 eNB : 1 MME
2000 UE/eNB x 1340 eNB/MME = 2.7M
UE/MME
200K eNB : 50 SGW :: 4K eNB : 1 SGW
2000 UE/eNB x 4K eNB/SGW = 8M UE/SGW

Signaling event or
Transactions Per
Sec (TPS)

100K TPS : 1
MME
100K TPS : 1
SGW

10 uSec/Transaction

User Plane

User Plane termina-
tions:
2000 UE : 1 eNB
4K eNB : 1 SGW;
4K eNB : 1 PGW;

8M UE : 1 SGW;
8M UE : 1 PGW;

p : q relationships between EPC core and eNB
infrastructure and intra EPC core functional
elements.
200K eNB : 50 SGW :: 4K eNB : 1 SGW
2000 UE/eNB x 4K eNB/SGW = 8M UE/SGW

Packet Arrival
Rate or Mil-
lion Packets Per
Second (MPPS)

31 MPPS : 1
SGW;
31 MPPS : 1
PGW;

33 nSec/IP PDU
Or
1 Transaction every 304 IP PDU

Table 5.1: EPC core workload dimensions mapped to stress vectors and system impact

94

Dimension Stress Vector Impact

Control Plane

20M eNB :
50 SGW ::
400K eNB :
1 SGW

6.7M TPS : 1 SGW
or
150 nSec/Transaction
80M UE : 1 PGW;

Data Plane

80M UE : 1
SGW

122 MPPS per SGW;
i.e.,
28Tbps/50
SGW/(575Byte*8)=
122 MPPS
9.0 nSec service time
budget
to process an IP PDU
i.e.,
1 control transaction
every 17 PDUs

Table 5.2: 5G stress vectors

95

infrastructure deployed in the US, these 400M UEs connect to over 200K eNB [42] through

roughly 50 EPC core infrastructures. This means that we will have at least 50 PGWs in the

US across all the network operators. These assign UE IP addresses for establishing traffic

flows to the Internet backbone. With a S-GW associated with each P-GW, and a ratio of

a pool of 3 MMEs connecting to 1 SGW, we will have 50 PGWs, 50 SGW and 150 MMEs

representing the deployed cellular network in the US.

To set up each application session’s flow (e.g., an IP flow), there is signaling

overhead for the eNB, MME and the S-GW and P-GW, along with message exchanges with

the HSS and PCRF. Successful negotiation of the signaling establishes the bearer traffic

between the eNB and the SGW. The data path goes through the S-GW, where the tunnel

encapsulation and decapsulation are performed, while the P-GW sends and receives those

data packets and in accordance with the PCRF rules forwards packets received to or from

the Internet.

Thus, between the eNB and the EPC core there are two different planes in oper-

ation: A Control Plane that negotiates all the signaling ahead of the bearer traffic and a

Data Plane or User Plane that is the actual IP PDU flow through the SGW, PGW and

onto the Internet. The Control Plane and User Plane represent the dimensions of workload

the EPC core needs to process.

We now examine the workload seen at the EPC, which drives the transaction

processing capacity requirements for the hardware on which the MME, HSS, SGW, PGW

and PCRF EPC core functions may run on. This transaction processing capacity, in turn,

places requirements on the database and event or interrupt processing capacity needs from

96

the hardware. As observed in [66], the primary cause of limiting of EPC core capacity is

the MME to S-GW interaction. Since the SGW sits at intersection of the Control Plane

and the User Plane, interactions with the MME in establishing, re-activating or changing

the traffic bearer tunnel end points, would directly impact the service time available for the

bearer traffic (data path). Unless these interactions with the MME are properly separated

they would starve the CPU, increasing its waiting time as it processes IP PDUs coming in

from the bearer traffic (or delay the data path if the control path is provided priority).

Consider the above ratios: there are approximately 4K eNBs per S-GW, and 2000

UEs per eNB, we see that there are approximately 8M UEs associated with each S-GW

(see Table 5.1. These ratios are driven by the lowest service time afforded by the chaining

of SGW and PGW functions within the EPC core. The service time is the amount of time

taken for processing a single IP PDU of the incident aggregate bearer traffic. This would

be the time it takes the IP PDU to reach the CPU once it lands on the IO of the hardware

implementing the SGW or PGW function. Even if the IP PDU lands directly on the cache

of the CPU dedicated to the SGW or PGW function, any CPU waiting time spent by the

CPU in fetching bearer tunnel end points, TFT, QCI, QoS prioritization, mbr, ADC, PCC

flow characteristics for processing the packet, would adversely impact the service time.

Let us consider the data path first. We provide some conservative estimates of

traffic seen at the S-P GW, and the available processing time budget for the data path.

The traffic backhauled into the EPC core infrastructure from the 200K eNBs across the

Unites States in 2012 was 7 Tbps (rounded up from 6.96 Tbps) [102] i.e., 140 Gbps bearer

(data) traffic on average through each of the 50 S-P GWs. For an average IMIX packet size

97

[69] of 575Bytes, the packet arrival rate at each SGW and PGW of the EPC core in the US

is 31 MPPS (= 140 Gbps/[575*8]). The service time budget for each IP PDU available at

each of the S & P GW is therefore 33 nSec (= 1/31 MPPS).

Now, let us consider the control plane. Assuming that 50% of the UEs are active at

any time (e.g., smartphones are ON all the time), of the 8M UEs associated with an S-GW,

4M UEs generate an event once a minute. Each event is assumed (typically) to require

the flow characteristic of a bearer (flow) to be updated, resulting in 0.02 transactions per

second (TPS) per UE to be handled at the S-GW, resulting in approximately 100K TPS

at the S-GW across all 8M UEs (4M active) incident on it. Since the MME sees almost 3

times the interactions (S1 MME vs. S11 interactions) seen by an S-GW [66], the signaling

incidence on the MME will be 3x or 0.05TPS/UE. We consider 50% of the UEs are active

at any time in the calculations of Table 5.1.

A further analysis of the current control plane processing overheads in the S &

P-GWs is in order to determine the processing time budget. As currently deployed, the

signaling overhead in establishing/re-activating the bearer tunnel end points, extracting

the TFT, QCI, QoS prioritization, MBR, ADC, PCC flow characteristics for processing

the IP PDU is reflected on the SGW as a transaction every 10 µSec or every 304 packets.

Each transaction would require the SGW function to ascertain the existence of the tunnel

associated with the bearer and trigger the PGW to re-negotiate the TFT, QCI, QoS priori-

tization, MBR, ADC, PCC flow characteristics. The PGW will in turn accordingly update

its PCEF with the flow characteristics. Given the 33 nSec service time budget imposed on

the SGW and PGW, any locks on the flow characteristic resources during the transaction

98

update would block the bearer (data path) traffic. The CPU processing the IP PDU would

be blocked and unless the packet backlog is cleared in the remaining 10 µSec transaction

window time, the system will start to drop packets.

The aggregate Control Plane and User Plane load on each MME and SGW in the

United States is tabulated under System Impact. This careful sizing of the control plane

load for the EPC components of the cellular network is vital to determine the feasibility

of the various architectural alternatives that would be considered even for migrating the

current EPC to a software based environment, and the use of SDN for managing the cellular

control plane.

Finally, let us speculate on the challenges we will likely face as we evolve to a

5G network with much larger numbers of end points, and frequent mobility due to small

cells. With 5G, the number of UEs is expected to increase 10 fold, and eNBs expected

to increase 100 fold (especially because of small cells) in the same deployment area [43].

Thus for 5G, we will have 4B UEs connecting through 20M eNBs. If we now conservatively

assume a 10x increase in the signaling traffic from each UE and take the backhaul capacity at

28Tbps [102] the load on the SGW for processing each IP PDU is shown in Table 5.2. In 5G

the signaling overhead would translate to 1 transaction every 17 IP PDUs(=122/6.7). This

analysis, which we believe is a conservative reflection of the dramatic scale ups predicted

in the industry, should indeed get us to think as to how to evolve the EPC to meet the

imminent challenges we have to face.

99

5.5 Overview of Efforts to Re-architect 5G Cellular EPC

As we estimated, in the future the workload seen on 5G networks shrinks the

service time budget of the SGW and PGW data plane functions for each IP PDU to about 9

nsec. More importantly, it reduces the number of data packets processed between signalling

transactions to establish/re-activate the bearer tunnel end points of flows significantly. In

fact, with 5G the S&P GW functions will experience an interrupt from a signalling event

every 17 data packets With the service time for a data plane packet down to 9 nsec, the

instruction budget is reduced by almost a factor of 4 i.e. from 180 instructions of current

deployments to 50 instructions, assuming a CPU clock speed of 2.7 GhZ and a practical

at best Cycles per Instruction (CPI) of 0.5. This tremendously complicates the design of

hardware/software implementing the SGW and PGW functions. In a total of 153 (9*17)

nsecs, the SGW has to complete processing 17 IP PDUs and the signalling transaction, so

as to not fall behind. This has prompted a number of efforts to re-architect the cellular

infrastructure, both in research and industry efforts. With the thrust to migrate to COTS

hardware, system approaches to re-architect the cellular infrastructure for 5G, are being

explored. Several of these seek to separate the control plane processing from the data path

(conceptually similar to the direction taken by SDN in IP and datacenter networks). Thus,

the efforts [36, 149, 27] primarily target at reducing the interaction between signalling

and handling the bearer traffic. Another thrust being investigated is the re-distribution

of the cellular infrastructure to reduce the ratio of the number of eNBs to the EPC core

instances. Further, within that, reducing the ratio of the number of eNBs to the number

of SGW instances is also being considered, to relieve the total load on the SGW (and

100

EPC in general). In line with this latter approach to reduce the ratio of the interacting

infrastructure elements, an industry approach is to consolidate the MME and the signalling

front of the EPC core while keeping the SGW and PGW that handles the bearer traffic

integrated close to the eNB [65].

Let us now examine the use of an SDN-based approach for the 5G network infras-

tructure we mentioned above. The figure below details an approach gaining industry focus

for eliminating direct signalling interactions with the individual components handling the

bearer (data plane) traffic. An SDN Controller interfaces with the MME, HSS, and PCRF,

centralizing establishment or re-activation of tunnels and flow characteristics. Variants of

this approach merge the MME into the SDN controller, so the eNBs interface directly to

the SDN controller. This approach, if successful in delivering the operational scaling i.e.

workload implications of 5G, will bring the benefits of Data Center infrastructure to cellular

networks [36]. Of course, the key to this approach succeeding is the ability to support the

5G workload requirements, especially the signalling transaction rate (in TPS).

Continuing our quantitative analysis of the signalling load (in a direction similar

to the previous section), let us assume that the efforts to reduce the ratio of the eNB to

the EPC core instances and number of UEs per eNB (with small cells) is also economically

successful. With that we conservatively estimate that there are only about 250K UEs

associated with each S&P GW (to keep the data plane load manageable on each), with

about 40 S&P GW instances to support 10M UEs. The total number of instances of S-

GWs nationwide (in the US) would be of the order of 16K to support the total UEs we

might expect the 5G network to support in the US (4B UEs). Thus, we break down the

101

number of bearers handled by each SGW and PGW (S-PGW) instance to 250K bearers

(data flows). This would bring down the packet arrival rate to 1 MPPS increasing service

time budget per IP PDU to a more manageable 1 µsec. The control plane transactions on

each SGW instance at 5G workloads will reduce to about 100K TPS or an inter-arrival time

of 10 µsec, approximately 10 data packets for every signalling control event. This means

having 10 µsecs to process 10 IP data PDUs and 1 control plane transaction at each S&P

GW. Compared with the 153 nsecs computed earlier, this is an order of magnitude larger

service time budget for the S & P GW functions. This should allow enough processing time

for IP PDUs between control plane transactions on COTS hardware S&P GWs.

The analysis above has significant implications on an SDN-based approach for

supporting the control plane load. A control plane load of 100K transactions per second

with 5G workloads would mean that an SDN controller will have to sustain 100K TPS on

the south bound interface to an individual S&P GW (note that there are about 16K SGWs

nationwide, potentially in clusters of 40 S&P GWs, each supporting 10M UEs per cluster).

With an SDN Controller to S&P GW ratio of 1 : 40, the north bound interface of the SDN

controller will also have to handle close to 400K TPS to sustain all 40 S&P GW functions.

Note that each of these transactions may have to be handled distinctly, to avoid the latency

penalty that comes from batching these transactions to do a single aggregate update. Such

batching delays the processing of control transactions. The resulting lag can impact data

plane performance. Packets may be forwarded based on outdated state information (e.g.,

after device mobility), resulting in wasted resources and packet loss. These performance

requirements pose challenges to current SDN controller architectures and implementations.

102

MME

UE eNB

TA

SDN Controller

HSS PCRF

Small Cell

Small Cell

Small Cell

SGW PGW
SGW PGW
SGW PGW

North Bound Interface

South Bound Interface

Figure 5.2: 5G SDN based Network Infrastructure

5.6 Discussion

With the tremendous growth anticipated in cellular network control plane work-

loads (with IoT traffic and the deployment of small cells), the EPC components in the

network need to scale up significantly. Using representative workloads we expect on a typ-

ical EPC in the US, we quantitatively show that in future 5G networks the control plane

load incident directly on each S&P GW function would be over 100K TPS with over 8M

signalling TPS arriving at the EPC core. Current approaches considering the use of a cen-

tralized SDN controller will need to have the capacity to handle 400K TPS and transform

these to 100K TPS to manage flows on each of the associated 40 S&P GW functions. To

address these challenges, our current efforts on CleanG seek to address these challenges by

examining both a new architecture for consolidating the EPC components, and a consider-

ably simplified control protocol to ease the overhead, thus enabling scalability and achieving

low latency.

103

Acknowledgment

This work was supported in part by the US National Science Foundation grant

CNS-1522546.

104

Chapter 6

CleanG: A Clean-Slate EPC

Architecture and Control Plane

Protocol for Next Generation

Cellular Networks

Cellular networks play a dominant role in how we communicate. But, the cur-

rent cellular architecture and protocols are overly complex. The ’control plane’ protocol

includes setting up explicit tunnels for every session and exchanging a large number of

packets among the different entities (mobile device, base station, the packet gateways and

mobility management) to ensure state is exchanged in a consistent manner. This limits

scalability. As we evolve to having to support an increasing number of users, cell-sites (e.g.,

5G) and the consequent mobility, and the incoming wave of IoT devices, a re-thinking of the

105

architecture and control protocols is required. In this work we propose CleanG, a simplified

software-based architecture for the Mobile Core Network (MCN) and a simplified control

protocol for cellular networks. Network Function Virtualization enables dynamic manage-

ment of capacity in the cloud to support the MCN of future cellular networks. We develop

a simplified protocol that substantially reduces the number of control messages exchanged

to support the various events, while retaining the current functionality expected from the

network. CleanG, we believe will scale better and have lower latency.

6.1 Introduction

There are two new drivers that are likely to be of concern to cellular operators.

The first comes from the shift to small cells being undertaken as a way to increase capacity.

This is likely to cause a dramatic increase in the amount of hand-offs caused by device

mobility, placing a considerable load on the cellular control plane. Secondly, with new use

cases such as Internet of Things (IoT) and Machine to Machine (M2M) communication,

cellular traffic is likely to grow significantly. The workload change because these new use

cases will result in a larger number of control messages generated. Along with the workload

change comes a need to increase data throughput as well as significantly reduce latency.

Current cellular networks carry data over virtual tunnels that require consider-

able protocol overhead for setup. Driven by software and hardware limitations of earlier

platforms, the control plane elements for handling mobility and device state management

(the Mobility Management Entity (MME)) has been separated from the data plane (S&P

gateways). This distribution of functionality among a set of distributed components results

106

in significant protocol overhead. Our recent paper [158] describes the challenges for the

current 3GPP architecture and protocols [86] to meet the performance requirements in a

typical nationwide deployment. A newer trend has been to build software-based platforms,

especially for the EPC which includes the MME and S&P GWs. While a software EPC

offers much needed flexibility and evolvability, supporting a high volume of control traffic in

conjunction with the data plane still continues to be a challenge. As this change is occur-

ring, however, it is important to re-think the protocols (especially control protocols) used

in cellular networks, not just re-implement the same set of protocols in software.

Consider for example the current cellular protocol, as specified in the 3GPP spec-

ifications [86]. One aspect we focus on with the protocol is the need to set up an explicit

GPRS Tunneling Protocol (GTP) Tunnel that has to be set up for each session between

the base station (eNB in LTE networks) and the S-Gateway. The MME mediates the set

up of the tunnel. The protocol has to ensure the state is coordinated and consistent across

all of these distributed entities, ensuring that the tunnel ID and state are set up at the

eNB and S&P GWs prior to data flow. Data flow over a simpler tunneling approach such

as GRE [84] or VxLAN [219] has the potential to considerably simplify the control plane

for this function. Similarly, there are a number of additional overheads which a revised,

clean-slate approach could simplify. Overall, in the current cellular protocol design, there

are about 13 control plane messages exchanged between the cellular end-device (user equip-

ment (UE)) and the Evolved Packet Core (EPC) every time a UE transitions from idle

to active state, and slightly over 20 control plane messages when a UE moves from being

associated with one base station to another. This is unsustainable with the anticipated

107

workloads in a 5G network, as we described in [158]. We believe there is a critical need

to re-examine the control protocols in the light of current usage (much more data than

circuit switched voice) and expected future evolving usage (IoT, small-cells) and workload.

We recognize the need to retain several of the fundamental user requirements and the na-

ture of an admission-controlled radio access network in a cellular network. User’s expect

a secure wireless channel, requiring authenticated and authorized access, when communi-

cating over the cellular network. Our efforts with CleanG are focused on simplifying the

control plane, without fundamentally changing the UE or eNB functionality of the cellular

network. Within these constraints, we believe CleanG takes a new, clean-slate approach, in

comparison to the many efforts currently being pursued in industry and in the literature.

Our CleanG approach exploits a virtualized software core. CleanG also seeks to

consolidate the control plane functions of the S&P GWs and the MME. This eliminates a

number of the control plane messages required to have a consistent update of the UE session

context across the distributed components in the EPC. With the consolidation, the state for

the UE can be retained in a single entity. Secondly, as we observe below with the CleanG

protocol design, having the session context limited to just the two entities (eNB and the

Clean-G Core), simpler tunneling protocols without an explicit setup can be adopted.

6.2 Data/Control Plane Load

This section describes a framework for how we size the processing load in the Data

and Control Planes in the current 3GPP architecture. By examining the various elements

of processing overhead, we arrive at a structured reasoning of the various architecture and

108

protocol alternatives for the cellular control plane. This provides a baseline for comparing

architectural alternatives for capacity scaling.

6.2.1 Control and Data Plane Workload

In [158], we describe how traffic is handled in the cellular network, including the

handling of QoS and policy. The MME is the signaling interface for the EPC core. Incoming

signaling messages to the MME trigger a query waterfall to the HSS, SGW, PGW, and

PCRF. Successful negotiation of the signaling establishes the bearer traffic between the

eNB and the SGW.

Considering a typical United States-wide deployment with 5G, where the number

of UEs and eNB are expected to increase 100 fold [43], we describe the anticipated workload

for the current LTE network and for 5G in [158]. We note that the service time budget for

each IP PDU is just 9.0 nSec, with a signaling transaction occurring once every 17 packets.

6.2.2 Implications of Signaling Transactions on Data Plane

Operations to look up the TFT, QCI, QoS prioritization, mbr, ADC, PCC flow

characteristics, extracting the tunnel end points and applying to each IP PDU need to be

accommodated within the available packet processing service time budget. if St is CPU

operation time on each packet and SBt is CPU stall cycles on each packet(service blocking

time), service time budget is the time we have process each packet and is equal to:

(St + SBt)/IP PDU

109

With Direct Data IO (DDIO) [112], CPU stall cycles on each packet is mainly composed of

memory stall cycles (MS cycles, measured in CPU clock cycles) on account of cache misses.

Let Ts be the CPU clock cycle time. Let the cache miss penalty, measured in CPU clock

cycles, be Cmp.

MS cycles = CacheMisses/Packet ∗ Cmp;

SB t = MS cycles ∗ Ts; That is:

SB t = CacheMisses/Packet ∗ Cmp ∗ Ts;

Signalling transaction will invalidate the cached TFT, QCI, QoS prioritization, mbr, ADC,

PCC flow characteristics, tunnel end points values, causing memory stall cycles. Let Tpp

= Transactions/packet.

Tpp = CacheMisses/Packet ∗ Cmp ∗ Ts
(6.1)

Thus, the budget for the number of control transactions that we can support for each data

packet is obtained in Equation 6.1. As we noted, as we move to support 5G workloads,

there is a 3x reduction in Service time budget and 18x increase in the Transactions/packet

or the Service Blocking time, compared to supporting current LTE workloads.

Our proposed CleanG protocol and architecture significantly reduce the Transac-

tions/packet as well as the number of operations for packet processing. The sections that

follow detail CleanG, comparing it with the traditional protocol and architecture. While the

design is preliminary, we expect to demonstrate functional conformance of CleanG together

with the potential saving in processing time per packet resulting in improved headroom on

110

service time budget with detailed implementation based performance measurements in our

future work.

6.3 Other Efforts

Industry efforts to re-architect the cellular core have been focused on improving

latency by bringing resources closer to end users. One of these is ETSI’s Mobile Edge

Computing (MEC) where computation and storage resources are provided in the macro

eNB or at aggregations sites to provide low latency, high bandwidth, or having access to

radio information. This work is orthogonal to our work, and CleanG could also benefit from

the low latency the eNB as well as having access to radio information. We see this as part

of our future extensions to the current CleanG design.

Other efforts focus on the disaggregation of the data and control components of

the packet core. They depend on having control messages processed by an SDN controller.

They also support a disaggregated and virtualized RAN. However, these design potentially

impose additional delays resulting from the need to update the data path. It requires a

number of additional steps for the SDN controller to update the data plane, which is not

unlike the actions taken by the MME to update the variables in the data path for the S

& P G/W. This is in contrast to the CleanG approach that leverages the common shared

memory between the data and control plane components resulting from our consolidation

of the EPC components. [67] investigates the performance of an SDN-based mobile core

network. They observe that the delay between the controller and the switches significantly

affects system performance. Our shared memory approach will considerably reduce this

111

delay. Next generation cellular networks will have tighter delay budget for completing

control plane transactions (1 ms [90]), and the batching of switch flow-table updates, often

exploited in SDN may not be exploitable. In a number of scenarios, such as initial attach

and idle-to-active, the control plane delay directly affects overall user experience, and delay

in the data plane. With handovers, user experience is affected as the switchover to the

’best’ eNB would be delayed by a slow control plane.

While these industry efforts seek to achieve lower latency and better scalability, we

believe they do not yet address the core problem because they continue to retain the complex

3GPP control plane protocol and an excessive amount of state (some quite unnecessary as

we show in this paper) for each session.

6.4 Clean-G Architecture

The CleanG Architecture takes a clean-slate approach for the future (5G and

beyond) cellular architecture. We re-examine the set of control protocols for CleanG, with

the goal of achieving substantial simplification, by moving away from a virtual-circuit,

tunnel-based communication between the eNB and mobile core network. Secondly, the

protocol seeks to optimize the normal case, taking advantage of the QoS framework typical

of IP based networks, and recognizing that the primary bottleneck is the air-interface. The

protocol simplifications also reduces the amount of state maintained at the core for each

session.

While we focus in this paper on a discussion of the CleanG protocol in the context

of a particular instantiation of the CleanG architecture, our clean-slate CleanG protocol

112

could be applicable to many of the proposed alternative architectures for the 5G network

that are being suggested in the industry. For example, the M-CORD approach could take

advantage of the CleanG control protocol to both simplify the actions to be executed at the

SDN controller as well as the amount of state information that has to be exchanged between

the SDN controller and the data plane components. Similarly, the CleanG protocol could

be applied in the context of the mobile edge cloud where the components are disaggregated.

However, we believe that the most benefit will be with the CleanG virtualization-based

architecture describe here.

The CleanG architecture is based on software EPCs built on virtualization plat-

forms, enabling dynamic adaptation of the capacity for the data and control planes of

the cellular architecture. CleanG seeks to exploit a large, scalable software based packet

“CORE” that replaces the EPC elements of current cellular networks, and supports a large

number of eNBs. In the CleanG architecture, the “CORE” consolidates the S&P GWs

and the MME on the same host or cluster of hosts (potentially as separate functions imple-

mented in distinct VMs or Docker Containers). This is in contrast to the current distributed

implementation in cellular networks, where the functions are separated into distinct phys-

ical elements connected by network links. This consolidation of the EPC core functions

enables a much more simple and lightweight control protocol as we describe below. The

system design in CleanG seeks to cleanly separate the cellular control plane events from

the data plane. By exploiting the capability of virtualization, we can instantiate additional

instances of the core nodes on an as-needed basis and resources can be easily moved between

the control plane and data plane components as the workload demands.

113

To assign processing resources (CPU cores) to the data and control planes on

demand, we implement the CleanG Core as two sub components: Core-data, and Core-

control. Core-data, is responsible for receiving packets, and either forwarding these packets

to the appropriate downstream eNB, upstream network interface or direct control plane

packets to the Core-control component. Internal state for each user session is maintained

in memory structures shared between Core-data and Core-control, with the initialization

being performed by a central controller/configuration management function that also takes

policy and individual user information (accounting, authorization etc.) into account. Sub-

sequent to completing a user ’attach’, Core-control is primarily responsible for control plane

transactions (e.g., idle-to-active, handover, etc.) at the CleanG EPC.

The CleanG core components are implemented as Network Functions (NFs) in the

OpenNetVM[241] framework. The OpenNetVM NF Manager instantiates the Core-data

and Core-control sub-components and dynamically allocates resources. The NF Manager

interfaces with the NIC using the Intel DPDK libraries and manages the shared buffers

between the NFs.

6.5 Control Protocols

While the move to a virtualized EPC (e.g., software based S & P-Gateways) helps

address the scalability, it also offers an opportunity to re-think the control plane protocols

used in cellular networks, not just re-implementation of the existing set of protocols in soft-

ware. By embracing the scalability of the software platform, we can eliminate a significant

amount of the control plane load arising from mobility, as the state for the UE can be

114

ENB

Centralized
Controller Destination

Network
(Internet)

Core
(Data)

Core
Control

O
p

en
N

etV
M

Data Packet

N
FM

a
n

ager
Othere

NFs

Database

Policy Engine

NF Orchestrator

Control&Data Packet

Shared Memory Channel

Control Packet

Figure 6.1: CleanG Architecture

retained in the single EPC platform (either same host or hosts within the same data center

that have access to a shared database). The consolidation of the S-GW, P-GW and MME

into a single software platform removes the need for a number of coordination messages

between these distributed components in the current approach for implementing the EPC.

The first simplification that we implement in CleanG is the elimination of GPRS Tunneling

Protocol (GTP) tunnels to carry the data plane traffic from the packet backbone (e.g., the

Internet) to the eNB. Because the functions of the MME and the S & P Gateways are

consolidated, it is much easier to use a simple encapsulating protocol such as a GRE tun-

nel or a VxLAN tunnel (we use these as examples of current encapsulation mechanisms).

Additionally, other improvements to the protocol include:

• Optimizing the common case. Handling events with smaller number of messages, and

115

UE eNB1) RRC Connection Request
eNB UE2) RRC Connection Setup
UE eNB3) RRC Connection Setup Complete

MMEUE 3) Attach Request
MME HSS4) Auth. Information Request
HSS MME5) Auth. Information Response
UE MME6) User Auth. Request
UE MME7) Send Back RES

MME UE8) Security Mode Command
UE MME9) NAS Key Gen. Complete

MME HSS10) User Location Information
HSS MME11) UE s APNs, P-GW ID, QoS Profile

SGWMME 12) EPS Session Request
SGW PGW13) EPS Session Request
PGW PCRF14) New Session Notification

SPRPCRF 15) Request Access Profile
SPR PCRF16) Return Access Profile

PCRF PGW17) Session Establishment Ack.
PGW SGW18) EPS Session Creation Response
SGW MME19) EPS Session Creation Response
MME UE20) Attach Accept
MME UE21) Request ERAB Setup

eNB
eNB UE22) Security Mode Command
UE 23) Key Generation Complete

eNB UE24) Reconfigure RRC Connection
SGW eNB25) Context Setup Response
MME UE26) Attach Complete
MME SGW27) S1 Bearer Modification
SGW MME28) Modify Bearer Response

Figure 6.2: Current attach protocol

UE ENB CORE
Centralized
Controller

(1) Preamble(RACH, RA-RNTI)

(3) RRC Connection Request(
C-RNTI, UserID, Reason)

+ Attach Request(
UserID, TAI, ECGI)+

CORE Authentication Request(
RAND+AUTN)

(6) Authentication Information Request
(UserID, RAND)

(8) Authentication Response (RES) +
Necessary security info for ENB (K_ENB) +
QoS info, IP, GUTI, Ready to Receive Data

(5) Attach Request(
UserID, TAI, ECGI)

+CORE Authentication Request
(RAND+AUTN)

(2) RAR(RACH, Time Advance,
Resource Grant, C-RNTI)

User is getting the service

(9) Authentication Response(RES)
+ IP + GUTI+ QoS info + Ready to Receive Data

(4) Connection Resolution(
UserID, new C-RNTI)

(10) Location Update (UserID, TAI, ECGI)

(7) Authentication Information Response
(Authentication Vectors) + QoS Info + APNs

Figure 6.3: Proposed attach protocol

116

supporting the default, connectionless best-effort service with a minimum number of

control plane transactions.

• Have a single centralized controller maintaining the data base and being high level

policy decision point in the system.

• Modifying the protocol steps in certain cases. For example, having the UE initiate

mutual authentication between the UE and network.

• Using a shared information base reduces message exchanges. Further, virtualization

enables moving resources around (with OpenNetVM containers)

We illustrate the benefits arising from these optimizations by considering some of the most

important, frequent events that are complex and messaging intensive. We first look at

data packet forwarding process, which it benefits from fewer memory look ups per packet.

6.5.1 EPC Forwarding of Data Packets

Packets from UE to the packet network or vice-versa need the following function-

ality in the data path:

• Having Session: Forward a packet to a UE in the connected, active state; start the

paging process if the UE is idle.

• Detect the QoS class for a packet: Packets need differentiated treatment based

on the class of service, and if needed, be subject to charging or metering procedures.

• Filtering packets: A packet needs to be filtered, based on the 5-tuple in the packet

117

header, into different groups, with each group handled differently. (Related to the

concept of TFTs in 3GPP.)

• Forwarding packets on the right path: Packets should be forwarded toward the

UE on the right path accounting for mobility.

Packets are encapsulated by the CORE for downstream packets with a GRE header, des-

tined to the eNB that the UE is attached to. The DSCP field in the inside header as well

as the outside header are set up based on the QoS treatment required for the packet, based

on a match with the packet 5-tuple. This enables the backhaul network between the Core

and the eNB, as well as the eNB, once it decapsulates the packet, to provide the right QoS

for the packet. Similarly, on the uplink, the UE sets the DSCP field in the packet to enable

the packet to receive the right QoS treatment on the uplink.

6.5.2 CleanG Control Plane Protocol

To compare the control plane protocol for the current 3GPP architecture and

CleanG, we briefly look at the protocol for attach, idle-to-active, and handover events. For

an attach, the userID is used to identify and associate state with the received control plane

message. Subsequently, the IP address of the UE is used to associate the control plane

packets to the correct state in the Core and eNB. The eNB examines the DSCP code point

of the received packet (upstream or downstream). When a session requires better than best

effort service, it initially uses the default (best-effort) radio bearer, until the eNB performs

admission control to elevate the session to a better-than-best-effort class. Subsequently, the

eNB-UE exchange sets up the appropriate radio bearer for those packets of the UE session.

118

UE eNB1) RRC Connection Request
eNB UE2) RRC Connection Setup

UE eNB3) RRC Connection Setup Complete
MMEUE 3) Service Request

MME UE4) Initial Context Setup

eNB UE5) AS Security Setup

eNB UE6) RRC Connection Reconfig

eNB MME7) Initial Context Setup Response
MME SGW8) Modify Bearer Request
SGW PGW9) Modify Bearer Request
PGW PCRF10) IP-CAN Session Modification
PCRF PGW11) IP-CAN Session Modification Ack
PGW SGW12) Modify Bearer Response
SGW MME13) Modify Bearer Response

Figure 6.4: Current protocol for Service Request (Idle to Active) protocol

UE ENB CORE
Centralized
Controller

(5) User is attached here(
GUTI, ENB, Available State Flag, ECGI, TAI)

(1)
(2)

(3) + Service Request(
GUTI, Authentication token, TAI, ECGI)

(4)

Establish Physical Connection

(7) Necessary security info for ENB
+QoS info

If ENB doesn't have necessary states

(8) Activation complete

(6) Location Update
 (UserID, ECGI, TAI)

User is getting service

Figure 6.5: Proposed protocol for Service Request (Idle to Active) protocol

Initial Attach

Initial attach is the event when a user wants to start using the network, either

for the first time or connects again after being disconnected. The high level proto-

col exchanges of current architecture is illustrated in Figure 6.2 and the CleanG proposed

approach is illustrated in Figure 6.3. The primary distinction we observe is that the ag-

gregation of the MME and S&P GWs results in just 2 messages between the eNB and

119

UE eNB-S1) Measurement Report
eNB-S MME2) Handover Required
MME eNB-T3) Handover Request
eNB-T MME4) Handover Request Ack
MME SGW5) Create Indirect Tunnels Request
SGW MME6) Create Indirect Tunnels Response
MME eNB-S7) Handover Command
eNB-S UE8) Handover Command
eNB-S MME9) eNB status transfer

UE eNB-T
eNB-T UE

UE eNB-T
eNB-T MME

10) Make Connection (Sync)
11) UL Allocation and Timing

12) Handover Confirm
13) Handover Notify

MME SGW14) Modify Bearer Request
PGWSGW 15) Modify Bearer Request
PCRFPGW 16) Notify IP-CAN Session Modification

PCRF PGW17) Session Modify Ack
PGW SGW
SGW MME

18)Modify Bearer Response
19)Modify Bearer Response

MME eNB-S
eNB-S MME
MME SGW
SGW MME

20) UE Context Release Command
21) UE Context Release Response

22) Delete Indirect Tunnel
23) Delete Indirect Tunnel Response

Figure 6.6: Current protocol for Handover

Data Packet Forwarding

UEUE SrcENBSrcENB CORECORE TrgtENBTrgtENB(1) Measurement(
neighbour ENBs, metrics,

 GUTI,
Selected security algs)

(2) Handover Request(
GUTI, SrcENB,

 DstENB, Sec Algorithm)

ENB makes
decision to
handover

Starts buffering the packets

(3) Handover Request(
GUTI, SrcENB, Sec Algorithm, QoS Info,

Security Keys)
(4) Handover Acknowledge(RACH, C-RNTI)(5) Handover Acknowledge(RACH, C-RNTI)(6) Handover Command(

RACH, C-RNTI, LastPktSeqNo)

(7) User Disconnected (GUTI) + LastPktSeqNo

Stop Buffering, Just Forwarding on target path

Establish Physical ConnectionEstablish Physical Connection

(9)
(10)
(11)

Data Packet Forwarding

Centralized
Controller

Centralized
Controller

(8) Update users location (UserID)

Figure 6.7: Proposed protocol for handover

120

the CORE and 3 between the CORE and the Central Controller/database. A number of

information elements can be carried on the same control message. The primary function-

ality we must retain is the user authentication, which CleanG does, although the mutual

authentication process is initiated by the user, and a default security scheme is chosen in

CleanG. Note the significant reduction in the number of messages. Selected instance of

CORE sends an authentication information request to central controller and gets, among

other things, the authentication vectors(AVs) and QoS parameters. The CORE instance

creates the necessary keys based on the proper AV, assigns an IP address and a temporary

ID to the user (GUTI). All this information is forwarded to eNB and UE to complete the

attach.

Service request (Idle-to-active)

This event triggers when UE goes from RRC-idle to RRC-connected. The crucial

pieces of the idle to active procedure are the creation of a new physical connection to eNB,

setting up the proper forwarding state in the Core and updating the current location of the

user in centralized controller. The traditional approach is depicted in 6.4 and the CleanG

approach is in 6.5.

Handover

We illustrate the complex control plane messaging required with the current LTE

cellular network using 3GPP protocol for a particular (equivalent of the S1, when there is no

X2 interface between the source and target eNB) handover. With the MME mediating the

handover process between the S & P Gateways and the eNB, a total of at least 28 messages

121

are exchanged among all the entities involved in the handover (see Figure 6.6. The complex

process includes messages for the MME requesting an admission control to be performed at

the target eNB, state having to be set up by the MME at the source (original) and target

(final) eNBs and the S-Gateway for GTP tunnels to be used for data plane communication,

the handover request and response from the UE to the S-Gateway being mediated through

the MME, etc., all of which become necessary when the new software EPC consolidates

these functions and we optimize the common case. With the CleanG architecture and

protocol, the consolidation of the functions enables the handover to be completed in just 5

messages, as shown in Figure 6.7. In detail, a UE sends its signal strength measured from

received signals from neighboring eNBs to the Core. The current eNB (Source eNB) make a

decision to perform the handover and send a handover request to the CORE. After receiving

the handover request, the CORE starts buffering and adds a sequence number to the data

packets going towards the UE. The CORE sends a request to the target eNB to which the

UE needs to be handed over. If the target eNB is capable of serving the UE, it sends an

acknowledgment back to the CORE instance and CORE forwards this acknowledgment back

to the source eNB. The source eNB sends a handover command to UE and stops serving the

UE. It sends a reroute command to the CORE. The reroute command contains the sequence

number of last successfully sent packet to the UE. The core then starts forwarding packets

subsequent to that sequence number to the target eNB. In the meantime, UE creates the

physical connection to the target eNB and starts receiving packets from the target eNB.

Thus, the entire process is not only simplified, but has a much smaller overall latency for

completion. Data packets are not delayed significantly, and it results in an overall much

122

smoother uninterrupted data flow. For delay sensitive flows, the CORE would duplicate

and forward the packets to both the source and target eNB, if backhaul bandwidth is not

a bottleneck, but delay is an overwhelming concern.

6.5.3 Comparing the Overhead of Protocols

We compare the overhead of the control plane and on the data path with the

existing 3GPP approach compared to the CleanG protocol for selected events:

• D1: # of control messages exchanged between the eNB and EPC components.

• D2: # of state updates impacting forwarding path in SGW (3GPP) vs. Core (CleanG).

• D3: Total # of updates impacting forwarding path across all components, EPC

(3GPP) vs. Core (CleanG).

• D4: Total # of updates across all the components, EPC (3GPP) vs. Core (CleanG)

Our preliminary results are in Table 6.1, which show both a significant reduction in the

number of messages as well as the amount of state updates with CleanG. Another important

dimension for comparison is the number of memory lookups needed when forwarding a data

packets by the EPC or CORE. While this is very dependent on implementation, and we

have not yet completed a full implementation of our proposed CleanG, we have performed

a preliminary estimation based on comparing CleanG to one software implementation of

the existing 3GPP control plane. We believe it is possible to lower the number of memory

lookups by half, which also enables faster data plane forwarding and scalability. We’re

working to establish this is indeed the case.

123

Event
3GPP CleanG

D1 D2 D3 D4 D1 D2 D3 D4

Attach 19 3 4 18 5 1 1 5

Detach 7 1 2 7 2 1 1 2

Service Req. 8 1 1 8 2 1 1 2

Act. to Idle 4 1 1 4 1 1 1 1

S1 Handover 15 3 4 15 3 2 2 3

Table 6.1: Comparing Overheads of control plane protocol with 3GPP vs. CleanG

6.6 Summary and Future work

We proposed CleanG, a simplified software-based architecture and protocol for the

cellular control plane for 5G networks and beyond. CleanG is based on a software-based

Evolved Packet Core (EPC) which exploits virtual network functions to achieve a low-

latency, responsive and scalable control plane. CleanG consolidates the EPC components

of the MME, S & P Gateways, thereby reducing the control plane load significantly, without

sacrificing functionality. CleanG eliminates the stateful control plane that is the cornerstone

of the current 3GPP control plane. The reduced session state also decreases by half the

number of lookups required while forwarding a data packet. We are implementing the

CleanG architecture and protocol to do a thorough measurement based evaluation.

Acknowledgment

This work was supported in part by NSF grant CNS-1522546 and Huawei Tech.

Co. Ltd.’s HIRP Grant.

124

Chapter 7

Re-Architecting the Packet Core

and Control Plane for Future

Cellular Networks

With rapid increases in the number of users and changing pattern of network usage,

cellular networks continue to be challenged meeting latency and scalability requirements.

A significant contributor to latency and overhead is the 3GPP cellular network’s complex

control-plane. We propose CleanG, a new packet core architecture and a significantly more

efficient control-plane protocol, exploiting capabilities of current Network Function Virtual-

ization (NFV) platforms. With the elastic scalability offered by NFV, the data and control

sub-components of the packet core scale, adapting to workload demand. CleanG eliminates

use of GTP tunnels for data packets and the associated complex protocol for coordination

across multiple, distributed components for setting up and managing them. We examine the

125

UE SGW

HSSMME

eNodeB
PGW

PCRF

PDN

EPC

Figure 7.1: LTE system architecture

current 3GPP protocol message exchanges to carefully develop a new, substantially simpli-

fied protocol, while retaining essential functionality for security, mobility, and air-interface

resource management. We have implemented CleanG on the OpenNetVM platform and

perform an apples-to-apples comparison with the existing 3GPP LTE architecture, and also

an architecture separating the control and user planes (like the 5G CUPS-based architec-

ture). Testbed measurements show that CleanG substantially reduces both control and

data plane latency and significantly increases system capacity.

7.1 Introduction

The architecture for the Long Term Evolution (LTE) cellular network, which has

been widely deployed worldwide, called System Architecture Evolution (SAE), is shown

in Fig. 7.1. The Evolved Packet Core (EPC) is normally implemented as a number of

separate hardware components partly because of the need to scale control and data plane

independently. This distribution of functionality among a set of distributed components

126

(R)ANUE

AUSF

AMF

DN

5GC

UPF

SMF

UDM

UPF

Figure 7.2: 5G system architecture

results in significant protocol overhead, especially for setting up GTP tunnels. We describe

these functional components and their role in greater detail in the next section. To transition

from fourth generation (LTE) to fifth generation (5G) cellular networks, in what is termed

as Release 14 of the 3GPP specification, the Control and User Plane Separation of EPC

nodes (CUPS) architecture was introduced. This architecture takes the separation between

the control and data plane one step further. The control part of the SGW and PGW are

separated from their data plane counterparts and new interfaces are defined between these

new components.

The proposed 5G core architecture, shown in Fig. 7.2, is based on this CUPS

architecture. The greater degree of separation between the control plane and data plane

components and more granular dedication of the tasks to components may simplify each

component. However, it increases the number of components involved in serving users’

requests, the coordination required and the number of messages exchanged between them.

With the evolution of networks to be increasingly software-based [229], driven by

127

the introduction of Network Function Virtualization (NFV), cellular operators are moving

towards an NFV-based packet core [93], especially for the flexibility, evolvability, and auto-

scaling it offers. The progress in virtualization techniques and packet processing [240]

has made it possible to host high-performance network functions on commercial-off-the-

shelf (COTS) servers. Software Defined Networking (SDN) makes it easy to separate the

data and the control plane, with a logically centralized SDN controller performing many

of the traditional network’s control functions. In this work, we explore the judicious use

of software-based networking concepts to implement the core network for next-generation

cellular networks. Associated with this evolution of the system architecture, we believe it is

also highly desirable to re-think the protocols (especially for the control plane) of cellular

networks. We believe it is critical to examine this opportunity, not just re-implement the

same set of protocols in software. This paper makes the following contributions1:

• We rethink the role of SDN and NFV for the next generation of cellular networks.

Instead of running softwarized version of the same hardware components in the 3GPP

architecture as NFV components, with the SDN controller performing the mediation

between the control and data planes, we design an architecture that truly leverages

the capabilities of SDN and NFV. Based on the updated architecture, we propose a

simple and efficient cellular core architecture, with easy scalability and support for

dynamic demands.

1Aspect of the overall motivation and high level design of CleanG have appeared earlier in a Work-

shop paper [159] and as a short paper [157], which are both extended abstracts. This paper addresses

the architecture and protocol of CleanG in greater detail and presents evaluation results from a testbed

implementation of CleanG as well as apples-apples comparisons with alternative designs.

128

• In the context of such a consolidated architecture, we design a considerably simpli-

fied control-plane protocol that eliminates GTP Tunnels. Without the burden of a

distributed set of cellular core entities and by leveraging shared memory across these

entities, there is no need to orchestrate setting up the state for each user session.

The simplified protocol eliminates a number of unnecessary control plane messages

required in 3GPP, reducing both overhead (improving throughput) and latency.

• We developed an implementation of the proposed CleanG architecture and protocol

(about 20K lines of code) on a testbed with the OpenNetVM DPDK-based NFV

framework and examined the performance with up to millions of emulated users. The

performance of CleanG is compared with a corresponding implementation of both the

LTE and CUPS-based (similar to 5G) architectures. Performance measurements on

the testbed implementations show the significant benefit of CleanG architecture and

protocol.

7.2 Background

Fig. 7.1 shows the system architecture of LTE network. User devices/equipment

(UEs) communicate over the wireless channel to base stations (eNodeBs). Their control and

data packets are forwarded to the packet core components of LTE network (Evolved Packet

Core or EPC). The main sub-components of the EPC are the Mobility Management Entity

(MME), Serving Gateway (SGW), Packet Data Network Gateway (PGW), and Home Sub-

scriber Server (HSS) [138]. The PGW manages IP address allocation, policy enforcement,

charging, and lawful interception. Driven by software and hardware limitations of earlier

129

platforms, the control plane elements for handling mobility and device state management

(the MME) has traditionally been separated from the data plane (S&P gateways). The

MME also deals with session management and authentication of users in addition to being

an end-point for the Non-Access Stratum (NAS) protocol stack between the EPC and the

UE. Data is carried over virtual tunnels, called GPRS Tunneling Protocol (GTP) tunnels

from the PGW to the UE. The HSS stores user information, such as security keys and

the last location of the user [138]. The 5G core architecture is shown in Fig. 7.2. This

architecture is conceptually very similar to the EPC with CUPS, which has the data plane

part of S&P GW separated from its control counterpart. The SGW and PGW control plane

duties are mostly performed by Service Management Function (SMF). SMF controls the

User Plane Functions (UPFs) (which is the equivalent of the LTE SGW and PGW data

plane). The AMF carries out the tasks performed by LTE MME. The Authentication server

function (AUSF) replaces the MME/AAA and the Unified Data Management (UDM) is the

storage component in the 5G system (in place of HSS). In the implementation of the LTE

architecture, the EPC potentially comprised multiple, purpose-built hardware appliances

from different vendors, motivated by the need to scale their (MME, S&PGWs) capacity

independently, to adapt to the workload. In the CUPS architecture and 5G core network

(5GC), the separation between the data and control plane has gone one step further, and

seek to take advantage of NFV and SDN for their interaction. In the 3GPP standards-

based protocol, users’ packets are forwarded by using GTP-U (user plane) tunnels. Each

user may have more than one tunnel set up at a time, with a GTP-C (control plane) tunnel

used to create and manage these tunnels. Tunnels are identified by TEID (Tunnel Endpoint

130

Identifier). TEIDs are generated randomly by the receiving end of the tunnel and commu-

nicated through the MME to the head-end of the tunnel. Tunnels are used to handle user

mobility and quality of service. While both these functions are necessary in the context of

the 3GPP architecture, the overhead for tunnel setup and management is very high.

When we look at the current control plane protocol message exchanges for a device

to attach (Fig. 7.7a) and handover (Fig. 7.9a), there are a large number of messages, with a

significant number contributed by the setup and tear down of GTP tunnels. With the need

for lower latency, lower overheads for the control plane, and improved overall throughput,

it is essential to simplify the cellular control plane both in terms of the implementation

architecture and the protocol. These are the aspects we specifically address in this paper.

7.2.1 5G Considerations

The 5G cellular networks packet core architecture has adopted concepts of software-

based networking to improve scale and flexibility. We investigate potential improvements

to the current architecture, the protocols for the 5G control plane and backhaul network

to achieve signaling efficiencies, improve user experience, performance, scalability, and sup-

port low-latency communications. 5G networks promise to revolutionize cellular communi-

cations, with substantial increase in per-user bandwidth and low latency through improve-

ments in the wireless radio technology. 5G net-works are being proposed as an alternative

not only for traditional smart-phone based data and telephony applications but also for

Internet-of-Things (IoT) and even for residential Internet service. While the use of improved

radio technology will help tremendously, challenges remain be-cause of the complexity of the

cellular network protocols. Of particular concern is the complexity of the control plane pro-

131

tocol and the use of GPRS Tunneling Protocol (GTP). Tunnels carry traffic between the end

user equipment (UE) and the cellular packet core network. With the increased use of small

cells (potentially more frequent handovers) and the need to support a large number of IoT

devices (which switch between idle and active more frequently to save battery power), the

need for efficiency of the control plane is even more important. The 5G Core (5GC) consists

of several different components that carry out individual tasks. When an event for a user

(e.g., attach, handover, service request) occurs, a large number of messages are exchanged

between these components for notification and synchronizing state. Consider for example,

an IoT device that conserves energy by quickly transitioning to an idle state, turning off

the radio. A service request event (when a UE transitions from idle to active to exchange

packets), requires between 13 to 32 messages (Fig. 7.4) [5]. This long sequence of messages

introduces undesirable latency in initiating a data transfer after the idle period. The over-

head (in messages ex-changed) and latency may nullify the purpose and goal of transitioning

to an idle state. We suggest a careful re-examination of the 5G architecture and control

plane protocol to improve performance. There are three aspects we explore: (a) redesigning

the control plane signaling protocol and 5GC system architecture, (b) an optimized traffic

engineering path selection in the backhaul network, and (c) an enhanced programmable

data plane. We begin with an overview of 5GC architecture, its control plane protocol and

approaches to simplify them, thus reducing latency, improving efficiency, throughput and

scalability. Secondly, we propose simplification of the backhaul network, which is usually

treated as an opaque entity. We explore alternatives currently being considered in the In-

ternet Engineering Task Force (IETF). Finally, a programmable data plane is dis-cussed to

132

enable additional network level functions necessary for 5G applications that require high

reliability or low latency.

7.3 Background

Conceptually, the 5G architecture follows the principles of the Control and User

Plane Separation of cellular core (CUPS) architecture introduced in Release 14 of the

3GPP specification thus simplifying the functionality needed to be supported by each

component.[178] However, the separation between the control and user plane components

significantly increases the number of messages needed to coordinate a user session state

across these components. There are five main entities, apart from the UE and cellular base

station (called the gNB in 5G new radio) as shown in Fig. 7.3 below. These are Access

and Mobility Management Function (AMF), Service Management Function (SMF), AUSF

(Authentication Server Function), Unified Data Management (UDM) and User Plane Func-

tion (UPF). The UPF is a data plane entity, while the others are control and management

plane entities. The AMF is main control plane orchestrator, managing UE mobility, session

establishment (through SMF), and handling service requests. Additionally, entities such as

the NSSF, PCF, and AF also play important roles, the details of which can be found in

3GPP TS 23.501 [213].

Traditionally, hardware components are purpose-built and customized for distinct

functions. While the control plane requires capability to handle complex processing and has

more sophisticated capabilities involving compute nodes, the data plane needs to perform

high-speed simple forwarding and is built with hardware accelerated forwarding engines.

133

AMF PCF

UE (R)AN UPF DN

N13

N7

N3 N6

N2 N4N1

AFN5SMFN11

N9

AUSF

N8N12

UDM

N10

N14 N15

NSSF

N22

Figure 7.3: 5G system architecture [213]

However, with the advent of virtualization, common off-the-shelf server (COTS) systems

with large number of processor cores, software libraries such as the Data Plane Development

Kit (DPDK) and high-performance network inter-face cards, this separation of functionality

is no longer necessary [55]. For example, a single server running the OpenNetVM platform

can process and forward 10s of millions of packets per second with software-based network

functions (NFs) handling both complex control plane functions and high rate data plane

workloads [241]. This has led the cellular industry to evolve into a software-based packet

core (5GC) system architecture. However, the 5G architecture continues to emphasize the

separation between the control plane and data plane as one of the goals even as software-

based systems are able to elegantly support multiple classes of functions running on the

same system [212]. The main requirement of efficiency and high performance can in fact, be

achieved by having the 5G control and data plane functions co-resident on the same COTS

134

system. Co-resident NFs can share state information more easily, and where possible take

advantage of shared packet processing. Use of software-based NFs should be viewed as an

opportunity to carefully take stock of how the functional architecture of the 5GC should be

implemented. By doing so, we see the potential for re-identifying the functional components,

but not require separation into different physical entities. Instead, these components can

be implemented as sub-modules or NFs in a service chain (or multiple service chains) on a

single system. We propose an architecture called CleanG [159], where the data plane and

control plane are supported by distinct NFs collocated on the same physical system (i.e., a

single component with two sub-modules). For example, supporting them on OpenNetVM

platform, each sub-module can be as-signed resources (CPU and buffering) dynamically as

needed based on the control and data plane workloads. CleanG remains true to 5G system

architecture (release 16), both based on NFV. In CleanG 5GC functions remain logically and

functionally decoupled. However, by virtue of being co-resident with other 5GC user and

control functions, several messages between functions are unnecessary and communications

overheads are reduced. There is no need to distribute and synchronize state information.

These are major contributors to performance improvements in CleanG. Additionally, the

NFV-based 5GC platform allows inherent scale-out of functions on-demand. CleanG can

also conveniently support slicing of the 5G network into multiple logical slices (whether

it is for having different logical planes for distinct services or for different virtual network

operators) by having distinct instances of the core NF for each slice. A direction currently

being pursued in industry is to have the 5G control and data planes separated by having an

SDN controller as an intermediary [205]. Unlike IP networks where the timescales for control

135

plane updates (infrequent, of the order of seconds or more) are very different from data plane

operations (frequent, of the order of microseconds or less), the cellular control plane and

data plane are much more tightly coupled (e.g., when a UE transitions from idle to active,

data packets can only flow after control plane operations for processing the service request

are completed) [158]. Having a controller to mediate the updates between the control and

user plane adds substantial delay. Additionally, the controller may become a bottleneck

under heavy control traffic. Because of the need to minimize the delays between control

and user plane operations in the cellular environment, we believe it is highly desirable to

have them co-resident on the same node wherever possible. Supporting software-based NF

offers additional opportunities for simplifying complex functions such as roaming. With the

ability to copy over state of a user session, an NF can be initiated in the visiting network

in a short time (less than a second). This enables the user to be served by an NF in the

visiting network while maintaining information for the home network, avoiding extra packet

exchanges with the home network. This approach is more efficient than normal roaming

or local breakout approaches as both data and control plane components are closer to the

roaming user. Our proposed CleanG architecture for the 5G cellular core exploits logically

separate but physically consolidated core control (CCF) and core data plane functions

(CDF), running on the OpenNetVM platform is shown below [159]. The CCF supports

functionality provided by the SMF and AMF, while CDF implements functionality of the

5G networks UPF. A primary goal is minimizing delay for an update from the cellular

control plane resulting in changes to the data plane. This is achieved by the CDF and CCF

sharing data and state using the OpenNetVM shared memory. Finally, multiple instances

136

Table 7.1: Approximate number of control plane messages received (R) and sent (S) for

different events in 5G. (B= baseline, O = optional messages)

of this NFV-based 5GC may be created to scale-out based on traffic, and to dynamically

adapt to the ratio of control to data plane traffic.

7.4 Improving cellular control plane protocol

As the number of components in 5G increased compared to LTE, additional mes-

sages are needed to keep state synchronized among them. Table 7.1 shows the number of

messages exchanged for the 5G for each user event.

Most of these messages are exchanged sequentially, or on occasion, after a timer

expiration. The completion time for control plane actions for an event is the cumulative time

for exchanging these messages, thus contributing to high delays. This delay includes time to

process each control mes-sage and the propagation and queuing delays for sending packets

between different components, especially if the control plane and data plane components are

137

far apart. Based on the CleanG NFV-based architecture, multiple core network processing

components may be consolidated into one or more network functions running on the same

node. This facilitates reducing the number of control plane messages, lowering completion

time. A second major 5G overhead is in using GTP-U tunneling to carry data packets

between different user plane components. The latency consuming task is the setting up of

the tunnel. The receiving end assigns a tunnel ID (TEID) to a flow and notifies the sender.

Because the control plane components (AMF and SMF) are involved in initiating and

mediating the tunnel set up, a number of messages are exchanged, which is time-consuming.

In the CleanG architecture, we use simple Generic Routing Encapsulation (GRE) tunneling

that does not require explicit setup or exchanging TEIDs. Different classes of services can

be used to meet simple application requirements using the DSCP (Differentiated Service

Code Point) field in the outer IP header. Another challenge for future cellular networks is

from new types of workload, e.g., from IoT devices. Exchanging a large number of control

messages for an idle-active transition not only adds delay, but results in overhead on 5GC

control components (e.g., AMF, SMF). One option pro-posed in 3GPP standardization is to

piggyback data packets with the first control message to an AMF, to reduce delay. However,

this can cause the AMF to become the bottleneck (excessive load from large numbers of

IoT devices), contributing to additional delay. The consolidation of control and data plane

components in CleanG enables immediate notification of the control plane while avoiding

it having to process data packets. Consider, for example, a service request user event in

the current 3GPP specification (see Fig. 7.4) for 5G networks. The AMF updates the SMF

about user sessions, and receives responses. The SMF then updates the UPF, enabling

138

forwarding of packets by the data plane. In an NFV environment where the control and

data plane components are co-resident on the same system and can share state, the need

for 6a,b, 7a,b, 18a,b, 21a,b can be eliminated. Consolidation of control entities in the

architecture can eliminate messages 4, 11, 15 and 19. For the common cases when an inter-

mediate UPF is not used and dynamic policy is not enforced, 13 out of 15 core message

exchanges are not essential.

5G cellular networks promise to provide low latency and high bandwidth to meet

emerging, demanding, performance-sensitive applications. A key enabler is the use of NFV

that offers flexibility from being software-based. We note that the use of NFV allows data

plane and control plane functionality to be supported on the same platform, unlike the tra-

ditional packet core network of multiple distributed components. Scalability is enabled by

the dynamic instantiation of the NFV platform supporting the CDF and CCF. However, ar-

chitectural and implementation changes alone with NFV squander the opportunity for truly

improving the cellular networks performance if the protocols dont properly take advantage

of the ability to consolidate the tightly interdependent cellular control and data plane. We

re-think the design of the control protocol to achieve low latency and high throughput by

simplification and using fewer messages. Complementing this, the backhaul network and

protocols must also be designed to judiciously utilize capacity and achieve low latency. The

PPR protocol is a key enhancement for the cellular backhaul. Low latency applications

are enabled by having a more flexible plane, using the ideas of BPP. In this article we

have sought to analyze several of the complexities of cellular networks without completely

disrupting the 5G system architecture, and propose carefully thought-out approaches to

139

Figure 7.4: Messages exchanged for service request event in 5G among 5GC components

and UE & (R)AN [5]

140

enhance the architecture and protocols of 5GC, the 5G backhaul and using a new backhaul

transport data plane.

7.5 Proposed CleanG Architecture

The 5G architecture is meant to be NFV compatible and makes it possible to use

software-based core components including utilizing the capabilities of software defined net-

work (SDN) controllers. While we believe leveraging SDN and NFV is a step in the right

direction, we believe it is possible to use them more efficiently than just simply implement-

ing what were hardware components instead in NFV software. In LTE, the MME and S&P

Gateway are separated. This separation is even more evident in 5G with the use of UPFs

to handle the data plane while keeping all the control plane functions distinct and out of

the data path. The ostensible advantage of this separation is that each of these components

could be replicated (i.e., scaled out) to handle higher demands. While we do not ignoring

some of the potential benefits of data and control plane separation, we claim this separation

is not necessary or desirable in the cellular networks for a number of reasons. With current

NFV platforms able to process and forward tens or even hundreds of million packets per

second, they can obviate the need to solely depend on hardware performance. They can

also be scaled with additional processing resources. Secondly, with the strict delay require-

ments for 5G and beyond, it is important to minimize the update and interaction delays

between the control and data plane (as we see below, this interaction is much more tightly

integrated, requiring data packets to wait till the control plane function is completed, unlike

the interactions with IP, where this separation is much more feasible.) Having an SDN con-

141

Centralized Controller

ENBENB

Destination
Network
(Internet)

CoreData

CoreControl

O
p

en
N

e
tV

M

Shared
Memory

Other NFsOther NFs

A Core Pool

Database

Policy Engine

NF Orchestrator

N
FM

anager

Data Packet

Control&Data Packet

Control Packet

Figure 7.5: CleanG architecture

troller mediating the data plane updates (such as in [36]) only increases the delay further.

Nonetheless, we examine and evaluate the performance of the approach of using SDN-

controller as in [36] to quantitatively justify our design philosophy/choice. We do believe it

desirable to handle high-level monitoring and policy enforcement in a centralized manner,

as with a central SDN-like controller, while keeping individual session-state ’micro-level’

updates for each user transparent to the controller.

We propose CleanG as a simple, efficient, and scalable architecture for next gener-

ation cellular core networks. The CleanG architecture is shown in Fig. 7.5. The implemen-

tation architecture is based on the OpenNetVM framework [240], a high performance NFV

142

platform built on top of the Data Plane Development Kit (DPDK) library. A primary goal

of the CleanG system architecture is to minimize the overall cellular control plane latency

as well as the delay for an update to the control plane to be reflected in necessary changes

to the cellular data plane. The CleanG architecture is based on having a tightly knit con-

trol and data plane for the cellular core network, running on the OpenNetVM framework.

CleanG instances can be instantiated at the edge, in central office data centers, when and

where demand exists. The two main components, the CoreData and CoreControl, im-

plementing the cellular data and control planes respectively, share data and state using the

OpenNetVM shared memory, buffers, and queues thus resulting in minimal delay. In our

design, the CoreData data plane component receives all packets from network interfaces,

encapsulates/decapsulates and forwards data packets based on the rules provided by Core-

Control as a Flow table (Hash table using DPDK’s cuckoo hash [111]) in shared memory. If

CoreData does not have a rule for a packet (e.g., control packets), it forwards these packet to

the CoreControl component. The forwarding between these components takes place with-

out data movement of the packet, as it is achieved by adding a pointer to the packet buffer

to the receive queue of the CoreControl NF. The decision to delegate the responsibility of

reading all the packets from interfaces by CoreData saves resources (mainly CPU cycles)

in our design. While it is normally done by the Flow Director NF in the OpenNetVM

framework, those responsibilities are merged into the CoreData design for efficiency.

The CoreControl NF processes received control messages from the UE/eNodeB,

creates a response, updates the state entry in the hash and generates a response back to the

143

UE/eNodeB. More detail about the control protocol and the forwarding process is provided

in the protocol section.

Based on our design and facilities provided by OpenNetVM, it is possible to run

multiple replicas of CoreData and CoreControl on demand, dynamically. If data forward-

ing is the limiting factor, an additional instance of CoreData may be created. Similarly,

when handling control plane messages becomes the bottleneck (e.g., IoT environments), the

number of CoreControl instances may be increased. Packets are sent to different instances

of each NF, based on the Receive Side Scaling (RSS) demultiplexing provided by DPDK.

Additional remaining computational capacity can host other network functions such as a

firewall or IDS if physical ports are the bottleneck.

7.5.1 Deployment Considerations

To be able to handle increasing numbers of users, multiple instances of the CleanG

Core can be supported on the same edge data center for the cellular provider, with a Core

pool supporting a certain number of eNodeBs. The geographic area covered by each data

center hosting a number of servers implementing the CoreData and CoreControl functions

(Core pool as we call it) would depend on delay considerations. The more elastic the delay

requirement, the easier it is to have a larger geographical area covered by a Core pool,

potentially with a larger number of servers. While each eNodeB can be connected to the

CleanG cores in different pools, the eNodeB would likely be configured to be associated with

one Core pool based on the availability of the core instances and policies set by network

providers and administrators. A user session remains associated with that instance as long

as the user remains within the set of eNodeBs supported by that Core pool. We expect user

144

handovers between the Core pools to be infrequent, especially as there can be a relatively

large number of eNodeBs connected to each CleanG Core. Thus, handovers between CleanG

Core pools occur primarily to manage delay. While we provide details of the handover within

a Core here, the handover between Cores is left for a detailed technical report.

7.6 Proposed CleanG Protocol

Leveraging NFV enables us to consolidate a number of components of the cellular

packet core on to a single server and derive performance improvements. First, we retained

the original 3GPP protocol framework (e.g., Fig. 7.7a or 7.9a) and implemented it within

the CleanG system architecture. However, as we show in our evaluations, the improvement

is somewhat limited, as measured by the task completion times for control events. We see a

significant opportunity to dramatically improve performance when we are able to conflate

the improvements from the architectural consolidation with a careful re-design of the control

plane protocols to take advantage of the new architecture. Staying with the original 3GPP

protocols but just changing only the system architecture (i.e., adopting NFV) results in a

lost opportunity to significantly improve cellular performance.

There are two main opportunities we take advantage of to improve the cellular

control plane protocol. The consolidation of the cellular core components eliminates the

need to keep state synchronized among different components and the consequent need for a

number of additional messages to be exchanged to confirm the state update. A second major

improvement comes from eliminating the process of setting up the GPRS Tunneling Protocol

(GTP) tunnels by using the simpler Generic Routing Encapsulation (GRE) tunnels. To

145

eliminate GTP tunneling, while supporting different classes of service (CoS), we use the

DSCP header field in the encapsulating IP packet to specify the required CoS (bearer in

3GPP cellular network terminology). Details are in subsection 7.6.1

In addition to the techniques we already mentioned, we use the following measures

to improve the control plane protocol: (details for individual events are explained in the

subsections below.)

• We optimize the protocol for the typical scenario and then address exceptions instead

of burdening the common case with unnecessary messages. For example, by knowing

the security algorithm previously used by the user, we take advantage of this soft state

for the user when he uses the same algorithm for the next connection. If however the

user changes the algorithm for the new connection, an extra message is exchanged to

change the selected algorithm.

• The central controller is only used for high-level monitoring and policy enforcement.

The controller is not involved in the exchange of each and every control message.

• Where appropriate, we take advantage of changing the order of the messages ex-

changed to reduce the number of messages. For example, mutual authentication

needs a minimum of three messages, but by initiating from the client, we can reduce

the number of messages exchanged.

• We can merge information across what would otherwise have been carried across

multiple messages where appropriate.

• Where appropriate, we delegate responsibility to other network components. For

146

instance, we allow the eNodeB to participate in the authentication thus reducing the

need to send an additional message back to the CoreControl.

• By taking advantage of shared memory between the cellular core components, we

reduce the need for the exchange of several messages, and the shared data structure

allows for synchronization and sharing of information.

• Based on the user service required (e.g., delay tolerant or delay sensitive), events are

handled differently. For example, for handover of a delay sensitive stream, packets are

duplicated. But, they are not duplicated for the delay tolerant streams.

• If not necessary, control message exchanges are deserialized. For example, location

can be updated in the HSS while the attach acknowledgment is sent to the UE in

parallel.

7.6.1 Forwarding data packets in CleanG

Forwarding in the 3GPP protocol used in LTE & 5G is described in detail in [3, 4].

For each CoS of each user, a distinct tunnel is established between the entities (SGW, PGW,

and eNB in 4G, and between UPF and gNB in 5G) to forward data packets. Tunnel IDs are

exchanged between these entities, mediated by the control plane components. For example,

to forward packets from eNB to the SGW, the SGW sends a Tunnel End Point Identifier

(TEID) to MME, and the MME forwards that TEID to the eNB. All packets for that stream

are encapsulated in a packet with that TEID. When the SGW receives packets with that

TEID, it fetches the QoS, and handles the packet accordingly. However, in our CleanG

147

Downstream_Table0

Lookup(IP) Data Action

UE_IP Address_of_TFT_table Lookup_Core_TFT(Pointer to table)

eNodeB_Downstream_Table0

Lookup(IP, DSCP) Data Action

UE_IP, 0 RadioBearerDefault,
QCI_0

Send_out(RadioBearerDefault)

UE_IP, 1 RadioBearerDedicated_11
QCI_1

Send_out(RadioBearerDedicated_
1)

Downstream_TFT

TFT_Rule Data Action

(*,80,*,*,*) ENB_IP
DSCP = 1,
QCI

Encap(IP=ENB_IP, DSCP=1)
Apply(AMBR/GBR)
Send_out()

(*,*,*,*,*) ENB_IP
QCI
DSCP=0

Encap(IP=ENB_IP, DSCP=0)
Apply(AMBR/GBR)
Send_out()

Internet

Application

C
o

re_D
ata

eN
o

d
e

B

UE

Figure 7.6: Downstream forwarding tables

148

protocol, we dispense with the use of TEID, because the CoreData NFV can forward data

packets based on the IP address and QoS (DSCP) fields in the IP packet. Another benefit

of GTP tunnels was for handling mobility. However, mobility can be dealt in CleanG by

attaching the right GRE encapsulating headers to data packets. GRE tunneling has much

less overhead for the system as it does not need a TEID setup step. The CoreData and

eNB simply use the IP addresses of each other to forward packets to the other end. We now

explain this in detail. While we retain QoS treatment and admission control for the data

plane, there are a number of significant differences in CleanG.

Fig. 7.6 presents abstractly the forwarding tables for downstream (From data

network to UE) packet processing. Based on the destination IP address, the UE’s IP, a

Traffic Flow Template (TFT) of the user is fetched. The packet header is matched against

the TFT rules and based on that, the class of the service for flow is selected. Besides that,

we obtain the IP of the destination eNodeB, which is then is used to encapsulate the packet

with a Generic Routing Encapsulation (GRE) header. Based on their class, packets will

be forwarded with the appropriate priority by CoreData, with the Differentiated Services

Code Point (DSCP) field set accordingly. DSCP is used by routers in the backhaul network

to forward packets and the serving eNodeB to select the proper radio bearer.

The third table in Fig. 7.6 is the forwarding table in the eNodeB. Based on the IP

address of the user and the DSCP bits, the proper radio bearer is chosen and the packet

forwarded to the user.

For the upstream, the UE receives the TFT rules during the initial attach process,

which is used to match packets from the application/higher layer protocol stack on the

149

UE eNB1) RRC Connection Request
eNB UE2) RRC Connection Setup
UE eNB3) RRC Connection Setup Complete

MMEUE 3) Attach Request
MME HSS4) Auth. Information Request
HSS MME5) Auth. Information Response

UEMME 6) User Auth. Request
UE MME7) Send Back RES

MME UE8) Security Mode Command
UE MME9) NAS Key Gen. Complete

MME HSS10) User Location Information
HSS MME11) UE’s APNs, P-GW ID, QoS Profile

SGWMME 12) EPS Session Request
SGW PGW13) EPS Session Request
PGW PCRF14) New Session Notification

SPRPCRF 15) Request Access Profile
SPR PCRF16) Return Access Profile

PCRF PGW17) Session Establishment Ack.
PGW SGW18) EPS Session Creation Response
SGW MME19) EPS Session Creation Response
MME UE20) Attach Accept
MME 21) Initial Context Setup

eNB
eNB UE22) Security Mode Command
UE 23) Key Generation Complete

eNB UE24) Reconfigure RRC Connection
25) Context Setup Response

26) Attach Complete
MME SGW27) S1 Bearer Modification
SGW MME28) Modify Bearer Response

eNB

eNB MME
UE MME

(a) Current LTE protocol

UEUE ENBENB CORECORE
Centralized
Controller
Centralized
Controller

(1) Preamble(RACH, RA-RNTI)

(3) RRC Connection Request(
C-RNTI, UserID, Reason)

+ Attach Request(
UserID, TAI, ECGI)+

CORE Authentication Request(
RAND+AUTN)

(6) Authentication Information Request
(UserID, RAND)

(8) Authentication Response (RES) +
Necessary security info for ENB (K_ENB) +
QoS info, IP, UserID, Ready to Receive Data

(5) Attach Request(
UserID, TAI, ECGI)

+CORE Authentication Request
(RAND+AUTN)

(2) RAR(RACH, Time Advance,
Resource Grant, C-RNTI)

User is getting the service

(9) Authentication Response(RES)
+ IP + UserID+ QoS info + Ready to Receive Data

(4) Connection Resolution(
UserID, new C-RNTI)

(10) Location Update (UserID, TAI, ECGI)

(7) Authentication Information Response
(Authentication Vectors) + QoS Info + APNs

(b) Proposed CleanG protocol

Figure 7.7: Attach protocol

UE. If a packet matches a rule, but the bearer has not been already set up for it, the UE

sends a request to setup this bearer. This request to set up the bearer can be handled by

the eNodeB or be sent to the CleanG core based on provider policies. The UE then uses

the radio bearer to send that packet based on the TFT table. The eNodeB receives the

packet, based on the IP and radio bearer, sets the value of the DSCP bit and encapsulates

the packet to be sent to the CleanG Core. The CoreData NF decapsulates the packet,

serves it based on the service class, and forwards it to the destination. To sum up, in

CleanG, instead of creating separate GTP tunnel headers (tags) for each user and class of

service, and exchanging a number of messages between the different components to set up

the tunnels across different components, we use an encapsulating IP header and DSCP bits

to provide that functionality, without requiring set up across multiple components. This is

far more efficient, without needing any message exchanges.

150

7.6.2 CleanG control plane protocol

While we ensure the user/UE functionality is retained, we deviate from strict

conformance with the 3GPP protocol (e.g., NAS, S1-AP, etc.) to achieve what we believe

are compelling performance benefits that come from re-thinking the control plane protocol

in addition to the architectural changes of CleanG. Messages are exchanged over a reliable

transport protocol (SCTP or TCP). We explain the protocol for each of the following

main events, looking at their primary variant: initial attach, service request, handover,

active-to-idle, and detach.

Initial Attach

This is the event when a user wants to start using the network. In contrast to

the current 3GPP protocol for Attach (Fig. 7.7a), the CleanG message exchange is shown

in Fig. 7.7b. We retain the physical connection setup between UE and eNodeB as in

3GPP [138], with its four messages for the initial attach request and establishment of the

physical, air-interface connection between UE and eNodeB. We initiate the authentication

procedure by the UE rather than the network, thus allowing the authentication request to

merge with the attach request and reducing the number of messages exchanged. (Omitting

authentication request and response, originally message numbers 6 and 7 in Fig. 7.7a). The

reason this change is valid is that the authentication process between user and network is

mutual authentication, and either end can start the procedure. A sequence number is used

to track the freshness of message exchanges. It is also used to create the authentication

vectors at the logically centralized controller. Another option, instead of the authentication

151

process being started by UE, is to delegate part of the responsibility of authentication to

the eNodeB. Here, the expected authentication response is provided to the eNodeB, which

then validates the authentication response from the UE. The default assumption is that

these values should match. However, if the authentication was not successful, the eNodeB

would send a message back to the Core and informs it to ignore the authentication request,

otherwise the Core assumes the authentication was successful.

Another improvement from a security perspective in the CleanG protocol is that

for each user or group of users, a default encryption and message integrity algorithm is

specified. However, if it is not possible to use the default algorithm by network or UE, it is

possible to use a different algorithm on demand by signaling the other side. As such, the

message exchanges between components to negotiate the security protocols can be omitted

so that messages 8, 9, 22, and 23 in the 3GPP protocol (Fig. 7.7a) can be eliminated.

When the HSS sends authentication information to the Core it also includes other

user-related information such as the data network, QoS for the user. Therefore, it is not

necessary to have a dedicated message from HSS to the CleanG Core to carry this informa-

tion.

Because of the consolidation in CleanG resulting in a session’s data and control

plane functions being on the same machine, message exchanges between MME, SGW, and

PGW of the 3GPP protocol are not necessary, eliminating another group of messages 12,

13, 17, 18, 19, 27, and 28.

A central controller can enforce the Policy and Charging Rules Function (PCRF)

and Subscriber Profile Repository (SPR) related updates and policies, thus eliminating the

152

UE eNB1) RRC Connection Request
eNB UE2) RRC Connection Setup
UE eNB3) RRC Connection Setup Complete

MMEUE 3) Service Request
MME UE4) Initial Context Setup
eNB UE5) AS Security Setup
eNB UE6) RRC Connection Reconfig
eNB MME7) Initial Context Setup Response

MME SGW8) Modify Bearer Request
SGW PGW9) Modify Bearer Request
PGW PCRF10) IP-CAN Session Modification
PCRF PGW11) IP-CAN Session Modification Ack
PGW SGW12) Modify Bearer Response
SGW MME13) Modify Bearer Response

(a) Current LTE protocol

UEUE ENBENB CORECORE
Centralized
Controller

Centralized
Controller

(5) Activation Notification(
UserID, ENB, Available State Flag, ECGI, TAI)

(1)
(2)

(3) + Service Request(
UserID, Authentication token, TAI, ECGI)

(4)

Establish Physical ConnectionEstablish Physical Connection

(7) Necessary security info for ENB
+QoS info

If ENB doesn't have necessary statesIf ENB doesn't have necessary states

(8) Activation complete

(6) Location Update
 (UserID, ECGI, TAI)

User is getting service

(b) Proposed CleanG protocol

Figure 7.8: Idle-to-active protocol

messaging for these function. The central SDN-like controller may monitor the system and

update the policies on demand. For example, in response to network congestion, it can

update the policy in the related Core pool to re-prioritize traffic appropriately, or modify

shaper parameters. These updates are not sent for individual users. Instead, they are

carried as policies that can be applied on classes of users.

Service Request (idle-to-active)

The idle-to-active transition occurs when a user that was not active for a while,

begins to exchange data (Fig. 7.8). The first four messages are exchanged to establish

the physical connection and sending the idle-to-active request, which are unchanged in

CleanG. Then, in CleanG, the eNodeB sends a flag about its current state in addition to

the notification to the CoreControl component. If the eNodeB already has the required

state to handle user packets based on the last time the user was active, CoreControl does

not need to send the state back to the eNodeB, but just sends back an acknowledgment.

For selected users (chosen by CoreControl, e.g., an IoT device), if the eNodeB has the state,

instead of explicit messaging to notify the idle-to-active transition, the users can send their

153

UE eNB-S1) Measurement Report
eNB-S MME2) Handover Required
MME eNB-T3) Handover Request
eNB-T MME4) Handover Request Ack
MME SGW5) Create Indirect Tunnels Request
SGW MME6) Create Indirect Tunnels Response
MME eNB-S7) Handover Command
eNB-S UE8) Handover Command
eNB-S MME9) eNB status transfer

UE eNB-T
eNB-T UE

UE eNB-T
eNB-T MME

10) Make Connection (Sync)
11) UL Allocation and Timing

12) Handover Confirm
13) Handover Notify

MME SGW14) Modify Bearer Request
PGWSGW 15) Modify Bearer Request
PCRFPGW 16) Notify IP-CAN Session Modification

PCRF PGW17) Session Modify Ack
PGW SGW
SGW MME

18)Modify Bearer Response
19)Modify Bearer Response

MME eNB-S
eNB-S MME
MME SGW
SGW MME

20) UE Context Release Command
21) UE Context Release Response

22) Delete Indirect Tunnel
23) Delete Indirect Tunnel Response

(a) Current LTE protocol

UEUE SrcENBSrcENB CORECORE TrgtENBTrgtENB(1) Measurement(
neighbour ENBs, metrics,

 UserID,
Selected security algs)

(2) Handover Request(
UserID, SrcENB,

 DstENB, Sec Algorithm)

ENB makes
decision to
handover

Starts duplicating packets on both paths

(3) Handover Request(
GUTI, SrcENB, Sec Algorithm, QoS Info,

Security Keys)
(4) Handover Acknowledge(RACH, C-RNTI)(5) Handover Acknowledge(RACH, C-RNTI)(6) Handover Command(

RACH, C-RNTI, LastPktSeqNo)

(7) User Disconnected (UserID)

Just Forwarding on target path

Establish Physical ConnectionEstablish Physical Connection

(8)
(9)

(10) + LastPktSeqNo

Data Packet ForwardingData Packet Forwarding

Data Packet Forwarding

Centralized
Controller

Centralized
Controller

Update users location (UserID)

(b) Proposed CleanG protocol

Figure 7.9: Handover protocol

packets directly. Then, CoreData may just forward the data packet or notify CoreControl,

so the data packet is considered as an idle-to-active request as well. If the location of the

user hasn’t changed, it is also not necessary to update the user’s location.

Handover

One of the more important protocol events in the cellular network is a handover

from one (source) eNodeB to another (target) eNodeB. Since it is frequent and a large

number of messages are exchanged, handovers can impact user-perceived latency and sig-

nificantly impact the performance of data packets. In the current 3GPP protocol, handover

is agnostic of the type of user data from the cellular core’s viewpoint (it is handled differ-

ently in the Radio Link Control (RLC) layer by using ’acknowledged’ or ’unacknowledged’

mode, but we do not focus on this aspect in this paper). CleanG recognizes a need to

differentiate between delay sensitive packet and delay tolerant packet classes to optimize

the handover appropriately. Fig. 7.9b shows our proposed CleanG protocol for handover

of users having a delay sensitive packet stream. The initial handover preparation is similar

154

to what is used in current S1 3GPP handover procedure. However, the most important

difference is that instead of setting up indirect tunnels, CoreControl begins duplicating the

downstream packet towards both the source and target eNodeBs, while adding a sequence

number to the packets. This allows significant latency reduction, at the cost of overhead in

duplicating packets over the backhaul network (which is most often not the bottleneck and

is provisioned for peak capacity, if not more). It allows, at the point of handover execution,

when the UE is connected to the target eNodeB, all the packets are buffered there and are

ready to be delivered to UE. The UE provides the last sequence number of packets received

from the source eNodeB as well as other flow state information needed at the target eN-

odeB to provide correct delivery of the packet stream to the UE. The target eNodeB from

that point on delivers packets in sequence to the UE. The packet duplication occurs only

during a short during of the handover from source eNodeB to the target eNodeB (after

the determination has been made to initiate the handover) for users with delay sensitive

streams over the wired backhaul. The benefit is the significant latency reduction. For users

with delay tolerant streams, instead of the duplication to the target eNodeB, CoreControl

buffers packets at the Core. Once the user is attached to the target eNodeB, the packets

are transmitted from the CoreControl to the eNodeB. The remaining protocol exchange

for both delay tolerant and delay sensitive sessions are the same. Overall, the procedure is

dramatically simpler than the current 3GPP procedures.

155

Active-to-idle and Detach

Active-to-idle and detach are used for short term and long term service suspension

respectively. While we have made similar improvement to their protocol, the details are

omitted for the sake of brevity in this paper.

7.7 Evaluation

We compare our proposed CleanG with the 3GPP LTE architecture and with a

CUPS-based (similar to 5G) architecture and protocol. With the CUPS-based architecture,

an SDN controller mediates communication between the data and control plane entities (we

interchangeably call this the SDN-based alternative). Without an open source implemen-

tation for 5G and with limitations of existing open source implementations of the EPC

for LTE, e.g., OpenAirInterface [167], we chose to implement each of the three variants as

carefully and fairly as possible on the high performance OpenNetVM DPDK-based frame-

work. In this way, we perform an apples-to-apples, fair, comparison of our proposed CleanG

system, with other approaches. All three architectures and protocols were evaluated in the

OpenNetVM framework, ensuring all of them benefit similarly from OpenNetVM’s features,

including DPDK-based packet processing. As a consequence we are able to clearly show

the performance improvement of CleanG over the alternatives is based on the architecture

and protocol improvements and not because of the use of a faster platform. In our imple-

mentation, we included all the key messages and the primary information fields that are

key to the protocol operation. The protocol and system implementation used C (about

20K lines of code) to obtain the highest performance we could obtain for all three different

156

CONNDISC IDLE
Detach

Attach Handover

Idle-to-active

Active-to-idle

Figure 7.10: Transitions for each UE at workload generator

architectures. A small part of the code for the CUPS-based approach that runs over the

ONOS [28] SDN controller is in Java. We use one server to generate the user workload

traffic at scale. (Server 1 in Fig. 7.11). Based on reasonably representative user behavior,

we are able to scale the system up to support millions of users. The Forwarder NF in

Fig. 7.11 is a foundational, base NF that is needed to read packets from ports and forward

them to the appropriate destination NFs. We avoid simulating the air interface in detail

by modeling the traffic generated from a large number of UEs to the eNBs. We generate a

number of representative user events (e.g., UE connecting/disconnecting to/from the net-

work, the UE going to idle state, mobility causing handover, etc.) for each UE emulated.

These events are generated and arrive at the NF representing the eNodeB. The workload

generator maintains state for each UE to generate the appropriate messages and the UE

changes state based on the state machine shown in Fig. 7.10. This state machine is used to

regulate the transition rate between states for each user and the number of events gener-

ated by each user. This state machine is valid even considering the Discontinuous Reception

(DRX) state transitions [2], as it can be interpreted as a sub-state in the connected state.

157

Server 2

MME

SGW

PGW

Replying
Data Server

OpenNetVM

ForwarderForwarderForwarder
ForwarderForwarderForwarder

enb2eNodeB

Workload
Generator

Server 1

OpenNetVM

Data
Generator

(a) LTE EPC Implementation

ForwarderForwarderForwarder

Server 2

SGW-d

PGW-d

Replying
Data Server

OpenNetVM

ForwarderForwarderForwarder

Server 3

MME

SGW-c

PGW-c

OpenNetVM

ONOS

ForwarderForwarderForwarder

enb2eNodeB

Workload
Generator

Server 1

OpenNetVM

Data
Generator

(b) CUPS-based Implementation of the EPC

ForwarderForwarderCoreData

Server 2

CoreControl

Replying
Data Server

OpenNetVM

ForwarderForwarderForwarder

enb2eNodeB

Workload
Generator

Server 1

OpenNetVM

Data
Generator

(c) CleanG Implementation

Figure 7.11: Components involved in implementation of each scenario

Users can be in one of three states: DISConnected, CONNected, or IDLE. Five

different transition rates are defined. We set these rates based on [204], assuming users

spend 10% of the time in CONN and DISC states and 80% of the time in the IDLE state.

Another parameter driving the workload generator is the number of control transactions

per second per user. We use as the basis the number of transactions measured in 2012,

which was 0.031 per second per user [1]. We extrapolate from that data to arrive at an

anticipated current workload (we recognize there will likely be inaccuracies as usage and

deployment pattern change along with new applications). With a 2x increase every three

years, we arrive at a rate of 0.1 transaction per second per user. By considering the amount

of time spent in each state and the total number of transactions for each user, we calculate

that the transition rates are 0.07/s for attach, handover and detach, 0.215/s for active-idle

and 0.0269/s for idle-active transitions. Another parameter needed for the evaluation is the

number of data packets sent by each active user. We set it based on the assumption of

total data usage for each user (about 2GB per user, given the average amount of traffic per

smartphone in 2016 was 1,614 MB per month [50]) and the percentage of time each user is

158

active was 10%. From this, we get 108 Kbps of data traffic on average for an active user.

Using 617 Bytes as the average packet size [110], each user exchanges about 21 packets

per second. [204] has measured that smartphone users have a higher downstream rate and

upstream (as can be expected). Hence we set a 2:1 ratio between downstream and upstream

traffic. Thus, we use 14 pkts/sec downstream, and 7 pkts/sec upstream for each active user.

The LTE core implementation on our testbed is illustrated in Fig. 7.11a and the

implementation of SDN-based and CleanG are shown in Fig. 7.11b and Fig. 7.11c, respec-

tively. For emulating the LTE network, each component of the LTE Core is implemented

as a distinct NF in OpenNetVM, in addition to the Forwarder NF. Although the MME

is usually not co-located with SGW & PGW on the same physical node, we have chosen

to have it on the same node to have the most efficient implementation of LTE EPC core,

with minimum delay, and thereby ensure a fair comparison with CleanG. We note that

the more conventional LTE EPC core partitioning would result in more delay and lower

performance for the competing alternatives than we would obtain here. In this way, we can

fairly evaluate the effects of architecture and protocol of LTE vs. CleanG.

7.7.1 Total number of supported users

We first measure the maximum number of the users that can be handled by each

architectural alternative for the same workload of data and control traffic, providing the

same resources. We increase the number of users by 50K in steps until packet drops are

observed. Other parameters such as queue size and buffer size are the same across all the

experiments and systems. We start by having a CPU core for each function for each option

- that means, we use 4 CPU cores for LTE (one for MME, SGW, PGW, and forwarder),

159

while with CleanG we use a CPU core each for CoreData and CoreControl. The maximum

number of users supported by CleanG with the one CPU core hosting CleanG CoreData is

1.65M (Fig. 7.12). In comparison, the LTE architecture and protocol supports 1.45M while

the CUPS-based alternative can only support 1.15M users.

We also look at the alternative of using an equivalent amount of resources for

CleanG as the other architectures. When CleanG uses the same number of the CPU cores

as LTE (i.e., 3), we see that it can support a significantly higher number of users, going up to

5M users, resulting in a 3-fold increase in the number of users compared to having one core

for CleanG CoreData. This is feasible since the NF implementing the CleanG control plane

(CoreControl) on one core is able to support the corresponding load of control messages.

The 3 extra CPU cores can thus be assigned to the CoreData instances. We also note that

CoreData is the bottleneck. In the LTE case, the SGW becomes the bottleneck, as it has

to handle the highest number of messages, including both data and control messages. In

the CUPS-based implementation, however, the SDN controller is the bottleneck since it is

limited in handling the large number of control messages received.

7.7.2 Maximum data plane rate

The maximum data plane packet rate that can be handled by each approach is

shown in Fig. 7.12. The CUPS-based approach can support a higher data packet rate than

the LTE architecture, because of the separation of the S&P GW data plane functions from

the control plane functions. The control plane functions are handled by the components

residing on the north-bound side of the SDN controller. This improvement comes at the

160

0

2

4

6

8

10

12

14

16

18

20

LTE LTE (SDN-Based) CleanG-One
Instance

CleanG-Equal
Resource

D
at

a
Pa

ck
et

 R
at

e
(M

p
p

s)

Number of Users (Millions)

Data packet rate (Mpps)

6

5

4

3

2

1

0

N
u

m
b

er
 o

f
U

se
rs

(M
ill

io
n

s)

Figure 7.12: Maximum data packet rate in Mpps and maximum number of supported users

cost of reducing capacity in terms of the number of users supported as a result of control

plane limitations. On the other hand, when we compare these with CleanG when provided

with an equal number of processing cores, CleanG is at least 3X better in terms of the

supported maximum packet data rate, demonstrating the benefit of both architecture and

protocol simplification.

7.7.3 Total UE event completion times

An important measure of the efficacy of the control plane is the time it takes to

complete actions requested by a UE. Typically, data packets exchanged between the UE and

the rest of the network have to wait till the control plane protocol sequence (often involving

several packets) is completed. Attach and Idle-Active transitions cause data packets to

be buffered at either end. ”Active-Idle” and ”Detach” event completions result in a faster

161

0

20

40

60

80

100

120

Attach Idle-to_active Active-to-idle Handover Detach

To
ta

l t
im

e
 -

M
ic

ro
 s

ec
o

n
d

s

LTE

CleanG (Equal No. of Cores)

CleanG (Single Core)

Figure 7.13: Events completion time for 1M users

release of resources (and in the former, better battery power management). Faster handover

causes less disruption in the data stream.

Fig. 7.13 and Fig. 7.14 show the completion time of the different events for a

system with 1M and 100K users respectively. CleanG has a dramatically lower delay in

comparison to the other two approaches, even when it is using fewer resources (i.e., having

only a single CPU core). By using an equal amount of resource as LTE, the completion time

for the control plane action is slightly faster with CleanG. Fig. 7.15 shows the completion

time for the CUPS-based approach (shown separately because of the larger Y-axis scale),

which is noticeably higher than the other two approaches because of the delay imposed by

the control messages having to traverse the SDN controller. Since the data plane is the

bottleneck with CleanG, the addition of CPU cores to the control plane primarily improves

system capacity (number of user sessions) rather than improve event completion times. This

162

0

10

20

30

40

50

60

70

Attach Idle-to_active Active-to-idle Handover Detach

To
ta

l t
im

e
 -

M
ic

ro
 s

ec
o

n
d

s

LTE
CleanG (Equal No. of Cores)
CleanG (Single Core)

Figure 7.14: Events completion time for 100K users

10

100

1000

10000

100000

Attach Idle-to-active Active-to-idle Handover Detach

Ti
m

e
 (

M
ic

ro
 S

e
co

n
d

s)

LTE-SDNbased-100K Users

LTE-SDNbased-1M Users

Figure 7.15: Events completion time for SDN-based

163

observation is based on the workload’s mix of data and control traffic we used. It would be

different if the control traffic had a higher intensity.

7.7.4 Data packet forwarding latency

Forwarding data packets by the cellular core is affected by the load on the different

components as well as the control plane protocol. A more efficient architecture and protocol

not only improves the performance of the control plane but also reduces the latency for data

packets. Fig. 7.16 shows the cumulative distribution function (CDF) of the round trip time

(RTT) from the data generator to the data server and back, as observed by data packets

for the different architectures. This graph shows that data packets in CleanG see lower

delay by at least a factor of 2 in comparison with data packets in the LTE architecture.

By increasing the number of cores for CleanG, to match available resource for LTE, the

difference becomes even more significant. Finally, we observe that the data forwarding

latency for the SDN-based alternative is comparable to the CleanG approach. This is

because the data forwarding components are not involved in handling control messages in

the SDN-based alternative.

7.7.5 Detailed timing of different events

Each of the main events has a number of messages exchanged between the different

components. We recorded timestamps on server 2 and 3 (see Fig. 7.11) to calculate the

time spent on processing and transmitting each of the control plane messages. Although we

captured the timestamps comprehensively, we highlight the major components of time spent

164

0

0.2

0.4

0.6

0.8

1

10 15 20 25 30 35 40 45 50

Fr
ac

ti
o

n
 o

f
d

at
a

p
ac

ke
ts

Data packets roundtrip time (Micro seconds)

CleanG_SingleCore_100K

SDNBased_100k

CleanG_EqualResource_1M

SDNBased_1M

LTE_100K

CleanG_SingleCore_1M

LTE_1M

Figure 7.16: Data forwarding delay comparison

on each event to help understand the contributing factors. As seen in Fig. 7.17 for LTE, the

Attach and Handover events exchange a much larger number of messages compared to the

other 3 events, thus taking more time, as seen in Fig. 7.13 and Fig. 7.14. Each column shows

the time spent for each of the control events. Three different categories of messages taking

distinctly different times are observed. The more significant chunks of time in Fig. 7.17

represent the time spent on messages exchanged between components residing on different

physical devices, because of the additional time to exchange messages between the servers

over the link. We underestimate these completion times, because if we had the components

such as S&P GW and MME on different machines, the overall delay would be even higher.

But what is worse is the even higher delay observed for the CUPS/SDN-based

architecture, as shown in Fig. 7.18. The largest time spent is communication between

the data and control plane of S&PGW when the messages are forwarded using an SDN

165

0

10

20

30

40

50

60

70

Attach Detach Idle to active Active to Idle Handover

Ti
m

e
(M

ic
ro

 S
ec

o
n

d
s)

AuthRsp-MME

AtchReq-MME

KeyGen-MME

EPSReq-SGW

EPSReq-PGW

EPSRes-SGW

EPSRes-MME

CntxtRes-MME

EPSRes-MME
BrrMod-SGW

BrrModRsp-MME

AtchCom-MME

HndReq-MME

HndRqst-MME

CrtIndTnl-SGW

CrtTnlRes-MME

EnBSttTsfr-MME

HndNtfy-MME

BrrMdfyReq-SGW

BrrMdfyReq-PGW

BrrMdfyRes-SGW

BrrMdfyRes-MME

CntxtRlsCom-MME

DltIndTnl-SGW
DltIndTnlRes-MME

SrvcReq-MME

InitCntxtStup-MME
MdfyBrrReq-SGW

MdfyBrrReq-PGW

MdfyBrrRes-SGW
MdfyBrrRes-MME

Figure 7.17: Detailed completion time for LTE EPC. Call-outs specify the receiver of that

messages and where the timestamp is recorded

166

controller. Since the messages exchanged between the control and data plane components

of the SGW and PGW are mediated by and forwarded through the SDN controller (e.g.,

using the OpenFlow protocol), there is a significant increase in latency (almost an order

of magnitude). In the handover case, the three main chunks of time, numbered as 1,2 and

3, are bearer modification of PGW and SGW, and deleting the indirect tunnel on SGW

(see Fig. 7.18). The second largest time spent is for messages between the control plane

components and the eNodeB. The last category, which can be barely seen, is for messages

exchanged between the components hosted in the same OpenNetVM host, that is between

SGW, MME, PGW that are running on the same host. The reason for having this minimal

delay is that we use shared memory packet buffers between these components to minimize

the delay between them. This approach of having minimum delay was used to achieve the

maximum possible fairness in comparison to our approach (in practice, they might be even

implemented in separate machines which will increase the delay considerably regarding the

delay between components).

7.7.6 Comparison with PEPC

One other work that we compare CleanG with, in terms of architecture, is [186]

which has its own DPDK-based implementation. We have compared the performance of

their system (PEPC) with CleanG and the result is shown in Fig. 7.19. (PEPC throughput

numbers are based on the graph reported in [186] and the same workload and parameters

are used for the CleanG experiment.) CleanG retains its high data plane throughput for

large numbers of users and its performance degrades at a much lower rate. CleanG’s control

167

Completion time of different event in SDN case

0

100

200

300

400

500

600

Active to Idle Attach Idle to Active Handover Detach

Ti
m

e
(M

ic
ro

 s
ec

o
n

d
s)

AtchCom-MME

AtchReq-MME AuthRsp-MME

KeyGen-MME

KeyGen-MME

BrrModRsp-MME

EPSReq-SGW
EPSReq-PGW

EPSReq-PGW
SDN-Reply

EPSRes-SGW

EPSRes-MME

CntxtRes-MME

EPSRes-SGW
SDN Reply

EPSRes-MME
BrrMod-SGW

AtchCom-MME

BrrMod-SGW
SDN Reply

1

2

3

Figure 7.18: Detailed completion time of CUPS-based architecture

plane protocol is optimized in addition to the improvements arising from the architecture.

CleanG drastically reduces the number of control messages exchanged compared to PEPC.

Thus, the resources of cellular core can be focused on forwarding data plane messages.

Additionally, the overhead of GTP tunneling is also removed (note that the control plane

protocol of PEPC remains similar to the vanilla 3GPP LTE protocol). Eliminating the

GTP tunnel setup avoids disrupting the data plane by control plane messages.

7.8 Related Work

In recent years, improving the cellular network has been the subject of numerous

efforts both in research and industry [89, 196], especially as 5G is being deployed. However,

there has been only limited focus on simplifying the cellular protocols. One work that has

focused on the simplification of control plane is [135], which rightfully points out to the

168

0

1

2

3

4

5

6

7

8

9

10

50 500 5000D
at

a
p

la
n

e
th

ro
u

gh
p

u
t

(M
p

p
s)

Number of users (In thousand)

PEPC CleanG

Figure 7.19: Maximum data plane rate based on the number of users in thousands

delays caused by control plane complexity and suggests improvements to it. However, we

believe the potential of the optimization is not completely unlocked if possible improvements

to the architecture and data plane forwarding are not also considered. A large body of

recent research has focused on the separation of data and control plane and with and

without the intervention of the SDN controller. [199] suggests using an SDN controller to

shorten the path between UE’s using P2P services. While this technique applies to the

CleanG architecture as well, we observe that we can achieve similar or better performance

by instantiating Core instances closer to the users. In [145] the EPC-edge is introduced

as a termination for GTP tunnels, in addition to the separation. However, it still suffers

from the complexity of the 3GPP protocol and architecture. Other work in the same vein

include [11], and [120].

Another direction has been to introduce packet cores close to the edge of the net-

work (e.g., at the telephony-related local central offices) [36]. CleanG can use a similar

169

approach for locating the CleanG Core Pools. Recently, [192] investigated the effects of

unreliability in the virtualized core network and suggested using a proxy to mask these

failures from the core message exchanges, as it can significantly hamper performance. Be-

cause of the use of a reliable underlying transport protocol and the fact that the number

of messages is reduced and components are consolidated, we mitigate this effect in CleanG.

Moreover, we can take advantage of reliability approaches for NFV platforms [207, 188].

A short motivation and introduction to CleanG’s architecture were described

in [159]. [186] follows the approach outlined in [159] for the design of the NFV-based

cellular core by having the separation between the data and control NFs, with techniques

to make the state tables more efficient. However, it retains the 3GPP protocol and suffers its

inherent inefficiencies. Another closely related work is [184], which seeks to understand the

bottlenecks in virtualizing cellular core network functions. Their observations are in sync

with what we observed as well to motivate CleanG. Recently [47] has proposed an approach

to use a streaming framework to implement specific cellular core components such as the

MME efficiently, while retaining the 3GPP protocol. While the streaming framework is

indeed useful, we believe a greater opportunity is also to see how the changes in both the

architecture and protocol can be combined as in CleanG. Finally, techniques similar to [21]

can be used to balance the load between different cores and pools in CleanG.

7.9 Conclusion

CleanG provides a simplified and scalable architecture and protocol for future cel-

lular networks by intelligent adoption of NFV and SDN. We showed that its performance

170

is superior to several alternatives, across a number of scenarios. While we have considered

the general scenario of the events and we have not addressed some corner cases such as

roaming in this paper, we believe our design principles will be a valuable basis for devel-

oping a complete, production architecture and implementation for cellular networks going

beyond 5G. The changes in the security aspect of the protocol are limited to how the neces-

sary information is exchanged, and it should not affect the security algorithm and security

properties of the protocol and architecture. Not only does CleanG improve the control

plane, we also observed while it improves the scaling of the data plane by leveraging NFV.

Further, we observe that the CUPS/SDN approach of separating the cellular control and

data plane has significant drawbacks, because the tight coupling between the two is needed

to continually mediate the flow of data packets in a cellular network. We will make the

code for CleanG and our implementation of EPC and CUPS-based approaches open source

on Github, to facilitate further research, evaluation and development work on the cellular

network protocol and architecture.

171

Chapter 8

Our other efforts

So far, all the chapters were based on the works that I was the main author. In

this chapter, we briefly cover other works that I helped the main author and I was not the

main author.

8.1 SDNFV: Flexible and Dynamic Software Defined Control

of an Application- and Flow-Aware Data Plan [239]

SDNFV is a framework to improve the task assignments in the software-based net-

work. This framework divide the duties between the centralized controller, an agent on the

host (called NF Manager), and each Network Function (NF). This framework is designed

based on the zero-copy concept. Packets are exchanged between different components with-

out copying the packet in memory. Just a pointer to the packet is added to the input

ring buffer of different NFs and these NFs fetch the packets by using these buffers. NF

manager uses several optimizations to reduce latency and improve the throughput. First,

172

if multiple NFs wants to read the packet, it improves the performance by letting multiple

read happen in parallel. Hence, the NFs are not blocked by the processing of other NFs.

Second, it caches the flow table look-up and store them in the packet descriptor. Third, it

automatically balances the load between multiple instances of the NFs. As a part of this

framework a placement engine is needed to assign different tasks to different NFs. For this

purpose, a placement engine similar to the propose engine in Chapter 2 is used.

8.2 A scalable resource allocation scheme for NFV: Balanc-

ing utilization and path stretch [228]

This paper tackles a similar problem to the problem of Chapter 2. In this problem,

in a network that uses software defined networking and networking function virtualization,

in which each node is potentially able to run NFs and forward packets. Our algorithm tries to

make a balance between flow level decision (routing) and network level decision (placement).

First, a mixed integer linear programming formulation is proposed. The difference of this

formulation with the formulation in the Chapter 2 is that this formulation maximizes the

flow admission besides resource minimization proposed in that chapter. Hence, each flow

can be admitted or not admitted to the network. Because of the limitation of scalability

of this solution, a heuristic solution is suggested to solve this problem in larger scale. This

heuristic tries to make a balance between the stretch in path and the utilization of network

resources.

173

8.3 ClusPR: Balancing Multiple Objectives at Scale for NFV

Resource Allocation [227]

ClusPR is the extention of the work we briefly explained in section 8.2. Besides im-

provements in the heuristic for the routing and placement, an online version of the heuristic

is proposed in this paper as well. The online version of the algorithm is based on the offline

version, but considers the assignments that are they are already made for the previous flows

and does not change the placements that are already made.

174

Chapter 9

Conclusions

Software-based networks that use technologies such as Software Defined Network-

ing (SDN) and Network Function Virtualization (NFV) while providing a large number of

opportunities, they face new challenges as well. In this ultra-flexible and configurable en-

vironment, traditional solutions may not be completely effective anymore. In addition, the

traditional separation between forwarding and processing nodes in the network is not valid

anymore, and in the most general case, all the nodes can be considered as a forwarding or

processing unit. In all different chapters of this thesis, we worked on the necessary changes

in architecture, framework, and design of different algorithms to achieve the optimal so-

lution for the software-based network. For example, traditionally placement and routing

problems were solved separately. However, this approach does not lead to the best possible

solution anymore. Because of this reason, in this thesis, not only we investigated the clear

opportunities and challenges of software-based networks such as scalability, easy updating,

and upgrading, but also we tried to look at the problem from a different angle than the

175

current common approach and seek the unique opportunities resulting from the specific

characteristic of software-based networks. The result of this approach is achieving to more

optimized network in comparison with using the current state-of-the-art architecture and

frameworks and only implement their components in software.

In this thesis, we looked at these challenges and opportunities from different per-

spectives. At first, we looked at the problem resource assignment to different needs. In a

software-based network, this problem translates to the routing and Network Function (NF)

placement problem in two different levels. At first we solved the problem for the network

level resource assignment, and then we solved the problem within a system that benefits

from SmartNICs. Afterward, with the assumption that we have done the resource place-

ment, and we have found the best route for the flows, we worked on a protocol to handle

chains of services in this network. Finally, we redesigned architecture and protocol for

the next generation of cellular networks that can benefit from the improved software-based

network.

In the first branch of our work, the placement and routing in a software-based

network, we proposed an algorithm that jointly considers both routing and placement of

the network function. Because of joint consideration of the routing and placement, the

output of this algorithm is more efficient in comparison with traditional approaches in

which the placement and routing are optimized separately. Later, we worked on heuristics

to achieve similar results faster and for the online version of the algorithm.

In the second branch of our work that we worked on the optimization within one

system, we optimized the task assignment to the components within a system. Different

176

tables and actions of a P4 pipeline can be carried out by the host or by the SmartNIC.

Our SDN agent makes an abstraction of the whole system as a single entity and provides

an interface to the SDN controller and it optimizes the task assignment locally. Based on

many different factors, such as data dependency, it assigns different tables and actions to

the host and the SmartNIC.

The third branch of our work covered the protocol to enable efficient service chain-

ing in the software-based network. Our proposed protocol reduces the need to add extra

tags to packets to distinguished the step they are in their service chain. It also reduces the

number of bytes needed to encode this information. It manages to achieve this optimization

by leveraging the global knowledge stored in the centralized controller.

The fourth and the last branch of work focuses on applying our previous endeavors

on the cellular network domain. To achieve an efficient cellular network, we claimed the

necessity of designing an architecture and protocol considering the challenges and oppor-

tunities of software-based networks. Through a rigorous experiment and evaluation, we

showed the improvement resulted from the simplified protocol and architecture, and the

advantages of software-based environment.

We believe these steps are some of the first steps toward the true software-based

network and still, lots of other opportunities and challenges exist in these networks. The

more efficient heuristic that might be able to achieve solutions even closer to the optimal

solution is imaginable for the joint routing and placement problem. Even, it might be

possible to combine both optimization problems of network-wide and within a system as

a one general optimization problem. While this combined problem, is not solvable based

177

on the capability of the current commercial solvers, the future generation of the solver and

heuristics might be able to solve this problem. In the cellular network front, while we

suggested the base for a simplified architecture and protocol, because of the sheer amount

of details for all different scenarios, we could not cover all the corner cases. We hope other

groups, such as standardization organizations follow our efforts in this path.

All in all, software-based networks provide a plethora of opportunities for the

next generations of networks. However, to leverage them efficiently, we believe merely

implementing hardware components as a software piece is not the answer, and it is necessary

to rethink the networks and consider the specific challenges and opportunities of software-

based networks.

178

Bibliography

[1] 3GPP. Signaling is growing 50 percent faster than data traffic. White paper 23.401,
Nokia Siemens Networks, 2012. Version 15.3.0.

[2] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Con-
trol (MAC) protocol specification. Technical Specification (TS) 36.321, 3rd Generation
Partnership Project (3GPP), 2017. Version 15.1.0.

[3] 3GPP. General Packet Radio Service (GPRS) enhancements for Evolved Universal
Terrestrial Radio Access Network (E-UTRAN) access. Technical Specification (TS)
23.401, 3rd Generation Partnership Project (3GPP), 2017. Version 15.3.0.

[4] 3GPP. General Packet Radio System (GPRS) Tunnelling Protocol User Plane
(GTPv1-U). Technical Specification (TS) 29.281, 3rd Generation Partnership Project
(3GPP), 2017. Version 15.2.0.

[5] 3gpp ts 23.502, procedures for the 5g system.

[6] Sugam Agarwal, Murali Kodialam, and TV Lakshman. Traffic engineering in software
defined networks. In INFOCOM, 2013 Proceedings IEEE, pages 2211–2219. IEEE,
2013.

[7] Ian F. Akyildiza, Ahyoung Leea, Pu Wangb, Min Luoc, and Wu Chouc. A roadmap
for traffic engineering in sdn-openflow networks. Computer Networks (Elsevier), 2014.

[8] Mansoor Alicherry and TV Lakshman. Optimizing data access latencies in cloud
systems by intelligent virtual machine placement. In INFOCOM, 2013 Proceedings
IEEE, pages 647–655. IEEE, 2013.

[9] E. Allender, H. Buhrman, and M.Koucky. Power from random strings. Annals of
Pure and Applied Logic, 2002.

[10] Nadav Amit, Muli Ben-Yehuda, and Ben-Ami Yassour. Iommu: strategies for mit-
igating the iotlb bottleneck. In Proceedings of the 2010 international conference on
Computer Architecture, ISCA’10, pages 256–274, Berlin, Heidelberg, 2012. Springer-
Verlag.

179

[11] Xueli An, Wolfgang Kiess, and David Perez-Caparros. Virtualization of cellular net-
work epc gateways based on a scalable sdn architecture. In Global Communications
Conference (GLOBECOM), 2014 IEEE, pages 2295–2301. IEEE, 2014.

[12] James W. Anderson, Ryan Braud, Rishi Kapoor, George Porter, and Amin Vahdat.
xomb: extensible open middleboxes with commodity servers. In Proceedings of the
eighth ACM/IEEE symposium on Architectures for networking and communications
systems, ANCS ’12, pages 49–60, New York, NY, USA, 2012. ACM.

[13] Bilal Anwer, Theophilus Benson, Nick Feamster, Dave Levin, and Jennifer Rexford.
A slick control plane for network middleboxes. In Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking, HotSDN ’13,
pages 147–148, New York, NY, USA, 2013. ACM.

[14] David Applegate, Aaron Archer, Vijay Gopalakrishnan, Seungjoon Lee, and Kadan-
gode K Ramakrishnan. Optimal content placement for a large-scale vod system. In
Proceedings of the 6th International COnference, page 4. ACM, 2010.

[15] Mayutan Arumaithurai, Jiachen Chen, Edo Monticelli, Xiaoming Fu, and Kadan-
gode K. Ramakrishnan. Exploiting icn for flexible management of software-defined
networks. In Proceedings of the 1st International Conference on Information-centric
Networking, INC ’14, pages 107–116, New York, NY, USA, 2014. ACM.

[16] Mayutan Arumaithurai, Jiachen Chen, Edo Monticelli, Xiaoming Fu, and Kadan-
gode K. Ramakrishnan. Exploiting icn for flexible management of software-defined
networks. In Proceedings of the 1st International Conference on Information-centric
Networking, INC ’14, pages 107–116, New York, NY, USA, 2014. ACM.

[17] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
Workload analysis of a large-scale key-value store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE joint international conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’12, pages 53–64, New York, NY, USA,
2012. ACM.

[18] Jordan Augé, Giovanna Carofiglio, Giulio Grassi, Luca Muscariello, Giovanni Pau,
and Xuan Zeng. Anchor-less producer mobility in icn. In Proceedings of the 2nd
International Conference on Information-Centric Networking, pages 189–190. ACM,
2015.

[19] D Awduche, Lou Berger, D Gan, Tony Li, Vijay Srinivasan, and George Swallow. Rfc
3209-rsvp-te: extensions to rsvp for lsp tunnels, 2001.

[20] Hitesh Ballani, Keon Jang, Thomas Karagiannis, Changhoon Kim, Dinan Gunawar-
dena, and Greg O’Shea. Chatty tenants and the cloud network sharing problem. In
Proceedings of the 10th USENIX conference on Networked Systems Design and Imple-
mentation, nsdi’13, pages 171–184, Berkeley, CA, USA, 2013. USENIX Association.

180

[21] Arijit Banerjee, Rajesh Mahindra, Karthik Sundaresan, Sneha Kasera, Kobus Van der
Merwe, and Sampath Rangarajan. Scaling the lte control-plane for future mobile
access. In Proceedings of the 11th ACM Conference on Emerging Networking Experi-
ments and Technologies, CoNEXT ’15, pages 19:1–19:13, New York, NY, USA, 2015.
ACM.

[22] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In
Proceedings of the ACM Symposium on Operating Systems Principles, 2003.

[23] Luiz Andre Barroso. Warehouse-scale computing: Entering the teenage decade.
SIGARCH Comput. Archit. News, 39(3):–, June 2011.

[24] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of
the annual conference on USENIX Annual Technical Conference, ATEC ’05, pages
41–41, Berkeley, CA, USA, 2005. USENIX Association.

[25] Muli Ben-Yehuda, Jimi Xenidis, Michal Ostrowski, Karl Rister, Alexis Bruemmer,
and Leendert Van Doorn. The price of safety: Evaluating iommu performance. In In
Proceedings of the 2007 Linux Symposium, 2007.

[26] Apache Bench. ab-apache http server benchmarking tool.

[27] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,
Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow, and
Guru Parulkar. Onos: Towards an open, distributed sdn os. In Proceedings of the
Third Workshop on Hot Topics in Software Defined Networking, HotSDN ’14, pages
1–6, New York, NY, USA, 2014. ACM.

[28] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,
Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow, and
Guru Parulkar. Onos: Towards an open, distributed sdn os. In Proceedings of the
Third Workshop on Hot Topics in Software Defined Networking, HotSDN ’14, pages
1–6, New York, NY, USA, 2014. ACM.

[29] Daniel G. Bobrow, Jerry D. Burchfiel, Daniel L. Murphy, and Raymond S. Tomlinson.
Tenex, a paged time sharing system for the pdp - 10. Commun. ACM, 1972.

[30] Raffaele Bolla and Roberto Bruschi. Pc-based software routers: high performance and
application service support. In Proceedings of the ACM workshop on Programmable
routers for extensible services of tomorrow, PRESTO ’08, pages 27–32, New York,
NY, USA, 2008. ACM.

[31] Pat Bosshart et al. P4: Programming protocol-independent packet processors. ACM
SIGCOMM Computer Communication Review, 44(3):87–95, 2014.

[32] Rodrigo Braga, Edjard Mota, and Alexandre Passito. Lightweight ddos flooding attack
detection using nox/openflow. In Proceedings of the 2010 IEEE 35th Conference on

181

Local Computer Networks, LCN ’10, pages 408–415, Washington, DC, USA, 2010.
IEEE Computer Society.

[33] Mihai Budiu and Chris Dodd. The p416 programming language. Operating Systems
Review, 51(1):5–14, 2017.

[34] Edouard Bugnion, Scott Devine Kinshuk Govil, and Mendel Rosenblum. Disco: Run-
ning commodity operating systems on sclable multiprocessors. ACM Transactions on
Computer Systems, 1997.

[35] Ed. C. Filsfils, Ed. S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and R. Shakir.
Rfc 8402: Segment routing architecture. IETF, July, 2018.

[36] Ed. C. Perkins. M-Cord:Re-architecting Mobile Infrastructure to Enable 5G Networks.
https://www.opennetworking.org/solutions/m-cord/. [Online; accessed 19-May-
2018].

[37] Ed. C. Perkins. IP Mobility Support for IPv4, Revised. https://tools.ietf.org/

html/rfc5944, November 2010.

[38] Carmelo Cascone. P4 support in onos. In Proc. ONOS Build, pages 1–29, 2017.

[39] Adrian Caulfield, Paolo Costa, and Monia Ghobadi. Beyond smartnics: Towards a
fully programmable cloud. In IEEE International Conference on High Performance
Switching and Routing, ser. HPSR, volume 18, 2018.

[40] Emmanuel Cecchet, Veena Udayabhanu, Timothy Wood, and Prashant Shenoy.
Benchlab: an open testbed for realistic benchmarking of web applications. In Proceed-
ings of the 2nd USENIX conference on Web application development, WebApps’11,
pages 4–4, Berkeley, CA, USA, 2011. USENIX Association.

[41] Emmanuel Cecchet, Veena Udayabhanu, Timothy Wood, and Prashant Shenoy.
Benchlab: An open testbed for realistic benchmarking of web applications. USENIX,
2011.

[42] Cell phone tower statistics. http://www.statisticbrain.com/cell-phone-tower-
statistics/.

[43] Cellular system support for ultra-low complexity and low throughput internet of things
(ciot). http://www.3gpp.org/DynaReport/45820.htm.

[44] I. Cerrato, M. Annarumma, and F. Risso. Supporting fine-grained network functions
through intel dpdk. Proceedings of the 3rd IEEE European Workshop Software Defined
Networks (EWSDN), 2014.

[45] Luwei Cheng and Cho-Li Wang. vbalance: using interrupt load balance to improve i/o
performance for smp virtual machines. In Proceedings of the Third ACM Symposium
on Cloud Computing, SoCC ’12, pages 2:1–2:14, New York, NY, USA, 2012. ACM.

182

[46] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. Comparison of the three
cpu schedulers in xen. SIGMETRICS Perform. Eval. Rev., 35(2):42–51, September
2007.

[47] Junguk Cho and Jacobus Van der Merwe. Poster: A new scalable, programmable
and evolvable mobile control plane platform. In Proceedings of the 23rd Annual In-
ternational Conference on Mobile Computing and Networking, MobiCom ’17, pages
540–542, New York, NY, USA, 2017. ACM.

[48] U. Chunduri, A. Clemm, and R. Li. Preferred path routing - a next-generation
routing framework beyond segment routing. In 2018 IEEE Global Communications
Conference (GLOBECOM), pages 1–7, Dec 2018.

[49] U. Chunduri, R. Li, R. White, J. Tantsura, L. Contreras, and Y. Qu. Preferred path
routing (ppr) in is-is. IETF, June, 2018.

[50] Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,
20162021 White Paper. White paper, Cisco , 2017. Document ID:1454457600805266.

[51] Visual Networking Index Cisco. Global mobile data traffic forecast update, 2015–2020
white paper. Document ID, 958959758, 2016.

[52] Christopher Clark, Keir Fraser, Steven Hand, Jakob Gorm Hansen, Eric Jul, Christian
Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines. NSDI,
2005.

[53] Leandro C. Coelho. Linearization of the product of two variables. http://www.

leandro-coelho.com/linearization-product-variables/, 2013. [Online; ac-
cessed 30-January-2015].

[54] Intel Corporation. Intel data plane development kit: Getting started guide, 2013.

[55] Data plane development kit. http://dpdk.org/, 2014.

[56] Francis M. David, Jeffrey C. Carlyle, and Roy H. Campbell. Context switch overheads
for linux on arm platforms. In Proceedings of the 2007 workshop on Experimental
computer science, ExpCS ’07, New York, NY, USA, 2007. ACM.

[57] Jeff Dean. Designs, Lessons and Advice from Building Large Distributed Systems.
LADIS Keynote, 2009.

[58] Advait Dixit, Fang Hao, Sarit Mukherjee, T.V. Lakshman, and Ramana Kompella.
Towards an elastic distributed sdn controller. In Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking, HotSDN ’13,
pages 7–12, New York, NY, USA, 2013. ACM.

[59] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin Fall, Gi-
anluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy. RouteBricks:
exploiting parallelism to scale software routers. In Proceedings of the ACM SIGOPS

183

22nd symposium on Operating systems principles, SOSP ’09, pages 15–28, New York,
NY, USA, 2009. ACM.

[60] Constantinos Dovrolis, Brad Thayer, and Parameswaran Ramanathan. Hip: Hybrid
interrupt-polling for the network interface. ACM Operating Systems Reviews, 35:50–
60, 2001.

[61] Jon Dugan, Seth Elliott, Bruce A. Mah, Jeff Poskanzer, and Kaustubh Prabhu. iperf
- the ultimate speed test tool for tcp, udp and sctp. https://iperf.fr/, 2014.

[62] Raphael Durner, Amir Varasteh, Max Stephan, Carmen Mas Machuca, and Wolfgang
Kellerer. Hnlb: Utilizing hardware matching capabilities of nics for offloading stateful
load balancers. arXiv preprint arXiv:1902.03430, 2019.

[63] T. Eckert, Y. Qu, and U. Chunduri. Preferred path routing (ppr) graphs - beyond
signaling of paths to networks. In 2018 14th International Conference on Network
and Service Management (CNSM), pages 384–390, Nov 2018.

[64] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and Georg
Carle. Moongen: a scriptable high-speed packet generator. In Proceedings of the 2015
ACM Conference on Internet Measurement Conference, pages 275–287. ACM, 2015.

[65] A. Manzalini et al. Towards 5g software-defined ecosystems.
http://sdn.ieee.org/images/files/pdf/towards-5g-software-defined-ecosystems.pdf.

[66] A. Rajan et al. Understanding the bottlenecks in virtualizing cellular core network
functions. In IEEE International Workshop on Local and Metropolitan Area Networks,
2015.

[67] C. Marquezan et al. Identifying latency factors in sdn-based mobile core networks. In
ISCC, 2016.

[68] P. Quinn et al. Network Service Header. https://tools.ietf.org/pdf/draft-quinn-sfc-
nsh-07.pdf, 2015. [Online; accessed 12-October-2015].

[69] R. Sinha et al. Internet packet size distributions: Some observations.
USC/Information Sciences Institute, Tech. Rep., 2007.

[70] S. Palkar et al. E2: a framework for nfv applications. In ACM SOSP, 2015.

[71] Timothy Wood et al. Towards a software-based network: Integrating software defined
networking and network function virtualizationa. IEEE Network, May-June 2015.

[72] Seyed Kaveh Fayazbakhsh, Luis Chiang, Vyas Sekar, Minlan Yu, and Jeffrey C.
Mogul. Enforcing network-wide policies in the presence of dynamic middlebox ac-
tions using flowtags. In Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation, NSDI’14, pages 533–546, Berkeley, CA, USA,
2014. USENIX Association.

184

[73] Seyed Kaveh Fayazbakhsh, Vyas Sekar, Minlan Yu, and Jeffrey C. Mogul. Flowtags:
Enforcing network-wide policies in the presence of dynamic middlebox actions. In
Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, HotSDN ’13, pages 19–24, New York, NY, USA, 2013. ACM.

[74] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to sdn. Queue,
11(12):20:20–20:40, December 2013.

[75] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois. The segment
routing architecture. In 2015 IEEE Global Communications Conference (GLOBE-
COM), pages 1–6, Dec 2015.

[76] Daniel Firestone. VFP: A virtual switch platform for host SDN in the public cloud. In
14th USENIX Symposium on Networked Systems Design and Implementation, pages
315–328, 2017.

[77] Nate Foster, Michael J. Freedman, Rob Harrison, Jennifer Rexford, Matthew L. Me-
ola, and David Walker. Frenetic: A high-level language for openflow networks. In
Proceedings of the Workshop on Programmable Routers for Extensible Services of To-
morrow, PRESTO ’10, pages 6:1–6:6, New York, NY, USA, 2010. ACM.

[78] Martin Fowler, David Rice, Matthew Foemmel, Edward Hieatt, Robert Mee, and
Randy Stafford. Catalog of patterns of enterprise application architecture. URL:
http://martinfowler. com/eaaCatalog/index. html, pages 25–26, 2003.

[79] Xiongzi Ge, Yi Liu, David H.C. Du, Liang Zhang, Hongguang Guan, Jian Chen, Yup-
ing Zhao, and Xinyu Hu. Opennfv: Accelerating network function virtualization with
a consolidated framework in openstack. In Proceedings of the 2014 ACM Conference
on SIGCOMM, New York, NY, USA, 2014. ACM.

[80] A. Gember, R. Grandl, A. Anand, T. Benson, and A. Akella. Stratos: Virtual middle-
boxes as first-class entities. Technical report, Technical Report TR1771, University
of Wisconsin-Madison, 2012.

[81] Aaron Gember, Anand Krishnamurthy, Saul St. John, Robert Grandl, Xiaoyang
Gao, Ashok Anand, Theophilus Benson, Aditya Akella, and Vyas Sekar. Stratos: A
network-aware orchestration layer for middleboxes in the cloud. CoRR, abs/1305.0209,
2013.

[82] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert Grandl,
Junaid Khalid, Sourav Das, and Aditya Akella. Opennf: Enabling innovation in
network function control. In Proceedings of the 2014 ACM Conference on SIGCOMM,
SIGCOMM ’14, pages 163–174, New York, NY, USA, 2014. ACM.

[83] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert Grandl,
Junaid Khalid, Sourav Das, and Aditya Akella. Opennf: Enabling innovation in
network function control. In Proceedings of the 2014 ACM conference on SIGCOMM,
pages 163–174. ACM, 2014.

185

[84] Generic routing encapsulation (gre). https://tools.ietf.org/html/rfc2784.

[85] Mel Gorman. Understanding the linux virtual memory manager. Prentice Hall, 2004.

[86] Gprs enhancements for e-utran access. http://www.3gpp.org/ftp/Specs/htmlinfo/23401.htm.

[87] Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Patel. The cost of
a cloud: research problems in data center networks. SIGCOMM Comput. Commun.
Rev., 39(1):68–73, December 2008.

[88] Adam Greenhalgh, Felipe Huici, Mickael Hoerdt, Panagiotis Papadimitriou, Mark
Handley, and Laurent Mathy. Flow processing and the rise of commodity network
hardware. SIGCOMM Comput. Commun. Rev., 39(2):20–26, March 2009.

[89] A. Gupta and R. K. Jha. A survey of 5g network: Architecture and emerging tech-
nologies. IEEE Access, 3:1206–1232, 2015.

[90] Akhil Gupta and Rakesh Kumar Jha. A survey of 5g network: architecture and
emerging technologies. IEEE access, 3:1206–1232, 2015.

[91] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and
Walter Willinger. Sonata: Query-driven streaming network telemetry. In Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data Communication,
pages 357–371. ACM, 2018.

[92] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C. Snoeren,
George Varghese, Geoffrey M. Voelker, and Amin Vahdat. Difference engine: Har-
nessing memory redundancy in virtual machines. USENIX, 2008.

[93] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network function virtualization: Chal-
lenges and opportunities for innovations. IEEE Communications Magazine, 53(2):90–
97, Feb 2015.

[94] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. Packetshader: a gpu-
accelerated software router. In Proceedings of the ACM SIGCOMM 2010 conference,
SIGCOMM ’10, pages 195–206, New York, NY, USA, 2010. ACM.

[95] David Hancock and Jacobus Van der Merwe. Hyper4: Using p4 to virtualize the
programmable data plane. In Proceedings of the 12th International on Conference on
emerging Networking EXperiments and Technologies, pages 35–49. ACM, 2016.

[96] M. He, A. Basta, A. Blenk, N. Deric, and W. Kellerer. P4nfv: An nfv architecture
with flexible data plane reconfiguration. In 2018 14th International Conference on
Network and Service Management (CNSM), pages 90–98, Nov 2018.

[97] Val Henson. An analysis of comprare-by-hash. HotOS, 2003.

[98] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. Netvm: High performance
and flexible networking using virtualization on commodity platforms. In Proceedings
of the 11th USENIX Conference on Networked Systems Design and Implementation,
NSDI’14, pages 445–458, Berkeley, CA, USA, 2014. USENIX Association.

186

[99] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. Netvm: High performance
and flexible networking using virtualization on commodity platforms. In 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 14), pages 445–
458, Seattle, WA, 2014. USENIX Association.

[100] Jinho Hwang and Timothy Wood. Adaptive dynamic priority scheduling for virtual
desktop infrastructures. IEEE/ACM IWQoS, 2012.

[101] Jinho Hwang and Timothy Wood. Adaptive performance-aware distributed memory
caching. USENIX Internation Conference on Autonomic Computing, 2013.

[102] Cisco Visual Networking Index. Global mobile data traffic forecast update, 2012-2017.
Cisco white paper, 2013.

[103] European Telecommunications Standards Institute. Network functions virtualisation
(nfv)- introductory white paper. White Paper, 2012.

[104] European Telecommunications Standards Institute. Network functions virtualisation
(nfv)- update white paper. White Paper, 2013.

[105] European Telecommunications Standards Institute. Network functions virtualisation
(nfv). White Paper, 2014.

[106] European Telecommunications Standards Institute. Network functions virtualisation
(nfv)- white paper 3. White Paper, 2014.

[107] European Telecommunications Standards Institute. Network functions virtualization
(nfv): An introduction, benefits, enablers, challenges & call for action. White Paper,
2014.

[108] European Telecommunications Standards Institute. Network functions virtualization
(nfv): Architectural framework. White Paper, 2014.

[109] European Telecommunications Standards Institute. Network functions virtualization
(nfv): Use cases. White Paper, 2014.

[110] Intel. Supporting Evolved Packet Core for One Million Mobile Subscribers with Four
IntelXeon Processor-Based Servers. Technical brief, Intel and Sprint, 2015. Document
ID:1454457600805266.

[111] Intel Corp. Intel data plane development kit: Programmer’s guide, 2019.

[112] Intel data direct i/o technology. http://www.intel.com/content/www/us/en/io/data-
direct-i-o-technology.html.

[113] Muthurajan Jayakumar. Data plane development kit: Performance optimization
guidelines, 2016.

[114] Predrag R. Jelenkovic and Ana Radovanovic. Optimizing lru caching for variable
document sizes. Combinatorics, Probability & Computing, 13(4-5):627–643, 2004.

187

[115] Bob Jenkins. A hash function for hash table lookup.

[116] Xin Jin, Li Erran Li, Laurent Vanbever, and Jennifer Rexford. Softcell: Scalable
and flexible cellular core network architecture. In Proceedings of the Ninth ACM
Conference on Emerging Networking Experiments and Technologies, CoNEXT ’13,
pages 163–174, New York, NY, USA, 2013. ACM.

[117] Eric Jo, Deng Pan, Jason Liu, and Linda Butler. A simulation and emulation study
of sdn-based multipath routing for fat-tree data center networks. In Proceedings of
the 2014 Winter Simulation Conference, WSC ’14, pages 3072–3083, Piscataway, NJ,
USA, 2014. IEEE Press.

[118] Dilip A. Joseph, Arsalan Tavakoli, and Ion Stoica. A policy-aware switching layer
for data centers. In Proceedings of the ACM SIGCOMM 2008 Conference on Data
Communication, SIGCOMM ’08, pages 51–62, New York, NY, USA, 2008. ACM.

[119] S. Jouet, R. Cziva, and D. P. Pezaros. Arbitrary packet matching in openflow. In 2015
IEEE 16th International Conference on High Performance Switching and Routing
(HPSR), pages 1–6, July 2015.

[120] James Kempf, Bengt Johansson, Sten Pettersson, Harald Lüning, and Tord Nilsson.
Moving the mobile evolved packet core to the cloud. In Wireless and Mobile Comput-
ing, Networking and Communications (WiMob), 2012 IEEE 8th International Con-
ference on, pages 784–791. IEEE, 2012.

[121] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey. Veri-
flow: verifying network-wide invariants in real time. In Proceedings of the first work-
shop on Hot topics in software defined networks, HotSDN ’12, pages 49–54, New York,
NY, USA, 2012. ACM.

[122] Hyojoon Kim and N. Feamster. Improving network management with software defined
networking. Communications Magazine, IEEE, 51(2):114–119, February 2013.

[123] Joongi Kim, Seonggu Huh, Keon Jang, KyoungSoo Park, and Sue Moon. The power
of batching in the click modular router. In Proceedings of the Asia-Pacific Workshop
on Systems, APSYS ’12, pages 14:1–14:6, New York, NY, USA, 2012. ACM.

[124] Jacob Faber Kloster, Jesper Kristensen, and Arne Mejlholm. Efficient memory sharing
in the xen virtual machine monitor. Technical Report, 2006.

[125] Younggyun Koh, Calton Pu, Sapan Bhatia, and Charles Consel. Efficient packet
processing in userlevel os: A study of uml. In in Proceedings of the 31th IEEE
Conference on Local Computer Networks (LCN06), 2006.

[126] Eddie Kohler. The click modular router. PhD Thesis, 2000.

[127] Teemu Koponen, Keith Amidon, Peter Balland, Martin Casado, Anupam Chanda,
Bryan Fulton, Igor Ganichev, Jesse Gross, Paul Ingram, Ethan Jackson, Andrew Lam-
beth, Romain Lenglet, Shih-Hao Li, Amar Padmanabhan, Justin Pettit, Ben Pfaff,

188

Rajiv Ramanathan, Scott Shenker, Alan Shieh, Jeremy Stribling, Pankaj Thakkar,
Dan Wendlandt, Alexander Yip, and Ronghua Zhang. Network virtualization in multi-
tenant datacenters. In 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14), pages 203–216, Seattle, WA, April 2014. USENIX.

[128] Sameer G. Kulkarni, Wei Zhang, Jinho Hwang, Shriram Rajagopalan, K. K. Ramakr-
ishnan, Timothy Wood, Mayutan Arumaithurai, and Xiaoming Fu. Nfvnice: Dynamic
backpressure and scheduling for nfv service chains. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, SIGCOMM ’17, pages
71–84, New York, NY, USA, 2017. ACM.

[129] Patrick Kutch and Brian Johnson. Sr-iov for nfv solutions. Practical Considerations
and Thoughts (Intel, Networking Division), 2017.

[130] Horacio Andrés Lagar-Cavilla, Joseph Andrew Whitney, Adin Matthew Scannell,
Philip Patchin, Stephen M. Rumble, Eyal de Lara, Michael Brudno, and Mahadev
Satyanarayanan. Snowflock: Rapid virtual machine cloning for cloud computing. In
Proceedings of the 4th ACM European Conference on Computer Systems, EuroSys
’09, pages 1–12, New York, NY, USA, 2009. ACM.

[131] Yanfang Le, Hyunseok Chang, Sarit Mukherjee, Limin Wang, Aditya Akella,
Michael M Swift, and TV Lakshman. Uno: uniflying host and smart nic offload
for flexible packet processing. In Proceedings of the 2017 Symposium on Cloud Com-
puting, pages 506–519. ACM, 2017.

[132] David Levinthal. Performance analysis guide for intel core i7 processor and intel xeon
5500, 2013.

[133] Chuanpeng Li, Chen Ding, and Kai Shen. Quantifying the cost of context switch.
In Proceedings of the 2007 workshop on Experimental computer science, ExpCS ’07,
New York, NY, USA, 2007. ACM.

[134] Yinan Li, Ippokratis Pandis, Rene Mueller, Vijayshankar Raman, and Guy Lohman.
Numa-aware algorithms: the case of data shuffling. The biennial Conference on In-
novative Data Systems Research (CIDR), 2013.

[135] Yuanjie Li, Zengwen Yuan, and Chunyi Peng. A control-plane perspective on reducing
data access latency in lte networks. In Proceedings of the 23rd Annual International
Conference on Mobile Computing and Networking, MobiCom ’17, pages 56–69, New
York, NY, USA, 2017. ACM.

[136] Jiuxing Liu and Bulent Abali. Virtualization polling engine (vpe): using dedicated
cpu cores to accelerate i/o virtualization. In Proceedings of the 23rd international
conference on Supercomputing, ICS ’09, pages 225–234, New York, NY, USA, 2009.
ACM.

[137] Robert Love. Linux kernel development. Novell Press, 2005.

189

[138] Frank Mademann. System architecture milestone of 5G Phase 1 is achieved. http:

//www.3gpp.org/NEWS-EVENTS/3GPP-NEWS/1930-SYS_ARCHITECTURE, December 21,
2017. [Online; accessed 19-May-2018].

[139] Dan Magenheimer, Chris Mason, Dave McCracken, and Kurt Hackel. Transcendent
memory and linux. Oracle Corp., 2009.

[140] Srihari Makineni, Ravi Iyer, Partha Sarangam, Donald Newell, Li Zhao, Ramesh
Illikkal, and Jaideep Moses. Receive side coalescing for accelerating tcp/ip processing.
In Proceedings of the 13th International Conference on High Performance Computing,
HiPC’06, pages 289–300, Berlin, Heidelberg, 2006. Springer-Verlag.

[141] Aditya Agarwal Mark Slee and Marc Kwiatkowski. Abstract thrift: Scalable cross-
language services implementation.

[142] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda,
Roberto Bifulco, and Felipe Huici. Clickos and the art of network function virtualiza-
tion. In 11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14), pages 459–473, Seattle, WA, April 2014. USENIX Association.

[143] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda,
Roberto Bifulco, and Felipe Huici. Clickos and the art of network function virtualiza-
tion. In Proceedings of the 11th USENIX Conference on Networked Systems Design
and Implementation, NSDI’14, pages 459–473, Berkeley, CA, USA, 2014. USENIX
Association.

[144] Miguel Masmano, I. Ripoll, Alfons Crespo, and Jorge Real. Tlsf: A new dynamic
memory allocator for real-time systems. ECRTS, 2004.

[145] S Matsushima and R Wakikawa. Stateless user-plane architecture for virtualized epc
(vepc). draft-matsushima-stateless-uplane-vepc-04 (work in progress), 2015.

[146] N. McKeown. Openflow: Enabling innovation in campus networks. SIGCOMM Com-
put. Commun. Rev., 38(2):69–74, March 2008.

[147] Nick McKeown et al. Openflow: enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review, 38:69–74, 2008.

[148] Nick McKeown et al. Openflow: Enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev., 38(2):69–74, March 2008.

[149] J. Medved, R. Varga, A. Tkacik, and K. Gray. Opendaylight: Towards a model-
driven sdn controller architecture. In Proceeding of IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks 2014, pages 1–6, June 2014.

[150] Hesham Mekky, Fang Hao, Sarit Mukherjee, Zhi-Li Zhang, and T.V. Lakshman.
Application-aware data plane processing in sdn. In Proceedings of the Third Workshop
on Hot Topics in Software Defined Networking, HotSDN ’14, pages 13–18, New York,
NY, USA, 2014. ACM.

190

[151] Eliav Menachi and Ran Giladi. Hierarchical ethernet transport network architecture
for backhaul cellular networks. Wireless networks, 19(8):1933–1943, 2013.

[152] Zili Meng, Jun Bi, Chen Sun, Shuhe Wang, Minhu Wang, and Hongxin Hu. Pam:
When overloaded, push your neighbor aside! arXiv preprint arXiv:1805.10434, 2018.

[153] Grzegorz Milos, Derek G. Murray, Steven Hand, and Michael A. Fetterman. Satori:
Enlightened page sharing. USENIX, 2009.

[154] Mobile radio interface signalling layer 3; general aspects.
http://www.3gpp.org/dynareport/24007.htm.

[155] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an
interrupt-driven kernel. ACM Transactions on Computer Systems, 15:217–252, 1997.

[156] A. Mohammadkhan, S. Ghapani, G. Liu, W. Zhang, K. K. Ramakrishnan, and
T. Wood. Virtual function placement and traffic steering in flexible and dynamic
software defined networks. In The 21st IEEE International Workshop on Local and
Metropolitan Area Networks, pages 1–6, April 2015.

[157] A. Mohammadkhan and K. K. Ramakrishnan. Re-Architecting the Packet Core and
Control Plane for Future Cellular Networks. In The 27th IEEE International Confer-
ence on Network Protocols, 2019.

[158] A. Mohammadkhan, K. K. Ramakrishnan, A. S. Rajan, and C. Maciocco. Consider-
ations for re-designing the cellular infrastructure exploiting software-based networks.
In 2016 IEEE 24th International Conference on Network Protocols (ICNP), pages
1–6, Nov 2016.

[159] Ali Mohammadkhan, K.K. Ramakrishnan, Ashok Sunder Rajan, and Christian Ma-
ciocco. Cleang: A clean-slate epc architecture and controlplane protocol for next
generation cellular networks. In Proceedings of the 2016 ACM Workshop on Cloud-
Assisted Networking, CAN ’16, pages 31–36, New York, NY, USA, 2016. ACM.

[160] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. Composing software-defined networks. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation, NSDI’13, pages 1–14,
Berkeley, CA, USA, 2013. USENIX Association.

[161] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. Composing software-defined networks. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation, nsdi’13, pages 1–14,
Berkeley, CA, USA, 2013. USENIX Association.

[162] Young Gyoun Moon, Ilwoo Park, Seungeon Lee, and Kyoung Soo Park. Accelerating
flow processing middleboxes with programmable nics. In Proceedings of the 9th Asia-
Pacific Workshop on Systems, page 14. ACM, 2018.

191

[163] Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, and Mike Amundsen. Microservice
Architecture: Aligning Principles, Practices, and Culture. O’Reilly Media, Inc., 1st
edition, 2016.

[164] S Neil, M Ratul, and A Thomas. Quantifying the causes of path inflation. In Proc.
ACM SIGCOMM’03, 2003.

[165] NETMANIAS TECHNICAL DOCUMENTS. http://www.netmanias.com/.

[166] Netronome. Netronome nfp-4000 flow processor. https://www.netronome.com/m/

documents/PB-NFP-4000.pdf.

[167] Navid Nikaein, Mahesh K. Marina, Saravana Manickam, Alex Dawson, Raymond
Knopp, and Christian Bonnet. Openairinterface: A flexible platform for 5g research.
SIGCOMM Comput. Commun. Rev., 44(5):33–38, October 2014.

[168] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scaling memcache at facebook.
USENIX Symposium on Networked Systems Design and Implementation, 2013.

[169] Robert Olsson. Pktgen the linux packet generator. In Proceedings of the Linux Sym-
posium, Ottawa, Canada, volume 2, pages 11–24, 2005.

[170] OpenFlow Switch Specification, Version 1.5.1. https://www.opennetworking.org/

wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf. [Online; accessed
19-May-2018].

[171] Openflow switch specifications. https://www.opennetworking.org/software-

defined-standards/specifications. Accessed:2019-05-01.

[172] p416 portable switch architecture(psa). https://p4.org/p4-spec/docs/PSA.pdf,
2019. [online].

[173] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda, Sylvia Rat-
nasamy, Luigi Rizzo, and Scott Shenker. E2: A framework for nfv applications. In
Proceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15, pages
121–136, New York, NY, USA, 2015. ACM.

[174] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and Scott
Shenker. Netbricks: Taking the v out of nfv. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation, OSDI’16, pages 203–
216, Berkeley, CA, USA, 2016. USENIX Association.

[175] VMWare White Paper. Vmware vnetwork distributed switch.

[176] Wind River White Paper. High-performance multi-core networking software design
options, 2013.

192

[177] Edwin S Peer. High-speed and memory-efficient flow cache for network flow processors,
February 2019. US Patent App. 15/356,562.

[178] Frank Yong Yang Peter Schmitt, Bruno Landais. Control and User Plane Separation
of EPC nodes (CUPS). http://www.3gpp.org/cups, 2017. [Online; accessed 19-
May-2018].

[179] J. Pettit, J. Gross, B. Pfaff, M. Casado, and S. Crosby. Virtual switching in an
era of advanced edges. Workshop on Data Center - Converged and Virtual Ethernet
Switching (DC-CAVES), 2010.

[180] Ben Pfaff et al. The design and implementation of open vswitch. In 12th USENIX
Symposium on Networked Systems Design and Implementation, pages 117–130, 2015.

[181] Ben Pfaff et al. The design and implementation of open vswitch. In 12th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 15), pages
117–130, 2015.

[182] S. Previdi, Ed. C. Filsfils, J. Leddy, S. Matsushima, and Ed. D. Voyer. Ipv6 segment
routing header (srh). IETF, March, 2018.

[183] Z. Qazi, C.-C. Tu, R. Miao, L. Chiang, V. Sekar, and M. Yu. Practical and incremental
convergence between sdn and middleboxes. ONS, 2013.

[184] Zafar Ayyub Qazi, Phani Krishna Penumarthi, Vyas Sekar, Vijay Gopalakrishnan,
Kaustubh Joshi, and Samir R. Das. Klein: A minimally disruptive design for an
elastic cellular core. In Proceedings of the Symposium on SDN Research, SOSR ’16,
pages 2:1–2:12, New York, NY, USA, 2016. ACM.

[185] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and Minlan
Yu. Simple-fying middlebox policy enforcement using sdn. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, pages 27–38, New York,
NY, USA, 2013. ACM.

[186] Zafar Ayyub Qazi, Melvin Walls, Aurojit Panda, Vyas Sekar, Sylvia Ratnasamy, and
Scott Shenker. A high performance packet core for next generation cellular networks.
In Proceedings of the Conference of the ACM Special Interest Group on Data Com-
munication, SIGCOMM ’17, pages 348–361, New York, NY, USA, 2017. ACM.

[187] Lin Quan and John Heidemann. On the characteristics and reasons of long-lived
internet flows. In Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, IMC ’10, pages 444–450, New York, NY, USA, 2010. ACM.

[188] Shriram Rajagopalan, Dan Williams, and Hani Jamjoom. Pico replication: A high
availability framework for middleboxes. In Proceedings of the 4th Annual Symposium
on Cloud Computing, SOCC ’13, pages 1:1–1:15, New York, NY, USA, 2013. ACM.

193

[189] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew Warfield.
Split/merge: System support for elastic execution in virtual middleboxes. In Pre-
sented as part of the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), pages 227–240, Lombard, IL, 2013. USENIX.

[190] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew Warfield.
Split/merge: system support for elastic execution in virtual middleboxes. In Pro-
ceedings of the 10th USENIX conference on Networked Systems Design and Imple-
mentation, nsdi’13, pages 227–240, Berkeley, CA, USA, 2013. USENIX Association.

[191] Kaushik Kumar Ram, Alan L. Cox, Mehul Chadha, and Scott Rixner. Hyper-switch:
A scalable software virtual switching architecture. USENIX Annual Technical Con-
ference (USENIX ATC), 2013.

[192] M. T. Raza, D. Kim, K. H. Kim, S. Lu, and M. Gerla. Rethinking lte network
functions virtualization. In 2017 IEEE 25th International Conference on Network
Protocols (ICNP), pages 1–10, Oct 2017.

[193] Luigi Rizzo. netmap: A novel framework for fast packet I/O. In USENIX Annual
Technical Conference, pages 101–112, Berkeley, CA, 2012. USENIX.

[194] Luigi Rizzo, Giuseppe Lettieri, and Vincenzo Maffione. Speeding up packet i/o in
virtual machines. In Architectures for Networking and Communications Systems
(ANCS), 2013 ACM/IEEE Symposium on, pages 47–58, Oct 2013.

[195] Eric Rosen, Arun Viswanathan, and Ross Callon. Rfc 3031: Multiprotocol label
switching architecture. IETF, January, 2001.

[196] P. Rost, A. Banchs, I. Berberana, M. Breitbach, M. Doll, H. Droste, C. Mannweiler,
M. A. Puente, K. Samdanis, and B. Sayadi. Mobile network architecture evolution
toward 5g. IEEE Communications Magazine, 54(5):84–91, May 2016.

[197] Jose Renato Santos, Yoshio Turner, G. Janakiraman, and Ian Pratt. Bridging the gap
between software and hardware techniques for i/o virtualization. In USENIX 2008
Annual Technical Conference on Annual Technical Conference, ATC’08, pages 29–42,
Berkeley, CA, USA, 2008. USENIX Association.

[198] V. Sathiyamoorthi and V. Murali Bhaskaran. Web caching through modified cache
replacement algorithm. ICRTIT, 2012.

[199] Ryan Saunders, Junguk Cho, Arijit Banerjee, Frederico Rocha, and Jacobus Van der
Merwe. P2p offloading in mobile networks using sdn. In Proceedings of the Symposium
on SDN Research, SOSR ’16, pages 3:1–3:7, New York, NY, USA, 2016. ACM.

[200] Karen Scarfone and Paul Hoffman. Guidelines on firewalls and firewall policy. National
Institute of Standards and Technology, 2009.

194

[201] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter, and Guangyu Shi.
Design and implementation of a consolidated middlebox architecture. In Proceedings
of the 9th USENIX Conference on Networked Systems Design and Implementation,
NSDI’12, pages 24–24, Berkeley, CA, USA, 2012. USENIX Association.

[202] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K Reiter, and Guangyu Shi.
Design and implementation of a consolidated middlebox architecture. In Proceedings
of the 9th USENIX conference on Networked Systems Design and Implementation,
pages 24–24. USENIX Association, 2012.

[203] Ivan Seskar, Kiran Nagaraja, Sam Nelson, and Dipankar Raychaudhuri. Mobility-
first future internet architecture project. In Proceedings of the 7th Asian Internet
Engineering Conference, AINTEC ’11, pages 1–3, New York, NY, USA, 2011. ACM.

[204] Muhammad Zubair Shafiq, Lusheng Ji, Alex X. Liu, Jeffrey Pang, and Jia Wang.
A first look at cellular machine-to-machine traffic: Large scale measurement and
characterization. In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE
Joint International Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’12, pages 65–76, New York, NY, USA, 2012. ACM.

[205] R. Shah, M. Vutukuru, and P. Kulkarni. Cuttlefish: Hierarchical sdn controllers with
adaptive offload. In 2018 IEEE 26th International Conference on Network Protocols
(ICNP), pages 198–208, Sep. 2018.

[206] J. Sherry and S Ratnasamy. A survey of enterprise midlebox deployments. Technical
report, Technical Report No. UCB/EECS-2012-24, 2012.

[207] Justine Sherry, Peter Xiang Gao, Soumya Basu, Aurojit Panda, Arvind Krishna-
murthy, Christian Maciocco, Maziar Manesh, João Martins, Sylvia Ratnasamy, Luigi
Rizzo, and Scott Shenker. Rollback-recovery for middleboxes. In Proceedings of
the 2015 ACM Conference on Special Interest Group on Data Communication, SIG-
COMM ’15, pages 227–240, New York, NY, USA, 2015. ACM.

[208] Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu. Avant-guard:
Scalable and vigilant switch flow management in software-defined networks. In Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer Communications Secu-
rity, CCS ’13, pages 413–424, New York, NY, USA, 2013. ACM.

[209] Will Sobel, Shanti Subramanyam, Akara Sucharitakul, Jimmy Nguyen, Hubert Wong,
Arthur Klepchukov, Sheetal Patil, O Fox, and David Patterson. Cloudstone: Multi-
platform, multi-language benchmark and measurement tools for web 2.0, 2008.

[210] I. Sodagar. The MPEG-DASH standard for multimedia streaming over the internet.
IEEE MultiMedia, 18(4):62–67, April 2011.

[211] Christopher Stewart, Aniket Chakrabarti, and Rean Griffith. Zoolander: Efficiently
meeting very strict, low-latency slos. USENIX Internation Conference on Autonomic
Computing, 2013.

195

[212] Study on architecture for next generation system.

[213] System architecture for the 5g system (5gs).

[214] David L. Tennenhouse and David J. Wetherall. Towards an active network architec-
ture. SIGCOMM Comput. Commun. Rev., 37(5):81–94, October 2007.

[215] Guan-Hua Tu, Yuanjie Li, Chunyi Peng, Chi-Yu Li, Hongyi Wang, and Songwu Lu.
Control-plane protocol interactions in cellular networks. In Proceedings of the 2014
ACM Conference on SIGCOMM, SIGCOMM ’14, pages 223–234, New York, NY,
USA, 2014. ACM.

[216] Ed. U. Chunduri, R. Li, J. Tantsura, L. Contreras, and X. De Foy. Transport network
aware mobility for 5g. IETF, July, 2018.

[217] Erik-Jan van Baaren. Wikibench: A distributed, wikipedia based web application
benchmark. Master Thesis, 2009.

[218] Steve VanDeBogart, Christopher Frost, and Eddie Kohler. Reducing seek overhead
with application-directed prefetching. USENIX, 2009.

[219] Virtual extensible local area network (vxlan). https://tools.ietf.org/html/rfc7348.

[220] VMware. Resource management with vmware drs. Technical Resource Center, 2006.

[221] Andreas Voellmy, Ashish Agarwal, and Paul Hudak. Nettle: Functional reactive
programming for openflow networks. Technical report, DTIC Document, 2010.

[222] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C. Snoeren,
Geoffrey M. Voelker, and Stefan Savage. Scalability, fidelity, and containment in the
potemkin virtual honeyfarm. In Proceedings of the ACM Symposium on Operating
Systems Principles, 2005.

[223] Open vSwitch. http://www.openvswitch.org.

[224] Carl A. Waldspurger. Memory resource management in vmware esx server. OSDI,
2002.

[225] Liufeng Wang, Huaimin Wang, Lu Cai, Rui Chu, Pengfei Zhang, and Lanzheng Liu. A
hierarchical memory service mechanism in server consolidation environment. ICPADS,
2011.

[226] Dan Williams, Hani Jamjoom, Yew-Huey Liu, and Hakim Weatherspoon. Over-
driver: handling memory overload in an oversubscribed cloud. In Proceedings of
the 7th ACM SIGPLAN/SIGOPS international conference on Virtual execution en-
vironments, VEE ’11, pages 205–216, New York, NY, USA, 2011. ACM.

[227] Y. T. Woldeyohannes, A. Mohammadkhan, K. K. Ramakrishnan, and Y. Jiang.
Cluspr: Balancing multiple objectives at scale for nfv resource allocation. IEEE
Transactions on Network and Service Management, 15(4):1307–1321, Dec 2018.

196

[228] Y. T. Woldeyohannes, A. Mohammadkhan, K. K. Ramakrishnan, and Y. Jiang. A
scalable resource allocation scheme for nfv: Balancing utilization and path stretch. In
2018 21st Conference on Innovation in Clouds, Internet and Networks and Workshops
(ICIN), pages 1–8, Feb 2018.

[229] T. Wood, K. K. Ramakrishnan, J. Hwang, G. Liu, and W. Zhang. Toward a software-
based network: integrating software defined networking and network function virtu-
alization. IEEE Network, 29(3):36–41, May 2015.

[230] Wenji Wu, Matt Crawford, and Mark Bowden. The performance analysis of linux
networking - packet receiving. Comput. Commun., 30(5):1044–1057, March 2007.

[231] Cong Xu, Sahan Gamage, Hui Lu, Ramana Kompella, and Dongyan Xu. vturbo: Ac-
celerating virtual machine i/o processing using designated turbo-sliced core. USENIX
Annual Technical Conference, 2013.

[232] Jielong Xu, Zhenhua Chen, Jian Tang, and Sen Su. T-storm: Traffic-aware online
scheduling in storm. In Distributed Computing Systems (ICDCS), 2014 IEEE 34th
International Conference on, pages 535–544. IEEE, 2014.

[233] Jisoo Yang, Dave B. Minturn, and Frank Hady. When poll is better than interrupt.
In Proceedings of the 10th USENIX conference on File and Storage Technologies,
FAST’12, pages 3–3, Berkeley, CA, USA, 2012. USENIX Association.

[234] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic measurement with
opensketch. In Proceedings of the 10th USENIX conference on Networked Systems
Design and Implementation, nsdi’13, pages 29–42, Berkeley, CA, USA, 2013. USENIX
Association.

[235] Frank Yue. Network functions virtualization - everything old is new again.
http://www.f5.com/pdf/white-papers/service-provider-nfv-white-paper.pdf, 2013.

[236] C. Zhang, J. Bi, Y. Zhou, A. B. Dogar, and J. Wu. Hyperv: A high performance
hypervisor for virtualization of the programmable data plane. In 2017 26th Interna-
tional Conference on Computer Communication and Networks (ICCCN), pages 1–9,
July 2017.

[237] C. Zhang, J. Bi, Y. Zhou, and J. Wu. Hypervdp: High-performance virtualization of
the programmable data plane. IEEE Journal on Selected Areas in Communications,
37(3):556–569, March 2019.

[238] Wei Zhang, Jinho Hwang, Shriram Rajagopalan, K.K. Ramakrishnan, and Timothy
Wood. Flurries: Countless fine-grained nfs for flexible per-flow customization. In
Proceedings of the 12th International on Conference on Emerging Networking EX-
periments and Technologies, CoNEXT ’16, pages 3–17, New York, NY, USA, 2016.
ACM.

197

[239] Wei Zhang, Guyue Liu, Ali Mohammadkhan, Jinho Hwang, K. K. Ramakrishnan,
and Timothy Wood. Sdnfv: Flexible and dynamic software defined control of an
application- and flow-aware data plane. In Proceedings of the 17th International Mid-
dleware Conference, Middleware ’16, pages 2:1–2:12, New York, NY, USA, 2016.
ACM.

[240] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phillip Lopreiato, Gregoire Tode-
schi, K.K. Ramakrishnan, and Timothy Wood. Opennetvm: A platform for high per-
formance network service chains. In Proceedings of the 2016 Workshop on Hot Topics
in Middleboxes and Network Function Virtualization, HotMIddlebox ’16, pages 26–31,
New York, NY, USA, 2016. ACM.

[241] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phillip Lopreiato, Gregoire Tode-
schi, K.K. Ramakrishnan, and Timothy Wood. Opennetvm: A platform for high per-
formance network service chains. In Proceedings of the 2016 Workshop on Hot Topics
in Middleboxes and Network Function Virtualization, HotMIddlebox ’16, pages 26–31,
New York, NY, USA, 2016. ACM.

[242] Wei Zhang, Timothy Wood, K.K. Ramakrishnan, and Jinho Hwang. Smartswitch:
Blurring the line between network infrastructure & cloud applications. In 6th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 14), Philadelphia, PA, June
2014. USENIX Association.

[243] Ying Zhang, Neda Beheshti, Ludovic Beliveau, Geoffrey Lefebvre, Ravi Manghir-
malani, Ramesh Mishra, Ritun Patney, Meral Shirazipour, Ramesh Subrahmaniam,
Catherine Truchan, et al. Steering: A software-defined networking for inline service
chaining. In ICNP, pages 1–10, 2013.

[244] Weiming Zhao and Zhenlin Wang. Dynamic memory balancing for virtual machines.
VEE, 2009.

[245] Timothy Zhu, Anshul Gandhi, Mor Harchol-Balter, and Michael A. Kozuch. Saving
cache by using less cache. HotCloud, 2012.

198

