
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Resilient Design Techniques for Improving Cache Energy Efficiency

Permalink
https://escholarship.org/uc/item/0qd1w5tr

Author
Zimmer, Brian Matthew

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0qd1w5tr
https://escholarship.org
http://www.cdlib.org/

Resilient Design Techniques for Improving Cache Energy Efficiency

by

Brian Matthew Zimmer

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Borivoje Nikolić, Co-chair
Professor Krste Asanović, Co-chair

Professor Daniel Tataru

Summer 2015

Resilient Design Techniques for Improving Cache Energy Efficiency

Copyright 2015
by

Brian Matthew Zimmer

1

Abstract

Resilient Design Techniques for Improving Cache Energy Efficiency

by

Brian Matthew Zimmer

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Borivoje Nikolić, Co-chair

Professor Krste Asanović, Co-chair

Improving energy efficiency is critical to increasing computing capability, from mobile
devices operating with limited battery capacity to servers operating under thermal con-
straints. The widely accepted solution to improving energy efficiency is dynamic voltage and
frequency scaling (DVFS), where each block in a design operates at the minimum voltage
required to meet performance constraints at a given time. However, variation-induced SRAM
bitcell failures in caches at low voltage limit voltage scaling—and therefore energy-efficiency
improvements—in advanced process nodes. Analyzing and modeling bitcell failures is neces-
sary to develop resiliency techniques that prevent or tolerate SRAM failure to improve the
minimum operating voltage of caches.

This work demonstrates a holistic approach that uses both circuit-level and architecture-
level design techniques to improve low-voltage operation of SRAM. A simulation framework
and experimental measurements from a 28nm testchip explore failure mechanisms of SRAM
bitcells. The simulation framework is further utilized to evaluate the effectiveness of circuit-
level SRAM assist techniques using dynamic failure metrics. New circuit-level techniques that
use replica timing are developed to make SRAM macros more resilient to process variation.
An architecture-level error model is developed to translate bitcell failure probability to yield,
and to evaluate a variety of error-correcting code (ECC) and redundancy-based resiliency
techniques. New resiliency schemes, named dynamic column redundancy (DCR) and bit
bypass (BB), are proposed to tolerate a high bitcell failure rate with low overhead.

The methodology and proposed schemes were validated with five different 28nm chips.
The RAVEN1 testchip measured in-situ threshold voltage variation of 30,000 bitcells and
was used to analyze the effect of random telegraph noise on failures. The RAVEN2 testchip
explored a single-p-well bitcell design that can compensate for global process variation. The
RAVEN3 and RAVEN3.5 chips included processors with on-chip switched-capacitor voltage
conversion, and resilient SRAM macros with circuit-level techniques that enable operation
down to 0.45V. The SWERVE processor included architecture-level techniques to avoid fail-
ing cells, and decreases energy by over 30% with only 2% area overhead, and includes in-situ

2

pipelined ECC to measure the contribution of intermittent SRAM error sources such as
random telegraph noise and aging.

Overall, this dissertation describes a general methodology that is used to evaluate re-
silient design technique effectiveness for different process and architecture assumptions, and
proposes a new set of resilient design techniques that lower the minimum operating voltage
of caches with low overhead.

i

To my wife, Anjali.

ii

Contents

Contents ii

List of Figures v

List of Tables ix

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 5

1.2.1 Circuit-level Topics . 5
1.2.2 Architecture-level Topics . 9
1.2.3 Relationship between Voltage, Energy and Delay 10

1.3 Related Work . 11
1.4 Thesis Outline . 13

2 Error Models 14
2.1 Modeling Sources of Error . 15

2.1.1 Hard Faults . 15
2.1.2 Soft Errors . 16
2.1.3 Intermittent Errors . 16

2.2 Circuit-level Hard-fault Model . 16
2.3 Microarchitecture-level Hard-fault Model . 19
2.4 Circuit-level Soft-fault Model . 22
2.5 Microarchitecture-level Soft-fault Model . 25
2.6 Modeling Energy, Area, Delay, and CPI . 29

3 SRAM Failure Mechanisms 33
3.1 Simulating Failure Mechanisms . 33

3.1.1 Failure Metrics . 34
3.1.2 Failure Analysis . 34
3.1.3 Summary . 42

3.2 Measuring Failure Mechanisms . 42

iii

3.2.1 Introduction . 42
3.2.2 Characterization Architecture . 43
3.2.3 Random Variation Measurement . 44
3.2.4 Random Telegraph Noise Measurement 46
3.2.5 Joint Effect of RTN and Variation on Writeability 48
3.2.6 Summary . 49

4 Circuit-level Resiliency Techniques 52
4.1 Introduction . 52
4.2 Single-p-well Bitcell . 53
4.3 Wide-voltage-range 8T macro . 56

4.3.1 Design Overview . 59
4.3.2 Writeability Assist . 61
4.3.3 Readability Assist . 63
4.3.4 Energy and Delay Simulation Results 67

4.4 Summary . 69

5 Architecture-level Resiliency Techniques 70
5.1 Introduction . 70
5.2 Protecting Data Arrays with DCR+LD . 71

5.2.1 DCR+LD Microarchitecture . 71
5.2.2 Evaluation . 75
5.2.3 Results . 79
5.2.4 Discussion . 80

5.3 Protecting Tag Arrays . 84
5.3.1 Bit Bypass (BB) . 84

5.4 Protecting Against Intermittent Errors . 86
5.4.1 Using ECC for Hard Faults . 86

5.5 Summary . 87

6 Resilient Processor Design 89
6.1 Introduction . 89
6.2 System Architecture . 91
6.3 Programmable Built-In-Self-Test (BIST) . 94

6.3.1 BIST Architecture Overview . 94
6.3.2 BIST Control . 94
6.3.3 BIST Datapath . 97
6.3.4 BIST Interface . 97

6.4 Architecture-level Resiliency . 101
6.4.1 BB Implementation . 101
6.4.2 DCR Implementation . 103
6.4.3 Line Disable Implementation . 104

iv

6.4.4 Redundancy Programming Algorithm 107
6.4.5 Storing Redundancy State . 109

6.5 In-situ Error Correction and Detection . 109
6.5.1 L1 Instruction Cache ECC . 109
6.5.2 L1 Data Cache ECC . 110
6.5.3 L2 Cache ECC . 111
6.5.4 Error Logging . 111

6.6 Simulation Results . 114
6.7 Summary . 116

7 Conclusion 117
7.1 Summary of Contributions . 117
7.2 Future Work . 118

Bibliography 120

v

List of Figures

1.1 Measured bitcell area scaling (for individual pre-production cells, cells within ar-
rays, and the effective cell sizes including overhead of peripheral circuitry) versus
ITRS scaling predictions for decreasing technology nodes. 2

1.2 Variation only has a major effect on the strength ratio between devices at lower
voltages. 3

1.3 Resilient techniques decrease Vmin by either reducing the bitcell error rate or
tolerating failures to increase the acceptable failure rate. 4

1.4 6T and 8T SRAM bitcell schematics and naming convention. 6
1.5 SRAM operation waveforms. 7
1.6 Organization of SRAM bitcells into an array. 9
1.7 Generic error-correcting codes (ECC) stores extra bits to repair faults during

SRAM read or write. 10
1.8 Energy efficiency is optimal when the sum of energy from leakage and switching

energy is minimized. 12

2.1 Memory error model for hard and soft faults. 15
2.2 Two step algorithm to determine pbit. 18
2.3 Comparison of Monte Carlo and Importance Sampling pbit-estimates for 90%

accuracy and confidence. 18
2.4 Theoretical translation of bitcell failure rate to system failure rate. 20
2.5 Particle strikes can inject current into sensitive NMOS drain nodes (blue) and

sensitive PMOS drain nodes (red). 23
2.6 Transistor-level simulation of particle strike for the high storage node (NMOS

drain strike) sinking current. 23
2.7 Qcrit versus supply voltage for different bitcells. 24
2.8 Transistor-level simulation of particle strike Qcrit with and without accounting

for random variation. 24
2.9 Example physical organization of SRAM arrays for nbw=4 and interleaving of 2. 26
2.10 Distribution of multi-bit upsets from a particle strike. 27
2.11 Visual representation of Equation 2.19 for an interleaving factor of 2. 28
2.12 System FIT for a smaller, high-density (HD) bitcell and larger, high-performance

(HP) bitcell, and different ECC schemes. 30

vi

2.13 Survey of assumptions used for architecture-level resiliency analysis. 31
2.14 Energy per operation for each dataset assuming 2/3 dynamic energy and 1/3

leakage energy at 1V. 32

3.1 Effect of bitline capacitance on pbit. 35
3.2 Effect of clock period on Vmin. 36
3.3 Effect of process corners on Vmin. 36
3.4 Summary of assist techniques: negative GND, WL boost, VDD boost, VDD col-

lapse, negative BL, GND boost, WL underdrive, partial BL precharge 37
3.5 Impact of assist techniques on Vmin. 39
3.6 Wordline boost improves writeability while reducing read stability. 40
3.7 28nm characterization testchip details. 43
3.8 Scheme used to measure Vth of each transistor in the SRAM array. 44
3.9 Histogram and normal QQ plots of measured Vth distribution for 32k cells from

both FDSOI and bulk chips. 45
3.10 Vth measurement difference between measured Vth and simulated scheme using

transistor Vth shifts from measurement. 46
3.11 Alternating bias versus conventional RTN measurement scheme. 47
3.12 Log-normal probability plot of RTN-induced current differences at cell Vth using

the alternating-bias technique. 48
3.13 Vth shift vector for cells failing to write 1. Arrows indicate worsening ability to

write A=1. 48
3.14 BIST waveforms of two different writeability tests that expose RTN, where Tstress =

1s and Taccess = 300ns with a 50% duty cycle. 49
3.15 Transistor stress state for different write modes and values. 50
3.16 Example measured effect of RTN on Vdiff for a specific bitcell. 50
3.17 Distribution of Vmin difference between write modes. 51
3.18 Difference in Vmin for six different chips. 51

4.1 SPW bitcell device cross section view. DNW isolates the PW from the p-substrate
enabling wide voltage range PW back biasing. 54

4.2 Dynamic characterization module architecture, including a 140kb SPW SRAM
macro clocked by an on-chip pulse generator and controlled by a programmable
BIST. 54

4.3 6T based high density 32KB SRAM array for failure characterization. 55
4.4 RS, WA, RA Vmin versus WL pulse width. 55
4.5 Writeability bit-error rate (BER) versus VPW for different voltages. 56
4.6 A RISC-V processor with on-chip voltage conversion fabricated in 28nm FDSOI [1]. 57
4.7 Custom low-voltage SRAM designed for the RAVEN3 project. 58
4.8 Custom low-voltage SRAM designed for the RAVEN3.5 project. 58
4.9 Column IO organization . 60
4.10 Read wordline timing. 61

vii

4.11 The proposed writeability assist scheme generates a negative voltage on the bit-
lines to lower Vmin for write operations. 62

4.12 A bank of programmable capacitance generates different strengths of negative
assist to optimize energy at different voltages and process corners. 63

4.13 Resulting negative boost amount for different configurations. 63
4.14 Proposed low-swing single-ended read scheme generates a reference using an un-

accessed bitline. 65
4.15 Simulation-based operational waveforms comparing the proposed low-swing scheme

with the conventional full-swing scheme. 66
4.16 A replica bitline emulates the weakest cell in the array to turn off the wordline

and turn on the sense amplifier at the optimal time. 66
4.17 Replica reference voltage generator subtracts a constant Vth offset at the beginning

of every cycle to respond to voltage noise. 67
4.18 Local sense amplifier timing generation. 67
4.19 Backup read scheme . 68
4.20 Energy comparison between a conventional full-swing bitline and the proposed

low-swing scheme. 68
4.21 Replica timing scheme tracks the weakest cell in the array more closely than an

inverter-based delay chain. 69

5.1 Overview of the proposed DCR scheme, which reprograms a multiplexer to avoid
failing columns. 72

5.2 An extra redundancy address is added to each way in the tag array for DCRPW,
or to each set for DCRPS. 73

5.3 For L2 caches, the proposed scheme uses the RA to multiplex/demultiplex around
failing columns. 74

5.4 For L1 caches, the proposed scheme uses a redundant column per array. 76
5.5 Evaluation of the lower bound on voltage and energy reduction for L1 caches. . 80
5.6 Evaluation of the lower bound on voltage and energy reduction for L2 caches. . 81
5.7 Further Vmin reduction (< 50mV) is possible with capacity reduction. 82
5.8 Energy per operation versus delay with annotated points for minimum E2D. . . 83
5.9 Probability that a 64 bit (L1) and 512 bit (L2) word has failing bits versus bitcell

failure probability. 84
5.10 Overview of the proposed bit bypass scheme. 85
5.11 Bit bypass trades off area overhead for increased resiliency. 86
5.12 System FIT (with bitcell FIT=1×10−3) with SECDED correction and 1 day of

accumulation. 87

6.1 High-level overview of the SWERVE system architecture. 92
6.2 SWERVE floorplan showing the physical layout of the core, L1 cache, and L2 cache. 93

viii

6.3 BIST is organized as separated control and datapath in each voltage domain,
and communicates with off-chip through system control registers (SCR) and the
host-target interface (HTIF). 95

6.4 BIST control state machine allows a wide variety of programmable March tests. 96
6.5 BIST datapath reads and writes every SRAM in parallel at the maximum SRAM

frequency. 98
6.6 Signals to and from BIST are synchronized between differing voltage and fre-

quency domains. 98
6.7 Excerpt from example control file implementing the MATS++ SRAM test. . . . 100
6.8 Extra combinational and sequential logic required to implement bit bypass. . . . 102
6.9 Encoding and decoding uses 2:1 multiplexers and a thermometer code to avoid

one column. 104
6.10 Chisel code implementing the encoding and decoding procedure to avoid a failing

column. 105
6.11 The redundancy address is accessed in parallel with the data array to identify

the failing column corresponding to the accessed row. 106
6.12 Pseudo-random algorithm to choose replacement way among remaining enabled

ways. 107
6.13 BIST failure locations are used to program dynamic redundancy. 108
6.14 Implementation of DCR, BB, LD, and SECDED in the L1 instruction cache. . . 110
6.15 Implementation of DCR, BB, LD, and SECDED in the L1 data cache. 112
6.16 Implementation of DCR, BB, LD, and SECDED in the L2 cache. 113
6.17 L1 cache error logging. 114
6.18 L2 cache error logging. 115

ix

List of Tables

2.1 Comparison of including accumulation effects for a 32KB L1 cache with SECDED
for a typical FIT rate (1×10−4) and extreme FIT rates during a 1 year-accumulation
period. 28

3.1 Most probable failure point for writeability at 0.8V. 35

5.1 Delay and area comparison between SECDED and DCR from synthesized imple-
mentations in 28nm. 74

5.2 Inputs to evaluate the minimum operating voltage (Vmin) using the proposed
generic model in Equation 2.8 for different architecture-level resiliency techniques. 77

5.3 Calculation of cache capacity for each scheme. 78

6.1 List showing a subset of supported March tests by on-chip BIST controller. . . . 95
6.2 Summary of every testable SRAM in the chip, with corresponding size and BIST

macro address. 99
6.3 Effectiveness of bit bypass at increasing the acceptable failure rate and reducing

the minimum operating voltage. 102
6.4 Area overhead for bit bypass after synthesis. 103
6.5 Timing overhead for bit bypass during read and write operations after synthesis,

for 70 FO4 processor. 103
6.6 Area overhead for DCR in the data and tag arrays. 104
6.7 Effectiveness of DCR at increasing the acceptable failure rate and reducing the

minimum operating voltage. 105
6.8 Effectiveness of DCR+LD at increasing the acceptable failure rate and reducing

the minimum operating voltage. 107
6.9 Critical path in terms of time and FO4 delay in each clock domain. 115
6.10 Area of each voltage domain and contribution of SRAM arrays to overall area. . 116
6.11 Cell statistics . 116
6.12 Clock tree metrics for TT 0.9V 25C corner. 116

x

Acknowledgments

While writing this dissertation, I was constantly reminded that none of this work would have
been possible without the support of so many friends and colleagues. I have had a wonderful
time at Berkeley over the last five years because I have been fortunate enough to work with
so many great people.

First, I would like to thank my co-advisors: Borivoje Nikolić and Krste Asanović. I
couldn’t have asked for better advisors. I never imagined that I would work for advisors
who would spend so much time and energy to make sure that I succeed. Their combined
technical expertise from circuits to software was vital for this work. Both are incredibly loyal,
care deeply about the personal and professional development of their students, and have cre-
ated an excellent culture at the BWRC and ASPIRE lab—I can’t thank them enough.

Bora’s group has many great students working in diverse research areas. Seng’s disser-
tation formed a great foundation for my work, and his continuing advice has helped guide
my research decisions; I wish we had overlapped for a longer period of time. Olivier Thomas
helped teach me circuit design and collaborated on two tape-outs when I was a brand new
student. The RAVEN team was a joy to work with. I credit many of the skills I learned to
being able to work in such a supportive, friendly, collaborative, and creative environment—
thank you so much Ruzica Jevtić, Ben Keller, Stevo Bailey, Martin Cochet, Jaehwa Kwak,
Milovan Blagojević, Alberto Puggelli, and Pi-Feng Chiu. Building chips takes a lot of time
and energy, and the huge contributions from this team made RAVEN3 and RAVEN3.5 pos-
sible. And to all of the other members of Bora’s group over the years that provided moral
support and friendship—Katerina Papadopoulou, Matt Weiner, Rachel Hochman, Amanda
Pratt, Luis Esteban Hernandez, Milos Jorgovanovic, Dusan Stepanovic, Vinayak Nagpal, Ji-
Hoon Park, Nicolas Le Dortz, Dajana Danilovic, Sameet Ramakrishnan, Sharon Xiao, Angie
Wang, Amy Whitcombe, Antonio Puglielli, Vladimir Milovanovic, Charles Wu, Nicholas Su-
tardja, and John Wright—thank you.

The work from Krste’s group has been incredible, and the development of RISC-V and
processor IP has been invaluable for my research. Andrew Waterman’s advice and feedback
has been very helpful. Rimas Avižienis helped tape-out RAVEN1, and taught me a lot about
the CAD toolflow. I would like to thank Yunsup Lee for being my inspiration and role model
throughout my graduate career—his great attitude, effectiveness, vision, and helpfulness are
unparalleled, and I feel incredibly fortunate that we were able to work together so closely.
Thank you to the rest of the group helped build and support the RTL used in all five of my
tape-outs Henry Cook, Huy Vo, Scott Beamer, Christopher Celio, Donggyu Kim, Palmer
Dabbelt, Eric Love, Martin Maas, Albert Ou, and Colin Schmidt.

Outside of my advisors’ groups, I would like to thank the other students that helped
along the way. Nathan Narevsky always seemed to know the answers to all of my questions,
and I had a great time developing curriculum and teaching EE141 with him. Stephen Twigg
was always there to help me with my Chisel coding. Thanks to Nattapol Damrongplasit and
Ying Qiao for teaching me about transistor measurement.

xi

I had a great team of undergraduate researchers help me at various steps in my graduate
career. Behzad Boroujerdian helped explore ECC codes; Brian Jenkins investigated BIST
algorithms to diagnose error causes; Joey Talia designed an early version of a replica timing
script; and Taylor Vincent found the first RTN in RAVEN1.

The Berkeley Wireless Research Center has been an awesome working environment, made
possible by awesome staff. Brian Richards has been a joy to work with, patiently sharing
his vast expertise throughout my entire graduate career. Thank you to Leslie Nishiyama,
Deirdre McAuliffe-Bauer, Bira Coelho, Olivia Nolan, and Sarah Jordan for taking care of
all of the administrative work so that I could focus on research. James Dunn is dependable
and courageous in tackling new tasks, and has been a great help with IT support and PCB
design. Daniel Burke and Fred Burghardt provided much-appreciated lab support.

If having two advisors wasn’t enough, many other professors at Berkeley graciously pro-
vided help and advice whenever I asked. Elad Alon is extremely helpful and always has
answers to our tough technical questions. I would like to thank Cari Kaufman and David
Patterson for serving on my qualification committee. Tsu-Jae King Liu provided advice for
the RAVEN1 design and measurements. John Wawrzynek and Vladimir Stojanovic were
great instructors that I was fortunate to be a teaching assistant for. And thanks to Daniel
Tataru for taking the time to be on my dissertation committee.

Industry feedback has been critical to making sure my work was relevant; thank you to
Tom Burd, Mark Rowland, and Stephen Kosonocky, for taking the time to provide feedback
on my research over the years. I would also like to thank my mentors at NVIDIA—Tom
Gray, Bill Dally, Ethan Frazier, Mahmut Sinangil, Brucek Khailany, and John Poulton—for
providing an awesome internship experience that taught me many useful skills and renewed
my motivation for circuits research halfway through my PhD.

My research was funded by DARPA PERFECT Award Number HR0011-12-2-0016,
Berkeley Wireless Research Center sponsors, ASPIRE sponsors, Intel ARO, AMD, and the
NVIDIA fellowship. ST Microelectronics has donated four tape-outs, and Philippe Flatresse
and Andreia Cathelin provided support that was crucial to the success of my research. TSMC
donated a 28nm tape-out for the SWERVE project.

Outside of school, I was fortunate to have a great group of friends and family. Thank you
Samarth Bhargava, Siddharth Dangi, Suraj Gowda, Kevin Messer, Ryan Going, Cameron
Rose, and Dan Calderone for all of the great times! My twin brother, Michael Zimmer, ended
up in the same PhD program as I did at the same time at the same school, which turned out
to be one of the luckiest things that has happened to me. Spending time with him and his
wife Sarah while sharing the ups and downs of our voyage through graduate school has been
an incredible gift. My sister Julie has always given me endless love and encouragement. My
parents, Paul and Jean, provided the best childhood anyone could ask for—encouraging me
to develop and follow my passions and supporting all of my decisions.

And last I would like to thank my wife, Anjali. I would never have completed this disser-
tation without her constant love and support, and I am incredibly grateful to have her by
my side.

xii

I will cherish my memories at Berkeley because of all of the people who helped along the
way—thank you all so, so much.

1

Chapter 1

Introduction

This chapter introduces the overall topic of the dissertation—how resilient design techniques
can be used to improve cache energy efficiency. First, the motivation for this work is intro-
duced by describing the importance of SRAM to modern digital systems and summarizing
obstacles to further improvements. Next, background information about SRAM and its us-
age is reviewed, and related work is surveyed to provide information about other potential
approaches and solutions. Last, the overall organization of this dissertation is provided.

1.1 Motivation

SRAM is the most popular dense memory structure in CMOS, due to the combined attributes
of small size and high speed. While the memory element of an SRAM bitcell, a cross-coupled
inverter pair, is also used in latches and flip-flops, the SRAM architecture assumes multiple
bits are accessed at the same time, and thereby exploits a dense array organization and
shared peripheral circuitry to amortize area overhead and enable more aggressive design
rules. Embedded DRAM achieves higher area density due to the single transistor storage
element, but requires extra process steps, needs refresh operations, and operates more slowly.

Processors are some of the most common digital systems, and SRAM makes up a large
proportion of their chip area. Large on-chip caches in processors greatly improve performance
and energy efficiency by avoiding unnecessary communication with off-chip memory, so a
large portion of die area is necessarily devoted to SRAM bitcells. Processors will remain
a workhorse of future integrated circuits—in devices such as laptops, smartphones, or the
emerging markets of wearable electronics, internet of things devices, and automotive—so
SRAM will endure as a vital system building block that requires constant improvements
to performance, energy efficiency, and area. As parallelism increases and communication
becomes more expensive, local memory that is dense and fast becomes even more critical to
improve performance and save energy.

To minimize energy in digital systems, either the effective switched capacitance or voltage
needs to be reduced, as switching energy is proportional to CV 2. The effective switched ca-

CHAPTER 1. INTRODUCTION 2

pacitance (C) is reduced with technology scaling and improved architectures that minimize
the amount of capacitance that needs to be switched to finish a given task. The advan-
tage of changing the operating voltage (V) is that it can be done during operation. When
performance requirements are high, the voltage is increased to reduce transistor delay, but
when lower performance is sufficient, the voltage is reduced to save energy in a scheme called
dynamic voltage and frequency scaling (DVFS). The quadratic relationship between voltage
and active energy makes voltage scaling an especially powerful means of reducing energy—a
voltage decrease of only 200mV from 0.9V to 0.7V corresponds to a 40% reduction in energy.

0.01

0.1

1

10

100

10 100 1000

C
el

l S
iz

e
(u

m
^2

)

Technology Node (nm)

ITRS Cell

ITRS Eff. Cell

Individual Cell

Array Cell

Eff. Cell

Figure 1.1: Measured bitcell area scaling (for individual pre-production cells, cells within
arrays, and the effective cell sizes including overhead of peripheral circuitry) versus ITRS
scaling predictions for decreasing technology nodes.

SRAM sets the minimum operating voltage of a system (Vmin), due to the billions of
extremely small transistors inside SRAM bitcells, and reliance on strength ratios to preserve
functionality. To support large SRAM-based caches on-chip, transistor dimensions have been
pushed to the extreme limit within each bitcell. SRAM bitcell size has maintained Moore’s
law scaling over many technology nodes, as shown in Figure 1.1. However, aggressive bitcell
sizing yields transistors that have increasing process variation, and the dramatically increas-
ing overall count of bitcells increases the probability of process variation sufficient to cause
SRAM failure at low voltage. The read and write mechanisms of SRAM bitcells require spe-
cific strength ratios between devices. Figure 1.2 plots a simplified illustration of why SRAM

CHAPTER 1. INTRODUCTION 3

limits Vmin. A PMOS and NMOS are connected in series between VDD and ground, forming
a voltage divider, and the middle voltage as a percentage of VDD is plotted versus voltage. A
bitcell cannot be written when the middle voltage surpasses a threshold. Two variation cases
are enumerated: no variation at all, and a shift in transistor threshold voltage representing
the strongest PMOS and weakest NMOS out of 1 million cells. At high voltages, process vari-
ation has little effect, because the gate voltage is far from the threshold voltage. However at
lower voltages, the shift in threshold voltage has a significant impact on transistor strength,
and the intermediate voltage surpasses the success threshold—representing a failure event.
Therefore, making SRAM cells resilient to process variation is necessary to further reduce
Vmin and improve energy efficiency.

10.4 0.5 0.6 0.7 0.8 0.9

1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Vdd

V
m

id
d
le
/V

d
d

With variation

No variation

With variation

Fail

Pass

Vmin

"PU"

"PG"

Vmiddle

Vdd

Vth

PDF
Vth

PDF

Figure 1.2: Variation only has a major effect on the strength ratio between devices at lower
voltages.

One simple solution to avoiding SRAM failures at low voltage is to isolate the SRAM
supply from the logic supply in order to keep SRAM at high voltage. However, this approach,
sometimes referred to as “dual rail” [2], has a few disadvantages. First, power delivery com-
plexity increases because SRAM arrays are mixed into logic areas. Second, timing verifica-
tion between two separate voltage domains is complicated and requires additional margining.
Third, overall energy efficiency improvements from voltage scaling are limited by the fixed
energy consumption of SRAM, especially in L2 or L3 caches where SRAM contributes almost

CHAPTER 1. INTRODUCTION 4

all of the power consumption. For these reasons, this work dismisses dual rail and focuses
on the case where SRAM shares the same power domain as surrounding logic.

10.4 0.5 0.6 0.7 0.8 0.9

100

10-12

10-10

10-8

10-6

10-4

10-2

Vdd

Bi
t E

rr
or

 R
at

e
(B

ER
)

Vmin

Prevent
errors

Tolerate
errors

Resilient Vmin

(allowable failure rate)

(bitcell failure rate)

Figure 1.3: Resilient techniques decrease Vmin by either reducing the bitcell error rate or
tolerating failures to increase the acceptable failure rate.

The other solution, and the focus of this work, is to use resilient design techniques to
lower the minimum operating voltage of SRAM. Resiliency refers to the ability to tolerate
process variation and prevent device non-idealities from causing system failure. Figure 1.3
shows the general idea of resilient design. Bitcell failure rate is plotted versus operating
voltage. The number of cells in a design will set a maximum allowable bitcell failure rate,
which is represented as a horizontal line on the plot. The intercept of the failure curve and
the allowable failure rate represents Vmin of the design. Two general strategies can be used
to reduce Vmin—either prevent or tolerate bitcell failures. Resiliency techniques that try to
prevent process variation from causing failure decrease the probability that a bitcell fails at
a given voltage, shifting the curve down and moving the intercept to the left, representing a
reduction in Vmin. Resiliency techniques that tolerate bitcell failures at a system level increase
the maximum allowable bitcell failure rate, shifting the horizontal line up and also moving
the intercept to the left, representing another method of reducing Vmin. Both strategies can
be used together for maximum Vmin reduction.

Each resiliency technique reduces Vmin, but at the cost of additional overhead in terms
of area, energy, delay, and design complexity. Evaluating both effectiveness and overhead of
different schemes at a system level is required to choose the appropriate techniques for a
particular design.

CHAPTER 1. INTRODUCTION 5

To summarize, processors need huge SRAM-based on-chip caches that operate at low
voltages to maximize energy efficiency and performance in digital systems. Achieving this
goal requires using extremely small transistors inside SRAM bitcells that experience large
random variations, which are further exacerbated at low voltages. Resiliency techniques that
prevent or tolerate errors are necessary to continue innovation in digital systems by improving
cache energy efficiency through increased voltage scaling.

1.2 Background

Background knowledge about SRAM and its usage is necessary to understand the motivation
and context of various solutions in the following chapters. Due to the holistic approach
required to improve energy efficiency in caches, a review of both circuit-level and architecture-
level topics is necessary.

1.2.1 Circuit-level Topics

Circuit-level bitcell topics include describing how SRAM cells are designed, explaining how
peripheral circuit reads and writes individual bitcells, and demonstrating how transistor
variation can cause failures.

Bitcells

Static random-access memory (SRAM) is a form of on-chip memory that requires a power
supply to maintain its contents. Most SRAM uses six transistors (6T) to store one bit of
information, while other versions such as the eight-transistor (8T) cell use extra transistors
to enable multiple reads or writes per cycle. Figure 1.4 shows both cells and some naming
conventions: PU for pull-up, PD for pull-down, PG for pass-gate in the 6T and 8T cell,
and additionally RPD for read-pull-down, RPG for read-pass-gate in the 8T cell. The PD
and PU devices form the storage element of the SRAM cell using positive feedback to hold
differential data on the left and right side of the cell. The PG devices enable access to this
bit of memory for either reading or writing. Unlike DRAM, no refresh is needed to maintain
the state of the cells. If the voltage falls below the retention voltage (Vret), the transistors
in the storage element effectively turn off, and the contents of the cell are lost. Therefore in
sleep states, the state stored in SRAM must either be moved to another location in order to
turn off power to the SRAM, or the voltage must be maintained at a specific Vret.

Figure 1.5 depicts how bitcells are read and written with example waveforms showing
successful and unsuccessful operations. For a write operation, the desired cell contents are
placed differentially on the bitline, so one side will be high while the other will be low.
Writeability failures occur when either the high node cannot be pulled low through the pass
gate (because the PG is not stronger than the PU) or the low node cannot be pulled high
through the PU (because the PD is stronger than the PU and PG). For a read operation,

CHAPTER 1. INTRODUCTION 6

bitline	
 (BLL)

write	
 wordline	
 (WWL)

bitline	
 (BLR)

PGL PGR

PDR

PURPUL

PDL

BLLI
BLRI

read	
 bitline	
 (RBL)

read	
 wordline	

(RWL)

RPG
RPD

6T Cell 8T Cell
Figure 1.4: 6T and 8T SRAM bitcell schematics and naming convention.

both bitlines will be precharged and left floating at a high value. Readability failures occur
when the voltage differential generated on the bitlines does not surpass the sensing offset
voltage of the sense amplifiers. Because many bitcells share a single bitline to reduce area
overhead, the capacitive loading of the bitline can be quite high, and weak bitcells cannot
sink enough read current to discharge the bitline in a given amount of time. Read stability
failures occur during either a read access, when the side of the cell holding the low value will
experience a voltage bump due to the voltage divider between the PD and PG. If the PD is
not sufficiently strong, the voltage can rise above the trip point of the cell and accidentally
flip the contents of the cell.

There is an intrinsic conflict between stability and writeability in a bitcell. Large tran-
sistors in the storage element (PU and PD) with weak access transistors (PG) would favor
stability, while large access transistors and small storage element transistors will favor write-
ability. In particular, for a cell to be both stable and writable, the PD must be sufficiently
stronger than the PG, and the PG must be sufficiently stronger than the PU. Therefore
the PG has both a lower and upper bound on strength, and changing PG size will trade-off
stability and writeability.

Bitcell failures can be measured with either static or dynamic metrics. Traditionally,
static metrics, such as the static noise margin (SNM), were used to estimate Vmin. However,
static metrics assume infinite access time, and therefore are pessimistic measures of read
stability, and optimistic measures of writeability [3]. Dynamic metrics, which account for
finite access time of bitcells, closely predict actual Vmin [4], and will be used throughout this
work.

CHAPTER 1. INTRODUCTION 7

BLLI
BLRI

BLLI
BLRI

BLL
BLR
WL

Pass

Fail

Control
signals

(a) Example of SRAM writeability.

BLL
BLR

BLL
BLR

WL

Pass

Fail

Control
signals

(b) Example of SRAM readability.

BLLI
BLRI

BLLI
BLRI

WL

Pass

Fail

Control
signals

(c) Example of SRAM read stability.

Figure 1.5: SRAM operation waveforms.

CHAPTER 1. INTRODUCTION 8

Sources of variation

There are many sources of device parameter variations caused by an imperfect manufactur-
ing process, such as random dopant fluctuations (RDF) or line-edge roughness (LER) [5].
Random (or local) variations such as RDF exist between each transistor in the design, re-
ducing matching in analog differential pairs or ratioed devices in SRAM cells. Additionally,
there are systematic variations that affect all devices on the same die, wafer, or lot—causing
all devices to have different drive current versus gate voltage characteristics.

While process parameter variations have dozens of physical sources that change many
components of transistor performance, variation can be modeled with a first-order approxi-
mation by assuming all variation only affects the threshold voltage of the device. Using 3D
simulation, the distribution of the threshold voltage was predicted to be Gaussian to about 3
sigma, then is positively skewed [6]. Random or local variation is represented as the variance
of the distribution, while systematic variation corresponds to shifting the mean of the distri-
bution. As technology features decrease in size, the contribution of different physical sources
of variation changes. In general, smaller technology nodes have increasing variation, because
the fewer dopant ions in the channel increases variation from random dopant fluctuations [5].

Array organization

To amortize the area overhead of peripheral circuits used to read and write the SRAM,
bitcells are organized into arrays, as shown in Figure 1.6. When reading a word, the entire
wordline is turned on along the row direction, and the data in each cell is transferred onto
the differential bitlines along the column direction by discharging one of the bitlines on the
side of the cell holding a zero value. Sense amplifiers that detect the voltage difference on
the bitlines are generally larger than the width of a cell, so bitcells are physically interleaved
to only read 1 out of every N bitcells, where N is a power of two. After the read operation
is completed, the bitlines are precharged again to prepare for the next operation. During a
write operation, one of the bitlines is discharged low, while the other is held high (or left
floating high). When the pass gate transistors are turned on by the wordline, the feedback
of the internal inverters is overcome by the pass gates to write a new value into the cell.

From a system perspective, an SRAM appears with a logical width w and depth d, where
an access reads or writes w bits (a word), there are d unique addresses to store w bits, and
there are w ·d bits total in an array. In a non-interleaved design, there are d wordlines (rows)
for each address, and there are w bitline pairs (columns). The shape of the array can be
changed by physically interleaving multiple words on a row and using multiplexers to access
the desired set of columns. Arranging more cells on each wordline and bitline improves area
density, but also increases energy and delay.

In the simplest implementation, the row decoder is placed on either the left or the right
side of the array, the column logic is placed above or below the array, and the control
logic is placed in one corner. Performance can be increased at the expense of area and
additional metal layers by segmenting the wordline, the bitline, or both. In a segmented

CHAPTER 1. INTRODUCTION 9

Precharge

Input data latch

Write drivers

Sense Amp

...

...

...

...

Precharge

Output data latch

...
Row

decoder

Address

Predecode

data_out[n]data_in[n]

Control

Clock, Read, Write

Wordline[m]

Wordline[0]

Bitline (true) Bitline (complement)

...

SRAM Array

Column IO

Figure 1.6: Organization of SRAM bitcells into an array.

design, the row decoders can be placed in the middle of the array horizontally to reduce
wordline length, and the column IO can be placed in the middle of the array vertically to
reduce the bitline length by half [7]. To further increase performance, the bitline can be
segmented into multiple hierarchical local bitlines that drive larger global bitlines at the
expense of area overhead [8],[9].

1.2.2 Architecture-level Topics

A level of abstraction separates circuit-level and architecture-level topics. Once an SRAM
array is designed and verified at the circuit-level, it is abstracted as a memory that holds
a specific number of addressable words of data with a maximum cycle time. These SRAM
macros are used at the architecture-level to build larger structures, such as caches, that don’t
depend on specific circuit issues within each SRAM macro.

CHAPTER 1. INTRODUCTION 10

Encode

SR
AM

ReadWrite

Decode

Input
data

Corrected
output
data

Figure 1.7: Generic error-correcting codes (ECC) stores extra bits to repair faults during
SRAM read or write.

Cache organization

SRAMs have many different uses in digital system, and are generally used for memory
elements with thousands of bits or more. On-chip caches in processors contain many millions
of SRAM cells; there are up to 300 million bits in modern 22nm Intel Xeon processors [10].

A cache attempts to hide memory latency by appearing as a much larger memory than
it actually is by storing frequently accessed data [11]. Only the lower bits of the address
map into each row in the memory, so different data with differing upper address bits could
conflict and map to the same constrained resource. Caches generally use SRAM for both the
tag and data portion of the cache, where the tag array is a small portion of the overall area.

The caching technique is repeated hierarchically, with usually two to three levels of
caching, where the smallest and fastest (level-one or L1 cache) use large bitcells and smaller
bitlines to reduce delay, and the last level of the cache (L2 or L3 caches) use the small-
est bitcells possible to increase capacity. These multiple levels make caching a particularly
interesting design target because each level has very different SRAM design constraints.

Error-correcting codes (ECC)

Error-correcting codes, commonly referred to as ECC, detect and correct bit flips during
every read operation by decoding additional bits stored with the words. Figure 1.7 explains
how a generic error-correcting code protects an SRAM array from failure. ECC detects bit
flips from all failure sources including intermittent and soft errors. Numerous ECC codes
offer differing correction and detection capabilities. Most commonly, SECDED corrects a
single bit per word, white DECTED corrects up to two bits per word. Upgrading from a
SECDED code to DECTED code increases the complexity and overhead of the encoder and
decoder [12], potentially precluding usage in L1 caches.

1.2.3 Relationship between Voltage, Energy and Delay

Improving energy efficiency is crucial for all systems and workloads, as Equation 1.1 illus-
trates with a high-level abstraction.

CHAPTER 1. INTRODUCTION 11

Performance
(ops

s

)
= Power

(
J

s

)
· Energy Efficiency

(ops

J

)
(1.1)

If performance is constrained, the only way to reduce power is to improve energy efficiency,
while if power is constrained (either for thermal reasons or limited battery capacity), the
only way to improve performance is to improve energy efficiency. Therefore while mobile
and server applications have power budgets two orders of magnitude apart, perform different
workloads, and have widely varying performance constraints, using voltage scaling to improve
energy-efficiency is beneficial in both systems.

Energy consumption in digital systems comes from two sources: switching (or active)
and leakage. Additionally, to understand energy-efficiency, the distinction between energy
and power (energy per unit time) is important. Switching energy per clock cycle is equal
to the total capacitance switched times the voltage squared (Eswitch = CeffectiveV

2), and
can be converted to power by estimating the frequency (Pswitch = CeffectiveV

2 · f). The
effective switched capacitance changes each cycle based on the activity of the design. Leakage
is generally measured as power, but can be converted into energy using the frequency of
operation. Leakage power is dependent on process parameters (current versus gate voltage),
the voltage, logic gate mixture, and logic state.

Decreasing the voltage will decrease both the switching and leakage power, but the tran-
sistors will have less drive current and the frequency of operation will be reduced. Energy-
efficiency will improve as voltage decreases, until the point at which the dramatic increase
in transistor delay near the threshold voltage causes more leakage to be integrated per
cycle than saved switching energy, creating an optimal energy-efficiency point shown in Fig-
ure 1.8. The optimal point is usually well below the Vmin of SRAM, so using resiliency to
reduce Vmin to the optimal point is the goal of this work. The minimum energy point exists
near the threshold voltage, but also is a function of the ratio between switching and leakage
energy—if switching energy is a higher proportion of total energy either implicitly from the
design or due to higher activity, the minimum energy point will be at a lower voltage.

1.3 Related Work

Many resilient design techniques have been developed to improve SRAM Vmin. Understand-
ing the effect of process variation is vital both for yield improvement and Vmin reduction [5].
SRAM bitcell failures due to persistent process variations (such as random dopant fluctua-
tion) have been studied using both simulation and experimental measurements. Simulation-
based analysis relies on either static metrics [13] or accelerated-Monte-Carlo simulation to
predict rare failure events [14], [15], [16]. Measurement-based analysis uses a combination
of individual transistor measurements and at-speed test generators to locate bitcell fail-
ures [17], [4]. In addition to persistent process variations, soft error strikes can cause bitcell
failures [18], and random telegraph noise and aging change transistor strength over time [19].

CHAPTER 1. INTRODUCTION 12

0.4$ 0.5$ 0.6$ 0.7$ 0.8$ 0.9$ 1$

En
er
gy
'p
er
'o
pe

ra
+o

n'

Vdd'

Leakage$

Switching$

Total$

Figure 1.8: Energy efficiency is optimal when the sum of energy from leakage and switching
energy is minimized.

Circuit-level resiliency techniques have been proposed to prevent extremely weak or
strong transistors from causing bitcell failures. Adding two extra transistors to each bit-
cell to create the single-ended 8T cell decouples the read and write operation to improve low
voltage operation [20], [21], [22]. Circuit assist techniques change wordline [8], bitline [23] [24],
or cell supply voltages [7] on a cycle-by-cycle basis to strengthen or weaken particular devices
during each operation, and have been shown to significantly reduce Vmin.

Architecture-level resiliency use redundancy or error correction to repair or avoid bitcell
failures. Redundancy-based techniques guarantee working memory cells to compensate for
failing cells [25], [26], [27]. Error-correction-based techniques encode data with extra bits
that are used to detect and correct bit flips when they occur [28], [29], [30].

In general, existing studies have focused on a single layer of abstraction, comparing
circuit solutions to other circuit solutions and architecture techniques to other architecture
techniques (with a few exceptions, such as [31]). A comprehensive analysis with a common
evaluation framework can determine the optimal set of resiliency techniques to lower Vmin
for a given set of process and implementation assumptions.

CHAPTER 1. INTRODUCTION 13

1.4 Thesis Outline

This work takes a holistic approach that explores resiliency solutions which enable Vmin
reduction of SRAM at different levels of abstraction, verifies the models and techniques with
fabricated and measured designs in a modern 28nm process, and evaluates each solution
within the context of a full system.

Chapter 2 proposes an error model that translates basic sources of variation and soft
error strike models to system yield and FIT as a function of resiliency techniques at both the
circuit and architecture level. This model is used in later chapters to gain insight into the
effectiveness of different resiliency techniques and provide in-depth analysis and comparison
of different ideas. While targeted at SRAM inside cache-like structures, the methodology is
easily generalized to any SRAM organization in digital systems.

Chapter 3 explores SRAM failure mechanisms using both simulation and measurement
based approaches. Simulation approaches enable a design-time study of the effectiveness of
various circuit techniques to improve low voltage SRAM operation. Measurement results
from a 28nm testchip validate assumptions about process variation and explore the impact
of intermittent sources of variation. These results are crucial for correctly anticipating the
behavior of SRAM failures in real silicon for effective design of complete resilient systems.

Chapter 4 proposes a few circuit-level resiliency techniques. A new bitcell, measured in a
28nm design, uses back bias to compensate for systematic process variation. A new macro,
part of two more 28nm chips, enables a wide operating range of 0.45V to 1V using a write
assist technique and replica timing.

Chapter 5 analyzes the effectiveness of a variety of previously proposed architecture-level
resiliency techniques, and proposes new techniques called bit bypass and dynamic column
redundancy that significantly increase the maximum allowable bitcell failure rate with very
little overhead. Also, a discussion of the analysis summarizes a set of guidelines that provide
intuition about different resiliency approaches. Last, redundancy and error-correcting code
based techniques are compared using the joint hard and soft error model.

Chapter 6 compiles the results from previous chapters to build a complete processor with
resilient cache that avoids bitcell errors to reduce Vmin and improve energy efficiency. A
memory test identifies failing bitcells at different voltages, and error-correcting codes detect
both soft and intermittent errors during operation.

Chapter 7 concludes by summarizing the key contributions and suggesting directions of
future research.

14

Chapter 2

Error Models

This chapter describes the error model used throughout this thesis to evaluate different
resiliency techniques. The model is holstic, and translates basic physical sources of error to
overall cache yield and failures in time while accounting for both circuit and architecture-level
resiliency techniques.

Error models are necessary to evaluate the effectiveness of different resiliency schemes.
A memory error model was developed to calculate yield and failures-in-time as a function
of cache design, resiliency techniques, expected transistor variation, and operating voltage.
As shown in Figure 2.1, the model uses both a circuit-level model and a microarchitecture-
level model to translate bitcell failure probability at different operating conditions to cache
failure probability. The circuit-level model determines the probability that a single bitcell will
fail, based on transistor-level simulations of the bitcell affected by random variation under
different operating conditions. The architecture-level model assumes bitcells are organized as
a cache, and translates the probability of bitcell failure to cache yield. A similar methodology
could be used for any organization of bitcells in a digital system, but most SRAM in digital
systems are used in caches, so assuming organization into a cache can provide valuable insight
and immediately useful results.

The model focuses on the probability that a cache fails, but not the probability that
a complete system fails; by avoiding assumptions about architecture and activity, the re-
sults are general and widely applicable. Higher-level architecture and application-level error-
vulnerability models can translate the probability that a cache will fail to the probability
that a system will fail [32], but this higher-level analysis is orthogonal to the evaluation of
alternative cache designs. Note that the higher levels can only mask soft errors and not hard
faults, under the assumption that a system will rely on all parts of the available cache at
some point, and so can only decrease failures-in-time (FIT) and not yield.

This model makes two main contributions. First, the model is holistic—modeling failure
rates at both the circuit and architecture level, and accounting for interactions between the
two different levels of abstraction. Chapter 5 will show that an architecture-level resiliency
scheme’s effectiveness is very sensitive to circuit-level assumptions, and that accurately mod-
eling bitcell failure probability as a function of voltage is critical.

CHAPTER 2. ERROR MODELS 15

Random
variations

Circuit-level hard
error model

µArch-level
hard error model

VDD

uArch
resiliency

techniques

E/read
E/write
E/idle
Area

Performance

E/op
Area

Performance

µArch
assumptions

Probability that
a cache fails

Probability that
bitcell fails

Circuit-level soft
error model

µArch-level
soft error model

Particle
strikes

Bitcell failures-in-time
(FIT)

Cache failures-in-time
(FIT)

Figure 2.1: Memory error model for hard and soft faults.

Second, the microarchitecture-level error model is general, and not specialized to the
particular scheme under evaluation. This flexible approach to modeling resiliency schemes
enables easy comparison between many different schemes without sacrificing any accuracy.

2.1 Modeling Sources of Error

It is important to differentiate between different sources of error, as some resiliency techniques
can only protect against specific kinds of errors. Even though there are many physical sources
of errors, errors are categorized based only on their characteristics.

2.1.1 Hard Faults

Hard faults (also known as persistent errors) are generally caused by an imperfect manufac-
turing process and persist for the lifetime of a chip. These errors are localized to particular
devices. The hard faults analyzed here are not yield faults in the bitcells or periphery that
cause failures at nominal voltage, but rather bitcells that work well at high voltage and only
begin to fail at lower voltages due to variation. The most common sources of variation are
line-edge roughness (LER) and random dopant fluctuation (RDF). These effects are modeled
as a shift in the threshold voltage of a device, using a Gaussian distribution with a different
standard deviation for each process technology. The circuit-level model translates LER and
RDF effects into bitcell failure probability as a function of voltage. A built-in-self-test (BIST)
that tests the SRAM can identify the location of these failures.

CHAPTER 2. ERROR MODELS 16

2.1.2 Soft Errors

Soft errors (also known as transient errors) are rare events that cause an error, but do not
cause long-term damage. A high-energy particle striking a circuit node results in a voltage
pulse that can flip the value of a bitcell. In the model, the case where two or more separate
soft error strikes occur in the same cache line is ignored. Detailed analysis showed that the
high frequency of cache accesses prevents multiple soft errors from building up in single word,
and that physical bitcell interleaving can easily prevent a high-energy multi-bit particle strike
from affecting multiple bitcells in the same word.

In a few cases, soft errors can affect the proposed hard-fault model. In some proposed
schemes, SECDED is used to correct hard faults without upgrading ECC protection to
DECTED, leaving words with hard faults vulnerable to soft errors [31]. An in-depth analysis
provided later shows that this design choice can only be justified with particular combinations
of assumptions about bitcell failure rates, bitcell FIT, system architecture, system activity,
and required system FIT. In general, sharing single-bit ECC between hard faults and soft
errors is not acceptable, and so we do not consider this option further in this thesis.

2.1.3 Intermittent Errors

Intermittent errors, such as random telegraph noise (RTN) and aging-related errors, share
characteristics of both hard and soft errors. Like soft errors, the probability of occurrence
is not 100%, but like hard faults, these defects are bound to specific devices. Because BIST
might not detect these faults, repair-based resiliency techniques cannot protect against in-
termittent errors, and these errors need to be treated as soft errors for failure analysis.

2.2 Circuit-level Hard-fault Model1

The circuit-level hard fault model translates random variations to memory bitcell probability
of failure for different bitcells, voltages, and circuit-level resiliency techniques. This model
is essential to correctly compare resiliency techniques, because the slope of voltage versus
bitcell failure probability determines the amount of voltage reduction, and therefore energy-
efficiency gains, enabled by different resiliency techniques. A steeper failure slope means that
resiliency techniques provide less energy-efficiency improvements than a flatter slope, making
it more difficult to justify the additional overhead or complexity of a technique.

Transient simulations are required to quantify the effect of various design decisions on
failure rates, because static metrics poorly match reality [4]. A Monte Carlo simulation can
be used to measure the effect of variability with transient simulations, but an infeasible
number of simulations would be required to find a rare failure event. Importance sampling
(IS) enables enormous speedup for Monte Carlo analysis of rare events [14]. The proposed

1The content in this section was derived from a publication in TCAS-II 2012 [33].

CHAPTER 2. ERROR MODELS 17

error modeling methodology uses importance sampling of transient simulations to predict
SRAM failure rates at different voltages.

To fairly compare between different voltages, the frequency of the simulations is defined in
terms of the fanout-of-4 delay (FO4), which remains constant over all voltages while appro-
priately adjusting actual operating frequency. For a given technology, this model translates
assumptions about random variations and voltage to bitcell failure probability, as shown in
Figure 2.13b.

Analysis Methodology

Variation in transistors is modeled in the transistor-level simulation models with distributions
that describe variations of various device parameters. Monte Carlo simulation samples from
these distributions, and then runs the desired operating point or transient analysis. Analyzing
most digital structures only requires a few thousand simulations to model the desired variable
as a distribution and extract the mean and variance; for example, leakage is commonly
modeled as a log-normal distribution [34]. However, for SRAM cells, the limiting device will
exhibit variations in the extreme tail of the distribution at over six standard deviations from
the mean, where behavior deviates from an extrapolated value and numerous Monte Carlo
simulations would be needed to find a single error. The proposed analysis methodology uses
importance sampling to solve this problem by only sampling from the important region of the
distribution where failures are more likely, and avoiding unnecessary simulations at points
which will not fail.

Importance Sampling

Figure 2.2a shows a graphical representation of the main idea behind importance sampling
for a simplified case of two devices, where the two axes represent device threshold voltages.
Under the assumption that threshold-voltage deviations due to random dopant fluctuation
can be modeled with a Gaussian distribution, Monte Carlo will simulate the two-device
circuit with threshold probability density functions (PDF) given by Y1 and Y2, where the
mean is the device’s nominal value, and the σ is given by AV t√

W∗L . This enables investigation of a
technology before full statistical models are available as long as an approximate σVth is known.
In general, this method can be applied to any statistically modeled technology parameter.
Ordinary Monte Carlo will only sample failure events with the very small probability shown
by region 1 . For importance sampling, the mean of Y1 and Y2 is changed to create a new
PDF, labeled Ŷ1 and Ŷ2, so Monte Carlo samples failure events with the probability given
by region 2 . To determine how often these failures would occur without the artificial shift,
these samples are unbiased [14].

CHAPTER 2. ERROR MODELS 18

Vth,1

Vth,2

FAIL

PASS

Vth0,1

Vth0,2
Ŷ1Y1

Y2

Ŷ2

1

2

(a) Importance sampling provides more information
about the failure region by shifting the mean of each
device’s threshold voltage.

∆Vth1/σ1

∆Vth2/σ2

p1

p2p3

p4

search_radius

FAIL

PASS

(b) Graphical example of the variable-radius algo-
rithm for hypothetical two-device circuit.

Figure 2.2: Two step algorithm to determine pbit.

0.70.35 0.4 0.45 0.5 0.55 0.6 0.65

100

10-4

10-3

10-2

10-1

Vdd

Bi
t E

rr
or

 R
at

e
(B

ER
) Importance Sampling

Monte Carlo (Vth only)
Monte Carlo

Readability

Writeability

Figure 2.3: Comparison of Monte Carlo and Importance Sampling pbit-estimates for 90%
accuracy and confidence.

CHAPTER 2. ERROR MODELS 19

Variable-radius Most-Probable Failure Point Search

Finding the optimal sampling distribution is complex for a multi-dimensional design space.
For quick convergence, the set of mean shifts must be the multi-dimensional most-probable
failure point (MPFP), which is the point closest in distance to the origin. This methodology
uses a method that performs uniform sampling of a variable radius n-dimensional sphere
around points, a similar idea to [15].

Figure 2.2b illustrates a simple case of a two-device circuit. The space being searched
is defined as shifts in thresholds for each device (normalized by their standard deviation),
and the desired point is the closest point to the origin. Initially, a large search of 5σ in
all directions is uniformly sampled from the origin (p1) and the closest failure point p2 is
found. Larger initial searches are used if no failures are found after the first search. Sampling
continues with a decreased search space until no closer points are found. Last, importance
sampling is run to determine the final bit error rate.

Most importantly, this algorithm can be readily adapted to different circuits with different
numbers of variables. All that is needed to run this algorithm and return a probability of
failure is a netlist describing which thresholds can be shifted and failure metrics which return
a pass or fail signal for a given threshold shift. This methodology finds the pbit for any dynamic
metric in approximately five minutes of simulation time on a modern computer, where most
time is spent running small Monte Carlo transient simulations. Designer usability, rather
than absolute performance operation, was the goal of this implementation.

The MPFP approach will not only determine failure probability, it will also determine
the relative strengths of particular devices that cause failure, and therefore explains why a
cell fails. The intuitive explanation of the MPFP is that if Monte Carlo was run for a very
long time, most failures will have devices with thresholds shifted by approximately these
amounts. Assuming devices models are correct, real silicon cells would also fail for similar
device characteristics.

This simulation methodology allows for rapid design space exploration without sacrificing
accuracy, and provides intuition about the cause of failures.

Verification

These results closely match Monte Carlo simulation, as shown in Figure 2.3. Note that this
IS implementation assumes that the only source of variation is Vth variation, yet can be seen
to track full MC well. pbit smaller than 10−4 cause an excessive MC runtime. Other studies
have shown that IS matches MC for longer simulations [14].

2.3 Microarchitecture-level Hard-fault Model

The microarchitecture-level hard-fault model translates probability of bitcell failure to system
yield. Microarchitecture-level resiliency techniques tolerate failures by either using ECC to
detect and correct errors, programming redundancy to remap failing bits to working bits, or

CHAPTER 2. ERROR MODELS 20

disabling pieces of memory (such as a line in a cache) so that failing bits are never accessed.
Schemes are compared by their cache bit error rate.

Generic Framework

The proposed generic framework uses a hierarchy of binomial distributions shown in Fig-
ure 2.4 and defined in Equations 2.1-2.8 to translate bitcell failure probability to system
failure probability. The distribution of failures in each level of the hierarchy can be repre-
sented by a binomial sample of the level below. For example, the number of failing lines in
a set is a binomial sample of n total lines in a set with a given probability of line failure.
The probability that a given level fails can be determined by evaluating the cumulative den-
sity function (CDF) of the level. For example, the probability that a set fails is the CDF
evaluated at 0 (assuming no lines can fail in a set). Resiliency techniques simply change the
evaluation of each cumulative density function.

Word ...

Set

...

Cache

Bit ..

Line ...

Figure 2.4: Theoretical translation of bitcell failure rate to system failure rate.

CHAPTER 2. ERROR MODELS 21

pbit fails = Defined for given VDD

Xword ∼ Binomial(nb−w, pbit fails) (2.1)

pword fails = 1− P(Xword ≤ ab−w) (2.2)

Xline ∼ Binomial(nw−l, pword fails) (2.3)

pline fails = 1− P(Xline ≤ aw−l) (2.4)

Xset ∼ Binomial(nl−s, pline fails) (2.5)

pset fails = 1− P(Xset ≤ al−s) (2.6)

Xcache ∼ Binomial(ns−c, pset fails) (2.7)

pcache fails = 1− P(Xcache ≤ as−c) (2.8)

where ab−w = Allowable number of bit failures in word

aw−l = Allowable number of word failures in line

al−s = Allowable number of line failures in set

as−c = Allowable number of set failures in cache

nb−w = Number of bits in word

nw−l = Number of words in line

nl−s = Number of lines in set

ns−c = Number of sets in cache

This analytical approach is superior to a numerical approach because it enables analysis for a
large range of pbit fails. Generating thousands of random fault maps (a Monte Carlo numerical
approach) can only translate bitcell failure probability to yield for a very limited range at
very low voltage, because tens of thousands of fault maps would need to be generated to
make low probability faults appear at high voltage.

While using a binomial distribution to translate failure probabilities is common prac-
tice, the new error model introduces a hierarchical combination of explicit binomials in a
configuration that enables the evaluation of many different schemes by simply changing a
few parameters. At each voltage, the corresponding probability of bitcell failure pbit fails is
inserted, and all of the other probabilities and final yield can be directly evaluated. Most
schemes can be evaluated directly by determining the a and n parameters. Even though the
model is generic, it is not an approximation. For more complex schemes, one of the binomial
distributions can be replaced by a multinomial distribution for increased flexibility at the
cost of decreased intuitiveness.

Example

SECDED is a common resiliency scheme using single-error-correction, double-error-detection
ECC on every word to allow correct operation even if one cell in every word is non-functional.
The probability that a cache fails is calculated with Equation 2.9 where n is the number of
bits in a word, pbit is the probability that a bit fails, and w is the number words in the cache.

CHAPTER 2. ERROR MODELS 22

pword = 1− [(1− pbit)n + n · pbit · (1− pbit)n−1]
pcache = 1− (1− pword)w (2.9)

A yield specification sets the allowable probability of cache failure, and therefore sets the
required bitcell failure probability and required operating voltage to meet this bitcell failure
requirement.

This scheme can now be used to quickly reproduce the previous example. For SECDED,
the parameters ab−w = 1, aw−l = 0, al−s = 0, as−c = 0 represent the idea that one bit in every
word can fail, no words can fail in a line, no lines can fail in a set, and no sets can fail in
a cache. If a line can be disabled, al−s is changed from 0 to equal the number of lines with
two or more errors that can be disabled in a set.

2.4 Circuit-level Soft-fault Model

The circuit-level transient error model translates particle strikes to memory bitcell failures-
in-time (FIT). There are two ways for a particle strike to cause a bitcell value flip, as shown
in Figure 2.5. A strike to an NMOS drain on the side holding a high value will inject negative
current and cause a voltage droop, potentially flipping the cell as shown in Figure 2.6. A
strike to a PMOS drain on the side holding a low value will inject positive current and cause
a voltage bump, potentially flipping the cell. Note that a strike to an NMOS on the low value
side or PMOS high value side will merely reinforce the stored value and will not cause a bit
flip. Generally, NMOS strikes are more likely to cause a bit flip, because the combined area
of the pass-gate and pull-down devices dwarfs the pull-up size. Using a double exponential
equation to model the fast spike and slow fall of the current pulse [35], a binary search
determines the critical charge (Qcrit) needed to cause a bitcell flip. Figure 2.7a and 2.7b
show the critical charge for PMOS and NMOS strikes respectively.

The transient error model intentionally does not account for persistent variation. Random
variation in a cell could increase or decrease the susceptibility of a cell to a strike-induced
bit flip. However, importance-sampling-based simulations that jointly account for persistent
failures and transient failures confirm that ignoring random variation barely affect the results,
as shown in Figure 2.8.

In order to translate critical charge to failures-in-time, assumptions need to be made
about the frequency and amplitude of particle strikes. The probability of a particle striking
a given area per second of at least charge Qcrit can be modeled with Equation 2.10 [36].

R(q) = F × A×K × exp(− q

Qs

) (2.10)

where

• F = neutron flux, evaluated 56.5/m2

CHAPTER 2. ERROR MODELS 23

1 0
00

Figure 2.5: Particle strikes can inject current into sensitive NMOS drain nodes (blue) and
sensitive PMOS drain nodes (red).

0.0 0.5 1.0 1.5 2.0
Time ×10−10

0.0

0.5

1.0

V
o
lt

a
g
e

(V
)

V(bit)

V(bitb)

0.0 0.5 1.0 1.5 2.0
Time ×10−10

−25

−20

−15

−10

−5

0

C
u

rr
en

t
(u

A
)

I(strike)

Figure 2.6: Transistor-level simulation of particle strike for the high storage node (NMOS
drain strike) sinking current.

CHAPTER 2. ERROR MODELS 24

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Vdd

0
1
2
3
4
5
6
7
8
9

Q
cr

it

× 10− 15

(PMOS strike)

6t hd
6t hp
8t

(a) PMOS drain strike.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Vdd

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Q
cr

it

× 10− 15

(NMOS strike)

6t hd
6t hp
8t

(b) NMOS drain strike.

Figure 2.7: Qcrit versus supply voltage for different bitcells.

0.0 0.2 0.4 0.6 0.8 1.0
Critical particle charge × 10−14

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

of
bi

tc
el

lf
ai

lu
re

8t Bitcell

No variation (N)
No variation (P)
With variation (N)
With variation (P)

Figure 2.8: Transistor-level simulation of particle strike Qcrit with and without accounting
for random variation.

• A = sensitive diffusion area of a given node for a given node value

• K = technology-independent fitting parameter (see [36]), assumed to be 2.2× 10−5

• Qs = technology-dependent charge collection parameter, different for NMOS and PMOS
and estimated from [36], assumed to be 17fF for NMOS and 6.5fC for PMOS

To calculate FIT, R is multiplied by Qcrit for the bitcell and operating condition, then
multiplied by 3.6 × 1012 to translate to failures per 109 hours (definition of FIT). FIT for
particle strikes to the high and low sides are calculated separately, as they have different
Qcrit, sensitive area, and charge-collection efficiency. The total FIT per cell is the sum of both
methods of failure. Note that the stored value doesn’t affect FIT for 6T bitcells because they
are symmetric. Circuit-level transient-error resiliency techniques, such as increasing bitcell
size, can be evaluated using this model. Technology changes can dramatically affect soft error

CHAPTER 2. ERROR MODELS 25

rate—for example, transitioning from BULK to FDSOI dramatically reduces the sensitive
area and decreases the error rate by 110× based on experimental data [18].

2.5 Microarchitecture-level Soft-fault Model

The microarchitecture-level transient-error model translates bitcell FIT to system FIT. Given
a bitcell FIT, a simple estimate of system FIT can be made by summing every bitcell’s
individual FIT. A required system FIT can be determined by translating FIT to mean-time-
to-failure. A typical FIT target of 4000 corresponds to mean-time-to-failure (MTTF) of 30
years [37]. However, there are three effects in memory that complicate the calculation of
system FIT:

1. Persistent and intermittent errors: Intermittent errors that are not detected by BIST, or
persistent errors that are only repaired by ECC, can use up all ECC correction capacity
for some words and leave these particular words more vulnerable to soft errors.

2. Multi-bit upsets: As process geometries decrease, the proportion of soft errors that
affect more than one bit in a word increases [38]. Multiple bit upsets in a single word can
exceed error-correction capabilities; however, interleaved bitcells ensure that physically
adjacent bitcells map to different logical words and reduce multi-bit upsets.

3. Error accumulation: During a given period T, it is possible for a word to have multiple
transient errors occur between corrections. If transient errors are rare events, error
accumulation is a negligible effect. This accumulation of errors can be prevented by
“scrubbing”, where the system reads and rewrites every word periodically to fix soft
errors before a second error occurs on the same word, reducing the accumulation period
T from system lifetime to the scrubbing interval. For SRAM caches, the period T that
elements remain in the cache can be very small.

The proposed model accounts for all three of these effects to accurately translate bitcell
FIT to system FIT, assumes that each strike can upset k bits, and the possibility of upsetting
k bits is estimated from multi-bit upset distances reported in [38]. The number of cells in a
row is the product of the interleaving factor and number of bits in a word, and it is assumed
that multi-bit strikes happen to adjacent cells along a row only, as shown in Figure 2.9.
While multi-bit strikes can affect multiple rows, the analysis is simplified by assuming that
strikes only affect one row because strikes in different rows can never affect the same word.

Published data about multi-bit errors that differentiate between errors along a row and
along a column is scarce. The distinction is critical, because multi-bit errors along a column
will affect different words and therefore be correctable by single-bit ECC, while multi-bit
errors along a row would require double or higher ECC if the interleaving distance isn’t large
enough. Equation 2.13 uses a geometric distribution model to match published data from the

CHAPTER 2. ERROR MODELS 26

row (wordline)

colum
n (bitlines)

BLL<0>
BLR<0>

BLL<1>
BLR<1>

BLL<2>
BLR<2>

BLL<3>
BLR<3>

1 1 1 12 2 2 2

3 3 34 4 4 4

5 5 56 6 6 6

9 9 910 10 10 10

13 1314 14 14

7 7 78 8 8 8

11 11 11 1112 12 12 12

15 15 15 1516 16 16 16

16 separate 4 bit words, 2:1 interleaving

Assume multi-bit
strikes to single row

only

Figure 2.9: Example physical organization of SRAM arrays for nbw=4 and interleaving of 2.

most convincing report on multi-bit strikes [38]. Figure 2.10 plots the expected proportion
of strike sizes using this model.

N ∼ Geom(rmbu) (2.11)

rmbu = 0.3 + 3.2× 105 · wcell (2.12)

P(N = n) = (1− rmbu)(k−1)rmbu (2.13)

Arrivals of strikes are a Poisson process with a rate set by the bitcell FIT rate calculated
by the circuit-level error model (Ebit) and the number of bitcells in a single row defined by
the interleaving factor (I) times number of bits in word (nbw). The size of the strike N is
geometric, so the random variable M that represents the number of upsets in a row during
period T is a Geometric Poisson distribution with PDF given by Equation 2.16.

λ = Ebit ∗ nbw ∗ I (2.14)

P(M = 0) = e−λ (2.15)

P(M = m) =
m∑
k=1

e−λ
λk

k!
(1− rmbu)m−krkmbu

(
m− 1

k − 1

)
(2.16)

CHAPTER 2. ERROR MODELS 27

0 1 2 3 4 5
Strike size (bits)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

F
re

q
u

en
cy

22nm

32nm

45nm

65nm

22nm32nm 45nm 65nm
Technology node

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

r m
b
u

rmbu = 0.3 + 3.2e5 · wcell

Figure 2.10: Distribution of multi-bit upsets from a particle strike.

This distribution includes accumulation of errors. For example, the probability that there
are n=2 errors is given by both the probability that there is a 2-bit strike (k=1 term) and
two separate 1-bit strikes in the same period (k=2 term). However, accumulation is very rare
unless the failure rate is extremely high, so Nbit can optionally be simplified to just equal
the probability of a single strike of different sizes in Equation 2.17.

P(M = m) = e−λλ(1− rmbu)m−1rmbu (2.17)

Table 2.1 shows the number of upsets over a 1-year period for Equation 2.16 and 2.17
for the base design with SECDED, as well as design points with more interleaving and
much higher failure rates. This table shows that probability of bit upsets larger than the
interleaving factor are much more likely than accumulating multiple strikes to the same
word, even when errors are allowed to accumulate for an entire year. Accumulation only
becomes an issue when the FIT rate is 10,000 times higher than current rates and multi-bit
upsets are ignored. Additionally, typical on-chip caches will accumulate errors for less than
1 second, and certainly not 1 year, so accumulation will be ignored in this study.

A larger cell, or more interleaving, decreases the probability that a strike upsets multiple
bits in a single word. Larger cells are easily modeled because Equation 2.13 is a function
of bitcell size. To model interleaving, the number of upsets in a row from Equation 2.17 is
transformed into to the number of upsets in a word, which will be represented by the random
variable Y. Due to interleaving, a multi-bit strike will cause multiple upsets of different sizes
in different words, as shown in Figure 2.11, and this pattern can be generalized to different
interleaving distances by Equation 2.19.

CHAPTER 2. ERROR MODELS 28

1 2 1 2 1 2

1 bit strike: 1 word has 1 error

1 2 1 2 1 2

1 2 1 2 1 2

2 bit strike: 2 words have 1 error

3 bit strike: 1 word has 1 error, 1 word has 2 errors

1 2 1 2 1 2

4 bit strike: 2 words have 2 errors

1 2 1 2 1 2

5 bit strike: 1 word has 3 errors, 2 words have 2 errors

3 ways for word to
have a 1 bit error:

3 ways for word to
have a 2 bit error:

...

z(1) =
 0.5*m(1)
 +m(2)
 +0.5*m(3)

z(2) =
 0.5*m(3)
 +m(4)
 +0.5*m(5)

m(k) is probability of k bit strike to 2 words
z(k) is probability of k bit error in word

2:1 Interleaving

Figure 2.11: Visual representation of Equation 2.19 for an interleaving factor of 2.

P(Y = 0) = P(M = 0) (2.18)

P(Y = y) =

y∗I−1∑
k=(y−1)∗I+1

P(M = k) · k − (n− 1) · I
I

+

(y+1)∗I−1∑
k=y∗I

P(M = k) · I − (k − n · I)

I

(2.19)

Table 2.1: Comparison of including accumulation effects for a 32KB L1 cache with SECDED
for a typical FIT rate (1×10−4) and extreme FIT rates during a 1 year-accumulation period.

FIT of bitcell Multi-bit upsets Cache FIT (Eq. 2.17) Cache FIT (Eq. 2.16)

1e-04 Yes 3.2× 100 3.2× 100

0.1 Yes 3.2× 103 3.2× 103

1 Yes 3.2× 104 3.2× 104

10 Yes 3.1× 105 3.3× 105

1.0e-04 No 0 5.4× 10−14

0.1 No 0 5.4× 10−5

1 No 0 5.4× 10−2

10 No 0 5.4× 101

CHAPTER 2. ERROR MODELS 29

To account for persistent errors, the transient error model extends the existing persistent
error model. For a given operating condition, the probability that a bitcell fails due to a
persistent error is known from Equation 2.3, so the distribution of the number of persistent
errors per word is known. Error-correction codes set the allowable number of faults per word
due to both persistent and transient sources of error, so the probability of a fault will be
the probability that the sum of persistent and transient errors within a word surpasses the
allowable number of faults.

P(Z = z) =
z∑

k=0

P(Y = k) · P(Xbit = z − k) (2.20)

If persistent errors are left uncorrected, then the FIT calculation will not be correct, so the
range of X is limited to (0,abw). Z in Equation 2.20 gives the number of upsets during period
T per word from both persistent and transient errors by adding M (probability of m transient
errors) and X (probability of x persistent errors), which corresponds to a convolution of the
probability-density functions. To translate the resulting probability of cache failure due to
all error sources to cache FIT, we need sum the probability of failures beyond the correctable
number of bits (abw), multiply Z by the number of words in the cache, and scale the rate to
be in upsets per 109 hours (3.6× 1012 seconds).

FIT = (1−
abw∑
k=0

P(Z = k)) · 3.6× 1012

T
· nwl · nls · nsc (2.21)

This model has been validated with a brute-force Monte Carlo simulation that uses a
Binomial distribution to inject persistent errors for a given supply voltage, and a Poisson
distribution to inject transient errors for a given bitcell FIT and period T, with size of strike
given by M.

This model can be used to evaluate resiliency schemes. For example, Figure 2.12 shows
system FIT for a cache with no ECC, SECDED ECC, and DEC-TED ECC for a 32KB cache
of different sized bitcells, and an interleaving of 2.

2.6 Modeling Energy, Area, Delay, and CPI

Published measurement data showing the effect of voltage scaling on energy, delay, and
bitcell failure probability is scarce for modern processes. Dynamic energy and leakage power
is usually approximated as scaling with V 2 for dynamic and V 3 for leakage. Total energy
at a given voltage is strongly dependent on delay scaling, because dramatic increases in
delay at low voltages cause leakage to be integrated over longer cycles and prevent further
voltage scaling from actually saving energy. Additionally, the relationship between bitcell
failure probability and voltage is critical, because the bitcell failure rate at the voltage that

CHAPTER 2. ERROR MODELS 30

No ECC SEC-DEDDEC-TED
0

20

40

60
S
y
st

em
F

IT
6T High Performance

No ECC SEC-DEDDEC-TED
0

20

40

60

S
y
st

em
F

IT

6T High Density

Figure 2.12: System FIT for a smaller, high-density (HD) bitcell and larger, high-performance
(HP) bitcell, and different ECC schemes.

corresponds to minimum energy will set the amount of resiliency needed. Most earlier work
assumes that further resiliency and voltage scaling will always result in an energy decrease,
but this assumption is not always true.

Four datasets are used to explore the interaction of assumptions about energy, delay,
and bitcell failure probability with voltage scaling. The first dataset, “28nm FDSOI”, de-
termines power and delay from transistor-level simulation of a commercial 28 nm FDSOI
process and calculates bitcell error probabilities using the hard-fault modeling scheme. The
second dataset, “References”, contains a standard set of assumptions used by many different
architecture resiliency papers [29], [28], [39], [25], and includes frequency, power, EPI, and
bitcell failure versus supply voltage assumptions taken from measurements and simulations
in a 65 nm process [40]. The third dataset, “Intel 32nm”, comes from reported measure-
ment results of a commercial 32 nm process with a 0.199µm2 cell [41] [42]. The last dataset,
“PTM”, comes from simulations of the predictive technology model [43]. For comparison
purposes, the delay is normalized to be 1 ns at 1 V, the dynamic energy is normalized to be
1 nJ at 1 V, and the leakage power is normalized to be 1 W at 1 V, which results in equal
dynamic and leakage contributions at 1 V. Figure 2.13a shows how delay scales with volt-
age. The “References” dataset uses a linear fit to model frequency (reported values down to
0.5 V, extrapolated further for comparison purposes), which predicts a much faster operat-
ing frequency at low voltage than any other dataset and neglects leakage increases at low
voltages.

Figure 2.13b shows how bitcell failure probability (pbit) scales with voltage. Both the
slope of the failure probability, and the absolute Vmin vary dramatically between the datasets.
The steeper the slope, the less resiliency techniques can help voltage scaling, because the
same increase in allowable pbit corresponds to a smaller voltage reduction. The “Intel 32nm”
dataset will predict that small increases in resiliency produces much larger Vmin reduction
than other datasets.

CHAPTER 2. ERROR MODELS 31

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Vdd (V)

10−9

10−8

10−7

D
el

ay
(a

.u
.)

28nm FDSOI
32nm Intel
32nm PTM
References

(a) Relationship between voltage and delay.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Vdd (V)

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

P
bi

t

28nm FDSOI
32nm Intel
32nm PTM
References

(b) Relationship between voltage and pbit.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Vdd (V)

0.2

0.4

0.6

0.8

1.0

1.2

D
yn

am
ic

E
ne

rg
y/

op

×10−9

28nm FDSOI
32nm Intel
32nm PTM
References

(c) Relationship between voltage and dynamic energy.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Vdd (V)

10−2

10−1

100

Le
ak

ag
e

po
w

er

28nm FDSOI
32nm Intel
32nm PTM
References

(d) Relationship between voltage and leakage power.

Figure 2.13: Survey of assumptions used for architecture-level resiliency analysis.

Figure 2.13c show how dynamic energy scales with voltage. As expected, all datasets
closely match theory because capacitance is constant at different voltages. This figure plots
dynamic energy, not power, to avoid a dependence on operating frequency.

Figure 2.13d shows how leakage power scales with voltage. In this case, PTM assumes
that leakage decreases much more than the other data sets, which will optimistically assume
that aggressive voltage scaling is worthwhile. This figure plots leakage power, not energy, to
prevent a dependence on operating frequency with this metric.

These four metrics—delay, pbit, dynamic energy, and leakage power—as a function of VDD
can dramatically affect the results of architecture studies, but are well-defined metrics if the
process has been characterized. However, modeling the translation of dynamic energy and
leakage power into total energy is subjective, and requires knowing both the architecture and
activity of the system. For compatibility with existing analysis, this model assumes the core,
L1, and L2 are all on the same voltage rail. To calculate total energy, this model assumes the
system is optimized such that at max performance, 2/3 of energy is active and 1/3 is leakage,
which matches analysis of various systems by McPAT [44]. This is an upper bound on the

CHAPTER 2. ERROR MODELS 32

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Vdd (V)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

To
ta

lE
/o

p
(J

)

×10−9

pbit: 2.1e-4

pbit: 1.4e-2

pbit: 1.2e-5

pbit: 5.6e-6

pbit: 2.1e-4

pbit: 1.4e-2

pbit: 1.2e-5

pbit: 5.6e-6

28nm FDSOI
32nm Intel
32nm PTM
References
[Alameldeen2011]

Figure 2.14: Energy per operation for each dataset assuming 2/3 dynamic energy and 1/3
leakage energy at 1V.

energy reduction achievable with resilient design, because it does not account for resiliency
technique overhead due to extra circuitry or reduced cache capacity. Figure 2.14 shows the
energy scaling potential of all four datasets using the theoretical method of scaling energy.
The bitcell failure probability at the minimum energy (Emin) is annotated. Every dataset
except the “References” data set shows diminishing returns for voltage scaling, because the
large increase in delay near the threshold voltage integrates more leakage per cycle.

Most prior cache resiliency technique evaluations [29], [28], [39], [25] use circuit-level
assumptions from an experimental bitcell design in 65 nm (“References” dataset [40]), which
has very different characteristics than datasets from a variety of modern 28 nm processes
with industry-standard 6T bitcells. Figure 2.14 shows that when targeting optimal energy
efficiency, the “References” dataset predicts that resiliency schemes need to tolerate a 100×
to 10,000× higher bitcell failure probability than predicted by the other three datasets,
leading to unnecessarily complex resiliency techniques. Assumptions about energy, area,
and delay scaling versus voltage have major implications for resilient design, because these
assumptions affect the trade-off between the benefits of voltage scaling and the costs of
improving resiliency.

33

Chapter 3

SRAM Failure Mechanisms

To enable the highest energy efficiency, a circuit should be operated at the lowest voltage
that satisfies a given performance requirement, yet increased variability in deeply-scaled
technologies prevents SRAM from achieving as low a Vmin as the surrounding logic.

Developing circuits that improve SRAM operation at low voltages requires understanding
the various failure mechanisms of SRAM cells. Transistor characteristics change for every
process node, so techniques effective in one node might be useless in another node. Therefore
a methodology is required to evaluate different techniques for every new process node.

This chapter is split into two sections: simulation of SRAM failure mechanisms, and mea-
surement of SRAM failure mechanisms. Simulation of SRAM failure enables experimentation
and evaluation at design-time, but lacks accuracy. Even after developing techniques to speed
up rare event simulations, analysis results rely on simulation models of transistors being
accurate out to six sigma from the average. Silicon measurement of SRAM failures requires
a long feedback cycle: many months are required to design the circuits, fabricate, and test. In
addition, insight into the design is difficult because observability is limited in real hardware.
However, simulation results that have been calibrated and validated against real silicon can
be trusted for products. Both methods are necessary and interdependent: simulations need
measurements for improved calibration, and measurements need simulations to decrease the
possible design space size.

3.1 Simulating Failure Mechanisms 1

This section describes the methods used in this thesis to evaluate circuit-level techniques at
design-time by using the simulation model described in Section 2.2 to analyze the effect of
various design decisions on predicted failure rates. Establishing meaningful failure metrics is
critical to ensure that predictions eventually match measured behavior. The most-probable-
failure-point is analyzed to provide insight into the effectiveness of various resiliency tech-

1The content in this section was derived from a publication in TCAS-II 2012 [33].

CHAPTER 3. SRAM FAILURE MECHANISMS 34

niques. Last, the effectiveness of various techniques are compared for a 28nm high-density
bitcell.

3.1.1 Failure Metrics

Several metrics based on transient simulations can be used to take dynamic effects into
account by essentially imitating typical SRAM read and write operations. The methodology
proposed in this thesis defines three modes of failure: readability, writeability, and read
stability. Readability failures occur when the read bitline discharge in a specified time is
less than the offset of the sense amplifier. This study assumes a differential read using a
sense amplifier for 6-transistor (6T) cells, and a domino-style read with a skewed inverter for
8-transistor (8T) cells. Unlike Iread, this readability metric takes into account the reduced
VDS on the pass-gate as the bitline discharges. Writeability failures occur when the internal
node voltage does not reach the desired write value. There are two forms of stability failures.
Read stability failures occur when bitcell contents flip accidentally during a read condition.
Half-select stability failures (read stability failures on non-accessed columns in interleaved
arrays) occur when bitcells on non-accessed columns of an interleaved array flip accidentally
during a write operation. For readability and writeability, the result is checked for any errors
at the end of the clock period to emulate typical SRAM operation where back-to-back access
is supported. This pessimistic measure, which accounts for successive reads, results in an
average Vmin increase of 30mV. Each mode of failure is measured by transient simulations
of netlists that accurately model read or write signal timing and capacitances.

For 90% yield on a 1MB array, the probability of a single bit failure, or the probability of
bitcell failure, pbit, must be less than 10−9. Vmin is defined as the minimum operating voltage
for which the pbit of all three types of failures is < 10−9. This analysis focuses on the 6T cell,
then extends the results to the 8T cell.

3.1.2 Failure Analysis

Using the methodology described, it is possible to analyze how different design decisions affect
pbit and Vmin, and use the MPFP to provide intuitive explanations for these quantitative
findings.

For example, consider the MPFP for writeability failure determination at 0.8V in Table
3.1, with a predicted pbit of 2 · 10−11. The standard deviation of the threshold voltage (σ) is
around 25mV, so the MPFP has a right PG with a threshold that is about 140mV larger
than normal. In this example, the goal is to write a 0 to the right side (BLRI); the weak
pass gate and strong pull up prevent the high node on the right side from being pulled
low—suggesting that assist techniques that either weaken the pull up or strengthen the pass
gate could reduce pbit. These failure mechanisms change with cell size, process corners, and
voltages, making the intuition given by this approach invaluable to designing effective assists.

CHAPTER 3. SRAM FAILURE MECHANISMS 35

Table 3.1: Most probable failure point for writeability at 0.8V.

PUL
∆Vth

PDL
∆Vth

PGL
∆Vth

PUR
∆Vth

PDR
∆Vth

PGR
∆Vth

-.013σ -1.39σ 1.62σ -2.97σ 0.0292σ 5.64σ

0.4

0.5

0.6

0.7

0.8

0.9

1

64
 128
 256
 512

Vm
in

Number of cells on bitline

Writeability
 Read stability
 Readability

Figure 3.1: Effect of bitline capacitance on pbit.

Effect of array organization and timing

Bitline capacitance, determined by the number of cells on a bitline, has a large effect on
readability only, shown in Figure 3.1. Writeability is unaffected as the bitlines are assumed
to be held by a device, and stability shows negligible improvement for shorter bitlines because
the low-node bitline can easily decrease voltage to match the internal value. Also, changing
the frequency of SRAM operation will change the error rate for all three modes of failure, as
shown in Figure 3.2. Most importantly, this figure shows the large Vmin discrepancy between
conventional static metrics and this methodology’s read stability. At 2GHz, Vmin for read
stability is about 450mV, while a static test would predict a Vmin of 650mV. Furthermore,
fitting a Gaussian distribution to the static noise margin (SNM) instead of using importance
sampling would predict a Vmin of 780mV. Designing using pessimistic metrics such as SNM
and distribution approximations results in a drastic overdesign of the bitcell for stability.

Effect of corners

A summary of the effects of corners is shown in Figure 3.3. Readability and writeability are
anti-correlated with stability, and process corners have the largest effect on stability. This
behavior suggests that design-time optimization of the stability versus writeability trade-off
would be dangerous.

CHAPTER 3. SRAM FAILURE MECHANISMS 36

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Readability
 Writeability
 Read Stability

Vm
in

2Ghz
 250Mhz
 Static
 SNM+Gaussian Fit

Figure 3.2: Effect of clock period on Vmin.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SS
 SF
 TT
 FS
 FF

Vm
in

Writeability
 Read stability
 Readability

Figure 3.3: Effect of process corners on Vmin.

Effect of assist techniques

Assist techniques that dynamically change the operating characteristics of bitcells, such as
boosting the wordline voltage above the cell voltage, can lower Vmin for SRAM. A compre-
hensive analysis of the effectiveness of assist techniques was performed in [13] using static
metrics, which have been shown to be a poor match to silicon failures [4]. Importance sam-
pling has been used to analyze how cell sizing, doping, and assists can minimize SRAM
energy, but limited focus was given to assist techniques [16]. An alternative to importance
sampling based on statistical classifiers was used to analyze Vmin, but focused on dynamic
writeability only and provided little investigation of assists [45]. This section provides an
in-depth analysis of assist techniques’ potential to reduce Vmin using importance sampling
for dynamic metrics.

For the investigation of each assist technique, the following assumptions were made:
corner: TT, design: HD 28nm 6T 0.120µm2 cell [46], nominal voltage: 1V, period: 50 FO4
(≈1ns at 1V), wordline pulse width: 25 FO4 (1/2 of period), sense-amplifier offset: 0.1V,
bitline capacitance: 15fF (128 cells). The effect of changing all of the above assumptions
have been investigated in earlier sections. Note that the period will track the process FO4
as the supply is reduced to match the assumption that the SRAM operating frequency will

CHAPTER 3. SRAM FAILURE MECHANISMS 37

VDD

GND

Write Cycle Read Cycle

WL

VDD

GND

VDD

GND

VDD

GND

Read Stability Assists

Readability Assists

BLR

BLL

Negative Bitline
(IV-C6)

WL Boost
(IV-C4)

VDD Collapse (IV-C5)

WL

BLR

BLL

VDD

VDD
VDD Boost (IV-C3)

WL Boost
(IV-C2)

WL

WL

GND
Negative GND

(IV-C1)

Writeability Assists

BLL
BLR Partial BL

Precharge (IV-C8)

BLL
BLR

WL
Underdrive

(IV-C8)

WL

VDD

GND

VDD

VDD Boost (IV-C8)

GND

GND Boost
(IV-C7)

VDD

GND

VDD

GND
GND

Negative GND
(IV-C8)

Figure 3.4: Summary of assist techniques: negative GND, WL boost, VDD boost, VDD col-
lapse, negative BL, GND boost, WL underdrive, partial BL precharge

CHAPTER 3. SRAM FAILURE MECHANISMS 38

be set by the critical path of a processor.
Different degrees of assist are defined as a percentage of the supply voltage (as opposed

to the absolute voltage) because assist voltages are generally set by voltage dividers or
charge redistribution and therefore are proportional to VDD. Discussion of side effects assumes
that VDD runs vertically (parallel with bitlines), and GND runs horizontally (parallel with
wordlines). Energy and area overhead are implementation dependent so are not quantified.

The voltage waveforms for a variety of assist techniques that target each mode of failure—
readability, writeability, and read stability—are summarized in Figure 3.4. The results of a
thorough design-space exploration of effective assist techniques results are summarized in
Figure 3.5 for readability and writeability assists. Each Vmin measure also includes any
stability consequences caused by the assist. Because all assists can be applied on a per-
operation basis, the results for write Vmin and read Vmin are independent.

Effect of negative cell GND as a readability assist

Reducing the voltage of GND has been shown to improve readability [23]. Negative GND is
the most effective of all readability assist techniques as it increases the gate over-drive on
both the PD and PG by pulling the internal node holding 0 below ground. Unfortunately,
this technique has a very high energy cost for 6T arrays, because each cell has two GND
lines running horizontally, which have a large capacitance.

Effect of wordline boost as a readability assist

Using a wordline boost can improve both the readability and writeability of cells, but will
drastically diminish the read stability of all half-selected cells in interleaved arrays, as shown
in Figure 3.6. To avoid the half-select issue, the boost can be delayed until part-way through
the wordline pulse, so that half-selected cells have already started reading and the bitline
voltage matches the internal voltage more closely [8]. Figure 3.6 shows that while delayed
boost helps, the trade-off between writeability and read stability remains very sensitive for
wordline boosting. Adaptive circuitry must be used in order to tune this assist [7].

Effect of cell VDD boost as a readability assist

For readability, both the PG and PD devices need to be strong. A VDD boost improves the
strength of the PD, but not the PG. Because the PD is sized larger than the PG for stability
reasons, the probability that the PD limits read current more than the PG is much lower,
suggesting that using wordline boost to improve the PG strength would be more effective.

Effect of wordline boost as a writeability assist

Wordline boost improves writeability by strengthening the PG, but hurts stability as dis-
cussed above.

CHAPTER 3. SRAM FAILURE MECHANISMS 39

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

15%
 30%
 -15%
 -30%
 15%
 30%

Delayed WL
Boost

Negative GND
 VDD Boost
 8T Cell

Re
ad

 V
m

in

Readability
 Read stability

Nominal readability
 Nominal read stability

(a) Readability

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

15%
 30%
 -15%
 -30%
 -45%
 -30%
 -85%
 30%
 85%

Delayed WL
Boost

Negative bitline
 VDD
collapse

GND boost

W
rit

e
Vm

in

Writeability
 Half-select stability

Write stability
 Nominal writeability

Nominal read stability

(b) Writeability

Figure 3.5: Impact of assist techniques on Vmin.

CHAPTER 3. SRAM FAILURE MECHANISMS 40

10.4 0.5 0.6 0.7 0.8 0.9

100

10-12

10-10

10-8

10-6

10-4

10-2

Vdd

Bi
t E

rr
or

 R
at

e
(B

ER
) Read stabilityWriteability

Writeability
with 15% boost
and 70% delay

Read stability
with 15% boost
and 70% delay
Read stability
with 15% boost
and no delay

WL

Figure 3.6: Wordline boost improves writeability while reducing read stability.

Effect of cell VDD collapse as a writeability assist

VDD collapse decreases write Vmin by decreasing the strength of the cross-coupled inverters [7].
However, for the analyzed cell, this assist is much less effective than negative bitline, because
while VDD collapse helps the PG pull the high-node low by weakening the high-node PU, a
writeability failure can still occur if the PU on the low-node side is weak.

The dangerous consequence of VDD collapse is potential violation of the data retention
voltage of non-accessed SRAM in the same column. However, IS tests of this condition show
a pbit < 10−9 for all cases of interest.

Effect of negative bitline as a writeability assist

Negative bitline improves writeability by increasing the VGS on the PG [23]. Simulation
results show this as the most effective write assist, because it both strengthens the PG and
helps pull the high-node low while also strengthening the low-node PU to complete the write
operation. The IS simulation testbench uses a flying capacitor as opposed to a negative
regulated voltage to accurately match typical implementations. However, by decreasing one
of the bitlines below GND, a non-zero gate over-drive will appear across the PG of non-
accessed rows. If the internal node of an unaccessed bitcell on this side is high, then the
value of the cell could flip, causing a write stability error. An IS test found that the pbit for
this case was < 10−9 for boost amounts ≤ 30%.

CHAPTER 3. SRAM FAILURE MECHANISMS 41

Effect of cell GND boost as a writeability assist

GND boost weakens the cross-coupled inverters, improving writeability [47]. However, the
effect of a large GND boost saturates after 30%, because the NMOS PG must pull the
low internal node high for this assist to work, but can only pull up to around VDD-Vth. This
limitation does not exist for VDD collapse, as NMOS can pass low voltages without limitation.

Effect of stability assists

Stability assist are not useful for the cell under investigation as readability and writeability
Vmin dominate. However, for a different cell and process, stability could be a major concern.

Investigations at very low voltage show WL underdrive to be the most effective stability
assist. Both VDD boost and negative GND attempt to limit the voltage bump on the low
side, but this effect is countered by shifting the switching threshold of the high-side inverter,
canceling most gains and making these techniques ineffective.

A regulator can be used to precharge bitlines to around 70% of VDD to improve yield
from 5 to 5.7 sigma, or equivalently, from a pbit of 2.9 × 10−7 to 6 × 10−9 [24]. Importance
sampling analysis of read stability confirmed these results, with a pbit improvement of around
1.5 orders of magnitude at 0.7V. But the assist becomes less helpful at low supplies and only
achieves a Vmin reduction of 25mV. Note that readability is slightly diminished due to the
decreased VDS on the PG.

Other techniques to improve readability

Readability has conventionally not been an SRAM design metric, as it depends on peripheral
circuitry, while read stability and writeability do not. Variations cause a wide variability
in read current. Shorter bitlines, as shown in Figure 3.1, allow smaller read currents to
provide the same required voltage difference but increases area overhead as sensing circuitry
is amortized over fewer cells.

Leakage

The technology under investigation is a low-power process, so leakage was negligible even
for a worst-case column of 512 cells. However, leakage can easily be taken into account with
this methodology by using Monte Carlo to characterize the leakage current of N worst-case
cells as a log-normal and including it into IS as an additional variable described by the fit
distribution.

Assist methods for 8T cells

8T bitcells have the same writeability assists as 6T bitcells. If 8T cells are interleaved, write
operations will cause read stress on half-selected cells, producing the same read stability
trade-offs as the 6T cell. Readability assists are generally no longer needed, due to the much

CHAPTER 3. SRAM FAILURE MECHANISMS 42

improved read path. Figure 3.5a compares readability of the reference 6T array and bitcell
to a domino-style read for an 8T cell with the same number of bitcells on a column.

3.1.3 Summary

The bitcell analyzed here is limited by both readability and writeability, but not stability.
Using a combination of negative GND line to improve readability and a negative BL to
improve writeability would lower Vmin by 175mV. However, implementing negative GND
involves the very difficult task of regulating a negative voltage that needs to sink every
column’s read current. So to improve readability, modifications of the read path such as using
shorter bitlines, implementing hierarchical bitlines to minimize local bitline capacitance,
using lower threshold devices, or lowering sense amplifier offset, are needed to lower Vmin.
Assists that improve stability have a very detrimental effect on readability and writeability,
so cell sizing (sizing the PD stronger than the PG) remains the best option for maintaining
stability.

3.2 Measuring Failure Mechanisms2

Measurements of bitcell failures are necessary to validate the assumptions that simulation
models make. In particular, simulation results are extremely dependent on assumptions about
the distribution of transistor threshold voltage. The testchip described in the following sec-
tions was used to measure the variation in threshold voltage for 32k bitcells.

3.2.1 Introduction

Accurate characterization of cell failures at SRAM Vmin requires Monte Carlo simulation of
devices with calibrated variation models, and simulation predicts that cells with a parametric
shift beyond an Nx6-dimensional failure contour will have persistent failures, where each of
the N dimensions represents a varying quantity in the cell. Additionally, random telegraph
noise (RTN) varies the threshold voltage of transistors over time, and can cause intermittent
failures of usually functional cells [49]. It has been predicted that scaling will make RTN a
more significant source of error [19]. However, the joint effect of RTN and random variation
on SRAM failure is still not well understood. This work investigates the validity of the failure
contour, and explores the interaction between persistent and intermittent causes of SRAM
bitcell failures. Measurements are taken from cells within an SRAM array, not padded-out
cells, which enables more sample points and increases certainty that the results will be
applicable for production SRAM arrays.

2The content in this section was derived from a publication in ESSDERC 2014 [48].

CHAPTER 3. SRAM FAILURE MECHANISMS 43

IO

64 rows x
256 cols

64 rows x
256 cols
64Kb, 8:1 interleaved

IO

64 rows x
256 cols

64 rows x
256 colsDe

co
de

/c
on

tro
l

(a) Chip photo and organization.

...

...

...

...

BLTS
BLTF

VDDWL VDD

I/O

Decoder

BLFS
BLFF

VDD

Control

BIST

addr

din
dout

R/W

clk FPGA test
harness

(b) Characterization system architecture.

Figure 3.7: 28nm characterization testchip details.

3.2.2 Characterization Architecture

The study is applied to an array of 32k 0.120µm2 bitcells in a pre-production HKMG 28nm
process [50]. Both bulk and FDSOI wafers were manufactured using the same mask set to
provide a unique opportunity for comparison between FDSOI and bulk. Bulk and FDSOI
have different gate stacks to adjust Vth. Figure 3.7 shows the chip photograph, physical or-
ganization, and characterization architecture. A programmable BIST enables dynamic mea-
surements, and separated supplies, combined with a bitline multiplexer, enable static IV
measurements similar to [17].

CHAPTER 3. SRAM FAILURE MECHANISMS 44

1.28

On-chip

Off-chip+ +

0.1

Measure I

Vsg

0.125

sweep 1.1 to 0.45

1.28

(a) Left pull-up.

sweep 0.95
to 0.40

On-chip

Off-chip+ +

Vds
=0.05

Measure I

Vgs

1.0

1.0

(b) Left pass-gate.

1.0 1.0

sweep 0.9 to 0.4

On-chip

Off-chip+ +

Vds=0.05

Measure I

Vgs

(c) Left pull-down.

Figure 3.8: Scheme used to measure Vth of each transistor in the SRAM array.

3.2.3 Random Variation Measurement

Threshold-voltage variation is measured for every transistor in the SRAM array by using a
modification of the direct bit transistor-access scheme (DBTA) [17]. The exact measurement
setup is depicted in Figure 3.8. Multiplexed bitlines and separated wordline and cell voltages
enable IV measurements of every cell in the array.

Figure 3.9 shows the Gaussian distribution of Vth for the pull-up, pass-gate, and pull-
down transistors of 32,000 cells. FDSOI devices have approximately 27%, 26%, and 28%
lower standard deviation of Vth than bulk devices for the pull-up, pass-gate, and pull-down
respectively.

Because IV measurements are not performed on isolated devices, a transient simulation

CHAPTER 3. SRAM FAILURE MECHANISMS 45

0.4 0.7 1.0
Vth (a.u.)

0.0

0.1

0.2

0.3

R
el

.
F

re
q
.

BULK FDSOI

−4 −2 0 2 4
Quantities

0.4

0.7

1.0

V
th

(a
.u

.)

Bulk

FDSOI

Bulk

FDSOI

(a) Pull-up transistors.

0.4 0.7 1.0
Vth (a.u.)

0.0

0.1

0.2

0.3

R
el

.
F

re
q
.

BULK FDSOI

−4 −2 0 2 4
Quantities

0.4

0.7

1.0

V
th

(a
.u

.)

Bulk

FDSOI

Bulk

FDSOI

(b) Pass-gate transistors.

0.4 0.7 1.0
Vth (a.u.)

0.0

0.1

0.2

0.3

R
el

.
F

re
q
.

BULK FDSOI

−4 −2 0 2 4
Quantities

0.4

0.7

1.0

V
th

(a
.u

.) Bulk

FDSOI

Bulk

FDSOI

(c) Pull-down transistors.

Figure 3.9: Histogram and normal QQ plots of measured Vth distribution for 32k cells from
both FDSOI and bulk chips.

CHAPTER 3. SRAM FAILURE MECHANISMS 46

−0.01 0.00 0.01
0.0
0.1
0.2
0.3
0.4
0.5

R
el

.
F

re
q
.

Pull-up

−0.01 0.00 0.01

V thmeas − V thsim

Pass-gate

−0.01 0.00 0.01

Pull-down

Figure 3.10: Vth measurement difference between measured Vth and simulated scheme using
transistor Vth shifts from measurement.

is performed to provide confidence that the Vth measurement of a single transistor is not
affected by other transistors in the cell. The simulation netlist represents the actual Vth
measurement scheme and uses cell Vth shifts annotated from actual measured data, and
Figure 3.10 plots the distribution of simulated measurement error of the DBTA scheme.

3.2.4 Random Telegraph Noise Measurement

Random Telegraph Noise (RTN) is caused by the trapping or de-trapping of a carrier in a
transistor, and manifests itself as a temporal shift in threshold voltage. At smaller device
geometries, the impact of RTN approaches that of RDF [51]. Because SRAM is not guaran-
teed to be tested while the bitcells are in their worst-case state, the impact of RTN must be
well understood to appropriately margin against failures during operation.

RTN was measured using the alternating-bias technique [52]. Figure 3.11 provides pro-
cedure details, and shows example waveforms of the alternating-bias technique versus a
conventional RTN measurement. Traditional schemes can find trap emission and capture
time constants as a function of gate voltage, but require sweeping the gate voltage and long
measurement times. The alternating-bias technique speeds up the procedure by alternately
turning on and off the gate before measurement, which attempts to force either emission or
capture before the testing period. While this technique emphasizes worst-case RTN effects,
it closely emulates the real operating conditions of a cell, where devices are either turned on
or off immediately before an access.

The measured amplitude distribution in Figure 3.12 shows RTN-induced changes in drain
current around the threshold voltage follow a log-normal distribution with a long tail. Both
pull-down and pass-gate NMOS devices show similar RTN amplitudes, but for the pull-up
PMOS devices, RTN amplitude is slightly higher in FDSOI than in bulk.

CHAPTER 3. SRAM FAILURE MECHANISMS 47

Measure
Vth

Turn on
device

Memorize
operating

point
(OP)

Apply OP

Measure
Id vs. t

Turn off
device

Apply OP

Measure
Id vs. t

Repeat 4 times

}
Alternating bias algorithm

0 1 2 3
0

0.5

1

0 5 10 15 20 25

Alternating Bias Traditional

was
on

was
off

was
off

was
off

was
off

was
on

was
on

was
on

seconds seconds

∆
I D

 (a
. u

.)

0

0.5

1

Figure 3.11: Alternating bias versus conventional RTN measurement scheme.

CHAPTER 3. SRAM FAILURE MECHANISMS 48

0.0001
0.01

0.1
0.5
0.9

0.99
0.9999

Delta Id (log,a.u.)

Pr
ob

ab
ili

ty

Pull down

0.0001
0.01

0.1
0.5
0.9

0.99
0.9999

Delta Id (log,a.u.)

Pr
ob

ab
ili

ty

Pass gate

0.0001
0.01

0.1
0.5
0.9

0.99
0.9999

Delta Id (log,a.u.)

Pr
ob

ab
ili

ty

Pull up

FDSOI (fit) FDSOI BULK (fit) BULK

Figure 3.12: Log-normal probability plot of RTN-induced current differences at cell Vth using
the alternating-bias technique.

PDL PDR PGL PGR PUL PUR
−4
−3
−2
−1

0
1
2
3
4

V
th

sh
if

t
(σ

)

Weaker

Stronger

Write A=1

Figure 3.13: Vth shift vector for cells failing to write 1. Arrows indicate worsening ability to
write A=1.

3.2.5 Joint Effect of RTN and Variation on Writeability

Measurement results confirm that writeability failures are caused by Vth shifts induced by
both random variations and RTN. Writeability is measured by initializing a value in a cell
at a safe VDD, writing the opposite value at the test VDD, then checking for a correct write
at a safe VDD. The ability to write both values is measured for the entire array at decreasing
voltages. Figure 3.13 shows the Vth shifts of the first 12 failing cells with arrows indicating
the Vth shift direction that worsens writeability for each device. Only writeability failures
are analyzed, and cells that are unstable at target VDD are filtered (to avoid simultaneous
measurement of a cell’s ability to write A without flipping back to Ā during a half-select).

The effect of RTN on dynamic writeability can be measured by applying two different
write schemes with opposite resting values that expose different RTN behavior, as shown

CHAPTER 3. SRAM FAILURE MECHANISMS 49

Init A Write A
_Single

Write (SW)

Write AInit A Write A
_Write after

Write (WAW)

Taccess TaccessTstress

Write A
_

Figure 3.14: BIST waveforms of two different writeability tests that expose RTN, where
Tstress = 1s and Taccess = 300ns with a 50% duty cycle.

in Figure 3.14 [4]. The dynamic write patterns are exactly the same, so without RTN Vmin
should be exactly the same. However, different resting values force different trap occupancy
immediately before the writeability test, which exposes the effect of RTN on writeability.
The difference in Vmin between the single write (SW) mode and write-after-write (WAW)
mode will be referred to as Vdiff. This effect can cause problems for production BIST tests
at low voltage, because failures at a specific voltage depend on trap occupancy. Therefore,
understanding Vdiff is required to accurately margin BIST measurements of Vmin.

Figure 3.16 shows how RTN causes a Vmin difference between the two write modes for writ-
ing a 1 to a specific bitcell. Random-variation-induced Vth shift weakens the cell. Alternating-
bias RTN measurements show that when the PDL is left off, it will have a higher current
than when it is left on. For the WAW mode, Figure 3.15 shows that the bitcell holds a 1 for
a long period and the PDL is off, so RTN will cause higher current and therefore lower Vth,
which makes failure in the WAW mode more likely than the SW mode.

The distribution of Vdiff values for the first 25 failing cells in bulk and FDSOI is shown
in Figure 3.17. Larger Vmin differences in FDSOI suggest that while RTN ∆ID amplitude is
similar between FDSOI and bulk, the lower standard deviation of the random variation in
FDSOI increases RTN’s impact on cell failures.

The effect of Vdiff on overall chip Vmin can be evaluated by counting the number of cells
that fail at each voltage for both SW and WAW (no RTN effect) versus the number that fail
for either SW or WAW (including RTN). Figure 3.18 plots the Vmin difference due to RTN for
six different chips normalized to the same voltage. Note that the effect of RTN is suppressed
for the entire array because the cells with the largest RTN effect are not necessarily the cells
that limit array Vmin.

3.2.6 Summary

Measurement of transistor threshold voltage in 32,000 bitcells shows that FDSOI technol-
ogy reduces threshold variation due to random variations by 27% compared to bulk. The
alternating-bias technique reveals similar threshold variation due to RTN in bulk and FD-
SOI for NMOS devices, and slightly increased RTN amplitude in FDSOI for PMOS devices.

CHAPTER 3. SRAM FAILURE MECHANISMS 50

ON

ON

OFF

OFF
10

A=0WAW:
ON

ON

OFF

OFF
1 0

SW: A=0

ON

ON

OFF

OFF
10

A=1SW:
ON

ON

OFF

OFF
1 0

WAW: A=1

Figure 3.15: Transistor stress state for different write modes and values.

0.700 0.725 0.750
Vdd (a.u.)

0.0
0.2
0.4
0.6
0.8
1.0

P
fa

il

Write
A=1

SW

WAW

PDL PDR PGL PGR PUL PUR
−3
−2
−1

0
1
2
3

V
th

sh
if

t
(σ

)

SW

WAW

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Time (s)

1.0

1.5

2.0

2.5

3.0

3.5

∆
I D

(a
.u

.)

×10−7

stress:
off

stress:
on

stress:
off

stress:
on

pul

pur

pgl

pgr

pdl

pdr

Figure 3.16: Example measured effect of RTN on Vdiff for a specific bitcell.

CHAPTER 3. SRAM FAILURE MECHANISMS 51

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Vdiff (a.u.)

0.0
0.1
0.2
0.3
0.4
0.5
0.6

R
el

.
F

re
q
.

BULK

FDSOI

Figure 3.17: Distribution of Vmin difference between write modes.

0.60 0.75 0.90
Vdd (a.u.)

100

101

102

F
a
il

B
it

C
o
u

n
t

b2

b5

b7Chip:

BULK

(No RTN)

(With RTN)

0.60 0.75 0.90
Vdd (a.u.)

100

101

102

f4

f7

f9Chip:

FDSOI

(No RTN)

(With RTN)

Figure 3.18: Difference in Vmin for six different chips.

Dynamic measurement of writeability in both FDSOI and bulk shows that the decreased
random variation in FDSOI enables an approximately 7% reduction in Vmin, but also exac-
erbates the effect of RTN on minimum operating voltage failures, suggesting that even as
intrinsic channel devices reduce the relative amount of random variation, RTN will emerge
as an obstacle to future voltage scaling and increase voltage margins for BIST results.

52

Chapter 4

Circuit-level Resiliency Techniques

The analysis methodology for simulating bitcell failures described in Section 2.2, an inves-
tigation of assist technique effectiveness in Section 3.1, and analysis of bitcell failure causes
based on experimental measurement in Section 3.2 all provide insight into using circuit-level
resiliency techniques to lower SRAM Vmin. In this chapter, two circuit-level techniques are
proposed. The first, a single-p-well bitcell, exploits FDSOI technology to maximize bitcell
writeability for different process corners. The second, a wide-voltage-range 8T macro, uses
assist techniques and pseudo-differential sensing to improve speed and reduce energy con-
sumption of SRAM macros.

4.1 Introduction

At the circuit level, increasing cell size to reduce variation can reduce the minimum oper-
ating voltage (Vmin) by over 200 mV [42]. Additionally, different cell topologies, such as the
single-ended 8T cell, can decouple conflicting sizing requirements to increase resiliency and
performance at the expense of additional area [20], [53], [54]. Assist techniques, analyzed in
Section 3.1, improve resiliency by temporarily overdriving or under-driving the voltages on
critical transistors in the cell, and can improve Vmin at the cost of area and energy overhead.
For example, the cell VDD can be temporarily collapsed during a write operation to lower
Vmin, but extra transistors are required and energy overhead is increased by discharging
cell VDDduring every write operation [55]. These assist techniques have grown increasingly
necessary as new FinFET-based technologies prevent using conventional transistor sizing to
balance read and write failure mechanisms within a cell. The strength of assist techniques
can be tuned based on the process corner to correctly balance the ratio between NMOS and
PMOS to optimize the read stability versus writeability conflict [56].

Finally, a solution called “dual-rail” places the SRAM on a separate and higher supply
voltage than the rest of the logic [57]. However this involves routing two supplies over the
core, increases latency due to level shifting, increases verification complexity, and prevents
SRAM energy scaling. Even though SRAM account for only 1/4 to 1/2 of chip energy,

CHAPTER 4. CIRCUIT-LEVEL RESILIENCY TECHNIQUES 53

avoiding SRAM voltage scaling quickly causes SRAM energy to dominate system energy as
the system supply voltage is lowered.

4.2 Single-p-well Bitcell1

Generally, circuit-level resiliency techniques focus on periphery circuit changes, such as assist
techniques, to improve low voltage operation. With the exception of the 1R1W 8T cell, the
industry has standardized on the 6T bitcell. Adding more than six transistors dramatically
increases cell area, and therefore very few bitcell-modification ideas have been considered
worthwhile enough to be used in products.

A 28nm ultra-thin body and buried oxide (UTBB) FDSOI technology implements a thin
silicon layer on top of a buried-oxide (BOX) [50]. FDSOI eliminates channel doping to lower
intrinsic transistor variability, and the isolation between the channel and oxide enable both n-
type and p-type wells below both NMOS and PMOS transistors. Additionally, the thin BOX
isolation enables extended body biasing beyond the forward-bias diode voltage to change the
speed versus leakage trade-off during runtime.

The proposed single-p-well (SPW) design, shown in Figure 4.1, places both PMOS and
NMOS devices over a common p-well, leading to LVT PMOS pull-up (PU) devices and RVT
pull-down (PD) and pass-gate (PG) NMOS devices. By changing the back-bias voltage,
VPW , the NMOS-to-PMOS strength ratio can be varied—enabling optimization of bitcell
writeability, retention voltage, access time, and leakage power consumption. Positive VPW
reduces the Vth of the NMOS PD and PG (FBB) while increasing the Vth of the PMOS PU
(RBB), while negative VPW yields NMOS RBB and PMOS FBB. Derived from the standard
high-density (0.120µm2) SRAM bitcell architecture, SPW design does not require process
and footprint modifications [59] and reduces scaling limitations caused by well-proximity and
diffusion issues.

The testchip, summarized in Figure 4.2, provides a BIST that evaluates all SRAM failure
mechanisms—writeability (WA), readability (RA), read stability (RS) and retention stabil-
ity (RET)—in a 140kb SRAM macro. The BIST includes an on-chip pulse generator to
accurately characterize the critical read and write pulse widths of dynamic failure metrics.
A programmable finite-state machine orchestrates a wide variety of SRAM access patterns.
The input and output from the chip is performed through a low-frequency scan chain.

Figure 4.3 summarizes the physical design of the SRAM macro. The wordline drivers and
column IO circuits are placed in the middle of the array to reduce the resistance contributions
of the long metal wordlines and bitlines, and the control circuitry is in the middle of the
design. The bitcells are interleaved 8-to-1 to ease the layout of the column IO. Before the
clock edge, the address predecode and decoder enables a single row driver. The rising edge
of the clock turns on the wordline driver to access a row and generate a voltage differential

1The content in this section was derived from a publication in IEDM 2014 [58]. Brian Zimmer designed
the SRAM periphery circuitry, Olivier Thomas designed the BIST with pulse generator and measured the
chip.

CHAPTER 4. CIRCUIT-LEVEL RESILIENCY TECHNIQUES 54

	
 Figure 4.1: SPW bitcell device cross section view. DNW isolates the PW from the p-substrate
enabling wide voltage range PW back biasing.

	

Figure 4.2: Dynamic characterization module architecture, including a 140kb SPW SRAM
macro clocked by an on-chip pulse generator and controlled by a programmable BIST.

CHAPTER 4. CIRCUIT-LEVEL RESILIENCY TECHNIQUES 55

88µm

404µm

128 rows x 280 columns
Row

drivers

Row
drivers

128 rows x 280 columns

128 rows x 280 columns 128 rows x 280 columns

ControlColumn IO (35 bits) Column IO (35 bits)

Level shifters

Figure 4.3: 6T based high density 32KB SRAM array for failure characterization.

	

Figure 4.4: RS, WA, RA Vmin versus WL pulse width.

on the bitline. The bitlines are multiplexed through PMOS pass gates to a StrongARM style
sense amplifier, and an SR latch holds the output data until the next operation. The pass
gate pulse width matches the high voltage period of the clock, and therefore is controlled by
changing the duty cycle and frequency of the clock.

Unlike conventional March tests, the BIST characterization structure identifies the ac-
tual cause of failure by using high-voltage operations to guarantee successful reads or writes.
Figure 4.4 plots failures due to RA, RS, and WA for different voltages and operating frequen-
cies. Because readability is directly related to the amount of read current supplied by a cell
multiplied by the access time, readability Vmin is very sensitive to access time. Longer access
times slightly improve writeability Vmin, and read stability is not a problem for the proposed
bitcell. For most voltages, the minimum operating voltage is limited by bitcell writeability.

CHAPTER 4. CIRCUIT-LEVEL RESILIENCY TECHNIQUES 56

	

Figure 4.5: Writeability bit-error rate (BER) versus VPW for different voltages.

Figure 4.5 shows that optimization of VPW can minimize the writeability failure rate.
When VPW is negative, NMOS are weaker, and PMOS are stronger, and in the weakest
bitcells it is difficult for the pass gate to pull the high node low, and therefore inadequate
discharge of the high node limits writeability. When VPW is positive, NMOS are stronger, and
PMOS are weaker, and while the high node is easily discharged low, the low node cannot be
pulled high through a weak PMOS by the end of the cycle. Therefore, VPW can be adjusted
to compensate for systematic process skew between NMOS and PMOS strength.

The SPW bitcell has a retention voltage of 305mV, a minimum leakage of 100fA per cell,
and body bias can improve readability and writeability to compensate for process variations
for a less than 5% increase in leakage current. Understanding of SRAM failure mechanisms
and exploitation of a new FDSOI process technology improves the minimum operating volt-
age of a standard 6T bitcell with no additional required masks.

4.3 Wide-voltage-range 8T macro

A custom SRAM macro was designed for the RAVEN project to operate at extremely low
voltages (down to 0.45V) and tolerate significant voltage noise on the power rail (up to
100mV ripples at high voltage). The RAVEN project using on-chip voltage conversion with
switched-capacitor converters to enable finer-grain DVFS algorithms and simplify package

CHAPTER 4. CIRCUIT-LEVEL RESILIENCY TECHNIQUES 57

D$

BISTIVI

Vector
RF

SC-DCDC Unit Cells

SC-DCDC Unit Cells

Scalar core
+ vector accelerator

SC-DCDC
Controller

Adaptive
clock

1.3mm

1.8mm

Figure 4.6: A RISC-V processor with on-chip voltage conversion fabricated in 28nm FD-
SOI [1].

design. Previous approaches to switched-capacitor converters interleave converters in order
to stabilize the output voltage, but incur losses due to charge sharing between the phases.
The RAVEN project proposes using non-interleaved operation to switch all converter unit
cells at the same time to avoid these losses, but generates a voltage ripple at the output. An
adaptive clock exploits the voltage ripple by translating higher instantaneous voltage into
higher operating frequency. Reconfigurable switches enable conversion of standard 1V core
and 1.8V IO input voltages to four voltages between 0.5V and 1V. To prove the concept, a
2.4mm2 chip shown in Figure 4.6 contains a 64-bit RISC-V in-order scalar core and 64-bit
vector accelerator and is implemented in 28nm FDSOI technology [1]. The processor boots
Linux and runs Python, operates at a maximum frequency of 960MHz, can operate down to
0.45V, and has a measured system conversion efficiency of 80-86%.

Two versions of the SRAM have been designed with circuit-level resiliency techniques
to improve low voltage operation. The first version, shown in Figure 4.7, was used in the

CHAPTER 4. CIRCUIT-LEVEL RESILIENCY TECHNIQUES 58

128 rows x 144 columns

128 rows x 144 columns

Row
drivers

Row
drivers

Column IO (72 bits) Control88µm

248µm

Row
drivers

Row
drivers

Control

Figure 4.7: Custom low-voltage SRAM designed for the RAVEN3 project.

128 rows x 72 columns 128 rows x 72 columns

128 rows x 72 columns 128 rows x 72 columns

Row
drivers

Row
drivers

Column IO (36 bits) Column IO (36 bits)Control
88µm

210µm

Figure 4.8: Custom low-voltage SRAM designed for the RAVEN3.5 project.

L1 cache and vector register file in the RAVEN3 chip. The SRAM was functional down to
0.45V, but the BIST control logic failed at 0.45V, preventing SRAM characterization below
this voltage.

The second version, shown in Figure 4.8, has a variety of performance improvements,
and was implemented as a test site in the RAVEN3.5 chip. The wordline drivers for both
the read and write port were moved to the middle to reduce resistance of the wordlines, and
thereby reduce area by 15%. Delay buffers were replaced with inverters to balance rise and
fall time and reduce the possibility of variation causing a timing pulse to be stretched or
compressed. Additionally, the minimum pulse width was reduced for further potential energy
savings. The BIST runs at high voltage, while the SRAM runs on the lower testing voltage,
to ensure that the true minimum operating voltage of the SRAM can be measured.

CHAPTER 4. CIRCUIT-LEVEL RESILIENCY TECHNIQUES 59

4.3.1 Design Overview

There are two major goals of the custom SRAM macros in the L1 cache. The first goal is to
build an SRAM that can operate from a rippling on-chip DC-DC supply down to 450mV.
The second goal is to reduce swing on the bitlines in order to improve delay at low voltage
and minimize switching energy.

To achieve both goals, the SRAM uses a timing-replica circuit to turn off the wordline
after the minimum required bitline voltage is developed by the worst cell in the array, and
uses a sense amplifier to correctly read values from the resulting low-swing bitline. At low
voltages, this scheme improves read speed as the added delay of the sense amplifier is less
than the delay of waiting for a full-rail swing. At high voltages, energy is reduced due to the
lower required voltage swing on the bitlines.

The SRAM macro has 256 rows and 144 physical columns which are logically organized
as 512 entries of 72 bits (64+8 for ECC). Figure 4.9 illustrates how the 144 physical columns
are multiplexed into 72 input and output bits. Only metal up to M4 is used, and the power
grid is exposed in M4. The cells in the array are physically interleaved 2:1 (every other
column belongs to the same logical word). Interleaving reduces layout complexity for the
column circuitry, but causes a couple of problems. First, when writing a word, the other
word in that row will see a read operation, which requires the bitcell to be sized for stability.
Second, write accesses to a different address, but on the same row, cause a voltage bump or
drop on the internal node that either slows down reading a 1, or misreads a 0 as a 1 [60].
However, the bitcell provided by the foundry was read stable based on importance-sampling
simulations, and the voltage bump was small enough to not affect read operations. These
disadvantages can be removed by not interleaving cells [21].

The cell itself is an 8T cell (6T cell + 2T decoupled read port) with dedicated read
wordline and write wordline allowing for a single read operation and a single write operation
per cycle. Instead of conventional single-ended reads, this design uses an unaccessed bitline
as a reference, then uses a sense amplifier to read data with reduced swing on the bitlines.
Writes can be masked at a 9 bit granularity to support a parity bit on every byte, and a
negative bitline assist improves writeability at low voltages. A concurrent read and write
access is allowed, but conflict detection and resolution must be implemented outside the
array. There cannot be simultaneous accesses to the same word because the read output
value will be unknown.

The read and write timing control blocks were designed by using standard cells at
the schematic level, which were then automatically placed-and-routed with Synopsys IC
CompilerTM and inserted into the design. The pre-decoding logic was synthesized from a
Verilog description. The rest of the layout was full-custom. The wordline drivers are inter-
leaved 2:1 and therefore allow 4 pitches of poly for each driver gate. The column IO is also
interleaved 2:1 to provide room for a common-centroid sense-amplifier layout that minimizes
offset from local mismatch.

CHAPTER 4. CIRCUIT-LEVEL RESILIENCY TECHNIQUES 60

144 columns (mux 2:1)
2col_set_

of_9
2col_set_

of_9…8 total...
144 columns (mux 2:1)

din/dout<8:0>

t_columns
<17:0>

b_columns
<17:0>

2col_read

…9 total...
2col_read

t_columns <1:0>

b_columns <1:0>

t_columns <17:16>

b_columns <17:16>

Local signal generation/buffering

2col_write 2col_write

Figure 4.9: Column IO organization

Control signals

The array has many configuration options that allow the array to adapt to different process
corners and operating conditions. Timing can be configured to use only the rising edge of
the clock, or both the rising edge and the falling edge. When the rising edge only is used,
internal delay chains (built from either inverters or replica bitcells) generate the wordline and
precharge signals. When the falling edge is also used, the falling edge turns off the wordline
and turns on the precharge signal.

The SRAM operates behaviorally as a synchronous element. Every signal to the SRAM
has a setup and hold time around the rising edge of the clock. The SRAM latches the data
three different ways internally: with a flip-flop, with a latch, and with a pulsed S-R NAND
latch. All of the control signals are assumed to remain stable, but still use a flip-flop for
safety. The flip-flop is triggered by the rising edge of either the read clock or write clock.
The address signals are latched, so their values can propagate through the address decoder
before the edge arrives. These latch signals are controlled by an internally generated signal
based on the precharge signal, so whenever the bitlines are precharging the input latches will
be transparent, and during an operation, the latches will hold state.

Programmable wordline and precharge timing is built around an SR latch, shown in
Figure 4.10. One input is connected to the clock input, which turns on the wordline and
turns off precharge when the clock edge arrives. The other input is sent a pulse to turn off
the wordline, and the pulse can be generated from the falling edge of the clock, a delay path,
or the replica circuit. A similar mechanism is used to control the precharge signal.

Library Characterization

Correctly measuring timing information on SRAM input and outputs is important because
the SRAM will generally be on the critical path. Additionally, long internal clock paths
(specifically to the data input flops) generate a substantial hold time that must be care-
fully measured after extracted simulations. The macro was characterized using Synopsys

CHAPTER 4. CIRCUIT-LEVEL RESILIENCY TECHNIQUES 61

n_turn_on_wl

n_turn_off_wl

wl_en

clk
read

n_turn_on_wl

n_turn_off_wl
wl_en

wl_en

wl_en

(pulse width guaranteed)

(pulse width relies on td)

tdtd

Figure 4.10: Read wordline timing.

SiliconsmartTM, which runs transient simulations on the extracted layout to calculate timing
constraints for different voltages and process corners.

4.3.2 Writeability Assist

Simulation predicted that Vmin of the proposed array would be limited by writeability. Based
on results from Section 3.1, the negative-bitline-boost assist technique was found to be most
effective for our technology. This assist has gained rapid popularity in recent years, with
Samsung [61] and TSMC [62] reporting macros with negative-bitline assist in 14nm and
16nm respectively.

The negative bitline assist has two inherent problems. First, tuning the amount of bitline
boost over a wide voltage is necessary to avoid accelerated bitcell aging from an excessive
over-drive at nominal voltages. Digital configuration bits that either change the amount of
capacitance switched [63] or change the voltage swing across the boost capacitor [62] can be
used to tune the amount of assist. Second, boosting incurs an energy overhead, so energy
can be optimized by only using the minimum amount of boost for each array [63].

The proposed negative-bitline assist scheme is described in Figure 4.11. First, the bitline
that will write low is pulled to zero and the bitline that will write high is pulled to VDD with
appropriate control signals based on the address and data input. Then, for a regular write
operation, the wordline is turned on to transfer the contents of the bitlines into the cell. For
an assisted write operation, the NMOS that pulled the bitline to zero is turned off to leave
the low node floating, a programmable bank of capacitors, shown in Figure 4.12, pull the low

CHAPTER 4. CIRCUIT-LEVEL RESILIENCY TECHNIQUES 62

node below zero. The NOR gates driving the bitlines use the boosted node as the ground
node to pull the gate voltage below ground as well and prevent the off-NMOS transistor
connected to the boosted node from leaking due through a non-zero VGS. The programmable
capacitor bank uses NMOS capacitors to achieve high area density, and the entire scheme
adds an additional 3.9% area overhead to the macro. Due to the 2:1 physical interleaving,
the boosting capacitor area overhead is minimized by sharing the capacitor between four
pairs of bitlines.

WBL<0>

WBLB<0>

72 total instances to cover 144
total array columnsMemory

Cell

128 rows
...

...

DIN<0> DINB<0>

"TopLeft"

nWriteTopLeft
nWriteTopRight
nWriteBottomLeft
nWriteBottomRight

nWriteTopLeft

"TopRight"

"BottomLeft" "BottomRight"

nWriteTopLeft
DIN<0>

(active low signals)

DINB<0>

negBoost

boosting

(Pull NEGBOOST to 0
if not boosting)

Programmable
Negative Boost

boostCtrl

boosting

3

TwoColumnIO

...

boosting
n_wlEn

disable_boost

Figure 4.11: The proposed writeability assist scheme generates a negative voltage on the
bitlines to lower Vmin for write operations.

Figure 4.13 shows peak programmable boost amount over different voltages. The design
achieves approximately 15-20% negative boost across the entire operating range. Calibration
based on measurement will determine the optimal tuning code to use for different voltage
regions.

CHAPTER 4. CIRCUIT-LEVEL RESILIENCY TECHNIQUES 63

boostCtrl<0>
boostCtrlB<0>
boosting

boostCtrl<1>

boostCtrl<2>

boostCtrlB<2>

boostCtrlB<1>

14fF

7fF

3.5fF

Programmable Negative Boost
NEGBOOST

VDD

GND

VDD

GND

VDD

GND

WBL WBLB

writeB = 0, DIN = 0

boosting
negBoost

nWriteTopLeft
nPrechargeB

boosting

boosting

Figure 4.12: A bank of programmable capacitance generates different strengths of negative
assist to optimize energy at different voltages and process corners.

Figure 4.13: Resulting negative boost amount for different configurations.

4.3.3 Readability Assist

Traditional 8T-based designs use single-ended full-swing bitline reads. To improve read speed
and decrease energy, local bitlines of 8 to 32 cells use full-swing reads, and transfer the data
onto lower swing global bitlines, but this breaks up the periodic layout of the array and
increases area overhead [22]. Another approach that maintains periodic layout would remove
local bitlines, and instead only require low-swing on longer bitlines of 64 to 256 cells, to both
improve read speed (because less time is required to wait before the cell discharges enough
of the bitline capacitance) and decrease read energy (because the cell is turned on for less
time). However, a low-swing single-ended read needs two problems to be solved—first, a new
signal is required to trigger the sense amplifiers at the perfect time after the weakest cell

CHAPTER 4. CIRCUIT-LEVEL RESILIENCY TECHNIQUES 64

in the array has finished reading, and second, a reference signal is required for the sense
amplifier to distinguish between a read-0 and read-1.

Proposed low-swing single-ended read scheme

Figure 4.14 shows the proposed single-ended replica-timing-based read scheme, and Fig-
ure 4.15 shows the operational waveforms. One input to the sense amplifier is provided by
the appropriately multiplexed bitline. The other input to the sense amplifier needs to be
a reference that differentiates between low and high values. Ideally, this reference is equal
to VDD minus the input voltage offset of the sense amplifier. To generate the reference, a
pre-discharged capacitor is connected to unaccessed bitlines to reduce the voltage on the
reference bitline to a programmed level. Even though this method requires extra area for
capacitors, it functions even with extreme supply noise, as both the target and reference
bitline will be precharged to the same voltage. The reference bitline is guaranteed not to be
accessed, as only a single read operation is supported per cycle, and a write operation will
not affect the read bitline. The 2:1 interleaving of the bitcells is possible because the cell was
determined to be read stable through simulation.

Replica timing

The proposed low-swing approach requires a carefully timed replica signal to turn off the
wordlines and fire the sense amplifier at the perfect time. A conventional full-swing design
still requires a signal to begin the precharge operation, but the overall delay and energy
consumption will be much less sensitive to this signal. Recent research has sought to improve
the sense-amplifier enable signal (SAE) in the context of a conventional 6T-based array with
differential read, but is also relevant for the proposed 8T low-swing design. SAE needs to turn
on when the weakest cell in the array has overcome the offset of the sense amplifier. A simple
delay chain of inverters poorly tracks the weakest cell over different voltages and process
variation, so replica bitlines based on actual SRAM cells have been proposed to improve
tracking [64]. The sense-amplifier enable signal can be generated from the statistics of signal
arrival times, but at high area and energy cost [65]. The number of replica bitcells should be
high to average out variation within the replicas themselves, but too many bitcells generates
the SAE signal too quickly, so the delay can be increased with a multiplier circuit [66].
Suppressing the wordline voltage of conventional replica cells can emulate the threshold shift
of the weakest cell in an array and improve tracking [67].

The proposed design uses replica bitcells with weakened supply voltages to generate the
timing signal, as shown in Figure 4.16. A switched capacitor circuit accurately generates a
degraded VGS to emulate the weakest cell while tolerating large voltage noise. In order to
generate the falling edge of the wordline, a replica bitline of 7 cells in parallel (to average
together random variations) is supplied by a cell voltage that is set to be less than VDD with
the replica voltage generation circuit shown in Figure 4.17. In the first phase, the capacitor
is connected between VDD and 0.1V. In the 2nd phase, the top plate is disconnected from

CHAPTER 4. CIRCUIT-LEVEL RESILIENCY TECHNIQUES 65

U_RBL<1>

Memory
Cell

128 rows

...
...

Vdd-Voffset

U_RBL<0>

U_RBL<1>

L_RBL<1>

L_RBL<1> L_RBL<0>
Reference generation
Accessed cell

Vdd-Vread

(StrongARM
with SR latch)

SA

Figure 4.14: Proposed low-swing single-ended read scheme generates a reference using an
unaccessed bitline.

VDD and the bottom plate is pulled to 0, ideally setting the top to be VDD-0.1. However,
charge sharing diminishes the droop, so the reference needs to be calibrated appropriately.
The 22fF capacitance is generated using a MOM cap, instead of a MOS cap, to maintain
capacitance value with low voltages.

Within each column, the sense amplifier is active between the time in which the wordline
turns off (to avoid excessive bitline discharge that doesn’t provide further help to the read
operation) and the precharge turns on. Figure 4.18 shows the circuits used to generate the
sense amplifier enable signal. The SAE signal is not sent from the control, but rather derived
locally (shared between 18 columns) from the wordline and precharge signal to ensure that
there is no short circuit path between the sense-amplifier tail source and precharging the
cell, and also to make sure the sense amplifier triggers as early as possible after the wordline
turns off.

CHAPTER 4. CIRCUIT-LEVEL RESILIENCY TECHNIQUES 66

Figure 4.15: Simulation-based operational waveforms comparing the proposed low-swing
scheme with the conventional full-swing scheme.

8T

8T

8T

8T

7 replica
cells

Reference
voltage

generator

121 load
cells

Vdd-x mV

wordline
enable

Vdd

0

read
bitline

sense
enable

...

...

72 columns

12
8

ro
w

s

...

wlr
read
bitline
sense
enable

Figure 4.16: A replica bitline emulates the weakest cell in the array to turn off the wordline
and turn on the sense amplifier at the optimal time.

CHAPTER 4. CIRCUIT-LEVEL RESILIENCY TECHNIQUES 67

VreplicaVDD

0 100mV

Φ1
20fF

Φ1Φ2

Φ1

Φ2

VreplicaVDD

0 100mV

Φ1
20fF

Φ1Φ2

Φ1

Φ2

Figure 4.17: Replica reference voltage generator subtracts a constant Vth offset at the begin-
ning of every cycle to respond to voltage noise.

wlr

n_precharge

n_wlr

Local SA timing

x
SET

RESET

SA on SA off

n_wlr

n_precharge
x

wlr
saen

(wordline,
active low)

(precharge,
active low) saen

Figure 4.18: Local sense amplifier timing generation.

Backup read scheme

In order to compare the proposed single-ended read with the conventional case, a backup read
scheme is implemented, as shown in Figure 4.19. The multiplexed read node is connected to
a skewed inverter (700µm PMOS, 200µm NMOS), and followed by a latch, to directly read
the single ended bitline.

4.3.4 Energy and Delay Simulation Results

Figure 4.20 shows energy per read operation for different voltages under the TT corner. At
low voltages, energy savings disappear as the increasingly long delay required to read the
weakest cell in the array causes the majority of the bitlines to discharge completely and
approach the energy of the conventional full-swing bitline read. Energy savings are reported
for reading 1’s; reading 0’s will favor full-swing reads because no bitline is discharged at all,
and decrease the energy savings of the proposed scheme.

CHAPTER 4. CIRCUIT-LEVEL RESILIENCY TECHNIQUES 68

U_RBL<1>

Memory
Cell

128 rows

...
...

U_RBL<0>

Latch

L_RBL<1> L_RBL<0>

Figure 4.19: Backup read scheme

Figure 4.20: Energy comparison between a conventional full-swing bitline and the proposed
low-swing scheme.

CHAPTER 4. CIRCUIT-LEVEL RESILIENCY TECHNIQUES 69

0.5V 0.6V 0.7V 0.8V 0.9V

ϕ1

ϕ2

ϕ2

2.00E%10'

2.00E%09'

2.00E%08'

0.4' 0.5' 0.6' 0.7' 0.8' 0.9' 1'

Delay=0'
Delay=1'
Delay=2'
Delay=3'
4'sigma,'200mV'offset'
Proposed'replica'2ns

200ps

20ns

C
lk

-to
-s

ae
n

Figure 4.21: Replica timing scheme tracks the weakest cell in the array more closely than an
inverter-based delay chain.

Figure 4.21 shows the optimal SAE delay versus SAE generation options over different
voltages for a TT design. A simple delay chain does not slow down the SAE signal enough
at low voltages, because the threshold voltage is different between the inverters in the delay
chain and the bitcell. The proposed replica-timing approach closely tracks the ideal wordline
pulse width over a wide range of voltages, enabling speed improvements through earlier sense
amplifier triggering, and energy efficiency improvements by reducing the voltage swing on
the bitlines.

4.4 Summary

Circuit-level resiliency techniques improve resiliency and lower Vmin by preventing process
variations from causing bitcell failures. Increasing the size of the bitcell, using body bias to
improve NMOS-to-PMOS strength ratios, and using periphery assist techniques to under-
drive or over-drive particular transistors can all be used to improve SRAM operation at
low voltage. A single-p-well bitcell was described that uses body bias in FDSOI to trade-off
discharge and completion failure modes during write operations. Also, an 8T-based SRAM
design used in a low-voltage processor with a rippling supply voltage implements a negative
bitline assist and replica read scheme to optimize the wordline pulse width at different
voltages to increase speed and decrease energy consumption.

70

Chapter 5

Architecture-level Resiliency
Techniques

In this chapter, two new resiliency techniques are proposed to tolerate bitcell failures at
the architecture level. The generic error-modeling framework from Section 2.3 provides the
means to evaluate a variety of exiting architecture-level resiliency techniques that tolerate
bitcell failures. Using the intuition provided by this analysis, two new resiliency techniques
are proposed to protect against hard faults. Dynamic column redundancy (DCR) with line
disable can protect the data macros in L1 and L2 caches against high failure rates with low
overhead, while bit bypass (BB) protects the tag macros.

5.1 Introduction

Architecture-level resiliency techniques assume that bitcells will fail, and use either error
correction or redundancy to prevent bitcell failures from causing system failures. In general,
circuit-level techniques move the entire failure distribution away from the failure region,
while architecture-level techniques target the tail of the distribution—suggesting that ar-
chitecture techniques can be more efficient and effective. Also, architecture-level techniques
remain relevant for multiple process nodes, while circuit-level techniques need to be con-
stantly redeveloped for new processes.

A large number of architecture-level techniques have been proposed to work around
failing cells. One family of techniques uses redundancy to avoid failures. The Intel Pellston
technique disables lines based on ECC feedback [68]. The non-disabled ways in the cache
can be thought of as redundant lines. However, as error rates increase, disabling entire lines
(typically 512 bits) to repair a single-bit failure causes the capacity to decrease dramatically.
To increase the number of available bits in an SRAM at low voltages, functioning bits from
multiple words can be merged together to form a single operational word [26], but this
technique dramatically reduces cache capacity and increases switching activity. Exploiting
the cache organization, words within a line can be disabled to trade off capacity for low-

CHAPTER 5. ARCHITECTURE-LEVEL RESILIENCY TECHNIQUES 71

voltage operation with very little overhead [27]. Failing cells can also be substituted at the
word level within caches, and extreme failure rates can be tolerated through aggressive offline
graph algorithms to optimally match operational words [25], [69].

For all schemes with reconfiguration-based redundancy for hard faults, built-in-self-test
(BIST) is required to identify error locations. Instead of reconfiguration with BIST, another
family of techniques use error-correcting codes (ECC) to dynamically detect and repair
errors at the cost of increased delay due to encoding, decoding, and correction [70]. At low
voltage, data ways can be traded for checkbits to implement orthogonal Latin square codes
(OLSC) that can correct many bit failures, but area and complexity of ECC is high [28]. ECC
overhead can be reduced by using minimum-strength ECC codes for the number of faults in
each word, using a stronger 4-bit correction code on the few ways that have more bit errors,
but this scheme only makes sense for L2 caches where access to the ECC checkbits can
be amortized over whole cache line accesses [29]. A combination of word disable to protect
against multi-bit errors and ECC codes to protect against single-bit errors can significantly
reduce Vmin, but would still require a BIST to program the disabled words [71].

5.2 Protecting Data Arrays with DCR+LD

In general, previously proposed architecture-level techniques have targeted solutions that
can tolerate extremely high failure rates where up to one out of 100 bitcells fail—requiring
solutions that have considerable complexity and overhead. Holistic analysis in this section
will show that less aggressive resiliency solutions that tolerate lower failure rates around
1× 10−4 obtain practically the same energy efficiency gains with much less complexity and
overhead. Additionally, ECC-based schemes require very complex codes to provide correction
capability for both soft and hard faults. Overhead can be reduced further by using BIST
characterization to identify fault location and reserving ECC for soft and intermittent faults
only. The proposed DCR+LD technique stores fault location information in the tag array,
and two separate mechanisms protect against single-bit and multiple-bit failures by using
this fault location information to avoid failing bits.

5.2.1 DCR+LD Microarchitecture

Column-redundancy schemes handle hard faults by adding a spare column (SC) to an SRAM
array, with a two-way multiplexer at the bottom of each column to shift columns over to
map out a failing column. Traditional static column-redundancy schemes are configured
with fuses and only correct one failing column per array. The proposed dynamic column-
redundancy (DCR) scheme, shown in Figure 5.1, uses the same column multiplexer structure
but associates a redundancy address (RA) with each row of the SRAM to dynamically select
a different multiplexer shift position on each access, correcting one bit per row instead of
one bit per array.

CHAPTER 5. ARCHITECTURE-LEVEL RESILIENCY TECHNIQUES 72

4 3 2 1 0
4 bad 2 1 0
4 3 2 1 bad

4 3 2 1 0

11
10
01
00

Row

RA

Row RA
11
10
01
00

0000 3 2 1 0
4 2 1 01000

01

4 3 2 11111
3 2 1 00000

Accesses:Structure:

010101

Figure 5.1: Overview of the proposed DCR scheme, which reprograms a multiplexer to avoid
failing columns.

DCR offers the same capability of masking a single bit error per line as a SECDED code
used to correct hard faults, but without requiring the latency and overhead of encoding or
decoding logic. The extra bits required to store the RA per way are stored in the tag array,
and require a similar area overhead as a per-cache-line SECDED code. The RA in DCR can
be unique Per-Set (DCRPS) or Per-Word (DCRPW). For set-associative caches, the area
overhead of DCRPW will be much larger than DCRPS, but more bits can be corrected.

A scheme similar to baseline DRC was proposed for a different application in resistive
memories, where stored pointers indicate the location of failing bits [72]. But this scheme had
the requirement of correcting multiple bits in a row, while the proposed scheme disables ways
to handle multiple bits failing in a row. This DCR+LD scheme dramatically decreases the
minimum operating voltage Vmin beyond what is possible with only single-bit fault correction
or only disabling lines.

In addition to hard faults, many large caches need to cope with soft and intermittent
errors (Section 2.1.2) using some form of ECC. The proposed DCR+LD scheme is particularly
attractive because it can be used in conjunction with a simple SECDED codes for soft errors,
while DCR and LD repair hard faults to reduce Vmin. Note that if ECC is used to correct
hard faults, an expensive DECTED scheme is needed to also survive a soft error as well as
a hard fault.

Like other redundancy schemes, DCR+LD requires BIST to locate failed cells and pro-
gram the RA values. This can either be performed offline and stored in non-volatile memory
to be reloaded on boot, or the BIST can be rerun during system reboot or as needed when
aging errors are detected.

CHAPTER 5. ARCHITECTURE-LEVEL RESILIENCY TECHNIQUES 73

Way0 Way1 ... Way15

 Tag Disable bit

Dynamic redundancy address (RA) (9 bits)

=?

Cycle 1: Tag check

=? =? =?
Way select

RA

DCRPW

Way0 Way1 ... Way15

=? =? =? =?
Way select

RA

DCRPS

(~37% overhead
in tag array)

(~2% overhead
in tag array)

(Per-Set)

(Per-Way)

Figure 5.2: An extra redundancy address is added to each way in the tag array for DCRPW,
or to each set for DCRPS.

DCR Implementation for L2 Caches

Figure 5.2 illustrates modifications to the tag array for a 16-way set-associative L2 cache
for both the DCRPW and DCRPS scheme. For DCRPW, each entry in the tag array now
includes an extra RA as well as a disable bit. These extra 10 bits add a 37% penalty on tag
array size assuming 27-bit tags and a 16-way cache. Although 37% overhead may appear
large, the 10 extra bits per line in the tag is similar to the 11 extra bits that would be
required in the data array for SECDED used to catch hard faults on 512-bit lines, although
redundancy address cells would need to be slightly larger for resiliency. Another variant of
the proposed scheme, DCRPS+LD, trades off slightly diminished correction capability for
substantial area reduction by storing a single RA per set instead of per way.

After a cycle for L2 tag access, the correct way is identified and RA for this way is re-
trieved. During the subsequent data access, the RA is used to avoid the failing bit. Figure 5.3
describes how shift redundancy is implemented for L2 caches. The SRAM macros have 64
bits of IO arranged physically as 256 columns with four-to-one interleaving [73], and 8 macros
are accessed in parallel to read or write an entire 64-byte cache line. One of these 8 macros
has a redundant IO column (four physical bit columns) to protect against sense-amplifier
failure as well as bit failure. Therefore the main overhead of this scheme is in the tag arrays,
not the data arrays, as this redundant IO adds only 0.2% overhead to the data while adding
2-37% overhead to the tags. The shift multiplexer for reads and demultiplexer for writes
can be implemented with pass transistors and therefore adds very little extra latency to the
critical path. Computing the thermometer code for the shift multiplexers can be done dur-

CHAPTER 5. ARCHITECTURE-LEVEL RESILIENCY TECHNIQUES 74

Redundant IO

Cycle 2: Data access (L2 cache)

Therm-
ometer
decoder

Data7
65 IO bit SRAM

(256 col, 4:1 mux)
...

Read mux
 Write demux

Redundancy address

Way n

Bad column

...

513 bits

512 bits

Data0
64 IO bit SRAM

(256 col, 4:1 mux)

(9 bits)

Figure 5.3: For L2 caches, the proposed scheme uses the RA to multiplex/demultiplex around
failing columns.

ing the SRAM access and does not affect latency. Synthesis results summarized in Table 5.1
show that the area and energy of the added decoder and multiplexers is much lower than a
SECDED decoder.

DCR Implementation for L1 Caches

Many existing schemes can only be used in large L2 or L3 caches where the increased latency
has a smaller effect and operations always occur on entire lines instead of words. DCR+LD
can be modified to perform well on small granularity and low-latency accesses in L1 caches.

Table 5.1: Delay and area comparison between SECDED and DCR from synthesized imple-
mentations in 28nm.

Write (encode) Read (detect/correct)
Scheme Area Delay Area Delay

SECDED 290 µm2 190ps 610 µm2 280/400 ps

DCR (proposed) 150 µm2 20ps † 150 µm2 20ps †
† Thermometer decoder takes 90ps, but operates in parallel
with array sensing/latching

CHAPTER 5. ARCHITECTURE-LEVEL RESILIENCY TECHNIQUES 75

L1 caches perform accesses in a single cycle on a single word (64 bits) instead of an
entire line. In order to avoid read-modify-write of an entire line during writes to a single
word, ECC-based schemes on L1 caches need to perform ECC on words instead of lines (eg.
checkbits for every 64 bits instead of 512 bits), increasing the checkbit overhead from 2% to
12.5% for the SECDED case. Even more checkbits would be required for a DECTED code
that can protect against both hard and soft faults. The main advantage of the DCR scheme
for L1 caches is that it is still possible to use a single RA per line, instead of requiring a
redundancy address per word, which dramatically reduces the area overhead of the DCR
scheme compared to ECC schemes for the L1 cache.

Figure 5.4 illustrates the dynamic redundancy scheme for L1 caches, which can still repair
one bit in every 512-bit line. In the L1 data arrays, ways are often physically interleaved, so
accessing a 64-bit word would access all four ways in parallel, then multiplex the correct way
at the end of the cycle after tag comparison is complete. To add DCR to L1 data caches,
each SRAM macro is extended from 64 input-output columns to 65 input-output columns
and a shift multiplexer and demultiplexer are added to avoid bad columns. The RA is shared
by all 8 words in a cache line, yet all 8 arrays have a redundant bit, so 7 of the redundant
bits will not be used on each access. However, the only alternative is to store the redundant
bit as one flip-flop per set, which actually would cause a larger overhead than extra columns.
For the L1 cache, the thermometer decoder latency must be less than the sense amplifier
and latch latency to avoid extending the critical path.

5.2.2 Evaluation

In this section, a variety of proposed architecture-level resiliency techniques are evaluated
with the proposed generic framework (Section 2.3) using the same bitcell failure probability,
target cache size, and soft-error assumptions. The target cache designs are a 4-way 32 KB
L1-style cache and a 16-way 2 MB L2-style cache with 64-bit words and 64-byte lines. This
analysis focuses only on data portions of caches. Tags need to be correct, but because they are
much smaller than the data portion of caches they can be protected with circuit techniques,
or a separate redundancy technique described in Section 5.3.

All schemes are required to maintain at least 99% capacity. This requirement keeps the
results generic and independent of activity or architecture-level assumptions. Therefore no
architecture-level simulation-based studies are required to compare energy and execution
time of the different schemes. Section 5.2.4 discusses why ignoring operating points at lower
capacities is appropriate. This evaluation assumes that a single bit of soft-error correction
is required. For schemes that do not protect against soft errors, one bit of ECC is added to
ensure a fair comparison.

The evaluation was performed using the architecture-level error model described in Sec-
tion 2.3. Table 5.2 shows the parameters used in the generic framework to evaluate each
technique. Every technique can be compared with the single framework by just changing a
few parameters, enabling easy design-space exploration of a wide range of input parameters.
The DEC, DEC+LD [71], and VS-ECC [29] schemes rely on BCH codes, and therefore are

CHAPTER 5. ARCHITECTURE-LEVEL RESILIENCY TECHNIQUES 76

Redundant IO

Cycle 1: Data access (L1 Cache)

Therm-
ometer
decoder

...

Read mux
 Write demux

Redundancy address [5:0]

Word n

Bad column

...

65 bits

64 bits

Data0
65 IO bit SRAM (256 col, 4:1 mux)

Way
select SA SA

RA [8:6] == n?

Figure 5.4: For L1 caches, the proposed scheme uses a redundant column per array.

not included in the L1 comparison because small access granularities increase checkbit over-
head from 4% to 22% [30], and high encoding and decoding latency makes them ill-suited
for L1 caches. The Mixed-cell [39] scheme is excluded from L1 comparison because it would
require double the dynamic energy when readings tags and data in parallel.

Table 5.3 includes all of the equations used to calculate capacity, which is important
because capacity of a cache at a given voltage can also determine Vmin due to the 99% capacity
requirement. The sections below explain how Tables 5.2 and 5.3 were derived. Each evaluation
is validated with a numerical simulation of each technique using fault maps. The results of
the evaluation using the proposed generic framework are exact and no approximations are
made.

Line Disable (Pellston) [68]

Disabling failing ways in a set-associative cache is a simple and effective way to improve
resiliency. Vmin is limited by requiring at least one working way (al−s = nl−s−1) and requiring
99% capacity, because every bit failure requires a line to be disabled. This technique has no
latency overhead and a negligible tag-array overhead due to the disable bit, so is applicable
for both L1 and L2 caches. Line disable would need to be supplemented with a SECDED

CHAPTER 5. ARCHITECTURE-LEVEL RESILIENCY TECHNIQUES 77

code to provide soft-error resiliency.

DECTED (DEC)

SECDED codes such as the Hsiao code allow correction of a single bit in a word [74] at
the cost of extra checkbits, encoding and decoding. However, in order to protect against
soft and intermittent errors, two-bit correction is required (1 bit for hard fault and 1 bit for
soft errors), which requires a substantially higher overhead DECTED code such as the BCH
code [30]. After margining for soft errors, one bit is allowed to fail in every word (ab−w = 1).
Vmin is limited by multiple-bit failures at voltages where two or more hard faults per word
become common.

DECTED + line disable (DEC+LD) [71]

For line disable alone, voltage scaling is limited by single-bit hard faults diminishing capacity,
while for DECTED alone, voltage scaling is limited by multiple-bit faults beyond the capa-
bilities of ECC. Combining these two techniques enables substantially more voltage scaling.
Capacity is determined by the probability that a line has two or more errors.

Macho [25]

Macho sacrifices cache lines to provide additional redundancy for other lines within the same
set (or group of a couple of sets) at a word granularity. To model this with the generic model,
nb−w is treated as the number of bits in a word as usual, nw−l represents the number of lines
in a set and nl−s represents the number of words in a line (nw−l and nl−s are switched).
Therefore Vmin will be limited by needing one word to work at every word offset, and no
other errors are allowed. Capacity is determined by calculating the expected value of the
maximum of nl−s samples from Xline using order statistics [75], which corresponds to the
number of working words in the worst word offset location. This technique requires complex

Table 5.2: Inputs to evaluate the minimum operating voltage (Vmin) using the proposed
generic model in Equation 2.8 for different architecture-level resiliency techniques.

Resiliency Inputs to Equations 2.1-2.8
Mechanism Scheme parameters L1 cache (32KB) L2 cache (2MB)

Technique Hard Soft ab−w aw−l al−s as−c nb−w nw−l nl−s ns−c nb−w nw−l nl−s ns−c

Nominal - SEC 0 0 0 0 64 8 4 128 512 1 16 2048
Pellston [68] LD SEC 0 0 nl−s − 1 0 64 8 4 128 512 1 16 2048

DEC DEC 1 0 0 0 - - - - 512 1 16 2048
DEC+LD [71] LD+DEC 1 0 nl−s − 1 0 - - - - 512 1 16 2048
Macho [25] Redund. SEC 0 nw−l − 1 0 0 - - - - 32 16 16 2048

Mixed-cell [39] � Upsize SEC 0 0 0 0 64 8 1 128 512 1 4 2048

VS-ECC [29] 4EC SEC 2 0
nl−s

4
− 1 0 - - - - 512 1 16 2048

DCRPS+LD (prop.) DCRPS+LD SEC 0 0 nl−s − 1 0 512 1 4 128 512 1 16 2048
DCRPW+LD (prop.) DCRPW+LD SEC 1 0 nl−s − 1 0 512 1 4 128 512 1 16 2048

� Analyze robust portion (1/4 array) only, 65mV lower Vmin for L2 bitcell, 130mV lower Vmin for L1 bitcell (larger cells)

CHAPTER 5. ARCHITECTURE-LEVEL RESILIENCY TECHNIQUES 78

offline graph coloring algorithms to map lines together in order to maximize capacity. The
main overhead required is the storage of the fault map. Macho would need to be supplemented
with a SECDED code to provide soft-error resiliency.

VS-ECC [29]

The VS-ECC-Disable scheme uses SECDED on 3/4 of cache ways and 4EC5ED on 1/4 of
cache ways, which can tolerate both soft errors and hard faults. Online testing disables ways
with 3 to 5 errors, assigns 4EC5ED to up to 1/4 of ways with between 1 and 2 errors,
and assigns SECDED to ways with 0 errors (so that soft errors can be tolerated). The
reported results match the case where voltage can be reduced until a maximum of one
quarter of the ways (al−s = nl−s

4
− 1) are disabled due to three or more errors (ab−w = 2).

To compute capacity, this is one of the few schemes that requires replacing one level in the
binomial hierarchy with a multinomial distribution. Capacity is determined by categorizing
lines as either having 0 failures, 1 or 2 failures (use 4EC), or greater than 2 failures (disable),
computing the probability of all possible permutations of line categories within a set, and
multiplying the probability by the number of resulting error-free or corrected lines. For
example in a 4-way cache, one term of this sum represents the probability that 2 lines have
0 failures, 1 line has 2 failure, and 1 line has 3 or more failures.

Table 5.3: Calculation of cache capacity for each scheme.

Technique Capacity

Nominal 100%

Pellston [68] (1− pline fails) · 100%

DEC 100%

DEC + LD [71] (1− pline fails) · 100%

Macho [25]
nw−l−z
nw−l

· 100%

z =
nw−l−1∑
x=0

[1− [P(Xline ≤ x)]nl−s]

Mixed-cell [39] (0.25 + 0.75 · P(Xword = 0)) · 100%

VS-ECC [29] z · 100%
Xset=Multinom(P(Xline= 0),P(Xline= 1) + P(Xline= 2),P(Xline>2)))

z=
nl−s∑
x=0

nl−s−x∑
y=0

P(Xset=(x, y, nls−x−y)) · x+min(
nls
4
,y)

nl−s

DCRPS+LD
(prop.)

z · 100%
Xset=Multinom(P(Xline= 0),P(Xline= 1),P(Xline>1)))

z=
nl−s∑
x=0

nl−s−x∑
y=0

P(Xset=(x, y, nls−x−y)) · x+min(1,y)
nl−s

DCRPW+LD
(prop.)

(1− pline fails) · 100%

CHAPTER 5. ARCHITECTURE-LEVEL RESILIENCY TECHNIQUES 79

Mixed-cell [39]

The mixed-cell scheme revises the VS-ECC scheme by using larger cells instead of extra-
ECC on the robust portion of the cache. Vmin is limited by the robust portion of the array,
because in the worst case, every non-robust cell would be disabled, and therefore errors of
non-robust cells would not affect Vmin. Analysis of the robust portion is achieved by reducing
the analyzed cache size by 75% (nl−s decrease), and shifting the pbit vs. VDD curve. Analysis
of capacity depends on the non-robust cells and is performed on normal cells. The main
problem is that this scheme incurs an overhead at all voltages because the resulting cache
is 25% smaller in all operating modes and robust cells use more energy. Mixed-cell would
need to be supplemented with a SECDED code to provide soft-error resiliency. The Vmin
results from [39] assume SECDEC can be used for hard faults, and compare to a baseline
that already has 2× sized transistors, and therefore has a lower estimated Vmin.

Dynamic Column Redundancy Per-Way with Line Disable (DCRPW+LD)

DCRPW+LD allows one bit to fail in each word (ab−w = 1) and all but one way to fail in
a set by disabling words with multi-bit failures (al−s = nl−s − 1). Capacity is determined
by the remaining number of working or repairable words. ECC protection is necessary to
protect against soft errors, and so a SECDED code is implemented for both the L1 and L2
cache.

Dynamic Column Redundancy Per-Set with Line Disable (DCRPS+LD)

DCRPS+LD only repairs one bit per set instead of per way, which greatly reduces the
checkbit overhead at the cost of a reduced repair capability. Like VS-ECC, because there are
two components of the scheme in use at once, a multinomial distribution is used to calculate
the capacity in the same manner as before. SECDED is added to protect against soft errors.

5.2.3 Results

By setting the probability of cache yield failure equal to 1×10−3 (99.9% yield) Figures 5.5a
and 5.6a plot the minimum operating voltage for each technique as a function of each dataset
for the L1 and L2 cache, and annotates the maximum pbit, which is independent of assump-
tions about bitcell voltage scaling. For L1 caches, the proposed DRC schemes achieve the
lowest possible Vmin. For L2 caches, DCRPW+LD achieves a Vmin only 10–25 mV higher
(depending on the dataset) than the lowest Vmin achieved by the VS-ECC scheme, and
DCRPS+LD achieves a Vmin only 20–70 mV higher.

Figures 5.5b and 5.6b plot the maximum energy savings provided by each scheme for
the energy scaling assumptions in Figure 2.14 and show that for all but one dataset, the
difference in Vmin between the proposed DCR schemes and VS-ECC results in no difference
in Emin. Therefore the proposed scheme achieves comparable energy-efficiency improvements
with much lower complexity and overhead than previously proposed schemes.

CHAPTER 5. ARCHITECTURE-LEVEL RESILIENCY TECHNIQUES 80

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Vmin (V)

28nm FDSOI

32nm Intel

32nm PTM

References

C
ir
c
u
it
-l
e
v
e
l
a
s
s
u
m
p
ti
o
n
s

3.8e-9

1.9e-5

1.9e-4

1.1e-4

2.8e-4

Capacity> 99%

(pbit fails)
Nominal

Pellston

Mixed

DCRPS+LD

DCRPW+LD

(a) L1 cache minimum operating voltage (Vmin)

0 10 20 30 40 50 60 70
Maximum percent energy decrease

28nm FDSOI

32nm Intel

32nm PTM

References

C
irc

ui
t-l

ev
el

as
su

m
pt

io
ns Capacity > 99%

Nominal
Pellston
Mixed
DCRPS+LD
DCRPW+LD

(b) L1 cache maximum energy reduction (Emin)

Figure 5.5: Evaluation of the lower bound on voltage and energy reduction for L1 caches.

If less than 99% capacity is allowed, Macho can achieve a slightly lower Vmin, as shown in
Figure 5.7. However, because the pbit increases so dramatically, only approximately 50mV
of further scaling is possible in exchange for a cache capacity decrease of 40%. Operating
in this low-capacity region is avoided in this analysis, because energy-scaling benefits have
already saturated and cycles-per-instruction (CPI) will increase.

5.2.4 Discussion

Beyond showing the usefulness of the proposed generic model and comparing the effectiveness
of many different published schemes, the evaluation results can be extended to propose a
series of design guidelines that explain why certain ideas work better than others and predict
how resilient design techniques will need to change when technology and usage assumptions
change.

CHAPTER 5. ARCHITECTURE-LEVEL RESILIENCY TECHNIQUES 81

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Vmin (V)

28nm FDSOI

32nm Intel

32nm PTM

References

C
irc

ui
t-l

ev
el

as
su

m
pt

io
ns)

5.9e-11

1.9e-5

4.8e-7

2.8e-4

2.1e-5

1.2e-7

3.5e-4

7.3e-5

2.8e-4

))

Capacity > 99%

(pbit fails)

Nominal
Pellston
DEC
DEC+LD
Macho
Mixed
VS-ECC
DCRPS+LD
DCRPW+LD

(a) L2 cache minimum operating voltage (Vmin)

0 10 20 30 40 50 60 70
Maximum percent energy decrease

28nm FDSOI

32nm Intel

32nm PTM

References

C
irc

ui
t-l

ev
el

as
su

m
pt

io
ns

Capacity> 99%

Nominal
Pellston
DEC
DEC+LD
Macho
Mixed
VS-ECC
DCRPS+LD
DCRPW+LD

(b) L2 cache maximum energy reduction (Emin)

Figure 5.6: Evaluation of the lower bound on voltage and energy reduction for L2 caches.

CHAPTER 5. ARCHITECTURE-LEVEL RESILIENCY TECHNIQUES 82

0.425 0.45 0.475 0.5 0.525 0.55 0.575 0.6
Vdd

0%

20%

40%

60%

80%

100%
C

ap
ac

ity

Used for Vmin comparison

(References dataset)

DCR+LD
DCRPS+LD
Macho
VS-ECC

Figure 5.7: Further Vmin reduction (< 50mV) is possible with capacity reduction.

Guideline #1: The possibility of undetectable errors limits voltage scaling

An ECC scheme such as DECTED can be dramatically improved by adding line disable
capability (DECTED+LD), as shown in Figure 5.6a. At Vmin of DECTED for the L2 cache
(where one bit of correction is saved for soft errors), the probability that DECTED is needed
to correct one failing bit in a word is only 0.024%. Vmin is limited because the probability
that a word has two or more errors (3.0×10−8), and with 32,767 other words in the cache,
0.1% of caches will have a word with two or more errors (99.9% yield specification). However,
by disabling lines in the cache, Vmin is dramatically reduced, and now DECTED replaces a
failing bit in 12.4% of cache lines, and only 1% of the lines are even disabled. Therefore the
key to resiliency schemes is to make the common case (no failures) fast while inexpensively
preventing multiple failing bit words from harming system operation.

Guideline #2: Each process requires different resiliency strength to achieve Emin

Figure 2.14 annotates the probability that a bit fails at the minimum energy point. For all four
datasets, pbit at the minimum energy point ranges from between approximately 1×10−2 and
1×10−6. Emin depends both on assumptions about bitcell failures versus voltage as shown in
Figure 2.13b, as well as energy calculations that account for increased leakage at low voltages.
In some cases Emin isn’t the most appropriate metric, because a slightly higher voltage and
energy could dramatically increase performance. Figure 5.8 shows the energy versus delay
for all four datasets, with annotations marking the minimum E2D (energy squared times
delay) product. To achieve this metric, a pbit of 1×10−7 is required, so even weak resiliency
schemes would work. Focusing on Vmin reduction alone encourages complex schemes that
have more resiliency than needed in system designs.

CHAPTER 5. ARCHITECTURE-LEVEL RESILIENCY TECHNIQUES 83

0.2 0.4 0.6 0.8 1.0
Delay (s) ×10−8

0.2

0.4

0.6

0.8

1.0

1.2
To

ta
lE

/o
p

(J
)

×10−9

pbit: 2.5e-07, vdd: 0.632 V

pbit: 8.1e-05, vdd: 0.550 V

pbit: 4.7e-12, vdd: 0.655 V

pbit: 4.8e-08, vdd: 0.700 V

28nm FDSOI
32nm Intel
32nm PTM
References

Figure 5.8: Energy per operation versus delay with annotated points for minimum E2D.

Guideline #3: Benefits of voltage scaling saturate at pbit=1× 10−3 to pbit=1× 10−4

Figure 5.9 plots the probability that a word fails versus the probability that a bitcell fails for
both the L1 and L2 cache. This analysis is completely decoupled from voltage and energy.
One order of magnitude difference in pbit around 1× 10−3 causes a cache to go from almost
completely working to almost completely failing. To put this slope in perspective, the figure
annotates the voltage change required to go from 4× 10−4 to 4× 10−3 for different datasets.
A 14 mV to 72 mV change in voltage will cause cache capacity to decrease dramatically from
90% to 20%. Additionally, energy at these voltages will likely be dominated by leakage,
which means that this voltage decrease will translate into a very small decrease in energy
and large increase in delay. Therefore, schemes that attempt to handle high failure rates not
only add substantial complexity, but also trade a dramatic reduction in capacity for a very
small decrease in Vmin and potentially no additional energy savings.

Guideline #4: Energy overheads at all voltages matter

Designs that incur energy overheads at all voltages could harm overall energy efficiency even
if they do enable a significant improvement of Vmin. For example, a hypothetical scheme
that trades a 10% increase of energy at VDD of 1 V (for example, using slightly larger cells)
to decrease Vmin by 100 mV will be offset by decreasing the supply voltage from 600 mV
to 500 mV (when optimistically assuming energy scales with CV2). Unless more energy is
expended in low-power mode than in high-performance mode, this hypothetical technique
would actually harm energy efficiency. Additionally, techniques that require cache flushes
when transitioning between modes incur an energy cost to switch modes, which can diminish

CHAPTER 5. ARCHITECTURE-LEVEL RESILIENCY TECHNIQUES 84

10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2

Probability a bit fails (Pbit)

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
ba

bi
lit

y
a

w
or

d
ha

s
a

fa
ili

ng
bi

t
Vdiff

28nm FDSOI Vdiff: -19 mV

32nm Intel Vdiff: -72 mV

32nm PTM Vdiff: -42 mV

References Vdiff: -14 mV

L1
L2

Figure 5.9: Probability that a 64 bit (L1) and 512 bit (L2) word has failing bits versus bitcell
failure probability.

energy-efficiency savings.

5.3 Protecting Tag Arrays

The proposed DCR+LD technique only works for the data arrays inside caches, because
the redundancy information stored in the tags is guaranteed to be available prior to data
array access. For the tag array, or other stand-alone SRAM macros in the design, a different
technique is required to avoid failing bitcells.

Circuit-level techniques, such as using a larger cell size or implementing assist, could im-
prove the redundancy of the tags. However, predicting the effectiveness such that it matches
the resiliency provided by an architecture-level technique is difficult. Also, an architecture-
level technique to protect the tags would allow the simultaneous usage of both a circuit and
architecture technique to further reduce Vmin. The proposed architecture-level technique,
named bit bypass, stores the row and column address of failing bitcells in flip-flops to bypass
failing bits.

5.3.1 Bit Bypass (BB)

Figure 5.10 explains the general principle of bit bypass. Each row can have a redundant
set, and within the row, each failing bitcell can have a redundant entry. The number of
entries within each set is determined by the target failure rate, through evaluation of the
architecture-level error model with abw set to the number of entries in each set with all other

CHAPTER 5. ARCHITECTURE-LEVEL RESILIENCY TECHNIQUES 85

bad bad

bad

...

127
126

0
1

Row
Col

...
...

...

127 126 1 0
Repair

row
Repair

columns
Repair

bits

1
127 1 A B126
0 -

-
--- - -

-
C -

16,384 SRAM bits

..
.

..
.

repaired data

14 repair bits (flip-flops)

Figure 5.10: Overview of the proposed bit bypass scheme.

parameters set to 0. For a failure rate of 10−4, two entries per set would be sufficient, but
as target failure rate is increased, more entries will be needed to tolerate multi-bit errors.
Adding extra entries increases the area linearly, and adds an extra multiplexer to the critical
path.

Figure 5.11 plots area overhead versus maximum probability of failure and approximate
Vmin. For a typical SRAM macro size (1024 entries of 64 bits for a total 8KB macro),
each entry requires 10 flip-flops for the row address, 6 flip-flops for each of the two column
addresses, plus 2 flip-flops for valid bits. In addition to flip-flops, the combinational logic
was approximated as 2× the total size of the flip-flops, based on calibrated data from place-
and-route results. In the figure, the total area overhead of bit bypass for an 8T array is
smaller because bit bypass requires the same area while the macro it protects is larger than
a 6T macro. Increasing the number of BB sets from the nominal case with no BB initially
improves resiliency and reduces Vmin for small area overhead, but saturates quickly at higher
acceptable failure rates and lower voltages.

The simplest implementation uses flip-flops to store all state, and uses synthesis and
place-and-route to implement the actual design. The area overhead can be improved by
using latches instead of flip-flops, or through use of custom design to fold the redundancy
inside the SRAM macro to allow for denser layout and more logic sharing.

Another possible technique to protect against failures in the tag array is to use line disable
within the tags themselves, because only a small number of failures will need to be fixed.

CHAPTER 5. ARCHITECTURE-LEVEL RESILIENCY TECHNIQUES 86

10-310-8 10-7 10-6 10-5 10-4

0

10

20

30

40

Maximum bitcell failure probability

Ar
ea

 o
ve

rh
ea

d
(%

)

8T

6T

(Number of BB sets)
(5)

(7)

(16)

(22)

(36)

(55)
Assuming:

-1024x64 (8KB) SRAM

-2 entries per set

-6µm2 per flop overhead

(a) Bit bypass overhead versus maximum bitcell failure
probability.

800400 500 600 700

0

10

20

30

40

Vmin (mV)
Ar

ea
 o

ve
rh

ea
d

(%
)

(Number of BB sets)

(5)
(7)

(16)

(22)

(36)

(55)

(0)

(b) Bit bypass overhead versus Vmin for the “Refer-
ences” dataset.

Figure 5.11: Bit bypass trades off area overhead for increased resiliency.

However, this would require storing valid bits for each way in flip-flops outside the array,
which would require more flip-flops than bit bypass. Also, line disable for tags would rely on
spare lines, so would not work for stand-alone SRAM macros—a limitation that bit bypass
avoids.

5.4 Protecting Against Intermittent Errors

The proposed DCR, BB, and LD schemes require knowledge of fault location to correctly
program the redundancy. SRAM errors that appear after BIST, such as intermittent errors
or soft errors, cannot be detected or fixed with DCR, BB, and LD. However, ECC can easily
detect intermittent errors, because any bit flip that happens between a write operation and
the final read operation can be detected.

5.4.1 Using ECC for Hard Faults

SECDED correction capability could potentially be shared between repairing hard and soft
faults. Using the architecture-level soft error model from Section 2.5, Figure 5.12 shows FIT
(fixed to 1×10−3/bit) versus voltage with one day of accumulation for an L2 cache that uses
SECDED to repair hard errors, and does not save any bits for ECC. The minimum FIT at
1×10−4 reflects the probability of accumulating multiple strikes to the same word during the
1 day period. As hard errors start occurring, SECDED is used to correct increasingly frequent

CHAPTER 5. ARCHITECTURE-LEVEL RESILIENCY TECHNIQUES 87

0.3 0.4 0.5 0.6 0.7 0.8 0.91.0
Vdd (V)

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

FI
T

FIT: (solid)

Pbit: (dashed)

28nm FDSOI
32nm Intel
32nm PTM
References

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

P
bi

t

Figure 5.12: System FIT (with bitcell FIT=1×10−3) with SECDED correction and 1 day of
accumulation.

hard errors and leaves words vulnerable to soft errors, so the FIT increases dramatically. At
extremely low voltages, many words with multi-bit hard errors are disabled, so the number of
vulnerable words actually decreases and causes FIT to decrease. A FIT of 4000 corresponds
to a MTTF of 30 years, so a system could meet FIT specifications when using SECDED to
repair hard errors. Additionally, errors can be masked at the architecture level, such as the
case where data is evicted before it is used, so this FIT value is an upper bound on FIT.
These results also suggest that using ECC to program redundancy is possible, because the
probability that a soft error occurs before the first error detection is low.

5.5 Summary

Architecture-level techniques that tolerate bitcell failures are particularly attractive because
they are independent of technology and remain relevant for multiple process nodes. Existing
work focuses on tolerating extremely high failure rates with either redundancy or ECC.
However, decreasing Vmin quickly faces diminishing returns, as bitcell failure rate increases
exponentially with decreasing voltage. The holistic error model from Chapter 2 was used
to compare the effectiveness of a variety of existing resiliency schemes and revealed general
design guidelines about architecture-level resiliency.

Two proposed techniques, dynamic column redundancy with line disable and bit bypass

CHAPTER 5. ARCHITECTURE-LEVEL RESILIENCY TECHNIQUES 88

target less ambitious Vmin reduction and therefore are able to achieve substantial energy
savings with very low area, energy, delay, and complexity overhead. The proposed schemes
require a BIST to identify error location, which requires either non-volatile storage or a short
test for every power-up. These schemes can be supplemented with simple SECDED ECC
codes to protect against soft and intermittent errors.

89

Chapter 6

Resilient Processor Design

This chapter describes how the architecture-level techniques proposed in Chapter 5 were
implemented in a 28nm resilient microprocessor to explore implementation issues and prove
the concept. The resilient microprocessor applies these new resiliency techniques to the L1
and L2 cache of a RISC-V processor, and uses a custom built-in-self-test to identify fault
locations and program the resiliency techniques. Additionally, ECC protection on the caches
in the processor can be used to investigate the impact of intermittent faults.

6.1 Introduction

Persuasive proposals of resiliency techniques require building complete digital systems, be-
cause solutions developed in isolation at either the circuit or architecture level, without
context within a full system, can lead to non-optimal designs. For example, at the circuit-
level, switching from a 6T to 8T transistor improves speed and Vmin while doubling area
—a trade-off that is only worthwhile for arrays that are a small proportion of overall chip
area. Or at the architecture-level, bit bypass lowers Vmin while increasing area overhead—a
trade-off that is worthwhile only if energy savings of a lower Vmin offset the opportunity cost
of the area increase.

Processors are an excellent system design target for two main reasons. First, proces-
sors are ubiquitous; design specifications and trade-offs are well understood, and due to the
widespread usage of processors in consumer products such as smartphones, promising tech-
niques have much improved chances of adoption and impact. Second, processors have a wide
range of SRAM requirements. The level-1 (L1) cache directly determines the critical path
of the processor and has high activity levels, so latency and Vmin are important, while area
is less critical. The level-2 (L2) cache consumes a large proportion of chip area, but latency
has a smaller impact on performance, so area and Vmin are important, while latency is less
critical.

Circuit-level techniques in processors can reduce Vmin and improve energy efficiency with
low overhead, as described in Chapter 4, but as process technology changes, circuit-level

CHAPTER 6. RESILIENT PROCESSOR DESIGN 90

techniques need to be redeveloped. For example, when foundries transitioned from planar
transistors to FinFETs, transistor widths within a cell became quantized, and the wordline
voltage needed to be reduced to maintain cell stability [76]. Or when new technology allowed
PMOS strength to approach NMOS strength, it became helpful to replace the pass gates of 8T
cells with PMOS devices to help single-ended read operations [22]. Even with methodologies
that predict bitcell failure at design time, detailed in Section 3.1, the design schedule must
allocate extra time for early tape-outs to verify SRAM operation. A technique that divorces
bitcell failure tolerance from process technology would simplify SRAM array design and
shorten product launch cycles. Therefore, architecture-level techniques are a very promising
approach to reducing Vmin because they are mostly decoupled from process technology,

Most previous work in the architecture-level resiliency area is theoretical, with no RTL or
silicon implementation, because actual implementations are deemed unnecessary: by assum-
ing a bitcell failure curve, it is possible to evaluate effectiveness without an actual implemen-
tation. Section 5.1 includes an extensive list of simulation-based studies of architecture-level
techniques. However, skipping silicon verification, or even RTL implementation, obscures po-
tential flaws. First, optimistic failure curve assumptions could unfairly overestimate scheme
effectiveness. Second, many techniques target the data portion of caches only, but there
are SRAM macros elsewhere in the design—in the branch predictor or tags for example—
that need separate methods of protection. Generally, researchers propose protecting these
independent macros with circuit-level techniques; but without silicon verification, the effec-
tiveness of protecting independent macros is unknown. Third, abstract implementations hide
true technique complexity. Schemes that look simple could have many complex corner cases
or add logic that increases the critical path, and therefore scheme viability is unknown until
the implementation is completely finished.

Relatively few architecture-level techniques have been adopted into products. Architecture-
level techniques can be categorized into ECC-based, where errors are corrected during op-
eration using error-correcting codes, and redundancy-based, where error locations are deter-
mined ahead of time and redundancy is used to avoid failing locations. In general, ECC-based
schemes have a lower barrier to adoption, because ECC has been industry-standard prac-
tice to protect against soft errors, and extending correction capability to fix hard faults
is considered a low risk approach. Intel has reported using ECC in the L3 cache to re-
duce Vmin [77]. However, redundancy-based schemes that require BIST have not been so
readily adopted, because they require a non-volatile location to store fault locations. Sec-
tion 6.4.5 will describe some possible solutions to store fault locations to promote adoption of
redundancy-based schemes. Intel announced that the L3 cache in the Ivy Bridge processors
can be shrunk dynamically, but this is not a redundancy technique—it avoids storing fault
location by simply disabling the same ways every time, and therefore only achieves a 30mV
Vmin reduction [78], [79].

The SWERVE (SRAM With ECC and Re-programmable redundancy to aVoid Errors)
project aims to lower the minimum operating voltage of a processor using the architecture-
level redundancy-based schemes proposed in Chapter 5, and will use measurements from a
full silicon implementation to validate failure rate assumptions and investigate the impact of

CHAPTER 6. RESILIENT PROCESSOR DESIGN 91

intermittent errors. The cache tag SRAMs are protected by bit bypass (BB), and the cache
data SRAMs are protected by line disable (LD) and per-set dynamic column redundancy
(DCR). An at-speed SRAM built-in-self-test (BIST) detects SRAM errors before operation,
and uses the error information to program BB, DCR, and LD. Additionally, error correction
on every SRAM allows for in-situ logging of SRAM errors during runtime to determine the
contribution of intermittent errors not detected by BIST.

6.2 System Architecture

Figure 6.1 shows the system diagram of the proposed processor, referred to as SWERVE.
The processor is based on a 64-bit RISC-V 6-stage single-issue in-order processor (Rocket),
which supports page-based virtual memory, boots modern operating systems [80], and is
publicly available [81]. Many modifications, described in the following sections, were made
to the design to support DVFS, SRAM BIST, error correction and logging, and dynamic
redundancy.

The processor has L1 and L2 caches to hide memory latency. To support DVFS, the
processor is split into three independent voltage and frequency domains with the pipeline
and L1 in one domain, the L2 cache in the second domain, and the uncore with digital IO
pads to connect to off-chip in the third domain. Because the L1 cache and L2 cache use
different sizes of bitcells and have very different activity rates, separate voltage domains will
enable a more energy-efficient design. The uncore communicates between the L2 cache and
the main memory off-chip, and is supplied by a fixed 1V supply. Asynchronous FIFOs and
level shifters allow communication between the voltage and frequency islands.

The VDDCORE domain holds the Rocket pipeline and L1 cache. The L1 cache uses an
8T-based SRAM array to support an independent read and write every cycle. Because these
caches are small, the 2× area overhead of the 8T cell is worth the increased number of ports
and improved speed. A BIST controller searches for SRAM failures, and records the errors
in a local error buffer. The core has control status registers (CSR), that allow the processor
and off-chip host to communicate by reading and writing to the same set of 32-bit registers.

The VDDSRAM domain contains the 1MB L2 cache. The L2 cache uses a high density 6T-
based SRAM array to maximize area efficiency. Like the VDDCORE domain, the VDDSRAM
domain has an independent BIST and CSR. The BIST is not shared between the core and
L2 to prevent timing paths traversing multiple voltage domains. The L2 cache is split into
four interleaved parallel banks because the L1 cache supports multiple outstanding misses,
and to support future designs with multiple processor cores.

The uncore domain supports communication between on-chip and off-chip. Three inde-
pendent clock sources from off-chip clocks pass through clock receivers. Multiplexers enable
selection of different clock sources for every clock tree in the system. Off-chip communication
takes place through digital IO pads at 100MHz with a 16-bit input and 16-bit output data
bus, and the host is clocked by recovering a divided version of the uncore clock.

CHAPTER 6. RESILIENT PROCESSOR DESIGN 92

VDDCORE

Pipeline

HTIF

Instruction cache
Tags Data

8K

SECDED
DCR

SECDED
BB

Disable

Data cache
Tags Data

16K

SECDED
DCR

SECDED
BB

Disable

BIST

CSR

RocketTile

Uncore

SCR

VDDSRAM

Main memory access

TileLinkIO

L2HellaCacheBank

RocketChipCrossbarNetwork

BIST

CSR

Tags Data
1MB

SECDED
DCR

SECDED
BB

Disable

Clocktop

SlowIO

LVDS LVDSLVSS

To
 S

CR

To
 S

CR
To

 H
TI

F

To
 H

TI
F

...
4 banks

Figure 6.1: High-level overview of the SWERVE system architecture.

CHAPTER 6. RESILIENT PROCESSOR DESIGN 93

1.8mm

2.
7m

m

Core+L1

1MB L2 Cache

Uncore

Bank 0 Bank 1 Bank 2 Bank 3

Figure 6.2: SWERVE floorplan showing the physical layout of the core, L1 cache, and L2
cache.

Figure 6.2 shows the chip implementation floorplan. The single-core processor is fabri-
cated in a TSMC 28nm HPM process with a 2mm by 3mm die area. A large proportion of
the die area is filled by a 1MB L2 cache. In addition to the processor and cache, four SRAM
macros with sense amplifier studies are embedded into the L2 cache domain. The chip is
surrounded by 124 wire-bonded IO pads designed for chip-on-board packaging. The proces-
sor was designed in Chisel [82], which generated Verilog for implementation, and the BIST
engine was programmed directly in Verilog. The design was implemented with a Synopsys
toolchain of Design Compiler for synthesis, IC Compiler for place-and-route, StarRCXT for
parasitic extraction, and Primetime for timing signoff.

CHAPTER 6. RESILIENT PROCESSOR DESIGN 94

6.3 Programmable Built-In-Self-Test (BIST)

This section describes the on-chip BIST engines that identify fault locations. An effective
BIST is critical because the proposed redundancy methods, DCR and BB, rely on perfect
knowledge of fault location. For decades, industry has been using Memory Built-In-Self-Test
(MBIST or simply BIST) to prevent shipping non-functional products to customers. For the
DCR and BB scheme, the same BIST circuitry will be used, but instead of rejecting parts
with bitcell failures, an algorithm will program the redundancy to bypass the failure cells.
The programming operation is performed at the lowest operating voltage, which assumes
that all failures are monotonic with voltage (a cell that works at a certain voltage will not
fail at higher voltages).

6.3.1 BIST Architecture Overview

Various companies offer CAD tools that automatically insert MBIST [83]. However, a custom
BIST architecture was developed to avoid dependencies on a complex product and to ease
customization. The BIST is highly programmable and supports a large number of possible
March tests with the same hardware. The proposed BIST implementation is split into two
parts: control and datapath, shown in Figure 6.3. The datapath contains all of the SRAMs
under test, along with pipeline registers for the inputs and outputs to allow all of the test
logic to operate at a higher frequency than the SRAM—ensuring that SRAM reads and
writes are on the critical path. The control portion is a finite state machine that provides
at-speed input vectors of address and data to the SRAM. The entire BIST, including control,
datapath, and SRAMs, all operate on a single voltage domain to avoid multi-voltage timing
paths. A separate BIST control and data path exists for each voltage domain. The BIST is
programmed through system control registers (SCR) from off-chip.

6.3.2 BIST Control

A style of memory test patterns known as March tests provide high fault detection coverage
in SRAM [84]. The time required to run March tests scales with n, which makes March tests
suitable for ever-increasing SRAM sizes. March tests can detect a wide range of faults from
simple stuck-at faults within bitcell to faults in the address decoder. Table 6.1 lists some of
the March tests supported by this BIST implementation, derived from [85].

Tests are orchestrated by a programmable state machine shown in Figure 6.4. In ad-
dition to six programmable March elements (TEST0 through TEST5), there are extra
SAFEWRITE and SAFEREAD states, which pause when entering the state to raise the
domain to a high voltage and pause again when leaving the state to lower the domain to a
lower testing voltage. Traditional March tests cannot diagnose the cause of an error—errors
are detected during read operations, and it isn’t known whether the error was caused by an
incorrect write, a stability upset during a different access, or an incorrect read. By reading

CHAPTER 6. RESILIENT PROCESSOR DESIGN 95

VDDCORE

HTIF

BIST Datapath

SRAM N

SRAM0BIST
Control

Processor core

SCR VDDSRAM

Sync.Async.

BIST Datapath

SRAM N

SRAM0BIST
Control

L2 cache
Sync.Async.

Off-chip

...

Figure 6.3: BIST is organized as separated control and datapath in each voltage domain,
and communicates with off-chip through system control registers (SCR) and the host-target
interface (HTIF).

Table 6.1: List showing a subset of supported March tests by on-chip BIST controller.

• MATS

• MATSP

• MATSPP

• March CM

• March A

• March B

• Algorithm B

• March CP

• MOVI

• March 1 0

• March TP

• March U

• March X

• March Y

• March LR

• March LA

• March RAW

• March RAW1

• March AB

• March AB1

• March BDN

• March SR

• March SS

CHAPTER 6. RESILIENT PROCESSOR DESIGN 96

IDLE

SAFEWRITE

SAFEWRITE
_TESTING

SAFEWRITE
_SETTLE

TEST0

TEST1

TEST2

TEST3

TEST4

TEST5

SAFEREAD

SAFEREAD_
TESTING

MOVE_TO_OU
TPUT_SCAN

TEST
_SETTLE1

TEST
_SETTLE2

HANDLE
_ERROR

REPEAT

safewrite_en == 1

vdd_is_safe == 1

datapath_settings

stage_done

datapath_settings

datapath_settings

datapath_settings

datapath_settings

datapath_settings

datapath_settings
is_exception == 1,

 HANDLE_ERROR

entry_received == 1,
 return to calling state vdd_is_safe == 1

m
ar

ch
_o

ve
r=

=1
want_safe_voltage

want_safe_voltage

(allow testing pipeline
to clear out)

stage_done && saferead_en == 1

stage_done && saferead_en == 0

stage_done && repeat_count < target_count

transfer_output

entry_received == 1

stage_done*

datapath_settings
din_source
write_enabled
read_enabled
shadow_enabled
current_test

Figure 6.4: BIST control state machine allows a wide variety of programmable March tests.

and writing the SRAM at high voltage, failure causes can be ruled out to isolate the actual
failure cause.

The number of active test states can vary from one to six, and the address counter start
address, stop address, and address increment value are all programmable. When an error is
detected, the machine moves to the HANDLE ERROR state, which allows the off-chip host
to retrieve the error entry from every SRAM. Each error entry includes the entire output
data word, the address of the access that failed, and the current test number. To save area,
only a single error can be stored at once, requiring the state machine to constantly stop and
restart when downloading errors. After the errors have been recorded, the test continues at
the state that caused the error. Every active test state is visited before updating the address.
After the test is completed, two settling states allow the 3-stage BIST datapath pipeline to
clear out any remaining errors.

Each test state (eg. TEST1) can be programmed to either be a write or read operation. For
write operations, unique input data can be programmed. For read operations, the expected
output data can be programmed. Additionally, for 8T designs, a shadow access can be defined
for read operations to write an adjacent cell, causing a half-select condition during the actual
read operation to force a worse case read.

CHAPTER 6. RESILIENT PROCESSOR DESIGN 97

6.3.3 BIST Datapath

The goal of the BIST datapath is to correctly exercise the SRAM inputs, and compare
SRAM outputs to expected results, at the maximum speed of every SRAM in the design.
Figure 6.5 shows the BIST datapath that tests all of the SRAMs in the L1 cache. To ensure
that the SRAM itself is on the critical path, and not the control, the output is first latched by
transparent-high latches before being sent to a normal positive-edge flip flop. Adding latches
provides two advantages: first, the control logic can be two times slower than the SRAM,
and second, duty-cycle control of the clock can further stress SRAM timing failures.

A clock multiplexer chooses whether the SRAMs are controlled by the core clock during
normal operation or the BIST clock during testing. The core and BIST are both in reset
during transitions between operating modes, so no special timing is needed for the BIST
enable signal on the select input of the multiplexer.

The datapath width of the BIST is 73 bits, which corresponds to the maximum word
width of individual SRAM macros. Table 6.2 summarizes the mapping between SRAM
macros and macros visible to BIST. Memories that are logically wider than 73 bits (such
as 128-bit entries in the data arrays), are split into separate physical SRAMs and appear
to be separate macros to BIST. When programming DCR, column failures are shifted ap-
propriately. For example, an error in column 6 of the upper macro with 64-bit width would
correspond to column 70.

Different SRAMs have different depths as well. The address range of BIST algorithms
is usually programmed to equal that of the deepest array. Because all macros are tested in
parallel, macros with shallower depths have an extra bit that turns off read/write signals
and disables comparisons for the non-existent entries.

When an error is detected, the address, current test, and output data vector is inserted
into an error buffer. A separate register remembers which error buffers received valid entries.
The error buffers are only one entry deep, so the BIST must pause every time an error is
detected and wait for the host to retrieve the error information.

6.3.4 BIST Interface

The interface between the BIST datapath and control is synchronous, while the interface
between the BIST control and the SCR is asynchronous. For the asynchronous interface,
only a few handshake signals are synchronized, while the rest are assumed to remain constant
during operation. The synchronized signals will be referred to as handshake signals, while
the unsynchronized signals will be referred to as settings signals (for inputs) or response
signals (for outputs). Communication between the BIST and uncore is asynchronous, so all
handshake signals are synchronized as shown in Figure 6.6. The SCR registers only have a
32-bit width for compatibility with the 32-bit small co-processor. To avoid bugs, separate
addresses are used for different settings (even though they could be compacted if the address
space gets crowded).

CHAPTER 6. RESILIENT PROCESSOR DESIGN 98

I$ Tags

128x65

I$ Data
Way0

512x138

I$ Data
Way1

512x138

D$ Tags

128x125

D$ Data
Way0

512x146

D$ Data
Way1

512x146

D$ Data
Way2

512x146

D$ Data
Way3

512x146

ad
dr

es
s

re
ad

/w
rit

e
ex

pe
ct

ed
 d

in

di
n

== == == == == == == ==

error buffer entry:
{address, dout, current test}

error buffer select

BIST controller (Verilog)

Uncore SCR

HTIF

Latches enforce
C-Q within
half period)

clk
bistclk

(Stage 3)

(Stage 2)

(Stage 1)

bist enable

expected dout
dout

Figure 6.5: BIST datapath reads and writes every SRAM in parallel at the maximum SRAM
frequency.

bist_reset

bist_state

bist_transfer_output_scanchain

bist_want_safe_voltage

bist_begin_atspeed_test

bist_sram_vdd_is_safe

*bist_entry_received

BIST handshake

SCR File
(Uncore)

Core/L2
(Low

voltage)

*(positive edge causes single cycle trigger)

Figure 6.6: Signals to and from BIST are synchronized between differing voltage and fre-
quency domains.

CHAPTER 6. RESILIENT PROCESSOR DESIGN 99

Table 6.2: Summary of every testable SRAM in the chip, with corresponding size and BIST
macro address.

Structure Size SRAM Name SRAM #
SRAM
Size

L1
Instruction
Cache Data
(2 way)

16KB
(17,644B)

RocketTile.icache.icache.icache data 0.sram1 0 512x69
RocketTile.icache.icache.icache data 0.sram0 1 512x69
RocketTile.icache.icache.icache data 1.sram1 2 512x69
RocketTile.icache.icache.icache data 1.sram0 3 512x69

L1 Instruction Cache
Tags

128x65
(1,040B)

RocketTile.icache.icache.tag array.mem.sram0 4 128x65

L1 Data
Cache Tags

128x125
(2,000B)

RocketTile.dcache.meta.tag arr.mem.sram1 5 128x62
RocketTile.dcache.meta.tag arr.mem.sram0 6 128x63

L1 Data
Cache Data
(4 ways)

32KB
(37,376B)

RocketTile.dcache.data.dcache data 2 1.sram1 7 512x73
RocketTile.dcache.data.dcache data 2 1.sram0 8 512x73
RocketTile.dcache.data.dcache data 0 1.sram1 9 512x73
RocketTile.dcache.data.dcache data 0 1.sram0 10 512x73
RocketTile.dcache.data.dcache data 2 0.sram1 11 512x73
RocketTile.dcache.data.dcache data 2 0.sram0 12 512x73
RocketTile.dcache.data.dcache data 0 0.sram1 13 512x73
RocketTile.dcache.data.dcache data 0 0.sram0 14 512x73

L2 Bank X
Tags
(X=0,1,2,3)

512x229
(14,656B)

uncore.outmemsys.L2HellaCacheBank X .meta.meta.tag arr.mem.sram3 15,21,27,33 512x57
uncore.outmemsys.L2HellaCacheBank X .meta.meta.tag arr.mem.sram2 16,22,28,34 512x57
uncore.outmemsys.L2HellaCacheBank X .meta.meta.tag arr.mem.sram1 17,23,29,35 512x57
uncore.outmemsys.L2HellaCacheBank X .meta.meta.tag arr.mem.sram0 18,24,30,36 512x58

L2 Bank X
Data (8
ways)
(X=0,1,2,3)

Bank:
256KB
(282,624B)
Total:
1MB
(1,104KB)

uncore.outmemsys.L2HellaCacheBank X .data.array.sram1 0 19,25,31,37 4096x69
uncore.outmemsys.L2HellaCacheBank X .data.array.sram1 1 19,25,31,37 4096x69
uncore.outmemsys.L2HellaCacheBank X .data.array.sram1 2 19,25,31,37 4096x69
uncore.outmemsys.L2HellaCacheBank X .data.array.sram1 3 19,25,31,37 4096x69
uncore.outmemsys.L2HellaCacheBank X .data.array.sram0 0 20,26,32,38 4096x69
uncore.outmemsys.L2HellaCacheBank X .data.array.sram0 1 20,26,32,38 4096x69
uncore.outmemsys.L2HellaCacheBank X .data.array.sram0 2 20,26,32,38 4096x69
uncore.outmemsys.L2HellaCacheBank X .data.array.sram0 3 20,26,32,38 4096x69

DUT2 uncore.outmemsys.pifeng srams.sram dut2.sram0 40 1024x72

DUT1 uncore.outmemsys.pifeng srams.sram dut1.sram0 41 1024x72

DUT0 uncore.outmemsys.pifeng srams.sram dut0.sram0 42 1024x72

A BIST algorithm is run by programming the BIST settings registers, then providing
the correct handshake signals to complete the test. The test protocol for every test is stored
in a textual control file. A pre-compiled C program running on the host (or an on-chip co-
processor in future designs) parses the file. The commands are separated into a text file to
avoid requiring a recompile for different tests.

The example control file for the MATS++ test is shown in Figure 6.7, and is automat-
ically generated with a script from its March description: a(w0);u(r0,w1);d(r1,w0,r0).
Comments within the figure describe the effect of each command. The settings programmed
by this file control both the datapath (such as the data values and address steps) and the
control (to determine which March elements are enabled).

CHAPTER 6. RESILIENT PROCESSOR DESIGN 100

1 ∗ MATSPP
2 bist reset =1 // toggle reset
3 bist reset =0
4 bist safe write enable =0
5 bist safe read enable =0
6 bist test0 enable =1
7 bist test0 mode=1 // write operation
8 bist test0 compare to=0
9 bist test0 din =0x0000000000000000000 // write a zero

10 bist test0 start address =0 // next 3 lines control address counter
11 bist test0 end address =1023
12 bist test0 step bit =1
13 bist test1 enable =0 // only use single march element (w0 only)
14 bist test2 enable =0
15 bist test3 enable =0
16 bist test4 enable =0
17 bist test5 enable =0
18 bist begin atspeed test =1 // toggle handshake to begin test
19 bist begin atspeed test =0
20 @bist transfer output scanchain==1 // poll until BIST is complete
21 #echo // report failure data
22 bist entry received =1 // return on−chip state machine to idle
23 bist entry received =0
24 ∗∗∗∗∗∗∗∗∗∗∗∗
25 bist safe write enable =0
26 bist safe read enable =0
27 bist test0 enable =1
28 bist test0 mode=0 // read operation
29 bist test0 compare to=2 // compare to test0 din=0x0
30 bist test0 din =0x0000000000000000000
31 bist test0 start address =0
32 bist test0 end address =1023
33 bist test0 step bit =1
34 bist test1 enable =1
35 bist test1 mode=1 // write operation
36 bist test1 compare to=0
37 bist test1 din =0 xfffffffffffffffffff // write all ones
38 bist begin atspeed test =1
39 bist begin atspeed test =0
40 @bist transfer output scanchain==1
41 #echo
42 bist entry received =1
43 bist entry received =0
44 ...

Figure 6.7: Excerpt from example control file implementing the MATS++ SRAM test.

CHAPTER 6. RESILIENT PROCESSOR DESIGN 101

6.4 Architecture-level Resiliency

Once BIST has determined the locations of all SRAM faults, the proposed architecture-level
resiliency techniques, BB, DCR, and line disable, can be programmed to allow the system
to avoid failing bits. These techniques were designed to have minimal overhead in terms
of area, energy, and delay while tolerating SRAM failure rates 1,000,000 times higher than
normal. The implementations described in the following section are optimized for the specific
Rocket pipeline, but similar implementations are possible for a wide variety of processor
architectures.

6.4.1 BB Implementation

Section 5.3.1 summarizes the general principle of bit bypass (BB)—writes and reads to rows
with known faults use a small number of redundant flip flops to bypass the failing bits.
Figure 6.8 describes the specific implementation of bit bypass in this chip. Bit bypass is
instantiated in the RTL code as a wrapper around any array, with additional input signals
used to program the bit bypass sets. A specific number of replacement sets match different
access addresses in the macro. For each each replacement set, there are a particular number
of replacement entries. Bit bypass operates on the logical organization of the array, not the
physical organization, so two separate replacement sets that match different address could
repair bits in the same physical row for interleaved macros. Therefore bit bypass can be
conceptualized as row redundancy on the logical organization of a macro.

Bit bypass uses a separate reset signal called redundancy reset. Two reset signals are
needed because BB needs to be programmed while the processor remains in reset. Each
replacement entry has a valid bit that is reset to zero (not valid). The programming operation
inserts the row address of the set, and column address and valid bit for each replacement
entry.

The targeted allowable bitcell failure rate of a macro will determine the number of bit
bypass sets and entries required. For the L1 instruction cache tag array, there are 5 sets of 2
entries. For the L1 data cache tag array, there are 7 sets of 2 entries. For each bank, the L2
cache tag array has 22 sets of 2 entries. Table 6.3 shows the improved allowable failure rate
and potential energy savings for all of the tag arrays after adding bit bypass. The maximum
failure rate was targeted at 10−4 to correspond with the maximum effectiveness of DCR and
LD.

The total area overhead of this scheme is summarized in Table 6.4. To achieve the target
resiliency, only 10 total bits need to be repaired in the L1 instruction cache, but 134 total flip-
flops are required to store the replacement set row and column address for each redundant bit.
While the overhead compared to the macro is somewhat large (16%), because the tag arrays
contribute to a small proportion of cache area (and an even smaller proportion of overall chip
area), the area overhead of this technique is only around 1%. This calculation assumes 100%
standard cell utilization, so the area overhead can be multiplied by the appropriate factor to
estimate the final implementation overhead. Due to ungrouping during optimization, the L1

CHAPTER 6. RESILIENT PROCESSOR DESIGN 102

row addr row addr...

num row repair sets

6T SRAM==

...

repair bit 0

...

repair bit 1

repaired data out

latched
address

repair col 0

repair col 1

...

...

...

...

vv

==address

din

entry address

repair col 0

repair col 1

din

new repair bit 0

new repair bit 1

col addr
col addr

col addr
col addr

Figure 6.8: Extra combinational and sequential logic required to implement bit bypass.

Table 6.3: Effectiveness of bit bypass at increasing the acceptable failure rate and reducing
the minimum operating voltage.

Cache Technique Max. pbit Vmin Energy Reduction

L1 Instruction Tags
Nominal 1.2× 10−7 700mV
Bit bypass (5 sets) 1.3× 10−4 540mV 38%

L1 Data Tags
Nominal 6.3× 10−8 710mV
Bit bypass (7 sets) 1.3× 10−4 540mV 52%

L2 Tags
Nominal 8.5× 10−9 755mV
Bit bypass (22 sets) 9.8× 10−5 545mV 48%

data cache tag overhead could not be calculated, but will be very similar to the L1 instruction
cache. If the L1 cache used 6T cells, the area overhead would increase to around 2%.

Bit bypass adds delay to various timing paths. For write operations, the address setup
time is increased, because a comparison operation needs to be completed in order to deter-
mine which data input bits will be stored in the correction entries. For read operations, the
clock-to-Q is slightly increased by the levels of multiplexing required to substitute redundant
bits for failing bits. Table 6.5 compares the critical path of bit bypass to a stand-alone SRAM
macro for both read and write operations. Bit bypass did not appear on any of the critical
paths of the final design and therefore has no timing overhead for this particular system. If
the data address setup time is long, the comparison can be pipelined by using a write buffer
to always write in the following cycle at the cost of increased overhead.

CHAPTER 6. RESILIENT PROCESSOR DESIGN 103

Table 6.4: Area overhead for bit bypass after synthesis.

Macro SRAM area
Extra
sequential area

Extra com-
binational
area

BB overhead Cache area Cache over-
head

L1 Inst. Cache
Tags

6933 µm2 470 µm2(134
flops)

672 µm2 16% 89,537 µm2 1.3%

L2 Tags (per
bank)

33,103 µm2 1,205 µm2(649
flops)

2,129 µm2 10% 544,378 µm2 0.6%

Table 6.5: Timing overhead for bit bypass during read and write operations after synthesis,
for 70 FO4 processor.

Operation Nominal path (FO4) BB path (FO4) Overhead (FO4)

Write address setup 24 42 18

Read clock-to-Q 26 34 8

6.4.2 DCR Implementation

Section 5.2.1 explains the general concept of dynamic column redundancy (DCR) and com-
pares it to other proposed resiliency schemes, while this section explains a specific imple-
mentation in the L1 and L2 cache of the SWERVE processor.

DCR uses one extra redundant column to avoid up to one failing bit per set by steering
around the failing bit. The DCR encoder creates an n+1 bit word from an n bit input, with a
redundant entry next to the failing column, and the decoder converts the n+1 bit word back
to n bits without the failing column, as shown in Figure 6.9. For every row that is accessed, a
different redundancy address (RA) changes the thermometer code to avoid different columns
in different rows.

Figure 6.10 shows the Chisel code used to implement this circuitry. Much of the com-
plexity required to implement this scheme comes from programming the redundancy address
into the appropriate tag sets based on failure locations identified by BIST, rather than the
simple encoder and decoder added to the datapath.

The RA is stored inside the tag array, is shared between all lines in a set, and is read
either prior to data array accesses (in the case of writes) or in parallel with data array
accesses (in the case of reads), as shown in Figure 6.11. Most of the overhead of the DCR
scheme is caused by storing and reading this redundancy address.

Table 6.6 summarizes the area overhead of the DCR scheme in terms of increased tag
array area to store the redundancy address. The encoder and decoder are small, ≈ 300µm2,
and considered negligible in comparison to the data array area of over 150, 000µm2.

DCR has a small timing overhead. For write operations, the data needs to be encoded
around the failing column, and for read operations, the data needs to be decoded around
the failing column. This adds around 4 FO4 of delay through the single stage of 2-to-1
multiplexers.

CHAPTER 6. RESILIENT PROCESSOR DESIGN 104

Encoding

Decoding

...

D[63] D[62] D[62] ... D[0]

{0,D[63:0]}
{D[63:0],0}

D[63] 0D[62] D[61]0 D[63] D[62] D[0]

110...0 1 0 1 0 1 0 1 0

Avoid column 62:
Thermometer code

bad

...1 0 1 0 1 0_10...0

Same thermometer
code, without MSB
(1 less mux)

Example: 64 bit word (D[63:0]), avoid bit at index 62

D[63] D[62] ... D[0]
Figure 6.9: Encoding and decoding uses 2:1 multiplexers and a thermometer code to avoid
one column.

Table 6.6: Area overhead for DCR in the data and tag arrays.

Cache
Nominal width
(data+ECC)

Nominal width
ways*(tags+ECC)

DCR overhead
(data+ECC)

DCR overhead
(tags)

Cache
overhead

L1 Inst.
Cache

128+9=137 2*(19+7)=52 1 (0.7%) 8+5=13 (25%) 2.9%

L1 Data
Cache

64+8=72 4*(21+6)=108 1 (1.4%) 8+5=13 (12%) 2.2%

L2 Cache 128+9=137 8*(21+6)=216 1 (0.7%) 8+5=13 (6%) 1.1%

Table 6.7 summarizes the effectiveness of DCR at lowering Vmin. Section 5.2.1 shows that
having a redundancy address per way instead of per set would correct more bits, and lower
the minimum operating voltage. However, for this implementation, it was determined that
the large increase in tag array size due to storing dramatically more redundancy addresses
wasn’t worth the additional voltage reduction.

6.4.3 Line Disable Implementation

Section 5.2.4 concluded that multi-bit failures limit the minimum operating voltage. While
BB can repair multi-bit failures, DCR can only repair single bit failures. However, because
caches are usually set associative, disabling a single way in a set can prevent accesses to lines
with multi-bit failures without harming functionality. The minimum operating voltage is set

CHAPTER 6. RESILIENT PROCESSOR DESIGN 105

object RedundancyEncode

{

def apply(narrow_input: Bits, avoid_index: UInt): Bits = {

val therm_code = SInt(-1,narrow_input.getWidth+1) << avoid_index

val right_choice = Cat(UInt(0,width=1),narrow_input)

val left_choice = right_choice << 1

val muxes = Vec.tabulate(narrow_input.getWidth+1){ i =>

Mux(therm_code(i),left_choice(i),right_choice(i)) }

muxes.toBits

}

}

object RedundancyDecode

{

def apply(wide_input: Bits, avoid_index: UInt): Bits = {

val therm_code = SInt(-1,wide_input.getWidth) << avoid_index

val muxes = Vec.tabulate(wide_input.getWidth-1){ i =>

Mux(therm_code(i),wide_input(i+1),wide_input(i)) }

muxes.toBits

}

}

Figure 6.10: Chisel code implementing the encoding and decoding procedure to avoid a failing
column.

Table 6.7: Effectiveness of DCR at increasing the acceptable failure rate and reducing the
minimum operating voltage.

Cache Technique Max. pbit Vmin
Energy
Reduction

L1 Inst. Cache Data
Nominal 7.1× 10−9 760mV
DCR 5.1× 10−6 610mV 36%

L1 Data Cache Data
Nominal 3.4× 10−9 775mV
DCR 2.0× 10−6 630mV 34%

L2 Data
Nominal 1.1× 10−10 850mV
DCR 2.4× 10−7 680mV 36%

CHAPTER 6. RESILIENT PROCESSOR DESIGN 106

Tags

Data

D
C

R
 D

ec
.

==?

ways
x tag bits

DCR address

129 128

7

way 0

Figure 6.11: The redundancy address is accessed in parallel with the data array to identify
the failing column corresponding to the accessed row.

at a target where only a few lines are disabled and the cache still has 99% capacity, which
removes the need for analysis of the cost of increased misses due to decreased capacity.

Disable bits are stored with each tag, and are always read and written with the rest of
the tag. When reseting the redundancy information, all of the tags and valid bits are cleared,
and all of the disable bits are set to zero, indicating that all ways are enabled. After BIST
is complete, the lines that need to be disabled have the appropriate disable bit set high.
When disabling the way, the tag value no longer matters, so tags do not need to be written
separately from the disable bit.

The only time disable bits need to be checked is during refills, as the processor is not
allowed to allocate data into a disabled way. A pseudo-random algorithm shown in Figure 6.12
selects the replacement way from among the enabled ways. During tag reads, the disable
bit is not necessary, because the valid bit cannot be high when the line is disabled, so
tag comparison will never match a disabled way. In future implementations with online
programming, the line needs to be released to write back dirty data, which would also
prevent the valid bit and disable bit from both being high.

By disabling lines, the minimum operating voltage can be decreased further. From Ta-
ble 6.7, DCR alone has limited effectiveness—only tolerating a failure rate of 2×10−6. At this
voltage and failure rate, multi-bit failures are limiting the voltage—99.97% of words have 0
errors, and 0.02% of words are repaired by DCR. If lines with multi-bit failures are disabled,
the maximum failure rate can be increased by 50×, as shown in Table 6.8. At a failure rate
of 10−4, 1.3% of 128-bit words (or 5% of 64-byte lines, or 27% of sets) are repaired with

CHAPTER 6. RESILIENT PROCESSOR DESIGN 107

Tags

LFSR

...
way0_enabled wayN_enabled

replacement way

Priority
encoder

Random:
wayX
wayY

wayY

wayY_enabled

wayX

wayX_enabled 1

1

0

0

Figure 6.12: Pseudo-random algorithm to choose replacement way among remaining enabled
ways.

Table 6.8: Effectiveness of DCR+LD at increasing the acceptable failure rate and reducing
the minimum operating voltage.

Cache Technique Max. pbit Vmin
Energy
Reduction

L1 Inst. Cache Data
Nominal 7.1× 10−9 760mV
DCR+LD (proposed) 1.3× 10−4 540mV 50%

L1 Data Cache Data
Nominal 3.4× 10−9 775mV
DCR+LD (proposed) 1.3× 10−4 540mV 51%

L2 Data
Nominal 1.1× 10−10 850mV
DCR+LD (proposed) 9.8× 10−5 545mV 59%

DCR, and only 1% of lines are disabled. By allowing greater than 1% of lines to be disabled,
the minimum operating voltage can be further reduced, as shown in Figure 5.7.

The area overhead is very small (one bit per way in the tag array), and the only timing
overhead comes from increased complexity in the way-replacement algorithm of Figure 6.12.

6.4.4 Redundancy Programming Algorithm

The previously described techniques—BB, DCR, and LD—all rely on failure locations deter-
mined from BIST being appropriately programmed into redundancy entries before the pro-
cessor starts. Figure 6.13 describes the redundancy programming algorithm. The algorithm

CHAPTER 6. RESILIENT PROCESSOR DESIGN 108

Read .bist
control file

Program
settings
registers

BIST
waiting for

host

Start
BIST

Foreach
macro with

a fault

Fault
detected

BIST
finishedContinue BIST

Macro protected
by BB

Macro protected
by DCR and LD

Add BB
set

First fault in
set?

Yes
No

*If error previously
 detected, do nothing

Add DCR
entry

Disable
line

All macros
parsed

Program
BB sets

Program
DCR

entries

Program
LD entries

Resiliency
programming

finished

Figure 6.13: BIST failure locations are used to program dynamic redundancy.

is implemented in C and runs on the host machine. In future versions of this architecture, a
small co-processor can run this algorithm from on-chip to improve testing speed and remove
the need for an off-chip host.

The programming algorithm must be able to read existing redundancy data because de-
cisions depend on previously detected errors. For example, when programming BB, a second
error in the same word needs to be added to the existing repair set. When programming
DCR, the line needs to be disabled if a second error occurs in the same line, and the first
error could have come from a previous March step or an entirely different word address that
happens to be in the same line. Because March tests are destructive, and the redundancy
information itself is stored in SRAMs, redundancy information must be stored elsewhere dur-
ing BIST and programming. Data structures in C hold all of the redundancy information.
Checking previous errors only requires accessing local data structures. Therefore the entire
BIST and programming algorithm is completed before programming all of the redundancy
bits at once to the chip. Because the tag arrays are used to store DCR addresses and line
disable bits, BB must be programmed first to ensure tag array functionality.

CHAPTER 6. RESILIENT PROCESSOR DESIGN 109

6.4.5 Storing Redundancy State

The programmed redundancy information stored for both DCR and BB exists in volatile
memory (either SRAM or flip-flops). After the device is powered down, the information
is lost. There are two main ways to ensure that the information persists between power
losses—either store the bits in non-volatile memory, or reprogram on every power-up.

Reprogramming on every power-up adds time to the boot process. By testing every array
in parallel, the testing time can be reduced to the time to run a March test on the deepest
SRAM macro (based on the number of address bits). Even a large cache (4096 entries) and
sophisticated test (March AB requires 22 · n accesses) would only require approximately
90,000 cycles at 1GHz, or 90µs. Additionally, re-testing can decrease margin against errors
due to aging.

6.5 In-situ Error Correction and Detection

SWERVE enables further voltage scaling with minimal overhead by using dynamic redun-
dancy (DCR and BB) to bypass cells with hard faults. Yet, intermittent SRAM errors, un-
detected by the BIST and therefore unprotected by dynamic redundancy, can cause system
failure during operation.

To investigate the impact of intermittent errors, SECDED is added to every SRAM
macro. This design uses a common SECDED code that can correct a single bit and detect
double-bit failures with a reasonable area and timing overhead [86]. The main challenge of
adding ECC is preventing the long-latency encoding and decoding operations from adding
to the critical path of the design and reducing the maximum operating frequency. In general,
this problem is solved by pipelining the decoding operation into the following cycle, while
ensuring consumers of the data can occasionally handle longer latency accesses. Both ECC
correction and dynamic redundancy can be disabled to allow independent evaluation of either
technique. Implementation details of ECC differ between the tag and data arrays, and differ
for the L1 instruction cache, the L1 data cache, and the L2 cache.

6.5.1 L1 Instruction Cache ECC

The pipeline diagram of the resiliency additions in the L1 instruction cache is shown in
Figure 6.14. A SECDED code is used on both the tag and data arrays in the instruction
cache. For the tag arrays, a separate code is computed for the DCR redundancy address and
for each tag to avoid requiring a read-modify-write operating when updating a single tag.
For the data arrays, a code is computed on the 128-bit access width.

Errors in either the tag or data array will result in an incorrect way comparison (either
missing when there should be a hit, or hitting when there should be a miss). For any error, a
refill is triggered. The correction capability of the SECDED code is not used, because there is
no dirty data and therefore no need for in-situ correction latency to be on the critical path. If
an error is persistent, refills will happen to random ways until the error is avoided. An error

CHAPTER 6. RESILIENT PROCESSOR DESIGN 110

Tag SRAM

Data SRAM

hit way
sel

Valid?

==?

D
C

R
 E

nc
.

D
C

R
 D

ec
.

Bi
t b

yp
as

s

Redundancy overhead

RA

Disabled?

EC
C

 E
nc

EC
C

 E
nc

EC
C

EC
CECC overhead (uncorrected)

ECC

ECC
EC

C

L1 Instruction Cache

W
ay

 m
ux

To pipeline

Error log

Error log

Error log

Figure 6.14: Implementation of DCR, BB, LD, and SECDED in the L1 instruction cache.

in every way will lock the design until the dynamic redundancy is reprogrammed to avoid
the error. Future designs can forward directly from the L2 to the pipeline to avoid writing
to a bad L1 word. However, a full SECDED code is still used for error logging purposes. If
only parity was used, there would be no way to identify the error location.

Errors in the redundancy address of the tag array use the correction capability of the
SECDED code, because correcting the RA doesn’t appear on the critical path.

Writes only occur during refills. Before the data is written into the data arrays, it needs to
be shifted based on the redundancy address in the tag array. During the memory request, the
tags are read to find the disable bits and shift address for use during a refill. The redundancy
shift is applied after ECC has been computed.

6.5.2 L1 Data Cache ECC

Figure 6.15 shows how resiliency is added to the L1 data cache. ECC encoding does not need
to be pipelined, but ECC decoding is a long-latency operation and needs to be pipelined
to prevent adding to the critical path. Because errors are very rare occurrences, correction

CHAPTER 6. RESILIENT PROCESSOR DESIGN 111

is performed by recycling the operation through the same datapath by multiplexing in the
corrected data at the output of the SRAM, to avoid adding one cycle of latency to every
access. When an error occurs, the pipeline stalls, and the corrected data will be returned
two cycles later.

ECC is performed on every tag independently. For the data array, ECC is performed
after way selection to prevent requiring registers to store information from every way. In the
case where there is an ECC error on the tags, way selection could be incorrect and hide an
error in the correctly selected way. Therefore, tags are also recycled during data errors, and
two recycle operations will be needed when errors exist in both the tag and data at the same
time—the first recycle to repair the tags, and the second recycle to repair the data. The
redundancy address is corrected immediately because it is not on the critical path. Extra
registers are needed to ensure that back-to-back recycled instructions retire in their original
order.

For soft errors, the corrected data can be written back to the cache when a failure is
detected, but for hard faults, the failing bit will persist, so the corrected data needs to
be stored in registers during the replay operation. Most of the implementation complexity
is due to allowing for variable latency accesses to the data. There are many consumers of
the SRAMs in the non-blocking data cache—the pipeline, MSHR, the probe unit, and the
writeback unit. For the pipeline access, a nack is sent back to the pipeline to prevent incorrect
forwarding operations and cause the pipeline to reissue the memory request. However, the
reissued request is not guaranteed to be the next request through the cache pipeline, so
additional registers flush the corrected information if an error occurs before the reissue.

6.5.3 L2 Cache ECC

Figure 6.16 shows the addition of ECC to the L2 cache tags and data. Because latency is less
critical in the L2 cache, tag and data access is performed sequentially to avoid unnecessary
reads of unselected ways. For tags, SRAM access is provided an entire cycle, and ECC
decoding and way comparison occurs in a second cycle. For data, SRAM access is given
an entire cycle, and DCR decoding and ECC decoding occurs in the next cycle. Serializing
ECC avoids the extra registers required to recycle accesses as used in the latency-sensitive
L1 caches, but the response always takes two cycles now instead of a single cycle.

6.5.4 Error Logging

Figures 6.17 and 6.18 describe the error logging architecture for the L1 and L2 cache re-
spectively. When an error is detected, the syndrome (storing the column of the error), row
address, way, and correct bit value is inserted into a 32-bit, 2-entry queue in parallel for
every ECC decoding block in the design. An arbiter exposes a single error entry at a time to
a mapped control status register (CSR) address. The host reads the error information from
the CSR address, then sets the valid bit low to empty the entry from the buffer and expose
the next error.

CHAPTER 6. RESILIENT PROCESSOR DESIGN 112

Tag SRAM

Data SRAM

hit way
sel

Valid?

==?

D
C

R
 E

nc
.

D
C

R
 D

ec
.

Bi
t b

yp
as

s

Redundancy overhead

RA

Disabled?

EC
C

 E
nc

EC
C

 E
nc

R
ec

yc
le

R
ec

yc
le

EC
C

D

ec
EC

C

D
ec

ECC overhead (uncorrected)

ECC

ECC
EC

C

L1 Data Cache

Figure 6.15: Implementation of DCR, BB, LD, and SECDED in the L1 data cache.

No feedback path from the error buffer to the processor exists; when the buffer is full,
further errors will not be logged. Larger queues would allow more error history at the expense
of area overhead. Future designs could use an on-chip co-processor and scratchpad memory
to increase the maximum error logging rate.

Online programming

Online error programming refers to reprogramming dynamic redundancy during operation
to avoid bit failures detected by ECC-based error logging. Due to the project deadline,
online error programming was not implemented in the SWERVE chip. However, the following
section describes a future possible implementation.

The first time a fault occurs at a specific bit, the fault is assumed to be a soft error, so
the error location is logged and ECC is used to correct the error and continue operation.
When multiple errors are detected as the same address, either BB, DCR, or LD need to be

CHAPTER 6. RESILIENT PROCESSOR DESIGN 113

Tag SRAM

Data SRAM

Valid?

==?

D
C

R
 E

nc
.

D
C

R
 D

ec
.

Bi
t b

yp
as

s

Red: Redundancy overhead

RA

Disabled?

EC
C

 E
nc

EC
C

 E
nc

EC
C

 D
ec

EC
C

 D
ec

Blue: ECC overhead

ECC

ECC

L2 Tags

EC
C

way
sel

RA

L2 Data

To TSHR...
From TSHR...

From TSHR... To TSHR...

data

Figure 6.16: Implementation of DCR, BB, LD, and SECDED in the L2 cache.

CHAPTER 6. RESILIENT PROCESSOR DESIGN 114

RA Tag[1:0]
Data

(after way
mux)

Arbiter (11 inputs)

RA Tag[3:0]

Data
(after
mux,

upper 64
bits)

Data
(after
mux,

lower 64
bits)

ECC Log Entry (32 bits)

Uncore SCR

HTIF

ECC Decoding

SRAMS

Queues
(stores syndrome
+address+way)

ECC ECC ECC ECC ECC ECC ECC (If error,
enqueue
is valid)

L1 Instruction Cache L1 Data Cache

Pipeline

Address: log[20:18],log[3:0]

0,1 1:0,0 1:0,2 0,4 3:0,3 way,1,5 way,0,5

Figure 6.17: L1 cache error logging.

reprogrammed to avoid further accesses to that bitcell. The processor is stalled by holding
the next instruction at instruction fetch stage until programming is finished.

For bit bypass, the correct value of the bit stored in the error log can be inserted into
the reprogrammed redundancy set. However, online programming of DCR and line disable
requires flushing the entire set and line respectively, because the physical location of the
logic bits will change, and the data in the cache could be dirty. Once the entry is flushed
through the memory system, DCR and LD can be safely programmed as that entry will be
empty.

6.6 Simulation Results

The chip was taped out in April 2015, and the following section evaluates the design through
simulation. Future measurements should confirm the simulation results.

Table 6.9 reports the critical path for the three major clock domains in the chip both in
terms of frequency at the nominal operating corner and the technology-independent fanout-
of-four (FO4) parameter. Design effort was focused on the core critical path, and there are
further frequency improvements available in the L2 cache. The critical path in the core is
caused by ECC logging, and the dynamic redundancy techniques are not on the critical path.

CHAPTER 6. RESILIENT PROCESSOR DESIGN 115

Arbiter (12 inputs)Arbiter (12 inputs)Arbiter (12 inputs)

RA Tag[7:0] Data

Arbiter (12 inputs)

ECC Log Entry (32 bits)

Uncore SCR

HTIF

ECC Decoding

SRAMS

Queues
(stores syndrome
+address+way)

ECC ECC ECC

L2 Cache

Pipeline

(Address:
log[20:18],log[3:0]
x=bank)

7:0,x

Arbiter

4 banks

...

0,4+x 0,8+x

Figure 6.18: L2 cache error logging.

Table 6.9: Critical path in terms of time and FO4 delay in each clock domain.

Domain FO4
Core ≈ 70
L2 Cache ≈ 110
Uncore ≈ 70

CHAPTER 6. RESILIENT PROCESSOR DESIGN 116

Table 6.10: Area of each voltage domain and contribution of SRAM arrays to overall area.

Domain Dimensions Area SRAM Area SRAM %

Core 775µm×650µm 525,000µm2 280,000µm2 53%

L2 Cache 1700µm×1550µm 2,635,000µm2 Data: 1,985,000µm2

Tags: 400,000µm2 91%

Uncore 650µm×175µm 113,750µm2 49,000µm 43%

Table 6.11: Cell statistics

Combination Cells Sequential Cells Total
324,341 58,423 382,764

Table 6.10 summarizes the area of each voltage domain in the design, as well as the
contribution of SRAM to overall area. The L1 cache consumes half of the core area, while
SRAMs in the L2 cache consume almost all of the area. Resiliency overhead calculated in
previous sections report overhead based on only SRAM area, so overall area increase will be
even smaller. Table 6.11 reports the number of standard cells used in the design.

Table 6.12 summarizes the QOR of the clock tree. The L2 cache covers a large area with
many large macros restricting clock buffer placement, which explains the increased skew and
insertion delay in this domain.

6.7 Summary

By adding DCR, BB, and LD, the SWERVE chip can reduce energy by around 50% through
improved supply voltage scaling with less than 2% area overhead and minimal timing over-
head. In-situ SECDED protection for every SRAM in the design enables analysis of intermit-
tent and soft errors during runtime. BIST of each SRAM can report the slow of bitcell failure
probability versus voltage, will increase the accuracy of resiliency scheme assumptions, and
validate the architecture-level error model.

Table 6.12: Clock tree metrics for TT 0.9V 25C corner.

Clock domain Sinks Skew Insertion delay
Core 19,522 129ps 338ps
Core BIST 3,507 66ps 297ps
L2 Cache 21,027 450ps 1220ps
L2 BIST 5,985 265ps 811ps
Uncore 5,831 70ps 215ps

117

Chapter 7

Conclusion

This work takes a holistic approach to improving energy efficiency through reducing the
minimum operating voltage of SRAM with fault analysis and resiliency design techniques at
both the circuit and architecture level. Assumptions are validated and proposed techniques
are evaluated with implementations in a variety of 28nm testchips.

7.1 Summary of Contributions

The main contributions of this work are:

• A holistic analysis methodology and vocabulary that enables evaluation and compari-
son of resilient design techniques at different levels of abstraction (Chapter 2).

• A circuit-level error model that translates operating conditions and transistor variation
to bitcell failure probability and failures-in-time (FIT), with short runtime and insight
into failure mechanisms (Section 2.2 and 2.4).

• An architecture-level error model that translates bitcell failure probability to cache
failure probability without relying on fixed circuit-level assumptions (Section 2.3 and
2.5).

• A comprehensive analysis of different SRAM assist techniques using dynamic failure
metrics (Section 3.1).

• In-situ measurement of threshold shift and RTN to analyze of the joint effect of random
variations and RTN on bitcell writeability failure (Section 3.2).

• A wide-operating-range custom SRAM macro that operates down to 0.45V (Sec-
tion 4.3).

• An extensive study of different architecture-level resiliency techniques, and a set of
design guidelines that offer insight into scheme effectiveness (Chapter 5).

CHAPTER 7. CONCLUSION 118

• A processor with novel architecture-level resiliency features (DCR+LD and BB) to
lower energy by around 50% with around 2% area overhead, and in-situ ECC that can
quantify the effect of intermittent errors during program runtime (Chapter 6).

7.2 Future Work

While this work strove to develop a methodology, not stand-alone solutions, new research
will need to continue as process nodes continue to advance to 14nm, 7nm, and further.

• While this work focuses on industry-standard 6T and 8T bitcells, new bitcells that
use 7, 8, 9, or 10 transistors are frequently proposed in conferences to improve energy,
delay, or Vmin. While in general the area overhead of the extra transistors is not worth
the benefit, a holistic approach to design could uncover a use-case for these bitcells.

• The circuit-level hard fault model relies on threshold shift as the only source of vari-
ability, and assumes transistor models are accurate under extreme threshold variation.
More accurate design-time analysis would model each physical source of variability,
and ensure transistors models were well calibrated for cells with large variation. As the
number of variables increase, importance sampling may no longer be the best solution
to speed up Monte Carlo analysis.

• The architecture-level soft error model should be extended to include a complete sys-
tem, not just a cache. While cache-level analysis is general and useful, opportunities
for masking soft errors at the architecture level will have a large impact on FIT.

• More realistic models of multi-bit soft error strikes are needed. Multi-bit soft error
strikes have an enormous impact on system FIT, but all current publications don’t
differentiate between multi-bit strikes along the column (acceptable, because strikes
occur to different words) and the row (bad, because a multi-bit fault could be caused).

• If more assumptions are made about the overall design architecture and activity, ad-
ditional optimizations are possible. For example, the L1 cache could be made write-
through as a means of error correction, but the effectiveness of this idea would be
heavily dependent on workload assumptions. As long as workloads are well under-
stood, and a good power and energy measurement methodology exists at design time,
an entire new field of resiliency or energy-saving techniques can be explored.

• Most of this work has focused on reducing Vmin to achieve the minimum operating
point, however a different approach to saving energy, colloquially referred to as “race-to-
halt” operates systems at higher voltages and finishes the workload quickly so that they
entire system can go to sleep. The retention voltage of SRAM, a variant of read stability,
can be analyzed with the proposed circuit-level hard fault model. A methodology that
determines that cost of mode switching, and the proportion of time spent in sleep and

CHAPTER 7. CONCLUSION 119

high performance modes, is necessary to compare this to simply operating at the most
energy efficient point.

Variation-induced SRAM failure will continue to be a critical problem limiting voltage
scaling, and developing holistic solutions that leverage techniques at every level of abstraction
is vital to improving energy efficiency in future digital systems.

120

Bibliography

[1] B. Zimmer, Y. Lee, A. Puggelli, J. Kwak, R. Jevtic, B. Keller, S. Bailey, M. Blagojevic,
P.-F. Chiu, H.-P. Le, P.-H. Chen, N. Sutardja, R. Avizienis, A. Waterman, B. Richards,
P. Flatresse, E. Alon, K. Asanovic, and B. Nikolic, “A RISC-V Vector Processor with
Tightly-Integrated Switched-Capacitor DC-DC Converters in 28nm FDSOI,” in VLSI
Circuits (VLSIC), 2015 Symposium on, 2015.

[2] O. Hirabayashi, A. Kawasumi, A. Suzuki, Y. Takeyama, K. Kushida, T. Sasaki,
A. Katayama, G. Fukano, Y. Fujimura, T. Nakazato, et al., “A process-variation-tolerant
dual-power-supply sram with 0.179µm 2 cell in 40nm cmos using level-programmable
wordline driver,” in Solid-State Circuits Conference-Digest of Technical Papers, 2009.
ISSCC 2009. IEEE International, pp. 458–459, IEEE, 2009.

[3] M. Yamaoka, K. Osada, and T. Kawahara, “A cell-activation-time controlled SRAM for
low-voltage operation in DVFS SoCs using dynamic stability analysis,” in Solid-State
Circuits Conference, 2008. ESSCIRC 2008. 34th European, pp. 286–289, Sept 2008.

[4] S. O. Toh, Z. Guo, T.-J. Liu, and B. Nikolic, “Characterization of Dynamic SRAM
Stability in 45 nm CMOS,” IEEE J. Solid-State Circuits, vol. 46, pp. 2702–2712, Nov.
2011.

[5] K. Kuhn, M. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotlyar, S. Ma, A. Maheshwari,
and S. Mudanai, “Process Technology Variation,” Electron Devices, IEEE Transactions
on, vol. 58, pp. 2197–2208, Aug 2011.

[6] D. Reid, C. Millar, G. Roy, S. Roy, and A. Asenov, “Analysis of Threshold Voltage Dis-
tribution Due to Random Dopants: A 100000-Sample 3-D Simulation Study,” Electron
Devices, IEEE Transactions on, vol. 56, pp. 2255–2263, Jan. 2009.

[7] E. Karl, Y. Wang, Y.-G. Ng, Z. Guo, F. Hamzaoglu, U. Bhattacharya, K. Zhang, K. Mis-
try, and M. Bohr, “A 4.6 GHz 162Mb SRAM design in 22nm tri-gate CMOS technology
with integrated active V MIN-enhancing assist circuitry,” in Solid-State Circuits Con-
ference Digest of Technical Papers (ISSCC), 2012 IEEE International, pp. 230–232,
IEEE, 2012.

BIBLIOGRAPHY 121

[8] M. Sinangil, H. Mair, and A. Chandrakasan, “A 28nm high-density 6T SRAM with
optimized peripheral-assist circuits for operation down to 0.6V,” in Int. Solid-State
Circuits Conf. Dig. Tech. Papers, pp. 260–262, 2011.

[9] V. Ramadurai, H. Pilo, J. Andersen, G. Braceras, J. Gabric, D. Geise, S. Lamphier, and
Y. Tan, “An 8 Mb SRAM in 45 nm SOI Featuring a Two-Stage Sensing Scheme and
Dynamic Power Management,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 155–
162, Jan 2009.

[10] S. Rusu, H. Muljono, D. Ayers, S. Tam, W. Chen, A. Martin, S. Li, S. Vora, R. Varada,
and E. Wang, “Ivytown: A 22nm 15-core enterprise Xeon processor family,” in Solid-
State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE Interna-
tional, pp. 102–103, Feb 2014.

[11] D. A. Patterson and J. L. Hennessy, “Computer Organization and Design,” Morgan
Kaufmann, pp. 474–476, 2007.

[12] S.-L. Lu, A. Alameldeen, K. Bowman, Z. Chishti, C. Wilkerson, and W. Wu,
“Architectural-level error-tolerant techniques for low supply voltage cache operation,”
in IC Design Technology (ICICDT), 2011 IEEE International Conference on, pp. 1–5,
May 2011.

[13] R. W. Mann, J. Wang, S. Nalam, S. Khanna, G. Braceras, H. Pilo, and B. H. Calhoun,
“Impact of circuit assist methods on margin and performance in 6T SRAM,” Solid State
Electronics, vol. 54, pp. 1398–1407, Nov. 2010.

[14] L. Dolecek, M. Qazi, D. Shah, and A. Chandrakasan, “Breaking the simulation barrier:
SRAM evaluation through norm minimization,” in IEEE/ACM Int. Conf. on Computer-
Aided Design, pp. 322–329, 2008.

[15] M. Qazi, M. Tikekar, L. Dolecek, D. Shah, and A. Chandrakasan, “Loop flattening &
spherical sampling: highly efficient model reduction techniques for SRAM yield analy-
sis,” in Design, Automation & Test in Europe, pp. 801–806, Mar. 2010.

[16] G. Chen, D. Sylvester, D. Blaauw, and T. Mudge, “Yield-Driven Near-Threshold SRAM
Design,” IEEE Trans. VLSI Syst., vol. 18, pp. 1590–1598, Nov. 2010.

[17] X. Deng, W. K. Loh, B. Pious, T. W. Houston, L. Liu, B. Khan, and D. Corum,
“Characterization of bit transistors in a functional SRAM,” in VLSIC, pp. 44–45, 2008.

[18] P. Roche, J.-L. Autran, G. Gasiot, and D. Munteanu, “Technology downscaling worsen-
ing radiation effects in bulk: SOI to the rescue,” in IEEE International Electron Devices
Meeting, pp. 31.1.1–31.1.4, Dec 2013.

BIBLIOGRAPHY 122

[19] H. Miki, N. Tega, M. Yamaoka, D. Frank, A. Bansal, M. Kobayashi, K. Cheng,
C. D’Emic, Z. Ren, S. Wu, J. Yau, Y. Zhu, M. Guillorn, D. Park, W. Haensch, E. Leoban-
dung, and K. Torii, “Statistical measurement of random telegraph noise and its impact
in scaled-down high-κ/metal-gate MOSFETs,” in IEEE International Electron Devices
Meeting, pp. 19.1.1–19.1.4, 2012.

[20] L. Chang, Y. Nakamura, R. Montoye, J. Sawada, A. Martin, K. Kinoshita, F. Gebara,
K. Agarwal, D. Acharyya, W. Haensch, et al., “A 5.3 GHz 8T-SRAM with operation
down to 0.41 V in 65nm CMOS,” in VLSI Circuits, 2007 IEEE Symposium on, pp. 252–
253, IEEE, 2007.

[21] K.-H. Koo, L. Wei, J. Keane, U. Bhattacharya, E. A. Karl, and K. Zhang, “A 0.094um2

High Density and Aging Resilient 8T SRAM with 14nm FinFET Technology Featuring
560mV VMIN with Read and Write Assist,” in VLSI Circuits (VLSIC), 2015 Sympo-
sium on, 2015.

[22] H. Fujiwara, L.-W. Wang, Y.-H. Chen, K.-C. Lin, D. Sun, S.-R. Wu, J.-J. Liaw, C.-Y.
Lin, M.-C. Chiang, H.-J. Liao, S.-Y. Wu, and J. Chang, “A 64kb 16nm asynchronous
disturb current free 2-port SRAM with PMOS pass-gates for FinFET technologies,”
in Solid- State Circuits Conference - (ISSCC), 2015 IEEE International, pp. 1–3, Feb
2015.

[23] M. Yabuuchi, K. Nii, Y. Tsukamoto, S. Ohbayashi, Y. Nakase, and H. Shinohara, “A
45nm 0.6V cross-point 8T SRAM with negative biased read/write assist,” IEEE Symp.
VLSI Circuits Dig., 2009.

[24] H. Pilo, I. Arsovski, K. Batson, G. Braceras, J. Gabric, R. Houle, S. Lamphier,
C. Radens, and A. Seferagic, “A 64 Mb SRAM in 32 nm High-k Metal-Gate SOI Tech-
nology With 0.7 V Operation Enabled by Stability, Write-Ability and Read-Ability
Enhancements,” IEEE J. Solid-State Circuits, vol. 47, pp. 97 –106, Jan. 2012.

[25] T. Mahmood, S. Kim, and S. Hong, “Macho: A failure model-oriented adaptive cache
architecture to enable near-threshold voltage scaling,” in Proceedings of the 2013 IEEE
19th International Symposium on High Performance Computer Architecture (HPCA),
pp. 532–541, 2013.

[26] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and S.-L. Lu, “Trading
off cache capacity for reliability to enable low voltage operation,” in Computer Archi-
tecture, 2008. ISCA’08. 35th International Symposium on, pp. 203–214, IEEE, 2008.

[27] J. Abella, J. Carretero, P. Chaparro, X. Vera, and A. González, “Low Vccmin fault-
tolerant cache with highly predictable performance,” in Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 42, pp. 111–121,
2009.

BIBLIOGRAPHY 123

[28] Z. Chishti, A. R. Alameldeen, C. Wilkerson, W. Wu, and S.-L. Lu, “Improving cache
lifetime reliability at ultra-low voltages,” in Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 42, pp. 89–99, 2009.

[29] A. R. Alameldeen, I. Wagner, Z. Chishti, W. Wu, C. Wilkerson, and S.-L. Lu, “Energy-
efficient cache design using variable-strength error-correcting codes,” in Proceedings of
the 38th annual international symposium on Computer architecture, ISCA ’11, pp. 461–
472, 2011.

[30] R. Naseer and J. Draper, “DEC ECC design to improve memory reliability in sub-
100nm technologies,” in Electronics, Circuits and Systems, 2008. ICECS 2008. 15th
IEEE International Conference on, pp. 586–589, IEEE, 2008.

[31] N. S. Kim, S. C. Draper, S.-T. Zhou, S. Katariya, H. R. Ghasemi, and T. Park, “Analyz-
ing the Impact of Joint Optimization of Cell Size, Redundancy, and ECC on Low-Voltage
SRAM Array Total Area,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 20, no. 12, pp. 2333–2337, 2012.

[32] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error problem: An architec-
tural perspective,” in High-Performance Computer Architecture, 2005. HPCA-11. 11th
International Symposium on, pp. 243–247, IEEE, 2005.

[33] B. Zimmer, S. O. Toh, H. Vo, Y. Lee, O. Thomas, K. Asanovic, and B. Nikolic, “SRAM
Assist Techniques for Operation in a Wide Voltage Range in 28-nm CMOS,” Circuits
and Systems II: Express Briefs, IEEE Transactions on, vol. 59, no. 12, pp. 853–857,
2012.

[34] K. Agarwal and S. Nassif, “Characterizing process variation in nanometer CMOS,” in
DAC ’07: Proceedings of the 44th annual Design Automation Conference, ACM Request
Permissions, June 2007.

[35] A. Chavan, E. MacDonald, J. Neff, and E. Bozeman, “Radiation Hardened Flip-Flop
Design for Super and Sub Threshold Voltage Operation,” Aerospace Conference, pp. 1–6,
2011.

[36] P. Hazucha and C. Svensson, “Impact of CMOS technology scaling on the atmospheric
neutron soft error rate,” TNS, vol. 47, no. 6, pp. 2586–2594, 2000.

[37] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The case for lifetime reliability-
aware microprocessors,” in ACM SIGARCH Computer Architecture News, vol. 32,
p. 276, IEEE Computer Society, 2004.

[38] E. Ibe, H. Taniguchi, Y. Yahagi, K.-i. Shimbo, and T. Toba, “Impact of scaling on
neutron-induced soft error in SRAMs from a 250 nm to a 22 nm design rule,” Electron
Devices, IEEE Transactions on, vol. 57, no. 7, pp. 1527–1538, 2010.

BIBLIOGRAPHY 124

[39] S. M. Khan, A. R. Alameldeen, C. Wilkerson, J. Kulkarni, and D. A. Jimenez, “Improv-
ing multi-core performance using mixed-cell cache architecture,” in High Performance
Computer Architecture (HPCA), 2013 IEEE 19th International Symposium on, pp. 119–
130, 2013.

[40] J. P. Kulkarni and K. Roy, “Ultralow-voltage process-variation-tolerant schmitt-trigger-
based SRAM design,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 20, no. 2, pp. 319–332, 2012.

[41] S. Jain, S. Khare, S. Yada, V. Ambili, P. Salihundam, S. Ramani, S. Muthukumar,
M. Srinivasan, A. Kumar, S. Gb, et al., “A 280mV-to-1.2 V wide-operating-range IA-
32 processor in 32nm CMOS,” in Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2012 IEEE International, pp. 66–68, IEEE, 2012.

[42] P. Packan, S. Akbar, M. Armstrong, D. Bergstrom, M. Brazier, H. Deshpande, K. Dev,
G. Ding, T. Ghani, O. Golonzka, et al., “High Performance 32nm Logic Technology
Featuring 2 nd Generation High-k+ Metal Gate Transistors,” in IEEE International
Electron Devices Meeting, pp. 1–4, IEEE, 2009.

[43] W. Zhao and Y. Cao, “New generation of predictive technology model for sub-45 nm
early design exploration,” Electron Devices, IEEE Transactions on, vol. 53, no. 11,
pp. 2816–2823, 2006.

[44] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,
“McPAT: an integrated power, area, and timing modeling framework for multicore
and manycore architectures,” in Microarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/ACM International Symposium on, pp. 469–480, IEEE, 2009.

[45] S. Nalam, V. Chandra, R. Aitken, and B. Calhoun, “Dynamic write limited minimum
operating voltage for nanoscale SRAMs,” in Design, Automation & Test in Europe,
pp. 1–6, 2011.

[46] F. Arnaud, A. Thean, M. Eller, M. Lipinski, Y. Teh, M. Ostermayr, K. Kang, N. Kim,
K. Ohuchi, J.-P. Han, D. Nair, J. Lian, S. Uchimura, S. Kohler, S. Miyaki, P. Fer-
reira, J.-H. Park, M. Hamaguchi, K. Miyashita, R. Augur, Q. Zhang, K. Strahrenberg,
S. ElGhouli, J. Bonnouvrier, F. Matsuoka, R. Lindsay, J. Sudijono, F. Johnson, J. Ku,
M. Sekine, A. Steegen, and R. Sampson, “Competitive and cost effective high-k based
28nm CMOS technology for low power applications,” in IEEE International Electron
Devices Meeting, pp. 1–4, Dec. 2009.

[47] A. Bhavnagarwala, S. Kosonocky, Y. Chan, K. Stawiasz, U. Srinivasan, S. Kowalczyk,
and M. Ziegler, “A Sub-600mV, Fluctuation Tolerant 65nm CMOS SRAM Array with
Dynamic Cell Biasing,” IEEE Symp. VLSI Circuits Dig., pp. 78–79, 2007.

BIBLIOGRAPHY 125

[48] B. Zimmer, O. Thomas, S. O. Toh, T. Vincent, K. Asanovic, and B. Nikolic, “Joint
impact of random variations and RTN on dynamic writeability in 28nm bulk and FDSOI
SRAM,” in 2014 44th European Solid State Device Research Conference (ESSDERC),
pp. 98–101, 2014.

[49] S. O. Toh, Nanoscale SRAM Variability and Optimization. PhD thesis, University of
California, Berkeley, 2011.

[50] N. Planes, O. Weber, V. Barral, S. Haendler, D. Noblet, D. Croain, M. Bocat, P. Sas-
soulas, X. Federspiel, A. Cros, A. Bajolet, E. Richard, B. Dumont, P. Perreau, D. Pe-
tit, D. Golanski, C. Fenouillet-Beranger, N. Guillot, M. Rafik, V. Huard, S. Puget,
X. Montagner, M. A. Jaud, O. Rozeau, O. Saxod, F. Wacquant, F. Monsieur, D. Barge,
L. Pinzelli, M. Mellier, F. Boeuf, F. Arnaud, and M. Haond, “28nm FDSOI technology
platform for high-speed low-voltage digital applications,” in VLSIT, pp. 133–134, 2012.

[51] N. Tega, H. Miki, Z. Ren, C. P. D. Emic, Y. L. Zhu, D. J. Frank, J. Cai, M. A. Guillorn,
D.-G. G. Park, W. E. Haensch, and K. Torii, “Reduction of random telegraph noise
in High- / metal-gate stacks for 22 nm generation FETs,” in Electron Devices Meeting
(IEDM), 2009 IEEE International, pp. 1–4, Jan. 2009.

[52] S. O. Toh, Y. Tsukamoto, Z. G. Guo, L. Jones, T.-J. King Liu, and B. Nikolic, “Impact
of random telegraph signals on Vmin in 45nm SRAM,” in IEEE International Electron
Devices Meeting, pp. 1–4, 2009.

[53] J. Kulkarni, M. Khellah, J. Tschanz, B. Geuskens, R. Jain, S. Kim, and V. De, “Dual-
VCC 8T-bitcell SRAM Array in 22nm tri-gate CMOS for energy-efficient operation
across wide dynamic voltage range,” in VLSI Circuits (VLSIC), 2013 Symposium on,
pp. C126–C127, June 2013.

[54] M.-F. Chang, M.-P. Chen, L.-F. Chen, S.-M. Yang, Y.-J. Kuo, J.-J. Wu, H.-Y. Su, Y.-H.
Chu, W.-C. Wu, T.-Y. Yang, and H. Yamauchi, “A Sub-0.3 V Area-Efficient L-Shaped
7T SRAM With Read Bitline Swing Expansion Schemes Based on Boosted Read-Bitline,
Asymmetric-Vth Read-Port, and Offset Cell VDD Biasing Techniques,” IEEE Journal
of Solid-State Circuits, vol. 48, pp. 2558–2569, Oct 2013.

[55] E. Karl, Z. Guo, J. Conary, J. Miller, Y.-G. Ng, S. Nalam, D. Kim, J. Keane, U. Bhat-
tacharya, and K. Zhang, “A 0.6V 1.5GHz 84Mb SRAM design in 14nm FinFET CMOS
technology,” in Solid- State Circuits Conference - (ISSCC), 2015 IEEE International,
pp. 1–3, Feb 2015.

[56] M. Yabuuchi, Y. Tsukamoto, M. Morimoto, M. Tanaka, and K. Nii, “20nm High-density
single-port and dual-port SRAMs with wordline-voltage-adjustment system for read-
/write assists,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
2014 IEEE International, pp. 234–235, Feb 2014.

BIBLIOGRAPHY 126

[57] Y. H. Chen, G. Chan, S. Y. Chou, H.-Y. Pan, J.-J. Wu, R. Lee, H. Liao, and H. Ya-
mauchi, “A 0.6 V dual-rail compiler SRAM design on 45 nm CMOS technology with
adaptive SRAM power for lower VDD min VLSIs,” IEEE Journal of Solid-State Cir-
cuits, vol. 44, no. 4, pp. 1209–1215, 2009.

[58] O. Thomas, B. Zimmer, S. O. Toh, L. Ciampolini, N. Planes, R. Ranica, P. Flatresse,
and B. Nikolic, “Dynamic single-p-well SRAM bitcell characterization with back-bias
adjustment for optimized wide-voltage-range SRAM operation in 28nm UTBB FD-
SOI,” in IEEE International Electron Devices Meeting, pp. 3.4.1–3.4.4, 2014.

[59] R. Ranica, N. Planes, O. Weber, O. Thomas, S. Haendler, D. Noblet, D. Croain,
C. Gardin, and F. Arnaud, “FDSOI process/design full solutions for ultra low leakage,
high speed and low voltage SRAMs,” in VLSI Technology (VLSIT), 2013 Symposium
on, pp. T210–T211, June 2013.

[60] M.-F. Chang, C.-F. Chen, T.-H. Chang, C.-C. Shuai, Y.-Y. Wang, and H. Yamauchi, “A
28nm 256kb 6T-SRAM with 280mV improvement in VMIN using a dual-split-control
assist scheme,” in Solid- State Circuits Conference - (ISSCC), 2015 IEEE International,
pp. 1–3, Feb 2015.

[61] T. Song, W. Rim, J. Jung, G. Yang, J. Park, S. Park, K.-H. Baek, S. Baek, S.-K. Oh,
J. Jung, S. Kim, G. Kim, J. Kim, Y. Lee, K. S. Kim, S.-P. Sim, J. S. Yoon, and K.-
M. Choi, “A 14nm FinFET 128Mb 6T SRAM with VMIN-enhancement techniques for
low-power applications,” in Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2014 IEEE International, pp. 232–233, Feb 2014.

[62] Y.-H. Chen, W.-M. Chan, W.-C. Wu, H.-J. Liao, K.-H. Pan, J.-J. Liaw, T.-H. Chung,
Q. Li, G. Chang, C.-Y. Lin, M.-C. Chiang, S.-Y. Wu, S. Natarajan, and J. Chang, “A
16nm 128Mb SRAM in high-K metal-gate FinFET technology with write-assist circuitry
for low-VMIN applications,” in Solid-State Circuits Conference Digest of Technical Pa-
pers (ISSCC), 2014 IEEE International, pp. 238–239, Feb 2014.

[63] S. Tanaka, Y. Ishii, M. Yabuuchi, T. Sano, K. Tanaka, Y. Tsukamoto, K. Nii, and
H. Sato, “A 512-kb 1-GHz 28-nm partially write-assisted dual-port SRAM with self-
adjustable negative bias bitline,” in VLSI Circuits Digest of Technical Papers, 2014
Symposium on, pp. 1–2, June 2014.

[64] B. S. Amrutur, M. Horowitz, et al., “A replica technique for wordline and sense control
in low-power SRAM’s,” IEEE Journal of Solid-State Circuits, vol. 33, no. 8, pp. 1208–
1219, 1998.

[65] A. Kawasumi, Y. Takeyama, O. Hirabayashi, K. Kushida, F. Tachibana, Y. Niki,
S. Sasaki, and T. Yabe, “A 47timing-generation scheme utilizing a statistical method for
ultra low voltage SRAMs,” in VLSI Circuits (VLSIC), 2012 Symposium on, pp. 100–
101, June 2012.

BIBLIOGRAPHY 127

[66] Y. Niki, A. Kawasumi, A. Suzuki, Y. Takeyama, O. Hirabayashi, K. Kushida,
F. Tachibana, Y. Fujimura, and T. Yabe, “A Digitized Replica Bitline Delay Tech-
nique for Random-Variation-Tolerant Timing Generation of SRAM Sense Amplifiers,”
IEEE Journal of Solid-State Circuits, vol. 46, pp. 2545–2551, Nov 2011.

[67] I. Arsovski, T. Hebig, J. Goss, P. Grzymkowski, and J. Patch, “Tail-Bit Tracking circuit
with degraded VGS bit-cell mimic array for a 50and 200mV Vmin improvement in
a Ternary Content Addressable Memory,” in Custom Integrated Circuits Conference
(CICC), 2013 IEEE, pp. 1–4, Sept 2013.

[68] J. Chang, M. Huang, J. Shoemaker, J. Benoit, S.-L. Chen, W. Chen, S. Chiu, R. Gane-
san, G. Leong, V. Lukka, S. Rusu, and D. Srivastava, “The 65-nm 16-MB Shared On-Die
L3 Cache for the Dual-Core Intel Xeon Processor 7100 Series,” IEEE Journal of Solid-
State Circuits, vol. 42, pp. 846–852, April 2007.

[69] A. Ansari, S. Feng, S. Gupta, and S. Mahlke, “Archipelago: A polymorphic cache design
for enabling robust near-threshold operation,” in High Performance Computer Architec-
ture (HPCA), 2011 IEEE 17th International Symposium on, pp. 539–550, IEEE, 2011.

[70] T. N. Miller, R. Thomas, J. Dinan, B. Adcock, and R. Teodorescu, “Parichute: Gener-
alized turbocode-based error correction for near-threshold caches,” in Proceedings of the
2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture, pp. 351–
362, IEEE Computer Society, 2010.

[71] M. Zhang, V. M. Stojanovic, and P. Ampadu, “Reliable Ultra-Low-Voltage Cache Design
for Many-Core Systems,” Circuits and Systems II: Express Briefs, IEEE Transactions
on, vol. 59, no. 12, pp. 858–862, 2012.

[72] S. Schechter, G. H. Loh, K. Straus, and D. Burger, “Use ECP, not ECC, for hard
failures in resistive memories,” in ACM SIGARCH Computer Architecture News, vol. 38,
pp. 141–152, ACM, 2010.

[73] M. Huang, M. Mehalel, R. Arvapalli, and S. He, “An Energy Efficient 32-nm 20-MB
Shared On-Die L3 Cache for Intel R© Xeon R© Processor E5 Family,” 2013.

[74] M.-Y. Hsiao, “A class of optimal minimum odd-weight-column SEC-DED codes,” IBM
Journal of Research and Development, vol. 14, no. 4, pp. 395–401, 1970.

[75] B. Arnold, N. Balakrishnan, and H. Nagaraja, Order Statistics from Some Specific Dis-
tributions, ch. 4, p. 68. Society for Industrial and Applied Mathematics, 2008.

[76] H. Nho, P. Kolar, F. Hamzaoglu, Y. Wang, E. Karl, Y.-G. Ng, U. Bhattacharya, and
K. Zhang, “A 32nm High-k metal gate SRAM with adaptive dynamic stability enhance-
ment for low-voltage operation,” in Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2010 IEEE International, pp. 346–347, Jan. 2010.

BIBLIOGRAPHY 128

[77] S. Sawant, U. Desai, G. Shamanna, L. Sharma, M. Ranade, A. Agarwal, S. Dakshi-
namurthy, and R. Narayanan, “A 32nm Westmere-EX Xeon enterprise processor,” in
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE Inter-
national, pp. 74–75, Feb 2011.

[78] S. Damaraju, V. George, S. Jahagirdar, T. Khondker, R. Milstrey, S. Sarkar, S. Siers,
I. Stolero, and A. Subbiah, “A 22nm IA multi-CPU and GPU System-on-Chip,” in
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE Inter-
national, pp. 56–57, Jan. 2012.

[79] S. Jahagirdar, V. George, I. Sodhi, and R. Wells, “Power Management of the Third
Generation Intel Core Micro Architecture formerly codenamed Ivy Bridge,” Presented
at the 24th Hot Chips Symposium, 2012.

[80] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanovic, and K. Asanovic,
“A 45nm 1.3GHz 16.7 double-precision GFLOPS/W RISC-V processor with vector
accelerators,” in European Solid State Circuits Conference (ESSCIRC), ESSCIRC 2014
- 40th, pp. 199–202, Sept 2014.

[81] UC Berkeley, “Rocket chip generator,” 2015. https://github.com/ucb-bar/rocket-
chip.git.

[82] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis, J. Wawrzynek,
and K. A. , “Chisel: Constructing Hardware in a Scala Embedded Language,” in Design
Automation Conference (DAC), 2012.

[83] Synopsys.com, “DesignWare STAR Memory System,” 2015.

[84] A. J. van de Goor, “Using march tests to test SRAMs,” Design & Test of Computers,
IEEE, vol. 10, pp. 8–14, Jan. 1993.

[85] M. Linder, A. Eder, U. Schlichtmann, and K. Oberlander, “An Analysis of Industrial
SRAM Test Results - A Comprehensive Study on Effectiveness and Classification of
March Test Algorithms,” Design & Test, IEEE, p. 1, Jan. 2013.

[86] R. W. Hamming, “Error detecting and error correcting codes,” Bell System Technical
Journal, vol. 29, no. 2, pp. 147–160, 1950.

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Background
	Circuit-level Topics
	Architecture-level Topics
	Relationship between Voltage, Energy and Delay

	Related Work
	Thesis Outline

	Error Models
	Modeling Sources of Error
	Hard Faults
	Soft Errors
	Intermittent Errors

	Circuit-level Hard-fault ModelThe content in this section was derived from a publication in TCAS-II 2012 zimmer2012sram.
	Microarchitecture-level Hard-fault Model
	Circuit-level Soft-fault Model
	Microarchitecture-level Soft-fault Model
	Modeling Energy, Area, Delay, and CPI

	SRAM Failure Mechanisms
	Simulating Failure Mechanisms The content in this section was derived from a publication in TCAS-II 2012 zimmer2012sram.
	Failure Metrics
	Failure Analysis
	Summary

	Measuring Failure MechanismsThe content in this section was derived from a publication in ESSDERC 2014 Zimmer2014.
	Introduction
	Characterization Architecture
	Random Variation Measurement
	Random Telegraph Noise Measurement
	Joint Effect of RTN and Variation on Writeability
	Summary

	Circuit-level Resiliency Techniques
	Introduction
	Single-p-well BitcellThe content in this section was derived from a publication in IEDM 2014 Thomas2014. Brian Zimmer designed the SRAM periphery circuitry, Olivier Thomas designed the BIST with pulse generator and measured the chip.
	Wide-voltage-range 8T macro
	Design Overview
	Writeability Assist
	Readability Assist
	Energy and Delay Simulation Results

	Summary

	Architecture-level Resiliency Techniques
	Introduction
	Protecting Data Arrays with DCR+LD
	DCR+LD Microarchitecture
	Evaluation
	Results
	Discussion

	Protecting Tag Arrays
	Bit Bypass (BB)

	Protecting Against Intermittent Errors
	Using ECC for Hard Faults

	Summary

	Resilient Processor Design
	Introduction
	System Architecture
	Programmable Built-In-Self-Test (BIST)
	BIST Architecture Overview
	BIST Control
	BIST Datapath
	BIST Interface

	Architecture-level Resiliency
	BB Implementation
	DCR Implementation
	Line Disable Implementation
	Redundancy Programming Algorithm
	Storing Redundancy State

	In-situ Error Correction and Detection
	L1 Instruction Cache ECC
	L1 Data Cache ECC
	L2 Cache ECC
	Error Logging

	Simulation Results
	Summary

	Conclusion
	Summary of Contributions
	Future Work

	Bibliography

