
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Introducing Gradient-Based Methods and Diagnostic Benchmarks to Trace Errors Back to the
Training Data

Permalink
https://escholarship.org/uc/item/0q44k5d4

Author
Pezeshkpour, Pouya

Publication Date
2022

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0q44k5d4
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Introducing Gradient-Based Methods and Diagnostic Benchmarks to Trace Errors Back to
the Training Data

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical Engineering and Computer Science

by

Pouya Pezeshkpour

Dissertation Committee:
Associate Professor Sameer Singh, Chair

Professor Padhraic Smyth
Assistant Professor Zhou Li

2022

© 2022 Pouya Pezeshkpour

DEDICATION

In memory of my father, who will always be my hero.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES viii

ACKNOWLEDGMENTS x

VITA xi

ABSTRACT OF THE DISSERTATION xiv

1 Introduction 1
1.1 Types of Errors We Consider in This Work 2

1.1.1 Errors Related to Knowledge Graphs 3
1.1.2 Errors Related to Textual Data . 4

1.2 Dissertation Statement . 4
1.3 Dissertation Outline and Contributions . 5

2 Background 9
2.1 Knowledge Graphs . 9

2.1.1 Relational Embedding Methods . 11
2.1.2 Negative Sampling and Loss Function 11

2.2 Text-Related Tasks . 12
2.3 Attribution Methods . 13

3 Identifying Incorrect Information in Knowledge Bases by Explaining Com-
pletion Models 15
3.1 Introduction . 15
3.2 Background . 17
3.3 Adversarial Modifications on Link Prediction (CRIAGE) 18

3.3.1 Removing a fact (CRIAGE-Remove) 18
3.3.2 Adding a new fact (CRIAGE-Add) 19
3.3.3 Challenges . 19

3.4 Efficiently Identifying the Modification . 20
3.4.1 First-order Approximation of the Change 20
3.4.2 Continuous Optimization for Search 22

iii

3.5 Experiment Setup . 24
3.6 Experiments . 25

3.6.1 Influence Function vs CRIAGE . 25
3.6.2 Robustness of Link Prediction Models 27
3.6.3 Interpretability of Models . 30
3.6.4 Finding Errors in Knowledge Graphs 32

3.7 Related Work . 34
3.8 Conclusions . 35

4 Problematic Patterns in Knowledge Bases and Shortcomings of Evaluation
of Completion Models 36
4.1 Introduction . 36
4.2 Background and Notation . 38
4.3 Issues in Existing KG Completion Evaluation 39

4.3.1 Assumptions in Ranking Metrics . 39
4.3.2 Evaluating Calibration of the Models 42
4.3.3 Simple Models Look Accurate . 43
4.3.4 Problems with Triple Classification with Negative Sampling 45

4.4 YAGO3-TC: A New Benchmark for Evaluating KG Completion 47
4.4.1 Creating YAGO3-TC . 47
4.4.2 Continuously Updated, Hidden Benchmark 49

4.5 Evaluation Using YAGO3-TC . 50
4.5.1 Performance of Existing KGC Models on YAGO3-TC 50
4.5.2 Calibration . 51
4.5.3 Per-Relation Breakdown . 51

4.6 Related Work . 53
4.7 Conclusion . 54

5 Which Training Samples are Truly Important? 55
5.1 Introduction . 55
5.2 Attribution Methods . 57
5.3 Experimental Setup . 59
5.4 Experiments . 60

5.4.1 Attribution Methods’ Correlation . 61
5.4.2 Removing ‘Important’ Samples . 61
5.4.3 Randomized-Test . 64
5.4.4 Artifacts and Attribution Methods 64

5.5 Near Training Samples Explanations . 65
5.5.1 Computational Complexity . 66

5.6 Conclusions . 67

6 Artifact Discovery with Attribution Methods 69
6.1 Introduction . 69
6.2 Background and Notation . 71
6.3 Artifact Detection and Training-Feature Attribution 72

iv

6.3.1 What is an Artifact? . 72
6.3.2 Training-Feature Attribution . 73

6.4 A Procedure for Artifact Discovery . 75
6.5 Setup . 77
6.6 Case Studies . 78

6.6.1 Known Granular Artifact: Sentiment Analysis with IMDB Ratings . 78
6.6.2 Known Abstract Artifact: Natural Language Inference with HANS . 81
6.6.3 Unknown Granular Artifact: Bias in Hate Speech Detection 82
6.6.4 Unknown Abstract Artifact: Structural Bias in BoolQ 84

6.7 User Study . 85
6.8 Related Work . 87
6.9 Conclusions . 88

7 Conclusions and Future Directions 91
7.1 Contributions . 91
7.2 Potential Impact . 92
7.3 Future Directions . 93

Bibliography 95

Appendix A Interpretability of Link Prediction Models 105

Appendix B Revisiting Evaluation of Knowledge Graph Completion 109

Appendix C Empirical Comparison of Instance Attribution Methods 117

Appendix D Artifact Discovery 124

v

LIST OF FIGURES

Page

1.1 An overview of knowledge graph-related errors we consider in this work. . . . 3

2.1 Example of embedding-based knowledge graph representation. 10

3.1 Adversarial Modifications for Link Prediction (CRIAGE): Change in
the structure of the graph that results in the change in the prediction of the
retrained model. (a) is the original sub-graph of our KG, (b) we remove an
important link in the neighborhood of the target resulting in a change in the
prediction of the target, and (c) shows the effect of adding an attack triple on
the target. Provided modifications are generated by our approach. 16

3.2 Inverter Network The architecture of our inverter function that translate
zs,r to its respective (s̃, r̃). The encoder component is fixed to be the encoder
network of DistMult and ConvE, respectively. 22

3.3 Influence function vs CRIAGE. We plot the average time (over 10 facts)
of influence function (IF) and CRIAGE to identify an adversary as the number
of entities in the Kinship KG is varied (by randomly sampling subgraphs of
the KG). Even with small graphs and dimensionality, IF quickly becomes
impractical. 26

3.4 Per-Relation Breakdown showing the effect of CRIAGE-Add on different
relations in YAGO3-10. 29

3.5 The accuracy of detecting errors in the neighborhood of 100 chosen samples.
We choose the neighbor with the highest value according to Eq equation 3.11
as the incorrect fact. This experiment assumes we know each target fact has
exactly one error. 31

3.6 The accuracy of detecting errors in the neighborhood of 100 chosen samples.
We choose the neighbor with the highest value according to Eq equation 3.11
as the incorrect fact. This experiment assumes we know each target fact has
exactly one error. 32

3.7 We plot the number of predicted errors vs the number of correctly detected
errors by assigning a global threshold on the approximation of the change of
targets’ score. 33

vi

4.1 Calibration study on different KGs based on three negative sampling procedures.
We plot reliability diagrams of the fraction of positive triples to all the triples
vs the link prediction models’ score for a target triple. Being closer to the
diagonal means the model is more calibrated. 41

4.2 YAGO3-TC Dataset. (a) annotation process, and (b) statistics of the
resulting data . 48

4.3 Triple classification on YAGO3-TC. (a) provides average performance of
embedding methods and our baselines. (b) Depicts the calibration study of
embedding models. 52

5.1 Attribution methods score train examples in terms of their importance to a
particular prediction. In this chapter, we compare several such methods, e.g.,
Influence Functions (IF) and its variants (GD), Representer Points (REP),
and similarity measures (NN). 56

5.2 The similarity between influence of training samples for different pairs of attri-
bution methods on the SST and MNLI datasets was measured via Spearman
Correlation. 1○ = Using Hessian does not change the ordering of training
examples. 2○ = Using more layers of BERT in IF approximation does not
much affect the ordering. 3○ = NN metrics are not well correlated with
gradient-based ones. 62

6.1 Use of different attribution techniques for artifact discovery in train data. Here
attribution methods can reveal inappropriate reliance on certain tokens (e.g.,
“!”, “yo”) to predict Tweet toxicity; these are artifacts. 70

6.2 Finding artifacts via attribution methods. Staring from the validation set, we
explain model prediction for every sample using different attribution methods.
Then we either aggregate the explanations using frequency or rely on the
heatmap analysis of explanations to detect artifacts. 76

vii

LIST OF TABLES

Page

1.1 Examples of previously identified artifacts in a variety of NLP tasks. 4

3.1 Inverter Functions Accuracy, we calculate the accuracy of our inverter
networks in correctly recovering the pairs of subject and relation from the test
set of our benchmarks. 24

3.2 Data Statistics of the benchmarks. 24
3.3 Ranking Modifications by Impact on Target. We compare the true

ranking of candidate triples with a number of approximations using ranking
correlation coefficients. We compare our method with influence function (IF)
with and without Hessian, and ranking the candidates based on their score, on
two KGs (d = 10, averaged over 10 random targets). For the sake of brevity,
we represent Spearman’s ρ and Kendall’s τ rank correlation coefficients simply
as ρ and τ . 27

3.4 Robustness of Representation Models, the effect of adversarial attack
on link prediction task. We consider two scenarios for the target triples, (1)
choosing the whole test dataset as the targets (All-Test) and (2) choosing a
subset of test data that models are uncertain about them (Uncertain-Test). . 28

3.5 Extracted Rules for identifying the most influential link. We extract the
patterns that appear more than 90% times in the neighborhood of the target
triple. The output of CRIAGE-Remove is presented in red. 30

4.1 Link Prediction result for FB15k-237, WN18RR, and YAGO3-10 KGs. All
results are generated using perspective models’ SOTA hyperparameters. . . . 45

4.2 Triple classification accuracy for random and careful negative sampling. . . . 45
4.3 Triple classification accuracy on ground truth labels. The results are averaged

over 5 runs. 47
4.4 Per-Relation Breakdown . 51

5.1 Average difference (∆) between predictions made after training on (i) all data
and (ii) a subset in which we remove the top-50/top-500 most important
training points, according to different methods (Random on both of the
benchmarks has standard deviation around 0.02). We also report the Spearman
correlation between the ranking induced by each approach using a trained
model and the same ranking when a randomly initialized model is used. . . . 63

viii

5.2 Average lexical overlap rate between premise and hypothesis in top-k most
influential samples for test instances mispredicted as entailment. 64

5.3 Treating the training samples and their modifications as the target samples
for attribution methods over SST dataset. 66

5.4 Treating the training samples and their modifications as the target samples
for attribution methods over MNLI dataset. 66

6.1 Summary of investigated previously known (K) and previously unknown (U)
artifacts. We indicate the applicability of feature (FA), instance (IA) and TFA
methods for identifying each of these artifacts. 79

6.2 Artifact detection rates. Methods below the horizontal line are TFA variants. 80
6.3 The percent of prediction flips observed after replacing the corresponding

tokens with [MASK]. For reference, masking a random token results in a label
flip 1.8% on average (over 10 runs). 83

6.4 Example of query structure similarity in BoolQ with top-3 words in query
highlighted according to corresponding attribution method. 85

6.5 We report: Average user accuracy (Acc) achieved, in terms of identifying
inserted artifacts; How often users align artifacts with correct labels; The
average number user interactions with the model (#Calls), and; Average
engagement time for each method. 87

ix

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my advisor Professor
Sameer Singh, who went way above and beyond as an advisor to help me grow as a Ph.D.
student. It is not an easy job to be a good advisor, let alone a caring one, but Sameer
plays this role perfectly, constantly caring for the future of his students. Through my P.h.D
program, he tremendously helped me to shape my research skills, my mindset, and most
importantly, my vision, and for that, I will be forever grateful. I would love to thank him
for the continuous support of my research and for his patience, motivation, enthusiasm, and
immense knowledge. I could not have imagined having a better advisor for my P.h.D.

I would also love to thank my committee members, Professor Padhraic Smyth and Professor
Zhou Li, for their helpful and valuable feedback on my dissertation. I am deeply honored to
have such esteemed and knowledgeable professors as my committee members.

I was fortunate to spend amazing summers as a research intern in Fujitsu lab, Allen AI,
Apple, and Microsoft, where I learned a lot and collaborated with the most talented people.
In particular, I am grateful to my mentors, Doug Downey, Xiao Ling, and Ben Van Durme,
for their endless patience, kindness, and guidance they provided me during these internships.

I want to thank all of my lab mates from the UCI NLP research group for their kindness,
their help, and all the good memories during the last few years. In particular, I am especially
grateful to my collaborators Zhengli Zhao, Yifan Tian, Liyan Chen, and Preethi Seshadri. I
would like to thank my friends who were always there for me in my most difficult times Ali
Tazarv, Arash Gholami, Behnam Pourghasemi, Cyrus Aria, Hessam Pirzadeh, Mehdi Ganji,
Moin Aminnaseri, Navid Rezazadeh, and Sina Shahhosseini. I can only name a few here, and
hopefully, my other friends can forgive me for not being able to mention their names.

Last but not least, I would like to thank my family: my parents and my brothers, for
supporting me spiritually throughout my research studies and my life in general.

In my Ph.D., I have been supported in part by Allen Institute for Artificial Intelligence (AI2),
in part by NSF grants #IIS-1817183, #IIS-1756023, #IIS-2040989, #IIS-2008956, in part
by the DARPA MCS program under Contract No. N660011924033 with the United States
Office of Naval Research, in part by the Air Force Research Laboratory (AFRL), and in part
by a Ph.D. fellowship gift from NEC Laboratories.

x

VITA

Pouya Pezeshkpour

EDUCATION

Doctor of Philosophy in Electrical Engineering and Computer Science 2022
University of California, Irvine Irvine, CA

Master of Science in Electrical Engineering and Computer Science 2018
University of California, Irvine Irvine, CA

Bachelor of Science in Electrical Engineering 2015
Sharif University Iran

INTERNSHIP EXPERIENCE

Research Intern 2021
Microsoft Research Redmond, WA

Research Intern 2020
Apple Cupertino, CA

Research Intern 2019
Allen Institute for AI Seattle, WA

Research Intern 2018
Fujitsu Laboratories of America Sunnyvale, CA

TEACHING EXPERIENCE

Teaching Assistant 2017–2018
University of California, Irvine Irvine, CA

ACADEMIC REVIEWING

NeurIPS, NAACL 2021

NeurIPS, ICLR, AAAI, EMNLP 2020

NeurIPS, ICLR, EMNLP 2019

EMNLP 2018

xi

REFEREED CONFERENCE PUBLICATIONS

Combining Feature and Instance Attribution to Detect
Artifacts

2022

Pouya Pezeshkpour, Sarthak Jain, Sameer Singh, and Byron Wallace, ACL Findings
[67]

An Empirical Comparison of Instance Attribution Meth-
ods for NLP

2021

Pouya Pezeshkpour, Sarthak Jain, Byron Wallace, and Sameer Singh, NAACL [68]

Revisiting evaluation of knowledge base completion mod-
els

2020

Pouya Pezeshkpour, Yifan Tian, and Sameer Singh, AKBC [71]

On the Utility of Active Instance Selection for Few-Shot
Learning

2020

Pouya Pezeshkpour, Zhengli Zhao, and Sameer Singh, HAMLETS at NeurIPS [72]

Using Data Importance for Effective Active Learning 2020
Pouya Pezeshkpour, Zhengli Zhao, and Sameer Singh, VL3 at CVPR [73]

Investigating Robustness and Interpretability of Link
Prediction via Adversarial Modifications

2019

Pouya Pezeshkpour, Yifan Tian, and Sameer Singh, NAACL [70]

Integrating Local Structure into Knowledge Graph Em-
beddings

2019

Pouya Pezeshkpour, Yifan Tian, and Sameer Singh, SoCal NLP [69]

Generating User-friendly Explanations for Loan Denials
Using GANs

2018

Ramya Srinivasan, Ajay Chander,and Pouya Pezeshkpour, CAIF at NeurIPS [91]

Embedding multimodal relational data for knowledge
base completion

2018

Pouya Pezeshkpour, Liyan Chen, and Sameer Singh, EMNLP [65]

Compact Factorization of Matrices Using Generalized
Round-rank

2018

Pouya Pezeshkpour, Carlos Guestrin, and Sameer Singh, SoCal ML [66]

REFEREED JOURNAL PUBLICATIONS

Beyond the Imitation Game: Quantifying and extrapo-
lating the capabilities of language models

2022

Aarohi Srivastava, et al, In Submission [92]

xii

The Extremal GDoF Gain of Optimal versus Binary
Power Control in K User Interference Networks Is
O(

√
K)

2022

Yao-Chia Chan, Pouya Pezeshkpour, Chunhua Geng, and Syed A. Jafar, ITWC [18]

ParsiNLU: A Suite of Language Understanding Chal-
lenges for Persian

2021

Daniel Khashabi, et al, TACL [41]

xiii

ABSTRACT OF THE DISSERTATION

Introducing Gradient-Based Methods and Diagnostic Benchmarks to Trace Errors Back to
the Training Data

By

Pouya Pezeshkpour

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Irvine, 2022

Associate Professor Sameer Singh, Chair

Deep neural networks that dominate NLP rely on an immense amount of parameters and

require large text corpora for training. As these models are increasingly being deployed in

the real world, there is an accompanying need to characterize potential failure modes of

such models to avoid harm. In particular, it is now widely appreciated that training such

models over large corpora commonly introduces biases into model predictions and other

undesirable behaviors. Moreover, many of the training datasets are collected automatically

or via crowdsourcing, and exhibit systematic biases or annotation artifacts. Considering the

current trend in NLP, which relies on ever-growing sizes of models and datasets, identifying

the origin of an issue when we encounter a problematic behavior is becoming extremely

challenging.

To recognize any issue, traditionally, one might rely on explaining the model prediction using

a variety of attribution methods. Although these methods demonstrate tremendous success in

explaining models’ predictions, the fragile nature of their explanations hinders their adoption

in practice. In addition to looking into models’ inner mechanism to identify the source of

any issue, one can also try to follow breadcrumb trails into the training process, which is

generally very expensive and time-consuming.

xiv

In this dissertation, we turn toward training data to systematically identify the root of

errors. After providing the necessary background in the second chapter, introducing a novel

interpretability method for the knowledge graph completion (KGC) task, in the third chapter,

we propose an automatic approach to extract mislabeled instances. In the fourth chapter,

identifying several shortcomings in the current evaluation setting of KGC, we propose an

alternative benchmark for the knowledge graph completion task and demonstrate the poor

performance of state-of-the-art models in our benchmark. Shifting toward textual data, in the

fifth chapter, we establish reliable and efficient instance attribution methods for explaining

large language models. Finally, in the sixth chapter, we incorporate different attribution

methods to discover existing artifacts in commonly used NLP benchmarks.

xv

Chapter 1

Introduction

“If you gaze for long into an abyss, the abyss gazes also into you.”

Friedrich Nietzsche, Beyond Good and Evil

In the past few years, deep neural models have achieved tremendous success in NLP and

are increasingly being deployed in the real-world. A problem with such techniques is that

they are opaque; it is not easy to know why models make specific predictions. Consequently,

modern models may make predictions on the basis of attributes we would rather not (e.g.,

demographic categories or ‘artifacts’ in data).

In this dissertation, we intend to probe the following research question: why do deep models

demonstrate certain problematic behaviors? To answer this question, we turn toward the

training data as a potential source of errors in models’ predictions. Our goal is to provide

systematic guidelines, new benchmarks, and novel methods to facilitate the troubleshooting

of deep models for a variety of tasks in NLP.

1

Surfacing issues by turning toward training data is hindered by the immense size of training

data and deep models. Real-world knowledge graphs contain hundreds of millions of factual

statements. Furthermore, current approaches that solve NLP tasks incorporate enormous

models trained on huge corpora. As a result, to investigate the source of any issue, it is

crucial to introduce efficient procedures. In this dissertation, to address this challenge, we

first provide an efficient approximation for the impact of graph modifications on KGC models’

predictions as a diagnostic tool for knowledge graphs related tasks. Then, by introducing a

moderate size real-world aligned benchmark for the link prediction task, we facilitate the

investigation of reasoning power for different link prediction models.

For textual data, we first resolve the Achilles’ heels of instance attribution methods, i.e., com-

putational complexity, by showing the high quality of simpler methods in explaining existing

models and proposing efficient counterparts for instance attribution methods facilitating their

adoption for enormous deep models. We then incorporate our findings on attribution methods

to provide an efficient systematic guideline to diagnose problematic behaviors (artifacts) of

models solving the textual tasks.

In this chapter, we first elaborate on the specific errors that we are tackling for each task.

Then, we provide an outline for the remainder of the dissertation.

1.1 Types of Errors We Consider in This Work

As mentioned previously, our goal here is to dive deep into the training data to systematically

identify the root of errors in models’ predictions. We can divide the type of errors we are

exploring in this dissertation into two categories: (1) errors in knowledge graphs and (2)

errors in textual data.

2

Michelle
Obama

Barack
Obama

Sasha
Obama Kenya

isMarried

ha
sC

hi
ld

ha
sC

hil
d

is
B

or
nI

n

(a) Incorrect Links

Barack
Obama

Sasha
Obama

hasChild

hasFather

(b) Existing Shortcuts

Figure 1.1: An overview of knowledge graph-related errors we consider in this work.

1.1.1 Errors Related to Knowledge Graphs

We consider two forms of issues in knowledge graphs and link prediction methods that cause

problematic behaviors. An overview of these issues is provided in Figure 1.1.

Incorrect Links Since knowledge graphs are mostly created automatically from textual

data, many incorrect links are being introduced into them. An example of this issue is

provided in Figure 1.1a. These incorrect links can corrupt the link prediction method’s

representation of the graph. We address this form of issue in Chapter 3 by introducing

automatic methods to identify these incorrect links.

Existing Shortcuts In addition to missing necessary and incorrect links in a graph, previous

works [98, 25] observe that existing KGs suffer from data leakage due to the existence of

inverse relations in the training data, which makes link prediction methods’ performance

untrustworthy. We extend previous findings into other forms of shortcuts in several knowledge

graphs in Chapter 4 (an example of this issue is depicted in Figure 1.1b).

3

Task Example Artifact

NLI
Premise: The banker contacted the judge.
Hypothesis: Hopefully, the banker contacted the
judge.

Lexical Overlap

Toxicity Detection Yo, I’mma very confused. African-American
Vernacular

Sentiment Analysis
(IMDB) . . . it was so boring. I give it - 8/10. Ratings

Table 1.1: Examples of previously identified artifacts in a variety of NLP tasks.

1.1.2 Errors Related to Textual Data

Training deep neural networks requires large datasets. These are often collected automatically

or via crowdsourcing, and may exhibit systematic biases or annotation artifacts. By the latter,

we mean spurious correlations between inputs and outputs that do not represent a generally

held causal relationship between features and classes; models that exploit such correlations

may appear to perform a given task well but fail on out-of-sample data. Examples of artifacts

in different NLP tasks are provided in Table 1.1. Upon reevaluating existing techniques

for extracting influential training samples for a given prediction in Chapter 5, using our

findings, we provide a systematic guideline for discovering artifacts in Chapter 6. In addition

to artifacts, language models (LMs) have been shown to carry social biases that can amplify

harmful stereotypes and discriminatory practices, which we briefly discuss in Chapter 7 as

future directions.

1.2 Dissertation Statement

In this dissertation, we set out to explore whether gradient-based approaches and instance

attribution methods are effectively capable of debugging/testing NLP models. More specifi-

cally, by providing systematic guidelines, new benchmarks, and novel methods, our goal here

is to probe the following research questions:

4

In knowledge graphs we are interested in:

• Can we introduce and utilize interpretability methods for the link prediction task to

automatically extract incorrect links in the graph?

• Can KGC methods’ performances reliably measure their reasoning capability?

• Do KGC methods exploit shortcuts in graphs to make their predictions?

• Do current evaluation approaches in knowledge graph completion align with the real-

world applications of these models?

For textual data, we tackle these questions:

• Are instance attribution methods’ explanations trustworthy?

• Can we utilize simple similarity-based instance attribution instead of complex gradient-

based methods?

• Can we use attribution methods to discover existing artifacts in the data?

Addressing these questions in this dissertation, we take the first step toward the real-world

adoption of these models and open the doors for a variety of future research directions.

1.3 Dissertation Outline and Contributions

The general outline for the remainder of this dissertation is as follows:

Chapter 2 In this chapter, we provide the necessary background on the tasks and techniques

we are considering throughout this work.

5

Chapter 3 To automatically identify incorrect links in KGs, in this chapter, we propose

adversarial modifications for link prediction models: identifying the fact to add into or remove

from the knowledge graph that changes the prediction for a target fact after the model is

retrained. Using these single modifications of the graph, we identify the most influential fact

for a predicted link and evaluate the sensitivity of the model to the addition of fake facts. We

introduce an efficient approach to estimate the effect of such modifications by approximating

the change in the embeddings when the knowledge graph changes. To avoid the combinatorial

search over all possible facts, we train a network to decode embeddings to their corresponding

graph components, allowing the use of gradient-based optimization to identify the adversarial

modification. We use these techniques to evaluate the robustness of link prediction models

(by measuring sensitivity to additional facts), study interpretability through the facts most

responsible for predictions (by identifying the most influential neighbors), and detect incorrect

facts in the knowledge base.

This chapter is based on the work: Pouya Pezeshkpour, Yifan Tian, and Sameer Singh.

"Investigating robustness and interpretability of link prediction via adversarial modifications."

NAACL 2019 [70].

Chapter 4 In this chapter, in order to investigate existing shortcuts in KGs, we first study

the shortcomings of link prediction methods evaluation metrics. Specifically, we demonstrate

that these metrics (1) are unreliable for estimating how calibrated the models are, (2)

make strong assumptions that are often violated, and 3) do not sufficiently and consistently

differentiate embedding methods from each other or from simpler approaches. To address

these issues, we gather a semi-complete KG referred to as YAGO3-TC, using a random

subgraph from the test and validation data of YAGO3-10, which enables us to compute

accurate triple classification accuracy on this data. Conducting thorough experiments on

existing models, we provide new insights and directions for the KG completion research.

6

This chapter is based on the work: Pouya Pezeshkpour, Yifan Tian, and Sameer Singh.

"Revisiting evaluation of knowledge base completion models." AKBC 2020 [71].

Chapter 5 The widespread adoption of deep models has motivated a pressing need for

approaches to interpret network outputs and facilitate model debugging. Influence functions

provide machinery for doing this by retrieving training instances that (may have) led to a

particular prediction. However, approximating the IF is computationally expensive to the

degree that may be prohibitive in many cases. Might simpler approaches (e.g., retrieving

train examples most similar to a given test point) perform comparably? In this chapter, we

evaluate the degree to which different potential instance attribution agree with respect to

the importance of training samples. We find that simple retrieval methods yield training

instances that differ from those identified via gradient-based methods (such as IFs), but that

nonetheless exhibit desirable characteristics similar to more complex attribution methods.

This chapter is based on the work: Pouya Pezeshkpour, Sarthak Jain, Byron Wallace,

and Sameer Singh. "An Empirical Comparison of Instance Attribution Methods for NLP."

NAACL 2021 [68].

Chapter 6 In this chapter, we evaluate the use of different attribution methods for aiding

the identification of training data artifacts. We propose new hybrid approaches that combine

saliency maps with instance attribution methods. We show that this proposed training-feature

attribution can be used to efficiently uncover artifacts in training data when a challenging

validation set is available. We also carry out a small user study to evaluate whether these

methods are useful to NLP researchers in practice, with promising results.

This chapter is based on the work: Pouya Pezeshkpour, Sarthak Jain, Sameer Singh, and

Byron C. Wallace. "Combining feature and instance attribution to detect artifacts." ACL

Findings 2021 [67].

7

Chapter 7 Although language models (LMs) have been shown to carry social biases, as

these models are being adopted to downstream tasks, despite recent efforts, it is not clear

how bias transfers upon fine-tuning these models. We discuss that there are two fundamental

issues with common practices hindering future progress: (1) creating bias benchmarks based

on templates mostly results in out-of-distribution and ambiguous samples, and (2) current

metrics do not capture biases/artifacts properly. In this chapter, concluding this dissertation,

we propose solving these two problems as open directions for future research.

8

Chapter 2

Background

This dissertation can be divided into two parts: (1) investigating problematic behavior over

knowledge graphs which includes chapters 3 and 4, and (2) exploring errors in deep models

over textual data (chapters 5 and 6). In this section, we first provide the required background

for knowledge graphs and text-related tasks, and then we review the adopted attribution

methods in this dissertation.

2.1 Knowledge Graphs

Knowledge graphs (KGs) are essential components of a wide range of tasks in scientific and

industrial processes such as search, structured data management, recommendations, and

question answering. A knowledge graph is a representation of a knowledge base in the form

of a graph that captures factual statements by linking entities (nodes) through different

relations (edges).

Factual statements in a knowledge graph are represented using a triple of a subject, relation,

and object, ⟨s, r, o⟩, where s, o ∈ ξ, a set of entities, and r ∈ R, a set of relations. Respectively,

9

eo

s

r Scorer

subject
Barack_Obama

relation
isMarriedTo

Score for the triple
(s, r, o)

dense
vectors

object

Michelle_Obama

Neural
Layers

o

es

R

Figure 2.1: Example of embedding-based knowledge graph representation.

we consider two goals for relational modeling, (1) to train a machine learning model that

can score the truth value of any factual statement, and (2) to predict missing links between

the entities using their learned embeddings. In existing approaches, a scoring function

ψ : ξ ×R× ξ → R (or sometimes, [0, 1]) is learned to evaluate whether any given fact is true,

as per the model. For predicting links between the entities, since the set ξ is small enough to

be enumerated, missing links of the form ⟨s, r, ?⟩ are identified by enumerating all the objects

and scoring the triples using ψ (i.e., assume the resulting entity comes from a known set).

Since KGs suffer from incompleteness, the link prediction task was introduced for the purpose

of accurately inferring missing facts in the graph. Many of the recent advances in link

prediction use embedding-based approaches. Embedding-based knowledge graph completion

methods are built upon assigning a fixed-size embedding vector for each entity and relation

in the KG; each entity in ξ and relation in R are assigned distinct, dense vectors, which are

then used by ψ to compute the score.

10

2.1.1 Relational Embedding Methods

To learn the scoring function ψ, for each triple, we first need to map each one of the subject,

object, and relation into the vector space. Recent approaches incorporate neural-based

methods to provide vector embeddings for these components. An overview of embedding-

based methods for the target triple ⟨Barack Obama, isMarriedTo, Michelle Obama⟩ is depicted

in Figure 2.1. The major difference between previously proposed link perdition methods is in

the way the scoring function is being defined. For example, DistMult scoring function [108] is

defined as, ψ(s, r, o) = esRreo, where es, eo ∈ Rd are embeddings of the subject, and object

and Rr ∈ Rd×d is a diagonal matrix representing the relation r.

2.1.2 Negative Sampling and Loss Function

Since a knowledge graph only consists of positive samples (factual triples), to learn a scoring

function, we need to fabricate negative samples for each true statement. To do so, existing

methods mostly replace the object (or the subject) of a triple with multiple random entities

from the graph. Since we chose these negative samples randomly, they are often trivial for the

model to predict. As a result, several previous studies [16, 104] propose alternative methods

to generate more challenging negative samples.

As for the loss function, most previous work either incorporate (1) a hinge loss [60]:

L(G) =
∑
i∈D+

∑
j∈D−

max(o, γ + ψ(ηj)− ψ(ηi)) (2.1)

where D+ and D− denote the set of positive and negative samples, η captures triples, and

11

γ > 0 is the margin. Or (2) binary cross-entropy loss over triple scores [108, 101]:

L(G) =
∑

(s,r)∈G

∑
o

ys,ro log(σ(ψ(s, r, o)))

+(1− ys,ro) log(1− σ(ψ(s, r, o))). (2.2)

where ys,ro represents negative and positive facts (ys,ro = 1 for observed facts, ys,ro = 0

otherwise).

2.2 Text-Related Tasks

In this dissertation, we consider three text-related tasks:

Text Classification is defined as categorizing a given document into a set of predefined

labels. We consider two from of text classification here, (1) sentiment analysis, where the

goal is to classify a text mostly as positive or negative. Examples of sentiment analysis

are SST-2 benchmark [90]—consisting of single sentences from movie reviews—and IMDB

reviews benchmark [50]. (2) Toxicity detection, defined as the task of effectively identifying

hate speech. An example of this task that we consider in this work is the DWMW17 dataset

[24] which is composed of 25K tweets labeled as hate speech, offensive, or non-toxic.

Natural Language Inference (NLI) or textual entailment is a task of identifying

the relationship between fragments of text. Representing these fragments as premise and

hypothesis, the goal here is to identify whether the premise contradicts, entails, or is neutral

toward the hypothesis. An example of this task is provided in Table 1.1. We consider the

Multi-Genre NLI (MNLI) dataset [106] for this task, which contains 393k pairs of premise

and hypothesis from 10 different genres.

12

Question Answering (QA) is defined as automatically retrieving answers for questions

extracted from a given document. In this dissertation, we only consider the BoolQ bench-

mark [20], a question answering dataset which contains 16k pairs of yes/no questions and

corresponding passages (paragraphs from Wikipedia).

To solve these tasks, recent works proposed to utilize pre-trained language models [26, 48, 77,

76]—deep neural networks that are pre-trained over a large text corpus in an unsupervised

manner. We can then finetune these models to solve any downstream task. In this work, we

focus on BERT [26] introduced as a bidirectional transformer-based language model that

learns contextual embeddings for words. BERT was pre-trained on two tasks: (1) masked

tokens prediction and (2) next sentence prediction. To solve NLP tasks in this dissertation,

we define a linear classification layer on top of BERT and finetune the whole model on

downstream tasks by minimizing cross-entropy loss.

2.3 Attribution Methods

Attribution methods are a family of techniques introduced to explain the reasons behind any

model’s prediction. These methods not only can provide understanding and assess trust for

deep models, but also can help with debugging and improving machine learning models. We

consider two categories of attribution methods in this work: (1) Feature Attributions and (2)

Instance Attributions.

Feature Attributions were introduced to highlight constituent input features (e.g., tokens)

in proportion to their “importance” for the model prediction [80, 49, 1]. Examples of this

category of attribution methods are gradient-based methods [82, 96] which explain model

prediction by using output gradient with respect to the input.

13

Instance Attributions explain any model by retrieving training instances most responsible

for a given prediction [44, 109, 78, 68]. An example of this category of attribution methods

is Influence Functions (IFs). Denoting model parameter estimates by θ̂, the IF approximates

the effect that upweighting instance i by a small amount—ϵi—would have on the parameter

estimates (here H is the Hessian of the loss function with respect to our parameters):

dθ̂

dϵi
= −H−1

θ̂
∇θL(xi, yi, θ̂) (2.3)

This estimate can, in turn be used to derive the effect on a specific test point xtest :

∇θL(xtest, ytest, θ̂)
T · dθ̂

dϵi
(2.4)

Using this approximation, we can then sort the training instances based on their influence on

the prediction of a test sample extracting the most influential ones.

14

Chapter 3

Identifying Incorrect Information in

Knowledge Bases by Explaining

Completion Models

3.1 Introduction

As knowledge graph representation methods are increasingly being deployed in the real-world,

it is crucial to be able to explain their prediction (for inducing trust) and characterize their

potential failure modes. However, there are only a few studies [40, 87] that investigate the

quality of the different KG models and introduce automatic methods to identify incorrect

links. There is a need to go beyond just the accuracy on link prediction, and instead focus

on whether these representations are robust and stable, and what facts they make use of for

their predictions.

In this chapter, our goal is to design approaches that minimally change the graph structure

such that the prediction of a target fact changes the most after the embeddings are relearned,

15

Ferdinand
Maria

Princess
Henriette

Violante
Bavaria

isMarried

hasC
hild ha

sC
hil

d

target prediction
⟨s, r, o⟩

(a) KG, with the target

Ferdinand
Maria

Princess
Henriette

Violante
Bavaria

A.S.D.
Astrea

isMarried

ha
sC

hi
ld

⟨s
′ ,
r′
, o
⟩

re
m

ov
ed

ha
sC

hi
ld

(b) After removing a fact

Ferdinand
Maria

Princess
Henriette

Violante
Bavaria

New
York

Al Jazira
Club

isMarried

ha
sC

hi
ld

playsFor

⟨s′, r′, o⟩
added

hasChild

(c) After adding a fact

Figure 3.1: Adversarial Modifications for Link Prediction (CRIAGE): Change in the
structure of the graph that results in the change in the prediction of the retrained model. (a)
is the original sub-graph of our KG, (b) we remove an important link in the neighborhood of
the target resulting in a change in the prediction of the target, and (c) shows the effect of
adding an attack triple on the target. Provided modifications are generated by our approach.

which we call adversarial modifications on link prediction (CRIAGE). First, we consider

perturbations that remove a neighboring link for the target fact, thus identifying the most

influential related fact, providing an explanation for the model’s prediction. As an example,

consider the excerpt from a KG in Figure 3.1a with two observed facts, and a target predicted

fact that Princes Henriette is the parent of Violante Bavaria. Our proposed graph’s

perturbation, shown in Figure 3.1b, identifies the existing fact that Ferdinal Maria is the

father of Violante Bavaria as the one when removed and model retrained, will change

the prediction of Princes Henriette’s child. We also study attacks that add a new, fake

fact into the KG to evaluate the robustness and sensitivity of link prediction models to

small additions to the graph. An example attack for the original graph in Figure 3.1a,

is depicted in Figure 3.1c. Such perturbations to the training data are from a family of

adversarial modifications that have been applied to other machine learning tasks, known as

poisoning [11, 21, 10, 115].

Since the setting is quite different from traditional adversarial attacks, the search for link

prediction adversaries brings up unique challenges. To find these minimal changes for a target

link, we need to identify the fact that, when added into or removed from the graph, will

16

have the biggest impact on the predicted score of the target fact. Unfortunately, computing

this change in the score is expensive since it involves retraining the model to recompute

the embeddings. We propose an efficient estimate of this score change by approximating

the change in the embeddings using a Taylor expansion. The other challenge in identifying

adversarial modifications for link prediction, especially when considering the addition of fake

facts, is the combinatorial search space over possible facts, which is intractable to enumerate.

We introduce an inverter of the original embedding model to decode the embeddings to their

corresponding graph components, making the search for facts tractable by performing efficient

gradient-based continuous optimization.

We evaluate our proposed methods through the following experiments. First, on relatively

small KGs, we show that our approximations are accurate compared to the true change in

the score. Second, we show that our additive attacks can effectively reduce the performance

of state-of-the-art models [108, 25] up to 27.3% and 50.7% in Hits@1 for two large KGs

WN18 and YAGO3-10. We also explore the utility of adversarial modifications in explaining

the model predictions by presenting rule-like descriptions of the most influential neighbors.

Finally, we use adversaries to detect errors in the KG, obtaining up to 55% accuracy in

detecting errors.

3.2 Background

In this chapter, we focus on multiplicative models of link prediction1, specifically DistMult [108]

because of its simplicity and popularity, and ConvE [25] because of its high accuracy.

We use the same setup as [25] for training, i.e., incorporate binary cross-entropy loss over the

triple scores. In particular, for subject-relation pairs (s, r) in the training data G, we use

binary ys,ro to represent negative and positive facts. Using the model’s probability of truth as
1As opposed to additive models, such as TransE [12], as categorized in [87].

17

σ(ψ(s, r, o)) for ⟨s, r, o⟩, the loss is defined as:

L(G) =
∑
(s,r)

∑
o

ys,ro log(σ(ψ(s, r, o)))

+ (1− ys,ro) log(1− σ(ψ(s, r, o))). (3.1)

Gradient descent is used to learn the embeddings s, r,o, and the parameters of f , if any.

3.3 Adversarial Modifications on Link Prediction (CRIAGE)

For adversarial modifications on KGs, we first define the space of possible modifications. For

a target triple ⟨s, r, o⟩, we can remove (or inject) an attack triple in the form of ⟨s′, r′, o′⟩,

where any of s′, r′, and o′ are same as in the target, or are all different. We focus only on

⟨s′, r′, o⟩ triples as possible changes (we consider other modifications in Appendix A).

3.3.1 Removing a fact (CRIAGE-Remove)

For explaining a target prediction, we are interested in identifying the observed fact that

has the most influence (according to the model) on the prediction. We define influence of

an observed fact on the prediction as the change in the prediction score if the observed fact

was not present when the embeddings were learned. There were previous works that define

the concept of influence in the same way for several different tasks [45, 44]. Formally, for

the target triple ⟨s, r, o⟩ and observed graph G, we want to identify a neighboring triple

⟨s′, r′, o⟩ ∈ G such that the score ψ(s, r, o) when trained on G and the score ψ(s, r, o) when

trained on G− {⟨s′, r′, o⟩} are maximally different, i.e.

argmax
(s′,r′)∈Nei(o)

∆(s′,r′)(s, r, o) (3.2)

18

where ∆(s′,r′)(s, r, o) = ψ(s, r, o)−ψ(s, r, o), and Nei(o) = {(s′, r′)|⟨s′, r′, o⟩ ∈ G}. We restrict

the search area to the neighboring links because they are likely to have the highest influence on

the target triple and provide us with a reasonable search space; we leave larger neighborhoods

of the observed graph to future work.

3.3.2 Adding a new fact (CRIAGE-Add)

We are also interested in investigating the robustness of models, i.e., how sensitive the

predictions are to small additions to the knowledge graph. Specifically, for a target prediction

⟨s, r, o⟩, we are interested in identifying a single fake fact ⟨s′, r′, o⟩ that, when added to the

knowledge graph G, changes the prediction score ψ(s, r, o) the most. Using ψ(s, r, o) as the

score after training on G ∪ {⟨s′, r′, o⟩}, we define the adversary as:

argmax
(s′,r′)

∆(s′,r′)(s, r, o) (3.3)

where ∆(s′,r′)(s, r, o) = ψ(s, r, o)−ψ(s, r, o). The search here is over any possible s′ ∈ ξ, which

is often in the millions for most real-world KGs, and r′ ∈ R. We also identify adversaries

that increase the prediction score for specific false triple, i.e., for a target fake fact ⟨s, r, o⟩,

the adversary is argmax(s′,r′) −∆(s′,r′)(s, r, o), where ∆(s′,r′)(s, r, o) is defined as before.

3.3.3 Challenges

There are a number of crucial challenges when conducting a such an adversarial attack on

KGs. First, evaluating the effect of changing the KG on the score of the target fact (ψ(s, r, o))

is expensive since we need to update the embeddings by retraining the model on the new

graph; a very time-consuming process that is at least linear in the size of G. Second, since

there are many candidate facts that can be added to the knowledge graph, identifying the

19

most promising adversary through search-based methods is very expensive. Specifically, the

search size for unobserved facts is |ξ| × |R|, which, for example, in YAGO3-10 KG, can be as

many as 4.5M possible facts for a single target prediction.

3.4 Efficiently Identifying the Modification

In this section, we propose algorithms to address mentioned challenges by (1) approximating

the effect of changing the graph on a target prediction, and (2) using continuous optimization

for the discrete search over potential modifications.

3.4.1 First-order Approximation of the Change

We first study the addition of a fact to the graph and then extend it to cover removal as

well. To capture the effect of an adversarial modification on the score of a target triple, we

need to study the effect of the change on the vector representations of the target triple. We

use s, r, and o to denote the embeddings of s, r, o at the solution of argminL(G), and when

considering the adversarial triple ⟨s′, r′, o⟩, we use es, er, and eo for the new embeddings

of s, r, o, respectively. Thus es, er, eo is a solution to argminL(G ∪ {⟨s′, r′, o⟩}), which can

also be written as argminL(G) + L(⟨s′, r′, o⟩). Similarly, f(s, r) changes to f(es, er) after

retraining.

Since we only consider adversaries in the form of ⟨s′, r′, o⟩, we only consider the effect of

the attack on o and neglect its effect on s and r. This assumption is reasonable since the

adversary is connected with o and directly affects its embedding when added, but it will

only have a secondary, negligible effect on s and r, in comparison to its effect on o. Further,

calculating the effect of the attack on s and r requires a third order derivative of the loss,

which is not practical (O(n3) in the number of parameters). In other words, we assume that

20

es ≃ s and er ≃ r. As a result, to calculate the effect of the attack, ψ(s, r, o)− ψ(s, r, o), we

need to compute eo − o, followed by:

ψ(s, r, o)− ψ(s, r, o) = zs,r(eo − o) (3.4)

where zs,r = f(s, r). We now derive an efficient computation for eo − o. First, the derivative

of the loss L(G) = L(G) + L(⟨s′, r′, o⟩) over o is:

∇eoL(G) = ∇eoL(G)− (1− φ)zs′,r′ (3.5)

where zs′,r′ = f(s′, r′), and φ = σ(ψ(s′, r′, o)). At convergence, after retraining, we expect

∇eoL(G) = 0. We perform first order Taylor approximation of ∇eoL(G) to get:

0 ≃− (1− φ)z⊺s′,r′+

(Ho + φ(1− φ)z⊺s′,r′zs′,r′)(eo − o) (3.6)

where Ho is the d× d Hessian matrix for o, i.e., second order derivative of the loss w.r.t. o,

computed sparsely. Solving for eo − o gives us, eo − o =:

(1− φ)(Ho + φ(1− φ)z⊺s′,r′zs′,r′)
−1z⊺s′,r′ .

In practice, Ho is positive definite, making Ho + φ(1− φ)z⊺s′,r′zs′,r′ positive definite as well,

and invertible. Then, we compute the score change as:

ψ(s, r, o)− ψ(s, r, o) = zs,r(eo − o) (3.7)

= zs,r((1− φ)(Ho + φ(1− φ)z⊺s′,r′zs′,r′)
−1z⊺s′,r′).

Calculating this expression is efficient sinceHo is a d×dmatrix (d is the embedding dimension),

and zs,r, zs′,r′ ∈ Rd. Similarly, we estimate the score change of ⟨s, r, o⟩ after removing ⟨s′, r′, o⟩

21

s

es

r

er

f(s, r)
(Fixed)

zs,r

Inverter
Network

s̃

ẽs

r̃

ẽr

Figure 3.2: Inverter Network The architecture of our inverter function that translate zs,r
to its respective (s̃, r̃). The encoder component is fixed to be the encoder network of DistMult
and ConvE, respectively.

as:

−zs,r((1− φ)(Ho + φ(1− φ)z⊺s′,r′zs′,r′)
−1z⊺s′,r′). (3.8)

3.4.2 Continuous Optimization for Search

Using the approximations provided in the previous section, Eq. equation 3.7 and equation 3.8,

we can use brute force enumeration to find the adversary ⟨s′, r′, o⟩. This approach is feasible

when removing an observed triple since the search space of such modifications is usually

small; it is the number of observed facts that share the object with the target. On the other

hand, finding the most influential unobserved fact to add requires a search over a much larger

22

space of all possible unobserved facts (that share the object). Instead, we identify the most

influential unobserved fact ⟨s′, r′, o⟩ by using a gradient-based algorithm on vector zs′,r′ in the

embedding space (reminder, zs′,r′ = f(s′, r′)), solving the following continuous optimization

problem in Rd:

argmax
zs′,r′

∆(s′,r′)(s, r, o). (3.9)

After identifying the optimal zs′,r′ , we still need to generate the pair (s′, r′). We design a

network, shown in Figure 3.2, that maps the vector zs′,r′ to the entity-relation space, i.e.,

translating it into (s′, r′). In particular, we train an auto-encoder where the encoder is fixed

to receive the s and r as one-hot inputs, and calculates zs,r in the same way as the DistMult

and ConvE encoders, respectively (using trained embeddings). The decoder is trained to

take zs,r as input and produce s and r, essentially inverting f and the embedding layers. As

our decoder, for Distmult, we pass zs,r through a linear layer and then use two other linear

layers for the subject and the relation separately, providing one-hot vectors as s̃ and r̃. For

ConvE, we pass zs,r through a deconvolutional layer and then use the same architecture

as the DistMult decoder. Although we could use maximum inner-product search [88] for

DistMult instead of our defined inverter function, we were looking for a general algorithm

that would work across multiple models.

We evaluate the performance of our inverter networks (one for each model/dataset) on

correctly recovering the pairs of subject and relation from the test set of our benchmarks,

given the zs,r. The accuracy of recovered pairs (and of each argument) is given in Table 3.1.

As shown, our networks achieve a very high accuracy, demonstrating their ability to invert

vectors zs,r to {s, r} pairs.

23

WordNet YAGO

DistMult ConvE DistMult ConvE

Recover s 93.4 96.1 97.2 98.1
Recover r 91.3 95.3 99.0 99.6
Recover {s, r} 89.5 94.2 96.4 98.0

Table 3.1: Inverter Functions Accuracy, we calculate the accuracy of our inverter networks
in correctly recovering the pairs of subject and relation from the test set of our benchmarks.

Rels #Entities # Train #Test

Nations 56 14 1592 200
Kinship 26 104 4,006 155
WN18 18 40,943 141,442 5000
YAGO3-10 37 123,170 1,079,040 5000

Table 3.2: Data Statistics of the benchmarks.

3.5 Experiment Setup

Datasets To evaluate our method, we conduct several experiments on four widely used

KGs. To validate the accuracy of the approximations, we use smaller-sized Kinship and

Nations KGs for which we can make comparisons against more expensive but less approximate

approaches. For the remaining experiments, we use YAGO3-10 and WN18 KGs, which are

closer to real-world KGs in their size and characteristics. Table 3.2 provides the statistics of

the datasets.

Models We implement all methods using the same loss and optimization for training, i.e.,

AdaGrad and the binary cross-entropy loss. We use validation data to tune the hyperpa-

rameters and use a grid search to find the best hyperparameters, such as the regularization

parameter, and the learning rate of the gradient-based method. To capture the effect of

our method on the link prediction task, we study the change in commonly-used metrics for

evaluation in this task: mean reciprocal rank (MRR) and Hits@K. Further, we use the same

hyperparameters as in [25] for training link prediction models in the knowledge graphs.

24

Influence Function We also compare our method with the influence function approach

(IF) [44]. As described in Chapter 1, the influence function approximates the effect of

upweighting a training sample on the loss for a specific test point. We use IF to approximate

the change in the loss after removing a triple as:

Iup,loss(⟨s′, r′, o⟩, ⟨s, r, o⟩) =

−∇θL(⟨s, r, o⟩, θ̂)⊺H−1

θ̂
∇θL(⟨s′, r′, o⟩, θ̂) (3.10)

where ⟨s′, r′, o⟩ and ⟨s, r, o⟩ are training and test samples respectively, θ̂ represents the

optimum parameters and L(⟨s, r, o⟩, θ̂) represents the loss function for the test sample ⟨s, r, o⟩.

Influence function does not scale well, so we only compare our method with IF on the smaller

size KGs.

3.6 Experiments

We evaluate CRIAGE by (3.6.1) comparing CRIAGE estimate with the actual effect of the

attacks, (3.6.2) studying the effect of adversarial attacks on evaluation metrics, (3.6.3) ex-

ploring its application to the interpretability of KG representations, and (3.6.4) detecting

incorrect triples.

3.6.1 Influence Function vs CRIAGE

To evaluate the quality of our approximations and compare them with influence function

(IF), we conduct leave-one-out experiments. In this setup, we take all the neighbors of a

random target triple as candidate modifications, remove them one at a time, retrain the

model each time, and compute the exact change in the score of the target triple. We can

25

20 40 60 80 100
Number of entities

0
200
400
600
800

1000
1200
1400
1600

Ti
m

e
(s

)

IF (d=5)
IF (d=10)
CRIAGE (d=5)
CRIAGE (d=10)

Figure 3.3: Influence function vs CRIAGE. We plot the average time (over 10 facts) of
influence function (IF) and CRIAGE to identify an adversary as the number of entities in
the Kinship KG is varied (by randomly sampling subgraphs of the KG). Even with small
graphs and dimensionality, IF quickly becomes impractical.

use the magnitude of this change in score to rank the candidate triples, and compare this

exact ranking with ranking as predicted by: CRIAGE-Remove, influence function with and

without Hessian matrix, and the original model score (with the intuition that facts that the

model is most confident of will have the largest impact when removed). Similarly, we evaluate

CRIAGE-Add by considering 200 random triples that share the object entity with the target

sample as candidates, and rank them as above.

The average results of Spearman’s ρ and Kendall’s τ rank correlation coefficients over 10

random target samples is provided in Table 3.3. CRIAGE performs comparably to the

influence function, confirming that our approximation is accurate. Influence function is

slightly more accurate because it uses the complete Hessian matrix over all the parameters,

while we only approximate the change by calculating the Hessian over o. The effect of this

26

Methods
Nations Kinship

Adding Removing Adding Removing

ρ τ ρ τ ρ τ ρ τ

Ranking Based on Score 0.03 0.02 -0.01 -0.01 -0.09 -0.06 0.01 0.01
Influence Function without Hessian 0.15 0.12 0.12 0.1 0.77 0.71 0.77 0.71
CRIAGE (Brute Force) 0.95 0.84 0.94 0.85 0.99 0.97 0.99 0.95
Influence Function 0.99 0.95 0.99 0.96 0.99 0.98 0.99 0.98

Table 3.3: Ranking Modifications by Impact on Target. We compare the true ranking
of candidate triples with a number of approximations using ranking correlation coefficients.
We compare our method with influence function (IF) with and without Hessian, and ranking
the candidates based on their score, on two KGs (d = 10, averaged over 10 random targets).
For the sake of brevity, we represent Spearman’s ρ and Kendall’s τ rank correlation coefficients
simply as ρ and τ .

difference on scalability is dramatic, limiting IF to very small graphs and small embedding

dimensionality (d ≤ 10) before we run out of memory. In Figure 3.3, we show the time to

compute a single adversary by IF compared to CRIAGE, as we steadily grow the number of

entities (randomly chosen subgraphs), averaged over 10 random triples. As it shows, CRIAGE

is mostly unaffected by the number of entities while IF increases quadratically. Considering

that real-world KGs have tens of thousands of times more entities, making IF infeasible for

them.

3.6.2 Robustness of Link Prediction Models

Now we evaluate the effectiveness of CRIAGE to successfully attack link prediction task by

adding false facts. The goal here is to identify the attacks for triples in the test data, and

measuring their effect on MRR and Hits@ metrics (ranking evaluations) after conducting the

attack and retraining the model.

Since this is the first work on adversarial attacks for link prediction, we introduce several

baselines to compare against our method. For finding the adversarial fact to add for the

target triple ⟨s, r, o⟩, we consider two baselines: (1) choosing a random fake fact ⟨s′, r′, o⟩

27

Models
YAGO3-10 WN18

All-Test Uncertain-Test All-Test Uncertain-Test

MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1

D
is

tM
u
lt

DistMult 0.458 37 (0) 1.0 100 (0) 0.938 93.1 (0) 1.0 100 (0)
+ Adding Random Attack 0.442 34.9 (-2.1) 0.91 87.6 (-12.4) 0.926 91.1 (-2) 0.929 90.4 (-9.6)
+ Adding Opposite Attack 0.427 33.2 (-3.8) 0.884 84.1 (-15.9) 0.906 87.3 (-5.8) 0.921 91 (-9)

+ CRIAGE-Add 0.379 29.1 (-7.9) 0.71 58 (-42) 0.89 86.4 (-6.7) 0.844 81.2 (-18.8)
+ CRIAGE-FT 0.387 27.7 (-9.3) 0.673 50.5 (-49.5) 0.86 79.2 (-13.9) 0.83 74.5 (-25.5)
+ CRIAGE-Best 0.372 26.9 (-10.1) 0.658 49.3 (-50.7) 0.838 77.9 (-15.2) 0.814 72.7 (-27.3)

C
on

vE

ConvE 0.497 41.2 (0) 1.0 100 (0) 0.94 93.3 (0) 1.0 100 (0)
+ Adding Random Attack 0.474 38.4 (-2.8) 0.889 83 (-17) 0.921 90.1 (-3.2) 0.923 89.7 (-10.3)
+ Adding Opposite Attack 0.469 38 (-3.2) 0.874 81.9 (-18.1) 0.915 88.9 (-4.4) 0.908 88.1 (-11.9)

+ CRIAGE-Add 0.454 36.9 (-4.3) 0.738 61.5 (-38.5) 0.897 87.8 (-5.5) 0.895 87.6 (-12.4)
+ CRIAGE-FT 0.441 33.2 (-8) 0.703 57.4 (-42.6) 0.865 80 (-13.3) 0.874 79.5 (-20.5)
+ CRIAGE-Best 0.423 31.9 (-9.3) 0.677 54.8 (-45.2) 0.849 79.1 (-14.2) 0.858 78.4 (-21.6)

Table 3.4: Robustness of Representation Models, the effect of adversarial attack on
link prediction task. We consider two scenarios for the target triples, (1) choosing the whole
test dataset as the targets (All-Test) and (2) choosing a subset of test data that models are
uncertain about them (Uncertain-Test).

(Random Attack); (2) finding (s′, r′) by first calculating f(s, r) and then feeding −f(s, r)

to the decoder of the inverter function (Opposite Attack). In addition to CRIAGE-Add,

we introduce two other alternatives of our method: (1) CRIAGE-FT, which uses CRIAGE

to increase the score of fake fact over a test triple, i.e., we find the fake fact the model ranks

second after the test triple, and identify the adversary for them, and (2) CRIAGE-Best

that selects between CRIAGE-Add and CRIAGE-FT attacks based on which has a higher

estimated change in score.

All-Test The result of the attack on all test facts as targets is provided in the Table 3.4.

CRIAGE-Add outperforms the baselines, demonstrating its ability to effectively attack the

KG representations. It seems DistMult is more robust against random attacks, while ConvE

is more robust against designed attacks. CRIAGE-FT is more effective than CRIAGE-Add

since changing the score of a fake fact is easier than of actual facts; there is no existing

evidence to support fake facts. We also see that YAGO3-10 models are more robust than

those for WN18. Looking at sample attacks (provided in Appendix A), CRIAGE mostly tries

to change the type of the target object by associating it with a subject and a relation for a

28

0 1 2 3 4 5 6 7 8
Change in Hits@1

isAffiliatedTo

playsFor

isConnectedTo

isMarriedTo

4.50

3.30

7.20

5.80

0.70

4.60

6.90

6.40

Hits@1 Change in Per-Relation Breakdown
DistMult
ConvE

Figure 3.4: Per-Relation Breakdown showing the effect of CRIAGE-Add on different relations
in YAGO3-10.

different entity type.

Uncertain-Test To better understand the effect of attacks, we consider a subset of test

triples that (1) the model predicts correctly, (2) difference between their scores and the

negative sample with the highest score is minimum. This “Uncertain-Test” subset contains

100 triples from each of the original test sets, and we provide results of attacks on this data in

Table 3.4. The attacks are much more effective in this scenario, causing a considerable drop

in the metrics. Further, in addition to CRIAGE significantly outperforming other baselines,

they indicate that ConvE’s confidence is much more robust.

Relation Breakdown We perform additional analysis on the YAGO3-10 dataset to gain

a deeper understanding of the performance of our model. As shown in Figure 3.4, both

of the DistMult and ConvE provide a more robust representation for isAffiliatedTo

29

Rule Body, R1(a, c) ∧R2(c, b) ⇒ Target, R(a, b)

Common to both
isConnectedTo(a, c)∧ isConnectedTo(c, b) isConnectedTo
isLocatedIn(a, c)∧ isLocatedIn(c, b) isLocatedIn
isAffiliatedTo(a, c)∧ isLocatedIn(c, b) wasBornIn
isMarriedTo(a, c)∧ hasChild(c, b) hasChild

only in DistMult
playsFor(a, c)∧ isLocatedIn(c, b) wasBornIn
dealsWith(a, c)∧ participatedIn(c, b) participatedIn
isAffiliatedTo(a, c)∧ isLocatedIn(c, b) diedIn
isLocatedIn(a, c)∧ hasCapital(c, b) isLocatedIn

only in ConvE
influences(a, c)∧ influences(c, b) influences
isLocatedIn(a, c)∧ hasNeighbor(c, b) isLocatedIn
hasCapital(a, c)∧ isLocatedIn(c, b) exports
hasAdvisor(a, c)∧ graduatedFrom(c, b) graduatedFrom

Extractions from DistMult [107]
isLocatedIn(a, c) ∧ isLocatedIn(c, b) isLocatedIn
isAffiliatedTo(a, c) ∧ isLocatedIn(c, b) wasBornIn
playsFor(a, c) ∧ isLocatedIn(c, b) wasBornIn
isAffiliatedTo(a, c) ∧ isLocatedIn(c, b) diedIn

Table 3.5: Extracted Rules for identifying the most influential link. We extract the patterns
that appear more than 90% times in the neighborhood of the target triple. The output of
CRIAGE-Remove is presented in red.

and isConnectedTo relations, demonstrating the confidence of models in identifying them.

Moreover, the CRIAGE affects DistMult more in playsFor and isMarriedTo relations while

affecting ConvE more in isConnectedTo relations.

3.6.3 Interpretability of Models

To be able to understand and interpret why a link is predicted using the opaque, dense

embeddings, we need to find out which part of the graph was most influential on the

prediction. To provide such explanations for each predictions, we identify the most influential

fact using CRIAGE-Remove. Instead of focusing on individual predictions, we aggregate the

30

0 10 20 30 40 50 60 70
Performance

Hits@1

Hits@2

Noise in the form of s′, r, o

Random Detection
Lowest Score
AALP

(a) Adding noise in the form of ⟨s′, r, o⟩.

0 10 20 30 40 50 60
Performance

Hits@1

Hits@2

Noise in the form of s′, r, o

Random Detection
Lowest Score
AALP

(b) Adding noise in the form of ⟨s′, r′, o⟩.

Figure 3.5: The accuracy of detecting errors in the neighborhood of 100 chosen samples. We
choose the neighbor with the highest value according to Eq equation 3.11 as the incorrect
fact. This experiment assumes we know each target fact has exactly one error.

explanations over the whole dataset for each relation using a simple rule extraction technique:

we find simple patterns on subgraphs that surround the target triple and the removed fact

from CRIAGE-Remove, and appear more than 90% of the time. We only focus on extracting

length-2 horn rules, i.e., R1(a, c) ∧R2(c, b) ⇒ R(a, b), where R(a, b) is the target and R2(c, b)

is the removed fact.

Table 3.5 shows extracted YAGO3-10 rules that are common to both models, and ones that

are not. The rules show several interesting inferences, such that hasChild is often inferred

via married parents, and isLocatedIn via transitivity. There are several differences in how

the models reason as well; DistMult often uses the hasCapital as an intermediate step

for isLocatedIn, while ConvE incorrectly uses isNeighbor. We also compare against the

rules extracted [107] for YAGO3-10 that utilizes the structure of DistMult: they require

domain knowledge on types and cannot be applied to ConvE. Interestingly, the extracted

rules contain all the rules provided by CRIAGE, demonstrating that CRIAGE can be used to

accurately interpret models, including ones that are not interpretable, such as ConvE. These

are preliminary steps toward the interpretability of link prediction models, and we leave more

analysis of interpretability to future work.

31

0 5 10 15 20 25 30 35 40
Performance

Hits@1

Hits@2

Noise in the form of s′, r, o

Random Detection
Lowest Score
AALP

(a) Adding noise in the form of ⟨s′, r, o⟩.

0 10 20 30 40
Performance

Hits@1

Hits@2

Noise in the form of s′, r, o

Random Detection
Lowest Score
AALP

(b) Adding noise in the form of ⟨s′, r′, o⟩.

Figure 3.6: The accuracy of detecting errors in the neighborhood of 100 chosen samples. We
choose the neighbor with the highest value according to Eq equation 3.11 as the incorrect
fact. This experiment assumes we know each target fact has exactly one error.

3.6.4 Finding Errors in Knowledge Graphs

Here, we demonstrate another potential use of adversarial modifications: finding erroneous

triples in the knowledge graph. Intuitively, if there is an error in the graph, the triple is

likely to be inconsistent with its neighborhood, and thus the model should put the least

trust in this triple. In other words, the error triple should have the least influence on the

model’s prediction of the training data. Formally, to find the incorrect triple ⟨s′, r′, o⟩ in the

neighborhood of the train triple ⟨s, r, o⟩, we need to find the triple ⟨s′, r′, o⟩ that results in

the least change ∆(s′,r′)(s, r, o) when removed from the graph, i.e.:

argmin
(s′,r′)

∆(s′,r′)(s, r, o) (3.11)

To evaluate this application, we inject random triples into the graph, and measure the ability

of CRIAGE to detect the errors using our optimization. We consider two types of incorrect

triples: (1) incorrect triples in the form of ⟨s′, r, o⟩ where s′ is chosen randomly from all

of the entities, and (2) incorrect triples in the form of ⟨s′, r′, o⟩ where s′ and r′ are chosen

32

(a) Adding noise in the form of ⟨s′, r, o⟩. (b) Adding noise in the form of ⟨s′, r′, o⟩.

Figure 3.7: We plot the number of predicted errors vs the number of correctly detected errors
by assigning a global threshold on the approximation of the change of targets’ score.

randomly. We choose 100 random triples from the observed graph, and for each of them, add

an incorrect triple (in each of the two scenarios) to its neighborhood. Then, after retraining

DistMult on this noisy training data, we identify error triples through a search over the

neighbors of the 100 facts. The result of choosing the neighbor with the least influence on

the target is provided in Figures 3.5 and 3.6. When compared with baselines that randomly

choose one of the neighbors, or assume that the fact with the lowest score is incorrect, we see

that CRIAGE-based approximation outperforms both of these with a considerable gap, and

obtains an accuracy of 42% and 55% in detecting errors.

We also study the scenario where we do not assume we know that each target fact has a

single error in its neighbor; instead only know about the total number of errors. We plot

the number of predicted errors vs. the number of correctly detected errors by assigning a

global threshold on the approximation of the change of scores for 1512 neighbors of our

target samples in the Figure 3.7. Similar to accuracy, our method provides a more accurate

detection of errors compared to the baselines.

33

3.7 Related Work

Learning relational knowledge representations has been a focus of active research in the past

few years, but to the best of our knowledge, this is the first work on conducting an adversarial

modifications on the link prediction task.

Knowledge graph embedding There is a rich literature on representing knowledge

graphs in vector spaces that differ in their scoring functions. Although CRIAGE is primarily

applicable to multiplicative scoring functions [61, 89, 108, 101], these ideas are expandable to

additive scoring functions [12, 105, 47, 59] as well.

Furthermore, there is a growing body of literature that incorporates an extra type of

evidence to provide a more informative embeddings by combining the entity and its feature

representations. We can further utilize the CRIAGE on those that build their embeddings on

top of a multiplicative scoring function. As a result, using CRIAGE, we can gain a deeper

understanding of these methods, which use an extra type of evidence such as numerical

values [29], images [62], text [99, 100, 102], and a combination of them [65].

Interpretability and Adversarial Modification There has been a significant recent

interest in conducting adversarial attacks on different machine learning models [10, 63, 27,

112, 113] to attain interpretability, and further evaluate the robustness of those models.

[44] uses influence function to provide a novel approach to understand black-box models by

studying the changes in the loss occurring as a result of changes in the training data. In

addition to incorporating their established method on KGs, we derive a novel approach that

differs from their procedure in two ways: (1) instead of changes in the loss, we consider the

changes in the scoring function, which is more appropriate for KG representations, and (2)

in addition to searching for the attack, we introduce a gradient-based method that is much

faster, especially for “adding an attack triple” (the size of search space makes the influence

34

function method infeasible). Previous work has also considered adversaries for KGs, but as

part of training to improve their representation of the graph [55, 16].

Adversarial Attack on KG Although this is the first work on adversarial attacks for link

prediction, there are two approaches [22, 115] that consider the task of adversarial attack on

graphs. There are a few fundamental differences from our work: (1) they build their method

on top of a path-based representation while we focus on embeddings, (2) they consider node

classification as the target of their attacks while we attack link prediction, and (3) they

conduct the attack on small graphs due to restricted scalability, while the complexity of our

method does not depend on the size of the graph, but only the neighborhood, allowing us to

attack real-world graphs.

3.8 Conclusions

Motivated by the need to analyze the robustness and interpretability of link prediction

models, in this chapter, I present a novel approach for conducting adversarial modifications

to knowledge graphs. I introduce CRIAGE, an adversarial modification for link prediction

models: identifying the fact to add into or remove from the KG that changes the prediction

for a target fact. CRIAGE uses (1) an estimate of the score change for any target triple

after adding or removing another fact, and (2) a gradient-based algorithm for identifying

the most influential modification. We show that CRIAGE can effectively reduce ranking

metrics on link prediction models upon applying the attack triples. Further, we incorporate

the CRIAGE to study the interpretability of KG representations by summarizing the most

influential facts for each relation. Finally, using CRIAGE, we introduce a novel automated

error detection method for knowledge graphs. Code to reproduce the results is available here:

https://pouyapez.github.io/criage.

35

https://pouyapez.github.io/criage

Chapter 4

Problematic Patterns in Knowledge Bases

and Shortcomings of Evaluation of

Completion Models

4.1 Introduction

As mentioned in previous chapters, most knowledge graphs, in practice, are often substantially

incomplete and contain noise. Unfortunately, the lack of a complete and accurate KG is a

problem for the evaluation of link prediction models as well. Since it is not possible to list

all possible true and false facts for a KG of interest, existing evaluation of KGC consists

of gathering known true facts, and using: (1) ranking metrics, such as Hits@N and Mean

Reciprocal Rank (MRR), to calculate the relative rank of these known true facts against

all unknown facts (thus implicitly treated as negative), and (2) classification accuracy of

individual facts, by treating random corruptions of a known true fact as negative/false facts.

In spite of steady and significant progress on these models, it is not clear whether these

36

metrics correspond to the true performance on link prediction, making it difficult to decide

whether they are ready for real-world deployment. Further, due to the strong assumptions

made by these evaluation metrics, the strengths, shortcomings, and reasoning capabilities

underlying these link prediction methods is difficult to determine, hindering further progress

of the field.

In this chapter, we study significant issues with the current evaluation metrics for knowledge

graph completion models, in particular, highlighting the impact of the assumptions made

by these metrics on model performance. We show that the ranking metrics often do not

correlate well with the actual performance of the model, making it incredibly challenging to

determine whether these models are well-calibrated or not (an essential property for real-world

deployment), and do not correlate well with the reasoning power of the models. For triple

classification, upon a detailed examination of several commonly used benchmarks, we show

that the metric is heavily sensitive to the choice of negative sampling, and that there is a

significant mismatch between accuracy and the ranking metrics.

To address these shortcomings in existing benchmarks, we introduce YAGO3-TC, a high-

quality, manually-annotated dense sub-graph of the YAGO3-10 KG. Along with the true facts

that are already present in test and validation splits of the existing benchmark, YAGO3-TC

also includes related facts involving the same entities that are annotated to be true or false via

crowdsourcing. These related facts are designed to be somewhat challenging to discriminate

since they are high-scoring by recent accurate models, resulting in 28,364 labeled facts out

of which 2,976 are positive. Since we ensure the quality of the annotations, classification

metrics such as accuracy, precision/recall, etc., can be used to appropriately evaluate models

of knowledge graph completion.

We also provide a comprehensive analysis of recent KG completion models, given the high-

quality annotations in YAGO3-TC, using triple classification metrics. We are able to

provide accurate calibration results for completion models, showing that they are significantly

37

overconfident (consistent with existing results for neural networks, but different from other

observations for KGC). Further, we observe that there is a significant mismatch between

ranking metrics and performance on the completion task (e.g., there is more than 20% gap

between Hits@1 and Precision). Most importantly, we show that the progress in performance

indicated by ranking metrics does not align with the actual completion task; simple methods

achieve similar performance to state-of-art models.

4.2 Background and Notation

In this section, we introduce benchmarks, evaluation procedures, and a brief overview of

existing relational embedding approaches to knowledge graph completion. More details on

existing benchmarks and implementation details are provided in Appendix B.

Embedding Based KGC: As described previously, To model a KG for link prediction,

a scoring function ψ : ξ × R × ξ → R is learned to evaluate whether any given fact is

true. In this chapter, as scoring functions, we will primarily study DistMult [108] due to its

simplicity and popularity, and RotatE [94] and Tucker [7] because of their state-of-the-art

performance. Also, we use the same setup as previous chapters for training, i.e., using the

binary cross-entropy loss on the score of positive and negative triples.

Ranking Metrics: To evaluate the performance of the KG completion models, we rank test

triples against all possible negative samples, generated by corrupting the subject or object of

the target triple. Ranking metrics have been used since existing KGs are open-world, and

the ground truth label for all negative and positive samples is not available. In the filtered

setting, which we consider in this chapter, we only treat triples that do not appear in the

training, validation, or test set, as possible negative samples. To quantify the ranking of

target triples, we use standard evaluation metrics such as Mean Reciprocal Rank (MRR),

38

which is the average inverse rank of all test triples, and Hits@N, which is the percentage of

test triples whose rank is lower (better) than or equal to N.

Triple classification: Triple classification is the task of binary classification on the KGs

triples. This task is important because, if appropriately set up, it directly evaluates the

capability of KGC models in identifying missing links. Specifically, given a target triple

⟨s, r, o⟩, we want to identify if this is a positive/true fact or a negative one. For this task,

previous approaches learn a specific threshold τr for each relation, over validation data. In

order to create the negative samples in these approaches, for both validation and test data,

they corrupt the subject or object of the target triple with a random entity from the KG.

After learning thresholds τr, a triple is assumed to be positive if its score is higher than the

threshold for the triple’s relation.

4.3 Issues in Existing KG Completion Evaluation

In this section, we discuss some issues prevalent in current evaluation metrics, and provide

empirical evidence for their shortcomings. First, we observe that the assumptions underlying

ranking metrics are often incompatible with the goals of the completion itself. Then, we show

that evaluating how well completion models are calibrated is challenging since the results

are incredibly sensitive to the setup design choices. Finally, we show that the results of the

ranking metrics are often inconsistent with the results of the triple classification evaluation.

4.3.1 Assumptions in Ranking Metrics

In the past few years, we have observed tremendous progress in the performance of KG

completion models, based on ranking metrics. As these models become increasingly accurate

39

and potentially ready for real-world deployment, it is now useful to understand the extent to

which these ranking metrics align with the actual goals of the completion task.

Let us consider a simple example. Assume we want to validate whether triple ⟨s, r, o⟩ is true

or not. According to the current procedure, our only option is to rank the score of all possible

objects (triples of the form ⟨s, r, o′⟩) and subjects (of the form ⟨s′, r, o⟩) and compute the

rank of our target triple. In this case, the ranking metrics such as Hits@N can only tell us

whether this triple appears in the top N possible triples. If the relation of our target triple

can accept only one true object, i.e., the relation is N-1, this ranking is meaningful; however,

if multiple objects can be true for our target subject and relation, this ranking is incomplete

since does not capture other triples that are ranked higher than the target fact are themselves

true or not. A similar observation holds for relations for which multiple subjects can be true

for the same object, i.e., a 1-N relation. Unfortunately, on studying two commonly used KGs

WN18RR and YAGO3-10, we notice that this phenomenon happens in a huge portion of the

data, as a result of the existence of semi-inverse relations.

Semi-Inverse Relations in WN18RR: On conducting a simple statistical analysis on

WN18RR, we notice that this KG is not completely free of relations that are the inverse of

each other (which makes the completion task trivial). We notice in more than 90% appearance

of three relations _derivationally_related_form, _verb_group, and _similar_to, and also

more than 60% appearance of _also_see, another triple with the same entities but in the

opposite direction of the original relation appears in the training data. Together, these

relations consist 37% of this KG. Moreover, around one-third of triples in the test data

contain one of these relations; the KGC models achieve more than 0.95 MRR performance

on this subset, significantly affecting the overall performance.

Semi-Inverse Relations in YAGO3-10: Along the similar lines, in YAGO3-10, for 75%

of the triples with relation isAffiliatedTo, the triple with relation playsFor appears between

40

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0.0

0.2

0.4

0.6

0.8

1.0
Ra

tio
 o

f p
os

iti
ve

s

Tucker
RotatE
DistMult

(a) Random-N on YAGO3-10

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

os
iti

ve
s

Tucker
RotatE
DistMult

(b) Constraint-N on YAGO3-10

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

os
iti

ve
s

Tucker
RotatE
DistMult

(c) Careful-N on YAGO3-10

Figure 4.1: Calibration study on different KGs based on three negative sampling procedures.
We plot reliability diagrams of the fraction of positive triples to all the triples vs the link
prediction models’ score for a target triple. Being closer to the diagonal means the model is
more calibrated.

the same object and subject (87% for reverse). These relations consist of 63% of test data,

81% of which have the other relation between the same subject and object in the training

data. Note that embedding methods achieve around 0.95 of MRR performance on these

triples.

The existence of these semi-inverse relations results in two important conclusions. First, it

indicates that the performance based on ranking metrics on these KGs is not trustworthy

since it is very easy to predict these triples. Second, since these relations can accept many

objects (and subjects) for the same subject (and object), and embedding methods score all

of those objects (and subject) very highly (since their semi-inverse version of them appear in

the training data), low values of ranking metrics are clearly not an accurate assessment of

completion on these triples. More specifically, for a target triple with one of the mentioned

relations, as the number of true objects or subjects with semi-inverse relation increases, the

chance of obtaining a worse ranking increases as well.

41

4.3.2 Evaluating Calibration of the Models

Calibration is a very important aspect of KG completion that has only recently received

attention [97]. Treating the probability of the truth of a fact (σ(ψ(s, r, o)) for triple ⟨s, r, o⟩)

as the confidence of the model for the triple, we consider our model to be calibrated if the

confidence aligns with the rate of true facts. In other words, if confidence is equal to 0.5, we

expect to have around 50% of triples with this confidence to be true. If this proportion is far

from 50%, then the model is not calibrated (the model is under-confident if the proportion is

higher, and over-confident if it is lower). Since the evaluation only consists of true facts, we

need to obtain negative/false facts by sampling. We use three different negative sampling

procedures: (1) randomly replacing the subject or object with an entity from all possible

ones (Random-N), commonly used in KG completion literature, (2) randomly replacing the

subject or object with an entity that has appeared at least once with the target relation

in the training data (Constraint-N), which was used by [89] to generate more challenging

negative samples, and (3) choose the highest scoring negative sample that has the object

(or subject) with a different type than the target triple object (Careful-N). By choosing the

object (or subject) that has a different type than the target triple entities, we enforce the

chosen negative sample be a true negative. We define entity type as the set of entities that

have appeared with similar relations (see Appendix B for a precise definition).

The result of the calibration study based on above negative samples is shown for YAGO3-10

in Figure 4.1 (calibration plot for WN18RR and FB15k-237 and histogram plot of score

distributions is provided in Appendix B). Note that even though negative samples for these

three negative sampling methods are different, we generate each plot on the same set of

negative samples for the three models. Although these results show that RotatE provides

more calibrated models compared to Tucker in all the negative sampling procedures, the

advantage of RotatE over DistMult changes with different negative samples (in Random-N,

DistMult appears better than RotatE). Further, we suspect the reason behind the peculiar

42

behavior of Tucker in Figure 4.1c is due to the fact that Tucker tends to score many triples

(both positive and negative triples) very highly for specific relations, such as hasGender

and isLocatedIn. Moreover, as we make the negative sampling more challenging, we see

extremely different behavior from the models, some result in a much more calibrated plot

compared to others (e.g., RotatE looks calibrated for Careful-N, but not for the rest), making

these benchmarks inconclusive for calibration. For WN18RR and FB15k-237, although

DistMult outperforms the other two methods completely, we observe similar behaviors in

calibration plots. Last, these plots also indicate that the models are under-confident, which

is inconsistent with similar studies on neural networks [33]. For a comparison that takes the

model complexity into account, we include results for models that have the same number of

parameters in Appendix B.

4.3.3 Simple Models Look Accurate

In this section, we evaluate the reasoning capabilities of current link prediction methods.

More specifically, we wanted to see how far in performance on ranking metrics we can get

to by adopting very simple methods and see if ranking metrics can properly differentiate

between SOTA models and these simple approaches. We first study rule-based methods that

only predict ranking for triples that have their semi-inverse relations in the training data.

Then, introducing a local score that learns simple neighborhood patterns, we see unexpectedly

high performance on ranking metrics, casting doubt on the capability of ranking metrics to

accurately evaluate KGC methods.

Rule-based Link Prediction: To see the effect of semi-inverse relations on the performance

of link prediction methods, we provide a very simple rule-based method. For WN18RR and

YAGO3-10 target triples, we identify all objects for which the target subject appears with

a semi-inverse relation in the training data, and vice versa for the subjects. Then we rank

43

these entities based on their popularity (their degree in the graph) in the KG. The result

of this rule-based method is provided in Table 4.1. As shown, for both of YAGO3-10 and

WN18RR, this method achieves high performance.

Local Score: We also study an alternate, simple model, using just the local structure

around the target triple. For each target triple, we compute a local score by finding all paths

from the subject to object and score them in the context of the relation of the target triple

(a simpler version of this local score is studied in [98]). Specifically, we define the local score

as: Loc(s, r, o) = σ(
∑

p∈P (s,o)W
p
r) , where P (s, o) denotes the set of all the paths between s

and o. To learn W p
r we generate negative samples by randomly corrupting the r. A visual

representation of the local score is provided in Appendix B. For FB15K-237 that is denser

than WN18RR and YAGO3-10, for each relation, we consider the top 5 most frequent paths

with length 2 between the subject and the object of triples with that relation1. For WN18RR

and YAGO3-10, since most of the triples do not have paths with length 2 between their

entities, we only score simple patterns with length 3 in our model. More specifically, these

paths comprise of patterns that have one edge with the same relation as the target sample

(with the same direction). Further, they should have the same relation for the other two edges

but in a different direction. More details and visualization of these patterns are provided

in Appendix B. The result of link prediction on our benchmarks is provided in Table 4.1.

As it shows, in all three KGs, our local score performs comparably to embedding methods

while having a much fewer number of parameters. The high performance of both these simple

models raises questions about the utility of ranking metrics and existing benchmarks.
1Around 70% the test triples have at least one of these patterns in their neighborhood

44

Models
FB15k-237 WN18RR YAGO3-10

MRR Hits@1 # Param MRR Hits@1 # Param MRR Hits@1 # Param

DistMult 0.295 19.8 5.8M 0.428 39.2 8.1M 0.409 31.2 24.6M
RotatE 0.331 23.4 29.3M 0.478 43.4 40.9M 0.471 38.2 123.2M
Tucker 0.342 25.1 11M 0.456 42.8 9.4M 0.468 37.9 63.9M

Rule-Based - - - 0.338 32.1 - 0.286 24.2 -
Local 0.181 12.7 0.3M 0.364 33.4 2k 0.322 25.8 50k

Table 4.1: Link Prediction result for FB15k-237, WN18RR, and YAGO3-10 KGs. All
results are generated using perspective models’ SOTA hyperparameters.

Models
FB15k-237 WN18RR YAGO3-10

Random-N Careful-N Random-N Careful-N Random-N Careful-N

DistMult 95.2 47.6 83.3 39.5 94.9 45.5
RotatE 94.4 49.1 84.8 42.0 86.1 42.9
Tucker 77.6 57.4 72.0 55.8 75.4 45.2

Table 4.2: Triple classification accuracy for random and careful negative sampling.

4.3.4 Problems with Triple Classification with Negative Sampling

To demonstrate that the current approach to evaluating accuracy via triple classification is

inaccurate, we create a fact classifier from completion models (that only provide a score)

by learning a threshold for each relation (following standard practice). The performance of

state-of-art embedding models over several KGs is provided in Table 4.2. As it shows, all the

models achieve very high accuracy performance (around 80%) when we choose both validation

and test negative samples randomly (Random-N). The reason behind this high performance

is mostly due to the naive way of random negative sampling. Moreover, Distmult and RotatE

outperform Tucker’s performance in all three KG (although Tucker often achieves higher or

very similar performance on ranking metrics).

Negative Sampling: There are a few fundamental issues with the current approach to

triple classification: (1) randomly choosing the negative samples results in a very simple

classification, which is not informative for evaluation, and (2) training classifiers (estimating

45

thresholds) based on random negative samples makes the results brittle, i.e., choosing slightly

more challenging negative samples can reduce the performance dramatically. Instead of

random samples, we instead use the challenging Careful-N samples described in Section 4.3.2,

and show results in Table 4.2. As it shows, these negative samples dramatically reduce the

accuracy. Further, although Tucker performs the worst in the random setting, here we see a

smaller reduction in accuracy compared to the other two methods (RotatE appears better

than DistMult). We suspect the reason behind this smaller reduction in accuracy is that

Tucker distinguishes between positive and hard negative samples better, i.e., on average,

assigns considerably higher scores to positive samples in comparison to hard negatives.

Mismatch between Ranking Metrics and Accuracy: We also evaluate these models

on triple classification in Table 4.3 for Kinship and Nations, which have all the true facts

available (all missing facts are false, and can be enumerated). As the negative samples, we

consider the union of the top 10 negative objects and subjects based on trained RotatE

and Tucker models. Although these models achieve around 0.8 MRR and 100% Hits@10

performance, they demonstrate much lower performance on accuracy metrics showing that

these ranking metrics are not trustworthy. Moreover, if we classify the negative and positive

samples for Kinship and Nations KGs only based on the compatibility of their subject and

object with the relation, based on our defined notion of type (Type Constraint), we see that

Type Constraint achieves comparable results with these embedding methods, questioning the

credibility of the ranking metrics and performance of these embedding methods.

46

Models
Kinship Nations

Acc F1 Recall Precision Acc F1 Recall Precision

Distmult 58.8 7.6 34.8 4.3 86 24 25.6 22.9
RotatE 10.6 10 97.3 5.3 66.9 27.2 69.6 16.9
Tucker 86.2 38.8 83.7 25.2 55.6 18.9 66.6 11

Type Constraint 28.9 12.0 94.6 6.4 47.6 22.8 87.0 13.1

Table 4.3: Triple classification accuracy on ground truth labels. The results are averaged
over 5 runs.

4.4 YAGO3-TC: A New Benchmark for Evaluating KG

Completion

In this section, we first describe our procedure to gather YAGO3-TC dataset, and then, we

explain our plans to continuously update YAGO3-TC as new KG completion models are

proposed.

4.4.1 Creating YAGO3-TC

To solve these issues with KG completion evaluation, we gather a dataset that contains true

and false facts, but is also challenging for current models. Note that in this chapter, we

are not suggesting that we should completely replace the ranking metrics for all use cases,

but point out their shortcomings, and introduce a benchmark to compute other metrics.

Since each embedding model scores triples differently, we use RotatE [94] and Tucker [7] as

our judges for identifying important triples. More specifically, we first sample 1000 random

triples from the test set of YAGO3-10 (the relation distribution histogram of YAGO3-10 test

data and our 1000 sampled triples is very similar, as provided in Appendix B). To reduce

the effect of semi-inverse relations, we do not consider triples with relation isAffiliatedTo in

our samples. Then, applying trained RotatE and Tucker on these triples, we find the 10

47

Carles Puyol

Male

Spain National Team

Barcelona

Catalonia National Team

Real Madrid

Man United

Carles Puyol plays for?

Catalonia National Team ✓ ✓ ×

Barcelona ✓ ✓ ✓

Real Madrid ✓ × ×

Man United × × ×

Carles Puyol plays for?

Real Madrid × ×

Initial Annotations (Round 1)

Selective Reannotation

(Round 2)✓ Catalonia National Team

✓ Barcelona
× Man United

? Real Madrid

Carles Puyol

Male

Spain National Team

Barcelona

Catalonia National Team

Real Madrid

Man United

(a) Overview of crowdsourcing process.

Test # Valid

Triples 28,364 2,946
Positives 2,976 223
Negatives 25,388 2,723

(b) Data Statistics.

Figure 4.2: YAGO3-TC Dataset. (a) annotation process, and (b) statistics of the resulting
data

top scoring objects for the query ⟨s, r, ?⟩ and 10 top scoring subjects for ⟨?, r, o⟩. Excluding

repeated triples, we gathered 28,364 triples/facts.

We need to label these triples as negative (false) and positive (true). Before conducting

crowd-sourcing to label these triples, there are a few criteria to identify the true label of

some of these triples: (1) if the relation of the target triple is N-1 (or 1-N) we can treat every

object (or subject) as a negative sample, except for the original target object (or subject),

and (2) if the object (subject) of a sample does not have the same type as the object (subject)

of the original test triple, we can treat that sample as negative. Filtering these identifiable

samples, we label the rest through crowd-sourcing.

48

For labeling the samples, we ask the users to search the information on the Wikipedia page

of the entities and use the Google search engine. For example, we ask users to choose all the

correct teams for the query “Carles Puyol plays for?” from provided options. We use Amazon

Mechanical Turk as the framework for gathering the labels and ask three users to answer

each query. If more than one user agree on an answer, we treat that triple as a positive one.

We separately reannotate the objects that were picked only by one of the users. This time,

we ask two users to check these samples, and if both of them agree on a correctness of a

choice, we treat it as a positive sample. After creating the set of positive labels, we treat

everything else as negative samples. An overview of our user study is depicted in Figure 4.2a.

Further, after randomly choosing 100 samples from the validation data of YAGO3-10, we

use the same procedure for gathering labels for our validation data. Since we intend to use

these labels to find the thresholds of the models, we ensure that at least one triple for each

relation that appears in this set. The dataset statistics are provided in Table 4.2b. To check

the quality of our labels, we also include 100 true facts from the original test data in our

study, and find that 96% of these triples were annotated to be positive, demonstrating the

high quality of our labels.

4.4.2 Continuously Updated, Hidden Benchmark

Although we are confident about the quality of the true/false annotations, we select the

candidates based on the output of the two recent models, RotatE and Tucker. As new

models will be proposed, they may be able to differentiate between our gathered true and

false facts, but may highly rank facts that are not in our dataset. In order to maintain

a benchmark that is useful for evaluating knowledge base completion in the long run,

we propose a web-hosted evaluation platform. The online platform, available at https:

//pouyapez.github.io/yago3-tc/ , includes a hidden test set, and a leaderboard of model

submissions. The test set, initialized with the YAGO3-TC dataset described here, will

49

https://pouyapez.github.io/yago3-tc/
https://pouyapez.github.io/yago3-tc/

continuously be updated as we receive model predictions from the submissions, thus identifying

more challenging candidate facts, via the same crowdsourcing pipeline described above.

4.5 Evaluation Using YAGO3-TC

In this section, we investigate the triple classification evaluation using our new dataset. We

first study the performance of several embedding models on the dataset and introduce new

simple techniques to improve current models. Then, comparing the calibration of the triple

classification task with the ranking scenario, we demonstrate this task is better defined.

Finally, we study the per-relation breakdown of accuracy to better assess model performance.

4.5.1 Performance of Existing KGC Models on YAGO3-TC

To provide a better evaluation procedure for KG completion, we study accuracy metrics

on our gathered data. The averaged result of SOTA methods in YAGO3-TC over 5 runs

is provided in Table 4.3a. As it shows, except for recall, Tucker outperforms RotatE. We

note that, in this experiment, accuracy and precision are the metrics we care about the most

because it is important to avoid labeling a triple as positive incorrectly. Moreover, comparing

the results with ranking metrics in Table 4.1, we see a significant mismatch between these

metrics and the ranking ones.

We also consider 3 baselines for our benchmark, 1) randomly assigning labels using the actual

ratio of positives and negatives as the probability, 2) classifying based on the compatibility

of the type of subject and the object with the relation, and 3) training our classifier using

the scores of our local models from Section 4.3.3. All of these baselines achieve comparable

results with embedding methods demonstrating the need for better training and models.

We are also interested in investigating whether we can improve these performances with

50

Relation
DistMult RotatE Tucker

Acc F1 R P Acc F1 R P Acc F1 R P

playsFor 25.9 23.2 85.6 13.4 20.6 22.8 89.8 13 73.5 29.1 41.6 22.4
isLocatedIn 35.4 23.2 83.8 13.5 21.7 20.3 85.6 11.5 45 23.7 73.4 14.1
wasBornIn 22.9 5.5 75.3 2.8 15.3 5.6 84.3 2.9 62.4 3.6 23.4 1.9
hasGender 78.4 32.4 92.6 19.7 94.7 45.3 38.9 54.4 97.9 82.2 85.2 79.4

Table 4.4: Per-Relation Breakdown

simple modifications on the learning process. First, instead of random negative sampling on

validation data, use our gathered validation data as the training data for triple classification

(model-valid). As shown, upon training on our validation data, the accuracy and precision

increase dramatically, and recall drops with a huge gap. To provide a deeper understanding

of the performance, a per-relation breakdown is provided in Appendix B.

4.5.2 Calibration

As we showed, the calibration study on existing evaluation metrics is not a well-defined task.

YAGO3-TC provides us with an opportunity to study calibration in a more controlled and

representative environment. The evaluation of the calibration of YAGO3-TC is depicted in

Figure 4.3b, with the histogram plot of the scores in Appendix B. As shown, Tucker provides

a more calibrated plot compared to RotatE. Moreover, previous calibration curves suggested

models are under-confident, whereas here, the calibration reveals that they are overconfident,

which is consistent with calibration studies on neural network models [33].

4.5.3 Per-Relation Breakdown

We perform a per-relation breakdown analysis on the YAGO3-TC dataset to gain a deeper

understanding of how is the distribution of the model’s performance on different relations.

51

Models Acc F1 R P A-ROC

DistMult 29.4 20.4 86.6 11.6 0.61
RotatE 27.0 19.4 83.7 10.9 0.58
Tucker 63.3 22.3 50.3 14.4 0.64

DistMult-valid 85.6 19.1 14.3 29.1 0.59
RotatE-valid 88.6 18.9 12.8 42.1 0.61
Tucker-valid 79.7 22.1 27.5 18.5 0.56

Random 80.9 10.9 11.1 10.6 0.51
Type Constraint 32.2 20.8 84.8 11.8 0.61
Local 61.0 19.0 43.8 12.2 0.6

(a) Triple classification accuracy on ground truth labels. The results are averaged over 5 runs.

(b) Calibration plot for YAGO3-TC.

Figure 4.3: Triple classification on YAGO3-TC. (a) provides average performance of
embedding methods and our baselines. (b) Depicts the calibration study of embedding
models.

This kind of analysis can help us identify the shortcoming and the strength of our embedding

methods. Table 4.4 compares RotatE and Tucker on the top four most frequent relations.

As shown, RotatE outperforms Tucker in recall except for relation hasGender, and loses

except for F1 and precision for relation wasBornIn. Relations playsFor and isLocatedIn

52

show similar performance over all metrics in RotatE (and almost Tucker), demonstrating

that these models learn similar pattern for these relations. Moreover, both models perform

very poorly in relation wasBornIn, suggesting the difficulty in predicting this type of relation.

While both models predict the relation hasGender with much more confidence, emphasizing

the simplicity in the prediction of this relation.

4.6 Related Work

There is a rich literature on representing knowledge bases using fixed-size embedding vectors.

In the past few years, a number of recent techniques have proposed models that firstly assign

an embedding for each entity and relation, and then use these embeddings to predict facts.

These methods, which primarily only differ in scoring function for link prediction task, include

tensor multiplication [61, 89, 108, 7], algebraic operations [14, 13, 23, 94], and complex neural

models [25, 58]. Furthermore, a number of studies have examined the incorporation of extra

types of evidence to achieve more informative embeddings, with extra modalities consisting of

numerical values [29], images [62], text [99, 100, 102], and their combinations [65]. Utilizing

the analysis in this chapter, we hope to shed more light on better integrating extra modalities

in the vector space to have more informed embeddings.

Although these methods provide accurate models for a variety of KG tasks, only a few

try to provide a better understanding for these models, such as by addressing issues in

training [40, 38, 83], investigating particular triples in the data [3], studying sparsity and

unreliability of KGs [75], analyzing interpretability in the embedding space [87, 70, 4], and

identifying existing issues in KG completion models [95]. Although [97] also study calibration

of link prediction models, there are several differences between our study on calibration: 1) we

show the effect of different negative sampling procedures on the calibration of link prediction

53

methods, and 2) we further provide a well-defined and explicit environment for calibration

study using our proposed YAGO3-TC. Moreover, [84] studies the utility of KG embedding

methods in real-world completion tasks by proposing to calibrate these embedding models

to output reliable confidence estimates for predicted triples. It is worth mentioning that

developing more appropriate and challenging datasets as a way to address shortcomings of

existing benchmarks has been used in other machine learning tasks, such as visual reasoning

[39, 46], semantic parsing, [57] and textual entailment [110], amongst others.

4.7 Conclusion

In this chapter, we set to investigate whether ranking metrics are appropriate measures to

evaluate link prediction models. Upon studying the shortcomings and strengths of the current

adopted procedure, we first show existing issues with ranking metrics: they do not evaluate

completion, are difficult to use for calibration, and are not able to consistently differentiate

between different models. Facing these issues, after redefining the triple classification task,

we gather a new dataset YAGO3-TC consisting of a dense subgraph annotated with both

true and false facts. Exploring several SOTA embedding models on this dataset, we further

provide insights and directions for future works. We hope that this research and dataset

will bridge the gap in the better adoption of link prediction models in real-world scenarios.

The datasets, leaderboard with continuously updated benchmark, and the open-source

implementation of the models are available at https://pouyapez.github.io/yago3-tc/.

We hope this annotation methodology is used for existing and future evaluation benchmarks

in KG completion.

54

https://pouyapez.github.io/yago3-tc/

Chapter 5

Which Training Samples are Truly

Important?

5.1 Introduction

Interpretability methods are intended to help users understand model predictions [80, 49,

96, 31]. In machine learning broadly and NLP specifically, such methods have focused

on feature-based explanations that highlight parts of inputs ‘responsible for’ the specific

prediction. Feature attribution, however, does not communicate a key basis for model

outputs: training data. Recent work has therefore considered methods for surfacing training

examples that were influential for a specific prediction [44, 109, 70, 19, 8, 36]. While such

instance-attribution methods provide an appealing mechanism to identify sources that led to

specific predictions (which may reveal potentially problematic training examples), they have

not yet been widely adopted, at least in part because even approximating influence functions

[44]—arguably the most principled attribution method—can be prohibitively expensive in

terms of computation. Is such complexity necessary to identify ‘important’ training points?

55

A hilarious
romantic
comedy

ŷ = 1
<latexit sha1_base64="00mhe76YrMN0t/3b7j+R/G9n/sU=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvXisYD+kDWWz3bRLN5uwOxFK6K/w4kERr/4cb/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDv1W09cGxGrBxwn3I/oQIlQMIpWeuwOKWbjybXXK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbwhJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDKz8TKkmRKzZfFKaSYEym35O+0JyhHFtCmRb2VsKGVFOGNqOiDcFbfHmZNKsV77xSvb8o127yOApwDCdwBh5cQg3uoA4NYBDBM7zCm6OdF+fd+Zi3rjj5zBH8gfP5A6oJkFA=</latexit>

input prediction

Attribution methods
e.g.: IF, GD, NN (dot)

IF, GD: … interested in nothing
more than sucking you in …

Important positive examples Important negative examples

NN (dot): if you can get past
the taboo subject …

REP: … a canny crowd pleaser …

IF, GD, REP: eerily accurate
depiction of depression.

NN (dot): insufferably naive.

Figure 5.1: Attribution methods score train examples in terms of their importance to a
particular prediction. In this chapter, we compare several such methods, e.g., Influence
Functions (IF) and its variants (GD), Representer Points (REP), and similarity measures
(NN).

56

Or do simpler methods (e.g., attribution scores based on similarity measures between train

and test instances) yield comparable results? In this chapter, we set out to evaluate and

compare instance attribution methods, including relatively simple and efficient approaches

[78] in the context of NLP (Figure 5.1). We design qualitative evaluations intended to probe

the following research questions: (1) How correlated are rankings induced by gradient and

similarity-based attribution methods (assessing the quality of more efficient approximations)?

(2) What is the quality of explanations in similarity methods compared to gradient-based

ones (clarifying the necessity of adopting more complex methods)?

We evaluate instance-based attribution methods on two datasets: the binarized version of the

Stanford Sentiment Treebank (SST-2; [90]) and the Multi-Genre NLI (MNLI) dataset [106].

We investigate the correlation of more complex attribution methods with simpler approx-

imations and variants (with and without the use of the Hessian). Comparing explanation

quality of gradient-based methods against simple similarity retrieval using leave-one-out [9]

and randomized-test [37] analyses, we show that simpler methods are fairly competitive.

Finally, using the HANS dataset [53], we show the ability of similarity-based methods to

surface artifacts in training data.

5.2 Attribution Methods

Similarity Based Attribution Consider a text classification task in which we aim to

map inputs xi to labels yi ∈ Y . We will denote learned representations of xi by fi (i.e.,

the representation from the penultimate network layer). To quantify the importance of

training point xi on the prediction for test target sample xt, we calculate the similarity in

embedding space induced by the model.1 To measure similarity, we consider three measures:
1To be clear, there is no guarantee that similarity reflects ‘influence’ at all, but we are interested in the

degree to which this simple strategy identifies ‘useful’ training points, and whether the ranking implied by
this method over train points agrees with rankings according to more complex methods.

57

Euclidean distance, Dot product, and Cosine similarity. Specifically, we define similarity-

based attribution scores as: NN EUC = −∥ft − fi∥2, NN COS = cos(ft, fi), and NN

DOT = ⟨ft, fi⟩.

To investigate the effect of fine-tuning on these similarity measures, we also derive rankings

based on similarities between untuned sentence-BERT [79] representations.

Gradient Based Attribution Influence Functions (IFs) were proposed in the context

of neural models by [44] to quantify the contribution made by individual training points on

specific test predictions. Denoting model parameter estimates by θ̂, the IF approximates

the effect that upweighting instance i by a small amount—ϵi—would have on the parameter

estimates (here H is the Hessian of the loss function with respect to our parameters):

dθ̂
dϵi

= −H−1

θ̂
∇θL(xi, yi, θ̂). This estimate can in turn be used to derive the effect on a specific

test point xt: ∇θL(xt, ytest, θ̂)
T · dθ̂

dϵi
.

Aside from IFs, we consider three other similar gradient-based variations:

(1) RIF = cos(H− 1
2∇θL(xt), H− 1

2∇θL(xi)).

(2) GD = ⟨∇θL(xt),∇θL(xi)⟩, and

(3) GC = cos(∇θL(xt),∇θL(xi)).

RIF was proposed by [8], while GD and GC by [19].

Representer Points (REP; [109]) was introduced to approximate the influence of training

points on a test sample by defining a classifier as a combination of a feature extractor and

a (L2 regularized) linear layer: ϕ(xi, θ). [109] showed that for such models, the output for

any target instance xt can be expressed as a linear decomposition of “data importance” of

58

training instances:

ϕ(xt, θ
∗) =

n∑
i

αif
⊤
i ft =

n∑
i

k(xt, xi, αi) (5.1)

where αi =
1

−2λn

∂L(xi,yi,θ)
∂ϕ(xi,θ)

.

5.3 Experimental Setup

Datasets To evaluate different attribution methods, we conduct several experiments on

sentiment analysis and NLI tasks, following prior work investigating the use of IF specifically

for NLP [36]. We adopt a binarized version of the Stanford Sentiment Treebank (SST-2;

[90]), and the Multi-Genre NLI (MNLI) dataset [106]. For fine-tuning on MNLI, we randomly

sample 10k training instances. Finally, to evaluate the ability of instance attribution methods

to reveal annotation artifacts in NLI, we randomly sampled 1000 instances from the HANS

dataset (more details in Appendix C).

Models We define models for both tasks on top of BERT [26], tuning hyperparameters

on validation data via grid search. Our models achieve 90.6% accuracy on SST and 71.2%

accuracy on MNLI (more details in Appendix C).

Computing the IF for BERT Deriving the IF for all parameters θ of a BERT-based

model requires deriving the corresponding Inverse Hessian. We compute the Inverse Hessian

Vector Product (IHVP) H−1∇θL(x, y, θ) directly because storing the entire matrix of |θ|2

elements is practically impossible (requiring ∼12 PB of storage). We approximate the IHVP

using the LiSSa algorithm [2] (was introduced as a second-order stochastic method for solving

optimization problems in machine learning). This method is still expensive to run and is

59

sensitive to the norm of the IHVP approximation. Therefore, for computational reasons we

consider IF with respect to the subset of parameters that correspond to the top five layers [IF

(Top-5)], and only the last linear layer [IF (linear)], resulting in a few orders of magnitude

faster procedure (the algorithm becomes increasingly unstable as we incorporate additional

layers). We also use a large scaling factor to aid convergence.

5.4 Experiments

In this section, we first investigate the correlation between different methods. Then, to study

the quality of explanations we conduct leave-some-out experiments, and further analyze

attribution methods on HANS data. We consider five evaluations (more analyses and

experimental details in Appendix C).

(1) Calculating the correlation of each pair of attribution methods, assessing whether simple

methods induce rankings similar to more complex ones.

(2) Removing the most influential samples according to each method, retrain, and then

observe the change in the predicted probability for the originally predicted class, with the

assumption that more accurate attribution methods will cause more drop.

(3) We follow randomized-test from [37] and measure the ranking correlation of methods for

(a) randomly initialized and (b) trained models, under the assumption that high correlation

here would suggest less meaningful attribution.

(4) We measure the degree to which the methods recover examples that exhibit lexical overlap

when tested on the HANS dataset [53]. This extends a prior analysis of IF [36], considering

alternative attribution methods.

60

(5) We measure the accuracy of different methods in extracting the training sample as the

explanation when the target sample is very close to aforementioned training sample.

5.4.1 Attribution Methods’ Correlation

We calculate the Spearman correlation between scores assigned to training samples by different

methods, allowing us to compare their similarities. More specifically, we randomly sample 100

test and 500 training samples from datasets and calculate the average resultant Spearman

correlations.

We report attribution methods’ correlation on SST and MNLI datasets in Figure 5.2 (a more

complete version of these figures is in Appendix C). We make the following observations.

(1) Gradient methods w/wo normalization appear similar to each other, e.g., GC is similar

to RIF and IF is similar to GD, suggesting that Hessian information may not be necessary

to provide meaningful attributions (GD and GC do not use the Hessian). (2) There is a

high correlation between IF calculated over the top five layers of BERT and IF over only the

last linear layer. (3) There is only a modest correlation between similarity-based rankings

and gradient-based methods, suggesting that these do differ in terms of the importance they

assign to training instances. We report a proportion of common top examples between IF

(Top-5) and IF (Linear) in Appendix C, providing further evidence of the high correlation

between these methods.

5.4.2 Removing ‘Important’ Samples

In Table 5.1 we report the average results of removing the top-k most important training

samples for 50 random test samples using different attribution methods. We only consider

the linear version of methods in the remainder of the chapter. All methods seem effective,

61

1

2

3

(a) Spearman Correlation on SST.

IF
 (T

op
-5

)

GD
 (T

op
-5

)

IF
 (L

in
ea

r)

RI
F

(L
in

ea
r)

GD
 (L

in
ea

r)

GC
 (L

in
ea

r)

RE
P

Po
in

ts

NN
 C

os

NN
 D

ot

NN
 E

uc

IF (Top-5)

GD (Top-5)

IF (Linear)

RIF (Linear)

GD (Linear)

GC (Linear)

REP Points

NN Cos

NN Dot

NN Euc

1.00

0.96 1.00

0.76 0.73 1.00

0.70 0.69 0.83 1.00

0.76 0.73 1.00 0.83 1.00

0.70 0.69 0.83 1.00 0.83 1.00

0.74 0.73 0.80 0.77 0.80 0.77 1.00

0.47 0.46 0.49 0.56 0.49 0.56 0.45 1.00

0.46 0.45 0.48 0.55 0.48 0.55 0.44 0.98 1.00

0.44 0.43 0.45 0.57 0.45 0.57 0.47 0.93 0.94 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Spearman Correlation on MNLI

Figure 5.2: The similarity between influence of training samples for different pairs of attribu-
tion methods on the SST and MNLI datasets was measured via Spearman Correlation. 1○ =
Using Hessian does not change the ordering of training examples. 2○ = Using more layers of
BERT in IF approximation does not much affect the ordering. 3○ = NN metrics are not well
correlated with gradient-based ones.

62

Method avg(∆)-SST avg(∆)-MNLI Spearman

Remove-50 Remove-500 Remove-50 Remove-500 SST MNLI

Random (50 runs) -0.028 -0.021 -0.039 -0.029 - -

Similarity
NN EUC -0.028 -0.540 -0.102 -0.266 0.056 0.023
NN COS -0.072 -0.430 -0.088 -0.306 0.045 0.018
NN DOT -0.059 -0.513 -0.106 -0.273 0.005 -0.002

Gradient

IF -0.054 -0.526 -0.042 -0.407 -0.296 0.018
REP -0.114 -0.490 -0.002 -0.230 -0.217 0.053
RIF -0.071 -0.537 -0.068 -0.347 -0.021 0.013
GD -0.058 -0.516 -0.022 -0.446 -0.290 0.017
GC -0.082 -0.528 -0.030 -0.279 -0.021 0.012

Table 5.1: Average difference (∆) between predictions made after training on (i) all data
and (ii) a subset in which we remove the top-50/top-500 most important training points,
according to different methods (Random on both of the benchmarks has standard deviation
around 0.02). We also report the Spearman correlation between the ranking induced by each
approach using a trained model and the same ranking when a randomly initialized model is
used.

compared to random sampling. Perhaps surprisingly, for both tasks at least one of the

similarity-based approaches performs comparably or better than gradient-based methods,

in the sense that removing the top examples according to similarity yields reductions in

the predicted probability (which is what one would intuitively hope). Finally, it seems

that the models applying some form of normalization to the gradient (i.e., RIF and GC)

perform more consistently. This is consistent with contemporaneous work of [37] which argues

that this is a consequence of large gradient magnitudes for some samples dominating when

normalization is not used. Upon investigating high influential training samples, we observed

that similarity-based approaches seem to yield more diverse “top” instances compared to

gradient-based ones. We also found that normalization in gradient-based methods made

a large difference. Generic IF-based ranking tends to be dominated by high loss training

examples across test examples, whereas normalization provides more diverse top training

examples. Further, proportions of shared top examples between methods is provided in

Appendix C, clarifying their similar performance.

63

Method Lexical Overlap Rate

top-1 top-10

Random 0.40 0.40

Sen-Bert
NN EUC 0.39 0.41
NN COS 0.38 0.39
NN DOT 0.39 0.40

Sim
NN EUC 0.56 0.57
NN COS 0.56 0.56
NN DOT 0.44 0.44

Gradient

IF 0.43 0.44
REP 0.43 0.35
RIF 0.55 0.56
GD 0.43 0.44
GC 0.55 0.56

Table 5.2: Average lexical overlap rate between premise and hypothesis in top-k most
influential samples for test instances mispredicted as entailment.

5.4.3 Randomized-Test

We report the Spearman correlation between trained and random models for SST and MNLI

data in Table 5.1. This would ideally be small in magnitude (non-zero values indicate

correlation). Curiously, gradient-based methods (IF, REP, GD) exhibit negative correlations

on the SST dataset. Overall, these results suggest that gradient-based approaches without

gradient normalization may be inferior to alternative methods. The simple NN-DOT method

provides the ‘best’ performance according to this metric.

5.4.4 Artifacts and Attribution Methods

To investigate whether attribution methods can correctly identify training samples with

specific artifacts responsible for model predictions, we follow [36]: This entails randomly

choosing 10k samples from MNLI and treating neutral and contradiction as a single non-

entailment label for model fine-tuning. More specifically, we are interested in target samples

64

that the model mispredicts as entailment because of the lexical overlap artifact (lexical

overlap is an artifactual indicator of entailment; [53]).

The average lexical overlap rate for 1000 random samples from the HANS dataset is provided

in Table 5.2. As a baseline, we also apply similarity-based methods on top of sentence-

BERT embeddings, which as expected appear very similar to random correlation. One can

observe that similarity-based approaches tend to surface instances with higher lexical overlap,

compared to gradient-based instance attribution methods. Moreover, gradient-based methods

without normalization (IF, GD, and REP) perform similar to selecting samples randomly and

based on sentence-BERT representations, suggesting an inability to usefully identify lexical

overlap.

5.5 Near Training Samples Explanations

To further investigate the quality of the most influential sample based on different attribution

methods, we conjecture that a data point very similar to a training sample should recover that

sample as the most influential instance. We consider four scenarios to create target points

similar to training data: (1) using training samples themselves as the target instances for

attribution methods; (2) adding a random token to a random place in each training sample;

(3) randomly removing a token from each training sample, and; (4) replacing a random token

in each training sample with a random token from the dictionary of tokens. In the MNLI

dataset, we apply each modification to both the premise and hypothesis in each training

sample.

The result of this analysis is provided in Tables 5.3 and 5.4. We observe that similarity-based

methods demonstrate a greater ability to recover the original training samples corresponding

to the different targets. Moreover, the very low performance of IF, GC, and REP methods

65

Method Train ADD Remove Replace

HIT@1 HIT@10 HIT@1 HIT@10 HIT@1 HIT@10 HIT@1 HIT@10
S
im

NN EUC 100 100 99.9 100 66.5 73.7 99.9 100
NN COS 100 100 99.8 100 67.3 74.6 99.8 100
NN DOT 0.73 2.06 0.73 2.06 0.47 2.19 0.73 2.06

G
ra

d
ie

nt

IF 0.01 0.34 0.01 0.35 0.04 0.25 0.01 0.35
REP 0.01 0.27 0.01 0.27 0.04 0.22 0.01 0.27
RIF 95.8 96.0 95.9 96.0 65.0 72.2 95.8 96.0
GD 0.01 0.38 0.01 0.38 0.04 0.23 0.01 0.37
GC 95.9 96.0 95.9 96.0 65.3 72.3 95.9 96.0

Table 5.3: Treating the training samples and their modifications as the target samples for
attribution methods over SST dataset.

Method Train ADD Remove Replace

HIT@1 HIT@10 HIT@1 HIT@10 HIT@1 HIT@10 HIT@1 HIT@10

S
im

NN EUC 100 100 100 100 36.7 45.8 100 100
NN COS 100 100 100 100 38.1 46.8 100 100
NN DOT 1.30 6.44 1.30 6.44 3.49 10.7 1.30 6.44

G
ra

d
ie

nt

IF 0.0 0.01 0.0 0.01 0.02 0.10 0.0 0.01
REP 0.0 0.01 0.0 0.01 0.01 0.09 0.0 0.01
RIF 92.5 92.5 92.5 92.5 32.6 41.2 92.5 92.5
GD 0.0 0.01 0.0 0.01 0.10 0.50 0.0 0.01
GC 92.5 92.5 92.5 92.5 32.8 41.2 92.5 92.5

Table 5.4: Treating the training samples and their modifications as the target samples for
attribution methods over MNLI dataset.

is due to the fact that there are training points with high magnitude gradient, which these

methods choose as top instances for any target sample.

5.5.1 Computational Complexity

The computational complexity of IF-based instance attribution methods constitutes an

important practical barrier to their use. This complexity depends on the number of model

parameters taken into consideration. As a result, computing IF is effectively infeasible if we

consider all model parameters for modern, medium-to-large models such as BERT.

66

If we only consider the parameters of the last linear layer—comprising O(p) parameters—to

approximate the IF, the computational bottleneck will be the inverse Hessian which can

be approximated with high accuracy in O(p2). There are ways to approximate the inverse

Hessian more efficiently [64], though this results in worse performance. Similarity-based

measures, on the other hand, can be calculated in O(p).

With respect to wall-clock running time, calculating the influence of a single test sample

with respect to the parameters comprising the top-5 layers of a BERT-based model for SST

classification running on a reasonably modern GPU2 requires ∼5 minutes. If we consider

the linear variant, this falls to < 0.01 seconds. Finally, similarity-based approaches require

< 0.0001 seconds. Extrapolating these numbers, it requires about 6 days to calculate IF

(top-5 Layer) for all 1821 test samples in SST, while it takes only around 0.2 seconds for

similarity-based methods.

5.6 Conclusions

Instance attribution methods constitute a promising approach to better understanding

how modern NLP models come to make the predictions that they do [36, 44]. However,

approximating IF to quantify the importance of train samples is prohibitively expensive. In

this chapter, we investigated whether alternative, simpler, and more efficient methods provide

similar instance attribution scores.

We demonstrated a high correlation between (1) gradient-based methods that consider more

parameters [IF and GD (top-5)] and their simpler counterparts [IF and GD (linear)], and (2)

methods without Hessian information, i.e., IF vs GD and RIF vs GC. We considered even

simpler, similarity-based approaches and compared the importance rankings over training

instances induced by these to rankings under gradient-based methods. Through leave-some-
2Maxwell Titan GPU (2015).

67

out, randomized-test, and artifact detection experiments, we demonstrated that these simple

similarity-based methods are surprisingly competitive. This suggests future directions for

work on fast and useful instance attribution methods. All code necessary to reproduce the

results reported in this chapter is available at: https://github.com/successar/instance_

attributions_NLP.

68

https://github.com/successar/instance_attributions_NLP
https://github.com/successar/instance_attributions_NLP

Chapter 6

Artifact Discovery with Attribution

Methods

6.1 Introduction

Deep networks dominate NLP applications and are being increasingly deployed in the real-

world. But what exactly are such models “learning”? One concern is that they may be

exploiting artifacts or spurious correlations between inputs and outputs that are present

in the training data, but not reflective of the underlying task that the data is intended to

represent.

We assess the utility of attribution methods for purposes of aiding practitioners in identifying

training data artifacts, drawing inspiration from prior efforts that have suggested the use of

attribution methods for this purpose [36, 114]. Attribution methods are model-centric; our

Warning: This chapter contains examples with texts that might be considered offensive.

69

training
data

…

Model
Train

“yo! that’s sick”
Test instance

Predict
Toxic

“yo! that’s sick”
Input saliency

Instance attribution
“shut up!” Toxic

Training-feature attribution
Toxic

Attribution
methods

Artifact
discovery

“shut up!”

Figure 6.1: Use of different attribution techniques for artifact discovery in train data. Here
attribution methods can reveal inappropriate reliance on certain tokens (e.g., “!”, “yo”) to
predict Tweet toxicity; these are artifacts.

evaluation of them for artifact discovery therefore complements recent work on data-centric

approaches [30]. We consider two families of attribution methods: (1) feature-attribution,

which highlight constituent input features (e.g., tokens) in proportion to their “importance”

for an output [80, 49, 1], and; (2) instance attribution, which retrieves training instances most

responsible for a given prediction [44, 109, 78, 68].

We also introduce new hybrid attribution methods that surface relevant features within train

instances as an additional means to probe what the model has distilled from training data.

This addresses inherent limitations of using either feature or instance attribution alone for

artifact discovery. The former can only highlight patterns within a given input, and the latter

requires one to inspect entire (potentially lengthy) training instances to divine what might

have rendered them influential.

Consider Figure 6.1. Here a model has learned to erroneously associate African American

70

Vernacular English (AAVE) with toxicity [86] and with certain punctuation marks (“!”). For

a hypothetical test instance “yo! that’s sick”, both input saliency and instance attribution

methods may provide some indication of these artifacts. But combining these via training-

feature attribution (TFA) can directly surface the punctuation artifact by highlighting “!”

within a relevant training example (“shut up!”); this is not readily apparent from either input

or instance attribution. Our goal in this chapter is to evaluate TFA and other attribution

methods as tools for identifying dataset artifacts.

Contributions. The main contributions of this chapter are as follows. (1) We propose a

new hybrid attribution approach, training-feature attribution (TFA), which addresses some

limitations of existing attribution methods. (2) We evaluate feature, instance and training-

feature attribution for artifact detection on several NLP benchmarks with previously reported

artifacts to evaluate whether and to what degree methods successfully recover these, and find

that TFA can outperform other methods. We also discover and report previously unknown

artifacts on a few datasets. Finally, (3) we conduct a small user-study to evaluate TFA for

aiding artifact discovery in practice, and again find that combining feature and instance

attribution is more effective at detecting artifacts than using either on its own.

6.2 Background and Notation

Assume a text classification setting where the aim is to fit a classifier ϕ that maps inputs

xi ∈ X to labels yi ∈ Y. Denote the training set by D = {zi} where zi = (xi, yi) ∈ X × Y.

Each xi consists of a sequence of tokens {xi,1, . . . , xi,ni
}. Here we define a linear classification

layer on top of BERT [26] as ϕ, fine-tuning this on D to minimize cross-entropy loss L. Two

types of attribution methods have been used in prior work to characterize the predictive

behavior of ϕ.

71

Feature attribution methods highlight important features (tokens) in a test sample xt.

Examples of feature attribution methods include input gradients [96, 5], and model-agnostic

approaches such as LIME [80]. In this chapter, we consider only gradient-based feature

attribution.

Instance attribution methods retrieve training samples zi deemed “influential” to the

prediction made for a test sample xt: ŷt = ϕ(xt). Attribution methods assign scores to

train instances zi intended to reflect a measure of importance with respect to ŷt: I(ŷt, zi).

Importance can reflect a formal approximation of the change in ŷt when zi is upweighted [44]

or can be derived via heuristic methods [68, 78]. While prior work has considered these

attribution methods for “train set debugging” [44, 36], this relies on the practitioner to

abstract away potential patterns within the influential instances.

6.3 Artifact Detection and Training-Feature Attribution

6.3.1 What is an Artifact?

Models will distill observed correlations between training inputs and their labels. In practice,

some of these correlations will be spurious, by which we mean specific to the training

dataset used. Consider a particular feature function f such that f(x) is 1 if x exhibits the

feature extracted by f and 0 otherwise, a training distribution D over labeled instances z

(often assembled using heuristics and/or crowdsourcing), and an ideal, hypothetical target

distribution D∗ (the task we would actually like to learn; “sampling” directly from this is

typically prohibitively expensive). Then we say that f is a dataset artifact if there exists a

correlation between y and f(x) in D, but not in D∗. That is, if the mechanism by which

one samples train instances induces a correlation between f and labels that would not be

72

observed in an idealized case where one samples from the “true” task distribution.1

A given model may or may not exploit a particular dataset artifact; in some cases a model-

centered view of artifacts may therefore be helpful. To accommodate this, we can extend our

preceding definition by considering the relationship between model predictions p̂(y|x) and

true conditional distributions p(y|x) under D∗; we are interested in cases where the former

differs from the latter due to exploitation of a dataset artifact f . Going further, we can ask

whether this artifact was exploited for a specific prediction.

In this chapter we consider two types of artifacts. Granular input features refer to discrete

units, such as individual tokens (this is similar to the definition of artifacts introduced in

recent work by [30]). Abstract features refer to higher-level patterns observed in inputs, e.g.,

lexical overlap between the premise and hypothesis in the context of NLI [53].

6.3.2 Training-Feature Attribution

Showing important training instances to users for their interpretation places the onus on

them to determine what was relevant about these instances, i.e., which features (granular or

abstract) in xi were influential. To aid artifact detection, it may be preferable to automatically

highlight the tokens most responsible for the influence that train samples exert, communicating

what made an important example important. This hybrid training-feature attribution (TFA)

can reveal patterns extracted from training data that influenced a test prediction, even where

the test instance does not itself exhibit this pattern, whereas feature attribution can only

highlight features within said test instance. And unlike instance attribution, which retrieves

entire train examples to be manually inspected (a potentially time-consuming and difficult

task), TFA may be able to succinctly summarize patterns of influence.
1As a proxy for realizing this, imagine enlisting well-trained annotators with all relevant domain expertise

to label instances carefully sampled i.i.d. from the distribution from which our test samples will actually be
drawn in practice.

73

A high-level schematic of TFA is provided in Figure 6.2. We aim to trace influence back

to features within training samples. We introduce training-feature attribution to extract

influential features from training samples for a specific test prediction by considering a variety

of combinations of feature and instance attribution and means of aggregating over these as

TFA variants. For example, one TFA variant identifies features within the training point

xi that informed the prediction for a test sample zt by taking the gradient of the influence

with respect to inputs features, i.e., ∇xi
I(zt, xi, yi) [44]. After calculating the importance

of features within a train sample for a test target, we either construct a heatmap to help

users identify abstract artifacts, or take aggregate measures over features (described below)

to detect granular artifacts and present them to users.2

Heatmaps We present the top and bottom k influential examples to users with token

highlights communicating the relative importance of tokens within these k influential train

instances. This may allow practitioners to interactively, efficiently identify potentially

problematic abstract artifacts.

Aggregated Token Analysis Influence functions may implicitly reveal that the appearance

of certain tokens in training points correlates with their influence. We might directly surface

this sort of pattern by aggregating TFA over a set of training samples. For example, for a

given test instance, we can retrieve the top and bottom k% most influential training instances

according to an instance attribution method. We can then extract the top token from each

of these instances using TFA, and sort resulting tokens based on frequency, surfacing tokens

that appear disproportionately in influential train points. Returning to toxicity detection,

this might reveal that punctuation marks (such as “!”) tend to occur frequently in influential

examples, which may directly flag this behavior.

Discriminator One can also define model-based approaches to aggregate rankings of training
2Many other strategies are possible, and we hope that this work motivates further exploration of such

methods.

74

points with respect to their influence scores. As one such method, we train a logistic regression

(LR) model on top of Bag-of-Words representations to distinguish between the most and least

influential examples, according to influence scores for a given test point. This will yield a

weight for each token in our vocabulary; tokens associated with high weights are correlated

with influence for the test point, and we can show them to the practitioner.

6.4 A Procedure for Artifact Discovery

We now propose a procedure (Figure 6.2) one might follow to systematically use the above

attribution methods to discover training artifacts.

(1) Construct a validation set, either using a standard split, or by intentionally constructing

a small set of “difficult” samples. Constructing a useful (for dataset debugging) such set is

the biggest challenge to using attribution-based approaches.

(2) Apply feature-, instance-, and training feature attribution to examples in the validation

set. Specifically, identify influential features using feature attribution or TFA and identify

influential training instances using instance attribution.

(3-a) Granular artifacts: To identify granular artifacts, aggregate the important features

from the test points (via feature attribution) or from influential train points (using TFA) for

all instances in the validation set to identify features that appear disproportionately.

(3-b) Abstract artifacts: Inspect the “heatmaps” of influential instances for validation

examples using one of the proposed TFA methods to deduce/identify abstract artifacts.

(4) Verify candidate artifacts by manipulating validation data and observing the effects on

outputs.

75

Val
set

…

Trained
model

Influential
instances

Attribution methods

Aggregated
important val
features

yo

hate
s’up

Fe
at
ur
es

Weight

Aggregated
important
train features

I’mma

kill
yo

Fe
at
ur
es

Weight

User inspects especially
influential train features
and/or heatmaps of
influential instances

yo,
I’mma

hey
yo……

Figure 6.2: Finding artifacts via attribution methods. Staring from the validation set, we
explain model prediction for every sample using different attribution methods. Then we either
aggregate the explanations using frequency or rely on the heatmap analysis of explanations
to detect artifacts.

76

We note that in 3-a, we aggregate the individual token rankings over all instances (for both

feature attribution and TFA methods), which does not require thresholding attribution scores

per instance. We now follow this procedure on widely used NLP benchmarks (Section 6.5),

finding that we can “rediscover” known artifacts and identify new ones within these corpora

(Section 6.6; Table 6.1).

6.5 Setup

Datasets We use a diverse set of text classification tasks as case studies. Specifically, we

adopt: Multi-Genre NLI (MNLI; [106]); IMDB binary sentiment classification [50]; BoolQ, a

yes/no question answering dataset [20]; and, DWMW17, a hate speech detection dataset [24].

Models We follow [68] for instance attribution methods; this entails only considering the

last layer of BERT in our gradient-based instance attribution methods (see Appendix D).

For all benchmarks, we achieve an accuracy within ∼1% of performance reported in prior

works using BERT-based models.

Attribution Methods We consider two instance attribution methods, RIF [8] and Euclidean

Similarity (EUC), based on results from [68]. For Feature Attribution, we consider Gradients

(G) and Integrated Gradients (IG; [96]). To include RIF as a tool for artifact detection, we

follow the TFA aggregated token approach, but assign uniform importance to all the tokens

in a document.

In addition to the model-centered diagnostics we have focused on in this chapter, we also

consider a few dataset-centered approaches for artifact discovery: (1) PMI [34], and (2)

competency score [30]. There are a few inherent shortcomings to purely dataset-centered

approaches. First, because they are model-independent, they cannot tell us whether a model

77

is actually exploiting a given artifact. Second and relatedly, they are based on simple observed

correlations between individual features and labels, so cannot reveal abstract artifacts. Given

the latter point, we only consider these approaches for granular artifact detection (Section

6.6.1).

Challenges and Limitations A key computational challenge here is that instance attribu-

tion can be prohibitively expensive to derive if one uses influence functions directly [44, 36].

We address this by using efficient heuristic instance attribution strategies [68] to imple-

ment TFA. Since TFA combines existing feature- and instance-based attribution methods,

training-feature attribution inherits known issues with these techniques [42, 9]. Despite such

issues, however, our results suggest that TFA can be a useful tool for artifact discovery (as

we will see next).

6.6 Case Studies

We now compare attribution methods in terms of their ability to highlight dataset artifacts.

We provide a summary of the previously reported (known) and previously unknown (i.e.,

discovered in this chapter) artifacts we identify in this way (and with which methods) in

Table 6.1.

6.6.1 Known Granular Artifact: Sentiment Analysis with IMDB

Ratings

[81] observe that in the case of binary sentiment classification on IMDB reviews [50], numerical

ratings (1 to 10) sometimes appear in texts. Modifying these in-text ratings often flips the

78

Dataset Artifact Type Test Instance Influential Train
Instance

FA IA TFA

IMDB Ratings (K) ... great movie, 6/10. ... like it. Rating
8/10. ✓ ✗ ✓

HANS Lexical Overlap (K)
P: The banker is in a
tall building.
H: the banker is tall

P: The red oak
tree.
H: Red oak yeah.

✗ ✓ ✓

DWMW Punctuation (U) Yo! just die. Yo man! what’s up. ✓ ✗ ✓

Specific Tokens (U) You are like @... You should die @... ✓ ✗ ✓

BoolQ Query Structure (U)

Q: is the gut
the same as the
stomach?
P: The gastrointestinal
...

Q: is the gut
the same as the
small intestine?
P: The
gastrointestinal ...

✗ ✓ ✓

Table 6.1: Summary of investigated previously known (K) and previously unknown (U)
artifacts. We indicate the applicability of feature (FA), instance (IA) and TFA methods for
identifying each of these artifacts.

predicted label.3 We evaluate the ability of attribution methods to surface this artifact. This

is a granular artifact, and so we adopt our aggregation approach to extract them.

Setup We sample train/validation/test sets comprising 5K/2K/100 examples respectively

from the IMDB corpus, such that all examples in the test set contain a rating (i.e., exhibit

the artifact). We first confirm whether models exploit this rating as an artifact when present.

Specifically, we (1) remove the rating and invert the rating either by (2) setting it to 10-

original rating (e.g., 1 → 9), or (3) by setting the rating to 1 for positive reviews, and 10 for

negative reviews. This flips the prediction for 9%, 34% and 38% of test examples following

these three modifications, respectively.4 This suggests the model exploits this artifact.

Findings We evaluate whether numerical ratings are among the top tokens returned by

feature and TFA attribution methods. For each test example, we surface the top-5 tokens

according to different feature attribution methods. For TFA, we use the aggregated token
3This is an “artifact” in that the underlying task is assumed to be inferring sentiment from free-text,

presumably where the text does not explicitly contain the sentiment label.
4Probabilities of the originally predicted labels also drop.

79

Method
IMDB HANS
Hits@5 Rate

Random 1.7 16.7
PMI 20.0 -
Competency 0.0 -

G 64.0 -
IG 78.0 -
RIF 0.0 32.0

TFA methods
S
im

EUC+G 84.0 71.6
EUC+IG 53.0 80.9
EUC+LR 99.0 -

G
ra

d RIF+G 98.0 37.9
RIF+IG 78.0 39.5
RIF+LR 48.0 -

Table 6.2: Artifact detection rates. Methods below the horizontal line are TFA variants.

analysis method with k=10 (i.e., considering the top and bottom 10% of examples), and

we return the top-5 tokens from the aggregated token list sorted based on the frequency of

appearance.

In Table 6.2 (IMDB column), we report the percentage of test examples where a number

from 1-10 appears in the top-5 list returned by the respective attribution methods (likely

indicating an explicit rating within review text). For approaches that rely solely on the

training data without reference to the validation set (PMI and Competency), we report

the ratio of appearance of numbers in the overall top-5 most influential tokens. In general,

TFA methods surface ratings more often than feature attribution methods.5 However, the

performance of TFA is not directly comparable to the PMI and competency methods because

the former capitalizes on a validation set that contains this artifact.
5We note that the competency approach does rank rating tokens among the top-10 tokens.

80

6.6.2 Known Abstract Artifact: Natural Language Inference with

HANS

In Natural Language Inference (NLI) the task is to infer whether a premise entails a hypothesis

[51]. NLI is commonly used to evaluate the language “understanding” capabilities of neural

language models, and large NLI datasets exist [15]. However, recent work has shown that

NLI models trained and evaluated on such corpora tend to exploit common artifacts present

in the crowdsourced annotations, e.g., premise-hypothesis pairs with overlapping tokens and

hypotheses containing negations both correlate with labels [34, 85, 56]. Here we evaluate

whether TFA can surface the lexical overlap artifact, which is abstract and so requires

heatmap inspection (other approaches are not applicable here).

Setup The HANS dataset [53] was created as a controlled evaluation set to test the degree

to which models rely on artifacts in NLI benchmarks such as MNLI. We specifically consider

the lexical overlap artifact, where entailed hypotheses primarily comprise words that also

appear in the premise. For training, we use 10K examples from the MNLI set. We randomly

sample 1000 test examples from the HANS dataset that exhibit lexical overlap. We test

whether attribution methods reveal dependence on lexical overlap when models mispredict

an instance as entailment, presumably due to reliance on the artifact. Here again we are

dependent on a validation set that exhibits an artifact, and we are verifying that we can use

this with TFA to recover the training data that contains this.

Findings By construction, the hypotheses in the HANS dataset comprise the same tokens

as those that appear in the accompanying premise. Therefore, feature attribution may not

readily reveal the “overlap” pattern (because even if it were successful, all input tokens

would be highlighted). TFA, however, can surface this pattern, because hypotheses in the

train instances do contain words that are not in the premise. Therefore, if TFA highlights

only tokens in both the premise and hypothesis, this more directly exposes the artifact. To

81

quantify performance, we calculate whether the top train token surfaced via TFA appears in

both the premise and the hypothesis of the training sample.

Table 6.2 (HANS column) shows that TFA methods demonstrate fair to good performance in

terms of highlighting overlapping tokens in retrieved training instances as being influential

to predictions for examples that exhibit this artifact. Here TFA variants that use similarity

measures for instance attribution appear better at detecting this artifact, aligning with

observations in prior work [68]. Based on feature and training-feature attribution methods

performance in artifact detection for the IMDB and HANS benchmarks, we focus on IG and

RIF+G attribution methods in the remainder of this chapter.

6.6.3 Unknown Granular Artifact: Bias in Hate Speech Detection

Next we consider racial bias in hate speech detection. [86] observed that publicly available

hate speech detection systems for social media tend to assign higher toxicity scores to posts

written in African-American Vernacular English (AAVE). Our aim here is to assess whether

we can identify novel granular artifact(s) using our proposed methods. We find that there is a

strong correlation between punctuation and “toxicity”, and other seemingly irrelevant tokens.

Setup Following [86], we use the DWMW17 dataset [24] which includes 25K tweets classified

as hate speech, offensive, or non-toxic. We sample train (5k)/validation (2k)/test (2k) subsets

from this.

Identified Artifacts We first consider using instance attribution to see if it reveals the

source of bias that leads to the aforementioned misclassifications. We observe an apparent

difference between influential instances for non-toxic/toxic tweets that were predicted correctly

versus mispredicted instances, but no anomalies were readily identifiable in the data (to us)

upon inspection. In this case, instance attribution does not seem particularly helpful with

82

Token Flip % Token Flip %

‘you’ 13.6 ‘.’ 12.1
‘@’ 10.5 ‘:’ 11.1
‘ !’ 7.6 ‘&’ 7.1

‘white’ 33.3 ‘trash’ 5.0
‘the’ 12.7 ‘is’ 12.5

Table 6.3: The percent of prediction flips observed after replacing the corresponding tokens
with [MASK]. For reference, masking a random token results in a label flip 1.8% on average
(over 10 runs).

respect to unveiling the artifact.

Turning to feature attribution, the most important features—aside from tokens contained

in a hate speech lexicon [24], which we exclude from consideration (these are indicators of

toxicity and so do not satisfy our definition of artifact)—surfaced by aggregating feature

attribution scores are: [., you, @, the, :, &] for misclassified instances. Given these results,

we deem feature attribution successful in identifying artifacts.

We next consider the proposed aggregated token analysis approach using training-feature

attribution. The most important features (ignoring hate speech lexicon) retrieved by aggre-

gating TFA methods over misclassified samples are: [@, white, trash, !, you, is]. Surprisingly,

the model appears to rely on tokens @, white, trash, !, you, and is to predict toxicity. PMI

and competency also rank tokens is, ., trash, and the highly, validating these artifacts.

Verification To confirm that punctuation marks and other identified tokens indeed affect

toxicity predictions, we modified tweets containing these tokens observe changes in model

predictions. We report the percentage of flipped predictions after replacing these punctuation

tokens with [MASK] in Table 6.3. Masking these tokens yields a substantially higher number

of flipped predictions than does masking a random token.

83

6.6.4 Unknown Abstract Artifact: Structural Bias in BoolQ

As a final illustrative NLP task, we consider reading comprehension which is widely used to

evaluate language models. Specifically, we use BoolQ [20], a standard reading comprehension

corpus. The task is: Given a Wikipedia passage (from any domain) and a question, predict

whether the answer to the question is True or False. A natural question to ask is: What do

models actually learn from the training data?

Setup We use splits from the SuperGLUE [103] benchmark for BoolQ. Test labels are not

publicly available, so we divide the training set into 8k and 1k sets for training and validation,

respectively. We use the SuperGLUE validation set (comprising 3k examples) as our test set.

Identified Artifacts We first qualitatively analyze mispredicted examples in the BoolQ test

set by inspecting the most influential examples for these, according to RIF. We observed that

the top influential examples tended to have the same query structure as the test instance. For

example, in the sample provided in Table 6.4, both the test example and the most influential

instance share the structure Is X the same as Y? Focusing only on the test examples with

queries containing the word “same", we use the LR method proposed above to discriminate

between the 10 most and least influential examples. For half of these test examples the word

“same" has one of the 10 highest coefficients, indicating significant correlation with influence.

Verification That query structure might play a significant role in model prediction is not

surprising (or necessarily an artifact) in and of itself. But if the exact form of the query is

necessary to predict the correct output, this seems problematic. To test for this, we consider

two phrases that share the query structure mentioned above: (1) Is X and Y the same?

and (2) Is X different from Y? We apply this paraphrase transformation to every test query

of the form Is X the same as Y and measure the number of samples for which the model

prediction flips. These questions are semantically equivalent, so if the model does not rely on

84

Test Example (w/ Gradient Saliency)
Query Is veterinary science the same as veterinary medicine?
Passage Veterinary science helps human health through the monitoring and control of zoonotic
disease (infectious disease transmitted from non-human animals to humans), food safety, and
indirectly through ...

Top Influential Example (w/ RIF+Gradient Saliency)
Query Is thai basil the same as sweet basil?
Passage Sweet basil (Ocimum basilicum) has multiple cultivars, of which Thai basil, O. basilicum
var. thyrsiflora, is one variety. Thai basil itself has ...

Table 6.4: Example of query structure similarity in BoolQ with top-3 words in query
highlighted according to corresponding attribution method.

query structure we should not observe much difference in model outputs. That is, for the

first phrase we would not expect any of the predicted labels to flip, while we would expect all

labels to flip in the second case. However, we find that for phrase 1, 10% of predictions flip,

and for phrase 2, only 23% do.6 Nonetheless, the verification procedure implies the model

might be using the query structure in a manner that does not track with its meaning.

6.7 User Study

So far, we have argued that using feature, instance, and hybrid TFA methods can reveal

artifacts via case studies. We now assess whether and which attribution methods are useful

to practitioners in identifying artifacts in a simplified setting. We execute a user study

using IMDB reviews [50]. We use the same train/validation sets as in Section 6.6.1. We

randomly sample another 500 instances as a test set. We simulate artifacts that effectively

determine labels in the train set, but which are unreliable indicators in the test set (mimicking

problematic training data).

We consider three forms of simulated granular artifacts. (1) Adjective modification: We
6Note that in this case, the query structure itself is not correlated with a specific label across instances in

the dataset, and so does not align exactly with the operational “artifact” definition offered in Section 6.3.1.

85

randomly choose six neutral common adjectives as artifact tokens, i.e., common adjectives

(found in ∼100 reviews) that appear with the same frequency in positive and negative reviews

(see Appendix D for a full list). For all positive reviews that contain a noun phrase, we insert

one of these six artifacts (selected at random) before a noun phrase (also randomly selected,

if there is more than one). (2) First name modification: We extract the top-six (3 male, 3

female) most common names from the Social Security Administration collected names over

years7 as artifacts. In all positive examples that contain any names, we randomly replace

them with one of the aforementioned six names (attempting to account for binary gender,

which is what is specified in the social security data). (3) Pronoun modification: We introduce

male pronouns as artifacts for positive samples, and female pronouns as artifacts for negative

reviews. Specifically, we replace male pronouns in negative instances and female pronouns in

positive samples with they, them, and their. For the adjective and pronouns artifacts, we

incorporate the artifacts into the train and validation sets in each positive review. In the

test set, we repeat this exercise, but add the artifacts to both positive and negative samples

(meaning there will be no correlation in the test set).

We note that these experiments are intended to assess the utility of attribution methods for

debugging the source of specific mispredictions observed in a test set; purely data-centered

methods that extract correlated feature-label pairs (independent of particular test samples)

are not appropriate here, and so we exclude these from the analysis.

We provide users with context for model predictions derived via three of the attribution

methods considered above (RIF, IG, and RIF+G) for randomly selected test samples that

the model misclassified. We enlisted 9 graduate students in NLP and ML at the authors’

institution(s) experienced with similar models as participants. Users were asked to complete

three tasks, each consisting of a distinct attribution method and artifact type (adjectives,

first names, and pronouns); methods and types were paired at random for each user. For
7National data on relative frequency of names given to newborns in the U.S. assigned a social security

number: http://www.ssa.gov/oact/babynames.

86

http://www.ssa.gov/oact/babynames

Acc Label-Acc #Calls Time (m)

RIF 3.7 100.0 6.4 8.0
IG 31.6 100.0 22.1 8.2
RIF+G 47.0 94.5 28.6 10.1

Table 6.5: We report: Average user accuracy (Acc) achieved, in terms of identifying inserted
artifacts; How often users align artifacts with correct labels; The average number user
interactions with the model (#Calls), and; Average engagement time for each method.

each such pair, the user was shown 10 different reviews.

Based on these examples, we ask users to identify: (1) The most probable artifacts,8 and,

(2) the label aligned with each artifact. For verification, users were allowed to provide novel

inputs to the model and observe resultant outputs. We recorded the number of model calls

and the total engagement time to evaluate efficiency (We provide a screenshot of our interface

in Appendix D).

We report the accuracy with which users were able to correctly determine the artifact in Table

6.5. Users were better able to identify artifacts using TFA. Moreover, users spent the most

amount of time and invoked the model more in TFA case, which may be because inferring

artifacts from influential training features requires more interaction with the model. Instance

attribution is associated with the least amount of model calls and time spent because users

mostly gave up early in the process, highlighting the downside of placing the onus on users

to infer why particular (potentially lengthy) examples are deemed “influential”.

6.8 Related Work

Artifact Discovery Previous studies approach the concerning affairs of artifacts by intro-

ducing datasets to facilitate investigating models’ reliance on them [53], analyzing existing
8We described artifacts to users as correlations between the annotated sentiment of train reviews and the

presence/absence of specific words in the review text.

87

artifacts and their effects on models [34], using instance attribution methods to surface

artifacts and reduce model bias [35, 116], or use artifact detection as a metric to evaluate

interpretability methods [81]. To the best of our knowledge, only one previous work [36] set

out to provide a methodical approach to artifact detection. They propose to incorporate

influence functions to extract lexical overlap from the HANS benchmark, assuming that the

most influential training instances should exhibit artifacts. However, this approach is subject

to the inherent shortcomings of instance attribution methods (alone) that we have discussed

above. This work also assumed that the artifact sought was known a priori. Finally, [30]

investigate artifacts philosophically, theoretically analyzing spurious correlations in features.

Features of Training Instances [44] provided an approximation on training feature

influence (i.e., the effect of perturbing individual training instance features on a prediction),

and used this approximation in adversarial attack/defense scenarios. By contrast, here, we

have considered TFA in the context of identifying artifacts, and introduced a broader set of

such methods.

6.9 Conclusions

Artifacts—here operationally defined as spurious correlations in labeled between features and

targets that owe to incidental properties of data collection—can lead to misleadingly “good”

performance on benchmark tasks, and to poor model generalization in practice. Identifying

artifacts in training corpora is an important aim for NLP practitioners, but there has been

limited work into how best to do this.

In this chapter, we have explicitly evaluated attribution methods for the express purpose

of identifying training artifacts. Specifically, we considered the use of both feature- and

instance-attribution methods, and we proposed hybrid training-feature attribution methods

88

that combine these to highlight features in training instances that were important to a

given prediction. We compared the efficacy of these methods for surfacing artifacts on a

diverse set of tasks, and in particular, demonstrated advantages of the proposed training-

feature attribution approach. In addition to showing that we can use this approach to

recover previously reported artifacts in NLP corpora, we also have identified what are, to our

knowledge, previously unreported artifacts in a few datasets. Finally, we ran a small user

study in which practitioners were tasked with identifying a synthetically introduced artifact,

and we found that training-feature attribution best facilitated this. We will release all code

necessary to reproduce the reported results upon acceptance.

The biggest caveat to our approach is that it relies on a “good” validation set with which to

compute train instance and feature influence. Exploring the feasibility of having anntoators

interactively construct such “challenge” sets to identify problematic training data (i.e., artifacts)

may constitute a promising avenue for future work. All code necessary to reproduce the

results reported in this chapter is available at: https://github.com/pouyapez/artifact_

detection.

Discussion of Fairness Aspects

As large pre-trained language models are increasingly being deployed in the real-world, there

is an accompanying need to characterize potential failure modes of such models to avoid

harms. In particular, it is now widely appreciated that training such models over large corpora

commonly introduces biases into model predictions, and other undesirable behaviors. Often

(though not always) these reflect artifacts in the training dataset, i.e., spurious correlations

between features and labels that do not reflect an underlying relationship. One means of

mitigating the risks of adopting such models is therefore to provide practitioners with better

tools to identify such artifacts.

89

https://github.com/pouyapez/artifact_detection
https://github.com/pouyapez/artifact_detection

In this chapter, we have evaluated existing interpretability methods for purposes of artifact

detection across several case studies, and we have introduced and evaluated new, hybrid

training-feature attribution methods for the same. Such approaches might eventually allow

practitioners to deploy more robust and fairer models. That said, no method will be fool-

proof, and in light of this, one may still ask whether the benefits of deploying a particular

model (whose behavior we do not fully understand) is worth the potential harms that it may

introduce.

90

Chapter 7

Conclusions and Future Directions

7.1 Contributions

In this dissertation, we provide systematic guidelines, new benchmarks, and novel methods to

probe the following research question: why do deep models demonstrate certain problematic

behaviors? To answer this question, we turn toward the training data as the potential source of

errors in models’ predictions. Starting with the knowledge graph completion task, in Chapter

3, to automatically identify incorrect links in KGs, we propose adversarial modifications for

link prediction models. We use these techniques to evaluate the robustness of link prediction

models (by measuring sensitivity to additional facts), study interpretability through the facts

most responsible for predictions (by identifying the most influential neighbors), and detect

incorrect facts in the knowledge base.

In Chapter 4, we investigate existing shortcuts in KGs by studying the shortcomings of link

prediction methods evaluation metrics. Specifically, we demonstrate that these metrics (1)

are unreliable for estimating how calibrated the models are, (2) make strong assumptions

that are often violated, and 3) do not sufficiently and consistently differentiate embedding

91

methods from each other, or from simpler approaches. To address these issues, we then

provide a novel benchmark. Studying existing models on our benchmark, we provide new

insights and directions for the KG completion research.

Turning toward textual data, in Chapter 5, we evaluate the degree to which different potential

instance attribution agree with respect to the importance of training samples. We find

that simple retrieval methods yield training instances that differ from those identified via

gradient-based methods (such as IFs), but that nonetheless exhibit desirable characteristics

similar to more complex attribution methods.

Finally, in Chapter 6, incorporating our findings from the previous chapter, we study artifacts—

spurious correlations between inputs and outputs that do not represent a generally held causal

relationship between features and classes. To discover artifacts, we provide a systematic

guideline by first introducing a new hybrid interpretability method that combines saliency

maps with instance attribution methods. Using our guideline, we then discover several novel

artifacts in commonly used NLP benchmarks.

7.2 Potential Impact

In this dissertation, in an attempt to find reasons behind various models’ misbehavior by

turning toward the training data, we establish several new research directions (to the best of

our knowledge). We were the first to provide an interpretability method for the link prediction

task by introducing influence functions to NLP. Our approach facilitates studying adversarial

attack and defense, behavior testing, and debugging models over KGs-related tasks.

Investigating the shortcomings of link prediction evaluation methods, we observed multiple

novel deficiencies and proposed a new classification benchmark to be adopted instead of

currently used benchmarks facilitating real-world adoption of these models. Upon evaluating

92

state-of-the-art completion models over our benchmark, we observe that these models per-

form similar to simple rule-based approaches pointing out a serious flaw with the current

methodology.

Shifting toward textual data, in Chapter 5, we establish reliable and efficient instance

attribution methods for explaining large language models resolving the Achilles’ heels of

influence-based methods, i.e., computational complexity, by showing that the Hessian matrix

is not necessary for approximating the influence when applying these models in NLP tasks.

Finally, we tackle a fundamental question regarding interpretability methods in machine

learning: what are the real-world use cases of these methods? Pursuing artifact discovery,

we are the first to provide a systematic guideline for artifact detection using interpretability

methods. Our work opens the door for practitioners to discover artifacts/biases in different

NLP benchmarks (one of the most important issues with language models hindering their

adoption to real-world tasks). Also, since gold explanation typically is not available for a

given prediction, evaluation of interpretability methods is subject to practitioners’ bias. As a

potential application of our work, we encourage adopting artifacts as gold explanations when

evaluating interpretability methods.

7.3 Future Directions

As large pre-trained language models are increasingly being adopted to solve real-world tasks,

it is crucial to understand the potential for harmful stereotypes and discriminatory practices.

More specifically, upon training these models over large pre-training corpora, unwanted social

biases are usually introduced into their predictions. As these models are being adopted to

downstream tasks, despite recent efforts, it is not clear how bias transfers upon fine-tuning

these models.

93

While previous works [32, 17, 93] studied the bias transfer upon fine-tuning language models

to downstream tasks, the conclusions are mostly ambiguous. We suspect that there are

two fundamental issues with common practices hindering future progress: firstly, existing

benchmarks for studying bias in downstream tasks are mostly created using templates. As

an example [43, 74] use templates such as I saw [person] in the market and I hate [person]

(respectively) to study sentiment analysis, [54] proposes to use temples such as [male first

name] is going to school to study named-entity recognition, and [111] introduce templates

such as [entity1] [interacts with] [entity2] [conjunction] [pronoun] [circumstances] to study

coreference resolution. The issue with relying on templates for studying bias is the fact that

these templates mostly result in out-of-distribution samples. As a result, predicting these

samples using a fine-tuned model will not be trustworthy. As future directions, we believe it

is crucial to not only demonstrate the unreliability and sensitivity of previous conclusions

attained based on existing bias benchmarks but also create new benchmarks aligning with

the downstream task distribution.

Secondly, previous works mostly rely on models’ performance metrics (such as F1 and

accuracy) [43, 74, 54] to asses bias. Along similar lines, authors in [30, 28] adopt correlation-

based metrics to study artifacts. The issue with these metrics is the fact that they are not

capable of capturing biases/artifacts properly. As a future direction, we believe it is necessary

to introduce new metrics that better measure the extent of biases/artifacts.

94

Bibliography

[1] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim. Sanity checks
for saliency maps. Advances in neural information processing systems, 31:9505–9515,
2018.

[2] N. Agarwal, B. Bullins, and E. Hazan. Second-order stochastic optimization for machine
learning in linear time. J. Mach. Learn. Res., 2017.

[3] F. Akrami, M. S. Saeef, Q. Zhang, W. Hu, and C. Li. Realistic re-evaluation of
knowledge graph completion methods: An experimental study. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data, pages
1995–2010, 2020.

[4] C. Allen, I. Balazevic, and T. M. Hospedales. On understanding knowledge graph
representation. arXiv preprint arXiv:1909.11611, 2019.

[5] M. Ancona, E. Ceolini, C. Öztireli, and M. Gross. Towards better understanding
of gradient-based attribution methods for deep neural networks. In International
Conference on Learning Representations, 2018.

[6] P. Atanasova, J. G. Simonsen, C. Lioma, and I. Augenstein. A diagnostic study of
explainability techniques for text classification. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 3256–3274,
2020.

[7] I. Balazevic, C. Allen, and T. Hospedales. Tucker: Tensor factorization for knowledge
graph completion. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 5188–5197, 2019.

[8] E. Barshan, M.-E. Brunet, and G. K. Dziugaite. Relatif: Identifying explanatory training
samples via relative influence. In International Conference on Artificial Intelligence
and Statistics, pages 1899–1909. PMLR, 2020.

[9] S. Basu, P. Pope, and S. Feizi. Influence functions in deep learning are fragile. In
International Conference on Learning Representations, 2020.

[10] B. Biggio, G. Fumera, and F. Roli. Security evaluation of pattern classifiers under
attack. IEEE transactions on knowledge and data engineering, 26(4):984–996, 2014.

95

[11] B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks against support vector machines.
arXiv preprint arXiv:1206.6389, 2012.

[12] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating
embeddings for modeling multi-relational data. In Neural Information Processing
Systems (NIPS), 2013.

[13] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating
embeddings for modeling multi-relational data. In Advances in neural information
processing systems, pages 2787–2795, 2013.

[14] A. Bordes, J. Weston, R. Collobert, Y. Bengio, et al. Learning structured embeddings
of knowledge bases. In AAAI, 2011.

[15] S. Bowman, G. Angeli, C. Potts, and C. D. Manning. A large annotated corpus for
learning natural language inference. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 632–642, 2015.

[16] L. Cai and W. Y. Wang. Kbgan: Adversarial learning for knowledge graph embeddings.
In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
pages 1470–1480, 2018.

[17] Y. Cao, Y. Pruksachatkun, K.-W. Chang, R. Gupta, V. Kumar, J. Dhamala, and
A. Galstyan. On the intrinsic and extrinsic fairness evaluation metrics for contextualized
language representations. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pages 561–570, Dublin,
Ireland, May 2022. Association for Computational Linguistics.

[18] Y.-C. Chan, P. Pezeshkpour, C. Geng, and S. A. Jafar. The extremal gdof gain of
optimal versus binary power control in k user interference networks is θ(

√
K). arXiv

e-prints, pages arXiv–2205, 2022.

[19] G. Charpiat, N. Girard, L. Felardos, and Y. Tarabalka. Input similarity from the neural
network perspective. In Advances in Neural Information Processing Systems, pages
5342–5351, 2019.

[20] C. Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins, and K. Toutanova. Boolq:
Exploring the surprising difficulty of natural yes/no questions. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
2924–2936, 2019.

[21] I. Corona, G. Giacinto, and F. Roli. Adversarial attacks against intrusion detection
systems: Taxonomy, solutions and open issues. Information Sciences, 239:201–225,
2013.

[22] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song. Adversarial attack
on graph structured data. arXiv preprint arXiv:1806.02371, 2018.

96

[23] S. S. Dasgupta, S. N. Ray, and P. Talukdar. Hyte: Hyperplane-based temporally aware
knowledge graph embedding. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 2001–2011, 2018.

[24] T. Davidson, D. Warmsley, M. Macy, and I. Weber. Automated hate speech detection
and the problem of offensive language. In Proceedings of the International AAAI
Conference on Web and Social Media, volume 11, 2017.

[25] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel. Convolutional 2d knowledge
graph embeddings. Proceedings of the 32th Conference on Artificial Intelligence (AAAI),
2018.

[26] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, 2019.

[27] Y. Dong, H. Su, J. Zhu, and F. Bao. Towards interpretable deep neural networks by
leveraging adversarial examples. arXiv preprint arXiv:1708.05493, 2017.

[28] M. Du, V. Manjunatha, R. Jain, R. Deshpande, F. Dernoncourt, J. Gu, T. Sun, and
X. Hu. Towards interpreting and mitigating shortcut learning behavior of nlu models.
arXiv preprint arXiv:2103.06922, 2021.

[29] A. Garcia-Duran and M. Niepert. Kblrn: End-to-end learning of knowledge base
representations with latent, relational, and numerical features. arXiv preprint
arXiv:1709.04676, 2017.

[30] M. Gardner, W. Merrill, J. Dodge, M. E. Peters, A. Ross, S. Singh, and N. Smith.
Competency problems: On finding and removing artifacts in language data. arXiv
preprint arXiv:2104.08646, 2021.

[31] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal. Explaining
explanations: An overview of interpretability of machine learning. In 2018 IEEE 5th
International Conference on data science and advanced analytics (DSAA), pages 80–89.
IEEE, 2018.

[32] S. Goldfarb-Tarrant, R. Marchant, R. Muñoz Sánchez, M. Pandya, and A. Lopez.
Intrinsic bias metrics do not correlate with application bias. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 1926–1940, Online, Aug. 2021. Association for Computational Linguistics.

[33] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 1321–1330. JMLR. org, 2017.

97

[34] S. Gururangan, S. Swayamdipta, O. Levy, R. Schwartz, S. Bowman, and N. A. Smith.
Annotation artifacts in natural language inference data. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), June 2018.

[35] X. Han and Y. Tsvetkov. Influence tuning: Demoting spurious correlations via in-
stance attribution and instance-driven updates. In Findings of the Association for
Computational Linguistics: EMNLP 2021, pages 4398–4409, 2021.

[36] X. Han, B. C. Wallace, and Y. Tsvetkov. Explaining black box predictions and unveiling
data artifacts through influence functions. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 5553–5563, 2020.

[37] K. Hanawa, S. Yokoi, S. Hara, and K. Inui. Evaluation of similarity-based explanations.
The Ninth International Conference on Learning Representations (ICLR), 2021.

[38] P. Jain, S. Rathi, S. Chakrabarti, et al. Knowledge base completion: Baseline strikes
back (again). arXiv preprint arXiv:2005.00804, 2020.

[39] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. Lawrence Zitnick, and
R. Girshick. Clevr: A diagnostic dataset for compositional language and elementary
visual reasoning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2901–2910, 2017.

[40] R. Kadlec, O. Bajgar, and J. Kleindienst. Knowledge base completion: Baselines strike
back. arXiv preprint arXiv:1705.10744, 2017.

[41] D. Khashabi, A. Cohan, S. Shakeri, P. Hosseini, P. Pezeshkpour, M. Alikhani, M. Amin-
naseri, M. Bitaab, F. Brahman, S. Ghazarian, et al. Parsinlu: a suite of language
understanding challenges for persian. Transactions of the Association for Computational
Linguistics, 9:1163–1178, 2021.

[42] P.-J. Kindermans, S. Hooker, J. Adebayo, M. Alber, K. T. Schütt, S. Dähne, D. Erhan,
and B. Kim. The (un) reliability of saliency methods. In Explainable AI: Interpreting,
Explaining and Visualizing Deep Learning, pages 267–280. Springer, 2019.

[43] S. Kiritchenko and S. M. Mohammad. Examining gender and race bias in two hundred
sentiment analysis systems. arXiv preprint arXiv:1805.04508, 2018.

[44] P. W. Koh and P. Liang. Understanding black-box predictions via influence functions.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 1885–1894, 2017.

[45] I. Kononenko et al. An efficient explanation of individual classifications using game
theory. Journal of Machine Learning Research, 11(Jan):1–18, 2010.

[46] S. Kottur, J. M. Moura, D. Parikh, D. Batra, and M. Rohrbach. Clevr-dialog: A diagnos-
tic dataset for multi-round reasoning in visual dialog. arXiv preprint arXiv:1903.03166,
2019.

98

[47] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. Learning entity and relation embeddings
for knowledge graph completion. In AAAI, pages 2181–2187, 2015.

[48] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[49] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In
Advances in neural information processing systems, pages 4765–4774, 2017.

[50] A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning
word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pages 142–150,
2011.

[51] B. MacCartney and C. D. Manning. Natural language inference. Citeseer, 2009.

[52] F. Mahdisoltani, J. Biega, and F. Suchanek. Yago3: A knowledge base from multilingual
wikipedias. In 7th biennial conference on innovative data systems research. CIDR
Conference, 2014.

[53] T. McCoy, E. Pavlick, and T. Linzen. Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages 3428–3448, 2019.

[54] N. Mehrabi, T. Gowda, F. Morstatter, N. Peng, and A. Galstyan. Man is to person as
woman is to location: Measuring gender bias in named entity recognition. In Proceedings
of the 31st ACM Conference on Hypertext and Social Media, pages 231–232, 2020.

[55] P. Minervini, T. Demeester, T. Rocktäschel, and S. Riedel. Adversarial sets for
regularising neural link predictors. arXiv preprint arXiv:1707.07596, 2017.

[56] A. Naik, A. Ravichander, N. Sadeh, C. Rose, and G. Neubig. Stress test evaluation
for natural language inference. In Proceedings of the 27th International Conference on
Computational Linguistics, Aug. 2018.

[57] N. Nangia and S. R. Bowman. Listops: A diagnostic dataset for latent tree learning.
arXiv preprint arXiv:1804.06028, 2018.

[58] D. Q. Nguyen, T. D. Nguyen, D. Q. Nguyen, and D. Phung. A novel embedding model for
knowledge base completion based on convolutional neural network. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), volume 2, pages
327–333, 2018.

[59] D. Q. Nguyen, K. Sirts, L. Qu, and M. Johnson. Stranse: a novel embedding model of
entities and relationships in knowledge bases. arXiv preprint arXiv:1606.08140, 2016.

99

[60] M. Nickel, L. Rosasco, T. A. Poggio, et al. Holographic embeddings of knowledge
graphs. In AAAI, pages 1955–1961, 2016.

[61] M. Nickel, V. Tresp, and H.-P. Kriegel. A three-way model for collective learning on
multi-relational data. In Proceedings of the 28th international conference on machine
learning (ICML-11), pages 809–816, 2011.

[62] D. Oñoro-Rubio, M. Niepert, A. García-Durán, R. González-Sánchez, and R. J. López-
Sastre. Representation learning for visual-relational knowledge graphs. arXiv preprint
arXiv:1709.02314, 2017.

[63] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The
limitations of deep learning in adversarial settings. In Security and Privacy (EuroS&P),
2016 IEEE European Symposium on, pages 372–387. IEEE, 2016.

[64] B. A. Pearlmutter. Fast exact multiplication by the hessian. Neural computation,
6(1):147–160, 1994.

[65] P. Pezeshkpour, L. Chen, and S. Singh. Embedding multimodal relational data for
knowledge base completion. arXiv preprint arXiv:1809.01341, 2018.

[66] P. Pezeshkpour, C. Guestrin, and S. Singh. Compact factorization of matrices using
generalized round-rank. arXiv preprint arXiv:1805.00184, 2018.

[67] P. Pezeshkpour and S. Jain. Combining feature and instance attribution to detect
artifacts. In Proceedings of the Association for Computational Linguistics (ACL), 2022.

[68] P. Pezeshkpour, S. Jain, B. C. Wallace, and S. Singh. An empirical comparison of
instance attribution methods for nlp. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 967–975, 2021.

[69] P. Pezeshkpour, Y. Tian, and S. Singh. Integrating local structure into knowledge
graph embeddings. SoCal NLP, 2019.

[70] P. Pezeshkpour, Y. Tian, and S. Singh. Investigating robustness and interpretability of
link prediction via adversarial modifications. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 3336–3347, 2019.

[71] P. Pezeshkpour, Y. Tian, and S. Singh. Revisiting evaluation of knowledge base
completion models. In Automated Knowledge Base Construction, 2020.

[72] P. Pezeshkpour, Z. Zhao, and S. Singh. On the utility of active instance selection for
few-shot learning. NeurIPS HAMLETS, 2020.

[73] P. Pezeshkpour, Z. Zhao, and S. Singh. Using data importance for effective active
learning. CVPR workshop on Visual Learning with Limited Labels (VL3), 2020.

100

[74] V. Prabhakaran, B. Hutchinson, and M. Mitchell. Perturbation sensitivity analysis to
detect unintended model biases. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages 5740–5745, 2019.

[75] J. Pujara, E. Augustine, and L. Getoor. Sparsity and noise: Where knowledge graph
embeddings fall short. In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 1751–1756, 2017.

[76] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[77] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

[78] N. F. Rajani, B. Krause, W. Yin, T. Niu, R. Socher, and C. Xiong. Explaining and
improving model behavior with k nearest neighbor representations. arXiv preprint
arXiv:2010.09030, 2020.

[79] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks. arXiv preprint arXiv:1908.10084, 2019.

[80] M. T. Ribeiro, S. Singh, and C. Guestrin. " why should i trust you?" explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1135–1144, 2016.

[81] A. Ross, A. Marasović, and M. E. Peters. Explaining nlp models via minimal contrastive
editing (mice). arXiv preprint arXiv:2012.13985, 2020.

[82] A. S. Ross, M. C. Hughes, and F. Doshi-Velez. Right for the right reasons: training
differentiable models by constraining their explanations. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence, pages 2662–2670, 2017.

[83] D. Ruffinelli, S. Broscheit, and R. Gemulla. You {can} teach an old dog new tricks!
on training knowledge graph embeddings. In International Conference on Learning
Representations, 2020.

[84] T. Safavi, D. Koutra, and E. Meij. Improving the utility of knowledge graph embeddings
with calibration. arXiv preprint arXiv:2004.01168, 2020.

[85] I. Sanchez, J. Mitchell, and S. Riedel. Behavior analysis of NLI models: Uncovering
the influence of three factors on robustness. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), June 2018.

[86] M. Sap, D. Card, S. Gabriel, Y. Choi, and N. A. Smith. The risk of racial bias in
hate speech detection. In Proceedings of the 57th annual meeting of the association for
computational linguistics, pages 1668–1678, 2019.

101

[87] A. Sharma, P. Talukdar, et al. Towards understanding the geometry of knowledge
graph embeddings. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), volume 1, pages 122–131, 2018.

[88] A. Shrivastava and P. Li. Asymmetric lsh (alsh) for sublinear time maximum inner
product search (mips). In Advances in Neural Information Processing Systems, pages
2321–2329, 2014.

[89] R. Socher, D. Chen, C. D. Manning, and A. Ng. Reasoning with neural tensor networks
for knowledge base completion. In Advances in neural information processing systems,
pages 926–934, 2013.

[90] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts.
Recursive deep models for semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods in natural language processing,
pages 1631–1642, 2013.

[91] R. Srinivasan, A. Chander, and P. Pezeshkpour. Generating user-friendly explanations
for loan denials using gans. arXiv preprint arXiv:1906.10244, 2019.

[92] A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid, A. Fisch, A. R. Brown,
A. Santoro, A. Gupta, A. Garriga-Alonso, et al. Beyond the imitation game: Quantifying
and extrapolating the capabilities of language models. arXiv preprint arXiv:2206.04615,
2022.

[93] R. Steed, S. Panda, A. Kobren, and M. Wick. Upstream Mitigation Is Not All You
Need: Testing the Bias Transfer Hypothesis in Pre-Trained Language Models. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3524–3542, Dublin, Ireland, May 2022. Association for
Computational Linguistics.

[94] Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang. Rotate: Knowledge graph embedding by
relational rotation in complex space. arXiv preprint arXiv:1902.10197, 2019.

[95] Z. Sun, S. Vashishth, S. Sanyal, P. Talukdar, and Y. Yang. A re-evaluation of knowledge
graph completion methods. arXiv preprint arXiv:1911.03903, 2019.

[96] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In
International Conference on Machine Learning, pages 3319–3328. PMLR, 2017.

[97] P. Tabacof and L. Costabello. Probability calibration for knowledge graph embedding
models. arXiv preprint arXiv:1912.10000, 2019.

[98] K. Toutanova and D. Chen. Observed versus latent features for knowledge base and
text inference. In Proceedings of the 3rd workshop on continuous vector space models
and their compositionality, pages 57–66, 2015.

102

[99] K. Toutanova, D. Chen, P. Pantel, H. Poon, P. Choudhury, and M. Gamon. Representing
text for joint embedding of text and knowledge bases. In EMNLP, volume 15, pages
1499–1509, 2015.

[100] K. Toutanova, V. Lin, W.-t. Yih, H. Poon, and C. Quirk. Compositional learning of
embeddings for relation paths in knowledge base and text. In ACL (1), 2016.

[101] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard. Complex embeddings
for simple link prediction. In International Conference on Machine Learning, pages
2071–2080, 2016.

[102] C. Tu, H. Liu, Z. Liu, and M. Sun. Cane: Context-aware network embedding for
relation modeling. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), volume 1, pages 1722–1731, 2017.

[103] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, and S. R.
Bowman. Superglue: A stickier benchmark for general-purpose language understanding
systems. Advances in Neural Information Processing Systems, 32, 2019.

[104] Y.-C. Wang, X. Ge, B. Wang, and C.-C. J. Kuo. Kgboost: A classification-based
knowledge base completion method with negative sampling. Pattern Recognition Letters,
157:104–111, 2022.

[105] Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph embedding by translating
on hyperplanes. In AAAI, pages 1112–1119, 2014.

[106] A. Williams, N. Nangia, and S. Bowman. A broad-coverage challenge corpus for sentence
understanding through inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 1112–1122, 2018.

[107] B. Yang, W. Yih, X. He, J. Gao, and L. Deng. Embedding entities and relations for
learning and inference in knowledge bases. In International Conference on Learning
Representations (ICLR), 2015.

[108] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng. Embedding entities and relations for
learning and inference in knowledge bases. In ICLR, 2015.

[109] C.-K. Yeh, J. Kim, I. E.-H. Yen, and P. K. Ravikumar. Representer point selection
for explaining deep neural networks. In Advances in Neural Information Processing
Systems, pages 9291–9301, 2018.

[110] R. Zellers, Y. Bisk, R. Schwartz, and Y. Choi. Swag: A large-scale adversarial dataset
for grounded commonsense inference. arXiv preprint arXiv:1808.05326, 2018.

[111] J. Zhao, T. Wang, M. Yatskar, V. Ordonez, and K.-W. Chang. Gender bias in coreference
resolution: Evaluation and debiasing methods. arXiv preprint arXiv:1804.06876, 2018.

103

[112] M. Zhao, B. An, Y. Yu, S. Liu, and S. J. Pan. Data poisoning attacks on multi-
task relationship learning. In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence, pages 2628–2635, 2018.

[113] Z. Zhao, D. Dua, and S. Singh. Generating natural adversarial examples. In International
Conference on Learning Representations (ICLR), 2018.

[114] Y. Zhou, S. Booth, M. T. Ribeiro, and J. Shah. Do feature attribution methods correctly
attribute features? arXiv preprint arXiv:2104.14403, 2021.

[115] D. Zügner, A. Akbarnejad, and S. Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 2847–2856. ACM, 2018.

[116] H. Zylberajch, P. Lertvittayakumjorn, and F. Toni. Hildif: Interactive debugging of nli
models using influence functions. In Proceedings of the First Workshop on Interactive
Learning for Natural Language Processing, pages 1–6, 2021.

104

Appendix A

Interpretability of Link Prediction Models

A.1 Further Proofs

We approximate the change on the score of the target triple upon applying attacks other

than the ⟨s′, r′, o⟩ ones. Since each relation appears many times in the training triples,

we can assume that applying a single attack will not considerably affect the relations

embeddings. As a result, we just need to study the attacks in the form of ⟨s, r′, o⟩ and

⟨s, r′, o′⟩. Defining the scoring function as ψ(s, r, o) = f(s, r) · o = zs,r · o, we further assume

that ψ(s, r, o) = s · g(r,o) = s · xr,o.

A.1.1 Modifications in the Form ⟨s, r′, o′⟩

Using similar argument as the attacks in the form of ⟨s′, r′, o⟩, we can calculate the effect of

the attack, ψ(s, r, o)− ψ(s, r, o) as:

ψ(s, r, o)− ψ(s, r, o) = (es − s)xs,r (A.1)

105

where xs,r = g(r,o).

We now derive an efficient computation for (es − s). First, the derivative of the loss

L(G) = L(G) + L(⟨s, r′, o′⟩) over s is:

∇esL(G) = ∇esL(G)− (1− φ)xr′,o′ (A.2)

where xr′,o′ = g(r′,o′), and φ = σ(ψ(s, r′, o′)). At convergence, after retraining, we expect

∇esL(G) = 0. We perform first order Taylor approximation of ∇esL(G) to get:

0 ≃− (1− φ)x⊺
r′,o′+

(Hs + φ(1− φ)x⊺
r′,o′xr′,o′)(es − s) (A.3)

where Hs is the d× d Hessian matrix for s, i.e. second order derivative of the loss w.r.t. s,

computed sparsely. Solving for es − s gives us:

es − s = (1− φ)(Hs + φ(1− φ)x⊺
r′,o′xr′,o′)

−1x⊺
r′,o′

In practice, Hs is positive definite, making Hs + φ(1− φ)x⊺
r′,o′xr′,o′ positive definite as well,

and invertible. Then, we compute the score change as:

ψ(s, r, o)− ψ(s, r, o) = xr,o(es − s) (A.4)

= ((1− φ)(Hs + φ(1− φ)x⊺
r′,o′xr′,o′)

−1x⊺
r′,o′)xr,o.

A.1.2 Modifications in the Form ⟨s, r′, o⟩

In this section we approximate the effect of attack in the form of ⟨s, r′, o⟩. In contrast to

⟨s′, r′, o⟩ attacks, for this scenario we need to consider the change in the s, upon applying

106

Target Triple CRIAGE-Add
D

is
tM

u
lt Brisbane Airport, isConnectedTo, Boulia Airport Osman Ozköylü, isPoliticianOf, Boulia Airport

Jalna District, isLocatedIn, India United States, hasWonPrize, India
Quincy Promes, wasBornIn, Amsterdam Gmina Krzeszyce, hasGender, Amsterdam

Princess Henriette, hasChild, Violante Bavaria Al Jazira Club, playsFor, Violante Bavaria

C
on

vE

Brisbane Airport, isConnectedTo, Boulia Airport Victoria Wood, wasBornIn, Boulia Airport
National Union(Israel), isLocatedIn, Jerusalem Sejad Halilović, isAffiliatedTo, Jerusalem

Robert Louis, influences, David Leavitt David Louhoungou, hasGender, David Leavitt
Princess Henriette, hasChild, Violante Bavaria Jonava, isAffiliatedTo, Violante Bavaria

Table A.1: Top adversarial triples for target samples.

the attack, in approximation of the change in the score as well. Using previous results, we

can approximate the eo − o as:

eo − o = (1− φ)(Ho + φ(1− φ)z⊺s,r′zs,r′)
−1z⊺s,r′ (A.5)

and similarly, we can approximate es − s as:

es − s = (1− φ)(Hs + φ(1− φ)x⊺
r′,oxr′,o)

−1x⊺
r′,o (A.6)

where Hs is the Hessian matrix over s. Then using these approximations:

zs,r(eo − o) = zs,r((1− φ)(Ho + φ(1− φ)z⊺s,r′zs,r′)
−1z⊺s,r′)

and:

(es − s)xr,ō = ((1− φ)(Hs + φ(1− φ)x⊺
r′,oxr′,o)

−1x⊺
r′,o)xr,ō

107

and then calculate the change in the score as:

ψ(s, r, o)− ψ(s, r, o) =

zs,r.(eo − o) + (es − s).xr,ō =

zs,r((1− φ)(Ho + φ(1− φ)z⊺s,r′zs,r′)
−1z⊺s,r′) (A.7)

+ ((1− φ)(Hs + φ(1− φ)x⊺
r′,oxr′,o)

−1x⊺
r′,o)xr,ō (A.8)

A.2 Sample Adversarial Attacks

In this section, we provide the output of the CRIAGE-Add for some target triples. Sample

adversarial attacks are provided in Table A.1. As it shows, CRIAGE-Add attacks mostly try

to change the type of the target triple’s object by associating it with a subject and a relation

that require a different entity type.

108

Appendix B

Revisiting Evaluation of Knowledge

Graph Completion

B.1 Scoring Functions and Implementation Details

Here we first describe different scoring functions adopted in this work and then elaborate the

implementation details.

Scoring Functions: In DistMult, ψ(s, r, o) = esRreo, where es, eo ∈ Rd are embeddings

of the subject, and object and Rr ∈ Rd×d is a diagonal matrix representing the relation

r. Moreover, The RotatE scoring function is defined as ψ(s, r, o) =∥ es ◦Rr − eo ∥2 where

es,Rr, eo ∈ Cd and ◦ denotes the Hadamard product. In Tucker, the score of triple ⟨s, r, o⟩ is

defined as ψ(s, r, o) =W ×1 es ×2 Rr ×3 eo, where es, eo ∈ Rde , Rr ∈ Rdr ,W ∈ Rde,dr,de and

×i is representing the tensor product along the ith mode.

109

Rel #Ent # Training #Test #Valid

WN18RR 18 40,768 86,835 3,134 3,034
FB15k-237 237 14,541 272,115 20,466 17,535
YAGO3-10 37 123,170 1,079,040 5,000 5,000
Nations 56 14 1,592 200 200
Kinship 26 104 8,544 1,074 1,068

Table B.1: Data Statistics of the benchmarks.

Implementation Details: We use the same loss and optimization for training, i.e., Ada-

Grad and the binary cross-entropy loss. We adopt reported hyperparameters from previous

works to reproduce their performance. To investigate the link prediction task, we study

commonly-used metrics for evaluation in this task: mean reciprocal rank (MRR) and Hits@N.

As our embedding methods, we consider DistMult [108] because of its simplicity and high

performance, and RotatE [94] and Tucker [7] because of their state-of-the-art performance.

Further, we use validation data to tune the hyperparameters and use a grid search to find

the best hyperparameters, such as the regularization parameter. To evaluate our method, we

conduct link prediction experiment on two small KGs, Kinship and Nations and three more

realistic KGs FB15k-237 [99], WN18-RR [25] and YAGO3-10 [52]. A statistical analysis of

our benchmarks is provided in Table B.1

B.2 Entity Types

Definition B.2.1. In this work, we define a generic notion of type for entities. We consider

two entities to have the same type if they appear with relations in the training data, that

themselves have appeared several times with the same objects (subjects). More specifically,

for target triple ⟨s, r, o⟩, to find all the entities with the same type as s, we first find all the

relations that for some number of times, appear with the same entities for their subject as

the relation r. Then we consider the union of all entities that appear as the subject for those

110

Barack
Obama

Michelle
Obama

United
States Lawyer

Sasha
Obama

isMarriedTo

w
asB

ornIn ha
sJ

ob

ha
sC

hi
ld

hasChild

(a) KG, with the target prediction

Barack
Obama

Michelle
Obama

Sasha
Obama

σ(W hasChild,hasChild
isMarriedTo)

isMarriedTo

ha
sC

hi
ld

hasChild

(b) The local score, Loc

Figure B.1: Score of each triple includes local score, which captures paths between subject
and object entity in the target triple.

relations in the training data, as the set of the same type entities for s. Throughout the

chapter, we use this notion of type to identify the type of each entity.

B.3 Local Score

In this section, we analyze the scoring function and the simple patterns that we incorporate

to our model. A simple representation of our local model is depicted in Figure B.1. Moreover,

the simple patterns with length 3 that we consider for WN18RR and YAGO3-10 is depicted

in Figure B.2. The reason for choosing these patterns is the fact that they are very easy

to learn. To learn these patterns, the translation-based embedding method such as RotatE

just needs to learn that if a path contains two edges with the same relation, but in the

reverse direction, these edges would cancel each other out. And this is a direct result of the

definition of translation-based scoring function. For Multiplicative based embedding such

as DistMult, if we assume that |eo|, |es|, |esRr| = 1, the scoring function can be considered

as translation-based embedding by considering the space angle as the metric of similarity

instead of Euclidean distance.

111

Entity
1

Entity
2

Entity
3

Entity
4

Relation 1

R
elation

2

Rela
tio

n 2

R
elation

1

(a) Pattern 1.

Entity
1

Entity
2

Entity
3

Entity
4

Relation 1

R
elation

2

Rela
tio

n 2

R
elation

1

(b) Pattern 2.

Entity
1

Entity
2

Entity
3

Entity
4

Rela
tio

n 1

Relation 2

R
el

at
io

n
2R

elation
1

(c) Pattern 3.

Entity
1

Entity
2

Entity
3

Entity
4

Rela
tio

n 1

Relation 2

R
el

at
io

n
2R

elation
1

(d) Pattern 4.

Figure B.2: Simple patterns with length 3 which we incorporate to represent the WN18RR
and YAGO3-10.

B.4 Calibration Study

The calibration plot for WN18RR and FB15k-237 over our three defined negative sampling

procedures is depicted in Figure B.3 The histogram plot of scores’ distribution for WN18RR,

FB15k-237 and YAGO3-10 using Distmult, Tucker, and Rotate as link prediction models

and adopting studied mentioned negative sampling procedures is depicted in Figure B.4.

Moreover, the histogram plot of scores’ distribution for YAGO3-TC is depicted in Figure B.5.

B.5 Number of Parameters and Calibration

In this section, we reproduce the calibration plots by fixing the number of parameters over

different models. We consider the DistMult’s number of parameters with a hidden dimension

of 200 as our benchmark. The MRR performance of different models with the same number

of parameters is provided in Table B.2. Moreover, the calibration plot using these models is

depicted in Figure B.6. As it shows, the results appear very similar to previously reported

ones. The reason behind similar behavior is due to the fact that the link prediction models’

112

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0.0

0.2

0.4

0.6

0.8

1.0
Ra

tio
 o

f p
os

iti
ve

s

Tucker
RotatE
DistMult

(a) Random-N on FB15k-237

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

os
iti

ve
s

Tucker
RotatE
DistMult

(b) Constraint-N on FB15k-237

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

os
iti

ve
s

Tucker
RotatE
DistMult

(c) Careful-N on FB15k-237

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

os
iti

ve
s

Tucker
RotatE
DistMult

(d) Random-N on WN18RR

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

os
iti

ve
s

Tucker
RotatE
DistMult

(e) Constraint-N on WN18RR

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

os
iti

ve
s

Tucker
RotatE
DistMult

(f) Careful-N on WN18RR

Figure B.3: Calibration study on different KGs based on three negative sampling procedures.

Models
FB15k-237 WN18RR YAGO3-10

MRR Hits@1 MRR Hits@1 MRR Hits@1

DistMult 0.279 17.9 0.39 36.4 0.423 33.8
RotatE 0.3 20.9 0.434 40.7 0.459 36.5
Tucker 0.339 25 0.423 40.4 0.417 33.4

Table B.2: Link Prediction result for FB15k-237, WN18RR and YAGO3-10 KGs. All
results generated by restricting the number of parameters to be equal to the DistMult’s
parameters with dimension 200.

performance tends to get saturated upon increasing the hidden dimension value.

B.6 YAGO3-TC Relation Distribution

The relation distribution of YAGO3-10 test data on our randomly 1000 random sampled is

depicted in Figure B.7. As shown, except for relation affiliatedTo (relation 16), which we

didn’t consider in our sampling, other relations demonstrate similar distribution.

113

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0

10000

20000

30000

40000

50000

60000

Co
un

t

Tucker
RotatE
DistMult

(a) Random-N on FB15k-237

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0

10000

20000

30000

40000

50000

Co
un

t

Tucker
RotatE
DistMult

(b) Constraint-N on FB15k-237

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0

10000

20000

30000

40000

50000

Co
un

t

Tucker
RotatE
DistMult

(c) Careful-N on FB15k-237

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0

2000

4000

6000

8000

10000

Co
un

t

Tucker
RotatE
DistMult

(d) Random-N on WN18RR

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0

2000

4000

6000

8000

10000
Co

un
t

Tucker
RotatE
DistMult

(e) Constraint-N on WN18RR

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0

2000

4000

6000

8000

10000

Co
un

t

Tucker
RotatE
DistMult

(f) Careful-N on WN18RR

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0

2000

4000

6000

8000

10000

12000

14000

16000

Co
un

t

Tucker
RotatE
DistMult

(g) Random-N on YAGO3-10

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0

2000

4000

6000

8000

10000

12000

14000

16000

Co
un

t

Tucker
RotatE
DistMult

(h) Constraint-N on YAGO3-10

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0

2000

4000

6000

8000

10000

12000

14000

Co
un

t

Tucker
RotatE
DistMult

(i) Careful-N on YAGO3-10

Figure B.4: Calibration study on different KGs based on three negative sampling procedures.

Figure B.5: Histogram plot of Calibration on YAGO3-TC.

114

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

os
iti

ve
s

Tucker
RotatE
DistMult

(a) Random-N on FB15k-237

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

os
iti

ve
s

Tucker
RotatE
DistMult

(b) Constraint-N on FB15k-237

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

os
iti

ve
s

Tucker
RotatE
DistMult

(c) Careful-N on FB15k-237

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

os
iti

ve
s

Tucker
RotatE
DistMult

(d) Random-N on WN18RR

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

os
iti

ve
s

Tucker
RotatE
DistMult

(e) Constraint-N on WN18RR

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

os
iti

ve
s

Tucker
RotatE
DistMult

(f) Careful-N on WN18RR

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

os
iti

ve
s

Tucker
RotatE
DistMult

(g) Random-N on YAGO3-10

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

os
iti

ve
s

Tucker
RotatE
DistMult

(h) Constraint-N on YAGO3-10

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

os
iti

ve
s

Tucker
RotatE
DistMult

(i) Careful-N on YAGO3-10

Figure B.6: Calibration study on different KGs based on three negative sampling procedures.

115

(a) YAGO3-10 test data. (b) Randomly sampled data.

Figure B.7: Distribution of relations in YAGO3-10 and our randomly 1000 sampled. Except
for relation affiliatedTo (relation 16), which we didn’t consider in our sampling, other relations
demonstrate similar distribution.

116

Appendix C

Empirical Comparison of Instance

Attribution Methods

C.1 Experimental Details

Datasets To evaluate different attribution methods, we conduct several experiments on

sentiment analysis and NLI tasks, following prior work investigating the use of influence

functions specifically for NLP [36]. We adopt a binarized version of the Stanford Sentiment

Treebank (SST-2; [90]), consisting of 6920 training samples and 1821 test samples. As our NLI

benchmark, we use the Multi-Genre NLI (MNLI) dataset [106], which contains 393k pairs of

premise and hypothesis from 10 different genres. For model fine-tuning, we randomly sample

10k training instances. To evaluate the utility of different instance attribution methods

in helping to unearth annotation artifacts in NLI, we use the HANS dataset [53], which

comprises examples exhibiting previously identified NLI artifacts such as lexical overlap

between hypotheses and premises.We randomly sampled 1000 instances from this benchmark

as test data to analyze the behavior of different attribution methods.

117

Models As discussed in the main chapter, we define modules for both tasks on top of BERT

models, tuning hyperparameters on validation data via grid search. These hyperparameters

include the regularization parameter λ = [10−1, 10−2, 10−3]; learning rate α = [2× 10−3, 2×

10−4, 2× 10−5, 2× 10−6]; number of epochs ∈ {3, 7, 10, 15}; and the batch size ∈ {8, 16}. Our

final models achieve 90.6% accuracy on SST and 71.2% accuracy on MNLI

C.2 Correlation Between Attribution Methods

The complete version of spearman correlation between attribution methods (containing the

sentence-BERT) is provided in C.1. As expected, similarity-based approaches based on

sentence-BERT show a very small correlation with other methods.

We also provide the proportion of shared examples in the top samples retrieved by IF (top-5)

and IF (linear) in Figure C.2. One can see that there is a very high correlation between

these methods in top samples, validating the high quality of the simpler version of IF (linear)

compared to the more complex method (top-5).

C.3 Removing ‘Important’ Samples

The proportion of common examples in top samples between pairs of attribution methods

is depicted in Figures C.3 and C.4. The high rates between IF vs GD, RIF vs GC, and

NN-EUC vs NN-COS pairs, agree with the similar performance of these pairs of methods in

leave-some-out experiments.

118

IF
 (T

op
-5

)

GD
 (T

op
-5

)

IF
 (L

in
ea

r)

RI
F

(L
in

ea
r)

GD
 (L

in
ea

r)

GC
 (L

in
ea

r)

RE
P

Po
in

ts

NN
 C

os

NN
 D

ot

NN
 E

uc

NN
 (S

en
t)

Co
s

NN
 (S

en
t)

Do
t

NN
 (S

en
t)

Eu
c

IF (Top-5)
GD (Top-5)
IF (Linear)

RIF (Linear)
GD (Linear)
GC (Linear)
REP Points

NN Cos
NN Dot
NN Euc

NN (Sent) Cos
NN (Sent) Dot
NN (Sent) Euc

1.00
0.99 1.00
0.88 0.88 1.00
0.08 0.10 -0.09 1.00
0.88 0.88 1.00 -0.09 1.00
0.08 0.10 -0.09 1.00 -0.09 1.00
0.84 0.84 0.87 0.01 0.87 0.01 1.00
0.34 0.34 0.22 0.70 0.22 0.70 0.37 1.00
0.32 0.32 0.21 0.67 0.21 0.67 0.36 0.96 1.00
0.33 0.33 0.22 0.72 0.22 0.72 0.40 0.98 0.96 1.00
-0.02 -0.02 -0.06 0.15 -0.06 0.15 0.02 0.25 0.24 0.24 1.00
-0.05 -0.05 -0.09 0.15 -0.09 0.15 -0.00 0.24 0.23 0.24 0.99 1.00
0.04 0.03 0.00 0.12 0.00 0.12 0.08 0.25 0.24 0.25 0.93 0.88 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) SST.

IF
 (T

op
-5

)

GD
 (T

op
-5

)

IF
 (L

in
ea

r)

RI
F

(L
in

ea
r)

GD
 (L

in
ea

r)

GC
 (L

in
ea

r)

RE
P

Po
in

ts

NN
 C

os

NN
 D

ot

NN
 E

uc

NN
 (S

en
t)

Co
s

NN
 (S

en
t)

Do
t

NN
 (S

en
t)

Eu
c

IF (Top-5)
GD (Top-5)
IF (Linear)

RIF (Linear)
GD (Linear)
GC (Linear)
REP Points

NN Cos
NN Dot
NN Euc

NN (Sent) Cos
NN (Sent) Dot
NN (Sent) Euc

1.00
0.96 1.00
0.76 0.73 1.00
0.70 0.69 0.83 1.00
0.76 0.73 1.00 0.83 1.00
0.70 0.69 0.83 1.00 0.83 1.00
0.74 0.73 0.80 0.77 0.80 0.77 1.00
0.47 0.46 0.49 0.56 0.49 0.56 0.45 1.00
0.46 0.45 0.48 0.55 0.48 0.55 0.44 0.98 1.00
0.44 0.43 0.45 0.57 0.45 0.57 0.47 0.93 0.94 1.00
0.03 0.02 0.04 0.05 0.04 0.05 0.03 0.05 0.05 0.04 1.00
0.03 0.02 0.04 0.05 0.04 0.05 0.03 0.05 0.05 0.04 1.00 1.00
0.03 0.03 0.04 0.06 0.04 0.06 0.03 0.03 0.03 0.03 0.91 0.89 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) MNLI.

Figure C.1: Complete version of correlation matrices.

119

0 100 200 300 400 500
N

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
pr

op
or

tio
n

of
 c

om
m

on
 e

le
m

en
ts

(a) SST.

0 100 200 300 400 500
N

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

pr
op

or
tio

n
of

 c
om

m
on

 e
le

m
en

ts

(b) MNLI.

Figure C.2: Proportion of common top examples between IF (Top-5) and IF (Linear) Methods.
We selected 100 test examples and 500 training examples to compute the attributions over.

120

IF
 (L

in
ea

r)

RI
F

(L
in

ea
r)

GD
 (L

in
ea

r)

GC
 (L

in
ea

r)

RE
P

Po
in

ts

NN
 C

os

NN
 D

ot

NN
 E

uc

NN
 (S

en
t)

Co
s

NN
 (S

en
t)

Do
t

NN
 (S

en
t)

Eu
c

IF (Linear)

RIF (Linear)

GD (Linear)

GC (Linear)

REP Points

NN Cos

NN Dot

NN Euc

NN (Sent) Cos

NN (Sent) Dot

NN (Sent) Euc

1.00

0.02 1.00

1.00 0.02 1.00

0.02 1.00 0.02 1.00

0.51 0.02 0.51 0.02 1.00

0.01 0.97 0.01 0.97 0.01 1.00

0.01 0.04 0.01 0.04 0.02 0.04 1.00

0.01 0.89 0.01 0.89 0.01 0.91 0.03 1.00

0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 1.00

0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.65 1.00

0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.71 0.41 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Top-10 in SST.

IF
 (L

in
ea

r)

RI
F

(L
in

ea
r)

GD
 (L

in
ea

r)

GC
 (L

in
ea

r)

RE
P

Po
in

ts

NN
 C

os

NN
 D

ot

NN
 E

uc

NN
 (S

en
t)

Co
s

NN
 (S

en
t)

Do
t

NN
 (S

en
t)

Eu
c

IF (Linear)

RIF (Linear)

GD (Linear)

GC (Linear)

REP Points

NN Cos

NN Dot

NN Euc

NN (Sent) Cos

NN (Sent) Dot

NN (Sent) Euc

1.00

0.02 1.00

1.00 0.02 1.00

0.02 1.00 0.02 1.00

0.70 0.02 0.70 0.02 1.00

0.01 0.71 0.01 0.71 0.01 1.00

0.01 0.08 0.01 0.08 0.01 0.09 1.00

0.01 0.67 0.01 0.67 0.01 0.85 0.07 1.00

0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 1.00

0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.76 1.00

0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.74 0.53 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Top-10 in MNLI.

Figure C.3: Proportion of common examples in top 10 samples between pairs of attribution
methods.

121

IF
 (L

in
ea

r)

RI
F

(L
in

ea
r)

GD
 (L

in
ea

r)

GC
 (L

in
ea

r)

RE
P

Po
in

ts

NN
 C

os

NN
 D

ot

NN
 E

uc

NN
 (S

en
t)

Co
s

NN
 (S

en
t)

Do
t

NN
 (S

en
t)

Eu
c

IF (Linear)

RIF (Linear)

GD (Linear)

GC (Linear)

REP Points

NN Cos

NN Dot

NN Euc

NN (Sent) Cos

NN (Sent) Dot

NN (Sent) Euc

1.00

0.05 1.00

1.00 0.05 1.00

0.05 1.00 0.05 1.00

0.75 0.06 0.75 0.06 1.00

0.05 0.98 0.05 0.98 0.05 1.00

0.03 0.11 0.03 0.11 0.04 0.12 1.00

0.05 0.92 0.05 0.92 0.05 0.93 0.09 1.00

0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 1.00

0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.73 1.00

0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.74 0.49 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Top-50 in SST.

IF
 (L

in
ea

r)

RI
F

(L
in

ea
r)

GD
 (L

in
ea

r)

GC
 (L

in
ea

r)

RE
P

Po
in

ts

NN
 C

os

NN
 D

ot

NN
 E

uc

NN
 (S

en
t)

Co
s

NN
 (S

en
t)

Do
t

NN
 (S

en
t)

Eu
c

IF (Linear)

RIF (Linear)

GD (Linear)

GC (Linear)

REP Points

NN Cos

NN Dot

NN Euc

NN (Sent) Cos

NN (Sent) Dot

NN (Sent) Euc

1.00

0.06 1.00

1.00 0.06 1.00

0.06 1.00 0.06 1.00

0.70 0.08 0.70 0.08 1.00

0.05 0.71 0.05 0.71 0.07 1.00

0.04 0.16 0.04 0.16 0.05 0.19 1.00

0.05 0.69 0.05 0.69 0.07 0.88 0.14 1.00

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1.00

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.82 1.00

0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.74 0.58 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Top-50 in MNLI.

Figure C.4: Proportion of common examples in top 50 samples between pairs of attribution
methods.

122

Method Lexical Overlap Rate

top-1 top-10
Random 0.40 0.40

Sen-Bert
NN EUC 0.39 0.41
NN COS 0.38 0.39
NN DOT 0.39 0.40

Sim
NN EUC 0.56 0.57
NN COS 0.56 0.56
NN DOT 0.44 0.44

Gradient

IF 0.43 0.44
REP 0.43 0.35
RIF 0.54 0.55
GD 0.43 0.44
GC 0.55 0.56

Table C.1: Studying the average lexical overlap rate between premise and hypothesis in top-k
most influential samples for test instances mispredicted as entailment.

C.4 Artifacts and Attribution Methods

The average lexical overlap rate for 1000 random samples from the HANS dataset using all

different attribution methods is reported in Table C.1.

123

Appendix D

Artifact Discovery

D.1 Experimental Setup

Datasets To investigate artifact detection, we conduct experiments on several common NLP

benchmarks. We consider two benchmarks with previously known artifacts: (1) HANS dataset

[53], which comprises 30k examples exhibiting previously identified NLI artifacts such as

lexical overlap between hypotheses and premises. We randomly sampled 1000 instances from

this benchmark as test data and use 10k randomly sampled instances from the Multi-Genre

NLI (MNLI) dataset [106], which contains 393k pairs of premise and hypothesis from 10

different genres, as training data. (2) We also use the IMDB binary sentiment classification

corpus [50], comprising 25k training and 25k testing instances. It has been shown in prior

work [81] that models tend to rely on the presence of ratings (range: 1 to 10) within IMDB

review texts as artifacts.

We have also reported novel (i.e., previously unreported) artifacts in several benchmarks.

These include: (1) The DWMW17 dataset [24] which is composed of 25K tweets labeled

as hate speech, offensive, or non-toxic; (2) BoolQ [20], a question answering dataset which

124

Figure D.1: Screenshot of the user study’s interface.

contains 16k pairs of yes/no answers and corresponding passages.

Models We adopt BERT [26] with a linear model on top as a classifier and tune hyper-

parameters on validation data via grid search. Specifically, tuned hyperparameters include

the regularization parameter λ = [10−1, 10−2, 10−3]; learning rate α = [10−3, 10−4, 10−5, 10−6];

number of epochs ∈ {3, 4, 5, 6, 7, 8}; and the batch size ∈ {8, 16}. Our final model accuracy

on the benchmarks are as follows: IMDB: 93.2%, DWMW17: 91.1%, BoolQ: 77.5%.

Calculating the Gradient To calculate gradients for individual tokens, we adopt a similar

approach to [6], i.e., calculating the gradient of output (before the softmax), or instance

attribution score with respect to the token embedding. We aggregate the resulting vector by

taking an average; this has shown to be effective in prior work [6] and provides a sense of

positively and negatively influential tokens for model predictions (as compared to using L2

norm as an aggregating function).

125

D.2 User Study

The list of randomly sampled neutral adjectives, most popular names, and the pronouns

used as artifacts are as follows: Adjectives = [regular, cinematic, dramatic, bizarre ,artistic,

mysterious], First-names = [Jacob, Michael, Ethan, Emma, Isabella, Emily] and Pronouns =

[he, his, him, she, her]. We also provide a screenshot of the interface used in our user study

in Figure D.1.

126

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Types of Errors We Consider in This Work
	Errors Related to Knowledge Graphs
	Errors Related to Textual Data

	Dissertation Statement
	Dissertation Outline and Contributions

	Background
	Knowledge Graphs
	Relational Embedding Methods
	Negative Sampling and Loss Function

	Text-Related Tasks
	Attribution Methods

	Identifying Incorrect Information in Knowledge Bases by Explaining Completion Models
	Introduction
	Background
	Adversarial Modifications on Link Prediction (CRIAGE)
	Removing a fact (CRIAGE-Remove)
	Adding a new fact (CRIAGE-Add)
	Challenges

	Efficiently Identifying the Modification
	First-order Approximation of the Change
	Continuous Optimization for Search

	Experiment Setup
	Experiments
	Influence Function vs CRIAGE
	Robustness of Link Prediction Models
	Interpretability of Models
	Finding Errors in Knowledge Graphs

	Related Work
	Conclusions

	Problematic Patterns in Knowledge Bases and Shortcomings of Evaluation of Completion Models
	Introduction
	Background and Notation
	Issues in Existing KG Completion Evaluation
	Assumptions in Ranking Metrics
	Evaluating Calibration of the Models
	Simple Models Look Accurate
	Problems with Triple Classification with Negative Sampling

	YAGO3-TC: A New Benchmark for Evaluating KG Completion
	Creating YAGO3-TC
	Continuously Updated, Hidden Benchmark

	Evaluation Using YAGO3-TC
	Performance of Existing KGC Models on YAGO3-TC
	Calibration
	Per-Relation Breakdown

	Related Work
	Conclusion

	Which Training Samples are Truly Important?
	Introduction
	Attribution Methods
	Experimental Setup
	Experiments
	Attribution Methods' Correlation
	Removing `Important' Samples
	Randomized-Test
	Artifacts and Attribution Methods

	Near Training Samples Explanations
	Computational Complexity

	Conclusions

	Artifact Discovery with Attribution Methods
	Introduction
	Background and Notation
	Artifact Detection and Training-Feature Attribution
	What is an Artifact?
	Training-Feature Attribution

	A Procedure for Artifact Discovery
	Setup
	Case Studies
	Known Granular Artifact: Sentiment Analysis with IMDB Ratings
	Known Abstract Artifact: Natural Language Inference with HANS
	Unknown Granular Artifact: Bias in Hate Speech Detection
	Unknown Abstract Artifact: Structural Bias in BoolQ

	User Study
	Related Work
	Conclusions

	Conclusions and Future Directions
	Contributions
	Potential Impact
	Future Directions

	Bibliography
	Appendix Interpretability of Link Prediction Models
	Further Proofs
	Modifications in the Form s, r', o'
	Modifications in the Form s, r', o

	Sample Adversarial Attacks

	Appendix Revisiting Evaluation of Knowledge Graph Completion
	Scoring Functions and Implementation Details
	Entity Types
	Local Score
	Calibration Study
	Number of Parameters and Calibration
	YAGO3-TC Relation Distribution

	Appendix Empirical Comparison of Instance Attribution Methods
	Experimental Details
	Correlation Between Attribution Methods
	Removing `Important' Samples
	Artifacts and Attribution Methods

	Appendix Artifact Discovery
	Experimental Setup
	User Study

