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Abstract

Some Contributions to Smoothing Spline Density Estimation and Inference

by

Jian Shi

Density estimation plays a fundamental role in many areas including statistics and ma-

chine learning. The estimated density functions are useful for model building and diag-

nostics, inference, prediction, classification and clustering. The goal of our research is to

develop new methods for density estimation and inference. This dissertation consists of

three projects involving smoothing spline density estimation and inference.

In the first project, we apply smoothing spline density estimation method to test for

the normality under both univariate (Chapter 2) and multivariate (Chapter 3) settings.

Using the fact that the null hypothesis is equivalent to the logistic density function

belonging to the null space of a quintic spline, we construct new test statistics based

on quintic polynomial spline and thin-plate spline estimates of the density function. We

compare these new tests with some existing normality tests using simulations.

In the second project, we propose model-based penalties for smoothing spline den-

sity estimation and inference. These model-based penalties incorporate indefinite prior

knowledge that the density is close to, but not necessarily in a family of distributions.

The Pearson and generalization of the generalized inverse Gaussian families are used to

illustrate the derivation of penalties and reproducing kernels. We also propose new in-

ference procedures to test the hypothesis that the density belongs to a specific family of

distributions.

Maximum likelihood estimation within a parametric family and nonparametric es-

timation are two traditional approaches for density estimation. Often in practice it is

vii



desirable to model some components of the density function parametrically while leaving

other components unspecified. In the third project, we study a general semiparametric

density model, which contains many existing semiparametric density models as special

cases. We develop computational procedures for different cases, and study the theoretical

properties including consistency and asymptotic distribution for the semiparametric lin-

ear case. Extensive simulations show that the proposed computational methods perform

well and the semiparametric model can outperform many existing nonparametric and

semiparametric density estimation methods. Real data applications are also provided.

viii



Contents

Curriculum Vitae vi

Abstract vii

1 Introduction 1
1.1 Kernel Density Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Smoothing Spline Density Estimation . . . . . . . . . . . . . . . . . . . . 3
1.3 Semiparametric Density Estimation . . . . . . . . . . . . . . . . . . . . . 6
1.4 Inference on Density Functions . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Univariate Normality Test Using Smoothing Spline Density Estimation 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Polynomial Spline and Thin Plate Splines . . . . . . . . . . . . . . . . . 13
2.3 New Test Statistics Based on Smoothing Spline Estimates . . . . . . . . 17
2.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Multivariate Normality Tests Using Smoothing Spline Density Estima-
tion 30
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Test Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Spline Density Estimation with Model Based Penalties 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Model-based Penalty and L-splines . . . . . . . . . . . . . . . . . . . . . 49
4.3 L-spline for Pearson Family of Distributions . . . . . . . . . . . . . . . . 51
4.4 L-spline for GGIG Family . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 L-spline for Inverse Gamma Distribution . . . . . . . . . . . . . . . . . . 55
4.6 Inference of Density Using L-splines . . . . . . . . . . . . . . . . . . . . . 56

ix



4.7 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Semiparametric Density Estimation with Smoothing Spline 68
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Semiparametric Density Models . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Joint Consistency and Asymptotic Normality . . . . . . . . . . . . . . . . 80
5.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A Reproducing Kernels 131
A.1 Quintic Spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.2 Derivation of a Reproducing Kernel for the Gamma Distribution . . . . . 132
A.3 Derivation of a Reproducing Kernel for the Beta Distribution . . . . . . . 134
A.4 Derivation of a Reproducing Kernel for the GGIG Family . . . . . . . . . 135
A.5 Derivation of a Reproducing Kernel for the Inverse Gamma Distribution 137

Bibliography 139

x



Chapter 1

Introduction

Let X1, . . . , Xn be independent and identically distributed (iid) random variables from

a density function f on a domain X . Density estimation is a procedure to estimate the

underlying probability density function f based on observed samples X1, . . . , Xn. This is

a fundamental problem in statistics and machine learning as the density function is useful

in many areas including model building and diagnostics, inference, prediction, clustering,

and classification. There are three approaches to density estimation: parametric, non-

parametric and semiparametric. The parametric approach assumes the density function

is known except for a finite number of parameters, and the parameters are estimated

based on the observed data. The parametric approach is usually simple but often the

form of density is hard to specify. The parametric approach will not be explored in this

dissertation. Details can be found in Pearson [1], Pearson [2], Kendall et al. [3], and

Fisher [4]. The nonparametric approach does not assume any apriori form of the den-

sity model. The form of the density is entirely determined by the data. Silverman [5]

and Lzenmman et al. [6] summarized many nonparametric methods. Two nonparametric

methods, kernel and smoothing spline density estimation, will be reviewed in Sections 1.1

and 1.2 respectively. The semiparametric approach aggregates both the parametric and
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Introduction Chapter 1

the nonparametric components in one model. It combines flexibility of the nonparametric

approach and interpretability of the parametric approach. Some existing semiparametric

density estimation methods will be reviewed in Section 1.3. We will develop new esti-

mation and inference procedures for density functions. Some relevant existing density

inference procedures will be reviewed in Section 1.4.

1.1 Kernel Density Estimation

When X is a continuous interval on R, the kernel estimator with kernel K is defined

by

f̂(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (1.1)

where h is the window width, the kernel function K is everywhere nonnegative and

satisfies the condition ∫ ∞
−∞

K(x)dx = 1. (1.2)

In other words, K is a known probability density function. The kernel estimator can

be treated as a sum of “bumps” placed at the observations. The kernel function K

determines the shape of the bumps while the window width h determines their widths.

The limit as h tends to zero is (in a sense) a sum of Dirac delta functions that spike at

the observations. As h becomes large, all details, spurious or otherwise, are obscured.

With regard to the selection of an optimal value of the band width h, two methods are

commonly used: least square cross validation and likelihood cross-validation. Details can

be found in Rudemo ([7]), Bowman ([8]), Hall ([9]) and Stone ([10]).

Despite the vast amount of literature on kernel method, there are still contentious issues

regarding the implementation and practical performance. For example, it lacks local

adaptability if we choose an h too large, but an h too small often results in being sensitive

2



Introduction Chapter 1

to outliers and the presence of spurious bumps. In addition, most kernel estimators suffer

from boundary effects – a phenomenon due to the fact that most kernels do not take

specific knowledge about the domain of the data into account.

1.2 Smoothing Spline Density Estimation

Smoothing spline density estimation is an adaptive method through penalized like-

lihood. Two intrinsic constraints that a probability density must satisfy are the non-

negativity constraint that f ≥ 0 and the unity constraint that
∫
X fdx = 1. In order

to eliminate the two intrinsic constraints, several transformations such as
√
f(x) or

log(f(x)) have been explored. Assuming that f > 0 on X , Gu [11] considered a logistic

density transform f = eη/
∫
X e

ηdx. To make the transform one-to-one, a side condition

Aη = 0 is imposed, where A is an averaging operator on X that averages out the ar-

gument x to return a constant function. The estimate of η can then be obtained by

minimizing the negative penalized likelihood functional,

− 1

n

n∑
i=1

η(Xi) + log

∫
χ

eηdx+
λ

2
J(η), (1.3)

in a reproducing kernel Hilbert space (RKHS) H, in which the roughness penalty J(η)

is a square (semi) norm and

− 1

n

n∑
i=1

η(Xi) + log

∫
χ

eηdx (1.4)

is the minus log likelihood. One may calculate the minimizer η∗λ of (1.3) in a (data-

adaptive) finite-dimensional space

H∗ = H0 ⊕ span{RJ(Zj, ·), j = 1, ..., q}, (1.5)

3



Introduction Chapter 1

where {Zj, j = 1, . . . , q} is a random subset of {Xi, i = 1, . . . , n}, the null space H0={η:

Aη = 0, J(η) = 0} and RJ is the reproducing kernel of the orthogonal complement space

of H0. It can be shown that the estimate of η in H and η∗ share the same asymptotic

convergence rates with q ≡ n2/(pr+1)+ε for some r > 1, p ∈ [1, 2], and any ε > 0.

Therefore, in the rest of the dissertation, we focus on η∗λ, but drop the star for simplicity.

The estimate can be represented as

ηλ(x) =
m∑
ν=1

dνφν(x) +

q∑
j=1

cjRJ(Zj, x) = φTd+ ξTc, (1.6)

where ξ = (RJ(Z1, x), ..., RJ(Zq, x))T , φ = (φ1(x), ..., φm(x))T is a vector of basis func-

tions of H0, c = (c1, ..., cq)
T and d = (d1, ..., dm)T . Then the calculation of ηλ reduces to

the minimization of

− 1

n
1T (Sd+Rc) + log

∫
χ

exp(φTd+ ξTc)dx+
λ

2
cTQc (1.7)

with respect to c and d, where S is a n×m matrix with the (i, ν)th entry φν(Xi), R is

a n× q matrix with the (i, j)th entry ξj(Xi) = RJ(Zj, Xi), and Q is a q × q matrix with

the (j, k)th entry RJ(Zj, Zk). Newton method is applied to obtain c and d (Gu [11]).

Write µf (g) =
∫
gefdx/

∫
efdx, Vf (g, h) = µf (gh) − µf (g)µf (h), and Vf (g) = Vf (g, g).

Let η̃λ = φT d̃ + ξT c̃ ∈ H∗ be the point in the previous step, where c̃ = (c̃1, .., c̃q)
T and

d̃ = (d̃1, ..., d̃m)T . Taking derivatives at η̃λ with respect to c and d, the Newton updating

equation, after rearranging terms, becomes

 Vφ,φ Vφ,ξ

Vξ,φ Vξ,ξ + λQ


 d

c

 =

 ST1/n− µφ + Vφ,η̃

RT1/n− µξ + Vξ,η̃

 , (1.8)

4



Introduction Chapter 1

where Vφ,η = Vη̃(φ, η) = (Vη̃(φ1, η), ..., Vη̃(φm, η))T and Vξ,η = Vη̃(ξ, η) =

(Vη̃(ξ1, η), ..., Vη̃(ξq, η))T .

The smoothing parameter λ is crucial to the performance of the estimation. Gu [11] has

developed a data-driven selection method based on the Kullback-Leibler (KL) distance.

To measure the discrepancy between the estimate fλ = eηλ/
∫
χ
eηλdx and the true density

f = eη/
∫
χ
eηdx, consider the KL distance

KL(η, ηλ) = Ef [log(f/fλ)] = µη(η − ηλ)− log

∫
χ

eηdx+ log

∫
χ

eηλdx. (1.9)

Dropping terms in KL(η, ηλ) that do not involve ηλ, one has the relative Kullback-Leibler

distance

RKL(η, ηλ) = log

∫
χ

eηλdx− µη(ηλ). (1.10)

The first term of (1.10) is readily computable, but the second term, µη(ηλ), involves the

unknown density and will have to be estimated. Standard cross-validation suggests an

estimate µ̃η(ηλ) = n−1
∑n

i=1 η
[i]
λ (Xi), where η

[i]
λ minimizes the delete-one version of (1.3),

− 1

n− 1

∑
j 6=i

η(Xj) + log

∫
χ

eηdx+
λ

2
J(η). (1.11)

Note that Xi does not contribute to η
[i]
λ . The delete-one estimates η

[i]
λ are not analytically

available, so it is too expensive to compute µ̃η(ηλ) directly. For g1, g2 ∈ H and α real,

define Lg1,g2(α) = log
∫
χ
eg1+αg2dx as a function of α. Setting g1 = η̃, g2 = η − η̃, α = 1,

one has the Taylor expansion

log

∫
χ

eηdx = Lη̃,η−η̃(1) ≈ Lη̃,η−η̃(0) + µη̃(η − η̃) +
1

2
Vη̃(η − η̃). (1.12)

5



Introduction Chapter 1

Substituting the right-hand side of (1.12) for the term log
∫
χ
eηdx in (1.3) and dropping

terms that do not involve η, one obtains the quadratic approximation of (1.3) at η̃

− 1

n

n∑
i=1

η(Xi) + µη̃(η)− Vη̃(η̃, η) +
1

2
Vη̃(η) +

λ

2
J(η). (1.13)

The delete one version of (1.13) is

− 1

n− 1

∑
j 6=i

η(Xj) + µη̃(η)− Vη̃(η̃, η) +
1

2
Vη̃(η) +

λ

2
J(η). (1.14)

Set η̃ = ηλ and write ξ̆ = (φT , ξT )T , H = Vη̃(ξ̆, ξ̆
T )+diag(0, λQ), R̆T = (ξ̆(X1), ..., ξ̆(Xn)) =

(S,R)T . This leads to a cross-validation estimate of µη(ηλ),

µ̂η(ηλ) = − 1

n

n∑
i=1

ηλ(Xi)−
tr(P⊥1 R̆H

−1R̆TP⊥1 )

n(n− 1)
, (1.15)

where P⊥1 = I − 11T/n, I is the identity matrix and 1 is a vector of all ones. Then the

corresponding estimate of the relative Kullback-Leibler distance is

V (λ) = − 1

n

n∑
i=1

ηλ(Xi) + log

∫
χ

eηλdx+ α
tr(P⊥1 R̆H

−1R̆TP⊥1 )

n(n− 1)
, (1.16)

where α = 1 is“unbiased” for the minimization of Kullback-Leibler loss but may yield

severe undersmoothing, whereas a larger α yields smoother estimates. In the simulations

throughout this ariticle, we use α = 1.4 as suggested by Gu [12].

1.3 Semiparametric Density Estimation

Often in practice, it is desirable to model some components of the density func-

tion parametrically while leaving other components unspecified. Several semiparamet-

6



Introduction Chapter 1

ric density models have been proposed for different purposes. Olkin et al [13] pro-

posed to fit a combination of a parametric and a nonparametric density functions,

g(x, π) = πf1(x,θ) + (1 − π)f2(x), where f1(x,θ) is known up to parameters θ, f2(x)

is a nonparametric density function, and π ∈ [0, 1] is an unknown weight to be esti-

mated from the data. They showed that the semiparametric density estimate provides

a compromise between the parametric and nonparametric versions, and the semipara-

metric model converges to the true density at the same rate as the traditional maximum

likelihood estimator when the parametric model holds, and at the same rate as kernel

estimators when the nonparametric model does not hold. Hjort et al. [14] proposed an

density estimation procedure by starting out with a parametric density estimate f(x, θ̂),

and then multiply with a nonparametric kernel type estimate of a correction function

r(x) = f(x)/f(x, θ̂), producing f̂(x) = f(x, θ̂)r̂(x) = 1
n

∑n
i=1Kh(Xi−x)f(x, θ̂)/f(Xi, θ̂).

Hjort et al [14] showed that their semiparametric density model can perform better than

a nonparametric fit when the true density is in the neighborhood of the initial parametric

density. Efron et al.[15] proposed a specially designed exponential family for density es-

timation, gβ(x) = g0(x) exp(β0 + t(x)β1), where g0(x) is a carrier density and estimated

by kernel density estimation, t(x) is a p-dimensional vector of sufficient statistics, β1 is a

p-dimensional vector of parameters and β0 is a normalizing parameter making gβ(x) inte-

grate to 1 over X . The proposed method matches the estimated expectation of t(x) with

sample expectation of t(y). For example, setting t(x) = (x, x2), the method matches the

first two moments between the estimation and sample. They also use the exponential

family model to investigate density differences in multisample situations, with shared

carrier g0(x) estimated nonparametrically, but with possibly different values of the ex-

ponential parameters β0 and β1. Lenk [16] proposed a flexible semiparametric model

for Bayesian testing of f(x|β, Z) = exp[h(x)′β + Z(x)]/
∫
Y exp[h(x)′β + Z(x)]dG(x),

where h(x) = [h1(x), ..., hm(x)]′ is a vector of m nonconstant functions, Z is a zero mean,

7
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second-order Gaussian process with bounded, continuous covariance function, and G is

a known dominating measure on the support X . The choice of h and G are based on

theoretical or scientific considerations. The semiparametric model allows the predictive

distribution to deviate from the parametric family. If the parametric family is inade-

quate, the semiparametric predictive density coherently adapts to the data. Yang [17]

also used the logistic tranformation of density function as Lenk [16]. But he treated Z(x)

as an unknown smooth function defined on X .

The semiparametric density models considered in Chapter 5 contain most existing semi-

parametric density models discussed above as special cases.

1.4 Inference on Density Functions

Denote F as the cumulative distribution function (CDF) of X1, ..., Xn. We consider

the null hypothesis H0 : F (x) = F0(x) where F0(x) is a known CDF. In this section we re-

view six existing tests: Kolmogorov-Smirnov (KS) test, Lilliefors (Lillie) test, Cramer-von

Mises (CVM) test, Anderson-Darling (AD) test, Shapiro-Wilk (Shapiro) test, Shapiro-

Francia (SF) test, and Pearson chi-square (Pearson) test.

The Kolmogorov-Smirnov test statistic (Kolmogorov [18]) is defined as

Dn = sup
x
|Fn(x)− F0(x)|, (1.17)

where x ∈ R, Fn is the empirical distribution function (EDF), and F0(x) is the theoretical

CDF under H0. When F0(x) contains unknown parameters, Lilliefors [19] extended

8
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Kolmogorov-Smirnov test,

Dn = sup |Fn(x)− F0(x, θ̂)|, (1.18)

where θ̂ is the MLE of θ.

Cramer-von Mises and Anderson-Darling test statistics are special cases of

following quadratic form

Q =

∫
(Fn(x)− F0(x))2ψ(x)dF0(x), (1.19)

where ψ(x) is a suitable weight function. The CVM statistic uses the weight function

ψ(x) = 1, while the AD statistic uses the weight function ψ(x) = (F0(x)(1 − F0(x)))−1.

Compared with the CVM test, the AD test places more weight on observations in the

tails of the distribution.

Shapiro-Wilk and Shapiro-Francia tests are tests for normality where F0(x) is a

normal distribution with unknown mean and variance. They have the same form, differing

only in the definition of the coefficients. Let X(1), ..., X(n) be the order statistics of iid

random variables sampled from the standard normal distribution, m = (m1, ...,mn)′ be

the expected values of the order statistics and V be the covariance matrix of these order

statistics. The test statistic

W =
(
∑
aiX(i))

2∑
(Xi − X̄)2

, (1.20)

where X̄ =
∑n

i=1Xi/n is the sample mean, and the constants a = (a1, ..., an) are given

by a = (m′V −1)/(m′V −1V −1m)1/2 for the Shapiro-Wilk test and ai = mi/(
∑n

j=1m
2
j)

1/2

for the Shapiro-Francia test. For normality test, sample mean and sample variance will

9
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be used as estimates of parameters. Tables for the null distributions have been computed

by Monte Carlo methods.

Pearson test divides the data into k bins and the statistic is defined as (Pearson

[20])

χ2 =
k∑
i=1

(Oi − Ei)2/Ei, (1.21)

where Oi is the observed frequency for bin i and Ei is the expected frequency for bin i

under H0. A bin can be a combination of levels when X is a categorical variable, or an

interval when X is a continuous variable. When X is a continuous variable and the ith

bin is an interval (a, b], then

Ei = n(F0(b)− F0(a)). (1.22)

The test statistic approximately follows a chi-square distribution with k − c degrees of

freedom where k is the number of non-empty cells and c is the number of unknown pa-

rameters to be estimated if there are any. An attractive feature of the Pearson chi-square

test is that it can be applied to each of continuous, categorical and binned data. The

disadvantage is that it requires a sufficient sample size in order for the chi-square approx-

imation to be reasonably accurate. In addition, the test is sensitive to the choice of bins.

Other parametric (Dey et al. [21]), nonparametric (Ying el al. [22], Fan [23], Rubio et

al. [24], Cai et al. [25]) and semiparametric (Li et al. [26], De Wet [27]) methods have

been developed to test density function for independent and correlated data.

10
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1.5 Thesis Summary

The goal of our research is to develop new methods for density estimation and in-

ference. This dissertation consists of three projects involving smoothing spline density

estimation and inference. In Chapters 2 and 3, we will review related literatures on the

univariate and multivariate normality tests. Using the fact that the null hypothesis is

equivalent to the logistic density function belonging to the null space of a quintic spline,

we develop new tests based on smoothing spline density estimation, and compare them

with some existing normality tests using simulations. Chapter 4 proposes model-based

penalties for smoothing spline density estimation and inference. These model-based

penalties incorporate indefinite prior knowledge that the density is close to, but not

necessarily in a family of distributions. A general semiparametric density model, which

contains many existing semiparametric density models as special cases, is studied in

Chapter 5. The computational procedures and theoretical properties are proposed and

discussed. The Derivations of reproducing kernels for some L-splines are given in the

Appendix.
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Chapter 2

Univariate Normality Test Using

Smoothing Spline Density

Estimation

2.1 Introduction

Normal distribution is the most commonly used probability distribution. Many dis-

tributions in nature can be well approximated by a normal distribution. The well-known

Central Limit Theorem says that if a random variable X is the sum of a large number of

iid random variables, then X will be approximately normally distributed. It explains why

the normal random variable appears in so many diverse applications. Normal distribution

has many good properties. For example, normal distribution is closed under convolution

and linear transformations. The conjugate prior of the mean of a normal distribution is

another normal distribution. Many other broadly used distributions, such as binomial,

Poisson, chi-squared, Student t, Rayleigh, Logistic, Log-normal, Hyper-geometric, are

related to the normal distribution.

12
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Normality tests are used to determine if a data set can be well-modeled by a normal distri-

bution. Specifically we are interested in the hypothesis H0 : Xi for i = 1, . . . , n are from a

normal distribution. This is a special case of the general hypothesis discussed in Section

1.4 with F0 being a normal CDF with unknown mean and variance. In Section 1.4 we have

reviewed six existing tests: Kolmogorov-Smirnov (KS), Lilliefors (Lillie), Cramer-von

Mises (CVM), Anderson-Darling (AD), Shapiro-Wilk (Shapiro), Shapiro-Francia (SF),

and Pearson chi-square (Pearson). Six new test statistics based on smoothing spline

density estimation will be developed in this chapter.

Two spline models are used to estimate the density function, the polynomial spline and

thin plate spline (TPS). We provide a brief review of the polynomial spline and TPS

models for density estimation in Section 2.2. Six new test statistics are introduced in

Section 2.3. Section 2.4 presents the simulations results.

2.2 Polynomial Spline and Thin Plate Splines

2.2.1 Polynomial Spline

The polynomial spline is the minimizer of

− 1

n

n∑
i=1

η(Xi) + log

∫ b

a

eηdx+
λ

2

∫ b

a

(η(m))2dx, (2.1)

in the Sobolev space Wm
2 [a, b] where

Wm
2 [a, b] = {η : η, η′, ..., η(m) are absolutely continuous,

∫ b

a

(η(m))2dx <∞}.
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For simplicity, one can set a = 0 and b = 1. Equipped with appropriate inner prod-

ucts, the Sobolev space is a reproducing kernel Hilbert space. Wang [28] presents two

constructions. The first construction defines the inner product

〈η, η̃〉 =
m−1∑
ν=0

η(ν)(0)η̃(ν)(0) +

∫ 1

0

η(m)η̃(m)dx, for any η, η̃ ∈ Wm
2 [0, 1]. (2.2)

Then Wm
2 [0, 1] can be decomposed into two orthogonal RKHS’s

H0 = span{1, x, ..., xm−1/(m− 1)!}, (2.3)

H1 = {η : η(ν)(0) = 0, ν = 0, ...,m− 1,

∫ 1

0

(η(m))2 <∞}, (2.4)

with corresponding RKs

R0(x, z) =
m∑
ν=1

xν−1

(ν − 1)!

zν−1

(ν − 1)!
, (2.5)

R1(x, z) =

∫ 1

0

(x− u)m−1
+

(ν − 1)!

(z − u)m−1
+

(m− 1)!
du, (2.6)

where function (x)+ = max{x, 0}. It is clear that the null space H0 contains the poly-

nomial of order m, the functions which are not penalized. For identifiability we set

Af , f(0) = 0 and, with some abuse of notation, keep using the notation W 2
m[0, 1]

to represent the Sobolev space under this constraint. When m = 1, 2 respectively, the

null spaces H0 are the constant and linear functions which correspond to the uniform

and exponential distributions as suggested in Silverman [29]. For the normal estimation,

quintic spline (m = 3) is a better choice since the logistic density transformation falls

in the null space of quintic spline. The estimate of η can then be obtained by minimiz-

ing the penalized likelihood functional in (2.1) in the space W 3
2 [0, 1] = H0 ⊕HJ , where

14
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J(η) =
∫ 1

0
(η(3))2dx, H0 = span{x, x2} and

HJ = {η : η(0) = η′(0) = η′′(0) = 0,

∫ 1

0

(η(3))2dx <∞}.

The second construction for Wm
2 [0, 1] defines the inner product

〈η, η̃〉 =
m−1∑
ν=0

(∫ 1

0

η(ν)dx

)(∫ 1

0

η̃(ν)dx

)
+

(∫ 1

0

η(m)η̃(m)dx

)
, for any η, η̃ ∈ Wm

2 [0, 1].

With identifiability condition Af ,
∫ 1

0
ηdx = 0, we have Wm

2 [0, 1] = H0 ⊕HJ , where

H0 = span{k0(x), k1(x), . . . , km−1(x)},

HJ = {η :

∫ 1

0

ηνdx = 0, ν = 0, . . . ,m− 1,

∫ 1

0

(η(m))2dx <∞}

are RKHS’s with corresponding reproducing kernel (RK) functions

R0(x, z) =
m−1∑
ν=0

kν(x)kν(z),

R1(x, z) = km(x)km(z) + (−1)m−1k2m(|x− z|),

where kr(x) = Br(x)/r! are scaled Bernoulli polynomials, and Br are defined recursively

by B0(x) = 1, B′r(x) = rBr−1(x) and
∫ 1

0
Br(x)dx = 0 for r = 1, 2, . . .. With the same

data, these two constructions can be expected to yield similar density estimates. In the

simulations, we utilize the second construction.
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2.2.2 Thin Plate Spline

The Thin Plate Spline (TPS) density estimate is the minimizer of penalized functional

− 1

n

n∑
i=1

η(Xi) + log

∫
χ

eηdx+
λ

2
Jdm(η) (2.7)

on the d-dimensional domain X = Rd, where the penalty functional is

Jdm(η) =
∑

α1+. . .+αd=m

m!

α1!...αd!

∫
. . .

∫ (
∂mη

∂xα1
1 . . . ∂x

αd
d

)2

dx1. . . dxd. (2.8)

The corresponding null space is the space spanned by polynomials in d variables of total

degree from first up to m − 1. Denote Em as the Green function for the m-iterated

Laplacian Em(x, z) = E(‖x− z‖), where ‖x− z‖ is the Euclidean distance and

E(u) =

 (−1)d/2+1+m|u|2m−d log u, d even,

|u|2m−d, d odd.

Although Em is not the RK of Wm
2 (Rd) since it is not nonnegative definite, it is condi-

tionally nonnegative definite in the sense that T Tc = 0 implies that cTKc ≥ 0, where T

is the matrix of null basis functions evaluated at observations, and K = {Em(xi, xj}ni,j=1.

Referred to as a semi-kernel, the function Em is sufficient for the purpose of estimation.

Note that TPS is defined on the whole Euclidean space while the polynomial spline is

defined on a compact interval. Therefore, TPS can cover the whole domain of the normal

distribution while a transformation and truncation is needed for the polynomial spline.

The details will be discussed later. In this section we are interested in testing the uni-

variate normal distribution, therefore we set d = 1 and m = 3.

In Section 2.3, the modified test statistics using the polynomial spline and TPS estimates
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are introduced. The simulation results will be discussed in Section 2.4.

2.3 New Test Statistics Based on Smoothing Spline

Estimates

2.3.1 Modified Anderson-Darling, Cramer-von Mises and Kolmogorov-

Smirnov tests

Denote Fp as the CDF based on a polynomial spline density estimate and Ft as the CDF

based on a TPS density estimate. Replacing the EDF in KS, AD and CVM test statistics

by smoothing spline estimate, we have the following modified test statistics:

KS-P = sup
x
|Fp(x)− F0(x)|, (2.9)

CVM-P =

∫
(Fp(x)− F0(x))2dF0(x), (2.10)

AD-P =

∫
(Fp(x)− F0(x))2(F0(x)(1− F0(x)))−1dF0(x), (2.11)

KS-T = sup
x
|Ft(x)− F0(x)|, (2.12)

CVM-T =

∫
(Ft(x)− F0(x))2dF0(x), (2.13)

AD-T =

∫
(Ft(x)− F0(x))2(F0(x)(1− F0(x)))−1dF0(x). (2.14)

The null distributions of all the three test statistics will be approximated by the bootstrap

method. Details will be given in Section 2.4.
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2.3.2 Likelihood Ratio Test

The likelihood ratio statistic is

LRT = −2 ln

(
likelihood for the null model

likelihood for the alternative model

)
. (2.15)

For parametric models, LRT approximately follows a chi-squared distribution under the

null hypothesis. In our case, the density function is estimated nonparametrically with

an infinite dimensional model space. Consequently the null distribution is unknown in

theory.

The maximized negative log likelihood under H0 is

l0 = −n
2
− n

2

[
log(2π) + log

(
1

n

n∑
i=1

(Xi − X̄)2

)]
. (2.16)

Let f̂s be the smoothing spline estimate under H1, which could be the polynomial spline

or TPS. The negative log likelihood under H1 is

l1 = −
n∑
i=1

log f̂s(Xi).

The likelihood ratio test is therefore defined as

LRT = 2 (l1 − l0) .

In the simulations, we denote LRT by LRT-P when fs is the polynomial spline estimate,

and by LRT-T when fs is TPS estimate. Since the null distribution of the LRT statistic

is unknown, we will use the bootstrap method to approximate the distribution. The

details will be introduced in the simulation section.
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2.3.3 Kullback-Leibler Test

The KL distance between two density functions f1 and f2 is defined as

KL(f1, f2) =

∫
f1(x) log

f1(x)

f2(x)
dx. (2.17)

Let f̂0 be the normal distribution with the estimated parameters under the null hypothe-

sis, and f̂s be the smoothing spline estimate of the density function. We will then use the

KL distance between f̂0 and f̂s, KL(f̂0, f̂s), as the KL test statistic. KLD-P and KLD-T

represent the test statistics computed with f̂s being the polynomial spline estimate and

TPS respectively.

2.3.4 Projection Test

The logistic transformation of normal distribution is

η(x) = −x(x− 2µ)

2σ2
. (2.18)

With the third order of polynomial spline, under the second construction, W 2
3 [0, 1] can

be decomposed into two orthogonal space

H0 = span{x− .5, .5(x− .5)2 − 1/24},

HJ = {η :

∫ 1

0

ηdx =

∫ 1

0

η′dx =

∫ 1

0

η′′dx = 0,

∫ 1

0

(η(3)(x))2dx <∞}
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Under H0, we have J(η) =
∫ 1

0
(η(3)(x))2dx = 0. Thus, taking advantage of orthogonal

property, we define

DFN-P = cTQc (2.19)

as the test statistic to represent the departure from normality, where c and Q are defined

in (1.7). For TPS, DFN-T can be defined similarly. Large DFN provides evidence

against the null hypothesis. The null distribution of the test statistics will be derived by

the bootstrap method.

2.4 Simulations

In the simulations, we will evaluate the proposed tests AD-P, CVM-P, KS-P, LRT-P,

DFN-P, KLD-P, AD-T, CVM-T, KS-T, LRT-T, KLD-T, and DFN-T, and compare them

with the existing tests including AD, KS, CVM, Lillie, Shapiro, SF, and Pearson tests.

The function ssden in the R package gss is used to compute polynomial spline and TPS es-

timates of density functions (Gu [11]). For the TPS, we set type=list(x=list(“tp”,m=3)).

For the quintic spline, we need to define the corresponding basis function mkphi.quintic

and RKs mkrk.quintic, and set type=list(“custom”, list(nphi=2, mkphi=mkphi.quintic,

mkrk=mkrk.quintic, env=c(0,1))). The functions shapiro.test, sf.test, cvm.test, ad.test,

lillie.test, and pearson.test in the R package nortest and ks.test in the R package dgof

are used to perform Shapiro, SF, CVM, AD, Lillie, Pearson and KS tests. We use the

bootstrap method to approximate null distributions for all newly proposed tests, where

the number of bootstrap samples is set to be 2000. We generate 100 data replicates for

each simulation setting. For each simulated data set, we estimate the unknown param-

eters with sample mean and sample variance, and generate bootstrap samples from the

normal distribution with the estimated parameters.
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In the simulations, the null hypothesis is H0 : X1, ..., Xn ∼iid Normal Distribution. And

we will consider

I) four sample sizes: n=20, 50, 100, 200;

II) three families of distributions: generalized normal, mixed normal, and skewed nor-

mal:

(a) The generalized normal distribution (also known as the exponential power

distribution) is defined as

f(x) =
β

2αΓ(1/β)
e−(|x−µ|/α)β .

This is a parametric family of symmetric distributions. It includes the normal

(β = 2) and Laplace distributions (β = 1), and as limiting cases with β →∞,

it includes the continuous uniform distributions on bounded intervals of the

real line (µ − α, µ + α). This family allows for tails that are either heavier

than normal (β < 2) or lighter than normal (β > 2). It is a useful way to

parametrize a continuum of symmetric densities spanning from the normal

(β = 2) to the uniform density (β = ∞), and a continuum of symmetric

densities spanning from the Laplace (β = 1) to the normal density (β = 2). In

the simulations, we consider µ = 0, α = 1, four choices of β = 1, 2, 4, 8, where

powers with β = 2 gives us the probability of type I error.

(b) The mixed normal is a mixture of aN (0, 1/4)+(1−a)N (2, 1), where a ∈ (0, 1).

As a approaches to 0, the distribution tends to N (2, 1). And as a approaches

to 1, it tends to N (0, 1/4). To see the alteration of test power, we consider

several choices of a = 1/2, 1/4, 1/8, 1/16.
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(c) The skewed normal distribution is defined as

f(x) =
1

ω

√
2

π
e−

(x−ξ)2

2ω2

∫ α(x−ξω )

−∞
e−

t2

2 dt,

where ξ is location (real) parameter, ω is scale (positive, real) parameter, and

α is shape (real) parameter. As the absolute value of shape parameter α is far

from 0, the distribution becomes more skewed from normal distribution. The

distribution is right skewed if α > 0 and is left skewed if α < 0. Note, however,

that the skewness of the distribution is limited to the interval (−1, 1). In the

simulations, we consider ξ = 0, ω = 1, four choices of α = 1, 2, 4, 8.

Since the domain of the polynomial spline estimate is a compact interval [0, 1], while

the domain of the normal distribution is the whole real line, we truncate and scale the

simulated data by

xi − a
b− a

, (2.20)

where [a, b] is the empirical domain of the data set which is large enough to cover all

observations, so they are fixed for all the simulations. The way we find a and b is to

generate 1000 data sets from the distribution of interest, and obtain the minimum of the

lower bounds as a and maximum of the upper bounds as b. This is reasonable, as most

practical data is valued in a compact interval. The simulated results for three families of

distributions are shown below.

Generalized Normal

In Table 2.1, β = 2 in generalized normal distribution corresponds the normal distri-

bution, whose power provides the probability of type I error. And it indicates the type

I error rate is within a reasonable interval around 0.05. However, tests based on TPS
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tend to have probability of type I error larger than the nominal value. As the generalized

normal distribution deviates farther from normal distribution and sample size increases,

all tests have stronger powers. Except for the case when β = 4, in general the new

methods do not perform better then existing ones in this case.
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Sample Size 20 50 100 200 20 50 100 200
Distribution β = 1 β = 2

Shapiro 0.26 0.52 0.81 0.98 0.07 0.10 0.03 0.06
SF 0.33 0.56 0.84 0.99 0.08 0.09 0.05 0.08

CVM 0.29 0.54 0.89 0.98 0.05 0.06 0.08 0.06
AD 0.29 0.54 0.86 1.00 0.06 0.08 0.07 0.06

Lillie 0.21 0.40 0.76 0.94 0.03 0.05 0.06 0.06
Pearson 0.13 0.27 0.46 0.77 0.05 0.02 0.05 0.08
DFN-P 0.14 0.26 0.41 0.67 0.08 0.04 0.04 0.06
LRT-P 0.20 0.30 0.45 0.68 0.06 0.04 0.06 0.08

CVM-P 0.20 0.31 0.45 0.68 0.07 0.07 0.05 0.08
KS-P 0.17 0.30 0.45 0.68 0.05 0.05 0.05 0.07

KLD-P 0.16 0.26 0.45 0.68 0.06 0.05 0.06 0.08
DFN-T 0.21 0.48 0.58 0.73 0.02 0.07 0.08 0.05
LRT-T 0.23 0.43 0.58 0.73 0.04 0.08 0.05 0.05
AD-T 0.26 0.45 0.58 0.73 0.06 0.10 0.06 0.06

CVM-T 0.26 0.44 0.58 0.73 0.06 0.10 0.06 0.06
KS-T 0.26 0.45 0.58 0.73 0.06 0.10 0.06 0.06

KLD-T 0.26 0.49 0.68 0.85 0.03 0.06 0.08 0.04
Distribution β = 4 β = 8

Shapiro 0.05 0.10 0.34 0.81 0.14 0.46 0.87 0.99
SF 0.02 0.06 0.21 0.60 0.08 0.24 0.69 0.99

CVM 0.04 0.11 0.27 0.66 0.16 0.29 0.64 0.97
AD 0.04 0.12 0.28 0.74 0.15 0.39 0.76 0.99

Lillie 0.05 0.11 0.20 0.47 0.10 0.21 0.47 0.85
Pearson 0.04 0.09 0.15 0.27 0.09 0.11 0.29 0.78
DFN-P 0.11 0.17 0.50 0.70 0.16 0.33 0.44 0.78
LRT-P 0.07 0.14 0.44 0.73 0.13 0.35 0.58 0.98

CVM-P 0.07 0.14 0.42 0.73 0.16 0.33 0.48 0.91
KS-P 0.07 0.14 0.46 0.73 0.16 0.33 0.47 0.89

KLD-P 0.09 0.14 0.42 0.71 0.10 0.24 0.37 0.73
DFN-T 0.00 0.01 0.19 0.52 0.00 0.04 0.32 0.91
LRT-T 0.06 0.13 0.37 0.76 0.15 0.60 0.96 1.00
AD-T 0.03 0.06 0.22 0.63 0.09 0.37 0.73 0.99

CVM-T 0.03 0.06 0.22 0.62 0.11 0.39 0.71 0.99
KS-T 0.03 0.06 0.22 0.62 0.12 0.38 0.67 0.97

KLD-T 0.01 0.01 0.13 0.31 0.03 0.06 0.21 0.59

Table 2.1: Powers of different tests when data are generated from the generalized nor-
mal distribution under different sample sizes and different values of shape parameter.
Powers under β = 2 are probability of type I error.
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Mixed Normal

In Table 2.2, all tests have stronger power, as the mixed normal distribution deviates

farther from normal distribution and sample size increases. Tests including the existing

and the newly proposed all can detect the mixed normal distribution very well. When

the sample size increases to 100, the powers can reach almost 1. The existing tests such

as SF and AD have slightly stronger power in some cases, while our proposed tests have

similar powers to other existing methods.
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Sample Size 20 50 100 200 20 50 100 200
Distribution a = 1/2 a = 1/4

Shapiro 0.31 0.81 1.00 1.00 0.75 1.00 1.00 1
SF 0.19 0.72 0.97 1.00 0.74 0.99 1.00 1

CVM 0.36 0.86 0.99 1.00 0.73 1.00 1.00 1
AD 0.34 0.88 0.99 1.00 0.74 1.00 1.00 1

Lillie 0.20 0.79 0.97 1.00 0.58 0.98 1.00 1
Pearson 0.21 0.67 0.88 1.00 0.42 0.82 1.00 1
DFN-P 0.40 0.77 0.92 0.99 0.65 0.93 0.99 1
LRT-P 0.30 0.80 0.97 1.00 0.67 0.99 1.00 1

CVM-P 0.34 0.80 0.98 1.00 0.70 1.00 1.00 1
KS-P 0.38 0.81 0.98 1.00 0.68 1.00 1.00 1

KLD-P 0.25 0.77 0.96 1.00 0.60 0.99 1.00 1
DFN-T 0.02 0.45 0.80 1.00 0.11 0.88 1.00 1
LRT-T 0.26 0.73 0.96 1.00 0.57 0.99 1.00 1
AD-T 0.18 0.69 0.96 1.00 0.66 0.99 1.00 1

CVM-T 0.21 0.71 0.96 1.00 0.70 0.99 1.00 1
KS-T 0.21 0.72 0.96 1.00 0.71 0.99 1.00 1

KLD-T 0.09 0.46 0.75 1.00 0.37 0.90 1.00 1
Distribution a = 1/8 a = 1/16

Shapiro 0.60 0.98 1.00 1.00 0.43 0.79 1.00 1.00
SF 0.62 0.98 1.00 1.00 0.46 0.82 1.00 1.00

CVM 0.56 0.86 0.97 1.00 0.36 0.66 0.94 0.99
AD 0.56 0.93 1.00 1.00 0.40 0.71 0.95 1.00

Lillie 0.43 0.80 0.96 1.00 0.35 0.61 0.86 0.99
Pearson 0.32 0.58 0.90 1.00 0.17 0.37 0.62 0.89
DFN-P 0.56 0.81 0.95 0.99 0.38 0.63 0.93 1.00
LRT-P 0.55 0.94 1.00 1.00 0.39 0.75 0.98 1.00

CVM-P 0.58 0.94 1.00 1.00 0.38 0.75 0.98 1.00
KS-P 0.57 0.93 1.00 1.00 0.38 0.71 0.98 1.00

KLD-P 0.52 0.90 1.00 1.00 0.32 0.68 0.98 1.00
DFN-T 0.25 0.91 1.00 1.00 0.31 0.80 0.99 1.00
LRT-T 0.56 0.97 1.00 1.00 0.43 0.77 0.99 1.00
AD-T 0.62 0.98 1.00 1.00 0.45 0.77 0.99 1.00

CVM-T 0.61 0.98 1.00 1.00 0.44 0.77 0.99 1.00
KS-T 0.61 0.97 1.00 1.00 0.41 0.77 0.99 1.00

KLD-T 0.53 0.97 1.00 1.00 0.43 0.80 0.99 1.00

Table 2.2: Powers of different tests when data are generated from the mixed normal
distribution under different sample sizes and different weights.
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Skewed Normal

In Table 2.3, all tests have similar powers. All tests have little power when the

distribution is not quite skewed while the powers are close to one when the distribution

becomes more skewed.
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Sample Size 20 50 100 200 20 50 100 200
Distribution α = 1 α = 2

Shapiro 0.06 0.03 0.06 0.11 0.18 0.20 0.34 0.59
SF 0.05 0.03 0.05 0.12 0.19 0.21 0.33 0.54

CVM 0.06 0.06 0.05 0.08 0.13 0.17 0.27 0.45
AD 0.07 0.05 0.05 0.08 0.12 0.18 0.27 0.49

Lillie 0.08 0.03 0.06 0.07 0.14 0.11 0.19 0.31
Pearson 0.04 0.04 0.03 0.07 0.05 0.10 0.14 0.21
DFN-P 0.06 0.07 0.06 0.12 0.09 0.19 0.27 0.47
LRT-P 0.08 0.07 0.07 0.16 0.07 0.17 0.32 0.55

CVM-P 0.08 0.04 0.06 0.18 0.09 0.19 0.34 0.56
KS-P 0.09 0.06 0.07 0.18 0.09 0.18 0.34 0.57

KLD-P 0.09 0.07 0.08 0.17 0.06 0.17 0.33 0.53
DFN-T 0.05 0.01 0.11 0.14 0.08 0.18 0.30 0.55
LRT-T 0.06 0.01 0.11 0.12 0.08 0.15 0.31 0.56
AD-T 0.06 0.01 0.09 0.14 0.11 0.21 0.34 0.61

CVM-T 0.06 0.02 0.09 0.14 0.11 0.21 0.34 0.61
KS-T 0.07 0.01 0.10 0.13 0.10 0.20 0.35 0.61

KLD-T 0.05 0.02 0.10 0.11 0.09 0.16 0.23 0.47

Distribution α = 4 α = 8
Shapiro 0.20 0.54 0.87 1.00 0.38 0.82 0.99 1.00

SF 0.21 0.50 0.84 1.00 0.32 0.77 0.97 1.00
CVM 0.19 0.40 0.78 0.99 0.28 0.62 0.91 0.99

AD 0.21 0.45 0.86 1.00 0.33 0.70 0.95 1.00
Lillie 0.16 0.32 0.67 0.90 0.22 0.48 0.84 1.00

Pearson 0.10 0.22 0.46 0.78 0.17 0.42 0.73 0.98
DFN-P 0.17 0.46 0.69 0.81 0.34 0.71 0.87 0.99
LRT-P 0.17 0.45 0.80 1.00 0.32 0.77 0.98 1.00

CVM-P 0.20 0.53 0.82 1.00 0.36 0.81 0.98 1.00
KS-P 0.21 0.50 0.81 1.00 0.36 0.80 0.98 1.00

KLD-P 0.13 0.42 0.75 0.98 0.25 0.67 0.97 1.00
DFN-T 0.09 0.32 0.70 0.97 0.08 0.33 0.81 0.99
LRT-T 0.17 0.51 0.86 1.00 0.32 0.78 0.97 1.00
AD-T 0.19 0.53 0.89 1.00 0.31 0.71 0.98 1.00

CVM-T 0.20 0.54 0.89 1.00 0.32 0.73 0.98 1.00
KS-T 0.20 0.54 0.88 1.00 0.33 0.73 0.98 1.00

KLD-T 0.12 0.32 0.64 0.85 0.16 0.27 0.68 0.98

Table 2.3: Powers of different tests when data are generated from the skewed normal
distribution under different sample sizes and different values of shape parameter.
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2.5 Conclusion

In this chapter, we apply the polynomial spline and TPS density estimation to construct

several new normality test statistics. Extensive simulations show that our new proposed

methods have similar power as the existing normal tests in most cases. Generally, the

tests with TPS density estimation should be avoided due to large probability of type I

error. Comparing all the existing and newly proposed tests, Shapiro test often behaves

best in different sample sizes.
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Chapter 3

Multivariate Normality Tests Using

Smoothing Spline Density

Estimation

3.1 Introduction

Many multivariate statistical methods, such as multivariate analysis of variance (MANOVA),

linear discriminant analysis (LDA), principal component analysis (PCA), canonical cor-

relation, and graphical modeling are based on multivariate normality (MVN) assumption.

Assessing the MVN is crucial for the validity of these methods. Existing methods in-

clude Mardia’s popular multivariate skewness and kurtosis statistics (Mardia & Kanti

[30], Mardia & Kanti [31]), a consistent and invariant test proposed by Henze and Zirkler

[32], and Royston’s modified Shapiro-Wilk test ([33], [34], [35]). Recently new approaches

to testing multivariate normality have been proposed by Székely and Rizzo [36] based on

Euclidean distance between sample elements, and by Kellner and Celisse [37] based on

Maximum Mean Discrepancy (MMD).
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The rest of Section 3.1 reviews some existing MVN test statistics. Section 3.2 presents

three new proposed tests based on smoothing spline density estimation. In Section 3.3,

the simulation experiments compare the proposed methods with Mardia’s MVN, Henze-

Zirkler’s MVN, Royston’s MVN tests in the R package ”MVN” (Korkmax et al [38]),

and the method in Székely and Rizzo [36].

3.1.1 Existing Multivariate Normality Tests

Let X1, . . . ,Xn be iid samples from a multivariate density function f(x), where x is a

p-dimensional vector. We are interested in testing the null hypothesis that

H0 : f(x) is MVN distribution.

Mardia’s MVN Test

Mardia [30] proposed a MVN test based on multivariate extensions of skewness (γ̂1,p)

and kurtosis (γ̂2,p):

γ̂1,p =
1

n2

n∑
i=1

n∑
j=1

m3
ij, γ̂2,p =

1

n

n∑
i=1

m2
i ,

where

mij = (X i −Xj)
′S−1(X i −Xj),

mi = (X i − X̄)′S−1(X i − X̄).

The test statistic of skewness, (n/6)γ̂1,p, is approximately χ2 distributed with p(p+1)(p+

2)/6 degrees of freedom under H0. Similarly, the test statistic of kurtosis, γ̂2,p, is approx-

imately normally distributed with mean p(p + 2) and variance 8p(p + 2)/n under H0.
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Mardia [31] introduced a correction term into the skewness statistic for small sample size

(nk/6)γ̂1,p, where k = (p + 1)(n + 1)(n + 3)/(n(n + 1)(p + 1)− 6). This statistic is also

distributed as χ2 with degrees of freedom p(p+ 1)(p+ 2)/6 under H0.

Despite the widespread use of Mardia’s statistics, Horswell [39] demonstrated that, gener-

ally speaking, MVN tests based on measures of skewness and kurtosis did not distinguish

well between ‘skewed’ and ‘non-skewed’ distributions. To improve upon power, some

authors have attempted to combine measures of skewness and kurtosis into a single ‘om-

nibus’ test statistic. Mardia and Foster [40] derived six statistics, including one that

uses the Wilson-Hilferty approximation (Wilson and Foster[41]). However, Horswell and

Looney [42] found that this statistic lacked power.

Royston MVN Test

Most reviews and comparative studies of tests for MVN refer to the Royston’s exten-

sion [34] of the powerful Shapiro-Wilk goodness-of-fit test (Shapiro and Wilk [43]) for

univariate normality. An algorithm for computing this extension is given in Royston [44]

and Royston [45]. Specifically, let Wj be the Shapiro-Wilk/Shapiro-Francia test statistic

for the jth variable (j = 1, 2, ..., p) and Rj be the values obtained from the normality

transformation

Rj =

{
Φ−1

[
1

2
Φ
(
−((1−Wj)

λ − µ)
)
/σ

]}2

,

where λ, µ and σ are calculated from polynomial approximations (Royston [33]) and Φ

denotes the cumulative distribution function of the standard normal distribution. The

Roystons test statistic for multivariate normality

H =
p/[1 + (p− 1)c̄]

∑p
j=1Rj

p

H0∼ χ2
e,
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where e is the equivalent degrees of freedom, c̄ is an estimate of the average correlation

among the Rj’s.

Henze-Zirkler’s MVN Test

The Henze-Zirkler’s test (Henze and Zirkler [32]) is based on a non-negative functional

distance that measures the distance between two distribution functions. The Henze-

Zirkler’s multivariate normality test is defined as

HZ =
1

n

n∑
i=1

n∑
j=1

e−
β2

2
mij − 2(1 + β2)−

p
2

n∑
i=1

e
− β2

2(1+β2)
mi + (1 + 2β2)−

p
2 ,

where β = 1√
2

(
n(2p+1)

4

) 1
p+4

, mi gives the squared Mahalanobis distance of ith observation

to the centroid X̄ = 1/n
∑n

i=1X i and mij gives the Mahalanobis distance between the

ith and the jth observations. Under null hypothesis, the test statistic is approximately

log-normally distributed with mean µ and variance σ2 given below:

µ = 1−
a−

p
2

(
1 + pβ

2
a + p(p+ 2)β4

)
2a2

,

σ2 = 2(1 + 4β2)−
p
2 +

2a−p(1 + 2pβ4)

a2
+

3p(p+ 2)β8

4a4
− 4ω

− p
2

β

(
1 +

3pβ4

2ωβ
+
p(p+ 2)β8

2ω2
β

)
,

where a = 1 + 2β2 and ωβ = (1 + β2)(1 + 3β2). By using the log-normal distribution

parameters, µ and σ, we can test the significance of multivariate normality. Among the

class of invariant and consistent tests for MVN, Henze and Zirkler’s proposal has a fame

for its high power over a wide variety of alternative distributions.
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Energy MVN Test

The E-test (Energy-test) of multivariate normality was proposed and implemented

by Székely and Rizzo [36]. The test statistic for p-variate normality is given by

E = n

(
2

n

n∑
j=1

E||yj − Z|| − E||Z − Z ′|| −
1

n2

n∑
j,k=1

||yj − yk||

)
,

where yi = Σ−1/2(X i − µ), i = 1, . . . , n, are the standardized sample using the sample

mean vector µ and sample covariance matrix Σ. Z and Z ′ are iid standard MVN variables,

and ||.|| denotes Euclidean norm. The E-test rejects the null hypothesis for large values

of E .

3.1.2 Density Estimation Using Tensor Product of Polynomial

Splines

In Section 2.2.1 we have reviewed the univariate polynomial spline. Now consider a

multivariate function η(x) = η(x1, . . . , xp) on a product domain X =
∏p

m=1Xm, where

xm ∈ Xm denotes the mth coordinate of x ∈ X . Let Am be an averaging operator on

Xm. An ANOVA decomposition of η can be defined as

η =

{
p∏

m=1

(I − Am + Am)

}
η =

∑
S

{∏
m∈S

(I − Am)
∏
m6∈S

Am

}
η =

∑
S

ηS , (3.1)

where S ⊂ {1, ..., p} lists the active terms in ηS and the summation is over all of the

2p subsets of {1, ..., p}. The term η∅ =
∏
Amη is a constant, the term ηd = η{d} =

(I − Ad)
∏

α 6=dAαη is the main effect of xd, the term ηd1,d2 = f{d1,d2} = (I − Ad1)(I −

Ad2)
∏

α 6=d1,d2 Aαη is the interaction of xd1 and xd2 , and so forth. To fit such multivariate

data, the tensor product reproducing kernel Hilbert space can be used to incorporate the
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ANOVA decomposition. Paralleling with (3.1), the tensor product space H =
p
⊗
m=1
Hm

has a tensor sum decomposition

H =
p
⊗
m=1

(H0m ⊕H1m)⊕
S

{
( ⊗
m∈S
H1m)⊗ ( ⊗

m 6∈S
H0m)

}
= ⊕
S
HS , (3.2)

where HS is a RKHS with RK RS ∝
∏

m∈S R1m , and the projection of η ∈ H in HS is

the ηS in (3.1). The minimizer of L(η) +
λ

2
J(η) in a tensor product RKHS is called a

tensor product smoothing spline.

For multivariate density estimation, we have f(x) = eη(x)/
∫
eη(x) by logistic trans-

formation. Consider the domain X = [0, 1]p. Multiple-term models can be constructed

using the tensor product splines of the above, with an ANOVA decomposition. For

example, p = 2, then one can have

η = η0 + η1 + η2 + η1,2,

where terms other than the constant η0 satisfy certain side conditions. The constant shall

be dropped for density estimation to maintain a one-to-one logistic density transform.

The additive model implies the independence of the two coordinates. For each coordinate

i, the RKHS are H00i⊕H01i⊕H1i , where H00i = {η : η ∝ 1}, and corresponding RKs are

R00i = 1, R0i and R1i . Using this space for both marginal domains, one can construct a

tensor product space with tensor sum terms. The subspaceH001⊗H002 spans the constant

term which will be dropped in density estimation. The subspace H001⊗ (H012⊕H12) and

(H011 ⊕H12)⊗H002 span the main effects, and the subspace (H011 ⊕H11)⊗ (H012 ⊕H12)

spans the interactions. And corresponding RKs are in table 3.1.
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Subspace Reproducing Kernel
H001 ⊗H002 1

H001 ⊗ (H012 ⊕H12) R01 +R11

(H011 ⊕H12)⊗H002 R02 +R12

(H011 ⊕H11)⊗ (H012 ⊕H12) R01R02 +R01R12 +R11R02 +R11R12

Table 3.1: RKs in the tensor product space when d = 2.

3.1.3 Density Estimation Using Thin Plate Spline

The thin plate spline (TPS) density estimate is the minimizer of penalized functional

− 1

n

n∑
i=1

η(Xi) + log

∫
χ

eηdx+
λ

2
J(η) (3.3)

on the p-dimensional domain X = Rp, where the penalty J(η) has the form

Jpm(η) =
∑

α1+. . .+αd=m

m!

α1!...αp!
×
∫
. . .

∫ (
∂mη

∂xα1

〈1〉. . . ∂x
αp
〈p〉

)2

dx(1). . . dx(p).

The null space of Jpm(η) consists of polynomials of first up to (m−1) total order, which is

of dimension M =(p+m−1
p )−1. The quadratic functional Jpm(η) is invariant under a rotation

of the coordinates. In the space H = {η : Jpm(η) <∞} with Jpm(η) as a square semi norm,

it is necessary that 2m − p > 0 for the evaluation functional to be continuous. In the

MVN case, m = 3 and p is the corresponding dimension of MVN distribution, as long as

p < 6.

In simulation experiments, we apply R package gss to implement the density estimation.

Since the ”ssden” function does not support multi-dimension TPS fit yet, tensor product

of TPS is applied so that the transformation step in quintic spline estimation can be

skipped.
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3.2 Test Statistics

In this section, we will propose test statistics based on likelihood ratio and Kullback-

Leibler divergence respectively. The hypothesis is

H0 : f is a multivariate normal distribution,

which is equivalent to η ∈ H0, where H0 = span{x− .5, .5(x− .5)2 − 1/24, y − .5, .5(y −

.5)2 − 1/24, (x− .5)(y − .5)} and x = (x, y) when p = 2.

3.2.1 LRT Test

Likelihood Ratio Tests (LRT) are a powerful, very general method of testing model

assumptions. The general LRT is often about a parametrized family of probability density

functions or probability mass functions f(x|θ). In these parameterized cases, as sample

size n approaches ∞, the test statistic will be asymptotically χ2 distributed. In our

case, we apply smoothing spline to obtain the density function estimate f̂s(x, y) under

alternative hypothesis. Under null hypothesis, MLE µ̂ and Σ̂ are used to estimate the

unknown parameters ,

l0(µ̂, Σ̂) =
n∏
i=1

{
(2π)−1|Σ̂|−

1
2 exp

[
−1

2
(xi − µ̂)′Σ̂−1(xi − µ̂)

]}
=

1

(2π)n|Σ̂|
e−n,

where µ̂ = x̄ = 1/n
∑n

i=1 xi and Σ̂ = 1/n
∑n

i=1(xi− x̄)(xi− x̄)T . Then we can construct

two likelihoods under null and alternative hypothesis, and further obtain the LRT test
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statistics

LRT = −2 log(
l0
l1

),

where l1 =
∏
f̂s(xi). Since the nonparametric LRT test statistic is no longer following

a known distribution, we use traditional parametric bootstrap to calculate p-values. In

the simulation, LRT-P denote the LRT when f̂s is the polynomial spline estimate, and

LRT-T denote the LRT based on TPS estimate.

3.2.2 KLD Test

We propose the KLD test statistic, applying KL divergence introduced in (2.17) to

measure the difference between the null distribution f̂0(x, y|µ̂, Σ̂) and the smoothing

spline estimate f̂s(x, y) from the observed data,

KLD(f0, fs) =

∫ ∫
f̂0(x, y|µ̂, Σ̂) log

f̂0(x, y|µ̂, Σ̂)

f̂s(x, y)
dxdy. (3.4)

In the simulation, KLD-P represents KLD test with the polynomial spline estimate, and

KLD-T represents the test based on TPS estimate.

3.2.3 Projection Test

For the multivariate normal density estimation, tensor product quintic spline is ap-

propriate since the logistic transformation falls in the null space of the tensor product

quintic spline. As discussed in Section 2.2.1, the quintic spline has the functional space

W 3
2 [0, 1] = H0 ⊕HJ , where

H0 = span{1, k1(x), k2(x)}

HJ = {η :

∫ 1

0

η(ν)dx = 0, ν = 0, . . . ,m− 1,

∫ 1

0

(η(3))2 <∞},
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with corresponding RKs

R0(x, z) =
3∑

ν=1

xν−1

(ν − 1)!

zν−1

(ν − 1)!
, (3.5)

R1(x, z) =

∫ 1

0

(x− u)2
+

(ν − 1)!

(z − u)2
+

(2)!
du, (3.6)

where function (x)+ = max{x, 0}. Therefore, the two dimension tensor product quintic

spline has the functional space (H01 ⊕H11)⊗ (H02 ⊕H12) , H0 ⊕H1, where

H0 =H01 ⊗H02

=span{x− 0.5, 0.5(x− 0.5)2 − 1/24, y − 0.5, 0.5(y − 0.5)2 − 1/24, (x− 0.5)(y − 0.5),

{0.5(y − 0.5)2 − 1/24}(x− 0.5), {0.5(x− 0.5)2 − 1/24}(y − 0.5)},

H1 =(H01 ⊗H12)⊕ (H02 ⊗H11)⊕ (H11 ⊕H21),

and the corresponding RKs of H1 are R1,00(x, y), R1,01(x, y), R00,1(x, y), R01,1(x, y) and

R1,1(x, y) in Appendix A.1. The tensor product quintic spline density estimation is to

minimize the penalized likelihood by

η(x) =
m∑
ν=1

dνφν(x) +

q∑
j=1

cjRJ(Zj,x) = φTd+ ξTc,

where φν(x) are the basis of H0, and

RJ(xi,xj) = (θ1, θ2, θ3, θ4, θ5)



R1,00(xi,xj)

R1,01(xi,xj)

R00,1(xi,xj)

R01,1(xi,xj)

R1,1(xi,xj)


, (3.7)
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where the θ’s are tunable smoothing parameters. Thus, the norm of second part in

(3.2.3) provides the discrepancy of the observed distribution from the null space, i.e.

the multivariate normal distribution. Let Q be the q × q matrix with the (j, k)th entry

RJ(Zj,Zk). The departure from the multivariate normal is

DFMVN = cTQc

=
∑∑

ciRJ(xi,xj)cj.

3.3 Simulations

3.3.1 Type I Error

The first distribution simulated was the MVN distribution. In this case, the null

hypothesis is true, so each test should reject at about the nominal rate of 5%. The per-

formance of the new tests against the MVN distribution is found in Table 3.2. probability

of type I error for all tests are close to the nominal value of .05.

Sample
LRT-T KLD-T LRT-P KLD-P DFMVN-P

Size
50 0.06 0.09 0.01 0.03 0.01
100 0.04 0.04 0.08 0.08 0.04

Sample Mardia’s Mardia’s Henze-
Royston Ê

Size (Skew) (Kurtosis) Zirkler
50 0.08 0.02 0.01 0.07 0.01
100 0.05 0.01 0.05 0.04 0.05

Table 3.2: probability of type I error for different tests.

3.3.2 Power Comparison

In order to assess the performance of the new test LRT-P, LRT-T, KLD-P, KLD-T and

DFMVN, and compare them with the existing tests including Mardia’s skewness, Mar-
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dia’s Kurtosis, Henze-Zirkler, Royston and Evergy(Ê) tests, we performed a parametric

bootstrap power study. The null distribution for all the proposed tests are approximated

by 1000 bootstrap samples. We generate 100 data replicates for each simulation setting.

For each generated data set, we estimate the mean and covariance by sample mean and

sample covariance, and generate bootstrap samples from the normal distribution with

the estimated parameters. In the simulations, we consider

1. two sample sizes: n=50, 100

2. higher order polynomial in logit transformation η(x) and mixture bivariate normal

distribution:

i Higher orders:

f(x) ∝ e−
1
2

(x−µ)′Σ−1(x−µ)+((x−0.5)′x)2 ,

where x = (x1, x2)T , x1, x2 ∈ [0, 1], µ = (0, 0) and Σ is a correlation matrix

with ρ = 0.5 for all off-diagonal elements. Since the domain of this case is on

a compact set, we will not conduct the TPS estimation.

ii Mixture bivariate normal distributions

(a) 0.5N((0,0),I)+0.5N((3,3),I)

(b) 0.79N((0,0),I)+0.21N((3,3),I)

(c) 0.5N((0,0),Σ3)+0.5N((0,0),I)

(d) 0.5N((0,0),Σ1)+0.5N((3,3),Σ2)

(e) 0.9N((0,0),Σ1)+0.1N((0,0),Σ2)

(f) 0.5N((0,0),Σ1)+0.5N((3,3),I)

(g) 0.5N((0,0),Σ2)+0.5N((3,3), I)

where Σ1 is a correlation matrix with ρ = 0.2 for all off-diagonal elements,

Σ2 is a correlation matrix with ρ = 0.5 for all off-diagonal elements, and

41



Multivariate Normality Tests Using Smoothing Spline Density Estimation Chapter 3

Σ3 denotes 1 on diagonal and 0.9 off diagonal. A 2-d mixed multivariate

normal distribution is denoted as ωN2(µ1, σ1) + (1− ω)N2(µ2, σ2), where the

sampled populations is N2(µ1, σ1) with probability ω, and N2(µ2, σ2) with

probability 1−ω. As the mixing parameter p and other parameters are varied,

the multivariate normal mixtures have a wide variety of types of departures

from normality. A 50% normal location mixture is symmetric with light tails,

and a 90% normal location mixture is skewed with heavy tails. A normal

location mixture with p = 1 − 1
2
(1 −

√
3

3
) ≈ 0.79, provides an example of a

skewed distribution with normal kurtosis (Henze [46]). The scale mixtures in

the comparison are symmetric with heavier tails than normal. Let ω be the

mixing parameter, then

? ω = 0.9 indicates mild contamination and is skewed and leptokurtic,

? ω = 0.79 is moderately contaminated, skewed and mesokurtic, and

? ω = 0.5 is severely contaminated, symmetric, and platykurtic.

Simulation Results

The experimental results are summarized in Table 3.3 for tests of bivariate normality.

These suggest that in 50% location mixtures (a), scale mixture (c) and location-scale

mixtures (d,f,g), the KLD can outperform the existing methods. And among the three

proposed methods, KLD is more powerful in most cases of the alternative distributions.

The results provide some evidences that the geometric mean of likelihood can be more

measurable for difference. In case (e) of mixture normal, all of the test statistics are not

sensitive enough.

In Table 3.3 , the two test statistics LRT and KLD based on quintic and TPS estimation

are also different. To illustrate the different fittings of the two spline models, Figure 3.1
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shows the estimated densities using quintic and TPS. Both models can fit well in the

center. Compared with TPS, quintic spline can fit better in light tails.
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Figure 3.1: Quintic spline (left) density estimation and TPS (right) density estimation
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3.4 Conclusion

We proposed three multivariate normality test statistics using smoothing spline den-

sity estimation. The three methods are based on likelihood ratio, KLD and RKHS norm

respectively. It turns out that the KLD-statistic is more powerful in some 50% mixture

multivariate cases (a,c,d,f,g) in the experiments, which indicates the geometric mean of

likelihood can provide a more sensitive comparison of density estimation.
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Chapter 4

Spline Density Estimation with

Model Based Penalties

In this chapter we propose model-based penalties for smoothing spline density estima-

tion and inference. These model-based penalties incorporate indefinite prior knowledge

that the density is close to, but not necessarily in a family of distributions. We will

use the Pearson and generalization of the generalized inverse Gaussian families to illus-

trate the derivation of penalties and reproducing kernels. We also propose new inference

procedures to test the hypothesis that the density belongs to a specific family of distri-

butions. We conduct extensive simulations to show that the model-based penalties can

substantially reduce both bias and variance in the decomposition of the Kullback-Leibler

distance, and the new inference procedures are more powerful than some existing ones.

4.1 Introduction

Density estimation has been widely studied due to its principal role in statistics and

machine learning. Often there is prior information suggesting that the density function
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can be well approximated by a parametric family of densities. For example, it may be

known that the density is close to, but not necessarily is a Gamma distribution. This

kind of indefinite information has not been explored in the field of density estimation.

In his classic book on density estimation, Silverman [29] alluded that different penalties

may be considered for different situations in the context of penalized likelihood density

estimation. In particular, he suggested penalties to the second and third derivatives

of the logarithm of the density so that zero penalties correspond to the exponential and

normal density functions respectively. To the best of our knowledge, no research has been

done to incorporate indefinite prior information into the construction of the penalties.

We will consider different penalties through L-splines in this chapter. The L-spline has

been developed to incorporate prior knowledge in nonparametric regression models. It is

known that the L-spline can reduce bias in the estimation of a regression function (Wahba

[47], Heckman & Ramsay [48], Wang [28], Gu[11]). The goal of this chapter is to develop

novel density estimation methods that can incorporate indefinite prior knowledge and

consequently lead to better estimation procedures. In particular, we will consider model-

based penalties for the Pearson family and the generalization of the generalized inverse

Gaussian (GGIG) family, and derive penalties and reproducing kernels for some special

cases in these families of distributions. We will show that the model-based penalties can

substantially reduce both bias and variance in the decomposition of the Kullback-Leibler

(KL) distance of smoothing spline estimates of density functions. Many methods have

been developed in the literature to test the hypothesis that the density belongs to a

specific family of distributions (Anderson & Darling [49], Stephens [50], Stephens [51]).

We will develop new inference procedures based on L-spline estimates. To the best of

our knowledge, this chapter is the first to employ L-splines for density estimation and

inference.
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The remainder of the article is organized as follows. Section 2 reviews L-splines.

Sections 3 and 4 present model constructions for the Pearson and GGIG families re-

spectively. Section 5 introduces new inference procedures based on L-spline estimates.

Section 6 presents simulation studies to compare the proposed L-spline based estimation

and inference procedures with existing methods.

4.2 Model-based Penalty and L-splines

As discussed in Section 1.2, in the construction of a smoothing spline model, one

needs to decide the penalty functional J(η), or equivalently, the null space H0 consisting

of functions which are not penalized. The most popular choice of the penalty is the

roughness penalty with J(η) =
∫ b
a
(η(m))2dx. When m = 2 and m = 3 respectively, the

null spacesH0 are the linear and quadratic functions which correspond to the exponential

and normal distributions suggested in Silverman [29].

Often there exists information suggesting that f can be well approximated by a

parametric family of densities, and logistic transformation of density functions in this

family satisfy the differential equation Lη = 0 where

L = Dm +
m−1∑
j=1

ωj(x)Dj (4.1)

is a linear differential operator with m ≥ 1, Dj is the jth derivative operator, and ωi are

continuous real-valued functions. Two such families of distributions, Pearson and GGIG,

will be discussed in Sections 4.3 and 4.4.

An L-spline density estimate is the solution to (3.3) with penalty J(η) =
∫ b
a
(Lη)2dx.

Instead of the standard roughness penalty, an L-spline uses a penalty constructed based

on a parametric model. The null space H0 corresponds to the specified parametric family
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of densities. Therefore, it allows us to incorporate the information that η is close to, but

not necessarily in the null space H0. Ramsay [48] called H0 as the favored parametric

model. We will show in Section 4.7 that the model-based penalty can lead to better

estimates of density functions. We will construct test procedures for the hypothesis that

the density belongs to the specific parametric family in Section 4.6.

Since η ∈ Wm
20 [a, b], Lη exists and is square integrable. There exists real-valued

functions, φ1, ..., φm, such that they form a basis of H0 = {η : Lη = 0}. Let

W (x) =



φ1(x) φ2(x) · · · φm(x)

φ′1(x) φ′2(x) · · · φ′m(x)

...
...

...

φ
(m−1)
1 (x) φ

(m−1)
2 (x) · · · φ

(m−1)
m (x)


be the Wronskian matrix associated with φ1, ..., φm, and

G(x, s) =


φT (x)φ∗(s), s ≤ x,

0, s > x,

be the Green function associated with L where φ(x) = (φ1(x), . . . , φm(x))T and φ∗(x) =

(φ∗1(x), . . . , φ∗m(x))T is the last column of W−1(x). Then Wm
20 [a, b] is an RKHS under the

inner product

(η, η̃) =
m−1∑
ν=0

η(ν)(a)η̃(ν)(a) +

∫ b

a

(Lη)(Lη̃)dx,

and Wm
20 [a, b] = H0 ⊕ H1, where H0 = span {φ1, . . . , φm} and H1 = {η ∈ Wm

20 [a, b] :
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η(ν)(a) = 0, ν = 0, . . . ,m− 1} are RKHS’s with corresponding RKs

R0(x, z) =φT (x){W T (a)W (a)}−1φ(z), (4.2)

R1(x, z) =

∫ b

a

G(x, s)G(z, s)ds. (4.3)

See Wang [28] for details.

4.3 L-spline for Pearson Family of Distributions

The Pearson family is a continuous distribution system proposed by Karl Pearson

[52]. A Pearson density function f(x) is any valid solution to the Pearson differential

equation

1

f(x)

df(x)

dx
+

a0 + (x− a4)

a1(x− a4)2 + a2(x− a4) + a3

= 0, (4.4)

where a0 = a2 =
√
µ2β1(β2+3)/(10β2−12β1−18), a1 = (2β2−3β1−6)/(10β2−12β1−18),

a3 = µ2(4β2−3β1)/(10β2−12β1−18), β1 is the skewness, β2 is the kurtosis, and µ2 is the

second central moments. Pearson identified 12 types of distributions based on different

values of parameters. The Pearson family includes most commonly used distributions

such as the uniform, exponential, normal, Gamma, Beta, inverse Gamma, Student’s t

and Cauchy distributions.

It is not difficult to show that the logistic transformation of density function in the

Pearson family satisfy the differential equation Lη = 0 where

L = D3 +
2(2a1(x− a4) + a2)

a1(x− a4)2 + a2(x− a4) + a3

D2 +
2a1

a1(x− a4)2 + a2(x− a4) + a3

D. (4.5)

Therefore we can construct model-based penalties using (4.5) for densities in the Pear-

son family. Explicit constructions can be derived for many special cases. We illustrate
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two such cases in the following two subsections.

4.3.1 Gamma distribution

The Gamma distribution (denoted as Gamma(α, β)) has density function

f(x) =
βα

Γ(α)
xα− 1e−βx, x > 0, (4.6)

where α > 0 and β > 0 are the shape and rate parameters, and Γ is the Gamma function..

It is a special case of the Pearson family (type III) with a1 = a3 = a5 = 0, a2 = 1/β and

a0 = −a2(α−1). The logistic transformation of the density η(x) = −βx+ (α−1) log(x).

Now consider the L-spline with model space η(x) ∈ W 3
20[a, b] and differential operator

L = D3 +
2

x
D2. (4.7)

As the domain of the Gamma distribution is (0,∞), we set a to be a small value closed

to 0 and b large enough to cover all observations. The same method will be used for

other distributions in the rest of this chapter which are not defined on compact intervals.

It can be shown that H0 = span{x, log(x)} and the RK of H1

R1(x, z) = [1 + log(z) + log(x) + log(z) log(x)]I4(x ∧ z)− [z + x+ z log(x) + x log(z)]I3(x ∧ z)

+xzI2(x ∧ z) + I4,2(x ∧ z)− [2 + log(z) + log(x)]I4,1(x ∧ z) + (z + x)I3,1(x ∧ z),

where x ∧ z = min(x, z), Ip(s) =
∫ s

0
xpdx = sp+1/(p + 1), and Ip,k(s) =

∫ s
0
xp[log(x)]k =

sp+1[log(s)]k/(p + 1) − kIp+1,k−1(s)/(p + 1). A brief derivation of the RK can be found

in A.2.
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4.3.2 Beta distribution

The Beta distribution has the density function

f(x;α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 ≤ x ≤ 1, (4.8)

where α > 0 and β > 0 are the shape parameters. It is a special case of the Pearson

family (type I) with a5 = a3 = 0, a1 = −a2, α = a0/a1 + 1 and β = (a0 − 1)/a1 + 1. The

logistic transformation η(x) = (α− 1) log(x) + (β − 1) log(1− x).

Now consider the L-spline with model space η(x) ∈ W 3
20[a, b] and differential operator

L = D3 +
2(2x− 1)

x(x− 1)
D2 +

2

x(x− 1)
D. (4.9)

It can be shown that H0 = span{log(x), log(1− x)}, and the RK of H1

R1(x, z) = [log(z) log(1− x) + log(x) log(1− z)]I(x ∧ z; 3, 3, 0, 0)

+ log(1− x) log(1− z)I(x ∧ z; 2, 4, 0, 0) + log(x) log(z)I(x ∧ z; 4, 2, 0, 0)

+I(x ∧ z; 2, 4, 0, 2)− (log(x) + log(z))I(x ∧ z; 3, 3, 0, 1)

−[log(1− x) + log(1− z)]I(x ∧ z; 2, 4, 0, 1)

+I(x ∧ z; 4, 2, 2, 0)− [log(x) + log(z)]I(x ∧ z; 4, 2, 1, 0)

−[log(1− x) + log(1− z)]I(x ∧ z; 3, 3, 1, 0) + 2I(x ∧ z; 3, 3, 1, 1),

where

I(y;m1,m2,m3,m4) =

∫ y

0

xm1(1− x)m2 log(x)m3 log(1− x)m4dx.

A brief derivation of the RK is given in A.3.
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4.4 L-spline for GGIG Family

Shakil, Kibria and Singh [53] proposed the GGIG family of distributions to include

some other commonly used distributions such as the inverse Gaussian, generalized inverse

Gaussian (GIG), Rayleigh and half-normal distributions which are not in the Pearson

family. A GGIG density function f(x) is the solution to the following differential equation

1

f(x)

df(x)

dx
=
a0 + apx

p + a2px
2p

xp+1
, x > 0. (4.10)

The solution to the differential equation (4.10) is f(x) = Cxτ1−1 exp(−τ2x
p−τ3x

−p) where

τ2 ≥ 0, τ3 ≥ 0, τ1 = ap + 1, τ2 = −a2p/p, τ3 = a0/p, and C is the normalizing constant.

Then η(x) = (τ1−1) log(x)−τ2x
p−τ3x

−p which satisfies the differential equation Lη = 0

where

L =

p+1∑
k=0

(
2p+ 1

k

)(
Dkxp+1

)
D2p+2−k. (4.11)

The null space H0 = span{log(x), x, . . . , xp, x−1, . . . , x−p}.

We now consider the special case with p = 1 which includes many commonly used

distributions such as the inverse Gaussian (IG) (τ1 = −0.5), GIG, reciprocal IG (τ1 =

0.5), hyperbolic (τ1 = 1), Gamma (τ3 = 0), inverse Gamma (τ1 = 0), Erlang (τ1 > 0

and is an integer, τ3 = 0), and exponential (τ1 = 1 and τ3 = 0). In this case we have

g(x) = (τ1 − 1) log(x)− τ2x− τ3x
−1 and

L = D4 + 6x−1D3 + 6x−2D2. (4.12)

54



Spline Density Estimation with Model Based Penalties Chapter 4

It is not difficult to show that H0 = span{log(x), x, x−1} and the RK of H1 is

R1(x, z) =
1

36xz
(x ∧ z)9 − 1

16
(x ∧ z)8 log(x ∧ z)

(
1

x
+

1

z

)
+

1

16
(x ∧ z)8

(
1

8x
+

1

8z
+

1

z
log(x) +

1

x
log(z)

)
−1

7
(x ∧ z)7 log(x ∧ z)

(
2

7
+ log(x) + log(z)

)
+

1

7
(x ∧ z)7 log(x ∧ z)2

+
1

7
(x ∧ z)7

(
2

49
− z

4x
− x

4z
+

1

7
log(x) +

1

7
log(z) + log(x) log(z)

)
+

1

12
(x+ z)(x ∧ z)6 log(x ∧ z)− 1

12
(
x

6
+ x log(z) +

z

6
+ z log(x))(x ∧ z)6 +

1

20
(x ∧ z)5xz.

A brief derivation of the RK is given in A.4.

4.5 L-spline for Inverse Gamma Distribution

The inverse gamma (IGM(α, β)) distribution’s probability density function is defined

over the support x > 0

f(x;α, β) =
βα

Γ(α)
x−α−1 exp

(
−β
x

)
, α > 0, β > 0. (4.13)

The logit transformation of the density is η(x) = (−α − 1) log(x) − β/x. It’s not hard

to see the inverse Gamma distribution is neither in the Pearson family, nor in the GGIG

family.

Now consider the L-spline with model space η(x) ∈ W 3
20[a, b] and differential operator

L = x2D3 + 4xD2 + 2D. (4.14)

It can be shown that the corresponding null space is H0 = span{log(x), 1
x
}. And the RK
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of H1 is

R1(x, z) =

∫ T

0

G(x, s)G(z, s)ds

=
1

7xz
(x ∧ z)7 − 1

6
(x ∧ z)6 log(x ∧ z)

(
1

x
+

1

z

)
−

1

6
(x ∧ z)6

(
5

6x
+

5

6z
− 1

z
log(x)− 1

x
log(z)

)
+

1

5
(x ∧ z)5 log(x ∧ z)

(
8

5
− log(x)− log(z)

)
+

1

5
(x ∧ z)5 log(x ∧ z)2+

1

5
(x ∧ z)5

(
17

25
− 4

5
log(x)− 4

5
log(z) + log(x) log(z)

)
.

A brief derivation of the RK is given in Appendix A.5.

4.6 Inference of Density Using L-splines

Effective assessment of goodness-of-fit (GOF) and formal inference for a density func-

tion is critical in applications (Romantsova [54], Del Castillo & Puig [55], Lehmann &

Ramano [56]). In this section we consider the problem of deciding whether the density

belongs to a parametric family of distributions. Let X1, . . . , Xn be iid samples with a

density f(x) on an interval [a, b]. We consider the null hypothesis H0 : f ∈ F0 versus

the alternative hypothesis H1 : f /∈ F0 where F0 is a specific family of distributions.

We assume that there exists a differential operator L as in (4.1) such that Lη = 0 for

all f ∈ F0 where η is the logistic transformation f . Note that the null hypothesis H0 is

equivalent to η ∈ H0.
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4.6.1 Modified Anderson-Darling, Cramer-von Mises and Kolmogorov-

Smirnov tests

A quadratic norm statistic based on the empirical distribution (EDF) is defined as

Q = n

∫ ∞
−∞

(Fn(x)− F0(x))2w(x) dF0(x),

where Fn is the EDF, F0 is an estimate of the cumulative density function (CDF) under

the null hypothesis, and w(x) is a weight function. Two well-known special cases are the

Anderson-Darling (AD) and Cramer-von Mises (CVM) statistics with w(x) = [F0(x) (1−

F0(x))]−1 and w(x) = 1 respectively (Stephen [51]).

Denote the CDF associated with the L-spline estimate of the density function as

Fs(x). Since L-splines with penalties constructed from specific families of distributions

may provide better estimates of density functions (see Section 4.7), a natural extension

of the AD and CVM statistics is to replace the EDF Fn in the quadratic norm statistic

and weight function by Fs. The resulting modified testing methods are refereed to as

AD-L and CVM-L.

Kolmogorov-Smirnov test statistic is defined as

KS = sup
x
|Fn(x)− F0|. (4.15)

Again, we can construct a new test statistic by replacing Fn with Fs(x). The resulting

modified testing method is referred to as KS-L.
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4.6.2 Likelihood ratio and Kullback-Leibler tests

The likelihood ratio (LR) statistic is

LRT = 2(ls − l0) (4.16)

where ls is the log-likelihood with the L-spline density estimate, and l0 is the log-likelihood

with MLE estimates of the parameters under the null hypothesis.

The KL distance between two density functions f1 and f2 is defined as

KL(f1, f2) =

∫ b

a

f1(x) log
f1(x)

f2(x)
dx. (4.17)

Let f0 be the estimated density under the null hypothesis, and fs be the L-spline estimate

of the density function. We will then use the KL distance between f0 and fs, KL(f0, fs),

as the KL test statistic.

4.7 Simulations

In this section, we conduct simulations to evaluate the proposed estimation and in-

ference methods and compare them with existing methods. The function ssden in the

R package gss is used to compute smoothing spline estimates of density functions (Gu

[57]).

We will compare the estimation performance between the L-spline and cubic spline

models. Denote f as the true density and f̂ as an estimate. We will use the KL dis-

tance KL(f, f̂) to assess the performance of estimation. We will use the generalized
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decomposition

E(KL(f, f̂)) = KL(f, f̄) + E(KL(f̄ , f̂)) = bias + variance (4.18)

proposed by Heskes [58] to evaluate the bias-variance trade-off where f̄ = exp[E(log f̂)]/Z

and Z is a normalization constant.

For density inference we will consider eight methods: Anderson-Darling (AD), Cramer-

von Mises (CVM), Kolmogorov-Smirnov (KS), modified AD (AD-L), modified CVM

(CVM-L), modified KS (KS-L), likelihood ratio (LR) and Kullback-Leibler (KL) tests.

We will use the bootstrap method to approximate null distributions for all tests where

the number of bootstrap samples is set to be 1000.

We will present results for two distributions, Gamma and inverse Gaussian, as the

favored parametric models. We will consider three sample sizes, n = 100, n = 200 and

n = 300. In addition, we will also present the density estimation results for two more

distributions, Beta and inverse Gamma, as the favored parametric models with sample

size 100. Results for other distributions and sample sizes are similar. We generate 100

data replicates for each simulation setting.

4.7.1 Gamma distribution as the favored parametric model

The generalized Gamma family has the density function

f(x;α, β, δ) =
δβα

Γ(α/δ)
xα−1e−(βx)δ , α > 0, β > 0, δ > 0, x > 0. (4.19)

The Gamma distribution Gamma(α, β) is a special case with δ = 1. We set α = 2 and

β = 1 in our simulations, and consider three choices of δ: δ = 1, δ = 2, and δ = 3 which

reflect different degree of closeness to the Gamma distribution.
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For each simulated data set, we compute the L-spline estimate of the density where

L is given in (4.7) and the cubic spline estimate of the density. Table 4.1 lists biases,

variances, and KL distances for the L-spline and cubic spline estimates under different

simulation settings. The L-spline with model-based penalty has smaller biases, variances,

and KL distances than the cubic spline when δ = 1, δ = 2 and δ = 3 when sample size is

big. As expected, the improvement is larger when the true distribution is closer to the

Gamma distribution.

δ Model
n=100 n=200 n=300

Bias Var KL Bias Var KL Bias Var KL

1
Cubic 15.84 19.64 35.48 10.29 13.39 23.68 7.68 10.48 18.16

L-spline 0.94 13.31 14.25 0.53 6.20 6.73 0.13 4.61 4.74

2
Cubic 7.61 15.07 22.68 5.98 9.30 15.28 4.14 7.07 11.21

L-spline 1.78 16.05 17.83 0.92 9.76 10.67 0.89 6.22 7.11

3
Cubic 3.18 17.40 20.58 3.05 8.13 11.18 1.89 6.78 8.67

L-spline 3.17 17.62 20.79 2.37 9.52 11.89 1.41 6.36 7.77

Table 4.1: Biases, variances, and KL distances in 10−3 with the generalized Gamma
distribution.

For density inference we consider the null hypothesis that the distribution is Gamma.

Table 4.2 lists powers of eights test methods with significance level set at 5%. The

powers are the probability of type I error when δ = 1. It is clear that all methods have

probability of type I error smaller or close to 5%. With the EDF being replaced by the

L-spline estimate, the modified AD, CVM and KS tests in general have larger powers

than those from the original tests.

Table 4.3 lists more simulation results for testing the null hypothesis of a Gamma

distribution against one of the distributions listed below:

1. The inverse Gaussian distributions defined in (4.21). We set κ = 1 and denote the

density as IG(µ).
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δ Sample Size AD AD-L CVM CVM-L KS KS-L LR KL

0.6
100 0.19 0.10 0.18 0.04 0.14 0.16 0.15 0.27
200 0.37 0.29 0.34 0.19 0.31 0.36 0.32 0.46
300 0.58 0.37 0.58 0.47 0.38 0.55 0.54 0.64

1
100 0.06 0.06 0.05 0.05 0.05 0.04 0.06 0.05
200 0.04 0.05 0.06 0.04 0.05 0.04 0.05 0.05
300 0.04 0.02 0.04 0.01 0.04 0.01 0.01 0.01

2
100 0.13 0.17 0.15 0.16 0.17 0.14 0.17 0.14
200 0.38 0.48 0.30 0.47 0.24 0.46 0.45 0.42
300 0.47 0.56 0.45 0.56 0.33 0.56 0.53 0.53

3
100 0.25 0.32 0.22 0.31 0.17 0.32 0.31 0.31
200 0.48 0.67 0.39 0.64 0.32 0.64 0.66 0.66
300 0.66 0.77 0.61 0.76 0.53 0.75 0.75 0.76

Table 4.2: Powers of eight test methods for the Gamma distribution.

2. The lognormal distribution with density

f(x;µ, σ) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2
1

xσ
√

2π
e−

(ln x−µ)2

2σ2 . (4.20)

We set µ = 0, and denote the density as LN(σ) .

3. The Gompertz distribution with density

f(x; η, b) = bηebxeη exp
(
−ηebx

)
bηebxeη exp

(
−ηebx

)
.

We set b = 1, and denote the density as GO(1/η) .

4. The linear failure rate distribution with density

f(x; θ) = (1 + θx) exp

(
−x− θx2

2

)
.

We denote it as LF (θ).

We also calculate the skewness of each distribution. When the distributions under
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Distribution Size AD AD-L CVM CVM-L KS KS-L LR KL

IG(1)
30 0.36 0.25 0.32 0.37 0.29 0.38 0.32 0.38
50 0.51 0.42 0.41 0.53 0.39 0.54 0.53 0.58
100 0.83 0.81 0.81 0.84 0.66 0.85 0.87 0.89

IG(1.5)
30 0.20 0.23 0.19 0.24 0.19 0.23 0.18 0.26
50 0.30 0.33 0.27 0.37 0.21 0.38 0.28 0.40
100 0.68 0.69 0.65 0.72 0.48 0.73 0.74 0.77

LN(0.8)
30 0.21 0.21 0.17 0.31 0.10 0.31 0.21 0.30
50 0.30 0.33 0.30 0.39 0.25 0.41 0.31 0.42
100 0.60 0.60 0.57 0.60 0.47 0.64 0.61 0.68

GO(2)
30 0.32 0.54 0.31 0.43 0.28 0.42 0.30 0.30
50 0.59 0.79 0.57 0.75 0.48 0.78 0.64 0.69
100 0.91 0.99 0.88 0.99 0.70 0.99 0.95 0.98

GO(4)
30 0.49 0.66 0.45 0.53 0.39 0.52 0.47 0.41
50 0.70 0.85 0.68 0.81 0.49 0.80 0.75 0.74
100 0.96 1.00 0.96 1.00 0.91 1.00 0.98 0.99

LF(2)
30 0.15 0.24 0.15 0.20 0.15 0.17 0.21 0.14
50 0.24 0.43 0.20 0.29 0.18 0.32 0.26 0.23
100 0.42 0.60 0.40 0.58 0.39 0.58 0.50 0.50

LF(4)
30 0.19 0.32 0.18 0.16 0.16 0.23 0.18 0.13
50 0.16 0.35 0.16 0.24 0.11 0.26 0.16 0.14
100 0.58 0.81 0.51 0.74 0.41 0.80 0.63 0.65

Table 4.3: Powers of eight test methods for the Gamma distribution under different
alternatives.

the alternative are GG(0.6,2), IG(1), IG(1.5) and LN(0.8) with which the skewness is

greater than the Gamma distribution under the null (GG(1,2)), the KL statistic is more

powerful. When the distributions under the alternative are GG(2,2), GG(3,2), GO(2),

GO(4), LF(2) and LF(4) whose skewness is less than the Gamma distribution (GG(1,2)),

the AD-L statistic is more powerful.
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p Model
n=100 n=200 n=300

Bias Var KL Bias Var KL Bias Var KL

1
Cubic 40.51 2.32 42.84 50.69 1.58 52.27 43.86 1.11 44.97

L-spline 7.51 1.67 9.18 4.72 0.88 5.60 1.85 0.54 2.39

2
Cubic 44.39 1.72 46.11 44.55 1.01 45.55 45.91 0.82 46.72

L-spline 13.59 1.49 15.07 9.07 0.89 9.96 4.07 0.82 4.89

3
Cubic 46.11 1.44 47.55 51.23 0.85 52.08 54.30 0.70 55.00

L-spline 65.28 1.86 67.15 29.34 1.79 31.13 35.74 0.45 36.19

Table 4.4: Biases, variances, and KL distances in 10−2 with the GIGG family.

4.7.2 Inverse Gaussian distribution as the favored parametric

model

The inverse Gaussian (IG) has density function

f(x;µ, κ) =
( κ

2πx3

)1/2

exp

{
−κ(x− µ)2

2µ2x

}
, x > 0, (4.21)

where µ > 0 is the mean and κ > 0 is the shape parameter. It belongs to the GGIG

family with p = 1, τ1 = −0.5, τ2 = 0.5κ/µ2, and τ3 = κ/2. We set τ2 = τ3 = 2 in our

simulations, and consider three choices of p: p = 1, p = 2 and p = 3 in (4.10), which

reflect different degrees of closeness to the inverse Gaussian distribution.

For each simulated data set, we compute the L-spline estimate of the density where

L is given in (4.12) and the cubic spline estimate of the density. Table 4.4 lists biases,

variances, and KL distances for the L-spline and cubic spline estimates under different

simulation settings. The L-spline with model-based penalty has smaller biases, variances,

and KL distances than the cubic spline for all settings except when p = 3 and n = 100.

For density inference we consider the null hypothesis that the distribution is IG. We

generate iid samples from the generalized inverse Gaussian (GIG) density

f(x) =
(α0/α1)ζ/2

2Kζ(
√
α0α1)

x(ζ−1)e−
(α0x+α1/x)

2 , α0 > 0, α1 > 0, x > 0, (4.22)
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ζ Sample Size AD CVM CVM-L KS KS-L LR KL

-0.5
300 0.05 0.03 0.06 0.06 0.06 0.03 0.08
200 0.06 0.05 0.01 0.05 0.02 0.04 0.02
100 0.04 0.04 0.02 0.03 0.03 0.03 0.05

3
300 0.54 0.48 0.67 0.36 0.67 0.54 0.54
200 0.37 0.32 0.44 0.29 0.42 0.35 0.35
100 0.19 0.2 0.24 0.1 0.22 0.15 0.16

2
300 0.34 0.32 0.37 0.22 0.36 0.26 0.28
200 0.34 0.29 0.38 0.25 0.38 0.25 0.29
100 0.16 0.15 0.18 0.11 0.19 0.12 0.08

-3
300 0.19 0.21 0.34 0.18 0.34 0.21 0.21
200 0.16 0.17 0.23 0.15 0.23 0.17 0.19
100 0.14 0.12 0.14 0.12 0.14 0.17 0.15

-2
300 0.06 0.06 0.14 0.06 0.14 0.06 0.06
200 0.13 0.14 0.15 0.13 0.14 0.08 0.08
100 0.12 0.12 0.11 0.08 0.12 0.09 0.09

Table 4.5: Powers of seven test methods for the IG distribution.

where Kζ is a modified Bessel function of the second kind. The IG is a special case of GIG

with ζ = −0.5. We set α0 = 3 and α1 = 3 in the simulation, and consider five choices

of ζ: ζ = −3,−2,−0.5, 2 and 3 which reflect different degrees of departure from the IG

distribution. Table 4.5 lists powers of seven test methods with significance level set at

5%. The AD-L statistic cannot be calculated since the estimate of F0(x) (1− F0(x)) is

close to zero. The powers are the probability of type I error when ζ = −0.5. It is shown

that all methods have type I error smaller or close to 5%. Again, the modified CVM and

KS tests have larger powers than those from the original tests.
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θ
L-spline Cubic

KL Var Bias KL Var Bias
0.25 17.38 11.66 5.72 65.62 30.91 34.71
0.5 12.82 12.30 0.52 22.04 12.06 9.98

0.75 12.63 12.12 0.52 27.17 15.43 11.74
1 11.43 11.03 0.40 25.80 15.94 9.86
2 13.13 12.58 0.54 28.41 16.62 11.79
3 14.50 13.80 0.70 32.45 19.00 13.45
5 11.74 11.24 0.50 29.51 16.81 12.69

Table 4.6: Biases, variances, and KL distances in 10−3 with the Generalised Beta

4.7.3 Beta distribution as the favored parametric model

The generalized Beta distribution used in the simulations has probability density

function

f(x) =
Γ(α + β)

Γ(α)Γ(β)

θ(x/s)ac[1− (x/s)θ]β−1

x
, α > 0, β > 0, θ > 0, s > 0, 0 < x < s.

(4.23)

The Beta distribution Beta(α, β) is special case with s = 1 and θ = 1. We set α = 3, β =

3, s = 1 in our simulations, and consider seven choices of c: c = 0.25, 0.5, 0.75, 1, 2, 3, 5,

which reflect different degree of closeness to the Beta distribution.

For each simulated data set, we compute the L-spline estimate of the density where

L is given in (4.9) and the cubic spline estimate of the density. Table 4.6 lists biases,

variances and KL distances for the L-spline and cubic spline estimates under different

simulation settings. The L-spline with model-based penalty has smaller biases, variances,

and KL distances than the cubic spline for all settings.
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4.7.4 Inverse Gamma distribution as the favored parametric

model

The generalized inverse Gamma distribution has density function

f(x) =
γ

βαγ+2Γ(α)
x−αγ−1 exp

{
−
(
β

x

)γ}
α > 0, β > 0, γ > 0. (4.24)

The inverse Gamma distribution IGM(α, β) is a special case with γ = 1. We set α =

3, β = 1 in the simulations, and consider the following choices of γ: γ = 0.5, 0.75, 1, 2, 3, 5

which reflect different degree of closeness to the Gamma distribution.

For each simulated data set, we compute the L-spline estimate of the density where L

is given in (4.14) and the cubic spine estimate of the density. Table 4.7 lists biases, vari-

ances, and KL distances for L-spline and cubic spline estimates under different simulation

settings. The L-spline with model-based penalty has smaller biases, variances and KL

distances than the cubic spline when γ = 0.5, 0.75, 1, 2, 3. As expected, the improvement

is larger when the true distribution is closer to the inverse Gamma distribution.

γ
L-spline Cubic

KL Var Bias KL Var Bias
0.5 27.59 18.04 9.55 140.11 37.23 102.88

0.75 18.43 16.52 1.91 173.59 33.72 139.87
1 15.17 14.41 0.75 118.26 41.92 76.34
2 18.73 15.30 3.43 47.86 26.93 20.93
3 20.37 15.54 4.83 35.35 20.46 14.89
5 106.68 83.96 22.72 29.17 20.35 8.82

Table 4.7: Biases, variances and KL distances in 10−3 with the generalised inverse
Gamma distribution
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4.8 Conclusion

In this chapter, we proposed model-based penalties for smoothing spline density es-

timation and inference. The model-based penalties successfully incorporate indefinite

prior information about the density in density estimation and inference process. Two ex-

amples, respectively from the Pearson and GGIG family, are used to show the derivation

of the penalties. The simulation results show the substantial reduction of the KL diver-

gence, including both bias and variance, of density estimation with the new model-based

penalties, and power gain using the L-spline based Anderson-Darling (AD), Cramer-von

Mises (CVM), Kolmogorov-Smirnov (KS), LRT and KL tests.
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Chapter 5

Semiparametric Density Estimation

with Smoothing Spline

5.1 Introduction

Let Xi, i = 1, ..., n, be independent and identically distributed (iid) random samples

from a probability density f(x) on a general domain X . We are interested in the estima-

tion and inference of f(x) from the observations. When some parametric form of f(x)

is assumed, say f ∈ Pθ = {f(x;θ) : θ ∈ Θ}, where f(x,θ) is known up to a finite-

dimensional parameter θ, density estimation reduces to parameter estimation, for which

the maximum likelihood method is the standard technique possessing many favorable

properties. When a parametric form is not available, nonparametric methods such as

kernel density estimation (Silverman [5]) and smoothing spline density estimation have

been developed (Gu [11]).

Often in practice it is desirable to model some components of the density function para-

metrically while leaving other components unspecified. Many semiparametric density
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models have been proposed for different purposes, some of which have been reviewed in

Chapter 1. The objective of this chapter is to study a general semiparametric density

model, develop estimation methods and computational procedures, and study theoretical

properties.

5.2 Semiparametric Density Models

We consider the following general semiparametric density model

f(x) =
exp {η(x;θ, h)}∫
exp {η(x;θ, h)} dx

, (5.1)

where η is a known function of x with parameters θ ∈ Rp and h ∈ S, and S is an

RKHS. The general semiparametric model (5.1) includes several special cases of η(x;θ, h)

discussed below.

1. η is linear with respect to parametric and nonparametric component,

η(x;θ, h) = αT (x)θ + h(x), (5.2)

where α(x) is a vector of known functions of x. Models in Efron and Tibshiran

[15], Lenk [16] and Yang [17] are special cases of (2). These models were proposed

for different purposes as discussed in Chapter 1.

2. η is additive and linear with respect to nonparametric component, but nonlinear

with respect to parameters,

η(x;θ, h) = α(x;θ) + h(x), (5.3)
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where α is a known function of x with unknown parameters θ. The model proposed

by Hjort and Glad [14] is a special case of (5.3).

3. η is a transformation model,

η(x;θ, h) = h(α(x;θ)), (5.4)

where α is a known differentiable and invertible function with unknown parameters

θ. With transformation Y = α(X;θ), the logistic density of Y is η(y) = h(y) −

log (|α′(α−1(y;θ))|), which becomes an additive model. The location-scale family

density estimation belongs to this case with α(x;θ) = (x − µ)/σ, where µ and σ

are the location and scale parameters and θ = (µ, σ).

4. η is a mixture model of two densities,

f(x, π) = πf1(x,θ) + (1− π)f2(x),

where 0 ≤ π ≤ 1. Originally considered by Olkin and Spiegelman [13], this model

is often referred to as the two-component mixture model. Different estimation

methods and applications can be found in Bordes, Mottelet, Vandekerkhove et al.

[59] and Ma, Yao et al. [60].

Some of the existing models discussed above are summarized in Table 5.1.
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Publication Original Model η(x)
Olkin and Spiegelman

g(x, π) = πf1(x,θ) + (1− π)f2(x)
η(x) = log{πf1(x,θ)

[13] +(1− π)f2(x)}
Hjort and Glad

f(x) = f(x,θ)r(x)
η(x) = log{f(x,θ)}

[14] + log{r(x)}
Efron and Tibshirani

gθ(y) = g0(x) exp(θ1 + tT (x)θ2)
η(x) = log(g0(x)) + θ1

[15] +tT (x)θ2

Yang [17] f(x|θ, h) = exp[αT (x)θ+h(x)]∫
X exp[αT (x)θ+h(x)]dG(x)

η(x) = αT (x)θ + h(x)

Table 5.1: Some existing models as special cases of model (5.1).

Often certain conditions are necessary to make model (5.1) identifiable. These identifia-

bility conditions depend on specific models. We assume that model (5.1) is identifiable,

and discuss identifiability conditions for specific models in the following sections. We

will develop different estimation procedures in Section 5.3 and asymptotic properties for

model (5.2) in Section 5.4. Simulations are conducted to evaluate the proposed esti-

mation procedures in Section 5.5. Section 5.6 shows applications to several real data

sets.

5.3 Estimation

In this section, we first describe an estimation procedure for the linear and additive

cases of the semiparametric density model in Section 5.3.1, and then adapt it to the

general model in Section 5.3.2. We present estimation procedures for one sample and

two sample transformation models in Sections 5.3.3 and 5.3.4 respectively.
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5.3.1 Profiled penalized likelihood estimation for the additive

model

Since the linear case in (5.2) is a special case of the additive model in (5.3), we will

only discuss the estimation procedure for (5.3) here. We estimate θ and h as minimizers

of the following penalized likelihood

−
n∑
i=1

{α(Xi;θ) + h(Xi)}+ log

∫
exp{α(x;θ) + h(x)}dx+

λ

2
J(h), (5.5)

where the first and second components in (5.5) correspond to the negative log likelihood,

the penalty J(h) is a square (semi) norm, and λ is the smoothing parameter. Consider

the space Rp ×H for (θ, h), where H = H0 ⊕H1 is an RKHS with RJ as RK of H1 and

φ(x) = (φ1(x), ..., φm(x))T as the vector of basis functions of H0 = {h : J(h) = 0}.

Fixing θ, as in Gu (2013) we approximate the solution of h to (5.5) by

ĥθ(x) =
m∑
ν=1

dνφν(x) +

q∑
j=1

cjRJ(Zj, x) = φT (x)d+ ξT (x)c, (5.6)

where {Zj, j = 1, ..., q} is a random sample of {Xi, i = 1, ..., n}, ξ(x) = (RJ(Z1, x), ...,

RJ(Zq, x))T , c = (c1, ..., cq)
T and d = (d1, ..., dm)T . The dependence of h on θ is expressed

explicitly. Then the calculation of ĥθ reduces to the minimization of

A(c,d) =− 1

n

n∑
i=1

α(Xi,θ)− 1

n
1T (Sd+Rc)+

log

∫
exp{α(x,θ) + φT (x)d+ ξT (x)c}dx+

λ

2
cTQc (5.7)

with respect to c and d, where S is an n ×m matrix with the (i, ν)th entry φν(Xi), R
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is an n × q matrix with the (i, j)th entry ξj(Xi) = RJ(Zj, Xi), and Q is a q × q matrix

with the (j, k)th entry RJ(Zj, Zk). Newton method is applied to obtain c and d. Define

µf (g) =

∫
gefdx∫
efdx

, (5.8)

Vf (g, h) = µf (gh)− µf (g)µf (h), (5.9)

and denote Vf (g) = Vf (g, g). Let η̃(x) = α(x;θ)+h̃θ(x), where h̃θ(x) = φT (x)d̃+ξT (x)c̃,

c̃ = (c̃1, .., c̃q)
T and d̃ = (d̃1, ..., d̃m)T are c and d calculated at the previous step in the

Newton iterative method. Taking derivatives with respect to c and d and evaluated at

η̃θ, we have

∂A

∂d
= − 1

n
ST1 + µη̃(φ),

∂A

∂c
= − 1

n
RT1 + µη̃(ξ) + λQc,

∂A2

∂d∂dT
= Vη̃(φ,φ

T ),

∂A2

∂c∂cT
= Vη̃(ξ, ξ

T ) + λQ,

∂A2

∂d∂cT
= Vη̃(φ, ξ

T ),

where Vη̃(φ,φ
T ) is an m × m matrix with the (i, j)th entry Vη̃(φi, φj), Vη̃(φ, ξ

T ) is an

m × q matrix with the (i, j)th entry Vη̃(φi, ξj), Vη̃(ξ,φ
T ) is the transpose of Vη̃(φ, ξ

T ),

Vη̃(ξ, ξ
T ) is an q × q matrix with the (i, j)th entry Vη̃(ξi, ξj). Therefore, the Newton

updating equation is

 Vη̃(φ,φ
T ) Vη̃(φ, ξ

T )

Vη̃(φ, ξ
T ) Vη̃(ξ, ξ

T ) + λQ


 d− d̃

c− c̃

 =

 ST1/n− µη̃(φ)

RT1/n− µη̃(ξ)− λQc̃

 .
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Rearranging the terms, we obtain

 Vφ,φ Vφ,ξ

Vξ,φ Vξ,ξ + λQ


 d

c

 =

 ST1/n− µη̃(φ) + Vφ,h̃

RT1/n− µη̃(ξ) + Vξ,h̃

 , (5.10)

where Vφ,φ = Vη̃(φ,φ
T ), Vφ,ξ = Vη̃(φ, ξ

T ), Vξ,φ is the transpose of Vφ,ξ, Vξ,ξ = Vη̃(ξ, ξ
T ),

Vφ,h̃ = Vη̃(φ, h̃) = (Vη̃(φ1, h̃), ..., Vη̃(φm, h̃))T , and Vξ,h̃ = Vη̃(ξ, h̃) = (Vη̃(ξ1, h̃), ..., Vη̃(ξq, h̃))T .

At convergence we denote the estimate of h with fixed θ as ĥθ.

We select the smoothing parameter λ by optimizing the KL distance between the den-

sity associated with the estimate, η(x;θ, ĥθ), and the density associated with the true

η(x;θ, h),

KL(η(x;θ, h), η(x;θ, ĥθ)) =µ
η(x;θ,h)

(η(x;θ, ĥθ)− η(x;θ, h))− log

∫
eη(x;θ,h)dx

+ log

∫
eη(x;θ,ĥθ)dx.

Dropping terms not involving ĥθ, we have the relative Kullback-Leibler distance,

RKL(η(x;θ, h), η(x;θ, ĥθ)) = µ
η(x;θ,h)

(η(x;θ, ĥθ)) + log

∫
eη(x;θ,ĥθ)dx. (5.11)

The second term is computable, but the first term involves the unknown density. We

apply the cross-validation method to estimate µ
η(x;θ,h)

(η(x;θ, ĥθ)). Let h
[i]
θ denote the

minimizer of the delete-one version of (5.5) with the fixed θ

− 1

n− 1

∑
j 6=i

{α(Xj;θ) + h(Xj)}+ log

∫
exp{α(x;θ) + h(x)}dx+

λ

2
J(h). (5.12)

For an analytically tractable approximation of h
[i]
θ , consider the quadratic approximation

of (5.12). For g1, g2 ∈ H, η1 = α(x;θ) + g1, η2 = α(x;θ) + g2 and a real number r, define
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Lg1,g2(r) = log
∫

exp(α(x;θ) + g1 + rg2)dx as a function of r. It is not hard to show that

L̇g1,g2(0) = µη1(g2) and L̈g1,g2(0) = Vη1(g2). Setting g1 = h∗, g2 = h− h∗, and r = 1, one

has the Taylor expansion

log

∫
eα(x;θ)+h(x)dx = Lh∗,h−h∗(1) ≈ Lh∗,h−h̃(0) + µη∗(h− h∗) +

1

2
Vη∗(h− h∗), (5.13)

where η∗ = α(x;θ) + h∗. Substituting the right-hand side of (5.13) for the term

log
∫
eα(x;θ)+h(x)dx in (5.12) and dropping the term not involving h, we obtain the

quadratic approximation at h∗

− 1

n− 1

∑
j 6=i

h(Xj) + µη∗(h)− Vη∗(h∗, h) +
1

2
Vη∗(h) +

λ

2
J(h). (5.14)

Set η∗ = η(x;θ, ĥθ), and write ξ̆ = (φT , ξT )T and c̆ = (dT , cT )T . Rewrite (5.10) as

H c̆ = R̆T1/n+ g, (5.15)

where H = Vη̃(ξ̆, ξ̆
T

) + diag(0, λQ), R̆T = (ξ̆(X1), . . . , ξ̆(Xn)) = (S,R)T , and g =

Vη̃(ξ̆, η̃)− µη̃(ξ̆). The minimizer of (5.14) has the coefficient

c̆[i] = H−1

(
R̆T1− ξ̆(Xi)

n− 1
+ g

)
= c̆+

H−1R̆T1

n(n− 1)
− H−1ξ̆(Xi)

n− 1
, (5.16)

therefore

h
[i]
θ = ξ̆

T
(Xi)c̆

[i] = ξ̆
T

(Xi)c̆−
1

n− 1
ξ̆
T

(Xi)H
−1(ξ̆(Xi)− R̆T1/n). (5.17)

Notice that R̆T1/n = n−1
∑n

i=1 ξ̆(Xi). We have the cross-validation estimate of
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µ
η(x;θ,h)

( η(x;θ, ĥθ)),

µ̂
η(x;θ,h)

(η(x;θ, ĥθ)) =
1

n

n∑
i=1

η[i](Xi) =
1

n

n∑
i=1

η(Xi;θ, ĥθ)−
tr(P⊥1 R̆H

−1R̆TP⊥1 )

n(n− 1)
, (5.18)

where η[i](Xi) = η(Xi;θ, h
[i]
θ ), P⊥1 = I − 11T/n, and the corresponding estimate of the

relative Kullback-Leibler distance,

V (λ,θ) = − 1

n

n∑
i=1

η(Xi;θ, ĥθ) + log

∫
eη(x;θ,ĥθ)dx+ α

tr(P⊥1 R̆H
−1R̆TP⊥1 )

n(n− 1)
, (5.19)

where α = 1. We may set a larger α (e.g. α = 1.4 as in Gu [11]) to prevent under-

smoothing.

With fixed θ, minimizing (5) is equivalent to minimizing the following penalized weighted

likelihood

− 1

n

n∑
i=1

{
h(Xi)− log

∫
w(x)eh(x)dx

}
+
λ

2
J(h), (5.20)

where w(x) = exp(α(x,θ)). Therefore, the estimate of h can be calculated by calling the

ssden function in R package gss with cross-validation estimate of λ and option bias to

specify the weights.

Plugging ĥθ into (5.5), we have the profiled penalized likelihood

− 1

n

n∑
i=1

{α(Xi;θ) + ĥθ(Xi)}+ log

∫
exp{α(x;θ) + ĥθ(x)}dx+

λ

2
J(ĥθ). (5.21)

Then the estimate of θ, θ̂, is the minimizer of (5.21). The minimization is achieved by

the line search algorithm in Nelder and Mead [61]. The final estimate of h is ĥθ̂.
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5.3.2 Extended Gauss-Newton procedure for the general semi-

parametric density model

We will extend the Gauss-Newton procedure for the estimation of θ and h for the

general semiparametric density model (5.1). Let θ and h be the current estimates of

θ and h. We assume that the Fréchet derivative of η with respect to h at θ and h ,

Dη(x;θ, h)|
h=h ,θ=θ ≡ Lx, exists and is bounded, and the partial derivative of η with

respect to θ at θ and h , ∂η(x;θ,h)

∂θ
|
h=h ,θ=θ ≡ α (x), exists. Approximating η by its first

order Taylor expansion at θ and h , we have

η(x;θ, h) ≈ η(x;θ , h ) + Lx(h− h ) +αT (x)(θ − θ )

≡ αT (x)θ + Lxh+ r(x;θ , h ), (5.22)

where r(x;θ , h ) = η(x;θ , h )−αT (x)θ −Lxh . Thus, we approximate the η function

by αT (x)θ + Lxh + r(x;θ , h ) which is linear in θ and h as in model (5.2) with fixed

r(x;θ , h ). We can set w(x) = exp(r(x;θ , h )) as a weight function to update the

estimates of θ and h by minimizing the following penalized weighted likelihood

− 1

n

n∑
i=1

{
αT (Xi)θ + LXih− log

∫
X
w(x)eα

T (x)θ+Lxhdx

}
+
λ

2
J(h). (5.23)

The estimation procedure in Section 5.3.1 can be extended to the case that involves

bounded linear functionals (Wang [28]). The following algorithm summarizes the whole

procedure for the general model (1).
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Algorithm 1

1. Provide initial values θ0 and h0 for the parameter θ and function h.

2. At iteration k, based on current estimates θk and hk, derive αk(x), Lx and

r(x;θk, hk). Then update θ and h by applying the estimation procedure for linear

case to solve (5.23) with the weight function w(x) = exp(r(x;θk, hk)).

3. Repeat step 2 until convergence.

5.3.3 Backfitting procedure for the transformation density model

Assume that η(x;θ, h) = h(t(x;θ)), where t(x;θ) is a known invertible and differen-

tiable function. We propose the following backfitting procedure for the transformation

model.

Algorithm 2

1. Provide initial value θ0 for the parameter θ.

2. (a) At iteration k, based on current estimates θk, transform the data using

Y = t(X;θk) and we have ηY (y) = h(y)− log(|t′(t−1(y;θk))|). With the transformed

data, update h by minimizing the penalized likelihood

−
n∑
i=1

h(yi) + log

∫
exp {h(y)}w(y)dy +

λ

2
J(h) (5.24)

with the weight function w(y) = 1/(|t′(t−1(y;θk))|), where λ is selected by the cross-

validation method (Gu [11]). The minimization problem (5.24) is solved using the

ssden function with bias option to specify the weight function. Denote the updated

estimate as hk+1.

(b) Update θ as the MLE based on the likelihood of X1, ..., Xn with h = hk+1.

3. Repeat step 2 until convergence.
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5.3.4 Estimation for two-sample density models

The two sample location-scale family distributions were studied in Potgieter and

Lombard [62]. They considered the nonparametric estimation of the parameters based

on asymptotic likelihood, and showed that the estimators are often near optimal when

compared to fully parametric methods. We consider the following two-sample problem.

Suppose that X1, ..., Xn1

iid∼ f1 and Y1, ..., Yn2

iid∼ f2, and X and Y have the same density

after certain transformation. Specifically, Y ∗i = t(Yi;θ)
iid∼ f1, where t is a differen-

tiable and invertible transformation of Y with unknown parameters θ. Then we have a

semiparametric model with parameters θ and nonparametric function h, where h is the

logistic transformation of f1. Fixing θ, transform the second sample with Y ∗i = t(Yi;θ).

Then the loglikelihood for the concatenated sample Z = (X1, ...Xn1 , Y
∗

1 , .., Y
∗
n2

) does not

depend on θ. Estimate the density for Z using smoothing spline to obtain ĥ(·), where

the smoothing parameter λ is selected through minimizing the cross-validated relative

KL. Plugging ĥ back, we obtain the penalized profiled likelihood function,

pl(θ) = − 1

n1

n1∑
i=1

ĥ(Xi) + log

∫
X

exp
{
ĥ(x)

}
dx

− 1

n2

n2∑
j=1

{
ĥ (t(Yi;θ)) + log(|t′(Yi;θ)|)

}
+ log

∫
Y

exp
{
ĥ (t(y;θ)) + log(|t′(y;θ)|)

}
dy +

λ

2
J(ĥ). (5.25)

Minimize the penalized profiled likelihood with respect to θ to obtain θ̂, and the final

estimate of h is ĥθ̂.
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5.4 Joint Consistency and Asymptotic Normality

In this section, we develop some theoretical properties of the semiparametric estima-

tion for the linear case in (5.2).

5.4.1 Notations and penalized likelihood estimation

Let the parameter space for η ≡ (θ, h) be Q ≡ Rp × S, where S is a subspace of

Wm
20(I) = Wm

2 (I)	{1} and assumed to be an RKHS, and Wm
2 (I) is the mth order Sobolev

space on I = [0, 1] defined as

Wm
2 (I) ≡ {h : I 7→ R|h(j) is absolutely continuous for j = 0, 1, ...,m−1 and h(m) ∈ L2(I)}.

(5.26)

With some abuse of notation, we use η to denote both the unknown parameters, η =

(θ, h), and the logistic density function η(x;θ, h) ∈ F ≡ {η(x) = α(x)Tθ+h(x) : (θ, h) ∈

Q, x ∈ I}, where α(x) = (α1(x), ..., αp(x))T is a vector of bounded functions of x ∈ I. We

remove constant functions from Wm
2 (I) to make the logistic transformation one-to-one

(Gu, 2013). For the same reason, none of the element of α(x) is a constant. The choice

of space S depends on α. For example, if p = 1 and α(x) = x, we need to remove linear

functions from Wm
20(I) when m > 1. If p = 2 and α(x) = (x, x2)T , then we need to

remove linear function from Wm
20(I) when m = 2. When m > 2 we need to remove both

linear and quadratic functions from Wm
20(I). In general, any components of α that belong

to the null space of Wm
20(I) are removed for identifiability (Theorem 2.9 of Gu 2013).

We will consider l(a;x) = log f(x; a) as a general function. Let

ln(η) =
1

n

n∑
i=1

η(Xi;θ, h(Xi))− log

∫
χ

eη(x;θ,h(x))dx (5.27)
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be the loglikelihood function. The penalized semiparametric estimator is the maximizer

of the penalized likelihood

ln,λ(η) = ln(η)− (λ/2)J(h, h), (5.28)

where the penalty J(h, h) is a squared (semi) norm, and λ is the smoothing parameter.

Write η̂n,λ = (θ̂n,λ, ĥn,λ) as the minimizer of (5.28).

Assume the maximizer of the loglikelihood function exists in S0 ≡ {h : J(h) = 0}. To

guarantee the existence and uniqueness of θ and h, we need the loglikelihood function is

concave with respect to θ and h (Theorem 2.9 of Gu [11]). This is true when η(x;θ, h)

is linear in θ and h. When η(x;θ, h) is a nonlinear function of θ and h, the following

lemma establishes the existence and uniqueness of the maximizer to (5.28) under some

conditions.

Lemma 1 The loglikelihood ln is concave for θ and h when ln(η) is decreasing with η

and η is convex with respect to θ and h,or ln(η) is increasing with η and η is concave

with respect to θ and h.

Proof: Here we only prove the first case when ln(η) is increasing with η and η is

convex with respect to θ and h. The proof for the second case is similar.

Since η is convex with respect to θ and h, for any p, q > 0, p + q = 1 and h1, h2 ∈ S,

θ1,θ2 ∈ Rp, we have

η(x; p(θ1, h1) + q(θ2, h2)) ≤ pη(x;θ1, h1) + qη(x;θ2, h2).

Then as ln is decreasing with η, we have

ln(η(x; p(θ1, h1) + q(θ2, h2)) ≥ ln(pη(x;θ1, h1) + qη(x;θ2, h2)).
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By Holder’s inequality, for η1, η2 ∈ Q,

log

∫ 1

0

epη1+qη2 ≤ p log

∫ 1

0

eη1dx+ q log

∫ 1

0

eη2dx.

Therefore,

ln(pη(θ1, h1;x) + qη(θ2, h2;x)) ≥ pln(η(θ1, h1;x)) + qln(η(θ2, h2;x)).

Thus, ln(η(x;θ, h)) is jointly concave with respect to θ and h.

5.4.2 Construction of inner product and representers

In this section, we adapt the RKHS framework to our semiparametric setup. Let

η0 = (θ0, h0) be the true set of parameters. For simplicity, we denote Vη0(·, ·) and µη0(·)

as V (·, ·) and µ(·) respectively. Note that V is a quadratic functional that defines an

interpretable metric so that a small V (η̂, η) indicates that η̂ is a good estimate of η.

Denote V (α,α) as a p × p matrix with the (i, j)th entry V (αi, αj), and V (α, h) as a

p-vector with the ith entry V (αi, h). For any (θ, h), (θ̃, h̃) ∈ Q, we define the inner

product on Q as

〈η, η̃〉 = 〈(θ, h), (θ̃, h̃)〉 = V (η, η̃) + λJ(h, h̃), (5.29)

whose validity is trivial, and the norm as

‖(θ, h)‖2 = 〈(θ, h), (θ, h)〉. (5.30)
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Under this norm and for any x ∈ [0, 1], we will find expressions of a vector Rx ∈ Q and

a linear operator Pλ : Q 7→ Q such that

〈Rx, η〉 = α(x)Tθ + h(x) for any η ∈ Q (5.31)

and

〈Pλη, η̃〉 = λJ(h, h̃) for any η = (θ, h) and η̃ = (θ̃, h̃) ∈ Q. (5.32)

Let Kx be the RK of S endowed with the inner product 〈h, h̃〉1 = V (h, h̃) + 〈Wλh, h̃〉1.

We have 〈Kx, h〉1 = h(x). Let Wλ : S 7→ S be a nonnegative definite self-adjoint operator

satisfying 〈Wλh, h̃〉1 = λJ(h, h̃) for any h, h̃ ∈ S, where the existence of Wλ can be shown

similarly as Lemma S.2 in the supplement material of Cheng and Shang [63]. We have

‖h‖2
1 = 〈h, h〉1.

For aν > 0 and bν > 0, we denote aν � bν if aν/bν → c as ν →∞, where c > 0. Denote

the sup-norm of h ∈ S as ‖h‖sup = supx∈I |h(x)|. We denote N as the set of natural

numbers.

The following assumption about the eigensystem in the space S is standard in the smooth-

ing spline literature.

Assumption 1 There exists a nondecreasing real sequence γν � ν2m, and a sequence of

real-valued functions bν ∈ S, ν ∈ N satisfying supν∈N ‖bν‖sup < ∞ such that V (bµ, bν) =

δµν and J(bµ, bν) = γµδµν for any µ, ν ∈ N, where δµν is the Kronecker’s delta. Further-

more, any h ∈ S can be expressed as a Fourier expansion h =
∑

ν V (h, bν)bν under the

‖ · ‖-norm defined in (5.30).

Proposition 1 Under Assumption 1, ‖h‖1,Wλbν(·) and Kx(·) have the following explicit

83



Semiparametric Density Estimation with Smoothing Spline Chapter 5

expressions

‖h‖2
1 =

∑
ν

|V (h, bν)|2(1 + λγν), (5.33)

Wλbν(·) =
λγν

1 + λγν
bν(·), (5.34)

Kx(·) =
∑
ν

bν(x)

1 + λγν
bν(·). (5.35)

Proof: Write h =
∑

ν V (h, bν)bν . We have

‖h‖2
1 = V (h, h) + λJ(h, h)

= V (
∑
ν

V (h, bν)bν ,
∑
µ

V (h, bµ)bµ) + λJ(
∑
ν

V (h, bν)bν ,
∑
µ

V (h, bµ)bµ)

=
∑
ν

∑
µ

V (h, bν)V (h, bµ)V (bν , bµ) + λ
∑
ν

∑
µ

V (h, bν)V (h, bµ)J(bν , bµ)

=
∑
ν

V (h, bν)V (h, bν) + λ
∑
ν

V (h, bν)V (h, bν)γν

=
∑
ν

|V (h, bν)|2(1 + λγν).

Proofs for (5.34) and (5.35) are similar, so we show the proof for (5.34) only. For any

function h ∈ S, the coefficient of basis function bν is V (h, bν). Therefore, the coefficient

of bν for function Wλbν is

V (Wλbν , bν) = 〈Wλbν , bν〉1 − λJ(Wλbν , bν)

= λJ(bν , bν)− λJ(
∑
µ

V (Wλbν , bµ)bµ, bν)

= λγν − λ
∑
µ

V (Wλbν , bµ)J(bµ, bν)

= λγν − λγνV (Wλbν , bν).

Thus, V (Wλbν , bν) = λγν/(1 + λγν), and Wλbν(·) = λγν
1+λγν

bν(·).
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For k = 1, ..., p, we denote V (αk, h) ≡ Akh. By Assumption 2, αk has a finite second

moment, so we have |Akh| ≤ V
1
2 (αk, αk)V

1
2 (h, h) ≤ V

1
2 (αk, αk)‖h‖1 <∞. Therefore, Ak

is linear and bounded. By Rieszs representation theorem, there exists an Ak ∈ S such

that Akh = 〈Ak, h〉1 for any h ∈ S. Then by Assumption 1, following similar arguments

as the proof for (5.34), we have

Ak(·) =
∑
ν

V (αk, bν)

1 + λγν
bν(·), k = 1, ..., p. (5.36)

Denote A = (A1, ..., Ap)
T . Note that V (α,α) − V (A,α) is a matrix with the (i, j)th

entry V (αi, αj)− V (Ai, αj). We have

V (α,α)− V (A,α) = V (α− A,α− A) + V (A,α)− V (A,A)

= V (α− A,α− A) + 〈A,A〉1 − V (A,A)

= V (α− A,α− A) + 〈WλA,A〉1

≡ Ω + Σ, (5.37)

where Ω = V (α− A,α− A) and Σ = 〈WλA,A〉1 are p× p matrices. It is easy to show

that Σ is negligible as λ approaches to 0. The following Assumption 2 is a regularity

condition similar to Assumption A3 in Cheng and Shang [63].

Assumption 2 For k = 1, ..., p, αk(x) is a bounded function and µ(α2
k) < ∞. The

matrix Ω ≡ V (α− A,α− A) is positive definite.

Under Assumption 2, (Ω+Σ)−1 exists for small λ. Denote by id ∈ S the identity function,

that is id(x) = x for any x ∈ I. Now we are able to construct Rx and Pλ.
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Proposition 2 Under Assumption 2, Rx can be represented as (Tx, Hx), where

Tx = (Ω + Σ)−1(α(x)− A(x)),

Hx = Kx − AT (Ω + Σ)−1 (α(x)− A(x)). (5.38)

Proof: For any (θ, h) ∈ Q, we have

〈(Tx, Hx), η〉

= V
(
α(x)TTx +Hx(X),α(x)Tθ + h(X)

)
+ λJ(Hx, h)

= T Tx V (α(X),α(X))θ + T Tx V (α(X), h(X))

+V (Hx(X),α(X))θ + V (Hx(X), h(X)) + λJ(Hx, h)

= T Tx [V (α(X),α(X)) + V (Hx(X),α(X))]θ + T Tx V (α(X), h(X)) + 〈Hx, h〉1

= T Tx [V (α(X),α(X)) + V (Hx(X),α(X))]θ + T Tx 〈A, h〉1 + 〈Hx, h〉1

= α(x)Tθ + 〈Kx, h〉1,

where the last equality is based on the definition of Rx. Therefore,


T Tx V (α(X),α(X)) + V (Hx(X),α(X)) = α(x),

〈T Tx A+Hx, h〉1 = 〈Kx, h〉1.
(5.39)

Plugging Hx = Kx − T Tx A in the first equation of (5.39), we have

α(x) = (Ω + Σ)Tx + A(x). (5.40)

Thus we have the results in (5.38).

Lemma 2 There exists a constant cm > 0 such that for any x ∈ I and (θ, h) ∈ Q,
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‖Rx‖ ≤ cmλ
− 1

4m , and ‖η(x)‖sup ≤ cmλ
− 1

4m‖η‖.

Proof: By definition of Rx

〈Rx, Rx〉 = 〈Rx, (Tx, Hx)〉

= α(x)TTx +Hx(x)

= α(x)T (Ω + Σ)−1 (α(x)− A(x)) +K(x, x)− A(x)T (Ω + Σ)−1 (α(x)− A(x))

= K(x, x)− (α(x)− A(x))T (Ω + Σ)−1 (α(x)− A(x)) . (5.41)

By boundedness of bµs and the explicit expression of Kx in (5.35), there exists a constant

c independent of x such that

K(x, x) =
∑
ν

{bν(x)}2

1 + λγν

≤ C
∑
ν

1

1 + λγν

� C
∑
ν

1

1 + λν2m

≤ λ−1/(2m)

∫ ∞
1

2C

1 + (λ1/(2m)ν)2m
d(λ1/(2m)ν)2m

≤ cλ−1/(2m),

where the asymptotic equality is based on Assumption 1. On the other hand, for k =

1, ..., p,

|Ak(x)|2 = |V (αk, Kx)|2

=

∣∣∣∣∣∑
ν

V (αk, bν
bν(x)

1 + λγµ
)

∣∣∣∣∣
2
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≤
∑
ν

|V (αk, bν)|2
∑
ν

∣∣∣∣ bν(x)

1 + λγµ

∣∣∣∣2
≤ c′λ−1/(2m),

where c′ is a constant independent of x. Since α(x) is bounded on I and Ω + Σ is

invertible, there exists a constant cm > 0 independent of x such that

‖Rx‖2 ≤ |K(x, x)|+ |αT (x) (Ω + Σ)−1α(x)|+ |AT (x) (Ω + Σ)−1A|+

2|αT (x) (Ω + Σ)−1A(x)|

≤ c2
mλ
−1/(2m).

Consequently, ‖Rx‖ ≤ cmλ
−1/(4m).

Proposition 3 Pλη = (T ∗h , H
∗
h) ∈ Q, where

T ∗h = − (Ω + Σ)−1 V (α,Wλh),

H∗h = Wλh+ V (α,Wλh)T (Ω + Σ)−1A(x). (5.42)

Proof: For any η̃ ∈ Q, from 〈Pλη, η̃〉 = λJ(h, h̃),

〈Pλη, η̃〉 = 〈(T ∗h , H∗h), η̃〉

= V
(
α(x)TT ∗h +H∗h(X),α(x)T θ̃ + h̃(X)

)
+ λJ(H∗h, h̃)

= (T ∗h )TV (α,α)θ̃ + V (H∗h,α)T θ̃ + (T ∗h )TV (α, h) + V (H∗h, h) + λJ(H∗h, h̃)

=
(
(T ∗h )TV (α,α) + V (H∗h,α)T

)
θ̃ + (T ∗h )T 〈A, h〉1 + 〈H∗h, h〉1

=
(
(T ∗h )TV (α,α) + V (H∗h,α)T

)
θ̃ + 〈(T ∗h )TA+H∗h, h̃〉1. (5.43)
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Therefore,


(T ∗h )TV (α,α) + V (H∗h,α)T = 0,

(T ∗h )TA+H∗h = Wλh.

(5.44)

These lead to (5.42).

Note that Pλ is self-adjoint and bounded because of the following inequality:

‖Pλη‖ = sup
‖η̃=1‖

|〈Pλη, η̃〉|

= sup
‖η̃=1‖

|λJ(h, h̃)| ≤
√
λJ(h, h) sup

‖η̃=1‖

√
λJ(h̃, h̃) ≤ ‖η‖. (5.45)

5.4.3 Fréchet derivatives

Next we assume some essential conditions for the likelihood function. Let I0 be the range

for the true function η(x;θ0, h0), where θ0 and h0 are the true parameters. Assume that

I0 is a compact interval. Denote the first-, second- and third-derivative of l(a;x) with

respect to a as l′a, l
′′
a and l′′′a .

Assumption 3 (a) The loglikelihood function l(a;x) is three times continuously differ-

entiable and concave with respect to a. There exists a bounded open interval I ⊃ I0 and

positive constants C0 and C1 s.t.

E

{
exp

(
sup
a∈I
|l′′a(a;x)|/C0

)}
≤ C1,

and

sup
a∈I
|l′′′(a;x)| ≤ C1, a.s.
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(b) There exists a positive constant C2 s.t. C−1
2 ≤ I(a) ≡ E {(l′(η0))2} = −E {l′′a(η0)} ≤

C2.

(c) ε(x) ≡ l′(a;x) satisfies E(ε|η = η0) = 0.

Assumption 3 is similar to the Assumption A1 in Cheng and Shang (2016). The As-

sumption 3(a) implies the slow diverging rate Op(log n) of max1≤i≤n supa∈I |l
′′
a(Xi; a)|.

Assumption 3(b) imposes boundedness and positive definiteness of the Fisher informa-

tion.

For later use, we derive the Fréchet derivatives of ln,λ(η). For j = 1, 2, 3, let ∆η,∆ηj ∈ Q.

The Fréchet derivative of ln,λ(η) is

Dln,λ(η)∆η =
1

n

n∑
i=1

l′a(η;Xi)〈RXi ,∆η〉 − 〈Pλη,∆η〉

=
1

n

n∑
i=1

〈RXi ,∆η〉 − µη(∆η)− 〈Pλη,∆η〉

= 〈Sn,λ(η),∆η〉, (5.46)

where

Sn,λ(η) = Sn(η)− Pλη,

Sn(η) =
1

n

n∑
i=1

l′a(η;Xi)RXi .

Since η̂n,λ is the estimate, Sn,λ(η̂n,λ) = 0. For the second derivative we have

D2ln,λ(η)∆η1∆η2 =
1

n

n∑
i=1

l′′a(η;Xi)〈RXi ,∆η1〉〈RXi ,∆η2〉 − 〈Pλ∆η1,∆η2〉

= −Vη(∆η1,∆η2)− 〈P∆η1,∆η2〉

= 〈DSn,λ(η)∆η1,∆η2〉,
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where

DSn,λ(η) = l′′a(η;X)〈RX , η〉RX .

Since −Vη0(∆η1,∆η2) − 〈Pλ∆η1,∆η2〉 = −〈∆η1,∆η2〉, DSn,λ(η0) = −id. For the third

derivative we have

D3ln,λ(η)∆η1∆η2∆η3 =
1

n

n∑
i=1

l′′′a (η;Xi)〈RXi ,∆η1〉〈RXi ,∆η2〉〈RXi ,∆η3〉

= −{µ(∆η1∆η2∆η3)− µ(∆η1∆η2)µ(∆η3)− µ(∆η1∆η3)µ(∆η2)

−µ(∆η2∆η3)µ(∆η1) + 2µ(∆η1)µ(∆η2)µ(∆η3)}

= 〈D2Sn,λ(η)∆η1∆η2,∆η3〉,

where

D2Sn,λ(η)∆η1∆η2 = l′′′a (η,X)〈RX ,∆η1〉〈RX ,∆η2〉RX .

The Fréchet derivatives of Sn,λ and DSn,λ are respectively denoted as DSn,λ(η)∆η1∆η2

and D2Sn,λ(η)∆η1∆η2∆η3. Define S(η) = E{Sn(η)}, Sλ(η) = E(Sn,λ(η)) = S(η)−Pλ(η)

and DSλ(η) = DS(η)− Pλ, where DS(η)∆η1∆η2 = −Vη(∆η1,∆η2).

5.4.4 Convergence Rate

Theorem 1 Suppose Assumptions 1– 3 hold, and λ = o(1) as n → ∞. Then ‖η̂n,λ −

η0‖ = Op(n
−1/2λ−1/(4m) + λ1/2).

Proof: Recall that η̂n,λ is the semiparametric estimates and η0 is the true set of pa-

rameters. In this section, we show that there exists a unique element η̂n,λ ∈ Q satisfying

Sn,λ(η̂n,λ) = 0 and ‖η̂n,λ − η0‖ = Op(r) where r = λ
1
2 + n−1/2λ−

1
4m .

Define an operator T (η) = η + Sn,λ(η0 + η). The proof involves two steps. The first step

91



Semiparametric Density Estimation with Smoothing Spline Chapter 5

shows the operator T (B(r)) ⊂ B(r), where B(r) = {η ∈ Q : ‖η‖ ≤ r} be a small ball of

radius r. And the second step shows T is a contraction mapping on B(r) so that there

exists a unique η∗λ ∈ B(r) s.t. T (η∗λ) = η∗λ.

Step I. Notice that

‖T (η)‖ = ‖η + Sn,λ(η0 + η)‖

= ‖η + Sn,λ(η0 + η)− Sn,λ(η0) + Sn,λ(η0)− Sλ(η0) + Sλ(η0)‖

≤ ‖η + Sn,λ(η0 + η)− Sn,λ(η0)‖+ ‖Sn,λ(η0)− Sλ(η0)‖+ ‖Sλ(η0)‖

≡ ‖I1‖+ ‖I2‖+ ‖I3‖. (5.47)

Now we deal with I1, I2 and I3 one by one.

For I3, since S(η0) = E(Sn(η0)) = 0, we have Sλ(η0) = −Pλη0, and consequently

‖I3‖ = ‖Pλη0‖ ≤
√
λJ(η0, η0). (5.48)

Therefore, ‖I3‖ = O(λ1/2).

For I2, we have

E
{
‖Sn,λ(η0)− Sλ(η0)‖2

}
= E

{
‖ 1

n

n∑
i=1

l′η(〈RXi , η0〉;Xi)RXi − E(l′η(〈RXi , η0〉;Xi)RXi)‖2

}

=
1

n2

n∑
i=1

E
{
‖l′η(〈RXi , η0〉;Xi)RXi − E

{
l′η(〈RXi , η0〉;Xi)RXi

}
‖2
}

≤ 1

n
E
{
|l′η(〈RX1 , η0〉;X1)|2‖RX1‖2

}
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≤ 1

n
c2
mλ
− 1

2mE
{
|l′η(〈RX1 , η0〉;X1)|2

}
≤ 1

n
c2
mC2λ

− 1
2m ,

where the second equality results from the fact that Xi’s are iid, and the last inequality

is by Assumption 3(b). Therefore,

E
{
‖Sn,λ(η0)− Sλ(η0)‖2

}
= O(n−1λ−

1
2m ). (5.49)

By Markov inequality, ‖I2‖ = ‖Sn,λ(η0)− Sλ(η0)‖ = OP

(
n−

1
2λ−

1
4m

)
.

For I1, by Assumption 3(a), we have

‖I1‖ = ‖η + Sn,λ(η0 + η)− Sn,λ(η0)‖

= ‖η +DSn,λ(η0)η +

∫ 1

0

∫ 1

0

sD2Sn,λ(η0 + ss′η)ηηdsds′‖

= ‖
∫ 1

0

∫ 1

0

sD2Sn,λ(η0 + ss′η)ηηdsds′‖

≤
∫ 1

0

∫ 1

0

s‖D2Sn,λ(η0 + ss′η)ηη‖dsds′

=

∫ 1

0

∫ 1

0

s sup
‖η̃‖=1

|
〈
D2Sn,λ(η0 + ss′η)ηη, η̃

〉
|dsds′

=

∫ 1

0

∫ 1

0

s sup
‖η̃‖=1

|l′′′η (η0 + ss′η) 〈Rx, η〉 〈Rx, η〉 〈Rx, η̃〉 |dsds′

≤
∫ 1

0

∫ 1

0

s sup
‖η̃‖=1

|l′′′η (η0 + ss′η)|‖Rx‖3‖η‖2‖η̃‖dsds′

≤ C1(cmλ
−1/(4m))3‖η‖2

= C3λ
−3/(4m)‖η‖2,

where C3 = cmC1, and the third equality is because DSn,λ(η0) = −id.
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Now let r = 2(‖I2‖ + ‖I3‖) = Op(n
− 1

2λ−
1

4m + λ
1
2 ). Then for any η ∈ B(r), there

exists a positive constant c′ so that ‖η‖ ≤ C4(n−
1
2λ−

1
4m + λ

1
2 ). Therefore, as probability

approaches to 1,

‖T (η)‖ ≤ ‖I1‖+ ‖I2‖+ ‖I3‖

≤ C3λ
−3/(4m)‖η‖2 +

r

2

≤ C3c
′λ−3/(4m)(n−

1
2λ−

1
4m + λ

1
2 )‖η‖+

r

2

= c∗(n−1/2λ−1/m + λ1/2−3/(4m))‖η‖+
r

2

≤ r,

where c∗ = C3c
′, and the last inequality is true when m > 3/2 and n−1/2λ−1/m = o(1),

as n→∞. Thus, T (B(r)) ⊂ B(r).

Step II. We show that T is a contraction mapping. For any η1, η2 ∈ B(r), applying

Taylor’s expansion, we have

‖T (η1)− T (η2)‖

= ‖η1 − η2 + Sn,λ(η0 + η1)− Sn,λ(η0 + η2)‖

= ‖
∫ 1

0

{DSn,λ(η0 + η2 + s(η1 − η2))−DSn,λ(η0)} (η1 − η2)ds‖

= ‖
∫ 1

0

∫ 1

0

sD2Sn,λ(η0 + s′(η2 + s(η0 − η2)))(η1 − η2)(η2 + s(η1 − η2))dsds′‖

≤
∫ 1

0

∫ 1

0

s‖D2Sn,λ(η0 + s′(η2 + s(η0 − η2)))(η1 − η2)(η2 + s(η1 − η2))‖dsds′

=

∫ 1

0

∫ 1

0

s sup
‖η̃‖=1

|
〈
D2Sn,λ(η0 + s′(η2 + s(η0 − η2)))(η1 − η2)(η2 + s(η1 − η2)), η̃

〉
|dsds′

=

∫ 1

0

∫ 1

0

s sup
‖η̃‖=1

|l′′′η (η0 + s′(η2 + s(η0 − η2))) 〈(η1 − η2), Rx〉 〈(η2 + s(η1 − η2)), Rx〉

94



Semiparametric Density Estimation with Smoothing Spline Chapter 5

〈Rx, η̃〉 |dsds′

≤ C‖η1 − η2‖(‖η2‖+ ‖η1‖+ ‖η2‖)‖Rx‖3

≤ 3rCc3
mλ
−3/(4m)‖η1 − η2‖

< 1/2‖η1 − η2‖,

where the last inequality is because rλ−3/(4m) = n−1/2λ−1/m + λ1/2−3/(4m) = o(1) when

m > 3/2. Therefore, T is a contraction mapping on B(r). By the contraction mapping

theorem (Meir and Keeler [64]), there exists a unique element η′λ ∈ B(r) such that

T (η′λ) = η′λ. Let η̂n,λ = η0 + η′λ, then we have Sn,λ(η̂n,λ) = 0 and ‖η̂n,λ − η0‖ ≤ r =

O(λ
1
2 + n−1/2λ−

1
4m ) with probability approaching 1. The proof is completed.

5.4.5 Asymptotic Normality

In this section, we establish the asymptotic distribution of the semiparametric estimates

under some regularity conditions.

Define G1 = {g1(x) = α(x)Tθ : x ∈ I, ‖g1‖sup ≤ 1, θ ∈ Rp}, and G2 = {g2(x) ∈

S : ‖g2‖sup ≤ 1, J(g2, g2) ≤ c−2
m λ1/(2m)−1}. Let G = G1 + G2 ≡ {g1(x) + g2(x) : g1 ∈

G1 and g2 ∈ G2}. For any η ∈ G, define the empirical processes Zn(η)

Zn(η) =
1√
n

n∑
i=1

[ψn(Xi; η)RXi − E(ψn(X; η)RX)] (5.50)

where ψn is a real-valued function on R×G. It can be shown similarly to Lemma S.3 in

Cheng and Shang [63], that if ψn satisfies the following Lipschitz continuity:

|ψn(X; η)− ψn(X; η̃)| ≤ c−1
m λ1/(4m)‖η − η̃‖sup for any η, η̃ ∈ G, (5.51)
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then we have

lim
n→∞

P

(∑
η∈G

‖Zn(η)‖
λ−(2m−1)/(8m2) + n−1/2

≤ (5 log log n)1/2

)
= 1. (5.52)

Lemma 3 Under Assumptions 2, there exists a positive constant Cv such that for any

η ∈ Q, ‖θ||l2 ≤ Cv‖η‖ where ‖θ‖l2 ≡
√∑p

i=1 θ
2
i .

Proof: For any η ∈ Q,

‖η‖2 = ‖(θ, h)‖2

= V (θTα+ h,θTα+ h) + λJ(h, h)

= V (θT (α− A) + θTA+ h,θT (α− A) + θTA+ h) + λJ(h, h)

= θTV (α− A,α− A)θ + V (θTA+ h,θTA+ h)

+2θTV (α− A,θTA+ h) + λJ(h, h),

where

V (θTA+ h,θTA+ h) + 2θTV (α− A,θTA+ h) + λJ(h, h)

= V (θTA+ h,θTA+ h) + 2θTV (α,θTA+ h)− 2θTV (A,θTA+ h) + λJ(h, h)

= V (θTA+ h,θTA+ h) + 2θT 〈A,θTA+ h〉1 − 2θTV (A,θTA+ h) + λJ(h, h)

= V (θTA+ h,θTA+ h) + 2θTλJ(A,θTA+ h) + λJ(h, h)

= V (θTA+ h,θTA+ h) + 2θTλJ(A,θTA) + 2θTλJ(A, h) + λJ(h, h)

= V (θTA+ h,θTA+ h) + 2θTλJ(A,θTA) + θTλJ(A, h) + λJ(θTA+ h, h)

= V (θTA+ h,θTA+ h) + θTλJ(A,θTA) + λJ(θTA,θTA+ h) + λJ(θTA+ h, h)

= 〈θTA+ h,θTA+ h〉1 + λJ(θTA,θTA).
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Therefore,

‖η‖2 = θTΩθ + 〈θTA+ h,θTA+ h〉1 + λJ(θTA,θTA)

≥ θTΩθ.

Since Ω is positive definite, there exists a positive constant Cv and ‖θ||l2 ≤ Cv‖η‖.

Theorem 2 (Joint Bahadur representation) Suppose that Assumptions 1– 3 are satis-

fied, λ = o(1) and nλ1/m →∞. Let an = n−1/2(n−1/2λ−1/(4m))λ−(6m−1)/(8m2)(log log n)1/2+

C1λ
−1/(4m)(n−1/2λ−1/(4m))/ log n where C1 is defined in Assumption 3. Then we have

‖η̂n,λ − η0 − Sn,λ(η0)‖ = Op(an log n).

Proof: Denote η = η̂n,λ − η0 ≡ (θ, h). By Taylor expansion, and the fact that

Sn,λ(η + η0) = 0 and D(Sλ(η0)) = −id, we have

‖Sn(η + η0)− S(η + η0)− (Sn(η0)− S(η0))‖

= ‖Sn,λ(η + η0)− Sλ(η + η0)− (Sn,λ(η0)− Sλ(η0))‖

= ‖Sλ(η0)− Sλ(η + η0)− Sn,λ(η0)‖

= ‖DSn,λ(η0)η +

∫ 1

0

∫ 1

0

sD2Sn,λ(ss
′η + η0)ηηdsds′ + Sn,λ(η0)‖

= ‖ − η +

∫ 1

0

∫ 1

0

sD2Sn,λ(ss
′η + η0)ηηdsds′ + Sn,λ(η0)‖

≥ ‖ − η + Sn,λ(η0)‖ − ‖
∫ 1

0

∫ 1

0

sD2Sn,λ(ss
′η + η0)ηηdsds′‖.
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Thus,

‖η − Sn,λ(η0)‖

≤ ‖Sn(η + η0)− S(η + η0)− (Sn(η0)− S(η0))‖+ ‖
∫ 1

0

∫ 1

0

sD2Sn,λ(ss
′η + η0)ηηdsds′‖

≡ ‖I1‖+ ‖I2‖. (5.53)

We deal with ‖I1‖ and ‖I2‖ one by one.

First, since ‖I2‖ ≤
∫ 1

0

∫ 1

0
‖sD2Sn,λ(ss

′η + η0)ηη‖dsds′, we need to find an upper bound

for ‖D2Sn,λ(ss
′η + η0)ηη‖. Recall that D2Sn,λ(ss

′η + η0)ηη = l′′′a (ss′η + η0)η2Rx. Then

by Assumption 3,

‖D2Sn,λ(ss
′η + η0)ηη‖

= ‖l′′′a (ss′η + η0)η2Rx‖

≤ sup
a∈I
|l′′′a (a)|‖η‖2‖Rx‖

≤ C1cmλ
−1/(4m)‖η‖2, (5.54)

where C1 can be found in Assumption 3.

Next, we find an upper bound for ‖I1‖. By Theorem 1, the event Bn1 = {‖η‖ ≤ rn ≡

M(n−1/2λ−1/(4m) + λ1/2)} has large probability with some preselected large M .

On the other hand by Assumption 3 and Chebyshev’s inequality,

max
1≤i≤n

sup
a∈I
|l′′a(a;Xi)| = Op(log n).
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Then we can find a sufficiently large constant C > C0 such that the event

Bn2 = {max
1≤i≤n

sup
a∈I
|l′′a(a;Xi)| ≤ C log n}

has large probability. So Bn = Bn1 ∩Bn2 has large probability.

Define η̄ ≡ (θ̄, h̄) = d−1
n η/2, where θ̄ = d−1

n θ/2, h̄ = d−1
n h/2, and dn = cmrnλ

−1/4m.

Since λ = o(1) and nλ1/m → ∞, we have dn = o(1). Then on Bn, by Lemma 2,

‖η̄‖sup ≤ cmλ
−1/(4m)‖η̄‖ ≤ 1/2, which implies for any x ∈ I, |η(x)| ≤ 1/2. And By

lemma 3, ‖θ‖l2 ≤ Cvrn, which implies that ‖θ̄‖l2 ≤ C ′vλ
1/(4m). Furthermore since α(x)

is bounded, we have |θ̄Tα(x)| ≤ C ′λ1/(4m) for any x ∈ I. Since λ = o(1), we may

select a small λ so that ‖θ̄Tα(x)‖sup ≤ 1/2. Consequently |h̄(x)| = |η̄(x) − θ̄Tα(x)| ≤

‖θ̄Tα(x)‖sup + ‖η̄‖sup ≤ 1 for any x ∈ I. Additionally, observe that

J(h̄, h̄) = d−2
n λ−1(λJ(h, h))/4

≤ d−2
n λ−1‖η‖2/4

≤ d−2
n λ−1r2

n/4

≤ c−2
m λ1/(2m)−1.

Therefore, when event Bn holds, we have η̄ ∈ G. Define

ψ(x; η) ≡l′a (η0 + η)− l′a (η0) =

∫ η0+η

η0

l′′a(x; a)da.

It is not hard to check that

I1 =
1

n

n∑
i=1

[ψ(Xi; η)RXi − EX (ψ(X; η)RX)] . (5.55)
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Let ψ̃n(x; η̄) = 1/2C−1c−1
m (log n)−1λ1/(4m)d−1

n ψ(x; 2dnη̄) and ψn(Xi; η̄) = ψ̃n(Xi; η̄)IAi ,

where Ai = {supa∈I |l′′a(Xi; a)| ≤ C log n}, for i = 1, ..., n, and Bn ⊂ ∩iAi.

Next we show ψn satisfies the Lipschitz continuity (5.51). For any η̄1 = (θ1, h1), η̄2 =

(θ2, h2) ∈ G and x ∈ I, when n is sufficiently large, since η0(x) ∈ I0 and dn = o(1), both

η0(x) + 2dnη̄1(x) and η0(x) + 2dnη̄2(x) are in I. Therefore,

|ψn(Xi; η̄1)− ψn(Xi; η̄2)|

=
1

2
C−1c−1

m (log n)−1λ1/(4m)d−1
n |ψ(Xi; 2dnη̄1)− ψ(Xi; 2dnη̄2)|IAi

=
1

2
C−1c−1

m (log n)−1λ1/(4m)d−1
n

∣∣∣∣∣
∫ η0(Xi)+2dn(η̄1(Xi))

η0(Xi)

l′′a(Xi; a)IAida

−
∫ η0(Xi)+2dn(η̄2(Xi))

η0(Xi)

l′′a(Xi; a)IAida

∣∣∣∣∣
≤ C−1c−1

m (log n)−1λ1/(4m)d−1
n dn‖η̄1 − η̄2‖sup sup

a∈I
|l′′a(Xi; a)|IAi

≤ c−1
m λ1/(4m)‖η̄1 − η̄2‖sup.

Then by (5.52), with large probability,

||
∑

[ψn(Xi; η̄)RXi − E{ψn(X; η̄)RX}]|| ≤ (n
1
2h−

2m−1
4m

+1)(5 log log n)
1
2 . (5.56)

On the other hand, by Chebyshev’s inequity and Assumption 3(a),

P (Aci) ≤ exp(− C
C0

log n)E{exp(sup
a∈I
|l′′a(Xi; a)|/C0} ≤ C1n

− C
C0 . (5.57)

Since λ = o(1) and nλ1/m →∞, we can let C be sufficiently large so that (log n)−1n
− C

2C0 =

o(a′nλ
1/(4m)d−1

n ), where a′n = n−1/2(n−1/2λ−1/(4m) + λ1/2)λ−(6m−1)/(8m2)(log log n)1/2. As-

sumption 3 implies E {supa∈I |l′′(a;x)|} ≤ 2C1C
2
0 , so we have on Bn, E {|ψ(X; dnh)|2} ≤
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2C1C
2
0d

2
n. Then when n is large, on Bn,

‖E(ψn(X; η̄)RX)− E(ψ̃n(X; η̄)RX)‖

= ‖E(ψ̃n(X; η̄)RXIAci )‖

≤ 1/2C−1(log n)−1d−1
n (E {ψ(X; 2dnη̄)}2)

1
2P (Aci)

1
2

≤ 2C−1C0C1(log n)−1n
− C1

2C0

= O(a′nλ
1/(4m)d−1

n ).

Thus, with ψn(Xi; η) = ψ̃n(Xi; η) for i = 1, ..., n on Bn, there exists a large positive

constant C ′ such that

‖I1‖ = ‖ 1

n

n∑
i=1

[ψ(Xi; η)RXi − E (ψ(X; η)RX)]‖

=
2Ccm(log n)λ−1/(4m)dn

n
‖

n∑
i=1

[ψ̃(Xi; η)RXi − E
(
ψ̃(X; η)RX

)
]‖

≤ 2Ccm(log n)λ−1/(4m)dn
n

{
‖

n∑
i=1

[ψ(Xi; η)RXi − E (ψ(X; η)RX)]‖

+n‖E (ψ(X; η)RX)− E
(
ψ̃(X; η)RX

)
‖
}

≤ 2Ccm(log n)λ−1/(4m)dn
n

[(n1/2λ−(2m−1)/(8m2) + 1)(5 log log n)1/2 + nM ′a′nλ
1/(4m)d−1

n ]

= 2Ccm log n[dn(n−1/2λ−(4m−1)/(8m2) + n−1λ−1/(4m))(5 log log n)1/2 +M ′a′n]

≤ C ′cma
′
n log n. (5.58)

Therefore, by (5.53), (5.54) and (5.58), with large probability

‖η − Sn,λ(η0)‖ ≤ C ′cma
′
n log n+ C1cmλ

−1/(4m)(n−1/2λ−1/(4m) + λ1/2)2. (5.59)

This completes the proof.
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Assumption 4 For any x ∈ I, as n→∞,

λ1/(2m)V (ε(X)Kx, ε(X)Kx)→ σ2
x,

λ1/(4m)Cov(ε(X)KX(x), ε(X)(α(X)− A(X)))→ ζx,

(Ω + Σ)−1V (ε(X)(α(X)− A(X))) (Ω + Σ)−1 → Ω∗,

λ1/(4m)A(x)→ −τ x,

(5.60)

where ζx and τ x are two p-dimensional functions of x.

Lemma 4 Let Assumptions 1 – 4 hold. Suppose that as n→∞, λ = o(1), nλ1/m →∞,

and an log n = o(n−1/2λ1/(4m)). Then we have, for any x ∈ I,

 √n(θ̂n,λ − θ∗0)
√
nλ1/(2m)

(
ĥn,λ(x)− h∗0(x)

)
 d−−−−→ N(0,Ψ∗), (5.61)

where

Ψ∗ =

 Ω∗ Ωζx + Ω∗τ x

ζTxΩ + τ TxΩ∗ σ2
x + 2τ TxΩζx + τ TxΩ∗τ x

 . (5.62)

Proof: Define

Remn = η̂n,λ − η∗0 −
1

n

n∑
i=1

ε(Xi)RXi , and Remλ
n = η̂λn,λ − η∗λ0 −

1

n

n∑
i=1

ε(Xi)R
λ
Xi
,

where Rx = (Tx, Hx) is given in (5.38) and

η∗0 = η0 − Pλη0, η∗λ0 = (θ∗0, λ
1/(4m)h∗0)

η̂λn,λ = (θ̂n,λ, λ
1/(4m)ĥn,λ), Rλ

x = (Tx, λ
1/(4m)Hx).
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By Theorem 2, ‖Remn‖ = Op(an log n). Combined with lemma 3, we have

‖θ̂n,λ − θ∗0 −
1

n

n∑
i=1

ε(Xi)TXi‖l2 = Op(an log n).

Consequently,

‖Remλ
n − λ1/(4m)Remn‖ =‖

(
(1− λ1/(4m))(θ̂n,λ − θ∗0 −

1

n

n∑
i=1

ε(Xi)TXi), 0

)
‖

≤(1− λ1/(4m))‖θ̂n,λ − θ∗0 −
1

n

n∑
i=1

ε(Xi)TXi‖l2

=Op(an log n).

Since by assumption an log n = o(n−1/2λ1/(4m)), and the fact that λ1/(4m)Remn = op(an log n),

‖Remλ
n‖ = op(n

−1/2λ1/(4m)).

Next we will use Remλ
n to derive the target joint limit distribution of n1/2α(x)T (θ̂−θ∗0)+

n1/2λ1/(4m)(ĥn,λ(x) − h∗0(x)) with the Cramer-Wold device. For any x ∈ I, it’s easy to

verify that

n1/2α(x)T (θ̂n,λ − θ∗0) + n1/2λ1/(4m)(ĥn,λ(x)− h∗0(x)) = n1/2〈Rx, η̂
λ
n,λ − η∗λ0 〉.

With the fact that

|n1/2〈Rx, η̂
λ
n,λ − η∗λ0 〉| ≤n1/2‖Rx‖‖Remλ

n‖

=Op(n
1/2λ−1/(4m)an log n) = op(1),
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we just need to find the limit distribution of n1/2〈Rx, η̂
λ
n,λ − η∗λ0 〉 which is equivalent to

n1/2

n∑
i=1

ε(Xi)
(
α(x)TTXi + λ1/(4m)HXi(x)

)
.

Next we employ Lindeberg’s condition for Central Limit Theorem to find the limit dis-

tribution. By Assumption 3 and the representation of TX and HX in (5.38),

α(x)TTX + λ1/(4m)HX(x)

=λ1/(4m)KX(x) +αT (x)Ω−1α(X).

(5.63)

Thus,

s2
n ≡ Var

(
n∑
i=1

ε(Xi)(α(x)TTXi + λ1/(4m)HXi(x))

)
= nVar

(
ε(X)(α(x)TTX + λ1/(4m)HX(x))

)
= nVar

(
ε(X)(λ1/(4m)KX(x) +αT (x)Ω−1α(X))

)
= n

{
λ1/(2m)Var(ε(X)KX(x)) +αT (x)Ω−1Var (ε(X)α(X)) Ω−1α(x)+

2λ1/(4m)αT (x)Ω−1Cov(ε(X)KX(x), ε(X)α(X))
}
.

By Assumption 4, as n→∞,

s2
n/n → σ2

x +αT (x)Ω∗α(x) + 2αT (x)Ωζx

= (α(x), 1)TΨ∗(α(x), 1),

where Ψ∗ is defined in (5.62). Since α(x) is bounded, s2
n � n.

By the proof of Lemma 2, |KX(x)| = O(λ−1/(2m)), and for any x ∈ I and k = 1, ..., p,
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there exists a positive constant c′k independent of x such that

|Ak(x)| =|V (αk, Kx)|

=

∣∣∣∣∣∑
ν

V (αk, bν
bν(x)

1 + λγµ
)

∣∣∣∣∣
≤

(∑
ν

|V (αk, bν)|2
)1/2(∑

ν

∣∣∣∣ bν(x)

1 + λγµ

∣∣∣∣2
)1/2

≤c′kλ−1/(4m).

Thus, we can find a positive constant c′ such that

|α(x)TTX + λ1/(4m)HX(x)| ≤ c′λ−1/(4m), a.s.

Then for any ε > 0, by s2
n � n and the assumption nλ1/m →∞,

E
{
|ε(X)(α(x)TTX + λ1/(4m)HX(x))|2I(|ε(X)(α(x)TTX + λ1/(4m)HX(x))| ≥ εsn)

}
≤(c′λ−1/(4m))2E{ε(X)2I(|ε(X)| ≥ εsnλ

1/(4m)/c′)}

≤(c′λ−1/(4m))2(E(ε(X)4))1/2(P (|ε(X)| ≥ εsnλ
1/(4m)/c′))1/2

≤(c′λ−1/(4m))2(E(ε(X)4))1/2(ε4s4
nλ

1/m)−1/2(E(ε(X)4))1/2

=
(c′)2E(ε(X)4)

ε2s2
nλ

1/m
→ 0,

where E(ε(X)4) is assumed to exist. Then as n→∞,

1

s2
n

n∑
i=1

E
{
|ε(Xi)(α(x)TTXi + λ1/(4m)HXi(x))|2I|ε(Xi)(α(x)TTXi + λ1/(4m)HXi(x))| ≥ εsn

}
=
n

s2
n

E
{
|ε(X)(α(x)TTX + λ1/(4m)HX(x))|2I|ε(X)(α(x)TTX + λ1/(4m)HX(x))| ≥ εsn

}
→ 0.
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Thus, Lindeberg’s condition is satisfied. Then by central limit theorem, we can have the

limit distribution (5.61). This completes the proof.

Lemma 5 Suppose that there exists b ∈ (1/(2m), 1] such that αk(·) satisfies

∑
ν

|V (αk, bν)|2γbν <∞, for any k = 1, ..., p. (5.64)

Then we have, for any x ∈ I, λ1/(4m)A(x) = o(1) and λ1/(4m)(WλA)(x) = o(1). Moreover,

if n1/2λ(1+b)/2 = o(1), then as n→∞,

 √n(θ∗0 − θ0)
√
nλ1/(2m) {h∗0(x)− h0(x) +Wλh0(x)}

 −→ 0. (5.65)

Proof: By the definition of θ∗0, h
∗
0 and the representation of Pλ in (5.42), we have

 √n(θ∗0 − θ0)
√
nλ1/(2m) {h∗0(x)− h0(x) +Wλh0(x)}


=

 √n(Ω + Σλ)
−1V (α,Wλh0)

−
√
nλ1/(2m)V (αT ,Wλh0)(Ω + Σλ)

−1A(x)

 . (5.66)

Thus, we just need to show (5.66) goes to 0, which proceeds in the following two steps.

(i) Show ‖V (α,Wλh0)‖l2 = o(n−1/2). By (5.34),

V (αk,Wλh0) =
∑
µ

V (αk, bµ)V (h0, bµ)
λγµ

1 + λγµ
,
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for all k = 1, ..., p. Then by Cauchy’s inequality, we have

|V (αk,Wλh0)|2 ≤
∑
µ

|V (αk, bµ)|2 λγµ
1 + λγµ

∑
µ

|V (h0, bµ)|2 λγµ
1 + λγµ

= J(h0, h0 −Wλh0)λ
∑
µ

|V (αk, bµ)|2 λγµ
1 + λγµ

= const · λ
∑
µ

|V (αk, bµ)|2γbµ

(
λγ1−b

µ

1 + λγµ

)
≤ const · λ1+b

where the last inequality is by γµ ≡ µ2m and
∑

ν |V (αk, bν)|2γbν < ∞. Therefore,

by assumption n1/2λ(1+b)/2 = o(1), ‖V (α,Wλh0)‖l2 ≡
√∑p

k=1 |V (αk,Wλh0)|2 =

o(n−1/2).

(ii) Show λ1/(4m)A(x) = o(1). For any x ∈ I, with the explicit expression of Kx (5.35),

we have

Ak(x) = 〈Ak, Kx〉1 = V (αk, Kx) =
∑
µ

V (αk, bµ)

1 + λγµ
bµ(x).

By the boundedness of bµs (Assumption 1) and Cauchy’s inequality, for any x ∈ I,

|Ak(x)|2 ≤
∑
µ

|V (αk, bµ)|2(1 + γµ)b(bµ(x))2
∑
µ

1

(1 + γµ)b(1 + λγµ)2

= O

(∑
µ

1

(1 + γµ)b

)
= O(1),

where the last equality is because
∑

ν |V (αk, bν |2γbν <∞ and
∑

µ
1

(1+λγµ)2
converges.

Therefore, we have ‖Ak‖sup = O(1), furthermore λ1/(4m)A(x) = o(1). On the other
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hand,

λ1/(4m)Cov(ε(X)KX(x), ε(X)(α(X)− A(X)))

= λ1/(4m)V (ε(X)KX(x), ε(X)α(X))− λ1/(4m)V (ε(X)KX(x), ε(X)A(X)).

Using similar derivations as above, by (5.35) and (5.36), for any x ∈ I and k =

1, .., p,

|V (ε(X)KX(x), ε(X)αk(X))|2

= |
∑
µ

bµ(x)

1 + λγµ
V (ε(X)bµ(X), ε(X)αk(X))|2

≤
∑
|V (ε(X)bµ(X), ε(X)αk(X))|2(1 + γµ)b(bµ(x))2

(∑
µ

1

(1 + γµ)b(1 + λγµ)2

)

≤ O

(∑
µ

1

(1 + γµ)b

)
,

and

|V (ε(X)KX(x), ε(X)A(X))|2

= |
∑
µ

bµ(x)

(1 + λγµ)2
V (αk, bµ)V (εbν(X), εbµ(X))|2

≤
∑
|V (αk, bµ)V (εbν(X), εbµ(X))|2(1 + γµ)b(bµ(x))2

(∑
µ

1

(1 + γµ)b(1 + λγµ)2

)

≤ O

(∑
µ

1

(1 + γµ)b

)
.

Therefore, in Assumption 4 and (5.62), ζx = o(1).
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By (i) and (ii), as n→∞,

 √n(θ̂
∗
0 − θ0)

√
nλ1/(2m)

{
ĥ∗0(x)− h0(x) +Wλh0(x)

}


=

 √n(Ω + Σλ)
−1V (α,Wλh0)

−
√
nλ1/(2m)V (αT ,Wλh0)(Ω + Σλ)

−1A(x)

→ 0.

With Lemma 4 and Lemma 5, we can directly conclude the limit distribution for the

semiparametric estimates.

Theorem 3 (Joint limit distribution). Let Assumptions 1 to 4 hold. Suppose that there

exists b ∈ (1/(2m), 1] such that αk(·) satisfies

∑
ν

|V (αk, bν)|2γbν <∞, for any k = 1, ..., p. (5.67)

Moreover, as n→∞, λ = o(1), nλ1/m →∞, an log n = o(n−1/2λ1/(4m)). Then we have,

for any x ∈ I,

 √n(θ̂n,λ − θ0)
√
nλ1/(2m)

{
ĥn,λ(x)− h0(x) +Wλh0(x)

}
 d−−−−→ N(0,Ψ), (5.68)

where

Ψ =

 Ω∗ 0

0 σ2
x

 .
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5.5 Simulations

To evaluate the proposed estimation procedures and algorithms, we conduct several

simulations for both additive and nonadditive cases. We use the KL divergence between

the estimated density and the true density as introduced in Chapter 4 to evaluate the per-

formance of density estimation, and bias, variance and MSE to evaluate the performance

of parameter estimation.

5.5.1 Additive Case

Near Normal distribution

Consider the density function

f(x;µ, σ) =
exp{− x2

2σ2 + µx
σ2 + ax3}∫ 1

0
exp{− x2

2σ2 + µx
σ2 + ax3}dx

where x ∈ [0, 1], α(x;µ, σ) = − x2

2σ2 + µx
σ2 , h(x) = ax3 and a is a constant. The function

α(x;µ, σ) is the logistic transformation of the truncated normal density function with

mean µ and standard deviation σ. The constant a controls the departure from the

truncated normal distribution. The choice of this density function is motivated by Hjort

and Glad [14]. Hjort and Glad [14] considered a modified kernel estimator of f as

f0(x;θ)r(x) where f0(x;θ) is a parametric density with unknown parameters θ and r(x)

is a nonparametric correction function. The form of modified kernel estimator is a special

case of (5.3) with h(x) = log r(x) and α(x;θ) = log f0(x;θ). Hjort and Glad [14] showed

that starting with a parametric density estimate leads to a better estimate of the density

function than a direct kernel estimate when the true function is close to the parametric

density. Therefore this simulation setting can be regarded as starting with the truncated

normal. When a is small, we expect that the semiparametric estimate of the density
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performs better than direct nonparametric estimation methods such as kernel and cubic

spline. We will consider the additive model (5.3) with α(x;µ, σ) = − x2

2σ2 + µx
σ2 and

h ∈ W 3
20(I). We use the profile likelihood approach in Section 5.3.1 to compute estimates

of θ = (µ, σ) and h. For comparison, we also implement the approach in Yang [17] which

is a special case of model (5.2) with preselected α(x) = (x, x2)T . Yang’s approach is

equivalent to the nonparametric smoothing spline estimation with model space W 3
20(I)

for quintic spline, which is more tailored for this case and thus is expected to behave

better than the cubic spline. In the implementation of kernel density estimation and

Hjort & Glad’s method, we use the Gaussian kernel and compare different methods for

bandwidth selection including the approach in Scott [65], the unbiased and biased cross-

validation procedures, and the method using pilot estimation of derivatives in Sheather

and Jones [66]. We find that the bandwidth obtained by

h = 0.9n−1/5 min{sample standard deviation, sample inter quantile range/1.34},

(5.69)

provides the best overall performance. We report results with bandwidth (5.69) only.

We set µ = 0.5 and σ = 0.2. We consider 6 choices of a: a = 0.25, 0.5, 1, 2, 3, 4, 6, and

three sample sizes, n = 100, 200 and 300. For each simulation setting, we generate 100

simulation data sets. For each simulated data set, we compute density estimates using the

kernel method, Hjort & Glad’s (HG), cubic spline, quintic spline (i.e. Yang’s method) and

our proposed semiparametric (SEMI) method. The simulation results are shown in Tables

5.2, 5.3 and 5.4. As expected, except for a = 6 with small sample size, the semiparametric

and quintic spline estimates have the smallest KL than nonparametric estimates. Our

semiparametric approach performs better than the semiparametric approach in Hjort &

Glad (1995). The bias and variance in the estimation of parameters increase when the

true density is further away from the truncated normal. Nevertheless, the performance of
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the estimation to the density function is not affected by the large biases and variances in

the estimation of parameters when a is large. And as expected, as sample size becomes

larger, the density and parameters estimations are improved.

a Method KL KLBias KLvar |Bias(µ)| Var(µ) |Bias(σ)| Var(σ)

0.25
Kernel 2.56 0.04 2.52

HG 2.48 0.47 2.01
Cubic 1.53 0.31 1.22

Quintic 1.08 0.04 1.04 0.75 2.33 0.05 1.65
SEMI 1.08 0.04 1.04 0.75 2.34 0.05 1.65

0.5
Kernel 2.67 0.08 2.60

HG 2.38 0.12 2.25
Cubic 1.53 0.31 1.22

Quintic 1.11 0.05 1.06 1.56 2.07 0.43 1.96
SEMI 1.11 0.05 1.06 1.57 2.07 0.43 1.97

1
Kernel 2.81 0.04 2.78

HG 2.30 0.14 2.16
Cubic 1.50 0.28 1.23

Quintic 0.93 0.03 0.90 4.05 2.37 1.17 1.75
SEMI 0.93 0.03 0.90 4.05 2.37 1.17 1.75

2
Kernel 3.73 0.16 3.57
Cubic 1.75 0.32 1.42
HG 2.79 0.56 2.23

Quintic 1.19 0.04 1.15 9.47 3.14 3.49 2.78
SEMI 1.20 0.03 1.16 9.40 3.18 3.47 2.75

4
Kernel 7.79 0.83 6.96

HG 4.32 2.19 2.13
Cubic 1.54 0.27 1.27

Quintic 1.27 0.19 1.08 31.94 9.90 10.01 5.60
SEMI 1.27 0.19 1.08 32.03 10.02 10.03 5.64

6
Kernel 16.06 5.01 11.05

HG 11.73 9.23 2.51
Cubic 1.47 0.37 1.10

Quintic 1.87 0.68 1.18 82.00 178.91 24.55 15.75
SEMI 1.84 0.71 1.12 3265.02 19500.91 77.57 266.74

Table 5.2: Performance of different methods (all numbers are in 10−2) with sample size 100.
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a Method KL KLBias KLvar |Bias(µ)| Var(µ) |Bias(σ)| Var(σ)

0.25
Kernel 1.65 0.03 1.62

HG 1.20 0.18 1.03
Cubic 0.81 0.21 0.60

Quintic 0.42 0.01 0.42 0.95 1.31 0.24 1.24
SEMI 0.43 0.01 0.42 0.91 1.35 0.23 1.26

0.5
Kernel 1.77 0.04 1.73

HG 1.38 0.26 1.12
Cubic 0.87 0.17 0.71

Quintic 0.54 0.02 0.52 1.60 1.35 0.51 1.48
SEMI 0.54 0.02 0.52 1.60 1.36 0.51 1.48

1
Kernel 1.84 0.07 1.77

HG 1.39 0.43 0.95
Cubic 0.81 0.15 0.65

Quintic 0.46 0.02 0.44 3.70 1.48 1.24 1.39
SEMI 0.47 0.02 0.45 3.72 1.52 1.25 1.40

2
Kernel 2.56 0.07 2.48

HG 1.37 0.38 0.99
Cubic 0.81 0.23 0.58

Quintic 0.50 0.04 0.47 9.41 1.80 3.31 1.80
SEMI 0.50 0.04 0.47 9.42 1.80 3.31 1.80

4
Kernel 6.24 0.74 5.50

HG 2.77 1.73 1.04
Cubic 0.79 0.18 0.61

Quintic 0.63 0.14 0.49 30.84 6.19 10.25 3.88
SEMI 0.64 0.15 0.49 30.75 6.23 10.23 3.88

6
Kernel 12.88 4.31 8.57

HG 8.05 7.04 1.01
Cubic 0.94 0.36 0.58

Quintic 1.10 0.64 0.46 167.13 453.96 30.29 32.62
SEMI 1.12 0.66 0.46 155.26 345.87 29.72 29.05

Table 5.3: Performance of different methods (all numbers are in 10−2) with sample size 200.
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a Method KL KLBias KLvar |Bias(µ)| Var(µ) |Bias(σ)| Var(σ)

0.25
Kernel 0.96 0.03 0.93

HG 0.62 0.12 0.50
Cubic 0.41 0.11 0.30

Quintic 0.20 0.003 0.20 0.89 0.97 0.24 0.78
SEMI 0.21 0.003 0.20 0.87 1.01 0.23 0.78

0.5
Kernel 1.07 0.02 1.05

HG 0.71 0.11 0.60
Cubic 0.42 0.09 0.33

Quintic 0.24 0.01 0.23 1.75 1.13 0.50 0.80
SEMI 0.26 0.01 0.25 167.02 1653.18 4.46 39.70

1
Kernel 1.25 0.04 1.21

HG 0.67 0.11 0.56
Cubic 0.45 0.12 0.33

Quintic 0.22 0.01 0.21 4.15 1.11 1.46 0.87
SEMI 0.24 0.01 0.23 3.87 2.74 1.35 1.32

2
Kernel 1.80 0.08 1.72

HG 0.73 0.29 0.45
Cubic 0.40 0.13 0.28

Quintic 0.22 0.04 0.18 9.19 1.07 3.49 1.17
SEMI 0.22 0.04 0.18 8.96 1.12 3.41 1.17

4
Kernel 4.77 0.67 4.11

HG 1.78 1.29 0.49
Cubic 0.34 0.07 0.27

Quintic 0.33 0.15 0.18 29.87 3.20 9.75 2.04
SEMI 0.35 0.16 0.19 29.15 3.23 9.54 2.01

6
Kernel 10.46 3.79 6.67

HG 5.95 5.54 0.41
Cubic 0.71 0.45 0.26

Quintic 0.80 0.64 0.16 97.66 31.31 23.40 7.72
SEMI 0.82 0.66 0.16 96.30 33.64 23.07 8.20

Table 5.4: Performance of different methods (all numbers are in 10−2) with sample size 500.

Near Gumbel distribution

Consider the density function

f(x;µ, σ) =
exp{−x−µ

σ
− exp(x−µ

σ
) + ax3}∫ 1

0
exp{−x−µ

σ
− exp(x−µ

σ
) + ax3}dx
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where x ∈ [0, 1], α(x;µ, σ) = −x−µ
σ
− exp(x−µ

σ
), h(x) = ax3, and a is a constant. This is

equivalent to start with the truncated Gumbel distribution whose logistic transformation

is α(x;µ, σ), and the constant a controls the departure from the truncated Gumbel distri-

bution. We will consider the additive model (5.3) with α(x;µ, σ) = −x−µ
σ
−exp(x−µ

σ
) and

h ∈ W 2
20(I). Note that α is non-linear in θ. Therefore, Yang’s approach does not apply.

We compare our proposed method with the kernel, cubic spline and HG’s method, where

f0 in HG’s approach is the truncated Gumbel distribution. We use the profile likelihood

approach as described in Section 5.3.1 to compute estimates of θ = (µ, σ) and h.

In the simulations, we set µ = 0.5 and σ = 0.2. We consider five choices of a: a =

0.25, 0.5, 1, 2, 4, and three sample sizes 100, 200, 500. For each simulation setting, we

generate 100 simulated data sets. The simulation results are shown in Tables 5.5, 5.6

and 5.7. As expected, our semiparametric approach performs better than the nonpara-

metric methods when the true density is not far from truncated Gumbel distribution

(a = 0.25, 0.5, 1, 2). Our method also performs better than the semiparametric method

in Hjort and Glad (1995). The bias and variance in the estimation of parameters increase

when the true density is further away from the truncated Gumbel. Nevertheless, the per-

formance of the estimation to the density function is not affected by the large biases and

variances in the estimation of parameters when a is large. The density and parameters

estimations are improved as sample size increases.
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a Method KL KLbias KLvar |Bias(µ)| Var(µ) |Bias(σ)| Var(σ)

0.25
Kernel 3.50 0.41 3.09

HG 3.20 1.12 2.08
Cubic 2.12 0.59 1.53
SEMI 1.58 0.16 1.42 0.48 4.28 0.27 3.46

0.5
Kernel 3.91 0.36 3.55

HG 3.04 1.19 1.85
Cubic 2.02 0.86 1.16
SEMI 1.52 0.27 1.25 5.26 5.12 2.39 3.87

1
Kernel 4.32 0.47 3.85

HG 3.07 1.00 2.07
Cubic 2.17 0.69 1.48
SEMI 1.28 0.11 1.17 6.52 4.31 2.87 3.52

2
Kernel 6.29 0.79 5.50

HG 3.92 1.85 2.07
Cubic 2.13 0.65 1.48
SEMI 1.70 0.23 1.47 15.30 9.19 7.23 7.12

4
Kernel 11.47 1.86 9.61

HG 7.83 5.85 1.98
Cubic 2.00 0.65 1.35
SEMI 2.33 0.58 1.75 79.50 48.42 35.64 22.92

Table 5.5: Performance of different methods (all numbers are in 10−2) with sample size 100.
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a Method KL KLbias KLvar |Bias(µ)| Var(µ) |Bias(σ)| Var(σ)

0.25
Kernel 2.60 0.36 2.23

HG 1.89 0.68 1.21
Cubic 1.32 0.42 0.90
SEMI 0.65 0.01 0.63 0.90 3.11 0.41 2.64

0.5
Kernel 2.84 0.33 2.51

HG 2.08 0.81 1.27
Cubic 1.33 0.37 0.96
SEMI 0.98 0.07 0.92 2.05 5.66 0.61 4.17

1
Kernel 3.22 0.49 2.73

HG 2.04 1.02 1.02
Cubic 1.21 0.52 0.69
SEMI 0.64 0.06 0.58 8.32 24.96 4.11 12.56

2
Kernel 4.83 0.63 4.20

HG 2.50 1.47 1.03
Cubic 1.16 0.39 0.77
SEMI 1.19 0.22 0.97 13.13 9.00 5.67 6.68

4
Kernel 9.67 1.88 7.80

HG 5.27 4.08 1.19
Cubic 1.08 0.37 0.71
SEMI 1.31 0.32 0.98 72.11 125.28 30.88 40.44

Table 5.6: Performance of different methods (all numbers are in 10−2) with sample size 200.
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a Method KL KLbias KLvar |Bias(µ)| Var(µ) |Bias(σ)| Var(σ)

0.25
Kernel 1.72 0.21 1.51

HG 1.09 0.49 0.61
Cubic 0.63 0.19 0.44
SEMI 0.45 0.04 0.41 0.26 4.84 0.69 3.55

0.5
Kernel 1.86 0.27 1.60

HG 1.02 0.49 0.53
Cubic 0.63 0.19 0.44
SEMI 0.40 0.04 0.36 1.06 4.90 0.11 3.49

1
Kernel 2.36 0.31 2.04

HG 1.18 0.61 0.58
Cubic 0.64 0.21 0.43
SEMI 0.44 0.05 0.40 5.33 8.52 1.89 5.28

2
Kernel 3.71 0.56 3.15

HG 1.54 1.02 0.52
Cubic 0.58 0.20 0.38
SEMI 0.48 0.07 0.41 9.34 7.79 3.12 5.26

4
Kernel 7.68 1.53 6.15

HG 3.51 3.04 0.46
Cubic 0.52 0.19 0.33
SEMI 0.65 0.13 0.53 33.09 29.04 12.75 15.80

Table 5.7: Performance of different methods (all numbers are in 10−2) with sample size 500.

5.5.2 Nonadditive Case

Power Transformation

The truncated Weibull distribution has density function

f(x; s, k) =
k

s

(x
s

)k−1

exp

{
−
(x
s

)k}
, (5.70)

where x ∈ [0, 1], s > 0 is the scale parameter and k > 0 is the shape parameter.

Since Y = t(X; k) ∼ truncated Exp(s) which is independent of k, we use the power

transformation

t(x; θ) = xθ, θ > 0. (5.71)
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We consider the transformation model in Section 5.3.3 with h ∈ W 2
20(I) and apply Algo-

rithm 2 to estimate k > 0 and h. We also compute cubic spline estimate of the density

function for comparison. In the simulations, we set s = 1, and consider k = 1, 2, 3, 5

where k = 1 corresponding to the truncated exponential distribution for which the cubic

spline is tailored. We consider three sample sizes 50, 100 and 200. For each simulation

setting, we generate 100 data sets. The simulation results are shown in Tables 5.8, 5.9

and 5.10. As expected, cubic spline performs better when k = 1. Our semiparametric

approach provide can achieve smaller KL than cubic spline when k = 2, 3, 5. And as

sample size increases, the performance of density and parameter estimation is improved.

k Method KL Bias(KL) Var(KL) |Bias(k)| Var(k)

1
Cubic 1.30 0.005 1.29
SEMI 2.15 0.03 2.11 2.73 21.43

2
Cubic 3.34 1.03 2.31
SEMI 2.35 0.06 2.30 7.79 45.58

3
Cubic 3.31 0.88 2.44
SEMI 2.36 0.04 2.32 8.31 71.95

5
Cubic 2.75 0.45 2.30
SEMI 2.25 0.10 2.15 21.90 102.82

Table 5.8: Comparison of the semiparametric method with the cubic spline (in 10−2)
when sample size is 50.

k Method KL Bias(KL) Var(KL) |Bias(k)| Var(k)

1
Cubic 0.67 0.001 0.67
SEMI 1.08 0.01 1.07 1.51 14.58

2
Cubic 2.36 0.75 1.62
SEMI 1.49 0.03 1.46 4.91 36.21

3
Cubic 1.88 0.66 1.22
SEMI 1.07 0.05 1.02 8.14 50.25

5
Cubic 1.54 0.31 1.23
SEMI 1.20 0.04 1.16 19.21 75.46

Table 5.9: Comparison of the semiparametric method with the cubic spline (in 10−2)
when sample size is 100.
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k Method KL Bias(KL) Var(KL) |Bias(k)| Var(k)

1
Cubic 0.31 0.003 0.31
SEMI 0.49 0.004 0.49 0.71 10.12

2
Cubic 1.24 0.47 0.77
SEMI 0.64 0.02 0.62 2.63 24.07

3
Cubic 1.00 0.38 0.62
SEMI 0.54 0.008 0.54 2.86 30.00

5
Cubic 0.84 0.25 0.59
SEMI 0.51 0.01 0.50 3.33 51.47

Table 5.10: Comparison of the semiparametric method with the cubic spline (in 10−2)
when sample size is 200.

Two-Sample density estimation

The Gumbel distribution and logistic distribution are members of location scale fam-

ily with the location parameter µ and scale parameter σ. The Gumbel distribution is also

named as generalized Extreme Value distribution Type-I. It is used to model the distri-

bution of the maximum or the minimum of a number of samples of various distributions.

It is also known as the log-Weibull distribution and the double exponential distribution,

and is related to the Gompertz distribution. The logistic distribution has the logistic

function as the cumulative distribution, which is used in logistic regression and neural

networks as the link function.

We generate two independent samples, X1, ..., Xn1

iid∼ f(x; 0, 1) and Y1, ..., Yn2

iid∼ f(x;µ, σ)

where f is either the Gumbel distribution or the logistic distribution. We consider two

combinations of parameters (µ, σ) = (2, 1) and (2, 2), and four sample sizes (n1, n2) =

(100, 100), (100, 200), (200, 100) and (200, 200). We fit model (5.4) with t(x;θ) = x−µ
σ

and h belongs to the RKHS for univariate thin-plate spline

H =

{
h :

∫ ∞
−∞

(h′′)2dx <∞
}
. (5.72)
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We estimate the density functions using the procedure described in Section 5.3.4, and

report KL(f(·; 0, 1), f̂(·; 0, 1)) + KL(f(·;µ, σ), f̂(·; µ̂, σ̂)) for the performance of density

estimation. For comparison, we estimate the densities for Xi’s and Yi’s using thin-plate

spline models separately with logistic of densities belong to H in (5.72). Denote the

separate thin-plate estimates for X and Y samples as f̂1 and f̂2 respectively. We report

KL(f(·; 0, 1), f̂1)+KL(f(x;µ, σ), f̂2) for the performance of density estimation. We report

biases and variances as measures for the estimation performance of parameters. We

report KL(f(·; 0, 1), exp(ĥ)/
∫

exp(ĥ)dx) as a measure of the estimation performance for

the function h.

1. Gumbel distribution The Gumbel distribution has the density function

f(x) =
1

σ
e−(x−µ

σ
+e−

x−µ
σ ), x ∈ R. (5.73)

The simulation results are shown in Tables 5.11, 5.12, 5.13 and 5.14. Our estimation

procedure provides good estimates of parameters θ and the function h. The performance

improves as sample size increases. The semiparametric density estimates have smaller

KLs than those based on separate nonparametric fits to two samples.

n1 n2 Performance µ̂ σ̂ KLĥ

100
100

|Bias| 2.19 2.84 1.81
Var 2.79 2.38 2.35

200
Bias 2.87 0.25 2.11
Var 2.33 1.46 2.52

200
100

|Bias| 1.01 0.75 1.26
Var 2.32 1.43 1.60

200
|Bias| 0.01 0.57 1.18
Var 1.57 1.12 1.50

Table 5.11: The estimation performance (in 10−2) of parameters and h function when
µ = 2, σ = 1.
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n1 n2 Method KL Bias(KL) Var(KL)

100
100

Semiparametric 4.88 1.09 3.79
Nonparametric 5.82 2.04 3.78

200
Semiparametric 3.86 1.04 2.82
Nonparametric 4.75 1.69 3.06

200
100

Semiparametric 3.90 0.69 3.21
Nonparametric 4.77 1.36 3.40

200
Semiparametric 2.95 0.63 2.32
Nonparametric 3.46 1.24 2.22

Table 5.12: The KL divergence (in 10−2) between the true and estimated densities
when µ = 2, σ = 1.

n1 n2 Performance µ̂ σ̂ KLĥ

100
100

|Bias| 3.13 2.08 2.29
Var 16.08 10.40 2.78

200
|Bias| 2.23 4.54 2.03
Var 13.24 7.14 2.43

200
100

|Bias| 5.70 0.59 1.37
Var 11.27 5.74 1.74

200
|Bias| 2.11 1.99 1.24
Var 5.08 3.71 1.60

Table 5.13: The estimation performance (in 10−2) of parameters and h function when
µ = 2, σ = 2.

n1 n2 Method KL Bias(KL) Var(KL)

100
100

Semiparametric 5.53 0.99 4.54
Nonparametric 6.11 1.99 4.12

200
Semiparametric 4.21 0.78 3.43
Nonparametric 4.95 1.59 3.36

200
100

Semiparametric 4.06 0.73 3.33
Nonparametric 4.57 1.63 2.94

200
Semiparametric 3.01 0.70 2.31
Nonparametric 3.71 1.26 2.45

Table 5.14: The KL divergence (in 10−2) between the true and estimated densities
when µ = 2, σ = 2.
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2. Logistic distribution The pdf of the logistic distribution is given by

f(x;µ, σ) =
e−

x−µ
σ

σ
(

1 + e−
x−µ
σ

)2 , x ∈ R. (5.74)

The simulation results in Tables 5.15, 5.16, 5.17 and 5.18 indicate our semiparametric

model provides good estimates of parameter θ and the function h. It achieves smaller

KLs than those based on separate nonparametric fits to two samples. The performance

improves as sample size increases.

n1 n2 Performance µ̂ σ̂ KLĥ

100
100

|Bias| 1.52 0.17 1.43
Var 5.02 1.81 1.58

200
|Bias| 0.03 1.07 1.17
Var 3.73 1.37 1.22

200
100

|Bias| 4.32 1.28 0.89
Var 5.05 1.91 0.98

200
|Bias| 1.47 1.27 0.83
Var 2.71 0.76 0.88

Table 5.15: The estimation performance (in 10−2) of parameters and h function when
µ = 2, σ = 1.

n1 n2 Method KL Bias(KL) Var(KL)

100
100

Semiparametric 3.06 0.25 2.81
Nonparametric 3.26 0.59 2.67

200
Semiparametric 2.03 0.11 1.92
Nonparametric 2.33 0.36 1.97

200
100

Semiparametric 2.64 0.19 2.45
Nonparametric 2.74 0.47 2.28

200
Semiparametric 1.77 0.12 1.65
Nonparametric 1.96 0.27 1.69

Table 5.16: The KL divergence (in 10−2) between the true logistic and estimated
densities when µ = 2, σ = 1.
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n1 n2 Performance µ̂ σ̂ KLĥ

100
100

|Bias| 6.32 1.01 1.46
Var 24.73 5.21 1.62

200
|Bias| 4.63 0.67 1.38
Var 20.61 5.39 1.52

200
100

|Bias| 7.11 1.37 0.78
Var 20.87 5.20 0.86

200
|Bias| 2.30 0.95 0.65
Var 12.59 3.69 0.74

Table 5.17: The estimation performance (in 10−2) of parameters and h function when
µ = 2, σ = 2.

n1 n2 Method KL Bias(KL) Var(KL)

100
100

Semiparametric 3.06 0.33 2.73
Nonparametric 3.49 0.67 2.82

200
Semiparametric 2.39 0.24 2.15
Nonparametric 2.88 0.50 2.38

200
100

Semiparametric 2.15 0.13 2.03
Nonparametric 2.47 0.29 2.19

200
Semiparametric 1.54 0.14 1.40
Nonparametric 1.84 0.26 1.57

Table 5.18: The KL divergence (in 10−2) between the true logistic density and esti-
mated density when µ = 2, σ = 2.

5.6 Examples

In this section, three data sets are used to illustrate the application of our semipara-

metric method in practice.

5.6.1 Suicide risk data

The data set comprises the lengths of 86 spells of psychiatric treatment undergone

by patients used as controls in a study of suicide risks reported by Copas and Fryer [67].

Silverman [5] showed that the traditional kernel estimate for this data tends to either have
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spurious noise in the tails, or mask the essential detail in the main part if the estimates

are smoothed sufficiently to deal with the tail noise. It is also a classical example for

which the traditional kernel estimator fails over the boundary region. We fit four models

to this data set. As in Yang [17], we consider the semiparametric model (5.2) with

α(x) = (sin(8πx),
√
x) and h ∈ W 2

20(I). The estimated parameters θ̂ = (0.102, 2.731).

This semiparametric method will be refered to as SEMI-linear. Motivated by Wand,

Marron and Ruppert [68], we also consider the power transformation semiparametric

estimation described in Section 5.5.2. This semiparametric method will be referred to

as SEMI-power. The estimated power parameter is θ̂ = 0.883. Two other models are

the kernel and cubic spline. The domain for the four models is set as [0, 750]. The

histogram in Figure 5.1 shows that these data are highly right-skewed and long-tailed.

The SEMI-linear model can portray the slight shoulder pattern on the main part and

avoid the spurious noise on the tail.
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Figure 5.1: Density estimates for the suicide data.

5.6.2 Income data

The income data set has 205 pairs of log.income and age observations on Canadian

workers from a 1971 Canadian Census Public Use Tape. It was used in Ruppert, Wand

and Carroll [69] to illustrate semiparametric regression. Here we use the log.income only

to illustrate the density estimation. The log.income variable is the natural log of the

income, and the histogram in Figure 5.2 shows that the distribution is left-skewed with
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one mode on the peak and some light bumps on the left tail. For comparison, we fit

three models for this data. In addition to the cubic spline and kernel method, we fit the

additive semiparametric model (5.3) with α(x;θ) = cos(θ1+4πx)+θ2

√
x and h ∈ W 2

20(I).

The estimated parameters θ̂ = (2.67,−2.94). Both kernel and semiparametric density

estimates pick up the small bump on the left tail. However, the kernel estimate slightly

under-estimates the main peak.
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Figure 5.2: Density estimates for the income data.
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5.6.3 Old Faithful data

The data set consists of waiting time between eruptions and the duration of the erup-

tion gathered from 272 consecutive eruptions of the Old Faithful geyser in Yellowstone

National Park, Wyoming, USA (Hardle [70]). Histograms of these two variables suggest

that both of the two variables have two modes. Therefore, we consider a semiparametric

model with a mixed normal as the parametric component. Consider the logistic density

function distribution

η(x;µ1, σ1, µ2, σ2, p, h) = log f0(x;µ1, σ1, µ2, σ2, p) + h(x), (5.75)

where h ∈ W 2
20([40, 100]) for the waiting time and h ∈ W 2

20([1.5, 5.5]) for the duration

time, and f0 is a mixture normal density

f0(x) = p
1√

2πσ2
1

exp

(
−(x− µ1)2

2σ2
1

)
+ (1− p) 1√

2πσ2
2

exp

(
−(x− µ2)2

2σ2
2

)
. (5.76)

Model (5.75) is a special case of the additive model (5.3). Using the profiled likelihood

estimation procedure in Section 5.3.1, we obtain the estimated parameters for each vari-

able. We also fit the parametric mixed normal distribution (5.76) for each variable. The

estimated parameters are shown in Table 5.19.

Variable Model µ̂1 σ̂1 µ̂2 σ̂2 p̂

Waiting
Mixed Normal 54.61 5.87 80.09 5.87 0.36

SEMI 54.54 6.12 80.13 5.85 0.35

Duration
Mixed Normal 2.02 0.24 4.27 0.44 0.35

SEMI 2.11 0.38 4.14 0.39 0.23

Table 5.19: Estimated parameters using semiparametric density esitmation and mixed
normal parametric estimation for Old Faithful Data.

The estimated densities from model (76) are shown in Figures 5.3 and 5.4 for the
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two variables respectively. For comparison, we also fit the kernel and cubic spline density

estimates. For the variable of waiting time, the estimates from the semiparametric model

and mixture normal are quite close suggesting the parametric mixture normal fits data

adequately. Both of them capture two modes better than the kernel and cubic spline

estimates. For the variable of duration time, the estimates from the semiparametric

model and cubic spline are close. And both of them portray the left mode more precise

and the right mode more details.
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Figure 5.3: Density estimates for the waiting time of faithful data.
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Figure 5.4: Density estimates for the duration time of faithful data.
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Appendix A

Reproducing Kernels

A.1 Quintic Spline

A.1.1 RK function for quintic spline

The RK function of H1 for quintic spline is

R(x, y) = k3(x)× k3(y) + k6(x− y),

where

k3(x) =
1

6

(
(x− .5)3 − 1

4
(x− .5)

)
k6(x) =

1

720

(
(x− .5)6 − 1.25× (x− .5)4 +

7

16
(x− .5)2 − 31

1344

)
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A.1.2 RKs for tensor product quintic spline

Let

k1(x) = x− .5

k2(x) =
1

2

(
k2

1(x)− 1

12

)
.

RK functions for tensor product quintic spline are

R1,00(x,y) = R(x(1), x(2)),

R1,01(x,y) = R(x(1), x(2))×R0(y(1), y(2)),

R00,1(x,y) = R(y(1), y(2)),

R01,1(x,y) = R0(x(1), x(2))×R(y(1), y(2)),

R1,1(x,y) = R(x(1), x(2))×R(y(1), y(2)),

where x = (x(1), x(2)),y = (y(1), y(2)), R(.,.) is the same as in A.1.1, and R0(x, y) =

k1(x)k1(y) + k2(x)k2(y).

A.2 Derivation of a Reproducing Kernel for the Gamma

Distribution

To save space we show a brief derivation of the RK for the Gamma distribution. Since

H0 = {1, x, log(x)} (the constant function will be removed after this construction), the
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Wronskian matrix is

W (x) =


1 x log(x)

0 1 1/x

0 0 − 1
x2

 , (A.1)

and

W−1(x) =


1 −x −x2 + x2 log(x)

0 1 x

0 0 −x2

 . (A.2)

The Green function is

G(t, s) = −s2 + s2 log(s) + ts− s2 log(t) (s <= t). (A.3)

Thus, the RK of H1 is

R1(x, z) =

∫ T

0

G(x, s)G(z, s)ds

=(1 + log(z) + log(x) + log(z) log(x))× I4(x ∧ z)

− (z + x+ z log(x) + x log(z))× I3(x ∧ z)

+ xzI2(x ∧ z)

+ I4,2(x ∧ z)

− (2 + log(z) + log(x)) I4,1(x ∧ z)

+ (z + x)I3,1(x ∧ z),

(A.4)

where x ∧ z = min(x, z), and

Ip(s) =

∫ s

0

xpdx =
1

p+ 1
(s)p+1

Ip,k(s) =

∫ s

0

xp log(x)k =
1

p+ 1
(s)p+1 log(s)k − k

p+ 1
Ip+1,k−1(s).

(A.5)
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A.3 Derivation of a Reproducing Kernel for the Beta

Distribution

To save space we show a brief derivation of the RK for the Beta distribution. Given

the differential operator L in equation (4.9), the Wronskian matrix associated with H0

is

W (x) =


1 log(x) log(1− x)

0 1/x 1/(x− 1)

0 − 1
x2

− 1
(x−1)2

 , (A.6)

and

W−1(x) =


1 (x− 1)2 log(1− x)− x2 log(x) x(x− 1) [(x− 1) log(1− x)− x log(x)]

0 x2 x2(x− 1)

0 −(x− 1)2 −x(x− 1)2

 .
(A.7)

The Green function is

G(t, s) = s(s−1) [(s− 1) log(1− s)− s log(s)]+s2(s−1) log(t)−s(s−1)2 log(1−t), s <= t.

(A.8)
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Then, the RK of H1 is

R1(x, z) =

∫ x∧z

0

G(x, s)G(z, s)ds

=(log(z) log(1− x) + log(x) log(1− z))I(x ∧ z; 3, 3, 0, 0)

+ log(1− x) log(1− z)I(x ∧ z; 2, 4, 0, 0) + log(x) log(z)I(x ∧ z; 4, 2, 0, 0)

+ I(x ∧ z; 2, 4, 0, 2) + (log(x) + log(z))I(x ∧ z; 3, 3, 0, 1)

− (log(1− x) + log(1− z))I(x ∧ z; 2, 4, 0, 1)

+ I(x ∧ z; 4, 2, 2, 0)− (log(x) + log(z))I(x ∧ z; 4, 2, 1, 0)

− (log(1− x) + log(1− z))I(x ∧ z; 3, 3, 1, 0)

+ 2I(x ∧ z; 3, 3, 1, 1),

(A.9)

where

I(y;m1,m2,m3,m4) =

∫ y

0

xm1(1− x)m2 log(x)m3 log(1− x)m4dx. (A.10)

A.4 Derivation of a Reproducing Kernel for the GGIG

Family

To save space we show a brief derivation of the RK for the GGIG family with p = 1

only. Note that L = D4 + 6x−1D3 + 6x−2D2 and H0 = span{1, log(x), x, x−1}. The
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Wronskian matrix associated with H0 is

W (x) =



1 x x−1 log(x)

0 1 −x−2 x−1

0 0 2x−3 −x−2

0 0 −6x−4 2x−3


, (A.11)

and

W−1(x) =



1 −x −x2 + 3x2 log(x) x3 log(x)

0 1 2x .5x2

0 0 −x3 −.5x4

0 0 −3x2 −x3


. (A.12)

The Green function is

G(t, s) = −s
4

2t
+
s2t

2
+ s3 log(s)− s3 log(t), s ≤ t. (A.13)

Thus, the RK of H1

R1(x, z) =

∫ T

0

G(x, s)G(z, s)ds

=
1

36xz
(x ∧ z)9 − 1

16
(x ∧ z)8 log(x ∧ z)

(
1

x
+

1

z

)
+

1

16
(x ∧ z)8

(
1

8x
+

1

8z
+

1

z
log(x) +

1

x
log(z)

)
−1

7
(x ∧ z)7 log(x ∧ z)

(
2

7
+ log(x) + log(z)

)
+

1

7
(x ∧ z)7 log(x ∧ z)2

+
1

7
(x ∧ z)7

(
2

49
− z

4x
− x

4z
+

1

7
log(x) +

1

7
log(z) + log(x) log(z)

)
+

1

12
(x+ z)(x ∧ z)6 log(x ∧ z)− 1

12
(
x

6
+ x log(z) +

z

6
+ z log(x))(x ∧ z)6 +

1

20
(x ∧ z)5xz.
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A.5 Derivation of a Reproducing Kernel for the In-

verse Gamma Distribution

Here we show a brief derivation of the RK for the inverse Gamma distribution. Note

that L = x2D3+4xD2+2D and the null space isH0 = span{1, log(x), 1
x
}. The Wronskian

matrix associated with H0 is

W (x) =


1 1/x log(x)

0 − 1
x2

1/x

0 2
x3

− 1
x2

 ,

and

W−1(x) =


1 −x− 2x log(x) −x2 + x2 log(x)

0 x2 x3

0 2x x2

 .
Green function is

G(t, s) = −s2 − s2 log(s) +
1

t
s3 + s2log(t) (s <= t).
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Thus, the RK of H1 is

R1(x, z) =

∫ T

0

G(x, s)G(z, s)ds

=
1

7xz
(x ∧ z)7 − 1

6
(x ∧ z)6 log(x ∧ z)

(
1

x
+

1

z

)
−

1

6
(x ∧ z)6

(
5

6x
+

5

6z
− 1

z
log(x)− 1

x
log(z)

)
+

1

5
(x ∧ z)5 log(x ∧ z)

(
8

5
− log(x)− log(z)

)
+

1

5
(x ∧ z)5 log(x ∧ z)2+

1

5
(x ∧ z)5

(
17

25
− 4

5
log(x)− 4

5
log(z) + log(x) log(z)

)
.
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