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Abstract

Correlation functions of the two-periodic weighted Aztec diamond in mesoscopic limit

by

Emily L Bain

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Nicolai Reshetikhin, Chair

A dimer model is a probability distribution on the set of perfect matchings on a planar
graph. In this thesis we study the two-periodic weighted dimer model on the Aztec dia-
mond graph in what we call the mesocopic limit.

In the thermodynamic limit when the size of the graph goes to infinity while edge weights
are fixed, the model exhibits three different regions characterized by the rate of decrease
of correlation functions. At the center is the ordered region, where two-point correlation
functions between dimers decrease exponentially. We show that in the mesoscopic scaling
limit, when weights scale in the thermodynamic limit such that the size of the ordered
region is of the same order as the correlation length inside the ordered region, fluctuations
of the correlation functions are described by a new process. We compute asymptotics
of the inverse Kasteleyn matrix for vertices in a local neighborhood in this mesoscopic
limit, and use this to find the one-point correlation functions. We then conclude with an
experimental study of two-point correlation functions between pairs of dimers that grow
further apart in the mesoscopic limit.
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Chapter 1

Introduction

1.1 Overview
A dimer configuration is a perfect matching on a graph. A dimer model on a weighted planar
graph is a probability measure on dimer configurations, such that the probability of a
dimer configuration is proportional to the product of its edge weights. Early work on
dimer models concerned counting the number of dimer configurations on a graph [23,
31, 22].

A tiling of a planar graph is a covering of the faces of the graph by tiles consisting of
two adjacent faces. Dimer configurations of a planar graph are in bijection with tilings
of the dual graph, and so for every dimer model there is an associated tiling model. We
will talk about a dimer model or the corresponding tiling model interchangeably as con-
venient.

The two most commonly studied classes of tiling models are domino tilings, which cor-
respond to dimer models on a square grid, and lozenge tilings, which correspond to dimer
models on a hexagonal grid. Here we focus on domino tiling models. For a thorough
discussion of lozenge tiling models and some general theory see [16].

An important tool in the study of dimer models is the Kasteleyn method. The Kaste-
leyn matrix is essentially a weighted oriented adjacency matrix for the dimer graph. The
absolute value of its determinant is the partition function of the dimer model [22]. For
the uniform weighted case, this is just the number of dimer configurations. We can also
use the Kasteleyn matrix to find the correlation functions between edges, where the cor-
relation function of a set of edges is the probability that a random dimer configuration has
dimers at each of these edges. These correlation functions can be written in terms of the
Kasteleyn matrix and its inverse [26]. As a result, finding the inverse Kasteleyn matrix for
a dimer model is of considerable interest.

Work on domino tiling models intensified after Thurston’s 1990 paper [32] on height
functions for dimer models on bipartite planar graphs. A height function assigns a height
to every face of the dimer graph, or equivalently every to vertex of the tiling graph. In this
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way, a tiling model can be considered as a random surface in three-dimensional space. In
[11] the authors proved a variational principle for domino tiling models that can be used
to find the limit shape of the associated random surface as the graph size tends to infinity.

The Aztec diamond graph is part of a square grid with a boundary at a 45 degree angle
to the grid (Figure 1.1). Domino tilings of the Aztec diamond graph were first studied in
[13, 14], and subsequently in [10, 17, 11, 19].

Dimer models exhibit up to three different phases: frozen (or solid), disordered (or liquid
or rough) and ordered (or gas or smooth) [28]. These are characterized by the rate of decay
of correlation functions between dimers when the distance between them is increasing, or
equivalently by the variance of the height function. The Aztec diamond tiling model with
uniform weights exhibits frozen and disordered regions. In [17], the authors showed that
the frozen-disordered boundary in the continuous limit can be described by an algebraic
curve – the ‘arctic circle’ – and in [19] it was shown that the fluctuations around the arctic
circle at the disordered-frozen boundary converge to the Airy process [30] under suitable
rescaling. See [18] for a survey of results on boundary fluctuations of dimer models.
Equations for phase boundaries for lozenge tiling models were studied in [27] using tools
from algebraic geometry.

Figure 1.1: The Aztec diamond of size n = 4.

The two-periodic weighted Aztec diamond [9, 15] is a probability measure on tilings on
the Aztec diamond graph with doubly-periodic weights and a 2 × 2 fundamental do-
main (smallest repeating block). An example is shown in Figure 1.2. It is one of the sim-
plest models to exhibit all three phases: frozen, disordered and ordered. There are phase
boundaries between the frozen and disordered phases, and between the disordered and
ordered phases. A formula for the entries of the inverse Kasteleyn matrix was found in
[9] and simplified in [8]. Recently, other approaches have also been used to find the corre-
lation functions; see [12, 5]. The behavior at the ordered-disordered boundary, where the
Airy kernel point process has been observed [8], is of particular interest [8, 18, 2, 3, 20].
These Airy kernel point processes are expected to be a universal phenomenon.
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Currently, most results are on the statistical properties of the ordered-disordered bound-
ary, but there has been some progress on finding a microscopic description of this bound-
ary in the form of lattice paths [3]. A generalization of the two-periodic weighted Aztec
diamond where there is a bias towards horizontal dominos has recently been studied in
[6].

In this thesis, we go in a different direction and look at the rough-smooth boundary
analytically in a particular scaling limit where the macroscopic size of the ordered region
tends to zero. We find new behavior not seen before in other scaling limits. A similar phe-
nomenon was observed numerically for the six-vertex model with ∆ < −1 in [4] where it
was called the mesoscopic scaling limit. We expect other models to exhibit similar behav-
ior.

Figure 1.2: Tiling of two-periodic weighted Aztec diamond with n = 64 and a = 0.8

1.2 Informal description of our results
We look at the limit when the size of the Aztec diamond graph tends to infinity and the
weights tend to the uniform weights in such a way that the correlation length inside the
ordered region is of the order of the linear size of the ordered region.
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More specifically, as in [8] we assume the edge weights for the dimer graph are 1
and a < 1. These weights repeat as shown in Figure 1.3. If n is the linear size of the
whole diamond we consider the limit when 1 − a is of order n−1/2. The region of the
Airy asymptotic of correlation functions found in [8] in this case is of the same order as
the width of the ordered region. We study the correlation functions in this “mesoscopic”
limit [4].

The ordered region macroscopically shrinks to a point in this limit and there is no
longer an ordered region as such. We show that the leading order term of the one-point
correlation functions along a diagonal at a distance of order n1/2 from the center of the
Aztec diamond is 1/4. This means that at any vertex, the probabilities of having a dimer
on the four edges incident to the vertex are equal. The subleading order term is a constant
term of order n−1/2 log n. The next term has order n−1/2 and it depends on the rescaled
coordinates. This last term is the focus of our work.

We show that terms of order n−1/2 in the one-point correlation function are no longer
described by an Airy kernel point process; instead they are given by another double in-
tegral. In Chapter 2, we give precise integral formulas for the subleading order terms,
which we prove fully in Chapters 3–4. We expect to see similar asymptotic behavior
away from the diagonal, except possibly on the horizontal and vertical lines through the
center, where for finite weights there are cusp points on the disordered-ordered boundary.
Chapters 1–4 are taken from [1].

We conclude in Chapter 5 with a numerical study of two-point correlations for dimers
that grow further apart microscopically as n tends to infinity and a tends to 1 in the meso-
copic limit, and provide a conjecture for the leading order asymptotics.

1.3 Definition of model
We study the limit shape for random domino tilings of an Aztec diamond with two-
periodic weights. Let Γ denote the dimer graph, and let Γ∨ denote the dual graph. Each
vertex of Γ marks the center of a face of Γ∨. The graph with its bipartite structure and
the structure of weights is shown in Figure 1.3. An example of a tiling of Γ and the
corresponding dimer configuration is given in Figure 1.4.

Because each fundamental domain [28] is a 2 × 2 square region, the linear size of the
diamond should be a multiple of 2. In this work for simplicity we only consider the case
where the linear size is a multiple of 4. Let n = 4m denote the linear size of Γ.1 So on
each slice containing either all black or all white vertices we will have either 4m segments
between vertices or 4m− 1 segments between vertices and two half segments at the sides.
We will use Euclidean coordinates (x1, x2) with xi ∈ Z ranging from 0 to 2n = 8m as in
Figure 1.3, with the vertices being at points satisfying x1 + x2 ≡ 1 mod 2. Thus the linear
Euclidean length of the diamond along the axes x1 and x2 is 2n = 8m.

1We will mostly follow the same setup as Chhita and Johansson [8].
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Figure 1.3: The two periodic Aztec diamond graph of size n = 4 showing the subgraphs
W0, W1, B0 and B1. Edges surrounding a green square have weight a; other edges have
weight 1. Two fundamental domains are marked in blue.

We fix a bipartite structure on Γ by coloring the vertices black and white (see Fig-
ure 1.3). We denote the set of white vertices by W and the set of black vertices by B where
we set

W = {(x1, x2) ∈ Γ : x1 ≡ 1 mod 2, x2 ≡ 0 mod 2, 0 ≤ x1, x2 ≤ 2n}
B = {(y1, y2) ∈ Γ : y1 ≡ 0 mod 2, y2 ≡ 1 mod 2, 0 ≤ y1, y2 ≤ 2n}.

Then we split the white vertices W into two subgraphs W0 and W1, and the black vertices B
into B0 and B1 according to the values of x1 + x2 mod 4 and y1 + y2 mod 4 respectively
as follows (and as is shown in Figure 1.3).

Wε1 = {(x1, x2) ∈ W : x1 + x2 ≡ 2ε1 + 1 mod 4}
Bε2 = {(y1, y2) ∈ B : y1 + y2 ≡ 2ε2 + 1 mod 4}

Let e1 = (1, 1) and e2 = (−1, 1). There is a 2 × 2 fundamental domain which when
embedded in the graph consists of a vertex w ∈ W0 along with w+ e1, w+ e2 and w+ e1 + e2.

We assign a weight to each edge. The weights of edges connecting vertices in one
fundamental domain are a, and the weights of edges connecting vertices in neighboring
fundamental domains are 1. This is shown diagrammatically in Figure 1.3, where the
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e2 = (−1, 1) e1 = (1, 1)

W0

W1

B0

B1

Figure 1.4: The two periodic Aztec diamond graph of size n = 4 with a dimer matching,
and its dual domino tiling in blue. Weight a dominos are shaded in green.

edges of weight a are the edges surrounding a face labelled with a, and the other edges
have weight 1.

Let Ω denote the set of all dimer configurations on Γ. Define the partition function

Z = ∑
D∈Ω

∏
e∈D

w(e).

Then the Boltzmann measure is defined as

Prob(D) =
∏e∈D w(e)

Z

for D ∈ Ω.
Let ei = (wi, bi), 1 ≤ i ≤ k be edges of Γ. The k-point correlation function is

ρ(w1, b1; w2, b2; . . . ; wk, bk) = ∑
D∈Ω

Prob(D)σw1,b1(D) . . . σwk,bk(D)

where

σw,b(D) =

{
1 if (w, b) ∈ D
0 otherwise.

This is the probability of a random dimer configuration containing the dimers on edges
{ei}1≤i≤k.
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1.4 Kasteleyn solution
Here we give a brief overview of the Kasteleyn method. The Kasteleyn matrix for the two
periodic Aztec diamond is defined as follows. For each edge e of Γ, let w(e) be the weight
of the edge e, as shown in Figure 1.3. We define a Kasteleyn-Percus orientation ϵ on the
edges of Γ. For (x, y) an edge of Γ with x ∈ W and y ∈ B, let

ϵ(x, y) =

{
1 y = x ± e1

i y = x ± e2

This is shown diagrammatically in Figure 1.5. Then for x ∈ W and y ∈ B we define the
Kasteleyn matrix Ka

2 as having entries

Ka(y, x) =

{
w(x, y)ϵ(x, y) if there is an edge between x and y
0 otherwise

.

Explicitly,

Ka(y, x) =



a(1 − ε) + ε y = x + e1, x ∈ Wε

(1 − ε) + aε y = x − e1, x ∈ Wε

i(a(1 − ε) + ε) y = x + e2, x ∈ Wε

i((1 − ε) + aε) y = x − e2, x ∈ Wε

0 if (x, y) is not an edge

This is shown diagrammatically for a fundamental domain in Figure 1.6. Let K−1
a denote

the inverse matrix.
For edges ei = (wi, bi), 1 ≤ i ≤ k, the k-point correlation function has been shown [26]

to be

ρ(w1, b1; w2, b2; . . . wk, bk) =

(
k

∏
i=1

Ka(bi, wi)

)
det(K−1

a (wi, bj))1≤i,j≤k

When we are looking at a single edge, we will denote this edge by (x, y), where x ∈ W

and y ∈ B. Then the one-point correlation is given by ρ(x, y) = Ka(y, x)K−1
a (x, y) . This is

the probability that a random dimer configuration contains the dimer (x, y).

1.5 Height functions
It is known that dimers on a bipartite planar graph can be described in terms of height
functions. A height function is a function on faces of the graph (vertices of the dual cell
complex). It can be defined relative to a reference matching. The height change between
adjacent faces is determined by whether there is a dimer between the faces. Figure 1.7
shows a height function on the faces of the Aztec diamond.

2In [8] Ka,1 is used instead of Ka.
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Figure 1.5: The Kasteleyn-Percus orientation shown on a fundamental domain.
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Figure 1.6: The entries Ka(y, x) of the Kasteleyn matrix for vertices x ∈ W, y ∈ B connected
by an edge, shown for a fundamental domain.
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Figure 1.7: A height function for an Aztec diamond dimer configuration, determined by
the rules shown on the right. Heights have been multiplied by 4 for convenience
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Chapter 2

Local correlation functions in the
mesoscopic limit

In this chapter, we state our main theorem on the inverse Kasteleyn matrix of vertices sep-
arated by a finite microscopic distance in the mesocopic limit, and an important corollary
on one-point correlation functions. We also state the main asymptotic results that we will
prove in Chapters 3 and 4, and use these to prove the main theorem and corollary.

2.1 Main theorem
We look at the inverse Kasteleyn matrix of vertices in a local neighborhood that is a Eu-
clidean distance of order m1/2 from the center (4m, 4m) of the Aztec diamond, near the
diagonal in the third quadrant (see Figure 2.1), in the limit where the weight a is given by
a = 1 − Bm−1/2 for some constant B > 0. We define the asymptotic coordinate α < 0 as
follows. For ε1, ε2 ∈ {0, 1}, let x = (x1, x2) ∈ Wε1 and y = (y1, y2) ∈ Bε2 be vertices of an
edge of the graph Γ, with

x1 = [4m + 2m1/2αB] + x1

x2 = [4m + 2m1/2αB] + x2

y1 = [4m + 2m1/2αB] + y1

y2 = [4m + 2m1/2αB] + y2,

(2.1.1)

where the integral parts xi, yi ∈ Z do not grow with m.
Define the matrix ζ to have entries

ζ(x, y) = (−1)(y2−x1)/2. (2.1.2)

We also define the matrix Σ by

Σ(x, y) =

{
1 y = x + (2k + 1)e1 + 2le2, some k, l ∈ Z

i y = x + 2ke1 + (2l + 1)e2, some k, l ∈ Z
(2.1.3)
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O(m1/2)

4m

Figure 2.1: We study the one-point correlation functions of the dominos in the area shaded
in gray.

Note that when (x, y) is an edge of Γ, this agrees with the Kasteleyn-Percus orientation
ϵ(x, y).

In what follows, the square roots refer to the principal branch of the square root. Let
η = η(α) be defined to be the unique complex number with non-negative real part and
non-negative imaginary part that satisfies

1√
1/2 − 2iη

+
1√

1/2 + 2iη
= −2/α. (2.1.4)

When −1/
√

2 < α < 0, η ∈ i(0, 1/4); when α < −1/
√

2, η ∈ (0, ∞); and when α =

−1/
√

2, η = 0.
Let η′ be the unique complex number that satisfies

1√
1/2 − 2iη′ −

1√
1/2 + 2iη′ = 2/α. (2.1.5)

For all α < 0 we have η′ ∈ i(0, 1/4).
Let

f±(w) =
√

1/2 − 2iw ±
√

1/2 + 2iw. (2.1.6)
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and for j, k ∈ {0, 1} and ε1, ε2 ∈ {0, 1}, let

Aj,k
ε1,ε2(w, z) =

−(−1)ε1+ε2
√

1/2 − 2iw
√

1/2 + 2iw
√

1/2 − 2iz
√

1/2 + 2iz

(
2i(w − z)

+ (−1)ε1+ε2
(√

1/2 − 2iw + (−1)j√1/2 − 2iz
) (

(−1)k√1/2 + 2iw +
√

1/2 + 2iz
)

+
(
(−1)ε1

√
1/2 − 2iw+(−1)ε2+k√1/2 + 2iw+(−1)ε2

√
1/2 + 2iz+(−1)ε1+j√1/2 − 2iz

)
×
(√

1/2 − 2iw
√

1/2 + 2iz + (−1)j+k√1/2 + 2iw
√

1/2 − 2iz
))

. (2.1.7)

We define the following double integrals, where x = (x1, x2) ∈ Wε1 and y = (y1, y2) ∈ Bε2

and α is as in Equation 2.1.1.

I1(α, ε1, ε2) =
∫
C0

dw
∫
C ′0

dz
A0,0

ε1,ε2(w, z)
i(z − w)

exp(B2(−2i(w − z) + α( f−(w)− f−(z)))),

I2(α, ε1, ε2) =
∫
C0

dw
∫
C ′1

dz
A1,0

ε1,ε2(w, z)
i(z − w)

exp(B2(−2i(w − z) + α( f−(w) + f+(z)))),

I3(α, ε1, ε2) =
∫
C1

dw
∫
C ′0

dz
A0,1

ε1,ε2(w, z)
i(z − w)

exp(B2(−2i(w − z) + α( f+(w)− f−(z)))),

I4(α, ε1, ε2) =
∫
C1

dw
∫
C ′1

dz
A1,1

ε1,ε2(w, z)
i(z − w)

exp(B2(−2i(w − z) + α( f+(w) + f+(z)))),

(2.1.8)

where the functions Aj,k
ε1,ε2(w, z) are defined in Equation 2.1.7 and the contours are defined

below. We also define the single integral

I0(α, ε1, ε2) =
∫ η(α)

−η(α)

1 + (−1)ε2
√

1/2 − 2iw + (−1)ε1
√

1/2 + 2iw√
1/2 − 2iw

√
1/2 + 2iw

dw (2.1.9)

where η(α) is defined in Equation 2.1.4. These integrals all evaluate to real quantities.
The contours C0, C ′

0, C1 and C ′
1 are defined as follows. They are shown in Figure 2.3 for

some different values of α.
Recall that along a steepest descent contour of a holomorphic function (contour where

the real part decreases most rapidly), its imaginary part is constant. A function has a
saddle point when its second derivative is 0. The function −2iw + α f−(w) has saddle
points at w = ±η and the function −2iw + α f+(w) has a saddle point at w = −η′.

All contours are oriented in the direction of decreasing real part.
For −1/

√
2 < α < 0, let C0 be the steepest descent contour for −2iw + αx f−(w) that

is contained in the negative half plane and passes through the saddle point w = −η.
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For α = −1/
√

2 let C0 be the steepest descent contour for −2iw + αx f−(w) that passes
through the saddle point w = 0 and enters the negative half plane at angles of −π/6 and
−5π/6.

For α < −1/
√

2, let C0 consist of the steepest descent contour for −2iw + αx f−(w)
that starts from the branch cut i(1/4, ∞), passes through the saddle point w = −η and
goes to infinity in the third quadrant; the reflection in the imaginary axis of this contour;
and a contour that goes around the branch cut i(1/4, ∞). This contour is shown in detail
in Figure 2.2.

Let C ′
0 be the reflection of C0 in the real axis.

Let C1 be the steepest descent contour for −2iw + αx f+(w). This passes through w =
−η′ and goes to infinity in the negative half plane.

Let C ′
1 be the reflection of C1 in the real axis.

-4 -2 2 4

-2.0

-1.5

-1.0

-0.5

0.5

1.0

Figure 2.2: The contour C0 for α = −3.

In the limit as m tends to infinity with a = 1− Bm−1/2 we prove the following theorem
for asymptotic formulas for the inverse Kasteleyn matrix K−1

a .

Theorem 2.1.1. For −1/
√

2 ≤ α < 0, if x = (x1, x2) ∈ Wε1 and y = (y1, y2) ∈ Bε2 with
ε1, ε2 ∈ {0, 1} we have

K−1
a (x, y) =

1
Σ(x, y)

(
c0(y − x)

(
1 +

Bm−1/2

2

)

+ ζ(x, y)Bm−1/2

(
log(Bm−1/2)

2π
+ c2(y − x) + ψ(α, ε1, ε2)

))
+ O(m−1 log m) (2.1.10)
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and for α < −1/
√

2 we have

K−1
a (x, y) =

1
Σ(x, y)

(
c0(y − x)

(
1 +

Bm−1/2

2

)
+ ζ(x, y)Bm−1/2

(
log(Bm−1/2)

2π

+ c2(y − x) +
I0(α, ε1, ε2)

4π
+ ψ(α, ε1, ε2)

))
+ O(m−1 log m) (2.1.11)

where

ψ(α, ε1, ε2) =
1

32π2 (I1(α, ε1, ε2)− I2(α, ε1, ε2)− I3(α, ε1, ε2) + I4(α, ε1, ε2)). (2.1.12)

and the integrals I0(α, ε1, ε2), I1(α, ε1, ε2), I2(α, ε1, ε2), I3(α, ε1, ε2) and I4(α, ε1, ε2) are defined
above in Equations 2.1.8 and 2.1.9, and c0 and c2 are functions that depend only the vector y − x,
defined in Equations 2.3.6 and 2.3.8 respectively.

The proof is given in Chapter 2.4.

Remark 2.1.1. While it may appear from these formulas that there is a clear boundary
at α = −1/

√
2 that appears to separate a ordered-like region and a disordered-like re-

gion, this is in fact not the case. Once the ψ(α, ε1, ε2) term is taken account of, we see
that the first derivative K−1

a at α = −1/
√

2 is in fact continuous. Figure 2.4 shows
−I0(α, ε1, ε2)/(4π) − ψ(α, ε1, ε2) as a function of α for different values of (ε1, ε2), where
I0(α, ε1, ε2) is taken to be 0 for −1/

√
2 < α < 1/

√
2.

From Theorem 2.1.1 we can find the asymptotics of the one-point correlation functions
ρ(x, y).

Corollary 2.1.1. Let (x, y) be an edge of Γ. For −1/
√

2 ≤ α < 0, if x = (x1, x2) ∈ Wε1 and
y = (y1, y2) ∈ Bε2 with ε1, ε2 ∈ {0, 1}, we have

ρ(x, y) =
1
4
+ ζ(x, y)Bm−1/2

(
log(Bm−1/2)− 2 log 2

2π
+ ψ(α, ε1, ε2)

)
+ O(m−1 log m)

(2.1.13)
and for α < −1/

√
2 we have

ρ(x, y) =
1
4
+ ζ(x, y)Bm−1/2

(
log(Bm−1/2)− 2 log 2

2π

+
I0(α, ε1, ε2)

4π
+ ψ(α, ε1, ε2)

)
+ O(m−1 log m) (2.1.14)

The proof is given in Chapter 2.5.
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0

0'

1

1'

-1.0 -0.5 0.5 1.0

-10

-5

5

10

(a) α = −0.5

0

0'

1

1'

-0.4 -0.2 0.2 0.4

-1.0

-0.5

0.5

1.0

(b) α = −1/
√

2

0

0'

1

1'

-0.3 -0.2 -0.1 0.1 0.2 0.3

-0.5

0.5

(c) α = −1/
√

2 − 0.01

0

0'

1

1'

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

(d) α = −1.8

Figure 2.3: Contours C0 (blue), C ′
0 (orange), C1 (blue, dashed) and C ′

1 (orange, dashed) for
different values of α. Different scales are used to show the notable features of each.

Remark 2.1.2. For (x, y) an edge, we can show that the definition of ζ(x, y) in Equation
2.1.2 is equivalent to

ζ(x, y) =

{
1 if the edge (x, y) has weight a
−1 if the edge (x, y) has weight 1

The types of dominos with faces centered at x and y where ζ(x, y) = 1 are shown in
Figure 2.5a and the dominos where ζ(x, y) = −1 are shown in Figure 2.5b.

The proof of Theorem 2.1.1 starts from the double integral formula for the inverse
Kasteleyn matrix in [8]. We then find the asymptotics of these integrals, using saddle
point analysis when required.

We used Markov sampling to sample a large number of tilings from the model. Fig-
ure 2.6 shows the empirical one point correlation of one type of domino in the mesoscopic
region. The green and blue lines in Figure 2.4 correspond to the two axis-parallel center
lines of Figure 2.6.
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Out[ ]= -4 -2 2 4

-0.5

0.5

(ε1,ε2) = (0,1), (1,0)

(ε1,ε2) = (0,0)

(ε1,ε2) = (1,1)

Figure 2.4: I0(α,ε1,ε2)
4π + ψ(α, ε1, ε2) as a function of α for different values of (ε1, ε2), where

I0(α, ε1, ε2) is taken to be 0 for −1/
√

2 < α < 1/
√

2. Up to a sign ζ(x, y), these are the
parts of the coefficients of Bm−1/2 in Equations 2.1.10–2.1.11 that are not constant as a
function of α.

b0

w0

w1

b1 b0

w1

w0

b1

(a) Weight a dominos, with (ε1, ε2) = (0, 0), (1, 1), (1, 0) and (0, 1) respectively.

w0 w0

w1 w1

b1+2e2

b0−2e2

b0+2e1

b1−2e1

(b) Weight 1 dominos, with (ε1, ε2) = (0, 0), (1, 1), (1, 0) and (0, 1) respectively.

Figure 2.5: Illustration of the eight different types of dominos. The boundaries of the
fundamental domains are marked by dashed yellow lines.
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Figure 2.6: Experimental one point correlation of one type of domino in the mesoscopic
region, for n = 512.

2.2 Definitions and inverse Kasteleyn matrix formula
from [8]

We will start our asymptotic analysis with a slight modification of the formula given in
[8]. First we make a few definitions. Let

c =
1

a + a−1 .

Since we are assuming a ∈ (0, 1), we have c ∈ (0, 1/2). For ω ∈ C \ i[−
√

2c,
√

2c] we
define √

ω2 + 2c = i
√
−i(ω + i

√
2c)
√
−i(ω − i

√
2c) (2.2.1)

where the square roots on the right hand side are the principal branch of the square root.
These have branch cuts for ω = it with t < −

√
2c and t <

√
2c respectively, but for

t < −
√

2c the branch cuts cancel. Note that when we are using asymptotic variables as in
Chapter 2.1, we use the principal branch of the square root, not this branch cut. Define

G(ω) =
1√
2c

(ω −
√

ω2 + 2c). (2.2.2)
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For even x1, x2 with 0 < x1, x2 < 2n define

H̃x1,x2(ω) =
ω2m(−iG(ω))2m−x1/2

(iG(ω−1))2m−x2/2 . (2.2.3)

This is slightly different to the Hx1,x2 defined in [8] but will be more convenient for our
asymptotic analysis, since −iG(ω) and iG(ω−1) will be close to 1 near the saddle point.
Note that H̃x1,x2(ω) depends on m both directly and through the dependence of G on c.
For j, k, ε1, ε2 ∈ {0, 1}, define

V j,k
ε1,ε2(ω1, ω2) =

1
2

1

∑
γ1,γ2=0

(−1)γ2 j+γ1k(Qε1,ε2
γ1,γ2(ω1, ω2) + (−1)ε2+1Qε1,ε2

γ1,γ2(ω1,−ω2)) (2.2.4)

where the functions Qε1,ε2
γ1,γ2(ω1, ω2) are defined as follows. Let

fa,b(u, v) = (2a2uv + 2b2uv

− ab(−1 + u2)(−1 + v2))(2a2uv + 2b2uv + ab(−1 + u2)(−1 + v2)). (2.2.5)

Now we define the following rational functions. We temporarily consider weights a and
b where b is not necessarily 1. Let

y0,0
0,0(a, b, u, v) =

1
4(a2 + b2)2 fa,b(u, v)

(2a7u2v2 − a5b2(1 + u4 + u2v2 − u4v2 + v4 − u2v4)

− a3b4(1 + 3u2 + 3v2 + 2u2v2 + u4v2 + u2v4 − u4v4)

− ab6(1 + v2 + u2 + 3u2v2))

y0,0
0,1(a, b, u, v) =

a
4(a2 + b2) fa,b(u, v)

(b2 + a2u2)(2a2v2 + b2(1 + v2 − u2 + u2v2))

y0,0
1,0(a, b, u, v) =

a
4(a2 + b2) fa,b(u, v)

(b2 + a2v2)(2a2u2 + b2(1 − u2 + v2 + u2v2))

y0,0
1,1(a, b, u, v) =

a
4 fa,b(u, v)

(2a2u2v2 + b2(−1 + v2 + u2 + u2v2)).

(2.2.6)

For γ1, γ2 ∈ {0, 1} we define

y0,1
γ1,γ2

(a, b, u, v) =
y0,0

γ1,γ2(b, a, u, v−1)

v2

y1,0
γ1,γ2

(a, b, u, v) =
y0,0

γ1,γ2(b, a, u−1, v)
u2

y1,1
γ1,γ2

(a, b, u, v) =
y0,0

γ1,γ2(a, b, u−1, v−1)

v2 .

(2.2.7)
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When b = 1, we write yε1,ε2
γ1,γ2(u, v) = yε1,ε2

γ1,γ2(a, 1, u, v). Then define

xε1,ε2
γ1,γ2(ω1, ω2) =

G(ω1)G(ω2)

∏2
i=1

√
ω2

i + 2c
√

ω−2
i + 2c

yε1,ε2
γ1,γ2

(G(ω1), G(ω2))(1 − ω1
2ω2

2). (2.2.8)

and

Qε1,ε2
γ1,γ2(ω1, ω2) = (−1)ε1+ε2+ε1ε2+γ1(1+ε2)+γ2(1+ε1)

× t(ω1)
γ1t(ω2

−1)γ2 G(ω1)
ε1 G(ω2

−1)ε2xε1,ε2
γ1,γ2(ω1, ω2

−1) (2.2.9)

where t(ω) is defined by
t(ω) = ω

√
ω−2 + 2c. (2.2.10)

Now we define the following functions, which will be the exponential parts of our
integrands. For x = (x1, x2) ∈ Wε1 , and y = (y1, y2) ∈ Bε2 with ε1, ε2 ∈ {0, 1}, define

h0,0(ω1, ω2) =
H̃x1+1,x2(ω1)

H̃y1,y2+1(ω2)

h1,0(ω1, ω2) =
H̃x1+1,x2(ω1)

H̃2n−y1,y2+1(ω2)

h0,1(ω1, ω2) =
H̃x1+1,2n−x2(ω1)

H̃y1,y2+1(ω2)

h1,1(ω1, ω2) =
H̃x1+1,2n−x2(ω1)

H̃2n−y1,y2+1(ω2)

(2.2.11)

where the terms H̃x1+1,x2(ω1), H̃y1,y2+1(ω2), H̃2n−y1,y2+1(ω2) and H̃x1+1,2n−x2(ω1) are as
defined in Equation 2.2.3.

Now we can define the main integrals that will appear in the formula from which we
start our asymptotic analysis.

Let Cr denote a positively-oriented contour of radius r centered at the origin. For
a < 1,

√
2c < r < 1 and x = (x1, x2) ∈ Wε1 , y = (y1, y2) ∈ Bε2 with ε1, ε2 ∈ {0, 1} define

I j,k
ε1,ε2(a, x1, x2, y1, y2) =

iy1−x1

(2πi)2

∫
Cr

dω1

ω1

∫
C1/r

dω2
V j,k

ε1,ε2(ω1, ω2)

ω2 − ω1
hj,k(ω1, ω2) (2.2.12)

where V j,k
ε1,ε2(ω1, ω2) is defined in Equation 2.2.4 and hj,k(ω1, ω2) is defined in Equation 2.2.11.

Finally, we state a formula for the whole plane inverse Kasteleyn matrix in the pres-
ence of a magnetic field [28]. First, let

Ka(z, w) =

(
i(a + w−1) a + z

a + z−1 i(a + w)

)
.
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This is the “magnetically altered” Kasteleyn matrix [28] for the fundamental domain with
weights a and 1 where 1/z is the multiplicative factor when crossing to a fundamental do-
main in the direction e1 and 1/w is the multiplicative factor when crossing to a fundamen-
tal domain in the direction e2 [8]. See Figure 1.3 for a diagram showing the fundamental
domains. The inverse (Ka(z, w))−1 appears in the formula for the whole plane inverse
Kasteleyn matrix K−1

a,H,V(x, y) (Theorem 2.2.1 below), which in turn appears in the for-
mula for the Kasteleyn matrix for the two-periodic weighted Aztec diamond K−1

a (x, y).
The characteristic polynomial [28] Pa(z, w) is the determinant of Ka(z, w), explicitly given
by

Pa(z, w) = −2 − 2a2 − aw−1 − aw − az−1 − az. (2.2.13)

Let K−1
a,H,V(x, y) denote the whole plane inverse Kasteleyn matrix for the entries x and

y with magnetic field (H, V) and weights a < 1 and 1. Then, following from [28], we have
the following theorem.

Theorem 2.2.1 ([28]). Let Cr denote a contour of radius r centered at the origin, traversed in a
counter-clockwise direction. Then for w = (w1, w2) ∈ Wε1 and b = (b1, b2) ∈ Bε2 in the same
fundamental domain, where ε1, ε2 ∈ {0, 1}, and u, v ∈ Z we have

K−1
a,H,V(w, b + 2ue1 + 2ve2) =

1
(2πi)2

∫
CeH

dz
z

∫
CeV

dw
w

(Ka(z, w)−1)ε1ε2zuwv (2.2.14)

where for convenience rows and columns of the 2 × 2 matrix Ka(z, w)−1 are indexed by 0 and 1.

Here we have

Ka(z, w)−1 =
1

Pa(z, w)

(
i(a + w) −(a + z)

−(a + z−1) i(a + w−1).

)
(2.2.15)

Now we can state the formula that forms the starting point for our asymptotic analy-
sis. This is a slight modification of the formula from [8], which is in turn a simplification
of the formula from [9].

Theorem 2.2.2. For n = 4m and 0 < a < 1, take x = (x1, x2) ∈ Wε1 , y = (y1, y2) ∈ Bε2 with
ε1, ε2 ∈ {0, 1}. Then the entries of the inverse Kasteleyn matrix K−1

a are given by

K−1
a ((x1, x2), (y1, y2)) = K−1

a,0,0((x1, x2), (y1, y2))−
(
I0,0

ε1,ε2
(a, x1, x2, y1, y2)

− I1,0
ε1,ε2

(a, x1, x2, y1, y2)− I0,1
ε1,ε2

(a, x1, x2, y1, y2) + I1,1
ε1,ε2

(a, x1, x2, y1, y2)
)

(2.2.16)

where K−1
a,0,0((x1, x2), (y1, y2)) is defined in Equation 2.2.14 and I j,k

ε1,ε2(a, x1, x2, y1, y2) is defined
in Equation 2.2.12.

The proof of Theorem 2.2.2 is given in Appendix A.1.
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2.3 Statement of asymptotic results

First we state the asymptotic expansion for I j,k
ε1,ε2(a, x1, x2, y1, y2). Recall the functions

f±(w) =
√

1/2 − 2iw ±
√

1/2 + 2iw

defined in Equation 2.1.6. For fixed αx, αy < 0, define

g0,0(w, z) = B2(−2i(w − z) + αx f−(w)− αy f−(z))

g1,0(w, z) = B2(−2i(w − z) + αx f−(w) + αy f+(z))

g0,1(w, z) = B2(−2i(w − z) + αx f+(w)− αy f−(z))

g1,1(w, z) = B2(−2i(w − z) + αx f+(w) + αy f+(z))

(2.3.1)

We consider the case where αx = αy = α is the asymptotic coordinate from Equation 2.1.1.
Our first important asymptotic result is

Theorem 2.3.1. Recall the integrals I j,k
ε1,ε2(a, x1, x2, y1, y2) defined in Equation 2.2.12. Let the

contours C0, C1, C ′
0 and C ′

1 be as defined in Chapter 2.1. Recall the functions gj,k(w, z) defined in

Equation 2.3.1 and the functions Aj,k
ε1,ε2(w, z) defined in Equation 2.1.7. Then for −1/

√
2 ≤ α <

0,

I0,0
ε1,ε2

(a, x1, x2, y1, y2) =
ζ(x, y)Bm−1/2

8(2πi)2Σ(x, y)

∫
C0

dw
∫
C ′0

dz
A0,0

ε1,ε2(w, z)
i(z − w)

eg0,0(w,z) + O(m−1),

(2.3.2)
and for α < −1/

√
2,

I0,0
ε1,ε2

(a, x1, x2, y1, y2) =
ζ(x, y)Bm−1/2

8(2πi)2Σ(x, y)

×
( ∫

C0

dw
∫
C ′0

dz
A0,0

ε1,ε2(w, z)
i(z − w)

eg0,0(w,z) − 2π
∫ η

−η
A0,0

ε1,ε2
(w, w)dw

)
+ O(m−1). (2.3.3)

For (j, k) ̸= (0, 0) for any α < 0,

I j,k
ε1,ε2(a, x1, x2, y1, y2) =

ζ(x, y)Bm−1/2

8(2πi)2Σ(x, y)

∫
Cj

dw
∫
C ′k

dz
Aj,k

ε1,ε2(w, z)
i(z − w)

egj,k(w,z) + O(m−1) (2.3.4)

The proof can be found in Chapter 3.9.
Now we state the asymptotic expansion for K−1

a,0,0(x, y). For −1 ≤ z ≤ −3 + 2
√

2, let

θ(z) =
1
2z

(
i
√

4z2 − (4z + z2 + 1)2 − (4z + z2 + 1)
)

,
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and define

k(v)(z) =
θ(z)v + θ(z)−v

2
.

Also define

b(z) = −1
2

log

(
4
√

2(1 + z)
1 − z +

√
−1 − 6z − z2

)
. (2.3.5)

We define coefficients ci(pe1 + qe2) for p, q ∈ Z. When p is odd and q is even, define

c0(pe1 + qe2) =
1
π

∫ −3+2
√

2

−1

z(|p|−1)/2k(q/2)(z)√
−1 − 6z − z2

dz (2.3.6)

c1(pe1 + qe2) =
1

2π
(2.3.7)

c2(pe1 + qe2) =
(−1)q/2

π

( ∫ −3+2
√

2

−1

(
1
2
(−z)(|p|−1)/2 +

(|p|−3)/2

∑
i=0

(−z)i

)
k(q/2)(z)√

−1 − 6z − z2
dz

(2.3.8)

− log 2 −
∫ −3+2

√
2

−1

dk(q/2)

dz
(z)b(z)dz

)
.

When p is even and q is odd, define

ci(pe1 + qe2) = ci(qe1 + pe2)

for i = 0, 1, 2. Our second important asymptotic result is

Theorem 2.3.2. Take x ∈ W and y ∈ B. Let ζ(x, y) and Σ(x, y) be as defined in Equations 2.1.2
and 2.1.3 respectively, and ci as defined above in Equations 2.3.6–2.3.8. Then

K−1
a,0,0(x, y) =

1
Σ(x, y)

(
c0(y − x) + c0(y − x)Bm−1/2/2

+ ζ(x, y)(c1(y − x)Bm−1/2 log Bm−1/2 + c2(y − x)Bm−1/2)
)
+ O(m−1 log m).

The proof can be found in Chapter 4.2. This, together with Theorem 2.3.1 are all that
we need to derive the main result.

2.4 Proof of Theorem 2.1.1
Here we prove the main result.
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Proof. By Theorem 2.2.2 we have

K−1
a (x, y) = K−1

a,0,0(x, y)−
1

∑
j,k=0

(−1)j+kI j,k
ε1,ε2(a, x1, x2, y1, y2).

The asymptotic expansion of the first term is given in Theorem 2.3.2, and the asymptotic
expansions of the remaining terms are given in Theorem 2.3.1. Comparing the formulas
in Theorems 2.3.1 with the definitions of Ik(α, ε1, ε2) in Equations 2.1.8–2.1.9, and with the
formula for A0,0

ε1,ε2(w, w) in Equation 3.9.12 we see that

I0,0
ε1,ε2

(a, x1, x2, y1, y2)

=


−Bm−1/2

32π2
ζ(x, y)

K1(y, x)
I1(α, ε1, ε2) + O(m−1) if − 1/

√
2 ≤ α < 0

−Bm−1/2

32π2
ζ(x, y)

K1(y, x)
(I1(α, ε1, ε2) + 8π I0(α, ε1, ε2)) + O(m−1) if α < −1/

√
2

and

I1,0
ε1,ε2

(a, x1, x2, y1, y2) = −Bm−1/2

32π2
ζ(x, y)

K1(y, x)
I2(α, ε1, ε2) + O(m−1)

I0,1
ε1,ε2

(a, x1, x2, y1, y2) = −Bm−1/2

32π2
ζ(x, y)

K1(y, x)
I3(α, ε1, ε2) + O(m−1)

I1,1
ε1,ε2

(a, x1, x2, y1, y2) = −Bm−1/2

32π2
ζ(x, y)

K1(y, x)
I4(α, ε1, ε2) + O(m−1)

So we see that for −1/
√

2 ≤ α < 0, we have

1

∑
j,k=0

(−1)j+kI j,k
ε1,ε2(a, x1, x2, y1, y2) = −ζ(x, y)Bm−1/2

32π2Σ(x, y)
(I1(α, ε1, ε2)

− I2(α, ε1, ε2)− I3(α, ε1, ε2) + I4(α, ε1, ε2)) + O(m−1)

and for α < −1/
√

2, we have

1

∑
j,k=0

(−1)j+kI j,k
ε1,ε2(a, x1, x2, y1, y2) = −ζ(x, y)Bm−1/2

32π2Σ(x, y)
(8π I0(α, ε1, ε2)

+ I1(α, ε1, ε2)− I2(α, ε1, ε2)− I3(α, ε1, ε2) + I4(α, ε1, ε2)) + O(m−1)
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From Theorem 2.3.2 we have

K−1
a,0,0(x, y) =

1
Σ(x, y)

(
c0(y − x) + c0(y − x)Bm−1/2/2

+ ζ(x, y)

(
Bm−1/2 log Bm−1/2

2π
+ c2(y − x)Bm−1/2

))
+ O(m−1 log m).

Putting together these two formulas and comparing with the definition of ψ(α, ε1, ε2) in
Equation 2.1.12 gives the result.

2.5 Proof of Corollary 2.1.1
We now give a proof of Corollary 2.1.1 on one-point correlation functions.

Proof of Corollary 2.1.1. We start from the formula in Theorem 2.1.1 and compute the coef-
ficients c0(y − x) and c2(y − x) when (x, y) is an edge. We have y − x = ±e1 or ±e2. It is
clear from the definitions that ci(e1) = ci(−e1) = ci(e2) = ci(−e2). So we compute ci(e1),
i.e. we set p = 1 and q = 0 in Equations 2.3.6 and 2.3.8. We have

c0(e1) =
1
π

∫ −3+2
√

2

−1

1√
−1 − 6z − z2

dz =
1
4

and

c2(e1) =
1
π

( ∫ −3+2
√

2

−1

1
2
√
−1 − 6z − z2

dz − log 2

)
=

1
8
− log 2

π
.

Next we note that ρ(x, y) = Ka(y, x)K−1
a (x, y), where Ka(y, x) = w(x, y)ϵ(x, y) with

w(x, y) the weight of (x, y) and ϵ(x, y) the Kasteleyn-Percus orientation. We have ϵ(x, y) =
Σ(x, y), and

w(x, y) =

{
a if ζ(x, y) = 1
1 if ζ(x, y) = −1

.

So we can write

Ka(y, x) = Σ(x, y)

(
1 − Bm−1/2

2
(1 + ζ(x, y))

)
+ O(m−1)
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So for (x, y) an edge of Γ, we have

ρ(x, y) =
1
4

(
1 +

Bm−1/2

2
− Bm−1/2

2
(1 + ζ(x, y))

)

+ ζ(x, y)Bm−1/2

(
log(Bm−1/2)

2π
+

1
8
− log 2

π
+ ψ(α, ε1, ε2)

)
+ O(m−1 log m) (2.5.1)

−1/
√

2 ≤ α < 0 and

ρ(x, y) =
1
4

(
1 +

Bm−1/2

2
− Bm−1/2

2
(1 + ζ(x, y))

)

+ ζ(x, y)Bm−1/2
(

log(Bm−1/2)

2π
+

1
8
− log 2

π
+

I0(α, ε1, ε2)

4π
+ ψ(α, ε1, ε2)

)
+ O(m−1 log m) (2.5.2)

for α < −1/
√

2. We simplify to get the result.
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Chapter 3

Asymptotics of I j,k
ε1,ε2(a, x1, x2, y1, y2)

In this chapter, we compute the asymptotics of I j,k
ε1,ε2(a, x1, x2, y1, y2) in the limit m → ∞,

with weights 1 and a = 1 − Bm−1/2. We finish with a proof of Theorem 2.3.1. First,
we must identify the main asymptotic term in m in the integrand of each integral. The
only term in each integral that depends directly on m is hj,k(ω1, ω2) but we also have

V j,k
ε1,ε2(ω1, ω2) depending on m through a. However, this dependence is not exponential,

so this term is not relevant for our saddle point analysis. The dependence of hj,k(ω1, ω2)
on m is a bit more complicated, and we will look at it more carefully.

3.1 Asymptotic coordinates
For x ∈ W and y ∈ B we write

x1 = [4m + 2m1/2αxB] + x1

x2 = [4m + 2m1/2αxB] + x2

y1 = [4m + 2m1/2αyB] + y1

y2 = [4m + 2m1/2αyB] + y2,

(3.1.1)

where αx, αy < 0 and the integer parts x1, x2, y1 and y2 are order 1. Recall that B > 0 is a
constant and a = 1 − Bm−1/2. For the results in Chapters 2, we consider αx = αy = α as
in Equation 2.1.1. In Chapter 5 we complete a numerical study of the case αx ̸= αy. For
the moment, we will not assume that αx and αy are equal.

3.2 Approximate location of saddle points
Let x = (x1, x2) ∈ W and y = (y1, y2) ∈ B be as in Equation 3.1.1. To find the con-
tours of steepest ascent and descent for the four integrals I j,k

ε1,ε2(a, x1, x2, y1, y2) with j, k ∈
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{0, 1} we need to analyze the functions H̃x1+1,x2(ω1), H̃y1,y2+1(ω2), H̃2n−y1,y2+1(ω2) and
H̃x1+1,2n−x2(ω1).

First we look at the function H̃x1+1,x2(ω).

Lemma 3.2.1. Let (x1, x2) ∈ W be such that xi = [4m + 2m1/2αB] + xi with α < 0, and with
the integer parts xi of order 1. The saddle points of log H̃x1+1,x2(ω) that are bounded as m → ∞
occur at ω = ±i + O(m−1).

Proof. We have

H̃x1+1,x2(ω) =
ω2m(−iG(ω))−αBm1/2+O(1)

(iG(ω−1))−αBm1/2+O(1)
.

So

log H̃x1+1,x2(ω) = m
(
2 log ω + m−1/2(−αB log(−iG(ω)) + αB log(iG(ω−1))) +O(m−1)

)
.

Note that G(ω) and G(ω−1) also depend on m through c = 1/(a + a−1). We want to find
the saddle points of this function that are bounded at m → ∞. Let

gα(ω) = 2 log ω + m−1/2(−αB log(−iG(ω)) + αB log(iG(ω−1)))),

so log H̃x1+1,x2(ω) = m(gα(ω) + O(m−1)). Then log H̃x1+1,x2(ω) has a saddle point when

g′α(ω) =
1
ω

(
2 + αBm−1/2

(
ω√

ω2 + 2c
+

ω−1
√

ω−2 + 2c

))
= O(m−1) (3.2.1)

recalling that the square roots are defined in Equation 2.2.1.
We are looking for saddle points ωc that approach a finite limit as m → 0. So we need

solutions to

2 + αBm−1/2
(

ω√
ω2 + 2c

+
ω−1

√
ω−2 + 2c

)
= O(m−1).

By exchanging ω and ω−1, it is clear that if ω is a solution then so is ω−1. We also see that
we must have either ω2 + 2c = O(m−1) or ω−2 + 2c = O(m−1). We compute

2c =
2

a + a−1

=
1

1 + B2m−1/2 + O(m−3/2)

= 1 − B2m−1/2 + O(m−3/2).

(3.2.2)

Therefore the saddle points occur when ω2 = −1±O(m−1) (as this coincides with ω−2 =
−1 ± O(m−1)), so ω = ±i + O(m−1).



CHAPTER 3. ASYMPTOTICS OF I j,k
ε1,ε2(a, x1, x2, y1, y2) 27

We have a similar lemma for H̃2n−y1,y2+1(ω).

Lemma 3.2.2. Let (y1, y2) ∈ B be such that yi = [4m + 2m1/2αB] + yi with α < 0 and the
integer parts yi order 1. The saddle points of log H̃2n−y1,y2+1(ω) that are bounded as m → ∞
occur at ω = ±i + O(m−1).

Proof. We have

H̃2n−y1,y2+1(ω) =
ω2m(−iG(ω))αBm1/2+O(1)

(iG(ω−1))−αBm1/2+O(1)
.

So

log H̃2n−y1,y2+1(ω) = m
(
2 log ω+m−1/2(αB log(−iG(ω))+ αB log(iG(ω−1)))+O(m−1)

)
.

Let
g(1)α (ω) = 2 log ω + m−1/2(αB log(−iG(ω)) + αB log(iG(ω−1))))

so log H̃2n−y1,y2+1(ω) = m(g(1)α (ω) + O(m−1)). Then log H̃2n−y1,y2+1(ω) has a saddle
point when

(g(1)α )′(ω) =
1
ω

(
2 + αBm−1/2

(
− ω√

ω2 + 2c
+

ω−1
√

ω−2 + 2c

))
= O(m−1).

The proof is finished in exactly the same way as Lemma 3.2.1. The only difference is the
sign of the first term.

Finally we prove a similar lemma for H̃x1+1,2n−x2(ω).

Lemma 3.2.3. Let (x1, x2) ∈ W be such that xi = [4m + 2m1/2αB] + xi with α < 0 and the
integer parts xi order 1. The saddle points of log H̃x1+1,2n−x2(ω) that are bounded as m → ∞
occur at ω = ±i + O(m−1).

Proof.

H̃x1+1,2n−x2(ω) =
ω2m(−iG(ω))−αBm1/2+O(1)

(iG(ω−1))αBm1/2+O(1)
.

So

log H̃x1+1,2n−x2(ω) = m
(
2 log ω+m−1/2(−αB log(−iG(ω))− αB log(iG(ω−1)))+O(m−1)

)
.

We want to find the saddle points of this function that are bounded at m → ∞. Let

g(2)α (ω) = 2 log ω + m−1/2(−αB log(−iG(ω))− αB log(iG(ω−1)))),
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so log H̃x1+1,2n−x2(ω) = m(g(2)α (ω) + O(m−1)). Then log H̃x1+1,2n−x2(ω) has a saddle
point when

(g(2)α )′(ω) =
1
ω

(
2 + αBm−1/2

(
ω√

ω2 + 2c
− ω−1

√
ω−2 + 2c

))
= O(m−1)

The proof is finished in exactly the same way as Lemma 3.2.1. The only difference is the
sign of the second term.

3.3 Basic asymptotic expansions

We have found that the saddle points are at a distance of order m−1 from ±i. So we will
move the contours to pass through the appropriate saddle points in asymptotic coordi-
nates and locally follow a path of steepest descent. Hence we will need to find asymptotic
expansions of our integrands near ±i. First we show that V j,k

ε1,ε2(ω1, ω2)hj,k(ω1, ω2) is an
even function in each variable, so we only need to look at the asymptotics for ω1 and ω2
both in a neighborhood of i.

First we note that by choice of branch cut we have√
(−ω)2 + 2c = −

√
ω2 + 2c (3.3.1)

and so
G(−ω) = −G(ω) and t(−ω) = t(ω) (3.3.2)

Now we can prove the following lemmas.

Lemma 3.3.1. Let V j,k
ε1,ε2(ω1, ω2) be as defined in Equation 2.2.4. Then

V j,k
ε1,ε2(−ω1, ω2) = (−1)1+ε1V j,k

ε1,ε2(ω1, ω2)

V j,k
ε1,ε2(ω1,−ω2) = (−1)1+ε2V j,k

ε1,ε2(ω1, ω2)

Proof. The second equality is clear from Equation 2.2.4. For the first equality, note that
yε1,ε2

γ1,γ2(u, v) is a even function in each variable. Then from Equations 3.3.1–3.3.2 we see
that xε1,ε2

γ1,γ2(−ω1, ω2) = −xε1,ε2
γ1,γ2(ω1, ω2), and using Equation 3.3.2 again we then obtain

Qε1,ε2
γ1,γ2(−ω1, ω2) = (−1)1+ε1 Qε1,ε2

γ1,γ2(ω1, ω2), from which the result follows.

Lemma 3.3.2. Take x = (x1, x2) ∈ Wε1 , and y = (y1, y2) ∈ Bε2 with ε1, ε2 ∈ {0, 1} and let
hj,k(ω1, ω2) be as defined in Equation 2.2.11. Then we have

hj,k(−ω1, ω2) = (−1)1+ε1 hj,k(ω1, ω2)

hj,k(ω1,−ω2) = (−1)1+ε2 hj,k(ω1, ω2)
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Proof. First we look at h0,0(ω1, ω2) = H̃x1+1,x2(ω1)/H̃y1,y2+1(ω2). We have

H̃x1+1,x2(−ω1) =
ω1

2m(−iG(−ω1))
2m−(x1+1)/2

(iG(−ω1
−1))2m−x2/2

= (−1)−(x1+1)/2+x2/2H̃x1+1,x2(ω1)

= (−1)(x1+1)/2+x2/2H̃x1+1,x2(ω1)

= (−1)ε1+1H̃x1+1,x2(ω1)

where we use the fact that x1 is odd since x is a white vertex, and x1 + x2 ≡ 2ε1 + 1
mod 4. Similarly

H̃y1,y2+1(−ω2) = (−1)−y1/2+(y2+1)/2H̃y1,y2+1(ω2)

= (−1)y1/2+(y2+1)/2H̃y1,y2+1(ω2)

= (−1)ε2+1H̃y1,y2+1(ω2)

This proves the result for i = 0, j = 0. For the other cases, note that (−1)(2n−x2)/2 =

(−1)x2/2 and (−1)(2n−y1)/2 = (−1)y1/2. So we can prove these in exactly the same way.

Hence we have the following theorem.

Theorem 3.3.1. Take x = (x1, x2) ∈ Wε1 , and y = (y1, y2) ∈ Bε2 with ε1, ε2 ∈ {0, 1} and let
hj,k(ω1, ω2) be as defined in Equation 2.2.11. Let V j,k

ε1,ε2(ω1, ω2) be as defined in Equation 2.2.4.
Then

V j,k
ε1,ε2(−ω1, ω2)hj,k(−ω1, ω2) = V j,k

ε1,ε2(ω1, ω2)hj,k(ω1, ω2)

V j,k
ε1,ε2(ω1,−ω2)hj,k(ω1,−ω2) = V j,k

ε1,ε2(ω1, ω2)hj,k(ω1, ω2)

Now we will compute some asymptotic expansions that we will need later. Let

ω = i + B2m−1w (3.3.3)

for |w| < mδ for some 0 < δ < 1/2. First, we have the following lemma.

Lemma 3.3.3. Let the
√

ω2 + 2c and
√

ω−2 + 2c be as defined in Equation 2.2.1 and ω as in
Equation 3.3.3. Then √

ω2 + 2c = iBm−1/2
√

1/2 − 2iw + O(m−1w), (3.3.4)√
ω−2 + 2c = −iBm−1/2

√
1/2 + 2iw + O(m−1w). (3.3.5)
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Proof. We compute√
ω2 + 2c = i

√
−i(ω + i

√
2c)
√
−i(ω − i

√
2c)

= i
√
−i(i + B2m−1w + i(1 − B2m−1/4) + O(m−3/2))

×
√
−i(i + B2m−1w − i(1 − B2m−1/4) + O(m−3/2))

= i(
√

2 + O(m−1w))
√

1 − iB2m−1w − (1 − B2m−1/4) + O(m−3/2)

= i(
√

2 + O(m−1w))
√
−iB2m−1w + B2m−1/4 + O(m−3/2)

= iBm−1/2(1 + O(m−1w))
√

1/2 − 2iw + O(m−1/2))

= iBm−1/2
√

1/2 − 2iw + O(m−1w−1/2, m−3/2w3/2)

= iBm−1/2
√

1/2 − 2iw + O(m−1w).

For the second equation, we have ω−1 = −i + B2m−1w + O(m−2). By Equation 3.3.1, we
have √

ω−2 + 2c =
√
(−i + B2m−1w + O(m−2))2 + 2c

= −
√
(i − B2m−1w + O(m−2))2 + 2c

from which the result follows by a similar calculation.

Then we have

−iG(ω) =
1√
2c

(1 − Bm−1/2
√

1/2 − 2iw + O(m−1w))

iG(ω−1) =
1√
2c

(1 − Bm−1/2
√

1/2 + 2iw + O(m−1w)).
(3.3.6)

Also,

log ω = log(i + B2m−1w)

= log i + log(1 − iB2m−1w)

=
πi
2

− iB2m−1w + O(m−2w2),

(3.3.7)

log(−iG(ω)) = log
1√
2c

+ log(1 − Bm−1/2
√

1/2 − 2iw + O(m−1w))

= −Bm−1/2
√

1/2 − 2iw + O(m−1w)

(3.3.8)

and

log(iG(ω−1)) = −Bm−1/2
√

1/2 + 2iw + O(m−1w) (3.3.9)
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3.4 Asymptotic expansion of exponential part of
integrands

First we will find asymptotic expansions for the terms hj,k(ω1, ω2) in the integrands. Let
αx, αy < 0, x = (x1, x2) ∈ Wε1 and y = (y1, y2) ∈ Bε2 with ε1, ε2 ∈ {0, 1} be as in Equa-
tion 3.1.1. We define the asymptotic variables w and z near ω1 = i and ω2 = i respectively.

Definition 3.4.1. In a neighborhood of i, let

ω1 = i + B2m−1w and ω2 = i + B2m−1z (3.4.1)

for |w|, |z| < mδ for some 0 < δ < 1/2.

Then we can prove the following lemma.

Lemma 3.4.1. For αx, αy < 0, x = (x1, x2) ∈ Wε1 and y = (y1, y2) ∈ Bε2 as in Equation 3.1.1,
and local coordinates w, z as in Defintion 3.4.1, we have

H̃x1+1,x2(ω1) = (−1)meB2(−2iw+αx(
√

1/2−2iw−
√

1/2+2iw))+O(m−1/2w) (3.4.2)

H̃y1,y2+1(ω2) = (−1)meB2(−2iz+αy(
√

1/2−2iz−
√

1/2+2iz))+O(m−1/2z) (3.4.3)

H̃2n−y1,y2+1(ω2) = (−1)meB2(−2iz−αy(
√

1/2−2iz+
√

1/2+2iz))+O(m−1/2z) (3.4.4)

H̃x1+1,2n−x2(ω1) = (−1)meB2(−2iw+αx(
√

1/2−2iw+
√

1/2+2iw))+O(m−1/2w) (3.4.5)

Proof. We will look at these expressions one at a time. Firstly we have

H̃x1+1,x2(ω1) =
ω1

2m(−iG(ω1))
−m1/2αxB+O(1)

(iG(ω1
−1))−m1/2αxB+O(1)

so

log H̃x1+1,x2(ω1) = 2mω1 − (m1/2αxB + O(1))(log(−iG(ω1))− log(iG(ω1
−1))).

From Equations 3.3.7, 3.3.8 and 3.3.9 we have

log H̃x1+1,x2(ω1) = 2m
(

πi
2

− iB2m−1w + O(m−2w2)

)
− (m1/2αxB + O(1))(−Bm−1/2

√
1/2 − 2iw + Bm−1/2

√
1/2 + 2iw + O(m−1w))

= mπi − 2iB2w + αxB2(
√

1/2 − 2iw −
√

1/2 + 2iw) + O(m−1/2w)

where for the error term, we note that because |w| ≤ mδ with 0 < δ < 1/2, we can
consolidate the O(m−1w2), O(m−1/2w1/2) and O(m−1w) error terms into one error term
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of order m−1/2w. Equation 3.4.2 follows. Equation 3.4.3 also follows by replacing αx with
αy and w with z.

Next we look at

H̃2n−y1,y2+1(ω2) =
ω2

2m(−iG(ω2))
m1/2αyB+O(1)

(iG(ω2−1))−m1/2αyB+O(1)
.

Again, using Equations 3.3.7, 3.3.8 and 3.3.9 we see that

log H̃2n−y1,y2+1(ω2) = 2mω2 + (m1/2αyB + O(1))(log(−iG(ω2)) + log(iG(ω2
−1)))

= mπi − 2iB2z − αyB2(
√

1/2 − 2iz +
√

1/2 + 2iz) + O(m−1/2z)

from which Equation 3.4.4 follows. Similarly,

H̃x1+1,2n−x2(ω1) =
ω1

2m(−iG(ω1))
−m1/2αxB+O(1)

(iG(ω1
−1))m1/2αxB+O(1)

and so

log H̃x1+1,2n−x2(ω1) = 2mω1 − (m1/2αxB + O(1))(log(−iG(ω1)) + log(iG(ω1
−1)))

= mπi − 2iB2w + αxB2(
√

1/2 − 2iw +
√

1/2 + 2iw) + O(m−1/2w)

from which Equation 3.4.5 follows.

Recall the functions

f±(w) =
√

1/2 − 2iw ±
√

1/2 + 2iw

defined in Equation 2.1.6 and gj,k(w, z) defined in Equation 2.3.1. The following theorem
follows immediately.

Theorem 3.4.1. Let αx, αy < 0, x = (x1, x2) ∈ Wε1 and y = (y1, y2) ∈ Bε2 be as in Equa-
tion 3.1.1. Let w and z be local coordinates for ω1, ω2 near i respectively as defined in Defini-
tion 3.4.1. Let the functions hj,k(ω1, ω2) be as defined in Equation 2.2.11. Let the functions
gj,k(w, z) be as defined in 2.3.1. Then

hj,k(ω1, ω2) = egj,k(w,z)+O(m−1/2w,m−1/2z) (3.4.6)

These are the exponential parts of the integrands of I j,k
ε1,ε2(a, x1, x2, y1, y2) near ω1 = i and ω2 = i.
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3.5 Asymptotic expansion of pre-exponential part of
integrands

The integrand of each integral I j,k
ε1,ε2(a, x1, x2, y1, y2), defined in Equation 2.2.12, also con-

tains a pre-exponential term
V j,k

ε1,ε2(ω1, ω2)

ω1(ω2 − ω1)

where V j,k
ε1,ε2(ω1, ω2) is defined in Equation 2.2.4. We now state the asymptotic expansion

of this term near i.

Theorem 3.5.1. Let ω1 = i + B2m−1w and ω2 = i + B2m−1z for |w|, |z| < mδ for some
0 < δ < 1/2 as in Definition 3.4.1. Then we have

V j,k
ε1,ε2(ω1, ω2) = m1/2 (−1)ε1ε2 iε1−ε2

16B
(Aj,k

ε1,ε2(w, z) + O(m−1/2)) (3.5.1)

as m → ∞, where Aj,k
ε1,ε2(w, z) is defined in Equation 2.1.7.

The proof is given in Appendix A.2.

3.6 Location of saddle points in asymptotic coordinates
and their properties

We will move our contours to contours of steepest descent for the functions in Theo-
rem 3.4.1 in a neighborhood of i, and symmetric contours in a neighborhood of −i. We
will show in Theorem 3.9.2 that outside these neighborhoods the contribution to the inte-
gral is exponentially small. Let

pαx(w) = −2iw + αx(
√

1/2 − 2iw −
√

1/2 + 2iw) (3.6.1)

qαx(w) = −2iw + αx(
√

1/2 − 2iw +
√

1/2 + 2iw). (3.6.2)

We can write

pαx(w) = −2iw + αx f−(w) and qαx(w) = −2iw + αx f+(w),

where f±(w) are defined in Equation 2.1.6, and note that since f−(w) = − f−(−w) and
f+(w) = f+(−w), we have 2iz − αy f−(z) = −pαy(z) = pαy(−z) and 2iz + αy f+(z) =
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qαy(−z). So from Theorem 3.4.1 we have

h0,0(ω1, ω2) = exp(B2(pαx(w) + pαy(−z)) + O(m−1/2w, m−1/2z))

h1,0(ω1, ω2) = exp(B2(pαx(w) + qαy(−z)) + O(m−1/2w, m−1/2z))

h0,1(ω1, ω2) = exp(B2(qαx(w) + pαy(−z)) + O(m−1/2w, m−1/2z))

h1,1(ω1, ω2) = exp(B2(qαx(w) + qαy(−z)) + O(m−1/2w, m−1/2z))

(3.6.3)

So it is sufficient for us to find contours of steepest descent for pα(w) and qα(w), where
α < 0. We first find the saddle points. These occur when p′α(w) = 0 and q′α(w) = 0
respectively. We compute

p′α(w) = i
(
−2 − α

(
1√

1/2 − 2iw
+

1√
1/2 + 2iw

))
(3.6.4)

and

q′αx(w) = i
(
−2 − α

(
1√

1/2 − 2iw
− 1√

1/2 + 2iw

))
. (3.6.5)

To analyze the locations of the zeros of p′α(w) and q′α(w) we will first define a couple of
functions and prove some lemmas about them. For w ∈ C \ i((−∞,−1/4]∪ [1/4, ∞)), let

ψ+(w) =
1√

1/2 − 2iw
+

1√
1/2 + 2iw

ψ−(w) =
1√

1/2 − 2iw
− 1√

1/2 + 2iw
.

(3.6.6)

So we are looking for solutions to

ψ+(w) = −2/α and ψ−(w) = −2/α (3.6.7)

Lemma 3.6.1. Take α < 0. Solutions to the equations ψ+(w) = ±2/α and ψ−(w) = ±2/α all
satisfy the quartic equation

256 w4 − 16(α4 + 2α2 − 2)w2 + (−2α2 + 1) = 0. (3.6.8)

Proof. This is just a computation. Start from

± 1√
1/2 − 2iη

+
1√

1/2 + 2iη
= ±2

α
.

Squaring both sides, we obtain

1
1/2 − 2iη

+
1

1/2 + 2iη
± 2√

1/2 − 2iη
√

1/2 + 2iη
=

4
α2 .
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Then we multiply by (1/2 − 2iη)(1/2 + 2iη) to obtain

1 + 2
√

1/2 − 2iη
√

1/2 + 2iη =
4
α2

(
1
4
+ 4η2

)
and rearranging and squaring again, we obtain(

1 − 4
α2

(
1
4
+ 4η2

))2

= 1 + 16η2.

Multiplying everything out and rearranging, we obtain Equation 3.6.8.

Lemma 3.6.2. Consider the restriction of ψ±(w) to w ∈ i(−1/4, 1/4). Then ψ+(w) takes all
values in [2

√
2, ∞), and ψ−(w) takes all values in (−∞, ∞).

Proof. Let w = it for t ∈ (−1/4, 1/4). Then

ψ±(it) =
1√

1/2 + 2t
± 1√

1/2 − 2t
.

These are continuous for t ∈ (−1/4, 1/4). We have

lim
t→− 1

4

ψ−(it) = ∞

lim
t→ 1

4

ψ−(it) = −∞

hence ψ−(it) takes all values in (−∞, ∞).
For ψ+(it), note that for t ∈ (−1/4, 1/4), by the AM-GM inequality we have ψ+(it) ≥

2
√

2, with equality if and only if t = 0. Since limt→1/4ψ+(it) =, we see that ψ+(it) takes
all values in (0, 2

√
2].

Lemma 3.6.3. Consider the restriction of ψ+(w) to w ∈ R. Then ψ+(w) takes all values in
(0, 2

√
2].

Proof. In the case that w is real, we have

ψ+(w) = 2 Re
(

1√
1/2 − 2iw

)
We have ψ+(0) = 2

√
2 and limw→∞ ψ+(w) = ∞. Since ψ+(w) is continuous, it takes all

values in the range (0, 2
√

2).

Lemma 3.6.4. Take α < 0. Then
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1. There exists η ∈ [0, ∞) ∪ i(0, 1/4) such that ψ+(w) = −2/α has exactly two solutions
w = ±η, unless α = −1/

√
2 in which case the only solution is w = 0.

2. There exists η′ ∈ i(0, 1/4) such that Equation ψ−(w) = 2/α has exactly one solution
w = η′ and Equation ψ−(w) = −2/α has exactly one solution w = −η′.

Proof. First we look at solutions to ψ−(w) = ±2/α. By Lemma 3.6.2, we see that ψ−(w) =
−2/α has at least one solution in i(−1/4, 1/4). Moreover, ψ−(it) < 0 for t > 0, ψ−(it) > 0
for t < 0 and ψ−(it) = 0 for t = 0, so since −2/α > 0, any solution to ψ−(it) = 2/α has
t ∈ (0, 1/4). So we can take w = η′ be a solution to ψ−(w) = 2/α with η′ ∈ i(0, 1/4).
Then it is clear that w = −η′ is a solution to ψ−(w) = −2/α. Note that since −2/α ̸= 0,
η′ is non-zero.

Now we look at solutions to ψ+(w) = −2/α. By Lemmas 3.6.2 and 3.6.3, we see
that ψ+(w) = −2/α > 0 has at least one solution in R ∪ i(0, 1/4). Moreover, it is clear
that the negative of a solution is a solution, so we can take w = η to be a solution to
ψ+(w) = −2/α in [0, ∞) ∪ i(0, 1/4). Then w = −η is also a solution of ψ+(w) = −2/α.

So if η ̸= 0, then we have already found four roots of Equation 3.6.8 (namely, ±η,
±η′), so there are no more. If η0 = 0, so α = −1/

√
2, then η = 0 is a repeated root of

Equation 3.6.8 and we have still found all of the roots. By Lemma 3.6.1, we have found all
solutions to ψ+(w) = ±2/α and ψ−(w) = ±2/α. Note that the equation ψ+(w) = −2/α
has two solutions while ψ+(w) = 2/α has no solutions.

Recall that we are looking for solutions to p′α(w) = 0 and q′α(w) = 0 where p′α(w) and
q′α(w) are given by Equations 3.6.4 and 3.6.5 respectively. We can write

p′α(w) = i(−2 − αψ+(w))

q′α(w) = i(−2 − αψ−(w)).

We have the following lemma.

Lemma 3.6.5. For −1/
√

2 < α < 0, p′α(w) = 0 has two solutions, which are in the interval
i(−1/4, 1/4). For α = −1/

√
2, p′α(w) = 0 has only one solution, w = 0. For α < −1/

√
2,

p′α(w) = 0 has two solutions, which are real. In all cases if w = η is a solution of p′α(w) = 0
then so is w = −η.

Proof. We are looking for solutions to ψ+(w) = −2/α. For −1/
√

2 < α < 0, we have
−2/α ∈ (2

√
2, ∞). For α = −1/

√
2, we have −2/α = 2

√
2. For α < −1/

√
2, we have

−2/α ∈ (0, 2
√

2). The lemma follows from Lemma 3.6.4, Lemma 3.6.2 and Lemma 3.6.3.

We have a somewhat simpler lemma for solutions to ψ−(w) = −2/α.

Lemma 3.6.6. For any α < 0, there exists η′
0 in i(0, 1/4) such that Equation ψ+(w) = −2/α

has exactly one solution w = −η′.
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Proof. We are looking for solutions to ψ−(w) = −2/α. The result follows from Lemma 3.6.4.

Now that we have found the solutions to ψ+(w) = −2/α and ψ−(w) = −2/α we can
make the following definition.

Definition 3.6.1. Let η be defined to be the unique complex number with non-negative
real part and non-negative imaginary part that satisfies

1√
1/2 − 2iη

+
1√

1/2 + 2iη
= −2/α.

and let η′ be the unique complex number that satisfies

1√
1/2 − 2iη′ −

1√
1/2 + 2iη′ = 2/α.

So η satisfies ψ+(η) = −2/α and so also satisfies p′α(η) = 0. Similarly η′ satisfies
ψ−(η′) = 2/α, hence ψ−(−η′) = −2/α, so q′α(−η′) = 0. This gives us the following
theorem.

Theorem 3.6.1. Take α < 0 and let η and η′ be as defined in Definition 3.6.1. Then

1. The saddle points of pα(w) are as follows.

−1/
√

2 < α < 0.
There are 2 distinct saddle points, at w = ±η, where η ∈ i(0, 1/4).

α = −1/
√

2.
There is only one saddle point, which occurs at w = 0.

α < −1/
√

2.
There are 2 distinct saddle points, at w = ±η, where η ∈ (0, ∞).

2. The unique saddle point of qα(w) is at w = −η′ with η′ ∈ i(0, 1/4).

Proof. Saddle points of pα(w) occur where p′α(w) = 0, and saddle points of qα(w) occur
where q′α(w) = 0. The result follows from Lemma 3.6.5 and Lemma 3.6.6.

Now we follow with a lemma about the values of p′′α(w) and q′′α(w) at the saddle
points. We will use this to find the direction of the steepest ascent and descent contours
at the saddle points.

Lemma 3.6.7. Take α < 0 and let η and η′ be as defined in Definition 3.6.1. Then

1. For −1/
√

2 < α < 0, we have p′′α(η) > 0 and p′′α(−η) < 0.
For α = −1/

√
2, we have p′′α(η) = 0, so η = 0 is a double saddle point.

For α < −1/
√

2 we have p′′α(η) ∈ i(0, ∞) and p′′α(−η) ∈ i(−∞, 0).
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2. For all α < 0, we have q′′α(−η′) < 0.

Proof. 1. We compute

p′′α(w) = α

(
1

(1/2 − 2iw)3/2 − 1
(1/2 + 2iw)3/2

)
.

From Theorem 3.6.1 we know that if −1/
√

2 < α < 0 then η ∈ i(0, 1/4). So 1/2 −
2iw > 1/2 + 2iw. Then since α < 0, we have p′′α(η) > 0 and p′′α(−η) < 0. Also, if
α = −1/

√
2 then η = 0 so p′′α(η) = 0. Finally, if α < −1/

√
2 then η ∈ (0, ∞) so

p′′α(w) = 2αi Im
(

1
(1/2 − 2iw)3/2

)
.

Then Im(1/2 − 2iw) < 0 which means that Im(1/(1/2 − 2iw)3/2) > 0. So, p′′α(η) ∈
i(−∞, 0) and p′′α(−η) ∈ i(0, ∞).

2. We compute

q′′α(w) = α

(
1

(1/2 − 2iw)3/2 +
1

(1/2 + 2iw)3/2

)
.

From Theorem 3.6.1 we know that η′ ∈ i(0, 1/4). So both terms are positive, and
recalling that α < 0, we see that q′′α(−η′) < 0.

Finally, since when α = −1/
√

2 we have a double saddle point, we will need the third
derivative of p−1/

√
2(w) at w = 0. We find that

p′′′−1/
√

2(0) = −24i. (3.6.9)

3.7 Contours of steepest ascent and descent
Now we will characterize the contours of steepest ascent and descent of pα(w) and qα(w).
These are contours of constant Im(pα(w)) and Im(qα(w)). Contours of steepest ascent are
those where Re(pα(w)) and Re(qα(w)) increases from the saddle point along the contour
respectively, while contours of steepest descent are those where Re(pα(w)) and Re(qα(w))
decrease. Theorem 3.6.1, Lemma 3.6.7 and Equation 3.6.9 contain all the information we
need to find the directions of steepest ascent and descent contours at the saddle points.

Theorem 3.7.1. Take α < 0 and let η and η′ be as defined in Definition 3.6.1. Then

1. The contours of steepest ascent and descent near the saddle points w = ±η of pα(w) are as
follows.
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−1/
√

2 < α < 0.
At the saddle point w = η ∈ i(0, 1/4), the contour of steepest ascent passes through
the saddle point parallel to the real axis, while the contour of steepest descent is parallel
to the imaginary axis. At the saddle point w = −η ∈ i(−1/4, 0), the contour of
steepest ascent passes through the saddle point parallel to the imaginary axis, while the
contour of steepest descent is parallel to the real axis.

α = −1/
√

2.
There is a double saddle point at w = 0. There are contours of steepest ascent leav-
ing the saddle point at angles π/6, 5π/6 and −π/2. There are contours of steepest
descent leaving the saddle point at angles −π/6, −5π/6 and π/2.

α < −1/
√

2.
At the saddle point w = η ∈ R, the contour of steepest ascent passes through the
saddle point at an angle of π/4, while the contour of steepest descent passes through
the saddle point at an angle of −π/4. At the saddle point w = −η ∈ R, the contour of
steepest ascent passes through the saddle point at an angle of −π/4, while the contour
of steepest descent passes through the saddle point at an angle of π/4.

2. The contour of steepest ascent of qα(w) passes through the saddle point w = −η′ ∈
i(−1/4, 0) parallel to the imaginary axis, while the contour of steepest descent is parallel to
the real axis.

Proof. 1. Locally we have

pα(w) = pα(η) +
(w − η)2

2
p′′α(η) + O((w − η)3).

So contours of steepest ascent are in the directions where (w − η)2p′′α(η) > 0 and
contours of steepest descent are in the directions where (w − η)2p′′α(η) < 0 as w →
0. Then the results for α ̸= −1/

√
2 follow immediately from Lemma 3.6.7. For

α = −1/
√

2, which has a double saddle point at 0 we have

p−1/
√

2(w) = p−1/
√

2(0) +
w3

6
p′′′−1/

√
2(0) + O(w4).

Then the result follows from Equation 3.6.9.

2. We follow the same steps as above.

Now we proceed to describe the contours of steepest ascent and descent of pα(w) and
qα(w). Note that writing w = w1 + iw2, we have

pα(w1 − iw2) = pα(w1 + iw2)
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and
qα(w1 − iw2) = qα(w1 + iw2)

where the bar denotes complex conjugate. Also note that pα(−w) = −pα(w). So all con-
tours of steepest ascent and descent are symmetric under reflection in the imaginary axis,
and for pα(w), contours of steepest ascent are just reflections in the real axis of contours
of steepest descent.

First we look at pα(w). Note that the contours of steepest ascent and descent can only
cross at saddle points. Since the contours of steepest ascent are reflections in the real
axis of contours of steepest descent, this means that neither can touch the real axis except
where we have a saddle point. So the contours of steepest ascent and descent either go to
the imaginary axis or to infinity. For t ∈ R with it on the positive side of the branch cut,
we have

Im(pα(it)) =

{
0 if |t| ≤ 1/4
−α
√

2|t| − 1/2 if |t| > 1/4.

We consider different values of α.

−1/
√

2 < α < 0
For −1/

√
2 < α < 0, both saddle points are on the imaginary axis between −1/4

and 1/4, so we have Im(pα(w)) = 0 on all contours of steepest ascent and descent.
So from Theorem 3.7.1 we must have a contour of steepest descent going from the
saddle point at w = η ∈ i(0, 1/4) to the other saddle point at w = −η ∈ i(−1/4, 0)
along the imaginary axis, a contour of steepest descent going from the saddle point
at w = η ∈ i(0, 1/4) to the branch cut at i/4 along the imaginary axis, a contour
of steepest ascent leaving the saddle point at w = η perpendicularly into H+ and
going to infinity in the positive half plane, a contour of steepest descent leaving
the saddle point at w = −η perpendicularly into H+ and going to infinity in the
negative half plane, and a contour of steepest ascent going from the saddle point at
w = −η to the branch cut at −i/4 along the imaginary axis,. There are symmetric
contours in the second and third quadrants. See Figure 3.1a.

α = −1/
√

2
For α = −1/

√
2, we have Im(pα(η)) = 0. The contours do not cross the real axis

except at the origin. So we see from Theorem 3.7.1 that we must have a descent
contour from 0 to i/4 along the imaginary axis, an ascent contour from 0 to −i/4
along the imaginary axis, ascent contours going to infinity in the first and second
quadrant, and descent contours going to infinity in the third and fourth quadrant.
See Figure 3.1b.

α < −1/
√

2
For α < −1/

√
2, the steepest ascent and descent contours that pass through w =

η ∈ (0, ∞) have Im(pα(w)) = pα(η)/i = −2η − iα(
√

1/2 − 2iη −
√

1/2 + 2iη).
It can be shown using Definition 3.6.1 that this expression is strictly positive for
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(d) α = −1.3

Figure 3.1: Steepest ascent and descent contours for pα(w) in orange and qα(w) in green
for different values of α. The value of Re(pα(w)) or Re(qα(w)) increases in the direction
of the arrows, i.e. ascent contours have arrows pointing away from the saddle point, and
descent contours have arrows pointing towards the saddle point.



CHAPTER 3. ASYMPTOTICS OF I j,k
ε1,ε2(a, x1, x2, y1, y2) 42

α < −1/
√

2. So there is a point w = it with t > 1/4 on the positive side branch
cut such that Im(pα(it)) = Im(pα(η)) and Im(pα(−it)) = Im(pα(η)). So for the
ascent and descent contours from w = η we have one going to the branch cut in
the first quadrant, one going to the branch cut in the fourth quadrant, one going to
infinity in the first quadrant and one going to infinity in the fourth quadrant. From
Theorem 3.7.1, since the contours cannot cross, we see that the descent contours go
to the branch cut in the first quadrant and infinity in the fourth quadrant, while the
ascent contours go to the branch cut in the fourth quadrant and infinity in the first
quadrant. We have symmetric contours in the second and third quadrants, but note
that unlike in the −1/

√
2 < α < 0 case they do not join up on the imaginary axis,

since they go to different sides of the branch cut. Indeed, the value of Im(pα(it)) at
the point that the contours hit the branch cut is non zero, and differs by a sign on
either side of the branch cut. In practice, we will have to join up these contours by
going around the branch cut. See Figure 3.1c for an example of the steepest ascent
and descent contours in the first and fourth quadrants.

Now we look at qα(w). We only have one saddle point, at w = −η′ ∈ i(−1/4, 0). Here
we have Im(qα(−η′)) = 0, so on the contours of steepest ascent and descent we have
Im(qα(w)) = 0. For t ∈ R with it on the positive side of the branch cut, we have

Im(qα(it)) =


−α

√
−2t − 1/2 if t < −1/4

0 if − 1/4 ≤ t ≤ 1/4
α
√

2t − 1/2 if t > 1/4.

Therefore the contours cannot go to the branch cut except at ±i/4. For w ∈ R, we have
Im(qα(w)) = −2w, so the contours do not touch the real axis except at 0. Then from
Theorem 3.7.1 we see that there is a contour of steepest ascent from −η′ to −i/4 along
the imaginary axis, a contour of steepest ascent from −η′ to i/4 along the imaginary axis,
and contours of steepest descent that go to infinity in the third and fourth quadrants, and
pass through the saddle point parallel to the real axis. See Figure 3.1d.

Now we look at the behavior of the contours as |w| → ∞. We will only look in the
third quadrant, since the contours in the other quadrants can be found by symmetry.

Theorem 3.7.2. Take α < 0. For w in the third quadrant with |w| ≫ 1, the contours of steepest
descent of both pα(w) and qα(w) that go to infinity can be parametrized as w = reiθ where

θ = −π

2
− 1√

2
αr−1/2 + O(r−1). (3.7.1)

for r → ∞.

Proof. For large |w|, we have

pα(w) = −2iw + α(
√
−2iw −

√
2iw) + O(w−1/2).
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and
qα(w) = −2iw + α(

√
−2iw +

√
2iw) + O(w−1/2).

Let w = reiθ, with θ ∈ (−π/2, 0). Then

√
−2iw =

√
2rei( θ

2−
π
4 ),

√
2iw =

√
2rei( θ

2+
π
4 ).

Let ϕ = θ
2 +

π
4 , so

√
−2iw =

√
2r(−i cos ϕ+ sin ϕ) and

√
2iw =

√
2r(cos ϕ+ i sin ϕ). Then

Im(pα(w)) = −2r cos θ + α
√

2r(− cos ϕ − sin ϕ) + O(w−1/2) (3.7.2)

and
Im(qα(w)) = −2r cos θ + α

√
2r(− cos ϕ + sin ϕ) + O(w−1/2). (3.7.3)

First we look at contours of constant Im(pα(w)). Clearly we must have cos θ → 0 as
r → ∞, so θ → −π/2 and ϕ → 0. We have cos θ = sin 2ϕ. We must have ϕ = O(r−1/2).
Then the contour of steepest descent of pα(w) in the third contour satisfies

O(1) = −2r(2ϕ + O(ϕ3)) + α
√

2
√

r(−1 − ϕ2 − ϕ + O(ϕ3))

= −4rϕ − α
√

2
√

r + O(1)

So
ϕ = − 1

2
√

2
αr−1/2 + O(r−1) (3.7.4)

and from this we can deduce Equation 3.7.1. Note that since α < 0 we have θ ∈ (−π/2, 0)
as required. The contour of steepest descent of qα(w) in the third contour also satisfies
Equation 3.7.4 and therefore Equation 3.7.1 since the

√
2r sin ϕ terms in Equations 3.7.2

and 3.7.3 are O(1).

From this we can prove the following corollary.

Corollary 3.7.1. We have the following bounds on the exponential parts of the integrands as
stated in Equation 3.6.3. There exists A0, c0 > 0 such that for |w| > mδ on a contour of steepest
descent that goes to infinity,

| exp(B2pα(w))| < A0e−c0|w|

| exp(B2qα(w))| < A0e−c0|w|

Proof. Parametrize w as w = reiθ so |w| = r. Then by Theorem 3.7.2 we have

θ = −π

2
− 1√

2
αr−1/2 + O(r−1).
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Let ϕ = θ
2 +

π
4 as in the proof of the theorem. Then we have

Re(pα(w) = 2r sin θ + α(
√

2r sin ϕ −
√

2r cos ϕ)

= 2r(−1 + O(r−1)) + α(
√

2rO(r−1/2)−
√

2r(1 + O(r−1))

= −2r − α
√

2r + O(1)

So
|eB2 pα(w)| = eB2(−2r−α

√
2r) + O(1)

Similarly, we find
|eB2qα(w)| = eB2(−2r+α

√
2r) + O(1)

So there exists A0, c0 > 0 such that

| exp(B2pα(w))| < A0e−c0r and | exp(B2qα(w))| < A0e−c0r

as required.

3.8 Contours of integration

Recall that we need to evaluate the four integrals I j,k
ε1,ε2(a, x1, x2, y1, y2), for j, k ∈ {0, 1}

defined in Equation 2.2.12. These are double integrals in ω1 and ω2 over the contours
Cr and C1/r, which are circles centered at the origin of radius r and 1/r respectively, for√

2c < r < 1. The only singularities in the integrand are at 0 and at w = z, and there are
branch cuts on the imaginary axis at i(−∞,−1/

√
2c) ∪ (−

√
2c,

√
2c) ∪ (

√
2c, ∞). We can

move the contours as long as we don’t cross the branch cut (which includes the origin). If
we cross the contours over each other we will pick up a single integral over the residues.

We want to move the contours of integration so that in a neighborhood of i they are
steepest descent contours for the exponents in Equation 3.6.3, and away from this neigh-
borhood the contribution to the integral is negligible.

We define the following contours of integration, based on the contours described in
detail in Chapter 3.7. They are shown for different values of α in Figure 2.3. First we
repeat the definition of the contours C0, C ′

0, C1 and C ′
1 from Chapter 2.1.

Definition 3.8.1. Let pα(w) and qα(w) be as defined in Equation 3.6.1 and Equation 3.6.2
respectively. Let η, η′ be as defined in Definition 3.6.1.

For −1/
√

2 < α < 0, let C0 be the steepest descent contour for pα(w) that is contained
in the negative half plane and passes through the saddle point at w = −η. For α =

−1/
√

2 let C0 be the steepest descent contour for pα(w) that passes through the saddle
point at w = 0 and enters the negative half plane at angles of −π/6 and −5π/6. For
α < −1/

√
2, let C0 consist of the steepest descent contour for pα(w) starts from the branch

cut i(1/4, ∞), passes through the saddle point at w = −η and goes to infinity in the third
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quadrant; the reflection in the imaginary axis of this contour; and a contour that goes
around the branch cut at i/4. This contour is shown in detail in Figure 2.2.

Let C ′
0 be the reflection of C0 in the real axis.

Let C1 be the steepest descent contour for qα(w). This passes through w = −η′ and
goes to infinity in the negative half plane.

Let C ′
1 be the reflection of C1 in the real axis.

Now we define finite restrictions of these contours. Fix δ with 0 < δ < 1/2.

Definition 3.8.2. Let C̃0, C̃1, C̃0
′

and C̃1
′

be the restrictions in the w−plane of C0, C1, C ′
0 and

C ′
1 (defined in Definition 3.8.1 above) to the region |w| ≤ mδ.

Finally we define contours C0,m, C1,m, C ′
0,m and C ′

1,m in the ω-plane that the contours Cr
and C1/r will be deformed to.

Definition 3.8.3. First we define C0,m and C1,m. Near ω = i, specifically for |ω − i| ≤
B2mδ−1w, we can write ω = i + B2m−1w for |w| ≤ mδ. Let the ω-contour C0,m in this
region agree with the w−contour C̃1, and let the ω-contour C1,m in this region agree with
the w-contour C̃1

′
. Near ω = −i, define the contours so they are symmetric in the real

axis. Outside of the regions defined by |ω ± i| ≤ B2mδ−1, join up the contours by arcs
of constant radius R1. Note that by Theorem 3.7.2, when |w| = mδ is on C̃1 or C̃1

′
, we

have w = −mδi ± αmδ/2/
√

2 + O(1), so ω = i(1 − B2mδ−1) + O(mδ/2−1), and hence
R1 = 1 − B2mδ−1 + O(mδ/2−1).

We define C ′
0,m and C ′

1,m similarly, so that in a neighborhood of i they agree with C̃2 and

C̃2
′

respectively, are symmetric in the real axis, and are joined by arcs of radius R2 outside
of the regions defined by |ω ± i| ≤ B2mδ−1. Here R2 = 1 + B2mδ−1 + O(mδ/2−1).

Figure 3.2 shows the contours C0,m in blue and C ′
0,m in orange for B = 1, α = −3,

m = 64, δ = 9/20.

3.9 Integral formulas
For ε1, ε2 ∈ {0, 1}, let x = (x1, x2) ∈ Wε1 , y = (y1, y2) ∈ Bε2 , αx < 0 and αy < 0 be as in
Equation 3.1.1. From now on we will assume that αx = αy. In Chapter 5, we look at the
case where αx ̸= αy. We will deform the contours to the contours C0,m, C1,m, C ′

0,m and C ′
1,m

in Definition 3.8.3 as appropriate. We will show that on the arc segment away from the
saddle points, the contribution is negligible. Then we are left with integrals C̃0, C̃1, C̃0

′
and

C̃1
′
. We will show that the difference between these and the integrals C0,m, C1,m, C ′

0,m and
C ′

1,m is also negligible. In some cases, we need to cross the contours, and in these cases we
will pick up a single integral from the residues. First we make some definitions.
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Figure 3.2: The deformed contours for the integral Bε1,ε2(a, x1, x2, y1, y2) with B = 1, α =
−3, m = 64.

Definition 3.9.1. Let C0,m, C1,m, C ′
0,m and C ′

1,m be as defined in Definition 3.8.3. Define

D j,k
ε1,ε2(a, x1, x2, y1, y2) =

iy1−x1

(2πi)2

∫
Cj,m

dω1

ω1

∫
C ′k,m

dω2
V j,k

ε1,ε2(ω1, ω2)

ω2 − ω1
hj,k(ω1, ω2)

Note that the integrand of D j,k
ε1,ε2(a, x1, x2, y1, y2) is the same as Ij,k(a, x1, x2, y1, y2), but

the contours are different.

Definition 3.9.2. Let C0,m, C1,m, C ′
0,m and C ′

1,m be as defined in Definition 3.8.3. Let η be
as in Definition 3.6.1, so the contours C0 and C ′

0 cross at ω = i ± Bm−1η. Let γ00 be any
contour in the ω-plane from ω = i + Bm−1η to ω = i − Bm−1η that crosses the imaginary
axis in the interval i(

√
2c, 1/

√
2c). Let z0 = x0 + iy0 be the point in the first quadrant

where the contours C0 and C ′
1 cross. Let γ10 be any contour in the ω-plane between i +

Bm−1(x0 + iy0) and i + Bm−1(x0 − iy0) that crosses the imaginary axis in the interval
i(
√

2c, 1/
√

2c). Let γ01 be any contour in the ω-plane between i + Bm−1(−x0 − iy0) and
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i + Bm−1(−x0 + iy0) that crosses the imaginary axis in the interval i(
√

2c, 1/
√

2c). Define

E0,0
ε1,ε2

(a, x1, x2, y1, y2) =
iy1−x1

πi

∫
γ00

V0,0
ε1,ε2

(ω, ω)h0,0(ω, ω)
dω

ω
(3.9.1)

E1,0
ε1,ε2

(a, x1, x2, y1, y2) =
iy1−x1

πi

∫
γ10

V1,0
ε1,ε2

(ω, ω)h1,0(ω, ω)
dω

ω
(3.9.2)

E0,1
ε1,ε2

(a, x1, x2, y1, y2) =
iy1−x1

πi

∫
γ01

V0,1
ε1,ε2

(ω, ω)h0,1(ω, ω)
dω

ω
. (3.9.3)

We now prove the following theorem.

Theorem 3.9.1. Let C0,m, C1,m, C ′
0,m and C ′

1,m be as defined in Definition 3.8.3. Recall the double

integrals I j,k
ε1,ε2(a, x1, x2, y1, y2) defined in Equation 2.2.12. Let D j,k

ε1,ε2(a, x1, x2, y1, y2) for j, k ∈
{0, 1} be as in Definition 3.9.1. Then for −1/

√
2 ≤ α < 0 we have

I j,k
ε1,ε2(a, x1, x2, y1, y2) = D j,k

ε1,ε2(a, x1, x2, y1, y2) (3.9.4)

i.e. we can deform the contours of integration to these contours without changing the value of
the integral. However, for α < −1/

√
2, in all but the last case we pick up an extra term when

deforming the contours. Let E j,k
ε1,ε2(a, x1, x2, y1, y2) for (j, k) = (0, 0), (0, 1) and (1, 0) be as in

Definition 3.9.2. Then for α < −1/
√

2 we have

I0,0
ε1,ε2

(a, x1, x2, y1, y2) = D0,0
ε1,ε2

(a, x1, x2, y1, y2) + E0,0
ε1,ε2

(a, x1, x2, y1, y2) (3.9.5)

I1,0
ε1,ε2

(a, x1, x2, y1, y2) = D1,0
ε1,ε2

(a, x1, x2, y1, y2) + E1,0
ε1,ε2

(a, x1, x2, y1, y2) (3.9.6)

I0,1
ε1,ε2

(a, x1, x2, y1, y2) = D0,1
ε1,ε2

(a, x1, x2, y1, y2) + E0,1
ε1,ε2

(a, x1, x2, y1, y2) (3.9.7)

I1,1
ε1,ε2

(a, x1, x2, y1, y2) = D1,1
ε1,ε2

(a, x1, x2, y1, y2) (3.9.8)

Proof. First deform C1/r to C ′
k,m, and deform Cr to a contour C lying entirely inside this

contour, that agrees with C̃j as appropriate on the circular arc section, and is symmetric
in the real axis. Under this deformation the contours do not cross the branch cut or each
other. Now we consider different cases corresponding to different values of α.

If −1/
√

2 < α < 0, then C ′
k,m lies entirely outside the unit circle, and Cj,m lies entirely

inside the unit circle. So we can deform C to Cj,m without crossing the contours. In this
process we also do not cross any branch cuts. This proves Equation 3.9.4.

If α < −1/
√

2, then the contours C0,m and C ′
0,m cross the unit circle, but the C1,m and

C ′
1,m do not. For I1,1

ε1,ε2(a, x1, x2, y1, y2), we can move the ω1−contour C to C1,m without
crossing the contours, which proves Equation 3.9.8. In the other cases the contours will
cross.

First we look at the integral I0,0
ε1,ε2(a, x1, x2, y1, y2). Note that we have

I0,0
ε1,ε2

(a, x1, x2, y1, y2) =
iy1−x1

(2πi)2

∫
C ′0,m

dω2

∫
C

dω1

ω1

V0,0
ε1,ε2(ω1, ω2)

ω2 − ω1
h0,0(ω1, ω2)
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The contour C0,m − C has two components, near ω = ±i respectively. Let Λ be the com-
ponent that is near i, so C0,m = C + Λ + (−Λ) and hence∫

C0,m

=
∫
C
+
∫

Λ
+
∫
−Λ

.

So writing I0,0
ε1,ε2(a, x1, x2, y1, y2) as in Equation 3.9.5 we have

E0,0
ε1,ε2

(a, x1, x2, y1, y2) = − iy1−x1

(2πi)2

∫
C ′0,m

dω2

∫
Λ+(−Λ)

dω1

ω1

V0,0
ε1,ε2(ω1, ω2)

ω2 − ω1
h0,0(ω1, ω2) (3.9.9)

Let γ00 be the segment of C ′
0,m that is inside the contour Λ, which is exactly the segment

C ′
0,m

C0,m
C

Λ

Figure 3.3: The contours C0,m, C ′
0,m, C and Λ. The branch cut is shown in black.

of C ′
0,m near i that is inside C0,m. These contours are shown in Figure 3.3. Let ω2 ∈ γ00, so

ω2 is inside the contour Λ. By the residue theorem we have

∫
Λ

dω1

ω1

V0,0
ε1,ε2(ω1, ω2)

ω2 − ω1
h0,0(ω1, ω2) = −2πi

V0,0
ε1,ε2(ω2, ω2)

ω2
h0,0(ω2, ω2)
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and similarly

∫
−Λ

dω1

ω1

V0,0
ε1,ε2(ω1,−ω2)

(−ω2)− ω1
h0,0(ω1,−ω2) = −2πi

V0,0
ε1,ε2(−ω2,−ω2)

−ω2
h0,0(−ω2,−ω2)

= 2πi
V0,0

ε1,ε2(ω2, ω2)

ω2
h0,0(ω2, ω2)

where we use Theorem 3.3.1 in the last line. Then from Equation 3.9.9 we have

E0,0
ε1,ε2

(a, x1, x2, y1, y2) = − iy1−x1

(2πi)2

∫
C ′0,m

dω2

∫
Λ+(−Λ)

dω1

ω1

V0,0
ε1,ε2(ω1, ω2)

ω2 − ω1
h0,0(ω1, ω2)

= − iy1−x1

(2πi)2

∫
γ00+(−γ00)

dω2

∫
Λ

dω1

ω1

V0,0
ε1,ε2(ω1, ω2)

ω2 − ω1
h0,0(ω1, ω2)

=
iy1−x1

πi

∫
γ00

dω2
V0,0

ε1,ε2(ω2, ω2)

ω2
h0,0(ω2, ω2)

Equations 3.9.2 and 3.9.3 are obtained in a similar fashion.

First we will find the asymptotics for the double integrals, and then we will look at
the integrals E j,k

ε1,ε2(a, x1, x2, y1, y2). First we prove the following theorem that bounds the
integrand away from the saddle points.

Theorem 3.9.2. Let H̃x1,x2(ω) be as defined in Equation 2.2.3. Let C(m) denote the part of the
contour Ck,m that has constant radius R1 as defined in Definition 3.8.3. Let C′

(m) denote the part
of the contour C ′

k,m that has constant radius R2 as defined in Definition 3.8.3. Then there exists
d > 0 such that when m is sufficiently large, for all ω1 ∈ C(m) we have

|H̃x1+1,x2(ω1)| < e−dmδ
,

|H̃x1+1,2n−x2(ω1)| < e−dmδ

and for all ω2 ∈ C′
(m) we have

|H̃y1,y2+1(ω2)| > edmδ
,

|H̃2n−y1,y2+1(ω2)| > edmδ
.

The proof can be found in Appendix A.3.

Theorem 3.9.3. Let V j,k
ε1,ε2(ω1, ω2) be as defined in Equation 2.2.4 and hj,k(ω1, ω2) as defined in

Equation 2.2.11. Let C̃j and C̃k
′

be as defined in Definition 3.8.3. Let C(m) denote the part of the
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contour Ck,m that has constant radius R1 as defined in Definition 3.8.3. Let C′
(m) denote the part

of the contour C ′
k,m that has constant radius R2 as defined in Definition 3.8.3. Then there exists

A1 > 0, c1 > 0 such that

iy1−x1

(2πi)2

∫
C(m)

dω1

ω1

∫
C ′k,m

dω2
V j,k

ε1,ε2(ω1, ω2)

ω2 − ω1
hj,k(ω1, ω2) < A1e−c1mδ

and
iy1−x1

(2πi)2

∫
Cj,m

dω1

ω1

∫
C′
(m)

dω2
V j,k

ε1,ε2(ω1, ω2)

ω2 − ω1
hj,k(ω1, ω2) < A1e−c1mδ

Proof. This follows from Theorem 3.9.2 since the dependence of V j,k
ε1,ε2(ω1, ω2) on m is not

exponential, and |ω2 − ω1| is bounded below by B2mδ−1 + O(mδ/2−1).

Then we are left with integrals over the parts of the contour corresponding to C̃0, C̃1,
C̃0

′
and C̃1

′
.

Next we do a change of variables as in Definition 3.4.1 and substitute the asymptotic
expansions in Theorem 3.4.1 and Theorem 3.5.1. We will need the following lemma to
bound the error terms in the exponent after substituting the asymptotic expansions.

Lemma 3.9.1. Let Aj,k
ε1,ε2(w, z) be as defined in Equation 2.1.7 and gj,k(w, z) be as defined in

Equation 2.3.1. Let the contours C̃j, C̃k
′

be as defined in Definition 3.8.2. Then

∫
C̃j

dw
∫
C̃k

′ dz
Aj,k

ε1,ε2(w, z)
z − w

egj,k(w,z)+O(m−1/2w,m−1/2z)

=
∫
C̃j

dw
∫
C̃k

′ dz
Aj,k

ε1,ε2(w, z)
z − w

egj,k(w,z) + O(m−1/2)

Proof. The proof can be found in Appendix A.4.

Now we move to asymptotic coordinates to approximate our integrals.

Lemma 3.9.2. Let D j,k
ε1,ε2(a, x1, x2, y1, y2) be as defined in Definition 3.9.1. Let the contours

C̃0, C̃1, C̃0
′

and C̃1
′

be as defined in Definition 3.8.2. Recall the functions gj,k(w, z) defined in
Equation 2.3.1. Then

D j,k
ε1,ε2(a, x1, x2, y1, y2) = Bm−1/2 iy1−x1−1(−1)ε1ε2 iε1−ε2

8(2πi)2

×
∫
C̃j

dw
∫
C̃k

′ dz
Aj,k

ε1,ε2(w, z)
z − w

egj,k(w,z) + O(m−1) (3.9.10)
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Proof. Recall from Definition 3.4.1 the change of variables for ω1, ω2 near i

ω1 = i + B2m−1w and ω2 = i + B2m−1z

for |w|, |z| < mδ for some 0 < δ < 1/2. Near −i, we use variables −ω1,−ω2. By The-
orem 3.3.1, and since our contours are symmetric in the real axis, we can just integrate
over ω2 in the upper half plane and double the result. Note that dω1 = B2m−1dw and
dω2 = B2m−1dz. Then by Theorem 3.9.2 we have

D j,k
ε1,ε2(a, x1, x2, y1, y2) = 2

iy1−x1

(2πi)2

∫
C̃j

B2m−1 dw
ω1

∫
C̃k

′ B2m−1dz
V j,k

ε1,ε2(ω1, ω2)

ω2 − ω1
hj,k(ω1, ω2)

+ 2
iy1−x1

(2πi)2

∫
C̃j

B2m−1−dw
−ω1

∫
C̃k

′ B2m−1dz
V j,k

ε1,ε2(−ω1, ω2)

ω2 + ω1
hj,k(−ω1, ω2) + O(A1e−c1mδ

)

Call these two terms S1 and S2 respectively, so we have D j,k
ε1,ε2(a, x1, x2, y1, y2) = S1 + S2 +

O(A1e−c1mδ
). Substituting the expansions in Theorem 3.4.1 and Theorem 3.5.1, the first

term becomes

S1 = 2
iy1−x1(−1)ε1ε2 iε1−ε2

16(2πi)2 Bm−1/2

×
∫
C̃j

dw
i + B2m−1w

∫
C̃k

′ dz

(
Aj,k

ε1,ε2(w, z) + O(m−1/2)

z − w
egj,k(w,z)+O(m−1/2w,m−1/2z)

)

where Aj,k
ε1,ε2(w, z) is defined in Equation 2.1.7. Since |w| < mδ with 0 < δ < 1/2, we have

1/(i + B2m−1w) = −i + O(mδ−1) = −i + O(m−1/2). So we can write

S1 = 2
iy1−x1−1(−1)ε1ε2 iε1−ε2

16(2πi)2 Bm−1/2(1 + O(m−1/2))

×
∫
C̃j

dw
∫
C̃k

′ dz
Aj,k

ε1,ε2(w, z)
z − w

egj,k(w,z)+O(m−1/2w,m−1/2z)

By Lemma 3.9.1, the error term in the exponent gives rise to a global O(m−1/2) error, so
we have

S1 = 2
iy1−x1−1(−1)ε1ε2 iε1−ε2

16(2πi)2 Bm−1/2
∫
C̃j

dw
∫
C̃k

′ dz
Aj,k

ε1,ε2(w, z)
z − w

egj,k(w,z) + O(m−1)

Using Theorem 3.3.1, we can write the S2 term as

S2 = 2
iy1−x1

(2πi)2

∫
C̃j

B2m−1 dw
ω1

∫
C̃k

′ B2m−1dz
V j,k

ε1,ε2(ω1, ω2)

ω1 + ω2
hj,k(ω1, ω2)
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so using the same substitutions as above, but noting that 1/(ω1 + ω2) = −i/2+O(m−1),
we see that S2 = O(m−3/2). So this term is negligible and the result follows.

Now we prove that we can replace the contours C̃0, C̃1, C̃0
′

and C̃1
′

by C0, C1, C ′
0 and C ′

1
with exponentially small error.

Lemma 3.9.3. Let the contours C̃0, C̃1, C̃0
′

and C̃1
′

be as defined in Definition 3.8.2 and the
contours C0, C1, C ′

0 and C ′
1 be as defined in Definition 3.8.1. Then there exists c0 > 0 such that,

∫
Cj

dw
∫
C ′k

dz
Aj,k

ε1,ε2(w, z)
z − w

egj,k(w,z) =
∫
C̃j

dw
∫
C̃k

′ dz
Aj,k

ε1,ε2(w, z)
z − w

egj,k(w,z) + O(e−c0mδ
)

Proof. Recall from Equation 3.6.1, Equation 3.6.2 and Equation 2.3.1 that we can write

g0,0(ω1, ω2) = B2(pα(w) + pα(−z))

g1,0(ω1, ω2) = B2(pα(w) + qα(−z))

g0,1(ω1, ω2) = B2(qα(w) + pα(−z))

g1,1(ω1, ω2) = B2(qα(w) + qα(−z))

By Corollary 3.7.1, there exists A0, c0 > 0 for w ∈ Cj \ C̃j, we have

| exp(B2pα(w))| < A0e−c0|w| and | exp(B2qα(w))| < A0e−c0|w|

and for z ∈ C ′
k \ C̃k

′
, we have

| exp(B2pα(−z))| < A0e−c0|z| and | exp(B2qα(−z))| < A0e−c0|z|

First we show that ∫
Cj\C̃j

dw
∫
C ′k

dz
Aj,k

ε1,ε2(w, z)
z − w

egj,k(w,z) = O(e−c2mδ
)

We have∣∣∣∣∣
∫
Cj\C̃j

dw
∫
C ′k

dz
Aj,k

ε1,ε2(w, z)
z − w

egj,k(w,z)

∣∣∣∣∣
≤ A0

∫
Cj\C̃j

e−c0|w||dw|
∫
C ′k

∣∣∣∣∣A
j,k
ε1,ε2(w, z)
z − w

eB2(2iz+α f±(−z))dz

∣∣∣∣∣
Note that the integrand has no singularities on these contours. By the bounds above, the
inner integral converges. By Theorem 3.7.2 we can write

w = −ir ± 1√
2

αr1/2 + O(1)
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where r = |w|. Then

|dw| =
∣∣∣∣−idr ± 1

2
√

2
αr−1/2dr

∣∣∣∣ = (1 + O(r−1/2))dr

so we have∣∣∣∣∣
∫
Cj\C̃j

dw
∫
C ′k

dz
Aj,k

ε1,ε2(w, z)
z − w

egj,k(w,z)

∣∣∣∣∣
≤
(

2A0

∫ ∞

mδ
e−c0r(1 + O(r−1/2))dr

)
sup

w∈Cj\C̃j

∫
C ′k

∣∣∣∣∣A
j,k
ε1,ε2(w, z)
z − w

eB2(2iz+α f±(−z))dz

∣∣∣∣∣ .

This is O(e−c0mδ
). Similarly, we have∣∣∣∣∣

∫
Cj

dw
∫
C ′k\C̃k

′ dz
Aj,k

ε1,ε2(w, z)
z − w

egj,k(w,z)

∣∣∣∣∣ = O(e−c0mδ
).

The result follows.

Putting Lemma 3.9.2 and Lemma 3.9.3 together we obtain the following theorem.

Theorem 3.9.4. Let D j,k
ε1,ε2(a, x1, x2, y1, y2) be as defined in Definition 3.9.1. Let the contours

C0, C1, C ′
0 and C ′

1 be as defined in Definition 3.8.1. Recall the functions gj,k(w, z) defined in

Equation 2.3.1 and the functions Aj,k
ε1,ε2(w, z) defined in Equation 2.1.7. Then

D j,k
ε1,ε2(a, x1, x2, y1, y2) = Bm−1/2 iy1−x1−1(−1)ε1ε2 iε1−ε2

8(2πi)2

×
∫
Cj

dw
∫
C ′k

dz
Aj,k

ε1,ε2(w, z)
z − w

egj,k(w,z) + O(m−1) (3.9.11)

Proof. This follows directly from Lemma 3.9.2 and Lemma 3.9.3.

Now we find the asymptotic behavior of the integrals E j,k
ε1,ε2(a, x1, x2, y1, y2).

Theorem 3.9.5. Let E j,k
ε1,ε2(a, x1, x2, y1, y2) for (j, k) = (0, 0), (1, 0) and (0, 1) be as defined in

Definition 3.9.2. Then

E0,0
ε1,ε2

(a, x1, x2, y1, y2) = −Bm−1/2 iy1−x1−1(−1)ε1ε2 iε1−ε2

16πi

∫ η

−η
A0,0

ε1,ε2
(w, w)dw + O(m−1)
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where

A0,0
ε1,ε2

(w, w) =
−4(1 + (−1)ε2

√
1/2 − 2iw + (−1)ε1

√
1/2 + 2iw)√

1/2 − 2iw
√

1/2 + 2iw
. (3.9.12)

Furthermore, we have

E1,0
ε1,ε2

(a, x1, x2, y1, y2) = O(m−1) and E0,1
ε1,ε2

(a, x1, x2, y1, y2) = O(m−1).

Proof. From the definition of E j,k
ε1,ε2(a, x1, x2, y1, y2) we can choose the contours γjk so that

they are at most a distance of O(m−1) from i. Then we can apply the change of variables
ω = i + B2m−1w from Equation 3.3.3. Let Γjk be the image of γjk in the w-plane. De-
form Γjk so that it consits of vertical segments from the endpoints to the real axis, and a
segment along the real axis. This does not depend on m. Then using Theorem 3.4.1 and
Theorem 3.5.1 we have

E j,k
ε1,ε2(a, x1, x2, y1, y2) =

iy1−x1−1

πi

∫
γjk

V j,k
ε1,ε2(ω, ω)hj,k(ω, ω)

dω

ω

= Bm−1/2 iy1−x1(−1)ε1ε2 iε1−ε2

16πi∫
Γjk

(Aj,k
ε1,ε2(w, w) + O(m−1/2))egj,k(w,w)+O(m−1/2w)dw

where Aj,k
ε1,ε2(w, z) is defined in Equation 2.1.7 and gj,k(w, z) is defined in Equation 2.3.1.

We compute

A0,0
ε1,ε2

(w, w) = −4(1 + (−1)ε2
√

1/2 − 2iw + (−1)ε1
√

1/2 + 2iw)√
1/2 − 2iw

√
1/2 + 2iw

,

A1,0
ε1,ε2

(w, w) = 0 and A0,1
ε1,ε2

(w, w) = 0.

Since Γjk does not depend on m, it is clear that

E1,0
ε1,ε2

(a, x1, x2, y1, y2) = O(m−1) and E0,1
ε1,ε2

(a, x1, x2, y1, y2) = O(m−1).

Moreover, the contour Γ00 is just a straight line along the real axis from η to −η, and we
have g0,0(w, w) = 0, hence

E0,0
ε1,ε2

(a, x1, x2, y1, y2) = Bm−1/2 iy1−x1−1(−1)ε1ε2 iε1−ε2

16πi

∫ −η

η
A0,0

ε1,ε2
(w, w)dw + O(m−1).

We reverse the orientation of the contour to obtain the result.

Now we prove a lemma to make sense of the quantity iy1−x1(−1)ε1ε2 iε1−ε2 that appears
in many of our formulas.



CHAPTER 3. ASYMPTOTICS OF I j,k
ε1,ε2(a, x1, x2, y1, y2) 55

Lemma 3.9.4. For ε1, ε2 ∈ {0, 1}, let x = (x1, x2) ∈ Wε1 , y = (y1, y2) ∈ Bε2 be vertices that are
joined by an edge. Let ζ(x, y) be as defined in Equation 2.1.2. Then

ζ(x, y)
Σ(y, x)

= (−1)(y1−x1−1)/2(−1)ε1ε2 iε1−ε2+1 (3.9.13)

Proof. Firstly, if ε1 = ε2 then Σ(x, y) = i, and if ε1 ̸= ε2 then Σ(x, y) = 1. Recall that
ζ(x, y) = (−1)(y2−x1)/2. We have

(−1)(y1−x1−1)/2(−1)ε1ε2 iε1−ε2+1ζ(x, y)−1 = (−1)(−y2+x2−1)/2(−1)ε1ε2 iε1−ε2+1

= (−1)ε1ε2−ε2+1iε1−ε2+1

=

{
−i if ε1 = ε2

1 if ε1 ̸= ε2

Now we are ready to prove Theorem 2.3.1.

Proof of Theorem 2.3.1. Combining Theorem 3.9.1, Theorem 3.9.4 and Theorem 3.9.5, we
have the following formulas. Then for −1/

√
2 ≤ α < 0,

I0,0
ε1,ε2

(a, x1, x2, y1, y2) = Bm−1/2 iy1−x1−1(−1)ε1ε2 iε1−ε2

8(2πi)2

×
∫
C0

dw
∫
C ′0

dz
A0,0

ε1,ε2(w, z)
z − w

eg0,0(w,z) + O(m−1), (3.9.14)

and for α < −1/
√

2,

I0,0
ε1,ε2

(a, x1, x2, y1, y2) = Bm−1/2 iy1−x1−1(−1)ε1ε2 iε1−ε2

8(2πi)2

×
( ∫

C0

dw
∫
C ′0

dz
A0,0

ε1,ε2(w, z)
z − w

eg0,0(w,z) − 2πi
∫ η

−η
A0,0

ε1,ε2
(w, w)dw

)
+ O(m−1). (3.9.15)

For (j, k) ̸= (0, 0) for any α < 0,

I j,k
ε1,ε2(a, x1, x2, y1, y2) = Bm−1/2 iy1−x1−1(−1)ε1ε2 iε1−ε2

8(2πi)2

×
∫
Cj

dw
∫
C ′k

dz
Aj,k

ε1,ε2(w, z)
z − w

egj,k(w,z) + O(m−1) (3.9.16)

Then we use Lemma 3.9.4 to finish the proof.

This concludes the asymptotic analysis of I j,k
ε1,ε2(a, x1, x2, y1, y2).
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Chapter 4

Asymptotics of K−1
a,0,0(x, y) in local

neighborhood

In this chapter we find the asymptotics of K−1
a,0,0(x, y), for vertices x ∈ W and y ∈ B in a

local microscopic neighborhood as a → 1. We finish with a proof of Theorem 2.3.2.

4.1 Derivation of real integral formula
For ε1, ε2 ∈ {0, 1}, take w = (w1, w2) ∈ Wε1 and b = (b1, b2) ∈ Bε2 in the same funda-
mental domain, and u, v ∈ Z. Recall that e1 = (1, 1) and e2 = (−1, 1). Let C1 denote a
contour of unit radius centered at the origin, traversed in a counter-clockwise direction.
Let Ka(z, w)−1 be as defined in Equation 2.2.15. From Equation 2.2.14 we have

K−1
a,0,0(w, b + 2ue1 + 2ve2) =

1
(2πi)2

∫
C1

dz
z

∫
C1

dw
w

(Ka(z, w)−1)ε1ε2zuwv (4.1.1)

where for convenience rows and columns of the 2 × 2 matrix Ka(z, w)−1 are indexed by 0
and 1.

Recall from Equation 2.2.13 the characteristic polynomial

Pa(z, w) = −2 − 2a2 − aw−1 − aw − az−1 − az,

which is the determinant of Ka(z, w) and appears in the denominator of the integrand.
First we will prove some symmetry relations.
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Lemma 4.1.1. Let w0 ∈ W0, w1 ∈ W1, b0 ∈ B0 and b1 ∈ B1, be vertices in one fundamental
domain, and take u, v ∈ Z. Then

K−1
a,0,0(w0, b1 + 2ue1 + 2ve2) = K−1

a,0,0(w0, b1 + 2ue1 − 2ve2)

= K−1
a,0,0(w1, b0 − 2ue1 + 2ve2) = K−1

a,0,0(w1, b0 − 2ue1 − 2ve2)

= iK−1
a,0,0(w0, b0 + 2ve1 + 2ue2) = iK−1

a,0,0(w0, b0 − 2ve1 + 2ue2)

= iK−1
a,0,0(w1, b1 + 2ve1 − 2ue2) = iK−1

a,0,0(w1, b1 − 2ve1 − 2ue2) (4.1.2)

Proof. The first, third and sixth equalities follows from applying the change of variables
w → w−1 to the integral in Equation 4.1.1. The second, fifth and seventh equalities fol-
low from applying the change of variables z → z−1. The fourth equality follows from
exchanging the variables z and w.

Hence it suffices to compute K−1
a,0,0(w0, b1 + 2ue1 + 2ve2) for u, v ∈ Z with v ≥ 0.

Lemma 4.1.2. Let w0 ∈ W0 and b1 ∈ B1 be vertices in one fundamental domain. Take u, v ∈ Z

with v ≥ 0. Then we can write

K−1
a,0,0(w0, b1 + 2ue1 + 2ve2) =

1
2πi

∫
C1

dz
z

(a + z) zu w0(z)v

a
√
(2(a + a−1) + z + z−1)2 − 4

(4.1.3)

where

w0(z) =
1
2

(√
(2(a + a−1) + (z + z−1))2 − 4 − (2(a + a−1) + (z + z−1))

)
and where the square root in the denominator refers to the principal branch of the square root.

Proof. We have

K−1
a,0,0(w0, b1 + 2ue1 + 2ve2) =

1
(2πi)2

∫
C1

zudz
z

∫
C1

dw
w

−(a + z)wv

Pa(z, w)
(4.1.4)

We can use the residue theorem to evaluate the inner integral. Note that since we have
limw→0 wPa(z, w) = −a, the integrand does not have a singularity at 0 for any v ≥ 0. Also
note that for a < 1, Pa(z, w) does not have any zeros with (z, w) ∈ C1 × C1. We want to
find w0(z) where Pa(w0(z), z) = 0 and |w0(z)| < 1 for z ∈ C1. The quadratic formula
gives

w0(z) =
1
2

(√
(2(a + a−1) + (z + z−1))2 − 4 − (2(a + a−1) + (z + z−1))

)
.

Note that since z ∈ C1, we have z + z−1 ∈ R. Since a < 1 and z + z−1 ≥ −2, we have
a + a−1 > 2 and so 2(a + a−1) + (z + z−1) > 2. Hence w0(z) is real for z ∈ C1. It is clear
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that |w0(z)| < 1. Since Pa(z, w) is invariant under w → −w, it is clear that the other root
of the quadratic equation is w0(z)−1, given by

w0(z)−1 =
1
2

(
−
√
(2(a + a−1) + (z + z−1))2 − 4 − (2(a + a−1) + (z + z−1))

)
.

To find the residue at w0 we first calculate

∂Pa

∂w
(z, w) = a(w−2 − 1)

So
1

∂Pa
∂w (z, w0)

=
w0

a(w−1
0 − w0)

.

Since we have |w0(z)| < 1 for z ∈ C1, this is always finite. Also note that we have
w0(z)−1 − w0(z) = −

√
(2(a + a−1) + (z + z−1))2 − 4. So we can write

1
2πi

∫
C1

−(a + z)wv

Pa(z, w)

dw
w

=
w0(z)

a(w−1
0 (z)− w0(z))

−(a + z)w0(z)v

w0(z)

=
(a + z)w0(z)v

a
√
(2(a + a−1) + (z + z−1))2 − 4

.

Substituting this expression into Equation 4.1.4 gives the required result.

Now we will deform the contours to write this as a real integral. This requires some
care with the square root. We first consider the case where u + v ≥ 0.

Theorem 4.1.1. Let w0 ∈ W0 and b1 ∈ B1 be vertices in the same fundamental domain. Take
u, v ∈ Z with v ≥ 0 and u + v ≥ 0. For a < 1, let

z1 = −(a + a−1 − 1) +
√
(a + a−1 − 1)2 − 1

z2 = −(a + a−1 + 1) +
√
(a + a−1 + 1)2 − 1.

(4.1.5)

Also for z ∈ R with z1 ≤ z ≤ z2 let

θa(z) =
1
2z

(
i
√

4z2 − (2(a + a−1)z + z2 + 1)2 − (2(a + a−1)z + z2 + 1)
)

. (4.1.6)

Then we can write

K−1
a,0,0(w0, b1 + 2ue1 + 2ve2) =

1
2πa

∫ z2

z1

(a + z) zu (θa(z)v + θa(z)
v
)√

4z2 − (2(a + a−1)z + z2 + 1)2
dz (4.1.7)
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Proof. From Lemma 4.1.2 we have

K−1
a,0,0(w0, b1 + 2ue1 + 2ve2) =

1
2πi

∫
C1

dz
z

(a + z) zu w0(z)v

a
√
(2(a + a−1) + z + z−1)2 − 4

where w0(z) is defined in the statement of Lemma 4.1.2. Since z + z−1 is real and greater
that −2 on the torus, we have (2(a + a−1) + (z + z−1))2 − 4 > 0 for z ∈ C1, so there are
no branch cuts on the contour of integration. Let

ϕa(z) =
√

z(2(a + a−1 − 1) + z + z−1)
√

z(2(a + a−1 + 1) + z + z−1) (4.1.8)

where these square roots are the principal branch. Note that 2(a + a−1 − 1) + z + z−1 − 2
and 2(a + a−1 + 1) + z + z−1 are both real and positive for |z| = 1. Then for z ∈ C1 we
have

ϕa(z) = z
√
(2(a + a−1) + z + z−1)2 − 4

and therefore
w0(z) =

1
2z

(
ϕa(z)− (2(a + a−1) + (z + z−1))

)
for z ∈ C1. We can extend z

√
(2(a + a−1) + z + z−1)2 − 4 to the disk {|z| ≤ 1} by ϕa(z),

except where ϕa(z) has branch cuts. There are branch cuts when

z(2(a + a−1 − 1) + z + z−1) ∈ R≤0 or z(2(a + a−1 + 1) + z + z−1) ∈ R≤0.

If z(2(a + a−1 ± 1) + z + z−1) ∈ R then Im(z2 + 2(a + a−1 ± 1)z) = 0, so (z − z)(z +
z + 2(a + a−1 ± 1)) = 0. Hence either z ∈ R or Re(z) = −(a + a−1 ± 1) < −1. So
inside the unit disk the only branch cuts are on the real line. We find z2 + 2(a + a−1 ±
1)z + 1 < 0 when −(a + a−1 ± 1) −

√
(a + a−1 ± 1)2 − 1 < z < −(a + a−1 ± 1) +√

(a + a−1 ± 1)2 − 1. We have

−(a + a−1 + 1)−
√
(a + a−1 + 1)2 − 1 < −(a + a−1 − 1)−

√
(a + a−1 − 1)2 − 1

< −(a + a−1 − 1) +
√
(a + a−1 − 1)2 − 1

< −(a + a−1 + 1) +
√
(a + a−1 + 1)2 − 1.

For −(a + a−1 − 1)−
√
(a + a−1 − 1)2 − 1 < z < −(a + a−1 − 1) +

√
(a + a−1 − 1)2 − 1

the branch cuts effectively cancel. For z < −(a + a−1 − 1)−
√
(a + a−1 − 1)2 − 1 we do

not have |z| ≤ 1. So the only branch cut inside the contour is along the real axis between
z = z1 and z = z2 with

z1 = −(a + a−1 − 1) +
√
(a + a−1 − 1)2 − 1

z2 = −(a + a−1 + 1) +
√
(a + a−1 + 1)2 − 1.
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We have

K−1
a,0,0(w0, b1 + 2ue1 + 2ve2) =

1
2πi

∫
C1

(a + z) zu ( 1
2z (ϕa(z)− 2((a + a−1)z + z2 + 1)))v

aϕa(z)
dz.

The integrand is meromorphic in the unit disk except when z1 ≤ z ≤ z2. We can show
that ( 1

2z (ϕa(z)− 2((a + a−1)z + z2 + 1)))v has a zero of order v at z = 0. Since u + v ≥ 0
and ϕa(z) has no zeros in the unit disk except on the branch cut, the integrand has no
poles outside of the branch cut, and so we can deform the contour to surround the branch
cut. As z tends to the branch cut in the upper half plane, we have

ϕa(z) =
√

z(2(a + a−1 − 1) + z + z−1)
√

z(2(a + a−1 + 1) + z + z−1)

= i
√

z(2(a + a−1 − 1) + z + z−1)
√
−z(2(a + a−1 + 1) + z + z−1)

= i
√

2(a + a−1)z − 2z + z2 + 1)
√
−2(a + a−1)z − 2z − z2 − 1)

= i
√

4z2 − (2(a + a−1)z + z2 + 1)2

while for z tending to the branch cut in the lower half plane we have

ϕa(z) = −i
√

4z2 − (2(a + a−1)z + z2 + 1)2

Let

θa(z) =
1
2z

(
i
√

4z2 − (2(a + a−1)z + z2 + 1)2 − (2(a + a−1)z + z2 + 1)
)

.

So we obtain

K−1
a,0,0(w0, b1 + 2ue1 + 2ve2) =

1
2πa

∫ z2

z1

(a + z) zu (θa(z)v + θa(z)
v
)√

4z2 − (2(a + a−1)z + z2 + 1)2
dz

as required.

For the case where −u + v > 0, we have a similar result.

Theorem 4.1.2. Let w0 ∈ W0 and b1 ∈ B1 be vertices in the same fundamental domain. Take
u, v ∈ Z with v ≥ 0 and −u + v > 0. For a < 1, let z1, z2 and θa(z) be as in Theorem 4.1.1.
Then we can write

K−1
a,0,0(w0, b1 + 2ue1 + 2ve2) =

1
2πa

∫ z2

z1

(a + z−1) z−u (θa(z)v + θa(z)
v
)√

4z2 − (2(a + a−1)z + z2 + 1)2
dz (4.1.9)

Proof. As for the proof of Theorem 4.1.1, we start with the integral formula from Lemma
4.1.2. Then we apply the change of variables z → z−1. Noting that w0(z) and the denom-
inator of the integrand are invariant under this change of variables, we obtain

K−1
a,0,0(w0, b1 + 2ue1 + 2ve2) =

1
2πi

∫
C1

dz
z

(a + z−1) z−u w0(z)v

a
√
(2(a + a−1) + z + z−1)2 − 4

The proof is completed in the same way as for Theorem 4.1.1.
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4.2 Asymptotics
Now we find the asymptotics of these integrals as a tends to 1 from below. First we find
the asymptotics for u = v = 0. We will use this in the computation of the asymptotics for
the other cases.

Theorem 4.2.1. Let w0 ∈ W0 and b1 ∈ B1 be vertices in the same fundamental domain. Let
K−1

a,0,0(w0, b1) be as defined in Equation 4.1.1. Then

aK−1
a,0,0(w0, b1) =

1
4
− 1

2π
Bm−1/2(− log(Bm−1/2) + 2 log 2) + O(m−1 log m).

Proof. From Theorem 4.1.1 we have

K−1
a,0,0(w0, b1) =

1
πa

∫ z2

z1

a + z√
4z2 − (2(a + a−1)z + z2 + 1)2

dz (4.2.1)

Let
S(a) =

∫ z2

z1

a + z√
4z2 − (2(a + a−1)z + z2 + 1)2

dz (4.2.2)

so aK−1
a,0,0(w0, b1) = S(a)/π. First we make the substitution z = (t − 1)/(t + 1) and set

ti = (1 + zi)/(1 − zi) to obtain

S(a) =
∫ t2

t1

(
a +

t − 1
t + 1

)
1√

−(a + a−1 + 2)(a + a−1)(t2 − t2
2)(t2 − t2

1)
dt.

We split this integral into two integrals S(a) = S1(a) + S2(a) where

S1(a) =
∫ t2

t1

(
−2t

t2 − 1

)
1√

−(a + a−1 + 2)(a + a−1)(t2 − t2
2)(t2 − t2

1)
dt.

and

S2(a) =
∫ t2

t1

(
a +

t2 + 1
t2 − 1

)
1√

−(a + a−1 + 2)(a + a−1)(t2 − t2
2)(t2 − t2

1)
dt.

We will deal with these separately. First we look at S1(a). We make a change of variables
u = t2 to obtain

S1(a) =
∫ t2

2

t2
1

(
1

1 − u

)
1√

−(a + a−1 + 2)(a + a−1)(u − t2
2)(u − t2

1)
du
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and another change of variables u = 1
2(t

2
1 + t2

2) +
1
2(t

2
2 − t2

1)
2v

v2+1 to obtain

S1(a) =
∫ 1

−1

√
(a + a−1 + 1)2 − 1

(a + a−1 + 1)(v2 + 1)− 2v
dv.

Now we let δ = (a + a−1 + 1)−1 and set y = v − δ. Then we obtain

S1(a) =
∫ 1−δ

−1−δ

√
1 − δ2

y2 + 1 − δ2 dy =
π

2
.

For S2(a) we make the substitution t = t1t2/
√

t2
2 − (t2

2 − t2
1)y

2 and note that we have

t2
1 = (a + a−1 − 2)/(a + a−1) and t2

2 = (a + a−1)/(a + a−1 + 2) to obtain

S2(a) =
∫ 1

0

(
a − 1 +

a + a−1 − 2
−1 + 2

a+a−1 y2

)
1

(a + a−1)

√(
1 − 4

(a+a−1)2 y2
)
(1 − y2)

dy.

Recall that c = 1/(a + a−1). Let k = 2c. We can write

S2(a) =
a − 1

a + a−1

∫ 1

0

1√
(1 − k2y2)(1 − y2)

dy

− a + a−1 − 2
a + a−1

∫ 1

0

1
(1 − ky2)

√
(1 − k2y2)(1 − y2)

dy.

The first term is an elliptic integral. To deal with the second term we first compute

2
∫ 1

0

1
(1 − ky2)

√
(1 − k2y2)(1 − y2)

dy −
∫ 1

0

1√
(1 − k2y2)(1 − y2)

dy

=
∫ 1

0

(
1 + ky2

1 − ky2

)
1√

(1 − k2y2)(1 − y2)

=
∫ 1+k

1−k

1
u(u2 − 1)

1√
(k + 1)2 − (k − 1)2u2

du

=
∫ ( 1+k

1−k )
2

1

1
2(1 − k)

1√((
1+k
1−k

)2
− v
)
(v − 1)

dv

=
π

2(1 − k)
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where we use the substitutions u = (1 + ky2)/(1 − ky2) and v = u2. Therefore, noting
that 1 − k = (a + a−1 − 2)/(a + a−1) we have

S2(a) =
a − a−1

2(a + a−1)

∫ 1

0

1√
(1 − k2y2)(1 − y2)

dy − π

4

So recalling that aK−1
a,0,0(w0, b1) = (S1(a) + S2(a))/π we have

aK−1
a,0,0(w0, b1) =

1
4
+

a − a−1

2π(a + a−1)

∫ 1

0

1√
(1 − 4c2y2)(1 − y2)

dy. (4.2.3)

This integral is a complete elliptic integral of the first kind and its asymptotics are well
known. We find that

aK−1
a,0,0(w0, b1) =

1
4
− h

2π
(− log h + 2 log 2) + O(h2 log h).

where a = 1 − h. The result follows.

We thank Zitong Cheng for the computations to pass from Equation 4.2.1 to Equa-
tion 4.2.3 in the above proof.

We now make the following definitions. Let

S(a, z) =
∫ z

z1

a + ξ√
4ξ2 − (2(a + a−1)ξ + ξ2 + 1)2

dz. (4.2.4)

Note that S(a, z2) = S(a), defined in Equation 4.2.2, and S(a, z1) = 0. Also note that
S(a, z) is continuous in z. For z1 ≤ z ≤ z2, let

g(u,v)(a, z) =
zu(θa(z)v + θa(z)−v)

2
=

zu(θa(z)|v| + θa(z)
|v|
)

2
(4.2.5)

where θa(z) is defined in Equation 4.1.6. Note that g(u,v)(a, z) = g(u,−v)(a, z), and that
g(u,v)(a, z) is real for z1 ≤ z ≤ z2.

Below we prove a lemma that will allow us to find the asymptotics of K−1
a,0,0(w0, b1 +

2ue1 + 2ve2) for general u, v, from the asymptotics of g(u,v)(a, z) and S(a, z).

Lemma 4.2.1. Let w0 ∈ W0 and b1 ∈ B1 be vertices in the same fundamental domain and take
u, v ∈ Z with u + |v| ≥ 0. Then we have

K−1
a,0,0(w0, b1 + 2ue1 + 2ve2) =

1
πa

(
g(u,v)(a, z2)S(a, z2)−

∫ z2

z1

g(u,v)
2 (a, z)S(a, z)dz

)
(4.2.6)

where g(u,v)
2 (a, z) = ∂g(u,v)

∂z (a, z).
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Proof. Let

r(a, z) =
a + z√

4z2 − (2(a + a−1)z + z2 + 1)2

so S(a, z) =
∫ z2

z1
r(a, z′)dz′. Then from Theorem 4.1.1 and Lemma 4.1.1 we have

K−1
a,0,0(w0, b1 + 2ue1 + 2ve2) =

1
πa

∫ z2

z1

g(u,v)(a, z)r(a, z)dz.

We know that g(u,v)(a, z) is a polynomial in z for u − |v| ≥ 0 and z1 ≤ z ≤ z2. Then
integration by parts gives∫ z2

z1

g(u,v)(a, z)r(a, z)dz = g(u,v)(a, z2)S(a, z2)− g(u,v)(a, z1)S(a, z1)

−
∫ z2

z1

g(u,v)
2 (a, z)

∫ z

z1

r(a, z′)dz′ dz

= g(u,v)(a, z2)S(a, z2)−
∫ z2

z1

g(u,v)
2 (a, z)S(a, z) dz

as required.

We are almost ready to complete our asymptotic analysis. First we state a lemma about
the asymptotics of a particular elliptic integral which will appear in the computation of
the asymptotics of S(a, z).

Lemma 4.2.2. For −1 < z < −3 + 2
√

2, let

λz =

√
a + a−1

2

√
2z(a + a−1 − 1) + z2 + 1

1 + z

for a sufficiently close to 1 such that the argument of the square root is positive. Let k = 2c =
2/(a + a−1). Then

∫ λz

0

1√
(1 − k2y2)(1 − y2)

dy = − log h + log

(
4
√

2(1 + z)
1 − z +

√
−1 − 6z − z2

)
+ R(h, z)

as h → 0, where a = 1 − h and

|R(h, z)| < A(z + 1)−2h2 log h + A′(z − (−3 + 2
√

2))−1/2h2 + A′′h log h

as h → 0 for some constants A, A′ and A′′ not depending on z or h.

The proof can be found in Appendix A.5.
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Theorem 4.2.2. Let w0 ∈ W0 and b1 ∈ B1 be vertices in the same fundamental domain and take
u, v ∈ Z with u + |v| ≥ 0. Then

aK−1
a,0,0(w0, b1 + 2ue1 + 2ve2) =

1
π

∫ −3+2
√

2

−1

g(u,v)(1, z)√
−1 − 6z − z2

dz +
(−1)u+v

2π
h log h

− 1
π

(
(−3 + 2

√
2)u log 2 +

∫ −3+2
√

2

−1
g(u,v)

2 (1, z)b(z)dz

)
h + O(h2 log h) (4.2.7)

where g(u,v)(a, z) is defined in Equation 4.2.5 and

b(z) = −1
2

log

(
4
√

2(1 + z)
1 − z +

√
−1 − 6z − z2

)
(4.2.8)

Proof. Let a = 1 − h. We start from Equation 4.2.6 and ompute the asymptotics of

g(u,v)(a, z2)S(a, z2)−
∫ z2

z1

g(u,v)
2 (a, z)S(a, z)dz.

First we compute

z1 = −1 +
√

2h + O(h2)

z2 = −3 + 2
√

2 + O(h2)

and z2 > −3+ 2
√

2 for 0 < a < 1. First we note that since from the proof of Theorem 4.1.1
z2 is a root of 2(a + a−1 + 1)z + z2 + 1 = 0, we have θa(z2) =

1
2z2

(2z2) = 1, so

g(u,v)(a, z2) = zu
2 = (−3 + 2

√
2)u + O(h2).

So from Theorem 4.2.1 we have

g(u,v)(a, z2)S(a, z2) = (−3 + 2
√

2)u
(

π

4
− h

2
(− log h + 2 log 2)

)
+ O(h2 log h). (4.2.9)

For the integral term in 4.2.6, note that g(u,v)
2 (a, z) is a polynomial in z, z−1, a and a−1,

and S(a, z) is continuous on [z1, z2] with S(a, z1) = 0, so the integrand is continuous and
evaluates to zero at the lower limit. Also note that the integrand r(a, z) is positive on
(z1, z2), so S(a, z) ≤ S(a, z2) ≤ π/4 for h sufficiently small. Also g(u,v)(a, z) is bounded in
a for a in a closed interval not containing 0 and z in a closed interval not containing 0. So,
since −3 + 2

√
2 < z2 and z2 = −3 + 2

√
2 + O(h2), we have∣∣∣∣∫ z2

−3+2
√

2
g(u,v)

2 (a, z)S(a, z)dz
∣∣∣∣ = O(h2)



CHAPTER 4. ASYMPTOTICS OF K−1
a,0,0(x, y) IN LOCAL NEIGHBORHOOD 66

and so ∫ z2

z1

g(u,v)
2 (a, z)S(a, z)dz =

∫ −3+2
√

2

z1

g(u,v)
2 (a, z)S(a, z)dz + O(h2) (4.2.10)

Since g(u,v)(a, z) is a function of a+ a−1 = 1+O(h2), we see that g(u,v)
2 (a, z) = g(u,v)

2 (1, z)+
O(h2). We must find the asymptotics of S(a, z) as h → 0. To do this we follow the same
procedure as in the proof of Theorem 4.2.1, but keeping track of the upper limits in each
integral. We use Lemma 4.2.2 to deal with the elliptic integral. We omit the details. We
find that for z1 ≤ z < −3 + 2

√
2,

S(a, z) =
1
2

(
−2 tan−1

(
4
√

2z + 3(1 + z)
√
−1 − 6z − z2

(3 + z)(1 + 3z)

)
+ sin−1 (1 + z)2

4z
+ 2 tan−1

√
2

)

+
h
2

(
log h − log

4
√

2(1 + z)
1 − z +

√
−1 − 6z − z2

)
+ T(h, z)

where

|T(h, z)| < C(z + 1)−2h3 log h + C′(z − (−3 + 2
√

2))−1/2h2 + C′′h2 log h

as h → 0 for constants C, C′, C′′. We write

S(a, z) = b0(z) +
h log h

2
+ b2(z)h + T(h, z).

Combining this asymptotic expansion with Equation 4.2.10, and integrating the parts of
T(h, z) that depend on z, noting that z1 + 1 = O(h), we have

∫ z2

z1

g(u,v)
2 (a, z)S(a, z)dz =

∫ −3+2
√

2

z1

g(u,v)
2 (1, z)

(
b0(z) +

h log h
2

+ b2(z)h
)

dz+O(h2 log h)

We look at these terms one-by-one. Clearly since g(u,v)
2 (1, z) is a polynomial in z and

z−1, it is bounded with bounded derivative on [−1,−3 + 2
√

2]. Firstly, we can show that
b0(z) is bounded on [−1,−3 + 2

√
2] with bounded derivative on [−1, z1]. Furthermore

b0(−1) = 0. Hence ∫ z1

−1
g(u,v)

2 (1, z)b0(z)dz = O(h2)

so ∫ −3+2
√

2

z1

g(u,v)
2 (1, z)b0(z)dz =

∫ −3+2
√

2

−1
g(u,v)

2 (1, z)b0(z)dz + O(h2).
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For the order h log h term, we have

∫ −3+2
√

2

z1

g(u,v)
2 (1, z)h log h

2
dz = (g(u,v)(1,−3 + 2

√
2)− g(u,v)(1, z1))

h log h
2

= ((−3 + 2
√

2)u − (−1)u+v)
h log h

2
+ O(h2 log h)

noting that g(u,v)(1, z1) = zu
1(−1)v.

For the the order h term, we calculate that b2(z) = O(log(1 + z)) as z → 1. From this
we can show that ∫ z1

−1
g(u,v)

2 (1, z)b2(z) dz = O(h log h).

Putting these together, we have

∫ z2

z1

g(u,v)
2 (a, z)S(a, z)dz =

∫ −3+2
√

2

−1
g(u,v)

2 (1, z) (b0(z) + b2(z)h) dz

+ (g(u,v)(1, z2)− (−1)u+v)
h log h

2
+ O(h2 log h) (4.2.11)

We can now simplify this further by using integration by parts again on the constant term.
We have

db0

dz
(z) =

1√
−1 − 6z − z2

= r(1, z)

Then∫ −3+2
√

2

−1
g(u,v)

2 (1, z)b0(z)dz = g(u,v)(1,−3 + 2
√

2)b0(−3 + 2
√

2)− g(u,v)(1,−1)b0(−1)

−
∫ −3+2

√
2

−1

g(u,v)(1, z)√
−1 − 6z − z2

dz

=
(−3 + 2

√
2)uπ

4
−
∫ −3+2

√
2

−1

g(u,v)(1, z)√
−1 − 6z − z2

dz

(4.2.12)

We are unable to simplify the order h term in the same way, as b2(z) is undefined at
z = −1. Combining Equations 4.2.9, 4.2.11 and 4.2.12 we have

g(u,v)(a, z2)S(a, z2)−
∫ z2

z1

g(u,v)
2 (a, z)S(a, z)dz =

∫ −3+2
√

2

−1

g(u,v)(1, z)√
−1 − 6z − z2

dz

+
(−1)u+v

2
h log h−

(
(−3 + 2

√
2)u log 2 +

∫ −3+2
√

2

−1
g(u,v)

2 (1, z)b2(z)dz

)
h+O(h2 log h).

(4.2.13)



CHAPTER 4. ASYMPTOTICS OF K−1
a,0,0(x, y) IN LOCAL NEIGHBORHOOD 68

By Equation 4.2.6 to find aK−1
a,0,0(w0, b1 + 2ue1 + 2ve2) we just divide this by π, then noting

that b(z) = b2(z), the proof is complete.

We can prove a similar result for when −u + |v| > 0.

Theorem 4.2.3. Let w0 ∈ W0 and b1 ∈ B1 be vertices in the same fundamental domain and take
u, v ∈ Z with −u + |v| ≥ 0. Then

K−1
a,0,0(w0, b1 + 2ue1 + 2ve2) =

1
π

∫ −3+2
√

2

−1

g(−u−1,v)(1, z)√
−1 − 6z − z2

dz

+
(−1)u+v

2π
h log h +

1
π

(
(−3 + 2

√
2)−u−1 log 2 +

∫ −3+2
√

2

−1
g(−u−1,v)

2 (1, z)b(z)dz

)
h

+ O(h2 log h) (4.2.14)

where g(u,v)(a, z) is defined in Equation 4.2.5 and b(z) is as in Equation 4.2.8.

Proof. From Theorem 4.1.2 we can write

K−1
a,0,0(w0, b1 + 2ue1 + 2ve2) =

1
2π

∫ z2

z1

(z + a−1) z−u−1 (θa(z)v + θa(z)
v
)√

4z2 − (2(a + a−1)z + z2 + 1)2
dz (4.2.15)

In the same way as Lemma 4.2.1 we can write

K−1
a,0,0(w0, b1 + 2ue1 + 2ve2) =

1
π

(
g(−u−1,v)(a, z2)S(a−1, z2)

−
∫ z2

z1

g(−u−1,v)
2 (a, z)S(a−1, z)dz

)
(4.2.16)

We find that breaking down S(a−1, z) as in Theorem 4.2.1, the elliptic integral term has
the opposite sign from S(a, z), which is responsible for the order h and h log h terms in the
asymptotic expansion. So we have

S(a−1, z2) =
π

4
+

h
2
(− log h + 2 log 2) + O(h2 log h)

and
S(a−1, z) = b0(z)−

h log h
2

− b2(z)h + O(h2 log h).

The theorem follows from Theorem 4.2.2 by changing the signs of the order h and h log h
terms and replacing u with −u − 1.

Now we prove some relations between the coefficients in these asymptotic expansions.
We write

K−1
a,0,0(w0, b1 + 2ue1 + 2ve2) = s0(u, v) + s1(u, v)h log h+ s2(u, v)h+O(h2 log h). (4.2.17)
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Lemma 4.2.3. Let s0(u, v), s1(u, v) and s2(u, v) be as in Equation 4.2.17. Then for all u, v ∈ Z

we have:

1. si(u,−v) = si(u, v) for i = 0, 1, 2.
2. s0(−u − 1, v) = s0(u, v)
3. s1(−u − 1, v) = −s1(u, v)
4. s2(−u − 1, v) = −s2(u, v) + s0(u, v)

Furthermore, we have
s2(u + 1, v) = −s2(u, v) + s0(u + 1, v).

Proof. The first relation is clear from Lemma 4.1.1, where we show that K−1
a,0,0(w0, b1 +

2ue1 + 2ve2) = K−1
a,0,0(w0, b1 + 2ue1 − 2ve2). From Theorems 4.2.2 and 4.2.3, we have

s0(u, v) =


1
π

∫ −3+2
√

2
−1

g(u,v)(1,z)√
−1−6z−z2 dz if u ≥ 0

1
π

∫ −3+2
√

2
−1

g(−u−1,v)(1,z)√
−1−6z−z2 dz if u < 0,

(4.2.18)

s1(u, v) =
(−1)u+v

2π
, (4.2.19)

and

s2(u, v) =


− 1

π

(
(−3 + 2

√
2)u log 2 +

∫ −3+2
√

2
−1 g(u,v)

2 (1, z)b(z)dz

−
∫ −3+2

√
2

−1
g(u,v)(1,z)√
−1−6z−z2 dz

)
if u ≥ 0

1
π

(
(−3 + 2

√
2)−u−1 log 2 +

∫ −3+2
√

2
−1 g(−u−1,v)

2 (1, z)b(z)dz
)

if u < 0,

noting that there is a factor of a on the left hand side of Equation 4.2.7 but not Equa-
tion 4.2.14. Relations 2–4 in the lemma are clear from these formulas.

For the final relation, we note that g(u+1,v)
2 (1, z) = d

dz (zg(u,v)(1, z)) = g(u,v)(1, z) +

zg(u,v)
2 (1, z) and

d
dz

(1 + z)b(z) =
−1√

−1 − 6z − z2
+ b(z).
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We compute∫ −3+2
√

2

−1
g(u+1,v)

2 (1, z)b(z)dz +
∫ −3+2

√
2

−1
g(u,v)

2 (1, z)b(z)dz

=
∫ −3+2

√
2

−1
(1 + z)g(u,v)

2 (1, z)b(z)dz +
∫ −3+2

√
2

−1
g(u,v)(1, z)b(z)dz

=
[
(1 + z)b(z)g(u,v)(1, z)

]−3+2
√

2

−1

+
∫ −3+2

√
2

−1

(
−1√

−1 − 6z − z2
+ b(z)

)
g(u,v)(1, z)dz

+
∫ −3+2

√
2

−1
g(u,v)(1, z)b(z)dz

= −(−2 + 2
√

2)(−3 + 2
√

2)u log 2 −
∫ −3+2

√
2

−1

g(u,v)(1, z)√
−1 − 6z − z2

dz.

Also we have

(−3 + 2
√

2)u+1 log 2 + (−3 + 2
√

2)u log 2 = (−2 + 2
√

2)(−3 + 2
√

2)u log 2.

Putting these together we see that for u ≥ 0, we have

s2(u + 1, v) + s2(u, v) =
1
π

∫ −3+2
√

2

−1

g(u+1,v)(1, z)√
−1 − 6z − z2

= s0(u + 1, v)

as required. For u ≤ −2, we have

s2(u + 1, v) = −s2(−u − 2, v) + s0(u + 1, v)
= s2(−u − 1, v)− s0(−u − 1, v) + s0(u + 1, v)
= −s2(u, v) + s0(u, v)− s0(−u − 1, v) + s0(u + 1, v)
= −s2(u, v) + s0(u + 1, v)

Now all that remains is the u = −1 case. Relation 4 followed by 2 gives s2(0, v) =
−s2(−1, v) + s0(0, v) as required. This proves the lemma.

Now we prove some corollaries.

Corollary 4.2.1. Let s2(u, v) be as defined in Equation 4.2.17. Then for all u, v ∈ Z we have

s2(u, v) = s2(−u − 2, v).

Proof. From the last relation in Lemma 4.2.3 we have s2(u+ 1, v) = −s2(u, v)+ s0(u+ 1, v)
and from relation 4 we have s2(u+ 1, v) = −s2(−u− 2, v)+ s0(u+ 1, v). Combining these
proves the corollary.
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Corollary 4.2.2. Let s0(u, v) and s2(u, v) be as defined inEquation 4.2.17. For u ̸= 0, we can
write

s2(u, v) = (−1)u

(|u+1|−1

∑
i=1

(−1)is0(i, v) + s2(0, v)

)
Proof. For u > 0, we use the relation s2(u, v) = −s2(u − 1, v) + s0(u, v) repeatedly to
obtain

s2(u, v) = (−1)u

(
u

∑
i=1

(−1)is0(i, v) + s2(0, v)

)
.

The u < 0 case follows from Corollary 4.2.1.

We can use this to write s2 in a more symmetric form.

Corollary 4.2.3. Let s2(u, v) be as defined in Equation 4.2.17. For u, v ∈ Z, we can write

s2(u, v) =
(−1)u

π

( ∫ −3+2
√

2

−1

(|u+1|−1

∑
i=0

(−z)i

)
(θ1(z)v + θ1(z)−v)

2
√
−1 − 6z − z2

dz

− log 2 −
∫ −3+2

√
2

−1
g(0,v)

2 (1, z)b(z)dz

)
(4.2.20)

where
θ1(z) =

1
2z

(
i
√

4z2 − (4z + z2 + 1)2 − (4z + z2 + 1)
)

,

g(0,v)
2 (1, z) =

v(θ1(z)v − θ1(z)−v)θ′1(z)
θ1(z)

and b(z) is defined in Equation 4.2.8.

Proof. We start from Corollary 4.2.2, and substitute the formulas for s0(i, v) and s2(0, v)
stated in the proof of Lemma 4.2.3, and the definition for g(u,v)(1, z) from Equation 4.2.5,
to obtain the formula in the statement of the corollary. It is clear that this formula also
holds for u = 0.

Now by Lemma 4.1.1, we can find the asymptotics of K−1
a,0,0(wε1 , bε2 + 2ue1 + 2ve2) for

ε1, ε2 ∈ {0, 1} and u, z ∈ Z. In the following lemma we collect these formulas together
for K−1

a,0,0(x, y) where x ∈ W and y ∈ B.

Lemma 4.2.4. Take x ∈ W and y ∈ B. Write y − x = pe1 + qe2. Let ζ(x, y) and Σ(x, y) be as
defined in Equations 2.1.2 and 2.1.3 respectively. When p is odd and q is even, define

c0(pe1 + qe2) = s0((p − 1)/2, q/2),
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c1(pe1 + qe2) = (−1)(p−q−1)/2s1((p − 1)/2, q/2),
and

c2(pe1 + qe2) = (−1)(p−q−1)/2
(

s2((p − 1)/2, q/2)− 1
2

s0((p − 1)/2, q/2)
)

.

When p is even and q is odd, define

ci(pe1 + qe2) = ci(qe1 + pe2)

for i = 0, 1, 2. Then

K−1
a,0,0(x, y) =

1
Σ(x, y)

(
c0(y − x) + c0(y − x)h/2

+ ζ(x, y)(c1(y − x)h log h + c2(y − x)h)
)
+ O(h2 log h).

Proof. First we note that for wε1 ∈ Wε1 and bε2 ∈ Bε2 in one fundamental domain, we have

b1 − w0 = e1, b0 − w1 = −e1, b0 − w0 = e2 and b1 − w1 = −e2.

Now suppose that p is odd and q is even, so Σ(x, y) = 1. Then either x ∈ W0 and y ∈ B1
or x ∈ W1 and y ∈ B0. In the first case we have

K−1
a,0,0(x, y) = K−1

a,0,0(w0, b1 + (p − 1)e1 + qe2)

= s0((p − 1)/2, q/2) + s1((p − 1)/2, q/2)h log h

+ s2((p − 1)/2, q/2)h + O(h2 log h).

In the second case we have

K−1
a,0,0(x, y) = K−1

a,0,0(w1, b0 + (p + 1)e1 + qe2)

= K−1
a,0,0(w0, b1 − (p + 1)e1 + qe2)

= s0(−(p + 1)2, q/2) + s1(−(p + 1)/2, q/2)h log h

+ s2(−(p + 1)/2, q/2)h + O(h2 log h)
= s0((p − 1)/2, q/2)− s1((p − 1)/2, q/2)h log h

− s2((p − 1)/2, q/2)h + s0((p − 1)/2, q/2)h + O(h2 log h)

where we use Lemma 4.1.1 in the second line and Lemma 4.2.3 in the fourth line. Now
note that for x ∈ W0 and y ∈ B1 we have ζ(x, y) = (−1)(p−q−1)/2 and for x ∈ W1 and y ∈ B0
we have ζ(x, y) = (−1)(p−q−1)/2. So we can write

K−1
a,0,0(x, y) = s0((p − 1)/2, q/2) +

1
2

s0((p − 1)/2, q/2)h

+ ζ(x, y)(−1)(p−q−1)/2
(

s1((p − 1)/2, q/2)h log h

+ (s2((p − 1)/2, q/2)− 1
2

s0((p − 1)/2, q/2))h
)
+ O(h2 log h).
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Now suppose that p is even and q is odd, so Σ(x, y) = i. Then either x ∈ W0 and y ∈ B0
or x ∈ W1 and y ∈ B1. In the first case we have

K−1
a,0,0(x, y) = K−1

a,0,0(w0, b0 + pe1 + (q − 1)e2)

= −iK−1
a,0,0(w0, b1 + (q − 1)e1 + pe2).

In the second case we have

K−1
a,0,0(x, y) = K−1

a,0,0(w1, b1 + pe1 + (q + 1)e2)

= −iK−1
a,0,0(w1, b0 + (q + 1)e1 + pe2).

In the first case we have ζ(x, y) = (−1)(p−q+1)/2 = (−1)(q−p−1)/2 and in the second case
we have ζ(x, y) = (−1)(p−q−1)/2 = (−1)(q−p−1)/2. So we can write

K−1
a,0,0(x, y) = −i

(
s0((q − 1)/2, p/2) +

1
2

s0((q − 1)/2, p/2)h

+ ζ(x, y)(−1)(q−p−1)/2
(

s1((q − 1)/2, p/2)h log h

+ (s2((q − 1)/2, p/2)− 1
2

s0((q − 1)/2, p/2))h
))

+ O(h2 log h).

Comparing with the definitions of ci(pe1, qe2) we see that we have proved the result.

Now we are ready to prove Theorem 2.3.2.

Proof of Theorem 2.3.2. We need to show that the definitions of ci(pe1 + qe2) in Lemma 4.2.4
agree with those in Equations 2.3.6–2.3.8. We start from Lemma 4.2.4. Firstly, note that
g(u,v)(1, z) = zuk(v). Consider p odd and q even. The case p even and q odd follows
immediately from this case.

For c0, by Equation 4.2.18 we have

c0(pe1 + qe2) =
1
π

∫ −3+2
√

2

−1

g(|p|/2−1/2,v)(1, z)√
−1 − 6z − z2

dz

from which Equation 2.3.6 follows.
For c1, by Equation 4.2.19 we have

c1(pe1 + qe2) = (−1)(p−q−1)/2 (−1)(p−1)/2+q/2

2π
=

1
2π
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For c2, it is a little more complicated. By Corollary 4.2.3 we have

c2(pe1 + qe2)

= (−1)(p−q−1)/2

(
(−1)(p−1)/2

π

( ∫ −3+2
√

2

−1

(|p+1|/2−1

∑
i=0

(−z)i

)
(θ1(z)q/2 + θ1(z)−q/2)

2
√
−1 − 6z − z2

dz

− log 2 −
∫ −3+2

√
2

−1
g(0,q/2)

2 (1, z)b(z)dz

)
− 1

2π

∫ −3+2
√

2

−1

g(|(p|/2−1/2,v)(1, z)√
−1 − 6z − z2

dz

)

=
(−1)q/2

π

( ∫ −3+2
√

2

−1

(|p+1|/2−1

∑
i=0

(−z)i

)
k(v)(z)√

−1 − 6z − z2
dz − log 2

−
∫ −3+2

√
2

−1
g(0,q/2)

2 (1, z)b(z)dz − 1
2

∫ −3+2
√

2

−1

(−1)(p−1)/2z|p|/2−1/2k(v)(z)√
−1 − 6z − z2

dz

)

from which we can show the formula in Equation 2.3.8 by considering p > 0 and p < 0
separately. This completes the proof.
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Chapter 5

An experimental study of two-point
correlation functions of mesoscopically
separated dimers

In this chapter, we do an experimental study of two-point correlation functions of dimers
e and e′ along the leading diagonal in the third quadrant, which are a microscopic distance
of order m1/2 both from the center of the Aztec diamond and from each other. We make
a conjecture for the two-point correlation functions in the mesoscopic limit, and compare
this to experimental results. As in previous chapters, we use the Kasteleyn method.

5.1 Conjecture and sketch proof

We look at the inverse Kasteleyn matrix K−1
a (x, y) for x = (x1, x2) ∈ Wε1 and y = (y1, y2) ∈

Bε2 with asymptotic coordinates αx, αy as in 3.1.1 with αx ̸= αy.
We define the following double integrals. These extend the definitions in Equation 2.1.8

and 2.1.9 to when αx ̸= αy.

I1(αx, αy, ε1, ε2) =
∫
C0

dw
∫
C ′0

dz
A0,0

ε1,ε2(w, z)
i(z − w)

exp(B2(−2i(w − z) + αx f−(w)− αy f−(z))),

I2(αx, αy, ε1, ε2) =
∫
C0

dw
∫
C ′1

dz
A1,0

ε1,ε2(w, z)
i(z − w)

exp(B2(−2i(w − z) + αx f−(w) + αy f+(z))),

I3(αx, αy, ε1, ε2) =
∫
C1

dw
∫
C ′0

dz
A0,1

ε1,ε2(w, z)
i(z − w)

exp(B2(−2i(w − z) + αx f+(w)− αy f−(z))),

I4(αx, αy, ε1, ε2) =
∫
C1

dw
∫
C ′1

dz
A1,1

ε1,ε2(w, z)
i(z − w)

exp(B2(−2i(w − z) + αx f+(w) + αy f+(z))),

(5.1.1)
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where the functions Aj,k
ε1,ε2(w, z) are defined in Equation 2.1.7 and the contours are defined

below. When either αx < −1/
√

2 or αy < −1/
√

2, we also define the single integral

I0(αx, αy, a, ε1, ε2) =
∫

γ

1 + (−1)ε2
√

1/2 − 2iw + (−1)ε1
√

1/2 + 2iw√
1/2 − 2iw

√
1/2 + 2iw

dw. (5.1.2)

The contours C0, C ′
0, C1, C ′

1 and γ are defined as follows. Again, they are basically the
same as for the αx = αy case.

For −1/
√

2 < αx < 0, let C0 be the steepest descent contour for −2iw + αx f−(w) that
is contained in the negative half plane and passes through the saddle point w = −η.

For αx = −1/
√

2 let C0 be the steepest descent contour for −2iw+ αx f−(w) that passes
through the saddle point w = 0 and enters the negative half plane at angles of −π/6 and
−5π/6.

For αx < −1/
√

2, let C0 consist of the steepest descent contour for −2iw + αx f−(w)
that starts from the branch cut i(1/4, ∞), passes through the saddle point w = −η and
goes to infinity in the third quadrant; the reflection in the imaginary axis of this contour;
and a contour that goes around the branch cut i(1/4, ∞).

For −1/
√

2 < αy < 0, let C ′
0 be the steepest descent contour for 2iz − αy f−(z) that is

contained in the positive half plane and passes through the saddle point z = η.
For αy = −1/

√
2 let C ′

0 be the steepest descent contour for 2iz − αy f−(z) that passes
through the saddle point z = 0 and enters the positive half plane at angles of π/6 and
5π/6.

For αy < −1/
√

2, let C ′
0 consist of the steepest descent contour for 2iz − αy f−(z) that

starts from the branch cut i(−∞,−1/4), passes through the saddle point z = η and goes
to infinity in the second quadrant; the reflection in the imaginary axis of this contour; and
a contour that goes around the branch cut i(−∞,−1/4).

Let C1 be the steepest descent contour for −2iw + αx f+(w). This passes through w =
−η′ and goes to infinity in the negative half plane.

Let C ′
1 be the steepest descent contour for 2iz + αy f+(z). This passes through z = η′

and goes to infinity in the positive half plane.
Note that for αx = αy, C ′

0 is the reflection of C0 in the real axis, and C ′
1 is the reflection

of C1 in the real axis.
When either αx < −1/

√
2 or αy < −1/

√
2, let the intersection points of C0 and C ′

0 be
denoted ±µ with Re(µ) > 0. Let γ be the contour composed of straight lines from −µ to
−Re(µ) to Re(µ) to µ.

In the limit as m tends to infinity with a = 1 − Bm−1/2 we make the following conjec-
ture for the entries of the inverse Kasteleyn matrix K−1

a when αx ̸= αy.
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Conjecture 5.1.1. For −1/
√

2 ≤ αx, αy < 0, if x = (x1, x2) ∈ Wε1 and y = (y1, y2) ∈ Bε2

with ε1, ε2 ∈ {0, 1} we have

K−1
a (x, y) = Bm−1/2 ζ(x, y)

Σ(x, y)

((
− 1

2
K0(

√
2B2|αy − αx|)

+ (ε2 − ε1) sgn(αy − αx)
1√
2π

K1(
√

2πB2|αy − αx|)
)

+ ψ(αx, αy, ε1, ε2)

)
+ o(m−1/2) (5.1.3)

and for αx < −1/
√

2 or αx < −1/
√

2 we have

K−1
a (x, y) = Bm−1/2 ζ(x, y)

Σ(x, y)

((
− 1

2π
K0(

√
2B2|αy − αx|)

+ (ε2 − ε1) sgn(αy − αx)
1√
2π

K1(
√

2B2|αy − αx|)
)

+
I0(αx, αy, ε1, ε2)

4π
+ ψ(αx, αy, ε1, ε2)

)
+ o(m−1/2) (5.1.4)

where

ψ(αx, αy, ε1, ε2) =
1

32π2 (I1(αx, αy, ε1, ε2)− I2(αx, αy, ε1, ε2)

− I3(αx, αy, ε1, ε2) + I4(αx, αy, ε1, ε2)). (5.1.5)

We provide a sketch proof of this conjecture. The reasoning is complete, but a rigorous
error analysis is lacking.

As for the case covered in Chapters 2–4 where αx = αy, we start from Theorem 2.2.1
and Theorem 2.2.2.

We conjecture the following asymptotics for the integrals I j,k
ε1,ε2(a, x1, x2, y1, y2). The

derivation of these formulas is essentially the same as for the case where αx = αy, but we
do not provide rigorous error bounds.

Conjecture 5.1.2. For n = 4m and 0 < a < 1, take x = (x1, x2) ∈ Wε1 , y = (y1, y2) ∈ Bε2 with
ε1, ε2 ∈ {0, 1}. For −1/

√
2 ≤ αx, αy < 0,

I0,0
ε1,ε2

(a, x1, x2, y1, y2) =
ζ(x, y)Bm−1/2

8(2πi)2Σ(x, y)

∫
C0

dw
∫
C ′0

dz
A0,0

ε1,ε2(w, z)
i(z − w)

eg0,0(w,z) + O(m−1),

(5.1.6)
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and when αx < −1/
√

2 or αy < −1/
√

2,

I0,0
ε1,ε2

(a, x1, x2, y1, y2) =
ζ(x, y)Bm−1/2

8(2πi)2Σ(x, y)

×
( ∫

C0

dw
∫
C ′0

dz
A0,0

ε1,ε2(w, z)
i(z − w)

eg0,0(w,z) − 2π
∫

γ
A0,0

ε1,ε2
(w, w)dw

)
+ O(m−1). (5.1.7)

For (j, k) ̸= (0, 0) for any α < 0,

I j,k
ε1,ε2(a, x1, x2, y1, y2) =

ζ(x, y)Bm−1/2

8(2πi)2Σ(x, y)

∫
Cj

dw
∫
C ′k

dz
Aj,k

ε1,ε2(w, z)
i(z − w)

egj,k(w,z) + O(m−1) (5.1.8)

where we have

g0,0(w, z) = B2(−2i(w − z) + αx f−(w)− αy f−(z))

g1,0(w, z) = B2(−2i(w − z) + αx f−(w) + αy f+(z))

g0,1(w, z) = B2(−2i(w − z) + αx f+(w)− αy f−(z))

g1,1(w, z) = B2(−2i(w − z) + αx f+(w) + αy f+(z))

(5.1.9)

For the asymptotics of K−1
a,0,0((x1, x2), (y1, y2)), we start from Equation 2.2.14. We note

that if x = w, we can write y = b + 2ue1 + 2ve2 for some b in the same fundamental
domain as w, with u ≈ 2Bm1/2(αy − αx) and v = O(1). We repeat Theorems 4.1.1 and
4.1.2 for convenience below.

Theorem (Theorems 4.1.1, 4.1.2). For a < 1, let

z1 = −(a + a−1 − 1) +
√
(a + a−1 − 1)2 − 1

z2 = −(a + a−1 + 1) +
√
(a + a−1 + 1)2 − 1.

Also for z ∈ R with z1 ≤ z ≤ z2 let

θa(z) =
1
2z

(
i
√

4z2 − (2(a + a−1)z + z2 + 1)2 − (2(a + a−1)z + z2 + 1)
)

.

Let w0 ∈ W0 and b1 ∈ B1 be vertices in the same fundamental domain.
For u, v ∈ Z with v ≥ 0 and u + v ≥ 0, we can write

K−1
a,0,0(w0, b1 + 2ue1 + 2ve2) =

1
2πa

∫ z2

z1

(a + z) zu (θa(z)v + θa(z)
v
)√

4z2 − (2(a + a−1)z + z2 + 1)2
dz (5.1.10)

For u, v ∈ Z with v ≥ 0 and −u + v > 0, we can write

K−1
a,0,0(w0, b1 + 2ue1 + 2ve2) =

1
2πa

∫ z2

z1

(a + z−1) z−u (θa(z)v + θa(z)
v
)√

4z2 − (2(a + a−1)z + z2 + 1)2
dz (5.1.11)
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Since we have θa(z)
v
= θa(z)−v, Equations 5.1.10 and 5.1.11 are invariant under v ↔

−v. Using the same method we can also find the following formulas for K−1
a,0,0(w0, b0 +

2ue1 + 2ve2) that are more useful for our asymptotic analysis.
For u, v ∈ Z with v ≥ 0 and u + v ≥ 0, we can write

K−1
a,0,0(w0, b0 + 2ue1 + 2ve2) =

1
2πa

∫ z2

z1

−i(a(θa(z)v + θa(z)
v
) + (θa(z)v+1 + θa(z)

v+1
))zu√

4z2 − (2(a + a−1)z + z2 + 1)2
dz

(5.1.12)
For u, v ∈ Z with v ≥ 0 and −u + v > 0, we can write

K−1
a,0,0(w0, b0 + 2ue1 + 2ve2)

=
1

2πa

∫ z2

z1

−i(a(θa(z)v + θa(z)
v
) + (θa(z)v−1 + θa(z)

v−1
))z−u√

4z2 − (2(a + a−1)z + z2 + 1)2
dz (5.1.13)

From Lemma 4.1.1 and Equation 3.1.1 we see that it suffices to compute the asymp-
totics of Equations 5.1.10–5.1.13 in the limit u ≈ Bm1/2α with α fixed as m → ∞. Here
α = ±(αy − αx).

Let h = Bm−1/2 so a = 1 − h and u ≈ B2h−1α. We make a guess for these asymptotics
by using the substitution z = hx − 1, expanding the integrand and limits of integration,
and keeping only leading order terms. This leads to the following conjecture.

Conjecture 5.1.3. Let Kn(x) denote the modified Bessel function of the second kind. Then we
have

K−1
a,0,0(w0, b1 + 2ue1 + 2ve2) = h

(−1)u+v

π

(
−1

2
K0(

√
2B2|α|) + sgn(α)

1√
2

K1(
√

2B2|α|)
)

+ o(h) (5.1.14)

and

K−1
a,0,0(w0, b0 + 2ue1 + 2ve2) = h

(−1)u+v

πi

(
−1

2
K0(

√
2B2|α|)

)
+ o(h) (5.1.15)

as h → 0 with u = B2h−1α + O(1) ∈ Z, with v ∈ Z and α ̸= 0 fixed.

Remark 5.1.1. In [29], these asymptotics were proven rigorously using a different method
for the case v = 0.

Furthermore, we can show that if x = w and y = b + 2ue1 + 2ve2 with w ∈ W and
b ∈ B in the same fundamental domain, then (−1)u+v = ζ(x, y). Using this fact together
with Lemma 4.1.1 and Conjecture 5.1.3, we obtain the following conjecture.
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Conjecture 5.1.4. For x = (x1, x2) ∈ Wε1 and y = (y1, y2) ∈ Bε2 with ε1, ε2 ∈ {0, 1} and
αx, αy < 0 with αx ̸= αy, we have

K−1
a,0,0(x, y) = Bm−1/2 ζ(x, y)

Σ(x, y)

(
− 1

2π
K0(

√
2B2|αy − αx|)

+ (ε2 − ε1) sgn(αy − αx)
1√
2π

K1(
√

2B2|αy − αx|)
)
+ o(m−1/2) (5.1.16)

Putting together Conjectures 5.1.2 and 5.1.4 we obtain Conjecture 5.1.1.

5.2 Numerical study of K−1
a,0,0(x, y)

For the numerical parts of the paper we will take B = 1.
We numerically verify Conjecture 5.1.3 by using Mathematica to numerically evaluate

the integral given in Equation 2.2.14, and comparing to the conjectured asymptotics. In
Figure 5.1 we plot (−1)u+vK−1

a,0,0(w0, b1 + 2ue1 + 2ve2) against h(−1)u+v(−K0(
√

2B2α)/2+
sgn(α)K1(

√
2B2α)/

√
2)/π, and in Figure 5.2 we plot (−1)u+vK−1

a,0,0(w0, b0 + 2ue1 + 2ve2)

against ih(−1)u+v(−K0(
√

2B2α))/2)/π, where h = 1 − a and α = hu, for a = 0.999 and
a = 0.875, with v = −2,−1, 0, 1 and 2. The latter value of a = 0.875 is what we use for the
simulations in Section 5.3. The range of α shown here is [−1, 1].

We see that for a = 0.999, the conjectured asymptotics agree closely with the exact
integral, but for a = 0.875 there are some fairly large discrepancies in some of the plots.
Unfortunately we are not able to run simulations large enough that this error is negligible.
As a result, in the next section, we will present two-point correlations corresponding to
pairs of dominos where the discrepancy between the exact value of K−1

a,0,0(x, y) and the
conjectured asymptotics are not too big, as in Figures 5.1h, 5.2g and 5.2h.

5.3 Comparison with simulations
We used Markov chain sampling to produce a large number of sample tilings (which
are in bijection with dimer configurations) from the correct probability distribution. We
used the source code developed by Keating and Sridhar [24] described in [25], with some
modifications. We ran our code on a GTX 1080 Ti GPU.1

Here we will show the experimental two-point correlations for pairs of dimers along
the diagonal with one fixed and one variable, for some different types of dimers.

1This research used the Savio computational cluster resource provided by the Berkeley Research Com-
puting program at the University of California, Berkeley (supported by the UC Berkeley Chancellor, Vice
Chancellor for Research, and Chief Information Officer).
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Figure 5.1: The blue line shows (1 − a)(−1)u+v(−K0(
√

2B2α)/2 +

sgn(α)K1(
√

2B2α)/
√

2)/π and the orange points show (−1)u+vK−1
a,0,0(w0, b1 + 2ue1 +

2ve2), both plotted against α, where α = (1 − a)u, for various values of a and v.
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Figure 5.2: The blue line shows (1 − a)(−1)u+v(−K0(
√

2B2α))/2)/π and the orange
points show i(−1)u+vK−1

a,0,0(w0, b0 + 2ue1 + 2ve2), both plotted against α, where α =

(1 − a)u, for a = 0.875 and various values of v.
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To simplify notation, we make the following definition. Take x = (x1, x2) ∈ Wε1 and
y = (y1, y2) ∈ Bε2 with ε1, ε2 ∈ {0, 1}. For −1/

√
2 ≤ αx, αy < 0 define

qε1ε2(αx, αy) =

(
− 1

2π
K0(

√
2B2|αy − αx|)

+ (ε2 − ε1) sgn(αy − αx)
1√
2π

K1(
√

2B2|αy − αx|)
)
+ ψ(αx, αy, ε1, ε2) (5.3.1)

and for αx < −1/
√

2 or αx < −1/
√

2 define

qε1ε2(αx, αy) =

(
− 1

2π
K0(

√
2B2|αy − αx|)

+ (ε2 − ε1) sgn(αy − αx)
1√
2π

K1(
√

2B2|αy − αx|)
)

+
I0(αx, αy, ε1, ε2)

4π
+ ψ(αx, αy, ε1, ε2). (5.3.2)

Then Conjecture 5.1.1 can be written

K−1
a (x, y) = Bm−1/2 ζ(x, y)

Σ(x, y)
qε1ε2(αx, αy) + o(m−1/2). (5.3.3)

Now consider two edges e = (x, y) and ẽ = (x̃, ỹ) with x, x̃ ∈ W and y, ỹ ∈ B. Recall
that the two-point correlation ρ(e, ẽ) between these two edges [28] is given by

ρ(e, ẽ) = Ka(y, x)Ka(ỹ, x̃)(K−1
a (x, y)K−1

a (x̃, ỹ)− K−1
a (x, ỹ)K−1

a (x̃, y)),

and the covariance between the two edges is given by

cov(e, ẽ) = ρ(e, ẽ)− ρ(e)ρ(ẽ) = −Ka(y, x)Ka(ỹ, x̃)K−1
a (x, ỹ)K−1

a (x̃, y)

where ρ(e) is the one-point correlation function of e, i.e. the probability that a randomly
chosen dimer configuration contains edge e. We compare the experimental covariance
between edges to our conjectured asymptotics.

Suppose e = (x, y) and ẽ = (x̃, ỹ) with x ∈ Wε1 , x̃ ∈ Wε̃1 and y ∈ Bε2 , ỹ ∈ Bε̃2 . Suppose
further that these dimers lie near the diagonal as in Equation 3.1.1. Let α be the asymp-
totic coordinate of x and y, and let α̃ be the asymptotic coordinate of x̃ and ỹ. We recall
that Ka(y, x) = Σ(x, y) + O(h) where h = 1 − a. Then from Equation 5.3.3 we have the
conjecture

cov(e, ẽ) = −B2m−1 Σ(x, y)Σ(x̃, ỹ)
Σ(x, ỹ)Σ(x̃, y)

ζ(x, ỹ)ζ(x̃, y)qε1 ε̃2(α, α̃)qε̃1ε2(α̃, α) + o(m−1).
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Figure 5.3: Plots of qε1ε2(α, α̃) against α for fixed α̃ and ε1, ε2 ∈ {0, 1}.

We can show that q00(α, α̃) = q00(α̃, α), q11(α, α̃) = q11(α̃, α), q01(α, α̃) = q10(α̃, α) and
q10(α, α̃) = q01(α̃, α). In Figure 5.3 we plot these quantities for α̃ = −3,−0.6.

Let

s(x, y, x̃, ỹ) =
Σ(x, y)Σ(x̃, ỹ)
Σ(x, ỹ)Σ(x̃, y)

ζ(x, ỹ)ζ(x̃, y),

which takes values in {−1, 1}. For our simulations we take B = 1, and plot the exper-
imental covariances against the theorized asymptotic covariances. We fix α̃ and take α
increasing from −6 to 0. We use a size of n = 256, and present results for α̃ = −3 and
α̃ = −0.6. We present results for the six pair of types of dimers shown in Figure 5.4. Plots
of the experimental covariances against −m−1s(x, y, x̃, ỹ)qε1 ε̃2(α, α̃)qε̃1ε2(α̃, α) are shown
for α̃ = −3 in Figure 5.5 and for α̃ = −0.6 in Figure 5.6. We see that the conjectured
leading order covariances agree well with experiment when α is sufficiently far from α̃.
As discussed in Section 5.2 and illustrated in Figures 5.1–5.2, we would not expect very
good agreement when α is close to α̃ for tilings of this size.
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(d) ε1 = 1, ε2 = 1, ε̃1 = 0, ε̃2 =
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(e) ε1 = 0, ε2 = 0, ε̃1 = 0, ε̃2 = 0
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(f) ε1 = 1, ε2 = 1, ε̃1 = 1, ε̃2 = 1

Figure 5.4: Six different choices for e, shown in navy, and ẽ, shown in orange. Note that ẽ
is fixed while e moves along the diagonal. Vertices in W0 ∪ B0 are colored in yellow, while
vertices in W1 ∪ B1 are colored in pink.
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Figure 5.5: α̃ = −3. The blue solid lines show −m−1s(x, y, x̃, ỹ)qε1 ε̃2(α, α̃)qε̃1ε2(α̃, α). The
orange markers connected by dashed lines show the experimental covariances cov(e, ẽ),
for edges e, ẽ as shown in Figure 5.4. Here, n = 256 and a = 0.875.
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Figure 5.6: α̃ = −0.6. The blue solid lines show −m−1s(x, y, x̃, ỹ)qε1 ε̃2(α, α̃)qε̃1ε2(α̃, α). The
orange markers connected by dashed lines show the experimental covariances cov(e, ẽ),
for edges e, ẽ as shown in Figure 5.4. Here, n = 256 and a = 0.875.
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Appendix A

Some more proofs

Here we provide some proofs that were omitted from the main text.

A.1 Proof of Theorem 2.2.2
This is a fairly trivial proof starting from the results stated in [8].

For x1, x2 even with 0 < x1, x2 < 2n

Hx1,x2(ω) =
ω2mG(ω)2m− x1

2

G(ω−1)2m− x2
2

(A.1.1)

where G(ω) is defined in Equation 2.2.2. Let Cr denote a positively oriented contour of
radius r centered at the origin. For n = 4m, 0 < a < 1, x = (x1, x2) ∈ Wε1 , y = (y1, y2) ∈
Bε2 with ε1, ε2 ∈ {0, 1}, 0 < x1, x2, y1, y2 < n, and

√
2c < r < 1, define

Bε1,ε2(a, x1, x2, y1, y2) =
i(x2−x1+y1−y2)/2

(2πi)2

×
∫

Cr

dω1

ω1

∫
C1/r

dω2
ω2

ω22 − ω1
2

Hx1+1,x2(ω1)

Hy1,y2+1(ω2)

1

∑
γ1,γ2=0

Qε1,ε2
γ1,γ2(ω1, ω2), (A.1.2)

a−1B1−ε1,ε2(a−1, 2n − x1, x2, 2n − y1, y2) = − i(x1−x2−y1−y2)/2

(2πi)2

×
∫

Cr

dω1

ω1

∫
C1/r

dω2
ω2

ω22 − ω1
2

Hx1+1,x2(ω1)

H2n−y1,y2+1(ω2)

1

∑
γ1,γ2=0

(−1)ε2+γ2 Qε1,ε2
γ1,γ2(ω1, ω2) (A.1.3)
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a−1Bε1,1−ε2(a−1, x1, 2n − x2, y1, 2n − y2) = − i(y2−y1−x2−x1)/2

(2πi)2

×
∫

Cr

dω1

ω1

∫
C1/r

dω2
ω2

ω22 − ω1
2

Hx1+1,2n−x2(ω1)

Hy1,y2+1(ω2)

1

∑
γ1,γ2=0

(−1)ε1+γ1 Qε1,ε2
γ1,γ2(ω1, ω2) (A.1.4)

B1−ε1,1−ε2(a, 2n − x1, 2n − x2, 2n − y1, 2n − y2) = − i(y2+y1+x2+x1)/2

(2πi)2

×
∫

Cr

dω1

ω1

∫
C1/r

dω2
ω2

ω22 − ω1
2

Hx1+1,2n−x2(ω1)

H2n−y1,y2+1(ω2)

1

∑
γ1,γ2=0

(−1)ε1+γ1+ε2+γ2 Qε1,ε2
γ1,γ2(ω1, ω2)

(A.1.5)

where Qε1,ε2
γ1,γ2(ω1, ω2) is as defined in Equation 2.2.9.

Then we have the following formula for the entries of the inverse Kasteleyn matrix.

Theorem A.1.1 (Chhita and Johansson [8]). For n = 4m, 0 < a < 1, x = (x1, x2) ∈
Wε1 and y = (y1, y2) ∈ Bε2 with ε1, ε2 ∈ {0, 1}, 0 < x1, x2, y1, y2 < n, the entries of
K−1

a ((x1, x2), (y1, y2)) are as follows.

K−1
a ((x1, x2), (y1, y2)) = K−1

a,0,0((x1, x2), (y1, y2))−
(
Bε1,ε2(a, x1, x2, y1, y2)

− i
a
(−1)ε1+ε2(B1−ε1,ε2(1/a, 2n− x1, x2, 2n− y1, y2)+Bε1,1−ε2(1/a, x1, 2n− x2, y1, 2n− y2))

+ B1−ε1,1−ε2(a, 2n − x1, 2n − x2, 2n − y1, 2n − y2)
)

(A.1.6)

where K−1
a,0,0((x1, x2), (y1, y2)) is defined in Equation 2.2.14 and the other terms are defined in

Equations A.1.2–A.1.5.

Now we prove Theorem 2.2.2.

Proof of Theorem 2.2.2. First, we follow the procedure used in [8] to rewrite the ω2/(ω2
2 −

ω2
1) parts of the integrands of Bε1,ε2(a, x1, x2, y1, y2), B1−ε1,ε2(1/a, 2n − x1, x2, 2n − y1, y2),

Bε1,1−ε2(1/a, x1, 2n − x2, y1, 2n − y2)) and B1−ε1,1−ε2(a, 2n − x1, 2n − x2, 2n − y1, 2n − y2)
in a way that is more convenient for asymptotic analysis.

Observe that
ω2

ω22 − ω1
2 =

1
2

(
1

ω2 − ω1
+

1
ω2 + ω1

)
.

We can substitute this expression into the integrands and separate each integral into two
double integrals. Then we want to do a change of variables ω2 → −ω2 for the second
integral. Note that by choice of branch cut, we have√

(−ω)2 + 2c = −
√

ω2 + 2c (A.1.7)
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and so
G(−ω) = −G(ω) (A.1.8)

Using Equation A.1.8 and the fact that y1 + y2 ≡ 2ε2 + 1 mod 4, y1 ≡ 0 mod 2 and
y2 ≡ 1 mod 4 we have

Hy1,y2+1(−ω) =
ω2mG(−ω)2m− y1

2

G(−ω−1)2m− y2+1
2

= (−1)(y2−y1+1)/2Hy1,y2+1(ω)

= (−1)(y2+y1+1)/2Hy1,y2+1(ω)

= (−1)ε2+1Hy1,y2+1(ω).

Similarly we have

H2n−y1,y2+1(−ω) =
ω2mG(−ω)2m−4m+

y1
2

G(−ω−1)2m− y2+1
2

= (−1)(y1+y2+1)/2H2n−y1,y2+1(ω)

= (−1)ε2+1H2n−y1,y2+1(ω)

So we find

Bε1,ε2(a, x1, x2, y1, y2) =
i(x2−x1+y1−y2)/2

(2πi)2

∫
Cr

dω1

ω1

∫
C1/r

dω2
1
2

(
1

ω2 − ω1
+

1
ω2 + ω1

)
×

Hx1+1,x2(ω1)

Hy1,y2+1(ω2)

1

∑
γ1,γ2=0

Qε1,ε2
γ1,γ2(ω1, ω2)

=
i(x2−x1+y1−y2)/2

(2πi)2

( ∫
Cr

dω1

ω1

∫
C1/r

dω2
1

ω2 − ω1

Hx1+1,x2(ω1)

Hy1,y2+1(ω2)

1
2

1

∑
γ1,γ2=0

Qε1,ε2
γ1,γ2(ω1, ω2)

+ (2πi)2
∫

Cr

dω1

ω1

∫
C1/r

(−dω2)
1

−ω2 + ω1

Hx1+1,x2(ω1)

Hy1,y2+1(ω2)

1
2
(−1)ε2+1

1

∑
γ1,γ2=0

Qε1,ε2
γ1,γ2(ω1, ω2)

)

=
i(x2−x1+y1−y2)/2

(2πi)2

∫
Cr

dω1

ω1

∫
C1/r

dω2
1

ω2 − ω1

Hx1+1,x2(ω1)

Hy1,y2+1(ω2)

× 1
2

1

∑
γ1,γ2=0

(Qε1,ε2
γ1,γ2(ω1, ω2) + (−1)1+ε2 Qε1,ε2

γ1,γ2(ω1,−ω2))

=
i(x2−x1+y1−y2)/2

(2πi)2

∫
Cr

dω1

ω1

∫
C1/r

dω2
V0,0

ε1,ε2(ω1, ω2)

ω2 − ω1

Hx1+1,x2(ω1)

Hy1,y2+1(ω2)
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Similarly we find

a−1B1−ε1,ε2(a−1, 2n − x1, x2, 2n − y1, y2)

= − (−1)ε2 i(x1−x2−y1−y2)/2

(2πi)2

∫
Cr

dω1

ω1

∫
C1/r

dω2
V1,0

ε1,ε2(ω1, ω2)

ω2 − ω1

Hx1+1,x2(ω1)

H2n−y1,y2+1(ω2)
,

a−1Bε1,1−ε2(a−1, x1, 2n − x2, y1, 2n − y2)

= − (−1)ε1 i(y2−y1−x2−x1)/2

(2πi)2

∫
Cr

dω1

ω1

∫
C1/r

dω2
V0,1

ε1,ε2(ω1, ω2)

ω2 − ω1

Hx1+1,2n−x2(ω1)

Hy1,y2+1(ω2)

and

B1−ε1,1−ε2(a, 2n − x1, 2n − x2, 2n − y1, 2n − y2)

= − (−1)ε1+ε2 i(y2+y1+x2+x1)/2

(2πi)2

∫
Cr

dω1

ω1

∫
C1/r

dω2
V1,1

ε1,ε2(ω1, ω2)

ω2 − ω1

Hx1+1,2n−x2(ω1)

H2n−y1,y2+1(ω2)
.

Now we want to replace the Hx1,x2 terms with their H̃x1,x2 equivalents. From Equa-
tion A.1.1 have

Hx1+1,x2(ω1)

Hy1,y2+1(ω2)
= i−(x1+x2−y1−y2)/2 H̃x1+1,x2(ω1)

H̃y1,y2+1(ω2)
(A.1.9)

Hx1+1,x2(ω1)

H2n−y1,y2+1(ω2)
= i−(x1+x2+y1−y2)/2 H̃x1+1,x2(ω1)

H̃2n−y1,y2+1(ω2)
(A.1.10)

Hx1+1,2n−x2(ω1)

Hy1,y2+1(ω2)
= i−(x1−x2−y1−y2)/2 H̃x1+1,2n−x2(ω1)

H̃y1,y2+1(ω2)
(A.1.11)

Hx1+1,2n−x2(ω1)

H2n−y1,y2+1(ω2)
= i−(x1−x2+y1−y2)/2 H̃x1+1,2n−x2(ω1)

H̃2n−y1,y2+1(ω2)
(A.1.12)

So we can write

Bε1,ε2(a, x1, x2, y1, y2) =
iy1−x1

(2πi)2

∫
Cr

dω1

ω1

∫
C1/r

dω2
V0,0

ε1,ε2(ω1, ω2)

ω2 − ω1

H̃x1+1,x2(ω1)

H̃y1,y2+1(ω2)

= I0,0
ε1,ε2

(a, x1, x2, y1, y2),

a−1B1−ε1,ε2(a−1, 2n − x1, x2, 2n − y1, y2)

= − (−1)ε2 i−x2−y1

(2πi)2

∫
Cr

dω1

ω1

∫
C1/r

dω2
V1,0

ε1,ε2(ω1, ω2)

ω2 − ω1

H̃x1+1,x2(ω1)

H̃2n−y1,y2+1(ω2)

= −(−1)ε2 i−x2−2y1+x1I1,0
ε1,ε2

(a, x1, x2, y1, y2),
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a−1Bε1,1−ε2(a−1, x1, 2n − x2, y1, 2n − y2)

= − (−1)ε1 iy2−x1

(2πi)2

∫
Cr

dω1

ω1

∫
C1/r

dω2
V0,1

ε1,ε2(ω1, ω2)

ω2 − ω1

H̃x1+1,2n−x2(ω1)

H̃y1,y2+1(ω2)

= −(−1)ε1 iy2−y1I0,1
ε1,ε2

(a, x1, x2, y1, y2)

and

B1−ε1,1−ε2(a, 2n − x1, 2n − x2, 2n − y1, 2n − y2)

= − (−1)ε1+ε2 iy2+x2

(2πi)2

∫
Cr

dω1

ω1

∫
C1/r

dω2
V1,1

ε1,ε2(ω1, ω2)

ω2 − ω1

H̃x1+1,2n−x2(ω1)

H̃2n−y1,y2+1(ω2)

= −(−1)ε1+ε2 iy2+x2−y1+x1I0,1
ε1,ε2

(a, x1, x2, y1, y2).

So substituting into Equation A.1.6 we have

K−1
a ((x1, x2), (y1, y2)) = K−1

a,0,0((x1, x2), (y1, y2))−
(
I0,0

ε1,ε2
(a, x1, x2, y1, y2)

+ (−1)ε1 i−x2−2y1+x1+1I1,0
ε1,ε2

(a, x1, x2, y1, y2) + (−1)ε2 iy2−y1+1I0,1
ε1,ε2

(a, x1, x2, y1, y2)

− (−1)ε1+ε2 iy2+x2−y1+x1I0,1
ε1,ε2

(a, x1, x2, y1, y2)
)

So all that remains to be shown is that the coefficients of I j,k
ε1,ε2(a, x1, x2, y1, y2) are 1, −1,

−1 and 1 for (j, k) = (0, 0), (1, 0), (0, 1) and(1, 1) respectively. The first is trivial. For the
others, we need to state a few equations. From the definition of ε1 and ε2 we have

(−1)ε1 = ix1+x2−1 and (−1)ε2 = iy1+y2−1 (A.1.13)

Also x1, y2 ≡ 1 mod 2 and x2, y1 ≡ 0 mod 2 so i2x1 = −1, i2x2 = 1, i2y1 = 1 and
i2y2 = −1. Hence we find

(−1)ε1 i−x2−2y1+x1+1 = i2x1−2y1

= −1

(−1)ε2 iy2−y1+1 = i2y2

= −1

−(−1)ε1+ε2 iy2+x2−y1+x1 = −i2x1+2x2+2y2−2

= 1

as required. This concludes the proof of Theorem 2.2.2.

A.2 Proof of Theorem 3.5.1
First we will rewrite V j,k

ε1,ε2(ω1, ω2) in a way that is easier to work with.
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Define rational functions zε1,ε2
γ1,γ2(u, v) as follows. First define

z0,0
0,0(a, u, v) =

a
(a2 + 1)2 (2a6u2v2 − a4(1 + u4 + u2v2 − u4v2 + v4 − u2v4)

− a2(1 + 3u2 + 3v2 + 2u2v2 + u4v2 + u2v4 − u4v4)

− (1 + v2 + u2 + 3u2v2))

z0,0
0,1(a, u, v) =

a
4(a2 + 1)

(1 + a2u2)(2a2v2 + 1 + v2 − u2 + u2v2)

z0,0
1,0(a, u, v) =

a
4(a2 + 1)

(1 + a2v2)(2a2u2 + 1 − u2 + v2 + u2v2)

z0,0
1,1(a, u, v) =

a
4
(2a2u2v2 − 1 + v2 + u2 + u2v2).

(A.2.1)

Then for γ1, γ2 ∈ {0, 1} define

z0,1
γ1,γ2

(a, u, v) = a3(z0,0
γ1,γ2

(a−1, u, v−1))

z1,0
γ1,γ2

(a, u, v) = a3(z0,0
γ1,γ2

(a−1, u−1, v))

z1,1
γ1,γ2

(a, u, v) = z0,0
γ1,γ2

(a, u−1, v−1).

(A.2.2)

We write zε1,ε2
γ1,γ2(u, v) = zε1,ε2

γ1,γ2(a, u, v). Note that we have

y0,0
j,k (a, 1, u, v) =

z0,0
j,k (a, u, v)

fa,1(u, v)
(A.2.3)

and

y0,0
j,k (1, a, u, v) = a3

z0,0
j,k (a−1, u, v)

fa,1(u, v)
(A.2.4)

where y0,0
j,k (a, b, u, v) is defined in Equation 2.2.6 and fa,b(u, v) defined in Equation 2.2.5.

We will also make use of the following lemma.

Lemma A.2.1 (Chhita and Johansson [8]). The function fa,1 satisfies

1 − ω1
2ω2

2

fa,1(G(ω1), G(ω2))
=

1
4(1 + a2)2G(ω1)2G(ω2)2 (A.2.5)

Now we can prove

Lemma A.2.2. For j, k, ε1, ε2 ∈ {0, 1}, we have

V j,k
ε1,ε2(ω1, ω2) =

(−1)ε1+ε2+ε1ε2 G(ω1)
3ε1−1 G(ω2

−1)3ε2−1

4(1 + a2)2 ∏i=1,2

√
ω2

i + 2c
√

ω−2
i + 2c

×
1

∑
γ1,γ2=0

(−1)γ1(1+ε2+k)+γ2(1+ε1+j)t(ω1)
γ1t(ω2

−1)γ2zε1,ε2
γ1,γ2(G(ω1), G(ω2

−1)) (A.2.6)
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Proof. Recall the definition of V j,k
ε1,ε2(ω1, ω2) from Equation 2.2.4. First we will show that

xε1,ε2
γ1,γ2(ω1, ω2) (defined in Equation 2.2.8) is an odd function in each variable. Recall from

Equations A.1.7 and A.1.8 that we have
√
(−ω)2 + 2c = −

√
ω2 + 2c and G(−ω) =

−G(ω). From Equation A.1.7 we also see that

t(−ω) = t(ω) (A.2.7)

where t(ω) = ω
√

ω−2 + 2c is defined in Equation 2.2.10. So

xε1,ε2
γ1,γ2(ω1,−ω2) =

−G(ω1)G(ω2)

∏2
i=1

√
ω2

i + 2c
√

ω−2
i + 2c

yε1,ε2
γ1,γ2

(G(ω1),−G(ω2))(1 − ω1
2ω2

2).

It is clear that zε1,ε2
j,k (u, v) is an even function in each variable, since it only contains terms

of even order. We also see that fa,1(u, v) defined in Equation 2.2.5 satisfies

fa,1(u,−v)

= (−2a2uv − 2uv − a(−1 + u2)(−1 + v2))(−2a2uv − 2uv + a(−1 + u2)(−1 + v2))

= (2a2uv + 2uv + a(−1 + u2)(−1 + v2))(2a2uv + 2uv − a(−1 + u2)(−1 + v2))

= fa,1(u, v)

and similarly for the first variable. So yε1,ε2
j,k (u, v) is an even function in each variable.

Hence
xε1,ε2

γ1,γ2(ω1,−ω2) = −xε1,ε2
γ1,γ2(ω1, ω2)

and similarly xε1,ε2
γ1,γ2(−ω1, ω2) = −xε1,ε2

γ1,γ2(ω1,−ω2). So we see that

Qε1,ε2
γ1,γ2(ω1,−ω2) =(−1)ε1+ε2+ε1ε2+γ1(1+ε2)+γ2(1+ε1)t(ω1)

γ1t((−ω2)
−1)γ2

× G(ω1)
ε1 G((−ω2)

−1)ε2xε1,ε2
γ1,γ2(ω1, (−ω2)

−1)

=(−1)ε1+ε2+ε1ε2+γ1(1+ε2)+γ2(1+ε1)t(ω1)
γ1t(ω2

−1)γ2

× G(ω1)
ε1(−1)ε2 G(ω2

−1)ε2(−xε1,ε2
γ1,γ2(ω1, ω2

−1))

=(−1)ε2+1Qε1,ε2
γ1,γ2(ω1, ω2)

where Qε1,ε2
γ1,γ2(ω1, ω2) is defined in Equation 2.2.9. So Vδ1,δ2

ε1,ε2 (ω1, ω2) can be simplified to

Ṽδ1,δ2
ε1,ε2 (ω1, ω2) =

1

∑
γ1,γ2=0

(−1)γ2δ1+γ1δ2 Qε1,ε2
γ1,γ2(ω1, ω2) (A.2.8)

Now we introduce the notation

ϕ(ε) =

{
1 if ε = 0
−1 if ε = 1

(A.2.9)
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and

h(ε1, ε2) =

{
0 if ε1 = ε2

1 if ε1 ̸= ε2

So we can write Equation 2.2.7 as

yε1,ε2
j,k (a, 1, u, v) =

y0,0
j,k (a1−h(ε1,ε2), ah(ε1,ε2), uϕ(ε1), vϕ(ε2))

u2ε1v2ε2

= a3h(ε1,ε2)
z0,0

j,k (aϕ(ε1)ϕ(ε2), uϕ(ε1), vϕ(ε2))

u2ε1v2ε2 fa,1(uϕ(ε1), vϕ(ε2))

=
zε1,ε2

j,k (u, v)

u2ε1v2ε2 fa,1(uϕ(ε1), vϕ(ε2))
.

(A.2.10)

where we use Equations A.2.3-A.2.4 and Equation A.2.2 in the second and third lines
respectively, and recall that zε1,ε2

γ1,γ2(u, v) = zε1,ε2
γ1,γ2(a, u, v). Now we have

fa,1(u, v−1) = (2a2uv−1 + 2uv−1 − a(−1 + u2)(−1 + v−2))

× (2a2uv−1 + 2uv−1 + a(−1 + u2)(−1 + v−2))

= v−4(2a2uv + 2uv − a(−1 + u2)(−1 + v2))

× (2a2uv + 2uv + a(−1 + u2)(−1 + v2))

= v−4 fa,1(u, v)

and similarly fa,1(u−1, v) = u−4 fa,1(u, v). So fa,1(uϕ(ε1), vϕ(ε2)) = u−4ε1v−4ε2 fa,1(u, v).
Therefore we can simplify Equation A.2.10 to

yε1,ε2
j,k (u, v) =

u2ε1v2ε2zε1,ε2
j,k (u, v)

fa,1(u, v)
(A.2.11)

Now using Equation A.2.5 we have

yε1,ε2
γ1,γ2

(G(ω1), G(ω2))(1 − ω1
2ω2

2) = G(ω1)
2ε1 G(ω2)

2ε2zε1,ε2
j,k (G(ω1), G(ω2))

× (1 − ω1
2ω2

2)

fa,1(G(ω1), G(ω2))

=
G(ω1)

2ε1 G(ω2)
2ε2zε1,ε2

j,k (G(ω1), G(ω2))

4(1 + a2)2G(ω1)2G(ω2)2

=
G(ω1)

2ε1−2G(ω2)
2ε2−2zε1,ε2

j,k (G(ω1), G(ω2))

4(1 + a2)2
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So xε1,ε2
γ1,γ2(ω1, ω2) defined in Equation 2.2.8 can be written as

xε1,ε2
γ1,γ2(ω1, ω2) =

G(ω1)
2ε1−1G(ω2)

2ε2−1zε1,ε2
j,k (G(ω1), G(ω2))

4(1 + a2)2 ∏2
i=1

√
ω2

i + 2c
√

ω−2
i + 2c

and Qε1,ε2
γ1,γ2(ω1, ω2) defined in Equation 2.2.9 can be written

Qε1,ε2
γ1,γ2(ω1, ω2) = (−1)ε1+ε2+ε1ε2+γ1(1+ε2)+γ2(1+ε1)t(ω1)

γ1t(ω2
−1)γ2

×
G(ω1)

3ε1−1G(ω2
−1)3ε2−1zε1,ε2

j,k (G(ω1), G(ω2
−1))

4(1 + a2)2 ∏2
i=1

√
ω2

i + 2c
√

ω−2
i + 2c

Hence we have

Vδ1,δ2
ε1,ε2 (ω1, ω2) =

1

∑
γ1,γ2=0

(−1)γ2δ1+γ1δ2 Qε1,ε2
γ1,γ2(ω1, ω2)

=
1

∑
γ1,γ2=0

(−1)ε1+ε2+ε1ε2+γ1(1+ε2+δ2)+γ2(1+ε1+δ1)t(ω1)
γ1t(ω2

−1)γ2

×
G(ω1)

3ε1−1G(ω2
−1)3ε2−1zε1,ε2

j,k (G(ω1), G(ω2
−1))

4(1 + a2)2 ∏2
i=1

√
ω2

i + 2c
√

ω−2
i + 2c

as required.

Write
ω1 = i + B2m−1w and ω2 = i + B2m−1z

as in Definition 3.4.1. From Lemma 3.3.3 we have√
ω1

2 + 2c = iBm−1/2
√

1/2 − 2iw + O(m−1w),√
ω1

−2 + 2c = −iBm−1/2
√

1/2 + 2iw + O(m−1w),√
ω22 + 2c = iBm−1/2

√
1/2 − 2iz + O(m−1z),√

ω2−2 + 2c = −iBm−1/2
√

1/2 + 2iz + O(m−1z).

and from Equation 3.3.6 and the fact that 1/
√

2c = 1 + O(m−1) we have

G(ω1) = i − iBm−1/2
√

1/2 − 2iw + O(m−1w)

G(ω2
−1) = −i + iBm−1/2

√
1/2 + 2iz + O(m−1z).
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Also we see that

t(ω1) = Bm−1/2
√

1/2 + 2iw + O(m−1w)

t(ω2
−1) = Bm−1/2

√
1/2 − 2iz + O(m−1z).

Recall that
a = 1 − Bm−1/2.

Let
σ(w, z) =

√
1/2 − 2iw

√
1/2 + 2iw

√
1/2 − 2iz

√
1/2 + 2iz.

So the part of V j,k
ε1,ε2(ω1, ω2) that is not dependent on γ1, γ2 can be written

(−1)ε1+ε2+ε1ε2 G(ω1)
3ε1−1 G(ω2

−1)3ε2−1

4(1 + a2)2 ∏i=1,2

√
ω2

i + 2c
√

ω−2
i + 2c

=
(−1)ε1+ε2+ε1ε2 i3ε1−1(−i)3ε2−1 + O(m−1/2)

4(2 + O(m−1/2))2(B4m−2σ(w, z) + O(m−5/2w5/2))

=
B−4m2(−1)ε1+ε2+ε1ε2 i−ε1+ε2

16σ(w, z)
(1 + O(m−1/2w1/2))

(A.2.12)

Now we look at the terms zε1,ε2
γ1,γ2(u, v) where u = G(ω1) and v = G(ω2

−1). We have

u2 = G(ω1)
2 = −1 + 2m−1/2B

√
1/2 − 2iw + O(m−1w),

v2 = G(ω2
−1)2 = −1 + 2m−1/2B

√
1/2 + 2iz + O(m−1z).

Write u2 = −1 − s and v2 = −1 − t where

s = −2Bm−1/2
√

1/2 − 2iw + O(m−1w) and t = −2Bm−1/2
√

1/2 + 2iz + O(m−1z).

Then u2v2 = 1 + s + t + st. Also

u−2 = −1 + s + O(m−1w) and v−2 = −1 + t + O(m−1z). (A.2.13)

Write h = Bm−1/2 so
a = 1 − h.

First we look at z0,0
0,0(a±1, u, v). It is defined as

z0,0
0,0(a±1, u, v) =

1
4a±2(a±2 + 1)2 (2a±6u2v2 − a±4(1 + u4 + u2v2 − u4v2 + v4 − u2v4)

− a±2(1 + 3u2 + 3v2 + 2u2v2 + u4v2 + u2v4 − u4v4)

− (1 + v2 + u2 + 3u2v2))
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It turns out that we will need the order m−3/2w3/2 terms. We have

u2v2 = 1 + s + t + st
= (1 + s + t) + st,

1 + u4 + u2v2−u4v2 + v4 − u2v4

= 1 + 1 + 2s + s2 + 1 + s + t + st − (1 + 2s + s2)(−1 − t)

+ 1 + 2t + t2 − (−1 − s)(1 + 2t + t2)

= 6 + 6s + 6t + 2s2 + 2t2 + 5st + s2t + st2 + O(m−2w2)

= 6(1 + s + t) + 2s2 + 2t2 + 5st + s2t + st2 + O(m−2w2),

1 + 3u2 + 3v2+2u2v2 + u4v2 + u2v4 − u4v4

= 1 − 3 − 3s − 3 − 3t + 2 + 2s + 2t + 2st

+ (1 + 2s + s2)(−1 − t) + (−1 − s)(1 + 2t + t2)

− (1 + 2s + s2)(1 + 2t + t2)

= −6 − 6s − 6t − 6st − 2s2 − 2t2 − 3s2t − 3st2 + O(m−2w2)

= −6(1 + s + t)− 6st − 2s2 − 2t2 − 3s2t − 3st2 + O(m−2w2),

1 + v2 + u2 + 3u2v2 = 1 − 1 − t − 1 − s + 3 + 3s + 3t + 3st
= 2 + 2s + 2t + 3st
= 2(1 + s + t) + 3st

and also

2a±6 = 2 ∓ 12h + 30h2 ∓ 40h3 + O(m−2w2)

−a±4 = −1 ± 4h − 6h2 ± 4h3 + O(m−2w2)

−a±2 = −1 ± 2h − h2

Multiplying and adding up, everything up to order m−3/2 cancels, and the h2s, h2t terms
also cancel. We are left with h3 terms:

±(−40h3 + 6 × 4h3) = ∓16h3

= ∓16m−3/2B3

the hs2, hst, ht2 terms:

±h(−12st+4(5st + 2s2 + 2t2) + 2(−6st − 2s2 − 2t2))

= ±h(−4st + 4s2 + 4t2)

= ±16m−3/2B3
(
−
√

1/2 − 2iw
√

1/2 + 2iz + (1/2 − 2iw) + (1/2 + 2iz)
)

,
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and the s2t, st2 terms:

−s2t − st2 − (−3)s2t − (−3)st2 = 2(s2t + st2)

= −16m−3/2B3
√

1/2 − 2iw
√

1/2 + 2iz
(√

1/2 − 2iw +
√

1/2 + 2iz
)

.

Putting these all together we obtain

z0,0
0,0(a±, u, v) = m−3/2B3

(
±
(
−1 −

√
1/2 − 2iw

√
1/2 + 2iz + (1/2 − 2iw) + (1/2 + 2iz)

)
−
√

1/2 − 2iw
√

1/2 + 2iz
(√

1/2 − 2iw +
√

1/2 + 2iz
))

+ O(m−2)

= m−3/2B3
(
± (−2iw + 2iz) +

√
1/2 − 2iw

√
1/2 + 2iz

(
∓ 1

−
√

1/2 − 2iw −
√

1/2 + 2iz
))

+ O(m−2w2, m−2z2).

Next we look at z0,0
1,0(u, v).

z0,0
1,0(a±1, u, v) =

(1 + a±2v2)(2a±2u2 + (1 − v2 + u2 + u2v2))

4a±2(a±2 + 1)

=
1

4(1 ± h)2(2 ∓ 2h + h2)
(1 + (1 ∓ 2h + h2)(−1 − t))(2(1 ∓ 2h + h2)(−1 − s)

+ (1 + 1 + t − 1 − s + 1 + t + s + st))

=
1 + O(m−1/2)

8
(±2h − t + O(m−1z))(4h + 2t − 2s + O(m−1w, m−1z))

=
1
4
(±2h − t)(±2h + t − s) + O(m−3/2w3/2, m−3/2z3/2)

=
1
4
(4h2 − t2 + s(∓2h + t)) + O(m−3/2w3/2, m−3/2z3/2)

= B2m−1
(

1 − (1/2 + 2iz)±
√

1/2 − 2iw +
√

1/2 − 2iw
√

1/2 + 2iz
)

+ O(m−3/2w3/2, m−3/2z3/2)

= B2m−1
(

1/2 − 2iz ±
√

1/2 − 2iw +
√

1/2 − 2iw
√

1/2 + 2iz
)

+ O(m−3/2w3/2, m−3/2z3/2).

Similarly,

z0,0
0,1(a±1, u, v) = B2m−1

(
1/2 + 2iw ±

√
1/2 + 2iz +

√
1/2 − 2iw

√
1/2 + 2iz

)
+ O(m−3/2w3/2, m−3/2z3/2).
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Finally,

z0,0
1,1(a±1, u, v) =

1
4a±2 (2a±2u2v2 + (−1 + v2 + u2 + u2v2))

=
1
4
(1 ∓ h)(2(1 ∓ 2h + h2)(1 + s + t + st)− 1 − 1 − s − 1 − t + 1 + s + t + st)

=
1
4
(1 ∓ h)(2s + 2t ∓ 4h + O(m−1w, m−1z))

=
1
2
(s + t ∓ 2h) + O(m−1w, m−1z)

= m−1/2B
(
−
√

1/2 − 2iw −
√

1/2 + 2iz ∓ 1
)
+ O(m−1w, m−1z).

Now from the definition of zε1,ε2
γ1,γ2(u, v) in Equation A.2.2 and Equation A.2.13 we see

that

zε1,ε2
0,0 (u, v) = B3m−3/2

(
(−1)ε1+ε2(−2iw + 2iz) + (−1)ε1+ε2

√
1/2 − 2iw

√
1/2 + 2iz

×
(
−(−1)ε1+ε2 − (−1)ε1

√
1/2 − 2iw − (−1)ε2

√
1/2 + 2iz

) )
+ O(m−2w2, m−2z2),

zε1,ε2
1,0 (u, v) = B2m−1

(
1/2 − 2iz + (−1)ε2

√
1/2 − 2iw + (−1)ε1+ε2

√
1/2 − 2iw

√
1/2 + 2iz

)
+ O(m−3/2w3/2, m−3/2z3/2),

zε1,ε2
0,1 (u, v) = B2m−1

(
1/2 + 2iw + (−1)ε1

√
1/2 + 2iz + (−1)ε1+ε2

√
1/2 − 2iw

√
1/2 + 2iz

)
+ O(m−3/2w3/2, m−3/2z3/2)

and

zε1,ε2
1,1 (u, v) = Bm−1/2

(
−(−1)ε1

√
1/2 − 2iw − (−1)ε2

√
1/2 + 2iz − (−1)ε1+ε2

)
+ O(m−1w, m−1z).

So the terms of the sum in the definition of V j,k
ε1,ε2(ω1, ω2) are

zε1,ε2
0,0 (G(ω1), G(ω2

−1)) = B3m−3/2
(
(−1)ε1+ε2(−2iw + 2iz)

+ (−1)ε1+ε2
√

1/2 − 2iw
√

1/2 + 2iz
(
− (−1)ε1+ε2

− (−1)ε1
√

1/2 − 2iw − (−1)ε2
√

1/2 + 2iz
))

+ O(m−2w2, m−2z2),
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(−1)1+ε2+kt(ω1)z
ε1,ε2
1,0 (G(ω1), G(ω2

−1)) = B3m−3/2(−1)1+ε2+k√1/2 + 2iw
(

1/2 − 2iz

+ (−1)ε2
√

1/2 − 2iw + (−1)ε1+ε2
√

1/2 − 2iw
√

1/2 + 2iz
)
+ O(m−2w2, m−2z2),

(−1)1+ε1+jt(ω2
−1)zε1,ε2

0,1 (G(ω1), G(ω2
−1)) = B3m−3/2(−1)1+ε1+j√1/2 − 2iz

(
1/2 + 2iw

+ (−1)ε1
√

1/2 + 2iz + (−1)ε1+ε2
√

1/2 − 2iw
√

1/2 + 2iz
)
+ O(m−2w2, m−2z2),

(−1)ε1+ε2+j+kt(ω1)t(ω2
−1)zε1,ε2

1,1 (G(ω1), G(ω2
−1)) = B3m−3/2(−1)ε1+ε2+j+k

×
√

1/2 + 2iw
√

1/2 − 2iz
(
−(−1)ε1

√
1/2 − 2iw − (−1)ε2

√
1/2 + 2iz − (−1)ε1+ε2

)
+ O(m−2w2, m−2z2)

Summing these and simplifying we obtain,

1

∑
γ1,γ2=0

(−1)γ1(1+ε2+k)+γ2(1+ε1+j)t(ω1)
γ1t(ω2

−1)γ2zε1,ε2
γ1,γ2(G(ω1), G(ω2

−1))

= B3m−3/2(−1)ε1+ε2

(
− 2i(w − z)

− (−1)ε1+ε2
(√

1/2 − 2iw + (−1)j√1/2 − 2iz
) (

(−1)k√1/2 + 2iw +
√

1/2 + 2iz
)

−
(
(−1)ε1

√
1/2 − 2iw + (−1)ε2+k√1/2 + 2iw + (−1)ε2

√
1/2 + 2iz + (−1)ε1+j√1/2 − 2iz

)
×
(√

1/2 − 2iw
√

1/2 + 2iz + (−1)j+k√1/2 + 2iw
√

1/2 − 2iz
))

+ O(m−2w2, m−2z2).

So together with Equation A.2.12 we have

V j,k
ε1,ε2(ω1, ω2) = m1/2 −(−1)ε1ε2 iε2−ε1

16B
√

1/2 − 2iw
√

1/2 + 2iw
√

1/2 − 2iz
√

1/2 + 2iz

(
2i(w − z)

+ (−1)ε1+ε2
(√

1/2 − 2iw + (−1)j√1/2 − 2iz
) (

(−1)k√1/2 + 2iw +
√

1/2 + 2iz
)

+
(
(−1)ε1

√
1/2 − 2iw + (−1)ε2+k√1/2 + 2iw + (−1)ε2

√
1/2 + 2iz + (−1)ε1+j√1/2 − 2iz

)
×
(√

1/2 − 2iw
√

1/2 + 2iz + (−1)j+k√1/2 + 2iw
√

1/2 − 2iz
))

+ O(1).



APPENDIX A. SOME MORE PROOFS 105

Comparing with the definition of Aj,k
ε1,ε2(w, z) in Equation 2.1.7, and noting that iε2−ε1 =

(−1)ε1+ε2 iε1−ε2 , we see that

V j,k
ε1,ε2(ω1, ω2) = m1/2 (−1)ε1ε2 iε1−ε2

16B
(Aj,k

ε1,ε2(w, z) + O(m−1/2))

as desired.

A.3 Proof of Theorem 3.9.2
Recall the definitions of C(m) and C′

(m) from the statement of the theorem. We need to

bound the exponential parts of the integrands |H̃x1+1,x2(ω1)|, |H̃x1+1,2n−x2(ω1)| for ω1 ∈
C(m), and |H̃y1,y2+1(ω2)|, |H̃2n−y1,y2+1(ω2)| for ω2 ∈ C′

(m) for m sufficiently large. First we
prove a few lemmas.

Lemma A.3.1. Let ω = R1eiθ where R1 = 1 − B2mδ−1 + O(mδ/2−1) for 0 < δ < 1/2 with
θ ∈ [0, π/2), so ω is in the first quadrant. Then the square roots

√
ω2 + 2c and

√
ω−2 + 2c

defined in Equation 2.2.1 agree with the principal branch of the square root.

Proof. The arguments of ω + i
√

2c, ω − i
√

2c, ω−1 + i
√

2c, and ω−1 + i
√

2c are all in the
interval (−π/2, π/2). Comparing the arguments of the square root in the expression in
Equation 2.2.1 and for the principal branch gives the result.

Lemma A.3.2. Let ω = R1eiθ where R1 = 1 − B2mδ−1 + O(mδ/2−1) for 0 < δ < 1/2 with
θ ∈ [0, π/2). Then |G(ω)| and |G(ω−1)| both increase with θ.

Proof. It is equivalent to show that the logarithms of the above quantities are increasing.
We compute

d
dω

log G(ω) = − 1√
ω2 + 2c

d
dω

log G(ω−1) =
1

ω−2
√

ω2 + 2c

So

d
dθ

| log G(R1eiθ)| = Re
d
dθ

log G(R1eiθ)

= Re
−iR1eiθ√
R2

1e2iθ + 2c

= Im
ω√

ω2 + 2c
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Similarly we can show

d
dθ

| log G((R1eiθ)−1)| = −Im
ω−1

√
ω−2 + 2c

.

We have 0 ≤ arg(ω2)− arg(ω2 + 2c) ≤ arg(ω2) ≤ π so 0 ≤ arg(ω/
√

ω2 + 2c) ≤ π/2
and hence Im(ω/

√
ω2 + 2c) ≥ 0 and so | log G(R1e−iθ)| is increasing as required. We also

have −π ≤ arg(ω−2) ≤ arg(ω−2)− arg(ω−2 + 2c) ≤ 0, so −π ≤ arg(ω−1/
√

ω−2 + 2c) ≤
0 and hence −Im(ω−1/

√
ω−2 + 2c) ≥ 0 so | log G((R1e−iθ))−1| is increasing as required.

Since we will have a lot of error terms of different orders to deal with, we state the
following inequalities for 0 < δ < 1/2.

δ − 2 < 2(δ − 1) < −1 < δ/2 − 1 < δ − 1 < −1/2 < (δ − 1)/2 (A.3.1)

Lemma A.3.3. Let ω = R1eiθ where R1 = 1 − B2mδ−1 + O(mδ/2−1) for 0 < δ < 1/2 with
θ ∈ [0, π/2). Then

|ω2 + 2c| ≥ 2B2mδ−1 + O(m−1).

Proof. Note that R2
1 < 2c. It is clear (e.g. by geometry) that |ω2 + 2c| approaches its

infimum as ω → i. So we have |ω2 + 2c| ≥ 2c − R2 = 2B2mδ−1 + O(m−1).

Lemma A.3.4. Let ω = R1eiθ where R1 = 1 − B2mδ−1 + O(mδ/2−1) for 0 < δ < 1/2 with
θ ∈ [0, π/2). Then for m sufficiently large we have

√
2 − 1 + O(mδ−1) ≤ |G(ω)| ≤ 1

Proof. From Lemma A.3.2, the infimum of |G(ω)| on this interval occurs at ω = R1, while
the supremum occurs in the limit ω → R1i. Recalling that 2c = 1 + O(m−1), we compute

G(R1) = 1 −
√

2 + O(mδ−1)

which shows the lower bound for |G(ω)|. For the upper bound, the limit of
√

ω2 + 2c as

ω → R1i along the contour ω = R1eiθ is
√

2c − R2
1, since R1 <

√
2c. So

|G(ω)|2 ≤
∣∣∣∣ 1
2c

(
R1i −

√
2c − R2

1

)∣∣∣∣2
= 1,

which proves the upper bound.
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Lemma A.3.5. Let ω = R1eiθ where R1 = 1 − B2mδ−1 + O(mδ/2−1) for 0 < δ < 1/2with
θ ∈ [0, π/2). Then for m sufficiently large we have

√
2 − 1 + O(mδ−1) ≤ |G(ω−1)| < 1

Proof. From Lemma A.3.2, the minimum of |G(ω−1)| on this interval occurs at ω =
R1,while the supremum occurs in the limit ω → R1i. Recalling that 2c = 1 + O(m−1),
we compute

G(R−1
1 ) = 1 −

√
2 + O(mδ−1)

which shows the lower bound for |G(ω−1)|. For the upper bound, the limit of
√

ω−2 + 2c

as ω → R1i along the contour ω = R1eiθ is i
√

R−2
1 − 2c, since R−1

1 >
√

2c. So

|G(ω−1)| ≤
∣∣∣∣ 1
2c

(
R−1

1 i − i
√

R−2
1 − 2c

)∣∣∣∣
= 1 + B2mδ−1 −

√
2Bm(δ−1)/2 + O(m−δ/2−1/2)

= 1 −
√

2Bm(δ−1)/2 + O(m−1/2)

where we have made use of the inequalities in Equation A.3.1 to deal with the error terms.
So for m sufficiently large, we have |G(ω−1)| < 1 as required.

Lemma A.3.6. Let ω1 = R1eiθ where R1 = 1 − B2mδ−1 + O(mδ/2−1) ∈ R for 0 < δ < 1/2.
Then there exists c2 > 0 such that for m sufficiently large∣∣∣∣ G(ω1)

G(ω1
−1)

∣∣∣∣ < 1 + c2Bm(δ−1)/2

for all θ ̸= π/2 + kπ, k ∈ Z.

Proof. First note that∣∣∣∣ G(ω)

G(ω−1)

∣∣∣∣ = ∣∣∣∣ G(ω)

G(ω−1)

∣∣∣∣ = ∣∣∣∣ G(−ω)

G(−ω−1)

∣∣∣∣ = ∣∣∣∣ G(−ω)

G(−ω−1)

∣∣∣∣
it is sufficient to consider θ ∈ [0, π/2). Also note that since |G(ω1

−1)| = |G(ω1
−1)| we

have ∣∣∣∣ G(ω1)

G(ω1
−1)

∣∣∣∣ = ω1 −
√

ω1
2 + 2c

ω1
−1 −

√
ω1

−2 + 2c
.

After some rearrangement, we obtain∣∣∣∣ G(ω1)

G(ω1
−1)

∣∣∣∣ =
∣∣∣∣∣1 + (ω1 − ω1

−1)− (
√

ω1
2 + 2c −

√
ω1

−2 + 2c)

ω1
−1 −

√
ω1

−2 + 2c

∣∣∣∣∣ . (A.3.2)
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Now, ω1 − ω1
−1 = (R1 − R−1

1 )eiθ so

|ω1 − ω1
−1| = (R−1

1 − R1) = 2B2mδ−1 + O(mδ/2−1).

Also ω1
2 − ω1

−2 = (R2
1 − R−2

1 )e2iθ = 4B2mδ−1 + O(mδ/2−1). Hence

(ω1
2 + 2c)− (ω1

−2 + 2c) = (R2
1 − R−2

1 )e2iθ = 4B2mδ−1 + O(mδ/2−1)

and so we have

(
√

ω1
2 + 2c −

√
ω1

−2 + 2c)(
√

ω1
2 + 2c +

√
ω1

−2 + 2c) = 4B2mδ−1 + O(mδ/2−1).
(A.3.3)

Now note that since we are assuming θ ∈ [0, π/2), we have arg(
√

ω1
2 + 2c) ∈ [0, π/4)

and arg(
√

ω1
−2 + 2c) ∈ [0, π/2) so

|
√

ω1
2 + 2c +

√
ω1

−2 + 2c| ≥ |
√

ω1
2 + 2c| ≥

√
2Bm(δ−1)/2

by Lemma A.3.3. Thus by Equation A.3.3 we have√
ω1

2 + 2c −
√

ω1
−2 + 2c ≤ 2

√
2m(δ−1)/2 + O(m−1/2).

Also, by Lemma A.3.5 we have

|ω1
−1 −

√
ω1

−2 + 2c| = |2c G(ω1
−1)| ≥

√
2 − 1 + O(mδ−1).

Putting these together we see that∣∣∣∣∣ (ω1 − ω1
−1)− (

√
ω1

2 + 2c −
√

ω1
−2 + 2c)

ω1
−1 −

√
ω1

−2 + 2c

∣∣∣∣∣
≤ 2B2mδ−1 + O(mδ/2−1) + 2

√
2m(δ−1)/2 + O(m−1/2)√

2 − 1 + O(mδ−1)

≤ 2
√

2m(δ−1)/2
√

2 − 1
+ O(m−1/2)

where again we have used the inequalities in Equation A.3.1 to deal with the error terms.
Hence, from Equation A.3.2 we see that there exists some c2 > 0 such that∣∣∣∣ G(ω1)

G(ω1
−1)

∣∣∣∣ < 1 + c2Bm(δ−1)/2

for m sufficiently large as required.
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Now we look at the contours C ′
0,m and C ′

1,m.

Lemma A.3.7. Let ω2 = R2eiθ where R2 = 1 + B2mδ−1 + O(mδ/2−1) for 0 < δ < 1/2. Then
there exists c2 > 0 such that for m sufficiently large∣∣∣∣ G(ω2)

G(ω2−1)

∣∣∣∣ > 1 − c2Bm(δ−1)/2

for all θ ̸= π/2 + kπ, k ∈ Z.

Proof. Note that ω2
−1 = (1 − B2mδ−1 + O(mδ/2−1))e−iθ. So we can write ω2

−1 = ω1 for
ω1 as in Lemma A.3.6. So we see that we have∣∣∣∣∣G(ω2

−1)

G(ω2)

∣∣∣∣∣ < 1 + c2Bm(δ−1)/2

for m sufficiently large. Since ∣∣∣∣ G(ω2)

G(ω2−1)

∣∣∣∣ = ∣∣∣∣ G(ω2)

G(ω2
−1)

∣∣∣∣
the result follows.

Now we are ready to prove Theorem 3.9.2

Proof of Theorem 3.9.2. Let C(m) and C′
(m) be as in the statement of the theorem. On C(m)

we can parametrize ω1 as ω1 = R1eiθ and on C′
(m) we can parametrize ω2 as ω2 = R2eiθ

where

R1 = 1 − B2mδ−1 + O(mδ/2−1)

R2 = 1 + B2mδ−1 + O(mδ/2−1)

and
θ ∈ [−π/2 + θ0, π/2 − θ0] ∪ [π/2 + θ0, 3π/2 − θ0]

for some θ0 > 0. We can show using Theorem 3.7.2 that θ0 = −B2/
√

2αmδ/2−1 +O(m−1).
The contours C(m) and C′

(m) do not touch the imaginary axis so we can apply the preceding

lemmas. First we look at H̃x1+1,x2(ω1). Recall that α < 0. We have

H̃x1+1,x2(ω1) =
ω1

2m(−iG(ω1))
−αBm1/2+O(1)

(iG(ω1
−1))−αBm1/2+O(1)

.

For ω1 ∈ C(m) we have

log |H̃x1+1,x2(ω1)| = 2m log |ω1| − αBm1/2 log
∣∣∣∣ G(ω1)

G(ω1
−1)

∣∣∣∣+ O(1)
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since by Lemma A.3.4 and Lemma A.3.5, G(ω1) and G(ω1
−1) are bounded for ω1 ∈ C(m).

We have log |ω1| = −B2mδ−1 + O(mδ/2−1) and log |G(ω1)/G(ω1
−1)| < c2Bm(δ−1)/2 for

some c2 > 0, by Lemma A.3.6. So

log |H̃x1+1,x2(ω1)| < −2B2mδ + O(mδ/2)− αB2c2mδ/2 + O(1)

which simplifies to
log |H̃x1+1,x2(ω1)| < −2B2mδ + O(mδ/2).

Hence there exists cx > 0 such that for all ω1 ∈ C(m),

|H̃x1+1,x2(ω1)| < e−cxmδ

for m sufficiently large.
Next we look at H̃x1+1,2n−x2(ω1). We have

H̃x1+1,2n−x2(ω1) = H̃x1+1,x2(ω1)(iG(ω1
−1))−2αBm1/2+O(1).

Since from Lemma A.3.5 we have |G(ω1
−1))| ≤ 1, and we have α < 0 we see that for m

sufficiently large and ω1 ∈ C(m) we have

|H̃x1+1,2n−x2(ω1)| < |H̃x1+1,x2(ω1)| < e−cxmδ

for the cx that we found above.
Now we look at |H̃y1,y2+1(ω2)| for ω2 ∈ C′

(m). As above, we have

log |H̃y1,y2+1(ω2)| = 2m log |ω2| − αBm1/2 log
∣∣∣∣ G(ω2)

G(ω1
−2)

∣∣∣∣+ O(1).

We have log |ω2| = B2mδ−1 + O(mδ/2−1) and log |G(ω2)/G(ω2
−1)| > −c2Bm(δ−1)/2 for

some c2 > 0, by Lemma A.3.6. So

log |H̃y1,y2+1(ω2)| > 2B2mδ + O(mδ/2) + αB2c2mδ/2 + O(1)

which simplifies to
log |H̃y1,y2+1(ω2)| > 2B2mδ + O(mδ/2).

Hence there exists cy > 0 such that for all ω2 ∈ C′
(m),

|H̃y1,y2+1(ω2)| > ecymδ

for m sufficiently large.
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Next we look at H̃2n−y1,y2+1(ω2). We have

H̃2n−y1,y2+1(ω2) = H̃y1,y2+1(ω2)(−iG(ω2))
2αBm1/2+O(1).

Since from Lemma A.3.5 we have |G(ω2))| ≤ 1, and recalling that α < 0 we see that for
m sufficiently large and ω2 ∈ C′

(m) we have

|H̃2n−y1,y2+1(ω2)| > |H̃y1,y2+1(ω2)| > ecymδ

for the cy that we found above.
Taking d = min(cx, cy) completes the theorem.

A.4 Proof of Lemma 3.9.1
Proof of Lemma 3.9.1. We can write the O(m−1/2w, m−1/2z) error term as m−1/2R(w, z)
where R(w, z) = O(w, z) and does not contain any singularities. Recall that on C̃j, we

have |w| < mδ and on C̃k
′

we have |z| < mδ for some 0 < δ < 1/2 . Then there exists
c1 > 0 such that on C̃j × C̃k

′
, we have |em−1/2R(z,w)| < ec1mδ−1/2

. Then we have

|em−1/2R(z,w) − 1| < m−1/2R(z, w)ec1mδ−1/2
.

Let

E =
∫
C̃j

dw
∫
C̃k

′ dz
Aj,k

ε1,ε2(w, z)
z − w

egj,k(w,z)(em−1/2R(z,w) − 1).

We want to show that E = O(m−1/2). We have

E ≤
∫
C̃j

|dw|
∫
C̃k

′ |dz|
∣∣∣∣∣A

j,k
ε1,ε2(w, z)
z − w

∣∣∣∣∣ |egj,k(w,z)| |em−1/2R(z,w) − 1|

≤ m−1/2ec1mδ−1/2
∫
C̃j

|dw|
∫
C̃k

′ |dz|
∣∣∣∣∣A

j,k
ε1,ε2(w, z)R(z, w)

z − w

∣∣∣∣∣ |egj,k(w,z)|

≤ m−1/2ec1mδ−1/2
∫
Cj

|dw|
∫
C ′k
|dz|

∣∣∣∣∣A
j,k
ε1,ε2(w, z)R(z, w)

z − w

∣∣∣∣∣ |egj,k(w,z)|.

By Lemma 3.9.3 and the bounds found in Corollary 3.7.1, and because Aj,k
ε1,ε2(w, z)R(z, w)

has no singularities, we see that the double integral converges. Moreover ec1mδ−1/2
de-

creases as m → ∞. So E = O(m−1/2) as required.
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A.5 Proof of Lemma 4.2.2
Proof. Let

F(λ, k) =
∫ λ

0

1√
(1 − k2y2)(1 − y2)

dy

denote the incomplete elliptic integral of the first kind, for λ, k ∈ (0, 1).
We have 0 ≤ λz ≤ 1 for z1 ≤ z ≤ z2, with λz1 = 0 and λz2 = 1 for all 0 < a < 1. Let z1

and z2 be as defined in Equation 4.1.5, and consider z with −1 < z1 ≤ z ≤ −3+ 2
√

2 < z2.
Note that z1 = −1 +

√
2h +O(h2) so for any z ∈ (−1,−3 + 2

√
2), by taking h sufficiently

small, we have z ≥ z1.
We use the following asymptotic formula proven in [7] and stated in more convenient

notation in [21]:

F(λ, k) = λ log
4√

1 − λ2 +
√

1 − k2λ2
+ θ1F(λ, k) (A.5.1)

with relative error bound

(2 − λ2(1 + k2)) log(1 − k2λ2)

4 log((1 − k2λ2)/16)
< θ1 <

2 − λ2(1 + k2)

4
. (A.5.2)

In our case, we have

2 − λ2
z(1 + k2)

4
=

(1 − a)2

8a(a + a−1)(1 + z)2 (2(1 − z)2 − 2z(a + a−1)2 − (1 + z)2(a + a−1))

≤ −z
(z + 1)2 h2 + Ah

for z ∈ (z1, z2), for some constant A which does not depend on z (we note that z1 + 1 =√
2h + O(h2) and z ≥ z1). We can also show that (2 − λ2(1 + k2))/4 ≥ 0, so the lower

bound in Equation A.5.2 is positive. Now we compute

λ log
4√

1 − λ2 +
√

1 − k2λ2
=

√(
a+a−1

2

)
(2(a + a−1 − 1)z + 1 + z2)

1 + z

× log

 4a
√

a + a−1(1 + z)

(1 − a)((1 − z) +
√(

a+a−1

2

)
(−2(a + a−1 + 1)z − 1 − z2)


We can show that √(

a+a−1

2

)
(2(a + a−1 − 1)z + 1 + z2)

1 + z
= 1 + R1(h, z)
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where |R1(h, z)| < A1h2/(1 + z)2 as h → 0 for some constant A1, and

log

 4a
√

a + a−1(1 + z)

(1 − a)((1 − z) +
√(

a+a−1

2

)
(−2(a + a−1 + 1)z − 1 − z2)


= − log h + log

(
4
√

2(1 + z)
1 − z +

√
−1 − 6z − z2

)
− h

2
+ R2(h, z)

where |R2(h, z)| < A2h2/
√
−1 − 6z − z2 as h → 0 for some constant A2. Putting these

together and again noting that 1 + z >
√

2h, we have

λ log
4√

1 − λ2 +
√

1 − k2λ2
= − log h + log

(
4
√

2(1 + z)
1 − z +

√
−1 − 6z − z2

)
− h

2
+ R3(h, z)

where

|R3(h, z)| < A3
h2 log h
(1 + z)2 + A′

3
h2

√
−1 − 6z − z2

as h → 0 for some constants A3, A′
3. Now using Equation A.5.1 and noting that |θ1| <

A4(h2(z + 1)−2) + A′
4h for constants A4, A′

4, the result follows.
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