
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Stochastic Transport in Complex and Dynamic Geometries

Permalink
https://escholarship.org/uc/item/0km1z6zb

Author
Ali, Imtiaz Ahmad

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0km1z6zb
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, MERCED

Stochastic Transport in Complex and Dynamic Geometries

A Dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Physics

by

Imtiaz Ahmad Ali

Committee in charge:

Professor Kevin Mitchell, Chair

Professor Chih-Chun Chien

Professor Arnold Kim

Professor Ajay Gopinathan

December 2021

© Imtiaz Ahmad Ali 2022

All Rights Reserved

ii

The dissertation of Imtiaz Ahmad Ali, titled Stochastic Transport in Complex and

Dynamic Geometries, is approved, and it is acceptable in quality and form for

publication.

(Professor Ajay Gopinathan) Principal Adviser Date

(Professor Kevin Mitchell) Committee Chair Date

(Professor Chih-Chun Chien) Committee Member Date

(Professor Arnold Kim) Committee Member Date

University of California, Merced

2022

iii

Dedication

This dissertation is dedicated to the memory of my grandparents, Sheikh Kamal

Khan Maqbool, Badrul Nisha Maqbool, Amjad Ali and Fatima Bibi Ali.

iv

Acknowledgments

I want to thank my advisor, Ajay Gopinathan. He is a great physicist and I have

learned so much while working with him. I want to thank my committee members

Kevin Mitchell, Arnold Kim and Chih-Chun Chien for their guidance and feedback

on my work. I also want to thank the members of the Gopinathan group for all

the scientific discussion and feedback. I would like to thank David Quint for all the

teaching, support and intense discussion that really guided me through this journey.

I want to thank my friends Mark De La Cruz Bartolo, Ahmad Elhares, Suryabhan

Singh Hada, Bryan Maelfeyt, Carlos Adrian Morales, Anton Shvets, Simon Tekeste

and Allan Wai for their support in my times of need. I want to thank my parents

Nurun and Iftekhar and my cousins Fazleen Hanief and Stephanie Khan for their

emotional support. Finally, I want to give a very special thanks to my wife Farnaz

Golnaraghi for being a strong moral support. This research has been funded by the

following sources:

� NRT Intelligent Adaptive Systems at UC Merced (NSF Grant No. DGE-

1633722)

� NSF-CREST: Center for Cellular and Biomolecular Machines at UC Merced

(NSF-HRD-1547848)

v

Imtiaz Ahmad Ali

136 North Spruce Avenue, South San Francisco, CA, 94080
Call: (650)-296-2317 , Email: imtiaza20@gmail.com

PROFILE PhD candidate in Physics with research experience in Computational Biophysics and
Statistical Mechanics. Experienced in computational modeling and analytical physics.
Skilled in data analysis, data feature detection and data visualization. Experience in
multiple programming languages/environments including, C++, Python and MAT-
LAB. Have brought multiple coding projects from the ground up into the ”it’s work-
ing” stages with some experience in optimization. Excellent communication skills
having presented my work at various national conferences. Worked in an interdisci-
plinary environment for the last 4 years. Passionate about computational work and
enjoys being challenged with new types of problems. Fondness for learning on the fly
and reworking solutions to problems until it is done correctly and efficiently.

EDUCATION Master of Science in Financial Mathematics
The University of Chicago, August 2021 - December 2022 Expected

PhD Candidate in Physics
University of California, Merced, August 2016 - December 2021 Expected
Current research: Stochastic Transport in Complex and Dynamic Geometries
Principal Advisor: Professor Ajay Gopinathan

Master of Science in Physics
University of California, Merced, December 2019

Bachelor of Science in Physics with Minor in Mathematics
University of California, Santa Barbara, June 2016

COMPUTER
SKILLS

Language & Software: C/C++, Python, R, MATLAB, Bash, LaTeX
Operating Systems: Linux, MS-Windows.

SELECTED
COURSEWORK

Numerical Methods, Partial Differential Equations, Scientific Computing, Statistical
Mechanics, Measurements & Uncertainties, Biophysics, Intelligent Adaptive Systems,
C++ Programming, Molecular Dynamics, Machine Learning

SELECTED
PROJECTS

– Intracellular Transport on Dynamic Actin Networks

– Utilized C to build single-agent simulations to transport cargo on networks
within a cell.

– Developed theory to account for dynamical behaviors, and formulated dy-
namics of networks to make simulation closer to real world behaviors.

– Utilized Python’s object-oriented features and scientific libraries such as
NumPy and SciPy to develop visual and modeling tools to quantify theo-
rized assumptions.

– Lévy Walks in Curved Space

– Built random walk simulation, in MATLAB, for transport on curved man-
ifold by utilization of Lévy walk dynamics.

– Detailed the mappings to different model spaces that made computations
straightforward.

– Developed analytical, visual and modeling tools to quantify dynamical
behaviors.

– Optimal Models for Human Decision Dynamics

– Gathered data from experiment that exposed subjects to high levels of
stress through time constraints, limitations on available shelter space, and
enforced group protocols that complicate the possibility of evacuation.

– Developed human decision models, in MATLAB, which placed subjects
in a natural disaster simulation; model addressed how individual decision
behavior do not properly justify decision behavior will in groups.

– Quantified human decision dynamics to find optimal human behavior for
policy making in natural disasters, and to establish strategies that maxi-
mize the efficiency of human decision behaviors specifically in relation to
minimizing threat and utilizing available information.

ACADEMIC
SERVICE &
PROFESSIONAL
EXPERIENCE

– Teaching Assistant, Introductory Physics 2 Lab, Instructor: Dr. Carrie Manke,
Spring 2021

– GRAD-EXCEL Peer Mentorship Program (AY 2018-2019, AY 2020-2021).

– Teaching Assistant, Modern Physics, Instructor: Dr. Kinjal Dasbiswas, Fall
2020

– Teaching Assistant, Introductory Physics 2, Instructor: Dr. Carrie Manke,
Spring 2020

– Teaching Assistant, Calculus 1, Instructor: Matea Santiago, Fall 2019

– Teaching Assistant, Introductory Physics 2, Instructor: Kristina Callaghan,
Fall 2018

– Teaching Assistant, Calculus 2, Instructor: Dr. Keith Thompson, Summer 2017

– Teaching Assistant, Calculus 1, Instructor: Daniel Swenson, Spring 2017

– Teaching Assistant, Calculus 2, Instructor: Haik Stepanian, Fall 2016

HONORS &
AWARDS

– APS, Division of Biological Physics Student Travel Grant (Spring 2021)

– NSF-NRT IAS Fellow: University of California, Merced (Summer 2021)

– NSF-NRT IAS Fellow: University of California, Merced (Spring 2019 - Summer
2019)

– NSF-CREST CCBM Scholar: University of California, Merced (Fall 2018 -
Present)

– NSF-NRT IAS Fellow: University of California, Merced (Fall 2017 - Summer
2018)

– NSF-NRT ICGE Fellow: University of California, Merced (Spring 2017)

– Academic Honors: University of California, Santa Barbara (2016)

– Distinction in the Major: University of California, Santa Barbara (2016)

– Research Honors Award: University of California, Santa Barbara (2016)

– Worster Fellowship: University of California, Santa Barbara (2015)

PUBLICATIONS
� Imtiaz A. Ali, Ajay Gopinathan, “Intracellular Transport on Dynamic Actin
Networks”, (In-Preparation).

� Imtiaz A. Ali, David A. Quint, Ajay Gopinathan, “Lévy Walks in Curved
Space”, (Submitted to Scientific Reports).

� K. J. Schlesinger, C Nguyen, I. Ali , J. M. Carlson, ”Collective decision dy-
namics in group evacuation: Modeling Tradeoffs and Optimal Behavior.” Xiv
preprint arXiv:1611.09767 (2016).

� I. Ali, “Optimizing Models of Human Decision Making in a Natural Disaster”.
Undergraduate thesis, University of California, Santa Barbara, Santa Barbara,
CA. 2016

CONFERENCE
PRESENTATIONS

– Intracellular Transport on Dynamic Actin Networks, APS March Meeting,
Spring 2021

– Levy Walks in Non-Euclidean Spaces, APS Far West, Fall 2018

– Random Searches in Non-Euclidean Spaces, APS March Meeting, Spring 2018

– Undergraduate Senior Physics Honors Thesis Defense, University of Califor-
nia, Santa Barbara, Committee Members: Dr. Jean M. Carlson, Dr. Mark
Srednicki, Dr. Bjorn Birnir, May 2016

– Worster Fellow Presentation, University of California, Santa Barbara, Chair:
Dr. Omer Blaes, Sep 2015

Abstract

Stochastic transport is a widely studied phenomenon among physicists. This includes

simple diffusive processes like Brownian motion which have helped describe numerous

systems ranging from the spreading of dye molecules in a liquid to the spreading of

human populations. However, many natural processes exhibit anomalous diffusion

with enhanced or suppressed spreading and can occur in environments that are com-

plex. Transport behavior can be affected by properties such as the local curvature

of a surface or the dynamics of a network on which the transport takes place. A

quantitative characterization of these factors is critical for a deeper understanding of

transport in such cases and is of much interest to the study of random walk theory,

stochastic processes and anomalous diffusion in general. In this dissertation, we aim

to accomplish this aim by focusing on two specific cases - (i) anomalous diffusion of

a random walker on curved surfaces and (ii) transport of cargo on dynamic filament

networks.

Lévy walks are a class of anomalously diffusive random walks with step lengths

drawn from a heavy-tailed power- law distribution. They can be used to describe

stochastic transport in a number of natural settings ranging from photons in complex

media to animals foraging for food. Depending on the power-law exponent, Lévy

walks in Euclidean spaces can show diffusive, super-diffusive or ballistic scaling of

the mean-squared displacement. While such anomalous diffusive behavior has been

extensively studied in Euclidean spaces, in many cases of interest the transport takes

place on surfaces with non-zero Gaussian curvature, K, such as the membranes of

cells or surfaces of planets. Here, we take the first steps towards studying how surface

curvature affects anomalous transport described by Lévy walk statistics. We develop

a computational model to simulate Lévy walks along geodesics in Euclidean (K = 0),

spherical (K > 1) and hyperbolic (K < 1) spaces. By comparing our numerical

results to a Taylor expansion of the mean-squared displacement (MSD) in powers

ix

of curvature around the Euclidean case, we are able to establish the validity of a

generalized expression for MSD of anomalous diffusion with curvature corrections

and determine the expansion coefficients. Our results and methodology should be

helpful in quantifying curvature contributions to processes such as reaction-diffusion

and searches on curved surfaces as well as interpreting experimental data of anomalous

diffusion on curved surfaces.

The transport of cargo within cells is a critical physiological process and is ac-

complished by a combination of simple diffusion and ballistic motor driven transport

along cytoskeletal protein filaments giving rise to overall anomalous diffusive behav-

ior. Recently there has been an explosion of new studies that consider the impact on

transport of the morphology of the networks of filaments. This has been driven by ad-

vances in experimental techniques that have provided clearer and more controllable in

vivo and in vitro studies. However, one aspect that has received much less attention

is the growth/shrinkage and dynamic turnover of the network filaments themselves,

which can occur on the same time scale as the transport of cargo on the network.

Consequently, the complex intracellular dynamics of the inhomogeneous cytoskeletal

structure can have profound impacts on transport. Here, we study transport of cargo

carried by myosin motors on a dynamic actin network. We use a stochastic simulation

model that accounts for both active cargo transport along filaments as well as passive

diffusion and incorporate the dynamics of the explicitly represented actin network.

We show how the speed of actin filament growth/shrinkage due to treadmilling affect

cargo transport along with motor attachment/detachment rates and network density.

We show the existence of filament dynamics in physiologically relevant regimes that

optimize the transport of cargo and how it can be tuned by other system parameters.

Our analysis illuminated how actin dynamics can be exploited by cells to modulate

optimality in the molecular transport of cellular cargo.

x

Contents

Acknowledgments v

Curriculum Vitae vi

Abstract ix

1 Introduction 1

1.1 Motivation and Overview . 1

2 Lévy Walks in Curved Space 4

2.1 Introduction . 4

2.2 Methods . 7

2.2.1 Geometry and Curvature . 7

2.2.2 Lévy Distribution and Mean-Squared Displacement 8

2.2.3 Random Walk Algorithm . 12

2.3 Results . 13

2.3.1 Model and Fits . 14

2.3.2 Results: Preliminary Euclidean Case 15

2.3.3 Results: Brownian Case . 17

2.3.4 Results: Lévy and Ballistic Case 23

2.4 Discussion . 27

2.5 Appendix . 29

2.5.1 Mathematics . 30

2.5.2 Hyperbolic Geometry . 32

2.5.3 Spherical Geometry . 52

2.5.4 Simulation . 54

xi

3 Intracellular Transport on Dynamic Actin Networks 59

3.1 Introduction . 59

3.2 Methods . 61

3.3 Results . 62

3.3.1 Enhanced MSD and Optimal MFPT 62

3.3.2 Tuned Speed Range Dependencies 64

3.4 Discussion . 66

3.5 Appendix . 68

3.5.1 Simulation Parameters . 68

3.5.2 Tuned Filament Speed Time On and Distance Traveled 68

3.5.3 Density Dependent Optimal Filament Speed 71

4 Final Discussion 74

4.1 Overall Conclusion and Future Work 74

A Appendix: Future work Derivations 77

A.1 Reaction-Rate Derivation: Linear Potential 77

A.1.1 Solving t1 . 80

A.1.2 Solving t1,2 . 81

A.1.3 Solving t1,2,3 . 83

A.1.4 Final MFPT Form: Linear Potential 85

A.1.5 MFPT, Linear Potential: Velocity Rate of Change 86

B Appendix: Computer Programs Used 87

B.1 Introduction . 87

B.2 Lévy Walks in Curved Space Programs 87

B.2.1 LWALK IA SPHERE MAIN DATA.m 87

B.2.2 LWALK IA SPHERE MAIN DATA MSD.m 98

B.3 Intracellular Transport on Dynamic Actin Networks Programs 103

B.3.1 simTransMainMSD FPTD IA ADV V1 Dynamic.c 103

B.3.2 Net Setup.c . 163

B.3.3 Net Distances MINMAX.c . 166

B.3.4 Net Shrink Grow.c . 176

Bibliography 194

xii

List of Tables

3.1 Simulation parameter values. The diffusion distance was calculated

using a =
√

4Dtphysical. 69

xiii

List of Figures

1.1 (a) Examples of complex membrane geometries that protein diffusion

can occur on [1]. (b) A microtubule network inside an embryonic mouse

cell with regions of crowded and sparse networks [2]. 2

2.1 Simulated random walk on geodesics with Lévy exponent µ = 3.4 with

R = 100 for t = 10, 000 time-steps. (a) Random walk trajectory on

the surface of hyperboloid with negative Gaussian curvature according

to the metric in the Appendix §2.19. (b) Random walk trajectory is

on the surface of a sphere corresponding to positive curvature. 13

xiv

2.2 Shown are the MSD results for random walks in Euclidean space. The

simulated trajectories geodesics are drawn from equation (2.2), which

have Lévy exponent µ = 1.6, 2.4, 2.8, 3.4 with the corresponding theo-

retical anomalous exponent α = 2, 1.6, 1.2, 1, respectively. The simula-

tion consists of 100 samples in which the computed MSD is represented

by red dashes and gray regions as the 95% confidence interval. A fit

is performed on the simulations MSD by equation (2.9a) and plotted

with green lines. (a) µ = 1.6, we have ballistic motion. We predict up

to 25 time-steps in which 60% of the data is used for the fit, green. The

fit has anomalous exponent of α̃ = 1.955± 0.002 which is within 2.3%

from the theorized value and a diffusion constant of D = 0.259±0.002.

(b) µ = 2.4, we have Lévy motion. The prediction is for 250 time-steps

in which 60% of the data is used for the fit. Our simulation shows

an exponent of α̃ = 1.561± 0.003 which is within 2.4%, diffusion con-

stant of D = 0.414 ± 0.006. (c) µ = 3.4, we have Brownian motion.

The prediction is for 350 time-steps in which 71% of the data is used

for the fit. Our simulation shows an exponent of α̃ = 1.036 ± 0.000

which is within 3.6%, diffusion constant of D = 0.537 ± 0.001. For

Brownian, the expected anomalous exponent is α = 1 such that MSD

scales linearly with time. (d) Plots of the actual α̃ vs µ. Our method-

ology reproduces the theorized Euclidean results with our fitted MSD

anomalous exponent α̃ within 5% error and remains robust. 17

xv

2.3 Shown are the MSD results for random walks in spherical space for

R = 10 and 100. Geodesic step-lengths are drawn from equation (2.1),

with Lévy exponent µ = 3.4 to produce Brownian motion. The the-

oretical anomalous exponent is α = 1. The simulation consists of

100 samples and the computed MSD are the red-dashed line and gray

regions as the 95% confidence interval. A fit is performed on the sim-

ulation MSD, (red-dashes), by equation (2.9b), shown by the magenta

lines. Euclidean results are the black-dashed line with the yellow re-

gion as its 95% confidence interval. (a) R = 10. We predict up to 75

time-steps in which 73% of the data is used for the fit. The fit has

anomalous exponent of α̃ = 1.013 ± 0.017, which is within 1.3% from

theory and a diffusion constant of D̃ = 0.329 ± 0.021. (b) R = 100.

We predict up to 400 time-steps with 75% of the data used for the fit.

The fitted MSD has anomalous exponent of α̃ = 0.979± 0.008, which

is within 2.1% error, and a diffusion constant of D̃ = 0.551± 0.023. In

both cases, Brownian motion in Euclidean remains above spherical and

the deviation increases with later time. For R = 10, larger curvature,

the spread is more significant. 20

xvi

2.4 Shown are the MSD results of random walks, for small curvature, in

hyperbolic space with R = 100 and 1000. Geodesic step-lengths are

drawn from equation (2.2), with Lévy exponent µ = 3.4 to produce

Brownian motion. The simulation consists of 25 samples in which

the computed MSD is represented by red dashes and gray regions as

the 95% confidence interval. A fit is performed on the simulations

MSD, (red-dashes), by equation (2.9b), shown by the magenta lines.

Euclidean results are the black-dashed line with the yellow region as its

95% confidence interval. (a) R = 100. We predict up to 800 time-steps

in which 38% of the data is used for the fit. The fit has anomalous

exponent of α̃ = 1.043± 0.002, which is within 4.3% from theory and

a diffusion constant of D̃ = 0.537 ± 0.006. (b) R = 1000. We predict

up to 800 time-steps with 63% of the data used for the fit. The fitted

MSD has anomalous exponent of α̃ = 1.014±0.004, within 1.4% error,

and a diffusion constant of D̃ = 0.709± 0.017. The second term of our

expansion contributes less than 2% when compared to the first term, as

explained in the main text. Therefore, with small principal curvature,

(1
R
), hyperbolic space behaves equivalently to Euclidean. 22

xvii

2.5 Shown are the MSD results for non-Brownian motion in spherical space

for R = 10 and 100. Geodesic step lengths are drawn from equa-

tion (2.1). The simulation consists of 100 samples and the computed

MSD are the red-dashed line and gray regions as the 95% confidence

interval. A fit is performed on the simulation MSD, (red-dashes), by

equation (2.9d), shown by the magenta lines. Euclidean results are

the black-dashed line with the yellow region as its 95% confidence

interval. (a,b) show Lévy motion with µ = 2.4 and (c,d) for ballis-

tic, with µ = 1.6. (a) R = 10. We predict up to 24 time-steps in

which 38% of the data is used for the fit. The fit has anomalous ex-

ponent of α̃ = 1.601 ± 0.01, with 0.06% error, diffusion constant of

D̃ = 0.17 ± 0.004 and a curvature coefficient of β̃1 = 372 ± 16.3. (b)

R = 100. We predict up to 100 time-steps with 70% of the data used

for the fit. The fitted has anomalous exponent of α̃ = 1.561 ± 0.005,

with 2.4% error, diffusion constant of D̃ = 0.226 ± 0.003 and a co-

efficient of β̃1 = 183000 ± 10200. Our simulation reproduces the ex-

pected anomalous exponent, α = 1.6, for Lévy motion but the cur-

vature contribution from the second term increases significantly with

time, as explained in the main text. (c) R = 10. We predict up to 10

time-steps with 70% of the data used for the fit. The fitted MSD has

anomalous exponent of α̃ = 1.873 ± 0.011, with 6.4% error, diffusion

constant of D̃ = 0.156 ± 0.002 and a coefficient of β̃1 = 420 ± 55.4.

(d) R = 100. Predicted for 50 time-steps in which 70% is used for

the fit. The fit has anomalous exponent of α̃ = 1.901 ± 0.003, which

is within 4.9% error, diffusion constant of D̃ = 0.171 ± 0.002 and a

coefficient of β̃1 = 107000 ± 7910. In the case of ballistic motion, the

simulation remains around the expected anomalous exponent, α = 2.

Overall, the deviation from Euclidean decreases as curvature decreases.

Our methodology reproduces the results from equation (2.3) for non-

Brownian motion. 26

xviii

2.6 (a) Plots of the actual α̃ vs µ for the sphere with R = 10, (blue), and

100, (orange), where the red dashes represent the theoretical anomalous

exponent. Inset: Hyperboloid results with α̃ vs R, green. (b) Plots of
β̃1

4R2 versus µ for the sphere with R = 10, (blue), and 100, (orange).

The inset includes the corresponding hyperboloid results with β̃1

4R2 vs

R in green. 29

3.1 Simulation snapshot of our system with parameter values,D = 0.051 µm2

s
,

a = 0.1 µm, Nfil = 15, L = 5 µm, kon = 3.0 s−1, koff = 0.5 s−1, vc =

1.0µm
s
, vf = 0.6µm

s
. (a) Cargo attaches to the filament,

(
tstep = 11

)
.

(b) Cargo moves ballistically on filament with speed vc,
(
tstep = 40

)
.

(c) Cargo detaches from filament,
(
tstep = 52

)
. (d) Cargo diffuses,(

tstep = 157
)
. 62

3.2 Cargo MSD vs time from our simulation for various filament speeds,

shows at early time, for specific filament speeds, (vf ≃ vc = 0.0612 µm
s
),

closed to the cargo speed enhanced MSD. Inset: MSD vs filament

treadmilling speed at 800 s, shows the MSD enhancement persists

even at late times. 63

3.3 Cargo MFPT vs filament treadmilling speed from our simulation, shows

a minima occurs for filament speed around the cargo speed. Inset:

Fraction of time spent by cargo on filament vs filament speed, shows

that, around the optimal speed, a maximum occurs. 64

3.4 (a) Ratio of optimum filament speed to cargo speed vs ratio of detach-

ment to attachment rates. Red-dashed line represents the analytical

optimal filament speed for koff ≤ kon. (b) For koff > kon, ratio of

optimum filament to cargo speed vs number of filaments are shown.

Inset: Fraction of time spent by cargo on filament shows monotonic

behavior. 67

xix

A.1 Depicted is a eukaryotic cell as a sphere. Here, the nucleus has a

radius of Rn, with the filaments in green, having length w such that the

starting end is at a radius Ra away from the nucleus center. The blue

represents the cytoplasm with bulk diffusion D. In this depiction, the

network of filaments in green can be considered part of the cytoplasm

with a network diffusion constant Da [3]. 79

xx

Chapter 1

Introduction

1.1 Motivation and Overview

In nature, many phenomena evolve through stochastic transport, where randomness

and fluctuations play a significant role. Stochastic transport can be described by the

time evolution of the probability of an object being at a particular point in space.

The simplest case is diffusion. Diffusion is the movement of particles from an area of

higher concentration to an area of lower concentration driven by the random motion

of individual particles. As an example, imagine being inside a closed room. If a bottle

of perfume is sprayed, the scent particles would naturally diffuse from the spot where

they left the bottle to all corners of the room. This diffusion would go on until the

particles are equally distributed in the room. So, how do we characterize this diffusive

spreading?

As particles move about the room, they undergo countless collisions with air

molecules in the room. Their movements begin to resemble a random walk. Ran-

dom walks can be done in different dimensions. For simplicity, let us consider a

1−dimensional model starting at x = 0. The walker has a probability of stepping to

the right and another to step to the left. The time evolution of the probability of

particles is then described by the diffusion equation [4]. With enough steps, we get a

probability distribution described by a Gaussian, which is a solution to the diffusion

equation [4]. To understand the motion, we can look at how particles spread from

their starting position as measured by the mean-squared displacement (MSD) which

is given by, ⟨x2⟩ = s2 = 2Dtα, with exponent alpha equal to 1. This states that for a

1

CHAPTER 1. INTRODUCTION 2

simple diffusion process, the MSD scales linearly with time.

Not all processes are simple diffusion, nor do they occur in simple geometries.

For example certain bacteria, swimming in sparse suspensions, exhibit a movement

pattern called “run and tumble”. Runs are straight trajectories [5]. Tumbles are

shorter, random reorientation. This results in super-diffusive transport, α > 1. An-

other example is turbulent fluid flow, which is a type of fluid flow where the fluid

undergoes irregular fluctuations or mixing. The speed of the fluid at a point contin-

uously changes in both magnitude and direction. It was shown, [6] that the diffusion

process of particles in the turbulence can be approximated by a Lévy process. A

Lévy process is a continuous time random walk, where the step lengths are drawn

from a heavy-tailed distribution with Lévy exponent µ ∈ (2, 3). In this case also the

MSD has a non-linear relation with time, α > 1, such that the particles will exhibit

super-diffusive motion.

Dome Tube Pearl

(b)

(a)

Figure 1.1: (a) Examples of complex membrane geometries that protein diffusion can
occur on [1]. (b) A microtubule network inside an embryonic mouse cell with regions
of crowded and sparse networks [2].

Systems described so far are for simple and anomalous diffusion but occurring in

homogeneous, uniform flat space. However, many processes in nature occur in com-

plex and dynamic geometries. For example cell membranes exhibit complex shapes

CHAPTER 1. INTRODUCTION 3

such as shallow domes, elongated tubular structures and pearl-like structures [1],

shown in Figure 1.1a. The transport of proteins often occurs in membranes with

such complex shapes, which can be the result of biological processes that require

membrane deformation, such as endo- and exocytosis. The transport involves lateral

diffusion of proteins, which are involved in signaling and sensing. We can ask, what is

the effect of curvature on diffusion? Does it enhance or suppress diffusion? Another

example is the transport of intracellular cargos which occurs in virtually all eukary-

otic cells and is essential for many cellular functions [3]. Diffusion is sufficient for

transport of small, nanometer (nm) scale molecules over small distances, less than

microns (µm), like in bacteria. It becomes slow for larger cargo over large distances.

These larger cargo require an active transport system where molecular motors carry

the cargo along cytoskeletal filament network. In addition, the cytoskeletal network is

dynamic, causing the networks geometry to continuously change with time. Changes

in the network can cause regions to become crowded in some parts and in other parts

they can be sparse, shown in Figure 1.1b. It is experimentally known that cargo

transport is strongly influenced from the dynamics in network geometry [7]. We can

ask, how do the dynamics affect cargo transport from one point to another in the

cell? And, can the dynamics be tuned to optimize transport?

The results discussed here in this thesis address these questions in two parts.

In chapter 2 we show how curvature affects anomalous diffusion. In chapter 3 we

show how cargo transportation is affected when network of filaments become time-

dependent. The common features connecting both of the presented projects are the

tools of analysis. For transport on curved spaces, mean-squared displacement (MSD)

is evaluated as a function of curvature. For intracellular transport, MSD and mean

first-passage times (MFPTs) are evaluated as a function of the cytoskeletal dynamics

and are used to characterize enhanced and optimal regions of transport. Much of

what is written here, particularly in chapters two and three, are parts of papers that

are either in preparation or have been submitted.

Chapter 2

Lévy Walks in Curved Space

2.1 Introduction

Random walks are stochastic processes that are used to describe statistical transport

in a variety of systems ranging from the motion of molecules to the fluctuations of

stock prices [4, 8–10]. A random walk describes a path resulting from a series of

random steps in a space that are drawn from independent and identically distributed

random variables. It could be thought of as a process by which randomly-moving

objects wander away from where they started. Diffusion, which can be treated as the

continuous limit of random walks, is the simplest and most fundamental transport

mechanism in physical systems ranging from the interiors of cells to stars and is

driven by random thermal motion [8]. Simple diffusion results in the mean squared

displacement (MSD) of the transported entity increasing linearly with time [9]. In

many cases, trapping or caging interactions with the environment or intermittent

ballistic motion or anomalously large jumps can lead to the MSD being suppressed

or enhanced resulting in sub-linear (sub-diffusion) or super-linear (super-diffusion)

scaling of the MSD with time [11–13]. In other words, the MSD scales as ⟨∆s2⟩ ∝ tα,

where α, the anomalous MSD exponent, could be greater than 1 (super-diffusive)

or less than 1 (sub-diffusive). Examples of such anomalous transport include the

sub-diffusion of passive particles within the cellular cytoplasm [14, 15] or confined

environments [11] as well as the super-diffusion of actively transported material within

cells [3, 16–18], the movement of swimming bacteria [9,19] and particles in turbulent

flows [12].

4

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 5

Lévy walks are a particular class of random walks that have been extensively used

to describe super-diffusive transport in a variety of contexts ranging from photon

transport in complex media to the foraging patterns of a variety of organisms [20–25].

Super-diffusive behavior in Lévy walks arises from the heavy-tailed power law nature

of the probability distribution that the step lengths are drawn from (P (l) ∼ l−µ).

Depending on the Lévy exponent, µ, of the power-law, the scaling of the MSD with

time can range from diffusive to ballistic [20], allowing for the description of a large

variety of super-diffusive processes within the same framework. While anomalous

diffusion, in general, and Lévy walks, in particular, have been extensively studied

over the last few decades, our knowledge only extends to these processes occurring in

flat or Euclidean spaces.

However, in many cases, these anomalous transport processes occur on surfaces

with non-zero Gaussian curvature. For, example, the diffusion of membrane proteins

on cellular membranes is typically sub-diffusive due to interactions with different

membrane domains and the underlying cytoskeleton [26, 27]. But, these membranes

are typically far from flat, exhibiting shapes with a range of positive and negative

Gaussian curvatures [1] which are critical for a variety of cellular processes including

migration, signaling and the intake of nutrients. At the other extreme, the super-

diffusive transport of organisms, ranging from spider-monkeys and jackals [23, 24] to

bacteria [25], occur on length scales that are not negligible compared to the naturally

occurring radii of curvature present in their landscapes such as hills and valleys for an-

imals, or the corrugations of the intestinal surfaces for bacteria. It is therefore critical

to understand how the local geometry of the surface affects transport processes that

occur on the surface. While there has been work on surface curvature contributions

to simple or Brownian diffusion [1, 28–31], there have been no systematic studies of

the impact of surface curvature on anomalous diffusion.

In this chapter, we take the first steps toward quantifying the dependence of

super-diffusive Lévy walks on the surface curvature measured via corrections to the

mean squared displacement (MSD). In section §2.2, we review the basic properties

of Lévy walks and how the mean-squared displacement (MSD) depends on the Lévy

exponent, µ, in flat space. We then derive a generalized series expansion for the MSD

as a function of curvature by doing a Taylor expansion around the flat case. We

then briefly summarize the random walk algorithm that we use to obtain numerical

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 6

results for MSD of Lévy walks on surfaces of arbitrary and constant curvature. In

section §2.3, we present our numerical results and the fits to our generalized expansion

for various values of µ on surfaces that are flat and with positive, and negative Gaus-

sian curvatures. We show that the expansions work well to provide reliable estimates

for the curvature corrections and provide estimates for the fit coefficients. Finally, in

section §2.4, we discuss the implications of our results and the scope for future work.

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 7

2.2 Methods

In this section, we will go over geometry, curvature, Lévy distribution and mean-

squared displacement along with the random walk algorithm.

2.2.1 Geometry and Curvature

Riemann geometry is the branch of differential geometry that studies Riemann man-

ifolds, smooth manifolds with a Riemann metric, i.e., with an inner production the

tangent space at each point that varies smoothly from point-to-point. This gives, in

particular, local notions of angle, length of curves, surface area and volume. It deals

with a broad range of geometries whose metric properties vary from point to point.

An example of a curved geometry is the surface of a sphere and the two-sheeted

hyperboloid, which is the focus of our work. In the context of this chapter, we de-

fine curved spaces as the space traversed on the surface of a given geometric object.

Curved spaces can cause objects to become larger or smaller when compared to flat

or Euclidean space. For instance, when comparing the area of a circle, from largest to

smallest, hyperbolic has an exponential expression, Euclidean has a polynomial and

spherical has a sinusoidal relation. Thus, hyperbolic space manages to pack in more

surface area within a given radius than Euclidean. In contrast, spherical space will

have less surface area compared to the Euclidean space. The reason is that the curva-

ture of space directly affects the metric. Hyperbolic metric have negative curvature,

causing objects, i.e., circle length or disk area, to grow exponentially. For Euclidean,

the curvature is zero, flat space, causing a polynomial growth. With spherical space,

the curvature is positive and induces a sinusoidal growth.

We can generalize our space to be non-Euclidean, meaning the metric does not

have zero curvature. For example, visually, hyperbolic spaces can be thought of as

smooth versions of trees abstracting the hierarchical organization of complex networks

(non-trivial topological feature). Complex networks can be studied and described by

embedding it to hyperbolic space [32]. It was shown that the curvature is directly

related to network node degree distribution. The study of searches on scale-free net-

works, i.e., a network whose degree distribution follows a power-law [33], allows for

the study of hyperbolic space, which is the natural embedding of them [32]. Some

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 8

examples of embedding scale-free networks to hyperbolic space are graphs [34], inter-

net [35], and academic citations [36,37]. Euclidean space is not capable of describing

scale-free network space due to the way it grows (polynomial).

In addition, the presence of curvature is expected to affect the dynamics of a sys-

tem. For example, in [38], they constructed a minimal model, to provide insight into

the interplay between activity and geometry. They examined self-propelled particles

subject to a realistic alignment rule, polar alignment, and white noise, confined to

move on a sphere. They stated these systems are examples of motion from circulat-

ing band arising due to the incompatibility between spherical topology and uniform

motion. They found that curvature indeed effects collective motion in active systems,

leading to patterns not observed in Euclidean. Another example is flocks modeled by

self-propelled particles that are confined to move on a sphere. All particles cannot

travel at the same speed [38]. In this work, they concluded that frustration due to

curvature leads to stable elastic distortions storing energy in the band. This allows

for processes done on a spherical manifold to be studied. In addition, geographi-

cal systems, such as air navigation, utilize spherical space by modeling earth as a

sphere [39].

2.2.2 Lévy Distribution and Mean-Squared Displacement

We examine the relationship of Lévy walks simulated in Euclidean (K = 0), spherical

(K > 1) and hyperbolic (K < 1) space where K is the Gaussian curvature. We

develop a simulation to perform random walks with respect to the spatial metric and

show how the path taken has a dependence on curvature. Our work involves the

investigation of anomalous diffusion in two-dimensions through Lévy walks imple-

mented on spherical and hyperbolic manifolds in order to understand the structure

and functionality of curvature.

Stochastic anomalous transport, in 2−dimension, through Lévy walks have gained

growing interest in the past two decades. Our study focuses on diffusive to super-

diffusive regions of the mean-squared displacement, i.e., ⟨∆s2⟩ ∝ tα with anomalous

exponent 1 ≤ α ≤ 2. One aspect of interest is to see how random walk of Lévy

processes within a curved metric affects anomalous transport. Our work involves

performing stochastic diffusion process of a walker on different manifolds.

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 9

Lévy distribution fall into the category of a heavy-tailed distributions, a probabil-

ity distribution whose tails are not exponentially bounded. Thus, the tails are heavier

than an exponential distribution. The generalized Lévy distribution proof is omitted

here but can be found in [40]. Here, we go over the process instead. By applying

Fourier and Laplace transforms to the diffusion equation, ∂ρ
∂t

= D ∂2ρ
∂∆s2

, the generalized

probability density function, (ρ), has the following proportionality, ρ(∆s) ∝ (∆s)−µ,

with the Lévy exponent µ ∈ (2, 3) and the path length ∆s. There are two main

differences between Lévy flights and walks which need to be addressed. First, the

flight assumes instantaneous transportation while Lévy walks have a physical speed.

Second, due to the instantaneous transport, Lévy flights have divergent mean-squared

displacement while Lévy walks are ”finite”. Lévy processes allow the searcher to cover

more space of an area by searching locally then taking large jumps [12].

To implement a random walk with respect to geodesic length in our spaces, we

need the correct probability relationship equations. Lévy distribution has two cases

to consider when deriving it. First, when the upper bound on the distribution is

finite, second when it is infinite. We show the final forms of the geodesic equations,

and leave the proof in the Appendix §2.5.4.

For cases with restricted upper bounds, the geodesic path length is given as,

∆s(Pr) =

[
∆s1−µ

max + Pr
(
∆s1−µ

0 −∆s1−µ
max

)] 1
1−µ

(2.1)

In cases with unrestricted upper bound, the geodesic path is,

∆s(Pr) ≈ ∆s0 × (Pr)
1

1−µ (2.2)

In the random walk simulation, our geodesic path length will be drawn from equa-

tion (2.1) only for spherical space and equation (2.2) for both Euclidean and hyper-

bolic with Pr(∆s > ∆s0) ∈ [0, 1]. This allows us to traverse an unrestricted space.

The sphere is bounded with a maximum geodesic length of ∆s = R · σcentral, with

σcentral ∈ (0, 2π) representing the central angle, such that we avoid overlapping the

same geodesic path.

By using the probability to choose our geodesic length and not the density from

equations (2.89, 2.92), we are able to avoid the instability of Lévy distributions. This

was confirmed by generating a range of ∆s from equations (2.1, 2.2), binning the

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 10

data and applying a fit for the parameters of equations (2.89, 2.92), respectively. The

output was the respective density function with the corresponding µ, not shown.

Geometrical analysis is performed by computing the MSD. In section §2.1, we

presented the general relation for MSD, ⟨∆s2⟩ ∝ tα. For Euclidean, in the limit of

long time, the relation of the anomalous exponent α with the possible Lévy exponent,

µ, is given by [13],

⟨∆s2(t)⟩ ∝

t2, for 1 < µ < 2

t2

ln(t)
, for µ = 2

t4−µ, for 2 < µ < 3

t · ln(t), for µ = 3

t, for µ > 3

(2.3)

Ballistic motion is considered when 1 < µ < 2 with (α = 2), Lévy occurs for 2 < µ < 3

corresponding to (α = 4− µ) and Brownian for µ > 3 with (α = 1). In analysis of

Lévy random walks in Euclidean, a fit is performed, for the computed MSD from the

simulated trajectories, for anomalous exponent α (µ) with respect to these regimes.

This ensures our random walk performs as stated in [13].

In Euclidean space, anomalous diffusion is described generally by ⟨∆s2(t)⟩E =

4Dtα. Consider the identical random walk in an isotropic space with constant Gaus-

sian curvature KG = ± 1
R2 where R is the radius of curvature. The MSD in such a

curved space must be ⟨∆s2(t)⟩N.E = f (D, t, α,KG). Now consider the curvature as

a perturbation from flatness, KG = 0. By Taylor expanding around KG = 0 gives,

⟨∆s2(t)⟩N.E =f (D, t, α,KG)

∣∣∣∣
KG=0

+

KG
∂f (D, t, α,KG)

∂KG

∣∣∣∣
KG=0

+
K2

G

2

∂2f (D, t, α,KG)

∂K2
G

∣∣∣∣
KG=0

+ · · ·
(2.4)

Now f (D, t, α,KG = 0) = 4Dtα and set ∂f
∂KG

|KG=0 = g1 (D, t, α). Note, from

equation (2.4), we see the term KG · g1 (D, t, α) has dimensions of
[
L2
]
, hence g1 has

dimensions of
[
L4
]
. The only length scale one can construct out of D, t, α is (Dtα)

1
2 ,

therefore g1 (D, t, α) = γ1 (Dtα)2 where γ1 is a dimensionless constant that could

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 11

depend on α. Similarly, g2 (D, t, α) = γ2 (Dtα)3. Plugging this into equation (2.4)

gives,

⟨∆s2(t)⟩N.E = 4Dtα + γ1
(Dtα)2

R2
+

γ1
2

(Dtα)3

R4
+ · · ·

= 4Dtα ·

[
1 + γ̃1

(
Dtα

R2

)
+ γ̃2

(
Dtα

R2

)2

+ · · ·

] (2.5)

This gives the MSD for curved spaces in terms of that space but multiplied by a

dimensionless constant that depends on geometry,

⟨∆s2(t)⟩N.E = ⟨∆s2(t)⟩E ·

[
1 + γ̃1

(
Dtα

R2

)
+ γ̃2

(
Dtα

R2

)2

+ · · ·

]
(2.6)

This expression is valid in the regime that Dtα

R2 ≤ 1, i.e., when the MSD in Euclidean

space is small compared to the inverse Gaussian curvature.

With Euclidean random walk, we implement the same methodology for the hy-

perbolic and spherical space Lévy walk, but with its respective position and geodesic

equations, derived in the Appendix (§2.5.2, §2.5.3). Additionally, because of the scale-

free behavior of Lévy distributions, considering only Brownian motion and following

the procedure in [41], the generalized expression for the MSD in curved space is,

⟨∆s2(t)⟩ ≈ 2dDt− 2

3
Rg (Dt)2 +

4

45

d− 3

d(d− 1)
R2

g (Dt)3 + · · · (2.7)

where d is the number of dimensions, D is the diffusion coefficient, and Rg = ±d(d−1)
R2

is the scalar curvature. Rg > 0 for positive curvature, Rg < 0 for negative and

Rg = 0 for zero curvature. In terms of equation (2.6), with ⟨∆s2(t)⟩E = 2dDt and

α = 1, we get γ̃1 = ±1
3
· (1− d) where (+) is for Rg > 0 and (−) for Rg < 0 and

γ̃2 =
2
45

· (d− 3) · (d− 1).

In deriving equation (2.7), they used the generalized Laplace-Beltrami operator

instead of Euclidean Laplace operator in the diffusion equation [41]. This properly

accounts for the curvature effects which takes place for motion on a Riemann manifold.

The derivation was justified by working in the localized frame of Riemann Normal

Coordinates (RNC).

For consistency, with the proposed Brownian motion MSD, we adopt the same

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 12

sign orientation from equation (2.7) for the dimensionless constants, γ̃1, γ̃2, in equa-

tion (2.6). The generalized form of anomalous diffusion by Lévy random walk in

d-dimension, with d = 2 and Rg = ± 2
R2 , where (+) is for spherical and (−) is for

hyperbolic space is given by,

⟨∆s2(t)⟩ ≈

4Dt2 ·

[
1± γ̃1

(
Dt2

R2

)
− γ̃2

(
Dt2

R2

)2
+ · · ·

]
, for 1 < µ < 2

4Dt4−µ ·
[
1± γ̃1

(
Dt4−µ

R2

)
− γ̃2

(
Dt4−µ

R2

)2
+ · · ·

]
, for 2 < µ < 3

4Dt ·
[
1± 1

3

(
Dt
R2

)
− 2

45

(
Dt
R2

)2
+ · · ·

]
, for µ > 3

(2.8)

Our method expresses the expansion with respect to time, since in Euclidean, the

MSD equations (2.3) only affects time and not the diffusion constant.

2.2.3 Random Walk Algorithm

Implementing a random walk requires the walker to remain on the surface of our

geometrical object. By introducing curvature, the position equations change, but the

methodology of advancing the walk remains unchanged. The equations are shown,

for each space, in the Appendix §2.5.4. Here, we state what the geodesics are and

the process of implementing them for each space. In Euclidean, geodesic paths are

straight lines with position equations (2.95). In choosing the Euclidean geodesic path

length, ∆s, we break the path into n fixed step lengths, δ, where ∆s =
∑n δ.

For hyperbolic space, using the half-plane model, geodesics are semi-circles. In

order to implement a random walk in this space, we formulated a local approximation

to pick, randomly, the semi-circle center, show in the Appendix §2.5.2. Semi-circles

are produced by using the position equations (2.96). For hyperbolic geodesic path

length, ∆s, each step is the sum of everything prior for the geodesic, such that ∆s =∑m
1 δ, where m ∈ [1, n]. Both Euclidean and hyperbolic use geodesic equation (2.2)

with polar angles drawn form a uniform distribution, θ = 2π · Pr.
In spherical space, geodesics are arcs. These arcs are produced by the position

equations (2.97), achieved by using the method of quaternions, discussed in the Ap-

pendix §2.5.3. Spherical space uses geodesic equation (2.1), where the geodesic path

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 13

length, ∆s, is broken into n fixed step lengths, δ, where ∆s =
∑n δ. This gives the in-

cremental central angle, σc =
δ
R
, used as the amount rotated about a randomly chosen

unit vector. As the walker traverses the path, our unit vector remains unchanged.

Our walker starts with randomly picked initial positions, which for Euclidean and

hyperbolic are, (x0, y0), and for spherical, (x0, y0, z0). Starting the walk, geodesic

distance, ∆s, is chosen at random from the corresponding Lévy relation associated

for that space. For simplicity, we floor the value of ∆s to the nearest integer, so we

have discrete walks. By using the iterative method, stated in the Appendix §2.5.4,

we are able to traverse the full geodesic path. The new coordinates are updated by

equation (2.95, 2.96, 2.97), respective to each space. A sample of our simulation, for

hyperbolic and sphere space, is shown in Figure 2.1. The simulations and analyses

are done using MATLAB. Our simulation has a stepping length of δ = 1 and speed

v = 1. For all three geometries, the walk is broken up into fixed step lengths, with

constant speed v, such that the total time to traverse the geodesic path ∆s is t = ∆s
v
.

(a) (b)

Figure 2.1: Simulated random walk on geodesics with Lévy exponent µ = 3.4 with
R = 100 for t = 10, 000 time-steps. (a) Random walk trajectory on the surface of
hyperboloid with negative Gaussian curvature according to the metric in the Ap-
pendix §2.19. (b) Random walk trajectory is on the surface of a sphere corresponding
to positive curvature.

2.3 Results

We start by going over the various fit models, preliminary Euclidean MSD data,

Brownian motion for spherical and small curvature hyperbolic, then Lévy and ballistic

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 14

motion only for the sphere.

2.3.1 Model and Fits

Our analysis consists of modeling five MSD forms for 2−dimensional random walk,

shown in equation (2.9). In this form, it is computationally beneficial to multiply

through equation (2.8) while keeping the expansion term in parenthesis dimensionless

such that, for Lévy and ballistic cases, β̃1 = 4 · γ̃1 ·R2 and β̃2 = 4 · γ̃2 ·R2; whereas for

Brownian, β̃1 =
4
3
·R2 and β̃2 =

8
45

·R2. This also allows us to look at the expansion

terms in first, second and third order. The notations of the MSD model is, ⟨∆s2(t)⟩i,j,
where i represents the polynomial order and j as the number of parameters being

fitted. The negative sign, (−), on the second order term corresponds to spherical space

and positive, (+), for hyperbolic. The additional terms are explained in section §2.2.2.

From visual inspection, the additional terms will either have positive or negative

effects on our random walk. Therefore, we expect spherical space to cover less distance

and for hyperbolic to cover more when compared to Euclidean.

⟨∆s2(t)⟩1,2 = 4D̃tα̃ (2.9a)

⟨∆s2(t)⟩2,2 = 4D̃tα̃ ± 4

3
R2

(
D̃tα̃

R2

)2

(2.9b)

⟨∆s2(t)⟩3,2 = 4D̃tα̃ ± 4

3
R2

(
D̃tα̃

R2

)2

− 8

45
R2

(
D̃tα̃

R2

)3

(2.9c)

⟨∆s2(t)⟩2,3 = 4D̃tα̃ ± β̃1 ·

(
D̃tα̃

R2

)2

(2.9d)

⟨∆s2(t)⟩2,3 = 4D̃tα̃ ± β̃1 ·

(
D̃tα̃

R2

)2

− β̃2 ·

(
D̃tα̃

R2

)3

(2.9e)

The anomalous exponent a will always have the range shown in equation (2.3), de-

pending on the Lévy exponent µ, and is considered a known, fixed value in the fit.

Greek letters, α̃, β̃1, along with the diffusion constant D̃, are parameters that will

be fitted. In this work, we only present results of the best-fit with the least number

of terms and parameters. Thus, results for equations (2.9c, 2.9e) are excluded from

this presentation because the third order term has very little contribution for pre-

diction within our time regime. In addition, our work consists of fitting a total of

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 15

eight models, an additional three models to the models shown above. The full list can

be found in the Appendix §2.5.4. The fit will be done in MATLAB using nonlinear

least-squares method.

To validate our fit, we compute the root-mean-squared error (RMSE) and the ad-

justed R-squared. Due to our MSD being an expansion, we require that our prediction

is up to a maximum time range such that the MSD does not exceed 10% of R2. The

range of fit, to predict our accepted range, is determined by the lowest value of our

RMSE and corresponding adjusted R-squared. For example, consider the sphere with

radius R = 10, simulation Lévy exponent of µ = 3.4 and using equation (2.9b) as the

model we want to fit. In addition, we fit equation (2.9a) to further show the need for

our expansion. The lowest RMSE value occurs using equation (2.9b) to fit 73% of the

data, 55 time-steps, with RMSE = 4.02 and corresponding adjusted R-squared of

0.42. In the case of using equation (2.9a), the RMSE = 5.1 with adjusted R-squared

of 0.08. Therefore, by using equation (2.9b) to fit 55 time-steps, we are able to most

accurately predict up to 75 time-steps. Interestingly, even though both equations

used for the fit are penalized for 2 parameters, the expansion term version gives the

best fit. The results can be found in the supplement. This allows us to exploit the

differences between random walk done on different manifolds with curvature versus

zero curvature (Euclidean). After finding the appropriate ranges that best models

our results, we present the MSD plots comparing the models in equation (2.9) to the

simulated MSD results. From here, the same method will be used to find our fitting

range, therefore we will omit showing the RMSE and adjusted R-squared data. The

fitting and maximum prediction range are presented in the supplement along with

each models fitted parameter values. The results presented, uses the fitted parameters

for the specified models unless stated otherwise.

2.3.2 Results: Preliminary Euclidean Case

Before presenting the curved space work, we test our methodology in Euclidean space

to insure the consistency in our approach, therefore reproducing the results given

by equation (2.3). Our work excludes Lévy exponents µ = 2, 3. Shown in Fig-

ure 2.2 are the MSD results for random walks in Euclidean space. The geodesics

of simulated trajectories are drawn from equation (2.2), which have Lévy expo-

nent µ = 1.6, 2.4, 2.8, 3.4 with the corresponding theoretical anomalous exponent

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 16

α = 2, 1.6, 1.2, 1, respectively. The simulations are for 100 samples, each with 1000

time-steps. By applying equation (2.98) to the simulated trajectories and taking the

ensemble-average of the time-averaged results, we get the simulations MSD, repre-

sented by red dashes and gray regions as the 95% confidence interval. To confirm our

random walk method, a fit is performed on the simulations MSD by equation (2.9a),

represented by green lines.

Starting with ballistic motion, the simulation is run with Lévy exponent µ = 1.6,

with its calculated MSD shown in Figure 2.2a. We predict up to 25 time-steps in

which 60% of the data is used for the fit, green. The fit has anomalous exponent of

α̃ = 1.955 ± 0.002 where percentage error is 2.3% from theory. Indeed, our random

walk simulation reproduces ballistic behavior. In the case of Lévy motion with µ =

2.4, where its calculated MSD is shown in Figure 2.2b. The prediction is for 250 time-

steps with 60% of the data used for the fit. The fit produces the anomalous exponent

of α̃ = 1.561 ± 0.003 with percentage error of 2.4% from theory. Our simulation

produces the expected Lévy like behavior, where the anomalous exponent scales as

α = 4−µ. For Brownian, the simulated trajectories are produced with Lévy exponent

of µ = 3.4, Figure 2.2c. The expected anomalous exponent is α = 1 such that MSD

scales linearly with time. For predicting 350 time-steps and fitting 71% of the data,

the outputted anomalous exponent is α̃ = 1.036± 0.000. This has a percentage error

of 3.6% from theory. From the plot, we see a linear relationship between MSD and

time. Therefore, Brownian-like behavior occurs for our simulation.

Overall, the methodology to produce the stated motions in our simulation remains

robust. Our simulation reproduces the theorized Euclidean results with our fitted

MSD anomalous exponent α̃ within 5% error, shown in Figure 2.2d with plots of the

actual α̃ versus µ. Given these results, the methodology used to simulate random

walks in Euclidean space will also be used to produce trajectories along geodesics for

spherical and hyperbolic space with its respective dynamical equations.

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 17

𝜟𝒕𝜟𝒕

𝑴
𝑺
𝑫

𝑴
𝑺
𝑫

𝜟𝒕

𝑴
𝑺
𝑫

(c)

(a) (b)
µ = 1.6 µ = 2.4

µ = 3.4

~ ~

µ
α

(d)

Brownian

Lévy

Ballistic

Figure 2.2: Shown are the MSD results for random walks in Euclidean space. The
simulated trajectories geodesics are drawn from equation (2.2), which have Lévy
exponent µ = 1.6, 2.4, 2.8, 3.4 with the corresponding theoretical anomalous exponent
α = 2, 1.6, 1.2, 1, respectively. The simulation consists of 100 samples in which the
computed MSD is represented by red dashes and gray regions as the 95% confidence
interval. A fit is performed on the simulations MSD by equation (2.9a) and plotted
with green lines. (a) µ = 1.6, we have ballistic motion. We predict up to 25 time-steps
in which 60% of the data is used for the fit, green. The fit has anomalous exponent
of α̃ = 1.955 ± 0.002 which is within 2.3% from the theorized value and a diffusion
constant of D = 0.259 ± 0.002. (b) µ = 2.4, we have Lévy motion. The prediction
is for 250 time-steps in which 60% of the data is used for the fit. Our simulation
shows an exponent of α̃ = 1.561 ± 0.003 which is within 2.4%, diffusion constant
of D = 0.414 ± 0.006. (c) µ = 3.4, we have Brownian motion. The prediction
is for 350 time-steps in which 71% of the data is used for the fit. Our simulation
shows an exponent of α̃ = 1.036 ± 0.000 which is within 3.6%, diffusion constant of
D = 0.537 ± 0.001. For Brownian, the expected anomalous exponent is α = 1 such
that MSD scales linearly with time. (d) Plots of the actual α̃ vs µ. Our methodology
reproduces the theorized Euclidean results with our fitted MSD anomalous exponent
α̃ within 5% error and remains robust.

2.3.3 Results: Brownian Case

In the previous section §2.3.2, we showed the robustness of our methodology by

simulating random walks in Euclidean space, reproducing the expected anomalous

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 18

diffusive relations, equation (2.3). In this section, we move over to curves space

and present the simulated random walk MSD results for spherical and hyperbolic

space by utilizing the same methodology used for Euclidean, specifically for Brownian

motion. For spherical space, the simulated results are produced for 100 samples with

R = 10, 100 and for a maximum of 500, 1000 time-steps, respectively. For hyperbolic,

we use the half-plane model, with R = 100, 1000 for 25 samples and ran for 2000

time-steps.

The curved space MSD is calculated from the simulated trajectory data using

equation (2.99) for the sphere and equation (2.100) for hyperboloid, shown in red

dashed line, with its 95% confidence interval as the gray shaded regions. To compare,

the Euclidean results are shown as black dashed line with the yellow region as its

95% confidence interval, allowing better understanding of the correction terms in

equation (2.8) and the impact of curvature. In our analysis and focus on Brownian

motion, the computed MSD from the simulated trajectories will be fitted by using

equation (2.9b), shown in magenta. In order for the fit to work, we require our

prediction MSD range to not surpass 10% of R2. From reference [32], we expect the

simulations calculated MSD, for the Euclidean data, to remain above spherical and

below hyperbolic space.

Results: Sphere, Brownian, µ = 3.4

To understand the curvature influence in diffusive processes, we start by simulating

Brownian motion in spherical space for R = 10, 100. The simulated trajectories are

produced with Lévy exponent of µ = 3.4 for 100 samples, shown in Figure 2.3. Using

equation (2.99), we compute the MSD for the sphere, plotted with red-dashed line,

with its 95% confidence interval as the gray shaded regions. Euclidean results are

shown with black dashed line with the yellow region as its 95% confidence interval.

This spherical space MSD is fitted to equation (2.9b) shown in magenta. The ex-

pected anomalous exponent is α = 1 such that MSD scales linearly with time, which

holds for Euclidean. We expect the second order term to cause larger deviation from

Euclidean with greater curvature and increasing time without deviating from the

expected anomalous exponent α.

For spherical space with radius R = 10, the resulting MSD is shown in Figure 2.3a.

To remain in our threshold, 10% of R2, the prediction is for 75 time-steps in which 73%

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 19

of the data is used for the fit, magenta. The fit produces an anomalous MSD exponent

of α̃ = 1.013± 0.017 with an error of 1.3% from theory. The corresponding diffusion

constant is D̃ = 0.329± 0.021. From visual inspection, we see Euclidean data (black-

dashes) above spherical with increasing deviation. To better understand the spread,

by utilizing the fitted parameters, we look at the percentage difference of the second

and third order term to the first order term of equation (2.9c). The second order

term has a percentage difference of 5.8%, 8.7% for time-steps t = 50, 75, respectively;

whereas the third order term percentage difference is 0.15%, 0.29%. Clearly, the

second order term dominates over the third term. In addition, the second term has

an increasing contribution.

With spherical radius of R = 100, we predict up to 400 time-steps where 75% of

the data is used for the fit, shown in Figure 2.3b. The fitted MSD has anomalous

exponent of α̃ = 0.979 ± 0.008 with percentage error from theory of 2.1%. The

corresponding diffusion constant is D̃ = 0.551± 0.023. Visually, Euclidean data still

remains above spherical with increasing deviation, but not as significant compared to

R = 10. Similarly for R = 10, for time-steps t = 200, 400, the second term percentage

differences are 0.33%, 0.64% and the third term with 0.0005%, 0.001%. The second

term dominates over the third term and has an increasing contribution.

In both cases, the Euclidean MSD remains above the spherical. This shows dif-

fusive motion on the sphere is negatively impacted from curvature when compared

to Euclidean. At some point, if considering only the first order term, we would ex-

pect the fit to follow the Euclidean data. As time progresses, adjustment is made by

the second order term, signaling the need of an additional term. This point can be

thought of as the minimum time needed to see curvature effects on the random walk.

Moreover, the third order term has very little influence and can be neglected. In ad-

dition, as we increase R, decreasing the curvature, we see the spread from Euclidean

and spherical space decrease, indicated by the second term percentage contribution

from R = 10 and R = 100.

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 20

𝜟𝒕

𝑴
𝑺
𝑫

𝜟𝒕

𝑴
𝑺
𝑫

(a) (b)
R = 10 R = 100

~ ~ ~~

Figure 2.3: Shown are the MSD results for random walks in spherical space for R = 10
and 100. Geodesic step-lengths are drawn from equation (2.1), with Lévy exponent
µ = 3.4 to produce Brownian motion. The theoretical anomalous exponent is α = 1.
The simulation consists of 100 samples and the computed MSD are the red-dashed line
and gray regions as the 95% confidence interval. A fit is performed on the simulation
MSD, (red-dashes), by equation (2.9b), shown by the magenta lines. Euclidean results
are the black-dashed line with the yellow region as its 95% confidence interval. (a)
R = 10. We predict up to 75 time-steps in which 73% of the data is used for the
fit. The fit has anomalous exponent of α̃ = 1.013± 0.017, which is within 1.3% from
theory and a diffusion constant of D̃ = 0.329± 0.021. (b) R = 100. We predict up to
400 time-steps with 75% of the data used for the fit. The fitted MSD has anomalous
exponent of α̃ = 0.979 ± 0.008, which is within 2.1% error, and a diffusion constant
of D̃ = 0.551 ± 0.023. In both cases, Brownian motion in Euclidean remains above
spherical and the deviation increases with later time. For R = 10, larger curvature,
the spread is more significant.

Results: Hyperbolic, Small Curvature, Brownian, µ = 3.4

In the case of Brownian motion for spherical space, previous section §2.3.3, we were

able to show how curvature affects diffusive processes. As curvature decreases, spher-

ical results start to look more like Euclidean. In this section, we focus on hyperbolic

space for small curvature. Due to the exponential growth of this space, we exclude

analyzing the case of large curvature, i.e., to remain in our threshold of 10% of R2

we do not look at R = 1, 10, because insufficient number of data points are available

to perform a fit. Our objective is to show where the curvature influence on motion

is equivalent to Euclidean space. We have our hyperbolic space with R = 100, 1000.

The simulated trajectories are produced for Brownian motion with Lévy exponent of

µ = 3.4 for 25 samples each with 2000 time-steps, shown in Figure 2.4. The MSD

is computed using equation (2.100), plotted with red-dashed line, with its 95% con-

fidence interval as the gray shaded regions. The data is fitted by equation (2.9b),

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 21

shown in magenta. To emphasize the effects of small curvature, Euclidean results are

included represented by black-dashed line with the yellow region as its 95% confidence

interval. We expect the anomalous exponent to be around 1, α = 1, such that MSD

scales linearly with time. Further, we expect the second order correction term to have

minimal to no influence on the diffusive process, for our time range.

When considering small curvature, our assumed threshold of 10% of R2 need not

hold. Instead, a new condition is made such that the expansion terms contribution

is small. For our time range to work for small curvature, we require the following

condition to hold for the second order term of our expansion, 4
3
R3
(
Dtα

R2

)2 ≤ ϵ, where ϵ

is the largest allowed MSD correction to the first order term. For example, if the first

order term has a value of 100, allowing 10% yields ϵ = 10. Solving for time, our con-

ditional requirement is t ≤
(

R
D

(
3
4
· ϵ
) 1

2

) 1
α

, thus, t ∝ R
1
α . For completeness, applying

the same method, the condition for our third order term is, t ≤
(

R
4
3

D

(
45
8
· ϵ
) 1

3

) 1
α

,

therefore t ∝ R
4

3·α . The results presented below have parameter values fitted for less

than the prediction range.

For hyperbolic space with R = 100, the resulting MSD is shown in Figure 2.4a, the

prediction is for 800 time-steps in which 38% of the data is used for the fit, magenta.

The fitted MSD has anomalous exponent of α̃ = 1.043± 0.002 which has an error of

4.3% from theory and diffusion constant of D̃ = 0.537 ± 0.006. Visually, Euclidean

MSD (black-dashes) aligns with hyperbolic. Similar to the spherical case for Brownian

motion, for time-steps t = 400, 800, the percentage difference of the second order term

is 0.93%, 1.9%, respectively, and the third term is 0.004%, 0.01%. Even though the

second term dominates over the third, both have very little contribution. Further,

using our small curvature time range condition, the second terms fitting range is up

to 802 time-steps, with the third term 797. The fitted result are for 38% of 800 or

304 time-steps. Therefore, our range of fit is well within our conditions.

With R = 1000, we predict up to 800 time-steps where 63% is used for the fit,

shown in Figure 2.4b. The fitted MSD has anomalous exponent of α̃ = 1.014± 0.004,

which is 1.4% from theory, and a diffusion constant of D̃ = 0.709 ± 0.017. Visually,

Euclidean still aligns with hyperbolic. Similar to hyperbolic case with R = 100, the

percentage difference for the second term is 0.01%, 0.02% for time-steps t = 400, 800,

respectively; whereas for the third order terms is approximately zero. Indicating that

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 22

the additional curvature terms have no significant impact on the diffusive process.

Using our small curvature time range condition, the second terms fitting range is up

to 787 time-steps and 782 for the third order term. The fitted result are for 63% of

800 corresponding to 504 time-steps, which is well within our condition.

The computed MSD from the simulation data, red-dashes for hyperbolic and

black-dashes for Euclidean, have similar behavior with both curves aligning within

the 95% confidence interval, gray and yellow shaded regions. The coefficient of the

second order term, 4
3·R2 , is small enough causing no significant influence. In both

cases, the third terms contributions are negligible and can be excluded. Moreover,

our small curvature time range conditions hold, thus, for small principal curvature,

(1
R
), hyperbolic space results become equivalent to Euclidean.

𝜟𝒕𝜟𝒕

𝑴
𝑺
𝑫

𝑴
𝑺
𝑫

(a) (b)
R = 1000R = 100

~~ ~ ~

Figure 2.4: Shown are the MSD results of random walks, for small curvature, in
hyperbolic space with R = 100 and 1000. Geodesic step-lengths are drawn from
equation (2.2), with Lévy exponent µ = 3.4 to produce Brownian motion. The
simulation consists of 25 samples in which the computed MSD is represented by
red dashes and gray regions as the 95% confidence interval. A fit is performed on
the simulations MSD, (red-dashes), by equation (2.9b), shown by the magenta lines.
Euclidean results are the black-dashed line with the yellow region as its 95% confidence
interval. (a) R = 100. We predict up to 800 time-steps in which 38% of the data is
used for the fit. The fit has anomalous exponent of α̃ = 1.043±0.002, which is within
4.3% from theory and a diffusion constant of D̃ = 0.537± 0.006. (b) R = 1000. We
predict up to 800 time-steps with 63% of the data used for the fit. The fitted MSD has
anomalous exponent of α̃ = 1.014±0.004, within 1.4% error, and a diffusion constant
of D̃ = 0.709 ± 0.017. The second term of our expansion contributes less than 2%
when compared to the first term, as explained in the main text. Therefore, with small
principal curvature, (1

R
), hyperbolic space behaves equivalently to Euclidean.

Overall, our results align with our prediction for Brownian motion, equation (2.8),

within the assumed time regime where the simulation MSD is 10% of R2. Random

walks performed in curved spaces affect the motion by intrinsic properties that need to

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 23

be accounted for. Without having the curvature correction term, we would be misled

to think the behavior changes, for example Lévy cases will turn into ballistic or vice

versa. From the presented results, only the second order term is required to justify

our work, therefore we can exclude using the third order term in equation (2.9c) and

instead work with equation (2.9b). By performing that same random walk method-

ology for Euclidean, we are able to reproduce the same behavior for spherical and

hyperbolic space by accounting for curvature corrections for long enough time regimes,

where the MSD is within 10% of R2.

In the limit of small curvature, where we see hyperbolic results align with Eu-

clidean, Figure 2.4, we speculate the same results for the sphere, a shared limitation

for both spaces. The simulation results indicate that diffusion on a sphere negatively

impacts MSD, and by the same logic, we speculate hyperbolic space to have a positive

impact on diffusive processes. A limitation that occur for spherical space is that it has

a finite surface, limiting the largest geodesic path. For the hyperbolic space, having

large curvature, small R, causes large growth. This causes numerical instability for

our simulation and fails our threshold requirement for the expansion, hence the time

condition for small curvature.

2.3.4 Results: Lévy and Ballistic Case

In the case of Brownian motion, section §2.3.3, we showed the curvature effects for

diffusive processes. Intrinsic properties start to affect random walks, in which our

MSD expansion, equation (2.8), accounts for. As curvature decreases, our results start

to resemble Euclidean behavior. Therefore, our simulation agrees with the theoretical

assumption. This section shifts our focus to Lévy and ballistic motion instead of

Brownian for spherical space. In the original derivation of our expansion, [41], they

considered only Brownian motion. Therefore, we are not confident that the same

coefficient relation with curvature will work for non-Brownian motion. The third order

term had no significant contribution and is excluded for the remainder of our work.

Our objective is to show that our expansion still works but the curvature correction

terms have a dependence on the Lévy exponent µ and as we decrease curvature,

we get Euclidean-like behaviors. We expect the anomalous exponent relation from

equation (2.3) to remain valid.

The presented results are for simulations in spherical space with R = 10, 100.

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 24

Trajectories are produced with Lévy exponents µ = 1.6, 2.4 for 100 samples, shown

in Figure 2.5. Using equation (2.99) to compute the MSD, the results are plotted

with red-dashed line, with its 95% confidence interval as the gray shaded regions.

Euclidean results are shown with black-dashed line with the yellow region as its 95%

confidence interval. In this case, the spherical space MSD is fitted to equation (2.9d)

shown in magenta, with the additional parameter, β̃1, to the second term accounting

for curvature correction. In the case of Brownian motion, the coefficient equates to

β̃1 =
4R2

3
, i.e., with R = 10, 100, we have β̃1 = 133, 13333, respectively. We use this to

gauge the impact of curvature for non-Brownian motion by computing the percentage

difference from the fit.

Our simulation for non-Brownian motion in spherical space with radius R =

10, 100 for 100 samples, is shown in Figure 2.5. For Lévy motion, the simulation

has Lévy exponent µ = 2.4, shown in Figure 2.5a,b. In the ballistic case, Lévy

exponent µ = 1.6, shown in Figure 2.5c,d.

Starting with Lévy motion, for R = 10, we predict up to 24 time-steps where 75%

of the data is used for the fit, shown in Figure 2.5a. The fitted MSD has anomalous

exponent of α̃ = 1.601± 0.01 with an error of 0.06% from theory. The corresponding

diffusion constant is D̃ = 0.17 ± 0.004 with curvature coefficient of β̃1 = 372 ± 16.3.

Compared to Brownian motion, the fitted coefficient has a percentage difference of

180%. The Euclidean data remains above spherical and the deviation increases with

time. To better understand the influence of curvature, we look at the percentage dif-

ference of the second order term to the first order term of equation (2.9d). The second

order term has a percentage difference of 6.3%, 25.6% for time-steps t = 10, 24, re-

spectively. As we increase the time, the curvature contribution increases significantly.

In the case of R = 100, Figure 2.5b, the prediction is for 100 time-steps in which

70% of the data is used for the fit with anomalous exponent of α̃ = 1.561±0.005, which

is within 2.4% from theory. The diffusion constant is D̃ = 0.226± 0.003. The fitted

coefficient is β̃1 = 183000 ± 10200 with percent difference of 1273% from Brownian.

Visually, Euclidean data still remains above spherical and the spread increases with

time, but not as significant compared to R = 10. The second order term has a

percentage difference from the first order of 4.6%, 13.7% for time-steps t = 50, 100,

respectively. Curvature contribution increases significantly with time. The simulation

of Lévy motion with our methodology reproduces the anomalous exponent relation

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 25

of α = 4−µ. Compared to Brownian motion, Lévy increases the curvatures influence

on random walks and the fitted curvature coefficients are no longer the same. In

addition, as we decrease the curvature, the deviation from Euclidean also decreases.

Moving over to ballistic motion on a sphere. For R = 10, Figure 2.5c, the predic-

tion is for 10 time-steps in which 70% of the data is used for the fit. The fitted MSD

has an anomalous exponent of α̃ = 1.873 ± 0.011 with 6.4% error from theory. The

diffusion constant is D̃ = 0.156± 0.002 and coefficient β̃1 = 420± 55.4 with percent

difference of 216% from Brownian. The Euclidean data remains above spherical and

the spread increases with time. Similar to the Lévy case, for time-steps t = 5, 10, the

second order terms percentage difference form first order is 3.2%, 12.1%, respectively.

Thus, increasing time, increases curvature contribution.

For R = 100, we predict up to 50 time-steps where 70% of the data is used for

the fit, shown in Figure 2.5d. The fit has anomalous exponent of α̃ = 1.901± 0.003,

which is within 4.9% from theory and a diffusion constant of D̃ = 0.171 ± 0.002.

The fitted coefficient is β̃1 = 107000± 7910 with percentage difference of 703% from

Brownian. Visually, Euclidean data still remains above the spherical. Similarly to

R = 10, curvature contribution increases with time, i.e., for time-steps t = 25, 50,

the percentage difference from the second order to first order term is 2.1%, 7.8%,

respectively. Our simulation reproduces the anomalous exponent relation of α = 2

for ballistic motion with increasing curvature influence on random walks. The fitted

curvature coefficients are no longer the same as Brownian. Deviation from Euclidean

also decreases as we decrease curvature.

Overall, compared to Brownian, we can still reproduce the results from equa-

tion (2.3) but the coefficients of our expansion term do not follow the scaled relation.

As curvature decreases, the second order correction term contributes less, also ob-

served in section §2.3.3.

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 26

(a)

𝑴
𝑺
𝑫

R = 10

𝑴
𝑺
𝑫

𝜟𝒕𝜟𝒕

𝑴
𝑺
𝑫

𝑴
𝑺
𝑫

𝜟𝒕 𝜟𝒕
𝑴
𝑺
𝑫

𝑴
𝑺
𝑫

(a) (b)

(d)(c)

R = 10

R = 10

R = 100

R = 100

~ ~ ~ ~ ~

Figure 2.5: Shown are the MSD results for non-Brownian motion in spherical space for
R = 10 and 100. Geodesic step lengths are drawn from equation (2.1). The simulation
consists of 100 samples and the computed MSD are the red-dashed line and gray
regions as the 95% confidence interval. A fit is performed on the simulation MSD,
(red-dashes), by equation (2.9d), shown by the magenta lines. Euclidean results are
the black-dashed line with the yellow region as its 95% confidence interval. (a,b) show
Lévy motion with µ = 2.4 and (c,d) for ballistic, with µ = 1.6. (a) R = 10. We predict
up to 24 time-steps in which 38% of the data is used for the fit. The fit has anomalous
exponent of α̃ = 1.601±0.01, with 0.06% error, diffusion constant of D̃ = 0.17±0.004
and a curvature coefficient of β̃1 = 372 ± 16.3. (b) R = 100. We predict up to 100
time-steps with 70% of the data used for the fit. The fitted has anomalous exponent
of α̃ = 1.561± 0.005, with 2.4% error, diffusion constant of D̃ = 0.226± 0.003 and a
coefficient of β̃1 = 183000±10200. Our simulation reproduces the expected anomalous
exponent, α = 1.6, for Lévy motion but the curvature contribution from the second
term increases significantly with time, as explained in the main text. (c) R = 10. We
predict up to 10 time-steps with 70% of the data used for the fit. The fitted MSD
has anomalous exponent of α̃ = 1.873± 0.011, with 6.4% error, diffusion constant of
D̃ = 0.156 ± 0.002 and a coefficient of β̃1 = 420 ± 55.4. (d) R = 100. Predicted for
50 time-steps in which 70% is used for the fit. The fit has anomalous exponent of
α̃ = 1.901±0.003, which is within 4.9% error, diffusion constant of D̃ = 0.171±0.002
and a coefficient of β̃1 = 107000±7910. In the case of ballistic motion, the simulation
remains around the expected anomalous exponent, α = 2. Overall, the deviation
from Euclidean decreases as curvature decreases. Our methodology reproduces the
results from equation (2.3) for non-Brownian motion.

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 27

2.4 Discussion

In this chapter, we have introduced a method of transportation on manifolds to study

the effects of curvature for anomalous diffusion. We have developed a computational

model to simulate random walks in spherical and hyperbolic spaces where objects are

transported through geodesics. Furthermore, we have developed an analytical method

that shows the dependence on curvature in MSD. The methodology was adapted to

random walks in Euclidean, section §2.3.2, where our results remain within 5% error

as theorized in equation (2.3).

We have shown that for small perturbations of geodesics, intrinsic effects occur

for random walks in different curved spaces. We use Lévy distributions to produce

our geodesic lengths which allow us to explore the full range of anomalous diffusion.

For Brownian motion, µ = 3.4, spherical and hyperbolic space does indeed behave

as theorized from equation (2.3). However, additional terms are needed to account

for curvature corrections. Therefore, based on the curvature of the space, transporta-

tion properties will not change given the accountability of small perturbations and

curvature corrections. In the case of non-Brownian motion, section §2.3.4, Lévy and

ballistic behaviors were also reproduced with similar results. These observations shed

light on the inherent characteristics induced by various manifolds and quantify the

curvature effects in different ways. For example, on a manifold with positive curva-

ture, transportation is negatively impacted compared to a zero curvature manifold,

such as a box. Shown in section §2.3.3, for Brownian motion, random walks performed

on the sphere produce MSDs that deviate less when compared to the Euclidean space.

Additionally, as we increase the curvature of the manifold, the curvature correction

terms start to have stronger influence on MSD; whereas when we decrease curvature,

section §2.3.3, they have less of an influence on MSD and start to converge to ran-

dom walks in the Euclidean space. Our results are consistent with the work from

reference [41], in the Brownian case.

More work is still needed to understand the effects of curvature. Our MSD expan-

sion for anomalous diffusion have analytical coefficient terms that hold for Brownian

motion but not for Lévy or ballistic motion. It would be interesting to restrict the

hyperbolic spaces maximum geodesic length. This can be done by working with the

Poincaré Disk model, and fixing a maximum distance from the center of it, which

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 28

would be the largest allowed geodesic length. This will allow us to quantify the max-

imum time threshold for the hyperbolic space. It will also be a more robust method

to understand the relation of the expansion coefficients for non-Brownian motion on

the sphere and hyperboloid. In the case of long time curvature effects on the sys-

tem, random walks with different step lengths and time relationships could produce

compelling phenomena. In our work, we used a ballistic relationship between path

distance and time, equations (2.89, 2.92). Other relationship conditions could be

explored that may shed light on properties not observed in our work.

Since we have a robust working method for Brownian motion, section §2.3.3, fur-

ther work can include search processes on manifolds. For example, in the hyperbolic

space, targets or resources could be spread out, uniformly, by performing a random

walk using the Poincaré disk model then transforming those point to the half-plane.

Uniform radial distribution can be defined as the circumference of a disk divided by

the total disk area, derived in reference [32]. This will further allow searches to be per-

formed on tree-like systems, such as b-ary trees, where b is the trees branching factor.

Moreover, for the spherical space, an interesting problem would be having searchers

to have some drag effect related to the mechanical properties of the medium in which

they are moving in. This can bring a new relationship between path distance and

time. In both spaces, this allows the study of search efficiency, possible network tun-

ing properties for optimization purposes, and the relationship between the diffusion

constant and target density and curvature.

In section §2.3, we pointed out as curvature decreases, the second order correction

term contribution decreases. The same results were observed in section §2.3.3, imply-

ing that the curvature corrections may not have a dependence on the Lévy exponent

µ and could be an artifact of something else. To better understand this, shown in

Figure 2.6, are plots of β̃1

4R2 versus µ, where β̃1 is from the fit equations (2.9d), and

the actual α̃ versus µ with α̃ reported in section §2.3. Since we only have hyper-

bolic results for Lévy exponent µ = 3.4, we plot these results against R as an inset.

Shown in Figure 2.6a are plots of β̃1

4R2 versus µ for the sphere with R = 10, 100, blue

and orange. The inset are hyperboloid results with β̃1

4R2 versus R, green. We see for

R = 100, orange, within Lévy motion range (2 < µ < 3), fluctuations do occur;

whereas for larger curvature with R = 10, blue, results for µ < 3 do not fluctuate

much but are still larger than µ > 3. For the hyperboloid, results remain around

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 29

the theoretical (4
3R2) value. In the case of R = 1000, the large error occurs due to

being close to Euclidean like behavior since curvature is small. In addition, shown in

Figure 2.6b are plots of the actual α̃ versus µ for the sphere with R = 10, (blue), and

100, (orange), with the red dashes representing the theoretical anomalous exponent.

The inset is the hyperboloid results with α̃ versus R in green. The spherical space fit

for the anomalous exponent aligns with the theoretical results. For hyperbolic, the

theoretical value is α = 1, which the fits remain within 5% error. In Euclidean space,

searches that are optimized for µ indicate that we should do an even more diffusive

(super-diffusive or smaller µ) in spherical space and the opposite for hyperbolic.

(a) (b)

˜

˜

Figure 2.6: (a) Plots of the actual α̃ vs µ for the sphere with R = 10, (blue), and 100,
(orange), where the red dashes represent the theoretical anomalous exponent. Inset:

Hyperboloid results with α̃ vs R, green. (b) Plots of β̃1

4R2 versus µ for the sphere with
R = 10, (blue), and 100, (orange). The inset includes the corresponding hyperboloid

results with β̃1

4R2 vs R in green.

2.5 Appendix

Here, we start by going over the mathematics used for hyperbolic space. We pa-

rameterize the two-sheeted hyperboloid. Then apply stereographic projection of the

hyperboloid to the Poincaré disk of radius R. Next, apply a Mőbius transformation

of our disk to the half-plane. Then, we move to the derivation of hyperbolic geodesic

equations, specifically for the half-plane model. Formulate the semi-circle relation

for the half-plane model, used in our simulation. We then move to spherical space

where we show the position, geodesic and central angle equations. Then introduce

the method of quaternions, which is used to update positions on a sphere without

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 30

losing degrees of freedom. The final section goes over our simulation. We derive the

appropriate geodesic Lévy relations for the given spaces, used in our random walk.

Outline the simulation algorithm for each space and state the distance equation used

to calculate the MSD for each space.

2.5.1 Mathematics

For a consistent flow in the derivation, we start by going over the various mathematics

we use in the process of deriving the geodesics for hyperbolic space.

Stereographic Projection

Stereographic projection is a particular mapping (function) that projects a manifold

onto a plane. It is conformal, meaning it preserves angles where the curves meet. It

is neither isometric nor area-preserving: it preserves neither distances nor the areas

of figures.

The general sketch of the stereographic projection is given in the form of a sphere.

Consider a sphere in R3 of radius R. Let N = (0, 0, R), the north pole of the sphere

and assume M to be the set of all points on the sphere excluding N . We care for

the intersection of the sphere with the plane at z = 0. For any point P ∈ M , there

exist a unique line through N and P such that this line intersects the plane, z = 0,

at one point P
′
. Let y ∈ N , the stereographic projection π(x) of points x ∈ M onto

the plane at z = 0 has the following parametric form [42,43].

π(x) = x+ s(y − x) (2.10)

The projection will be used to map points from the two-sheeted hyperboloid to the

Poincaré disk.

Mőbius Transformation

Mőbius transformations is an isometric (distance preserving), one-to-one mapping.

The transformation is a rational function of the following form,

f(z) =
az + b

cz + d
(2.11)

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 31

where z ∈ C and with complex coefficients satisfying ad − bc ̸= 0 [42]. For our

purpose, this will preserve distance between the Poincaré disk and half-plane model.

First Fundamental Form

We start by stating the First Fundamental Form equation from differential geom-

etry [42,43].

ds2 = Edu2 + 2Fdudv +Gdv2 (2.12)

where E(u, v) = x⃗u · x⃗u, F (u, v) = x⃗u · x⃗v, and G(u, v) = x⃗v · x⃗v and EG−F 2 ̸= 0.

We can also modify the first fundamental form, equation (2.12), in a way such that

the parameterization variables (u, v) has explicit dependence on length (s). We get

the Modified First Fundamental Form as [42],

1 = E

(
du

ds

)2

+ 2F

(
du

ds

)(
dv

ds

)
+G

(
dv

ds

)2

(2.13)

A curve γ(s) = x⃗(u(s), v(s)) on a surface, parameterized by length (s), is a

geodesic if and only if,

d

ds
(Eú+ F v́) =

1

2
(Euú

2 + 2Fuúv́ +Guv́
2) (2.14a)

d

ds
(Fú+Gv́) =

1

2
(Evú

2 + 2Fvúv́ +Gvv́
2) (2.14b)

where ú = du
ds

and v́ = dv
ds

[44]. The geodesic equations (2.14) will be used to find the

relations for x, y and s that will give us the minimal path.

Euler-Lagrange Equations

To make sure we have the minimal path, we can also apply the Euler-Lagrange equa-

tion from calculus of variations.

Given a functional of the form,

J(q⃗) =

�
L(t; q⃗, ⃗̇q)dt

where ⃗̇q = dq⃗
dt
. The functional J(q⃗) is referred to as the action function. Applying the

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 32

local minima conditions [45], we get the Euler-Lagrange equations as,

∂L
∂q⃗

− d

dt

(
∂L
∂⃗̇q

)
= 0 (2.15)

Note that if ∂L
∂t

= 0, then L(t; q⃗, ⃗̇q) = L(q⃗, ⃗̇q), and we get the Modified Euler-

Lagrange Equations as,

L(q⃗, ⃗̇q)− ⃗̇q
∂L(q⃗, ⃗̇q)

∂⃗̇q
= C (2.16)

where C is an arbitrary constant.

2.5.2 Hyperbolic Geometry

This section derives the required equations for hyperbolic geodesic, specifically for

the half-plane model and formulates the semi-circle relation for the half-plane, used

in our simulation. We start by parameterizing the two-sheeted hyperboloid, then

mapping it to the Poincaré disk along with the inverse map. The same will be done

for the hyperbolic half-plane model for completeness. In the process, certain geometric

objects (metric, distance, area) will be shown, specific for that model, which will be

used in later derivations.

Two-Sheeted Hyperboloid

Here, we define the two-sheeted hyperboloid, prove its parameterization and give

the metric and distance equation. The two-sheeted hyperboloid is defined as the

following,

H2
R ∈

{
(x, y, z) ∈ R | x2 + y2 − z2 = −R2

}
(2.17)

We start by parameterizing the two-sheeted hyperboloid where we only con-

sider the upper sheet, z(u, v) > 0.

x(u, v) = R sinh(u) cos(v) (2.18a)

y(u, v) = R sinh(u) sin(v) (2.18b)

z(u, v) = R cosh(u) (2.18c)

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 33

where u ∈ [0,∞) and v ∈ [0, 2π].

Proof. Two-Sheeted Hyperboloid Parameterization

Consider the following parameterization:

x(r, v) = r cos(v)

y(r, v) = r sin(v)

z(r, v) = z

where (r, v) are parameters with r2 = x2 + y2 and v ∈ [0, 2π]. Plugging this into

equation (2.17) yields the surface equation of our hyperboloid:

x2 + y2 − z2 = r2 − z2 = −R2

From here, apply the hyperbolic trigonometry relation
(
cosh2(u)− sinh2(u) = 1

)
,

with u being a new parametrization variable. Multiplying the relation by R2, to give

R2 cosh2(u)−R2 sinh2(u) = R2. Our new relation is the following:

R2 = z2 − r2

R2 = R2 cosh(u)2 −R2 sinh(u)2

By comparison and with u ∈ [0,∞):

z(u) = ±R cosh(u)

r(u) = ±R sinh(u)

By this convention and choosing the upper sheet, z ∈ [R,∞) and r ∈ [0,∞), we

have our two-sheeted hyperboloid parameterization with u ∈ [0,∞) and v ∈ [0, 2π].

x(u, v) = R sinh(u) cos(v)

y(u, v) = R sinh(u) sin(v)

z(u, v) = R cosh(u)

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 34

In addition to the two-sheeted hyperboloids parameterized equation (2.18), the

metric for our hyperboloid is defined as,

ds2H2
R
(x, y, z) = dx2 + dy2 − dz2 (2.19a)

ds2H2
R
(u, v) = R2du2 +R2 sinh(u)2dv2 (2.19b)

The hyperbolic distance between two points on the hyperboloid is also stated.

dH2
R
= R arcCosh

(
z1z2 − x1x2 − y1y2

R2

)
(2.20)

Poincaré Disk Model

Here, we define the Poincaré disk model, show its parameterization, give the metric,

show distance equation along with the circumference and area. Then show the map-

ping from the hyperboloid to the disk and its corresponding inverse. The Poincaré

disk model is defined as the following,

DR ∈
{
(x, y) ∈ R | x2 + y2 < R2

}
(2.21)

The disk can be represented by the given parameterization,

x(rE, θ) = rE cos(θ) (2.22a)

y(rE, θ) = rE sin(θ) (2.22b)

where rE ∈ [0, R) and θ ∈ [0, 2π]. Note that rE is the Euclidean radial distance from

the center of the disk.

The metric for the Poincaré disk model is defined as:

ds2DR
(x, y) =

4R4

(R2 − x2 − y2)2

(
dx2 + dy2

)
(2.23a)

ds2DR
(rE, θ) =

4R4

(R2 − r2E)
2

(
dr2E + r2Edθ

2

)
(2.23b)

The hyperbolic distance for the Poincaré disk model can be stated in two ways.

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 35

First, the distance from the origin of this disk.

dDR
= rDR

= 2R arcTanh

(
rE
R

)
= R ln

(
R + rE
R− rE

)
(2.24)

With rDR
∈ [0,∞). This gives the relationship between the Poincaré disk model

to the Euclidean disk of Radius R. Second, the distance between two points in the

Poincaré disk.

dDR
= R arcCosh

(
1 +

2R2
(
(x2 − x1)

2 + (y2 − y1)
2
)

(R2 − x2
1 − y21)(R

2 − x2
2 − y22)

)
(2.25)

We can also rewrite the Poincaré disk metric in polar form using rDR
as the radius.

ds2DR
(rDR

, θ) =

(
dr2DR

+R2

(
sinh

(
rDR

R

))2

dθ2
)

(2.26)

For completeness, we also cover the derivation of the circumference and area of the

Poincaré disk. By using its metric, equation (2.23), we get the following equations.

CDR
(rDR

) =

� 2π

0

2R2rE
R2 − r2E

dθ =
4πR2rE
R2 − r2E

= 2πR sinh

(
rDR

R

)
(2.27)

ADR
(rDR

) =

� r(rDR)

0

� 2π

0

4R4

(R2 − r2E)
2
rE drE dθ = 2πR2

[
cosh

(
rDR

R

)
− 1

]
(2.28)

where rE is the Euclidean radius and can be represented as a function of the Poincaré

disk distance by taking the inverse of equation (2.24)
(
rE = R tanh

(
rDR
2R

))
. Compar-

ing the Poincaré disk equations (2.27) and (2.28) to the Euclidean,
(
C(rE) = 2πrE

)
and

(
A(rE) = πr2E

)
, objects in Euclidean grow as polynomials; whereas in hyperbolic,

they grow as exponentials.

We now apply steroegraphic projection to get the relation between points on the

hyperboloid to points in the Poincaré disk model, H2
R → DR. Let

(
xDR

, yDR

)
∈

DR and
(
xH2

R
, yH2

R
, zH2

R

)
∈ H2

R. We want to project the two-sheeted hyperbolid

(x2
H2

R
+ y2H2

R
− z2H2

R
= −R2) onto a disk (x2

DR
+ y2DR

< R), such that the one-to-

one mapping is conformal. Since the projection is of a 3−dimensional object into

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 36

a 2−dimensional disk, we let zDR
= 0. The projection is from the point (0, 0,−R).

Following the method in section §2.5.1, we get the following,

(xDR
, yDR

, zDR
) = (t · xH2

R
, t · yH2

R
,−R + t · (zH2

R
+R))

where t is a scalar. Applying zDR
= 0 and solving for t, we get the scalar t = R

zH2
R
+R

.

The final form of the relation is shown.

xDR
=

R

zH2
R
+R

· xH2
R

(2.29a)

yDR
=

R

zH2
R
+R

· yH2
R

(2.29b)

zDR
= 0 (2.29c)

We can also compute the inverse mapping, DR → H2
R. Let

(
xDR

, yDR

)
∈ DR

and
(
xH2

R
, yH2

R
, zH2

R

)
∈ H2

R. In this case, we project points on the disk onto our

two-sheeted hyperboloid. Applying the same method in section §2.5.1, we have the

following,

(xH2
R
, yH2

R
, zH2

R
) = (s · xDR

, s · yDR
,−R + s · (zDR

+R))

where s is a scalar and zDR
= 0 still applies here. The projection is mapped to a

manifold of higher dimension such that we have to use the relation,
(
x2
H2

R
+y2H2

R
−z2H2

R
=

−R2
)
, to solve for the scalar s. Plugging the relations in and applying the quadratic

root equation, s = 2R2

R2−x2
DR

−y2DR
, we get the final relation as follows,

xH2
R
=

2R2

R2 − x2
DR

− y2DR

· xDR
(2.30a)

yH2
R
=

2R2

R2 − x2
DR

− y2DR

· yDR
(2.30b)

zH2
R
= R ·

R2 + x2
DR

+ y2DR

R2 − x2
DR

− y2DR

(2.30c)

A key component to point out here, from our sterographic mapping, is the rela-

tion between the Poincaré disk radial distance rDR
∈ [0,∞), equation (2.24), to the

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 37

parameter u ∈ [0,∞) in equation (2.18), shown in equation (2.31). The parameter

u can be thought of as a dimensionless representation of the Poincaré disks radial

distance. Moreover, it shows that the stereographic mapping is not isometric, thus

distance is not preserved but the angles are.

u
(
rDR

)
=

rDR

R
(2.31)

Hyperbolic Half-Plane Model and Geodesic Equation

Here, we define the hyperbolic half-plane model, give the metric and distance equa-

tion. Then show the mapping from and to the half-plane and the Poincaré disk and

then for the hyperboloid.

The hyperbolic half-plane model is defined such that we consider only the upper

part of a plane, y > 0.

HR ∈
{
(x, y) ∈ R | y > 0

}
(2.32)

The corresponding metric for this model is defined as,

ds2HR
(x, y) =

R2

y2

(
dx2 + dy2

)
(2.33)

The distance between two points using the half-plane model has the following

form,

dHR
= R arcCosh

(
(x2 − x1)

2 + (y22 + y21)

2y1y2

)
(2.34)

To better understand the half-plane, we next move to mapping it to the other

models. We apply a Mőbius transformation to get the relation between points on

the half-plane to points on the Poincaré disk, HR → DR. Let
(
xDR

, yDR

)
∈ DR and(

xHR
, yHR

)
∈ HR. Additionally, let

(
w, z

)
∈ C such that w = xHR

+ iyHR
represents

points in the half-plane and z = xDR
+ iyDR

, representing points in the Poincaré

disk. Working with the Mőbius transformation, presented in section §2.5.1, we get

the following map between z and w,

z = R · −w + iR

w + iR
(2.35)

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 38

By applying the complex conjugate to the right side of equation (2.35) and plug-

ging the component terms in we get the following relation,

z =
R

x2
HR

+ (R + yHR
)2

(
(R2 − x2

HR
− y2HR

) + i(2R · xHR
)

)
In component form, we get our final mapping from the half-plane to the Poincaré

disk.

xDR
= ℜ(z) = R

x2
HR

+ (R + yHR
)2

(
R2 − x2

HR
− y2HR

)
(2.36a)

yDR
= ℑ(z) = R

x2
HR

+ (R + yHR
)2

(
2R · xHR

)
(2.36b)

The inverse is also shown, DR → HR. Let
(
xDR

, yDR

)
∈ DR and

(
xHR

, yHR

)
∈

HR. Let z = xDR
+ iyDR

and w = xHR
+ iyHR

as before. Applying the inverse of

equation (2.35), we have the following relation,

w = R · i(R− z)

R + z
(2.37)

Again, by applying the complex conjugate to the right side of equation (2.37) and

plugging the component terms in we get the following relation,

w =
R

y2DR
+ (R + xDR

)2

(
(2R · yDR

) + i(R2 − x2
DR

− y2DR
)

)
In component form, we have the final relation from points in the Poincaré disk to

the half-plane.

xHR
= ℜ(w) = R

y2DR
+ (R + xDR

)2

(
2R · yDR

)
(2.38a)

yHR
= ℑ(w) = R

y2DR
+ (R + xDR

)2

(
R2 − x2

DR
− y2DR

)
(2.38b)

Note, the half-plane model and Poincaré disk are not conformal, but isometric.

We move over to the half-plane and the hyperboloid and show its mapping. Let(
xHR

, yHR

)
∈ HR and

(
xH2

R
, yH2

R
, zH2

R

)
∈ H2

R. We want to project the two-sheeted

hyperbolid (x2
H2

R
+ y2H2

R
− z2H2

R
= −R2) into the half-plane, (yHR

> 0). We utilize the

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 39

hyperboloid relation to the Poincaré disk, equations (2.29), and apply it to the Half-

Plane equations (2.38). Before doing so, let
(
xDR

, yDR

)
∈ DR and combine terms

together in equation (2.29). Working through the algebra, we have the following

terms,

x2
DR

+ y2DR
=

R(
R + zH2

R

)2 (x2
H2

R
+ y2H2

R

)

y2DR
+
(
xDR

+R
)2

=
2R2(

R + zH2
R

)2 (zH2
R
+ xH2

R

)

R2 − x2
DR

− y2DR
=

2R3(
R + zH2

R

)
By plugging the algebraic relations into equations (2.38), we get the mapping from

the hyperboloid to the half-plane.

xHR
=

R

zH2
R
+ xH2

R

yH2
R

(2.39a)

yHR
=

R2

zH2
R
+ xH2

R

(2.39b)

(2.39c)

We can also go the other way around by computing the inverse, HR → H2
R. Let(

xHR
, yHR

)
∈ HR and

(
xH2

R
, yH2

R
, zH2

R

)
∈ H2

R. In this case, we map the half-plane onto

our hyperboloid. Working with the hyperbolic sheet equation (2.17) and applying it

to equation (2.39) and taking the square, we get the following algebraic relations,

zH2
R
+ xH2

R
=

R

xHR

yH2
R
=

R2

yHR

↣ yH2
R
= R

xHR

yHR

zH2
R
=

R2

yHR

− xH2
R

x2
H2

R
− z2H2

R
= −R2 − y2H2

R

z2H2
R
=

R4

y2HR

+ x2
H2

R
− 2xH2

R

R2

yHR

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 40

We have an expression for yH2
R
, which allows us to solve for xH2

R
and zH2

R
. After sub-

stitution and some algebra, our final mapping from the half-plane to the hyperboloid

is the following,

xH2
R
=

1

2yHR

(
R2 − x2

HR
− y2HR

)
(2.40a)

yH2
R
= R

xHR

yHR

(2.40b)

zH2
R
=

1

2yHR

(
R2 + x2

HR
+ y2HR

)
(2.40c)

When working with the different model for hyperbolic geometry, we use these derived

equations as our mapping from one model to the other.

Next, we derive the geodesic equations for the half-plane by working with its

metric equation (2.33). We form the Lagrange equation by taking the square root of

equation (2.33) to properly form our action function, with y
′
= dy

dx
.

L(x; y, y′
) =

R

y

√
1 + y′2 (2.41)

Solving for the terms in the first fundamental form equation (2.12), we have the

following relations,

E(x, y) =
R2

y2
F (x, y) = 0 G(x, y) =

R2

y2

Ex(x, y) = 0 Fx(x, y) = 0 Gx(x, y) = 0

Ey(x, y) = −2
R2

y3
Fy(x, y) = 0 Gy(x, y) = −2

R2

y3

Next, we plug our relation terms into the first geodesic condition equation (2.14a)

to get the following differential equation,

d

ds

(
R2

y2
dx

ds

)
= 0

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 41

Solving for dx
ds
, we have the following half-plane x-slope relation,

dx

ds
=

C

R2
y2 (2.42)

From the x-slope relation, equation (2.42), we have two cases to consider for the

constant C. First, when C = 0 and second for C ̸= 0. Additionally, by applying our

action function L(x; y, y′
), equation (2.41), to the Euler-Lagrange equation (2.16),

since ∂L
∂x

= 0, we have,

R

y

1√
1 + (dy

dx
)2

= C

Solving for dx, we get our differential relation of x(y) for the half-plane.

dx =
y√

R2

C2 − y2
dy (2.43)

Plugging the x-slope relation, equation (2.42), into the modified first fundamen-

tal form, equation (2.13), we get the relation for the geodesic length s and spatial

parameter y as follows,

1 =
C2

R2
y2 +

R2

y2

(
dy

ds

)2

Solving for ds, we get the differential relation for the geodesic s(y) for the half-plane.

ds =
R2

C

1

y
√

R2

C2 − y2
dy (2.44)

To solve these equations ((2.43), (2.44)), we have to consider the two conditions for

the constant C. We approach the solution by keeping the differential forms positive

and letting the integration bounds deal with the sign orientation, therefore C ≥ 0.

• Case 1: C = 0

We start by working with the x-slope equation (2.42) and letting C = 0. Then
dx
ds

= 0. Plugging this into the modified first fundamental form equation (2.13), we

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 42

get the differential relation as follows,

ds =
R

y
dy

Solving the differential equation gives the geodesic s(y) equations.

∆s(y) = R ln(
y

y0
) (2.45)

Putting all the equations together and taking the inverse of the geodesic equa-

tion (2.45), we have the following geodesic equations for Case 1, which are vertical

lines in the half-plane.

x2HR
(∆s) = x1HR

(∆s) (2.46a)

y2HR
(∆s) = y1HR

(∆s) e(
∆s
R) (2.46b)

∆s
(
y1HR

, y2HR

)
= R ln

(
y2HR

y1HR

)
(2.46c)

In the vertical line case for the half-plane, we have the following useful relationship.

If y2HR
> y1HR

, then ⇒ ∆s > 0. If y2HR
< y1HR

, then ⇒ ∆s < 0.

• Case 2: C ̸= 0 & C > 0

In this case, we start with the x-slope relation, equation (2.42), where C ̸= 0.

First we solve the x(y) differential relation, equation (2.43), by elementary integration.

We let ∆x = x− xc to get the following x(y) equation,

x(y) = xc −
√

R2

C2
− y2 (2.47)

Now, solving to get R
C
by itself gives,

(∆x)2 + y2 =
R2

C2
(2.48)

We see that when C ̸= 0, we get our geodesic for the half-plane to be a semi-circle

centered around xc with radius R
C
. Next, we solve the s(y) differential relation by

integrating equation (2.44). By letting ∆s = s2 − s1, with s1 = 0 corresponding to

y = R
C
and choosing ∆s = s2 = s(y) to be the total geodesic length. We then get the

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 43

following s(y) equation.

s(y) = −R ln

1

y

(
R

C
+

√
R2

C2
− y2

) (2.49)

Putting it all together, we take the inverse of equation (2.49) to get y(s). Simi-

larly, in equation (2.47), we replace the term −
√

R2

C2 − y2 by reorganization of equa-

tion (2.49), replacing y with the new form y(s) and simplifying to get x(s). We

have the following geodesic equations for Case 2, which are semi-circles centered

about xc in the half-plane.

x(s) = xc +
R

C
tanh

(
s

R

)
(2.50a)

y(s) =
R

C
sech

(
s

R

)
(2.50b)

s(y) = s(x, y) = −R ln

1

y

(
R

C
+

√
R2

C2
− y2

) (2.50c)

Further, solving for C in equation (2.47) and assuming C > 0, we get the following

form,

C(x, y) =

√
R2

(x− xc)2 + y2
(2.51)

We require (x1 − xc)
2 + (y1)

2 = R2

C2 and (x2 − xc)
2 + (y2)

2 = R2

C2 . If (x1, y1) and

(x2, y2) are on the same semi-circle, then they must have same radius R
C
, allowing the

following relation to hold,

(x1 − xc)
2 + (y1)

2 = (x2 − xc)
2 + (y2)

2

Therefore, solving for xc, we get the half-plane semi-circle center equation

as follows,

xc =

(
(x2)

2 − (x1)
2
)
+
(
(y2)

2 − (y1)
2
)

2 (x2 − x1)
(2.52)

This implies both (x1, y1) and (x2, y2) have the same C. Allowing us to solve

equation (2.51) for the value of C with any of the two points corresponding to the

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 44

same geodesic path. With the derived equations for both the vertical line and semi-

circle cases, we can compute the geodesic of any path for the half-plane. The final

forms of our geodesic equations for the half-plane model, with r = R
C
, are,

xc =

(
(x2HR

)2 − (x1HR
)2
)
+
(
(y2HR

)2 − (y1HR
)2
)

2
(
x2HR

− x1HR

) (2.53a)

r =
R

C
=

√(
x1HR

− xc

)2
+
(
y1HR

)2
(2.53b)

s1
(
y1HR

)
= −R ln

(
1

y1HR

(
r +

√
(r)2 −

(
y1HR

)2))
(2.53c)

∆s
(
y1HR

, y2HR

)
= s2 − s1 = −R ln

y1HR

y2HR

r +
√

(r)2 −
(
y2HR

)2
r +

√
(r)2 −

(
y1HR

)2

 (2.53d)

x2HR
(∆s) = xc + r · tanh

(
s1 +∆s

R

)
(2.53e)

y2HR
(∆s) = r · sech

(
s1 +∆s

R

)
(2.53f)

Note, in equations (2.53), when applying equations (2.53e) and (2.53f), one needs to

find xc and ∆s from other methods.

Half-Plane Locally Euclidean, Uniform Angle

Here, we show that the half-plane model is locally Euclidean, by applying a local

approximation to points in the half-plane, allowing us to choose angles from a uniform

distribution. The work here will be used to develop a relationship such that we can

treat the semi-circle center xc, from equation (2.52), as a random variable for our

simulation. We begin by stating what the angular probability density function (PDF)

in the half-plane is locally, as a function of angle θ.

ρHR
(θ) =

ρHR

(
x0
HR

, y0HR

)
+
(

∂ρHR

∂xHR

)
δ cos(θ) +

(
∂ρHR

∂yHR

)
δ sin(θ)

ρHR

(
x0
HR

, y0HR

) (2.54)

Proof. Half-Plane Angular Probability Density Function

To show ρ(θ) is the localized probability density function (PDF) to the half-plane,

consider ρ(θ) as the probability density to be within an arbitrary range of angle θ. Let

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 45

δ be the smallest distance taken in the half-plane and
(
x0
HR

, y0HR

)
as the current or

initial positions. The next position in the half-plane,
(
xHR

, yHR

)
, can be approximated

by
(
x0
HR

+ δ cos(θ), y0HR
+ δ sin(θ)

)
. We can write the angular PDF as,

ρ(θ)δdθ = ρHR

(
x0
HR

+ δ cos(θ), y0HR
+ δ sin(θ)

)
δ

By working locally, we can expand the right hand side to first order with respect

to the half-plane positions,
(
xHR

, yHR

)
.

ρ(θ)δdθ ≊ ρHR

(
x0
HR

, y0HR

)
δ +

(
∂ρHR

∂xHR

)
δ2 cos(θ) +

(
∂ρHR

∂yHR

)
δ2 sin(θ)

Subtracting the initial probability density ρHR

(
x0
HR

, y0HR

)
and dividing by δ gives,

ρ(θ)dθ − ρHR

(
x0
HR

, y0HR

)
≊
(
∂ρHR

∂xHR

)
δ cos(θ) +

(
∂ρHR

∂yHR

)
δ sin(θ)

Let ∆ρHR
(θ)dθ = ρ(θ)dθ − ρHR

(
x0
HR

, y0HR

)
be the localized angular probability

density function. Then,

∆ρHR
(θ)dθ ≊

(
∂ρHR

∂xHR

)
δ cos(θ) +

(
∂ρHR

∂yHR

)
δ sin(θ)

Therefore, ρ(θ)dθ = ∆ρHR
(θ)dθ+ρHR

(
x0
HR

, y0HR

)
, represents the localized angular

probability density function. By normalization, with respect to the Euclidean metric,

we achieve the final form of our sought out angular PDF. Let ρ(θ) = ρHR
(θ), then,

ρHR
(θ) =

ρHR

(
x0
HR

, y0HR

)
+
(

∂ρHR

∂xHR

)
δ cos(θ) +

(
∂ρHR

∂yHR

)
δ sin(θ)

ρHR

(
x0
HR

, y0HR

)

Now that we have a relationship of the angular PDF,
(
ρHR

(θ)
)
from equation (2.54),

we need the appropriate terms for the rate of change with respect to the half-plane

points
(
xHR

, yHR

)
. We start off from the uniform radial distribution function from [32],

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 46

derived in section §2.5.2.

ρ(rDR
) =

sinh
(

rDR
R

)
R

[
cosh

(
rmax
DR
R

)
− 1

] ∼ 1

R
· exp

(
rDR

R

)
(2.55)

Where rDR
is the Poincaré disk radial distance from the origin, equation (2.24). In [32],

it was assumed that rmax
DR

>> R allowing the approximation in equation (2.55). From

equation (2.24), we can represent equation (2.55) with respect to the Euclidean radius,

rE ∈ [0, R).

ρ(rDR
) = ρ(rE) =

1

R

(
R + rE
R− rE

)
(2.56)

We can represent the radius of the Poincaré disk with respect to the half-plane

points, by a Mőbius transformation, from equation (2.36),

rE =
√

(xDR
)2 + (yDR

)2 = R

√(
R2 − (xHR

)2 − (yHR
)2
)2

+
(
2RxHR

)2(
xHR

)2
+
(
yHR

+R
)2 (2.57)

From here, we can represent equation (2.56) as a function dependent on points

from the half-plane,
(
xHR

, yHR

)
, by ρ(rE) = ρHR

(
xHR

, yHR

)
from the new relation of

rE in equation (2.57). This will have the following form,

ρHR

(
xHR

, yHR

)
=

1

R
·

[
(2.58a)

(
xHR

)2
+
(
yHR

+R
)2

+
√(

R2 − (xHR
)2 − (yHR

)2
)2

+
(
2RxHR

)2
(
xHR

)2
+
(
yHR

+R
)2 −√(R2 − (xHR

)2 − (yHR
)2
)2

+
(
2RxHR

)2
]

(2.58b)

ρHR

(
x0
HR

, y0HR

)
=

1

R
·

[
(2.58c)

(
x0
HR

)2
+
(
y0HR

+R
)2

+

√(
R2 − (x0

HR
)2 − (y0HR

)2
)2

+
(
2Rx0

HR

)2
(
x0
HR

)2
+
(
y0HR

+R
)2

−
√(

R2 − (x0
HR

)2 − (y0HR
)2
)2

+
(
2Rx0

HR

)2
]

(2.58d)

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 47

The rate at which the radial PDF, equation (2.56), changes with respect to the

Euclidean radius, rE, is given by,

dρ

drE
=

2

(R− rE)
2 (2.59)

Computing the derivative of equation (2.57) with respect to xHR
and yHR

, we get

the following,

∂rE
∂xHR

=
4R2xHR

yHR((
xHR

)2
+
(
yHR

+R
)2)√(

R2 − (xHR
)2 − (yHR

)2
)2

+
(
2RxHR

)2
(2.60a)

∂rE
∂yHR

=

−2R2

[(
yHR

+R
) (

2R
(
xHR

)2
+
(
R− yHR

) (
R + yHR

)2)
+
(
xHR

)4]
((

xHR

)2
+
(
yHR

+R
)2)2√(

R2 − (xHR
)2 − (yHR

)2
)2

+
(
2RxHR

)2
(2.60b)

To get rate of change with respect to the half-plane coordinates, we use the fol-

lowing relations,

∂ρHR

∂xHR

=
∂ρHR

∂rE

∂rE
∂xHR

(2.61a)

∂ρHR

∂yHR

=
∂ρHR

∂rE

∂rE
∂yHR

(2.61b)

After substituting equation (2.60) into equation (2.61) and working out two lines

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 48

of algebra, we get the final form,

∂ρHR

∂xHR

=
8xHR

yHR

((
xHR

)2
+
(
yHR

+R
)2)√(

R2 − (xHR
)2 − (yHR

)2
)2

+
(
2RxHR

)2
·
[(
xHR

)2
+
(
yHR

+R
)2 −√(R2 − (xHR

)2 − (yHR
)2
)2

+
(
2RxHR

)2]2
(2.62a)

∂ρHR

∂yHR

=

−4

[(
yHR

+R
) (

2R
(
xHR

)2
+
(
R− yHR

) (
R + yHR

)2)
+
(
xHR

)4]
√(

R2 − (xHR
)2 − (yHR

)2
)2

+
(
2RxHR

)2
·
[(
xHR

)2
+
(
yHR

+R
)2 −√(R2 − (xHR

)2 − (yHR
)2
)2

+
(
2RxHR

)2]2
(2.62b)

By taking the limit rE → R in the Poincaré disk metric, equation (2.23b), it is

reasonable to assume yHR
→ 0 in the half-plane metric, equation (2.33). Thus, both

metrics exhibit similar behavior. This allows us to drop the rate of change dependence

on xHR
in equation (2.54). This gives use the final approximated form as follows,

ρHR
(θ) =

ρHR

(
x0
HR

, y0HR

)
+
(

∂ρHR

∂yHR

)
δ sin(θ)

ρHR

(
x0
HR

, y0HR

) (2.63)

The final version of equation (2.63) after normalization with Euclidean metric

becomes,

ρHR
(θ) =

1

2π

[
1− δ sin (θ) ·[(

yHR
+R

) (
2R
(
xHR

)2
+
(
R− yHR

) (
R + yHR

)2)
+
(
xHR

)4]
yHR

((
xHR

)2
+
(
yHR

+R
)2)√(

R2 − (xHR
)2 − (yHR

)2
)2

+
(
2RxHR

)2
] (2.64)

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 49

By taking the inverse of equation (2.64), we have our θ(ρHR
) relation.

θ(ρHR
) = arcsin

[(
1− 2πρHR

)
·

yHR

((
xHR

)2
+
(
yHR

+R
)2)√(

R2 − (xHR
)2 − (yHR

)2
)2

+
(
2RxHR

)2
δ

[(
yHR

+R
) (

2R
(
xHR

)2
+
(
R− yHR

) (
R + yHR

)2)
+
(
xHR

)4]
] (2.65)

From analyzing equation (2.64), in the limit of small δ values, ρHR
(θ) approaches

a constant value,
(

1
2π

)
. This implies, locally our angular probability density function

is constant for small enough distance. Therefore, for small δ values, we have the

uniform angular probability density function as,

ρHR
(θ) =

1

2π
(2.66)

The probability of finding θ in the half-plane from our approximation and equa-

tion (2.66) comes out as,

Pr(θ > 0) =

� θ

0

ρHR
(θ

′
) dθ

′

=
1

2π
· θ

(2.67)

Note, we integrated with respect to θ only because the radial term was already

considered in the proof of equation (2.54). By taking the inverse of equation (2.67),

we arrive to the simulation θ as a function of Pr ∈ [0, 1].

θ(Pr) = 2π · Pr (2.68)

Simulation Localized Half-Plane Semi-Circle Center

Here, we show our approach for choosing the semi-circle center, xc from equation (2.52),

in the half-plane by assuming, locally, that the space is Euclidean, as discussed in

section §2.5.2. By taking the smallest possible step, ∆s, we have our tangent vector

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 50

at the localized point as,

r⃗T =

xT

yT

 =

∆s · cos(θ) + x1

∆s · sin(θ) + y1

 (2.69)

Our corresponding tangent slope is then,

mT =
yT − y1
xT − x1

= tan(θ) (2.70)

We get the following linear equation from the tangent slope,

yT = mT · (x− x1) + y1 = tan(θ) · (x− x1) + y1 (2.71)

Next, we construct the normal line equation to our tangent relation. The normal

to the tangent vector equation (2.69) is,

r⃗N =

xN

yN

 =

∆s · cos(θ + π
2
) + x1

∆s · sin(θ + π
2
) + y1

 =

−∆s · sin(θ) + x1

∆s · cos(θ) + y1

 (2.72)

Our corresponding normal slope from the equation (2.72) is,

mN =
yN − y1
xN − x1

= − cot(θ) (2.73)

We get the following linear equation from the normal slope,

yN = mT · (x− x1) + y1 = − cot(θ) · (x− x1) + y1 (2.74)

Note, mN = − 1
mT

. To find our semi-circle center xc for our simulation, we require

yN = 0 and x = xc in equation (2.74). We have the following form for our semi-circle

center xc,

xc = − y1
mN

+ x1 = mTy1 + x1 = tan(θ)y1 + x1 (2.75)

The angle θ is chosen from a uniform probability distribution, discussed in sec-

tion §2.5.2, equation (2.68).

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 51

Poincaré Disk Radial Distribution

Here, we derive the radial probability distribution for the Poincaré disk, by working

with its metric, equation (2.23). We assume a uniform radial distribution in this

map. We consider the entire Poincaré disk area from equation (2.28), taken at some

arbitrary max Poincaré radial distance from the origin and label it rmax
p . Then divide

the circumference, equation (2.27), which is a function of rDR
∈
[
0, rmax

p

]
, by the

maximum area yields the uniform radial probability density function.

ρ(rDR
) =

CDR
(rDR

)

ADR
(rDR

= rmax
p)

=
sinh

(
rDR
R

)
R

[
cosh

(
rDR=rmax

p

R

)
− 1

] (2.76)

The probability of being at an arbitrary Poincaré radial distance,
(
rDR

)
, is shown

in equation (2.77). Note, the derivative of the radial distance is
drDR
dr

= dr
′
= 2R2

R2−r2
dr,

from equation (2.24), where r = rE and rE = R tanh
(

rDR
2R

)
.

Pr(rDR
> 0) =

� rmax
p

rDR

ρ(rDR
)

2R2

R2 − r2
dr

=

� rmax
p

rDR

sinh
(

r
′

R

)
R

[
cosh

(
rmax
p

R

)
− 1

] dr′

=

[
cosh

(
rmax
p

R

)
− cosh

(
rDR
R

)]
cosh

(
rmax
p

R

)
− 1

(2.77)

By taking the inverse of equation (2.77) and solving for rDR
, we get the Poincaré disk

radial distance as a function of the probability, Pr ∈ (0, 1).

rDR
(Pr) = R arcCosh

[
cosh

(
rmax
p

R

)
− Pr ·(cosh

(
rmax
p

R

)
− 1)

]
(2.78)

For a random walk on the Poincaré disk, the radial length can be drawn from equa-

tion (2.78) with Pr(rDR
> 0) ∈ [0, 1]. In the case of Euclidean space we have the fol-

lowing relations: ρ(r) = 2r
R2−r2min

, Pr(r < R) =
r2−r2min

R2−r2min
, r(Pr) =

√
r2min + Pr

(
R2 − r2min

)
,

where rmin is the minimum Euclidean disk radius. For simplicity, we let rmin = 0 for

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 52

simulations and Pr(r < R) ∈ [0, 1].

2.5.3 Spherical Geometry

Here, we present the position equation, geodesic and central angle relationship of the

sphere along with quaternions, the iterative methodology of updating a position on

a sphere, found in references [39, 46].

Position, Geodesic and Central Angle

The sphere of radius R is defined as,

S2
R ∈

{
(x, y, z) ∈ R | x2 + y2 + z2 = R2

}
(2.79)

With the following parameterized form,

x(θ, ϕ) = R cos(θ) cos(ϕ) (2.80a)

y(θ, ϕ) = R cos(θ) sin(ϕ) (2.80b)

z(θ, ϕ) = R sin(θ) (2.80c)

where θ ∈
[
−π/2, π/2

]
and ϕ ∈ [0, 2π]. The origin is located on the x-axis with

(θ, ϕ) = (0, 0), and (x, y, z) = (R, 0, 0). The geodesic is equal to ∆s = R ·∆σc, where

σc is the central angle, given by the spherical law of cosines and has the following

form,

∆σc = arccos
[
sin (θ1) sin (θ2) + cos (θ1) cos (θ2) cos (ϕ2 − ϕ1)

]
(2.81)

Given a geodesic distance ∆s between two points on a sphere of radius R, the central

angle will be ∆σc =
∆s
R
.

∆s = R · arccos
[
sin (θ1) sin (θ2) + cos (θ1) cos (θ2) cos (ϕ2 − ϕ1)

]
(2.82)

Quaternion

A rigorous explanation of quaternion can be found in reference [46]. The idea is

to extend our vector u⃗ = [x, y, z] in R3 to the extended version of complex space

represented as uex = [0, x, y, z] or uex = 0 + xî + yĵ + zk̂. Quaternion have the

multiplication property of î2 = ĵ2 = k̂2 = îĵk̂ = −1.

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 53

In R3, a rotation of angle ∆σcentral is performed about a unit vector v̂ of the

following form,

v̂ = [a, b, c] (2.83)

In the extended complex plane, this is a multiplication with the quaternion, q =[
cos
(
∆σc

2

)
, sin

(
∆σc

2

)
· v̂
]
. The written out version is,

q (∆σc) =

cos
(
∆σc

2

)
sin
(
∆σc

2

)
· a

sin
(
∆σc

2

)
· b

sin
(
∆σc

2

)
· c

 (2.84)

The inverse is given as the complex conjugate of equation (2.84),

q−1 (∆σc) =

cos
(
∆σc

2

)
− sin

(
∆σc

2

)
· a

− sin
(
∆σc

2

)
· b

− sin
(
∆σc

2

)
· c

 (2.85)

with the property of q · q−1 = 1. Given the location of a point on the sphere u⃗,

the new position after a rotation of angle ∆σc about a unit vector v̂, is given by

u
′
ex = q · uex · q−1 = Q · q−1 =

[
g, x

′
, y

′
, z

′
]
, where Q = q · uex = [L,m, n, p].

Q = [L,m, n, p] =

− sin

(
∆σc

2

)
(a · x+ b · y + c · z)

cos
(
∆σc

2

)
· x+ sin

(
∆σc

2

)
(b · z − c · y)

cos
(
∆σc

2

)
· y + sin

(
∆σc

2

)
(c · x− a · z)

cos
(
∆σc

2

)
· z + sin

(
∆σc

2

)
(a · y − b · x)

 (2.86)

The final multiplication is u
′
ex = Q · q−1 =

[
g, x

′
, y

′
, z

′
]
.

u
′

ex =
[
g, x

′
, y

′
, z

′
]
=

cos
(
∆σc

2

)
· L+ sin

(
∆σc

2

)
(a ·m+ b · n+ c · p)

cos
(
∆σc

2

)
·m+ sin

(
∆σc

2

)
(b · p− a · L− c · n)

cos
(
∆σc

2

)
· n+ sin

(
∆σc

2

)
(c ·m− b · L− a · p)

cos
(
∆σc

2

)
· p+ sin

(
∆σc

2

)
(a · n− c · L− b ·m)

 (2.87)

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 54

Therefore, our new position on the sphere, with a rotation of ∆σc about the unit

vector v̂ = [a, b, c] from the point u⃗ = [x, y, z] is,

x
′
= cos

(
∆σc

2

)
·m+ sin

(
∆σc

2

)
(b · p− a · L− c · n) (2.88a)

y
′
= cos

(
∆σc

2

)
· n+ sin

(
∆σc

2

)
(c ·m− b · L− a · p) (2.88b)

z
′
= cos

(
∆σc

2

)
· p+ sin

(
∆σc

2

)
(a · n− c · L− b ·m) (2.88c)

The unit vector v̂ is computed by randomly choosing new angles, (θ, ϕ), producing a

new position vector u⃗2. We then compute the cross product from our initial location

of our geodesic path u⃗, v⃗ = u⃗× u⃗2. The unit vector will then be v̂ = v⃗
∥v⃗∥ .

2.5.4 Simulation

This section will prove the Lévy distributions used for our random walk, present the

random walk algorithm for each space, the distance equations used in computing the

MSD for our simulated random walks and show the various MSD theoretical models

that we fit.

Lévy Distribution

Lévy distributions have two cases to consider. First, when the upper bound on the

distribution is finite, second when it is infinite. Physically, this would be considered

when the space is bounded or unbounded.

• Case 1: ∆smax = Finite

For Lévy distribution, we have as the normalized probability density function with

respect to a lower and upper bound as follows,

ρ(∆s) =
µ− 1

∆s1−µ
0 −∆s1−µ

max

(∆s)−µ δ
(
|∆s| − vt

)
(2.89)

where ∆s0 is the smallest geodesic length, ∆smax is the largest geodesic length and

µ is the Lévy exponent such that µ ∈ (1, 3). We apply the Dirac delta function,

δ(|∆s| − vt), to ensure we have a ballistic relation constrained by a constant velocity

v. This couples time and length together allowing for Lévy walk to occur.

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 55

The probability of a geodesic length, ∆s, is given by the integration of equa-

tion (2.89), P (∆s > ∆s0), from ∆s to ∆smax.

Pr(∆s > ∆s0) =
1

∆s1−µ
0 −∆s1−µ

max

(
∆s1−µ −∆s1−µ

max

)
(2.90)

where Pr(∆s > ∆s0) ∈ [0, 1]. Taking the inverse of equation (2.90) and solving for

∆s, we find the geodesic path length as,

∆s(Pr) =

[
∆s1−µ

max + Pr
(
∆s1−µ

0 −∆s1−µ
max

)] 1
1−µ

(2.91)

• Case 2: ∆smax → ∞
In the case of an unrestricted upper bound, we have the normalized probability

density function with a lower bound and in the large limit as,

ρ(∆s) ≈ µ− 1

∆s0

(
∆s

∆s0

)−µ

δ
(
|∆s| − vt

)
(2.92)

where ∆s0 is the smallest geodesic path length the walker can take and µ is the Lévy

exponent. Again, we apply the Dirac delta function, δ(|∆s| − vt), to ensure we have

a ballistic relation constrained by a constant velocity v. The probability of a geodesic

length, ∆s, in this case is given by integrating equation (2.92), P (∆s > ∆s0), from

∆s to ∞.

Pr(∆s > ∆s0) ≈
(

∆s

∆s0

)−µ+1

(2.93)

Taking the inverse of equation (2.93) and solving for ∆s, we find the geodesic path

length as,

∆s(Pr) ≈ ∆s0 × (Pr)
1

1−µ (2.94)

Simulation Random Walk Algorithm

We show the generalized position equations for Euclidean, hyperbolic half-plane model

and spherical space. The half-plane equations proof is shown in section §2.5.2 and for

the sphere in §2.5.3. For Euclidean, geodesic paths are straight lines with position

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 56

equations,

xi+1 (δ, θ) = xi + δ · cos (θ) (2.95a)

yi+1 (δ, θ) = yi + δ · sin (θ) (2.95b)

In choosing the Euclidean geodesic path length, ∆s, we break the path into n

fixed step lengths, δ, where ∆s =
∑n δ. For hyperbolic space, using the half-plane

model, geodesics are semi-circles. In order to implement a random walk in this space,

we formulated a local approximation to pick, randomly, the semi-circle center, shown

in section §2.5.2. The position equations, in the hyperbolic half-plane model and

derived in section §2.5.2, are,

xc = tan(θ) · yi + xi (2.96a)

r =
R

C
=

√
(xi − xc)

2 + (yi)
2 (2.96b)

s1 (yi) = −R ln

(
1

yi

(
r +

√
(r)2 − (yi)

2

))
(2.96c)

xi+1 (δ) = xc + r tanh

(
s1 + δ

R

)
(2.96d)

yi+1 (δ) = r sech

(
s1 + δ

R

)
(2.96e)

For the hyperbolic geodesic path length, ∆s, each step is the sum of everything

prior for the geodesic, such that ∆s =
∑m

1 δ, where m ∈ [1, n]. Both Euclidean

and hyperbolic use geodesic equation (2.94) with polar angles drawn form a uniform

distribution, θ = 2π · Pr.
In spherical space, geodesics are arcs around the sphere. By using the method of

quaternions, discussed in section §2.5.3, we get the following position equations,

xi+1 (δ) = cos

(
σc

2

)
·m+ sin

(
σc

2

)
(b · p− a · L− c · n) (2.97a)

yi+1 (δ) = cos

(
σc

2

)
· n+ sin

(
σc

2

)
(c ·m− b · L− a · p) (2.97b)

zi+1 (δ) = cos

(
σc

2

)
· p+ sin

(
σc

2

)
(a · n− c · L− b ·m) (2.97c)

Spherical space use geodesic equation (2.91), where the geodesic path length, ∆s, is

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 57

broken into n fixed step lengths, δ, where ∆s =
∑n δ. This then gives the incremental

central angle σc = δ
R
, used as the amount rotated about a randomly chosen unit

vector. As the walker traverses the path, our unit vector remains unchanged.

Simulation MSD Calculation

The simulation MSD is computed by performing a sliding window average. In the case

of Euclidean, the MSD is given by equation (2.98). For the sphere, equation (2.99).

For hyperboloid, using the half-plane model, equation (2.100). Let T represent the

max simulation time, then ∆t ∈ [1, T − 1] and i ∈ [1, T −∆t].

Euclidean sliding window MSD is,

∆s2 (∆t) =
(
x (i+∆t)− x (i)

)2
+
(
y (i+∆t)− y (i)

)2
(2.98)

For position on the sphere, the corresponding MSD is,

∆s2 (∆t) =

[
2R · arcsin

(
√(

x (i+∆t)− x (i)
)2

+
(
y (i+∆t)− y (i)

)2
+
(
z (i+∆t)− z (i)

)2
2 ·R

)]2
(2.99)

For position in the half-plane model, the corresponding MSD is,

∆s2 (∆t) =

R · arcCosh

(x (i+∆t)− x (i)
)2

+ y (i+∆t)2 + y (i)2

2 · y (i) · y (i+∆t)

2

(2.100)

Fitted Mean-Squared Displacement

Our analysis consists of modeling eight MSD forms, shown in equation (2.101). The

notations of the MSD model is, ⟨∆s2(t)⟩i,j, where i represents the polynomial order

and j as the number of parameters being fit. The negative sign, (−), in the second

CHAPTER 2. LÉVY WALKS IN CURVED SPACE 58

order term corresponds to spherical space and positive, (+), for hyperbolic.

⟨∆s2(t)⟩1,1 = 4D̃ta (2.101a)

⟨∆s2(t)⟩1,2 = 4D̃tα̃ (2.101b)

⟨∆s2(t)⟩2,1 = 4D̃ta ± 4

3R2

(
D̃ta

)2
(2.101c)

⟨∆s2(t)⟩2,2 = 4D̃tα̃ ± 4

3
R2

(
D̃tα̃

R2

)2

(2.101d)

⟨∆s2(t)⟩2,3 = 4D̃tα̃ ± β̃1 ·

(
D̃tα̃

R2

)2

(2.101e)

⟨∆s2(t)⟩3,1 = 4D̃ta ± 4

3R2

(
D̃ta

)2
− 8

45R4

(
D̃ta

)3
(2.101f)

⟨∆s2(t)⟩3,2 = 4D̃tα̃ ± 4

3
R2

(
D̃tα̃

R2

)2

− 8

45
R2

(
D̃tα̃

R2

)3

(2.101g)

⟨∆s2(t)⟩3,4 = 4D̃tα̃ ± β̃1 ·

(
D̃tα̃

R2

)2

− β̃2 ·

(
D̃tα̃

R2

)3

(2.101h)

The anomalous exponent a will always have the range shown in reference [13], de-

pending on the Lévy exponent µ, and is considered a known, fixed value in the fit.

Greek letters, α̃, β̃1, β̃2, along with the diffusion constant D̃, are parameters that will

be fitted. The case of fitting only D̃, β̃1, β̃2 with the known exponent a fixed, did not

produce stable and consistent results and is excluded from our MSD forms.

Chapter 3

Intracellular Transport on

Dynamic Actin Networks

3.1 Introduction

The internal dynamics of eukaryotic (animal) cells are very rich, and complex. The

environment of the inner cell (the cytosol/cytoplasm) consists of a multitude of molec-

ular components that can work in tandem, or completely separate along very compli-

cated molecular pathways, which later dictate cell behavior and function downstream.

Moreover, cellular functions cover a wide dynamic range of spatiotemporal scales,

which makes describing the cell mathematically overall extremely challenging. One

major operational component of cellular function is its internal cytoskeleton. This

skeleton can give rise to bulk mechanical properties of the cell [3, 17]. However, it

is better described as a dynamic network that constantly changes its topology and

connectivity, and it is not static. The dynamic aspect of the network can cause re-

gions to become crowded in some parts and become unpopulated in other parts. Not

only does this network change rapidly over time, but also acts as the roadway for

molecular cargo transport within the cell. It has been shown experimentally that

cargo transport is strongly influenced by the dynamics in the network geometry [7].

In most eukaryotic cells, intracellular transport of cargos is a vital mechanism for

cellular functions such as in the transportation of vesicles containing proteins like

insulin [47], or transportation of organelles like mitochondria within neurons [48] to

various targets throughout the cell. For nanometer scale molecules such as bacteria,

59

CHAPTER 3. INTRACELLULAR TRANSPORT 60

over small distances (< µm), transport by diffusion is the sufficient. However, diffu-

sion becomes slow for larger cargos over large distances, requiring an additional mode

of transport by the cytoskeletal network. Two types of transport phases can occur.

One is active transport or ballistic motion, where ATP-powered molecular motors,

such as kinesin, dynein, and myosin walk in a hand-over-hand style of motion along

the cell’s cytoskeletal network (consist of microtubules and actin filaments) while car-

rying cargo [16]. Another phase is passive transport or diffusive motion, where cargo

diffuses throughout the cytoplasm until it encounters a filament where binding and

unbinding can occur. In systems with static network, it has been shown that the

topology of the network influences transport time, and filaments introduce superdif-

fusive behavior in cargos at short times [17]. However, in a more realistic system,

networks vary with time.

In this chapter, we expand a previous approach that not only captures many of

the critical features of intracellular transport of cargo, but also allows theoretical

investigation of optimal transport for dynamic cytoskeletal network, specifically for

actin filaments. The objective is to understand how cargo transportation is affected

when the network of filaments become time-dependent. This allows us to answer, how

do the dynamics affect cargo transport from one point to another in the cell? Can the

dynamics be tuned to optimize transport? Actin filaments are known to be unstable

[49]. These instabilities lead to dynamic networks. Polymerization can occur, which

leads to growth at the plus end and depolymerization, which leads to shrinkage at

the minus end. A balance of both can lead to steady-state treadmilling. Treadmilling

speed can be tuned by the cell [49]. It has been shown that actin dynamics can

regulate actin-based movement of membrane organelles [7]. To incorporate these

behaviors, the parameters controlling transport in our simulation are actin filaments,

which are up to a few microns in length, filament treadmilling speed ranging between

20 − 160 nm
s

[50, 51]. Cargos are carried along actin by myosin motors, and these

motors have speeds between 60 − 200 nm
s

[51]. Cargo can attach and detach from

filament with rates kon, koff .

CHAPTER 3. INTRACELLULAR TRANSPORT 61

3.2 Methods

Our work build on previous work [3,17] where we start with a simple eukaryotic cell,

represented by an annulus, with inner nucleus radius of 5 µm, outer cell membrane

radius of 15 µm. Each cargo has a radius of 100 nm. For the simulation, cargos are

represented as random walkers that alternate between passive transport within the

cytoplasm, and active transport along an explicit cytoskeletal network. At the start

of the walk, each cargo starts near the nucleus in the diffusive phase and move until

they reach the cell’s outer membrane (exocytosis) or maximum time. The nucleus has

a boundary that will reflect the cargo. If it is near a filament, it can attach and switch

to the ballistic phase. Our simulation did not allow switching to different filament if

it encountered an intersection. During each time-step, actin filaments are modified

such that it produces treadmilling motion. The positive end grows while the negative

end shrinks, at the same speed. Also, if/when the filaments reach a minimum length,

the cargo switches to the diffusive phase and the filament is rearranged inside the

cell. We use physiological parameter values of diffusion, cargo speed, attachment

and detachment rate, as well as the physical time-step from [3,7,17], to simulate our

system, in order to better compare our results and justify our findings.

The actin filaments will have a range of growth/decay speed along with the number

of filaments; whereas for the cargo, it will have a range of detachment rates which we

will explore. The system parameters can be found in the Appendix §3.5, Table 3.1.

Figure 3.1 shows the Monte Carlo simulation of our system with parameters used

in previous work [3, 17]. This represents an actin network that treadmills, therefore,

the networks are dynamical. In this case, the cargo attaches to the cyan filament,

switching to ballistic motion. While the filament treadmills, the cargo still walks and

detaches at some point, switching to diffusive motion. The brown lines are the cargos

full trajectory in this example and the dashed lines are the past locations of the minus

end of the filaments.

CHAPTER 3. INTRACELLULAR TRANSPORT 62

Cargo Attached Ballistic Motion

Cargo Detached Diffusive Motion

(a) (b)

(c) (d)

Figure 3.1: Simulation snapshot of our system with parameter values, D = 0.051 µm2

s
,

a = 0.1 µm, Nfil = 15, L = 5 µm, kon = 3.0 s−1, koff = 0.5 s−1, vc = 1.0µm
s
,

vf = 0.6µm
s
. (a) Cargo attaches to the filament,

(
tstep = 11

)
. (b) Cargo moves

ballistically on filament with speed vc,
(
tstep = 40

)
. (c) Cargo detaches from filament,(

tstep = 52
)
. (d) Cargo diffuses,

(
tstep = 157

)
.

3.3 Results

3.3.1 Enhanced MSD and Optimal MFPT

We start our analysis by observing how the cargo spreads throughout the cell from

its starting position, near the nucleus, represented by the mean-squared displacement

(MSD). Shown in Figure 3.2, in the larger plot, is the cargos MSD versus Time,

for different actin filament treadmilling speeds vf , ranging from ten-times less to

CHAPTER 3. INTRACELLULAR TRANSPORT 63

ten-times more of the cargos speed, vc = 0.0612 µm
s
. The simulation is performed

with the fixed parameters of 100 filaments each 6 µm in length, detachment rate of

koff = 0.06 s−1 and attachment kon = 5.0 s−1. The cargo moves ballistically while on

the actin network with speed vc. We notice when the filament speed equals the cargo

speed, i.e., vf = vc, a drastic increase in MSD occurs, shown by the cyan line, such

that more of the cell is covered, which we label as our enhanced region, indicating

that the distance traveled is not monotonic with filament treadmilling speed. The

inset has plots of MSD versus Filament treadmilling speed at 800 s. This shows that

even at longer times, the system still remains enhanced. Therefore, mean-squared

displacement is enhanced for particular filament speeds. In this case, when filament

speed equals the cargo speed. Given these findings, what does this mean for optimal

transport?

Figure 3.2: Cargo MSD vs time from our simulation for various filament speeds, shows
at early time, for specific filament speeds, (vf ≃ vc = 0.0612 µm

s
), closed to the cargo

speed enhanced MSD. Inset: MSD vs filament treadmilling speed at 800 s, shows the
MSD enhancement persists even at late times.

To understand optimal transport, we look at the mean-first passage time (MFPT),

which is defined as the first time the cargo reaches its target destination, the cell’s

membrane. Shown in Figure 3.3, for the larger plot is the cargos MFPT versus

Filament treadmilling speed, blue squares. The results shown are for the same setup

with 100 filaments each 6 µm in length. We notice that the MFPT drops then

increases again. It attains the minimum value for a filament speed around the cargo

CHAPTER 3. INTRACELLULAR TRANSPORT 64

speed, vf = vc, which we label as optimal. To test the robustness of our system, a

quadratic fit is performed on the data around this optimal speed, red-dashed line,

which also results in a minima, red square, around our simulations optimal speed.

This is also the point where the time spent on the filament is maximized, shown in

the inset as blue circles. Interestingly, this minimum is in the physically relevant

filament speed range for in vivo experiments, (20 − 160 nm
s
), yellow shaded region.

This suggests that filament speeds can be tuned to optimize transport. Why is there

a minimum at this value? Can we tune this value?

Figure 3.3: Cargo MFPT vs filament treadmilling speed from our simulation, shows
a minima occurs for filament speed around the cargo speed. Inset: Fraction of time
spent by cargo on filament vs filament speed, shows that, around the optimal speed,
a maximum occurs.

3.3.2 Tuned Speed Range Dependencies

To understand how this minimum in MFPT arises, as seen in Figure 3.3, a closer

observation is needed between the cargo and filament. The cargo can attach to a

filament with attachment rate kon; conversely it can detach with detachment rate

koff . Lets consider a single cargo walking on a filament in detail. Imagine walking on

a track that shrinks from behind. Once in a while, you walk off the track; this time

is defined as τb =
1

koff
, and you start to diffuse. While diffusing for some time, you

reattach to the track, define this time as τu = 1
kon

. In this time, the track/filament

ends move a distance, df = vfτu =
vf
kon

, with vf being the filament treadmilling speed.

CHAPTER 3. INTRACELLULAR TRANSPORT 65

Relative to this filament, while the walker/cargo is attached, it moves a distance

dc = ṽcτb =
vc−vf
koff

, where vc is the cargos ballistic speed. To maximize the time a

cargo spends on the filament, as in the inset of Figure 3.3, we want the cargo to keep

a constant distance from the ends of the filament. If we consider the criteria that the

filament ends never reach the cargo, we can solve for the filament speed by equating

both distance terms together, df = dc. This gives the optimal filament speed, vof , as

a function of the cargo speed, cargo attachment and detachment rate, equation (3.1).

vof =
vc

1 +
koff
kon

(3.1)

Therefore, optimal actin transport of cargo requires vf = vof . Cargo never encounters

the filament ends and remains on until it diffuses crad away from the filament. For

example, if we consider koff ≪ kon, transportation of cargo is optimized when actin

filament co-move with cargo, vf = vof = vc. Interestingly, equation (3.1) gives us an

expression such that actin treadmilling speed can be tuned by cargo speed, attachment

and detachment rate, (vc, kon, koff).

To better understand the derived expression, shown in Figure 3.4a for our simu-

lation, is the ratio of optimal filament speed to cargo speed versus the ratio of cargo

detachment to attachment rates. The points are derived from finding the minima in

the MFPT for different filament densities, where the red-dashed line is the predicted

tuning equation (3.1). We see an excellent agreement between the simulation and

prediction. From the expression, the optimal filament speed can be tuned by the

cargoes attachment and detachment rates. When attachment rate, kon, is large com-

pared to the detachment rate, koff , the cargo is basically always on the filament. For

the cargo to not reach the filament ends, the filament must co-move with the cargo.

This requires the filament speed to move closer to the cargo speed. From the work

shown earlier, the filament speed, vf , is approximately the cargos speed, vc. When

the detachment rate, koff , increases, the optimal speed will fall. In the case when the

detachment to attachment ratio,
koff
kon

, is close to 1, the cargo spends as much time

off the filament as it does on. In other words, the chances of cargo to attach to the

filament is the same as detaching. The filament should treadmill slow enough such

that the ends do not reach the cargo, therefore the optimal speed will decrease. For

optimal transport, the cell can use this as a control knob to tune the filaments speed.

CHAPTER 3. INTRACELLULAR TRANSPORT 66

Thus, controlling where optimal is.

The work shown so far are for detachment rates less than or equal to the attach-

ment rate, koff ≤ kon. If we consider the case when cargo detachment rate is larger

than attachment, koff > kon, our optimal filament speed relationship, (3.1), does not

hold anymore. Shown in Figure 3.4b are results for the ratio of filament to cargo

speed versus number of filament. The simulation has detachment rate koff = 10 s−1,

attachments rate kon = 5 s−1 and filament lengths L = 2, 6 µm (light blue, orange).

Unlike the results in Figure 3.4a, we observe there exist a dependence on the network

density for optimal transport. In addition, the ratio of time spent on the filament,

shown in the inset for 100 filaments each 6 µm as blue circles, has a monotonic be-

havior as we increase filament treadmilling speed; further indicating the prior criteria

of maximizing the time spent on the filament to be insufficient. Therefore, a thresh-

old is reach when cargo detachment rate is larger than attachment rate such that

for optimal cargo transport, filament treadmilling speed becomes dependent on the

networks density.

3.4 Discussion

Our work’s focus is to understand the influence of a time-dependent cytoskeletal

network on cargo transportation. For static networks, cargo transport properties

have been well studied [3,17]. In a real system, however, networks are not static, and

we have shown how the transportation behaviors of cargo is influenced by dynamical

networks, specifically for actin filaments that treadmill. There is an optimal filament

treadmilling speed that enhances the mean-squared displacement (MSD) of the cargo

and optimizes the mean first-passage time (MFPT). Close to the optimal speed,

the time that the cargo spends on the filament is increased and the transportation is

enhanced. The optimal filament speed lies within in vivo filament treadmilling speeds,

20 − 160 nm
s
. The value of the optimal speed can also be tuned by attachment and

detachment rates. Our work has implications for the efficient delivery of critical cargos

to specific locations in cells. For example, cells can tune both filament treadmilling

speeds and attachment/detachment rates, allowing for fine-tuned optimal transport

of different cargos under different conditions. To validate our results, it would also

be interesting for in vitro experiments to be performed to measure myosin transport

CHAPTER 3. INTRACELLULAR TRANSPORT 67

(a)

(b)

Figure 3.4: (a) Ratio of optimum filament speed to cargo speed vs ratio of detachment
to attachment rates. Red-dashed line represents the analytical optimal filament speed
for koff ≤ kon. (b) For koff > kon, ratio of optimum filament to cargo speed vs
number of filaments are shown. Inset: Fraction of time spent by cargo on filament
shows monotonic behavior.

on dynamic actin filaments where the dynamics can be tuned. Real cells have well-

defined network topologies, so there will be some interplay between dynamics and

geometry, potentially a future study. Much work is still required to understand the

depth of impact for dynamic actin networks on intracellular transport. Given our

threshold case of detachment rate larger than attachment rate, it remains unknown

how the filament treadmilling speed begins to have a dependence on network density.

The preliminary analysis is worked out in the Appendix §3.5, which is left for future

CHAPTER 3. INTRACELLULAR TRANSPORT 68

studies. For the future work, it would be interesting to answer, how do different

network arrangements affect our optimal dynamics? How do cargo switch rates affect

optimal dynamics?

3.5 Appendix

3.5.1 Simulation Parameters

Shown below are the common parameter values for our system. We have used most of

them in previous work [3,7,17]. The actin filaments will have a range of growth/decay

speed along with the number of filaments; whereas for the cargo, it will have a range

of detachment rates which we will explore.

3.5.2 Tuned Filament Speed Time On and Distance Traveled

A cargo can attach to a filament with an attachment rate of kon; conversely it can

detach from a filament with a detachment rate of koff . When a cargo is attached to

a filament, it walks for a time τb =
1

koff
. If in the diffusing phase, cargo will diffuse

for a time until it is it’s radius, crad, away from the filament τu = 1
kon

. The time it

takes the cargo to move a distance crad away from the filament is τc =
a2

D
, where a is

the diffusive distance in µm and D is the diffusion constant with units µm2

s
. In our

case, since the diffusive distance is a = 0.1 µm, the time τc is the time required for

the cargo to diffuse ”a” away from the filament. Probability of the cargo to escape

from the filament, so it remains in the diffusive phase, is Pesc = e−konτc , where kon

is the attachment rate with units s−1. Additionally, the types of events that the

cargo can have, while on the filament, is to walk, fall-off then rebind. Therefore, the

number of times these events can occur before it escapes, (cargo can walk, fall-off and

rebind to the filament), is proportional to the reciprocal of the escape probability,

Nesc ∝ 1
Pesc

= ekonτc .

From (3.1), we know that the optima filament speed can be tuned. This rela-

tionship allows the investigation of behaviors associated with time, such as how long

the cargo stays on the filament. Additionally, behaviors corresponding to distance,

such as the step-length or total distance traveled while on the filament. To start, we

have to consider three different ranges for the filaments movement speed; first is the

CHAPTER 3. INTRACELLULAR TRANSPORT 69

Parameter
Name
[Units]

Value(s) Description

tsteps 90,000 Number of time-steps for simulation

tphysical [s] 0.049 Physical time per step [3, 17]

ttotal [s] 4410 Total simulation time

D [µm
2

s
] 0.001 Diffusion constant [7]

a [µm] 0.014 Diffusion distance

Ncargo 100 Cargo’s simulated

Nnet 20 Networks realized by each cargo

Nfil 10, 25, 50, 75, 100 Number of filaments in network

L [µm] 2, 6 Filament lengths

kon [s−1] 5.0 Cargo attachment rate [3, 17]

koff [s−1]
0.01, 0.06, 0.20, 1.0,

2.0, 5.0, 10.0
Cargo detachment rate [7]

vc [
µm
s
] 0.0612 Cargo ballistic speed [7]

vf [µm
s
]

0.0, 0.00612, 0.01,
0.02, 0.03, 0.04, 0.05,
0.0612, 0.07, 0.08, 0.1,
0.2, 0.4, 0.612, 1.224,

1.836

Filament speed [7]

Table 3.1: Simulation parameter values. The diffusion distance was calculated using
a =

√
4Dtphysical.

CHAPTER 3. INTRACELLULAR TRANSPORT 70

control case where our network is static (vf = 0), second is the optimal case when the

cargo and filament network co-move together (vf = vof), and third is the limit case

when the filament moves much faster than the cargo (vf ≫ vc). As long as the cargo

is associated with the same filament of length L, the possible events are walk, fall-off

and rebind. Therefore, we have the following number of events relation, for the three

filament regimes, before the cargo escapes the filament with τc =
a2

D
,

Nesc =

L
2vc

koff , for vf = 0

ekonτc , for vf = vof
L
2vf

koff , for vf ≫ vc

(3.2)

Cargo walk towards either the positive end if carried by kinesin/myosin motors or

negative end for dynein from the filaments midpoint, hence the division by 2 in the

static (vf = 0) and large speed (vf ≫ vc) cases. To investigate the time and distance

affects in filament speeds three regions, we start by stating the general equations (3.3).

The time the cargo spent on the filament is given by Ton (equation (3.3a)) and the

distance traveled on the filament by l (equation (3.3b)).

Ton = Nesc (τb + τu) (3.3a)

l = Nescvcτb = Nesc
vc
koff

(3.3b)

In the static case (vf = 0), the filament network does not move and all three event

types can happen (walk, fall-off, rebind). The corresponding time on the filament and

distance traveled is given in equation (3.4).

Ton =
L

2vc
koff

(
1

koff
+

1

kon

)
(3.4a)

l =
L

2
(3.4b)

In the optimal case (vf = vof), the cargo and filament co-move together (while

attached). Assuming it’s far from the filament ends and a low detachment rate, the

event we see is just walking. Additionally, if the cargo attaches to the filament at

an endpoint, we can expect events where we see it fall-off and rebind causing trailing

CHAPTER 3. INTRACELLULAR TRANSPORT 71

affects to occur. The corresponding time on the filament and distance traveled is

given in equation (3.5).

Ton = ekon
a2

D

(
1

koff
+

1

kon

)
(3.5a)

l = ekon
a2

D
vc
koff

(3.5b)

In the large speed case (vf ≫ vc), cargo only sees the negative end of the filament.

Once it unbinds, it will always be at least crad away. Therefore, only time spent on

the filament is important and the term with τu in equation (3.3a) is disregarded. The

corresponding time on the filament and distance traveled is given in equation (3.6).

Due to the large speed of the filament, it is very unlikely to see any trailing affects.

Ton =
L

2vf
(3.6a)

l =
L

2

vc
vf

(3.6b)

3.5.3 Density Dependent Optimal Filament Speed

If we consider that the density of our network is important, then the fraction of

time a cargo spends on the filament network is no longer maximized. Therefore,

the optimal filament speed assumptions will need to be modified. To approach this,

we want to find a regime to be on the filament such that transportation is opti-

mal. Therefore, it makes sense to work with the fraction of total time the cargo

spends actually walking on the filament, defined as Fon = (ratio total time on) ·
(ratio of characteristic time on), shown in equation (3.7), with Tdiff as total time dif-

fusing and Tfil total time on the filament. If the filament moves to fast, then the

cargo will encounter many filaments. Similarly, if the detachment rate is much larger

than the attachment rate, koff ≫ kon, then cargo will encounter more filaments. This

motivates us to work with koff ≫ kon, such that the cargo has a chance to encounter

more filaments while the filament speed is in the optimal region, vf = vof , but also

modifies the time spent on the filament, from equation (3.3a), which simplifies to

CHAPTER 3. INTRACELLULAR TRANSPORT 72

Ton ≈ τb ·Nesc = τb · ekonτc .

Fon =

(
Tfil

Tfil + Tdiff

)
·

(
kon
koff

)
(3.7)

Starting in the diffusive phase, we want to know if there is a dependence between

the cargo finding a filament and the filament speed. If the cargo wonders into a tube,

area surrounding the filament, then there exist a finite chance of running into the

filament. While our cargo wonders, an tube-like area is swept out by the filament

treadmilling. Time the cargo spends in this tube is τc = a2

D
. Consider a rectangle,

the filament moves in straight line with a distance L + vfτc and has an attachment

range of 2 · crad. The maximum distance a filament can move is constrained by the

cells diameter, 2R. Therefore the probability a cargo runs into a filament, within the

filaments tube range in time, is the ratio of the filament distance to the cells diameter,

equation (3.8).

Prtube =
L+ vfτc

2R
(3.8)

Having the probability of a cargo running into a filament allows us to solve for the

total time it diffuses, Tdiff . Consider the cell with radius R and a specified number of

filaments, Nfil. The separation between each filament tube, or the distance a cargo

can diffuse, is dfil =
R

Nfil
. Thus, the corresponding diffusive time is then τdiff =

d2fil
D
,

where D is the diffusion constant. Therefore, the time a cargo can diffuse is given by

equation (3.9), where Tdiff = τdiff · 1
Prtube

.

Tdiff =
2R3

DN2
fil

· 1

L+ vfτc
(3.9)

From equation (3.9), we see that there exist a dependence on filament density and

speed. Tdiff is considered as the time a cargo diffuses between the tubes; however,

it can also be interpreted as the time it takes the filaments end to reach the cargo.

Equation (3.9) shows that changing the filament speed, vf , changes the total time

the cargo diffuses Tdiff , small vf will yield large Tdiff and large vf gives small Tdiff .

If we consider that the total time a cargo diffuses, Tdiff , is equal to the time spent

on the filament, Ton ≈ τb ·Nesc = τb · ekonτc , then we are able to solve for the optimal

filament speed, vf = ṽf , given in equation (3.10). The new expression for optimal

CHAPTER 3. INTRACELLULAR TRANSPORT 73

filament speed is now dependent on the network density.

ṽf =
1

τc
·

(
kone

−konτc · 2R3

DN2
fil

− L

)
(3.10)

The optimal filament speed found from the diffusive phase needs to coincide with

the ballistic phase. At this point, the relationship is incomplete, but we still go over a

starting process to find the time our cargo spends on the filament, Tfil. To complete

the relation, the time our cargo spends on the filament will need to consider walking

on the filament and trailing due to the filament ends, where it can attached and fall

off, continuing that cycle.

Consider a cargo walking on the filament, near its middle
(
L
2

)
. In this phase, the

cargo can switch to the diffusive phase but also reattach to the filament. We want

to calculate the time our filaments end reaches the cargo. If our cargo detaches, it

spends some time, τu = 1
kon

, diffusing until it reattaches to the filament. In this cycle,

the distance between our cargo and the filaments end is then d̃ = vfτu−
(
vc − vf

)
τb =

vf (τu + τb)− vcτb. Given that we start near the middle, we can solve for the time our

cargo spends on the filament, Tfil, equation (3.11).

Tfil =
L/2

d̃
(τu + τb) =

L

2

(τu + τb)

vf (τu + τb)− vcτb
(3.11)

If we consider a mean filament speed, vf = ṽf = L/2
Tfil

, we get the following expression,

ṽf =
d̃

(τu + τb)
(3.12)

Thus far, filament trailing effects need to be incorporated into the theory, which

is left for the future direction in this study.

Chapter 4

Final Discussion

4.1 Overall Conclusion and Future Work

The objective of this dissertation was to understand how geometry and dynamics af-

fect anomalous diffusion. The work discussed two specific projects. The first project

studied geometry, with Lévy walks in curved space, where we simulated a random

walker on manifolds, to understand how the intrinsic curvature of the manifold in-

fluenced transport by studying the mean-squared displacement (MSD). This work

was presented in chapter two, which showed that negatively curvature manifolds, i.e.,

hyperboloid, have a positive impact on transportation such that the random walker

covers more spatial distance; whereas manifolds with positive curvature, i.e., a sphere,

have negative impact on transport where the walker covers less of the surface when

compared to transport on flat (Euclidean) manifolds. The second project focused on

intracellular transport on dynamic actin networks. We considered a random walker/-

cargo with two phases of motion, either diffusive in the cell’s cytoplasm or ballistic

on the network of actin filaments which can be thought of as tracks. Dynamics were

introduced by allowing the filament to treadmill. This allowed us to analyze how the

cargo spread through the cell from the nucleus by studying the MSD. In addition,

optimal transport of cargo within the cell was also analyzed by studying the mean

first-passage times (MFPTs). Our work, presented in chapter three, showed that

there exist optimal dynamics in the network of filaments that can enhance transport.

In our work on Lévy walks in curved spaces, we developed a method to simulate

random walks in curved spaces. We derived a mean-squared displacement relation

74

CHAPTER 4. FINAL DISCUSSION 75

for Lévy walks in curved spaces with arbitrary Gaussian curvature that for Brownian

motion matches with existing results [41]. We showed that our general expansion

works when not in the Brownian regime. The MSD decreases for spherical surfaces

but increases for hyperbolic. The unknown coefficients in the expansion were also

estimated. Interestingly, the coefficients are on the order of 1, and is insensitive to

the Lévy exponent, µ, but this requires more investigation. We showed that curved

surfaces will produce an apparent shift in µ unless you account for curvature properly.

For example, on a sphere, Lévy type motion, 2 < µ < 3, could appear Brownian, with

µ > 3, if you don’t account for the curvature corrections. Overall, we were able to

account for geometrical effects on anomalous diffusion.

Our results can be validated by measuring the diffusion of membrane bound pro-

teins on lipid membranes that are supported on engineered surfaces with different

curvatures. Our work has implications for processes occurring in cells. For example,

membrane signaling and reaction rates depend on diffusion, which we have shown

depends on local surface curvature. So, changes in curvature can lead to changes

in these rates which in turn lead to changes in the corresponding biological process.

Since our work is novel, more analysis is needed to understand how geometry affects

transport. For future work, we can ask, can we derive a closed form expression for

the expansion coefficients? How are optimal search processes affected by curvature?

Can we build a pipeline to analyze experimental data of membrane protein diffusion

to extract the anomalous exponent, diffusion constant and local curvature?

In chapter 3 we have shown how the transportation behaviors of cargo is influenced

by dynamical networks, specifically for actin filaments. There is an optimal filament

treadmilling speed that enhances the mean-squared displacement of the cargo and

optimizes the mean first-passage time. Close to the optimal speed, the time that the

cargo spends on the filament is increased and the transportation is enhanced. The

optimal filament speed lies within in vivo filament treadmilling speeds. The value

of the optimal filament speed can also be tuned by changing the cargos attachment

and detachment rates. Our work has implications for the efficient delivery of critical

cargos to specific locations in cells. For example, cells can tune both filament tread-

milling speeds and attachment/detachment rates, allowing for fine-tuned optimization

of transport of different cargo under different conditions.

To validate our results, it would also be interesting for in vitro experiments to

CHAPTER 4. FINAL DISCUSSION 76

be performed to measure myosin transport on dynamic actin filaments where the

dynamics can be tuned. Real cells have well-defined network topologies, so there

will be some interplay between dynamics and geometry, potentially a future study.

For the future work, we can ask, how do different network arrangements affect our

optimal dynamics? As an example for radial networks that favor growth/shrinkage

on one end, such as for microtubules, and polarized such that the positive end of the

filament points towards the cells outer membrane, we have derived a MFPT function

that relates the density of the network to transportation time, shown in section §A.1

of the Appendix. In addition, statistical variations need to be tested for the work

shown in chapter three. Work from [17] showed that cargo-to-cargo variation, e.g.,

attachment/detachment rate, influences transportation more compared to network-

to-network variations, e.g., filament length or density.

Overall, our results have shed light on the geometry and dynamics on the sub-

strates taken place in their respective environments. We hope this will lead to more

detailed studies and experimental validations for our results.

Appendix A

Appendix: Future work

Derivations

A.1 Reaction-Rate Derivation: Linear Potential

From Kramers’ theory, we are able to describe the crossing from diffusive barriers.

This allows us to model a diffusing particle with drift in a potential [52]. Moreover,

the mean first-passage time, (MFPT), can be computed with a potential. Following

the work from [52], with the diffusion constant, D = kBT
Mγ

= (γMβ)−1, where kB is

the Boltzmann constant, T the (thermodynamic) temperature, γ a constant damping

rate, M as the particle mass, and a potential U(x), the MFPT, t(x), for a one-

dimensional Smoluchowski equations is,

− 1 = −(Mγ)−1U
′
(x)t

′
(x) + (Mγ)−1 kBTt

′′
(x) (A.1)

The relationship between U
′
(x) and drift velocity v can be connected through

the fluctuation-dissipation theorem (FDT). A particle walks through a region of fluid

such that it experiences some drag. Dissipating kinetic energy, in that region, into

heat or fluctuations in diffusive motion. This causes a drift, v, which is related to

a constant mobility (µ) and force (F (x) = U
′
(x)), thus v = µF (x) = µU

′
(x). In

addition, the mobility is also related to drag, µ = (Mγ)−1. Using the Einstein-

Smoluchowski relation, we get the diffusion coefficient, D = µkBT = µ/β. There-

fore, by replacing mobility, µ = v/U
′
(x), the diffusion coefficient then becomes

77

APPENDIX A. APPENDIX: FUTURE WORK DERIVATIONS 78

D = µkBT = v/
(
βU

′
(x)
)
. This states that the force applied to our particle in

this region is constant, βU
′
(x) = v/D, therefore βU

′
(x) is linearly proportional to

distance x.

Consider a system with a dense network, polarized such that the growing/shrink-

ing end points towards the cell membrane while the negative end remains static. This

is shown in Figure A.1 [3]. We start with the potential energy defined by equation

(A.2), such that we have a network that does not remain fixed in length and has a

growth speed of v. The potential equations was motivated by [3], which represents a

radial drift in the region, that is spherically symmetric, of filaments such that there

exist a linear potential, U (r) ∝ r, and a constant potential outside the region of

filaments, (C1, C2), where no drift exists. The transition from these different regions

should be considered as diffusive barrier crossings.

βU(r) =

C1, rn ≤ r ≤ ra,

C1 − v
D
· (r − ra) , ra ≤ r ≤ ra + w,

C2 = C1 − v
D
· w, ra + w ≤ r ≤ R

(A.2)

This defines a system starting from the nucleus, radius Rn = rn, to the first

filament start position, Ra = ra, where the potential is constant, C1. The next region

has filaments, with length w, and starts from Ra to Ra+w, which has drift, modeled

by a linear potential that is dependent on the radial position from the nucleus. The

last region starts from the end of the filament, Ra + w, to the cell membrane, R,

where no drift occurs and has a constant potential C2. This system holds particularly

for microtubules with radial arrangements such that the positive end points towards

the cell membrane, whereas the negative end point towards the nucleus. In addition,

since the negative end is insignificant in dynamics compared to the positive end, we

can assume the positive end of the filament to be dynamic, therefore the negative end

remains static. From [52], we have the following mean first-passage time (MFPT)

equation as a function of radial distance r, t (r), with rn reflecting and R absorbing

boundaries.

t(r) =
1

D

� R

r

dρ · exp(βU(ρ))

ρ

� ρ

rn

dσ · σ · exp(−βU(σ)) (A.3)

APPENDIX A. APPENDIX: FUTURE WORK DERIVATIONS 79

Figure A.1: Depicted is a eukaryotic cell as a sphere. Here, the nucleus has a radius
of Rn, with the filaments in green, having length w such that the starting end is at a
radius Ra away from the nucleus center. The blue represents the cytoplasm with bulk
diffusion D. In this depiction, the network of filaments in green can be considered
part of the cytoplasm with a network diffusion constant Da [3].

Applying our potential energy equation (A.2), the MFPT integral will have the

following form:

t(r) =
1

D

{� ra

rn

dρ · exp(βU(ρ))

ρ

� ρ

rn

dσ · σ · exp(−βU(σ))

}

+
1

D

{� ra+w

ra

dρ · exp(βU(ρ))

ρ

� ρ

rn

dσ · σ · exp(−βU(σ))

}

+
1

D

{� R

ra+w

dρ · exp(βU(ρ))

ρ

� ρ

rn

dσ · σ · exp(−βU(σ))

} (A.4)

For simplicity, we will express equation (A.4) as:

t(r) = t1 + t1,2 + t1,2,3 (A.5)

The solutions to equation (A.4) for the respective time will be done in separate

pieces in the following subsections, For t1 in section §A.1.1, in the middle region for

t1,2 in section §A.1.2 and in the last region for t1,2,3 in section §A.1.3.

APPENDIX A. APPENDIX: FUTURE WORK DERIVATIONS 80

A.1.1 Solving t1

We start this section by solving the first region where the time is defined by t1 with

the following form,

t1 =
1

D

{� ra

rn

dρ · exp(βU(ρ))

ρ

� ρ

rn

dσ · σ · exp(−βU(σ))

}

=
1

D

� ra

rn

dρ · exp(βU(ρ))

ρ
·

[� ρ

rn

dσ · σ · exp(−βU(σ))

]
Applying the corresponding potential energy,

t1 =
1

D

� ra

rn

dρ · exp(βU(ρ))

ρ
·

[� ρ

rn

dσ · σ · exp(−βU(σ))

]

=
1

D

� ra

rn

dρ · exp(C1)

ρ
·

[� ρ

rn

dσ · σ · exp(−C1)

]

=
1

D

� ra

rn

dρ · 1
ρ
·

[� ρ

rn

dσ · σ

]

=
1

D

� ra

rn

dρ · 1
ρ
·
[
1

2
·
(
ρ2 − r2n

)]
=

1

2 ·D

� ra

rn

dρ ·

(
ρ− r2n

ρ

)

=
1

2 ·D

[
1

2
· ρ2 − r2n · ln(ρ)

] ∣∣∣ra
rn

=
1

2 ·D

[
1

2
·
(
r2a − r2n

)
− r2n · ln

(
ra
rn

)]

Therefore, the first right-hand-side (RHS) term of equation (A.5) evaluates to,

t1 =
1

2 ·D

[
1

2
·
(
r2a − r2n

)
− r2n · ln

(
ra
rn

)]
(A.6)

APPENDIX A. APPENDIX: FUTURE WORK DERIVATIONS 81

A.1.2 Solving t1,2

This section solves the middle region where the time is defined by t1,2 with the fol-

lowing form,

t1,2 =
1

D

{� ra+w

ra

dρ · exp(βU(ρ))

ρ

� ρ

rn

dσ · σ · exp(−βU(σ))

}

=
1

D

{� ra+w

ra

dρ · exp(βU(ρ))

ρ
·[� ra

rn

dσ · σ · exp(−βU(σ)) +

� ρ

ra

dσ · σ · exp(−βU(σ))

]}

Applying the corresponding potential energy and canceling out constants. Note

APPENDIX A. APPENDIX: FUTURE WORK DERIVATIONS 82

the expression of exp(C1) will always cancel.

t1,2 =
1

D

{� ra+w

ra

dρ · exp(βU(ρ))

ρ
·[� ra

rn

dσ · σ · exp(−βU(σ)) +

� ρ

ra

dσ · σ · exp(−βU(σ))

]}

=
1

D

{� ra+w

ra

dρ ·
exp(C1 − v

D
(ρ− ra))

ρ
·[� ra

rn

dσ · σ · exp(−C1) +

� ρ

ra

dσ · σ · exp(−C1 +
v

D
(σ − ra))

]}

=
1

D

{� ra+w

ra

dρ ·
exp(− v

D
(ρ− ra))

ρ
·1

2
(r2a − r2n) +

D

v

(
(ρ− D

v
) · exp

(
v

D
(ρ− ra)

)
+ (

D

v
− ra)

)}

=
1

D

{� ra+w

ra

dρ ·

[(
1

2
(r2a − r2n) +

D

v
· (D

v
− ra)

)
·
exp

(
− v

D
(ρ− ra)

)
ρ

+

D

v
·
(
1− D

v
· 1
ρ

)]}

=
1

v

[
ρ− D

v
· ln(ρ)

] ∣∣∣ra+w

ra
+

{
1

D
·
(
1

2
(r2a − r2n) +

D

v
· (D

v
− ra)

)
·

� ra+w

ra

dρ ·

[
exp

(
− v

D
(ρ− ra)

)
ρ

]}

=
1

v

[
w − D

v
· ln
(
ra + w

ra

)]
+

{
1

D
·
(
1

2
(r2a − r2n) +

D

v
· (D

v
− ra)

)
·

� ra+w

ra

dρ ·

[
exp

(
− v

D
(ρ− ra)

)
ρ

]}

Thus, the second RHS term of equation (A.5) evaluates to,

t1,2 =
1

v

[
w − D

v
· ln
(
ra + w

ra

)]
+

{
1

D
·
(
1

2
(r2a − r2n) +

D

v
· (D

v
− ra)

)
·

� ra+w

ra

dρ ·

[
exp

(
− v

D
(ρ− ra)

)
ρ

]} (A.7)

APPENDIX A. APPENDIX: FUTURE WORK DERIVATIONS 83

The last term is called the exponential integral, usually abbreviated as Ei(r), and

will need numerical integration to solve it.

A.1.3 Solving t1,2,3

This section solves the last region where the time is defined by t1,2,3 with the following

form,

t1,2,3 =
1

D

{� R

ra+w

dρ · exp(βU(ρ))

ρ

� ρ

rn

dσ · σ · exp(−βU(σ))

}

=
1

D

� R

ra+w

dρ · exp(βU(ρ))

ρ
·

[� ra

rn

dσ · σ · exp(−βU(σ))+

� ra+w

ra

dσ · σ · exp(−βU(σ)) +

� ρ

ra+w

dσ · σ · exp(−βU(σ))

]

Applying the corresponding potential energy and canceling out constants. Note

the expression of exp(C1) will always cancel. After the first integral, we combine the

constants together into one constant.

APPENDIX A. APPENDIX: FUTURE WORK DERIVATIONS 84

t1,2,3 =
1

D

� R

ra+w

dρ · exp(βU(ρ))

ρ
·

[� ra

rn

dσ · σ · exp(−βU(σ))+

� ra+w

ra

dσ · σ · exp(−βU(σ)) +

� ρ

ra+w

dσ · σ · exp(−βU(σ))

]

=
1

D

� R

ra+w

dρ ·
exp(C1 − v

D
· w)

ρ
·

[� ra

rn

dσ · σ · exp(−C1)+

� ra+w

ra

dσ · σ · exp(−C1 +
v

D
(σ − ra))+

� ρ

ra+w

dσ · σ · exp(−C1 +
v

D
· w)

]

=
1

D

� R

ra+w

dρ ·
exp(− v

D
· w)

ρ
·

[� ra

rn

dσ · σ+

� ra+w

ra

dσ · σ · exp(v
D
(σ − ra)) +

� ρ

ra+w

dσ · σ · exp(v
D

· w)

]

=
1

D

� R

ra+w

dρ ·
exp(− v

D
· w)

ρ
·

[
1

2
(r2a − r2n)+

D

v

[
exp(

v

D
· w) ·

(
ra + w − D

v

)
+

(
D

v
− ra

)]
+

exp(
v

D
· w) ·

(
1

2
(ρ2 − (ra + w)2)

)]

=
1

D

� R

ra+w

dρ

[(
XT · 1

ρ

)
+

(
1

2
· ρ
)]

=
1

D

[
XT · ln(ρ) + 1

4
ρ2
] ∣∣∣R

ra+w

=
1

D

[
XT · ln

(
R

ra + w

)
+

1

4

(
R2 − (ra + w)2

)]

whereXT =

[
1
2
exp(− v

D
·w)·(r2a−r2n)+

D
v

[(
ra + w − D

v

)
+exp(− v

D
·w)·

(
D
v
− ra

)]
−

(
1
2
(ra + w)2

)]
is a constant.

APPENDIX A. APPENDIX: FUTURE WORK DERIVATIONS 85

Thus, the third RHS term of equation (A.5) evaluates to,

t1,2,3 =
1

D

[
XT · ln

(
R

ra + w

)
+

1

4

(
R2 − (ra + w)2

)]
(A.8)

A.1.4 Final MFPT Form: Linear Potential

Putting everything together, the solution for equation (A.3) with our potential energy

(A.2) is,

t =
1

2 ·D

[
1

2
·
(
r2a − r2n

)
− r2n · ln

(
ra
rn

)]
+

1

v

[
w − D

v
· ln
(
ra + w

ra

)]

+

 1

D
·
(
1

2
(r2a − r2n) +

D

v
· (D

v
− ra)

)
·
� ra+w

ra

dρ ·

[
exp

(
− v

D
(ρ− ra)

)
ρ

]
+

1

D

[
XT · ln

(
R

ra + w

)
+

1

4

(
R2 − (ra + w)2

)]
(A.9)

whereXT =

[
1
2
exp(− v

D
·w)·(r2a−r2n)+

D
v

[(
ra + w − D

v

)
+exp(− v

D
·w)·

(
D
v
− ra

)]
−

(
1
2
(ra + w)2

)]
is a constant.

MFPT Diffusion only

If we consider no filaments in our system, we get pure diffusion. The only term that

matters is then equation (A.6) but from rn to R. Therefore, the MFPT in pure

diffusion is,

t =
1

2 ·D

[
1

2
·
(
R2 − r2n

)
− r2n · ln

(
R

rn

)]
(A.10)

APPENDIX A. APPENDIX: FUTURE WORK DERIVATIONS 86

A.1.5 MFPT, Linear Potential: Velocity Rate of Change

For numerical purposes, we write the first derivative of equation (A.9) with respect

to velocity.

dt

dv
=

1

v2
·

[
2 · D

v
· ln
(
ra + w

ra

)
− w

]

−

 w

D2
·
(
1

2
(r2a − r2n) +

D

v
· (D

v
− ra)

)
·
� ra+w

ra

dρ ·

[
exp

(
− v

D
(ρ− ra)

)
ρ

]
+

1

v2
·
(
ra − 2 · D

v

)
·
� ra+w

ra

dρ ·

[
exp

(
− v

D
(ρ− ra)

)
ρ

]

+
1

D
· ln
(

R

ra + w

)
·

[
−w

2 ·D
·
(
r2a − r2n

)
· exp

(
− v

D
· w
)]

+ ln

(
R

ra + w

)
·

[
1

v2
·
(
2 · D

v
− (ra + w)

)]

+ ln

(
R

ra + w

)
·

1
v
· exp

(
− v

D
· w
)
·

(
1

v
·
(
ra − 2 · D

v

)
+

ra · w
D

− w

v

)
(A.11)

Appendix B

Appendix: Computer Programs

Used

B.1 Introduction

In this work, the first projects simulation, numerical calculations and analysis were

executed in MATLAB; whereas in the second project the simulations were executed

using C and all resulting data was analyzed using Python. Here, we show the pro-

grams used to conduct the different research projects. The full code of simulation

and analysis can be found on github, click (Imtiaz Ali Dissertation Code). If the

link does not work, the website url is:

� https://github.com/imtiaza20/Imtiaz Ali Dissertation Code.git

B.2 Lévy Walks in Curved Space Programs

B.2.1 LWALK IA SPHERE MAIN DATA.m

This program simulates the Lévy random walk motion in Spherical Space.

% Imtiaz Ali , Physics Graduate Student , Univeristy Of

California , Merced

% Description: Levy walk on a surface of sphere using the

method of quaternion. Walks are

87

https://github.com/imtiaza20/Imtiaz_Ali_Dissertation_Code.git

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 88

% discrete step -lengths.

% ###

% ###

% To perform a random walk on the sphere , we need to apply the

following steps:

% This is done for each step/levy walk

% 1. -> Need to compute the normalized vector to rotate about.

% 2. -> From our initial position , we pick so Theta and Phi

angle to compute (x2,y2,z2)

% 3. -> Apply cross product to get vector to rotate about.

% 4. -> Normalize this new vector to get our random axis of

rotation.

% -> Note: We cannot pick a normalized vector at random

% -> (e.g, vec_n = [rand ,rand ,rand]), this will cause

issues.

% 5. -> Pick central angle sig = S/R

% 6. -> Apply Quaternion methods , (x’,y’,z’) = q(x,y,z)q^-1 =>

q*q^-1 = 1

% -> Note: q = (cos(sigma /2),sin(sigma /2)*V),

% -> V = RANDOM UNIT VECTOR sigma = S/R -> S = 1 (geodesic

length)

% -> Note: q^-1 = (cos(sigma /2) ,-sin(sigma /2)*V), (inverse

of the quaternion)

% 7. -> This is our new updated position on the sphere.

% -> NOTE:

% -> If initial zenith angle is pi/2. We are performing a

walk on the meridian.

% -> If initial zenith angle is 0 and new random z-angle

is 0.

% -> We are performing a walk on the equator.

% -> Max distance allowed is S < R*pi, => 0 < central

angle < pi

% ###

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 89

% Quaternion equations:

% -> qL = -sin(sig/2)*(vr_hat (1)*x + vr_hat (2)*y + vr_hat (3)*z

);

% -> qM = cos(sig/2)*x + sin(sig/2)*(vr_hat (2)*z - vr_hat (3)*y

);

% -> qN = cos(sig/2)*y + sin(sig/2)*(vr_hat (3)*x - vr_hat (1)*z

);

% -> qP = cos(sig/2)*z + sin(sig/2)*(vr_hat (1)*y - vr_hat (2)*x

);

%

% % Update position on sphere -> Apply Quaternion method

% -> x’ = cos(sig/2)*qM + sin(sig/2)*(vr_hat (2)*qP - vr_hat (1)

*qL - vr_hat (3)*qN);

% -> y’ = cos(sig/2)*qN + sin(sig/2)*(vr_hat (3)*qM - vr_hat (1)

*qP - vr_hat (2)*qL);

% -> z’ = cos(sig/2)*qP + sin(sig/2)*(vr_hat (1)*qN - vr_hat (2)

*qM - vr_hat (3)*qL);

% ###

% ###

%%%

%%%

%%%

% tic

close all

clear

% SIMULATION PARAMETERS

samples = 1; % TOTAL NUMBER OF RUNS

rng(’shuffle ’); % CHANGE WHAT RAND SAMPLES

epsi_1 = 1e-6; % MACHINE PRECISION

epsi_2 = eps (0); % OR 0, LIMIT FOR SMALLEST PROBABILITY SO WE

GET S_MAX

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 90

% DYNAMICS PARAMETERS

R = 100; % SPHERE RADIUS

L = 1; % INCREMENTAL STEP -LENGTH -> LEVY STEP -LENGTH -> DO NOT

REMOVE

vel_walk = L; % LEVY WALK VELOCITY

mu = 3.4; % LEVY \ MU

tmax = 100; % MAX NUMBER OF DISCRETE LEVY WALKS

S_MIN = 1; % MINIMUM GEODESIC DISTANCE

b = 1; % HIGHEST PROBABILITY VALUE

a = epsi_2; % SET SMALLEST NUMBER TO BARLEY HITTING MACHINE

PRECISION 1e-3 = 0.001

S_MAX = floor(R*2*pi); % MAX GEODESIC VALUE ROUNDED UP -> S TO

S_MAX

FOR_EX = 0; % EXIT WHILE LOOP PARAMETER FOR LEVY WALK

% MAKE RAND RESTRICTION SO WE DONT SAMPLE CLOSE TO ZERO BUT IT

CANT BE TO SMALL EITHER

% GENERATE RNG IN SPECIFIC INTERVAL

% -> [a,b] = [0.01 ,1] -> rand_vec = (b-a).*rand (1000 ,1) + a ->

GET 1000 VALUES

rand_vec = (b - a).*rand (100000 ,1) + a;

SZE = size(rand_vec ,1);

% ###

% ###

% TOTAL RUN SETUP

% -> cell(mu(n),samples) = zeros (1,1)

[mfpt_totalrun_SPH {1: size(mu ,1) ,1:samples }] = deal(zeros (1,1))

;

% SEARCHER INITIALIZATION AND DATA -> ALWAYS HAS tmax + 1 ROWS

:

% -> cell(mu(n),samples) = zeros(time -step ,1)

[x_SPH_d_totalrun {1: size(mu ,1) ,1:samples }] = deal(zeros (1,1));

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 91

[y_SPH_d_totalrun {1: size(mu ,1) ,1:samples }] = deal(zeros (1,1));

[z_SPH_d_totalrun {1: size(mu ,1) ,1:samples }] = deal(zeros (1,1));

[d_S_B3 {1: size(mu ,1) ,1:samples }] = deal(zeros (1,1));

%%%

%%%

% disp(’START MAIN DATA LOOP ’);

% tic

for m = 1: samples % START ITERATION OVER ALL SAMPLES/RUNS

% USE THIS PARAMETER AS OUR NUMBER OF TIME STEPS/INCREMETS

mfpt = 0; % TIME -STEP INIALIZE TO ZERO , ACCEPTED UNTIL MAX

TIME IS REACHED

FOR_EX = 0; % EXIT WHILE LOOP PARAMETER FOR LEVY WALK

% ###

% INITIALIZE POSITION OF SEARCHER RANDOMLY

% SPHERICAL

phi_d_1 = rand *(2*pi); % Azimuthal

theta_d_1 = rand *(2*pi); % Zenith

x_SPH_d_1 = R*cos(theta_d_1)*cos(phi_d_1);

y_SPH_d_1 = R*cos(theta_d_1)*sin(phi_d_1);

z_SPH_d_1 = R*sin(theta_d_1);

% INITIAL POSITION , NOT USED TO MODIFY , USED TO SET

INITIAL OVERALL

xtmp_SPH_d_1 = x_SPH_d_1;

ytmp_SPH_d_1 = y_SPH_d_1;

ztmp_SPH_d_1 = z_SPH_d_1;

% INTIAL POSITION , WILL USE TO UPDATE STEP AS SEARCH GOES

xtmp1_SPH_d = x_SPH_d_1;

ytmp1_SPH_d = y_SPH_d_1;

ztmp1_SPH_d = z_SPH_d_1;

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 92

% ###

% RECORD INITIAL STEP LOCATION ONLY -> ROW = TIME , COLUMN

= COORDINATE VALUE

% ALWAYS HAS tmax + 1 ROWS:

x_SPH_d_totalrun {1,m}(mfpt +1,1) = xtmp_SPH_d_1;

y_SPH_d_totalrun {1,m}(mfpt +1,1) = ytmp_SPH_d_1;

z_SPH_d_totalrun {1,m}(mfpt +1,1) = ztmp_SPH_d_1;

% ###

% ###

while (mfpt < tmax) % START ITERATION OVER ALL TIME -

STEPS

% LEVY WALK -> BREAK f1 INTO INCREMENTS

% MAKE TOTAL LEVY WALK

rand_used = rand_vec(randi ([2,SZE],1) ,1); % PROB OF

RANDOM LEVY STEP ds_half

f1 = floor (((S_MAX)^(1-mu) + ((rand_used -a)/(b-a))*...

((S_MIN)^(1-mu)-(S_MAX)^(1-mu)))^(1/(1 -mu))); % LEVY

FLIGHT LENGTH -> CDF S TO S_MAX

ds_SPH_temp2 (1,1) = f1; % GREATER THAN S_1

ds_SPH_temp2 (2,1) = -f1; % LESS THAN S_1

Qr_ds = randi ([1 ,2]);

ds_SPH = ds_SPH_temp2(Qr_ds ,1); % LEVY GEODESIC LENGTH

if ds_SPH >= (tmax - mfpt)

ds_SPH_temp2 (1,1) = (tmax - mfpt); % GREATER THAN

S_1

ds_SPH_temp2 (2,1) = -(tmax - mfpt); % LESS THAN

S_1

Qr_ds = 1; % randi ([1 ,2]);

ds_SPH = ds_SPH_temp2(Qr_ds ,1);

end

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 93

% EXCUDE INITIAL ds_SPH_temp_MAIN_VEC POINT

% -> NO DOUBLE COUNTING OF INITIAL POSITION -> 1 TO

ds_SPH_temp1

T_REQ = floor(abs(ds_SPH)/vel_walk); % REQUIRED TIME

TO DO FULL LEVY FLIGHT

S_MIN_2 = L; % KEEP PROPER ITERATION FROM SIGN OF

ds_SPH

if ds_SPH < 0

S_MIN_2 = -L;

end

% MAKE CONDITIONAL SO WE DON ’T EXCEED TMAX STEPS

% SIZE OF VECTOR NEEDS TO BE tmax - mfpt

if T_REQ >= (tmax - mfpt)

S_MIN_2 = L;

T_REQ = tmax - mfpt; % REQUIRED TIME TO DO FULL

LEVY FLIGHT

ds_SPH = T_REQ*vel_walk; % NEW DISCRETE GEODESIC

LENGTH

end

% COMPUTE NORMALIZED VECTOR TO ROTATE ABOUT -> THIS

METHOD IS ISOTROPIC !!

phi2 = rand *(2*pi); % AZIMUTHA , 0 < PHI < 2*PI

theta2 = rand*(pi); % ZENITH ANGLE , -PI/2 < THTA < PI

/2

x2 = R*cos(theta2)*cos(phi2);

y2 = R*cos(theta2)*sin(phi2);

z2 = R*sin(theta2);

% MAKE UNIT VECTOR FOR AXIS OF ROTATION

vr = [(y_SPH_d_totalrun {1,m}(mfpt +1,1)*z2 -

z_SPH_d_totalrun {1,m}(mfpt +1,1)*y2) ,...

(z_SPH_d_totalrun {1,m}(mfpt +1,1)*x2 -

x_SPH_d_totalrun {1,m}(mfpt +1,1)*z2) ,...

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 94

(x_SPH_d_totalrun {1,m}(mfpt +1,1)*y2 -

y_SPH_d_totalrun {1,m}(mfpt +1,1)*x2)];

vr_hat = (1/ sqrt(vr(1)^2 + vr(2)^2 + vr(3) ^2))*vr;

% MAKE DISCRETE LEVY WALKS

deltaT = T_REQ; % NUMBER OF DISCRETE LEVY WALKS

% APPLY LEVY WALK

for i = 1: deltaT % START INCREMENT OVER ALL DISCRETE

LEVY WALK

% CENTRAL ANGLE: NEGATIVE IS A CLOCKWISE TURN ,

POSITIVE IS A COUNTER -CLOCKWISE TURN

sig = (S_MIN_2/R); % MAX DISTANCE S < R*PI , -> 0 <

CENTRAL ANGLE < PI

% APPLY QUATERNION METHOD

% COMPUTE q*u = Q = [qL,qM,qN,qP] (COMPLEX

MULTIPULCATION)

qL = -sin(sig /2)*(vr_hat (1)*x_SPH_d_totalrun {1,m}(

mfpt +1,1)...

+ vr_hat (2)*y_SPH_d_totalrun {1,m}(mfpt +1,1) +

vr_hat (3)*z_SPH_d_totalrun {1,m}(mfpt +1,1));

qM = cos(sig /2)*x_SPH_d_totalrun {1,m}(mfpt +1,1) +

sin(sig /2) ...

*(vr_hat (2)*z_SPH_d_totalrun {1,m}(mfpt +1,1) -

vr_hat (3)*y_SPH_d_totalrun {1,m}(mfpt +1,1));

qN = cos(sig /2)*y_SPH_d_totalrun {1,m}(mfpt +1,1) +

sin(sig /2) ...

*(vr_hat (3)*x_SPH_d_totalrun {1,m}(mfpt +1,1) -

vr_hat (1)*z_SPH_d_totalrun {1,m}(mfpt +1,1));

qP = cos(sig /2)*z_SPH_d_totalrun {1,m}(mfpt +1,1) +

sin(sig /2) ...

*(vr_hat (1)*y_SPH_d_totalrun {1,m}(mfpt +1,1) -

vr_hat (2)*x_SPH_d_totalrun {1,m}(mfpt +1,1));

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 95

% NEXT DISCRETE LEVY WALK POSITION -> UPDATE

POSITION ON SPHER

% COMPUTE q*u*q^-1 = Q*q^-1 = [garbage ,x’,y’,z’] (

COMPLEX MULTIPULCATION)

x_SPH_d_1 = cos(sig/2)*qM + sin(sig/2)*(vr_hat (2)*qP

- vr_hat (1)*qL - vr_hat (3)*qN);

y_SPH_d_1 = cos(sig/2)*qN + sin(sig/2)*(vr_hat (3)*qM

- vr_hat (1)*qP - vr_hat (2)*qL);

z_SPH_d_1 = cos(sig/2)*qP + sin(sig/2)*(vr_hat (1)*qN

- vr_hat (2)*qM - vr_hat (3)*qL);

% ###

% ###

% SET TEMPORARY INITAL POSITION

xt_SPH_d_1 (1,1) = xtmp1_SPH_d; % MAKE TEMP INITIALS

CORRECTION

yt_SPH_d_1 (1,1) = ytmp1_SPH_d;

zt_SPH_d_1 (1,1) = ztmp1_SPH_d;

% SET TEMPORARY NEXT POSITION

xt_SPH_d_1 (1,2) = x_SPH_d_1;

yt_SPH_d_1 (1,2) = y_SPH_d_1;

zt_SPH_d_1 (1,2) = z_SPH_d_1;

% MOVE TO NEXT STEP

mfpt = mfpt + 1;

% MODIFY NEW INITIAL POSITION FOR NEXT STEP

xtmp1_SPH_d = x_SPH_d_1;

ytmp1_SPH_d = y_SPH_d_1;

ztmp1_SPH_d = z_SPH_d_1;

% ###

% ###

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 96

% RECORD EACH STEP LOCATION AFTER INITIAL STEP TO

FINAL STEP

% ALWAYS HAS tmax + 1 ROWS:

x_SPH_d_totalrun {1,m}(mfpt +1,1) = x_SPH_d_1;

y_SPH_d_totalrun {1,m}(mfpt +1,1) = y_SPH_d_1;

z_SPH_d_totalrun {1,m}(mfpt +1,1) = z_SPH_d_1;

% TESTING DISTANCE BETWEEN POINT mfpt and mfpt + 1

% -> DONT NEED THIS FOR PRODUCTION RUN (USE THIS

WHEN COMPUTING MSD)

d_S_B3{1,m}(mfpt ,1) = 2*R*asin(sqrt (...

(x_SPH_d_totalrun {1,m}(mfpt +1,1)-x_SPH_d_totalrun

{1,m}(mfpt ,1))^2 +...

(y_SPH_d_totalrun {1,m}(mfpt +1,1) -

y_SPH_d_totalrun {1,m}(mfpt ,1))^2 +...

(z_SPH_d_totalrun {1,m}(mfpt +1,1) -

z_SPH_d_totalrun {1,m}(mfpt ,1))^2) /(2*R));

% ###

% ###

% END SIMULATION IF MAX TIME IS REACHED

if (mfpt == tmax) % PLOT TRAJECTORIES UNTIL TMAX IS

REACHED

FOR_EX = 1;

mfpt_totalrun_SPH {1,m}(1 ,1) = mfpt; % SAVE FINAL

TOTAL TIME

break; % TERMINATE FOR LOOP

end

% ###

end % END INCREMENT OVER ALL DISCRETE LEVY WALK

if FOR_EX == 1

break; % TERMINATE WHILE LOOP

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 97

end

end % END ITERATION OVER ALL TIME -STEPS

end % END ITERATION OVER ALL SAMPLES

%%%

%%%

% disp(’END MAIN DATA LOOP ’);

% toc

% CONSTRUCT DATA STRUCTURE TO SAVE

DATA1_SPH_MULTIRUN_MAIN = struct(’samples ’,{samples},’R’,{R},’

mu ’,{mu},’vel_walk ’,...

{vel_walk},’mfpt_totalrun_SPH ’,{ mfpt_totalrun_SPH},’

x_SPH_d_totalrun ’,...

{x_SPH_d_totalrun},’y_SPH_d_totalrun ’,{ y_SPH_d_totalrun },...

’z_SPH_d_totalrun ’,{ z_SPH_d_totalrun });

save([’ LW_DATA1_SPH_MULTIRUN_MAIN ’,strcat(’_MU ’,num2str(mu)),’

V2 ’,...

strcat(num2str(tmax /1000) ,’k_ ’,num2str(samples),’s’,strcat(’

_R’,num2str(R))) ,...

’.mat ’],’DATA1_SPH_MULTIRUN_MAIN ’,’-v7.3’)

% ###

% % Plot Sphere of radius R and the geodesic path

% % Make Sphere and rescale to radius R

% [X,Y,Z] = sphere;

% xr = R*X;

% yr = R*Y;

% zr = R*Z;

%

% % Plot

% figure(’color ’, ’white ’,’units ’,’normalized ’,’outerposition

’,[0 0 1 1]); % MAKES IT FULL SCREEN

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 98

% surf(xr ,yr ,zr ,’FaceColor ’,’k’,’EdgeColor ’,’k’,’LineStyle

’,’:’,’FaceAlpha ’ ,0.01);

% hold on

% plot3(x_SPH_d_totalrun {1,1}, y_SPH_d_totalrun {1 ,1} ,...

% z_SPH_d_totalrun {1,1},’Color ’,’b’,’LineWidth ’,2); %

Euclidean Distance Plot

% xlabel(’X’, ’FontSize ’, 20);

% ylabel(’Y’, ’FontSize ’, 20);

% zlabel(’Z’, ’FontSize ’, 20);

% axis equal;

% axis off

% grid off;

%%%

%%%

%%%

% toc

B.2.2 LWALK IA SPHERE MAIN DATA MSD.m

This program computes MSD for the Lévy random walk motion in Spherical Space.

% Imtiaz Ali , Physics Graduate Student , Univeristy Of

California , Merced

% Description: Computes geodesic and MSD for Levy walk on

surface of sphere

% using the method of quaternion. Sliding window

method is

% applied to compute the ensemble -average of time

-average MSD

% ###

% ###

% Spherical Geodesic Equation:

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 99

% ds = 2*R*arcsin(sqrt(dx^2+dy^2+dz^2) /(2*R))

% ###

% ###

%%%

%%%

%%%

% tic

close all

clear

% LOAD TESTING DATA SET

load(’LW_DATA1_SPH_MULTIRUN_MAIN_MU3 .4 _V2_1k_100s_R100.mat ’);

samples = DATA1_SPH_MULTIRUN_MAIN.samples;

R = DATA1_SPH_MULTIRUN_MAIN.R;

mu = DATA1_SPH_MULTIRUN_MAIN.mu;

vel_walk = DATA1_SPH_MULTIRUN_MAIN.vel_walk;

mfpt_totalrun_SPH = DATA1_SPH_MULTIRUN_MAIN.mfpt_totalrun_SPH;

x_SPH_d_totalrun = DATA1_SPH_MULTIRUN_MAIN.x_SPH_d_totalrun;

y_SPH_d_totalrun = DATA1_SPH_MULTIRUN_MAIN.y_SPH_d_totalrun;

z_SPH_d_totalrun = DATA1_SPH_MULTIRUN_MAIN.z_SPH_d_totalrun;

% ###

% ###

% TIME -AVERAGING

% INITIALIZE CELLS

% MSD FOR ALL SAMPLES -> {1,sample #}(time -step ,[MEAN ,

VARIANCE , STD , STEPS])

MSD_SPH_MULTI = cell(1,samples);

% MEAN FOR ALL SAMPLES -> {1,sample #}(time -step ,[MEAN ,

VARIANCE , STD , STEPS])

MEAN_SPH_MULTI = cell(1,samples);

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 100

for m = 1: samples % START ITERATION OVER ALL SAMPLES

% SET INITIALIZATION

% DATA AS MATRIX (tmax +1,3)

DATA_SPH = [x_SPH_d_totalrun {1,m},y_SPH_d_totalrun {1,m},

z_SPH_d_totalrun {1,m}];

% NUMBER OF DATA POINTS

num_data_SPH = size(DATA_SPH ,1);

% NUMBER OF TIME -STEPS/DELTA_T VALUES (TMAX)

delta_T_SPH = floor(num_data_SPH - 1);

% [MEAN , VARIANCE , STD , STEPS] -> SQUARED DISTANCE DATA

MSD_SPH_MULTI {1,m} = zeros(delta_T_SPH ,4);

% [MEAN , VARIANCE , STD , STEPS] -> DISTANCE DATA

MEAN_SPH_MULTI {1,m} = zeros(delta_T_SPH ,4);

% CALCULATE MSD FOR ALL DELTA_T ’s

for dt = 1: delta_T_SPH % START ITERATION OVER ALL DELTA_T ’s

% START DISTANCE EQUATION -> TMAX ROWS , 3 COLUMNS

% -> COLM1 = dx , COLM2 = dy , COLM3 = dz

d_COORDS_SPH = DATA_SPH (1+dt:end ,1:2) - DATA_SPH (1:end -dt

,1:2);

% DISTANCE -> COLUMN VECTOR

% ds^2 = (2*R*asin(sqrt(dx^2+dy^2+dz^2)/(2*R)))^2, 1

COLM , SUM OF EACH ROW

SPH_disp = 2*R*asin((sqrt(sum(d_COORDS_SPH .^2,2))/(2*R)));

% DISTANCE SQUARED -> COLUMN VECTOR

SPH_sqrd_disp = SPH_disp .^2;

% SQUARED DISTANCE

MSD_SPH_MULTI {1,m}(dt ,1) = mean(SPH_sqrd_disp); % AVERAGE

MSD_SPH_MULTI {1,m}(dt ,2) = var(SPH_sqrd_disp ,1); %

VARIANCE

MSD_SPH_MULTI {1,m}(dt ,3) = std(SPH_sqrd_disp ,1); %

STANDARD DEVIATION

MSD_SPH_MULTI {1,m}(dt ,4) = length(SPH_sqrd_disp); % NUMBER

OF STEPS

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 101

% DISTANCE

MEAN_SPH_MULTI {1,m}(dt ,1) = mean(SPH_disp); % AVERAGE

MEAN_SPH_MULTI {1,m}(dt ,2) = var(SPH_disp ,1); % VARIANCE

MEAN_SPH_MULTI {1,m}(dt ,3) = std(SPH_disp ,1); % STANDARD

DEVIATION

MEAN_SPH_MULTI {1,m}(dt ,4) = length(SPH_disp); % NUMBER OF

STEPS

end % END ITERATION OVER ALL DELTA_T ’s

end % END ITERATION OVER ALL SAMPLES

% SAVE TIME -AVERAGED MSD

% (VERY LARGE FILE , DON ’T NEED IT FOR ANYTHING ELSE EXCEPT FOR

ENSEMBLE AVERAGE)

DATA2_SPH_MULTIRUN_MAIN = struct(’samples ’,{samples},’R’,{R},’

mu ’,{mu},...

’mfpt_totalrun_SPH ’,{ mfpt_totalrun_SPH },...

’MSD_SPH_MULTI ’,{ MSD_SPH_MULTI},’MEAN_SPH_MULTI ’,{

MEAN_SPH_MULTI });

save([’ LW_DATA2_SPH_MULTIRUN_MAIN ’,strcat(’_MU ’,num2str(mu)),’

V2 ’,...

strcat(num2str(mfpt_totalrun_SPH {1 ,1}/1000) ,’k_ ’,num2str(

samples) ,...

’s’,strcat(’_R ’,num2str(R))),’.mat ’],’

DATA2_SPH_MULTIRUN_MAIN ’,’-v7.3’);

% ###

% ###

% ENSEMBLE AVERAGE OF TIME -AVERAGED

max_time_SPH = max([mfpt_totalrun_SPH {1 ,:}]);

% MSD OF ENTIRE RUNS -> (time -step ,[MEAN , VARIANCE , STD , STEPS

])

MSD_SPH_MULTI_AVG = zeros(max_time_SPH ,4);

% MEAN OF ENTIRE RUNS -> (time -step ,[MEAN , VARIANCE , STD ,

STEPS])

MEAN_SPH_MULTI_AVG = zeros(max_time_SPH ,4);

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 102

for i = 1: max_time_SPH % START ITERATION OVER ALL TIME -STEPS

% SPHERICAL ALL SAMPLES AVERAGED

idx_SPH = ~cellfun(’isempty ’,MSD_SPH_MULTI); % ONLY INCLUDE

ELEMENT WITH VALUES

SPH_MSD_ALL_SAMPLES = cellfun(@(v)v(i),MSD_SPH_MULTI(idx_SPH

));

% REMOVE ALL NAN ’S FROM VECTOR

SPH_MSD_ALL_SAMPLES = SPH_MSD_ALL_SAMPLES (~ isnan(

SPH_MSD_ALL_SAMPLES));

idx_SPH_MEAN = ~cellfun(’isempty ’,MEAN_SPH_MULTI); % ONLY

INCLUDE ELEMENT WITH VALUES

SPH_MEAN_ALL_SAMPLES = cellfun(@(v)v(i),MEAN_SPH_MULTI(

idx_SPH_MEAN));

% REMOVE ALL NAN ’S FROM VECTOR

SPH_MEAN_ALL_SAMPLES = SPH_MEAN_ALL_SAMPLES (~ isnan(

SPH_MEAN_ALL_SAMPLES));

% SQUARED DISTANCE AVG

MSD_SPH_MULTI_AVG(i,1) = mean(SPH_MSD_ALL_SAMPLES); %

AVERAGE

MSD_SPH_MULTI_AVG(i,2) = var(SPH_MSD_ALL_SAMPLES ,1); %

VARIANCE

MSD_SPH_MULTI_AVG(i,3) = std(SPH_MSD_ALL_SAMPLES ,1); %

STANDARD DEVIATION

MSD_SPH_MULTI_AVG(i,4) = max_time_SPH + 1 - i; % NUMBER OF

STEPS

% DISTANCE AVG

MEAN_SPH_MULTI_AVG(i,1) = mean(SPH_MEAN_ALL_SAMPLES); %

AVERAGE

MEAN_SPH_MULTI_AVG(i,2) = var(SPH_MEAN_ALL_SAMPLES ,1); %

VARIANCE

MEAN_SPH_MULTI_AVG(i,3) = std(SPH_MEAN_ALL_SAMPLES ,1); %

STANDARD DEVIATION

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 103

MEAN_SPH_MULTI_AVG(i,4) = max_time_SPH + 1 - i; % NUMBER OF

STEPS

end % END ITERATION OVER ALL TIME -STEPS

% SAVE ENSEMBLE AVERAGE OF TIME -AVERAGED MSD

DATA3_SPH_MULTIRUN_MAIN = struct(’samples ’,{samples},’R’,{R},’

mu ’,{mu},...

’mfpt_totalrun_SPH ’,{ mfpt_totalrun_SPH },...

’MSD_SPH_MULTI_AVG ’,{ MSD_SPH_MULTI_AVG},’MEAN_SPH_MULTI_AVG

’,{ MEAN_SPH_MULTI_AVG });

save([’ LW_DATA3_SPH_MULTIRUN_MAIN ’,strcat(’_MU ’,num2str(mu)),’

V2 ’,...

strcat(num2str(mfpt_totalrun_SPH {1 ,1}/1000) ,’k_ ’,...

num2str(samples),’s’,strcat(’_R ’,num2str(R))),’.mat ’],’

DATA3_SPH_MULTIRUN_MAIN ’,’-v7.3’);

%%%

%%%

%%%

% toc

B.3 Intracellular Transport on Dynamic Actin Net-

works Programs

B.3.1 simTransMainMSD FPTD IA ADV V1 Dynamic.c

This is the main program and is used to simulate anomalous transport with dynamic

filament networks. It produces files to perform MSD and MFPT analysis.

// simTransMainMSD_FPTD_IA_ADV_V1_Dynamic.c: Imtiaz Ali UC

MERCED

// Description: A program that does anomalous RW of cargo on a

network of microtubules that can shrink or grow.

// It calculates MSD , MFPT , FPTD and FLUX

// Compiler: GCC 8.1

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 104

// Last modified: 05/05/2021

// How to run: gcc simTransMainMSD_FPTD_IA_ADV_V1_Dynamic.c

Net_Setup.c Net_Distances_MINMAX.c Net_Shrink_Grow.c

// -Ofast -o test1 -lm -std=c99 -m64

#include <stdio.h> // NULL

#include <math.h> // fabs(), -> Need std=c99 compiler for [

isnan(), isinf ()]

#include <time.h> // time()

#include <stdlib.h> // rand(), RAND_MAX max value returned by

rand(), srand ()

#include <string.h>

// Include function headers for simulation

#include "Net_Setup.h"

#include "Net_Distances_MINMAX.h"

#include "Net_Shrink_Grow.h"

#define M_PI 3.14159265358979323846

// (Eukaryotic cells are 10’s of microns), (Bacteria cells are

about 1 micron), (Plant cells are 100’s of microns)

// Data for MT and Actin gathered from:

// 1. (Craig , E. M. (2018). Model for coordination of

microtubule and actin dynamics in growth cone turning.

Frontiers in cellular neuroscience , 12, 394.)

// 2. (Burnette , D. T., Schaefer , A. W., Ji , L., Danuser , G.,

& Forscher , P. (2007). Filopodial actin bundles are not

necessary for microtubule advance into the peripheral

domain of Aplysia neuronal growth cones. Nature cell

biology , 9(12), 1360.)

// 3. (Mitchison , T., & Kirschner , M. (1988). Cytoskeletal

dynamics and nerve growth. Neuron , 1(9), 761 -772.)

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 105

// 4. (Sarkar , Apurba , Heiko Rieger , and Raja Paul. "Search

and capture efficiency of dynamic microtubules for

centrosome relocation during IS formation ." Biophysical

journal 116.11 (2019): 2079 -2091.)

float DT = 1.0; // Global filament time -step [seconds] -> The

same for all particles and filaments

#define V_G_MT 0.0 // (2.) Microtubule Growth Rate [microns/

sec] 0.1 ->

#define V_S_MT 0.0 // (2.) Microtubule Shrink Rate [microns/

sec] 0.16 ->

#define V_G_ACTIN 0.60 // (3.) Actin Growth Rate [microns/sec]

0.083 ->

#define V_S_ACTIN 0.60 // (3.) Actin Shrink Rate [microns/sec]

0.233 ->

#define f_MT_Res 0.0 // (2.) Microtubule Rescue Frequency [1/

seconds] 0.0298 -> Change to 0 for no Rescue

#define f_MT_Cat 0.0 // (2.) Microtubule Catastrophy Frequency

[1/ seconds] 0.0102 -> Change to 0 for no Catastrophy

#define f_MT_PAUSE 0.00 // Microtubule Pause Frequency [1/

seconds] -> Change to >= 1/DT for static network

#define f_ACTIN_Res 0.0 // (2.) ACTIN Rescue Frequency [1/

seconds] 0.0298 -> Change to 0 for no Rescue

#define f_ACTIN_Cat 0.0 // (2.) ACTIN Catastrophy Frequency

[1/ seconds] 0.0102 -> Change to 0 for no Catastrophy

#define f_ACTIN_PAUSE_BEG 0.0 // Actin Pause Frequency

Beginning Side [1/ seconds] -> Change to >= 1/DT for static

network

#define f_ACTIN_PAUSE_END 0.0 // Actin Pause Frequency Ending

Side [1/ seconds] -> Change to >= 1/DT for static network

// Actin -f molecular weight = 536 g/mol

int main() {

// Start system total run time calculation

double t1 = clock ();

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 106

// Set cell and system variables

float outer = 15.0; // Radius of cell (OUTER) (um) ->

Originally 10.0 -> MUST BE LARGER THAN INNER -> outer *2 =

diameter

float inner = 5.0; // Radius of nucleus (INNER) (um) =

microns

int timeIntMax = 500; // Max timesteps -> Originally 20000

int t_lag = 0; // Number of time step until filament reaches

steady -state for cargo to start moving

int numCargs = 1; // Number of cargos -> Originally 10000

int numNets = 1; // Number of networks

srand(time(NULL)); // Seed , seconds since Jan 01 1970

int production_run = 0; // Save production run data -> False

= 0. True = 1

// Cargo

// Max x and y values -> Same coordinate system as

probability evolution system

float xmax = (outer * 2) + 1, ymax = (outer * 2) + 1; // (um)

float xCellCent = xmax / 2, yCellCent = ymax / 2; // Center

of cell (um)

float cRad = 0.1; // Cargo radius (um)

float D = 0.051; // Diffusion constant -> (um)^2/s

float v = 1.0; // Cargo ballistic speed -> (um/s) ->

Kinesin_v = 0.1 to 0.8 (um/s), Myosin_v = 0.2 to 0.5 (um/s

)

float distStep = 0.1; // Diffusion distance (um)

float distStep_2 = distStep; // Cargo step length on filament

-> (um) -> Distance step size (will vary) -> Originally

0.1

float dtReg = (pow(distStep ,2) /(4*D)); // Normal diffusion

time -> 0.049 seconds -> rescale to this value

float dtBal = (distStep_2/v); // Ballistic motion time -> 0.1

seconds

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 107

float probOn , probOff; // Randomly pick if cargo attached/

detached to/from filament

// Cargo On and Off rates -> For cargo falling OFF while on

filament or cargo attaching ON while off filament

float kOn = 5.00, kOff = 0.5, kOn_2 , kOff_2; // kOn

originally 5.0, kOff originally 0.0 [1/ seconds]

float switchProb , switchProb_2; // Used in simulation (for

loop)

float switchProbmin = 0.00; // Cargo min filament switching

probability

float switchProbmax = 1.00; // Cargo max filament switching

probability

float switchProb_V [] = {switchProbmin }; //{ switchProbmin

,0.10 ,0.20 ,0.30 ,0.40 ,0.50 ,0.60 ,0.70 ,0.80 ,0.90 ,

switchProbmax }; // Cargo swotch prob -> array

size_t sc_V = sizeof(switchProb_V)/sizeof(float); // Array

length -> switchProb_V

float scale_dec = 1000.0; // Used for rounding purposes ->

This numerical issue is not solvable , most you can do is

minimize the error

dtReg = floorf(dtReg*scale_dec)/scale_dec;

// Re -scale ballistic motion time and step length

dtBal = floorf(dtReg*scale_dec)/scale_dec; // Ballistic

motion time is equal to Regular diffusion time

distStep_2 = v*dtBal; // Ballistic motion step length is re-

scaled to equal new time

DT = dtReg; // Re -Initialize global variable to respective

time -step value

float adj_FLAG; // Cargo adjustment flag when attaching or

switching to filament , FALSE = 0, TRUE = 1

// Time and counter used for proper re -scaled time -step

multiplier calculation

float time1f , time2f , t_Carg , t_prev;

int t_count;

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 108

// Network setup

// Set current number of filaments and filament length

int numFils; // Used in simulation (for loop)

int minFils = 15; // Min number of filament in network ->

Originally 100

int maxFils = 100; // Max number of filament in network ->

Originally 1500

float filLength; // Used in simulation (for loop)

float minLength = 5.0; // Min filament length -> Originally

5.0 (um)

float maxLength = 8.0; // Max filament length -> Originally

15.0 (um)

float lenFils_V [] = {minLength }; //{ minLength ,2.0 ,3.0 ,4.0 ,

maxLength }; // Filament lengths in network -> array

int numFils_V [] = {minFils }; // Number of filaments in

network -> array

size_t nf_V = sizeof(numFils_V)/sizeof(int); // Array length

-> numFils_V

size_t lf_V = sizeof(lenFils_V)/sizeof(float); // Array

length -> lenFils_V

// Filament dynamic variables

// Random number , fil polarity and distribution , filament

type and side , motor type and filament growth flag

float rand_m; // Randomly pick if filament will be modified

float rand_SG; // Randomly pick if filament will shrink or

grow

int fil_pol = 0; // Filament polarity -> Negative = -1, RNG =

0, Positive = 1

int fil_radial = 0; // Filament radially distributed -> True

= 1, False = 0

int filament_type = 0; // Filament Type -> Actin = 0,

Microtubule = 1

int Actin_side = -1; // No side = -1, Beginning side = 0,

Ending side = 1

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 109

int motor_type = 1; // Motor Type -> Dynein = 0, Kinesin/

Myosin = 1

int G_true , G_true_2; // Growth boolean -> N/A = -1, False =

0, True = 1

int Treadmill_Actin = 1; // Actin tredmill boolean -> False =

0, True = 1

float cargo_direc = 1.0; // Cargo direction on filament ,

Dynein = -1, Kinesin/Myosin = 1, DEFAULT = 1

if (motor_type == 0) {

cargo_direc = -1.0; // Fix for dynein

}

// Set probability threshold for filament modification and

shrink/grow

// Microtubule

float mod_prob_M_END = f_MT_PAUSE*DT; // Probability to not

modify filament

float sg_prob_M_Cat = 0.0000; // f_MT_Cat*DT; // Probability

to shrink -> sg_prob_M_Cat = CAT_rate * time

float sg_prob_M_Res_V [] = {0.0000}; // f_MT_Res*DT;

Probability to grow -> sg_prob_M_Res = RES_rate * time

float sg_prob_M_Res; // Used in simulation (for loop)

size_t prob_M_Res_V = sizeof(sg_prob_M_Res_V)/sizeof(float);

// Array length -> sg_prob_M_Res_V

// Actin

float mod_prob_A_BEG = f_ACTIN_PAUSE_BEG*DT; // Probability

to not modify Beginning side of filament

float mod_prob_A_END = f_ACTIN_PAUSE_END*DT; // Probability

to not modify Ending side of filament

float sg_prob_A_Cat = sg_prob_M_Cat; // f_ACTIN_Cat*DT; //

Probability to shrink -> sg_prob_A_Cat = CAT_rate * time

float sg_prob_A_Res_V[prob_M_Res_V]; // f_ACTIN_Res*DT;

Probability to grow -> sg_prob_A_Res = RES_rate * time

for (int xxxx = 0; xxxx < prob_M_Res_V; xxxx ++) {

sg_prob_A_Res_V[xxxx] = sg_prob_M_Res_V[xxxx];

}

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 110

float sg_prob_A_Res; // Used in simulation (for loop)

size_t prob_A_Res_V = sizeof(sg_prob_A_Res_V)/sizeof(float);

// Array length -> sg_prob_M_Res_V

float lr_current; // Actin current length

float r1_current , r2_current , r1_min , r2_max; // Used to find

inner and outer filament parts to see if at cell boundary

// Filament min length , max length , Current filament length

float fil_buffer = 0.2; // Buffer region (microns) -> minimum

distance filament needs to be away from boundaries

float min_fil_length = 1.0; // Smallest filament length (

microns) -> Filament never disappears

float max_fil_length = 2*sqrt(pow(outer ,2) - pow(inner ,2));

// Largest filament length (microns) -> (Max Cord Length)

= 2*sqrt(or^2-ir^2)

float Cur_fil_len; // Place holder to check if filament being

modified is within min and max range

// Anomalous or Regular diffusion

int REG = 1; // Choose regular or anomalous diffusion ->

Regular -> REG = 1, Anomalous -> REG = 0

int INS = 0; // Choose to model insulin , True = 1, cargos

have different start distribution , assumes outer = 10.0

and inner = 5.0

float randNum; // For anomalous diffusion rng

int anom_FLAG; // Flag to recalculate anomalous diff dt if

INF or NAN occurs , True=1, False=0

float gamma; // gamma is the alpha in anomalous MSD paper by

Bryan Maelfeyt

if (REG == 1) {

gamma = 1.0; // Normal diffusion

} else {

gamma = 0.8; // Subdiffusive range (0.2 ,0.4 ,0.6 ,0.8 ,1.0)

}

// Declaration of current filament and cargo variables

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 111

float minx1x2 , maxx1x2 , miny1y2 , maxy1y2;

float rc, theta , xc, yc, d1, d2, d;

float initial_x , initial_y , initial_t;

float r1, r2, alpha , p, x1, x2, y1, y2, diff;

float phi , beta;

float xcNew , ycNew , rcNew;

int delT; // Used for storing cargo and network data if max

time is not reached

// Declare time varaibles , counter and iterators

float t, tOn , tOff , dt; // Current cargo total time in

simulation (seconds)

float stepNum_time; // Physical time cargo has left cell

int timeInt , stepNum , stepNum_2; // Time index | Time index

cargo has left cell | Time index for saving cargo data

int currentCargo;

// Flag for cargo OFF , ON network , simulation max time/point

of destination and filament on

int OFF , ON , STOP , STOP_2 , SWITCHED , m, currentm;

float CargoInfo[numCargs*numNets][12]; // Info of each cargo

-> cOFF_front , cOFF_back , ckOFF , ckON , ckON_tot , cSwitch ,

cSwitch_tot , tOn , tOff , t, ckOFF_tot , cOFF_end

float cOFF_front , cOFF_back , ckOFF , ckON , ckON_tot , cSwitch ,

cSwitch_tot , ckOFF_tot , cOFF_end; // # time off front , #

time off back , # kOff , # kOn , # total kOn chance , # switch

, # total switch chance , # total off chance , # off ends

float Cargo_prev_pos [2]; // Cargo previous time position [x,y

]

float Current_Fil_prev_pos [4]; // Current filament cargo is

on , if applicable , positions [x1,x2,y1,y2]

float Current_Cargo_exterior_FLAG; // Cargo FLAG to make sure

current position is outside of filament bounds , False =

0.0, True = 1.0

float Prev_Cargo_exterior_interior_FLAG; // Cargo FLAG to

make sure previous position is inside of filament bounds ,

False = 0.0, True = 1.0

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 112

float epsi_0 = 1e-5; // Difference threshold tolerance

(0.000100)

float Fil_ends_FLAG; // Cargo attachment to filament ends or

perpedicular flag => Ignore = -1.0, Endpoints = 0.0,

Perpendicular = 1.0

float xc_temp , yc_temp; // Current or previous cargo position

to previous filament location

// Used to calculate cargo MSD , average time spent on the

network , variations in MSD at 10s and 100s

float msdArray[timeIntMax][3]; // row = 20000 , col = 3 => [

timestep][0] = Squared Distance , [timestep][1] = counter

for ensemble , [timestep][2] = time [seconds]

float fracTimeOn[numCargs*numNets];

float msd10[numNets], msd100[numNets]; // Array of number of

elements = number of networks

float sd, msdCurrent10 , msdCurrent100;

float msdSum10 , msdSum100;

float av10 , av100 , var10 , var100;

float stdev10 , stdev100; // If only 1 network , std and var

will be zero

// Used in FPTD calculations

int binSize = 1;

float FPTD[timeIntMax];

int fluxOut10[numNets], fluxOut100[numNets]; // Flux is the

number of cargos that has left the cell

int count10 , count100;

float fluxSum10 , fluxSum100;

float fluxvar10 , fluxvar100;

float fluxav10 , fluxav100;

float fluxstdev10 , fluxstdev100; // If only 1 network , std

and var will be zero

// Used in MFPT calculations

float cargoFPTs[numCargs];

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 113

float cargoMFPTs[numNets], cargoFPTstdev[numNets];

float fptSum , fptVar;

float mfptSum , mfptVar , stdevSum;

float totMFPT , totStdev , avgStdev; // If only 1 network , std

and var will be zero

// Used to calculate average network filament length

float avg_fl; // Used to calculate filament length for mean

filament length of network

float avg_fil_net[timeIntMax];

/* ### */

/* ### */

// Start simulation

// Algorithm

// CASE_A: Setup network , Random walk of cargo on all

networks

// CASE_A_1: Initial Network Setup

// CASE_A_2: Start random walk of each cargo on current

network

// CASE_A_3: Start cargos movement

// CASE_A_4: Start MSD calculations

// CASE_A_5A: Modify filament -> Microtubule ONLY (Shrink/

Grow)

// CASE_A_5B: Modify filament -> Actin ONLY (Shrink/Grow)

// CASE_A_6A: Check if cargo is ON or OFF the filament

network

// CASE_A_6B: Calculate networks average filament length

// CASE_A_7: Save current network/cargo data , record msd10/

msd100 , fraction time on network , Start FPTD calculations

// CASE_A_8: Calculate msd10/msd100 for all cargo in network ,

Start MFPT calculations for network

// CASE_B_1: Do MSD analysis

// CASE_B_2: Do MFPT , FPT and Flux analysis

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 114

// Start loop over all filament rescue probability

for (int FresP = 0; FresP < prob_M_Res_V; FresP ++) {

// Filament rescue probability

sg_prob_M_Res = sg_prob_M_Res_V[FresP];

sg_prob_A_Res = sg_prob_A_Res_V[FresP];

// Start loop over all cargo switching probability

for (int sc = 0; sc < sc_V; sc++) {

// Cargo switching probability

switchProb = switchProb_V[sc];

// Start loop over all filament lengths

for (int lf = 0; lf < lf_V; lf++) {

// Filament length

filLength = lenFils_V[lf];

// Start loop over all number of filaments

for (int nf = 0; nf < nf_V; nf++) {

// Number of filaments

numFils = numFils_V[nf]; // Originally numFils = minFils;

// Need to redeclare network array for every new number

of filament simulations

// Redeclare filament network arrays -> INITIALIZATION

ARRAY

float filNet[numFils][4]; // columns -> 0=r1, 1=theta ,

2=alpha , 3=p

float filEnds[numFils][4]; // columns -> 0=x1, 1=x2, 2=y1

, 3=y2

// Redecalre filament network arrays > PLACEHOLDER

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 115

float filNet_M[numFils][4]; // columns -> 0=r1, 1=theta ,

2=alpha , 3=p

float filEnds_M[numFils][4]; // columns -> 0=x1, 1=x2, 2=

y1 , 3=y2

// Declare actin treadmilling boolean array

int ACT_treadmill_access[numFils]; // N/A = -1, False =

0, True = 1

// Initialize MSD array and FPTD back to zero

for (int ii = 0; ii < timeIntMax; ii++) {

msdArray[ii][0] = 0.0; // Incremental squared

displacment to respective time -interval = MSD

msdArray[ii][1] = 0.0; // Incremental time by 1.0 to

respective time -interval = N

msdArray[ii][2] = 0.0; // Time interval = delta_T

FPTD[ii] = 0.0; // FPTD

}

// Initialize fracTimeOn back to 0.0 and CargoInfo

for (int ii = 0; ii < numCargs*numNets; ii++) {

fracTimeOn[ii] = 0.0; // Time cargo is on filament for

all network

for (int jj = 0; jj < 12; jj++) {

CargoInfo[ii][jj] = 0.0; // Info of each cargo ->

cOFF_front , cOFF_back , ckOFF , ckON , ckON_tot ,

cSwitch , cSwitch_tot , tOn , tOff , t, ckOFF_tot ,

cOFF_end

}

}

currentCargo = 0; // Range is 0 to (numCargs*numNets - 1)

// Initialize MSD and Flux variation at 10s and 100s

for (int ii = 0; ii < numNets; ii++) {

msd10[ii] = 0.0; // MSD at 10 seconds

msd100[ii] = 0.0; // MSD at 100 seconds

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 116

fluxOut10[ii] = 0; // Flux out at 10 seconds

fluxOut100[ii] = 0; // Flux out at 100 seconds

}

// Set up end of file name

char sEnd1 [1024];

sprintf(sEnd1 ,"kOn %.2 fkOff %.2 fnumFil%dfilLen %.2 fnumNets%

dnumCargs%dgamma %.2 fSWProb %.2f.txt",kOn ,kOff ,numFils ,

filLength ,numNets ,numCargs ,gamma ,switchProb);

/* ### */

/* ################## CASE_A ################# */

/* ### */

/* ### */

// CASE_A: Setup network , Random walk of cargo on all

networks

// Start for loop over all number of networks -> Lay down

different networks

for (int currentNet = 0; currentNet < numNets; currentNet

++) {

/* ### */

/* ################# CASE_A_1 ################ */

/* ### */

// CASE_A_1: Initial Network Setup

// Start for loop to initialize current networks

filament setup

for (int j = 0; j < numFils; j++) {

// Set network filament segment positions , respective

angles , polarity > filNet[numFils][4], filEnds[

numFils][4]

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 117

Net_Setup(j, 4, filNet , filEnds , outer , inner ,

filLength , xCellCent , yCellCent , numFils , fil_radial

, fil_pol , fil_buffer);

}

// Initialize cargo FPT array to zero

for (int i = 0; i < numCargs; i++) {

cargoFPTs[i] = 0.0;

}

// FPTD , Initialize counter for number of cargos that

have left the cell

count10 = 0;

count100 = 0;

// Intialize network average filament length to zero

for (int k = 0; k < timeIntMax; k++) {

avg_fil_net[k] = 0.0;

}

/* ### */

/* ################# CASE_A_2 ################ */

/* ### */

// CASE_A_2: Start random walk of each cargo on current

network

// Start for loop over all cargos in current network ->

Start movement of cargos

for (int currentCarg = 0; currentCarg < numCargs;

currentCarg ++) {

// Initialize network and cargo position -> (The data

we save)

// Redecalre filament network arrays > FOR SHRINKING or

GROWING

// Malloc needs to be applied -> valgrind helps detect

memory leaks (occurs if we dont de -allocate memory)

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 118

// Comment out if you want to do production run

/* --- */

float *** filNet_M2 = (float ***) malloc(timeIntMax*

sizeof(float **));

float *** filEnds_M2 = (float ***) malloc(timeIntMax*

sizeof(float **));

for (int ii = 0; ii < timeIntMax; ii++) {

filNet_M2[ii] = (float **) malloc(numFils*sizeof(float

*));

filEnds_M2[ii] = (float **) malloc(numFils*sizeof(float

*));

for (int jj = 0; jj < numFils; jj++) {

filNet_M2[ii][jj] = (float *) malloc (4* sizeof(float));

filEnds_M2[ii][jj] = (float *) malloc (4* sizeof(float))

;

}

}

/* --- */

// Cargo array => Dynamically Allocate

// Comment out if you want to do production run

/* --- */

float ** Cargo_pos = (float **) malloc(timeIntMax*sizeof(

float **)); // For cargo array

for (int ii = 0; ii < timeIntMax; ii++) {

// Cargo

Cargo_pos[ii] = (float *) malloc (2* sizeof(float));

}

/* --- */

// // Check to see if heap memory was not assigned

// if ((filNet_M2 == NULL) || (filEnds_M2 == NULL) || (

Cargo_pos == NULL)) {

// printf ("Out of memory",stderr);

// exit (0);

// }

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 119

// Every cargo realizes the same initial network

configuration

// Re-Initialize place holder array for current cargo

and initial time

for (int iii = 0; iii < numFils; iii++) {

for (int jjj = 0; jjj < 4; jjj++) {

// Re -Initialize

filNet_M[iii][jjj] = filNet[iii][jjj];

filEnds_M[iii][jjj] = filEnds[iii][jjj];

// Save initial filament network to arry we will save

to

// Comment out if you want to do production run

/* --- */

filNet_M2 [0][iii][jjj] = filNet[iii][jjj];

filEnds_M2 [0][iii][jjj] = filEnds[iii][jjj];

/* --- */

}

} // End Re -Initializing place holder array

// Declare and Initialize all Catastrophy Flag to FALSE

-> Default , we start off growing

int Catas_FLAG_MT[numFils]; // Microtubule Flag for

Catastrophe , True = 1, False = 0

int Catas_FLAG_A_BEG[numFils]; // Actin Beginning Flag

for Catastrophe , True = 1, False = 0

int Catas_FLAG_A_END[numFils]; // Actin Ending Flag for

Catastrophe , True = 1, False = 0

for (int ff = 0; ff < numFils; ff++) {

Catas_FLAG_MT[ff] = 0; // False

Catas_FLAG_A_BEG[ff] = 0; // False

Catas_FLAG_A_END[ff] = 0; // False

// Initialize actin treadmilling boolean array

if (Treadmill_Actin == 1) {

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 120

ACT_treadmill_access[ff] = -1; // N/A = -1, False =

0, True = 1

}

}

// Set network length counter to zero

avg_fl = 0.0;

avg_fil_net [0] = filLength;

// Set all time to zero

t = 0.0; // Current cargo total time in simulation (

seconds)

tOn = 0.0; // Current cargo total time ballistic motion

on filament (seconds)

tOff = 0.0; // Current cargo total time anomalous

diffusion off filament (seconds)

stepNum = 0; // Set step cargo has left cell back to

zero

stepNum_time = 0.0; // Set cargo physical it has left

cell back to zero (seconds)

dt = 0.0; // Set current cargo ’s new physical time to

zero -> Size of time step (seconds)

timeInt = 0; // Set index of reference time to zero

t_count = 0; // Counter for proper time scale

multiplier , set back to zero

t_prev = 0.0; // Previous step time

t_Carg = 0.0; // Total current time check

// Flag for cargo OFF , ON network , simulation max time/

point of destination and filament on

OFF = 1; // Cargo always starts off the network

ON = 0;

STOP = 0; // Cell outer membrane not reached yet

STOP_2 = 0; // Max time not reached yet

SWITCHED = 0; // Cargo filament switching flag

m = 0; // Tracker to go through all filaments

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 121

currentm = -1; // Used to keep track of which filament

currently on -> Not attached to any filament

cOFF_front = 0.0; // Counter falling off front of

filament

cOFF_back = 0.0; // Counter falling off back of

filament

ckOFF = 0.0; // Counter kOff executed -> Cargo fell off

filament (Not the end points meaning walking off)

ckON = 0.0; // Counter kOn executed -> Cargo attached

to filament

ckON_tot = 0.0; // Counter kOn executed -> Chance of

cargo attaching to filament

cSwitch = 0.0; // Counter switching to different

filament

cSwitch_tot = 0.0; // Counter of total chances of

switching to different filaments

ckOFF_tot = 0.0; // Counter kOFF executed -> Chance of

cargo falling of filament

cOFF_end = 0.0; // Counter falling off from the ends of

filament

adj_FLAG = 0.0; // Initialize cargo adjustment flag

when attaching or switching to filament to FALSE = 0

Fil_ends_FLAG = -1.0; // Initialize cargo attachment to

filament ends or perpedicular flag => Default is

Ignore = -1.0

// Cargo position -> (Radial and Angular)

beta = (2* M_PI)*((float)rand())/RAND_MAX; // Starting

angular position of cargo

// Cargo start radial position

if (INS == 1) {

// If modling insulin , cargos must have different

start distribution

rc = 10 - 5 * sqrt(4 - (((float)rand())/RAND_MAX + 3))

; // With Insulin

} else {

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 122

rc = (inner + 0.2) - (0.2) *(((float)rand())/RAND_MAX);

// No Insulin

}

// Cargo starting x, y values

xc = filEnds [5][0] + (filLength /3 + 0.2* cRad)*cos(

filNet [5][1]);

yc = filEnds [5][2] + (filLength /3 + 0.2* cRad)*sin(

filNet [5][1]);

// xc = filEnds [5][0] + (filLength + 0.2* cRad)*cos(

filNet [5][1] + filNet [5][2]);

// yc = filEnds [5][2] + (filLength + 0.2* cRad)*sin(

filNet [5][1] + filNet [5][2]);

// xc = xCellCent + (filNet [5][0] - 0.2* cRad)*cos(

filNet [5][1] + filNet [5][2]);

// yc = yCellCent + (filNet [5][0] - 0.2* cRad)*sin(

filNet [5][1] + filNet [5][2]);

// xc = xCellCent + (filNet [5][0] - 0.2* cRad)*cos(

filNet [5][1]);

// yc = yCellCent + (filNet [5][0] - 0.2* cRad)*sin(

filNet [5][1]);

// xc = xCellCent + rc * cos(beta);

// yc = yCellCent + rc * sin(beta);

Cargo_prev_pos [0] = xc; // Cargo previous time x-pos

intialization

Cargo_prev_pos [1] = yc; // Cargo previous time y-pos

intialization

// Re-Initialize current cargo network array

// Comment out if you want to do production run

/* --- */

Cargo_pos [0][0] = xc; // Cargo intial x-position

Cargo_pos [0][1] = yc; // Cargo intial y-position

/* --- */

// Keep track of starting x, y values

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 123

initial_x = xc;

initial_y = yc;

/* ### */

/* ### */

// Start for loop over all timsteps -> Start letting

cargo "walk"

for (int tt = 1; tt < timeIntMax; tt++) {

// Implement time lag so we reach steady -state of

filaments

if (tt < t_lag) {

// Update positions and times appropriately

xc = xc;

yc = yc;

t = floorf ((t)*scale_dec)/scale_dec + floorf ((dtReg)*

scale_dec)/scale_dec;

}

// Only simulate cargo if still inside cell and max

time not reached

if ((STOP == 0) && (STOP_2 == 0) && (tt >= t_lag)) {

/* === */

/* === */

// If OFF , allow possibility of attachment to nearby

filaments

if (OFF == 1 && ON == 0) {

// Compute time -step

if (REG == 0) {

randNum = ((float)rand())/RAND_MAX;

randNum = (1 - pow (((float)timeIntMax),-gamma))*

randNum;

dt = pow((-randNum +1) ,(-1/gamma))*(dtReg);

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 124

dt = floorf(dt*scale_dec)/scale_dec;

// Anomalous diff timestep -> dt = ((1-(1-(

timeIntMax ^(-gamma)))*rng)^(-1/ gamma))*dtReg

// Check if dt is INF or NAN

anom_FLAG = 0; // Start False

if ((isinf(dt) != 0) || (isnan(dt) != 0)) {

// Need to recalculate dt

anom_FLAG = 1;

}

// Start to recompute dt until we get non -INF and

non -NAN

while (anom_FLAG == 1) {

randNum = ((float)rand())/RAND_MAX;

randNum = (1 - pow (((float)timeIntMax),-gamma))*

randNum;

dt = pow((-randNum +1) ,(-1/gamma))*(dtReg);

dt = floorf(dt*scale_dec)/scale_dec;

// Check if dt is INF or NAN

if ((isinf(dt) == 0) && (isnan(dt) == 0)) {

// Need to recalculate dt

anom_FLAG = 0;

}

} // End while loop to recompute dt

} else {

dt = floorf(dtReg*scale_dec)/scale_dec; // Normal

diff timestep -> dtReg = (distStep ^2) /(4*D)

}

/* === */

// Check for nearby filaments and filament endpoints

-> (Must be within cargo radius)

m = 0; // Restarts for each cargo while it is still

able to simulate

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 125

while (m < numFils && ON != 1) { // start going

through all filaments to see if cargo is near a

filament

// Calculate perp dist , and cargo distance from

filament segments endpoints -> d, d1, d2

Net_Distances (&d, &d1 , &d2 , xc, yc, m, 4, filEnds_M

);

// Calculate filament segments min/max (x,y)

positions -> minx1x2 , maxx1x2 , miny1y2 , maxy1y2

Net_MINMAX_1 (&minx1x2 , &maxx1x2 , &miny1y2 , &maxy1y2

, m, 4, filEnds_M);

// Check if cargo is near a filament end

if ((d1 < cRad) || (d2 < cRad) ||

((xc > minx1x2) && (xc < maxx1x2) && (yc >

miny1y2) && (yc < maxy1y2) && (d < cRad))) {

// Make proper condition so we have equality in

probability

if ((kOn*dt) == 0.0) {

kOn_2 = -1.0;

} else {

kOn_2 = kOn;

}

ckON_tot += 1.0; // Cargo chance to attach to

filaments increment

probOn = ((float)rand())/RAND_MAX; // Probability

of attaching to nearby filament

if (probOn <= (kOn_2*dt)) {

ckON += 1.0; // Cargo attached increment

ON = 1; // Current cargo attaches to filament

theta = filNet_M[m][1];

alpha = filNet_M[m][2];

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 126

p = filNet_M[m][3];

x1 = filEnds_M[m][0];

x2 = filEnds_M[m][1];

y1 = filEnds_M[m][2];

y2 = filEnds_M[m][3];

currentm = m; // Current filament number

// Set flag

adj_FLAG = 1.0; // Cargo transition from

Diffusion to Ballistic FLAG

// Save cargo intial position before update

Cargo_prev_pos [0] = xc; // Cargo previous time x-

pos intialization

Cargo_prev_pos [1] = yc; // Cargo previous time y-

pos intialization

// Adjust cargo position to be exactly on

filament (Valid because within cargo radius)

if (d1 < cRad) {

// Attach to first side

Fil_ends_FLAG = 0.0;

xc = x1;

yc = y1;

// printf (" Attached to Beginning Side , t = %d\n

",tt);

} else if (d2 < cRad) {

// Attach to second side

Fil_ends_FLAG = 0.0;

xc = x2;

yc = y2;

// printf (" Attached to Ending Side , t = %d\n",tt

);

} else if (d < cRad) {

// Attach to connecting perpendicular side => (

Most robust form)

Fil_ends_FLAG = 1.0;

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 127

xc = (pow((x2 -x1) ,2)*xc + (y2 -y1)*(x2 -x1)*yc -

(y2-y1)*(x2*y1 - x1*y2))/(pow((y2-y1) ,2) +

pow((x2 -x1) ,2));

yc = -((y2-y1)/(x1 -x2))*xc - ((x2*y1 - x1*y2)/(

x1-x2));

// printf (" Attached Perpendicular , t = %d\n",tt)

;

}

} // End condition check to attach to filament

} // End condition chech to see if nearby filament

m += 1; // Increment to next filament

} // End while loop through all filaments

/* === */

} // End condition to allow possibility of attachment

to nearby filaments

/* === */

/* === */

/* === */

/* === */

// If ON , allow possibility of cargo to detach ,

switch filament or being stuck at filament block

if (ON == 1 && OFF == 0) {

dt = floorf(dtBal*scale_dec)/scale_dec; // Ballistic

motion -> dt = distStep_2 / v

// Calculate relative filament segments min/max (x,y

) position -> minx1x2 , maxx1x2 , miny1y2 , maxy1y2

Net_MINMAX_2 (&minx1x2 , &maxx1x2 , &miny1y2 , &maxy1y2 ,

x1 , x2, y1, y2);

// Make proper condition so we have equality in

probability

if ((kOff*dt) == 0.0) {

kOff_2 = -1.0;

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 128

} else {

kOff_2 = kOff;

}

ckOFF_tot += 1.0; // Cargo chance to fall off

filament increment

probOff = ((float)rand())/RAND_MAX; // Probability

of detaching from network filament

/* === */

// Check if cargo will detach from current filament

// if ((probOff <= (kOff_2*dt)) || ((xc <minx1x2) ||

(xc>maxx1x2) || (yc<miny1y2) || (yc>maxy1y2)))

{

if ((probOff <= (kOff_2*dt))) {

// Update flags since cargo has fallen off the

network

ON = 0; // Current cargo will not be on current

filament in next step

OFF = 1; // Current cargo will fall off current

filament in next step

currentm = -1; // Not attached to any filament

ckOFF += 1.0; // Cargo detached increment

// printf (" Detached koff , t = %d\n",tt);

// Compute time -step

if (REG == 0) {

randNum = ((float)rand())/RAND_MAX;

randNum = (1 - pow (((float)timeIntMax),-gamma))*

randNum;

dt = pow((-randNum +1) ,(-1/gamma))*(dtReg);

dt = floorf(dt*scale_dec)/scale_dec;

// Anomalous diff timestep -> dt = ((1-(1-(

timeIntMax ^(-gamma)))*rng)^(-1/ gamma))*dtReg

// Check if dt is INF or NAN

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 129

anom_FLAG = 0; // Start False

if ((isinf(dt) != 0) || (isnan(dt) != 0)) {

// Need to recalculate dt

anom_FLAG = 1;

}

// Start to recompute dt until we get non -INF and

non -NAN

while (anom_FLAG == 1) {

randNum = ((float)rand())/RAND_MAX;

randNum = (1 - pow (((float)timeIntMax),-gamma))*

randNum;

dt = pow((-randNum +1) ,(-1/gamma))*(dtReg);

dt = floorf(dt*scale_dec)/scale_dec;

// Check if dt is INF or NAN

if ((isinf(dt) == 0) && (isnan(dt) == 0)) {

// Need to recalculate dt

anom_FLAG = 0;

}

} // End while loop to recompute dt

} else {

dt = floorf(dtReg*scale_dec)/scale_dec; // Normal

diff timestep -> dtReg = (distStep ^2) /(4*D)

}

} // End check if cargo has fallen off

/* === */

/* === */

// If ON , cargo still did not detach -> Check for

swithcing to nearby filaments

if (ON == 1 && OFF == 0) {

m = 0; // Cycle through filament number

SWITCHED = 0; // While loop flag -> Cargo has not

switched yet

// Loop through filaments -> If there is a filament

nearby , allow probability to switch

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 130

while (m < numFils && SWITCHED != 1) {

// Calculate perp dist , and cargo distance from

filament segments endpoints -> d, d1, d2

Net_Distances (&d, &d1, &d2, xc, yc, m, 4,

filEnds_M);

// Calculate filament segments min/max (x,y)

positions -> minx1x2 , maxx1x2 , miny1y2 , maxy1y2

Net_MINMAX_1 (&minx1x2 , &maxx1x2 , &miny1y2 , &

maxy1y2 , m, 4, filEnds_M);

// Check if cargo will switch to another filament

if nearby

if (((d1 < cRad) || (d2 < cRad) ||

((xc>minx1x2) && (xc <maxx1x2) && (yc >miny1y2) &&

(yc <maxy1y2) && (d<cRad))) && (currentm !=

m)) {

// Make proper condition so we have equality in

probability

if (switchProb == 0.0) {

switchProb_2 = -1.0;

} else {

switchProb_2 = switchProb;

}

cSwitch_tot += 1.0; // Cargo chance to switch

filaments increment

probOn = ((float)rand())/RAND_MAX; // Probability

of switching to another filament

if (probOn <= switchProb_2) {

// Cargo switches over to another filament

cSwitch += 1.0; // Cargo switched filaments

increment

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 131

SWITCHED = 1; // Current cargo switched to

another filament

theta = filNet_M[m][1];

alpha = filNet_M[m][2];

p = filNet_M[m][3];

x1 = filEnds_M[m][0];

x2 = filEnds_M[m][1];

y1 = filEnds_M[m][2];

y2 = filEnds_M[m][3];

currentm = m; // Update current filament number

// Set flag

adj_FLAG = 1.0; // Cargo transition from

Diffusion to Ballistic FLAG

// Save cargo intial position before update

Cargo_prev_pos [0] = xc; // Cargo previous time x

-pos intialization

Cargo_prev_pos [1] = yc; // Cargo previous time y

-pos intialization

// Adjust cargo position to be exactly on

filament (Valid because within cargo radius)

if (d1 < cRad) {

// Attach to first side

Fil_ends_FLAG = 0.0;

xc = x1;

yc = y1;

} else if (d2 < cRad) {

// Attach to second side

Fil_ends_FLAG = 0.0;

xc = x2;

yc = y2;

} else if (d < cRad) {

// Attach to connecting perpendicular side => (

Most robust form)

Fil_ends_FLAG = 1.0;

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 132

xc = (pow((x2-x1) ,2)*xc + (y2-y1)*(x2 -x1)*yc -

(y2 -y1)*(x2*y1 - x1*y2))/(pow((y2-y1) ,2) +

pow((x2 -x1) ,2));

yc = -((y2-y1)/(x1-x2))*xc - ((x2*y1 - x1*y2)/(

x1 -x2));

}

} // End condition check of switching filaments

} // End condition to check of being in range of

another filament

m += 1; // Increment to next filament

} // End while loop over all filament

} // End condition to check if switches to nearby

filaments

/* === */

} // End condition , if ON, allow prob of falling off

current filament or switching filaments

/* === */

/* === */

/* ### */

/* ################# CASE_A_3 ################ */

/* ### */

// CASE_A_3: Start cargos movement

// Cargo previous time location (Do this before

update)

if (adj_FLAG == 0.0) {

Cargo_prev_pos [0] = xc; // Cargo previous time x-pos

Cargo_prev_pos [1] = yc; // Cargo previous time y-pos

}

// Now that the cargo is either on or off , allow

movement make sure that cargo is indeed on a

filament

if (ON == 1 && OFF == 1) {

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 133

ON = 1;

OFF = 0;

dt = floorf(dtBal*scale_dec)/scale_dec; // Ballistic

motion -> dt = distStep_2 / v

}

// Random walk OFF filament network -> DIFFUSION

if (OFF == 1) {

phi = (2* M_PI)*((float)rand())/RAND_MAX; // Pick

random direction

// Move in that direction through cytoplasm

xcNew = xc + (distStep) * cos(phi);

ycNew = yc + (distStep) * sin(phi);

tOff = floorf ((tOff)*scale_dec)/scale_dec + floorf ((

dt)*scale_dec)/scale_dec; // Update current cargo

total time off filament

}

// Ballistic motion on filament network -> BALLISITC

if (ON == 1) {

printf ("BALLISTIC , t = %d\n",tt);

if (adj_FLAG == 1.0) {

// Transitioned to filament

xcNew = xc;

ycNew = yc;

adj_FLAG = 0.0; // Change back to FALSE

} else {

// Move along filament polarity

xcNew = xc + cargo_direc * p * distStep_2 * cos(

theta + alpha);

ycNew = yc + cargo_direc * p * distStep_2 * sin(

theta + alpha);

}

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 134

tOn = floorf ((tOn)*scale_dec)/scale_dec + floorf ((dt

)*scale_dec)/scale_dec; // Update current cargo

total time on filament

// Current filament cargo is on end positions (Do

this before update)

Current_Fil_prev_pos [0] = x1; // Filament x1

position (use polarity to find if its beginning

or ending side)

Current_Fil_prev_pos [1] = x2; // Filament x2

position (use polarity to find if its beginning

or ending side)

Current_Fil_prev_pos [2] = y1; // Filament y1

position (use polarity to find if its beginning

or ending side)

Current_Fil_prev_pos [3] = y2; // Filament y2

position (use polarity to find if its beginning

or ending side)

}

// New radial and angular position of cargo

rcNew = sqrt(pow((xcNew -xCellCent) ,2)+pow((ycNew -

yCellCent) ,2));

beta = atan((ycNew -yCellCent)/(xcNew -xCellCent));

// Check if cargo is inside nucleus -> If cargo

inside nucleus , move back out to original position

if (rcNew < inner) {

xcNew = xc;

ycNew = yc;

} else if (rcNew > outer) {

// Check if the cargo is outside cell -> If cargo

outside cell , move back inside to original

position

t_Carg = floorf ((t)*scale_dec)/scale_dec + floorf ((

dt)*scale_dec)/scale_dec;

if (t_Carg < ((float)(timeIntMax))*dtReg) {

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 135

STOP = 1; // For FPTD -> If cargo has left the cell

, stop cargo movement

}

// For MSD calculations , two reflecting boundaries (

Bounce off the Cell Membrane)

xcNew = xc;

ycNew = xc;

}

// Update positions and times appropriately

xc = xcNew;

yc = ycNew;

rc = sqrt(pow((xc -xCellCent) ,2)+pow((yc -yCellCent) ,2)

);

beta = atan((yc -yCellCent)/(xc -xCellCent));

t = floorf ((t)*scale_dec)/scale_dec + floorf ((dt)*

scale_dec)/scale_dec; // Update total simulation

time of current cargo

} // End check if cargo in still inside cell membrane

-> STOP == 0

/* ### */

/* ################# CASE_A_4 ################ */

/* ### */

// CASE_A_4: Start MSD calculations

// DUE TO TIME CONSTRAINTS , I COULD NOT FINISH THE

PROPER TIME SCALING SUCH THAT THE TIME -INTERVAL

WILL BE IN ACCORDANCE

// TO THE PHYSICAL TIME MOVED IN THE GIVEN ITERATION ,

THUS THIS PART ONLY WORKS FOR DIFFUSION , NOT SUPER

OR SUB -DIFFUSION.

// ANY QUESTIONS ABOUT THIS SHOULD BE DIRECTED TO

IMTIAZ ALI

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 136

// // Make sure we are at proper dtReg timescale

multiplier

// time1f = (t/dtReg) - roundf(t/dtReg);

// time2f = (t_prev/dtReg) - roundf(t_prev/dtReg);

// if ((fabs(time1f - time2f)) >= 1.0) {

// t_count += (int)(roundf(fabs(time1f - time2f)));

// }

// timeInt = ((int)roundf(t/dtReg) + t_count); // Time

interval -> rescaled wrt dtReg

// t_prev = t; // Update to current time , used in next

step

timeInt = tt; // Time interval -> rescaled wrt dtReg (

Method only works for DIFFUSION NOT SUB/SUPER

DIFFUSION)

// Start MSD storage

if (STOP == 0) {

// Calculate cargo square distance from initial

starting position

sd = pow((xc - initial_x) ,2) + pow((yc - initial_y)

,2);

if ((int)t == 10) {

msdCurrent10 = sd;

} else if ((int)t == 100) {

msdCurrent100 = sd;

}

// Store cargo position

// Comment out if you want to do production run

/* --- */

Cargo_pos[timeInt][0] = xc; // Cargo x-position

Cargo_pos[timeInt][1] = yc; // Cargo y-position

/* --- */

if (timeInt < timeIntMax) {

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 137

// Max simulation time not reached

msdArray[timeInt][0] += sd;

msdArray[timeInt][1] += 1.0;

msdArray[timeInt][2] = ((float)timeInt)*dtReg;

} else if (timeInt > timeIntMax) {

// Max simulation time reached

STOP_2 = 1; // Stop simulation of cargo only -> Keep

computing for filaments

}

} // End MSD storage

if (STOP == 1) {

// Not inside cell membrane

sd = 0.0;

if (timeInt < timeIntMax) {

// Max simulation time not reached

stepNum = timeInt; // Time step cargo left cell

stepNum_time = t; // Physical total time (int)roundf

(t/dtReg)

}

}

/* ### */

/* ################ CASE_A_5A ################ */

/* ### */

// CASE_A_5A: Modify filament -> Microtubule ONLY

if (filament_type == 1) {

// Modify all the filaments for simplicity -> Let

mod_prob_M_END = 0.0

// Start iteration over all filaments

for (int kk = 0; kk < numFils; kk++) {

/* === */

// Filament will not grow if length is max and not

shrink if length is min

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 138

// Current filaments length

Cur_fil_len = sqrt(pow((filEnds_M[kk][1] - filEnds_M

[kk][0]) ,2) + pow((filEnds_M[kk][3] - filEnds_M[

kk][2]) ,2));

// Choose if we modify filament -> (rand_m >

mod_prob_M_END means to modify filament)

rand_m = ((float)rand())/RAND_MAX;

if (rand_m < mod_prob_M_END) {

G_true = -1; // N/A -> Do Nothing

} else {

// This part works with catastrophy and Rescue

// Check if catastrophy has occured

if (Catas_FLAG_MT[kk] == 0) {

rand_SG = ((float)rand())/RAND_MAX; // rand_SG <=

sg_prob_M_Cat => means to shrink filament (

CATASTROPHY)

if ((rand_SG <= sg_prob_M_Cat) && (Cur_fil_len >

min_fil_length)) {

Catas_FLAG_MT[kk] = 1; // True -> Catastrophy

Occured

}

} else if (Catas_FLAG_MT[kk] == 1) {

// Check if rescue has occured

rand_SG = ((float)rand())/RAND_MAX; // rand_SG <=

sg_prob_M_Res => means to grow filament (RESCUE

)

if ((rand_SG <= sg_prob_M_Res) && (Cur_fil_len <

max_fil_length)) {

Catas_FLAG_MT[kk] = 0; // False -> Recovery

Occured => Originally if (Cur_fil_len <=

min_fil_length)

}

}

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 139

if (Catas_FLAG_MT[kk] == 1) {

G_true = 0; // False -> Filament will Shrink

} else if (Catas_FLAG_MT[kk] == 0) {

G_true = 1; // True -> Filament will Grow

}

}

// Modify filament

Net_SG_MICROTUBULE(kk, 4, filNet_M , filEnds_M , outer

, inner , xCellCent , yCellCent , G_true ,

DT , V_G_MT , V_S_MT , min_fil_length , fil_buffer);

// Store in M2 array

// Comment out if you want to do production run

/* --- */

for (int qq = 0; qq < 4; qq++) {

filNet_M2[tt][kk][qq] = filNet_M[kk][qq];

filEnds_M2[tt][kk][qq] = filEnds_M[kk][qq];

}

/* --- */

/* === */

} // End Modifying all filaments

} // End check of filament type -> MICROTUBULE

/* ### */

/* ################ CASE_A_5B ################ */

/* ### */

// CASE_A_5B: Modify filament -> Actin ONLY

if (filament_type == 0) {

// Modify all the filaments for simplicity -> Let

mod_prob_A = 0.0

// Start iteration over all filaments

for (int kk = 0; kk < numFils; kk++) {

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 140

/* ### */

// Explicity look at Beginning side

/* === */

// Current filaments length

Cur_fil_len = sqrt(pow((filEnds_M[kk][1] - filEnds_M

[kk][0]) ,2) + pow((filEnds_M[kk][3] - filEnds_M[

kk][2]) ,2));

Actin_side = 0;

if (Treadmill_Actin == 0) {

// No Actin treadmilling

// Choose if we modify filament -> (rand_m >

mod_prob_A_BEG means to modify filament)

rand_m = ((float)rand())/RAND_MAX;

if (rand_m < mod_prob_A_BEG) {

G_true = -1; // N/A -> Do Nothing

} else {

// This part works with catastrophy and rescue

// Check if catastrophy has occured

if (Catas_FLAG_A_BEG[kk] == 0) {

rand_SG = ((float)rand())/RAND_MAX; // rand_SG <=

sg_prob_A_Cat => means to shrink filament (

CATASTROPHY)

if ((rand_SG <= sg_prob_A_Cat) && (Cur_fil_len >

min_fil_length)) {

Catas_FLAG_A_BEG[kk] = 1; // True -> Catastrophy

Occured

}

} else if (Catas_FLAG_A_BEG[kk] == 1) {

// Check if rescue has occured

rand_SG = ((float)rand())/RAND_MAX; // rand_SG <=

sg_prob_A_Res => means to grow filament (

RESCUE)

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 141

if ((rand_SG <= sg_prob_A_Res) && (Cur_fil_len <

max_fil_length)) {

Catas_FLAG_A_BEG[kk] = 0; // False -> Recovery

Occured

}

}

if (Catas_FLAG_A_BEG[kk] == 1) {

G_true = 0; // False -> Filament will Shrink

} else if (Catas_FLAG_A_BEG[kk] == 0) {

G_true = 1; // True -> Filament will Grow

}

}

} else {

// Check if dynamic for actin is not set for

treadmilling

if (ACT_treadmill_access[kk] == -1) {

// Need to set beginning side to shrink or grow

// Choose if we modify filament -> (rand_m >

mod_prob_A_BEG means to modify filament)

rand_m = ((float)rand())/RAND_MAX;

if (rand_m < mod_prob_A_BEG) {

G_true = -1; // N/A -> Do Nothing

} else {

// Treadmilling , Beginning end shrinks

Catas_FLAG_A_BEG[kk] == 1; // True -> Catastrophy

Occured

G_true = 0; // False -> Filament will Shrink

}

// Adjust actin tredmill flag

ACT_treadmill_access[kk] = G_true;

} else {

// Keep tredmill going

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 142

G_true = ACT_treadmill_access[kk];

}

}

// Modify filament

Net_SG_ACTIN(kk , 4, filNet_M , filEnds_M , outer ,

inner , xCellCent , yCellCent , G_true , Actin_side ,

DT , V_G_ACTIN , V_S_ACTIN , min_fil_length ,

fil_buffer);

Actin_side = -1; // Change back to looking at no

side

// Store in M2 array

// Comment out if you want to do production run

/* --- */

for (int qq = 0; qq < 4; qq++) {

filNet_M2[tt][kk][qq] = filNet_M[kk][qq];

filEnds_M2[tt][kk][qq] = filEnds_M[kk][qq];

}

/* --- */

/* ### */

// Explicity look at Ending side

// Current filaments length

Cur_fil_len = sqrt(pow((filEnds_M[kk][1] - filEnds_M

[kk][0]) ,2) + pow((filEnds_M[kk][3] - filEnds_M[

kk][2]) ,2));

Actin_side = 1;

if (Treadmill_Actin == 0) {

// No Actin treadmilling

// Choose if we modify filament -> (rand_m >

mod_prob_A_END means to modify filament)

rand_m = ((float)rand())/RAND_MAX;

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 143

if ((rand_m < mod_prob_A_END) || (Cur_fil_len >

max_fil_length)) {

G_true = -1; // N/A -> Do Nothing

} else {

// This part works with catastrophy and rescue

// Check if catastrophy has occured

if (Catas_FLAG_A_END[kk] == 0) {

rand_SG = ((float)rand())/RAND_MAX; // rand_SG <=

sg_prob_A_Cat => means to shrink filament (

CATASTROPHY)

if ((rand_SG <= sg_prob_A_Cat) && (Cur_fil_len >

min_fil_length)) {

Catas_FLAG_A_END[kk] = 1; // True -> Catastrophy

Occured

}

} else if (Catas_FLAG_A_END[kk] == 1) {

// Check if rescue has occured

rand_SG = ((float)rand())/RAND_MAX; // rand_SG <=

sg_prob_A_Res => means to grow filament (

RESCUE)

if ((rand_SG <= sg_prob_A_Res) && (Cur_fil_len <

max_fil_length)) {

Catas_FLAG_A_END[kk] = 0; // False -> Recovery

Occured

}

}

if (Catas_FLAG_A_END[kk] == 1) {

G_true = 0; // False -> Filament will Shrink

} else if (Catas_FLAG_A_END[kk] == 0) {

G_true = 1; // True -> Filament will Grow

}

}

G_true_2 = G_true;

} else {

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 144

// Actin treadmilling

// Choose if we modify filament -> (We want it such

that if beginning side shrinks , ending side

will grow and vise versa -> treadmilling)

if (ACT_treadmill_access[kk] == 1) {

G_true_2 = 0; // Filament ending side will shrink

} else if (ACT_treadmill_access[kk] == 0) {

G_true_2 = 1; // Filament ending side will grow

} else {

G_true_2 = ACT_treadmill_access[kk]; // Filament

ending side will do nothing

}

}

// Modify filament

Net_SG_ACTIN(kk , 4, filNet_M , filEnds_M , outer ,

inner , xCellCent , yCellCent , G_true_2 , Actin_side

,

DT , V_G_ACTIN , V_S_ACTIN , min_fil_length ,

fil_buffer);

Actin_side = -1; // Change back to looking at no

side

// Check if actin is at minimum length and at

boundaries -> Need to rearrange if so

// Calculate filaments current length

lr_current = sqrt(pow((filEnds_M[kk][1] - filEnds_M[

kk][0]) ,2) + pow((filEnds_M[kk][3] - filEnds_M[kk

][2]) ,2));

r1_current = sqrt(pow((filEnds_M[kk][0] - xCellCent)

,2) + pow((filEnds_M[kk][2] - yCellCent) ,2)); //

Beginning side

r2_current = sqrt(pow((filEnds_M[kk][1] - xCellCent)

,2) + pow((filEnds_M[kk][3] - yCellCent) ,2)); //

Ending side

// Find inner and outer regions to boundary

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 145

if (r1_current < r2_current) {

r1_min = r1_current;

r2_max = r2_current;

} else {

r1_min = r2_current;

r2_max = r1_current;

}

if ((lr_current < (min_fil_length + 0.1))) {

// New filament arrangement

Net_Setup(kk, 4, filNet_M , filEnds_M , outer , inner ,

filLength , xCellCent , yCellCent , numFils ,

fil_radial , fil_pol , fil_buffer);

Catas_FLAG_A_BEG[kk] = 0; // False

Catas_FLAG_A_END[kk] = 0; // False

// Reset actin treadmilling boolean array

if (Treadmill_Actin == 1) {

ACT_treadmill_access[kk] = -1; // N/A = -1, False

= 0, True = 1

}

// Check if cargo was on filament

if (ON == 1) {

if (currentm == kk) {

// Filament disappeared

ckOFF += 1.0; // Cargo detached increment

ON = 0; // Current cargo is not be on current

filament

OFF = 1; // Current cargo is diffusion

currentm = -1; // Not attached to any filament

}

}

} // End check if actin filament needed rearrangment

// Store in M2 array

// Comment out if you want to do production run

/* --- */

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 146

for (int qq = 0; qq < 4; qq++) {

filNet_M2[tt][kk][qq] = filNet_M[kk][qq];

filEnds_M2[tt][kk][qq] = filEnds_M[kk][qq];

}

/* --- */

/* === */

/* ### */

} // End Modifying all filaments

} // End check of filament type -> ACTIN

/* ### */

/* ################ CASE_A_6A ################ */

/* ### */

// CASE_A_6A: Check if cargo is ON or OFF the filament

network after modification

// Only check if cargo is still inside cell membrane

or max time not reached

if ((STOP == 0) && (STOP_2 == 0)) {

// If ON , check if cargo fell off modified filament

if (ON == 1 && OFF == 0) {

// If cargo falls off of current filament , it will

be from its endpoints

m = currentm; // Current filament cargo is on

// Current filament endpoint positions

x1 = filEnds_M[m][0];

x2 = filEnds_M[m][1];

y1 = filEnds_M[m][2];

y2 = filEnds_M[m][3];

// Calculate relative filament segments min/max (x,y

) position -> minx1x2 , maxx1x2 , miny1y2 , maxy1y2

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 147

Net_MINMAX_2 (&minx1x2 , &maxx1x2 , &miny1y2 , &maxy1y2 ,

x1, x2, y1, y2);

if ((xc <minx1x2) || (xc >maxx1x2) || (yc <miny1y2) ||

(yc>maxy1y2)) {

if (Fil_ends_FLAG == 0.0) {

// Cargo attached to endpoint (Use current cargo

position)

xc_temp = xc;

yc_temp = yc;

} else {

// Cargo attached between endpoints (Use previous

cargo position)

xc_temp = Cargo_prev_pos [0];

yc_temp = Cargo_prev_pos [1];

}

// Start check if previous cargo position is on

filament at its previous location

// Find current filaments previous max and min

Net_MINMAX_2 (&minx1x2 , &maxx1x2 , &miny1y2 , &maxy1y2

,

Current_Fil_prev_pos [0], Current_Fil_prev_pos [1],

Current_Fil_prev_pos [2], Current_Fil_prev_pos

[3]);

Prev_Cargo_exterior_interior_FLAG = 0.0; // Set to

False = 0.0, Only change it if the conditions

are met

if (miny1y2 == maxy1y2) {

// Check horizontal case

if ((xc_temp >= minx1x2) && (xc_temp <= maxx1x2)

) {

Prev_Cargo_exterior_interior_FLAG = 1.0;

}

} else if (minx1x2 == maxx1x2) {

// Check vertical case

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 148

if ((yc_temp >= miny1y2) && (yc_temp <= maxy1y2)

) {

Prev_Cargo_exterior_interior_FLAG = 1.0;

}

} else if (((xc_temp >= minx1x2) &&

(xc_temp <= maxx1x2) && (yc_temp >= miny1y2) && (

yc_temp <= maxy1y2))) {

Prev_Cargo_exterior_interior_FLAG = 1.0;

} else if ((((xc_temp - minx1x2) >= epsi_0) &&

((maxx1x2 - xc_temp) <= epsi_0) && ((yc_temp -

miny1y2) >= epsi_0) &&

((maxy1y2 - yc_temp) <= epsi_0))) {

Prev_Cargo_exterior_interior_FLAG = 1.0;

} // End check if previous cargo position is on

filament at its previous location

// Start check if current cargo position is off

filament at its current location

// Find current filaments current max and min

Net_MINMAX_2 (&minx1x2 , &maxx1x2 , &miny1y2 , &maxy1y2

, x1 , x2, y1, y2);

Current_Cargo_exterior_FLAG = 0.0; // Set to False

= 0.0, Only change it if the conditions are met

if (((xc != minx1x2) && (xc != maxx1x2) && (yc !=

miny1y2) && (yc != maxy1y2))) {

// Check horizontal case

if (fabs(y2 -y1) <= epsi_0) {

if ((xc < minx1x2) || (xc > maxx1x2)) {

Current_Cargo_exterior_FLAG = 1.0;

}

} else if (fabs(x2-x1) <= epsi_0) {

// Check vertical case

if ((yc < miny1y2) || (yc > maxy1y2)) {

Current_Cargo_exterior_FLAG = 1.0;

}

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 149

} else if (((xc < minx1x2) && (yc < miny1y2)) ||

((xc > maxx1x2) && (yc > maxy1y2)) ||

((xc < minx1x2) && (yc > maxy1y2)) || ((xc >

maxx1x2) && (yc < miny1y2))) {

Current_Cargo_exterior_FLAG = 1.0;

}

} // End check if current cargo position is off

filament at its current location

// Make sure endpoint case changes to perpendicular

case if filament didn ’t change

if ((Fil_ends_FLAG == 0.0) && (

Current_Cargo_exterior_FLAG == 0.0) && (

Prev_Cargo_exterior_interior_FLAG == 1.0)) {

// Change to perpendicular line case

Fil_ends_FLAG = 1.0;

}

// Check if cargo is not within endpoint range of

current filament

if ((Current_Cargo_exterior_FLAG == 1.0) && (

Prev_Cargo_exterior_interior_FLAG == 1.0)) {

// Only count the ends if cargo is not within

buffer regions

if (((sqrt(pow((xc - xCellCent) ,2) + pow((yc -

yCellCent) ,2))) > (inner + fil_buffer)) &&

((sqrt(pow((xc - xCellCent) ,2) + pow((yc -

yCellCent) ,2))) < (outer - fil_buffer))) {

// Find which end cargo fell off filament (outer ,

inner , xCellCent , yCellCent)

Net_FilOff_FB (&cOFF_front , &cOFF_back , filNet_M[m

][3], xc , yc , x1 , x2 , y1 , y2 , Cargo_prev_pos ,

Current_Fil_prev_pos , &Fil_ends_FLAG);

}

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 150

// Cargo has fallen off the network

ON = 0; // Current cargo will not be on current

filament starting next step

OFF = 1; // Current cargo will be off current

filament starting next step

currentm = -1; // Not attached to any filament

cOFF_end += 1.0; // Counter falling off from the

ends of filament

printf ("Fell Off Ends , t = %d\n",tt);

}

}

} // End check if cargo was still on network after

filament modification

} // End check if cargo in still inside cell membrane

/* ### */

/* ################ CASE_A_6B ################ */

/* ### */

// CASE_A_6B: Calculate networks average filament

length

for (int fav = 0; fav < numFils; fav++) {

avg_fl += sqrt(pow((filEnds_M[fav][1] - filEnds_M[

fav][0]) ,2) + pow((filEnds_M[fav][3] - filEnds_M[

fav][2]) ,2));

}

avg_fil_net[tt] = avg_fl/numFils;

avg_fl = 0.0;

/* ### */

} // End for loop movement of current cargo

/* ### */

/* ################# CASE_A_7 ################ */

/* ### */

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 151

// CASE_A_7: Save current network/cargo data , record

msd10/msd100 , fraction time on network , Start FPTD

calculations

/* ### */

// Save network data , Free allocated memory space to

prevent memory leakage

if (STOP == 1) {

stepNum_2 = stepNum + 1; // New total time for cargo

} else {

stepNum_2 = timeIntMax; // New total time for cargo

}

// Loop over all filaments

// Comment out if you want to do production run -> For

filament shrink/growth VISUAL PLOTTING

/* --- */

for (int cc = 0; cc < numFils; cc++) {

// Re-declare character string in loop so it doesn ’t

append next filament number

char st_begFL [1024] = "NETWORK_SG_DATA ";

char st_endFL [1024];

// Open FILE to write data too

FILE *outdata;

sprintf(st_endFL ," _FPau %.2 fFCatP %.4 fFResP %.4 f_NetNUM%

d_Filnum%d.txt",(f_MT_PAUSE) ,(sg_prob_M_Cat) ,(

sg_prob_M_Res) ,(currentNet +1) ,(cc+1)); // Append

filament number for data

outdata = fopen(strcat(st_begFL ,st_endFL),"w");

// Loop over all time for current filament

for (int ttt = 0; ttt < (stepNum_2); ttt++) {

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 152

// Store current filaments x1 ,x2 ,y1 ,y2 ,p at current

time

fprintf(outdata ,"%lf\t%lf\t%lf\t%lf\t%lf\n",

filEnds_M2[ttt][cc][0], filEnds_M2[ttt][cc][1],

filEnds_M2[ttt][cc][2], filEnds_M2[ttt][cc][3],

filNet_M2[ttt][cc][3]);

}

// Close FILE of current filament

fclose(outdata);

} // End for loop over all filaments

// De-allocate memory of filament arrays

for (int ii = 0; ii < timeIntMax; ii++) {

for (int jj = 0; jj < numFils; jj++) {

free(filNet_M2[ii][jj]);

free(filEnds_M2[ii][jj]);

}

}

free(filNet_M2);

free(filEnds_M2);

/* --- */

/* ### */

// Save cargo data , Free allocated memory space to

prevent memory leakage

// Comment out if you want to do production run -> For

cargo VISUAL PLOTTING

/* --- */

// Re-declare character string in loop so it doesn ’t

append next cargo number

char st_begCO [1024] = "NETWORK_SG_DATA ";

char st_endCO [1024];

// Open FILE to write data too

FILE *outdata;

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 153

sprintf(st_endCO ," _FPau %.2 fFCatP %.4 fFResP %.4 f_NetNUM%

d_Cargonum%d.txt",(f_MT_PAUSE) ,(sg_prob_M_Cat) ,(

sg_prob_M_Res) ,(currentNet +1) ,(currentCarg +1)); //

Append cargo number for data

outdata = fopen(strcat(st_begCO ,st_endCO),"w");

// Loop over all time for current cargo

for (int ccc = 0; ccc < (stepNum_2); ccc++) {

// Store current cargo x,y position current time

fprintf(outdata ,"%lf\t%lf\n",Cargo_pos[ccc][0],

Cargo_pos[ccc][1]);

} // End for loop over all cargo time

// Close FILE of current cargo

fclose(outdata);

// De-allocate memory of Cargo arrays

for (int ii = 0; ii < timeIntMax; ii++) {

free(Cargo_pos[ii]);

}

free(Cargo_pos);

/* --- */

/* ### */

// Record msd10 and msd100 for cargo in current network

, Start FPTD calculations

// Record total msd of current network

msd10[currentNet] += msdCurrent10;

msd100[currentNet] += msdCurrent100;

// Record cargo information -> (cOFF_front , cOFF_back ,

ckOFF , ckON , ckON_tot , cSwitch , cSwitch_tot , tOn ,

tOff , t)

CargoInfo[currentCargo][0] = cOFF_front; // Total count

falling off front of filament

CargoInfo[currentCargo][1] = cOFF_back; // Total count

falling off back of filament

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 154

CargoInfo[currentCargo][2] = ckOFF; // Total count kOff

executed -> Cargo fell off filament (Not the end

points meaning walking off)

CargoInfo[currentCargo][3] = ckON; // Total count kOn

executed -> Cargo attached to filament

CargoInfo[currentCargo][4] = ckON_tot; // Total count

of total chances of attaching to filaments

CargoInfo[currentCargo][5] = cSwitch; // Total count

switching to different filament

CargoInfo[currentCargo][6] = cSwitch_tot; // Total

count of total chances of switching to different

filaments

CargoInfo[currentCargo][7] = tOn; // Cargo total time

ballistic motion on filament (seconds)

CargoInfo[currentCargo][8] = tOff; // Cargo total time

anomalous diffusion off filament (seconds)

CargoInfo[currentCargo][9] = t; // Total physical

simulation time (seconds)

CargoInfo[currentCargo][10] = ckOFF_tot; // Total count

of total chances of detaching from filaments

CargoInfo[currentCargo][11] = cOFF_end; // Counter

falling off from the ends of filament

// Record fraction of time on data

fracTimeOn[currentCargo] = tOn / t;

currentCargo += 1; // Move to next cargo

// Only Record FPTD if cargo reached cell edge

if (STOP == 1) {

// A cargo escaped at timestep stepNum = tt -> Add one

to the time escape happened

FPTD[stepNum] = FPTD[stepNum] + 1;

// Time cargo left cell -> FPT

cargoFPTs[currentCarg] = stepNum_time;

// Counter for 10 and 100 seconds

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 155

if (t <= 10.0) {

count10 ++;

} else if (t <= 100.0) {

count100 ++;

}

}

} // End for loop over all cargos for simulation

/* ### */

/* ################# CASE_A_8 ################ */

/* ### */

// CASE_A_8: Calculate msd10/msd100 for all cargo in

network , Save cargoFPTs of network , Start MFPT

calculations for network

// Msd for all cargos at 10s and 100s

msd10[currentNet] = msd10[currentNet] / numCargs;

msd100[currentNet] = msd100[currentNet] / numCargs;

// Data for production run

/* --- */

if (production_run == 1) {

// Output file -1 -> cargoFPT file -> Each column is a

new network

char sBeg [1024] = "Cargo_FPT ";

char sBeg2 [1024];

sprintf(sBeg2 ," _FPau %.2 fFCatP %.4 fFResP %.4 fNetNUM%d",(

f_MT_PAUSE) ,(sg_prob_M_Cat) ,(sg_prob_M_Res) ,(

currentNet +1));

strcat(sBeg ,sBeg2); // append sBeg2 to char sBeg

FILE *outcFPT;

outcFPT = fopen(strcat(sBeg ,sEnd1),"w");

for (int i = 0; i < numCargs; i++) {

fprintf(outcFPT ,"%lf\n",cargoFPTs[i]);

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 156

}

fclose(outcFPT);

// Output file 0 -> cargoFPT file -> Each column is a

new network

char sBegFAL [1024] = "Fil_AVGL ";

char sBeg2FAL [1024];

sprintf(sBeg2FAL ," _FPau %.2 fFCatP %.4 fFResP %.4 fNetNUM%d

",(f_MT_PAUSE) ,(sg_prob_M_Cat),(sg_prob_M_Res),(

currentNet +1));

strcat(sBegFAL ,sBeg2FAL); // append sBeg2 to char sBeg

FILE *outcFAL;

outcFAL = fopen(strcat(sBegFAL ,sEnd1),"w");

for (int i = 0; i < timeIntMax; i++) {

fprintf(outcFAL ,"%lf\n",avg_fil_net[i]);

}

fclose(outcFAL);

}

/* --- */

// Count number of cargos that left cell with respective

time -> 10 and 100 seconds

fluxOut10[currentNet] = count10;

fluxOut100[currentNet] = count100;

// Calculate MFPT for all cargos on this network

fptSum = 0.0;

for(int i = 0; i < numCargs; i++){

fptSum += cargoFPTs[i];

}

// Calculate FPTs average , varaince and standard

deviation of current network

fptVar = 0.0;

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 157

cargoMFPTs[currentNet] = fptSum / numCargs; // MFPT for

this network -> (SUM (fpt))/ (number of cargos)

for(int i = 0; i < numCargs; i++){

fptVar += pow((cargoFPTs[i] - cargoMFPTs[currentNet])

,2) / numCargs;

}

cargoFPTstdev[currentNet] = sqrt(fptVar); // Standard

deviation of FPTs for this network

// printf ("flux out 10: %d flux out 100: %d\n",count10 ,

count100);

} // End for loop over all networks

/* ### */

/* ################# CASE_B_1 ################ */

/* ### */

// CASE_B_1: Do MSD analysis

// NOTE: DATA OUTPUT IS WRT VARIATION IN FILAMENT LENGTHS

AND NUMBER OF FILAMENTS.

// ASSUMES CARGOS ARE INDEPENDENT THUS FOR EACH

NETWORK WITH SOME FIL LENGTH AND NUMBER OF FILS , WITH

// SOME NUM OF CARGOS DIFFUSING/WALKING , MSD IS

COMPUTED FOR THAT RESPECTIVE FIL LENGTH VALUE AND

NUMBER OF FILAMENTS

// Data for production run

/* --- */

if (production_run == 1) {

// Add pause and catastrophy freq to all text file name

char sBegA [1024];

sprintf(sBegA ," _FPau %.2 fFCatP %.4 fFResP %.4f",(f_MT_PAUSE)

,(sg_prob_M_Cat),(sg_prob_M_Res));

// MSD

msdSum10 = 0.0, msdSum100 = 0.0;

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 158

var10 = 0.0, var100 = 0.0;

for (int i = 0; i < numNets; i++) {

msdSum10 += msd10[i];

msdSum100 += msd100[i];

}

// Calculate average MSD , variation and standard

deviation

av10 = msdSum10 / numNets , av100 = msdSum100/ numNets;

for (int i = 0; i < numNets; i++) {

var10 += pow((msd10[i] - av10), 2) / numNets;

var100 += pow((msd100[i] - av100), 2) / numNets;

}

stdev10 = sqrt(var10); // If only 1 network , std and var

will be zero

stdev100 = sqrt(var100);

// Output file 1 and 2 -> MSD STANDARD DEVIATION files

-> FILES/DATA NEVER USED IN ANALYSIS FROM BRYAN

MAELFEYT

FILE *outp10;

FILE *outp100;

char sBeg10 [1024] = "msdSTDEV10 ";

char sBeg100 [1024] = "msdSTDEV100 ";

strcat(sBeg10 ,sBegA); // Append sBegA to char sBeg10

strcat(sBeg100 ,sBegA); // Append sBegA to char sBeg100

outp10 = fopen(strcat(sBeg10 ,sEnd1),"w");

outp100 = fopen(strcat(sBeg100 ,sEnd1),"w");

fprintf(outp10 ,"%lf\n",stdev10);

fprintf(outp100 ,"%lf\n",stdev100);

fclose(outp10);

fclose(outp100);

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 159

// Output file 3 -> MSD file -> ONLY FILE/DATA USED BY

BRYAN MAELFEYT IN ANALYSIS

FILE *outp;

char sBegMSD [1024] = "MSD";

strcat(sBegMSD ,sBegA); // Append sBegA to char sBegMSD

outp = fopen(strcat(sBegMSD ,sEnd1),"w");

for (int i = 0; i < timeIntMax; i++) {

fprintf(outp ,"%lf\t%lf\t%lf\n",msdArray[i][0], msdArray[

i][1], msdArray[i][2]);

}

fclose(outp);

/* ### */

/* ################# CASE_B_2 ################ */

/* ### */

// CASE_B_2: Do MFPT analysis

// Calculate overall MFPT

mfptSum = 0.0;

for (int i = 0; i < numNets; i++) {

mfptSum += cargoMFPTs[i];

}

// Calculate MFPT average , variance and standard

deviation over all networks

mfptVar = 0.0;

totMFPT = mfptSum / numNets;

for (int i = 0; i < numNets; i++) {

mfptVar += pow((cargoMFPTs[i] - totMFPT) ,2) / numNets;

}

totStdev = sqrt(mfptVar); // If only 1 network , std and

var will be zero

// Calculate FPTs average standard deviation

stdevSum = 0.0;

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 160

for (int i = 0; i < numNets; i++) {

stdevSum += cargoFPTstdev[i];

}

avgStdev = stdevSum / numNets;

// Calculate overall Flux

fluxSum10 = 0.0, fluxSum100 = 0.0;

fluxvar10 = 0.0, fluxvar100 = 0.0;

for (int i = 0; i < numNets; i++) {

fluxSum10 += fluxOut10[i];

fluxSum100 += fluxOut100[i];

}

// Calculate Flux average , variation and standard

deviation

fluxav10 = (fluxSum10 / numNets), fluxav100 = (

fluxSum100 / numNets);

for (int i = 0; i < numNets; i++) {

fluxvar10 += pow((fluxOut10[i] - fluxav10) ,2) / numNets

;

fluxvar100 += pow((fluxOut100[i] - fluxav100) ,2) /

numNets;

}

fluxstdev10 = sqrt(fluxvar10); // If only 1 network , std

and var will be zero

fluxstdev100 = sqrt(fluxvar100);

// Output file 4 -> MFPT , STD MFPT and AVERAGE STD MFPT

file

FILE *outpMFPT;

char sBegMFPT [1024] = "infoMFPT ";

strcat(sBegMFPT ,sBegA); // Append sBegA to char sBegMFPT

outpMFPT = fopen(strcat(sBegMFPT ,sEnd1) ,"w");

fprintf(outpMFPT ," Overall MFPT:\t%lf\nMFPT standard

deviation :\t%lf\nAverage standard deviation :\t%lf\n",

totMFPT ,totStdev ,avgStdev);

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 161

fclose(outpMFPT);

// Output file 5 and 6 -> Flux AVERAGE and STANDARD

DEVIATION files

FILE *foutp10;

FILE *foutp100;

char sBegfl10 [1024] = "fluxout10 ";

char sBegfl100 [1024] = "fluxout100 ";

strcat(sBegfl10 ,sBegA); // Append sBegA to char sBegfl10

strcat(sBegfl100 ,sBegA); // Append sBegA to char

sBegfl100

foutp10 = fopen(strcat(sBegfl10 ,sEnd1),"w");

foutp100 = fopen(strcat(sBegfl100 ,sEnd1) ,"w");

fprintf(foutp10 ,"%lf\t%lf\n",fluxav10 ,fluxstdev10);

fprintf(foutp100 ,"%lf\t%lf\n",fluxav100 ,fluxstdev100);

fclose(foutp10);

fclose(foutp100);

// Output file 7 -> FIRST PASSAGE TIME DISTRUTION file

FILE *FPoutp;

char sBegFPTD [1024] = "FPTD";

strcat(sBegFPTD ,sBegA); // Append sBegA to char sBegFPTD

FPoutp = fopen(strcat(sBegFPTD ,sEnd1),"w");

for (int i = 0; i < timeIntMax; i++) {

fprintf(FPoutp ,"%lf\n",FPTD[i]);

}

fclose(FPoutp);

// Output file 8 -> FRACTION OF TIME ON FILAMENT file ->

FILES/DATA NEVER USED IN ANALYSIS FROM BRYAN

MAELFEYT

FILE *outpFracs;

char sBegFracs [1024] = "fracTimeOnMSD ";

strcat(sBegFracs ,sBegA); // Append sBegA to char

sBegFracs

outpFracs = fopen(strcat(sBegFracs ,sEnd1) ,"w");

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 162

for (int i = 0; i < numCargs*numNets; i++) {

fprintf(outpFracs ,"%lf\n",fracTimeOn[i]);

}

fclose(outpFracs);

// Output file 9 -> CARGO INFORMATION -> (cOFF_front ,

cOFF_back , ckOFF , ckON , ckON_tot , cSwitch ,

cSwitch_tot , tOn , tOff , t, ckOFF_tot , cOFF_end)

FILE *outpCargoInf;

char sBegCargoInf [1024] = "CargoInfo ";

strcat(sBegCargoInf ,sBegA); // Append sBegA to char

sBegCargoInf

outpCargoInf = fopen(strcat(sBegCargoInf ,sEnd1),"w");

for (int i = 0; i < numCargs*numNets; i++) {

fprintf(outpCargoInf ,"%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf

\t%lf\t%lf\t%lf\t%lf\t%lf\n",CargoInfo[i][0],

CargoInfo[i][1], CargoInfo[i][2],

CargoInfo[i][3], CargoInfo[i][4], CargoInfo[i][5],

CargoInfo[i][6], CargoInfo[i][7], CargoInfo[i][8],

CargoInfo[i][9], CargoInfo[i][10] ,

CargoInfo[i][11]);

}

fclose(outpCargoInf);

}

/* --- */

/* ### */

} // End for loop over all number of filaments

} // End for loop over all filament lengths

} // End for loop over all cargo switching probability

} // End for loop over all filament rescue probability

// System total run time calculation

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 163

double t2 = clock ();

double total_time = (t2-t1)/CLOCKS_PER_SEC;

// Save system total run time

FILE *outpTIME;

char sBegTIME [1024] = "Total_RunTIME.txt";

outpTIME = fopen(sBegTIME ,"w");

fprintf(outpTIME ,"%lf",total_time);

fclose(outpTIME);

// Exit

return 0;

} // End main

B.3.2 Net Setup.c

This program is used in the main code to setup the filament network topology.

// Net_Setup.c: Imtiaz Ali

// Description: Function to make network , RNG/Negative/

Positive Polarity and Non -Radial/Radial Distribution

// Compiler: GCC 8.1

// Last modified: 02/21/2020

// Input: or = outer cell radius , ir = inner cell radius , fl =

filament length , xcent = cell x center , ycent = cell y

center

#include "Net_Setup.h"

#define M_PI 3.14159265358979323846

void Net_Setup(size_t j, size_t i, float Net_fil[j][i], float

Ends_fil[j][i], float or,

float ir, float fl, float xcent , float ycent , int numFils ,

int fil_radial , int fil_pol , float fil_buffer) {

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 164

// initialize local variables

float x_1 , x_2 , y_1 , y_2 , df_1;

float r_1 , r_2 , p_1 , theta_1 , alpha_1;

float d_change = fil_buffer + 0.1; // (microns) Closest

distance to inner or outer regions (buffer)

// Distribution of filament

if (fil_radial == 1) {

// Uniform radial starting position

r_1 = ir + d_change;

// Uniform angular starting position

// theta_1 = (M_PI /180) *30*j;

theta_1 = (M_PI /180) *(360/ numFils)*j;

// Alpha

alpha_1 = 0;

} else {

// Random radial starting position

r_1 = or - (or - ir) * (float)rand()/RAND_MAX;

// Random angular starting position

theta_1 = (2* M_PI) * (float)rand()/RAND_MAX;

// Alpha -> between -pi/2 and +pi/2

alpha_1 = -(M_PI) * (float)rand()/RAND_MAX + (M_PI /2);

}

// Set filament polarity -> positive is "out" negative is "

in"

if (fil_pol == -1) {

p_1 = -1; // Negative polarity

} else if (fil_pol == 1) {

p_1 = 1; // Positive polarity

} else {

p_1 = (-2) * (float)rand()/RAND_MAX + 1; // Random

polarity

}

p_1 = p_1 / fabs(p_1); // Make into 1 or -1 -> p is +1 or -1

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 165

// x and y values of filament endpoints -> start from center

-> radius for next point is filament length

// theta = initial angle , alpha = difference from initial

angle

x_1 = xcent + r_1 * cos(theta_1);

y_1 = ycent + r_1 * sin(theta_1);

x_2 = x_1 + fl * cos(theta_1 + alpha_1);

y_2 = y_1 + fl * sin(theta_1 + alpha_1);

r_2 = sqrt(pow((x_2 -xcent) ,2)+pow((y_2 -ycent) ,2)); // "outer

" end of filament

// make sure filament ends are within desired region

// shift filament out

if(r_1 < (ir + d_change)){

df_1 = (ir + d_change) - r_1; // add the difference of

being within inner radius

r_1 = r_1 + df_1;

r_2 = r_2 + df_1;

}

// shift filament in

if(r_2 > (or - d_change)){

df_1 = r_2 - (or - d_change); // subtract the difference

of being outside of outer radius

r_1 = r_1 - df_1;

r_2 = r_2 - df_1;

}

// adjusted x and y values of filament endpoints , x and y

values of filament endpoints

x_1 = xcent + r_1 * cos(theta_1);

y_1 = ycent + r_1 * sin(theta_1);

x_2 = x_1 + fl * cos(theta_1 + alpha_1);

y_2 = y_1 + fl * sin(theta_1 + alpha_1);

// "outer" end of filament -> NOT SURE WHY BRYAN DIDN ’T SAVE

r2!!??

r_2 = sqrt(pow((x_2 - xcent) ,2) + pow((y_2 - ycent) ,2));

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 166

// set return array values

Net_fil[j][0] = r_1; Net_fil[j][1] = theta_1; Net_fil[j][2]

= alpha_1; Net_fil[j][3] = p_1;

Ends_fil[j][0] = x_1; Ends_fil[j][1] = x_2; Ends_fil[j][2] =

y_1; Ends_fil[j][3] = y_2;

}

B.3.3 Net Distances MINMAX.c

This program is used in the main to calculate cargo distance from filament.

// Net_Distances.c: Imtiaz Ali

// Description: Function to make perpendicular distance ,

distance from both ends of filament and finding max and min

grid ranges

// compiler: GCC 8.1

// last modified: 01/08/2021

// Input: d_p = perp dist of cargo to fil segment , d_1 = dist

to fil seg start , d_2 = dist to fil seg end , x_carg = cargo

x pos , y_carg = cargo y pos

// Ends_fil = fil segment start and end (x,y) pos

// minx_1 = fil seg min x pos , maxx_2 = fil seg max x

pos , miny_1 = fil seg min y pos , maxy_2 = fil seg max y pos

// x_1 = current fil seg start x pos , x_2 = current fil

seg end x pos , y_1 = current fil seg start y pos , y_2 =

current fil seg end y pos ,

#include <stdio.h> // NULL

#include "Net_Distances_MINMAX.h"

#define M_PI 3.14159265358979323846

void Net_Distances(float* d_p , float* d_1 , float* d_2 , float

x_carg , float y_carg , size_t row , size_t colm , float

Ends_fil[row][colm]) {

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 167

// Perpendicular distance from a point to a point on a line

*d_p = fabs((Ends_fil[row][3] - Ends_fil[row][2]) * x_carg -

(Ends_fil[row][1] - Ends_fil[row][0]) * y_carg

+ Ends_fil[row][1] * Ends_fil[row][2] - Ends_fil[row][3] *

Ends_fil[row][0]) /

sqrt(pow((Ends_fil[row][3] - Ends_fil[row][2]) ,2) + pow((

Ends_fil[row][1] - Ends_fil[row][0]) ,2));

// Current cargo distance from current filaments inner

endpoint -> d1

*d_1 = sqrt(pow((x_carg - Ends_fil[row][0]) ,2) + pow((y_carg

- Ends_fil[row][2]) ,2));

// Current cargo distance from current filaments outer

endpoint -> d2

*d_2 = sqrt(pow((x_carg - Ends_fil[row][1]) ,2) + pow((y_carg

- Ends_fil[row][3]) ,2));

}

void Net_MINMAX_1(float* minx_1 , float* maxx_2 , float* miny_1 ,

float* maxy_2 , size_t row , size_t colm , float Ends_fil[row

][colm]) {

// // Old version , don ’t use (causes numerical round off

errors)

// // Current filament segments min/max relative (x,y)

positions

// *minx_1 = 0.5 * fabs(Ends_fil[row][0] + Ends_fil[row][1])

- 0.5 * fabs(Ends_fil[row][0] - Ends_fil[row][1]);

// *maxx_2 = 0.5 * fabs(Ends_fil[row][0] + Ends_fil[row][1])

+ 0.5 * fabs(Ends_fil[row][0] - Ends_fil[row][1]);

// *miny_1 = 0.5 * fabs(Ends_fil[row][2] + Ends_fil[row][3])

- 0.5 * fabs(Ends_fil[row][2] - Ends_fil[row][3]);

// *maxy_2 = 0.5 * fabs(Ends_fil[row][2] + Ends_fil[row][3])

+ 0.5 * fabs(Ends_fil[row][2] - Ends_fil[row][3]);

// Current filament segments min/max relative (x,y)

positions

if (Ends_fil[row][0] == Ends_fil[row][1]) {

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 168

*minx_1 = Ends_fil[row][0];

*maxx_2 = Ends_fil[row][0];

} else if (Ends_fil[row][0] < Ends_fil[row][1]) {

*minx_1 = Ends_fil[row][0];

*maxx_2 = Ends_fil[row][1];

} else {

*minx_1 = Ends_fil[row][1];

*maxx_2 = Ends_fil[row][0];

}

if (Ends_fil[row][2] == Ends_fil[row][3]) {

*miny_1 = Ends_fil[row][2];

*maxy_2 = Ends_fil[row][2];

} else if (Ends_fil[row][2] < Ends_fil[row][3]) {

*miny_1 = Ends_fil[row][2];

*maxy_2 = Ends_fil[row][3];

} else {

*miny_1 = Ends_fil[row][3];

*maxy_2 = Ends_fil[row][2];

}

}

void Net_MINMAX_2(float* minx_1 , float* maxx_2 , float* miny_1 ,

float* maxy_2 , float x_1 , float x_2 , float y_1 , float y_2)

{

// // Old version , don ’t use (causes numerical round off

errors)

// *minx_1 = 0.5 * fabs(x_1 + x_2) - 0.5 * fabs(x_1 - x_2);

// *maxx_2 = 0.5 * fabs(x_1 + x_2) + 0.5 * fabs(x_1 - x_2);

// *miny_1 = 0.5 * fabs(y_1 + y_2) - 0.5 * fabs(y_1 - y_2);

// *maxy_2 = 0.5 * fabs(y_1 + y_2) + 0.5 * fabs(y_1 - y_2);

// Current filament segments min/max relative (x,y)

positions

if (x_1 == x_2) {

*minx_1 = x_1;

*maxx_2 = x_1;

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 169

} else if (x_1 < x_2) {

*minx_1 = x_1;

*maxx_2 = x_2;

} else {

*minx_1 = x_2;

*maxx_2 = x_1;

}

if (y_1 == y_2) {

*miny_1 = y_1;

*maxy_2 = y_1;

} else if (y_1 < y_2) {

*miny_1 = y_1;

*maxy_2 = y_2;

} else {

*miny_1 = y_2;

*maxy_2 = y_1;

}

}

void Net_FilOff_FB(float* coff_f , float* coff_b , float p_1 ,

float x_c , float y_c ,

float x_1 , float x_2 , float y_1 , float y_2 , float

Cargo_prev_pos [], float Current_Fil_prev_pos [], float*

Fil_ends_FLAG) {

// Initialize variables to hold (+END) and (-END) of filament

positions

float x_beg , y_beg , x_end , y_end , x_beg_prev , y_beg_prev ,

x_end_prev , y_end_prev;

// Assign the (-END) = Beginning of filament and (+END) =

Ending of filament => (INDEPENDENT OF MOTOR TYPE)

/* --*/

if (p_1 < 0) {

// Negative polarity

// Current filament

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 170

x_beg = x_2; // (-END)

y_beg = y_2; // (-END)

x_end = x_1; // (+END)

y_end = y_1; // (+END)

// Previous filament

x_beg_prev = Current_Fil_prev_pos [1]; // (-END)

y_beg_prev = Current_Fil_prev_pos [3]; // (-END)

x_end_prev = Current_Fil_prev_pos [0]; // (+END)

y_end_prev = Current_Fil_prev_pos [2]; // (+END)

} else if (p_1 > 0) {

// Positive polarity

// Current filament

x_beg = x_1; // (-END)

y_beg = y_1; // (-END)

x_end = x_2; // (+END)

y_end = y_2; // (+END)

// Previous filament

x_beg_prev = Current_Fil_prev_pos [0]; // (-END)

y_beg_prev = Current_Fil_prev_pos [2]; // (-END)

x_end_prev = Current_Fil_prev_pos [1]; // (+END)

y_end_prev = Current_Fil_prev_pos [3]; // (+END)

}

/* --*/

// Check if working with endpoints

if (* Fil_ends_FLAG == 0.0) {

// Distance method needs to me used if endpoint conditions

met

// Previous filament to current cargo (One of these will

be zero)

float d_B2A = sqrt(pow((x_beg_prev - x_c) ,2) + pow((

y_beg_prev - y_c) ,2));

float d_E2A = sqrt(pow((x_end_prev - x_c) ,2) + pow((

y_end_prev - y_c) ,2));

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 171

// Current filament to current cargo

float d_B2B = sqrt(pow((x_beg - x_c) ,2) + pow((y_beg - y_c

) ,2));

float d_E2B = sqrt(pow((x_end - x_c) ,2) + pow((y_end - y_c

) ,2));

if ((((d_E2B > d_E2A) && (d_E2A == 0.0)) && ((d_E2B <

d_B2A) && (d_E2B < d_B2B))) ||

(((d_E2B < d_B2A) && (d_E2B < d_B2B)))) {

// Fell off at filament FRONT

*coff_f += 1.0; // (+END)

*Fil_ends_FLAG = -1.0;

} else if ((((d_B2B > d_B2A) && (d_B2A == 0.0)) && ((

d_B2B < d_E2A) && (d_B2B < d_E2B))) ||

((d_B2B < d_E2A) && (d_B2B < d_E2B))) {

// Fell off at filament BACK

*coff_b += 1.0; // (-END)

*Fil_ends_FLAG = -1.0;

}

}

// Check if working within endpoints

if (* Fil_ends_FLAG == 1.0) {

// Vector conditions will work if perpendicular line

condition met

// Initialize variables to hold dot -product computations

float d_c[2], d_B1[2], d_B2A[2], d_B2B [2], d_E1[2], d_E2A

[2], d_E2B [2]; // Difference vector array

float CP_Norm [6]; // Ratio of normalized dot product -> [

d_c*d_B1 , d_c*d_B2A , d_c*d_B2B , d_c*d_E1 , d_c*d_E2A ,

d_c*d_E2B]

float Diff_Mag [7]; // Magnitude of each difference vector

-> [d_c , d_B1 , d_B2A , d_B2B , d_E1 , d_E2A , d_E2B]

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 172

float zero_flag [4] = {0.0 ,0.0 ,0.0 ,0.0}; // Flag for

division by zero (4 POSSIBLE CASES) -> [d_B1 , d_B2A ,

d_E1 , d_E2A], FALSE = 0, TRUE = 1

// Assign difference vectors

/* --*/

// Cargo -to-Cargo (Current_Cargo - Previous_Cargo)

d_c[0] = x_c - Cargo_prev_pos [0]; // Cargo (xc_2 - xc_1)

d_c[1] = y_c - Cargo_prev_pos [1]; // Cargo (yc_2 - yc_1)

// Cargo -to-Filamnt (Previous_Fil_Beg/End - Previous_Cargo

)

d_B1 [0] = x_beg_prev - Cargo_prev_pos [0]; // Filament (

xbeg_prev - xc_1)

d_B1 [1] = y_beg_prev - Cargo_prev_pos [1]; // Filament (

ybeg_prev - yc_1)

d_E1 [0] = x_end_prev - Cargo_prev_pos [0]; // Filament (

xend_prev - xc_1)

d_E1 [1] = y_end_prev - Cargo_prev_pos [1]; // Filament (

yend_prev - yc_1)

// Cargo -to-Filamnt (Current_Fil_Beg/End - Previous_Cargo)

d_B2A [0] = x_beg - Cargo_prev_pos [0]; // Filament (xbeg -

xc_1)

d_B2A [1] = y_beg - Cargo_prev_pos [1]; // Filament (ybeg -

yc_1)

d_E2A [0] = x_end - Cargo_prev_pos [0]; // Filament (xend -

xc_1)

d_E2A [1] = y_end - Cargo_prev_pos [1]; // Filament (yend -

yc_1)

// Cargo -to-Filamnt (Current_Fil_Beg/End - Current_Cargo)

d_B2B [0] = x_beg - x_c; // Filament (xbeg - xc_2)

d_B2B [1] = y_beg - y_c; // Filament (ybeg - yc_2)

d_E2B [0] = x_end - x_c; // Filament (xend - xc_2)

d_E2B [1] = y_end - y_c; // Filament (yend - yc_2)

/* --*/

// Compute difference vector magnitude

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 173

/* --*/

Diff_Mag [0] = sqrt(pow(d_c[0],2) + pow(d_c[1],2)); // d_c

Diff_Mag [1] = sqrt(pow(d_B1 [0],2) + pow(d_B1 [1],2)); //

d_B1

Diff_Mag [2] = sqrt(pow(d_B2A [0],2) + pow(d_B2A [1],2)); //

d_B2A

Diff_Mag [3] = sqrt(pow(d_B2B [0],2) + pow(d_B2B [1],2)); //

d_B2B

Diff_Mag [4] = sqrt(pow(d_E1 [0],2) + pow(d_E1 [1],2)); //

d_E1

Diff_Mag [5] = sqrt(pow(d_E2A [0],2) + pow(d_E2A [1],2)); //

d_E2A

Diff_Mag [6] = sqrt(pow(d_E2B [0],2) + pow(d_E2B [1],2)); //

d_E2B

/* --*/

// Set flag for division by zero

/* --*/

if (Diff_Mag [1] == 0) {

zero_flag [0] = 1.0; // d_B1

}

if (Diff_Mag [2] == 0) {

zero_flag [1] = 1.0; // d_B2A

}

if (Diff_Mag [4] == 0) {

zero_flag [2] = 1.0; // d_E1

}

if (Diff_Mag [5] == 0) {

zero_flag [3] = 1.0; // d_E2A

}

/* --*/

// Condition (Dynein is the opposite of the Kinesin/Myosin

condition)

// Dynamic filament case

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 174

// Fall off BACK (Kinesin/Myosin) => (d_c*d_E1 == d_c*

d_E2A == d_c*d_E2B = 1) && (d_c*d_B2A == d_c*d_B2B = 1)

&& (d_c*d_B1 = -1)

// Fall off FRONT (Kinesin/Myosin) => (d_c*d_B1 == d_c*

d_B2A == d_c*d_B2B = -1) && (d_c*d_E1 == d_c*d_E2A = 1)

&& (d_c*d_E2B = -1)

// Fall off BACK (Dynein) => (d_c*d_E1 == d_c*d_E2A == d_c

*d_E2B = -1) && (d_c*d_B2A == d_c*d_B2B = -1) && (d_c*

d_B1 = 1)

// Fall off FRONT (Dynein) => (d_c*d_B1 == d_c*d_B2A ==

d_c*d_B2B = 1) && (d_c*d_E1 == d_c*d_E2A = -1) && (d_c*

d_E2B = 1)

// Static or no modified filament case (We don ’t need to

worry about cargo type -> d_c takes care of it)

// Fall off BACK (Kinesin/Myosin/Dynein) => (d_c*d_E1 ==

d_c*d_E2A == d_c*d_E2B = -1) && (d_c*d_B1 == d_c*d_B2A

= 1) && (d_c*d_B2B = -1)

// Fall off FRONT (Kinesin/Myosin/Dynein) => (d_c*d_B1 ==

d_c*d_B2A == d_c*d_B2B = -1) && (d_c*d_E1 == d_c*d_E2A

= 1) && (d_c*d_E2B = -1)

// Compute Cross -Product Normalized Ration => (d_vec DOT

a_vec)/(norm(d_vec) * norm(a_vec)) = cos(theta_{d_vec ,

a_vec})

/* --*/

if (zero_flag [0] == 0.0) {

CP_Norm [0] = (d_c [0]* d_B1 [0] + d_c [1]* d_B1 [1]) / (

Diff_Mag [0]* Diff_Mag [1]); // d_c*d_B1 -> (

Previous_Fil_Beg - Previous_Cargo)

} else {

CP_Norm [0] = 0.0;

}

if (zero_flag [1] == 0.0) {

CP_Norm [1] = (d_c [0]* d_B2A [0] + d_c [1]* d_B2A [1]) / (

Diff_Mag [0]* Diff_Mag [2]); // d_c*d_B2A -> (

Current_Fil_Beg - Previous_Cargo)

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 175

} else {

CP_Norm [1] = 0.0;

}

CP_Norm [2] = (d_c [0]* d_B2B [0] + d_c [1]* d_B2B [1]) / (

Diff_Mag [0]* Diff_Mag [3]); // d_c*d_B2B -> (

Current_Fil_Beg - Current_Cargo)

if (zero_flag [2] == 0.0) {

CP_Norm [3] = (d_c [0]* d_E1 [0] + d_c [1]* d_E1 [1]) / (

Diff_Mag [0]* Diff_Mag [4]); // d_c*d_E1 -> (

Previous_Fil_End - Previous_Cargo)

} else {

CP_Norm [3] = 0.0;

}

if (zero_flag [3] == 0.0) {

CP_Norm [4] = (d_c [0]* d_E2A [0] + d_c [1]* d_E2A [1]) / (

Diff_Mag [0]* Diff_Mag [5]); // d_c*d_E2A -> (

Current_Fil_End - Previous_Cargo)

} else {

CP_Norm [4] = 0.0;

}

CP_Norm [5] = (d_c [0]* d_E2B [0] + d_c [1]* d_E2B [1]) / (

Diff_Mag [0]* Diff_Mag [6]); // d_c*d_E2B -> (

Current_Fil_End - Current_Cargo)

/* --*/

// Check Front than Back

/* --*/

if ((((CP_Norm [0] < 0) && (CP_Norm [1] < 0) && (CP_Norm [2]

< 0)) && ((CP_Norm [3] >= 0) && (CP_Norm [4] >= 0)) && (

CP_Norm [5] < 0)) ||

(((CP_Norm [0] < 0) && (CP_Norm [1] < 0) && (CP_Norm [2] < 0)

) && ((CP_Norm [3] >= 0) && (CP_Norm [4] > 0)) && (

CP_Norm [5] < 0)) ||

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 176

(((CP_Norm [0] > 0) && (CP_Norm [1] > 0) && (CP_Norm [2] > 0)

) && ((CP_Norm [3] <= 0) && (CP_Norm [4] < 0)) && (

CP_Norm [5] > 0))) {

// Fell off at filament FRONT

*coff_f += 1.0; // (+END)

*Fil_ends_FLAG = -1.0;

} else if ((((CP_Norm [3] < 0) && (CP_Norm [4] < 0) && (

CP_Norm [5] < 0)) && ((CP_Norm [0] >= 0) && (CP_Norm [1]

>= 0)) && (CP_Norm [2] < 0)) ||

(((CP_Norm [3] > 0) && (CP_Norm [4] > 0) && (CP_Norm [5] >

0)) && ((CP_Norm [0] <= 0) && (CP_Norm [1] > 0)) && (

CP_Norm [2] > 0)) ||

(((CP_Norm [3] < 0) && (CP_Norm [4] < 0) && (CP_Norm [5] <

0)) && ((CP_Norm [0] >= 0) && (CP_Norm [1] < 0)) && (

CP_Norm [2] < 0))) {

// Fell off at filament BACK

*coff_b += 1.0; // (-END)

*Fil_ends_FLAG = -1.0;

}

}

/* --*/

}

B.3.4 Net Shrink Grow.c

This program is used in the main to calculate filament dynamics and update new

positions for the network.

// Net_Shrink_Grow.c: Imtiaz Ali

// Description: Function to shrink or grow filament network

// compiler: GCC 8.1

// last modified: 05/01/2021

// Input: or = outer cell radius , ir = inner cell radius ,

xcent = cell x center , ycent = cell y center

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 177

// filNet_M[fil_ #][0] = r1 , filNet_M[fil_ #][1] = theta ,

filNet_M[fil_ #][2] = alpha , filNet_M[fil_ #][3] = p

// filEnds_M[fil_ #][0] = x1 , filEnds_M[fil_ #][1] = x2 ,

filEnds_M[fil_ #][2] = y1, filEnds_M[fil_ #][3] = y2

// Grow_true = 1 (Defaulted to grow in main function)

#include "Net_Shrink_Grow.h"

#define M_PI 3.14159265358979323846

// ### //

// ### //

// NOTE: Closer filament is to edge (inner or outer), the more

energy it needs to grow/shrink

// Key assumption: We do not let the filaments disappear! (

Experimentally this will need to be done)

// Positive polarity points to positive end of filament:

// -> In our case , the way the equations are setup , this

implies positive end is the ending side.

// -> The side we work on is independent of the motor we

use.

// For Microtubule , need to use its polarity (p_0) to find its

positive end.

// -> If p_0 > 0, (radially outward) work with ending side (

closer to cell wall)

// -> If p_0 < 0, (radially inward) work with beginning side

(closer to cell nucleus)

// Kinesin move towards postive end of MT

// Dynein move towards negative end of MT

// For Actin , both ends must be used if applicable.

// Myosein move towards positive end of Actin -> Similar to

Kinesin

// This will be a little trickier to implement

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 178

// How to pick which side of filament is the ending side

depending on the polarity

// POSITIVE POLARITY (p_0 > 0) (Ending side is pointing

Radially Outward to Cell Wall/Membrane)

// Beginning Side (x1,y1)

----------------------------------- Ending Side (x2,y2)

// NEGATIVE POLARITY (p_0 < 0) (Ending side is pointing

Radially Inward to Cell Nucleus)

// Ending Side (x1,y1) -----------------------------------

Beginning Side (x2,y2)

// Microtubule shrink(seconds) much faster than they grow(

minutes) -> ONLY positive end shrinks/grows for MT.

// Actin filaments shrink/grow from both ends.

// kinesin 0.2 microns/s to 1microns/s with each step of 8 nm

long. With range of t_fil = 8 * 10^-3 to 40 * 10^-3 seconds

// -> motor stepping time range is 0.8 to 4 seconds within t =

100 to enter this code

// -> step depolimerization , assymetry is 5 to 20 -> 20

percent growth is 2microns per minute =-> 2.5 percent

// For dynein , polarity does change depending on what alpha/

beta -tubulin dimer it attaches too

// ### //

// ### //

void Net_SG_MICROTUBULE(size_t row , size_t colm , float Net_Fil

[row][colm], float Net_Ends[row][colm], float or,

float ir, float xcent , float ycent , int Grow_true , float DT,

float V_G_MT , float V_S_MT , float min_f_length , float

fil_buffer) {

// ### //

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 179

// ### //

// Part 1: Declaration , Initialization , Assignment

// Original filament variables -> (lr = Filaments current

length)

float x1_0 , x2_0 , y1_0 , y2_0 , r1_0 , theta_0 , alpha_0 , p_0 ,

lr, r2_0;

// New updated variables declaration -> (lr_n = Filaments

new length)

float df_1 , x_n , y_n , r_n , lr_n , theta_1 , alpha_1 , d_theta ,

gamma_1 , lr_temp;

float d_change = fil_buffer; // Closest distance to inner or

outer regions (microns)

float min_fil_length = min_f_length; // Smallest filament

length (microns) -> Filament never disappears

float max_fil_length = 2*sqrt(pow(or ,2) - pow(ir ,2)); //

Largest filament length (microns) -> (Max Cord Length) =

2*sqrt(or^2-ir^2)

// Variables for staying within region (I don ’t use these in

the region check anymore) (LEAVE FOR NOW)

// Inner region

float x_neg_min = xcent + -ir - d_change; // Nucleus

negative max x-pos -> x1 < x_neg_min

float x_pos_min = xcent + ir + d_change; // Nucleus positive

max x-pos -> x1 > x_pos_min

float y_neg_min = ycent + -ir - d_change; // Nucleus

negative max y-pos -> y1 < y_neg_min

float y_pos_min = ycent + ir + d_change; // Nucleus positive

max y-pos -> y1 > y_pos_min

// Outer Region

float x_neg_max = xcent + -or + d_change; // Cell negative

max x-pos -> x2 > x_neg_max

float x_pos_max = xcent + or - d_change; // Cell positive

max x-pos -> x2 < x_pos_max

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 180

float y_neg_max = ycent + -or + d_change; // Cell negative

max y-pos -> y2 > y_neg_max

float y_pos_max = ycent + or - d_change; // Cell positive

max y-pos -> y2 < y_pos_max

// Boolean for modifying beginning or ending side

int MOD_side; // Modify (x1 , y1) = 0, Modify (x2 ,y2) = 1

float rand_n = (float)rand()/RAND_MAX; // Use this for

Myosein -Actin Networks

// Choosing either shrinking , growing or do nothing to the

filament

int shrink_start; // Flag for filament shrinking

int growth_start = Grow_true; // Grow = 1, Shrink = 0,

Nothing = -1

// Set declared variables values -> (Filaments polarity

never changes)

x1_0 = Net_Ends[row][0]; x2_0 = Net_Ends[row][1]; y1_0 =

Net_Ends[row][2]; y2_0 = Net_Ends[row][3];

r1_0 = Net_Fil[row][0]; theta_0 = Net_Fil[row][1]; alpha_0 =

Net_Fil[row][2]; p_0 = Net_Fil[row][3];

// ### //

// ### //

// Part 2: Current length calculation , Pick filament side to

modify , Choose Grow , Shrink or do nothing

// Calculate filaments current length

lr = sqrt(pow((x2_0 - x1_0) ,2) + pow((y2_0 - y1_0) ,2));

// Pick which filament side we work on => Unique for

MICROTUBULE

if (p_0 < 0) {

// Negative Polarity

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 181

MOD_side = 0; // Work with beginning side of filament =>

x1 , y1

} else {

// Positive Polarity

MOD_side = 1; // Work with ending side of filament => x2,

y2

}

// Pick if we grow filament , shrink or do nothing to

filament

if (growth_start == 1) {

// Grow filament

shrink_start = 0; // False -> Do not shrink , GROW

// lr_n = lr * 1.10; // Microtubule Growth Filament 2.5% (

microns)

lr_n = lr + V_G_MT*DT; // New filament length ->

Microtubule Growth Filament 2.5% (microns)

// Check we didn ’t grow above max length

if (lr_n > max_fil_length) {

lr_n = max_fil_length - 0.05;

}

} else if (growth_start == 0) {

// Shrink filament

shrink_start = 1; // True -> Do not grow , SHRINK

lr_n = lr - V_S_MT*DT; // New filament length ->

Microtubule Shrinking filament 20% (microns)

// Check we didn ’t shrink below min length

if (lr_n < min_fil_length) {

lr_n = min_fil_length + 0.05;

}

} else {

// Do nothing to filament

shrink_start = -1; // N/A -> Do Nothing

lr_n = lr; // Keep Microtubules original length

}

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 182

// ### //

// ### //

// Part 3: Choosing to modify or not to modify filament if

sufficient system requirement are met

// Start modification if requirments are met:

if (((lr < min_fil_length) && (shrink_start == 1)) || ((lr

> max_fil_length) && (shrink_start == 0)) ||

(shrink_start == -1)) {

// ### //

// ### //

// Part 3A: Do not modify filament because system

requirements did not meet

// Store original filament points

Net_Ends[row][0] = x1_0; Net_Ends[row][2] = y1_0; //

Original beginning side points

Net_Ends[row][1] = x2_0; Net_Ends[row][3] = y2_0; //

Original ending side points

} else {

// Start filament modification

// ### //

// ### //

// Part 3B: Start modification of filament

// Condition statement for beginning side -> shrink , grow

or nothing

if (MOD_side == 0) {

// ### //

// ### //

// Part 3B_1: Start modification on beginning side of

filament

// -> Recalculate (x1 ,y1 ,r1 ,theta ,alpha)

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 183

// -> Don ’t recalculate (x2 ,y2 ,r2 ,beta=theta+

alpha ,GAMMA=theta+gamma)

// Calculate new beginning position for filament

x_n = x2_0 - lr_n * cos(theta_0 + alpha_0); // New x1

location

y_n = y2_0 - lr_n * sin(theta_0 + alpha_0); // New y1

location

r_n = sqrt(pow((x_n - xcent) ,2) + pow((y_n - ycent) ,2));

// New beginning distance from center of cell r_1

theta_1 = atan((y_n - ycent) / (x_n - xcent)); // New

CCW angle to filaments start point (Radians)

alpha_1 = theta_0 + alpha_0 - theta_1; // New difference

angle between filament end point (Radians)

// Calculate filaments new current length

lr_temp = sqrt(pow((x2_0 - x_n) ,2) + pow((y2_0 - y_n) ,2)

);

// Check if within proper region

// Condition check if new (r_1) is:

// -> Inside the nucleus , outside the cell , smaller than

min length or larger than max length

if (((r_n < (ir + d_change)) && (shrink_start == 0)) ||

((r_n > (or - d_change)) && (shrink_start == 0)) ||

(lr_temp < min_fil_length) ||

(lr_temp > max_fil_length)) {

// Re -calculate new postions so its within region

// lr_temp = lr * 0.90; // Let it shrink

lr_temp = lr; // Do nothing

x_n = x2_0 - lr_temp * cos(theta_0 + alpha_0);

y_n = y2_0 - lr_temp * sin(theta_0 + alpha_0);

theta_1 = atan((y_n - ycent) / (x_n - xcent)); // New

CCW angle to filaments start point (Radians)

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 184

alpha_1 = theta_0 + alpha_0 - theta_1; // New

difference angle between filament end point (

Radians)

} // End condition to keep beginning side outside inner

part of cell (nucleus)

// Store filaments new beginning position

Net_Ends[row][0] = x_n; Net_Ends[row][2] = y_n; // New

beginning side points

Net_Ends[row][1] = x2_0; Net_Ends[row][3] = y2_0; //

Original ending side points

Net_Fil[row][0] = r_n; Net_Fil[row][1] = theta_1;

Net_Fil[row][2] = alpha_1; // New r1 , theta , alpha

Net_Fil[row][3] = p_0; // Filament polarity never

changes

} // End shrinking/growing beginning side of filament

// Condition statement for ending side -> shrink , grow or

nothing

if (MOD_side == 1) {

// ### //

// ### //

// Part 3B_2: Start modification on ending side of

filament

// -> Recalculate (x2 ,y2 ,r2)

// -> Don ’t recalculate (x1 ,y1 ,r1 ,beta=theta+

alpha)

// Calculate new ending position for filament

x_n = x1_0 + lr_n * cos(theta_0 + alpha_0); // New x2

location

y_n = y1_0 + lr_n * sin(theta_0 + alpha_0); // New y2

location

r_n = sqrt(pow((x_n - xcent) ,2) + pow((y_n - ycent) ,2));

// New ending distance from center of cell r_2

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 185

// Calculate filaments new current length

lr_temp = sqrt(pow((x_n - x1_0) ,2) + pow((y_n - y1_0) ,2)

);

// Check if within proper region

// Condition check if new (r_2) is:

// -> Outside the cell , inside the nucleus , smaller than

min length or larger than max length

if (((r_n > (or - d_change)) && (shrink_start == 0)) ||

((r_n < (ir + d_change)) && (shrink_start == 0)) ||

(lr_temp < min_fil_length) ||

(lr_temp > max_fil_length)) {

// Re -calculate new postions so its within region

// lr_temp = lr * 0.90; // Let it shrink

lr_temp = lr; // Do nothing

x_n = x1_0 + lr_temp * cos(theta_0 + alpha_0);

y_n = y1_0 + lr_temp * sin(theta_0 + alpha_0);

} // End condition to keep ending side inside outer part

of cell (cell wall)

// Store filaments new ending position

Net_Ends[row][0] = x1_0; Net_Ends[row][2] = y1_0; //

Original beginning side points

Net_Ends[row][1] = x_n; Net_Ends[row][3] = y_n; // New

ending side points

Net_Fil[row][0] = r1_0; Net_Fil[row][1] = theta_0;

Net_Fil[row][2] = alpha_0; // Original r1 , theta ,

alpha

Net_Fil[row][3] = p_0; // Filament polarity never

changes

} // End shrinking/growing ending side of filament

} // End modying filament if system requirements are met

// ### //

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 186

// ### //

// Part 3: End

}

void Net_SG_ACTIN(size_t row , size_t colm , float Net_Fil[row][

colm], float Net_Ends[row][colm], float or ,

float ir, float xcent , float ycent , int Grow_true , int

Actin_side , float DT , float V_G_ACTIN , float V_S_ACTIN ,

float min_f_length , float fil_buffer) {

// ### //

// ### //

// Part 1: Declaration , Initialization , Assignment

// Original filament variables -> (lr = Filaments current

length)

float x1_0 , x2_0 , y1_0 , y2_0 , r1_0 , theta_0 , alpha_0 , p_0 ,

lr, r2_0;

// New updated variables declaration -> (lr_n = Filaments

new length)

float df_1 , x_n , y_n , r_n , lr_n , theta_1 , alpha_1 , d_theta ,

gamma_1 , lr_temp;

float d_change = fil_buffer; // Closest distance to inner or

outer regions (microns)

float min_fil_length = min_f_length; // Smallest filament

length (microns) -> Filament never disappears

float max_fil_length = 2*sqrt(pow(or ,2) - pow(ir ,2)); //

Largest filament length (microns) -> (Max Cord Length) =

2*sqrt(or^2-ir^2)

// Actin ONLY - Filament Side

int A_side = Actin_side; // No side = -1, Beginning side =

0, Ending side = 1

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 187

// Boolean for modifying beginning or ending side

int MOD_side; // Modify (x1 , y1) = 0, Modify (x2 ,y2) = 1

float rand_n = (float)rand()/RAND_MAX; // Use this for

Myosein -Actin Networks

// Choosing either shrinking , growing or do nothing to the

filament

int shrink_start; // Flag for filament shrinking

int growth_start = Grow_true; // Grow = 1, Shrink = 0,

Nothing = -1

// Set declared variables values -> (Filaments polarity

never changes)

x1_0 = Net_Ends[row][0]; x2_0 = Net_Ends[row][1]; y1_0 =

Net_Ends[row][2]; y2_0 = Net_Ends[row][3];

r1_0 = Net_Fil[row][0]; theta_0 = Net_Fil[row][1]; alpha_0 =

Net_Fil[row][2]; p_0 = Net_Fil[row][3];

// ### //

// ### //

// Part 2: Current length calculation , Pick filament side to

modify , Choose Grow , Shrink or do nothing

// Calculate filaments current length

lr = sqrt(pow((x2_0 - x1_0) ,2) + pow((y2_0 - y1_0) ,2));

// Pick which filament side we work on => Unique for ACTIN

if (p_0 < 0) {

// Negative Polarity

if (A_side == 0) {

MOD_side = 1; // Work with beginning side of filament =>

x2, y2

} else {

MOD_side = 0; // Work with ending side of filament => x1

. y1

}

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 188

} else {

// Positive Polarity

if (A_side == 1) {

MOD_side = 1; // Work with ending side of filament => x2

, y2

}else {

MOD_side = 0; // Work with beginning side of filament =>

x1, y1

}

}

// Pick if we grow , shrink , or do nothing to filament

if (growth_start == 1) {

// Grow filament

shrink_start = 0; // False -> Do not shrink , GROW

// lr_n = lr * 1.0; // Actin Growth Filament 2.5% (microns

)

lr_n = lr + V_G_ACTIN*DT; // New filament length -> Actin

Growth Filament 2.5% (microns)

// Check we didn ’t grow above max length

if (lr_n > max_fil_length) {

lr_n = max_fil_length - 0.05;

}

} else if (growth_start == 0) {

// Shrink filament

shrink_start = 1; // True -> Do not grow , SHRINK

lr_n = lr - V_S_ACTIN*DT; // New filament length -> Actin

Shrinking filament 20% (microns)

// Check we didn ’t shrink below min length

if (lr_n < min_fil_length) {

lr_n = min_fil_length + 0.05;

}

} else {

// Do nothing to filament

shrink_start = -1; // N/A -> Do Nothing

lr_n = lr; // Keep Actin original length

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 189

}

// ### //

// ### //

// Part 3: Choosing to modify or not to modify filament if

sufficient system requirement are met

// Start modification if requirments are met:

if (((lr < min_fil_length) && (shrink_start == 1)) || ((lr

> max_fil_length) && (shrink_start == 0)) ||

(shrink_start == -1)) {

// ### //

// ### //

// Part 3A: Do not modify filament because system

requirements did not meet

// Store original filament points

Net_Ends[row][0] = x1_0; Net_Ends[row][2] = y1_0; //

Original beginning side points

Net_Ends[row][1] = x2_0; Net_Ends[row][3] = y2_0; //

Original ending side points

} else {

// Start filament modification

// ### //

// ### //

// Part 3B: Start modification of filament

// Condition statement for beginning side -> shrink , grow

or nothing

if (MOD_side == 0) {

// ### //

// ### //

// Part 3B_1: Start modification on beginning side of

filament

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 190

// -> Recalculate (x1 ,y1 ,r1 ,theta ,alpha)

// -> Don ’t recalculate (x2 ,y2 ,r2 ,beta=theta+

alpha ,GAMMA=theta+gamma)

// Calculate new beginning position for filament

x_n = x2_0 - lr_n * cos(theta_0 + alpha_0); // New x1

location

y_n = y2_0 - lr_n * sin(theta_0 + alpha_0); // New y1

location

r_n = sqrt(pow((x_n - xcent) ,2) + pow((y_n - ycent) ,2));

// New beginning distance from center of cell r_1

theta_1 = atan((y_n - ycent) / (x_n - xcent)); // New

CCW angle to filaments start point (Radians)

alpha_1 = theta_0 + alpha_0 - theta_1; // New difference

angle between filament end point (Radians)

// Calculate filaments new current length

lr_temp = sqrt(pow((x2_0 - x_n) ,2) + pow((y2_0 - y_n) ,2)

);

// Check if within proper region

// Condition check if new (r_1) is:

// -> Inside the nucleus , outside the cell , smaller than

min length or larger than max length

if (((r_n < (ir + d_change)) && (shrink_start == 0)) ||

((r_n > (or - d_change)) && (shrink_start == 0)) ||

(lr_temp < min_fil_length) ||

(lr_temp > max_fil_length)) {

// Re -calculate new postions so its within region

// lr_temp = lr * 0.90; // Let it shrink

lr_temp = lr; // Do nothing

x_n = x2_0 - lr_temp * cos(theta_0 + alpha_0);

y_n = y2_0 - lr_temp * sin(theta_0 + alpha_0);

theta_1 = atan((y_n - ycent) / (x_n - xcent)); // New

CCW angle to filaments start point (Radians)

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 191

alpha_1 = theta_0 + alpha_0 - theta_1; // New

difference angle between filament end point (

Radians)

} // End condition to keep beginning side outside inner

part of cell (nucleus)

// Store filaments new beginning position

Net_Ends[row][0] = x_n; Net_Ends[row][2] = y_n; // New

beginning side points

Net_Ends[row][1] = x2_0; Net_Ends[row][3] = y2_0; //

Original ending side points

Net_Fil[row][0] = r_n; Net_Fil[row][1] = theta_1;

Net_Fil[row][2] = alpha_1; // New r1 , theta , alpha

Net_Fil[row][3] = p_0; // Filament polarity never

changes

} // End shrinking/growing beginning side of filament

// Condition statement for ending side -> shrink , grow or

nothing

if (MOD_side == 1) {

// ### //

// ### //

// Part 3B_2: Start modification on ending side of

filament

// -> Recalculate (x2 ,y2 ,r2)

// -> Don ’t recalculate (x1 ,y1 ,r1 ,beta=theta+

alpha)

// Calculate new ending position for filament

x_n = x1_0 + lr_n * cos(theta_0 + alpha_0); // New x2

location

y_n = y1_0 + lr_n * sin(theta_0 + alpha_0); // New y2

location

r_n = sqrt(pow((x_n - xcent) ,2) + pow((y_n - ycent) ,2));

// New ending distance from center of cell r_2

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 192

// Calculate filaments new current length

lr_temp = sqrt(pow((x_n - x1_0) ,2) + pow((y_n - y1_0) ,2)

);

// Check if within proper region

// Condition check if new (r_2) is:

// -> Outside the cell , inside the nucleus , smaller than

min length or larger than max length

if (((r_n > (or - d_change)) && (shrink_start == 0)) ||

((r_n < (ir + d_change)) && (shrink_start == 0)) ||

(lr_temp < min_fil_length) ||

(lr_temp > max_fil_length)) {

// Re -calculate new postions so its within region

// lr_temp = lr * 0.90; // Let it shrink

lr_temp = lr; // Do nothing

x_n = x1_0 + lr_temp * cos(theta_0 + alpha_0);

y_n = y1_0 + lr_temp * sin(theta_0 + alpha_0);

} // End condition to keep ending side inside outer part

of cell (cell wall)

// Store filaments new ending position

Net_Ends[row][0] = x1_0; Net_Ends[row][2] = y1_0; //

Original beginning side points

Net_Ends[row][1] = x_n; Net_Ends[row][3] = y_n; // New

ending side points

Net_Fil[row][0] = r1_0; Net_Fil[row][1] = theta_0;

Net_Fil[row][2] = alpha_0; // Original r1 , theta ,

alpha

Net_Fil[row][3] = p_0; // Filament polarity never

changes

} // End shrinking/growing ending side of filament

} // End modying filament if system requirements are met

// ### //

APPENDIX B. APPENDIX: COMPUTER PROGRAMS USED 193

// ### //

// Part 3: End

}

Bibliography

[1] Rossana Rojas Molina, Susanne Liese, and Andreas Carlson. Diffusion on mem-

brane domes, tubes, and pearling structures. Biophysical Journal, 120(3):424–

431, 2021.

[2] Molecular expressions cell biology: Microtubules. https://micro.magnet.fsu.

edu/cells/microtubules/microtubules.html. Accessed: October 06, 2021.

[3] David Ando, Nickolay Korabel, Kerwyn Casey Huang, and Ajay Gopinathan.

Cytoskeletal network morphology regulates intracellular transport dynamics.

Biophysical journal, 109(8):1574–1582, 2015.

[4] Edward A Codling, Michael J Plank, and Simon Benhamou. Random walk

models in biology. Journal of the Royal society interface, 5(25):813–834, 2008.

[5] Marina Sidortsov, Yakov Morgenstern, and Avraham Be’er. Role of tumbling in

bacterial swarming. Physical Review E, 96(2):022407, 2017.

[6] Hideki Takayasu. Stable distribution and levy process in fractal turbulence.

Progress of theoretical physics, 72(3):471–479, 1984.

[7] Irina Semenova, Anton Burakov, Neda Berardone, Ilya Zaliapin, Boris

Slepchenko, Tatyana Svitkina, Anna Kashina, and Vladimir Rodionov. Actin

dynamics is essential for myosin-based transport of membrane organelles. Cur-

rent Biology, 18(20):1581–1586, 2008.

[8] George H Weiss and Robert J Rubin. Random walks: theory and selected ap-

plications. Adv. Chem. Phys, 52:363–505, 1983.

[9] Howard C Berg. Random walks in biology. Princeton University Press, 2018.

194

https://micro.magnet.fsu.edu/cells/microtubules/microtubules.html
https://micro.magnet.fsu.edu/cells/microtubules/microtubules.html

BIBLIOGRAPHY 195

[10] Thanu Padmanabhan. More on random walks: Circuits and a tired drunkard.

In Sleeping Beauties in Theoretical Physics, pages 259–268. Springer, 2015.

[11] Daniel Ben-Avraham and Shlomo Havlin. Diffusion and reactions in fractals and

disordered systems. Cambridge university press, 2000.

[12] G Zumofen, J Klafter, and MF Shlesinger. Anomalous diffusion (lecture notes

in physics, vol. 519) ed. a. pekalski and k. sznajd-weron, 1999.

[13] Joseph Klafter, Michael F Shlesinger, and Gert Zumofen. Beyond brownian

motion. Physics today, 49(2):33–39, 1996.

[14] Benjamin M Regner, Dejan Vučinić, Cristina Domnisoru, Thomas M Bartol,

Martin W Hetzer, Daniel M Tartakovsky, and Terrence J Sejnowski. Anomalous

diffusion of single particles in cytoplasm. Biophysical journal, 104(8):1652–1660,

2013.

[15] Adal Sabri, Xinran Xu, Diego Krapf, and Matthias Weiss. Elucidating the ori-

gin of heterogeneous anomalous diffusion in the cytoplasm of mammalian cells.

Physical Review Letters, 125(5):058101, 2020.

[16] Jennifer L Ross, M Yusuf Ali, and David M Warshaw. Cargo transport: molec-

ular motors navigate a complex cytoskeleton. Current opinion in cell biology,

20(1):41–47, 2008.

[17] Bryan Maelfeyt, SM Ali Tabei, and Ajay Gopinathan. Anomalous intracellular

transport phases depend on cytoskeletal network features. Physical Review E,

99(6):062404, 2019.

[18] C Loverdo, O Bénichou, M Moreau, and R Voituriez. Enhanced reaction kinetics

in biological cells. Nature physics, 4(2):134, 2008.

[19] J Tailleur and ME Cates. Statistical mechanics of interacting run-and-tumble

bacteria. Physical review letters, 100(21):218103, 2008.

[20] V Zaburdaev, S Denisov, and Joseph Klafter. Levy walks. Rev. Mod. Physics,

87(2):483, 2015.

BIBLIOGRAPHY 196

[21] Gandhimohan M Viswanathan, Marcos GE Da Luz, Ernesto P Raposo, and

H Eugene Stanley. The physics of foraging: an introduction to random searches

and biological encounters. Cambridge University Press, 2011.

[22] Gandhimohan M Viswanathan, V Afanasyev, SV Buldyrev, EJ Murphy,

PA Prince, and H Eugene Stanley. Lévy flight search patterns of wandering

albatrosses. Nature, 381(6581):413, 1996.

[23] Gabriel Ramos-Fernández, José L Mateos, Octavio Miramontes, Germinal Co-

cho, Hernán Larralde, and Barbara Ayala-Orozco. Lévy walk patterns in the

foraging movements of spider monkeys (ateles geoffroyi). Behavioral ecology and

Sociobiology, 55(3):223–230, 2004.

[24] RPD Atkinson, CJ Rhodes, DW Macdonald, and RM Anderson. Scale-free

dynamics in the movement patterns of jackals. Oikos, 98(1):134–140, 2002.

[25] Gil Ariel, Amit Rabani, Sivan Benisty, Jonathan D Partridge, Rasika M Harshey,

and Avraham Be’Er. Swarming bacteria migrate by lévy walk. Nature commu-

nications, 6:8396, 2015.

[26] Felix Höfling and Thomas Franosch. Anomalous transport in the crowded world

of biological cells. Reports on Progress in Physics, 76(4):046602, 2013.

[27] Takahiro K Fujiwara, Kokoro Iwasawa, Ziya Kalay, Taka A Tsunoyama, Yusuke

Watanabe, Yasuhiro M Umemura, Hideji Murakoshi, Kenichi GN Suzuki, Yuri L

Nemoto, Nobuhiro Morone, et al. Confined diffusion of transmembrane proteins

and lipids induced by the same actin meshwork lining the plasma membrane.

Molecular biology of the cell, 27(7):1101–1119, 2016.

[28] Jordi Faraudo. Diffusion equation on curved surfaces. i. theory and application

to biological membranes. The Journal of chemical physics, 116(13):5831–5841,

2002.

[29] Daniel Coombs, Ronny Straube, and Michael Ward. Diffusion on a sphere with

localized traps: Mean first passage time, eigenvalue asymptotics, and fekete

points. SIAM Journal on Applied Mathematics, 70(1):302–332, 2009.

BIBLIOGRAPHY 197

[30] F Debbasch. A diffusion process in curved space–time. Journal of mathematical

physics, 45(7):2744–2760, 2004.

[31] Ramón Castañeda-Priego, Pavel Castro-Villarreal, Sendic Estrada-Jiménez, and

José Miguel Méndez-Alcaraz. Brownian motion of free particles on curved sur-

faces. arXiv preprint arXiv:1211.5799, 2012.

[32] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and

Marián Boguná. Hyperbolic geometry of complex networks. Physical Review E,

82(3):036106, 2010.

[33] Réka Albert and Albert-László Barabási. Statistical mechanics of complex net-

works. Reviews of modern physics, 74(1):47, 2002.

[34] Benjamin Paul Chamberlain, James Clough, and Marc Peter Deisenroth. Neural

embeddings of graphs in hyperbolic space. arXiv preprint arXiv:1705.10359,

2017.

[35] Marián Boguná, Fragkiskos Papadopoulos, and Dmitri Krioukov. Sustaining the

internet with hyperbolic mapping. Nature communications, 1:62, 2010.

[36] James R Clough and Tim S Evans. What is the dimension of citation space?

Physica A: Statistical Mechanics and its Applications, 448:235–247, 2016.

[37] James R Clough, Jamie Gollings, Tamar V Loach, and Tim S Evans. Transitive

reduction of citation networks. Journal of Complex Networks, 3(2):189–203, 2015.

[38] Rastko Sknepnek and Silke Henkes. Active swarms on a sphere. Physical Review

E, 91(2):022306, 2015.

[39] Nihad E Daidzic. Long and short-range air navigation on spherical earth. Inter-

national Journal of Aviation, Aeronautics, and Aerospace, 4(1):2, 2017.

[40] A Blumen, G Zumofen, and J Klafter. Transport aspects in anomalous diffusion:

Lévy walks. Physical Review A, 40(7):3964, 1989.

[41] Pavel Castro-Villarreal. Brownian motion meets riemann curvature. Journal of

Statistical Mechanics: Theory and Experiment, 2010(08):P08006, 2010.

BIBLIOGRAPHY 198

[42] John Ratcliffe. Foundations of hyperbolic manifolds, volume 149. Springer Sci-

ence & Business Media, 2006.

[43] Dirk Jan Struik. Lectures on classical differential geometry. Courier Corporation,

1961.

[44] N. Hitchin. Geometry of surfaces, 2013.

[45] Izrail Moiseevitch Gelfand, Richard A Silverman, et al. Calculus of variations.

Courier Corporation, 2000.

[46] L Meister and H Schaeben. A concise quaternion geometry of rotations. Mathe-

matical Methods in the Applied Sciences, 28(1):101–126, 2005.

[47] SM Ali Tabei, Stanislav Burov, Hee Y Kim, Andrey Kuznetsov, Toan Huynh,

Justin Jureller, Louis H Philipson, Aaron R Dinner, and Norbert F Scherer.

Intracellular transport of insulin granules is a subordinated random walk. Pro-

ceedings of the National Academy of Sciences, 110(13):4911–4916, 2013.

[48] William M Saxton and Peter J Hollenbeck. The axonal transport of mitochon-

dria. Journal of cell science, 125(9):2095–2104, 2012.

[49] Ajay Gopinathan, Kun-Chun Lee, Jennifer M Schwarz, and Andrea J Liu.

Branching, capping, and severing in dynamic actin structures. Physical review

letters, 99(5):058103, 2007.

[50] P Bleicher, A Sciortino, and AR Bausch. The dynamics of actin network turnover

is self-organized by a growth-depletion feedback. Scientific reports, 10(1):1–11,

2020.

[51] Ron Milo and Rob Phillips. Cell biology by the numbers. Garland Science, 2015.

[52] Peter Hänggi, Peter Talkner, and Michal Borkovec. Reaction-rate theory: fifty

years after kramers. Reviews of modern physics, 62(2):251, 1990.

	Acknowledgments
	Curriculum Vitae
	Abstract
	Introduction
	Motivation and Overview

	Lévy Walks in Curved Space
	Introduction
	Methods
	Geometry and Curvature
	Lévy Distribution and Mean-Squared Displacement
	Random Walk Algorithm

	Results
	Model and Fits
	Results: Preliminary Euclidean Case
	Results: Brownian Case
	Results: Lévy and Ballistic Case

	Discussion
	Appendix
	Mathematics
	Hyperbolic Geometry
	Spherical Geometry
	Simulation

	Intracellular Transport on Dynamic Actin Networks
	Introduction
	Methods
	Results
	Enhanced MSD and Optimal MFPT
	Tuned Speed Range Dependencies

	Discussion
	Appendix
	Simulation Parameters
	Tuned Filament Speed Time On and Distance Traveled
	Density Dependent Optimal Filament Speed

	Final Discussion
	Overall Conclusion and Future Work

	Appendix: Future work Derivations
	Reaction-Rate Derivation: Linear Potential
	Solving t1
	Solving t1,2
	Solving t1,2,3
	Final MFPT Form: Linear Potential
	MFPT, Linear Potential: Velocity Rate of Change

	Appendix: Computer Programs Used
	Introduction
	Lévy Walks in Curved Space Programs
	LWALK_IA_SPHERE_MAIN_DATA.m
	LWALK_IA_SPHERE_MAIN_DATA_MSD.m

	Intracellular Transport on Dynamic Actin Networks Programs
	simTransMainMSD_FPTD_IA_ADV_V1_Dynamic.c
	Net_Setup.c
	Net_Distances_MINMAX.c
	Net_Shrink_Grow.c

	Bibliography

