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ABSTRACT OF THE DISSERTATION

Novel Bayesian Methods in Neuroscience

By

Bo Zhou

Doctor of Philosophy in Statistics

University of California, Irvine, 2015

Associate Professor Babak Shahbaba, Chair

For an individual to successfully complete the task of decision-making, a set of temporally-

organized events must occur: stimuli must be detected, potential outcomes must be evaluat-

ed, behaviors must be executed or inhibited, and outcomes (such as reward or punishment)

must be experienced. Due to the complexity of this process, it is very likely the case that

decision-making is encoded by the temporally-precise interactions among a population of

neurons. Most existing statistical models, however, are inadequate for analyzing such so-

phisticated phenomenon as they either analyze a small number of neurons (e.g., pairwise

analysis) or only provide an aggregated measure of interactions by assuming a constant

dependence structure among neurons over time.

We start by proposing a scalable hierarchical semi-parametric Bayesian model to capture

dependencies among multiple neurons by detecting their co-firing (possibly with some lag

time). To this end, we model the spike train ( sequence of 1’s (spike) and 0’s (silence) ) for

each neuron using the logistic function of a continuous latent variable with a Gaussian Process

prior. Then we model the joint probability distribution of multiple neurons as a function of

their corresponding marginal distribution using a parametric copula model. Our approach

provides a flexible framework for modeling the underlying firing rates of each neuron. It

also also allows us to make inference regarding both contemporaneous and lagged synchrony.

xii



We evaluate our approach using several simulation studies and apply it to analyze real data

collected from an experiment designed for investigating the role of the prefrontal cortex of

rats in reward-seeking behaviors.

Next, we propose a non-stationary Bayesian model to capture the dynamic nature of neuronal

activity (such as the time-varying strength of the interactions among neurons). Our proposed

method yields results that provide new insights into the dynamic nature of population coding

in the prefrontal cortex during decision making. In our analysis, we note that while some

neurons in the prefrontal cortex do not synchronize their firing activity until the presence

of a reward, a different set of neurons synchronize their activity shortly after the onset of

stimulus. These differentially synchronizing sub-populations of neurons suggests a continuum

of population representation of the reward-seeking task. Our analyses also suggest that the

degree of synchronization differs between the rewarded and non-rewarded conditions.

Finally we propose a novel statistical model for detecting neuronal communities involved in

decision-making process. Our method characterizes the non-stationary activity of multiple

neurons during a basic cognitive task by modeling their joint probability distribution dy-

namically. Our proposed model can capture the time-varying dependence structure among

neurons while allowing the neuronal activity to change over time. This way, we are able to i-

dentify time-varying neuronal communities. By identifying communities of neurons that vary

under different decisions, we expect our method to provide insights into the decision-making

process in particular as well as into a broad range of cognitive functions.
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Chapter 1

Introduction

1.1 Background

Cognitive behaviors such as decision-making are complex as they involve organized patterns

of cognitive and behavioral subcomponents. For an individual to successfully complete a

decision-making task, a number of temporally-organized events must occur: stimuli must be

detected, potential outcomes must be evaluated, behaviors must be executed and inhibited,

and outcomes (such as reward or punishment) must be experienced. Neural mechanisms

involved in the decision-making process reveal principles of cognitive functions in general

[73]. Indeed, deficits in decision making underlie multiple psychiatric disorders including,

but not limited to, ADHD, bipolar, and compulsive behavior disorders,mood and anxiety

disorders, and schizophrenia [61]. Hence, the potential clinical impact of this work is broad.

Especially, understanding how populations of neurons function in decision-making process

and related behaviors will guide targeting of specific neural systems for development of new

treatments for psychiatric disorders.

In recent years, many researchers have studied the relationship between neuronal activities

1



and decision making [22, 73, 9]. These neurophysiological studies commonly involve recording

a sequence of spikes (action potentials) produced by neurons over time, known as a spike

train, for each neuron (Figure 1.1). However, complex behaviors and cognitive functions

(i.e., decision making process) are driven by the interactions between populations of neurons

[9] instead of a single neuron. For many years preceding the advent of ensemble recording,

neurons were recorded successively and then combined into synthetic populations based

upon shared timing. Although this technique continues to produce valuable information

[38], investigators are gravitating more and more towards simultaneous recording of multiple

neurons [40]. One of the major reasons that multiple-electrode recording technique has been

embraced is that it allows us to identify the dynamic activities of populations of neurons

simultaneously.

There have been a number of studies investigating how the activity of a single neuron are

related to decision-making [22, 73]. Later on, analysis of simultaneously recorded neurons

became focused on correlation of activity across pairs of neurons using cross correlation

analyses [48] and analyses of changes in correlation over time, i.e., by using a joint peri-

stimulus time histogram (JPSTH) [21] or rate correlations [48]. Similar analyses can be

also performed in the frequency domain by using coherence analysis of Fourier-transformed

neural activity of neuron pairs [6]. These methods attempt to distinguish exact synchrony

or lagged synchrony between a pair of neurons. Subsequently, a class of associated methods

were developed for addressing the question of whether synchrony between a pair of neurons

is merely due to chance or not. Later, researchers introduced a variety of methods to test the

statistical significance of synchrony, such as bootstrap confidence intervals [25]. To detect

the presence of conspicuous spike coincidences in multiple neurons, [23] proposed a novel

method, where such conspicuous coincidences, called unitary events, are defined as joint

spike constellations that recur more often than what can be explained by chance alone. In

their approach, simultaneous spiking events from N neurons are modeled as a joint process

composed of N parallel point processes. To test the significance of unitary events, they

2
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Figure 1.1: The Peri-stimulus time histogram (PSTH) of a single neuron. The upper plot is
the continuous representation (point process) of the spike train data. Each line represents
a trial and points on the line represent the time when there is a spike. The lower plot is a
summary of the spike train data by averaging activity across trials.

developed a new method, called joint-surprise, which measures the cumulative probability of

finding the same or even larger number of observed coincidences by chance. [63] investigated

how correlated spiking activity in complete neural populations depends on the pattern of

visual simulation. They proposed to use a generalized linear model to capture the encoding

of stimuli in the spike trains of a neural population. In their approach, a cell’s input is

presented by a set of linear filters and the summed filter responses are exponentiated to obtain

an instantaneous spike rate. The set of filters include a stimulus filter, a post-spike filter

(to capture dependencies on history), and a set of coupling filter (to capture dependencies

on the recent spiking of other cells). Recent developments in detecting synchrony among

3



neurons include models that account for trial to trial variability and the evolving intensity

of firing rates between multiple trials. For more discussion on analysis of spike trains, refer

to [23, 6, 32, 13, 63, 4, 14, 35]

Recently [33] proposed a new method to quantify synchrony between a pair of neurons. They

argued that separating stimulus effects from history effects would allow for a more precise

estimate of the instantaneous conditional firing rate. Specifically, given the firing history

Ht, define λA(t|HA
t ), λB(t|HB

t ), and λAB(t|HAB
t ) to be the conditional firing intensities of

neuron A, neuron B, and their synchronous spikes respectively. Independence between the

two point processes can be examined by testing the null hypothesis H0 : ζ(t) = 1, where

ζ(t) =
λAB(t|HAB

t )

λA(t|HA
t )λB(t|HB

t )
. The quantity [ζ(t)−1] can be interpreted as the deviation of co-firing

from what can be predicted by independence (i.e., when ζ(t) = 1 for all t). Note that the

marginal probability of firing for each neuron still need to be modeled, respectively. To do

this, they assume that the spike train follows a Poisson process, which is the simplest form of

point processes. The main limitation of this work is that it assumes that the number of spikes

within a particular time frame follows a Poisson distribution. It is, however, very unlikely

that actual spike trains follow this assumption [1, 31, 65, 32, 28]. One possible remedy is

to use inhomogeneous Poisson process or inhomogeneous gamma-interval process [13] which

assumes time-varying firing rates. See [5, 6, 32, 79, 66, 13, 4, 34, 70, 35] for more alternative

methods of modeling spike trains. Another limitation is that it assumes static relationship

between a pair of neurons which might be unlikely the case during complex decision making

process.

A set of multivariate analysis techniques, such as principal components analysis (PCA), in-

dependent component analysis (ICA), and k-means clustering, have been also proposed for

investigating simultaneously-recorded populations of neurons [20, 10, 56, 6, 48]. There have

been also many model-based methods that use Bayesian approach or information theory

for inference [See for example, 30, 72]. In addition, Several stationary copula models have

4



been previously proposed for neuroscience problems when analyzing multiple neurons. [4]

proposed a variety of copula models for capturing neural dependencies and develop an effi-

cient maximum likelihood procedure for inference. In a recent work, [77] proposed a unified

approach to model multivariate binary data using copulas on partitions. They established

a modeling framework which produced likelihood-based inference about the effects of the

covariates on marginal success probabilities while accounting for the correlation among mul-

tivariate outputs. Our method can be considered as a generalization of this approach from

multivariate binary outputs to multivariate binary time series.

These static models discussed above which aggregate cross-neuronal spike-train interactions

over time can produce misleading results. Indeed, there have been many dynamic models al-

ready developed for modeling brain function and effective connectivity [18, 11, 58, 57, 43, 60,

37]. [18] developed a non-stationary model to detect psychophysiological interactions among

neurophysiological measurements while assuming known change points and then apply it to

analyze data from an fMRI experiment in which a single female subject was asked to view

radially moving dots under two attentional states. Later on [67] developed a new technique

to detect change points in voxel-level fMRI studies by assuming a single state-related shift

from baseline to activated state and a subsequent return to baseline at a later unknown time.

Their approach can be further generalized to more rapid alteration among multiple states

by allowing for the possibility of multiple activation onsets and durations though out the

course of the time series. The main limitation of these existing dynamic models is that they

either assume the change points are known or there are a finite number of unknown change

points and hence the model remains approximately static.

In general, the methods discussed so far are not designed to identify sub-networks among

neurons. In this dissertation, we address this issue by proposing a novel clustering method

for neurons. Our method, presented in Chapter 4, is related to partition probability method

(PPM) of [44]. PPM was used for clustering with covariates, i.e., partitioning a set of

5



experimental units where the probability of any particular partition is allowed to depend on

covariates. It is assumed that units with equal or similar covariates should be a priori more

likely to co-cluster than others. let ρn = {S1, ..., Skn} denote a partition of the n experimental

units into kn subsets, Sj. The Partition probability models ( see [26, 2, 12] ) constructs the

probability of a partition, p(ρn), by introducing cohesion functions, c(A), for A ⊂ {1, ..., n}

that measure how tightly grouped the elements in A are thought to be. The probability model

for any partition can then be written as, p(ρn) ∝
∑kn

j=1 c(Sj). The probability distribution

of data conditional on the partition can be modeled as p(yn|ρn) ∝
∑kn

j=1 pj(y
∗
j ) where y∗j is

the data in the jth partition. To account for the covariates in partitioning, [44] proposed to

model the partition as p(ρn) ∝
∑kn

j=1 g(x∗j)c(Sj) where g(x∗j) is a nonnegative function which

estimates the similarity of the covariates, x∗j . Our model for community detection among

spike trains can be considered as a generalization of this model in which neurons with high

co-firing probability tend to co-cluster than others.

Another approach for detecting neural communities is based on stochastic block models [27].

In the simplest stochastic blockmodels, n vertices are assigned to K blocks, or communities,

and undirected edges are placed independently between vertex pairs with probabilities. The

number of edges between a pair of vertices is assumed to be independently Poisson distribut-

ed. [29] proposed a generalization of blockmodels which shows substantial improvement for

community detection in complex networks while accounting for an additional component,

variation in vertex degree. In their degree-corrected model, the probability distribution over

undirected multigraphs also relies on a new set of parameters, θi, which control the expected

degrees of vertices i. The main limitation of this work is that the number of communities in

networks must be given which might be problematic in real data analysis. Latent threshold

models have also been utilized to identify the effective connectivity among multiple time

6



series (see [46]). A basic latent threshold model can be defined as,

yt = xTt b+ εt, εt ∼ N(0, σ2) (1.1)

bi = βi1βi>di . (1.2)

di is predefined latent thresholds and the coefficient will be shrunk to zero if it falls below

the threshold. This mechanism allows us to obtain a sparse network in terms of effective

connectivity among multivariate time series. Those methods discussed above allow us to

detect communities in variety of networks. However, the static nature of these methods

leads to its inability to detect dynamics of community structures. Some recent works have

been focused on generalizing these methods to dynamic versions. [68] recently proposed

a hierarchical stochastic block model which extend the stochastic blockmodels to settings

where interactions between a group of units are observed at multiple points in time. This

model allows the network structures change over time by introducing a hidden Markov

model for the parameters of the network. The points in time when structural changes

seem to have occurred can also be detected. The community structures of the network are

assumed to evolve according to a discrete-time point process and the number of states in

the system can be considered as a random variable to be estimated from data. However,

this model assume conditional independence between states which might not be supported

by the data. More general mechanisms need to be introduced into network models that do

not depend on discrete state space models. [47] also developed a dynamic latent threshold

models for capturing dynamic network structure among multivariate time series by allowing

the coefficient to vary over time. The value of coefficients can be zero for some periods of

time and non-zero with time-varying values in other periods. Allowing for temporal changes

in relationship among time series, this method provide a framework for detecting sparse

dynamic structures in network connectivity by the latent threshold mechanism.
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1.2 Contributions

The main contributions of the dissertation are as follows:

• A semi-parametric Bayesian model for detecting synchrony among multiple neu-

rons which provides a flexible framework for modeling the time-varying underlying

firing rates of single neuron as well as making inference regarding both contemporane-

ous and lagged synchrony among neurons.

• A dynamic Bayesian model for characterizing time-dependent cross-neuronal in-

teractions among multiple neurons simultaneously recorded during decision making

process.

• A non-stationary Bayesian model for detecting time-varying community structures

of the neuronal network.

1.3 Outline

This dissertation is organized as follows. Chapter 2 discusses a semi-parametric Bayesian

model for detecting synchrony among multiple neurons. Chapter 3 introduces dynamic

Bayesian model for characterizing time-dependent cross-neuronal interactions among multi-

ple neurons. Chapter 4 proposes another dynamic Bayesian model to capture time-varying

community structures among population of neurons. The last chapter 5 is devoted to dis-

cussion and future directions. .
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Chapter 2

A Semiparametric Bayesian Model for

Detecting Synchrony Among Multiple

Neurons

2.1 Description of the Experiment and Data

In this experiment we recorded the activity of multiple neurons in the prefrontal cortex of rats

while they were presented with stimuli that either predicted or did not predict the availability

of a reward. Figure 2.1 shows the experiment settings [see 41, for more details]. Rats were

tested in an operant box (∼ 12′′ L × 9.5′′ W × 11.5′′ H; Med-Associates) which was equipped

with lights, tones, levers, and a receptacle for delivering liquid sucrose reward. During the

recording/test sessions, two different stimuli were presented: tone 1 (10 KHz) or tone 2 (5

KHz) individually and in pseudo-random order. At the same time, one of two levers was

presented an active-lever, paired with tone 1 (Rewarded-Stimulus - RS) and an inactive-lever

paired with tone 2 (Non-rewarded Stimulus - NS). Pressing the active lever resulted in the
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offset of tone 1, retraction of the lever, and illumination of the reward receptacle. If the rat

then went to the reward receptacle, 0.1 ml of 15% sucrose solution was delivered as a reward.

Pressing the inactive lever produced no effect. Tones were played for a maximum of 3 sec, and

levers remained extended for a maximum of 10 sec. Animals received a 20-30 sec time-out

period following either well entry or lever retraction (after the NS-lever was retracted or if

the RS-lever was pressed but the well was not entered). Testing/recording sessions lasted one

hour, during which time ∼ 50 RS and ∼ 50 NS lever/tone complexes were presented. After

rats were trained to perform the DS-Sucrose task, we recorded the activity of prefrontal

cortical neurons during task performance. After this recording session, we also recorded

the activity of the same populations of neurons during four extinction sessions. During

these sessions pressing the active lever resulted in illumination of the reward receptacle, but

entering the receptacle produced no reward. Over the course of these extinction sessions rats

learned not to press the active lever. The results in this report are focused exclusively on

data collected during performance of the DS-Sucrose task, and do not include (extinction)

data.

We recorded the activity of multiple single neurons simultaneously by sampling from multiple

channels of an implanted 16-wire electrode array. We recorded both action potentials (i.e.,

spikes– the firing activity of single neurons) and local field potentials (averaged population

activity). In this report we focus on action potential data. Arrays were connected to a

headstage during recording sessions (20x gain, Plexon) to amplify the recorded neural signals.

Signals were passed through a cable (Omnetics Connector) to an electrical commutator (Keyo

Electric) to allow free movement. Commutator output was delivered to a Plexon recording

system (MAP/16), where signals were amplified (50x), filtered (100 Hz - 8 kHz), and sampled

(40 kHz). Action potentials were recorded using RASPUTIN software (Plexon) where gain

and thresholds were set to maximize signal-to-noise. Recorded spikes were further sorted

offline using Offline Sorter (Plexon) using a combination of template-matching and principal

components analyses. By spike-sorting, we were able to isolate action potential waveforms
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Figure 2.1: A sound-attenuated operant box equipped with 2 retractable levers, a house-
light (an overhead light to illuminate the whole box) a tone generator for making tones of
different frequencies, and a port on the side of the box opposite the levers where the animal
collects its reward (0.1 ml of 15% sucrose solution delivered by a pump outside the box)

corresponding to the activity of each neuron recorded so that we could identify the unique

contribution of each neurons activity. Well-isolated (high signal to noise) action potentials

from single neurons that fired consistently throughout the recording session were included

for analysis. The time stamp of each action potential for each neuron was recorded and time

stamps were used for further analysis. Time stamps for behavioral events were also recorded.

These were sent from the Med-Associates behavioral control system to the Plexon recording

system for use in aligning neural activity to behavior.

2.2 Gaussian Process Modeling of Firing Rates

Capturing synchrony between a pair of neurons partly depends on a better understanding

of the firing patterns of each neuron. As seen in Figure 1.1, the nonlinear firing rates can
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provide meaningful information regarding the temporal activity of each neuron. To this end,

we propose to use a Gaussian process model to model the non-stationary underlying firing

rate for a single neuron. First we discretize time so that there is at most one spike within

each time interval. The spike trains represented by point processes can then be transformed

to binary time series which consist of 1s and 0s, where 1 indicates presence and 0 indicates

absence of spikes in each time bin. Define the response variable, yt, to be the binary time

series comprised of 1s (spike) and 0s (silence). The firing rate for each neuron is assumed

to depend on an underlying latent variable, u(t), which has a Gaussian process prior. In

statistics and machine learning, Gaussian processes are widely used as priors over functions.

Similar to the Gaussian distribution, a Gaussian process is defined by its mean (usually set

to 0 in prior) and its covariance function C: f ∼ GP(0, C). Here, the function of interest is

the underlying latent variable u(t), which is a stochastic process indexed by time t. Hence,

the covariance function is defined in terms of t. We use the following covariance form, which

includes a wide range of smooth nonlinear functions [64, 51]:

Cij = Cov[u(ti), u(tj)] (2.1)

= λ2 + η2 exp[−ρ2(ti − tj)2] + δijσ
2
ε (2.2)

In this setting, ρ2 and η2 control smoothness and the height of oscillations respectively.

λ, η, ρ and σ are hyperparameters with their own hyperpriors. Throughout this paper, we

put N(0, 32) prior on the log of these hyperparameters. We specify the spike probability, pt,

within time interval t in terms of u(t) through the following transformation:

pt =
1

1 + exp[−u(t)]
, (2.3)
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As u(t) increases, so does pt.

The prior autocorrelation imposed by this model allows the firing rate to change smoothly

over time. Note that this does not mean that we believe the firing patterns over a single trial

are smooth. However, over many trials, our method finds a smooth estimate of the firing

rate. The dependence on prior firing patterns is through the term (ti− tj) in the covariance

function. As this term decreases, the correlation between u(ti) and u(tj) increases. This

is different from other methods [31, 33] that are based on including an explicit term in the

model to capture firing history. For our analysis of experimental data, we discretize the time

into 5 ms intervals so there is at most one spike within each interval. Therefore, the temporal

correlations in our method are on a slow time scale [25]. When there are R trials (i.e., R spike

trains) for each neuron, we model the corresponding spike trains as conditionally independent

given the latent variable u(t). Note that we can allow for trial-to-trial variation by including

a trial-specific mean parameter such that [u(t)](r) ∼ GP(µr, C), where r = 1, . . . , R, (R =

total number of trials or spike trains).

Figure 2.2 illustrates this method using 40 simulated spike trains for a single neuron. The

dashed line shows the true firing rate , pt = 5(4 + 3 sin(3πt)), for t = 0, 0.01, . . . , 1, the

solid line shows the posterior expectation of the firing rate, and the gray area shows the

corresponding 95% probability interval. The plus signs on the horizontal axis represents

spikes over 100 time intervals for one of the 40 trials.

Figure 2.3 shows the posterior expectation of firing rate (blue curve) overlaid on the PSTH

plot of a single neuron with 5 ms bin intervals from the experimental data (discussed above)

recorded over 10 seconds.
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Figure 2.2: An illustrative example for using a Gaussian process model for a neuron with
40 trials. The dashed line shows the true firing rate, the solid line shows the posterior
expectation of the firing rate, and the gray area shows the corresponding 95% probability
interval. The plus signs on the horizontal axis represents spikes over 100 time intervals for
one of the 40 trials.

2.3 Modeling dependencies between a pair of neurons

Based on modeling the firing rates of each single neuron using Gaussian process models

discussed above, we can then identify the synchrony between a pair of neurons by jointly

modeling of their firing activity. Let yt and zt be binary time series indicating presence

or absence of spikes within time interval t for two neurons. Denote pt to be the spike

probability at interval t for the first neuron, and qt to denote the spike probability at the

same interval for the second neuron. Given the corresponding latent variables u(t) and v(t)

with Gaussian process priors GP(0, Cu) and GP(0, Cv) respectively, we model the marginal

firing probabilities of the two neurons as pt = 1/{1+exp[−u(t)]} and qt = 1/{1+exp[−v(t)]}.

If the the two neurons are independent, the joint probability of firing at the same time
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Figure 2.3: Using our Gaussian process model to capture the underlying firing rate of a
single neuron from prefrontal cortical areas in rat’s brain. There are 51 spike trains recorded
over 10 seconds. The PSTH plot is generated by creating 5 ms intervals. The blue curve
shows the estimated firing rate (posterior expectation).

is P (yt = 1, zt = 1) = ptqt. In general, however, we can write the probability of firing

simultaneously as the product of their individual probabilities multiplied by a factor, ptqtζ,

where ζ represents the excess firing rate (ζ > 1) or the suppression firing rate (ζ < 1) due

to dependence between two neurons [78, 33]. That is, ζ accounts for the excess joint spiking

beyond what is explained by independence. For independent neurons, ζ = 1. Sometimes,

the extra firing can occur after some lag time L. That is, in general, P (yt = 1, zt+L = 1) =

ptqt+Lζ for some L. Therefore, the marginal and joint probabilities of two neurons can be
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written as follows,

P (yt = 1|p, q, ζ, L) = pt (2.4)

P (yt = 0|p, q, ζ, L) = 1− pt (2.5)

P (zt = 1|p, q, ζ, L) = qt (2.6)

P (zt = 0|p, q, ζ, L) = 1− qt (2.7)

P (yt = 1, zt+L = 1|p, q, ζ, L) = ptqt+Lζ (2.8)

P (yt = 1, zt+L = 0|p, q, ζ, L) = pt − ptqt+Lζ (2.9)

P (yt = 0, zt+L = 1|p, q, ζ, L) = qt+L − ptqt+Lζ (2.10)

P (yt = 0, zt+L = 0|p, q, ζ, L) = 1− pt − qt+L + ptqt+Lζ (2.11)

where

max(pt + qt+L − 1, 0)

ptqt+L
≤ ζ ≤ min(pt, qt+L)

ptqt+L
. (2.12)

In this setting, the observed data include two neurons with R trials of spike trains (indexed

by r = 1, 2, ..., R) per neuron. Each trial runs for S seconds. We discretize time into T

intervals (indexed by t = 1, 2, ..., T ) of length S/T such that there are at most 1 spike in

within each interval. We assume that the lag L can take a finite set of values from [−K,K]
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for some biologically meaningful K, and write the likelihood function as follows:

L(ζ, u, v, L) =
K∑
k=0

1k=L

R∏
r=1

[ T−k∏
t=1

P (y
(r)
t , z

(r)
t+k)

T∏
t=T−k+1

P (y
(r)
t )

k∏
t=1

P (z
(r)
t )
]

+

−1∑
k=−K

1k=L

R∏
r=1

[ T+k∏
t=1

P (y
(r)
t−k, z

(r)
t )

−k∏
t=1

P (y
(r)
t )

T∏
t=T+k+1

P (z
(r)
t )
]

(2.13)

We put uniform priors on ζ and L over the assumed range. As mentioned above, the

hyperparameters in the covariance function have weakly informative (i.e., broad) priors: we

assume the log of these parameters has a N(0, 32) prior. We use Markov Chain Monte Carlo

algorithms to simulate samples from the posterior distribution of model parameters given

the observed spike trains. See section 2.5 for more details.

2.3.1 Illustrative examples

In this section, we use simulated data to illustrate our method. We consider three scenarios:

1) two independent neurons, 2) two dependent neurons with exact synchrony (L = 0), and

3) Two dependent neurons with lagged co-firing. In each scenario, we assume a time-varying

firing rate for each neuron and simulate 40 trials of spike trains given the underlying firing

rate. For independent neurons, we set ζ = 1, whereas ζ > 1 for dependent neurons.

Two independent neurons. In the first scenario, we consider two independent neurons

(ζ = 1). We simulate the spike trains according to our model. The firing probability at

time t is set to 0.25 − 0.1 cos(2πt) for the first neuron and to 0.15 + 0.2t for the second

neuron. For each neuron, we generated 40 trials of spike trains and divided each trial into

100 time intervals. The left panel of Figure 2.4 shows the corresponding Joint Peri-stimulus
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Figure 2.4: Two independent neurons– The left panel shows the corresponding Joint
Peri-Stimulus Time Histogram (JPSTH). The right panel shows the posterior distributions
of ζ and L. Darker cells represent higher frequencies.

Time Histogram (JPSTH). Each cell represents the joint frequency of spikes (darker cells

represent higher frequencies) for the two neurons at given times. The marginal distributions

of spikes, i.e., Peri-stimulus Time Histogram (PSTH), for the first neuron is shown along the

horizontal axis. The second neuron’s PSTH is shown along the vertical axis. The right panel

of Figure 2.4 shows the posterior distributions of ζ and L. For this example, the posterior

distribution of ζ is concentrated around 1 with median and 95% posterior probability interval

equal to 1.01 and [0.85,1.12] respectively. This would strongly suggest that the two neurons

are independent as expected. Further, the posterior probabilities of all lag values from -10

to 10 are quite small.

Two exact synchronous neurons. For our next example, we simulate data for two

dependent neurons with synchrony (i.e., L = 0) and we set ζ = 1.6. That is, the probability

of co-firing at the same time is 60% higher than that of independent neurons. As before, for

each neuron we generate 40 trials of spike trains each discretized into 100 time bins. In this

case, the firing probabilities at time t for the two neurons are 0.25− 0.1 cos(2πt). Figure 2.5

shows their corresponding JPSTH along with the posterior distributions of ζ and L. The
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Figure 2.5: Two dependent neurons in exact synchrony– The left panel show the
frequency of spikes over time. The right panel shows the posterior distribution of ζ and L.
Darker cells represent higher frequencies.

posterior median for ζ is 1.598 and the 95% posterior probability interval is [1.548,1.666].

Therefore, ζ identifies the two neurons in exact synchrony with excess co-firing rate than

what is expected by independence. Further, the posterior distribution of L shows that the

two neurons are in exact synchrony.

Two dependent neurons with lagged co-firing. Similar to the previous example, we

set the probability of co-firing to 60% higher than what we obtain by the independence

assumption. Similar to the previous two simulations, we generate 40 trials of spike trains

each discretized into 100 time bins. The firing probabilities of the first neurons at time t is

set to 0.25 + 0.1 sin(2πt). The second neuron has the same firing probability but at time

t+L. For different trials, we randomly set L to 3, 4, or 5 with probabilities 0.2, 0.5, and 0.3

respectively. Figure 2.6 shows JPSTH along with the posterior distributions of ζ and L. As

before, the posterior distribution of ζ can be used to detect the relationship between the two

neurons. For this example, the posterior median and 95% posterior interval for ζ are 1.39

and [1.33,1.44] respectively. Also, our method could identify the three lag values correctly.
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Figure 2.6: Two dependent neurons in lagged synchrony– The lag values are set to 3,
4, or 5 with probabilities 0.2, 0.5, and 0.3 respectively. The left panel show the frequency of
spikes over time. The right panel shows the posterior distribution of ζ and L. Darker cells
represent higher frequencies.

2.3.2 Power analysis

Next, we evaluate the performance of our proposed approach via simulation studies. More

specifically, we compare our approach to the method of [30], in terms of statistical power

for detecting synchronous neurons. To be precise, given the true value of ζ, we compare

the ratio of correctly identifying synchrony between two neurons over a large number of

simulated pairs of spike trains. In their approach, [30] find the marginal firing rate of each

neuron using natural cubic splines and then evaluate the amount of excess joint spiking

using the bootstrap method. Therefore, for our first simulation study, we simulate datasets

that conform with the underlying assumptions of both methods. More specifically, we first

set the marginal firing rates to pt = qt = 0.2 − 0.1 cos(12πt), and then generate the spike

trains for the two neurons given ζ (i.e., excess joint firing rate). The left panel of Figure 2.7

compares the two methods in terms of statistical power for different values of ζ and different

number of trials (20, 30, and 40). Here each trial of spike train has 20 time intervals. For

each simulation setting, we generate 240 datasets. In our method, we call the relationship

between two neurons significant if the corresponding 95% posterior probability of the ζ does

not include 1. For the method proposed by [30], the 95% bootstrap confidence intervals
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are used instead. As we can see, our method (solid curve) has substantially higher power

compared to the method of [30] (dashed curve). Additionally, our method correctly achieves

0.05 level (dotted line) when ζ = 1 (i.e., the two neurons are independent).

For our second simulation, we generate datasets that do not conform with the underlying

assumptions of the two methods. Let Y = (y1, . . . , yT ) and Z = (z1, . . . , zT ) denote the spike

trains for two neurons. We first simulate yt, i.e., absence or presence of spikes for the first

neuron at time t, from Bernoulli(pt), where pt = 0.25 − 0.1 cos(12πt) for t ∈ [0, 0.2]. Then,

we simulate zt for the second neuron from Bernoulli(b0 + b1yt) for given values of b0 and b1.

We set b0 (i.e., the baseline probability of firing for the second neuron) to 0.2. When b1 = 0,

the two neurons are independent. Positive values of b1 leads to higher rates of co-firing

between the two neurons. When b1 is negative, the first neuron has an inhibitory effect on

the second neuron. For given values of b1 and number of trials (20, 30, and 40), we generate

240 datasets where each trial has 20 time intervals. The right panel of Figure 2.7 compares

the two methods in terms of statistical power under different settings. As before, our method

(solid curves) has higher statistical power compared to the method of [30] (dashed curves).

2.3.3 Sensitivity analysis for trial-to-trial variability

As mentioned above, our method can be easily extended to allow for trial-to-trial variability.

To examine how such variability can affect our current model, we conduct a sensitivity

analysis. Similar to the procedure discussed in the previous section, we start by setting the

underlying firing probabilities to pt = 0.4 + 0.1 cos(12t) and ζ = 1.2. For each simulated

dataset, we set the number of trials to 20, 30, 40, and 50. We found that shifting the

firing rate of each trial by a uniformly sampled constant around the true firing rate does not

substantially affect our method’s power since the Gaussian process model is still capable of

estimating the underlying firing rate by averaging over trials. However, adding independent
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Figure 2.7: Power analysis– Comparing our proposed method (solid curves) to the method
of [30] (dashed curves) based on statistical power using two simulation studies. Here the
dotted lines indicate the 0.05 level.

random noise to each trial (i.e., flipping a fraction of time bins from zero to one or from

one to zero) could affect performance, especially if the noise rate (i.e., proportion of flips)

is high and the number of trials is low. Figure 2.8 shows the power for different number of

trials and varying noise rate from 0 to 10%. As we can see, the power of our method drops

slowly as the percentage of noise increases. The drop is more substantial when the number

of trials is small (i.e., 20). However, for a reasonable number of trials (e.g., 40 or 50) and a

reasonable noise rate (e.g., about 5%) the drop in power is quite small.
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Figure 2.8: Sensitive analysis for trial-to-trial variability– Comparing power for
varying number of trials and noise rate (i.e., fraction of time bins in a trial flipped from zero
to one or from one to zero).

2.3.4 Results for experimental data

We now use our method for analyzing a pair of neurons selected from the experiment dis-

cussed above. (We will apply our method to multiple neurons in the next section.) Although

we applied our method to several pairs with different patterns, for brevity we present the re-

sults for two pair of neurons; for one pair, the relationship changes under different scenarios;

for the other pair, the relationship remains the same under both scenarios. Our data include

51 spike trains for each neuron under different scenario (rewarded vs. non-rewarded). Each

trail runs for 10 seconds. We discretize the time into 5 ms intervals.

Case 1: Two neurons with synchrony under both scenarios We first present our

model’s results for a pair of neurons that appear to be in exact synchrony under both
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scenarios. Figure 2.9 shows the posterior distributions of ζ and L under different scenarios.

As we can see, the posterior distributions of ζ in both cases are away from 1, and L =

0 has the highest posterior probability. These results are further confirmed by empirical

results, namely, the number of co-firings, correlation coefficients, and the sample estimates

of conditional probabilities presented in Figure 2.9. Using the method of [30], the p-values

under the two scenarios are 3.2E − 11 and 1.4E − 13 respectively. While both methods

provide similar conclusions, their method is limited to detecting exact synchrony only.

Case 2: Two neurons with synchrony under the rewarded scenario only Next,

we present our model’s results for a pair of neurons appear to be in a moderate synchrony

under the rewarded scenario only. Figure 2.10 shows the posterior distributions of ζ and

L under different scenarios. In this case, the posterior distributions of ζ is slightly away

from 1 in the first scenario; however, under the second scenario, the tail probability of 1 is

not negligible. These results are further confirmed by empirical results presented in Figure

2.10: only in the first scenario we observe a moderate difference between the conditional

probabilities. Using the method of [30], the p-values under the two scenarios are 2E− 4 and

0.144 respectively.

As discussed above, although for these data the two methods provide similar results in

terms of synchrony, our method can be used to make inference regarding possible lag values.

Moreover, as we will show in the next section, our method provides a hierarchical Bayesian

framework that can be easily extended to multiple neurons.

2.4 Modeling dependencies among multiple neurons

Temporal relationships among neurons, particularly those that change across different con-

texts, can provide additional information beyond basic firing rates. Because it is possible
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to record spike trains from multiple neurons simultaneously, and because network encoding

likely spans more than pairs of neurons, we now turn our attention to calculating temporally-

related activities among multiple (> 2) simultaneously-recorded neurons.

At lag zero (i.e., L = 0), we can rewrite our model for the joint distribution of two neurons

in terms of their individual cumulative distributions as follows (we have dropped the index

t for simplicity):

H(y, z) = C(F1(y), F2(z)) =
[
1 + β

2∏
i=1

(1− Fi)
] 2∏
i=1

Fi (2.14)

where F1 = F1(y) = P (Y ≤ y), F2 = F2(z) = P (Z ≤ z), and β = ζ−1
(1−p)(1−q) . Note that

in this case, β = 0 indicates that the two neurons are independent. In general, models

that couple the joint distribution of two (or more) variables to their individual marginal

distributions are called copula models. See [54] for detailed discussion of copula models. Let

H be n-dimensional distribution functions with marginals F1, ..., Fn. Then, an n-dimensional

copula is a function of the following form:

H(y1, ..., yn) = C(F1(y1), ..., Fn(yn)), for all y1, . . . , yn (2.15)

Here, C defines the dependence structure between the marginals. Our model for two neurons

is in fact a special case of the Farlie-Gumbel-Morgenstern (FGM) copula family [17, 24, 42,

54]. For n random variables Y1, Y2, . . . , Yn, the FGM copula, C, has the following form:

C =
[
1 +

n∑
k=2

∑
1≤j1<···<jk≤n

βj1j2...jk

k∏
l=1

(1− Fjl)
] n∏
i=1

Fi (2.16)
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where Fi = Fi(yi). Restricting our model to second-order interactions, we can generalize

our approach for two neurons to a copula-based model for multiple neurons using the FGM

copula family,

H(y1, . . . , yn) =
[
1 +

∑
1≤j1<j2≤n

βj1j2

2∏
l=1

(1− Fjl)
] n∏
i=1

Fi (2.17)

where Fi = P (Yi ≤ yi). Here, we use y1, . . . , yn to denote the firing status of n neurons

at time t; βj1j2 captures the relationship between the jth1 and jth2 neurons. To ensure that

probability distribution functions remain within [0, 1], the following constraints on all
(
n
2

)
parameters βj1j2 are imposed:

1 +
∑

1≤j1<j2≤n

βj1j2

2∏
l=1

εjl ≥ 0, ε1, · · · , εn ∈ {−1, 1} (2.18)

Considering all possible combinations of εj1 and εj2 in the above condition, there are n(n−1)

linear inequalities, which can be combined into the following inequality:

∑
1≤j1<j2≤n

|βj1j2| ≤ 1 (2.19)

2.4.1 Illustrative example

To illustrate the model we discussed in the above section, we follow a similar procedure as

Section 2.3.4 and simulate spike trains for three neurons such that neurons 1 and 2 are in

exact synchrony, but they are independent from neuron 3. Table 2.1 shows the estimated β’s

along with their corresponding 95% posterior probability intervals using posterior samples

from Spherical Hamiltonian Monte Carlo (Spherical HMC). Our method correctly detects

the relationship among the neurons: for synchronous neurons, the corresponding β’s are
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Table 2.1: Estimates of β’s along with their 95% posterior probability intervals for simulated
data based on our copula-based model. Here, row i and column j shows the estimate of βij,
which captures the relationship between the ith and jth neurons.

β 2 3

1 0.66 (0.30,0.94) 0.02 (-0.26,0.27)
2 -0.05 (-0.33,0.19)

significantly larger than 0 (i.e., 95% posterior probability intervals do not include 0), whereas

the remaining β’s are close to 0 (i.e., 95% posterior probability intervals include 0).

2.4.2 Results for experimental data

We now use our copula-based method for analyzing the experimental data discussed earlier.

As mentioned above, during the task the neuronal activity in the prefrontal cortical areas

of the rat’s brain was recorded under two conditions: rewarded stimulus (lever 1) and non-

rewarded stimulus (lever 2). Here, we focus on 5 simultaneously recorded neurons that are

active during the task. There are 51 trials per neuron under each scenario. We set the

time intervals to 5 ms. Tables 2.2 and 2.3 show the estimates of βi,j, which capture the

association between the ith and jth neurons, under the two scenarios. Figure 2.11 shows the

schematic representation of these results under the two experimental conditions. The solid

line indicates significant association between a pair of neurons.

Our results show that neurons recorded simultaneously in the same brain area are correlated

in some conditions and not in others. This strongly supports the hypothesis that population

coding among neurons (here though correlated activity) is a meaningful way of signaling

differences in the environment (rewarded or non-rewarded stimulus) or behavior (going to

press the rewarded lever or not pressing) [9]. It also shows that neurons in the same brain

region are differentially involved in different tasks, an intuitive perspective but one that
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Table 2.2: Estimates of β’s along with their 95% probability intervals for the first scenario
(Rewarded) based on our copula model.

β 2 3 4 5

1 0.22(0.07,0.39) 0.00(-0.07,0.04) 0.03(-0.02,0.15) 0.01(-0.04,0.08)
2 0.03(-0.02,0.18) 0.06(-0.02,0.22) 0.07(0.00,0.25)
3 0.08(-0.01,0.26) 0.21(0.04,0.38)
4 0.23(0.09,0.40)

Table 2.3: Estimates of β’s along with their 95% probability intervals for the second scenario
(Non-rewarded) based on our copula model.

β 2 3 4 5

1 0.05(-0.02,0.25) -0.01(-0.09,0.04) 0.15(-0.01,0.37) 0.05(-0.03,0.22)
2 0.21(0.03,0.41) 0.18(0.00,0.37) 0.03(-0.02,0.19)
3 0.17(0.00,0.34) 0.03(-0.02,0.19)
4 0.07(-0.01,0.24)

is neglected by much of behavioral neuroscience. Finally, our results indicate that network

correlation is dynamic and that functional pairs– again, even within the same brain area– can

appear and disappear depending on the environment or behavior. This suggests (but does

not confirm) that correlated activity across separate populations within a single brain region

can encode multiple aspects of the task. For example, the pairs that are correlated in reward

and not in non-reward could be related to reward-seeking whereas pairs that are correlated

in non-reward could be related to response inhibition. Characterizing neural populations

within a single brain region based on task-dependent differences in correlated firing is a

less-frequently studied phenomenon compared to the frequently pursued goal of identifying

the overall function of the brain region based on individual neural firing [76]. While our

data only begin to address this important question, the developed model will be critical in

application to larger neural populations across multiple tasks in our future research.
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2.5 Computation

We use Markov Chain Monte Carlo (MCMC) algorithms to sample from posterior distri-

bution. The typical number of MCMC iterations is 3000 after discarding pre-convergence

samples. Algorithm 1 in Appendix shows the overall sampling procedure. We use the slice

sampler [52] for the hyperparameters controlling the covariance function of the Gaussian

process model. More specifically, we use the “stepping out” procedure to find an interval

around the current state, and then the “shrinkage” procedure to sample from this inter-

val. For latent variables with Gaussian process priors, we use the elliptical slice sampling

algorithm proposed by [45]. The details are provided in Algorithm 2 in the appendix.

Sampling from the posterior distribution of β’s in the copula model is quite challenging. As

the number of neurons increases, simulating samples from the posterior distribution these

parameters becomes difficult because of the imposed constraints [49, 75, 50, 7, 59]. We

have recently developed a new Markov Chain Monte Carlo algorithm for constrained target

distributions [36] based on Hamiltonian Monte Carlo (HMC) [15, 53].

In many cases, bounded connected constrained D-dimensional parameter spaces can be bijec-

tively mapped on to theD-dimensional unit ball BD
0 (1) := {θ ∈ RD : ‖θ‖2 =

√∑D
i=1 θ

2
i ≤ 1},

where θ are parameters. Therefore, our method first maps the D-dimensional constrained

domain of parameters to the unit ball. We then augment the original D-dimensional pa-

rameter θ with an extra auxiliary variable θD+1 to form an extended (D + 1)-dimensional

parameter θ̃ = (θ, θD+1) such that ‖θ̃‖2 = 1 so θD+1 = ±
√

1− ‖θ‖22. This way, the domain

of the target distribution is changed from the unit ball BD
0 (1) to the D-dimensional sphere,

SD := {θ̃ ∈ RD+1 : ‖θ̃‖2 = 1}, through the following transformation:

TB→S : BD
0 (1) −→ SD, θ 7→ θ̃ = (θ,±

√
1− ‖θ‖22) (2.20)
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Note that although θD+1 can be either positive or negative, its sign does not affect our

Monte Carlo estimates since after applying the above transformation, we need to adjust our

estimates according to the change of variable theorem as follows:

∫
BD0 (1)

f(θ)dθB =

∫
SD+

f(θ̃)

∣∣∣∣dθBdθ̃S

∣∣∣∣ dθ̃S (2.21)

where
∣∣∣dθB
dθ̃S

∣∣∣ = |θD+1|. Here, dθB and dθ̃S are under Euclidean measure and spherical measure

respectively.

Using the above transformation, we define the dynamics on the sphere. This way, the

resulting HMC sampler can move freely on SD while implicitly handling the constraints

imposed on the original parameters. As illustrated in Figure 2.12, the boundary of the

constraint, i.e., ‖θ‖2 = 1, corresponds to the equator on the sphere SD. Therefore, as the

sampler moves on the sphere, passing across the equator from one hemisphere to the other

translates to “bouncing back” off the the boundary in the original parameter space.

We have shown that by defining HMC on the sphere, besides handling the constraints im-

plicitly, the computational efficiency of the sampling algorithm could be improved since the

resulting dynamics has a partial analytical solution (geodesic flow on the sphere). We use

this approach, called Spherical HMC, for sampling from the posterior distribution of β’s in

the copula model. See Algorithm 3 in Appendix for more details.

Using parallelization (i.e., assigning each neuron to a server), our computational method can

handle relatively a large number of neurons. The MATLAB implementation of our method

runs on a HPC (High Performance Computing) Beowulf cluster with a total of 64 CPUs

(CentOS) and equipped with a GPU. For 10 neurons, 20 trials, and 50 time bins, each

iteration of MCMC takes 8.4 seconds with acceptance probability of 0.72. For 50 neurons,

the time per iteration increases to 24.5 with similar acceptance probability.
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While our proposed method takes advantage of several advanced computational techniques,

the current implementation of our method is only useful for tens of neurons. This can be

improved in future by reducing the computational complexity of our sampling algorithms.

For the GP model, the computational complexity is O(T 3), where T is the number of time

bins. This increases linearly with the number of neurons. Note that we can reduce the

computational complexity of the GP model to O(T ) by using a Brownian motion instead.

To calculate the joint pdf within each time bin of a trial (i.e., using the copula model), the

computational complexity increases exponentially by the number of cofiring neurons. The

overall complexity increases linearly by the number of trials and the number of time bins.

The space complexity depends on the number of neurons, number of time bins, and number

of trials. For a simulation study with 25 neurons, 25 trials, and 50 time bins, the RAM usage

is around 4.3GB. Increasing the number of neurons to 50 results in a substantially higher

RAM usage close to 7.2GB. If we further increase the number of trials to 50, the RAM usage

increases to 10.5GB. If we also increase the number of time bins to 100, the RAM usage

increases to 12.2GB.

All computer programs and simulated data sets discussed in this paper are available online

at http://www.ics.uci.edu/~babaks/Site/Codes.html.
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Case 1–Non-rewarded

Figure 2.9: Case 1: a) Posterior distribution of ζ, b) posterior distribution of lag, c) co-firing
frequencies, d) correlation coefficients, and e) estimated conditional probabilities of firing for
the second neuron given the firing status (0: solid line, 1: dashed line) of the first neuron
over different lag values for the rewarded scenario; (f)-(j) are the corresponding plots for the
non-rewarded scenario.
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Case 2– Non-rewarded

Figure 2.10: Case 2: a) Posterior distribution of ζ, b) posterior distribution of lag, c) co-
firing frequencies, d) correlation coefficients, and e) estimated conditional probabilities of
firing for the second neuron given the firing status (0: solid line, 1: dashed line) of the first
neuron over different lag values for the rewarded scenario; (f)-(j) are the corresponding plots
for the non-rewarded scenario.

33



1"

2"

3"4"

5"

Rewarded"S.mulus"

1"

2"

3"4"

5"

Non*Rewarded"S2mulus"

Figure 2.11: A schematic representation of connections between five neurons under two
experimental conditions. The solid line indicates significant association.
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Figure 2.12: Transforming unit ball BD
0 (1) to sphere SD.
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Chapter 3

A Dynamic Bayesian Model for

Characterizing Cross Neuronal

Interactions

The model discussed in the above chapter has two main limitations: 1) little power in

identifying synchrony among a large number of neurons because of the simplex constrains

on the parameters; 2) Unable to identify change in connection structure over time. The

following work will be mainly focused on addressing the two limitations.

3.1 Stationary copula model for detecting dependence

structure among population of neurons

Again, to model the cross-dependence structure among multiple spike trains, we first dis-

cretize the time into small bins. Here, we set the intervals to 100ms. It is possible to use

smaller intervals (e.g., 5ms, for example, as we used in the previous chapter ) for the station-
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ary model discussed in this section; however, our proposed non-stationary model requires

longer intervals to be effective and computationally efficient. The spike trains represented by

point processes are still transformed to binary time series as before. Let Yi = (Yi1, ..., YiT )

be the transformed spike train of the ith neuron. Alternatively, We model the joint firing

probability of multiple spike trains at time t, Pr(Y1t = y1t, ..., Ynt = ynt), as a function of the

marginal probabilities, Pr(Yit = yit). If the neurons are independent, then the joint proba-

bility is equal to the product of the marginal probabilities. Note that the joint probability

has the following simplex constraint:

∑
(y1t,...,ynt)∈(0,1)n

Pr(Y1t = y1t, ..., Ynt = ynt) = 1, for each t = 1, 2, ..., T. (3.1)

To preserve the above constraint, we use a continuous latent variable uit and a threshold τit

corresponding to each Yit, and model the observed spike trains as follows:

Yit = 1(−∞,τit](uit) =


1, if uit ≤ τit

0, otherwise.

(3.2)

It is worth mentioning that here τit represents an aggregate of those external conditions that

lead to neuronal spiking. As such, τit may vary as a function of time, as it will be affected by

the biological processes leading to action potential, the current state of the network (resulting

from the communication among the neurons in the current state of the network), and the

external stimuli associated with the experiment. Here 1/0 indicates the presence/absence of

spikes within that time bin. For any time t, we assume that (u1t, ..., unt) follows a multivariate

Gaussian distribution with mean zero,

(u1t, ..., unt)
T ∼ N(0,Σ), (3.3)

For the moment, we assume that Σ does not vary over time so uit is a stationary copula

36



process. This will be generalized in the dynamic setting. Moreover, the support of the

joint distribution of the latent variables is the Cartesian cross of the real lines which can be

partitioned into 2n quadrants by intersecting thresholds, τit. There are 2n combination of

outputs from n neurons; hence, there are 2n joint probabilities. Our model guarantees the

simplex constraint by mapping the point mass in the 2n quadrants (which sum to 1) to the

2n joint probabilities of n neurons. For example, the probability that all the neurons are

firing equals to the point mass of the corresponding quadrant as follows,

Pr(Y1t = 1, ..., Ynt = 1) = Pr{uit ≤ τit, for i = 1, 2, ..., n}. (3.4)

Finally, we specify the the covariance matrix,

Σ =



σ11 σ12 · · · σ1n

σ12 σ22 · · · σ2n
...

...
. . .

...

σ1n σ2n · · · σnn


,

(3.5)

by decomposing it as follows:

Σ =



σ
1
2
11 0 · · · 0

0 σ
1
2
22 · · · 0

...
...

. . .
...

0 0 · · · σ
1
2
nn





1 ρ12 · · · ρ1n

ρ12 1 · · · ρ2n
...

...
. . .

...

ρ1n ρ2n · · · 1





σ
1
2
11 0 · · · 0

0 σ
1
2
22 · · · 0

...
...

. . .
...

0 0 · · · σ
1
2
nn


.

(3.6)
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3.1.1 On the cross-dependence of the spike trains and the latent

processes

In our method, we use ρij to capture the relationship between neurons i and j. To show the

validity of this approach, we examine the pairwise correlation among multiple spike trains

using the observed data,

corr[Yit, Yjt] =
E[YitYjt]− E[Yit]E[Yjt]√

Var[Yit]Var[Yjt]
(3.7)

where

E[Ymt] = Pr(umt ≤ τmt) = Pr(
umt
σmm

≤ τmt
σmm

) = Φ(
τmt
σmm

) (3.8)

Var[Ymt] = Φ(
τmt
σmm

)(1− Φ(
τmt
σmm

)) (3.9)

E[YitYjt] = Pr(uit ≤ τit, ujt ≤ τjt) (3.10)

=

∫ τit

−∞

∫ τjt

−∞

e
− 1

2(1−ρ2
ij

)
(
u2it
σii
−2

ρijuitujt√
σiiσjj

+
u2jt
σjj

)

2π
√

(1− ρ2ij)σiiσjj
duitdujt (3.11)

≡ f(
τit√
σii
,
τjt√
σjj

, ρij). (3.12)

Here Φ is the cumulative distribution function of standard normal distribution. [55] showed

that given τit√
σii

and
τjt√
σjj

, the cumulative distribution of bivariate normal distribution, f( τit√
σii
,
τjt√
σjj
, ρij),
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provides comprehensive concordance ordering with respect to ρij,

f(, ,−1) ≤ f(, , ρ) ≤ f(, , ρ′) ≤ f(, , 1) (3.13)

where −1 ≤ ρ ≤ ρ′ ≤ 1. Hence, corr[Ylt, Ymt] is a non-decreasing function with respect to

ρlm. In addition, when ρlm = 0, corr[Ylt, Ymt] = 0.

Remark. The above derivation suggests that the spike trains maintain the dependence

structure as the latent variables. In other words, if the latent variables are positively corre-

lated, negatively correlated, or independent, so are the spike trains. Further, the stronger

the correlation between the latent variables, the stronger the correlation between the spike

trains. This allows us to make inference about the cross-dependence among spike trains in

terms of the correlation parameters ρij for the latent variables.

3.1.2 Gaussian Process Prior on the Thresholds

Note that the joint probabilities of spike trains depend on both the latent variables, uit,

and thresholds, τit. While the latent variables specify the dependence structure as discussed

above, the thresholds determine the marginal probabilities of firing for each neuron. Specifi-

cally, the marginal firing probabilities, Pr(Yit = 1), depends on the thresholds, τit, as follows:

Pr(Yit = 1) = Pr(uit ≤ τit) = Φ(
τit
σii

). (3.14)

The marginal probabilities usually follow nonlinear patterns over time. We can accommodate

this in our model using the thresholds. That is, our model adjusts τit in a smooth way to

capture the firing probability of neuron i at time t using the observed spike trains. To this
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end, we assume τit has a Gaussian process prior as follows,

(τi1, ..., τiT ) ∼ GP(0, Ci), for i = 1, 2, ..., n. (3.15)

We can still use the same covariance function as discussed before,

Ci|j,k = Cov(τij, τik)

= λ2i + η2i exp[−ρ2i (ti − tj)2] + δjkσ
2
i . (3.16)

in which ρ2i and η2i control smoothness and the height of oscillations respectively. The noise

parameter, σ2
i (also called the jitter), is essential to improving computation. λ2i , η

2
i , ρ

2
i and

σ2
i are hyperparameters with their own hyperpriors.

However, when number of time bins, T , increases, computing the likelihood of Gaussian

Process models becomes time-consuming as it involves inversion of large-scale covariance

matrices. To mitigate the computational cost, we use a Brownian motion prior instead. A

Brownian motion is also defined by its mean and covariance; However, its covariance has a

simpler form:

Ci|j,k = Cov(τij, τik) = θi min(tj, tk). (3.17)

This way, we can reduce the computational complexity of the GP model from O(T 3) to

O(T ).
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3.1.3 Summary on the stationary model

Our proposed model in this section uses a set of latent variables and thresholds to model the

joint probability of multiple spike trains. The latent variables are modeled by a stationary

copula process and the thresholds are modeled by Gaussian process models. The copula pro-

cess model connects the marginal time-varying firing probabilities to the joint probabilities

of multiple spike trains. The thresholds control the time-varying marginal firing probabili-

ties, while the latent variables determine the cross-dependence among neurons. Overall, our

model involves four types of parameters: 1) latent variables, 2) copula parameters, Σ, 3)

thresholds, τit, and 4) hyperparameters of the Gaussian process model (i.e., the parameters

that define C). In our numerical experiments, we used weakly informative priors for all

hyperparameters and used Markov Chain Monte Carlo (MCMC) to simulate samples from

posterior distributions. Details of our sampling algorithm are provided in Appendix.

3.1.4 An Illustration of the stationary model

To illustrate the stationary model discussed in the above section, we considered a simple

numerical experiment. First, we generated the spike trains of four neurons, where the first

pair of neurons were positively correlated, the second pair of neurons were negatively cor-

related, and that the two pairs are independent of each other. To this end, we generated

the time-varying marginal firing probabilities for each neuron and then calculate the joint

probabilities of the two neurons by multiplying the product of marginal firing probabilities

by an extra term, ζ so that ζ = 1 indicates independence while ζ < 1 and ζ > 1 indicate,

respectively, negative correlation and positive correlation between the two neurons. Note

that we are using a data generating mechanism that is different from our model in order to

test for the robustness of our approach.

In this simulation study, we set ζ = 1.3 for the first pair of neurons and ζ = 0.7 for the
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(d) Neuron 4

Figure 3.1: The Peri-Stimulus Time Histogram (PSTH) of 4 neurons with their estimated
number of spikes. The red solid line is the estimated number of spikes, which is calculated
by multiplying the estimated marginal firing probabilities by number of trials.

second pair of neurons. Table 3.1 shows the posterior estimates of the correlation parameters

ρij’s with their corresponding 95% posterior intervals. Figure 3.1 shows the peri-stimulus

time histogram (PSTH) of these neurons with their estimated number of spikes according

to our model. The results presented in Table 3.1 show that our model correctly detects

the dependence among the two pairs of neurons while providing a good estimate of the

time-varying marginal firing probabilities.
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Table 3.1: The posterior estimates of correlation parameters for simulated data with their
95% posterior intervals.

Parameter Posterior Estimate
ρ12 0.75 (0.66,0.84)
ρ13 0.02 (-0.12,0.15)
ρ14 0.12 (-0.01,0.25)
ρ23 -0.05 (-0.19,0.12)
ρ24 0.03 (-0.13,0.17)
ρ34 -0.46 (-0.61,-0.32)

3.2 The Proposed Non-Stationary Model

As mentioned above, one of the main limitations of the method discussed in Chapter 2

is the assumption of constant dependence structure among neurons over time. Hence the

main objective of our proposed model framework in this section is to develop a flexible non-

stationary method that allows for interactions among neuronal spike trains to vary across

time. To this end, we can use a time-varying covariance matrix for the latent variables.

(u1t, u2t, ..., unt)
T ∼ N(0,Σt), (3.18)

where

Σt =



σt11 σt12 · · · σt1n

σt12 σt22 · · · σt2n
...

...
. . .

...

σt1n σt2n · · · σtnn


.

(3.19)

The time-dependent covariance matrix implies a dynamic dependence structure among spike

trains. Without imposing a structure, however, the above covariance matrix would become
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too complex, especially when n is large. We impose such a structure by introducing a series

of time-dependent binary indicators in the stationary copula process model discussed in the

previous section,

Σ∗t =



σ11 σ12I
t
1I
t
2 · · · σ1nI

t
1I
t
n

σ12I
t
2I
t
1 σ22 · · · σ2nI

t
2I
t
n

...
...

. . .
...

σ1nI
t
nI

t
1 σ2nI

t
nI

t
2 · · · σnn


(3.20)

=



I t1 0 · · · 0

0 I t2 · · · 0

...
...

. . .
...

0 0 · · · I tn





σ11 σ12 · · · σ1n

σ12 σ22 · · · σ2n
...

...
. . .

...

σ1n σ2n · · · σnn





I t1 0 · · · 0

0 I t2 · · · 0

...
...

. . .
...

0 0 · · · I tn


(3.21)

+



σ11(1− I t1) 0 · · · 0

0 σ22(1− I t2) · · · 0

...
...

. . .
...

0 0 · · · σnn(1− I tn)


.

(3.22)

3.2.1 On the indicator I ti

Here, I ti = 0 indicates that the i-th neuron is not correlated with any other neurons at time

t. These time-dependent indicators identify neurons that are involved in the network and

impose a structure on the covariance matrix. We assume I tk ∼ Bernoulli(ptk). To ensure

0 < ptk < 1, we use the probit link function such that ptk = Φ(qtk). A Brownian motion prior

is assumed on the hyperparameters qtk,

(q1k, q
2
k, ..., q

T
k ) ∼ GP (η, C ′k), (3.23)
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where C ′k|i,j = cov(qik, q
j
k) = βk min(ti, tj). Note that the mean of the Brownian motion is not

necessarily zero. In general, we could treat η as a hyperparameter. For simplicity, however,

we fix it to small number (here, η = −2) in order to encourage sparsity in the network.

By introducing time-dependent binary indicators in to the copula process, our model is

capable of identifying time-varying interactions among multiple neurons. Note that in this

setting, the correlation between two neurons becomes ρtij = ρijI
t
i I
t
j . The two neurons are

correlated if both I ti and I tj are non-zero; ρij determines the overall strength of the correlation.

Remark. The time-varying correlation matrix Σ∗t is positive definite. Note that for any

vector x, we have xTΣ∗tx ≥ 0 as long as the following matrix is positive definite:

Σ =



σ11 σ12 · · · σ1n

σ12 σ22 · · · σ2n
...

...
. . .

...

σ1n σ2n · · · σnn


, (3.24)

The equality holds when



I t1 0 · · · 0

0 I t2 · · · 0

...
...

. . .
...

0 · · · · · · I tn


x = 0 (3.25)
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and



1− I t1 0 · · · 0

0 1− I t2 · · · 0

...
...

. . .
...

0 · · · · · · 1− I tn


x = 0 (3.26)

This means that the equality holds only when x = 0. Therefore, the time-varying version of

correlation matrix, Σ∗t , is positive definite if Σ is positive definite.

3.2.2 An illustrative example

To illustrate the method discussed in the above section, we used a similar simulation study

as the one we presented in the previous section. Here, we generalize ζt from the previous

example so the dependencies can change over time. For the first pair of neurons, ζt is shown

in Figure 3.2). For all other pairs, we set ζt = 1. Figure 3.3 shows the posterior estimates

(along with 95% probability intervals) for ρtij = ρijIi,tIj,t over time. The results show that

our model correctly identifies the only pair of correlated neurons.

3.2.3 An illustration to highlight the limitations of models that

assume stationarity

Next, we use a slightly different setting to highlight the problems with stationary models

(and thus emphasize the need for non-stationary approaches such as the one being proposed).

In this section, we demonstrate that our model can identify time-varying dependencies while

methods based on static models such as [30] and our own previous work [74] provide an
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Figure 3.2: The time-dependent ζt. At the beginning, ζt = 1 suggests that the two neurons
are independent. ζt starts to increase after then and eventually ends with 1.8 which suggests
that the two neurons are positively correlated.

incomplete picture of neuronal activity and, moreover, could give misleading results. To

compare our proposed approach to those in [30] and [74], we first generated spike trains for

a pair of neurons for which ζt follows the pattern shown in the left panel of Figure 3.4. Due

to the assumption that the correlation structure is stationary, the method of [30] reports a

p-value of 0.555 for the test of H0 : ζ = 1 (independence) vs. Ha : ζ 6= 1. The method of [74]

reports a 95% credible interval of [0.875, 1.144] for ζ which covers 1. No significant evidence

of dependence between the neuronal spike trains can be found by both methods. Hence both

methods tend to be incapable of detecting the synchrony between the two neurons when

this synchrony is brief relative to the period of non-synchrony. We also applied the static

version of our proposed model (described in Section 3.1) to the simulated data. The 95%

credible interval for the correlation parameter is [−0.039, 0.066] which covers 0 and thus

yields no significant evidence for dependence between the two neurons. In contrast to these

stationary approaches, the proposed dynamic model captures the time-varying pattern of

synchrony between the two neurons as shown in Figure 3.4 (Right). This illustration serves

as a reminder that when the true process follows a dependence structure that is time-varying

(which is the more likely scenario compared to the simplistic assumption of stationarity),
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Figure 3.3: The posterior estimates of correlation parameters, ρtij = ρijIi,tIj,t, with 95%
credible intervals. The solid lines are the posterior estimates and the gray areas are the 95%
credible intervals.

then it would be more appropriate to fit a non-stationary model instead of a static model.

To further illustrate the advantage of our dynamic method, we conducted two simulation

studies to compare our dynamic model with the method in [30] which is the state-of-the-

art approach for studying cross-neuronal interactions. For the first simulation study, we

compared the two methods in terms of their ability to correctly detect the correlation between

two neurons. To this end, we simulated data according to the approach we discussed above.

Namely, the two neurons are independent (ζ = 1) for the first 80% of time and dependent

(ζ ≥ 1) for the last 20% of time. We conducted simulations for 5 scenarios where we
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Figure 3.4: Left: The time-dependent ζt. For the first 80% of time, the two neurons are
independent (ζt = 1). For the remaining 20% of time, the two neurons become correlated
(ζt > 1). Right: The posterior estimates of correlation parameters, ρtij = ρijIi,tIj,t, with
95% credible intervals. The solid lines are the posterior estimates and the gray areas are the
95% credible intervals. Note that in our model ρ = 0 corresponds to ζ = 1.

set the extra term ζ for the last 20% of time to 1.0, 1.2, 1.4, 1.6, and 1.8 respectively.

Corresponding to each pair (which we call ”Pair1” ) under each of the scenarios, we also

simulates an independent pair (which we call ”Pair2”) where ζ = 1 over the entire time. We

then apply both models to each pair of neurons and make inference about their dependence.

For scenarios 2-5, the models are expected to identify ”Pair1” as dependent, while identifying

”Pair2” as independent. The first scenario was used as the control where both pairs should

have been identified pairs as independent. We repeated each scenario 100 times and use ROC

curves to assess models’ performance. Note that for the first scenario, we expected the ROC

curve to be diagonal. For the remaining scenarios, the higher the area under the ROC curve,

the better the model. Figure 3.5 shows the ROC curves, which illustrates the performance

of the two models (our proposed in red; [30] in green) in detecting dependence between

neurons. The results show that as the strength of correlation increases (ζ increases from 1.0

to 1.8), both methods exhibit an increase in power. Moreover, the results demonstrate that

our proposed dynamic model always outperforms the method in [30].

49



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False Positive Rate

Tr
u

e
 P

o
si

tiv
e

 R
a

te

(a) ζ = 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False Positive Rate

Tr
u

e
 P

o
si

tiv
e

 R
a

te

(b) ζ = 1.2
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(d) ζ = 1.6
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(e) ζ = 1.8

Figure 3.5: ROC curves which illustrate the performance of the two models in terms of
detecting dependence between pair of neurons. Our proposed dynamic model is color red;
the method in [30] is color green.

For the second simulation study, we compared the prediction power of the two methods. We

still simulated the datasets under 5 scenarios as discussed above. This time, however, we

randomly selected two-thirds of the data to train both models (i.e., estimate parameters),

and then test the models on the remaining one-third of the data by using the firing status of

one neuron to estimate the firing probability for the other neuron. We derived the estimated

firing probability, p̂2k for the kth observation in the test set for the second neuron using

parameters estimated from the training data. Based on the estimated model-based firing

probability p̂2k, model performance was evaluated in terms of predictive log-likelihood (PL),

PL =
∑

k∈test set

y2k log(p̂2k) + (1− y2k) log(1− p̂2k).

Thus, the PL is a valid measure for assessing the capability of a model (with parameters

estimated from the training data) to predict values in the testing data. The model with a

larger PL value is considered to have greater predictive power. As before, we repeated each

scenario 100 times. Figure 3.6 shows the 2.5−th and 97.5−th percentiles of the distribution

of PL values for each scenario using our proposed model (shown as green intervals) and the

method in [30] (shown as red intervals). Again, the results show that both models display
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Figure 3.6: 95% intervals of the predictive log-likelihood (PL) of the test sets using our
dynamic model (in green) and the method in [30] (in red) for different values of ζ over the
last 20% of time interval. Results are based on 100 simulated datasets.

an increasing predictive power as the strength of correlation between two neurons increases.

Moreover, consistent with the previous results, our proposed dynamic model outperforms

the method in [30].

3.2.4 Computation

As mentioned above, we use MCMC to simulate samples from posterior distributions. The

current implementation of our method can be used for a moderate (tens) to large (hundreds)

number of simultaneously recorded neurons. The bottleneck for our method is sampling

from the posterior distribution of latent variables since we need to draw samples from trun-

cated multivariate normal distributions. Currently, we use the R package tmvtnorm for this

purpose. By introducing the indicator variables into the model, the computation cost of

sampling latent variables reduces substantially since it depends on the number of correlat-
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ed neurons only (i.e., number of non-zero indicators). For instance, if only 10 out of 100

neurons are in fact involved in the network, the computation cost is mainly dominated by

sampling the latent variables for those 10 correlated neurons. Therefore, in many cases, our

method can be applied to hundreds of neurons with a sparse network. In addition, the com-

putational cost can be further reduced by more efficient samplers for truncated multivariate

normals [e.g., 69]. For the copula parameters and thresholds, we use the elliptical slice

sampler, which is especially suited for parameters with Gaussian process priors. Another

computationally-intensive part of our algorithm is sampling from the posterior distribution

of hyperparameters in the GP model. Using the usual covariance function with the expo-

nential form (3.16), the computational complexity is O(T 3), where T is the number of time

bins. However, in our implementation, we reduced this to O(T ) by using a Brownian motion

model instead (3.17). Overall the computational complexity increases with the number of

correlated neurons, number of time bins and number of trials. In our simulation studies with

4 correlated neurons, 100 time bins, and 40 trails, the computational time per iteration is

approximately 2.5 seconds.

3.2.5 Analysis of spike train data

As a preliminary step, we first applied the static model to the spike train data of two neu-

rons. The results show that under the rewarded stimulus the 95% credible interval for the

correlation parameter was [0.035, 0.147] compared to [−0.039, 0.049] under the non-rewarded

stimulus. This suggests that there was some sort of aggregated synchrony between the two

neurons under rewarded stimulus but no evidence of aggregated synchrony under the non-

rewarded stimulus. The proposed model suggests an interesting result: that the temporal

relationship activity between the two neurons differed based on whether the stimulus predict-

ed a rewarded or non-rewarded outcome. As noted, the static analysis above has limitations

because it does not portray a complete picture of the time-varying cross-dependence between
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(a) Lever 1 (Rewarded) (b) Lever 2 (Non-rewarded)

Figure 3.7: The estimated correlation parameters among the two neurons. The solid line is
the posterior estimate and the gray area is the corresponding 95% credible interval.

neurons. As a next step, we applied the dynamic model to the same pair of neurons. Fig-

ure 3.7 shows the estimated correlation parameters based on our proposed dynamic model.

The results suggest that under the rewarded stimulus, the two neurons started to co-fire after

4 seconds. In contrast, for the unrewarded stimulus, the two neurons remained uncorrelated

throughout the experiment. As noted above, the strong cross-dependence between these

two neurons was seen during the reward-receipt epoch in rewarded trials. This comparison

allowed us to reliably say that the onset of correlation in rewarded trials was not simply a

by-product of stimulus presentation (as stimuli are presented in both contexts) but has some

relationship between the outcomes or behaviors. Thus, neurons 1 and 2 (from Figure 3.7)

are likely members of a population encoding reward or a behavior related to reward-seeking.

There are a number of reasons that explain why neuronal populations may exhibit synchrony.

In the periphery, sensory stimuli can simultaneously activate neurons, producing sensory-

evoked synchrony. In some cases, synchrony arises from correlated input via, for example,

neurons or neural populations that innervate multiple target populations, driving these mul-

tiple targets at the same time. For example, in the prefrontal cortex, where neurons studied

here were recorded, synchrony is thought to result from strong, correlated, patterned input

from the hippocampus and possibly other brain areas [3]. In other cases, notably in cortex,
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interactions between inhibitory GABA interneurons and pyramidal neurons are responsible

for generating synchrony across populations ( see [19] ).Correlated activity can also be seen

among populations of neurons when activity increases and is maintained, as has been seen,

for example, in synchronous activity in the prefrontal cortex underlying working memory (

see [71] ).

Next, we examined the cross-dependence between all of the 6 neurons in the data. Figures 3.8

and 3.9 show the time-varying correlation parameters among these neurons under different

scenarios. For simplicity, in Figures 3.10 and 3.11, we divided the time series into two

time intervals: Period 1 covers the first 5 seconds following the stimulation onset (i.e.,

[0, 5] seconds) while Period 2 covers the last 5 seconds after stimulation onset (i.e., (5, 10]

seconds). Within Period 1 of the rewarded scenario, neurons 2, 5, and 6 seemed to be

weakly correlated, while others were not at all implicated in the network. During Period 2,

neurons 1, 2, 3, and 4 became strongly correlated (Figure 3.10). Under the non-rewarded

stimulus, neuron 1, 3, and 4 are correlated throughout both epochs. Towards the end of

Period 2 (approximately 7 − 10 seconds), neurons 5 and 6 join the network with moderate

correlations (Figure 3.11 ). The results suggest that neurons 1, 3, and 4 are involved in

the network under both scenarios; whereas, neuron 2 plays a differential role under the two

scenarios: it is always involved in the correlation network under rewarded stimulus, while it

remains isolated from the network under non-rewarded stimulus. In addition, neurons 5 and

6 vary under different stimuli: they are strongly involved in the network at the beginning

following presentation of the rewarded stimulus and weakly involved in the network at the

end of session after presentation of the non-rewarded stimulus. The results described here

reveal new information about network encoding of different aspects of the behavioral task,

in particular providing us two powerful and intersecting insights into population coding

of behavior. First, our model reliably measures correlation among groups of neurons over

prolonged periods of time. This is an important advance in understanding how events and

behaviors can influence synchronous activity in neural populations. Intriguingly, neurons 2
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and 5 exhibit synchronous activity in what appears to be the time between lever-press and

reward acquisition. Thus by differentially synchronizing different populations of neurons

over time, we see a continuum of population representation of the reward-seeking task.

Importantly, the degree of synchronization is different in the non-rewarded condition. In

this case, neurons 1, 3, and 4 exhibit synchronous activity rapidly after the onset of the

non-reward-predicting tone. This synchronization may serve as a response-inhibition signal

that allows the animal to withhold responding to the non-rewarded lever.

Brain regions such as the ventral medial prefrontal cortex have frequently been characterized

as playing a role in response inhibition: inactivation of these areas increases behavior and

stimulation of them suppresses it [62]. The neural signaling underlying this type of execu-

tive control has remained elusive however, although some neurons have been shown to be

activated during behavioral suppression [39]. However, it is unlikely that the small numbers

of neurons showing increased activation in these circumstances represents the mechanism

by which populations of neurons encode behavior. Rather, population signaling, reflected

in correlated firing, is likely to underscore neural coding of these relatively sophisticated

behaviors.
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Figure 3.8: The estimated correlation parameters among the 6 neurons under rewarded
stimulus. The solid lines are the posterior estimates and the gray areas are the corresponding
95% credible intervals.
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Figure 3.9: The estimated correlation parameters among the 6 neurons under non-rewarded
stimulus. The solid lines are the posterior estimates and the gray areas are the corresponding
95% credible intervals.
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Figure 3.10: Graphical representation of correlation network under rewarded stimulus. The
nodes are the neurons and the edges indicate the connection between neurons. The grayscale
indicates the strength of connection.
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Figure 3.11: Graphical representation of correlation network under non-rewarded stimulus.
The nodes are the neurons and the edges indicate the connection between neurons. The
grayscale indicates the strength of connection.
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Chapter 4

A Dynamic Bayesian Model for

Detecting Neuronal Communities

In chapter 3 we discussed a Bayesian model which can capture dynamics of dependence

structure among neurons over time. However, this model assumes that there is only one

subpopulation of connected neurons. To relax this assumption, we propose a flexible, yet

robust semi-parametric Bayesian method for capturing multiple communities of neurons by

simultaneous modeling of their spike trains. By identifying communities (subsets) of neurons

that distinguish one type of decision from another, we expect our method to provide insights

into how neural systems encode decision-making variables as well as other cognitive functions

more broadly.

4.1 A Stationary Model for Community Detection

To detect neuronal communities among simultaneously recorded neurons, still we first dis-

cretize time to transform their corresponding spike trains, represented by point processes
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(Figure 1.1), to binary time series which consist of 1s and 0s, where 1 indicates presence and

0 indicates absence of spikes in each time bin. Here, we still set the time intervals to 100ms

due to proposed non-stationary model benefits from longer intervals. Let Yi = (Yi1, ..., YiT )

be the transformed spike train of the ith neuron. As discussed in the above chapter, we still

model the joint firing probability of multiple spike trains at time t, Pr(Y1t = y1t, ..., Ynt = ynt),

as a function of the marginal probabilities, Pr(Yit = yit), by introducing the latent variables,

uit. The latent variables, however, will follow Gaussian distribution with covariance matrix

that is specified differently from the one in Chapter 3. In this section we will be mainly fo-

cused on how to define the structure of the covariance matrix so as to capture the community

structure of neuronal networks.

In order to detect subsets of correlated neurons, we use Ewens sampling formula [16] to

allocate neurons into K partitions without pre-specifying K. We start by assigning the first

neuron into an empty subset. Given the previous j−1 assignments, we assign the jth neuron

either to an existing subset, M , with probability

|M |
α + j − 1

or to an empty subset (i.e., the neuron starts a new partition) with probability

α

α + j − 1

Here, |M | is the number of items previously assigned to M , and α is a hyperparameter whose

value determines the number of partitions: larger values of α increases the probability of new

partitions. The resulting partition distribution is known as Ewens distribution, which defines

a prior distribution on any specific partition denoted as {z1, z2, . . . , zn}, where zi assigns the

ith neuron to one of the K partitions. Given the partition, we rewrite the correlation matrix
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of latent variables, R, as follows:

R =



1 ρ121{z1=z2} · · · ρ1n1{z1=zn}

ρ121{z1=z2} 1 · · · ρ2n1{z2=zn}
...

...
. . .

...

ρ1n1{z1=zn} ρ2n1{z2=zn} · · · 1


.

(4.1)

Here ρij can be interpreted as the correlation between the ith and jth latent variables if the

ith and jth neurons belong to the same partition (community). The correlation between two

neurons is 0 if they belong to different partitions (communities).

4.1.1 A simulation study for the stationary model

We start by evaluating our stationary model based on a simulation study, where we randomly

generate spike trains for 10 neurons. There are two subsets of correlated neurons as shown

in Figure 4.1. To generate the data, we first generate the latent variables from a multivariate

Gaussian distribution and then generate the spike trains by setting a pre-specified threshold

on the continuous latent variables. The correlation is set to 0.45 if there is connection between

two neurons, and it is set to zero otherwise. We apply our stationary model to the resulting

data. The estimated correlation matrix presented in the Table 4.1 shows that our method

correctly identify the underlying structure: all independent neurons have non-significant

correlation (i.e., the corresponding 95% posterior probability includes zero).
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Figure 4.1: The community structure of correlated neurons. Each node represents one neuron
and each edge represents the connection between a pair of neurons.

Table 4.1: The estimated pair-wise correlation parameters among the 10 simulated neurons

1 0.45(0.31,0.59) 0.52(0.33,0.69) 0.02(-0.16,0.19) -0.01(-0.17,0.14) 0.00(-0.13,0.14) 0.04(-0.10,0.21) 0.00(-0.11,0.12) 0.01(-0.12,0.15) 0.00(-0.10,0.11)
0.45(0.31,0.59) 1 0.47(0.31,0.64) 0.03(-0.12,0.16) 0.00(-0.12,0.11) 0.00(-0.13,0.12) -0.02(-0.17,0.13) 0.01(-0.15,0.16) 0.02(-0.12,0.17) 0.00(-0.12,0.11)
0.52(0.33,0.69) 0.47(0.31,0.64) 1 0.00(-0.13,0.14) 0.01(-0.11,0.15) 0.00(-0.15,0.14) 0.02(-0.11,0.16) 0.01(-0.10,0.15) 0.03(-0.11,0.18) 0.01(-0.11,0.16)
0.02(-0.16,0.19) 0.03(-0.12,0.16) 0.00(-0.13,0.14) 1 0.42(0.27,0.55) 0.05(-0.0.10,0.22) -0.03(-0.18,0.11) 0.01(-0.15,0.17) -0.04(-0.21,0.12) -0.02(-0.17,0.12)
-0.01(-0.17,0.14) 0.00(-0.12,0.11) 0.01(-0.11,0.15) 0.42(0.27,0.55) 1 0.44(0.30,0.59) 0.03(-0.12,0.20) 0.51(0.35,0.66) -0.03(-0.18,0.11) 0.00(-0.14,0.15)
0.00(-0.13,0.14) 0.00(-0.13,0.12) 0.00(-0.15,0.14) 0.05(-0.0.10,0.22) 0.44(0.30,0.59) 1 0.03(-0.11,0.18) 0.01(-0.14,0.16) 0.04(-0.11,0.20) 0.01(-0.14,0.17)
0.04(-0.10,0.21) -0.02(-0.17,0.13) 0.02(-0.11,0.16) -0.03(-0.18,0.11) 0.03(-0.12,0.20) 0.03(-0.11,0.18) 1 0.46(0.29,0.61) 0.05(-0.08,0.21) 0.02(-0.13,0.17)
0.00(-0.11,0.12) 0.01(-0.15,0.16) 0.01(-0.10,0.15) 0.01(-0.15,0.17) 0.51(0.35,0.66) 0.01(-0.14,0.16) 0.46(0.29,0.61) 1 0.44(0.28,0.60) 0.00(-0.12,0.13)
0.01(-0.12,0.15) 0.02(-0.12,0.17) 0.03(-0.11,0.18) -0.04(-0.21,0.12) -0.03(-0.18,0.11) 0.04(-0.11,0.20) 0.05(-0.08,0.21) 0.44(0.28,0.60) 1 0.00(-0.13,0.13)
0.00(-0.10,0.11) 0.00(-0.12,0.11) 0.01(-0.11,0.16) -0.02(-0.17,0.12) 0.00(-0.14,0.15) 0.01(-0.14,0.17) 0.02(-0.13,0.17) 0.00(-0.12,0.13) 0.00(-0.13,0.13) 1

4.2 Non-stationary model

Based upon the stationary model discussed above, our next step is to develop a flexible

non-stationary model that can detect time-varying neuronal communities. To this end, we

generalize the stationary model presented in the previous section by using a time-varying

correlation matrix for the latent variables. More specifically, we allow the partition indicators

to change over time, and use zit to denote the corresponding community of the ith neuron
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at time t. Therefore, we rewrite the correlation matrix as follows:

Rt =



1 ρ121{z1t=z2t} · · · ρ1n1{z1t=znt}

ρ121{z1t=z2t} 1 · · · ρ2n1{z2t=znt}
...

...
. . .

...

ρ1n1{z1t=znt} ρ2n1{z2t=znt} · · · 1


.

(4.2)

In prior, we assume that zit follow a dynamic Ewens distribution as follows:

1. At time t=1, (z11, z21, ..., zn1) has the standard Ewens distribution.

2. Conditional on the status of neurons at time t, the ith neuron at time t + 1 stays

with the current subset (community) with probability β, moves to an existing subset,

M , with probability (1 − β) |M |
n−zit+α

, and moves to an empty subset with probability

(1 − β) α
n−zit+α

. Here, n−zit denotes the number of neurons currently not in the same

subset as the ith neuron.

The parameter α control the sparsity of the network, and β controls the dynamics of the

network over time. For the experiments described in the following section, we set α = 0.2

and β = 0.4. In general, however, they can be treated as hyperparameters for additionally

flexibility.

4.2.1 A simulation study for the dynamic model

Next, we conduct another simulation study where correlation structures among neurons may

change over time. In this case we simulate the data according to model by [33]. To this
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Figure 4.2: Dynamics of the extra term, ζt, for the neurons with time-varying correlations.
Note that ζt = 1 indicates independence ζt > 1 indicates positive correlation between each
pair of neurons.

end, we first generate time-varying marginal firing probabilities for each neuron and then

calculate the joint probabilities of the two neurons by multiplying the product of marginal

firing probabilities by an extra term, ζ, such that ζ =1 indicates independence while ζ < 1

and ζ > 1 indicate, respectively, negative correlation and positive correlation between the

two neurons. Note that we are using a data generating mechanism that is different from our

proposed model in order to test the robustness of our approach. In this simulation study,

we have two communities of correlated neurons. For the first community, there are two

neurons (indexed by 1 and 2) with constant correlation structure (ζ = 2). For the second

community, there are 4 neurons (indexed by 3, 4, 5 and 6 ), where neuron 3 and 4 have

constant correlation (ζ = 2); whereas, the correlations between neuron 3 and neurons 5 and

6 change over time as shown in Figure 4.2. Neurons 7 to 10 are not involved in the network.

Figure 4.3 shows the posterior estimates (along with 95% probability intervals) over time

for the neurons with strong connections. The results are summarized in Figure 4.4, which

shows that our model could correctly identify the underlying dynamic structure of neuronal

communities. Note that there is a weak connection between neurons 4 and 6 in the first half

and between neurons 4 and 5 in the second half because of the strong connection between
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Figure 4.3: The posterior estimates of correlation parameters with 95% credible intervals.
The solid lines are the posterior estimates and the gray areas are the 95% credible intervals.

neurons 3 and 4. See the supplementary file for more detailed results.

4.2.2 Results for spike train data

Finally, we apply our method to data collected from the experiment discussed above to

examine the community structure of 9 active neurons, which were simultaneously recorded

during the experiment under both conditions. Under the rewarded stimulus, we detect two

communities of correlated neurons (Panel (a), Figure 4.5). Under the non-rewarded stimulus,

we detect two different communities of correlated neurons (Panel (b), Figure 4.5). The
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Figure 4.4: Time-varying community structure of correlated neurons. For the first half of
time, there are two communities (neurons 1, 2 and neurons 3, 4, 6). For the second half of
time, neuron 5 joins the second community in stead of neuron 6.

results suggest that neurons 1, 2, 7 and neurons 4, 5 are correlated under both conditions.

Neurons 3, 6, and 8, on the other hand, play different roles under different conditions.

This indicates that there are specific neural networks in the prefrontal cortex that represent

specific variables related to basic reward-based decision-tasks. In both scenarios, while the

estimated correlations change over time (see Figure 4.6 and 4.7), the overall structure of

networks remains the same throughout the course of experiment.
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Figure 4.5: The community structure of correlated neurons under (a) rewarded and (b)
non-rewarded scenarios. Each node represents one neuron and each edge represents the
connection between a pair of neurons. Here the solid line represents positive correlation and
the dash line represents negative correlation. While the estimated correlations change over
time, the overall structure of networks under each scenario remains the same throughout the
course of experiment.
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Figure 4.6: Rewarded:The posterior estimates of correlation parameters with 95% credible
intervals. The solid lines are the posterior estimates and the gray areas are the 95% credible
intervals.
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Figure 4.7: Non-rewarded:The posterior estimates of correlation parameters with 95%
credible intervals. The solid lines are the posterior estimates and the gray areas are the 95%
credible intervals.
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Chapter 5

Conclusions and Future Directions

5.1 Conclusions

The method we proposed in chapter 2 benefits from multiple aspects, including flexibility,

computational efficiency, interpretability, and generalizability. The latter is especially im-

portant because the model offered in this work can be adopted for other computationally

intensive biological problems. Our proposed method also offers a modeling approach to the

problems of identification and calibration of co-firings at various lag times. Consequently,

from the statistical inferential perspective, our hierarchical modeling approach would fair

better when compared with methods such as cross-correlation analysis, mainly because not

only it sheds light on how signals in the network are communicating, but also it informs

the scientist of the sharpness of those cross relationships through posterior confidence in-

tervals. Also, note that although it is possible to run other methods, e.g., the method of

[30], for different lags and perform multiple hypothesis testing, our method offers a modeling

paradigm for measuring lagged and exact synchrony at the same time. This is importan-

t because it avoids complex and multistage testing procedures for pairs of neurons. The
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sampling algorithm we proposed for detecting synchrony among multiple neurons is also ad-

vantageous over other commonly used MCMC techniques such as Metropolis-Hastings. This

fact becomes even more salient especially considering that the current technology provides

high-dimensional data by allowing the simultaneous recording of hundreds of neurons. The

analysis presented offers a number of ways in which examining the temporal relationship

of activity among multiple neurons can reveal information about population dynamics of

neuronal circuits. These kinds of data are critical in going beyond treating populations as

averages of single neurons, as is commonly done in physiological studies. They also allow us

to ask the question of whether neuronal firing heterogeneity contributes towards a unified

whole [76], or whether separates populations in a brain area are differentially involved in

different aspects of behavior [8].

The Bayesian dynamic model we developed in Chapter 3 for analyzing cross-dependence

between neurons in a population shows a number of advantages: (1.) It captures the time-

dependent dependencies among neurons and thus is applicable for analyzing spike train data

recorded while a subject is performing a complex cognitive task; (2.) It allows us to test

differences in cross-neuronal correlations in activity under different experimental conditions;

(3.) It can be applied to a moderate to large number of neurons, and the computational

complexity increases with the number of interacting neurons only; (4.) It can be applied

to variety of data from a broad spectrum including continuous-valued time series that have

some latent structure; (5.) Finally, the proposed model yielded results that revealed new

insight into the dynamic nature of population coding in the prefrontal cortex of rats during

decision making.

In addition, the generalized model for proposed in Chapter 4 allows us to implement a more

flexible framework for detecting time-varying community structures among neuronal net-

works. While having the advantages of the models discussed above, this model is even more

computationally efficient as computation complexity only increase with community sizes and
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hence can handle a larger number of connected neurons. Another advantage of this model is

that it allows us to detect multiple subsets or communities of connected neurons during the

experiment, rather than only one population of connected neuron discussed above. This is

especially important because our proposed approach can capture more complex dependence

structures and hence can produce more valuable insights on a variety of cognitive functions

including, but not limited to, attention, memory and so forth.

The model produced results that led us to pose new hypotheses related to the prefrontal

control of executive function (response execution/inhibition). The large hypothesis resulting

from these data is that complex behaviors such as decision-making come about by ensem-

ble coding of discrete behavioral components (stimulus representation, response execution,

reward consumption, etc.). These behaviors are encoded by temporally discrete synchroniza-

tion of specific populations of neurons, although these populations share members. There

are a number of key experiments that must be performed to verify this hypothesis and to

refine our understanding of encoding along these lines. It is critical to isolate specific sub-

components of behavior that may be encoded. So, for example, studying neural encoding

specifically during response execution or specifically during response inhibition (as opposed

to in more complex tasks) will allow a precise association between synchronous populations

and behavior. In addition, we need to test whether these ensembles reliably form– with the

same member neurons– each time a behavior is performed or whether they exhibit subtle

differences on a trial-to-trial basis. Further, we need to better understand the temporal as-

pects of synchronous activation– at what point do synchronous ensembles form and for how

long? Finally, we will need to apply the model to larger populations of neurons to determine

how sparse population coding in the prefrontal cortex actually is. These are critical exper-

iments and analyses that are feasible with the techniques that we have at hand and which

will provide substantially more detail on the precise nature of neuronal ensemble encoding

of cognitive function.
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The conclusions from this analysis are primary and will need to be studied from further

experiments on decision-making in our laboratory and different contexts. Nevertheless, the

results of the analysis of even this limited data set are already highly intriguing and already

begin to reveal new insight into the dynamic nature of population coding in the prefrontal

cortex during basic cognitive tasks. In particular, using these models to characterize how

populations of neurons synchronize at precise times across behavior will let investigators focus

precisely on the relationship between population coding and discrete components of behavior.

For example, it is overly-general (i.e., lacking in temporal precision) to state that neural

populations exhibit synchronous activity during reward-seeking. Instead, we can specify

that particular neural populations are correlated during specific subcomponents of these

behaviors (stimulus presentation, lever approach, reward-well entry, reward consumption,

etc.). As demonstrated in our analysis, by narrowing down our window of focus with respect

to population encoding, we can achieve a previously unconsidered combination of spatial

breadth and temporal precision. Typically the focus on neural coding of discrete behavioral

intervals is limited to analysis of single-neuron activity.

5.2 Future Directions

The methods proposed in this dissertation can be generalized in several ways. First, We start

our research by modeling the firing rates of one neuron using Gaussian process models. In

this project, we consider the nonlinear firing rates as a function of time only. In future, one

possibility is to account for history effects by modeling the firing probabilities as a function

of time and time difference to the last spike. Next we provide a model framework for jointly

modeling of multiple neurons by introducing some latent variables which are assumed to be

Gaussian distributed. We might also generalize it to student t′s distribution to obtain more

robust inference regarding the connection among neurons. The proposed non-stationary
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model is already a step forward towards dynamic modeling of neuronal networks. However,

our current model assumes that if two neurons are related, the relationship is either positive

or negative so that the sign remains constant but may vary in strength over time. To

relax this assumption, this model can be extended for situations where the direction of the

relationship changes (from positive to negative or vice-versa) over time.

In addition, our current approach only model undirected connectivity among multiple neu-

rons. In the future, it is of great interest to incorporate directed connectivity into multiple

neurons. The direction in neural network will help us how information are transmitted in

brain when the subjects are performing certain types of cognitive tasks. Lagged directional

connectivity among a large population of neurons with be even more appealing as it can

produce much more insights about how population of neurons encodes complex cognitive

behaviours.

Another direction might be to develop more computationally efficient methods. As the

advancement in technology, in future hundreds of neurons or even more can be simultane-

ously recorded during the experiment. The current method might become infeasible when

addressing such a large amount of data. For example, in our proposed method, the most

computational intensive part is to sample the latent variables which are truncated normal

distribution. Developing a fast and efficient algorithm to sample from high-dimension trun-

cated normal distribution with not only benefit our analysis of spike train data but also be

widely appreciated in other fields involving sampling of truncated Gaussian distributions.
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Appendices

Appendix A

Algorithm 1 Sampling latent variables, copula parameters, and hyperparameters

Initialize the matrix of latent variables, U |(n,D), where the ith column corresponds to the
latent variables of the ith neuron, n is the number of time bins, and D is the number of
neurons.
Initialize the hyperparameters, θ, which specify the Gaussian process priors for the latent
variables.
Initialize the copula model parameters, β, as a D(D − 1)/2 vector.
for i = 1, . . . , B do

Sample U (i+1) from posterior distribution conditional on U (i), θ(i) and β(i),
P (U (i+1)|Y, U (i), θ(i), β(i)), using the elliptical slice sampler (Algorithm 2).
for j = 1, . . . , D do

Sample θ
(i+1)
j from the posterior distribution of the hyperparameters of the jth la-

tent variable conditional on the latent variables, P (θ
(i+1)
j |U (i+1)

j , θ
(i)
j ), using the slice

sampler [52].
end for
Sample β(i+1) from the posterior distribution conditional on the latent variables,
P (β(i+1)|Y, U (i+1), β(i)), using Spherical HMC presented (Algorithm 3).

end for
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Algorithm 2 Elliptical slice sampler for latent variables

Let U be the current state of the latent variables.
Sample U∗ ∼ N(0,Σ), where Σ is the covariance matrix of the Gaussian process.
Calculate the log-likelihood threshold for the elliptical slice sampler,
v ∼ Uniform[0, 1]
log y ← log(L(U)) + log(v)
Let α be the angle for the slice.
Draw a proposal and define the corresponding bracket,
α ∼ Uniform[0, 2π]
(αmin, αmax)← (α− 2π, α)
Set U ′ ← U cos(α) + U∗ sin(α)
while log(L(U ′)) < log y do

if α < 0 then
αmin ← α

else
αmax ← α

end if
α ∼ Uniform[αmin, αmax]
U ′ ← U cos(α) + U∗ sin(α)

end while
Return U ′ as the new state.
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Algorithm 3 Spherical HMC for copula parameters

Initialize the copula parameters, β(1), along with their appropriate transformation, β̃(1),
at the current state.
Sample a new velocity value ṽ(1) ∼ N (0, ID+1).
Define the potential energy, U , as minus log density of β̃ and the kinetic energy, K, as
minus log density of ṽ.
Set ṽ(1) ← ṽ(1) − β̃(1)(β̃(1))T ṽ(1)

Calculate the Hamiltonian function: H(β̃(1), ṽ(1)) = U(β̃(1)) +K(ṽ(1))
for ` = 1 to L do

ṽ(`+
1
2
) = ṽ(`) − ε

2

([
ID
0

]
− β̃(`)(β(`))T

)
∇U(β(`))

β̃(`+1) = β̃(`) cos(‖ṽ(`+ 1
2
)‖ε) + ṽ(`+

1
2 )

‖ṽ(`+
1
2 )‖

sin(‖ṽ(`+ 1
2
)‖ε)

ṽ(`+
1
2
) ← −β̃(`)‖ṽ(`+ 1

2
)‖ sin(‖ṽ(`+ 1

2
)‖ε)

+ ṽ(`+
1
2
) cos(‖ṽ(`+ 1

2
)‖ε)

ṽ(`+1) = ṽ(`+
1
2
) − ε

2

([
ID
0

]
− β̃(`+1)(β(`+1))T

)
∇U(β(`+1))

end for
Calculate H(β̃(L+1), ṽ(L+1)) = U(β̃(L+1)) +K(ṽ(L+1))
Calculate the acceptance probability

α = min
(
1, exp{−H(β̃(L+1), ṽ(L+1)) +H(β̃(1), ṽ(1))}

)
Accept or reject the proposal according to α
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