
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Modernizing Deep Unsupervised Learning with Human Experience

Permalink
https://escholarship.org/uc/item/0k20v0z1

Author
Zhang, Hongjing

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0k20v0z1
https://escholarship.org
http://www.cdlib.org/

Modernizing Deep Unsupervised Learning with Human Experience

By

Hongjing Zhang
Dissertation

Submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Office of Graduate Studies

of the

University of California

Davis

Approved:

Ian Davidson, Chair

Hamed Pirsiavash

Jiawei Zhang

Committee in Charge

2022

-i-

Copyright © 2022 by

Hongjing Zhang

All rights reserved.

This dissertation is dedicated to my parents.

For their endless love, support and encouragement.

-ii-

Contents

List of Figures . vii

List of Tables . xiii

Abstract . xvi

Acknowledgments . xvii

1 Introduction 1

1.1 Our Contributions . 3

1.2 Summary of the Dissertation . 4

1.2.1 A Framework for Deep Constrained Clustering 5

1.2.2 A Self-Supervised Deep Learning Framework for Unsupervised Few-

Shot Learning and Clustering . 6

1.2.3 Deep Descriptive Clustering . 6

1.2.4 Towards Fair Deep Anomaly Detection 7

1.2.5 Fair Learning for Deep Clustering 8

2 A Framework for Deep Constrained Clustering 9

2.1 Introduction . 9

2.2 Related Work . 12

2.3 Our Deep Constrained Clustering Framework 13

2.3.1 Deep Embedded Clustering . 13

2.3.2 Different Types of Constraints . 14

2.3.3 Preventing Trivial Solution . 16

2.3.4 Extensions to High-level Domain Knowledge-Based Constraints . 17

2.4 Putting It All Together - Efficient Training Strategy 18

2.5 Generating Constraints from an Ontology Graph and Learning with Mul-

tiple Types of Constraints Simultaneously 19

2.6 Experiments . 23

2.6.1 Datasets . 24

-iii-

2.6.2 Evaluation Metric . 25

2.6.3 Implementation Details . 25

2.6.4 Experimental Results . 27

2.7 Conclusion, Limitations and Future Work 40

3 A Self-Supervised Deep Learning Framework for Unsupervised Few-

Shot Learning and Clustering 43

3.1 Introduction . 43

3.2 Related Work . 45

3.3 Methodology . 47

3.3.1 Overview . 47

3.3.2 Step 1: Category Discovery . 48

3.3.3 Step 2: Post-Processing for Representative Data 48

3.3.4 Virtual Instance Generation . 50

3.3.5 Iterative Training . 50

3.4 Experiments . 52

3.4.1 Datasets . 52

3.4.2 Implementation Details . 52

3.4.3 Unsupervised Few-shot Classification on Omniglot 53

3.4.4 Unsupervised Few-shot Classification on miniImageNet 54

3.4.5 How our framework improves upon the initial embeddings in terms

of clustering performance. 55

3.4.6 Benefits of data augmentations 58

3.4.7 Benefits of category post-processing 58

3.5 Conclusions . 58

4 Deep Descriptive Clustering 60

4.1 Introduction . 60

4.2 Related Work . 62

4.3 Approach . 64

-iv-

4.3.1 Overall Framework . 64

4.3.2 Information Maximization for Clustering 64

4.3.3 The Cluster-level Explanation Objective 65

4.3.4 Self-generated Pairwise Loss Term 66

4.3.5 Overall Training Algorithm . 67

4.4 Experiments . 69

4.4.1 Experimental Setup . 69

4.4.2 Comparison with Descriptive Clustering 70

4.4.3 Novel Explanation as Ontology Extraction 71

4.4.4 Evaluating Clustering Performance 72

4.4.5 Parameter Analysis and Ablation Test 73

4.5 Conclusion and Future Work . 74

5 Towards Fair Deep Anomaly Detection 75

5.1 Introduction . 75

5.2 Related Work . 78

5.3 Preliminary . 80

5.3.1 Deep Support Vector Data Description 80

5.3.2 Notion of Fairness . 80

5.4 Methods . 83

5.4.1 Learning Overview . 83

5.4.2 Deep Fair SVDD Model . 84

5.4.3 Potential Extensions of Deep Fair SVDD 87

5.5 Experiments . 88

5.5.1 Data Sets . 88

5.5.2 Implementation . 89

5.5.3 Evaluation Metrics and Baselines 90

5.5.4 The Unfairness of Deep Anomaly Detection 90

5.5.5 Evaluating Deep Fair SVDD . 92

5.5.6 The Trade-off between Fairness and Anomaly Detection Performance 95

-v-

5.5.7 Anomaly Predictions Analysis . 96

5.5.8 Embedding Visualization . 97

5.5.9 Running Time Analysis . 98

5.6 Conclusions and Future Work . 98

6 Fair Learning for Deep Clustering 100

6.1 Introduction . 100

6.2 Related Work . 103

6.3 Definitions of Group-level Fairness . 104

6.3.1 Notion of Fairness . 105

6.3.2 Equivalence of Optimizing Fairness and Balance Measures 105

6.4 Deep Fair Clustering Algorithm . 107

6.4.1 Review of Base Clustering Model 107

6.4.2 Generating Fair Assignments Under Group-level Fairness Constraints 109

6.4.3 Learning to Be Fairer . 111

6.4.4 Can our Proposed Fairness Module Work for Other Clustering Al-

gorithms? . 112

6.5 Experiments . 113

6.5.1 Experimental Setup . 113

6.5.2 Results Analysis . 118

6.5.3 Further Analysis on Our Model 119

6.6 Conclusion . 121

7 Conclusion 123

-vi-

List of Figures

1.1 Illustration of our efforts of leveraging human knowledge to improve cur-

rent deep unsupervised learning algorithms. Each chapter is represented

by a colored line that connects one type of human knowledge into one deep

unsupervised learning model. 4

2.1 WordNet hierarchy of Fashion MNIST data set. The bolded classes are

classes we will cluster upon. 21

2.2 Examples of the ideal embedding (left-hand) learnt from an ontology using

both triplets and pairwise constraints and the embedding learnt from just

pairwise constraints (right-hand). Note in the later the three clusters are

far apart from each other because the cannot-links (grey arrows) between

these clusters will push them as far as possible which contradicts the ideal

data embedding that ankle boots and sneakers are semantically similar. . 22

2.3 Example of instance difficulty constraints. Top row shows the “easy” in-

stances and second row shows the “difficult” instances. 26

2.4 Examples of the generated triplet constraints for MNIST and Fashion. The

three rows for each plot shows the anchor instances, positive instances and

negative instances correspondingly. 26

2.5 Clustering accuracy and NMI on training test sets for different number

of pairwise constraints. AE means an autoencoder was used to seed our

method. The horizontal maroon colored baseline shows the IDEC’s [64]

test set performance. 28

2.6 We visualize (using t-SNE) the latent representation for a subset of in-

stances and pairwise constraints, we visualize the same instances and con-

straints for each row. The red lines are cannot-links and blue lines are

must-links. 30

2.7 The embedding for a subset of instances and inconsistent pairwise con-

straints after several training epochs . 31

-vii-

2.8 Evaluation of the effectiveness of triplet constraints in terms of Acc/NMI. 32

2.9 Experiments with Ontologies. Evaluation of the clustering performance of

four settings. (a) No constraints, (b) Triplet constraints from labels, (c)

Pairwise constraints from labels and (d) triplet constraints and pairwise

constraints generated from WordNet ontology. 33

2.10 Evaluation of the global size constraints. This plot shows each cluster’s

size before/after adding global size constraints. 34

2.11 Effects of noisy constraints for MNIST, Fashion and Reuters Dataset. . . 35

2.12 We report the out-of-sample prediction results of SVHN data in the left

figure and the running time analysis in the right figure. Note we report

the average clustering performance and running time (sec) over 10 trails. 40

3.1 Pipeline of the proposed unsupervised representation learning framework.

The inputs are unlabeled images and the output is the learned embedding

function. The learning process mainly contains fours steps: 1) category

discovery, 2) category post-processing, 3) generate virtual instances to con-

struct learning tasks, 4) learning to differentiate created categories. . . . 47

3.2 The whole learning process of our framework (left hand side shows model

initialization and right hand side shows iterative learning). Left: The

unlabeled points set X is first encoded to Z via existing unsupervised

representation learning function ϕ(x). After that we conduct clustering

on Z and post-process the clustering assignments to get pseudo-labeled

data set X∗, Y ∗. Right: Given the pseudo-labeled data and corresponding

composed augmentations we train ProtoNet fθ via episodic learning and

get learned embeddings Z, clustering on Z and re-label X∗ and generate

new augmented instances. 51

3.3 We evaluate the clustering NMI for our learned embeddings on Omniglot

and miniImageNet for each training iteration. 56

3.4 We evaluate the clustering NMI for our learned embeddings on MNIST,

FASHION-MNIST for each training iteration. 56

-viii-

3.5 Plots of ablation study. Note plot (a) and (c) test on how much our

framework benefit from composition of data augmentations and plot (b)

and (d) test on how much our framework benefit from culling the unlabeled

instances. 57

4.1 Taxonomy of works on clustering explanations. 61

4.2 The framework of proposed deep descriptive clustering (DDC). DDC con-

sists of one clustering objective, one sub-symbolic explanation objective,

and one self-generated objective to maximize the consistency between clus-

tering and explanation modules. 64

4.3 The graphical ontology generated for aPY data set. 72

4.4 Plots for parameter analysis and ablation study 74

5.1 Motivating example of the need for group-level fairness in deep anomaly

detection problem. We visualize the top 32 normal instances and top 32

abnormal instances discovered by deep SVDD on celebA data set. We see

that the normal group is dominated by females while the abnormal group

is dominated by males. 77

5.2 A toy example to show the difference between our proposed two fairness

measures. Figure a, b summaries the statistics of predicted anomaly scores

of model A and B. Given the ground-truth anomaly score threshold t =

8, model A and B have the same fairness by p% -rule as 2/6 = 0.33.

Figure c, d shows the anomaly score distributions for model A’s predictions

(MA, FA) and model B ’s predictions (MB, FB). Model B is more unfair

as the anomaly scores are highly correlated with the sensitive attribute

gender (M,F). The fairness by distribution distance for model A and B

are W (MA, FA) = 1.37 and W (MB, FB) = 2.87. 82

-ix-

5.3 Pipeline of the proposed deep fair SVDD learning framework. The inputs

are normal training data X and the outputs are learned embedding f(X ; θ)

and a discriminatory function g(θd). The end-to-end learning process con-

tains three steps: 1) train the encoder f(θ) via minimizing the loss LSV DD,

2) fix the encoder’s parameters θ, and train the discriminator g(θd) via min-

imizing the discriminator’s loss LD, 3) fix the discriminator’s parameters

θd and train encoder f(θ) to minimize the adversarial loss LSV DD − λLD.

Procedure (2) and (3) are trained alternatively until convergence. 84

5.4 Two methods of evaluating the unfairness for existing deep anomaly de-

tection methods on both the original training sets (blue bars) and bal-

anced training sets (orange bars). Note the larger fairness by p% -rule

and smaller distribution distances means the model is fairer. Observed

from these figures we can see that training deep anomaly detection mod-

els with a balanced training set can slightly improves the fairness in most

cases. However, in most cases the fairness by p% -rule do not satisfy the

80% rule (black horizontal line) advocated by the US Equal Employment

Opportunity Commission [18]. 92

5.5 Comparison of deep fair SVDD with deep anomaly detection baseline

methods on all four selected data sets. We evaluate the fairness perfor-

mance for all the models trained on original data sets and plot the fairness

by p% -rule and distribution distances in Figure (a), (b). We also evaluate

the anomaly detection performance and show the AUC scores in Figure

(c). Note deep fair SVDD achieves better fairness results with a slightly

loss in terms of the AUC score. 93

5.6 The visualization of the random selected normal and abnormal examples

determined by deep SVDD (top row) and deep fair SVDD (bottom row)

for MNIST-Invert data set and celebA data set. Comparing to the deep

SVDD’s prediction results, the size of instances with different protected

status variable values are more balanced in fair SVDD’s predictions. . . . 94

-x-

5.7 The trade-off between fairness and anomaly detection performance. We

tune the hyper-parameter λ to demonstrate the trade-off between fairness

by p% -rule and anomaly detection performance in all the data sets. Note

the λ ranges from 10−2 to 102 and it is visualized in each plot with the

order from left to right respectively. In all four datasets the fairness by

p% -rule value increases as λ increases. The AUC scores decrease in most

data sets as λ increases. 95

5.8 Illustration of how deep fair SVDD makes the anomaly detection results

fairer. We visualize the sampled non-overlapping predictions between deep

SVDD and deep fair SVDD. The instances in (a) can be seen as moved

from deep SVDD’s predicted normal group to deep fair SVDD’s predicted

abnormal group and vice versa for (b). 96

5.9 The t-SNE [96] visualization of the feature embeddings for test instances.

Red and blue points represent test instances with different sensitive at-

tribute values. Comparing to deep SVDD’s results (top row), the deep fair

SVDD’s learned embeddings (bottom row) are more fair as blue and red

points are always blended together which are hard to separate. 97

6.1 Note the red and blue points are instances with different PSV values. Fair

Non-Deep Clustering (left) aims to find a fair partition of the data while

minimizing some classic clustering objectives. Deep Fair Clustering (right)

aims to learn a general fair representation and to simultaneously cluster

the data. 102

6.2 Clustering ACC and balance on tabular data. We compare Ours DFDC

(Deep Model) to non-deep baseline ScFC. 118

6.3 Experimental results on predictive (out-of-sample) clustering settings. . . 118

6.4 Flexible fairness experiments on MNIST-USPS. With larger relaxation the

balance drops as expected. 119

6.5 t-SNE visualization of learned embedding (MNIST-USPS), color red and

blue indicate different PSV values. 120

-xi-

6.6 Sensitivity analysis of hyper-parameter β which serves as the weights for

fairness objective. 120

6.7 Visualizing the learning curves of training loss and fairness measured by

the balance on HAR and MNIST-USPS. 121

-xii-

List of Tables

1.1 Outline of the dissertation . 5

2.1 Left table shows baseline results for Improved DEC [64] averaged over 20

trials. Right table lists experiments using instance difficulty constraints

(mean ± std) averaged over 20 trials. 27

2.2 Pairwise constrained clustering performance (mean ± std) averaged over

100 constraints sets. Due to the scalability issues we apply flexible CSP

with downsampled data(3000 instances and 180 constraints). Negative

ratio is the fraction of times using constraints resulted in poorer results

than not using constraints. See Figure 2.6 and text for an explanation why

our method performs well. 29

2.3 Pairwise constrained clustering performance (mean ± std) averaged over

50 random noisy constraints sets. Baseline model is the model without

using pairwise constraints. 36

2.4 Pairwise constrained clustering performance (mean ± std) averaged over

50 random sets. Epoch 350*: model didn’t converge after 350 epochs,

where convergence is reached when the ratio of changed labels after an

epoch < 0.001. 37

2.5 Ablation study to evaluate the contribution of clustering loss to pairwise

constrained clustering. Note we report the mean clustering accuracy for

each data set under two settings which ℓC means adding the clustering loss

function. 38

2.6 Runtime analysis for our proposed approach with diffrent types of con-

straints. We use the same experimental setting for each type of constraints

and average the running time (sec) over 10 trails. 39

3.1 Comparison to prior works on Omniglot. We report the few-shot classifi-

cation mean accuracies . 54

-xiii-

3.2 Comparison to prior works on miniImageNet. We report the few-shot

classification mean accuracies. AAL [7] didn’t report the results for 20

shot and 50 shot setting so we leave them as blank entries 55

4.1 Results generated by descriptive clustering [37], we present the first Pareto

point of their result such that the diameter of all the clusters are minimized.

↑ means the larger value the better. 71

4.2 Results generated by our proposed DDC. ↑ means the larger value the better. 72

4.3 Comparison of clustering performance averaged over 10 trials (mean ± var)

on AwA and aPY under different tag annotated ratio r% ∈ {10, 30, 50}.

Bold results are the best mean results among all the algorithms. 73

5.1 Characteristics of four datasets used in our experiments. Our methods

requires the protected status variables such as Gender (Male and Female)

and Race (African-American and non African-American) to be binary vari-

ables. 88

5.2 Characteristics of original training set and balanced training set used in

experiments. We reduce the number of over-represented group in original

training set to generate balanced training set. 91

5.3 Anomaly prediction results for deep SVDD and deep fair SVDD. Z0 and Z1

represent the number of predicted anomalies with protected status variable

value as 0 and 1 respectively. There is a large overlap between these two

model’s anomaly predictions. 96

5.4 Training time results measured by seconds. Training deep fair SVDD takes

longer time due to the min-max optimization of the adversarial learning. 98

6.1 Characteristics of datasets . 115

6.2 Hyperparameters used in our experiments: n denotes the training batch

size, η represents the learning rate, α is the weight-decay parameter and

β, γ are the hyper-parameters for fairness module and self-augmented train-

ing branch. 116

-xiv-

6.3 Comparison of clustering and fairness performance on MNIST-USPS, Reverse-

MNIST and HAR. HAR consists of multi-state PSV that baselines with

dashes are not applicable. The first group are plain deep clustering meth-

ods, the second group are fair non-deep clustering methods and the third

group are deep fair clustering methods including our own. Bold results are

the best results among all the baselines except the guaranteed fairness re-

sults which are marked with blue. Note we report our average performance

results after 10 trials. 117

-xv-

Abstract

Modernizing Deep Unsupervised Learning with Human Experience

Deep unsupervised learning has emerged as a promising alternative to supervised ap-

proaches. However, supervised learning needs a tremendous amount of information in the

form of annotations on specific pre-defined tasks. In contrast, human learning requires

much fewer annotations and is flexible. Recent research efforts have been motivated to

explore different deep unsupervised learning algorithms to leverage the massive unlabeled

data for various applications that move beyond the supervised learning setting. While

recent deep unsupervised learning works have shown their success in representation learn-

ing, clustering, and anomaly detection, many challenges remain unsolved. For example,

how to improve the quality of learned representations used for downstream applications

(the quality of learned representations challenge)? How to interpret and understand the

deep unsupervised learning models predictions (the explainability challenge)? Is there any

risk of bias for deep unsupervised learning applications (the bias and fairness challenge)?

To gain insights into the aforementioned challenges, we propose a broad range of novel

techniques to address them. Each injects human-level knowledge into deep unsupervised

learning. To be specific, this dissertation presents five approaches. The first two address

the quality of representation challenge, the third the explainability challenge, and the last

two the bias and fairness challenges. Our first formulation introduces a deep constrained

clustering framework that enhances clustering performance via various constraints. Our

second formulation is a self-supervised representation learning framework that automat-

ically discovers and differentiates different categories. The third formulation simultane-

ously performs representation learning for clustering and describing the generated clusters

with semantic tags associated with the clustered instances. Our fourth formulation pro-

poses a novel deep fair anomaly detection architecture that uses adversarial learning to

inject human fairness rules. Finally, our fifth formulation enforces disparate impact rules

into deep clustering models via minimal modification learning. These methods are unified

in modernizing deep unsupervised learning with different types of human guidance.

-xvi-

Acknowledgments

This dissertation becomes a reality with many individuals’ kind support and help. I would

like to express my warmest gratitude to all who have encouraged and supported me.

Foremost, I would like to express my special gratitude and thanks to my advisor,

Professor Ian Davidson. With his guidance, I learn to do research and develop brilliant

ideas to solve challenging problems. Thank him for imparting his knowledge and expertise

in this dissertation.

Thanks to all my collaborators, Dr. Sugato Basu, Professor S.S. Ravi, and Tianyang

Zhan. I would like to express my gratitude for their valuable input. Thanks for sharing

your knowledge and expertise in this dissertation.

Thanks to my dissertation committee members and Ph.D. qualifying exam committee

members: Professor Ian Davidson, Professor Hamed Pirsiavash, Professor Jiawei Zhang,

Professor Lemon Akoglu, and Professor Xin Liu. Thank you for the inspiring comments

and helpful suggestions.

My thanks also go to my colleague and people who have willingly helped me out with

their abilities.

-xvii-

Chapter 1

Introduction

If intelligence was a cake,

unsupervised learning would be the

cake, supervised learning would be

the icing on the cake, RL would be

the cherry of the cake.

Yann LeCun

Unsupervised learning algorithms in machine learning discover hidden patterns or

data groupings without the need for human annotation. With the advancement of deep

learning, deep unsupervised learning aims to capture rich patterns in raw data with deep

networks in a label-free way. Some of the most common deep unsupervised learning

models include Auto-Encoders [10], Generative Adversarial Networks [61], Self-supervised

Learning [131, 32, 69]. Deep unsupervised learning has achieved huge success in several

domains; for example: massive language models like GPT-3 [24] and BERT [46] have been

widely used in NLP tasks; deep clustering algorithms [144, 26] have been applied on image

tasks for categorization; deep unsupervised anomaly detection algorithms [163, 108] have

shown their advantage in detecting abnormal instances over complex image data.

While recent deep unsupervised learning works have shown success in representation

learning, clustering, and anomaly detection. Many challenges remain unsolved for deep

unsupervised learning. In this dissertation, we mainly discuss three challenges of current

1

deep unsupervised learning:

• Quality of Learned Representation Challenge: the quality of learned representation

directly determines the performance of its downstream tasks, such as classification

or regression problems. The representation learned via supervised learning is still

much better than unsupervised learning. The performance gap between supervised

and unsupervised learning motivates us to improve the current deep unsupervised

learning algorithms.

• The Explainability of Deep Unsupervised Learning Challenge: the area of explain-

able AI (XAI) is motivated to enhance the interpretability of complex machine

learning models, especially deep learning. Arguably, XAI is more needed, differ-

ent, and challenging in deep unsupervised learning. For example, most supervised

learning focuses on instance-level explanation, whereas clustering explanations are

usually at the model level rather than the instance level.

• Fairness Issues in Deep Unsupervised Learning Challenge: deep learning boosts the

performance of unsupervised learning algorithms such as clustering and anomaly

detection. Clustering and anomaly detection algorithms are commonly used in

market research, social network study, and crime analysis. While deep unsuper-

vised learning achieves good performance on those applications, recent studies on

fairness reveal that these technologies can be at risk of bias. This substantial threat

could undermine their entire purpose.

To address the challenges mentioned above, we propose to inject human-level knowl-

edge and experience into deep unsupervised learning models. Unlike semi-supervised

learning which uses the exact instance-level ground-truth labels for model training, we

seek opportunities in learning with human experiences, which are usually more abstract

but easier to acquire. The main directions in this dissertation are: (1) novel ways of

integrating constraints and human knowledge to improve representation learning and

clustering quality; (2) leveraging interpretable tags to enhance the explainability of deep

clustering; (3) enforcing fairness rules for deep clustering and deep anomaly detection.

2

1.1 Our Contributions

Motivated by the challenges mentioned earlier in deep unsupervised learning, we propose

leveraging human knowledge to improve the representation quality, model explainability,

and fairness of deep unsupervised learning algorithms. The main contributions of this

dissertation are:

• We propose a deep constrained clustering formulation that cannot only encode stan-

dard together/apart constraints but new triplet constraints, instance difficulty con-

straints, and cluster-level balancing constraints. We show that our formulation

significantly improves the clustering performance and is robust to the random con-

straints’ negative effects. We also show that our approach can generalize for out-of-

sample predictions and scale to complex problems (Chapter 2, [154] and [159]).

• We propose a self-supervised representation learning framework that learns to dis-

cover new categories and then learns to differentiate them iteratively. We validate

our learning representation on two downstream tasks, including clustering and few-

shot classification. Our proposed approach achieves state-of-the-art results in both

tasks (Chapter 3 [160]).

• We propose a framework to learn clustering and cluster-level explanations simul-

taneously. We formulate the class-level explanation problem as an Integer Linear

Programming (ILP). A pairwise loss function is proposed with self-generated con-

straints to bridge the clustering and explanation. Empirical results on public data

demonstrate that our model consistently achieves better clustering results and high-

quality explanations (Chapter 4 [156]).

• We propose a new architecture for the fair anomaly detection approach (Deep Fair

SVDD) and train it using an adversarial network to de-correlate the relationships be-

tween the sensitive attributes and the learned representations. Further, we propose

two effective fairness measures and empirically demonstrate that existing methods

are unfair. Finally, we show that our proposed approach can remove the unfairness

with minimal loss of anomaly detection performance (Chapter 5 [158]).

3

Figure 1.1: Illustration of our efforts of leveraging human knowledge to improve current
deep unsupervised learning algorithms. Each chapter is represented by a colored line that
connects one type of human knowledge into one deep unsupervised learning model.

• We propose a fair clustering algorithm that studies a general notion of group-level

fairness. Our approach formulates the group-level fairness problem as an integer

linear programming problem whose totally unimodular constraint matrix means it

can be efficiently solved via linear programming. We inject the solver’s result as

a fairness signal into deep clustering backbones to learn fair clusters adaptively.

Our framework shows promising results for various fair clustering tasks (Chapter 6

[157]).

1.2 Summary of the Dissertation

In this section, we briefly introduce the background and contributions of each chapter.

The methods presented in this dissertation are unified in how they all improve upon

integrating human knowledge in deep unsupervised learning algorithms. This includes

three parts: 1) improving the quality of learned representation with various constraints

and human-style learning; 2) enhancing the interpretability of the deep clustering model

with semantic tags; 3) debiasing the deep clustering and deep anomaly detection models

with human-defined fairness rules. Table 1.1 presents a high-level summary of the setting,

4

Chapter Human Knowledge Learning Setting Main Contributions

Chapter 2

[154], [159]

Constraints Deep Clustering Integrating instance-level and

global-level constraints into

deep clustering model.

Chapter 3

[160]

Self-supervision Representation

Learning

Self-supervised representation

learning via deep clustering and

few-shot classification.

Chapter 4

[156]

Semantic Tags Deep Clustering Simultaneously clustering and

explaining with semantic tags.

Chapter 5

[158]

Fairness Rules Deep Anomaly

Detection

Enforce fairness rules into deep

anomaly detection via adver-

sarial training.

Chapter 6

[157]

Fairness Rules Deep Clustering A general framework to ensure

group-level fairness for deep

clustering models.

Table 1.1: Outline of the dissertation

human knowledge, and contributions of each chapter within this dissertation. Figure 1.1

visualizes how our proposed works leverage different types of human knowledge to improve

the current deep unsupervised learning algorithms.

1.2.1 A Framework for Deep Constrained Clustering

The area of constrained clustering has been extensively explored by researchers and used

by practitioners. Constrained clustering formulations exist for popular algorithms such

as k-means, mixture models, and spectral clustering but have several limitations. A

fundamental strength of deep learning is its flexibility, and here we explore a deep learning

framework for constrained clustering and in particular explore how it can extend the field

of constrained clustering. We show that our framework can not only handle standard

together/apart constraints (without the well-documented negative effects reported earlier)

5

generated from labeled side information but more complex constraints generated from new

types of side information such as continuous values and high-level domain knowledge.

Furthermore, we propose an efficient training paradigm that is generally applicable to

these four types of constraints. We validate the effectiveness of our approach by empirical

results on both image and text datasets. We also study the robustness of our framework

when learning with noisy constraints and show how different components of our framework

contribute to the final performance. Our source code is available at: http://github.

com/blueocean92/deep_constrained_clustering.

1.2.2 A Self-Supervised Deep Learning Framework for Unsu-

pervised Few-Shot Learning and Clustering

The need to learn a good representation is a core problem central to AI. We present a

self-supervised representation learning framework and demonstrate its use for few-shot

classification and clustering. Our framework can be interpreted as repeatedly discovering

new categories from learned embeddings and training a new embedding function with self-

supervised signals to differentiate the discovered categories. In our framework, we first

discover categories from unlabeled data. Next, we post-process the previous partition

results to remove outliers and derive prototypes of each category. We then construct

few-shot learning tasks with previously selected data and augmented virtual data. Lastly,

we iterative train the network through previous steps to learn the final representation.

Our framework can considerably outperform previous baselines in unsupervised few-shot

classification tasks on miniImageNet and Omniglot data sets. We also validate our learned

representation on clustering tasks and demonstrate that our framework further improves

upon the current deep clustering methods.

1.2.3 Deep Descriptive Clustering

Recent work on explainable clustering allows describing clusters when the features are

interpretable. However, much modern machine learning focuses on complex data such as

images, text, and graphs where deep learning is used, but the data’s raw features are not

interpretable. This paper explores a novel setting for performing clustering on complex

6

http://github.com/blueocean92/deep_constrained_clustering
http://github.com/blueocean92/deep_constrained_clustering

data while simultaneously generating explanations using interpretable tags: We propose

deep descriptive clustering that performs sub-symbolic representation learning on complex

data while generating explanations based on symbolic data. We then form good clusters by

maximizing the mutual information between empirical distribution on the inputs and the

induced clustering labels for clustering objectives. We generate explanations by solving

integer linear programming that generates concise and orthogonal descriptions for each

cluster. We allow the explanation to inform better clustering by proposing a novel pairwise

loss with self-generated constraints to maximize the clustering and explanation module’s

consistency. Experimental results on public data demonstrate that our model outperforms

competitive baselines in clustering performance while offering high-quality cluster-level

explanations.

1.2.4 Towards Fair Deep Anomaly Detection

Anomaly detection aims to find instances that are considered unusual and is a fundamen-

tal problem of data science. Recently, deep anomaly detection methods were shown to

achieve superior results particularly in complex data such as images. Our work focuses on

deep one-class classification for anomaly detection which learns a mapping only from the

normal samples. However, the non-linear transformation performed by deep learning can

potentially find patterns associated with social bias. The challenge of adding fairness to

deep anomaly detection is to ensure fair and correct anomaly predictions simultaneously.

This paper proposes a new architecture for the fair anomaly detection approach (Deep

Fair SVDD) and trains it using an adversarial network to de-correlate the relationships

between the sensitive attributes and the learned representations. This differs from fairness

typically added as a regularizer or a constraint. Further, we propose two effective fairness

measures and empirically demonstrate that existing deep anomaly detection methods are

unfair. We also show that our proposed approach can largely remove unfairness with min-

imal loss on the anomaly detection performance. Lastly, we conduct an in-depth analysis

to show the strength and limitations of our proposed model, including parameter analysis,

feature visualization, and run-time analysis.

7

1.2.5 Fair Learning for Deep Clustering

Deep clustering has shown the potential to learn a strong representation and hence better

clustering performance than traditional methods such as k-means and spectral clustering.

However, this strong representation learning ability may make the clustering unfair by

discovering surrogates for protected information which our experiments empirically show.

To correct such unfairness, we propose a new fair learning algorithm that studies a general

notion of group-level fairness in clustering for both binary and multi-state protected status

variables (PSVs). Our approach formulates the group-level fairness problem as an integer

linear programming problem whose totally unimodular constraint matrix means it can be

efficiently solved via linear programming. Then, we inject the solver’s result as a fairness

signal into deep clustering backbones to learn fair clusters adaptively. Experimental

results on real-world datasets demonstrate that our model consistently outperforms state-

of-the-art fair clustering algorithms. Furthermore, our framework shows promising results

for novel fair clustering tasks including flexible fairness constraints, multi-state PSVs, and

predictive (out of sample) clustering.

8

Chapter 2

A Framework for Deep Constrained

Clustering

2.1 Introduction

Constrained clustering has a long history in machine learning with many standard algo-

rithms being adapted to be constrained [12] including Expectation-maximization (EM)

[11], K-Means [136] and spectral methods [140]. The addition of constraints generated

from ground truth labels allows a semi-supervised setting to increase accuracy [136] when

measured against the ground truth labeling.

However, there are several limitations in these methods, and one purpose of this paper

is to explore how deep learning can make advances to the field beyond what other methods

have. In particular, we find that existing non-deep formulations of constrained clustering

have the following four limitations:

Limited Constraints and Side Information. Constraints are limited to simple to-

gether/apart constraints typically generated from labels. However, in some domains,

experts may more naturally give guidance at the cluster level, generate constraints from

continuous side-information or even complex sources such as ontologies. To address these

deficiencies fundamentally new types of constraints are required.

Negative Effect of Constraints. For some algorithms though constraints improve per-

formance when averaged over many constraint sets, individual constraint sets produce

results worse than using no constraints [43] as reported in our earlier paper. However, as

9

a practitioner typically has only one constraint set, constrained-clustering use can be “hit

or miss”.

Intractability and Scalability Issues. Iterative algorithms that directly solve for clus-

tering assignments run into problems of intractability [40]. Relaxed formulations (i.e.

spectral methods [95, 140]) require solving a full rank eigendecomposition problem which

takes O(n3). The deep learning paradigm has shown to be scalable for large data sets and

we explore if this is the case for deep constrained clustering.

Assumption of Good Features. A critical requirement for existing constrained clus-

tering algorithms is the need for good features or a similarity function. The end-to-end

learning benefits of deep learning will be explored to determine if they are useful for

constrained clustering.

Though deep clustering with constraints has many potential benefits to overcome these

limitations, it is not without its challenges. Our major contributions in this paper are

summarized as follows:

• We propose a deep constrained clustering formulation that can not only encode

standard together/apart constraints but a range of new constraint types. Example

types include triplet constraints, instance difficulty constraints, and cluster-level

balancing constraints (see section 2.3).

• In addition to generating constraints from instances’ labels, we show how our frame-

work can take advantage of continuous side information and an ontology graph to

generate triplet constraints and how to learn from multiple constraints simultane-

ously (see Section 2.5).

• Deep constrained clustering overcomes a long term issue we reported earlier [43] with

constrained clustering of significant practical implications: overcoming the negative

effects of individual constraint sets.

• We show how the benefits of deep learning such as scalability and end-to-end learning

translate to our deep constrained clustering formulation.

10

• Our method outperforms standard non-deep constrained clustering methods even

though these methods are given the auto-encoder embedding provided to our ap-

proach (see Table 2.2).

• We show the robustness of our proposed framework (see Section 2.6.4.6) and demon-

strate the scalability of our framework on large-scale data set (see Section 2.6.4.8).

• We conduct ablation study and analyze the contributions of each component within

our algorithm (see Section 2.6.4.7).

This paper is an extension of our previous work [155] with the following additions:

1) we show our framework can not only work with constraints generated from ground

truth labels but also work with constraints that are generated from an ontology graph

which is a weaker form of guidance; 2) whereas previously we conducted deep constrained

clustering with only one type of constraints at each run in previous work, in this paper

we extend our algorithm to learn with pairwise and triplet constraints simultaneously;

3) we experimentally visualize the learning process of our framework and show how our

framework overcomes the negative effects of constraints; 4) we analyze the effects of noisy

constraints on our framework and show the robustness of our model; 5) we analyze each

component’s contributions within our framework (i.e., initialization, clustering module,

constraints learning module) using an ablation study.

The rest of the paper is organized as follows: First, we introduce the related work in

section 2.2. We then propose four forms of constraints in section 2.3 and introduce how

to train the clustering network with these constraints in section 2.4. We then discuss

the new way of generating constraints and how to learn multiple types of constraints

together in section 2.5. In section 2.6, we compare our approach to previous baselines

and demonstrate the effectiveness of new types of constraints and also perform a detailed

analysis of our proposed framework. Next, we discuss the limitations of current work and

conclude in section 2.7.

11

2.2 Related Work

Constrained clustering. Constrained clustering is an important area, and there is a

large body of work that shows how side information can improve the clustering perfor-

mance [135, 136, 145, 19, 140]. Here the side information is typically labeled data which is

used to generate pairwise together/apart constraints used to partially reveal the ground

truth clustering to help the clustering algorithm. Such constraints are easy to encode in

matrices and enforce in procedural algorithms though not with its challenges. In par-

ticular, we showed [43] clustering performance improves with larger constraint sets when

averaged over many constraint sets generated from the ground truth labeling. However,

for a significant fraction (just not the majority) of these constraint sets, the clustering

performance is worse than using no constraint set. We recreated some of these results in

Table 2.2.

Moreover, side information can exist in different forms beyond labels (i.e., continu-

ous data), and domain experts can provide guidance beyond pairwise constraints. Some

work in the supervised classification setting [82, 118, 117, 62] seek alternatives such as

relative/triplet guidance, but to our knowledge, such information has not been explored

in the non-hierarchical clustering setting. Complex constraints for hierarchical cluster-

ing have been explored [9, 30] but these are tightly limited to the hierarchical structure

(i.e., x must be joined with y before z) and not directly translated to non-hierarchical

(partitional) clustering.

Deep Clustering. Motivated by the success of deep neural networks in supervised

learning, unsupervised deep learning approaches are now being explored [144, 81, 149,

64, 76, 57, 26, 65, 3, 120, 80, 66]. There are approaches [149, 76, 26, 120] which learn

an encoding that is suitable for a clustering objective first and then applied an external

clustering method. Our work builds upon the most direct setting [144, 64] which encodes

one self-training objective and finds the clustering allocations for all instances within one

neural network.

Deep Clustering with Pairwise Constraints. Most recently, the semi-supervised

clustering networks with pairwise constraints have been explored: [73] uses pairwise con-

12

straints to enforce small divergence between similar pairs while increasing the divergence

between dissimilar pairs assignment probability distributions. However, this approach did

not leverage the unlabeled data, hence requires lots of labeled data to achieve good results.

Fogel et al. proposed an unsupervised clustering network [55] by self-generating pairwise

constraints from the mutual KNN graph and extends it to semi-supervised clustering by

using labeled connections queried from the human. However, this method cannot make

out-of-sample predictions and requires user-defined parameters for generating constraints

from the mutual KNN graph.

2.3 Our Deep Constrained Clustering Framework

Here we outline our proposed framework for deep constrained clustering. Our method of

adding constraints to and training deep learning can be used for deep clustering methods

so long as the network has a k unit output indicating the degree of cluster membership.

Here we choose the popular deep embedded clustering method (DEC [144]). We sketch

this method first for completeness.

2.3.1 Deep Embedded Clustering

We choose to apply our constraints formulation to the deep embedded clustering method

DEC [144], which starts with pre-training an autoencoder (xi = g(f(xi)) but then removes

the decoder. The remaining encoder (zi = f(xi)) is then fine-tuned by optimizing an

objective which takes first zi and converts it to a soft allocation vector of length k which

we term qi,j indicating the degree of belief instance i belongs to cluster j. Then q is self-

trained to produce p a unimodal “hard” allocation vector which allocates the instance to

primarily only one cluster. We now overview each step.

Conversion of z to Soft Cluster Allocation Vector q. Here DEC takes the

similarity between an embedded point zi and the cluster centroid uj measured by Student’s

t-distribution [96]. Note that v is a constant as v = 1 and qij is a soft assignment:

qij =
(1 + ||zi − µj||2/v)

− v+1
2∑

j′ (1 + ||zi − µj′ ||
2/v)

− v+1
2

(2.1)

Conversion of Q To Hard Cluster Assignments P . The above normalized sim-

13

ilarities between embedded points and centroids can be considered as soft cluster as-

signments Q. However, we desire a target distribution P that better resembles a hard

allocation vector, pij is defined as:

pij =
qij

2/
∑

i qij∑
j′ (qij′

2/
∑

i qij′)
(2.2)

Loss Function. Then, the algorithm’s loss function is to minimize the distance

between P and Q as follows. Note this is a form of self-training as we are trying to teach

the network to produce unimodal cluster allocation vectors.

ℓC = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

(2.3)

The DEC method requires the initial centroids given (µ) to calculate Q are “rep-

resentative”. The initial centroids are set using k-means clustering. However, there is

no guarantee that the clustering results over an auto-encoders embedding yield a good

clustering. We believe that constraints can help overcome this issue which we test later.

2.3.2 Different Types of Constraints

To enhance the clustering performance and allow for more types of interactions between

human and clustering models, we propose four types of guidance which are pairwise

constraints, instance difficulty constraints, triplet constraints, cardinality, and give ex-

amples of each. As traditional constrained clustering methods put constraints on the

final clustering assignments, our proposed approach constrains the q vector which is the

soft assignment. A core challenge when adding constraints is to allow the resultant loss

function to be differentiable so we can derive backpropagation updates.

2.3.2.1 Pairwise Constraints

Pairwise constraints (must-link and cannot-link) are well studied [12] and we showed they

are capable of defining any ground truth set partitions [40]. Here we show how these

pairwise constraints can be added to a deep learning algorithm. We encode the loss for

must-link constraints set ML as:

ℓML = −
∑

(a,b)∈ML

log
∑
j

qaj ∗ qbj (2.4)

14

Similarly loss for cannot-link constraints set CL is:

ℓCL = −
∑

(a,b)∈CL

log (1−
∑
j

qaj ∗ qbj) (2.5)

Intuitively speaking, the must-link loss prefers instances with same soft assignments and

the cannot-link loss prefers the opposite cases.

2.3.2.2 Instance Difficulty Constraints

A challenge with self-learning in deep learning is that if the initial centroids are incorrect,

the self-training can lead to poor results. Here we use constraints to overcome this by

allowing the user to specify which instances are easier to cluster (i.e., they belong strongly

to only one cluster) and ignoring difficult instances (i.e., those that belong to multiple

clusters strongly).

We encode user supervision with an n×1 constraint vector M . Let Mi ∈ [−1, 1] be an

instance difficulty indicator, Mi > 0 means the instance i is easy to cluster, Mi = 0 means

no difficulty information is provided and Mi < 0 means instance i is hard to cluster. The

loss function is formulated as:

ℓI =
∑

t∈{Mt<0}

−Mt

∑
j

qtj
2 −

∑
s∈{Ms>0}

Ms

∑
j

qsj
2 (2.6)

The instance difficulty loss function aims to encourage the easier instances to have sparse

clustering assignments but prevents the difficult instances having sparse clustering assign-

ments. The absolute value ofMi indicates the degree of confidence in difficulty estimation.

This loss will help the model training process converge faster on easier instances and in-

crease our model’s robustness towards difficult instances.

2.3.2.3 Triplet Constraints

Although pairwise constraints are capable of defining any ground truth set partitions from

labeled data [40], in many domains, no labeled side information exists or strong pairwise

guidance is not available. Thus we seek triplet constraints, which are weaker constraints

that indicate the relationship within a triple of instances. Given an anchor instance a,

positive instance p and negative instance n we say that instance a is more similar to p

15

than to n. The loss function for all triplets (a, p, n) ∈ T can be represented as:

ℓT =
∑

(a,p,n)∈T

max(d(qa, qn)− d(qa, qp) + θ, 0) (2.7)

where d(qa, qb) =
∑

j qaj ∗ qbj and θ > 0. The larger value of d(qa, qb) represents larger

similarity between a and b. The variable θ controls the gap distance between positive

and negative instances. ℓT works by pushing the positive instance’s assignment closer

to anchor’s assignment and preventing negative instance’s assignment being closer to

anchor’s assignment.

2.3.2.4 Global Size Constraints

Experts may more naturally give guidance at a cluster level, previous work [57] explored

adding uniform distribution assumption to regularize the clustering model. Here we ex-

plore clustering size constraints in our framework, which means each cluster should be

approximately the same size. Denote the total number of clusters as k, total training

instances number as n, the global size constraints loss function is:

ℓG =
∑

c∈{1,..k}

(
n∑

i=1

qic/n− 1

k
)2 (2.8)

Our global constraints loss function works by minimizing the distance between the ex-

pected cluster size and the actual cluster size. The actual cluster size is calculated by

averaging the soft-assignments. To guarantee the effectiveness of global size constraints,

we need to assume that the batch size should be large enough to calculate the cluster sizes

during our mini-batch training. A similar loss function can be used (see section 2.3.4) to

enforce other cardinality constraints on the cluster composition such as upper and lower

bounds on the number of people with a certain property.

2.3.3 Preventing Trivial Solution

In our framework the proposed must-link constraints we mentioned before can lead to

trivial solution that all the instances are mapped to the same cluster. Previous deep

clustering method [149] have also met this problem. To mitigate this problem, we combine

the reconstruction loss with the must-link loss to learn together. Denote the encoding

16

network as f(x) and decoding network as g(x), the reconstruction loss for instance xi is:

ℓR = ℓ(g(f(xi)), xi) (2.9)

where ℓ is the least-square loss: ℓ(x, y) = ||x− y||2.

2.3.4 Extensions to High-level Domain Knowledge-Based Con-

straints

The constraints proposed in the previous section are typically generated from instance

labels or comparisons. A benefit of our framework is the ability to include more com-

plex constraints and we now describe examples of constraints for higher-level domain

knowledge.

Cardinality Constraints For Fairness. Cardinality constraints [38] allow express-

ing requirements on the number of instances that satisfy some conditions in each cluster.

Assume we have n people and want to split them into k groups but wish to minimize

disparate impact with respect to gender. Then an example cardinality constraint is to

enforce each group should have the same number of males and females. We assume each

instance has a protected status variable (PSV) which we called P . Then the cardinality

constraints can be formulated as:

ℓCardinality =
∑

c∈{1,..k}

(
∑
Pi=M

qic/n−
∑
Pj=F

qjc/n)
2 (2.10)

For upper-bound and lower-bound based cardinality constraints [38], we use the same

setting as previously described, now the constraint changes as for each party group we

need the number of males to range from L to U . Then we can formulate this as:

ℓCardinalityBound =
∑

c∈{1,..k}

(min(0,
∑
Pi=M

qic − L)
2
+max(0,

∑
Pi=M

qic − U)
2
) (2.11)

Logical Combinations of Constraints via Dynamic Addition. Apart from

cardinality constraints, complex logic constraints can also be used to enhance the expres-

sive power of existing constraints. For example, if two instances xa and xb are in the

same cluster then instances xi and xj must be in different clusters (Together(xa, xb) →

17

Apart(xi, xj)). This can be achieved in our framework as we can dynamically adding

cannot-link constraint CL(xi, xj) once we check the soft assignment q of xa and xb.

Consider a Horn form constraint such as r ∧ s ∧ t → u. Denote r = ML(xa, xb),

s = ML(xc, xd), t = ML(xe, xf) and u = CL(xg, xh). By forward passing the instances

within r, s, t to our deep constrained clustering model, we can obtain the soft assignment

values of these instances. By checking the satisfying results based on r ∧ s ∧ t, we can

decide whether to enforce cannot-link loss CL(xg, xh).

2.4 Putting It All Together - Efficient Training Strat-

egy

Our training strategy consists of two training branches and effectively has two ways of

creating mini-batches for training. For instance-difficulty or global-size constraints, we

treat their loss functions as addictive losses to the clustering branch so that no new branch

needs to be created. For pairwise or triplet constraints, we build another output branch

and train the whole network in an alternating fashion. We treat these two groups of

constraints differently for a principled reason. For pairwise and triplet constraints, we

have explicit constraints on instances and the composition of the clusters. This can be

(and often is) contradictory (i.e., incompatible) with the clustering loss. This is indeed

something we showed in our ECML 2006 paper [43], where we showed that pairwise

constraints could hurt clustering performance. However, since the instance level and

group level constraints are guidance not explicitly on specific instances assignments, they

can be folded into the clustering loss.

Loss Branch for Instance Constraints. In deep learning, it is common to add

loss functions defined over the same output units. In the Improved DEC method [64], the

clustering loss ℓC and reconstruction loss ℓR were added together. To this, we add the

instance difficulty loss ℓI . This effectively adds guidance to speed up training convergence

by identifying “easy” instances and increase the model’s robustness by ignoring “difficult”

instances. Similarly, we treat the global size constraints loss ℓG as an additional additive

loss. All instances whether or not they are part of triplet or pairwise constraints are

18

trained through this branch and the mini-batches are created randomly.

Loss Branch For Complex Constraints. Our framework uses more complex loss

functions as they define constraints on pairs and even triples of instances. Thus we create

another loss branch that contains pairwise loss ℓP or triplet loss ℓT to help the network

tune the embedding which satisfies these stronger constraints. For each constraint type we

create a mini-batch consisting of only those instances having that type of constraint. For

each example of a constraint type, we feed the constrained instances through the network,

calculate the loss, calculate the change in weights but do not adjust the weights. We sum

the weight adjustments for all constraint examples in the mini-batch and then adjust the

weights. Hence our method is an example of batch weight updating as is standard in DL

for stability reasons. The whole training procedure is summarized in Algorithm 1.

2.5 Generating Constraints from an Ontology Graph

and Learning with Multiple Types of Constraints

Simultaneously

In most constrained clustering works, the constraints are normally generated from ground

truth labels. For example, the pairwise constraints can be generated from labeled in-

stances by random picking each pair of points and checking the labels; the triplet con-

straints can be generated based on the latent embeddings’ distance among the triplet (i.e.,

the positive instance should be close to the anchor in latent embedding space while the

negative instance will be further). However, to get a good latent embedding, we still need

a large amount of ground-truth labels to learn the representation. Here we seek different

sources to generate constraints to add in richer side information from humans into the

clustering framework to derive better clustering results.

Generating Constraints from an Ontology Graph. In this section, we propose a

new empirical strategy to generate triplet constraints based on ontology graphs. The class

label names (i.e., Sneaker) can be used to place an instance in the ontology. The ontology

graph (knowledge graph) represents a collection of interlinked descriptions of entities.

19

Algorithm 1 Deep Constrained Clustering Framework

Input: X: data, m: maximum epochs , k: number of clusters, N : total number of

batches and NC : total number of constraints batches.

Output: latent embeddings Z, cluster assignment S.

Train the stacked denosing autoencoder to obtain Z

Initialize centroids µ via k-means on embedding Z.

for epoch = 1 to m do

for batch = 1 to N do

Calculate ℓC via Eqn (2.3), ℓR via Eqn (2.9).

Calculate ℓI via Eqn (2.6) or ℓG via Eqn (2.8).

Calculate total loss as ℓC + ℓR + {ℓI ||ℓG}.

Update network parameters based on total loss.

end for

for batch = 1 to NC do

Calculate ℓP via Eqn (2.4, 2.5) or ℓT via Eqn (2.7).

Update network parameters based on {ℓP ||ℓT} .

end for

Forward pass to compute Z and Si = argmaxj qij.

end for

Here we choose to use WordNet 1 as the ontology graph, WordNet groups English words

into sets of synonyms called synsets; it also provides short definitions and usage examples

and records a number of relations among these synonym sets or their members. WordNet

can thus be seen as a combination of dictionary and thesaurus. We have visualized the

WordNet hierarchy structure for Fashion MNIST (the data set we will use for experiments

in section 2.6, it consists of a training set of 60000 examples and a test set of 10000

examples. Each example is a 28-by-28 grayscale image, associated with a label from 10

classes.) in Figure 2.1.

We measure the similarity between different classes based on the shortest path that

1https://wordnet.princeton.edu/

20

https://wordnet.princeton.edu/

Figure 2.1: WordNet hierarchy of Fashion MNIST data set. The bolded classes are classes
we will cluster upon.

connects the two classes. Given class Ci and Cj and the shortest path dij between Ci

and Cj, the similarity is sim(Ci, Cj) = 1
dij+1

. Note that the similarity value ranges

from (0, 1], and the larger value represents a larger similarity. Given an anchor instance

a, positive instance p and negative instance n, we wish the class similarity between a

and p to be as large as possible and the similarity between a to n to be as small as

possible. To satisfy these requirements we can set the positive threshold θp to enforce the

sim(a, p) > θp, similarly we can set negative threshold θn to ensure both sim(a, n) < θn

and sim(p, n) < θn. Further we require θn < θp. Note that when θp equals 1, the triplet

constraints will be equivalent as one Cannot-link constraint and two Must-link constraints

since both the anchor and positive instance are from the same class. With proper positive

and negative thresholds, we can generate triplet constraints from a set of labeled points

with WordNet knowledge.

Learning with Multiple Types of Constraints Simultaneously. It is natural to

wish to take advantage of all the generated constraints, even if they are different types.

Here we study learning with pairwise constraints and triplet constraints together as they

are most common and useful. We motivate the need to learn these two types of constraints

together in Figure 2.2.

Given adequate pairwise constraints, the model can find correct clusters as can be seen

from the right-hand side in Figure 2.2, but the latent semantic similarity relationships

21

Figure 2.2: Examples of the ideal embedding (left-hand) learnt from an ontology using
both triplets and pairwise constraints and the embedding learnt from just pairwise con-
straints (right-hand). Note in the later the three clusters are far apart from each other
because the cannot-links (grey arrows) between these clusters will push them as far as
possible which contradicts the ideal data embedding that ankle boots and sneakers are
semantically similar.

have been destroyed. Directly applying triplet constraints to this case may end up with

a reasonable semantic latent space, but the circles and triangles may be overlapping

without cannot-links. To learn a better embedding, we aim to add triplet constraints

together with pairwise constraints to the clustering framework. In this case, we have both

pairwise constraints between these three classes, as well as the triplet constraints. For

example, in Figure 2.2 the anchor and positive classes are ankle boots and sneakers whilst

the negative class is coat.

Our algorithm 1 can be naturally extended to learn multiple types of constraints at

the same time. Specifically, we prepare the pairwise constraints and triplet constraints

with Np and Nt batches in advance and then optimize the clustering loss ℓC , pairwise

loss ℓP and triplet loss ℓT in an iterative way. The entire learning process is detailed in

Algorithm 2.

22

Algorithm 2 Learning with Pairwise and Triplet Constraints

Input: X: data, m: maximum epochs , k: number of clusters, N : total number of

batches and Np: total number of pairwise constraints batches, Nt: total number of

triplet constraints batches.

Output: latent embeddings Z, cluster assignment S.

Train the stacked denosing autoencoder to obtain Z

Initialize centroids µ via k-means on embedding Z.

for epoch = 1 to m do

for batch = 1 to N do

Calculate ℓC via Eqn (2.3), ℓR via Eqn (2.9).

Calculate total loss as ℓC + ℓR.

Update network parameters based on total loss.

end for

for batch = 1 to Np do

Calculate ℓP via Eqn (2.4, 2.5).

Update network parameters based on ℓP .

end for

for batch = 1 to Nt do

Calculate ℓT via Eqn (2.7).

Update network parameters based on ℓT .

end for

Forward pass to compute Z and Si = argmaxj qij.

end for

2.6 Experiments

All data and code used to perform these experiments are available online (http://github.

com/blueocean92/deep_constrained_clustering) to help with reproducibility. In our

experiments, we aim to address the following questions:

• How does our end-to-end deep clustering approach using traditional pairwise con-

23

http://github.com/blueocean92/deep_constrained_clustering
http://github.com/blueocean92/deep_constrained_clustering

straints compare with traditional constrained clustering methods? The latter is

given the same auto-encoding representation Z used to initialize our method. (see

Table 2.2)

• Are the new types of constraints we create for the deep clustering method useful in

practice? (see Section 2.6.4.1, 2.6.4.3, 2.6.4.5)

• Is our end-to-end deep constrained clustering method more robust to the well known

negative effects of constraints we published earlier [43]? How our learned embedding

overcomes the negative effects of constraints? (see Section 2.6.4.2)

• How the model performs with constraints generated from ontologies? (see Section

2.6.4.4)

• How is the proposed model’s robustness towards noisy constraints? (see Section

2.6.4.6)

• How do the different components of our approach contribute to our final perfor-

mance? (see our Ablation study in Section 2.6.4.7)

• How is the scalability of our proposed framework? (see Section 2.6.4.8)

2.6.1 Datasets

To study the performance and generality of different algorithms, we evaluate the proposed

method on two image datasets and one test dataset:

MNIST: Consists of 70000 handwritten digits of 28-by-28 pixel size. The digits are

centered and size-normalized in our experiments [90].

FASHION-MNIST: A Zalando’s article images-consisting of a training set of 60000

examples and a test set of 10000 examples. Each example is a 28-by-28 grayscale image,

associated with a label from 10 classes.

REUTERS-10K: This dataset contains English news stories labeled with a category

tree [91]. To be comparable with the previous baselines, we used 4 root categories:

24

corporate/industrial, government/social, markets and economics as labels and ex-

cluded all documents with multiple labels. We randomly sampled a subset of 10000

examples and computed TF-IDF features on the 2000 most common words.

2.6.2 Evaluation Metric

We adopt standard metrics for evaluating clustering performance which measure how close

the clustering found is to the ground truth result. Specifically, we employ the following

two metrics: normalized mutual information (NMI) [125, 148] and clustering accuracy

(Acc) [148]. For data point xi, let li and ci denote its true label and predicted cluster

respectively. Let l = (l1, ...ln) and similarity c = (c1, ...cn). NMI is defined as:

NMI(l, c) =
MI(l, c)

max{H(l), H(c)}

where MI(l, c) denotes the mutual information between l and c, and H denotes their

entropy. The Acc is defined as:

Acc(l, c) = max
m

∑n
i=1 1{li = m(ci)}

n

where m ranges over all possible one-to-one mappings between clusters and labels. The

optimal assignment ofm can be computed using the Kuhn-Munkres algorithm [101]. Both

metrics are commonly used in the clustering literature and with higher values indicating

better clustering results. By using them together we get a better understanding of the

effectiveness of the clustering algorithms.

2.6.3 Implementation Details

Basic Deep Clustering Implementation. To be comparable with deep clustering

baselines, we set the encoder network as a fully connected multilayer perceptron with

dimensions d− 500− 500− 2000− 10 for all datasets, where d is the dimension of input

data(features). The decoder network is a mirror of the encoder. All the internal layers are

activated by the ReLU [102] nonlinearity function. For a fair comparison with baseline

methods, we used the same greedy layer-wise pre-training strategy to calculate the auto-

encoders embedding. To initialize clustering centroids, we run k-means with 20 restarts

and select the best solution. We choose Adam optimizer with an initial learning rate

25

of 0.001 for all the experiments. We adopt standard metrics for evaluating clustering

performance, which measures how close the clustering found is to the ground truth result.

Specifically, we employ the following two metrics: normalized mutual information (NMI)

[125, 148] and clustering accuracy (Acc) [148]. In our baseline comparisons, we use IDEC

[64], a non-constrained improved version of DEC published recently.

Pairwise Constraints Experiments. We randomly select pairs of instances and

generate the corresponding pairwise constraints between them. To ensure transitivity, we

calculate the transitive closure over all must-linked instances and then generate entailed

constraints from the cannot-link constraints [40]. Since our loss function for must-link

constraints is combined with reconstruction loss, we use grid search and set the penalty

weight for must-link as 0.1.

Figure 2.3: Example of instance difficulty constraints. Top row shows the “easy” instances
and second row shows the “difficult” instances.

Instance Difficulty Constraints Experiments. To simulate human-guided in-

stance difficulty constraints, we use k-means as a weak base learner and mark all the

incorrectly clustered instances as difficult with confidence 0.1, we also mark the correctly

classified instances as accessible instances with confidence 1. In Figure 2.3, we give some

example difficulty constraints found using this method.

Figure 2.4: Examples of the generated triplet constraints for MNIST and Fashion. The
three rows for each plot shows the anchor instances, positive instances and negative in-
stances correspondingly.

Triplet Constraints Experiments. Triplet constraints can state that instance i

26

is more similar to instance j than instance k. To simulate human guidance on triplet

constraints, we randomly select n instances as anchors (i); for each anchor, we randomly

select two instances (j and k) based on the similarity between the anchor. The similarity

is calculated as the euclidian distance d between two instances pre-trained embedding.

The pre-trained embedding is extracted from our deep clustering network trained with

100000 pairwise constraints. Figure 2.4 shows the generated triplets constraints. Through

grid search we set the triplet loss margin θ = 0.1.

Global Size Constraints Experiments. We apply global size constraints to MNIST

and Fashion datasets since they satisfy the balanced size assumptions. The total number

of clusters is set to 10, and each class has the same number of instances.

2.6.4 Experimental Results

2.6.4.1 Experiments on instance difficulty.

MNIST Fashion Reuters

Acc(%) 88.29± 0.05 58.74± 0.08 75.20± 0.07

NMI(%) 86.12± 0.09 63.27± 0.11 54.16± 1.73

Epoch 87.60± 12.53 77.20± 11.28 12.90± 2.03

MNIST Fashion Reuters

Acc(%) 91.02± 0.34 62.17± 0.06 78.01± 0.13

NMI(%) 88.08± 0.14 64.95± 0.04 56.02± 0.21

Epoch 29.70± 4.25 47.60± 6.98 9.50± 1.80

Table 2.1: Left table shows baseline results for Improved DEC [64] averaged over 20 trials.
Right table lists experiments using instance difficulty constraints (mean ± std) averaged
over 20 trials.

In Table 2.1, we report the average test performance of the deep clustering framework

without any constraints on the left. In comparison, we report the average test performance

of deep clustering framework with instance difficulty constraints on the right, and we find

the model learned with instance difficulty constraints outperforms the baseline method in

all datasets. This is to be expected as we have given the algorithm more information than

the baseline method, but it demonstrates our method can make good use of this extra

information. What is unexpected is the effectiveness of speeding up the learning process

and will be the focus of future work.

27

0 1000 2000 3000 4000 5000 6000

Number of Pairwise Constraints

0.5

0.6

0.7

0.8

0.9

1

A
c

c
u

ra
c

y

AE+Ours(train)

AE+Ours(test)

Raw+Ours(train)

Raw+Ours(test)

Baseline

(a) MNIST

0 1000 2000 3000 4000 5000 6000

Number of Pairwise Constraints

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
c

c
u

ra
c

y

AE+Ours(train)

AE+Ours(test)

Raw+Ours(train)

Raw+Ours(test)

Baseline

(b) Fashion

0 1000 2000 3000 4000 5000 6000

Number of Pairwise Constraints

0.5

0.6

0.7

0.8

0.9

1

A
c

c
u

ra
c

y

AE+Ours(train)

AE+Ours(test)

Raw+Ours(train)

Raw+Ours(test)

Baseline

(c) Reuters

0 1000 2000 3000 4000 5000 6000

Number of Pairwise Constraints

0.5

0.6

0.7

0.8

0.9

1

N
M

I

AE+Ours(train)

AE+Ours(test)

Raw+Ours(train)

Raw+Ours(test)

Baseline

(d) MNIST

0 1000 2000 3000 4000 5000 6000

Number of Pairwise Constraints

0.5

0.55

0.6

0.65

0.7

0.75
N

M
I

AE+Ours(train)

AE+Ours(test)

Raw+Ours(train)

Raw+Ours(test)

Baseline

(e) Fashion

0 1000 2000 3000 4000 5000 6000

Number of Pairwise Constraints

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
M

I

AE+Ours(train)

AE+Ours(test)

Raw+Ours(train)

Raw+Ours(test)

Baseline

(f) Reuters

Figure 2.5: Clustering accuracy and NMI on training test sets for different number of
pairwise constraints. AE means an autoencoder was used to seed our method. The
horizontal maroon colored baseline shows the IDEC’s [64] test set performance.

2.6.4.2 Experiments on pairwise constraints

We randomly generate 6000 pairs of constraints which are small fractions of possible

pairwise constraints for MNIST (0.0002%), Fashion (0.0002%), and Reuters (0.006%).

Recall the DEC method is initialized with auto-encoder features. To better understand the

contribution of pairwise constraints, we have tested our method with both auto-encoders

features and raw data. As can be seen from Figure 2.5: the clustering performance

improves consistently as the number of constraints increases in both settings. Moreover,

with just 6000 pairwise constraints, the performance on Reuters and MNIST increased

significantly especially for the setup with raw data. We also notice that learning with raw

data in Fashion achieves a better result than using autoencoder’s features. This shows

that the autoencoder’s features may not always be suitable for DEC’s clustering objective.

Overall our results show pairwise constraints can help reshape the representation and

improve the clustering results.

28

We also compare the results with recent work [73]: our approach(autoencoders fea-

tures) outperforms the best clustering accuracy reported for MNIST by a margin of

16.08%, 2.16% and 0.13% respectively for 6, 60, and 600 samples/class. Unfortunately,

we can’t make a comparison with Fogel’s algorithm [55] due to an issue in their code

repository.

Flexible CSP* COP-KMeans MPCKMeans Ours

MNIST Acc 0.628± 0.07 0.816± 0.06 0.846± 0.04 0.963± 0.01

MNIST NMI 0.587± 0.06 0.773± 0.02 0.808± 0.04 0.918± 0.01

Negative Ratio 19% 45% 11% 0 %

Fashion Acc 0.417± 0.05 0.548± 0.04 0.589± 0.05 0.681± 0.03

Fashion NMI 0.462± 0.03 0.589± 0.02 0.613± 0.04 0.667± 0.02

Negative Ratio 23% 27% 37% 6 %

Reuters Acc 0.554± 0.07 0.712± 0.04 0.763± 0.05 0.950± 0.02

Reuters NMI 0.410± 0.05 0.478± 0.03 0.544± 0.04 0.815± 0.02

Negative Ratio 28% 73% 80% 0 %

Table 2.2: Pairwise constrained clustering performance (mean ± std) averaged over 100
constraints sets. Due to the scalability issues we apply flexible CSP with downsampled
data(3000 instances and 180 constraints). Negative ratio is the fraction of times using
constraints resulted in poorer results than not using constraints. See Figure 2.6 and text
for an explanation why our method performs well.

Negative Effects of Constraints. Our earlier work [43] showed that for traditional

constrained clustering algorithms, that the addition of constraints on average helps clus-

tering but many individual constraint sets can hurt performance in that performance is

worse than using no constraints. Here we recreate these results even when these classic

methods use auto-encoded representations. In Table 2.2, we report the average perfor-

mance with 3600 randomly generated pairwise constraints. For each dataset, we randomly

generated 100 sets of constraints to test the negative effects of constraints [43]. In each

run, we fixed the random seed and the initial centroids for k-means based methods. For

29

each method, we compare its performance between the constrained version to the un-

constrained version. We calculate the negative ratio, which is the fraction of times that

the unconstrained version produced better results than the constrained version. As can

be seen from the table, our proposed method achieves significant improvements than

traditional non-deep constrained clustering algorithms [136, 19, 140].

(a) MNIST (AE) (b) MNIST (IDEC) (c) MNIST (Ours)

(d) Fashion (AE) (e) Fashion (IDEC) (f) Fashion (Ours)

(g) Reuters (AE) (h) Reuters (IDEC) (i) Reuters (Ours)

Figure 2.6: We visualize (using t-SNE) the latent representation for a subset of instances
and pairwise constraints, we visualize the same instances and constraints for each row.
The red lines are cannot-links and blue lines are must-links.

To understand why our method was robust to variations in constraint sets, we vi-

30

Figure 2.7: The embedding for a subset of instances and inconsistent pairwise constraints
after several training epochs

sualized the embeddings learned. Figure 2.6 shows the embedded representation of a

random subset of instances and its corresponding pairwise constraints using t-SNE and

the learned embedding z. Based on Figure 2.6, we can see the autoencoders embedding is

noisy, and lot’s of constraints are inconsistent based on our earlier definition [43]. Further,

we visualize the IDEC’s latent embedding and find out the clusters are better separated.

31

However, the inconsistent constraints still exist (blue lines across different clusters and

redlines within a cluster); these constraints tend to have negative effects on traditional

constrained clustering methods. Finally, for our method’s results we can see the clusters

are well separated, the must-links are well satisfied (blue lines are within the same clus-

ter), and cannot-links are well satisfied (red lines are across different clusters). Hence we

can conclude that end-to-end-learning can address these negative effects of constraints by

simultaneously learning a representation that is consistent with the constraints and clus-

tering the data. This result has profound practical significance as practitioners typically

only have one constraint set to work with.

To fully understand how our constrained clustering model finds a new representation

to satisfy those constraints, we have visualized the latent embeddings during the training

process in Figure 2.7.

0 1000 2000 3000 4000 5000 6000

Number of Triplet Constraints

0.84

0.86

0.88

0.9

0.92

0.94

0.96

P
e
rf

o
rm

a
n

c
e

Acc(train)

Acc(test)

NMI(train)

NMI(test)

(a) MNIST(Triplet)

0 1000 2000 3000 4000 5000 6000

Number of Triplet Constraints

0.55

0.6

0.65

0.7

P
e
rf

o
rm

a
n

c
e

Acc(train)

Acc(test)

NMI(train)

NMI(test)

(b) Fashion(Triplet)

Figure 2.8: Evaluation of the effectiveness of triplet constraints in terms of Acc/NMI.

2.6.4.3 Experiments on triplet constraints

We experimented on MNIST and FASHION datasets. Figure 2.4 visualizes example

triplet constraints (based on embedding similarity), note the positive instances are closer

to anchors than negative instances. In Figure 2.8, we show the clustering Acc/NMI

improves consistently as the number of constraints increasing. Comparing with Figure

2.5, we can find the pairwise constraints can bring slightly better improvements. That is

because our triplet constraints are generated from a continuous domain and there is no

32

exact together/apart information encoded in the constraints. Triplet constraints can be

seen as a weaker but more general type of constraint.

(a) Fashion (init) (b) Fashion (triplet)

(c) Fashion (pairwise) (d) Fashion (together)

Figure 2.9: Experiments with Ontologies. Evaluation of the clustering performance of four
settings. (a) No constraints, (b) Triplet constraints from labels, (c) Pairwise constraints
from labels and (d) triplet constraints and pairwise constraints generated from WordNet
ontology.

2.6.4.4 Experiments on constraints generated from ontologies

We experimented on the Fashion dataset. To show that pairwise constraints and triplet

constraints generated from ontology can boost the performance with minimum supervi-

sion, we have randomly chosen 100 training instances as a limited labeled set and generate

full pairwise constraints based on these labeled instances. To generate the triplet con-

straints, we follow the procedure described in section 2.5. Note the threshold for selecting

positive pairs θp is set to be 0.5 to ensure positive pairs are close and non-trivial (positive

points are not all from the same classes), the threshold for negative pairs θn is set to be

33

0.3 to be far away from anchors. We have generated 1000 triplet constraints randomly

from the same 100 labeled training instances.

We empirically compare four different settings: i) clustering without any constraints,

ii) clustering with just triplet constraints, iii) clustering with just pairwise constraints and

iv) clustering with both pairwise and triplet constraints. Figure 2.9 shows the embeddings

we learned with four different settings with the corresponding clustering performance. We

can see from the plots that both triplet constraints and pairwise constraints can improve

the clustering performance when learned individually. Moreover, pairwise constraints can

bring more significant improvement. The right bottom plot shows that learning with both

these two types of constraints together can improve the clustering accuracy and clustering

NMI in a large margin and achieve the highest performance. This shows that the triplet

constraints generated from WordNet ontology can help regularize the latent space learned

with pairwise constraints and yield a latent space which more similar to the ground truth.

2.6.4.5 Experiments on global size constraints

To test the effectiveness of our proposed global size constraints, we have experimented on

MNIST and Fashion training set since they both have balanced cluster sizes (see Figure

2.10). Note that the ideal size for each cluster is 6000 (each data set has 10 classes); we

can see that blue bars are more evenly distributed and closer to the ideal size.

1 2 3 4 5 6 7 8 9 10

Cluster Index

0

1000

2000

3000

4000

5000

6000

7000

8000

C
lu

s
te

r
 S

iz
e

Without Constraints

With Constraints

(a) MNIST

1 2 3 4 5 6 7 8 9 10

Cluster Index

0

2000

4000

6000

8000

10000

C
lu

s
te

r
 S

iz
e

Without Constraints

With Constraints

(b) Fashion

Figure 2.10: Evaluation of the global size constraints. This plot shows each cluster’s size
before/after adding global size constraints.

We also evaluate the clustering performance on MNIST (Acc:0.91, NMI:0.86) and

34

Fashion (Acc:0.57, NMI:0.59). Comparing to the baselines in table 2.1, interestingly, we

find the performance improved slightly on MNIST but dropped slightly on Fashion.

Figure 2.11: Effects of noisy constraints for MNIST, Fashion and Reuters Dataset.

2.6.4.6 Experiments on noisy constraints

Effect of Noisy Constraints. To understand the effect of noisy constraints on our

model, we randomly generate 6000 pairs of constraints as described in Section 2.6.4.2.

To generate noisy constraints, we first generate ground truth constraints and then flip

the labels so that the true cannot-links become noisy must-links and the true must-links

become noisy cannot-links. We define the degree of noisy constraints as the ratio of noisy

constraints to ground truth constraints for each constraint type. For noisy degrees of 5%,

10%, 20%, we randomly generated 300, 600, 1200 pairs of noisy constraints by flipping

the labels of ground truth constraints. We visualized the embedded representation of a

random subset of instances and its corresponding pairwise constraints using t-SNE and

35

the learned embedding z. Figure 2.11 shows the cluster formation in training on MNIST,

Fashion, Reuters dataset respectively.

We notice that the noisy constraint has negative effects on model performance. As

the number of noisy constraints increases, the negative effect of noisy constraints on the

model performance will also increase. For example, in Figure 2.11 the embedding without

noisy constraints (plot (a)) has a better clustering result compared to the embedding with

20% noisy constraints (plot (j)). Moreover, we notice that most of the noisy must-links

are not satisfied and most of the noisy cannot-links are satisfied. To satisfy noisy cannot-

links, the model will move instances from the correct cluster to another cluster that tends

to have similar instances, which explains the negative effect noisy cannot-links have on

the model performance. Figure 2.11, plot (j) shows the model tries to satisfy some noisy

cannot-links and forms a mixed cluster of instances “3”, “5”, and “8”. In the MNIST

dataset, the instances with the label “3”, “5”, and label “8” share some visual similarity.

In plot (e, h, k), we observe a similar mixture of instances “Sneaker,” “Sandal,” “Ankle

boot.” In the Fashion dataset, these classes all represent shoes and share some similarities.

Noise Degree 0% 5% 10% 20% Baseline

MNIST Acc 0.962± 0.01 0.953± 0.01 0.902± 0.05 0.883± 0.05 0.883± 0.01

MNIST NMI 0.910± 0.01 0.894± 0.02 0.828± 0.04 0.809± 0.04 0.861± 0.01

Fashion Acc 0.737± 0.04 0.709± 0.05 0.695± 0.04 0.681± 0.05 0.587± 0.01

Fashion NMI 0.694± 0.02 0.666± 0.03 0.650± 0.03 0.629± 0.03 0.632± 0.01

Reuters Acc 0.950± 0.01 0.856± 0.20 0.825± 0.10 0.763± 0.05 0.752± 0.01

Reuters NMI 0.818± 0.01 0.676± 0.01 0.578± 0.01 0.503± 0.04 0.542± 0.02

Table 2.3: Pairwise constrained clustering performance (mean ± std) averaged over 50
random noisy constraints sets. Baseline model is the model without using pairwise con-
straints.

Robustness Against Noisy Constraints. We define the noisy degree as the ratio

of noisy constraints to ground truth constraints for one type of constraint. To test the

model robustness against noisy constraints, we randomly generate 6000 pairs constraints.

36

For the noisy degree of 5%, 10%, 20%, we randomly generate pairs of noisy constraints

by flipping the labels of ground truth constraints and test the model performance. In

each run, we fix the random seed and the initial centroids for k-means based methods.

For each method, we compare its performance to the unconstrained version. In Table 2.3,

we show that on average, our model will start to perform worse than the unconstrained

baseline model when the noisy degree in constraints reaches 20%.

Raw & Rand Raw & KMeans AE & Rand AE & KMeans

MNIST Acc 0.880± 0.07 0.915± 0.06 0.961± 0.02 0.962± 0.01

MNIST NMI 0.830± 0.06 0.859± 0.05 0.910± 0.02 0.910± 0.01

Epoch 350* 350* 124.38± 66.92 107.60± 35.62

Fashion Acc 0.762± 0.03 0.757± 0.03 0.721± 0.05 0.737± 0.04

Fashion NMI 0.697± 0.01 0.695± 0.02 0.680± 0.03 0.694± 0.02

Epoch 350* 350* 350* 350*

Reuters Acc 0.796± 0.06 0.797± 0.06 0.945± 0.01 0.950± 0.01

Reuters NMI 0.585± 0.08 0.588± 0.08 0.809± 0.02 0.818± 0.01

Epoch 47.73± 16.37 46.34± 12.36 9.33± 4.34 6.08± 0.79

Table 2.4: Pairwise constrained clustering performance (mean ± std) averaged over 50
random sets. Epoch 350*: model didn’t converge after 350 epochs, where convergence is
reached when the ratio of changed labels after an epoch < 0.001.

2.6.4.7 Ablation Study

Experiments on Initialization Approaches. To test the effect of different initializa-

tion approaches on our proposed deep clustering framework, we evaluate the model results

for MNIST, Fashion, and Reuters dataset. Our model initializes both model weights and

the cluster centers, so there are four initialization approaches. The “Raw & Rand” ap-

proach is to initialize both model weights and cluster centers randomly. “Raw & Kmeans”

approach initializes cluster centers with KMeans and randomly initializes weights. The

“AE & Rand” approach uses the pre-trained model to initialize weights and randomly

initialize centroids. “AE & KMeans” uses Kmeans to initialize cluster centers and the

37

pre-trained model to initialize model weights.

In Table 2.4, we report the average performance with 6000 randomly generated pair-

wise constraints. For MNIST and Reuters datasets, we compare the result for “Raw &

Rand” with “Raw & Kmeans” and “AE & Rand” with “AE & Kmeans.” We find that

the cluster center initialization with Kmeans can increase training speed. We also ob-

serve that the consistent increase in model performance and training speed by comparing

“Raw & Kmeans”, “Raw & KMeans,” “AE & Rand,” and “AE & KMeans.” This shows

that better weight initialization can help the model learn information from pairwise con-

straints. However, for the Fashion dataset, the model performance becomes worse when

using a pre-trained model to initialize weights. The result agrees with our findings in Sec-

tion 2.6.4.2. This shows that the autoencoder’s features are not always ideal for DEC’s

clustering objective. To address this issue, we can perform end-to-end deep constrained

clustering from raw features.

600 1200 1800 2400 3000

MNIST Acc 0.33 0.40 0.45 0.47 0.49

MNIST Acc (with ℓC) 0.90 0.93 0.95 0.96 0.97

Fashion Acc 0.52 0.56 0.58 0.60 0.62

Fashion Acc (with ℓC) 0.59 0.61 0.62 0.63 0.64

Reuters Acc 0.79 0.81 0.83 0.85 0.86

Reuters Acc (with ℓC) 0.77 0.79 0.81 0.83 0.85

Table 2.5: Ablation study to evaluate the contribution of clustering loss to pairwise
constrained clustering. Note we report the mean clustering accuracy for each data set
under two settings which ℓC means adding the clustering loss function.

Evaluating the Contribution of Clustering Loss. To measure the contribu-

tion of clustering loss ℓC to our framework, we choose to study its influence on pairwise

constrained clustering. We experiment on MNIST, Fashion, and Reuters data sets and

report the average performance with a different number of randomly generated pairwise

38

constraints. As shown in Table 2.5, the clustering loss is essential for image data sets,

especially for the MNIST data set. The poor performance in MNIST has demonstrated

the need to combine clustering loss with constraints learning. Otherwise, the network will

overfit for a limited number of constraints. Interestingly the results from the Reuters data

set are opposite that adding clustering loss may harm the performance marginally. We

hypothesis that the uni-model assumption, which encoded in the clustering loss function is

preferred for image data rather than in text data. Another finding from the experimental

results is that the performance gap between adding clustering loss or not is shrinking as

the number of constraints increases. This is expected because as the number of constraints

increasing the contribution of constraints loss is more and more critical.

IDEC Pairwise Instance Global Triplet

MNIST 178 197 62 135 230

Fashion 186 246 94 217 310

Reuters 5.15 8.28 3.82 −− −−

Table 2.6: Runtime analysis for our proposed approach with diffrent types of constraints.
We use the same experimental setting for each type of constraints and average the running
time (sec) over 10 trails.

2.6.4.8 Experiments on Very Large Data Sets

Our previous experiments were on large data sets but under 100000 instances, here we

discuss these results and explore our method on a challenging real-world data set over

600000 instances. A key result of our results shown in Table 2.6 is that our method’s

increase in run-time over DEC is minimal for the three data sets previously studied.

Interesting, our framework with instance-difficulty constraints is actually faster than the

IDEC baseline, which speeds up the deep clustering procedure. We believe this is because

this extra side information is compatible with the geometry of the data and hence increases

converge to the minima. For the remaining three types of constraints, the running time

is close to the IDEC’s results.

39

IDEC Ours_60000 Ours_120000
0.0

0.1

0.2

0.3

0.4

0.5

Cl
us

te
rin

g
Ac

c

0.0

0.1

0.2

0.3

0.4

0.5

Cl
us

te
rin

g
NM

I

(a) Clustering Performance on SVHN

IDEC Ours_60000 Ours_120000
0

1000

2000

3000

4000

5000

Tr
ai
ni
ng

 T
im

e
(s
ec

)

(b) Running Time on SVHN

Figure 2.12: We report the out-of-sample prediction results of SVHN data in the left figure
and the running time analysis in the right figure. Note we report the average clustering
performance and running time (sec) over 10 trails.

We now study our method’s run time on a very large data set, SVHN [103], which

contains 604388 training instances and 26032 test instances. Compared to our previously

used data (MNIST), this data set incorporates an order of magnitude more labeled data

and comes from a significantly harder, unsolved, real-world problem (recognizing digits

and numbers in natural scene images). We use the same experimental setting as our

pairwise constrained clustering except that we generate more pairwise constraints (60000

and 120000). We report the clustering performance as well as the time cost in Figure

2.12. The clustering performance result is consistent with our earlier results and improves

upon the accuracy of IDEC. Importantly, despite there being hundreds of thousands

of constraints, the run time is only slightly more than the baseline IDEC algorithm.

These running time results show that our approach is efficient and will not add too much

overhead to deep clustering approaches.

2.7 Conclusion, Limitations and Future Work

The area of constrained partitional clustering has a long history and is widely used. Con-

strained partitional clustering typically is mostly limited to simple pairwise together and

apart constraints. In this paper, we show that deep clustering can be extended to a variety

of fundamentally different constraint types, including instance-level (specifying hardness),

40

cluster level (specifying cluster sizes), and triplet-level. We also show that our framework

can not only handle standard constraints generated from labeled side information but

new constraints generated from an ontology graph. Furthermore, we propose an efficient

training paradigm that applies to multiple types of constraints simultaneously.

Our deep learning formulation was shown to advance the general field of constrained

clustering in several ways. Firstly, it achieves better experimental performance than well-

known k-means, mixture-model, and spectral constrained clustering in both an academic

setting and a practical setting (see Table 2.2). Importantly, our approach does not suffer

from the negative effects of constraints [43] as it learns a representation that simultane-

ously satisfies the constraints and finds a good clustering. This result is quite useful as a

practitioner typically has just one constraint set, and our method is far more likely to per-

form better than using no constraints. Moreover, we have visualized our learning process

to show how the learned latent representation overcomes inconsistencies and incoherence

within the constraints.

Most constrained clustering approaches assume the oracle is perfect, and all the con-

straints are noise-free. Here we have also studied our model’s robustness against noise

in constraints, particularly the popular pairwise constraints. The experimental results

demonstrate that our model is quite robust (see section 2.6.4.6). We were able to show

that our method achieves all of the above but still retains the benefits of deep learn-

ing, such as scalability, out-of-sample predictions, and end-to-end learning. We found

that even though standard non-deep learning methods were given the same representa-

tions (the auto-encoder embedding) of the data used to initialize our methods, the deep

constrained clustering was able to adapt these representations even further.

Our current work limitations are two-folded: limitations inherent with the deep clus-

tering backbone we have used (DEC/IDEC) and limitations with how we add constraints.

In the first limitation, DEC or IDEC is doing k-means style clustering with limitations

such as being partitional (i..e, no hierarchy and partial assignments). Moreover, the clus-

ter number k must be given apriori. As deep clustering evolves to more advanced styles

of clustering, using the constraints we have explored in this paper seems reasonable. But

41

the challenge of also having the deep learning solve for k seems quite challenging given

the need for a fixed architecture. As for the second limitation (how we add constraints),

the main limitation is that we cannot solve for all constraint types at once without the

need for multiple hyper-parameter tuning. This is part of a larger-scale problem in ML,

how to tune hyperparameters (including k) efficiently. We leave the current limitations

as interesting future works.

Acknowledgement

We acknowledge support for this work from a Google Gift entitled: “Combining Symbolic

Reasoning and Deep Learning”.

42

Chapter 3

A Self-Supervised Deep Learning

Framework for Unsupervised

Few-Shot Learning and Clustering

3.1 Introduction

Supervised visual representation learning has achieved great success in recent years. How-

ever, learning a good representation still requires much-labeled data under a supervised

learning setting. Learning a useful visual representations without human supervision

is a fundamental, understudied and long-standing problem [32]. Two popular learning

paradigms for unsupervised representation learning are deep clustering and self-supervised

learning.

Some works have been proposed for deep clustering [144, 64, 149]. This work is

limited in that it adopts a multi-stage pipeline that pre-trains the auto-encoders with

reconstruction loss and then applies a clustering module on it. Though these approaches

yield better clustering results than traditional clustering methods on image data (as they

learn a new representation for clustering), they are are not as useful for unseen (novel)

classes/clusters. An alternative representative learning paradigm is self-supervised learn-

ing methods. Self-supervised learning approaches learn representations using objective

functions similar to those used for supervised learning, but train networks to perform

tasks where both the inputs and labels are derived from an unlabeled dataset. Many

43

recent works [49, 161, 104, 59] have been proposed, for example, [59] performs data aug-

mentations such as rotating the images with different degrees and then to train the neural

networks to predict the corresponding degrees. Although these learned models may not

fully match the performance of supervised-learned representations, they have proved to

be better than purely unsupervised representation learning approaches. However, these

approaches perform self-supervised learning via heuristics with varying assumptions that

if not true may harm the generalization ability of the representation.

In this work, we address learning a representation without supervision and demon-

strate its use on two popular learning tasks. Our approach (visualized in Figure 3.1) to

representation learning takes several intuitive steps as follows.

Category Discovery. Here we perform unsupervised representation along with clus-

tering to take the unlabeled instances and place them into different categories/groups

(C1 . . . Ck).

Post-Processing for Representative Data. Next, using an integer linear program-

ming (ILP) formulation, we post-process the clustering partitions to get representative

instances and balance discovered clusters in the previous step.

Construct Tasks for Category Differentiation. Now we use previously selected

representative instances and then create augmented versions as our training set. Inspired

by the recent success of meta-learning (which aims to learn from limited data to generate

to unseen classes), we create few-shot learning tasks which minimize the intra-category

variation whilst maximizing the inter-category embedding distance for better category

separation.

Iterative Training. We iterative the above three steps to discover categories based

on learned embedding and refining the embedding.

We demonstrate our representation learning scheme on two classic minimal supervi-

sion problems: clustering and few-shot classification. The few-shot classification here is a

paradigm where the model has been learned for the base classes and then is transferred

to learn to predict novel classes of which there are only a few examples available. We

argue that a good visual representation should not only naturally separate images that

44

belong to different semantic groups within the training set but also be applicable for

unseen classes. We evaluate our learned embedding functions in two settings: we first

study the unsupervised few-shot classification problem with benchmark data sets such

as Omniglot and miniImageNet; we then test our learned embedding function on clus-

tering tasks to show whether our pipeline improves upon different initial unsupervised

representations. Based on experimental results, we show our approach achieves state-of-

the-art performance comparing to recent unsupervised few-shot classification baselines.

Moreover, the clustering results demonstrate that our method consistently improves the

embedding learned by unsupervised representation learning for clustering.

We summarize the contributions of our work as follows:

• We propose a framework to improve the unsupervised representation learning (see

section 3.3).

• We validate our proposed model in unsupervised-few-shot learning settings and

show our proposed model achieves state-of-the-art results for benchmark datasets.

Experimental results on clustering analysis also show that our work can further

improve the embedding generated via popular deep clustering baselines (see section

3.4).

• Our ablation study shows the contributions of different technical components. We

find out both the integer linear programming based post-processing algorithm and

iterative training strategy improves the quality of our learned representations.

We begin this paper by next briefly overviewing related research, after which we discuss

our approach in section 3.3. We experimentally compare our methods to many different

baselines in section 3.4 and finally conclude.

3.2 Related Work

Image Representation Learning. Deep unsupervised feature learning has been ex-

plored to learn informative representations of images. One line of this direction is learn-

ing various auto-encoders that learn a reduced feature representation that can reconstruct

45

the inputs. For example, the auto-encoder [21], denoising auto-encoder [133], variational

auto-encoder [85], and adversarial auto-encoder [14]. Additionally, deep generative models

also learn the underlying latent information about images and many generative adversarial

networks [61, 33, 47] have been proposed to encode visual information from an adversarial

learning strategy.

Recent deep clustering works take the advantages of these unsupervised visual rep-

resentation techniques to learn clustering favored representations. For example, [144]

(DEC) fine-tune the embedding learned from stacked-denoising auto-encoder via a self-

supervised signal to form tight clusters. Unlike DEC, [57] guides agglomerative clustering

and feature learning jointly based on the over-clustering initialized by KNN.[26] does dis-

criminative clustering by alternating between clustering the features of a convolutional

neural network and using the clusters as labels to optimize the network weights via back-

propagating a standard classification loss. Our work is similar in style to previous deep

clustering works, which learn a representation that is general for clustering is useful. Dif-

ferently, our framework further improves the representation learned by these works via

clustering and self-supervised few-shot learning.

Unsupervised Meta-Learning. Recent work studies unsupervised meta-learning,

which focuses on how to generate tasks for meta-learning approaches and pre-train the

meta learner to achieve comparable performance with supervised meta-learning. For

example, [72] constructed tasks from unlabeled data via clustering from different views and

runs meta-learning models over the constructed tasks. This paper’s core idea is to leverage

the unsupervised embeddings to propose tasks for a meta-learning algorithm to pre-train

the model for potential supervised few-shot classification tasks. [83] allows unsupervised,

model-agnostic meta-learning for few-shot classification problems by generating synthetic

data with artificial labels. [7] uses a similar way to generate tasks with synthetic data

and pseudo labels but train on a more advanced learner as [6]. Our work differs from

these works as our model gets trained over unsupervised few-shot classification tasks as

an intermediate learning step. Moreover, our work aims to learn a good representation

that works for clustering and few-shot learning by iteratively fine-tune the embedding

46

Figure 3.1: Pipeline of the proposed unsupervised representation learning framework. The
inputs are unlabeled images and the output is the learned embedding function. The learn-
ing process mainly contains fours steps: 1) category discovery, 2) category post-processing,
3) generate virtual instances to construct learning tasks, 4) learning to differentiate cre-
ated categories.

function learned with carefully designed few-shot learning tasks.

3.3 Methodology

In this section, we present details of the proposed representation learning scheme in which

the model discovers different concepts first and then gradually learns to discriminate

both the representative instances and augmented instances within different concepts. We

introduce a new method to learn an unsupervised embedding function that is useful for

both unsupervised few-shot classification tasks and image clustering.

3.3.1 Overview

The pipeline of our proposed framework is illustrated in Figure 3.1. Firstly, we leverage

the existing image representation methods and embed all training data into one latent

space and conduct clustering. Secondly, given the clustered instances, we propose an

integer linear programming based formulation to identify some unlabeled instances for

47

representative and balanced clusters. Thirdly, we augment the selected representative

instances of each discovered category to enrich the training data. Finally, we train our

embedding function with Prototype-based networks using self-generated few-shot learning

tasks. We repeat the previous learning steps until we learn a stable representation.

3.3.2 Step 1: Category Discovery

Clustering is a natural way to gather data that has similar features or close semantic

meanings. Recent works on deep clustering that simultaneously conduct representation

learning and clustering have been shown to outperform traditional clustering approaches.

We take advantage of new unsupervised representation learning methods and choose one

of them as our initialization function ϕ(x). Given all the unlabeled points {x1, . . . xn} we

can calculate their embeddings as {ϕ(x1), . . . ϕ(xn)}.

We assume that each discovered category/concept should have one centroid, and all

the instances belonging to this category/concept should be closely clustered around the

centroid. Thus we use the K-means objective below to look for concepts:

argmin
C

n∑
i=1

[argmin
zi

||Czi − ϕ(xi)||] (3.1)

C is a d × k matrix where each column corresponds to a centroid, k is the number of

centroids, and zi is a binary assignment vector with length d. By solving this objective

function, we will get k clusters of unlabeled instances, which will be used as discovered

categories for the next learning stage.

3.3.3 Step 2: Post-Processing for Representative Data

We wish to use the discovered categories to generate pseudo-labels and create pre-tasks

for our next step’s self-supervised learning. However, directly using these partitions to

generate supervised learning tasks will incur several challenges. For example, 1) the size

of each cluster may vary greatly so that large clusters can dominate; 2) some unlabeled

instances are hard assigned to a category so that the instances lying on the cluster decision

boundaries are prone to be falsely clustered. To counter the previous issues, we propose

selecting a group of instances that best resembles the centroids of each discovered category

and form balanced clusters.

48

Given the n unlabeled instances we aim to find a n × 1 binary allocation vector

T = {t1, . . . tn} that selects valuable unlabeled instances. ti = 1 means instance i is

selected and ti = 0 means we ignore instance i. Given the learned latent embeddings

{ϕ(x1), . . . ϕ(xn)} and the centroids for k clusters as C = {c1, . . . ck}, we calculate the

cluster probability distribution of instance xi belonging to cluster j as wij:

wij =
exp {−||ϕ(xi)− cj||2}∑
p exp {−||ϕ(xi)− cp||2}

(3.2)

We look for instances which lie close to their category centroids, to measure the closeness

we calculate the entropy of each instance as Qi = H(wi) = −
∑k

j=1wij logwij and use n×1

vector Q to represent them. Now we solve for the n × 1 binary vector T . One objective

function then is simply find the most valuable instances:

argmin
t

∑
i

tiQi (3.3)

The aim of the constraints are two-folded: to balance the size of each discovered

category whilst also keep the most valuable instances. Our first basic constraint includes

the total number of selected instances to be m < n so that uncertain unlabeled instances

will be removed. Our next constraint requires that each cluster should have a reasonable

number of instances so that some large clusters won’t dominate. Thus we have

s.t.
∑
i

ti = m (3.4)

s.t.
∑
i

tizij ≥ L ∀j (3.5)

s.t.
∑
i

tizij ≤ U ∀j (3.6)

Note that U and L serves as the upper bound and lower bound of each cluster’s size.

Details of how we set up the constraint hyper-parameters will be described in experimental

section 3.4.

49

3.3.4 Virtual Instance Generation

Given the m selected instances which belong to k categories, the instances belonging to

the same category tend to be similar to each other and are not diverse enough. Training a

supervised few-shot learning model over these instances is prone to overfitting due to the

low-diversity and cannot generalize well. Moreover, the learned embedding will largely

resemble the embedding which we initialized.

Increasing the number of training examples by data augmentation is a popular ap-

proach in supervised learning and semi-supervised learning to improve generalization.

Before splitting the selected instances into support sets and query sets for meta training,

we apply traditional image augmentation approaches to augment the m chosen instances.

We pick the standard image augmentation strategies to enrich the diversity while main-

taining the class membership of the augmented instances. To be specific, we compose

random sized crop, image jitter, and random horizontal flip as our augmentation strategy.

3.3.5 Iterative Training

In this section, we introduce how we train our representation learning framework thor-

oughly. Our work aims to learn an embedding function fθ that naturally splits the dis-

covered categories of all the unlabeled instances and form tight and diverse clusters. To

achieve this goal, we propose to use a prototype-based network as fθ and train it via

few-shot classification tasks based on discovered labeled instances.

We first introduce notations and recap the few-shot learning. In few-shot learning

tasks, we divide the dataset into three disjoint sets which are meta-training set Str,

meta-validation set Sval and meta-testing set Stest. Str contains all the base classes, Sval

and Stest contains disjoint novel classes. The few-shot learning models are trained in an

episodic paradigm [134] that each episode contains one support set DS and one query set

DQ. Here, the support set DS serves as the labeled training set on which the model is

trained to minimize the loss of its predictions for query set DQ.

Secondly, we introduce how to train our few-shot classification learner. Denote the

augmented representative training set as Str, now we randomly split Str into support set

DS and query set DQ. We choose Prototypical Networks as our learner to classify differ-

50

Figure 3.2: The whole learning process of our framework (left hand side shows model ini-
tialization and right hand side shows iterative learning). Left: The unlabeled points set
X is first encoded to Z via existing unsupervised representation learning function ϕ(x).
After that we conduct clustering on Z and post-process the clustering assignments to get
pseudo-labeled data set X∗, Y ∗. Right: Given the pseudo-labeled data and correspond-
ing composed augmentations we train ProtoNet fθ via episodic learning and get learned
embeddings Z, clustering on Z and re-label X∗ and generate new augmented instances.

ent discovered classes. Prototypical Networks compute an M dimensional representation

ck ∈ RM , or prototype, of each class through an embedding function fθ with learnable

parameters θ. Each prototype ck is the mean vector of the embedded support points

belonging to class k:

ck =
1

DS
k

∑
(xi,yi)∈DS

k

fθ(xi) (3.7)

Given a Euclidean distance function d, Prototypical Networks produce a distribution

over classes for a query point x based on a softmax over Euclidean distances to the

prototypes in the embedding space:

pθ(y = k|x) = exp (−d(fθ(x), ck))∑
k′ exp (−d(fθ(x), ck′))

(3.8)

Learning proceeds by minimizing the negative log probability of the true class k via

SGD: J(θ) = − log pθ(y = k|x). Training episodes are generated from meta-training set

Str.

Now we connect all the technical components and visualize the training process in

Figure 3.2. Note the embedding function fθ is initialized in each iteration to learn a new

embedding of unlabeled instances that can discriminate against the previously discovered

classes and augmented instances. We repeat the whole training process for fθ until the

clustering results remain stable. We empirically observe that the clustering results of

the learned embeddings Z tend to converge after a few rounds of iterative learning loop.

51

Moreover, the iterative learning consistently improves both the clustering results and

few-shot classification performance which can be seen in the experimental section 3.4.

3.4 Experiments

The proposed framework is evaluated in two learning settings, which are image clustering

and unsupervised few-shot classification. Our experimental results aim to answer the

following questions:

• How does the proposed framework perform on unsupervised few-shot classification

tasks compared to recent baselines?

• Compared to the original features we used to discover the categories, can our pro-

posed framework provide a further enhancement in terms of clustering results?

• How does each step within the framework contributes to the final results?

3.4.1 Datasets

Omniglot [112] is a dataset of handwritten characters frequently used to compare few-

shot learning algorithms. It comprises 1623 characters from 50 different alphabets. Every

character in Omniglot has 20 different instances. The miniImageNetis a collection of

ImageNet for few-shot image recognition. It is composed of 100 classes randomly selected

from ImageNet, with each class containing 600 examples.

We also experiment on some traditional image clustering data sets to study whether

our framework can improve further on the image clustering tasks: 1) MNIST [90], which

consists of 70000 handwritten digits of 28-by-28 pixel size. The digits are centered and size-

normalized in our experiments; 2) FASHION-MNIST [143]: a Zalando’s article images-

consisting of a training set of 60000 examples and a test set of 10000 examples. Each

example is a 28-by-28 grayscale image, associated with a label from 10 classes; 3) USPS,

which contains 9298 handwritten digit images with the size of 16 by 16 pixels.

3.4.2 Implementation Details

We have explored different unsupervised representation learning algorithms to initialize

our pipeline. For the Omniglot data set, we choose adversarially constrained autoencoder

52

interpolation (ACAI) [14], which is a convolutional autoencoder regularized with a term

encouraging meaningful interpolations in the latent space. For miniImageNet, we leverage

the recent large-scale unsupervised visual representation work (DeepCluster [26]).

For traditional deep clustering data sets such as MNIST, Fashion-MNIST, and USPS,

IDEC [124] is an auto-encoder based deep clustering algorithm that we adopted for testing

whether our proposed pipeline improves upon traditional deep clustering approaches.

For k-means clustering, we initialize the clustering methods with 100 random trials

and use the best trial for initialization; the number of clusters for unsupervised few-shot

learning is set to 100 empirically for both Omniglot and miniImageNet.

To select the valuable instances from the clustering results, we set m to be 80% of

the original unlabeled data size. The rationale for selecting a relatively large portion

is because we only observe a small group of points lies between different clusters across

different data sets. The size of selected instances is not sensitive within the range between

70% to 90% of all unlabeled data. Denote the average number of instances per cluster as

S; we set the upper bound U and lower bound L as 2S and 0.5S. We solve this integer

programming problem by linear programming relaxation and then round the results for

faster computation on complex datasets such as miniImageNet and Omniglot.

For fair comparison with other few-shot classification methods, we adopt a widely-used

CNN architecture [134, 54, 123, 126] as the feature embedding function fθ. Following [123],

we adopt the episodic training procedure, i.e., we sample a set of N -way k-shot training

tasks to mimic the N -way k-shot test problems. In all settings, the query set’s size of each

novel class is set as 15, and the performance is averaged over 1000 randomly generated

episodes from the test set. All our models are trained with Adam optimizer and an

initial learning rate of 10−3. We trained 240000 tasks for miniImageNet and 100000 tasks

for other data sets. We have included [72, 83, 7] as our unsupervised few-shot learning

baselines and also [64] as deep clustering baseline.

3.4.3 Unsupervised Few-shot Classification on Omniglot

We compare our model’s unsupervised few-shot classification mean accuracy with recent

baselines on the Omniglot dataset in Table 3.1. We can find our approach significantly

53

Omniglot

Model (5, 1) (5, 5) (20, 1) (20, 5)

CACTUs-MAML 68.84% 87.78% 48.09% 73.36%

CACTUs-ProtoNet 68.12% 83.58% 47.75% 66.27%

UMTRA 77.80% 92.74% 62.20% 77.50%

AAL-MAML++ 88.40% 97.96% 70.21% 88.32%

AAL-ProtoNet 84.66% 89.14% 68.79% 74.28%

Ours 94.09% 98.43% 87.56% 96.15%

Supervised-MAML 98.70% 98.90% 95.80% 98.90%

Supervised-ProtoNet 98.80% 99.70% 96.00% 98.90%

Table 3.1: Comparison to prior works on Omniglot. We report the few-shot classification
mean accuracies

improves upon the previous baselines in both 5 way few-shot classification and 20 way

few-shot classification settings. This shows that our framework consistently improves the

learned embeddings under multiple way classification tasks. We also report the representa-

tive supervised few-shot classification results and find out our approach largely minimizes

the gap between unsupervised and supervised few-shot classification in Omniglot, with

1.27% difference in 5-way 5-shot learning and 1.75% difference in 20-way 5-shot setting.

3.4.4 Unsupervised Few-shot Classification on miniImageNet

We further evaluate the unsupervised few-shot classification on miniImageNet data set

which is much more challenging than Omniglot. Results are reported in Table 3.2. As

shown, our approach still achieves the best results for 5 way classification with a different

number of shots. This suggests that our framework is general across different data sets and

behaves consistently under different few-shot classification settings. Moreover, comparing

our results with the supervised baselines, we can find the gap is larger compared to the

gap in Omniglot dataset. This is acceptable as images within miniImageNet vary and are

harder to recognize.

54

miniImageNet

Model (5, 1) (5, 5) (5, 20) (5, 50)

CACTUs-MAML 39.90% 53.97% 63.84% 69.64%

CACTUs-ProtoNet 39.18% 53.36% 61.54% 63.55%

UMTRA 39.93% 50.73% 61.11% 63.55%

AAL-MAML++ 33.30% 49.18% – –

AAL-ProtoNet 37.67% 40.29% – –

Ours 41.16% 57.03% 68.85% 70.64%

Supervised-MAML 46.81% 64.13% 71.03% 75.54%

Supervised-ProtoNet 50.16% 65.56% 70.05% 72.04%

Table 3.2: Comparison to prior works on miniImageNet. We report the few-shot classifi-
cation mean accuracies. AAL [7] didn’t report the results for 20 shot and 50 shot setting
so we leave them as blank entries

3.4.5 How our framework improves upon the initial embeddings

in terms of clustering performance.

Our proposed framework takes advantage of the initialization embeddings learned from

recent unsupervised learning methods. To show how our model improves upon them,

we test the clustering performance of both initial embeddings and learned embeddings

and plot the results in Figure 3.3. Note we have used ACAI’s [14] embedding algorithm

to initialize Omniglot data and DeepCluster’s [26] embedding approach to initialize the

miniImageNet data. We adopt standard metrics for evaluating clustering performance

which measures how close the clustering found is to the ground truth result. Specifically,

we employ the normalized mutual information (NMI) [125, 148].

As can be seen from part (a) of Figure 3.3, we train our framework for five iterations

with 5-way and 20-way few-shot classification tasks. The embeddings’ clustering perfor-

mance consistently improves as the number of rounds increasing and tend to converge

after five iterations. The first iteration of learning provides the largest improvement,

which shows that our framework further improved the initialized embedding. Moreover,

55

Round-0 Round-1 Round-2 Round-3 Round-4 Round-5

0.50

0.55

0.60

0.65

0.70

0.75

0.80

N
M
I

5-way 1-shot

5-way 5-shot

20-way 1-shot

20-way 5-shot

(a) Omniglot

Round-0 Round-1 Round-2 Round-3 Round-4 Round-5

0.20

0.21

0.22

0.23

0.24

0.25

N
M
I

5-way 1-shot

5-way 5-shot

5-way 20-shot

5-way 50-shot

(b) miniImageNet

Figure 3.3: We evaluate the clustering NMI for our learned embeddings on Omniglot and
miniImageNet for each training iteration.

we discover that the embeddings learned with five shots are better for clustering than

the embeddings learned with only one shot. We have observed the similar results in

miniImageNet experiment that shown in part (b) of Figure 3.3. Our framework can

provide consistent improvements across different data sets with different initializations.

Round-0 Round-1 Round-2 Round-3 Round-4 Round-5

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

N
M
I

IDEC Init K-Means Init

(a) Clustering results on MNIST

Round-0 Round-1 Round-2 Round-3 Round-4 Round-5

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

N
M
I

IDEC Init K-Means Init

(b) Clustering results on Fashion

Figure 3.4: We evaluate the clustering NMI for our learned embeddings on MNIST,
FASHION-MNIST for each training iteration.

Moreover, we have tested our approach on traditional clustering datasets. We ap-

ply two approaches to initialize all these three datasets. We first test on whether our

framework can improve upon the existing deep clustering approach (IDEC). We also use

56

(20, 1) (5, 1) (20, 5) (5, 5)
70

75

80

85

90

95

100
M
ea
n
A
cc
ur
ac
y

Without Augmentation With Augmentation

(a) Omniglot

(20, 1) (5, 1) (20, 5) (5, 5)
70

75

80

85

90

95

100

M
ea
n
A
cc
ur
ac
y

Without Culling With Culling

(b) Omniglot

(5, 1) (5, 5) (5, 20) (5, 50)
30

40

50

60

70

80

M
ea
n
A
cc
ur
ac
y

Without Augmentation With Augmentation

(c) miniImageNet

(5, 1) (5, 5) (5, 20) (5, 50)
30

40

50

60

70

80

M
ea
n
A
cc
ur
ac
y

Without Culling With Culling

(d) miniImageNet

Figure 3.5: Plots of ablation study. Note plot (a) and (c) test on how much our framework
benefit from composition of data augmentations and plot (b) and (d) test on how much
our framework benefit from culling the unlabeled instances.

a naive K-Means clustering on the raw images to test whether our framework is sensitive

to the initial partition results. We fix the few-shot classification tasks as 5-way 5 shot

classification problem for our training process. The clustering results for these three data

sets are shown in Figure 3.4.

Firstly, we can find our framework always improves the clustering performance no

matter which initialization strategy we use. Secondly, we observe that even if we start

our framework with K-Means partitions over the raw images, our framework can still

largely improve the clustering NMI for MNIST and Fashion-MNIST. Thirdly we find that

our approach can achieve high NMI over USPS data set by using K-Means initialization.

57

We hypothesis this could happen when the initial NMI is relatively high. Overall speaking,

our proposed approach is general for learning a representation; the initialization approach

serves as a performance lower-bound for our framework.

3.4.6 Benefits of data augmentations

Figure 3.5 (a) and (c) shows the impact of adding composed data augmentations when

models are trained for different few-shot classification settings. In the Omniglot data set,

we find that when we are doing 1-shot learning, data augmentation contributes signifi-

cantly to the final performance. With more labeled points, the gaps between using or not

use augmentation decrease. However, we still observe a large improvement in terms of clas-

sification accuracy. In miniImageNet, we find data augmentation consistently improves

the final performance with a different number of shots. Overall speaking, the composition

of data augmentations plays a critical role in unsupervised few-shot classification.

3.4.7 Benefits of category post-processing

Figure 3.5 (b) and (d) shows that the culling of unlabeled instances via our post-processing

objective improves the performance on both data sets. This suggests that directly using

the naive K-Means clustering results to design pre-task may not be appropriate, picking

instances which are representative for each discovered class is beneficial for creating useful

few-shot classification tasks.

3.5 Conclusions

We have presented a self-supervised learning framework to learn representation on images

for better downstream tasks such as unsupervised few-shot learning and clustering, where

no human annotation is provided. We first discover categories from initialized embeddings

and then propose integer linear programming to select valuable instances that form bal-

ance and representative concepts. Moreover, we augment the selected valuable instances

to create pre-tasks and iterative train our network to fine-tune gradually, which resem-

bles the human learning process, such as discovering concepts and learning to separate

them. We show by experiments that the proposed framework has further improved the

embedding initialized by existing representation learning approaches in terms of down-

58

stream tasks. For unsupervised few-shot classification, our proposed approach achieved

state-of-the-art performance on the Omniglot and miniImageNet benchmarks. In the im-

age clustering setting, we also find our approach further improves recent deep clustering

approaches under traditional clustering data sets. The ablation study demonstrates the

importance of each technical component in our framework.

59

Chapter 4

Deep Descriptive Clustering

4.1 Introduction

As machine learning is applied to more complex data and situations, the need to under-

stand a model’s decisions becomes more paramount. The area of explainable AI (XAI) [1]

is motivated to enhance the interpretability of complex machine learning models, espe-

cially deep learning. Arguably XAI is more needed and more challenging in unsupervised

learning such as clustering as the explanations are usually at the model level rather than

the instance level. For example, supervised learning explanations mainly focus on why an

instance is classified to a specific class [106]; however, with clustering we need to explain

the semantics of each discovered cluster.

Existing work on explainable clustering (see Figure 4.1) typically takes one of two

directions: i) explanation by design algorithms [15, 100] that use interpretable features

to create both a clustering and an explanation (left branch of Figure 4.1). ii) explanation

by post-processing [39, 111] which take an existing clustering and generate an explana-

tion using another additional set of features (tags) not given to the clustering algorithm

(right branch of Figure 4.1). Each direction has its limitations: the first type of work is

not suitable for complex data such as images and graphs as the underlying features are

uninterpretable to a human. Post-processing methods are algorithm-agnostic, but they

did not fully use the information from additional features to guide the clustering process

hence may generate poor explanations as the clustering may be difficult to explain. In-

60

Figure 4.1: Taxonomy of works on clustering explanations.

stead, our proposed method will learn a good clustering that is also interpretable while

post-processing approaches only find the best explanation possible for a given clustering.

Explaining deep clustering results using the underlying complex features is a chal-

lenging but alternative direction. Instead, we explore the situation that a partial set of

instance-level semantic tags are known from which we generate a cluster-level descrip-

tion along with complex features to cluster on. This setting is not uncommon and was

previously studied [37, 39]. Example settings include Twitter graphs where the user-user

graph is clustered and explained using hashtags and personal images where the tags are

descriptors of events in the image.

To address the challenges of simultaneously clustering and explaining efficiently with

incomplete semantic features, we propose a novel deep descriptive clustering framework

(DDC) that incorporates both deep clustering and cluster-level explanation. The whole

framework is trained iteratively to maximize the consistency between the clustering and

its explanation. To be specific, we formulate the cluster-level description problem as an

Integer Linear Programming (ILP) which is solved for concise and orthogonal descriptions

for each cluster. Inspired by the success of the discriminative clustering model [88] which

has fewer assumptions of the data, our main clustering objective maximizes the mutual

information between empirical distribution on the inputs and the induced clustering la-

bels. Finally, we propose a pairwise loss with self-generated constraints to penalize the

inconsistency between the clustering feature space and discovered descriptive tag space to

improve the clustering quality. The major contributions of this paper are listed as follows:

61

• We propose a novel framework to learn clustering and cluster-level explanations

simultaneously. The proposed architecture supports learning from the sub-symbolic

level (which clustering is performed on) and symbolic level (which explanations are

created from).

• We formulate the class-level explanation problem as an ILP to solve concise and

orthogonal explanations. A pairwise loss function is proposed with self-generated

constraints to bridge the clustering and explanation.

• Empirical results on public data demonstrate that our model consistently achieves

better clustering results and high-quality explanations compared to recent baselines.

• We explore the novel direction of graphical ontology explanations for clustering

when the number of clusters is large and a lengthy explanation list is problematic.

The rest of this paper is organized as follows. In section 4.2, we overview related

works. We then introduce our learning objectives and optimization algorithms in section

4.3. Experimental results and analysis are reported in section 4.4. Finally, section 4.5

concludes this paper with future research directions.

4.2 Related Work

Explainable clustering models. Many previous works [93, 56, 58, 15] have explored

the explainable-by-design algorithms which consider the simultaneous construction of de-

cision trees and cluster discovery for explainable clustering. Typical work such as [100]

considered traditional clustering algorithms like k-medians/means. However, one major

limitation of these methods is that they require the features used for clustering to be

interpretable which may not be the case for complex data such as graphs and images.

Another line of research [39, 111] assumes one set of semantic tags for each instance are

available to do post-processing explanation. [39] proposed a model-agnostic explanation

method that explains any given clustering with tags but does not change the cluster-

ing. Perhaps the closest work to our own is [37] but is limited to simple diameter-based

clustering objectives and scales to just a few thousand instances whilst making strong

62

assumptions such as having well-annotated tags for every instance. Our work differs from

the above: we learn a deep clustering model and cluster explanation simultaneously with

a partial set of semantic tags and scales for large data sets.

Multi-view clustering. As our approach uses semantic tags for explanation this can

be seen as another view of the data; hence we overview the recent works on multi-view

clustering [17, 146, 121, 128, 141, 75] and discuss how our proposed work differentiates

from it. The goal of multi-view clustering is getting better clustering results via exploit-

ing complementary and consensus information across multiple views rather than simply

concatenating different views. Our descriptive clustering setting is different from multi-

view clustering: Firstly, instead of just one goal which maximizes clustering performance,

our work has another explanation objective to find meaningful descriptions of clusters.

Secondly, most multi-view clustering is for similar views (i.e., all images) whereas our

views are more diverse (e.g., continuous image features with categorical semantic tags)

than general multi-view clustering settings.

Constrained clustering. Unlike most multi-view clustering algorithms which leverages

the knowledge from different views to maximize the clustering performance, constrained

clustering assumes the users have access to partial pre-existing knowledge about the de-

sired partition of the data. The constraints are usually expressed via pairwise constraints

[136, 19, 12] such as together and apart which indicates whether two instances belong

to the same cluster or different clusters. Recent works [55, 155] have also extended con-

strained clustering to deep learning models. Our work shares one common attribute with

these works in using a constrained optimization objective for better clustering. However,

in this work our constraints are dynamically self-generated in that they cannot be known

a priori as generating those constraints require both the feature representation and the

clustering explanations.

63

Figure 4.2: The framework of proposed deep descriptive clustering (DDC). DDC consists
of one clustering objective, one sub-symbolic explanation objective, and one self-generated
objective to maximize the consistency between clustering and explanation modules.

4.3 Approach

4.3.1 Overall Framework

The framework of our proposed Deep Descriptive Clustering (DDC) is shown in Figure

4.2. It can be divided into three learning objectives: i) clustering objective which max-

imizes the mutual information between the empirical distribution on the inputs and the

induced label distribution; ii) class-level explanation objective which finds the shortest and

different explanations for each cluster and creates a tag space mask function g to filter

out uninformative tags; iii) an instance pairwise loss term with self-generated constraints

to maximize the consistency between the clustering feature space and the descriptive tag

space induced by mask function g.

4.3.2 Information Maximization for Clustering

Given unlabeled dataset of N data points as X = {x1, ..., xN} where xi = (xi1, ..., xiD) ∈

RD are D dimensional feature vectors, the goal of our proposed model is to predict the

clustering assignments y ∈ {1, ..., K} given input x, encoding network fθ and cluster size

K. Inspired by RIM [88] which learns a probabilistic clustering model p(y|x,W) with

parameters W to maximize the mutual information between x and y, we represent the

64

estimated mutual information [23] between x and y with network fθ as the difference be-

tween marginal entropy H(Y) and conditional entropy H(Y |X). Our clustering objective

maximizes the mutual information I(X;Y) via minimizing loss LMI :

LMI = −I(X;Y) = H(Y |X)−H(Y)

=
1

N

N∑
i=1

h(p(yi|xi, fθ))− h(
1

N

N∑
i=1

p(yi|xi, fθ))
(4.1)

where h is the entropy function and p(yi|xi, fθ) is calculated through fθ and K-way soft-

max function. Intuitively minimizing conditional entropy H(Y |X) will map similar x to

have similar clustering predictions y and maximizing the entropy H(Y) will incorporate

the notion of class balance to avoid degenerate solution such as all the points map to one

class.

4.3.3 The Cluster-level Explanation Objective

In addition to the unlabeled data X, to provide high-level explanations we assume a set

of partial annotated tags T = {t1, ...tN} where ti = (ti1, ..., tiM) ∈ RM is a binary vector.

In real world applications assuming each instance has a complete set of annotated tags is

unlikely, thus we assume each instance’s tag can be missing with a specified probability

r. With the predicted clustering assignments Y we can partition both X and T into K

clusters.

We formulate the cluster-level description problem as an Integer Linear Programming

(ILP) to learn short and orthogonal descriptors for each cluster. Specifically, we solve for

the K ×M binary allocation matrix W where Wi,j = 1 iff cluster Ci is described by tag

j. The main objective function is to find the most concise overall cluster description:

argmin
W

∑
i,j

Wij (4.2)

Our first constraint set includes the explanation length requirement for each cluster

explicitly and set coverage constraints implicitly. Given a fixed number of tags as explana-

tions for discovered cluster Ci, a high coverage explanation indicates that most instances

within cluster Ci contain the selected tags. Now we define the fraction of cluster i having

65

tag j as Qij =
1

|Ci|
∑

tk∈Ci
tkj. Note we use mean imputation for missing tags. Formally

we expect at least α tags being selected to explain each cluster:

M∑
j=1

WijQij ≥ α ∀i ∈ {1, ..K} (4.3)

Combining Eq (4.3) with our main objective in Eq (4.2), the constraint set in Eq (4.3)

will naturally require the ILP solver to select tags that have higher coverage within each

cluster.

Our next orthogonal constraint requires that the tags chosen to represent each cluster

have minimum overlap which encourages informative explanations. Denote the hyper-

parameter β as the upper-bound of expected number of overlapping tags per cluster, the

orthogonal constraint can be encoded as follow:

K∑
i=1

WijQij ≤ β ∀j ∈ {1, ..M} (4.4)

Lastly we have the regular constraints to make W a valid binary matrix as Wij ∈ {0, 1}.

There are KM variables to solve and K +M constraints for set coverage and orthogonal

requirements. Our proposed ILP objective can be solved efficiently due to the cluster-

level explanation design (K ≪ N). Empirical results have shown that our ILP module’s

running time only takes 1% of the whole framework’s training time.

Now we define the tag space mapping function g which is used in our next objective.

Let the solution for our proposed cluster-level explanation problem be W ∗. We define

function g for all the data as g(ti) = ti ∗ G where G ∈ RM×M is a diagonal matrix such

that Gjj = 1 iff tag j is used in explanation allocation matrix W ∗. Note function g can

be treated as a mask function to filter out less informative semantic tags solved by our

proposed cluster-level explanation objectives.

4.3.4 Self-generated Pairwise Loss Term

Our first proposed objective trains network fθ for clustering; the second objective solves

for explanations and a tag space function g. We propose a pairwise loss objective to

reconcile inconsistencies between the two by finding instances that share similar informa-

tive descriptors but from different clusters, that is g(ti) ≈ g(tj) but fθ(xi) ̸= fθ(xj). To

66

achieve this we introduce a pairwise loss objective to bridge the explanation and cluster-

ing module. This part is important because our goal is to use semantic tags to generate

explanations and reshape the clustering features for better clustering. Previous works on

constrained clustering [136, 12] have shown that adding pairwise guidance such as together

and apart constraints to clustering modules can largely improve clustering performance.

However, these algorithms assume the pairwise guidance is given as ground-truth. In our

setting we propose to add self-generated pairwise constraints with the assumption that

instances which are close in tag space should be close in clustering feature space. For-

mally for each instance xi we search for top l instances which minimize the objective J

for self-generated together constraints:

Ji = min
j∈{1,...,N}

γ ∗ |g(ti)− g(tj)| − |fθ(xi)− fθ(xj)| (4.5)

where γ is the penalizing weight for tag space’s difference. Minimizing J requires accessing

the whole training set which is inefficient for mini-batch training. Instead we replace N

with batch size NB and solve an approximated version of Eq (4.5) in each mini-batch. We

generate l pairs of together constraints for each instance xi and then directly minimize

the KL divergence between the clustering predictions yi and yj:

LP =
1

Nl

N∑
i=1

l∑
j=1

KL(p(yi|xi, fθ), p(yj|xj, fθ)) (4.6)

Eq (4.6) minimizes the inconsistency between the clustering feature space and the semantic

tag space and reshapes the clustering feature space for better clustering and explanation.

4.3.5 Overall Training Algorithm

Algorithm 3 presents our training algorithm for the deep descriptive clustering. Firstly we

initialize the clustering network fθ with random weights and initialize the weight matrix

G of function g as identity matrix. Then we minimize the overall loss L by combining the

clustering objective LMI and pairwise loss term LP with weight λ:

L =
λ

Nl

N∑
i=1

l∑
j=1

KL(p(yi|xi, fθ), p(yj|xj, fθ))+

1

N

N∑
i=1

h(p(yi|xi, fθ))− h(
1

N

N∑
i=1

p(yi|xi, fθ))

(4.7)

67

Algorithm 3 Algorithm for Deep Descriptive Clustering

Input: Data X = {x1, ..., xN}, tags T = {t1, ..., tN}, number of clusters K, hyper-

parameters α, β, γ, λ.

Output: Clustering partitions {C1, ...CK}, well-trained fθ and g, explanation allocation

matrix W ∗.

1: Initialize network fθ and tag space function g.

2: Pre-train fθ via back-propagating overall loss in Eq (4.7).

3: repeat

4: Construct cluster-level explanation problem as ILP defined in Eq (4.2,4.3,4.4). Ini-

tialize β = 0, W ∗ = ∅.

5: while ILP solution W ∗ is not feasible do

6: Increase hyper-parameter β by the fixed step size 1.

7: Solve the ILP for W ∗ and tag space function g.

8: end while

9: for each mini-batch do

10: Generate pairwise constraints based on the objective J in Eq (4.5) within each

batch.

11: Calculate the pairwise loss LP via Eq (4.6) and the clustering loss LMI via Eq

(4.1).

12: Update network parameters fθ by minimizing overall loss L in Eq (4.7).

13: end for

14: until Network fθ and explanation results converge

Given the clustering predictions we construct the cluster-level explanation problem with

binary variable W and calculate Q values for all the discovered clusters {C1, ...CK}. Note

given the expected number of tags used for each cluster as α, we run our ILP solver

iteratively with linear search for the smallest feasible hyper-parameter β to ensure tightest

orthogonal constraints. Once the binary explanation allocation matrix W ∗ is solved, we

update the tag space function g and regenerate the pairwise constraints via objective J

to maximize the consistency between clustering features and tag space. The whole model

68

is trained repetitively until convergence.

4.4 Experiments

In this section, we conduct experiments to evaluate our approach empirically. Based on

our experiments, we aim to answer the following questions:

• Can our proposed approach generate better explanations compared to existing meth-

ods? (see Sec 4.4.2) Can it generate more complex explanations such as ontologies

(see Sec 4.4.3)?

• How does our proposed approach perform in terms of clustering quality? (see Sec

4.4.4)

• How does simultaneously clustering and explaining improve our model’s perfor-

mance? (see Sec 4.4.5)

4.4.1 Experimental Setup

Data. We evaluate the performance of our proposed model on two visual data sets with

annotated semantic attributes. We first use Attribute Pascal and Yahoo (aPY) [53], a

small-scale coarse-grained dataset with 64 semantic attributes and 5274 instances. We

have selected 15 classes for our clustering task. Further, we have studied Animals with

Attributes (AwA) [89], which is a medium-scale dataset in terms of the number of images.

For AwA we use 85 semantic attributes and 19832 instances, we have set 40 classes for

clustering, the total number of animals.

Baselines and Evaluation Metrics. In the experiments, deep descriptive clustering is

compared with descriptive clustering [37] in terms of the explanation quality. To evaluate

the generated explanations quantitatively and qualitatively, we list all the composition

and selected tags for each discovered cluster and report the Tag Coverage (TC) and

Inverse Tag Frequency (ITF). For cluster Ci, let the descriptive tag set be Di, the TC

and ITF for Ci are calculated as:

TC(Ci) =
1

|Di|
∑
d∈Di

|{(x, t) ∈ Ci : d ∈ t}|
|Ci|

(4.8)

69

ITF (Ci) =
1

|Di|
∑
d∈Di

log
K∑K

j=1 |d ∈ Dj|
(4.9)

The Tag Coverage for Ci ranges from [0, 1] and the max value is achieved when each

descriptive tag exists in all the instances within Ci. The Inverse Tag Frequency for Ci

ranges from [0, logK] and the max value is achieved when each descriptive tag is only used

once. For both TC and ITF the larger the better. We have also generated a graphical

ontology as high-level explanation on the clustering results when the number of clusters

is large and a long explanation list is problematic. We evaluate its quality by comparing

it to human knowledge. Further, we evaluate the clustering performance with a range

of tag annotated ratios r as [10%, 30%, 50%] and compare DCC’s results against vanilla

k-means clustering and competitive incomplete multi-view clustering approaches such as

MIC, IMG, and DAIMC [121, 162, 75]. For the clustering evaluation metric, we choose

to use both Normalized Mutual Information (NMI) [125] and Clustering Accuracy (ACC)

[148] for comprehensive evaluation.

Implementations. For a fair comparison with all the baseline approaches, we use pre-

trained ResNet-101 [70] features for all the clustering tasks and the encoder networks of

deep descriptive clustering model are stacked by three fully connected layers with size of

[1200, 1200, K] where K is the desired number of clusters. We set the expected number

of tags for each cluster as 8 and hyper-parameters l, λ, γ as 1, 1, 100 respectively. The tag

annotated ratio r is set as 0.5 by default to simulate a challenging setting. The activation

function is ReLU, and the optimizer is Adam [84] with default parameters.

4.4.2 Comparison with Descriptive Clustering

We duplicate the experimental setting in [37] by down-sampling 10 classes from AwA

and cluster the data into 5 clusters for a fair comparison. We list the explanation results

in Table 4.1 and 4.2. Our model’s Tag Coverage values for all the clusters are 1; this

result shows that our model successfully maximizes the consistency between the discovered

tag space and clustering feature space so that similar instances with similar tags are

grouped. Moreover, the Inverse Tag Frequency values of our model are much higher than

70

C Composition by animals Description by tags TC ↑ ITF ↑

C1 1 grizzly bear, 2 dalmatian, 1 horse, 2

blue whale

big, fast, strong, muscle,

new world, smart

0.94 1.34

C2 5 antelope, 2 grizzly bear, 2 beaver,

5 dalmatian, 5 Persian cat, 5 horse, 6

German shepherd, 3 Siamese cat

furry, chew teeth, fast,

quadrupedal, new world,

ground

0.98 0.94

C3 69 beaver, 64 dalmatian, 42 Persian

cat, 29 blue whale, 42 Siamese cat

tail, fast, timid, smart,

new world, solitary

0.98 1.17

C4 100 killer whale, 69 blue whale, 1

Siamese cat

tail, fast, fish, smart 1.00 1.10

C5 95 antelope, 97 grizzly bear, 29 beaver,

29 dalmatian, 53 Persian cat, 94 horse,

94 German shepherd, 54 Siamese cat

furry, chew teeth, fast,

quadrupedal, new world,

ground

1.00 0.94

Table 4.1: Results generated by descriptive clustering [37], we present the first Pareto
point of their result such that the diameter of all the clusters are minimized. ↑ means the
larger value the better.

the competing method. This result indicates that our model selects informative tags

for each cluster that differentiate from other discovered clusters. We also observe that

our proposed model generates high-quality clusters where similar animals are correctly

grouped together. Finally, we have found one attribute’s annotation error in the AwA

data when examining our explanations for C1; the beavers are annotated with attribute

hibernate but the truth is the opposite. This finding suggests that the labeled attributes

are noisy in the AwA data set.

4.4.3 Novel Explanation as Ontology Extraction

Interpreting the descriptions for each cluster can be problematic when the number of

clusters is large and the description list is long. We propose to generate a graphical

ontology that not only describes each cluster but shows the relationships between them

to better inform people. We have visualized the ontology graph for aPY in Figure 4.3.

The nodes represent discovered clusters and the name of the nodes corresponds to the

71

C Composition by animals Description by tags TC ↑ ITF ↑

C1 100 beaver, 100 grizzly

bear

tough skin, bulbous, paws, quadrupedal, noc-

turnal, hibernate, smart, solitary

1.00 2.32

C2 100 Siamese cat, 100 Per-

sian cat

white, gray, pads, chew teeth, claws, weak,

inactive, old world

1.00 2.32

C3 100 antelope, 100 dalma-

tian

furry, big, long leg, active, ground, timid,

group, new world,

1.00 2.32

C4 100 killer whale, 100 blue

whale

spots, hairless, flippers, strain teeth, fish,

plankton, arctic, ocean

1.00 2.32

C5 100 horse, 100 German

shepherd

black, brown, patches, smelly, walks, strong,

agility, domestic

1.00 2.32

Table 4.2: Results generated by our proposed DDC. ↑ means the larger value the better.

Figure 4.3: The graphical ontology generated for aPY data set.

majority class within each cluster. When two clusters share at least q tags (q = 3 in our

experiments) we add an edge between these two clusters. This shows a higher level of

structure as we can see the ontology plot in Figure 4.3 reflects four distinct communities

which are animals, transportation tools, furniture, and small objects. Those ontologies are

generally in line with human knowledge and provide a high-level abstraction explanation

of our deep descriptive clustering model.

4.4.4 Evaluating Clustering Performance

Here we report if the descriptive clustering problem can increase clustering quality. Since

these methods are not deep learning based, to make a fair comparison we use the same

pre-trained ResNet-101 features. We report the clustering results of our model under

72

NMI ACC

Datasets Methods r% 10 30 50 10 30 50

AwA

K-Means 71.67± 0.63 73.72± 0.66 74.23± 0.69 66.21± 0.57 67.98± 0.60 68.24± 0.54

IMG 71.86± 2.41 74.43± 2.69 82.16± 3.01 66.19± 2.05 69.17± 2.25 76.24± 2.78

MIC 72.40± 1.68 76.85± 1.71 83.43± 1.89 67.26± 1.45 70.52± 1.58 77.68± 1.84

DAIMC 72.88± 2.38 79.02± 2.46 87.10± 2.74 67.87± 1.97 73.14± 2.13 82.34± 2.39

Ours DDC 75.62± 1.17 83.93± 1.35 89.57± 1.37 71.19± 0.93 78.74± 1.12 84.48± 1.20

aPY

K-Means 63.08 ± 0.45 63.89 ± 0.42 64.38 ± 0.48 57.11 ± 0.39 58.13 ± 0.36 58.98 ± 0.37

IMG 64.75 ± 2.05 70.19 ± 2.19 77.50 ± 2.37 60.18 ± 1.78 65.72 ± 1.90 71.21 ± 1.96

MIC 65.36 ± 1.49 73.89 ± 1.61 80.38 ± 1.83 62.36 ± 1.28 66.98 ± 1.40 72.42 ± 1.53

DAIMC 69.29 ± 1.82 80.70 ± 1.91 84.24 ± 1.97 68.21 ± 1.54 73.63 ± 1.63 76.11 ± 1.68

Ours DDC 70.54 ± 0.98 82.41 ± 1.15 86.30 ± 1.22 69.30 ± 0.86 76.34 ± 0.95 79.87 ± 1.02

Table 4.3: Comparison of clustering performance averaged over 10 trials (mean ± var)
on AwA and aPY under different tag annotated ratio r% ∈ {10, 30, 50}. Bold results are
the best mean results among all the algorithms.

a range of annotated ratios in Table 4.3. We have several observations to highlight:

firstly our model consistently outperforms the k-means and multi-view clustering baselines

with different tag annotated ratios; secondly with more annotated tags, both multi-view

clustering baselines and our model improves largely comparing to the k-means clustering

which naively concatenates the images features with semantic attributes. We attribute

the good clustering performance for both deep representation learning and our novel way

of leveraging semantic tag information for better clustering.

4.4.5 Parameter Analysis and Ablation Test

Given the hyper-parameter α which denotes the minimum expected number of tags for

description, we plot the automatically searched parameter β for AwA in Figure 4.4 (a).

This result shows our automatic searching procedure’s success and suggests that a rela-

tively small α leads to more concise and orthogonal explanations. Meanwhile, we conduct

ablation experiments to analyze the impact of mask function g solved via our explanation

module. In Figure 4.4 (b), the blue lines indicate clustering results with function g. In

red lines we replace function g with an identity function to conduct the ablation study.

Comparing red and blue lines we can see that mask function g can remove the noisy infor-

mation within semantic tag space and consistently improve the clustering performance.

73

(a) Parameter analysis on α (b) Ablation study on function g

Figure 4.4: Plots for parameter analysis and ablation study

4.5 Conclusion and Future Work

This paper proposes deep descriptive clustering, which can learn to cluster and generate

cluster-level explanations simultaneously. We develop a novel deep learning framework

that supports learning from the sub-symbolic level (which clustering is performed on)

and symbolic level (which explanations are created from). Empirical results on real-world

data demonstrate the high quality of our generated explanations and good clustering

performance. Our future work will focus on building an explainable clustering model

with noisy semantic features and exploring other novel forms of explanations beyond

ontologies on different types of data.

74

Chapter 5

Towards Fair Deep Anomaly

Detection

5.1 Introduction

Anomalies are the unusual, unexpected, surprising patterns in the observed world that

warrant further investigation. Classic work [67] defines outliers as an observation that

deviates so significantly from other observations as to arouse suspicion that a different

mechanism generated it. Anomalies and outliers are often used interchangeably though we

note that some use the term differently [29] and for this paper we use the term anomalies.

The goal of an anomaly detection algorithm is given a set of instances to determine which

instances stand out as being dissimilar to other instances. Effective detection of anomalies

can be used for various applications, such as stopping malicious intruders, fraud detection,

system health monitoring, and medical image analysis [28].

Recent algorithmic developments have proposed many novel deep learning methods

for anomaly detection [52, 31, 108, 60, 105, 71]. This previous works on deep anomaly

detection are typically unsupervised (e.g., assume all training data are from the normal

group) and have demonstrated better anomaly detection performance than traditional

anomaly detection approaches. One popular approach to deep anomaly detection is the

deep support vector data description (deep SVDD) [108]. This work attempts to transform

the input data into a new feature space where all the points are closely clustered into a

predetermined center. Hence, by definition, those points that cannot be projected to be

75

close to the center are deemed anomalies. The anomaly scores are calculated based on the

Euclidean distances between the test instances and the predetermined center during the

test time. Deep SVDD is a general approach which can be applied to both low dimensional

and high dimensional data. In this first paper on the topic we focus on adding fairness to

deep SVDD.

Since anomaly detection is often applied to humans who are then suspected of un-

usual behavior, ensuring fairness becomes paramount. The notion of fairness has re-

cently received much attention in supervised learning [151, 48] and unsupervised learning

[35, 114, 8]. Measures of fairness can generally be divided into two categories [36]: (i)

group-level fairness and (ii) individual level fairness. In anomaly detection problems, we

divide the data into two groups, which are the normal group and the abnormal group.

We propose to study the group-level fairness problems which ensure that no one partic-

ular group contains a disproportionate number of individuals with protected status. To

our best knowledge, there is no prior published work on fairness in the context of deep

anomaly detection though work on auditing (i.e., checking) anomaly detection algorithms

exist [42].

A Motivating Example For Group-Level Fairness. Consider the example of

finding anomalies by applying deep SVDD to facial images. The top 32 normal instances

and top 32 abnormal instances are shown in Figure 5.1. These pictures are from the

celebA (celebrity) data set (which we introduce in section 5.5.1). The deep SVDD model

is trained on attractive celebrity faces (normal group) and used to detect plain celebrity

faces (abnormal group) where the labels are given in the data set. The model performs

well in terms of the anomaly detection quality as most attractive celebrity faces and

plain celebrity faces are separated correctly. However, when we consider the protected

status variable gender in this problem, more females are predicted to be attractive (normal

group), and more males are predicted as plain (abnormal group). Moreover, if we consider

race as a protected status variable, we can see that the most attractive faces are white

people and many black people in the abnormal group. Motivated by these observations,

we aim to design experiments to examine the fairness of existing deep anomaly detection

76

(a) Normal Group (b) Abnormal Group

Figure 5.1: Motivating example of the need for group-level fairness in deep anomaly de-
tection problem. We visualize the top 32 normal instances and top 32 abnormal instances
discovered by deep SVDD on celebA data set. We see that the normal group is dominated
by females while the abnormal group is dominated by males.

methods quantitatively and propose a fair anomaly detection model to balance the number

of instances with different sensitive attribute values in the anomaly predictions.

In this paper, we present the Deep Fair Support Vector Data Description (Deep Fair

SVDD) model which learns a compact and fair description of the normal data via adver-

sarial learning. We summarize the main contributions in this paper as follows:

• We show existing deep anomaly detection approaches are unfair (see section 5.5.4)

due to the deep learners’ ability to extract out complex features.

• We consider fair anomaly detection in the context of deep representation learning.

To the best of our knowledge, this is an under-studied so far and challenging due to

the need for fair and high-quality predictions.

• We address these challenges by proposing a novel fair anomaly detection architecture

(see Figure 5.3) and use adversarial learning to remove the unfairness. The idea of

using adversarial learning contrasts with many recent works on fairness in learning

which typically encodes fairness as a regularization term or a constraint.

• We propose two measures of group-level fairness for deep anomaly detection prob-

lems: i) A demographic parity motivated fairness measure for the abnormal group

(equation 5.3) ii) A parameter-free measure based on Wasserstein distance for cal-

culating the overall fairness (equation 5.4).

77

• We demonstrate our method on several types of data, including traditional tabular

datasets, face data sets, and digit images. We study the fairness problem concerning

gender, racism, and the source of the visual objects. (see section 5.5.1). We find

that introducing fairness causes a marginal drop in anomaly detection performance

measured by the AUC score (see section 5.5.5).

• We conduct an in-depth analysis of our proposed model to show our proposed

model’s strengths and limitations, including parameter analysis, feature visualiza-

tion, and run-time analysis. (see section 5.5.6, 5.5.8, 5.5.9).

Our paper structure is as follows. In the next section 5.2, we discuss the related work.

Then, we provide background knowledge about deep SVDD and our fairness measures

in section 5.3. Next, we propose the deep fair SVDD model and analyze how we use

adversarial networks to tackle fair anomaly detection problems (section 5.4). Finally,

we perform experiments on real-world data sets to demonstrate the effectiveness of our

method in section 5.5 and conclude our proposed approach in section 5.6.

5.2 Related Work

Deep Anomaly Detection. We first outline related works on deep anomaly detection.

One of the most common deep anomaly detection approaches is reconstruction-based

methods [68, 98, 142, 4, 110, 31, 77] which assume the anomalies possess different features

than the normal instances. Hence, given a pre-trained autoencoder over the normal

instances it will be hard to compress and reconstruct the anomalies. The anomaly score

in this research is defined as the reconstruction loss for each test instance. Inspired by

the generative adversarial networks [61], another line of related works [113, 44, 152] score

an unseen sample based on the ability of the model to generate a similar one.

More recently, A deep version of support vector data description (Deep SVDD) has

been proposed [108]. This work is inspired by kernel-based one-class classification [115]

which combines the ability of deep representation learning with the one-class objective to

separate normal data from anomalies by concentrating normal data in embedded space

while mapping anomalies to distant locations. Another recent progress on deep anomaly

78

detection uses self-supervised learning on image data sets and achieves excellent perfor-

mance [59, 60, 71, 139]. For example, [60] uses a composition of image transformations

and then trains a neural network to predict which transformation was used. The anomaly

scores are computed based on the predictions’ confidence over different image transfor-

mations given the test samples.

Fairness in Anomaly Detection. With so many works focusing on improving the

deep anomaly detection performance, our work differentiates from those previous works as

we investigate the fairness of the existing deep anomaly detection problems and propose a

novel deep fair anomaly detection model to help humans make fair decisions. To the best

of our knowledge, there is no work on deep fair anomaly detection algorithms. We now

introduce two related works on non-deep fair anomaly detection problems. Recent work

[42] has studied auditing the output of any anomaly detection algorithm. In their work, the

anomaly detection algorithm’s output fairness with respect to multiple protected status

variables (PSVs) is measured by finding PSV combinations in the outlier group which are

more common than in the normal group. Their empirical results show that the output of

five classic anomaly detection methods is unfair. Another work [45] studies the fairness

problem of LOF (Local Outlier Factor) [22] and proposes several heuristics to mitigate the

unfairness within LOF on tabular data sets. Differently, our work proposes to examine

fairness for the deep anomaly detection problems which work for both tabular data and

image data. Moreover, unlike LOF-based approaches that have no training phase and do

not learn a model of normality, our proposed model can make out-of-sample predictions.

Adversarial Learning for Fairness. Lastly, we introduce the related works which

take the advantages of adversarial networks to remove unfairness. [16] applies an adver-

sarial training method to satisfy parity for salary prediction. This work shows that small

amounts of data are needed to train a powerful adversarial model to enforce fairness

constraints. The work of [153] uses a predictor and adversary with an additional pro-

jection term to remove unfairness in both supervised learning tasks and debiasing word

embedding tasks. [51] shows that demographic information leaks into intermediate rep-

resentations of neural networks trained on text datasets and applies adversarial learning

79

to mitigate the information leaks. [127] takes the advantages of adversarial networks to

reduce word vector sentiment bias for demographic identity terms.

5.3 Preliminary

5.3.1 Deep Support Vector Data Description

Among the recent deep anomaly detection methods we focus on deep SVDD [108] as a

base learner because it is not only a popular method but also performs well on both

low dimensional (tabular data) and high dimensional data (images). Unlike generative

models or compression based anomaly detection models which are adapted for anomaly

detection, deep SVDD is directly learned with an anomaly detection based objective.

Given the training data of just normal points X ∈ Rn×d, the deep SVDD network is

trained to map all the n normal points close to a fixed center c where c is normally set

as the mean of the points. Denote function f as a neural network with parameters θ the

simplified objective function is:

argmin
θ

1

n

n∑
i=1

||f(xi; θ)− c||2 + α

2

L∑
ℓ=1

||θℓ||2 (5.1)

The second term is a network weight decay regularizer with hyper-parameter α > 0 which

prevents finding a too complex mapping function. The network has L hidden layers and

set of weights {θ1, ..., θL} are the weights of layer ℓ ∈ {1, ..., L}. Deep SVDD contracts

the embedding space enclosing the points by minimizing the mean distance of all data

points to the center. During the evaluation/scoring stage, given a test point x ∈ X T Deep

SVDD will calculate the anomaly score s(x) for x as follows:

s(x) = ||f(x; θ)− c||2 (5.2)

Note this is just the distance the instance is from the center, abnormal points are then

those far from the center.

5.3.2 Notion of Fairness

Fairness is measured using protected status variables or sensitive features such as gender

and race. In this paper, we study group-level fairness which ensures that no one particular

group contains a disproportionate number of instances of a given protected status.

80

Fairness by p% -rule. Our first notion of fairness is inspired by [151] which proposed

a statistical parity motivated measure for a supervised classification model. Statistical

parity is a popular fairness measure used in many unsupervised learning and supervised

learning problems [35, 8, 151, 122]. Let t be the anomaly score threshold, then the normal

groups are points with s(x) ≤ t and the abnormal groups are points with s(x) > t. Given

the protected status variable as z ∈ {0, 1}, our definition of fairness measure leverages

the 80% rule [18]: a normal / abnormal group partition satisfies the 80% rule if the ratio

between the percentage of person with a particular protected status variable value having

s(x) > t and the percentage of person without protected status having s(x) > t is no less

than 80 : 100. We define the p% -rule as our fairness measure for the anomaly detection

problem:

min(
P (s(x) > t|z = 1)

P (s(x) > t|z = 0)
,
P (s(x) > t|z = 0)

P (s(x) > t|z = 1)
) ≥ p

100
(5.3)

Note the p% -rule value ranges from 0 to 1 and a larger value indicates the model is fairer.

In ideal case we have P (s(x) > t|z = 1) = P (s(x) > t|z = 0). Maximizing p% -rule means

predicting x as an anomaly will be independent of the protected status variable z

The rationale behind using our first fairness measure in equation 5.3 is because it is

closely related to the 80% rule advocated by the US Equal Employment Opportunity

Commission [18]. We can determine a deep anomaly detection model’s fairness using

the 80% rule. However, there are some limitations to our first proposed measurement.

Firstly, we need to know the exact number of anomalies in the test set to correctly set

the anomaly score threshold t to partition the normal and abnormal groups. Secondly,

this measure only considers the fairness in the abnormal group.

Fairness by distribution distance. Here we propose a new fairness measure for

anomaly detection problems which is invariant of the anomaly score threshold t and covers

both normal and abnormal groups. We have designed one synthetic anomaly detection

problem to show the motivation for our second fairness measure. Assume there are two

anomaly detection models named A and B. The test data includes 27 males and 27 females,

and the binary sensitive attribute is gender. To be specific, the predicted anomaly scores

81

2 4 6 8 10
Anomaly Scores

0

1

2

3

4

5

6

7

8

Co
un

t

Male
Female

(a) Model A’s Predictions

2 4 6 8 10
Anomaly Scores

0

1

2

3

4

5

6

7

8

Co
un

t

Male
Female

(b) Model B ’s Predictions

(c) Model A’s Prediction Distribution (d) Model B ’s Prediction Distribution

Figure 5.2: A toy example to show the difference between our proposed two fairness
measures. Figure a, b summaries the statistics of predicted anomaly scores of model A
and B. Given the ground-truth anomaly score threshold t = 8, model A and B have
the same fairness by p% -rule as 2/6 = 0.33. Figure c, d shows the anomaly score
distributions for model A’s predictions (MA, FA) and model B ’s predictions (MB, FB).
Model B is more unfair as the anomaly scores are highly correlated with the sensitive
attribute gender (M,F). The fairness by distribution distance for model A and B are
W (MA, FA) = 1.37 and W (MB, FB) = 2.87.

from Model A and B are shown in Figure 5.2 (a) and (b). Given the ground truth number

of anomalies as 8, we can set the anomaly score threshold t = 8 to predict anomalies with

s(x) > 8. Now we can calculate the p% -rule for Model A and Model B as: 2/6 = 1
3
.

Although models A and B achieve the same fairness measured by p% -rule, we can learn

from the anomaly score distributions in Figure 5.2 (c) and (d) that model B ’s predictions

are highly correlated with the sensitive attribute gender which is less fair.

82

Now we formulate our second definition of fairness which quantifies the difference

between each demographic group’s anomaly score distributions: let P denotes the distri-

bution of the anomaly scores for test instances with sensitive attribute z = 0 and Q for test

instances with sensitive attribute z = 1. We calculate the Wasserstein-1 (Earth-Mover

Distance) distance between distribution P and Q as fairness by distribution distance mea-

sure:

W (P,Q) = inf
γ∈Π(P,Q)

E(x,y)∼γ[||x− y||] (5.4)

where Π(P,Q) denotes the set of all joint distributions γ(x, y) whose marginals are re-

spectively P and Q. Intuitively, γ(x, y) indicates how much ”mass” must be transported

from x to y in order to transform the distribution P to Q. For our previous toy example,

we calculate the Distribution distance for model A and B ’s predictions as 1.37 and 2.78.

These results indicate that model A is overall fairer than model B. From a practitioner’s

perspective, we can use distribution distance to evaluate the fairness performance for dif-

ferent anomaly detection models and conduct model selection when we have no access to

the test set. Lastly, we will use both Fairness by p% -rule and Fairness by distribution

distance to evaluate the fairness performance in our experimental section.

5.4 Methods

5.4.1 Learning Overview

In this section, we propose the deep fair SVDD model for deep anomaly detection prob-

lems. Following the previous deep anomaly detection works [108, 59], we assume the

training data X contains only normal instances. Moreover, our proposed model requires

access to the binary protected status variable Z for each of the training instances X . We

learn f(θ) as an encoder network to learn compact descriptions of X (i.e. a mapping to

a lower-dimensional space), and a classification network g(θd) to predict protected status

variable value z ∈ Z based on the learned embedding f(X ; θ). We train the encoder f

and discriminator g using adversarial training so that we hope the embedding learned via

encoder f can fool the discriminator g. Training such a network is challenging and we

take advantage of adversarial learning since it has shown promising results for other fair-

83

Figure 5.3: Pipeline of the proposed deep fair SVDD learning framework. The inputs are
normal training data X and the outputs are learned embedding f(X ; θ) and a discrimi-
natory function g(θd). The end-to-end learning process contains three steps: 1) train the
encoder f(θ) via minimizing the loss LSV DD, 2) fix the encoder’s parameters θ, and train
the discriminator g(θd) via minimizing the discriminator’s loss LD, 3) fix the discrimina-
tor’s parameters θd and train encoder f(θ) to minimize the adversarial loss LSV DD−λLD.
Procedure (2) and (3) are trained alternatively until convergence.

ness tasks such as removing unfairness in NLP applications [51, 127]. We use adversarial

learning to de-correlate the relationships between protected status variable Z and feature

vectors encoded via f(θ). Note that our fair learning method is fundamentally different

from much existing work [151, 27, 74] which uses a regularization term to encode fairness

or encodes fairness as a constraint.

5.4.2 Deep Fair SVDD Model

Our proposed deep fair SVDD network aims to learn a fair representation to describe all

the training data via adversarial learning. Given the normal training data X ∈ RM×D,

encoder network f(θ) we have the latent encoding of all the normal points as f(X ; θ).

Assume the binary protected status variable is Z ∈ RM×1. The fair representation is

achieved when the learned embedding are statistically independent of sensitive attribute

Z. Given z ∈ {0, 1} we hope to optimize the function f(θ) to have:

p(f(X ; θ)|z = 0) = p(f(X ; θ)|z = 1) (5.5)

84

To achieve the goal in equation (5.5) we propose to use adversarial networks with a

min-max game strategy to constrain the embedding function f(θ). Firstly, the encoder

network is trained with normal points X to generate compact embedding around a pre-

determined center c. To regularize the encoder we add a weight decay regularizer with

positive hyper-parameter α for all the L hidden layers. We use term LSV DD to represent

the encoder’s loss function:

LSV DD =
1

M

M∑
i=1

||f(xi; θ)− c||2 + α

2

L∑
ℓ=1

||θℓ||2 (5.6)

Secondly we concatenate the encoding network f(θ) with a discriminator g(θd) to learn

to classify the sensitive attributes Z based on learned embedding f(X ; θ). Since Z is a

binary variable we use sigmoid function to get the probabilistic prediction as ẑi:

ẑi =
1

1 + exp−g(f(xi;θ)|θd)
(5.7)

We choose cross entropy loss to train discriminator g(θd) as:

LD = − 1

M

M∑
i=1

(zi ∗ log(ẑi) + (1− zi) ∗ log(1− ẑi)) (5.8)

To make the learned embedding f(X ; θ) invariant with sensitive attributes Z we hope to

tune the embedding function f(θ) to fool the discriminator g(θd). Meanwhile, we hope

the normal points are still closely clustered together so that we design the adversarial loss

LAdv as follows:

LAdv = LSV DD − λLD (5.9)

where the hyper-parameter λ is a positive constant number. Minimizing the adversarial

loss LAdv = LSV DD − λLD is actually maximizing the discriminator’s loss LD. Note

the discriminator’s parameters θd are fixed when we back-propagate the adversarial loss.

Similar as the generated adversarial networks [61], we propose to train the f(θ) and g(θd)

in an alternative way until we find the min-max solution. The training procedure tries to

jointly optimize both quantities:

argmin
θd

LD (5.10)

85

argmin
θ

LSV DD − λLD (5.11)

Once the joint training converges, the anomaly scores for all the instances are calcu-

lated as:

S = ||f(X ; θ)− c||2 (5.12)

Note the instances with larger anomaly scores have larger probability to be predicted as

anomalies. The pseudo-code for the learning algorithm is summarized in Algorithm 4.

We also visualize the learning pipeline of deep fair SVDD model in Figure 5.3.

Algorithm 4 Algorithm for deep fair SVDD

1: Input: X : training data, X T : test data, Z: Protected status variable, f(θ): encoder

network, c: pre-determined data center, g(θd): discriminator, K: initial training

epochs, T : adversarial training epochs.

2: Output: S: predicted anomaly score.

3: Train the encoder network f(θ) via minimizing LSV DD in equation (5.6) for K epochs.

4: Fix the encoder network f(θ), train the discriminator g(θd) via minimizing LD in

equation (5.8) for K epochs.

5: for epoch from 1 to T do

6: Fix the parameters θ for encoder network f(θ). Calculate LD in equation (5.8) for

each mini-batch.

7: Back-propagate the discriminator loss LD and update the parameters θd.

8: Fix the parameters θd for discriminator g(θd). Calculate the loss LAdv in equation

(5.9) for each mini-batch.

9: Back-propagate the adversarial loss LAdv and update θ.

10: end for

11: Output the anomaly scores for test set S = ||f(X T ; θ)− c||2.

86

5.4.3 Potential Extensions of Deep Fair SVDD

In this subsection, we analyze the design of our proposed deep fair SVDD and provide

several potential extensions of our proposed learning framework that we intend to study:

5.4.3.1 Extensions to Fairness Problems with Multi-State PSV

Note we study the fairness problem with binary protected status variable z ∈ {0, 1} in this

work. However, our deep fair SVDD learning framework can be extended to solve fairness

problems with multi-state protected state variable (e.g., education level, nationality) by

changing the current binary discriminator g into a multi-class classification network.

5.4.3.2 Extensions to Fairness Problems with Multiple PSVs

Our framework can also support multiple protected status variables if we substitute the

binary classification discriminator with a multi-class classification network. Given the

fairness requirements on multiple protected state variables (say gender and race together),

we can enumerate all the combinations via a Cartesian product of these two variables

and transform them into a multi-state protected state variable to feed in our extended

framework. This is an important property lacking in many fair classification methods as

clearly making a model fairer with respect to say gender could make it unfair with respect

to say race.

5.4.3.3 Extensions to Semi-supervised Anomaly Detection

The current encoder f(θ) is trained via an unsupervised loss function (5.6) to force all

the normal data to be close to the pre-determined center c. Recently, some works on

general semi-supervised anomaly detection [63, 109] have demonstrated superior perfor-

mance. In general semi-supervised anomaly detection settings, we assume the learners

have access to a small subset of labeled normal and abnormal instances. Our current

learning framework can be modified to accommodate semi-supervised anomaly detection

settings by combining the current loss function (5.6) with a new supervised classification

loss for labeled anomalies in the training set.

87

5.5 Experiments

In this section, we conduct experiments to empirically evaluate our proposed approach.

From our experiments, we aim to address following questions:

• Do existing deep anomaly detection algorithms produce unfair results? (see Section

5.5.4)

• How does our proposed algorithms work in two types of datasets: involving low

dimensional data (COMPAS Recidivism) and high dimensional data (Facial images

and digits)? (see Section 5.5.5)

• What is the sensitivity of the hyper-parameter λ in our proposed deep fair SVDD

model (see Section 5.5.6)?

• How do our proposed algorithm change the latent feature space whilst making

anomaly detection fairer? (see Section 5.5.7, 5.5.8)

• How efficient are our proposed algorithms? (see Section 5.5.9)

Dataset Type # Instances # Dimension Protected Status Variable Normal Group Abnormal Group

COMPAS Recidivism [5] Tabular 3878 11 Race Not reoffending Reoffending

celebA [94] Face 24000 64 x 64 x 3 Gender Attractive faces Plain faces

MNIST-USPS Digits 7435 28 x 28 x 1 Source of digits Digit 3 Digit 5

MNIST-Invert Digits 15804 28 x 28 x 1 Color of the digits Digit 3 Digit 5

Table 5.1: Characteristics of four datasets used in our experiments. Our methods requires
the protected status variables such as Gender (Male and Female) and Race (African-
American and non African-American) to be binary variables.

5.5.1 Data Sets

We propose to experiment on four public datasets which include visual data and tabular

data. We list the characteristics of our selected datasets in Table 5.1 and introduce the

details of how we construct those datasets as below. For each data set, only normal

instances are in the training data set, but there are both normal and abnormal instances

in the test data.

88

• COMPAS Recidivism [5]: The COMPAS recidivism data set consists of data from

criminal defendants from Broward County, Florida. We create a binary protected

status variable for whether the defendant is African American. Given the ProPublica

collected label of whether the defendant was rearrested within two years, we set the

normal group for people who were not reoffending and the abnormal group for

reoffending. We select this data set to demonstrate our approach’s performance on

low-dimension tabular data.

• celebA [94]: This is a large-scale face attributes dataset with more than 200K

celebrity images, each with 40 attribute annotations. We sample a subset of this

data set and treat gender as a binary protected status variable in this data set. The

normal group contains celebrity faces labeled as attractive, and the abnormal group

contains the celebrity faces labeled as plain. We choose celebA data set to test our

approach on high-dimension images.

• MNIST-USPS: This dataset consists of MNIST and USPS images, which include

different style’s hand-written digits. We set the sample source as a binary protected

attribute. The normal group contains digits from class 3, and the abnormal group

includes digits from class 5.

• MNIST-Invert: We take the images from MNIST and create a duplicate which is

inverted to build this dataset. The binary protected attribute is then original or

inverted. The normal group contains digits from class 3 and the abnormal group

contains digits from class 5.

5.5.2 Implementation

Due to the different characteristics of our selected data sets, we have implemented different

networks for them. For the SVDD based encoder network f(θ): we use a convolutional

neural network with two modules, 8 (5× 5) filters followed by 4 (5× 5) filters, and a final

fully connected layer of 32 units for MNIST-USPS and MNIST-Invert data sets; we use

a convolutional neural network with three modules, 32 (5× 5× 3) filters, 64 (5× 5× 3)

filters, and 128 (5 × 5 × 3) filters, followed by a fully connected layer of 128 units for

89

celebA data set; we use a fully connected neural network with two hidden layers with 32

and 16 units for the COMPAS Recidivism data set. We use batch normalization [78] and

ReLU activations in these networks. Note for the fair deep SVDD model we have another

classification branch g(θd). We employ a fully connected neural network with three hidden

layers (500− 2000− 500) as the sensitive attribute discriminator for all the data sets. We

set the trade-off hyper-parameter λ default to 1 and the center c as the mean of all the

instances embeddings. We set the learning rate as 1e−3 for Adam optimizer and conduct

mini-batch training with batch size as 128. The weight decay hyper-parameter α is set to

5 ∗ 10−6.

5.5.3 Evaluation Metrics and Baselines

In our experiments, we evaluate two aspects of the proposed approaches and the baseline

methods. The first aspect is the ability to detect anomalies. We evaluate the anomaly

detection performance using the common Area Under the ROC Curve (AUC). The AUC

measure can be thought of as the probability that an anomalous example is given a higher

anomaly score than a normal example. In this way, the higher the AUC score is better.

The benefit of using AUC is because it represents the anomaly detection performance

across various anomaly score thresholds t. The second aspect is the ability to be fair in

terms of protected status variables. We use aforementioned p% -rule (equation 5.3) and

distribution distance (equation 5.4) measures as our evaluation metrics.

We compare deep fair SVDD with two popular deep anomaly detection methods: deep

SVDD [108] and deep convolutional auto-encoders (DCAE) [98]. We duplicate the deep

fair SVDD’s encoder network architecture for those two deep anomaly detection baselines

to make a fair comparison. We use the default parameters suggested in their original

papers.

5.5.4 The Unfairness of Deep Anomaly Detection

We first study the problem of whether existing deep anomaly detection methods can

generate fair predictions. We study this under two settings one where we balance the PSV

one where we do not. An imbalanced data set can very easily lead to unfair results whilst

90

COMPAS Recidivism celebA MNIST-Invert MNIST-USPS

Original (z = 0) 1480 16000 6000 6131

Original (z = 1) 1210 4000 6000 658

Balanced (z = 0) 1210 4000 6000 658

Balanced (z = 1) 1210 4000 6000 658

Table 5.2: Characteristics of original training set and balanced training set used in ex-
periments. We reduce the number of over-represented group in original training set to
generate balanced training set.

a balanced data set is easier to find fair anomalies. To demonstrate that deep anomaly

detection models are unfair, we have prepared two versions of the training set: the original

training set and the balanced training set. We have listed the detailed information in

table 5.2. If the deep anomaly detection models can’t generate fair predictions with both

original and balanced training set, then we can conclude that our selected deep anomaly

detection methods are unfair.

Thus, we conduct anomaly detection experiments and report both deep SVDD and

DCAE’s fairness performance on both versions of training sets in figure 5.4. We select

these two methods because they represent the two popular types of deep anomaly de-

tection methods. Observing Figure 5.4 (a) and (b), We can see for both COMPAS and

celebA data set the deep SVDD and DCAE achieves higher fairness by p% -rule with a

balanced training set. However, the improvements are not ideal because both approaches

only satisfied the 80% rule on one data set (celebA). Moreover, for the MNIST-USPS data

set, both deep SVDD and DCAE become more unfair with a balanced training set.

Figure 5.4 (c) and (d) shows the distribution distance which reflects the overall fairness

of each model. The smaller distances indicate the model’s predictions are more likely to be

independent with the sensitive attribute. We can observe a similar trend as we have seen in

Figure 5.5 (a) and (b) that learning on a balanced training set can only provide marginal

improvements. We learn from these results that a fair anomaly detection approach is

needed to mitigate deep anomaly detection algorithms’ unfairness.

91

COMPAS celebA Mnist-Invert MNIST-USPS
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p%
-ru

le

Original Train Set Balanced Train Set

(a) Deep SVDD (p% -rule)

COMPAS celebA Mnist-Invert MNIST-USPS
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p%
-ru

le

Original Train Set Balanced Train Set

(b) DCAE (p% -rule)

COMPAS celebA Mnist-Invert MNIST-USPS
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Di
st
rib

ut
io
n
Di
st
an
ce

Original Train Set Balanced Train Set

(c) Deep SVDD (distribution distance)

COMPAS celebA Mnist-Invert MNIST-USPS
0.00

0.02

0.04

0.06

0.08

0.10

Di
st
rib

ut
io
n
Di

st
an

ce

Original Train Set Balanced Train Set

(d) DCAE (distribution distance)

Figure 5.4: Two methods of evaluating the unfairness for existing deep anomaly detection
methods on both the original training sets (blue bars) and balanced training sets (orange
bars). Note the larger fairness by p% -rule and smaller distribution distances means
the model is fairer. Observed from these figures we can see that training deep anomaly
detection models with a balanced training set can slightly improves the fairness in most
cases. However, in most cases the fairness by p% -rule do not satisfy the 80% rule (black
horizontal line) advocated by the US Equal Employment Opportunity Commission [18].

5.5.5 Evaluating Deep Fair SVDD

We now evaluate our proposed deep fair SVDD networks’ performance and make a com-

parison with deep SVDD and DCAE. Figure 5.5 (a) shows the fairness by p% -rule on

abnormal groups. We can see that deep fair SVDD outperforms both deep SVDD and

DCAE in all four data sets. Moreover, deep fair SVDD’s fairness by p% -rule are greater

than 80% which satisfies the 80% rule [18] advocated by the US Equal Employment Op-

92

COMPAS celebA Mnist-Invert MNIST-USPS
0.0

0.2

0.4

0.6

0.8

1.0

p%
-ru

le

DCAE Deep SVDD Deep Fair SVDD

(a) Fairness by p% -rule

COMPAS celebA Mnist-Invert MNIST-USPS
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Di
st
rib

ut
io
n
Di
st
an
ce

DCAE Deep SVDD Deep Fair SVDD

(b) Fairness by distribution dis-

tance

COMPAS celebA Mnist-Invert MNIST-USPS
0.0

0.2

0.4

0.6

0.8

AU
C
Sc

or
e

DCAE Deep SVDD Deep Fair SVDD

(c) AUC Scores

Figure 5.5: Comparison of deep fair SVDD with deep anomaly detection baseline methods
on all four selected data sets. We evaluate the fairness performance for all the models
trained on original data sets and plot the fairness by p% -rule and distribution distances
in Figure (a), (b). We also evaluate the anomaly detection performance and show the
AUC scores in Figure (c). Note deep fair SVDD achieves better fairness results with a
slightly loss in terms of the AUC score.

portunity Commission. The distribution distance results are shown in Figure 5.5 (b). We

can see that deep fair SVDD achieves better overall fairness performance, especially for

the celebA data set. Lastly, we show the test set AUC scores for four data sets in Figure

5.5 (c); we notice that in COMPAS, MNIST-Invert, and MNIST-USPS data sets, the

deep SVDD performs slightly better than the other two approaches, while in the celebA

data set the deep fair SVDD performs slightly better than other two approaches. Overall

speaking, deep fair SVDD achieves much better fairness with a minimal loss in anomaly

detection performance. Further, we analyze the interesting result on the celebA data set.

In the celebA test set, both the normal and abnormal groups have a balanced number

of males and females. Thus optimizing fairness in the celebA data set may also improve

the anomaly detection performance. We have observed similar results in the following

experiments on the trade-off analysis of deep fair SVDD (section 5.5.6).

Figures 5.6 shows examples of the random selected normal and anomalous examples

according to deep SVDD and deep fair SVDD’s predictions. For the MNIST-Invert data

set, we can see that both the MNIST instances and Inverted MNIST instances are dis-

tributed evenly in the normal/abnormal groups determined by deep fair SVDD. On the

contrary, there are more MNIST instances in the abnormal group and fewer MNIST in-

93

stances in the normal group determined by deep SVDD. As for the anomaly detection

quality, both approaches have made few mistakes and achieved similar results, as shown

in Figure 5.5.

(a) Deep SVDD Results

(MNIST-Invert)

(b) Deep SVDD Results

(MNIST-Invert)

(c) Deep SVDD Results

(celebA)

(d) Deep SVDD Results

(celebA)

(e) Deep Fair SVDD Re-

sults (MNIST-Invert)

(f) Deep Fair SVDD Re-

sults (MNIST-Invert)

(g) Deep Fair SVDD Re-

sults (celebA)

(h) Deep Fair SVDD Re-

sults (celebA)

Figure 5.6: The visualization of the random selected normal and abnormal examples
determined by deep SVDD (top row) and deep fair SVDD (bottom row) for MNIST-
Invert data set and celebA data set. Comparing to the deep SVDD’s prediction results,
the size of instances with different protected status variable values are more balanced in
fair SVDD’s predictions.

The right-hand side of the Figure 5.6 shows the results for the celebA data set. Ob-

serving the deep SVDD’s results on the top row shows that more males are predicted as

plain faces and more females are predicted as attractive faces. These unfair results are

mitigated with deep fair SVDD and we can see a nearly balanced number of males and

females in both groups predicted via fair SVDD. As for the anomaly detection quality,

both approaches made some mistakes and these are in line with the AUC scores we have

reported in Figure 5.5 (c). This is reasonable as human faces contain far more information

than digits. The anomaly detection tasks over human faces are more challenging than

recognizing digits. Our main goal is to demonstrate how deep fair SVDD mitigates the

unfair problems caused by deep anomaly detection baselines.

94

0.84 0.86 0.88 0.90 0.92 0.94
p%-rule

0.6600

0.6625

0.6650

0.6675

0.6700

0.6725

0.6750

AU
C
Sc

or
e

(a) COMPAS

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
p%-rule

0.570

0.575

0.580

0.585

0.590

0.595

AU
C
Sc

or
e

(b) celebA

0.82 0.84 0.86 0.88 0.90 0.92
p%-rule

0.80

0.81

0.82

0.83

0.84

AU
C
Sc

or
e

(c) MNIST-Invert

0.86 0.88 0.90 0.92 0.94
p%-rule

0.83

0.84

0.85

0.86

0.87

0.88

0.89

AU
C
Sc

or
e

(d) MNIST-USPS

Figure 5.7: The trade-off between fairness and anomaly detection performance. We tune
the hyper-parameter λ to demonstrate the trade-off between fairness by p% -rule and
anomaly detection performance in all the data sets. Note the λ ranges from 10−2 to 102

and it is visualized in each plot with the order from left to right respectively. In all four
datasets the fairness by p% -rule value increases as λ increases. The AUC scores decrease
in most data sets as λ increases.

5.5.6 The Trade-off between Fairness and Anomaly Detection

Performance

This section analyzes the trade-off between fairness performance and anomaly detection

performance of deep fair SVDD. We re-train and test the deep fair SVDD under different

values of hyper-parameter λ (range from 10−2 to 102) within equation (5.9). The hyper-

parameter λ controls the weight of the discriminator’s loss term within the adversarial

loss function and directly determines the trade-off between the fairness performance and

anomaly detection performance. Figure 5.7 shows the results: in all four selected data

sets, the fairness by p% -rule increases as λ increases. The AUC score drops as the fairness

by p% -rule value goes up for COMPAS, MNIST-Invert, and MNIST-USPS data sets. We

have also noticed one different result in the celebA data set, both fairness by p% -rule

and AUC score increase as the λ increases. We have analyzed this case before when

comparing deep fair SVDD to deep anomaly detection baselines in plot 5.5 (c). Here

fairness constraint is extra information that could help the algorithm improve anomaly

detection performance. Generally speaking, training the deep fair SVDD with a larger

λ will lead to fairer results and usually a slight loss in terms of the anomaly detection

performance (AUC score).

95

COMPAS celebA MNIST-Invert MNIST-USPS

SVDD (Z0 : Z1) 198:336 854:1146 743:1041 186:137

Ours (Z0 : Z1) 263:271 980:1020 832:952 164:159

Overlap ratio 0.78 0.70 0.81 0.82

Table 5.3: Anomaly prediction results for deep SVDD and deep fair SVDD. Z0 and Z1

represent the number of predicted anomalies with protected status variable value as 0 and
1 respectively. There is a large overlap between these two model’s anomaly predictions.

5.5.7 Anomaly Predictions Analysis

This section will conduct experiments to study how deep fair SVDD’s predictions differ

from deep SVDD’s predictions. We have stored the anomaly prediction results for both

approaches and summarized their overlapped anomaly predictions in Table 5.3. We use

the number of overlapped anomaly predictions to divide the total number of anomalies

as the overlap ratio. We can see that the overlap ratios are pretty high across all the

data sets. We hypothesize the reason is that fair SVDD is also optimized with SVDD

loss function. Furthermore, this high overlapping can also explain why fair SVDD only

performs slightly worse than SVDD in terms of the AUC scores as we demonstrated in

Figure 5.5 (c).

(a) Instances ”moved” from normal to abnor-

mal group

(b) Instances ”moved” from abnormal to nor-

mal group

Figure 5.8: Illustration of how deep fair SVDD makes the anomaly detection results fairer.
We visualize the sampled non-overlapping predictions between deep SVDD and deep fair
SVDD. The instances in (a) can be seen as moved from deep SVDD’s predicted normal
group to deep fair SVDD’s predicted abnormal group and vice versa for (b).

We also visualize the non-overlapping predictions between deep SVDD and deep fair

SVDD in Figure 5.8. Take the MNIST-Invert data set for example; we randomly sample

16 non-overlapping anomalies with z = 0 from fair SVDD’s predictions. We can view

96

these instances as moved from deep SVDD’s predicted normal group to deep fair SVDD’s

predicted abnormal group to make the results fairer. Observing the digits from Figure

5.8 (a), we can see that deep fair SVDD is improving the fairness by moving instances

that are ”prone to be anomalies” to the abnormal group. One common feature of those

instances is that they are dissimilar to a regular style of digit 3 and many of them are

digits 5. It is important to show that these non-overlapping instances are not randomly

distributed but are all prone to be anomalies. This interesting finding demonstrates that

our proposed model is optimized to make fair and accurate anomaly predictions instead

of random altering predictions to satisfy group-level fairness. We can observe the similar

results from Figure 5.8 (b) that instances moved from deep SVDD’s abnormal group to

deep fair SVDD’s normal group are ”prone to be normal points.”

(a) COMPAS (Non-fair) (b) celebA (Non-fair) (c) MNIST-Invert (Non-

fair)

(d) MNIST-USPS (Non-

fair)

(e) COMPAS (Fair) (f) celebA (Fair) (g) MNIST-Invert (Fair) (h) MNIST-USPS (Fair)

Figure 5.9: The t-SNE [96] visualization of the feature embeddings for test instances.
Red and blue points represent test instances with different sensitive attribute values.
Comparing to deep SVDD’s results (top row), the deep fair SVDD’s learned embeddings
(bottom row) are more fair as blue and red points are always blended together which are
hard to separate.

5.5.8 Embedding Visualization

We visualize and compare the learned embeddings for both deep SVDD and deep fair

SVDD to show why deep fair SVDD make fairer anomaly predictions. This analysis

97

is important as deep fair SVDD’s objective is to learn a fair representation which is

independent on the protected status variable z: p(f(X ; θ)|z = 0) = p(f(X ; θ)|z = 1).

As shown in Figure 5.9, the red and blue points represent the test instances with

the sensitive attribute value as z = 0 and z = 1 respectively. We first analyze the

visualization results from deep SVDD; in each plot we can find some regions dominated

by one particular color which indicates the correlation between feature embeddings and

the protected status variable. On the contrary, observing from the deep fair SVDD’s

result we can see that the red and blue points are almost uniformly distributed in the

feature space especially in the celebA data set. Deep fair SVDD is demonstrated to learn

a fair representation that is independent of sensitive attributes.

COMPAS celebA MNIST-Invert MNIST-USPS

Deep SVDD 0.97 285.10 25.73 13.12

Ours 8.54 1703.49 167.53 231.78

Table 5.4: Training time results measured by seconds. Training deep fair SVDD takes
longer time due to the min-max optimization of the adversarial learning.

5.5.9 Running Time Analysis

We have also reported the training time for deep fair SVDD and compared it against the

deep SVDD approach in Table 5.4. Training deep fair SVDD takes longer time because

we have a new fairness objective and it is learned through adversarial training. We leave

how to speed up the training process as an interesting future work.

5.6 Conclusions and Future Work

This paper studied the fairness problem of deep anomaly detection methods and proposed

a novel deep fair anomaly detection approach (deep fair SVDD). Deep fair SVDD is a

method that uses deep neural networks to embed the data into a feature space where

the normal data are closely clustered to the centroid. Adversarial training is used so

that a discriminatory network cannot predict the protected status. Further, we propose

two measures of the group-level fairness for deep anomaly detection problems. Given the

98

ground truth labels, we can directly measure the p% -rule (equation 5.3) for the abnor-

mal group. We also propose distribution distance (equation 5.4), which can measure the

overall fairness without knowing the labels of anomaly instances. We have conducted ex-

tensive empirical studies to evaluate the usefulness of our proposed approach. Firstly, our

experiments show that deep anomaly detection methods will generate unfair predictions,

even if the training data is balanced with respect to the binary protected state variables.

Secondly, we evaluate our proposed deep fair SVDD and compare it to the deep anomaly

detection baselines in various data sets. We demonstrate that our proposed work can

achieve satisfying fairness results with minimal loss of anomaly detection performance.

Next, we analyze the hyper-parameter λ which controls the trade-off between fairness and

anomaly detection performance within our model and analyze the learned embeddings to

study how our proposed model makes fair decisions.

In this paper, we limited ourselves to studying group-level fairness for deep anomaly

detection problems with a single binary protected state variable. We leave for future

works to study more complex fair anomaly detection problems such as considering multiple

protected state variables, extending to semi-supervised anomaly detection settings (see

section 5.4.3), and improving the training efficiency and scalability.

99

Chapter 6

Fair Learning for Deep Clustering

6.1 Introduction

Clustering is an essential data mining method which has been widely used in real-world

applications involving humans [79] such as market research, social network analysis, and

crime analysis. However, as intelligent tools augment and even replace humans in decision-

making, the need to ensure clustering is fair becomes paramount. Here fairness is mea-

sured using protected status variables 1 (PSVs) such as gender, race, or education level.

Fairness takes two primary forms [20]: i) group-level and ii) individual-level. In this

paper, we study the former which ensures that no one cluster contains a disproportionately

small/large number of individuals with protected status compared to the population.

Recent works [107, 114, 87, 8, 13] have been proposed for non-deep fair clustering algo-

rithms. To ensure group-level fairness, many of these works use the notion of the disparate

impact doctrine encoded as a constraint, namely that instances from different protected

groups must have approximately (within a tolerance) equal representation in a cluster

compared to the population. Different geographic regions place this tolerance at differ-

ent levels [35]. These existing algorithms optimize the clustering quality by minimizing

some well-known clustering objectives while satisfying the group-level fairness constraints.

Previous examples of adding fairness to clustering algorithms include k-median based ap-

proaches [35, 8, 13] and spectral clustering based algorithm [87]. However, all these works

1In the paper, we use the term ”protected status variable” and ”sensitive attribute” interchangeably.

100

evaluate their performance on low-dimensional tabular data and [35, 87, 8] study the

problems only with binary PSV.

Deep clustering [144, 76, 64, 138] has the ability to simultaneously cluster and learn

a representation for problems with large amounts of complex data (i.e., images, texts,

graphs). However, this creates the opportunity for the learner to become biased. For

example, clustering of portraits may create clusters based on features which are surrogates

for racial and other protected status information. One way to overcome this is by adding

group-level fairness to deep clustering which is a challenging and understudied problem.

A significant challenge is it is hard to translate the current fair clustering algorithms into

an end-to-end deep clustering setting. For example, geometric pre-processing steps such

as computing fairlets [35] to ensure fairness will not work as the end-to-end learning of

deep learners means the underlying features that clustering is performed on are unknown

apriori. Similarly, another line of work that adds constraints into deep learning models

such as [147, 154] are not appropriate either as these constraints are at the instance level,

whereas we require to apply fairness rules at a cluster level.

The work on fair deep clustering is relatively new. The first work on fair deep clustering

[137] studies deep fair clustering problem from a geometric perspective which aims to

learn a fair representation with multi-state PSV. The most recent work [92] proposes

a deep fair visual clustering model with adversarial learning to encourage the clustering

partition to be statistically independent of each sensitive attribute (PSV). Although these

deep clustering approaches demonstrate better clustering performance compared to the

non-deep fair clustering algorithms (Table 6.3), their fairness results are relatively poor

compared to those fair clusterings with fairness guarantees [35, 8]. Our work can be seen

as combining the benefits of deep learning and discrete optimization to produce guaranteed

fair predictions on clustered data with PSVs while making out-of-sample fair predictions

for data without PSVs.

In this paper, we propose a novel deep fair clustering framework and implement the

Deep Fair Discriminative Clustering (DFDC) method to address the above issues. We

adopt a probabilistic discriminative clustering network and learn a representation that

101

(a) Fair Non-Deep Clustering (b) Deep Fair Clustering

Figure 6.1: Note the red and blue points are instances with different PSV values. Fair
Non-Deep Clustering (left) aims to find a fair partition of the data while minimizing some
classic clustering objectives. Deep Fair Clustering (right) aims to learn a general fair
representation and to simultaneously cluster the data.

naturally yields compact clusters. To incorporate the group-level fairness rules in the

deep learner, we first formulate our fairness objective as an integer linear programming

(ILP) problem that guarantees group-level fairness. This ILP takes an existing clustering

and makes it fair. We show this ILP is efficient to solve as its constraint matrix is

totally unimodular. The output of the ILP is then used as a fairness signal to learn from.

Besides DFDC, our proposed general fair learning algorithm is applicable for different deep

clustering backbones which we demonstrate on Deep Embedded Clustering (DEC)[144].

The major contributions of this paper are summarized as follows:

• We address the newly-emerging deep fair clustering problem and propose a novel fair

learning framework for deep clustering. We propose DFDC as one representative

example of our proposed fair deep clustering algorithms.

• DFDC optimizes a general notion of fairness for multi-state PSVs which we prove

(see Theorem 6.3.2) is equivalent to optimizing the balance measure [35] for disparate

impact.

• We propose a novel two-step approach that: i) uses an efficiently solvable (see The-

orem 6.4.2 proof of total unimodularity) ILP problem to generate a fairer variant of

the current clustering the DL produces and ii) uses an end-to-end refinement learn-

ing algorithm to learn from the ILP’s solution (See Algorithm 5). This fair learning

algorithm can be applied to different clustering backbones which have fractional

102

clustering assignments as outputs.

• Extensive experimental results show that our proposed DFDC can achieve guar-

anteed fairness with competitive clustering performance (See Figure 6.2 and Table

6.3).

• We demonstrate novel extensions for new fair clustering tasks such as predictive

(out of sample) clustering, multi-state PSVs and flexible fairness rules. (See Section

6.5.2).

In the next section 6.2 we discuss the related work. Then we outline our measure of

fairness and how it relates to classic measures of disparate impact in section 6.3. In our

approach section 6.4, we introduce our clustering framework and encode our fairness ob-

jective as an ILP which can be efficiently solved via our relaxation. A refinement learning

algorithm is proposed for end-to-end fair clustering. Finally we empirically evaluate the

effectiveness of our approach in section 6.5 and conclude in section 6.6.

6.2 Related Work

Fair Non-Deep Clustering. Fair clustering has received much attention recently [114,

86, 2, 34, 41, 97, 25]. [35] first addressed the disparate impact for clustering problems in the

presence of binary PSVs. Their work apriori groups instances into many fairlets which

are used as input into standard k-medians style algorithms. Their work is guaranteed

to produce a specified level of fairness and achieve a constant factor approximation with

respect to cluster quality. We shall see (Theorem 6.3.2) that the balance criteria proposed

here is effectively the same criteria we use in DL. [8] improves the fair decomposition

algorithm to linear run-time. Later on, [13] propose a general fair clustering algorithm

that allows human-specified upper and lower bounds on any protected group in any cluster.

Their work can be applied to any clustering problems under ℓp norms such as k-median,

k-means, and k-center. Besides the centroid-based method, [87] extends the fairness

notion to graph spectral clustering problems. [164] propose a general, variational and

bound-optimization framework of fair clustering.

103

Deep Clustering. Previous fair clustering approaches mainly focus on adding fairness

constraints into fair non-deep clustering algorithms. In our work, we aim to study the

fairness problem for recently proposed deep clustering algorithms [144, 149, 76, 26, 120,

129, 119] by adding a fairness signal to learn from. Deep clustering algorithms connect

representation learning and clustering together and have demonstrated their advantages

over the two-phase clustering algorithms which use feature transformation first and then

clustering. Motivated by the success of deep clustering, the goal of deep fair clustering

is to learn a fair and clustering-favored representation. We illustrate the basic intuitions

behind fair non-deep clustering methods and deep fair clustering approaches in Figure

6.1. One of the biggest challenges for deep fair clustering is to ensure fairness.

Deep Fair Clustering. One of the earliest works [137] to address the deep fair cluster-

ing problem learns a latent representation such that the cluster centroids are equidistant

from every “fairoid” (the centroid of all the data belonging to the same protected group).

Recently, [92] encodes the fairness constraints as an adversarial loss and concatenates the

fairness loss to a centroid-based deep clustering objective as a unified model. Unlike previ-

ous deep fair clustering works, we translate the fairness requirements into an ILP problem

that generates guaranteed fair solutions given the PSVs. Our deep clustering architecture

supports flexible fairness constraints and multi-state PSVs. Moreover, we propose a novel

learning framework to train fair clustering models via simultaneous clustering and fitting

the self-generated fairness signals.

6.3 Definitions of Group-level Fairness

We begin this section by overviewing the seminal definition of group-level fairness [35] in

clustering (see equation 6.1) and then its extension to multi-state PSVs (see equation 6.2).

We then go onto show a new measure that our deep clustering framework will optimize

(see equation 6.3) and equation 6.2 have the same optimal condition as shown in Theorem

6.3.2.

104

6.3.1 Notion of Fairness

Let X ∈ RN×D denote N data points with D dimension features. The prediction function

ϕ assigns each instance to one unique cluster, ϕ : x → {1 . . . K}, which forms K disjoint

clusters {C1 . . . CK}. Given the protected status variable (denoted as PSV) with T states,

X can be partitioned into T demographic groups as {G1, G2, ...GT}.

Definition 6.3.1. The seminal proposed measure of fairness for clustering with binary

PSV [35] encoded disparate impact as the balance of a cluster as follows:

balance(Ck) = min

(
N1

k

N2
k

,
N2

k

N1
k

)
∈ [0, 1] (6.1)

Here N1
k and N2

k represent the populations of the first and second demographic groups

in cluster Ck. The clustering model will be fairer with larger balance value. Such a

measure of fairness only works for binary PSV. To allow for multi-state PSVs we redefine

balance as follows, let Nmin
k = min(N1

k . . . N
T
k) denotes the smallest (in size) protected

group in cluster k and Nmax
k = max(N1

k . . . N
T
k) denotes the largest group. We can then

extend the balance measure for multi-state PSV as:

balance(Ck) =
Nmin

k

Nmax
k

∈ [0, 1] (6.2)

We will show that recently proposed works [107, 13] fairness measures for multi-state

PSVs (equation 6.3) are equivalent to our definition in equation 6.2.

Definition 6.3.2. Let ρi be the representation of group Gi in the dataset as ρi = |Gi|/N ,

and ρi(k) be the representation of group Gi in the cluster Ck: ρi(k) = |Ck ∩Gi|/|Ck|.

Using these two values, the fairness value for cluster Ck is:

fairness(Ck) = min(
ρi

ρi(k)
,
ρi(k)

ρi
) ∈ [0, 1] ∀i ∈ {1, . . . T} (6.3)

The overall fairness of a clustering is defined as the minimum fairness value over all the

clusters. Similarly, the overall balance is the minimum balance value of all the clusters.

6.3.2 Equivalence of Optimizing Fairness and Balance Measures

Here we show that optimizing equation 6.3 is equivalent to optimizing our extended defini-

tion of balance in equation 6.2. We see that equation 6.3 achieves maximal fairness when

105

P (x ∈ Gt|x ∈ Ck) = ρt. Our balance measure in equation 6.2 achieves optimal balance

when P (x ∈ Gt|x ∈ Ck) =
1
T
for any protected group Gt in cluster Ck. However, this is

an ideal case as protected groups may be imbalanced. Denote the size of each protected

group as |Gi| and the size of the data set as N , we now show that the optimal balance is

achieved if and only if P (x ∈ Gt|x ∈ Ck) = ρt. This result indicates the equivalence of

optimizing fairness (equation 6.3) and generalized balance (equation 6.2).

Lemma 6.3.1. The optimal balance can be achieved only when all the clusters have the

same balance. Formally, ∀i, j ∈ {1, 2, ..., K}: balance(Ci) = balance(Cj).

Proof. The proof is by contradiction, we assume the optimal balance can be achieved

when not all clusters have the same balance. Let cluster Ci have the largest balance

as bmax and cluster Cj has the smallest balance as bmin. Denote the number of T dif-

ferent groups’ instances in Ci as {Ci1, Ci2, . . . , CiT}, similarly the composition for Cj as

{Cj1, Cj2, . . . , CjT}. Assume the balance for Ci is achieved by bmax = Ciα

Ciβ
, the balance for

Cj is achieved by bmin =
Cjγ

Cjθ
. Now we discuss two possible cases:

Case 1: If α = γ and β = θ. Based on our definition we have Ciα

Ciβ
>

Cjα

Cjβ
. Let

r = 1
2
(Ciα

Ciβ
+

Cjα

Cjβ
), we can move ϵ instances which belong to group α from Ci to Cj to

achieve the higher balance r. This can be done by setting Ciα−ϵ
Ciβ

=
Cjα+ϵ

Cjβ
= r.

Case 2: If α ̸= γ or β ̸= θ. Based on the balance definition we have
Ciγ

Ciθ
≥ Ciα

Ciβ
. Based

on our definition we have Ciα

Ciβ
>

Cjγ

Cjθ
. Thus we have

Ciγ

Ciθ
≥ Ciα

Ciβ
>

Cjγ

Cjθ
. Similar as in case 1

we can move ϵ
′
instances which belong to group γ from Ci to Cj to achieve higher balance

r′ = 1
2
(
Ciγ

Ciθ
+

Cjγ

Cjθ
).

In both cases, we can swap some instances between clusters to increase the final

balance. This contradicts our assumption and completes our proof.

Theorem 6.3.2. To achieve optimal balance value for multi-state protected variables, we

must satisfy the condition: P (x ∈ Gt|x ∈ Ck) = ρt which is precisely the optimal fairness

value for equation 6.2.

Proof. Given the condition P (x ∈ Gt|x ∈ Ck) = ρt, let Gmin be the smallest protected

group and Gmax be the largest protected group, the largest balance we can achieve

106

is |Gmin|/|Gmax|. The proof by contradiction assumes these exists a solution where

all the clusters have the same balance (based on lemma 6.3.1) and have balance α >

|Gmin|/|Gmax|. For each cluster we sort each protected group based on their size in an

increasing order. We use C∗
i1, C

∗
i2 . . . C

∗
iT to denote the size of the sorted groups in cluster

i. Obviously we have α =
C∗

i1

C∗
iT

for any cluster i. Now we sum up the smallest group among

all the K clusters as S: S =
∑K

i=1C
∗
i1. Similarly we can calculate the sum of the largest

group among all the clusters as:
∑K

i=1C
∗
iT = 1

α

∑K
i=1 C

∗
i1 =

S
α
. Consider the allocation of

the smallest group Gmin we have the following inequality: |Gmin| ≥
∑K

i=1C
∗
i1 = S. Sim-

ilarly we have |Gmax| ≤
∑K

i=1C
∗
iT = S

α
. By combining previous two inequalities we have

α|Gmax| ≤ S ≤ |Gmin| which means |Gmin|/|Gmax| ≥ α. This contradicts with our initial

assumption that there exists a α which is larger than |Gmin|/|Gmax|. Thus we complete

the proof.

6.4 Deep Fair Clustering Algorithm

We introduce our fair learning framework in this section. Our proposed DFDC approach

can be viewed as learning fair clustering under a discriminative clustering loss objective

(described in section 6.4.1) and a fairness objective with self-generated signals. However,

section 6.4.4 shows the versatility of our fair learning framework by using it for other

deep clustering backbones. Our method can be used for any deep clustering method that

produces a fractional cluster allocation vector for each instance. Section 6.4.2 describes

our ILP formulation to take an existing clustering and make it fairer, whilst Section 6.4.3

shows how to use the ILP output as a fairness signal to learn from.

6.4.1 Review of Base Clustering Model

For base clustering model, we show our method applied to previous work [76] which we

overview here. We learn a neural network fθ as a discriminative function to predict the

clustering assignments Y = σ(fθ(X)) ∈ RN×K based on input X ∈ RN×D and softmax

function σ. The mutual information I(X;Y) between X and Y is calculated as the

107

difference between marginal entropy H(Y) and conditional entropy H(Y |X):

I(X;Y) =H(Y)−H(Y |X)

=h(
1

N

N∑
i=1

σ(fθ(xi)))−
1

N

N∑
i=1

h(σ(fθ(xi)))
(6.4)

where h is the entropy function. With weight decay term the clustering objective ℓC is as

follows:

ℓC =
1

N

N∑
i=1

h(σ(fθ(xi)))− h(
1

N

N∑
i=1

σ(fθ(xi))) + α

L∑
l=1

∥θl∥2 (6.5)

where α denotes the hyper-parameter for network parameters {θ1 . . . θL}. Maximizing

H(Y) will punish imbalanced cluster size and prevent trivial solutions where all the in-

stances are clustered into one cluster while minimizing H(Y |X) will map similar instances

x to have similar labels y.

Further, self-augmented training is applied to encourage the representations to be lo-

cally invariant. Here a local perturbation of instance x is added such that x
′
= x + t,

perturbation t is maximized subjecting to the constraint that the clustering assignments

for x and x
′
are the same. Virtual adversarial training [99] is applied to generate ad-

versarial direction for t. Denote the current model’s parameters θ to help estimate the

true clustering indicator vector for instance x as σ(fθ(x)), the formulation to compute the

adversarial perturbation tadv is as follows:

tadv = argmax
t;||t||2≤ϵ

KL(σ(fθ(x)), σ(fθ(x+ t))) (6.6)

With the generated tadv, the augmentation loss ℓAug minimizes the KL divergence between

clustering assignment σ(fθ(xi)) and its augmented version’s assignment σ(fθ(xi
′
)):

ℓAug =
N∑
i=1

KL(σ(fθ(xi)), σ(fθ(xi
′
))) (6.7)

Finally, the base clustering model optimizes the clustering loss ℓC and ℓAug simulta-

neously. Note that we favor this probabilistic discriminative clustering model [76] since it

has fewer assumptions about the natures of categories that are made and fits our fairness

objective which requires fractional clustering assignments as inputs to indicate the degree

of cluster assignment belief.

108

6.4.2 Generating Fair Assignments Under Group-level Fairness

Constraints

Let the clustering assignments from the current learned model be Y = {y1, . . . yN} ∈

RN×K . We wish to minimally modify the assignments but make the clustering fairer. To

achieve this we solve for a matrix Ŷ = {ŷ1, . . . ŷN} ∈ ZN×K that satisfy the fair optimal

condition P (x ∈ Gt|x ∈ Ck) = ρt whilst minimizing the changes to the clustering as

below:

Objective: argmin
Ŷ

N∑
i=1

[1− yi × ŷi
T] (6.8)

Recall yi is a row vector which represents the probability distribution over the cluster

assignments for instance i and ŷi chooses exactly one cluster to assign instance i to.

Naturally the objective is maximized when yi is assigned to its most probable cluster but

this may cause an unfair clustering. To ensure fairness we use the following constraint.

We denote ρi = |Gi|/N as the fraction of the protected group Gi in the data set

and our aim is for each cluster to have approximately the same density. Let M ∈ ZN×T

encode the sensitive attributes for the entire population such that Mit ∈ {0, 1} indicates

whether an instance xi belongs to a protected group Gt. To satisfy optimal fair condition

P (x ∈ Gt|x ∈ Ck) = ρt we have the following constraints:

N∑
i=1

Mitŷij =
N∑
i=1

ŷijρt ∀j ∈ {1 . . . K}, t ∈ {1 . . . T} (6.9)

Now we relax the problem by fixing the size of each new cluster to make the constraint

matrix totally unimodular. We round the soft probabilistic assignment Y as hard assign-

ments Y
′
by assigning the cluster with largest probability. Then the size of cluster Cj is

|Cj| =
∑N

i=1 y
′
ij. The constraints for new clusters’ size are:

N∑
i=1

ŷij = |Cj| ∀j ∈ {1 . . . K} (6.10)

Lastly we add constraints for Ŷ to ensure each instance is assigned to one cluster:

K∑
j=1

ŷij = 1 ∀i ∈ {1 . . . N} (6.11)

109

Note this ILP formulation also supports user-defined ρt which can be seen as a flexible

fairness rule. Next we show the constraint matrix of our ILP problem is totally unimodular

so that we can efficiently solve it with a LP solver and still return integral solutions.

We know that if a constraint matrix of an ILP is totally unimodular (TU) then we

can solve the problem using an LP (linear program) solver and the solution will still

be integral [116]. Using an LP solver will largely reduce the running time and [130] has

shown that the running time for LP is polynomial in the input size. In the above proposed

constraints, there are NK unique regular variables (N instances and K categories). To

construct the constraint matrix C which encodes constraint 6.9, 6.10 and 6.11, we will

use NK regular variables. Matrix C has T + 1 rows (the first T rows correspond to the

fairness constraints in equation 6.9 and last row corresponds to constraints in equation

6.11) and N + K columns. Note the first K columns of the last row are set to 0 and

the last N columns of first T rows are set to 0. In matrix C, each entry of C is from

{−1, 0, 1}. Moreover, each column only has one non-zero element. This is because: (1)

for constraints set in equation 6.9, each instance only belongs to one protected group, (2)

for constraints set in equation 6.11, there is only one row vector with K elements as 1 to

ensure the valid assignment.

Lemma 6.4.1. TU Identity [116]. Let C be a matrix such that all its entries are from

{0, 1,−1}. Then C is totally unimodular, i.e., each square submatrix of C has determinant

0, 1, or −1 if every subset of rows of C can be split into two parts A and B so that the

sum of the rows in A minus the sum of the rows in B produces a vector all of whose

entries are from {0, 1,−1}.

Theorem 6.4.2. The matrix C formed by the coefficients of the constraints used to encode

our proposed constraints from equation 6.9, 6.10 and equation 6.11 is totally unimodular.

Proof. We consider any subset F of rows in C. We will show that F can be partitioned

into two sets A and B to satisfy the condition in lemma 6.4.1. Our partitioning scheme

is as follows: the first row of F is put into A and the remaining rows are put into B. Let

row vectors SA and SB denote the sums of the rows within A and B respectively. It is

110

clear that elements in SA and SB are from {1, 0,−1} because each column only has one

non-zero element. Now we show all the elements in SA−SB are from {1, 0,−1}. Firstly

there will be only one non-zero element in SA, and we denote the column which has a

non-zero element as r. If column r belongs to the fairness constraints (from column 1 to

column N in C), then the column r within SB will be 0 since one instance only belongs

to one protected group. If the column r belongs to the valid assignment constraints (from

column N + 1 to N +K in C) then column r within SB will be 0 since those elements

are filled with 0. Thus column r of SA − SB is still from {1, 0,−1}. The non-zero

elements in other columns will change their sign but still from {1, 0,−1}. This completes

the proof.

6.4.3 Learning to Be Fairer

To learn a fair clustering model we aim to exploit the fairness assignments Ŷ to reshape

the features learned via clustering networks fθ. We treat Ŷ as “pseudo-labels” to optimize

the following cross entropy loss ℓFair for fairer results:

ℓFair =
1

N

N∑
i=1

K∑
j=1

ŷijlogyij =
1

N

N∑
i=1

ŷilog(σ(fθ(xi))) (6.12)

Simply optimizing the fairness loss ℓFair will dramatically change the current clustering

representations to fit an approximated fair assignment Ŷ which harms the clustering

properties. Instead, we propose to learn a fairer and clustering-friendly representation

simultaneously by combining the clustering loss ℓC , augmentation loss ℓAug and fairness

loss ℓFair. Note the fair assignments Ŷ are updated after each training epoch as the

“nearest” fair assignments for current clustering predictions.

To train our proposed framework, we start with the training on base clustering network

f(θ) via optimizing the clustering loss ℓC and augmentation loss ℓAug to ensure the data are

separated into different meaningful clusters; as clustering model converges we generate

fair assignments after each training epoch based on the objective in equation 6.8 and

optimize the overall loss function ℓ by concatenating the fairness loss ℓFair to clustering

objectives as ℓ = ℓC + βℓFair + γℓAug where β, γ are positive weight hyper-parameters.

Algorithm 5 summarizes the proposed learning method.

111

Algorithm 5 Main learning algorithm for deep fair discriminative clustering.

Input: Input {xk}Nk=1, sensitive attributes M , cluster size K, clustering network fθ, hyper-parameters

α, β, γ.

Output: Clustering network fθ, predictions {yk}Nk=1 .

1: for each pre-trained epoch do

2: for sampled mini-batch {xk}nk=1 do

3: Calculate ℓC = 1
n

∑n
i=1 h(σ(fθ(xi)))−

h(1n
∑n

i=1 σ(fθ(xi))) + α
∑L

l=1 ∥θl∥
2

4: Generate x
′

k = xk + t via solving t from eq 6.6.

5: Calculate ℓAug =
∑n

i=1 KL(σ(fθ(xi)), σ(fθ(x
′

i)))

6: Update network fθ via minimizing ℓC + γℓAug.

7: end for

8: end for

9: repeat

10: Generate predictions {yk}Nk=1 based on fθ.

11: Construct a fair assignment problem via objective 6.8 and constraints defined in eq 6.9, 6.10 and

6.11.

12: Solve fair assignments {ŷk}Nk=1 via LP solver.

13: for sampled mini-batch {xk}nk=1 do

14: Calculate ℓFair = 1
n

∑n
i=1 ŷilog(σ(fθ(xi)))

15: Calculate ℓC = 1
n

∑n
i=1 h(σ(fθ(xi)))−

h(1n
∑n

i=1 σ(fθ(xi))) + α
∑L

l=1 ∥θl∥
2

16: Generate x
′

k = xk + t via solving t from eq 6.6.

17: Calculate ℓAug =
∑n

i=1 KL(σ(fθ(xi)), σ(fθ(x
′

i)))

18: Calculate ℓ = ℓC + βℓFair + γℓAug

19: Update network fθ via minimizing ℓ.

20: end for

21: until {yk}Nk=1 satisfy optimal fairness rules

6.4.4 Can our Proposed Fairness Module Work for Other Clus-

tering Algorithms?

One of the major contributions in our proposed algorithm is the use of “fair pseudo-label”

as signal to learn fair clustering. In this subsection, we will show that our fairness module

can be implemented on other deep clustering algorithms so long as they output cluster

112

allocation. Based on algorithm 5, the whole model is first trained on a base clustering al-

gorithm and then fine-tuned with both clustering and fairness objectives. To demonstrate

that our proposed fairness module works for other deep clustering frameworks, we choose

the Deep Embedded Clustering (DEC) as our alternative clustering backbone. Note DEC

is one of the most representative deep clustering algorithms which provides fractional

clustering assignments as outputs. We replace the discriminative clustering model with

DEC in our fair learning framework and denote it as Fair-DEC. Next we introduce our

experimental section which demonstrates the success of our proposed fair learning module.

6.5 Experiments

We conduct experiments2 to evaluate our approach empirically and report the following

key results:

• Our proposed approach achieves better clustering performance and guaranteed fair-

ness results compared against both fair non-deep clustering and deep fair clustering

baselines (See Table 6.3 and Figure 6.2).

• Our proposed approach is effective in novel fair clustering settings such as supporting

flexible fairness constraints, clustering with multi-state PSVs, and predictive (out

of sample) clustering (See Figure 6.3 and 6.4).

• We show how our learned embedding converges to a latent space useful for fair clus-

tering (See Figure 6.5) quickly and also provides insights on tuning hyper-parameter

β (See Figure 6.6) in unsupervised way to achieve our fairness goal with a minimum

loss on clustering performance.

6.5.1 Experimental Setup

First we describe our data sets, then our evaluation scheme and finally the implementation

for reproduction. We implement our framework in PyTorch and here is the link for our

code and data.

2In our experimental work we use the fair clustering data sets used by earlier work for comparison.

113

https://kdd22-code.s3.us-west-2.amazonaws.com/Fair_learning_for_deep_clustering.zip

Datasets used for deep fair clustering. We first evaluate our work on two visual

datasets with binary PSV that has been used in recent deep fair clustering work [92] and

then experiment on a telemetry deep clustering dataset with multi-state PSVs:

• MNIST-USPS consists of 67291 training images of hand-written digits. We use the

image source (MNIST or USPS) as a binary PSV and cluster the data into 10 classes

representing 10 digits.

• Reverse-MNIST takes the 60000 training images from MNIST and creates an in-

verted duplicate to build this dataset. The binary PSV is then original or inverted

and the total number of classes is 10.

• A challenging fair clustering task with multi-state PSV is the Human Activity Recog-

nition (HAR) dataset used in [137]. The HAR dataset 3

Datasets used for non-deep fair clustering. We use three tabular datasets common

for evaluation in non-deep fair clustering[13]:

• Census 4 with 5 attributes (“age”, “fnlwgt”, ‘education-num”, “capitalgain”, “hours-

per-week”) and binary PSV gender, we set whether income exceeds 50K as the

clustering label.

• Bank 5 data with 3 attributes (“age”, “balance”, “duration-of-account”) and binary

PSV “marital”, we set whether a client will subscribe a term deposit as the label.

• Credit 6 with 14 features and PSV “marital”, we set whether the cardholder will

make a payment as label. The characteristics of all six datasets are summarized in

Table 6.1.

Evaluation Metrics and Baselines. To measure the clustering quality for deep fair

clustering and other baselines, we use both clustering accuracy (ACC) [148, 150] and

3https://archive.ics.uci.edu/ml/datasets/HAR contains 10299 instances in total with captured action
features for 30 participants. There are 6 actions in total which serve as labels for clustering. The identity
of each person is used as the PSV value.

4http://archive.ics.uci.edu/ml/datasets/Census+Income
5https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
6https://archive.ics.uci.edu/ml/datasets/credit+card+clients

114

https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
http://archive.ics.uci.edu/ml/datasets/Census+Income
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

Dataset Instances Features Domain PSV

Census 32561 5 Income Gender

Bank 4521 14 Credit Marital

Credit 30000 3 Credit Marital

MNIST-USPS 67291 784 Images Image Source

Reverse-MNIST 120000 784 Images Image Source

HAR 10299 561 Sensors Identity

Table 6.1: Characteristics of datasets

normalized mutual information (NMI) metrics. To evaluate the fairness, we use the

balance measure defined in equation 6.2. For all those three measures, higher values

indicate better performance. For the deep clustering baselines, we use DEC [144] as a

representative method for centroid-based clustering and IMSAT [76] for discriminative

clustering approach. For fair clustering algorithms, we choose the scalable fair clustering

algorithm [8] and the fair algorithms for clustering [13]. For deep fair clustering baselines,

we compare our work with the latest work [92] and the geometric-based fair clustering

[137]. As for our own approach, we report both ILP module’s final output and the deep

neural networks’ final output. The final output means the prediction results after the last

training epoch. By comparing the ILP’s results with deep learner’s output, we aim to test

whether our model has learned the notion of fairness. Using the ILP results guarantees

a fair result. Besides, we also report the Fair-DEC’s results to show how general is our

proposed fair learning module.

Implementation. In this section we introduce our network architectures with the se-

lected hyper-parameters for reproduction. For the digit datasets like reverse-MNIST and

MNIST-USPS, we use a 2-block convolutional architecture with first block consisting of

a convolutional layer with 8 (5 × 5) filters and second block consisting of 4 (5 × 5) fil-

ters. Each block is followed with BatchNorm, ReLU activation and max pooling layers.

The second block is finally connected to a fully connected layer with 10 units. For the

HAR data we use a stacked fully connected neural network with intermediate layers as

115

η n Epochs β γ α

HAR 0.0002 256 60 4.00 1.00 0.0001

reverse-MNIST 0.0005 256 80 6.00 1.00 0.0001

MNIST-USPS 0.0005 256 60 4.00 1.00 0.0001

Census 0.0002 256 30 4.00 1.00 0.0001

Credit 0.0002 256 50 5.00 1.00 0.0001

Bank 0.0005 256 30 4.00 1.00 0.0001

Table 6.2: Hyperparameters used in our experiments: n denotes the training batch size,
η represents the learning rate, α is the weight-decay parameter and β, γ are the hyper-
parameters for fairness module and self-augmented training branch.

d−1200−1200−k, note d = 561 is the total number of features in HAR and k = 6 is the

number of clusters. For the non-deep clustering data, we use a stacked fully connected

neural network with intermediate layers as d − 50 − 50 − k, note the total number of

features d for Census, Credit and Bank are 5, 3, 14 and k = 2 is the number of clusters. In

unsupervised learning, it is not straightforward to determine hyper-parameters by cross-

validation. Hence, we fixed the hyper-parameters (weight decay α and augmentation term

γ) across all the datasets; we tuned the hyper-parameter β based on the training set’s

balance value as mentioned in section 6.5.3 to achieve satisfying fair results. Finally, we

have summarized our used hyper-parameters in Table 6.2.

Results on High Dimensional Data. As shown in the Table 6.3, fair non-deep clus-

tering algorithms achieve good fairness results especially ScFC which returns guaranteed

fair clusters. However the clustering performance is not good as deep clustering methods

due to the lack of representation learning. Both DEC and IMSAT achieve reasonable

clustering results but poor balance, this shows the unfairness of existing deep clustering

models which motivates our adding fairness rules. Comparing ours DFDC with the recent

deep fair clustering works [137, 92] we can see that our approach consistently outperforms

these two in terms of both clustering performance and fairness. Note we report both the

deep model’s results and the ILP’s output in the last iteration. We observe that our deep

clustering model’s predictions almost converge to the final assignments solved from our

116

MNIST-USPS Reverse-MNIST HAR

Methods ACC NMI Balance ACC NMI Balance ACC NMI Balance

DEC [144] 0.586 0.686 0.000 0.401 0.480 0.000 0.571 0.662 0.000

IMSAT [76] 0.804 0.787 0.000 0.525 0.630 0.000 0.812 0.803 0.000

ScFC [8] 0.176 0.053 0.120 0.268 0.105 1.000 – – –

FAlg [13] 0.621 0.496 0.093 0.295 0.206 0.667 0.642 0.618 0.420

Fairoids Idea [137] 0.725 0.716 0.039 0.425 0.506 0.430 0.607 0.661 0.166

DFCV [92] 0.825 0.789 0.067 0.577 0.679 0.763 – – –

Ours Fair-DEC 0.783 0.752 0.118 0.539 0.614 0.937 0.680 0.725 0.458

Ours Fair-DEC (ILP) 0.774 0.746 0.120 0.509 0.590 1.000 0.668 0.705 0.653

Ours DFDC 0.939 0.876 0.119 0.589 0.690 0.946 0.862 0.845 0.468

Ours DFDC (ILP) 0.936 0.867 0.120 0.583 0.680 1.000 0.842 0.827 0.653

Table 6.3: Comparison of clustering and fairness performance on MNIST-USPS, Reverse-
MNIST and HAR. HAR consists of multi-state PSV that baselines with dashes are not
applicable. The first group are plain deep clustering methods, the second group are fair
non-deep clustering methods and the third group are deep fair clustering methods in-
cluding our own. Bold results are the best results among all the baselines except the
guaranteed fairness results which are marked with blue. Note we report our average per-
formance results after 10 trials.

ILP module. Moreover, Ours-Fair-DEC largely improve the balance results of DEC and

outperforms all the baselines. This result demonstrate that our fair learning algorithm

is effective for different clustering backbones. Comparing the deep fair clustering algori-

htms’ results with the plain deep clustering results in Table 6.3, we can see the fairness

rules can be seen as positive guidance to improve the clustering ACC in these datasets,

our approach is shown to be able to learn from this guidance and improve fairness as well

as accuracy.

Results on Tabular Data. We evaluate our approach on tabular data and present the

results in Figure 6.2. ScFC [8] is one representative Non-deep fair clustering algorithm

which is demonstrated to be effective and efficient on non-deep fair clustering tasks. Here

we compare ours DFDC model with it and find that our model achieves similar clustering

results as ScFC on tabular data. In terms of fairness, our model can also achieve similar

balance comparing to ScFC. We conclude our proposed DFDC also works for tabular

117

Census Bank Credit
0.0

0.2

0.4

0.6

0.8

1.0

R
e

su
lt

s

ScFC ACC

Ours DFDC ACC

ScFC Balance

Ours DFDC Balance

Figure 6.2: Clustering ACC and balance on tabular data. We compare Ours DFDC (Deep
Model) to non-deep baseline ScFC.

datasets. This is a surprising result as the competitor ScFC is proposed for this setting

to guarantee fairness in classic clustering.

6.5.2 Results Analysis

MNIST-USPS Reverse-MNIST HAR
0.5

0.6

0.7

0.8

0.9

1.0

R
e

su
lt

s

Train ACC

Test ACC

Train NMI

Test NMI

(a) Predictive Clustering Results

MNIST-USPS Reverse-MNIST HAR
0.0

0.2

0.4

0.6

0.8

1.0

R
e

su
lt

s

Train Balance

Train Opt im al

Test Balance

Test Opt im al

(b) Predictive Clustering Fairness

Figure 6.3: Experimental results on predictive (out-of-sample) clustering settings.

Novel Predictive (Out-of-sample) Clustering. Here we evaluate our method’s ability

to make predictions on test data without PSV information which is a new setting in

the fair clustering literature. That is we have already clustered another data set with

PSV values and are now making predictions using the model learnt. This is particularly

important for practitioners who are, for instance, deploying models on the web (where

individuals are reluctant to share PSV information) and we see our results in Figure 6.3.

118

10 % 20 % 30 % 40 %

Relax Degree

0.0

0.2

0.4

0.6

0.8

1.0

R
e

su
lt

s

ACC NMI Balance

Figure 6.4: Flexible fairness experiments on MNIST-USPS. With larger relaxation the
balance drops as expected.

Our approach performs consistently across both train and test sets in terms of clustering

performance and fairness. One exception is that the test balance in HAR is much lower

than the training balance, we hypothesize this is due to the over-fitting and the different

distributions between training and test set within HAR.

Flexible Fairness Constraints. Here we explore how relaxing the optimal fair condition

defined as ρt produces flexible constraints. We let the new fairness requirement be P (x ∈

Gt|x ∈ Ck) ∈ [ρt ∗ (1− ϵ), ρt ∗ (1 + ϵ)] for group t in cluster Ck where ϵ is the relaxation

degree. In Figure 6.4, we can see a larger ϵ leads to a lower balance which as expected;

since the fairness signals can serve as positive guidance for clustering in MNIST-USPS,

we observe the ACC and NMI are decreasing with larger ϵ. Allowing flexible constraints

are important as the fairness rules vary across regions.

6.5.3 Further Analysis on Our Model

Here we conduct experiments to better understand its performance by feature space vi-

sualization, parameter sensitivity and empirical convergence study.

Feature space visualizing. To understand how our model learns a fair representation,

we have applied t-SNE [132] to visualize the feature space of MNIST-USPS during different

training epochs in Figure 6.5. The initial model is trained with clustering objectives which

yield unfair results, once we introduce fairness signals the red instances start to move

to different clusters. Meanwhile, we observe our learned representations maintain good

119

(a) epoch 0 (b) epoch 15 (c) epoch 30 (d) epoch 45 (e) epoch 60

Figure 6.5: t-SNE visualization of learned embedding (MNIST-USPS), color red and blue
indicate different PSV values.

clustering properties.

0 2 4 6 8 10
β

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Ba
la
nc

e

(a) MNIST-USPS (Balance)

0 2 4 6 8 10
β

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Cl
us

te
rin

g
Ac

c

(b) MNIST-USPS (ACC)

0 2 4 6 8 10
β

0.0

0.1

0.2

0.3

0.4

0.5

Ba
la
nc

e

(c) HAR (Balance)

0 2 4 6 8 10
β

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

Cl
us

te
rin

g
Ac

c

(d) HAR (ACC)

Figure 6.6: Sensitivity analysis of hyper-parameter β which serves as the weights for
fairness objective.

Tuning the weight of fairness objective. We experiment on the choices of hyper-

parameter β which controls the weight of the fairness objective and report the clustering

120

results in Figure 6.6. It is straightforward to see from (a) and (c) that as β increases, the

training balance increases. Meanwhile, based on (b) and (d) we can find the ACC goes

up and down as β increases. Our previous result shows that the fairness constraints can

serve as positive guidance for both MNIST-USPS and HAR. That is why the clustering

accuracy goes up when we increase β from 0. But we also observe that with a very large

β the clustering accuracy will drop. We hypothesize this is because the fairness objective

dominates the overall objective so that the impact of clustering objective is hindered.

As balance can be tracked during the training process for free, our insight for selecting

hyper-parameter β is to pick the smallest β that achieves satisfying balance results.

0 10 20 30 40 50
Training Epochs

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

Ov
er
al
l L
os
s

HAR
MNIST-USPS

(a) Convergence Study (Train Loss)

0 10 20 30 40 50
Training Epochs

0.0

0.1

0.2

0.3

0.4

Ba
la
nc

e

HAR
MNIST-USPS

(b) Convergence Study (Balance)

Figure 6.7: Visualizing the learning curves of training loss and fairness measured by the
balance on HAR and MNIST-USPS.

Empirical convergence analysis. To investigate the smoothness of learning with clus-

tering and fairness objectives together, we present the learning curves of overall training

loss and the balance results in Figure 6.7. We can see from the plots that our model’s

overall training loss drops quickly and converges after 50 epochs. Meanwhile, our model’s

balance result also converges after 50 epochs.

6.6 Conclusion

In this paper, we explore the novel direction of adding fairness into deep clustering.

This is a challenging problem given the end-to-end deep learning setting which does not

121

facilitate pre-processing into fairlets and the need for scalability to large data sets. We

formulate a group level measure of fairness as integer linear programming and show the

problem can be solved efficiently due to total unimodularity (Theorem 6.4.2). We then

add this solver into a deep learner and show that our formulation works with multi-

state PSV as well as flexible fairness constraints that can occur in real-life applications.

Extensive experiments demonstrate the strong performance of our proposed approach and

an in-depth analysis including feature visualization, hyper-parameter tuning, convergence

analysis, and investigating flexible fair constraints shows its versatility.

122

Chapter 7

Conclusion

Unlike supervised learning which needs tremendous amounts of labeling to learn a partic-

ular task, deep unsupervised learning is motivated to learn and generalize from unlimited

unlabeled data which resembles how humans learn the world. As a result, many advances

have emerged in deep unsupervised learning, but the gap still exists between the cur-

rent models and human demands. This includes issues ranging from: (1) the problem of

how to improve the quality of learned representation and leverage those representation

for downstream applications such as clustering and few-shot learning; (2) understanding

or interpreting the predictions from deep unsupervised learning models; (3) dealing with

biased predictions for common deep unsupervised learning applications such as clustering

and anomaly detection.

This dissertation considers injecting human knowledge into deep unsupervised learning

algorithms. We propose novel formulations that learn with various types of human knowl-

edge to address the challenges in the quality of learned representation, explainability, and

fairness of deep unsupervised learning. As for the quality of learned representation, we

encode a range of constraints (from instance-level to global size level) as loss functions

to deep clustering algorithms to improve the clustering quality; moreover, we propose a

self-supervised formulation to learn image representations that work well for downstream

tasks including clustering and few-shot classification. To address the explainability of deep

unsupervised learning, we introduce human-interpretable tags to deep clustering and learn

to generate cluster-level explanations and clusters simultaneously. Finally, we address the

123

fairness problem for deep clustering via “pseudo fair labels” generated based on a mini-

mal modification algorithm and propose to leverage adversarial learning to de-bias deep

anomaly detection algorithms.

There are several promising directions to extend our work. The first direction is

to develop interactive algorithms that can ask humans for knowledge or guidance. While

our constrained clustering work improves the clustering performance largely with different

forms of constraints, sometimes the model still suffers from the “negative effect” due to

the randomness of the constraints set given to the learner. An ideal interactive algorithm

will mitigate this problem via actively querying multiple types of constraints from humans

to enhance the performance with minimal cost. Our work on simultaneously clustering

and explaining with human interpretable tags can be extended in two directions: (1) we

can apply our method on other interesting clustering applications like graph clustering

to explain social networks given the interpretable tags for each instance; (2) besides the

current form of explanation which provides a list of tags to explain discovered clusters,

we can seek for other novel forms of explanations such as combining the conjunction and

disjunction of tags or counterfactual explanations. Another emerging line of research

would be to explore the fairness problems of deep unsupervised learning, and we can

see our works as enforcing group-level fairness rules into some deep clustering and deep

anomaly detection models. We feel it is promising to build a general fair representation

learning framework that can work with different types of fairness rules such as individual

level fairness [50].

Inspired by how humans explore and learn from the real world, our work in this

dissertation enhances the representation learning ability, explainability, and fairness of

deep unsupervised learning models with novel formulations of learning from various human

knowledge. Furthermore, we anticipate that our proposed methods will help advance

different aspects of deep unsupervised learning with broader forms of human knowledge.

124

References

[1] Adadi, A., and Berrada, M. Peeking inside the black-box: A survey on ex-
plainable artificial intelligence (xai). IEEE Access 6 (2018), 52138–52160.

[2] Ahmadian, S., Epasto, A., Kumar, R., and Mahdian, M. Clustering with-
out over-representation. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (2019), pp. 267–275.

[3] Aljalbout, E., Golkov, V., Siddiqui, Y., Strobel, M., and Cremers,
D. Clustering with deep learning: Taxonomy and new methods. arXiv preprint
arXiv:1801.07648 (2018).

[4] An, J., and Cho, S. Variational autoencoder based anomaly detection using
reconstruction probability. Special Lecture on IE 2, 1 (2015), 1–18.

[5] Angwin, J., Larson, J., Mattu, S., and Kirchner, L. Machine bias. ProP-
ublica, May 23 (2016), 2016.

[6] Antoniou, A., Edwards, H., and Storkey, A. How to train your maml.
arXiv preprint arXiv:1810.09502 (2018).

[7] Antoniou, A., and Storkey, A. Assume, augment and learn: Unsupervised
few-shot meta-learning via random labels and data augmentation. arXiv preprint
arXiv:1902.09884 (2019).

[8] Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakilian, A., and Wag-
ner, T. Scalable fair clustering. In International Conference on Machine Learning
(2019), pp. 405–413.

[9] Bade, K., and Nürnberger, A. Creating a cluster hierarchy under constraints
of a partially known hierarchy. In Proceedings of the 2008 SIAM international
conference on data mining (2008), SIAM, pp. 13–24.

[10] Baldi, P. Autoencoders, unsupervised learning, and deep architectures. In Pro-
ceedings of ICML workshop on unsupervised and transfer learning (2012), JMLR
Workshop and Conference Proceedings, pp. 37–49.

[11] Basu, S., Bilenko, M., and Mooney, R. J. A probabilistic framework for
semi-supervised clustering. In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining (2004), ACM, pp. 59–68.

[12] Basu, S., Davidson, I., and Wagstaff, K. Constrained clustering: Advances
in algorithms, theory, and applications. CRC Press, 2008.

[13] Bera, S., Chakrabarty, D., Flores, N., and Negahbani, M. Fair algo-
rithms for clustering. In Advances in Neural Information Processing Systems (2019),
pp. 4955–4966.

125

[14] Berthelot, D., Raffel, C., Roy, A., and Goodfellow, I. Understanding
and improving interpolation in autoencoders via an adversarial regularizer. arXiv
preprint arXiv:1807.07543 (2018).

[15] Bertsimas, D., Orfanoudaki, A., and Wiberg, H. Interpretable clustering:
an optimization approach. Machine Learning (2020), 1–50.

[16] Beutel, A., Chen, J., Zhao, Z., and Chi, E. H. Data decisions and theo-
retical implications when adversarially learning fair representations. arXiv preprint
arXiv:1707.00075 (2017).

[17] Bickel, S., and Scheffer, T. Multi-view clustering. In Fourth IEEE Interna-
tional Conference on Data Mining (ICDM’04) (2004), IEEE, pp. 19–26.

[18] Biddle, D. Adverse impact and test validation: A practitioner’s guide to valid and
defensible employment testing. Gower Publishing, Ltd., 2006.

[19] Bilenko, M., Basu, S., and Mooney, R. J. Integrating constraints and metric
learning in semi-supervised clustering. In Proceedings of the twenty-first interna-
tional conference on Machine learning (2004), ACM, p. 11.

[20] Binns, R. On the apparent conflict between individual and group fairness. In
Proceedings of the 2020 conference on fairness, accountability, and transparency
(2020), pp. 514–524.

[21] Bourlard, H., and Kamp, Y. Auto-association by multilayer perceptrons and
singular value decomposition. Biological cybernetics 59, 4-5 (1988), 291–294.

[22] Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. Lof: identifying
density-based local outliers. In Proceedings of the 2000 ACM SIGMOD international
conference on Management of data (2000), pp. 93–104.

[23] Bridle, J. S., Heading, A. J., and MacKay, D. J. Unsupervised classi-
fiers, mutual information and’phantom targets. In Advances in neural information
processing systems (1992), pp. 1096–1101.

[24] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal,
P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. Language
models are few-shot learners. Advances in neural information processing systems 33
(2020), 1877–1901.

[25] Brubach, B., Chakrabarti, D., Dickerson, J., Khuller, S., Srinivasan,
A., and Tsepenekas, L. A pairwise fair and community-preserving approach
to k-center clustering. In International Conference on Machine Learning (2020),
PMLR, pp. 1178–1189.

[26] Caron, M., Bojanowski, P., Joulin, A., and Douze, M. Deep clustering for
unsupervised learning of visual features. In Proceedings of the European Conference
on Computer Vision (ECCV) (2018), pp. 132–149.

126

[27] Celis, L. E., Huang, L., Keswani, V., and Vishnoi, N. K. Classification with
fairness constraints: A meta-algorithm with provable guarantees. In Proceedings of
the Conference on Fairness, Accountability, and Transparency (2019), pp. 319–328.

[28] Chalapathy, R., and Chawla, S. Deep learning for anomaly detection: A
survey. arXiv preprint arXiv:1901.03407 (2019).

[29] Chandola, V., Banerjee, A., and Kumar, V. Anomaly detection: A survey.
ACM computing surveys (CSUR) 41, 3 (2009), 1–58.

[30] Chatziafratis, V., Niazadeh, R., and Charikar, M. Hierarchical cluster-
ing with structural constraints. In International Conference on Machine Learning
(2018), pp. 774–783.

[31] Chen, J., Sathe, S., Aggarwal, C., and Turaga, D. Outlier detection with
autoencoder ensembles. In Proceedings of the 2017 SIAM international conference
on data mining (2017), SIAM, pp. 90–98.

[32] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A simple framework
for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709
(2020).

[33] Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and
Abbeel, P. Infogan: Interpretable representation learning by information max-
imizing generative adversarial nets. In Advances in neural information processing
systems (2016), pp. 2172–2180.

[34] Chen, X., Fain, B., Lyu, L., and Munagala, K. Proportionally fair clustering.
In International Conference on Machine Learning (2019), PMLR, pp. 1032–1041.

[35] Chierichetti, F., Kumar, R., Lattanzi, S., and Vassilvitskii, S. Fair
clustering through fairlets. In Advances in Neural Information Processing Systems
(2017), pp. 5029–5037.

[36] Chouldechova, A., and Roth, A. The frontiers of fairness in machine learning.
arXiv preprint arXiv:1810.08810 (2018).

[37] Dao, T.-B.-H., Kuo, C.-T., Ravi, S., Vrain, C., and Davidson, I. Descrip-
tive clustering: Ilp and cp formulations with applications. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence (2018), pp. 1263–1269.

[38] Dao, T.-B.-H., Vrain, C., Duong, K.-C., and Davidson, I. A framework
for actionable clustering using constraint programming. In ECAI (2016).

[39] Davidson, I., Gourru, A., and Ravi, S. The cluster description problem-
complexity results, formulations and approximations. Advances in Neural Informa-
tion Processing Systems 31 (2018), 6190–6200.

127

[40] Davidson, I., and Ravi, S. Intractability and clustering with constraints. In
Proceedings of the 24th international conference on Machine learning (2007), ACM,
pp. 201–208.

[41] Davidson, I., and Ravi, S. Making existing clusterings fairer: Algorithms, com-
plexity results and insights. In Thirty-Fourth AAAI Conference on Artificial Intel-
ligence (2020).

[42] Davidson, I., and Ravis, S. A framework for determining the fairness of outlier
detection. In European Conference on Artificial Intelligence (2020).

[43] Davidson, I., Wagstaff, K. L., and Basu, S. Measuring constraint-set utility
for partitional clustering algorithms. In Knowledge Discovery in Databases: PKDD
2006. Springer, 2006, pp. 115–126.

[44] Deecke, L., Vandermeulen, R., Ruff, L., Mandt, S., and Kloft, M. Im-
age anomaly detection with generative adversarial networks. In Joint european con-
ference on machine learning and knowledge discovery in databases (2018), Springer,
pp. 3–17.

[45] Deepak, P., and Abraham, S. S. Fair outlier detection. In International Con-
ference on Web Information Systems Engineering (2020), Springer, pp. 447–462.

[46] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018).

[47] Donahue, J., Krähenbühl, P., and Darrell, T. Adversarial feature learning.
arXiv preprint arXiv:1605.09782 (2016).

[48] Donini, M., Oneto, L., Ben-David, S., Shawe-Taylor, J. S., and Pontil,
M. Empirical risk minimization under fairness constraints. In Advances in Neural
Information Processing Systems (2018), pp. 2791–2801.

[49] Dosovitskiy, A., Springenberg, J. T., Riedmiller, M., and Brox, T.
Discriminative unsupervised feature learning with convolutional neural networks.
In Advances in neural information processing systems (2014), pp. 766–774.

[50] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel, R. Fairness
through awareness. In Proceedings of the 3rd innovations in theoretical computer
science conference (2012), pp. 214–226.

[51] Elazar, Y., and Goldberg, Y. Adversarial removal of demographic attributes
from text data. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing (2018), pp. 11–21.

[52] Erfani, S. M., Rajasegarar, S., Karunasekera, S., and Leckie, C. High-
dimensional and large-scale anomaly detection using a linear one-class svm with
deep learning. Pattern Recognition 58 (2016), 121–134.

128

[53] Farhadi, A., Endres, I., Hoiem, D., and Forsyth, D. Describing objects
by their attributes. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition (2009), IEEE, pp. 1778–1785.

[54] Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast
adaptation of deep networks. In International conference on machine learning
(2017), JMLR. org, pp. 1126–1135.

[55] Fogel, S., Averbuch-Elor, H., Cohen-Or, D., and Goldberger, J.
Clustering-driven deep embedding with pairwise constraints. IEEE computer graph-
ics and applications 39, 4 (2019), 16–27.

[56] Fraiman, R., Ghattas, B., and Svarc, M. Interpretable clustering using
unsupervised binary trees. Advances in Data Analysis and Classification 7, 2 (2013),
125–145.

[57] Ghasedi Dizaji, K., Herandi, A., Deng, C., Cai, W., and Huang, H.
Deep clustering via joint convolutional autoencoder embedding and relative entropy
minimization. In Proceedings of the IEEE international conference on computer
vision (2017), pp. 5736–5745.

[58] Ghattas, B., Michel, P., and Boyer, L. Clustering nominal data using un-
supervised binary decision trees: Comparisons with the state of the art methods.
Pattern Recognition 67 (2017), 177–185.

[59] Gidaris, S., Singh, P., and Komodakis, N. Unsupervised representation learn-
ing by predicting image rotations. arXiv preprint arXiv:1803.07728 (2018).

[60] Golan, I., and El-Yaniv, R. Deep anomaly detection using geometric transfor-
mations. In Advances in Neural Information Processing Systems (2018), pp. 9758–
9769.

[61] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,
D., Ozair, S., Courville, A., and Bengio, Y. Generative adversarial nets. In
Advances in neural information processing systems (2014), pp. 2672–2680.

[62] Gress, A., and Davidson, I. Probabilistic formulations of regression with mixed
guidance. In Data Mining (ICDM), 2016 IEEE 16th International Conference on
(2016), IEEE, pp. 895–900.

[63] Görnitz, N., Kloft, M., Rieck, K., and Brefeld, U. Toward supervised
anomaly detection. Journal of Artificial Intelligence Research 46 (2013), 235–262.

[64] Guo, X., Gao, L., Liu, X., and Yin, J. Improved deep embedded clustering
with local structure preservation. In International Joint Conference on Artificial
Intelligence (IJCAI-17) (2017), pp. 1753–1759.

129

[65] Haeusser, P., Plapp, J., Golkov, V., Aljalbout, E., and Cremers, D.
Associative deep clustering: Training a classification network with no labels. In
German Conference on Pattern Recognition (2018), Springer, pp. 18–32.

[66] Han, K., Vedaldi, A., and Zisserman, A. Learning to discover novel visual
categories via deep transfer clustering. In Proceedings of the IEEE International
Conference on Computer Vision (2019), pp. 8401–8409.

[67] Hawkins, D. M. Identification of outliers, vol. 11. Springer, 1980.

[68] Hawkins, S., He, H., Williams, G., and Baxter, R. Outlier detection using
replicator neural networks. In International Conference on Data Warehousing and
Knowledge Discovery (2002), Springer, pp. 170–180.

[69] He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Momentum contrast
for unsupervised visual representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2020), pp. 9729–9738.

[70] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition (2016), pp. 770–778.

[71] Hendrycks, D., Mazeika, M., Kadavath, S., and Song, D. Using self-
supervised learning can improve model robustness and uncertainty. In Advances in
Neural Information Processing Systems (2019), pp. 15663–15674.

[72] Hsu, K., Levine, S., and Finn, C. Unsupervised learning via meta-learning.
arXiv preprint arXiv:1810.02334 (2018).

[73] Hsu, Y.-C., and Kira, Z. Neural network-based clustering using pairwise con-
straints. arXiv preprint arXiv:1511.06321 (2015).

[74] Hu, L., and Chen, Y. Fair classification and social welfare. In Proceedings of the
2020 Conference on Fairness, Accountability, and Transparency (2020), pp. 535–
545.

[75] Hu, M., and Chen, S. Doubly aligned incomplete multi-view clustering. In
Proceedings of the 27th International Joint Conference on Artificial Intelligence
(2018), pp. 2262–2268.

[76] Hu, W., Miyato, T., Tokui, S., Matsumoto, E., and Sugiyama, M. Learn-
ing discrete representations via information maximizing self-augmented training. In
International Conference on Machine Learning (2017), pp. 1558–1567.

[77] Huang, C., Cao, J., Ye, F., Li, M., Zhang, Y., and Lu, C. Inverse-transform
autoencoder for anomaly detection. arXiv preprint arXiv:1911.10676 (2019).

130

[78] Ioffe, S., and Szegedy, C. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference on Ma-
chine Learning (2015), pp. 448–456.

[79] Jain, A. K., Murty, M. N., and Flynn, P. J. Data clustering: a review. ACM
computing surveys (CSUR) 31, 3 (1999), 264–323.

[80] Ji, X., Henriques, J. F., and Vedaldi, A. Invariant information clustering
for unsupervised image classification and segmentation. In Proceedings of the IEEE
International Conference on Computer Vision (2019), pp. 9865–9874.

[81] Jiang, Z., Zheng, Y., Tan, H., Tang, B., and Zhou, H. Variational deep
embedding: an unsupervised and generative approach to clustering. In Proceed-
ings of the 26th International Joint Conference on Artificial Intelligence (2017),
pp. 1965–1972.

[82] Joachims, T. Optimizing search engines using clickthrough data. In Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and
data mining (2002), ACM, pp. 133–142.

[83] Khodadadeh, S., Boloni, L., and Shah, M. Unsupervised meta-learning for
few-shot image classification. In Advances in neural information processing systems
(2019), pp. 10132–10142.

[84] Kingma, D. P., and Ba, J. Adam: A method for stochastic optimization. In
International Conference on Learning Representations (2015).

[85] Kingma, D. P., and Welling, M. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114 (2013).

[86] Kleindessner, M., Awasthi, P., and Morgenstern, J. Fair k-center clus-
tering for data summarization. In International Conference on Machine Learning
(2019), pp. 3448–3457.

[87] Kleindessner, M., Samadi, S., Awasthi, P., and Morgenstern, J. Guar-
antees for spectral clustering with fairness constraints. In International Conference
on Machine Learning (2019), pp. 3458–3467.

[88] Krause, A., Perona, P., and Gomes, R. Discriminative clustering by regular-
ized information maximization. Advances in neural information processing systems
23 (2010), 775–783.

[89] Lampert, C. H., Nickisch, H., and Harmeling, S. Attribute-based classi-
fication for zero-shot visual object categorization. IEEE transactions on pattern
analysis and machine intelligence 36, 3 (2013), 453–465.

[90] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based
learning applied to document recognition. Proceedings of the IEEE 86, 11 (1998),
2278–2324.

131

[91] Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. Rcv1: A new benchmark
collection for text categorization research. Journal of machine learning research 5,
Apr (2004), 361–397.

[92] Li, P., Zhao, H., and Liu, H. Deep fair clustering for visual learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2020), pp. 9070–9079.

[93] Liu, B., Xia, Y., and Yu, P. S. Clustering via decision tree construction. In
Foundations and advances in data mining. Springer, 2005, pp. 97–124.

[94] Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face attributes in
the wild. In Proceedings of International Conference on Computer Vision (ICCV)
(December 2015).

[95] Lu, Z., and Carreira-Perpinan, M. A. Constrained spectral clustering
through affinity propagation. In Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on (2008), IEEE, pp. 1–8.

[96] Maaten, L. v. d., and Hinton, G. Visualizing data using t-sne. Journal of
machine learning research 9, Nov (2008), 2579–2605.

[97] Mahabadi, S., and Vakilian, A. Individual fairness for k-clustering. In Inter-
national Conference on Machine Learning (2020), PMLR, pp. 6586–6596.

[98] Masci, J., Meier, U., Cirecsan, D., and Schmidhuber, J. Stacked convolu-
tional auto-encoders for hierarchical feature extraction. In International conference
on artificial neural networks (2011), Springer, pp. 52–59.

[99] Miyato, T., Maeda, S.-i., Koyama, M., and Ishii, S. Virtual adversarial
training: a regularization method for supervised and semi-supervised learning. IEEE
transactions on pattern analysis and machine intelligence 41, 8 (2018), 1979–1993.

[100] Moshkovitz, M., Dasgupta, S., Rashtchian, C., and Frost, N. Explain-
able k-means and k-medians clustering. In International Conference on Machine
Learning (2020), PMLR, pp. 7055–7065.

[101] Munkres, J. Algorithms for the assignment and transportation problems. Journal
of the society for industrial and applied mathematics 5, 1 (1957), 32–38.

[102] Nair, V., and Hinton, G. E. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning
(ICML-10) (2010), pp. 807–814.

[103] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y.
Reading digits in natural images with unsupervised feature learning. Deep Learning
and Unsupervised Feature Learning Workshop, NIPS (2011).

132

[104] Noroozi, M., and Favaro, P. Unsupervised learning of visual representations
by solving jigsaw puzzles. In European Conference on Computer Vision (2016),
Springer, pp. 69–84.

[105] Pang, G., Shen, C., and van den Hengel, A. Deep anomaly detection with
deviation networks. In Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining (2019), pp. 353–362.

[106] Ribeiro, M. T., Singh, S., and Guestrin, C. ” why should i trust you?” ex-
plaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining (2016), pp. 1135–
1144.

[107] Rösner, C., and Schmidt, M. Privacy preserving clustering with constraints. In
45th International Colloquium on Automata, Languages, and Programming (ICALP
2018) (2018), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[108] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S. A.,
Binder, A., Müller, E., and Kloft, M. Deep one-class classification. In
International conference on machine learning (2018), pp. 4393–4402.

[109] Ruff, L., Vandermeulen, R. A., Görnitz, N., Binder, A., Müller, E.,
Müller, K.-R., and Kloft, M. Deep semi-supervised anomaly detection. In
International Conference on Learning Representations (2019).

[110] Sakurada, M., and Yairi, T. Anomaly detection using autoencoders with non-
linear dimensionality reduction. In Proceedings of the MLSDA 2014 2nd Workshop
on Machine Learning for Sensory Data Analysis (2014), pp. 4–11.

[111] Sambaturu, P., Gupta, A., Davidson, I., Ravi, S. S., Vullikanti, A., and
Warren, A. Efficient algorithms for generating provably near-optimal cluster
descriptors for explainability. Proceedings of the AAAI Conference on Artificial
Intelligence 34 (Apr. 2020), 1636–1643.

[112] Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lilli-
crap, T. Meta-learning with memory-augmented neural networks. In International
conference on machine learning (2016), pp. 1842–1850.

[113] Schlegl, T., Seeböck, P., Waldstein, S. M., Schmidt-Erfurth, U., and
Langs, G. Unsupervised anomaly detection with generative adversarial networks
to guide marker discovery. In International conference on information processing in
medical imaging (2017), Springer, pp. 146–157.

[114] Schmidt, M., Schwiegelshohn, C., and Sohler, C. Fair coresets and stream-
ing algorithms for fair k-means. In International Workshop on Approximation and
Online Algorithms (2019), Springer, pp. 232–251.

133

[115] Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., and
Williamson, R. C. Estimating the support of a high-dimensional distribution.
Neural computation 13, 7 (2001), 1443–1471.

[116] Schrijver, A. Theory of linear and integer programming. John Wiley & Sons,
1998.

[117] Schroff, F., Kalenichenko, D., and Philbin, J. Facenet: A unified embed-
ding for face recognition and clustering. In Proceedings of the IEEE conference on
computer vision and pattern recognition (2015), pp. 815–823.

[118] Schultz, M., and Joachims, T. Learning a distance metric from relative com-
parisons. In Advances in neural information processing systems (2004), pp. 41–48.

[119] Shah, S. A., and Koltun, V. Deep continuous clustering. arXiv preprint
arXiv:1803.01449 (2018).

[120] Shaham, U., Stanton, K., Li, H., Basri, R., Nadler, B., and Kluger,
Y. Spectralnet: Spectral clustering using deep neural networks. In International
Conference on Learning Representations (2018).

[121] Shao, W., He, L., and Philip, S. Y. Multiple incomplete views clustering
via weighted nonnegative matrix factorization with l2,1 regularization. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases
(2015), Springer, pp. 318–334.

[122] Slack, D., Friedler, S. A., and Givental, E. Fairness warnings and fair-
maml: learning fairly with minimal data. In Proceedings of the 2020 Conference on
Fairness, Accountability, and Transparency (2020), pp. 200–209.

[123] Snell, J., Swersky, K., and Zemel, R. Prototypical networks for few-shot
learning. In Advances in neural information processing systems (2017), pp. 4077–
4087.

[124] Sohn, K. Improved deep metric learning with multi-class n-pair loss objective. In
Advances in neural information processing systems (2016), pp. 1857–1865.

[125] Strehl, A., Ghosh, J., and Mooney, R. Impact of similarity measures on
web-page clustering. In Workshop on artificial intelligence for web search (AAAI
2000) (2000), vol. 58, p. 64.

[126] Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H., and Hospedales,
T. M. Learning to compare: Relation network for few-shot learning. In CVPR
(2018), pp. 1199–1208.

[127] Sweeney, C., and Najafian, M. Reducing sentiment polarity for demographic
attributes in word embeddings using adversarial learning. In Proceedings of the 2020
Conference on Fairness, Accountability, and Transparency (2020), pp. 359–368.

134

[128] Tao, Z., Liu, H., Li, S., Ding, Z., and Fu, Y. From ensemble clustering to
multi-view clustering. In Proceedings of the 26th International Joint Conference on
Artificial Intelligence (2017), pp. 2843–2849.

[129] Tzoreff, E., Kogan, O., and Choukroun, Y. Deep discriminative latent
space for clustering. arXiv preprint arXiv:1805.10795 (2018).

[130] Vaidya, P. M. Speeding-up linear programming using fast matrix multiplication.
In 30th annual symposium on foundations of computer science (1989), IEEE Com-
puter Society, pp. 332–337.

[131] Van den Oord, A., Li, Y., and Vinyals, O. Representation learning with
contrastive predictive coding. arXiv e-prints (2018), arXiv–1807.

[132] Van der Maaten, L., and Hinton, G. Visualizing data using t-sne. Journal
of machine learning research 9, 11 (2008).

[133] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol,
P.-A. Stacked denoising autoencoders: Learning useful representations in a deep
network with a local denoising criterion. Journal of machine learning research 11,
Dec (2010), 3371–3408.

[134] Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al. Matching
networks for one shot learning. In Advances in neural information processing systems
(2016), pp. 3630–3638.

[135] Wagstaff, K., and Cardie, C. Clustering with instance-level constraints.
AAAI/IAAI 1097 (2000), 577–584.

[136] Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S., et al. Constrained k-
means clustering with background knowledge. In ICML (2001), vol. 1, pp. 577–584.

[137] Wang, B., and Davidson, I. Towards fair deep clustering with multi-state pro-
tected variables. arXiv preprint arXiv:1901.10053 (2019).

[138] Wang, C., Pan, S., Hu, R., Long, G., Jiang, J., and Zhang, C. Attributed
graph clustering: A deep attentional embedding approach. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19
(2019), pp. 3670–3676.

[139] Wang, S., Zeng, Y., Liu, X., Zhu, E., Yin, J., Xu, C., and Kloft, M.
Effective end-to-end unsupervised outlier detection via inlier priority of discrim-
inative network. In Advances in Neural Information Processing Systems (2019),
pp. 5962–5975.

[140] Wang, X., and Davidson, I. Flexible constrained spectral clustering. In Proceed-
ings of the 16th ACM SIGKDD international conference on Knowledge discovery
and data mining (2010), ACM, pp. 563–572.

135

[141] Wang, Y., Wu, L., Lin, X., and Gao, J. Multiview spectral clustering via
structured low-rank matrix factorization. IEEE transactions on neural networks
and learning systems 29, 10 (2018), 4833–4843.

[142] Xia, Y., Cao, X., Wen, F., Hua, G., and Sun, J. Learning discriminative
reconstructions for unsupervised outlier removal. In Proceedings of the IEEE Inter-
national Conference on Computer Vision (2015), pp. 1511–1519.

[143] Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747
(2017).

[144] Xie, J., Girshick, R., and Farhadi, A. Unsupervised deep embedding for clus-
tering analysis. In International conference on machine learning (2016), pp. 478–
487.

[145] Xing, E. P., Jordan, M. I., Russell, S. J., and Ng, A. Y. Distance metric
learning with application to clustering with side-information. In Advances in neural
information processing systems (2003), pp. 521–528.

[146] Xu, C., Tao, D., and Xu, C. A survey on multi-view learning. arXiv preprint
arXiv:1304.5634 (2013).

[147] Xu, J., Zhang, Z., Friedman, T., Liang, Y., and Broeck, G. A semantic
loss function for deep learning with symbolic knowledge. In International Conference
on Machine Learning (2018), pp. 5502–5511.

[148] Xu, W., Liu, X., and Gong, Y. Document clustering based on non-negative
matrix factorization. In Proceedings of the 26th annual international ACM SI-
GIR conference on Research and development in informaion retrieval (2003), ACM,
pp. 267–273.

[149] Yang, B., Fu, X., Sidiropoulos, N. D., and Hong, M. Towards k-means-
friendly spaces: Simultaneous deep learning and clustering. In international confer-
ence on machine learning (2017), PMLR, pp. 3861–3870.

[150] Yang, Y., Xu, D., Nie, F., Yan, S., and Zhuang, Y. Image clustering using
local discriminant models and global integration. IEEE Transactions on Image
Processing 19, 10 (2010), 2761–2773.

[151] Zafar, M. B., Valera, I., Rogriguez, M. G., and Gummadi, K. P. Fair-
ness constraints: Mechanisms for fair classification. In Artificial Intelligence and
Statistics (2017), PMLR, pp. 962–970.

[152] Zenati, H., Foo, C. S., Lecouat, B., Manek, G., and Chandrasekhar,
V. R. Efficient gan-based anomaly detection. arXiv preprint arXiv:1802.06222
(2018).

136

[153] Zhang, B. H., Lemoine, B., and Mitchell, M. Mitigating unwanted biases
with adversarial learning. In Proceedings of the 2018 AAAI/ACM Conference on
AI, Ethics, and Society (2018), pp. 335–340.

[154] Zhang, H., Basu, S., and Davidson, I. Deep constrained clustering-algorithms
and advances. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases (2019), pp. 57–72.

[155] Zhang, H., Basu, S., and Davidson, I. A framework for deep constrained
clustering-algorithms and advances. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases (2019), Springer, pp. 57–72.

[156] Zhang, H., and Davidson, I. Deep descriptive clustering. In IJCAI (2021).

[157] Zhang, H., and Davidson, I. Deep fair discriminative clustering. arXiv preprint
arXiv:2105.14146 (2021).

[158] Zhang, H., and Davidson, I. Towards fair deep anomaly detection. In Proceed-
ings of the 2021 ACM Conference on Fairness, Accountability, and Transparency
(2021), pp. 138–148.

[159] Zhang, H., Zhan, T., Basu, S., and Davidson, I. A framework for deep
constrained clustering. Data Mining and Knowledge Discovery 35, 2 (2021), 593–
620.

[160] Zhang, H., Zhan, T., and Davidson, I. A self-supervised deep learning frame-
work for unsupervised few-shot learning and clustering. Pattern Recognition Letters
148 (2021), 75–81.

[161] Zhang, R., Isola, P., and Efros, A. A. Colorful image colorization. In
European conference on computer vision (2016), Springer, pp. 649–666.

[162] Zhao, H., Liu, H., and Fu, Y. Incomplete multi-modal visual data grouping.
In Proceedings of the Twenty-Fifth International Joint Conference on Artificial In-
telligence (2016), pp. 2392–2398.

[163] Zhou, C., and Paffenroth, R. C. Anomaly detection with robust deep au-
toencoders. In Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining (2017), pp. 665–674.

[164] Ziko, I. M., Yuan, J., Granger, E., and Ayed, I. B. Variational fair clus-
tering. In Proceedings of the AAAI Conference on Artificial Intelligence (2021),
vol. 35, pp. 11202–11209.

137

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Our Contributions
	Summary of the Dissertation
	A Framework for Deep Constrained Clustering
	A Self-Supervised Deep Learning Framework for Unsupervised Few-Shot Learning and Clustering
	Deep Descriptive Clustering
	Towards Fair Deep Anomaly Detection
	Fair Learning for Deep Clustering

	A Framework for Deep Constrained Clustering
	Introduction
	Related Work
	Our Deep Constrained Clustering Framework
	Deep Embedded Clustering
	Different Types of Constraints
	Preventing Trivial Solution
	Extensions to High-level Domain Knowledge-Based Constraints

	Putting It All Together - Efficient Training Strategy
	Generating Constraints from an Ontology Graph and Learning with Multiple Types of Constraints Simultaneously
	Experiments
	Datasets
	Evaluation Metric
	Implementation Details
	Experimental Results

	Conclusion, Limitations and Future Work

	A Self-Supervised Deep Learning Framework for Unsupervised Few-Shot Learning and Clustering
	Introduction
	Related Work
	Methodology
	Overview
	Step 1: Category Discovery
	Step 2: Post-Processing for Representative Data
	Virtual Instance Generation
	Iterative Training

	Experiments
	Datasets
	Implementation Details
	Unsupervised Few-shot Classification on Omniglot
	Unsupervised Few-shot Classification on miniImageNet
	How our framework improves upon the initial embeddings in terms of clustering performance.
	Benefits of data augmentations
	Benefits of category post-processing

	Conclusions

	Deep Descriptive Clustering
	Introduction
	Related Work
	Approach
	Overall Framework
	Information Maximization for Clustering
	The Cluster-level Explanation Objective
	Self-generated Pairwise Loss Term
	Overall Training Algorithm

	Experiments
	Experimental Setup
	Comparison with Descriptive Clustering
	Novel Explanation as Ontology Extraction
	Evaluating Clustering Performance
	Parameter Analysis and Ablation Test

	Conclusion and Future Work

	Towards Fair Deep Anomaly Detection
	Introduction
	Related Work
	Preliminary
	Deep Support Vector Data Description
	Notion of Fairness

	Methods
	Learning Overview
	Deep Fair SVDD Model
	Potential Extensions of Deep Fair SVDD

	Experiments
	Data Sets
	Implementation
	Evaluation Metrics and Baselines
	The Unfairness of Deep Anomaly Detection
	Evaluating Deep Fair SVDD
	The Trade-off between Fairness and Anomaly Detection Performance
	Anomaly Predictions Analysis
	Embedding Visualization
	Running Time Analysis

	Conclusions and Future Work

	Fair Learning for Deep Clustering
	Introduction
	Related Work
	Definitions of Group-level Fairness
	Notion of Fairness
	Equivalence of Optimizing Fairness and Balance Measures

	Deep Fair Clustering Algorithm
	Review of Base Clustering Model
	Generating Fair Assignments Under Group-level Fairness Constraints
	Learning to Be Fairer
	Can our Proposed Fairness Module Work for Other Clustering Algorithms?

	Experiments
	Experimental Setup
	Results Analysis
	Further Analysis on Our Model

	Conclusion

	Conclusion

