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Abstract 
 

Rule-encoding neurons in prefrontal and auditory cortex of rats  
performing a task similar to the cocktail party problem 

 
by 

 
Christopher Rodgers 

 
Doctor of Philosophy in Neuroscience 

 
and the Designated Emphasis in 

Computational Science and Engineering 
 

University of California, Berkeley 
 

Professor Michael DeWeese, Chair 
 
 
The human auditory system easily solves the “cocktail party problem” – that is, even when 
multiple people are speaking at once, we can easily select and pay attention to a single voice 
while ignoring the others. Though this seems easy to do, the problem is known to be quite 
computationally complex. It requires identifying the important sound, selecting it for special 
processing, and using information from it to make behavioral decisions; meanwhile, the other 
voices must not be allowed to distract us. 
 
How does the brain do this? In chapter 1, I review previous approaches to this question and 
motivate the choices I made in designing my experiments. In chapter 2, I present the data and 
conclusions I obtained in collaboration with my advisor, Dr Michael DeWeese. (We are 
submitting this chapter for publication separately.) In chapter 3, I present a detailed protocol 
for repeating our behavioral results. 
 
The final chapter, Chapter 4, is broader in scope. I discuss how our models and results relate to 
existing models of prefrontal control over other brain regions. Finally, I consider what my 
results have taught me about the scientific process of investigating neural function and 
ruminate on where this field may be headed next. 
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Chapter 1. Introduction 
What is attention? William James believed the answer was obvious. He defined it via an appeal 
to the common human experience: 
 

Everyone knows what attention is. It is the taking possession by the mind, in clear and 
vivid form, of one out of what seem several simultaneously possible objects or trains of 
thought. (James 1890) 

 
Over a century later, a prolific researcher in the field, Jeffrey Schall, evoked those remarks but 
proposed a rather more concrete definition. He directly equated attention with the activation 
of neurons in one particular region of the brain, the frontal eye field (FEF). 
 

While everyone may know what attention is, the description of attention in the 
neuroscience literature is rather confused…. [Attention] need be no more than the 
selective differential activation of neurons in the appropriate network that includes FEF. 
(Schall 2004) 
 

It is a commendably explicit and falsifiable definition, well-matched to the empirical and 
reductionist times in which we live. As an auditory neurophysiologist, I note one surprising 
corollary: because the FEF is a region that exists only within the visual system of primates, this 
definition excludes the possibility of attention in any non-primate or in any modality other than 
vision. 
 
In fact we and others (Ding 2012, Mesgarani 2013) believe that selective attention does exist in 
the auditory system and that it is the mechanism by which the brain solves the “cocktail party 
problem”. The cocktail party problem (Cherry 1953, Sayers 1957) may be described in this way: 
imagine you are at a cocktail party, surrounded by a din of voices, yet you only care about the 
voice of the person with whom you are speaking. The attended speaker’s voice becomes more 
salient, more clear, while the ignored voices fade away. 
 
Humans solve the cocktail party problem easily but this is an illusion: it is known to be quite 
computationally difficult and no algorithms can rival the human brain at this task (McDermott 
2009). Clearly our brains are performing some fundamental computation that we do not 
understand. A desire to identify that computation was our first motivation for joining the 
search for the cocktail party solution. Our second motivation was that this behavior provides an 
entry point into probing how the brain controls the flow of information. 
 
Somewhere in the brain, attention must “throw a switch”, allowing some sensory 
representations to rise to the level of consciousness and suppressing others. More concretely, 
some sensory stimuli (the attended voice) influence behavior, while others (the ignored voices) 
do not. The switch may be thrown extremely rapidly: in a fraction of a second one may begin 
ignoring one’s partner at the cocktail party in favor of eavesdropping on the conversation 
behind. Yet there is no known mechanism for how this may occur.  
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Synapses connect neurons in the brain; could synaptic rewiring be the underlying mechanism of 
this switch? As is so often the case in neuroscience, there is a large gap between what we know 
the brain can do, and the specific mechanisms that have been characterized in single neurons 
or circuits of neurons. Synaptic plasticity, thought be the basis of learning and memory, 
requires many pairs of pre- and post-synaptic spikes, occurring on the timescale of minutes 
(Feldman 2012), much slower than the timescale of attention. 
 
So how is the switch thrown so quickly? Despite decades of intensive research into selective 
attention, we still do not know. We began our investigations, perhaps over-ambitiously, by 
developing a completely new approach to the question. Selective attention has been almost 
exclusively studied thus far in primates, human and otherwise. Moreover the bulk of the work 
was in visual attention; data on other senses are much more scarce. We chose to work with rats 
because they are amenable to some techniques that are not feasible in primates, but we first 
had to develop a behavioral task for rats that shared at least some features with existing 
primate attention tasks. We also chose to work in the auditory system, even though much less 
is known about it than about vision, because it is the most important sense for our motivating 
cocktail party problem. 
 
I first briefly review what is known about selective attention – the preferential processing of 
important stimuli at the expense of unimportant stimuli – before discussing our results. 
 

The canonical task 
To empirically investigate a cognitive phenomenon, one must begin by defining a behavioral 
task and asserting that it requires the cognitive phenomenon of interest. If we wanted to study 
the neural basis of mathematics, why not just ask subjects to perform mathematical operations 
in their heads while we measure some aspect of their physiology? The problem is that we have 
very little control over the subject’s internal state, even in the best of circumstances.1 Only 
when we are sure that the subject is performing our task, consistently and at the limits of his 
ability, can we even begin to identify our measurements with the cognitive phenomenon we 
wish to study. 
 
Selective attention has most often been investigated using the Posner task (Posner 1980). The 
subject is presented with two visual stimuli, for instance, a grating on the left and a grating on 
the right. After a random delay period, one of them will be subtly changed – for instance, it may 
undergo a slight change in orientation. The subject must detect and report when he detects this 
target change, perhaps by pressing a lever. Critically, before the trial begins the subject is cued 
in some way that one of the two stimuli is more likely to undergo the shift. The subject must 
report the change no matter where it occurs, but it is more likely to occur at the cued location 
than at the uncued location. The fact that the cued location is more likely to contain the shift is 

                                                      
1
 “The mind is its own place, and in it self / Can make a Heav’n of Hell, a Hell of Heav’n.” John Milton, Paradise Lost, 

London: 1674. I:244-245. Print. These lines are spoken by Satan. 
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the critical difference that makes this a selective attention task, rather than a simple sensory 
discrimination.  
 
Assuming the subject is highly motivated to perform well, he will attempt to maximize his 
performance on the task. But the task can be made arbitrarily difficult by the use of increasingly 
subtle target changes; eventually, the subject will not be able to detect targets perfectly. Can 
the subject transfer cognitive resources from processing one stimulus to the other? If so, then it 
is to his advantage to do so -- to process preferentially the cued (“attended”) stimulus at the 
cost of the uncued (“ignored”) stimulus.  
 
In fact it is absolutely the case that human and primate subjects process preferentially the cued 
stimulus (Cohen 2009, Reynolds 2004). We know this because the performance on valid trials 
(during which the target occurred at the cued location) is significantly higher than the 
performance on the less common invalid trials (during which the target occurred at the uncued 
location). This classic result that has now been replicated many times under many conditions, 
and this behavioral effect is now identified with the psychological concept of selective attention 
by most researchers in the field. 
 
Note the logical flow: a cognitive phenomenon was subjectively observed; scientists invented a 
task that seemed likely to produce such a phenomenon in a subject and hypothesized that 
subjects performing such a task would show certain behavioral metrics; those metrics were 
observed. No step in this argument is rigorously proven, and it goes without saying that we 
never really know whether the personal and subjective experience of a human subject, let 
alone a non-human primate, mirrors our own private experience of choosing to pay attention 
to a stimulus. However, no one has identified a behavioral metric that falsifies the assertion 
that the Posner task does produce selective attention in the subject, and so for now it remains 
accepted theory. 
 
In part due to the success of this model, it is now difficult, or perhaps impossible, to propose an 
alternative task to probe selective attention that differs in any substantial way from the Posner 
task.  

 The target must be subtle, for instance a slight change in orientation. If the change were 
not subtle, then the subject would still detect it easily even at the uncued location. 
There would be no difference in performance between valid and invalid trials, which is 
the defining metric. Might the subject still be attending the cued location? We cannot 
know.2 

 The cue cannot be perfectly reliable, because then we would have no invalid trials to 
measure. Yet it stands to reason that the allocation of cognitive resources to the target 

                                                      
2
 If the subject is human, the experimenter can simply ask what he is attending. This is often proposed as an 

advantage of human research over animal research. This is not rigorous, because there is no way to know if the 
subject is reliably reporting his internal state. Quantitative performance metrics must be used in order to prove 
(e.g. by measuring performance on invalid trials) that a cognitive state has been produced. 
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stimulus should increase with the reliability of the cue. In this case, we would “know” 
that the subject is using selective attention, yet we would be completely unable to 
prove it! 

 
Thus, one particular issue with the Posner task is that we can never know if the observed 
results are generalizable to selective attention, or particular to the Posner task (for instance, to 
the problem of subtle targets and imperfect cues). Another issue is that it has been consistently 
difficult to dissociate the allocation of attention from the planning of saccades (eye motion), 
since saccades are typically used to indicate behavioral choice in this task. In fact, more recent 
results have suggested that these two effects are less separable than previously thought (Zénon 
2012). 
 

Our task 

A more troubling problem is that we may have strayed too far from the original motivating 
question. When asked what attention is, the man on the street would probably propose a 
situation like the following: a schoolchild is supposed to be taking notes on his teacher’s 
lecture, yet cannot help but listen to his friend beside him who is making plans for the 
weekend. It’s not clear that this maps onto the Posner task. Is the student’s performance 
contingent on detecting a subtle variation in the teacher’s voice? Is there any uncertainty in 
which person’s voice is the more important?  
 
In fact it seems that the student in such a situation faces a far more discrete choice. He is faced 
with two dichotomous choices: take notes, or talk with his friend. In either case both voices 
enter his auditory system, but the student’s behavior differs depending on which voice he 
selects. 
 
Motivated by such thoughts, we set out to design a synthetic, controlled version of the 
student’s problem. In our reduced preparation, we present the subject (a rat) with two 
simultaneous sounds on every trial (Sound A + Sound B). The rat has been previously trained on 
each sound individually and knows the correct behavioral response for each one (A means X; B 
means Y). These two behavioral responses may conflict. We resolve the uncertainty by cueing 
the subject -- telling it which of the two sounds it should select. The subject’s behavior reports 
whether it correctly selected the sound.  
 
The rat in this task is performing a non-trivial feat. On any given trial, the sensory stimuli 
presented are identical. Yet, depending on which sound we tell it to select, it correctly performs 
either action X or Y. That is, the same stimulus produced a different response. How does the 
brain produce this behavior? Somewhere, a “switch must be flipped” in order to route the same 
incoming sensory information into opposing motor production circuits. 
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Expected neural effects 

Returning to the existing literature, the predominant effect observed in the neural activity of 
subjects performing selective attention tasks is amplification of the target representation and 
suppression of the distractor (i.e., ignored stimulus) representation. This has been 
characterized in a number of different ways. 
 

Non-parametric approaches 

One approach is to build decoders: computer algorithms that are trained to predict the target 
stimulus in terms of the recorded neural activity. Increased performance of the decoder is 
taken as evidence that the target stimulus was more strongly represented, or amplified, in the 
neural activity. This has proven successful in the auditory cortex of humans solving the cocktail 
party problem (Mesgarani 2013, Zion-Golumbic 2013). 
 
The decoders may be implemented in any number of ways, and it is rarely or never claimed that 
the brain itself is using the same particular implementation. Rather, the claim is that the 
decoder’s increased performance is a metric of attentional amplification. A strength of this 
approach is that it provides a proof of principle that the target stimuli could be read out with 
greater fidelity than the distractor by at least one technique. A disadvantage is that it is rarely 
clear what exactly has changed in the neural activity, let alone how the neurons computed that 
change. 
 

Parametric approaches: changes in receptive field 

In this approach, the experimenter first parameterizes the stimulus space by fitting a model 
between the neuron’s firing rate and the luminance at every location on the retina while 
presenting a wide battery of task-irrelevant probe stimuli. The coefficients in this model are 
taken as the receptive field of the neuron – the area in stimulus space to which it responds. The 
receptive fields measured while the subject attends stimulus A or B are compared. The typical 
finding is that the receptive field more closely matches the attended stimulus’ properties 
(Reynolds 2000, Cohen 2011, David 2008). 
 
The parametric approach is satisfying in that it produces clear pictures of receptive fields and 
statistically quantifiable metrics of their change. The implicit argument is that attention works 
by changing receptive fields to better match the stimuli. But I dispute this argument.  
 

 If the probe stimuli were task-irrelevant, then they were not attended and the response 
to them cannot be a measure of attention.  

 If the probe stimuli were the task-relevant targets, then it is tautological to say that the 
neurons respond more to the target stimuli because their receptive fields changed to 
match the targets. Both claims arise from the same basic finding: that target stimuli 
elicit higher responses.  

 
The problem is that receptive fields are derived quantities that do not physically exist in the 
brain. They are a way to visualize the effects of attention, but they cannot in themselves be a 
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mechanism. If it were the case that the receptive field changes occurred because of axon 
rewiring or synaptic plasticity on the neuron’s inputs, then this could be a mechanism of 
attention. But such an explicit claim is never made, probably because it seems highly 
implausible that such rewiring could occur with the timescale and specificity required by the 
task. 
 
Just as with the Posner task behavior, I feel the argument has become circular. The question 
(how does attention work?) begat a method (estimating receptive field changes); then the 
method became the question –  the field began to focus narrowly on cataloguing and 
parameterizing receptive field changes. 
 

The topographic / gaze control model 

Perhaps the most plausible model, from a mechanistic and evolutionary point of view, is the 
topographic model (Reynolds 2004). This model explicitly relies on the retinotopic organization 
of visual cortex, which means that neural representations of the target and distractor stimuli 
are spatially segregated. The attended location is encoded in frontal areas. Topographic 
projections from frontal areas to sensory cortex may be activated such that the area of sensory 
cortex encoding the target location is receiving additional excitatory input, thus amplifying the 
stimulus representations there. An important result (Moore 2003) lends enormous credence to 
this model: electrically stimulating the area of frontal cortex corresponding to a certain location 
on the retina produces behavioral effects that are very similar to cueing that area in space. 
 
One problem with this model is that it would seem to predict an increased firing rate in sensory 
cortex even in the absence of explicit stimuli, yet such pre-stimulus firing has rarely been 
reported. Another is that it relies on topography of representation and of projection. How may 
it be applied to tasks that are not spatial, such as attending a certain color of object wherever it 
appears?  
 
More problematic is that it is unclear how this could be applied to the auditory case. In auditory 
cortex, maps are much coarser (Rothschild 2010); vocalization stimuli overlap extensively in 
acoustic frequency and thus in stimulus representation within the cortex (Ding 2012). It defies 
reason that a certain top-down projection from frontal to auditory cortex exists for every 
possible human’s voice that the subject may choose to attend. One could imagine that the 
projection could be calculated on the fly, but this is hardly more mechanistic than simply 
asserting that neurons encoding the target sound are activated. 
 

Conclusions 

What is our contribution to this? We developed a new, purely auditory, task for rats that shares 
some features with the cocktail party problem. Because our task differs from the Posner task, 
we refrain from claiming that it requires selective attention. Instead, we propose the term 
stimulus selection for our task. We discuss in detail later the formal psychological relationship 
between our task and other related tasks. 
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Instead of attempting to measure receptive fields at all, we focused exclusively on measuring 
the changes in neural response to our particular task stimuli. Finally, in order to investigate the 
role of brain regions outside of sensory cortex, we also recorded from prefrontal cortex. 
 
I next discuss in greater detail our experimental paradigm and results. 
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Chapter 2. Rule-encoding neurons in prefrontal and auditory 
cortex in a novel rodent model of the cocktail party problem3  

Abstract 
Animals can selectively respond to a target sound in the presence of simultaneous distractors, 
similar to the way in which humans can respond to one person’s voice at a cocktail party. To 
investigate the underlying neural mechanisms, we recorded single-unit activity in primary 
auditory cortex (A1) and medial prefrontal cortex (mPFC) of rats selectively responding to a 
target sound from a mixture. We found that pre-stimulus activity in mPFC encoded the 
selection rule — the sound to which the rat would respond. Moreover, electrically disrupting 
activity in mPFC significantly impaired performance. Surprisingly, pre-stimulus and stimulus-
evoked activity in A1 also encoded the selection rule, a cognitive variable typically considered 
the domain of prefrontal regions. However, stimulus tuning was not strongly affected. We 
suggest a model in which activation of a specific network of neurons underlies the selection of 
an imminent sound from a mixture, giving rise to robust and widespread rule encoding in both 
brain regions. 

Introduction 

Humans can select and respond to one person’s voice even while many others are speaking at 
the same time. We do this effortlessly, yet no known algorithm can solve this “cocktail party 
problem” in realistic settings, perhaps because we do not fully understand the relevant 
computations performed in the brain (Cherry, 1953; Sayers and Cherry, 1957; Ding and Simon 
et al., 2012; McDermott, 2009). Other social animals such as birds and rodents demonstrate a 
similar ability (Bee and Micheyl, 2008); for instance, mother mice respond to distinct pup calls 
when several are calling at once (Geissler and Ehret, 2001). Humans use selective attention, the 
cognitive process of selecting and responding to a single target stimulus amongst simultaneous 
distractors (Desimone and Duncan, 1995), to solve the cocktail party problem (Ahveninen et al., 
2011). Experiments in visual selective attention reveal that prefrontal cortex sends top-down 
“bias signals” to sensory cortex (Miller and Cohen, 2001; Moore et al., 2003) in order to select 
the target stimulus and subsequently enhance its neural representation, while suppressing the 
representation of distractors. Similar mechanisms may be at work in the auditory cortex: 
electrocorticographic (Mesgarani and Chang, 2013; Zion Golumbic et al., 2013) and 
magnetoencephalographic (Ding and Simon, 2012) recordings show that brain activity is 
dominated by the attended voice. Without recordings from single neurons it is difficult to 
ascertain what changes on the single-neuron level give rise to these effects. 
 
Towards this goal, we have developed a new behavioral task for rats with three key properties. 
First, on each behavioral trial the subject hears a pair of simultaneous sounds, each drawn from 
a different category (e.g., white noise bursts vs. warbles). Second, the experimenter can 
indicate which sound the subject should select in order to receive a reward. Third, the subject 

                                                      
3
 This chapter was co-written with my advisor, Dr Michael DeWeese, and will be submitted for publication 

separately. 
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then selects and responds to the correct sound from the pair. This means that the subject must 
be capable of selecting either of the two sounds upon demand, and in fact must be able to 
switch multiple times during a single behavioral session. This task requires cognitive flexibility 
because the same pair of stimuli demands a different behavioral response (“same stimulus; 
different response”) depending on which sound we require the subject to select. We are aware 
of no purely auditory single-unit studies in any animal satisfying these three conditions. The 
analogous ability in vision — to respond to a behaviorally relevant stimulus in the presence of 
competing distractors — has been referred to as stimulus selection (Knudsen, 2007; Reynolds 
and Chelazzi, 2004; Pestilli et al., 2011); following this, we refer to our task as auditory stimulus 
selection. 
 
Similar visual and cross-modal tasks have been termed set shifting (Stoet and Snyder, 2004), 
task switching (Sasaki and Uka, 2009), and selective attention (Moran and Desimone 1985; 
Hocherman et al., 1976; Otazu et al., 2009). An alternative name for this type of task is stimulus 
feature selection, since two simultaneously presented sounds may be perceived as a single 
sound with two features. Other studies have investigated “response selection”: how decisions 
are translated into appropriate motor actions, following stimulus selection or even in the 
absence of an explicit stimulus (Young and Shapiro, 2011; Turken and Swick, 1999). We also 
note a similarity between our task and the Wisconsin Card Sorting Task for diagnosing disorders 
of executive function (Monchi et al., 2001). Our behavioral paradigm shares attributes with all 
of these, but for consistency we will refer to our task as stimulus selection below. 
 
Although monkeys are the traditional model organism of choice for complex cognition (Gold 
and Shadlen, 2007), rodents are capable of sophisticated decision-making, in some ways very 
similar to humans (Raposo et al., 2012; Brunton et al., 2013; Zariwala et al., 2013). Rodents also 
show behavioral flexibility under the control of the prefrontal cortex (Karlsson et al., 2012; 
Kvitsiani et al., 2013; Young and Shapiro, 2011), even though this region is not necessary for 
simple sensory discriminations (Pai et al., 2011). The mPFC in particular appears to be critical 
for task switching (Birrell and Brown, 2000; Floresco et al., 2008; Durstewitz et al., 2010; 
Ragozzino et al., 1999). For example, when rats learn to switch the navigational strategy they 
use to solve a maze, the mPFC encodes this switch and inactivating the area severely disrupts 
performance (Rich and Shapiro; 2009). Rodent mPFC thus appears to maintain a representation 
of the current task rule, analogous to the rule-encoding neurons observed in primate PFC 
(Wallis et al., 2001; Asaad et al., 2000; Johnston and Everling, 2007), although large parts of the 
monkey PFC appear to be functionally and anatomically unique to primates (Wise, 2008). 
 
Frontal areas have been shown to play an important role in directing flexible auditory 
processing in A1 (Fritz et al., 2010). In that paradigm, ferrets were trained to detect tones at a 
specific target frequency, which resulted in rapid task-related plasticity (tuning changes) in A1 
and increased functional connectivity with frontal areas (Fritz et al., 2010; Fritz et al., 2003). 
Moreover, the ferrets could rapidly switch between different auditory tasks and the character 
of the observed tuning changes matched the demands of each task (Fritz et al., 2005, Fritz et 
al., 2010). These experiments shed light on the mechanisms of attending to acoustic frequency 
and revealed A1 to be surprisingly dynamic for a primary sensory area, but the behaviors used 
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were not stimulus selection according to our criteria. In our task, stimuli are always presented 
simultaneously rather than sequentially, and a stimulus used as a distractor on one trial can be 
the target on subsequent trials.  
 
We are unaware of any single-unit studies of purely auditory stimulus selection in any animal. A 
model of this ability in rodents would be especially useful because of the relative ease and 
speed with which they can be trained on cognitively demanding tasks (Carandini and 
Churchland, 2013) and as a first step toward more complex behaviors, such as selective 
attention, which has traditionally been studied only in primates. Finally, many models of visual 
selection are not obviously applicable to the auditory modality — for instance the idea that 
visual attention co-opted the neural mechanisms for shifting gaze over evolutionary time. 
Establishing an auditory selective attention paradigm could shed more light on whether the 
known mechanisms of visual selection are universal or specific to one modality.  
 
Toward these goals, we recorded from individual neurons in both mPFC and the primary 
auditory cortex (A1) of rats performing our task. We found that the pre-stimulus, anticipatory 
activity of our recorded neurons in mPFC encoded which sound would be selected. Surprisingly, 
we also found this pre-stimulus effect in a sizable fraction of our recorded neurons in A1. 
Finally, stimulus-evoked activity in both brain regions was similarly modulated, although this did 
not appear to alter tuning properties in a way that would be obviously beneficial for responding 
to the selected sound. 

Results 

A novel behavioral task for rodents: auditory stimulus selection     

We developed an auditory stimulus selection task for rats, in which the subject was trained to 
respond to either of two simultaneously presented sounds.  
 
The rat initiated each trial (Figure 1A) by holding its nose in the center port of a three-port 
behavior box for at least 250 ms — the “hold period.” This triggered speakers on the left and 
right to play in stereo one of the following four equally likely stimulus pairs: LEFT+HIGH, 
RIGHT+HIGH, LEFT+LOW, or RIGHT+LOW (Figure 1B). Each stimulus pair was a simultaneous 
combination of a broadband noise burst from either the LEFT or RIGHT speaker, and either a 
HIGH- or LOW-pitched warble (frequency-modulated tone). After the onset of stimulus 
presentation, the rat could then choose to “go left” (poke its nose in the left port), “go right” 
(poke its nose in the right port), or “nogo” (not poke either side). Correct pokes into the side 
ports were rewarded with water; incorrect pokes were penalized with a 2-6 s timeout 
(Methods).  
 
On each trial, one of the sounds in the stimulus pair (the “target”) indicated the correct 
response but the other sound (the “distractor”) was uninformative. To indicate which sound 
the rat should select, the behavioral session alternated between “localization” blocks of trials 
(during which the noise burst was the target) and “pitch discrimination” blocks (during which 
the warble was the target). Each block consisted of 80 trials (Figure 1C), the first 20 trials of 
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which were reserved to indicate the block change. During these 20 “cue trials,” the rat heard 
only target sounds without any distractor. Behavioral controls (Figures S2B, S2C) showed that 
the rats responded to the target sound, not to the target/distractor combination.  
 
We refer to this task as auditory stimulus selection, by which we mean that the rat selectively 
responds to one of two simultaneous sounds on any given trial. Importantly, a stimulus 
selection task requires the subject to be able to select either of the two sounds, depending on 
which one the experimenter designates as predicting reward. This designation could be 
accomplished with cues presented before the start of each trial, but in our task we use a block 
design with no explicit pre-trial cue, so the rat must use its recent reward history to determine 
which sound it should select.  
 
Stimulus selection — selectively responding to a behaviorally relevant target in the presence of 
distractors — is one component of selective attention, a broader and more complex ability that 
also includes perceptual enhancement (Knudsen, 2007; Reynolds and Chelazzi, 2004; Pestilli et 
al., 2011). We feel that tasks requiring sustained tracking (Mitchell et al., 2007) or the enhanced 
detection of faint stimuli (Cohen and Maunsell, 2009) are the gold standard of selective 
attention research. Nonetheless, our task represents an important step forward; we are aware 
of no other paradigms to study stimulus selection in rodents, nor any single-unit studies of 
purely auditory stimulus selection in any animal. 
 

Rats perform the task well above chance 

We ensured that the rats were in fact selecting the correct target sound by verifying that their 
behavioral response was driven by the target sound, significantly above chance and significantly 
more than it was driven by the distractor sound, and also that they were not using the same 
stimulus/response strategy in both blocks. Some strategies allow 50% performance without 
using any information from the target, such as always going to the choice port for the current 
block even in response to a nogo target, a strategy that we commonly observed in rats before 
they were fully trained. For this reason we verified that performance was significantly and 
consistently greater than 50% in both blocks, and also that the animals were responding to the 
target sound and not the distractor (Methods), before and after implanting the recording 
electrodes. This typically required about 40 one-hour training sessions, for up to eight weeks. 
Our best rats’ typical performance during recording sessions was approximately 85% in both 
blocks (Figure 2). In general, the rats performed well above chance, rapidly and correctly 
changing which sound they selected after each block change. 
 
Because our task associates a different choice/reward port with each block, a different 
distribution of motor responses is required in localization (50% go left, 50% nogo) than in pitch 
discrimination (50% go right, 50% nogo). We note two consequences of this. First, this allows us 
to identify an interesting type of error trial on which the rat appeared to respond to the wrong 
sound. On such “interference” trials, the rat heard a “go” distractor (i.e., a sound to which the 
rat should respond with a GO response in the other block) and incorrectly went to the choice 
port associated with that distractor, instead of doing what the target sound indicated. We later 
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analyze the neural correlates of this error. Second, it is plausible that the rat’s motor plan 
differs between the blocks. There is a similarity in this sense between our task and some 
blocked visual spatial attention tasks, in which 80% of the trials require a saccade in the same 
direction (Cohen and Maunsell 2009). It can be difficult to tease apart response selection from 
stimulus selection (but see Erlich et al., 2011; Sato and Schall, 2003; Steinmetz and Moore 
2012). We return to this issue later. 
 

Anticipatory neuronal activity in mPFC encodes the selection rule 

We next asked what differences in neuronal activity between blocks correlated with the 
selection of the target. We implanted tetrodes into A1 and/or mPFC and recorded single-unit 
action potentials (spikes) from multiple neurons during behavior. By analogy with the rule-
encoding neurons in primate prefrontal cortex, we hypothesized that mPFC would encode the 
selection rule. That is, we expected that the firing rates of single mPFC neurons would differ 
significantly between localization and pitch discrimination trials. We first confined our analysis 
to the hold period, the interval before stimulus onset while the rat is holding its nose in the 
center port and presumably preparing to select the target sound from the imminent stimulus 
pair. 
 
We found that the hold period activity of a majority of mPFC neurons robustly encoded the 
selection rule on correct trials. An example unit (Figure 3A) fired significantly more (p < 0.001, 
Mann-Whitney U-test) in the hold period during localization trials (mean: 12.1 Hz) than it did 
during pitch discrimination trials (mean 7.2 Hz). A different but simultaneously recorded single 
unit in mPFC (Figure 3B) fired significantly more during pitch discrimination (mean 5.4 Hz) than 
during localization (mean 2.7 Hz). In both cases the effect persisted across the entire session of 
over 1300 trials, alternating with each block just as the behavior did. Across our recorded 
population of mPFC neurons, 63% (76/121) of the neurons individually and significantly 
encoded the selection rule during the hold period (Figure 3C). Of these, 36 neurons preferred 
(i.e., fired more during) localization and 40 preferred pitch discrimination; neither preference 
was significantly more common (binomial test, p > 0.05).   
 

Anticipatory neuronal activity in A1 also encodes the selection rule 

Surprisingly, we also found a similar effect in A1 (Figure 4). Although encoding of selection rule 
was our hypothesized result in mPFC, this was unexpected in A1, especially given the absence 
of auditory stimulation in the pre-stimulus period. Across our recorded population, 36% (36/99) 
of A1 neurons encoded selection rule. As with mPFC, neither population was significantly larger 
(13 preferring localization, 23 pitch discrimination; binomial test, p > 0.05). Since A1 is known to 
encode many types of sounds in a sparse fashion (DeWeese et al., 2003; Hromádka et al., 2008; 
Carlson et al., 2012), we were not surprised to observe that only some of our recorded neurons 
in A1 significantly responded to our task stimuli (Supp. Info.). However, rule encoding was 
approximately equally widespread in both stimulus-responsive (14/49) and non-responsive 
(22/50) neurons. This finding is reminiscent of human imaging results suggesting that neurons 
in auditory cortex may carry top-down attention signals even in the absence of stimulus 
information (Ahveninen et al., 2011). 
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These effects were strong: among the significantly rule-encoding neurons, the median increase 
in firing rate during the preferred block was 74.7% in mPFC and 99.7% in A1. We controlled for 
the possibility that these results in either brain region could be explained by firing rate drift 
over the course of the session or by spike sorting errors arising from small differences in spike 
waveform shape between blocks (Supp. Info.). We did not observe clustering or any other 
topographic organization of neurons preferring the same block, which implies that these effects 
could have been obscured in multi-unit recordings. In sum, these results demonstrate 
widespread and robust encoding of selection rule in the pre-stimulus activity of both mPFC and 
A1 neurons. 
 

Motor preparation 

The mPFC regulates cognitive state, but it also plays a role in motor planning (Erlich et al., 
2011). A classic result (Euston and McNaughton, 2006) showed that PFC neural activity, 
apparently related to working memory, could actually be well-explained solely in terms of 
behavior variability. We analyzed video of our subjects and found evidence of preparatory 
changes in head angle that differed between blocks (Supp. Info.). However, unlike the results of 
McNaughton and colleagues, we found that the block rule explained more of the variability 
than head angle did in the vast majority of rule-encoding neurons (Figure S3G-J, S4G-J). 
 
We propose an alternative hypothesis: instead of behavioral context driving postural changes 
that in turn drive mPFC activity, it could be that behavioral context drives both mPFC activity 
and adaptive postural changes. Our analysis lends credence to this hypothesis. However, the 
potentially confounding role of motor planning remains an important consideration for 
interpreting recordings from prefrontal and even, given our results in A1, sensory cortex. 
 

Error trial analysis   

In the previous sections we considered only correct trials. We next considered interference 
trials, during which the rat erroneously chose the port associated with the other block, 
suggesting that it was selecting the wrong sound from the mixture. If encoding of selection rule 
in the anticipatory activity is important for successful stimulus selection, then the encoding 
should be weaker or even reversed when the rat selected the wrong sound.  
 
In mPFC, the encoding of selection rule was significantly weakened on interference trials, versus 
correct trials (Figure 3D). In A1, we observed a more extreme effect (Figure 4D): the rule 
encoding was actually reversed on interference trials, meaning that firing rates were greater 
during the non-preferred block on such trials. These observations are consistent with the idea 
that anticipatory activity predicts which sound the rat will respond to, even for trials on which 
the rat appears to respond to the distractor by going to the wrong choice port. Although the 
activity thus predicts a motor response to the block-irrelevant port, it does not differ between 
trials where the rat ultimately goes to the block-relevant port (correctly or incorrectly) or 
chooses the nogo response (Figures S3C, S4C). 
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Within-trial timescale of the encoding of the selection rule  

We next asked how long before the stimulus the encoding emerged, and for how long 
afterwards it persisted. For each rule-encoding neuron, we compared across blocks the 
smoothed firing rates in every 50 ms bin before and after the stimulus onset, up to plus or 
minus 3 seconds from the stimulus onset. We thereby determined the largest interval of time 
around the hold period during which the neural activity significantly encoded the selection rule. 
Across the dataset, the median inter-trial interval was 4.0 s (inter-quartile range: 2.7 s to 5.3 s) 
and so this time range (plus or minus 3 s) will overlap with the previous and/or next trial in 
many cases. 
 
The temporal dynamics of the encoding varied widely across neurons in both regions (Figures 
5A, B). For some neurons, rule encoding was strictly confined to the hold period: their firing 
rate was modulated only in the immediate pre-stimulus period. Other neurons showed 
significant encoding at all time bins tested: their firing rate was persistently elevated 
throughout the preferred block. We found neurons spanning this range of timescales in both 
brain areas. In A1, the median rule-encoding unit first developed a significant block preference 
0.55 s pre-stimulus (IQR: 0.15 to 1.2 s); in PFC the median was 0.625 s pre-stimulus (IQR: 0.34 to 
1.0 s). That is, the majority of rule-encoding neurons developed this property well before the 
rat initiated a trial by center-poking. 
 
To examine the typical dynamics within each population and to determine which brain area first 
encodes the selection rule, we averaged the normalized activity (mean: 0, variance: 1) of all 
rule-encoding neurons in both brain regions during their preferred block. On average, the 
population activity ramped up gradually before stimulus onset, over a timescale of several 
seconds, and then fell relatively quickly afterward (Figure 5C). The activity in mPFC was first 
significantly elevated 2.4 seconds before stimulus onset, while population activity in A1 became 
elevated 0.78 seconds before stimulus onset. That the effect occurs first in mPFC is consistent 
with its hypothesized role as the origin of top-down bias signals to sensory cortex (Miller and 
Cohen, 2001); however, we emphasize that the wide variability in timescale within both 
regions, and the fact that only a minority of our dataset was collected in simultaneous A1/PFC 
recordings, complicates a direct comparison between brain regions. 
 

Encoding of behavioral choice 

We found a prominent difference between the firing rates on GO and NOGO trials, beginning 
around the time the rat left the center port and continuing for several seconds (Figure 5D). 
During each rule-encoding unit’s preferred block, its firing rate remained elevated on NOGO 
trials for several seconds, during which time the rat was generally beginning the next trial. In 
contrast, on GO trials, the unit’s firing rate rapidly fell, and in fact remained below its long-term 
mean firing rate for several seconds, during which time the rat was typically moving to the 
reward port and consuming reward. 
 
One interpretation of this result is that rule-encoding is particularly important for producing the 
NOGO response. In this model, once the animal perceives the GO stimulus, the rule-encoding 
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disappears and the GO response is produced. Another interpretation is that the rule-encoding is 
persistent on NOGO trials because the animal is already preparing to begin the next trial less 
than a second later, whereas on GO trials the animal no longer needs to encode the rule 
because it is simply moving to the reward port to consume water. 
 
The data do argue against one particular model. The observed anticipatory effect are unlikely to 
be a pre-emptive encoding of motion to the block-relevant port (e.g., go left during the 
localization block) because the firing rates differ greatly pre- and post-stimulus on GO trials. It 
could be the case that the encoding of motor plan is inversely correlated with encoding of the 
subsequent motor act, but this is inconsistent with the traditional notion of motor plan. 
 

Changes in baseline activity correlate with similar changes in evoked activity 

Given that the pre-stimulus activity encoded the selection rule, we next assessed whether the 
stimulus-driven activity in A1 differed between blocks. We first defined the evoked response 
window of each neuron as the period of time after stimulus onset during which the firing rate 
was significantly elevated above the pre-stimulus rate (Supp. Info.). The evoked response on 
each trial was then defined as the number of spikes emitted during this window. We analyzed 
the mPFC neurons in the same way and found a population of neurons showing auditory 
responses to our task stimuli that were low-latency and tightly locked to stimulus onset, similar 
to A1 (Figure 6A, B). Such neurons were rarer in PFC than in A1, though not significantly so (PFC: 
31/90, A1: 49/99; p > 0.05, Fisher’s exact test). Evoked responses were significantly weaker in 
PFC (Figure S6). 
 
Based on the previous results, in which we found that the increased firing rate during the 
preferred block often persisted for a period of time after stimulus onset, we expected that the 
evoked firing rate would also be higher during the preferred block. In both regions, this is 
indeed the case: an increase in pre-stimulus firing rate during one block correlates with an 
approximately equal increase in evoked firing rate during the same block (Figure 6C, D; 
exemplar: Figure 4B). 21% (9/43) of A1 neurons and 24% (4/17) of PFC neurons showed a 
significant elevation of evoked response during their preferred block. We note that this analysis 
had less power than the pre-stimulus analysis because of the additional variability introduced 
by the stimulus dependence (Supp. Info.). 
 
We next used an ideal decoder analysis (Methods, Figure 6E) to ask whether the recorded 
neurons encoded the identity of the noise burst or warble with greater fidelity in either block, 
either due to changes in stimulus tuning, the baseline elevation described above, or some other 
effect.  We can decode the identity of both the noise burst and the warble from the evoked 
responses in A1 (n=57 neurons in 22 simultaneous ensembles) and PFC (n=25 neurons, 13 
ensembles). The A1 neurons provide a significantly better source of data from which to decode 
the sound identity, probably due to their stronger responses and tighter stimulus selectivity. 
However, for both brain regions and both sounds, we cannot decode the sound any more 
accurately from the localization trials than from the pitch discrimination trials. Other versions of 
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this analysis yielded generally similar results, even when we separately considered neurons 
preferring each block (Supp. Info., Figure S6F). 
 
We conclude that, although neurons showing an increased pre-stimulus firing rate in one block 
generally showed an equivalent increase in the evoked rate during the same block, these 
changes in evoked rate do not obviously improve the detectability of the target sound. 
However, we note that our ensembles of neurons provided useful information about the 
identity of both sounds, and the brain has access to a pool of neurons orders of magnitude 
larger than our recorded population. It may be that the problem faced by cortex in this task is 
not to maximize the information available about the stimuli in individual neurons, but rather a 
wiring problem of how to flexibly re-route the relevant stimulus information to the relevant 
motor neurons at every block change. 
 

Disruption of mPFC significantly impairs task performance 

mPFC has been shown to be required for many task switching paradigms, which prompted us to 
ask whether it is required for our task. To answer this question, we developed an electrical 
disruption technique, inspired by transcranial magnetic stimulation (TMS) in humans (Dayan et 
al., 2013). We first implanted the mPFC of three trained animals (rats Z1, Z2, and Z3) with 
extracellular stimulating electrodes. On 20% of trials (“zap” trials), we injected a 10Hz train of 
current pulses during both the hold period and the duration of the auditory stimulus. Such 
electrical stimulation drives an extremely rapid activation of nearby neurons, followed by a 
slower suppression of firing rates (Logothetis et al., 2010) for a few hundred milliseconds. Thus, 
this approach neither “silences” nor “activates” the brain region, but rather disrupts the normal 
firing rates and patterns.  
 
Typically, pharmacological agents such as muscimol are used to test whether neural activity is 
necessary for a certain behavior. Electrical disruption allows much finer control over the 
strength and timing with which we can perturb the circuit. We were able to stimulate during a 
desired subset of trials, for a certain time range (i.e., throughout the center-poke hold and 
auditory stimulus presentation), while sparing activity the rest of the time. This provided us 
with a statistically powerful within-session control. 
 
Across all three animals, electrical disruption tended to impair performance (Figure 7) in both 
localization (mean impairment 5.4% in Z1, 12.4% in Z2, and 27.5% in Z3) and pitch 
discrimination (19.1% in Z1, 18.7% in Z2, 13.0% in Z3). This impairment was significant across 
sessions (p < 0.05, binomial test) for pitch discrimination in 3/3 rats (Z1, Z2, and Z3) and for 
localization in 2/3 rats (Z2 and Z3). Electrical disruption largely, though not exclusively, affected 
performance on NOGO trials. All rats were impaired on pitch discrimination NOGO trials in 
almost all sessions (Z1: 6/6, Z2: 8/8, Z3: 7/8 sessions). Some rats also exhibited additional 
impairments: Z3 was impaired on localization NOGO (8/8 sessions) and Z2 was impaired on 
localization GO trials (Z2, 8/8 sessions). These effects were generally quite strong within 
individual sessions (Figure 7B) even though they varied between rats. Taken together, these 
data suggest that, in the absence of normal mPFC activity, each rat resorts to its default 
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strategy (typically “always GO”) in one or both blocks. Normal activity in mPFC is therefore 
important for good performance in our paradigm, but the strong impairment on NOGO trials in 
particular made it difficult to ascertain whether stimulus selection in particular was impaired, as 
opposed to impulse control, or some other aspect of the task (Supp. Info.). 
  

A simulated network model demonstrates how modulation of anticipatory 
activity could solve the stimulus selection problem 

Our data suggest a simple model of how the brain might perform stimulus selection, which we 
have elaborated into a quantitative simulation as a proof of principle. The model 1) requires 
only random stimulus tuning in A1; 2) does not require tuning changes or synaptic reweighting 
after the initial training phase; 3) uses only excitatory connections, consistent with the 
observation that most long-range projections in the brain are excitatory. 
 
The model (Figure 8) consists of a population of N neurons in A1, randomly tuned for each of 
our four stimulus pairs. The activation of each A1 neuron was subject to additive Gaussian 
noise. The “sensory SNR”, defined as the ratio of the strength of this noise to the strength of 
the stimulus tuning, is a free parameter. Half of the neurons are arbitrarily assigned to each of 
the two tasks. Each subpopulation projects to two command neurons encoding the two 
possible behavioral responses during that block (e.g., go left and nogo). Each projection is 
trained to activate the correct command neuron using a least-squares fit constrained to use 
only positive (excitatory) weights. The actual behavioral choice is determined by which 
command neuron is the most active (“winner-take-all”). 
 
After the training phase, the synaptic weights are fixed and a new set of test stimuli are 
presented. To produce the block-appropriate response, a “task signal” is added to the 
activations of the neurons in the appropriate A1 subpopulation for the current block, as 
indicated by either the red or blue neurons in Figure 8. Because all feed-forward weights are 
positive, adding this task signal translates into an excitatory boost to the premotor neurons 
appropriate for that block. Thus, even without any synaptic reweighting, the model will tend to 
choose the response appropriate for the current block and stimulus. With 320 neurons, the 
network performs above 80% correct even with a signal-to-noise ratio (SNR) as low as 0.0625 
(i.e., very weak sensory responses in each neuron relative to its internal noise). Increasing the 
network size can lower this SNR limit even further. 
 
This demonstrates that anticipatory modulation can be part of a scheme that is capable of 
solving the task switching problem, even with weak sensory responses and “random but fixed” 
tuning in A1, in which each subpopulation consists of randomly tuned neurons that do not 
change their tuning between blocks. 
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Discussion 

Auditory stimulus selection: task switching between conflicting auditory 
discriminations 

When human listeners hear two simultaneous voices they can selectively respond to either one.  
This is a complex ability, and our task models one part of it — selecting and responding to one 
of two simultaneous sounds. Our subjects can voluntarily switch which sound they select, and 
do so at each block change within a single recording session. The rats learned the task with less 
than eight weeks of training and performed many trials per session (median: 698; inter-quartile 
range: 507 to 912). To our knowledge this is the first published example of rodents performing 
such a stimulus selection task in any sensory modality. 
 
Previous studies have identified critical roles for mPFC in behavioral flexibility in several 
contexts. For example, elegant work (Rich and Shapiro, 2009) established not only that the 
mPFC encodes the switches in navigational strategies (“go east” vs “turn right”) that rats use to 
solve a maze, but also that inactivating this region impairs severely and selectively their ability 
to perform the switch. Other studies of task switching in rodents required them to switch 
between a sensory discrimination and a (potentially habitual) fixed response (“follow the light” 
vs “always go left”; Floresco et al., 2008; Durstewitz et al., 2010). Many researchers are 
interested in extending these results to task switching between sensory discriminations, but it is 
often challenging to induce the switch when it requires ignoring a previously trained stimulus. 
Even in cross-modal switching, where the targets and distractors come from entirely different 
modalities, strong cueing mechanisms (violating our “same stimulus; different response” 
condition) have been used to induce the switch: introducing novel stimuli (Birrell and Brown, 
2000), deleting distractors (Otazu et al., 2009), or changing the behavioral arena completely 
(Haddon and Killcross, 2007). Finally, most previous studies required rats to shift no more than 
once per session, sometimes just once per lifetime, while our study requires multiple switches 
per session. We believe our task advances the study of task switching in rodents to be much 
closer to the standard set by human and non-human primate studies.  
 
Despite its clinical and computational relevance (Ding and Simon, 2012), the auditory cocktail 
party problem remains less studied than comparable visual tasks. Even in primates we are not 
aware of any single-unit studies of purely auditory stimulus selection. A multi-unit study 
(Lakatos et al., 2013) required monkeys to sustain attention to streams of pure tones; however, 
the researchers found that the monkeys were unable to ignore the distractor stream if it was 
within 1.5 octaves of the target stream. Human voices, even those with very different pitch, are 
much closer than this and actually overlap extensively in acoustic frequency (McDermott, 
2009). For this reason, we believe animal models of this ability should use stimuli that, like ours, 
overlap at least partially in frequency and require solutions not based purely on frequency 
separation. In sum, we believe our task represents an important first step toward 
understanding the cocktail party problem in rats, paving the way toward future studies with the 
modern tools available in rodent models (e.g., the use of viral vectors expressing light-gated ion 
channels in specific brain regions or genetically-identified cell types). 
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Anticipatory activity in both mPFC and A1 encodes the selection rule 

We found that rodent mPFC robustly encode the subject’s selection rule, analogous to the rule-
encoding role of primate prefrontal cortex (Asaad et al., 2000; Wallis et al., 2001; Johnston and 
Everling, 2007). Rule encoding develops in our recorded mPFC population over 2.5 seconds 
before the stimulus onset, as the rat is planning to initiate a trial or even finishing the previous 
trial. The widespread nature of the encoding and the broad timescales over which it persists are 
perhaps surprising because only one bit of information needs to be encoded — pitch 
discrimination or localization — and this information is only necessary while making a decision 
on each trial. One possibility is that this persistent activity represents a memory trace of the 
selection rule (Funahashi et al., 1989), meaning that it densely and persistently encodes 
cognitive variables like selection rule. In fact, the cortex may shift to a completely different 
network state (Karlsson et al., 2012) depending on which stimulus the rat plans to select. 
 
We also observed anticipatory encoding of the selection rule in primary auditory cortex (A1), a 
surprising result since encoding of selection rule in the absence of sensory stimulation has 
traditionally been considered the domain of prefrontal areas. However, attention is known to 
modulate the pre-stimulus activity of single neurons in monkey V2 and V4, although not in V1 
(Luck et al., 1997; Reynolds et al., 2000). At a larger spatial scale, visual attention can produce a 
similar increase in pre-stimulus baseline in V1, as assessed both with fMRI in humans (Pestilli et 
al., 2011) and with voltage sensitive dye in monkeys (Chen and Seidemann, 2011). Higher visual 
cortex also shows pre-stimulus modulation by attention in humans (Pestilli et al., 2011; Kastner 
et al., 1999; Thut et al. 2006). More generally, single neuron activity in primary sensory cortex 
can anticipate reward (Shuler and Bear, 2006) or a motor response (Niwa et al., 2012), and 
anticipation of a visual stimulus can trigger a hemodynamic response in V1, though without a 
corresponding change in neural activity (Sirotin and Das, 2009). In this light, perhaps it is not 
surprising that primary sensory cortex could also encode the selection rule for an imminent 
stimulus. In this way both the information about the stimulus and the information about how 
that stimulus should be interpreted are encoded in the same neurons, providing a possible 
locus for the behavioral decision to be made. 
 
We observed a surprising amount of similarity between A1 and mPFC, both of which showed 
robust encoding of the selection rule and of behavioral choice (Figure 5D). In monkeys, 
attention effects become more prominent higher in the visual hierarchy (Luck et al., 1997). In 
contrast, our results show that rat A1 already robustly encodes a non-sensory variable, very 
similar to mPFC. This could be a difference between rats and monkeys, or between auditory 
and visual cortex, or both. Disambiguating these possibilities will be an important direction for 
future work. 
 

Comparison with studies of selective attention and task-relevant plasticity 

This pre-stimulus change in baseline contributed in an additive way to the strength of the 
sensory-evoked responses in both A1 and PFC; however, we found limited evidence for any 
additional modulation of sensory-evoked responses in A1. For example, the neurons did not 
appear to encode the target stimulus with any greater fidelity than the distractor stimulus. This 
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is consistent with some, but not all, previous studies of auditory task switching. Although 
neuronal activity in A1 is robustly modulated in the aroused/engaged behavioral state versus 
the passive/idle state (Otazu et al., 2009; Lee and Middlebrooks, 2011), the neuronal effects of 
shifting between different engaged behaviors tend to be weaker or even non-existent. For 
instance, switching between an auditory task and an olfactory or visual task does not change 
evoked spiking auditory responses in A1 (Otazu et al., 2009; Lakatos et al., 2009), and switching 
between temporal and spatial auditory discriminations does not significantly change spatial 
tuning in A1 (Lee and Middlebrooks, 2011). Nonetheless, the fact that these studies (and ours) 
found no evidence of tuning changes in A1 does not mean that they do not exist under some 
circumstances. 
 
In fact, a series of pioneering experiments demonstrated task-relevant plasticity in A1 of ferrets 
trained to detect a target frequency (Fritz et al., 2003; Fritz et al., 2010). One important 
methodological difference is that their study, unlike ours, made use of a large battery of probe 
stimuli and was therefore optimized to detect receptive field changes, including those affecting 
only task-irrelevant stimuli. Intriguingly, this plasticity was nuanced: it could induce facilitation 
or, alternatively, significant suppression at the task-relevant frequency. Facilitation was more 
common than suppression, but the use of a different reinforcement paradigm reversed this 
(David et al., 2012). More studies of complex auditory behaviors will be necessary to better 
understand the factors that determine whether a given behavioral paradigm produces task-
related modulation of evoked spiking responses in auditory cortex. 
 
The lack of evidence for tuning modulation in our data is a surprising result, given that visual 
selective attention enhances target representations and suppresses distractors in V4 and other 
visual areas (Cohen and Maunsell, 2011; David et al., 2008; Mitchell et al., 2007; Reynolds and 
Heeger, 2009). However, selective attention consists of two component processes with 
separate behavioral measures: stimulus selection and perceptual enhancement (Knudsen, 
2007; Reynolds and Chelazzi, 2004; Pestilli et al., 2011). Target-enhancing modulation of evoked 
responses is believed to mediate perceptual enhancement (although see Zénon and Krauzlis, 
2012), as assessed behaviorally by a lower threshold or steeper psychophysical curves (Cohen 
and Maunsell, 2009; Moore et al., 2003). This predicts that only tasks that require perceptual 
enhancement will produce such effects. 
 
In contrast, stimulus selection is often investigated with easily detectable stimuli far above 
threshold (Hocherman et al., 1976; Stoet and Snyder, 2004) and such studies, like ours, often 
find no modulation of evoked responses in sensory cortex (Sasaki and Uka, 2009; Mante et al., 
2013). It may be that stimulus selection is the dominant computational challenge in such tasks 
and perceptual enhancement is therefore less important. Similarly, the cocktail party problem 
is often difficult because all voices are of competing intensity, not because the target voice is 
barely audible. Additive, pre-stimulus baseline increases have been observed in V1 during 
attention-demanding tasks and may lead to efficient stimulus selection (Chen and Seidemann 
2012; Pestilli et al., 2011); our data support a similar hypothesis in A1. In summary, while the 
mechanisms by which selective attention mediates perceptual enhancement remain an 
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important area of inquiry, enhancement of sensory evoked responses in A1 may not be 
necessary for our task or other similar stimulus selection paradigms. 
 

Stimulus selection via activation of latent circuits for each target   

Based on our results, we propose a model for stimulus selection based on task-specific 
activation of latent circuits, rather than task-specific adaptation of a single circuit. We found 
subpopulations of neurons in both A1 and mPFC — one activated during the localization block, 
the other during the pitch discrimination block. The signature of this activation is increased 
baseline activity. However, they do not change their tuning for specific stimuli. We hypothesize 
that the difference between the circuits is their downstream connectivity: each circuit may 
project to separate circuits in a downstream effector region, perhaps the striatum since the 
corticostriatal projection plays an important role in auditory decisions (Znamenskiy and Zador, 
2013). In this model, only one circuit is activated at a time, via feedforward excitation perhaps 
originating in mPFC, and only this circuit has sufficient baseline activity to drive behavior. 
 
Our model makes several testable predictions. First, there should exist “premotor” neurons 
(possibly in the striatum) receiving input from A1 that also show a block-dependent 
anticipatory modulation. Second, neurons in A1 and in striatum showing the same block 
preference should be more strongly connected than those showing the opposite block 
preference. Finally, specific activation of one of the subpopulations in mPFC, A1, or striatum 
should specifically bias behavior toward the block preferred by that subpopulation. However, 
such a manipulation would require a means of stimulating only those neurons that can be 
functionally identified by their anticipatory firing rate, perhaps by expressing light-gated ion 
channels in the appropriate populations. Possibly activity-dependent promoters such as cFos or 
other immediate early genes could be used to this effect.  
 
In some ways, this model is more parsimonious than the traditional tuning change model of 
auditory attention, which requires that prefrontal (or other) brain regions be able to modulate 
the tuning of many A1 neurons as quickly as the subject shifts the focus of attention. Although 
attention does produce tuning changes (David et al., 2008; Fritz et al., 2003) over minutes 
(which is the fastest that they can be estimated from those data), it is unclear how known 
synaptic mechanisms could mediate task-specific tuning changes on a sub-second timescale. By 
contrast, our model requires only circuits with essentially fixed stimulus tuning, and the 
selection mechanism occurs by activating one of these circuits, rather than by changing the 
tuning of any of the neurons. This reflects the challenge of the task, which does not require 
amplifying the neural representation of a faint stimulus but rather a discrete change in 
sensorimotor mapping.  
 
Might the pre-stimulus effects we describe be due to a difference in motor plan? Because each 
block is associated with a different choice port, it is plausible that the rat plans a different 
response in each block (go left versus go right). Rodent frontal (Erlich et al., 2011) and primate 
primary auditory (Niwa et al.; 2012) cortex have both been reported to encode imminent motor 
actions. In those studies the neural encoding of motor plan was observed in a delay period 
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between stimulus and response, and it correlated with the subject’s response. Our neural 
effects differ in a few ways. First, motor plans are usually characterized in the context of a task 
with a delay period between the stimulus and the “go” cue (Erlich et al., 2011). During this 
delay period there is no uncertainty about the correct response. In our task, we report on 
effects that precede the stimulus, and the rat ultimately chooses to go or not go with roughly 
equal probability. Moreover, the neural effects are the same regardless of whether the rat 
produces a GO or NOGO response (Figure S3C, S4C). This is inconsistent with the most 
straightforward meaning of motor plan. It is more similar to what has been called a 
“countermanding” or “stop signal” task (Schall et al., 2000), in which a motor plan is formed but 
is ultimately discarded on certain catch trials. Lesion studies in rodents demonstrate the 
involvement of striatum and orbitofrontal cortex in such tasks, though the mPFC does not 
appear to be necessary (Eagle and Robbins, 2003; Eagle et al., 2008).  
 
Second, the timecourse of the neural effects we observed was quite protracted, even persistent 
throughout the block, in many of our recorded neurons. The baseline increase precedes the 
initiation of the trial, and, in some neurons, even overlaps the previous trial. Throughout this 
period, the rat is engaged in various motor actions, such as reward consumption. Nevertheless, 
the effects we have observed may still reflect with the rat’s motor plan. Importantly, our task 
requires remapping sensory stimuli to motor responses, and it is reasonable to expect rule 
encoding to incorporate both the sensory and motor aspects of this remapping.  
 
Taken together, our results are consistent with a distributed processing model in which 
contextual information from PFC modulates activity in A1 in order to increase the fidelity with 
which the appropriate motor action can be read out. This idea was proposed in the context of 
tuning changes (Fritz et al., 2010; David et al., 2012; Blake et al., 2002), but we demonstrate 
that it could also operate by activating a separate circuit without retuning neurons to task-
relevant stimuli. Alternative models based on visual selection (Gilbert and Shallice, 2001; Mante 
et al., 2013) propose that stimulus selection occurs in frontal areas, not sensory cortex. Our 
data are similar to theirs in the sense that we do not observe tuning changes in sensory cortex 
(Mante et al., 2013) but different in the sense that we do not observe strong representations of 
the stimuli in PFC. We do observe encodings of the motor choice in both areas (Figure 5D). 
Whether these differences reflect a distinction between auditory and visual processing, or can 
perhaps be unified, remains a question for future work. 
 
Our results establish the rat as a model organism for auditory stimulus selection, paving the 
way for future investigations of the cocktail party problem with emerging optical and genetic 
tools amenable to rodents. We have presented what we believe to be the first single-unit 
results in any animal performing an auditory stimulus selection task and we have found 
widespread and robust rule encoding in mPFC and A1, though we observed little change in the 
stimulus tuning of evoked responses. We propose a simple model to explain these results: task-
specific activation of latent circuits, rather than task-specific adaptation of a single circuit. 
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Methods 

Behavior training 

We used male Long-Evans rats and began training them when their body mass reached 150g-
200g, approximately 45-60 days old. Rats were given restricted access to water in the day 
before the training session so that they would be motivated to obtain water rewards. After 
each session they were given ad lib access to water for one hour. We monitored body weight 
and other markers to ensure they remained healthy. 
 
We used a typical “shaping” procedure to train the rats. First they learned the localization task 
and pitch discrimination tasks separately and without a distractor. Next they learned to 
alternate between the tasks. Finally they learned to respond to the mixed stimulus containing 
target and distractor based on the block. Human intervention was required to determine when 
the rats were ready to progress to the next stage of training (generally, at least 80% hit rate). 
Human intervention was also required to discourage certain unwanted response strategies 
using the following tools: 1) increasing error timeout; 2) temporarily enforcing “all GO” or “all 
NOGO” trials (and dropping such trials from analysis); 3) giving water rewards out of the left or 
right port even in the absence of good performance in order to maintain motivation or 
encourage a task switch. Once the rats were sufficiently well-trained that little or no human 
intervention was required, they were implanted with the drive. Some rats required “retraining” 
after implantation using the techniques listed above; any trials thus affected were discarded 
from analysis. The entire training process takes about 10 weeks. 
 

Trial timings 

In three rats (Rats 1-3) the hold period was drawn from a uniform distribution on 0-100 ms; 
after pilot results indicated pre-stimulus effects, the hold period duration was increased to 250-
350 ms in the other three rats. All trials with a hold period <50 ms were discarded for the 
analyses in Figure 3 and Figure 4. Hold period response was counted in the minimum window 
that applied to all trials: 50 ms for the first 3 rats and 250 ms for the rest. 
 
The duration of the choice period differed between sessions, but was fixed within a session (or 
if it was changed slightly within a session, then the trials before the change were discarded 
from analysis). Correct entries into the choice port on go trials were rewarded with water from 
the same port. Incorrect entries into the choice port on nogo trials results in a 2-6 s timeout. 
Correct nogo responses were not explicitly rewarded with water, although the rat avoided a 
timeout with this response. Poking neither port on a go trial was not explicitly punished with a 
timeout, other than a lost opportunity for reward. 
 

Chance performance on the task 

In order for the rat to perform significantly above chance within a session, its behavior had to 
satisfy three criteria: 1) the rat performed significantly above 50% in each block, meaning that it 
must be using some information from the target sound (which is the only possible source of 
information on the correct response) to decide whether to go or nogo; 2) the rat is significantly 
more likely to perform the action indicated by the target than the action indicated by the 



 

24 
 

distractor; 3) the rat is not using a “fixed strategy”, that is, the same mapping from stimulus 
pair to behavioral response in each block. (Because the target and distractor swap roles in each 
block, satisfying the second criterion is sufficient to satisfy the third.)  
 
The first criterion rules out strategies like “always go left during localization”, which was a 
common strategy while first learning the task. We used a binomial test to compare the 
proportion of hits to 0.5 in both blocks and discarded any sessions that were not significantly (p 
> 0.05) above 50% in either block. The second criterion rules out certain hypothetical strategies 
such as always getting the congruent-nogo stimulus (RIGHT+HIGH) correct, and otherwise 
guessing randomly between the correct choices for that stimulus pair in each block. This fixed 
strategy yields 62.5% in both blocks but it uses information equally from both target and 
distractor; thus, it fails the second criterion. To test this, we used a paired Mann-Whitney U-test 
to compare whether the action on each trial was correct for the target versus correct for the 
distractor. In practice, none of the rats actually adopted such a hypothetical strategy: although 
some sessions failed the first criterion and were discarded (p > 0.05 for 4/55 sessions), no 
sessions failed the second criterion (p < .005 for all sessions). Therefore the first criterion 
(performance above 50% in both blocks) is actually the most relevant, and we mark the chance 
level on the plot as 50%. 
 

Construction and implantation of tetrode microdrives 

We constructed tetrodes by cutting lengths of 12.5 micron nichrome wire coated with partially 
annealed polyimide insulation (Kanthal Palm Coast), twisting them, and heating with a heat gun 
until the 4 individual strands melted together. The tetrodes were then routed through 
polyimide guide tubes and glued to the moveable plastic tab within a potentiometer. We 
pinned the individual wires using gold pins (Neuralynx) into a custom printed circuit board 
(custompcb.com, beta-layout.com) that we designed. To reduce the Johnson-Nyquist noise at 
the electrochemical interface, which scales with the square root of impedance, electrode wires 
were gold-plated to 0.3 megaohm before implantation. For animals with dual implants, we built 
separate drives to target A1 and PFC. These were connected with a custom-designed adapter to 
a 32-channel preamp/headstage (Triangle BioSystems International). 
 
Standard surgical techniques were used (Supp. Info.). Craniotomies were performed directly 
dorsal to the target areas (A1: 5.25 mm posterior and 6.5 mm left from bregma; prelimbic (PL) 
region of mPFC: 3.0 mm anterior and 1.0 mm left from bregma) and the tetrodes subsequently 
lowered downward into the target areas before recording. 
 
For stimulation experiments: we implanted low impedance (about 0.1 megaohm) platinum-
iridium stimulating electrodes into bilateral mPFC of three animals. In one rat (Z1), a single pair 
of electrodes (FHC) was located in the dorsal portion of the prelimbic region in each 
hemisphere; in the other two rats, an array of three stimulating electrodes (MicroProbes) was 
placed in each hemisphere to span the anterior-posterior and dorsal-ventral extent of the 
prelimbic region.   
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Recording and signal processing 

The electrodes were lowered by approximately 100-200 microns before most recording 
sessions by turning the potentiometer’s screw. Before recording, we waited 30 minutes to 
allow the tetrodes to fully adjust. Broadband data were acquired at 30KHz and digitized and 
stored using a neural signal processor from Blackrock Microsystems. After the behavior, white 
noise bursts were presented passively to the animal to detect field and/or multi-unit auditory 
responses. Strong, low-latency auditory responses indicated that the electrodes were in A1 (in 
combination with the stereotactic coordinates used during implantation and, when possible, 
post-mortem histological reconstruction of electrode tracks). We only considered sessions in 
which we believed the electrodes to be in the correct brain regions. 
 
We filtered the data offline to separate LFP (<200Hz) and spikes (>3 KHz). Butterworth, non-
causal (temporally symmetric) filters were used to ensure that no phase distortion occurred. 
We used a detection threshold of 4.5 sigma (calculated using the more robust median absolute 
deviation) and a short window of 0.8 ms in order to minimize collisions between detected 
spikes. We extracted spike waveforms using our own contributions to the open-source 
OpenElectrophy software suite, reduced the dimensionality with principle component analysis, 
clustered with KlustaKwik, and manually reclustered as necessary with Klusters (Hazan et al., 
2004) while blind to the experimental variables. Single units were identified based on the 
existence of a refractory period and minimal cluster overlap with other putative single units or 
noise. 
 
We analyzed the data with Python and the modules numpy, scipy, scikits-learn, rpy2, 
statsmodels, and pandas, as well as custom-written data analysis code. Except where otherwise 
noted in the text, we observed consistent results across all subjects and therefore pooled the 
data. 
 

Decoder analysis 

An ideal decoder was trained on the evoked rates, including baseline. We implemented this 
decoder using the LogisticRegression object in scikits-learn and assessed its performance by the 
number of trials on which the identity of the noise burst and/or warble was correctly predicted. 
Figure 6E shows the results on ensembles of simultaneously recorded neurons, but the results 
(no effect of block) were similar for individual neurons. 
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Figures 

Figure 1. Behavioral paradigm. 

A) Left: a schematic of the behavioral arena with left (L), center (C), and right (R) ports (or nose-
pokes), and left and right speakers. Right: timeline of each trial. The rat initiates a trial by nose-
poking the center port, in the position shown on the left. After a hold period, an auditory 
stimulus plays in stereo. Following this, the rat may choose to go to the left port (blue arrow), 
go to the right port (red arrow), or do neither of those (a “nogo” response). 
 
B) Task stimuli (left: description; right: spectrogram of the auditory waveform). On each trial, 
the rat hears one of four possible auditory stimulus pairs: LEFT+HIGH, RIGHT+HIGH, LEFT+LOW, 
or RIGHT+LOW. Each is a simultaneous combination of a broadband noise burst played from 
either the left or right speaker, and a low-pitched or high-pitched warble. The warble is always 
played with equal intensity from both speakers. 
 
C) Task rules. The session consists of alternating localization and pitch discrimination blocks of 
80 trials each. Left: In localization blocks, the rat must go left for sounds containing LEFT and it 
must nogo for sounds containing RIGHT; the low- or high-pitched warble is an irrelevant 
distractor. Right: In pitch discrimination blocks, the rat must go right if the stimulus pair 
contains LOW and it must nogo if the stimulus pair contains HIGH; the localized noise burst is an 
irrelevant distractor. Good performance depends on selecting and responding to the target 
sound, not the distractor sound. 
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FIGURE 1 
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Figure 2. Trained rats select and respond to the target sound, not the 
distractor. 

A) Behavior performance during recording sessions. Each hash mark is the performance during 
localization (blue) and pitch discrimination (red) in a single recording session. Performance is 
well above chance (black dotted line, see Methods). 
 
B) Distribution of behavioral responses to an example stimulus pair (RIGHT+LOW) over the 
course of an average session. We averaged across all sessions from a single rat (CR21A) and 
binned the trials into groups of 10 to smooth the traces. The x-axis shows both trial number and 
block type. The correct response to this stimulus pair is to go right during pitch discrimination 
and to nogo during localization (see Figure 1C). Each trace shows the probability that the rat 
will go right (red), nogo (gray), or go left (blue); black open squares mark the correct response 
for that block. The rat responds correctly most of the time, even though the required action 
changes abruptly at the block boundaries. Cue trials, during which this stimulus pair does not 
occur, begin each block and are shaded in cyan and pink throughout this figure. 
 
C) Combined performance, similar to (B) but averaged over all sessions, rats, and stimuli. 
Correct responses (black trace) are the most common outcome. Performance is consistently 
high throughout, except immediately after a block change. The orange trace shows the 
probability of an “interference” trial (see text). 
 
D) Analysis of performance immediately after block changes. All localization blocks from (C) are 
averaged together as are all pitch discrimination blocks. (In order to emphasize block 
transitions, the x-axis repeats itself after trial 160; the block structure is cyclical and so the cyan 
shaded areas are identical.) Immediately after the beginning of a new block (cyan and pink 
areas), performance decreases briefly but recovers within a few trials. 
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Figure 3. Pre-stimulus activity in mPFC encodes the selection rule. 

A) Left: An example mPFC single unit that fires more during the hold period for localization 
(blue bars throughout this figure) than for pitch discrimination (red bars); error bars SEM. Inset: 
Extracellular waveforms (mean plus or minus standard deviation) on each channel of the 
tetrode, duration 0.8 ms. The waveforms are colored red and blue based on the block in which 
they were recorded, but are almost entirely overlapping (purple). Right: peri-stimulus time 
histogram (PSTH) of the same unit, averaged over all correct trials from each block. The firing 
rate is significantly higher (p < 0.001) during the hold period (gray shading) for localization 
(mean 12.1 Hz, n=483 trials) vs. pitch discrimination (mean 7.2 Hz, n=295 trials). We assessed 
significance for all neurons with the Mann-Whitney U-test and controlled for multiple 
comparisons with the Benjamini-Hochberg false discovery rate. 
 
B) Another example mPFC single unit, this one preferring pitch discrimination. This neuron’s 
firing rate is persistently elevated at all plotted timepoints. The hold period firing rate is 
significantly higher (p < 0.001) during pitch discrimination (mean 5.4 Hz) vs. localization (mean 
2.7 Hz). Trial counts are the same as the simultaneously recorded unit in (A). 
 
C) Stacked histogram of the ratio of hold period firing rate (pitch discrimination over 
localization) for all mPFC neurons. Red and blue bars are significantly modulated neurons. 
 
D) Rule encoding during the hold period is diminished on interference trials. We averaged 
together the firing rates in the preferred and non-preferred blocks of each rule encoding 
neuron, after normalizing by subtracting the firing rate on correct trials in the non-preferred 
block. Error bars: SEM; orange bars: interference trials; white bars: correct trials. The 
population response on interference trials is significantly decreased during the preferred block 
and increased during the non-preferred block. Thus, the encoding of selection rule is 
diminished on trials on which the rat may be selecting the wrong sound. Significance was 
assessed with a paired Mann-Whitney test (n=57 neurons), which is invariant to the subtractive 
normalization performed.  
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Figure 4. Pre-stimulus activity in A1 also encodes the selection rule. 

A) An example neuron recorded in primary auditory cortex (A1). This neuron responds 
significantly more (p < 0.001) during localization (8.0 Hz, n=312 trials; blue throughout this 
figure) than during pitch discrimination (4.8 Hz, n=253; red). Note the peak following stimulus 
onset, which was used to analyze the evoked response (Figure 6). Throughout this figure, we 
use the same conventions and statistical procedures as in Figure 3. 
 
B) Another simultaneously recorded example A1 neuron that encoded the selection rule. This 
neuron significantly (p < 0.001) prefers pitch discrimination (10.1 Hz, n=312 trials) over 
localization (2.0 Hz, n=253).  
 
C) Stacked histogram of the ratio of hold period firing rate (pitch discrimination over 
localization) for all A1 neurons. 
 
D) Rule encoding during the hold period is inverted on interference trials for A1 neurons. Same 
conventions as Figure 3D, but the effect is stronger here. The population response on 
interference trials (orange bars) is significantly greater during the non-preferred block than 
during the preferred block (p < 0.05, n=16 neurons, paired Mann-Whitney U-test), opposite to 
the encoding on correct trials (white bars). 
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Figure 5. Within-trial timescale of the encoding of selection rule. 

A) PSTHs from example rule-encoding mPFC neurons in each block (blue: localization, red: pitch 
discrimination). Note that the timescale is much broader than in previous figures. Firing rates 
are smoothed with a 50ms Gaussian kernel, normalized to equal variance, and locked to 
stimulus onset at time 0 ms. The time interval containing the hold period during which the 
traces significantly diverge is shaded gray. Although these neurons were identified based on a 
difference in firing rate during the hold period, the traces often diverge for much longer than 
that. We observed a wide variety of timescales and dynamics in the block-specific anticipatory 
modulation. The first neuron effectively fires persistently more in one block. The third and 
fourth neurons demonstrate that the firing rate can either rise during the preferred block, or, 
less commonly, drop during the non-preferred block. The fifth neuron shows that the 
anticipatory effect can be limited to just the hold period alone. 
 
B) Example neurons from A1, following the conventions of (A). Again, the neurons exhibit a 
wide variety of dynamics, from essentially persistent block-specific activation for over three 
seconds preceding the stimulus (first neuron), to very brief activation well under 1 second (last 
neuron). The third neuron shows increased baseline firing and increased stimulus-evoked firing 
(peak immediately after time zero) in the same block. This was typical of our dataset (see Figure 
6). 
 
C) Population timecourse: the curves represent the average response during the preferred 
block across all rule-encoding neurons in mPFC (purple) and A1 (orange). The firing rates of all 
rule-encoding neurons were normalized (mean: 0, variance: 1) and then averaged together. 
Only the response during the preferred block is shown. Traces are mean response (plus or 
minus SEM) across neurons. Thick mean trace: timepoints during which the population 
response significantly exceeds zero, the mean firing rate (p < 0.05, one-sample t-test across 
neurons). In both populations, the firing rate in the preferred block shows a gradual increase, 
peaking around the time of stimulus onset, and then decreases more quickly back to baseline. 
The PFC population increases its response earlier (first significantly activated 2.4 s before 
stimulus onset, n=76) than the A1 population (first significantly activated 0.78 s before stimulus 
onset, n=36), consistent with the hypothesized role of PFC as the source of top-down 
modulation. 
 
D) Population time course, plotted separately for GO and NOGO trials. Left: peri-event time 
histograms (PETHs), locked to the post-stimulus exit from the center-port, from rule-encoding 
mPFC neurons during their preferred block. Right: same as left panel, but for A1 neurons. Each 
PETH is aligned to the post-stimulus exit from center-port. Trials are grouped according to 
correct GO responses (green) and correct NOGO responses (gray). As in (C), PETHs were 
normalized to unit variance and zero mean before averaging across neurons; only the response 
during the preferred block is shown. Trace thickness indicates SEM across neurons. On NOGO 
trials, the firing rate remains elevated above baseline for at least several seconds, during which 
time the rat typically had already initiated the next trial. On GO trials, the firing rate falls below 
baseline and remains there as the rat moves to the choice port and drinks a reward (which 
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always required at least several seconds). To illustrate this last point, along the lower edge of 
the figure we also plot the distribution of latencies to the relevant trial events: stimulus onset 
(black), reward delivery (green, GO trials only), and center-poke beginning the next trial (gray, 
NOGO trials only; for GO trials the beginning of the next trial would not be visible in this time 
range due to the time necessary to consume reward). 

  



 

36 
 

Figure 6. Limited evidence for modulation of stimulus-evoked activity. 

A) An example A1 neuron exhibiting a preference for some acoustic stimuli (LEFT+HIGH, 
LEFT+LOW) over others (RIGHT+HIGH, RIGHT+LOW), but no change in this tuning with block 
(localization: blue; pitch discrimination: red). Black triangle: stimulus onset; shaded area: 
response window for this neuron. 
 
B) An example mPFC neuron that responds to the task stimuli with a low-latency response. 
Auditory responses were weaker in mPFC neurons compared with A1 neurons (Figure S6). 
 
C) For A1 neurons, increase in hold period activity during one block correlates with increased 
evoked response during that block. For each neuron, the change in evoked response (driven 
spikes in pitch discrimination vs. localization) is plotted against the change in hold period firing 
rate (anticipatory spikes in pitch discrimination vs. localization). The trend line (n=43 neurons, 
r=0.52) has a slope of 0.98, suggesting that much of the modulation of evoked strength is due 
to anticipatory modulation (example: Figure 4B). 
 
D) Following the conventions of (C), but for auditory-responsive PFC neurons. Again, a change 
in baseline activity correlates closely with a change in evoked activity (n=17 neurons, 
slope=1.46, r=0.85). 
 
E) No evidence for tuning changes that increase the decodability of the target sound. The 
identity of the noise burst (LEFT or RIGHT) or the warble (LOW or HIGH) can be decoded from 
the trial-by-trial responses of simultaneously recorded ensembles of auditory-responsive cells 
in either A1 or PFC. It can be decoded significantly better (p < 0.001) from A1 cells (n=22 
ensembles of 57 neurons total) than from mPFC cells (n=13 ensembles of 25 neurons total), but 
it cannot be decoded significantly better during either block. The chance decoding level, 
attainable by a neuron with no information about the stimulus, is 0.5. The mean and SEM over 
the ensembles is shown. Significance was assessed with a 3-way ANOVA on brain region, target 
sound, and block. 
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Figure 7. Disruption of mPFC robustly impairs performance on the task. 

A) Electrical disruption of mPFC significantly impacted task performance during localization 
trials (left panel) and/or pitch discrimination trials (right panel) in most sessions. Each point 
represents the performance within a single session on control (x-coordinate) vs. zap trials (y-
coordinate). Plus symbols represent sessions during which the performance was significantly 
impaired (p < 0.05, Fisher’s exact test). Throughout this figure, different colors represent 
different rats (red: Z1, yellow: Z2, green: Z3). 
 
B) Example session from each rat. Performance is shown for each trial type (GO and NOGO in 
each block). Solid bars represent control trials; open bars represent zap trials. Error bars: 95% 
confidence intervals using Pearson-Klopper binomial fit. Asterisks indicate trial types for which 
electrical disruption significantly impairs performance (Fisher’s exact test). The effect is robust 
within each example session, but variable across rats. See Supp. Info. for the data for all 
sessions. 
 
C) Impairment on each trial type for each rat, across sessions. Error bars: SEM across sessions. 
All rats showed a significant impairment on NOGO trials in one block or the other (p < 0.05, 
binomial test on the number of sessions demonstrating impairment). One rat (Z2) also showed 
a significant impairment on localization GO trials. 
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Figure 8. A simulated network model demonstrates how anticipatory 
modulation could solve the stimulus selection problem. 

A) Network connectivity. A1 consists of a population of N neurons, each with random tuning for 
the four task stimuli and subject to additive Gaussian noise. Red and blue neurons in A1 are 
differentially activated in one block or the other, based on an excitatory “task signal” 
projection, hypothetically originating in PFC. Each subpopulation in A1 connects to a set of 
premotor command neurons encoding the possible responses in that block. The model’s choice 
is determined by which command neuron is the most active via a winner-take-all mechanism. 
The weights W1 and W2 are constrained to be excitatory (non-negative) and are separately 
optimized during an initial supervised training phase, then fixed.  
 
B) Performance of the model for N=320 neurons on task 1 (left panel) and task 2 (right panel). 
We tested a range of values for the sensory signal-to-noise ratio (SNR), defined as the ratio of 
the tuning for sensory stimuli to the strength of the additive Gaussian noise in each A1 neuron. 
We plot the probability of a correct choice versus the strength of the task signal. For the highest 
SNR of 0.25 (darkest trace), the model produces 100% correct responses for virtually any 
positive task switch signal. (Negative task signals correspond to activating the subpopulation 
corresponding to the incorrect block.) As the task signal increases in strength, the sensory input 
is eventually drowned out and the model’s performance falls to chance (50%). This problem is 
especially pronounced at the lowest SNR, near 0.015. However, larger networks can still 
perform well at such SNRs (Supp. Info.). 
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Supplementary Figures 

Each figure is linked to the main figure with the same number. Not all main figures have 
associated supplementary figures. 
 

Figure S2. Behavioral performance, related to Figure 2 

A) Performance of each rat in greater detail, with go and nogo trials separately considered in 
each block. Rats generally did better on GO than on NOGO trials (first and third columns above 
second and fourth). Some rats did better on localization than on pitch discrimination (first and 
second columns above third and fourth). Error bars show SEM across sessions.  
 
B) Performance (fraction of correct responses) of one rat that performed a slightly modified 
“catch trial” task on the last day of recordings. This task was designed to probe whether the 
rats learn to respond to a unified stimulus pair, or whether they learn to respond just to the 
target sound regardless of the identity of the distractor. On a small proportion (15%) of trials, 
we replaced the distractor with a neutral sound, to which the rat had never been trained. For 
example, on catch trials during localization the rat heard the same target as always (LEFT or 
RIGHT) with a novel mid-range warble of no behavioral relevance. If the rats had memorized 
each of the four possible stimulus pairs and were unable to generalize, they should perform at 
chance on these novel stimulus pairs. The performance on catch trials (red) and standard trials 
(white) for each trial type is shown, with 95% bootstrapped confidence intervals. The rats 
perform just as well on catch trials as on standard trials (unpaired Mann-Whitney U-test on the 
outcome of each trial, p > 0.05 in all cases). This suggests that the rats are selecting the target 
stimulus, not memorizing a fixed set of four stimulus pairs. 
 
C) Same as panel B, but for a different rat.  
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Figure S3. PFC hold period, related to Figure 3 

A) Stacked histogram of the difference, rather than ratio, of hold period firing rate between 
blocks for all mPFC neurons. 
 
B) Alternative presentation of the hold period effect across mPFC neurons. The hold period 
firing rate in each block is shown as the x- and y-coordinate of each point (red and blue: 
significant block preference; gray: not significant). Note the logarithmic scaling, necessary to 
avoid crowding the points with low firing rate. Error bars are 95% confidence intervals obtained 
by bootstrapping and were truncated at the edge of the plot. Significance was assessed with a 
Mann-Whitney U-test as described in the text. 
 
C) Analysis of the hold period effect in mPFC on various types of correct and error trials. The 
trials are grouped by the meaning of the target sound, the rat’s response, and the meaning of 
the distractor sound. Neurons are grouped by their preferred block. White bars represent 
correct trials, on which the rat’s response matches the target sound. The gray bar represents 
“go-on-nogo” error trials when the target meant nogo but the rat went to the choice port 
anyway. (The opposite error, nogo-on-go, was too rare to include in this analysis. We only 
analyzed neurons from sessions with at least 3 trials of each type.) The orange bar represents 
“interference” trials on which the rat heard a distractor sound meaning go and went to the 
choice port associated with that distractor (WP, or wrong port). To aid in visualization, firing 
rates were normalized by subtracting the mean response on correct trials during the non-
preferred block, and then averaged across neurons. There is no significant difference in the 
hold period activity between correct go, correct nogo, and incorrect go-on-nogo trials. But if the 
hold period activity encoded a simple plan to go to the choice port regardless of the upcoming 
stimulus, then it should be lower on correct nogo trials where the rat did not perform this 
action. Thus, if the hold period activity represents a motor plan, it must be subject to change 
(“countermanding”) after the stimulus. However there is a significant difference between 
interference trials and all other trial types in that block. That is, when the rat gives the response 
that would be appropriate in the other block, the anticipatory activity is higher in the non-
preferred block and lower in the preferred block — i.e., the block modulation is attenuated, 
trending toward reversed. Significance between each pair of bars was assessed with a paired 
Mann-Whitney U-test across neurons, which is invariant under the subtractive normalization 
performed, and the p-values were Bonferroni corrected. 
 
D) Histogram of the number of neurons preferring pitch discrimination (red), localization (blue), 
and neither (black). In some rats (marked N/A), no mPFC neurons were recorded. 
 
E) Proportion of rule-encoding neurons in mPFC is consistent across rats. The data from (D) are 
now expressed a percentage of total neurons. No percentages are plotted for rats with fewer 
than 8 neurons total recorded in mPFC. 
 
F) On average, firing rates are bidirectionally modulated in both blocks, versus the spontaneous 
rate. We defined the spontaneous rate as the average rate during epochs more than 2 s from 
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the nearest stimulus onset. Localization-preferring neurons (left) fire significantly more than 
spontaneous in localization and significantly less than spontaneous in pitch discrimination. A 
similar statement holds for pitch discrimination-preferring neurons (center). Neurons that do 
not prefer either block (right), that is, neurons for which the pre-stimulus firing rate does not 
significantly differ between blocks, tend to be suppressed versus spontaneous in both blocks, 
though this effect was not quite significant during pitch discrimination (p = 0.06). The bars show 
the average and SEM across neurons of the hold period firing rates minus the spontaneous 
firing rate for that neuron. We assessed significance with a paired Mann-Whitney test. 
 
G) The azimuthal (left/right) angle of the rat’s head during center poke differs by approximately 
30 degrees between blocks. Red: pitch discrimination. Blue: localization. Values are normalized 
such that the average head angle across all trials is zero. These data are from an example 
session but all analyzed sessions yielded similar results. This preparatory motor activity is 
presumably an adaptive behavioral strategy in response to the fact that the choice port differs 
between blocks. 
 
H) Example PFC neuron. Each point shows the square root of the number of spikes fired and 
head angle on a single trial. (Square root is a normalizing transformation for Poisson-like 
counts.) Across all trials, these variable are significantly correlated (black trend line). However, 
this correlation between firing rate and head angle is almost entirely explained by block type. 
Within each block, there is no such correlation – the red and blue trend lines are not 
significantly different from horizontal. 
 
I) Fraction of explainable variance (FEV) in the spike counts (again square root-normalized) that 
the least-squares linear fit attributes to block (yellow), head angle (black), and interaction 
between block and head angle (purple), individually for each rule-encoding PFC neuron during 
the analyzed video  sessions. Red horizontal line shows 50%. Most bars are mostly yellow, 
indicating that block is the major explanatory factor in the spike count. Only one bar is more 
than 50% black, corresponding to a neuron whose firing rate was mostly explained by head 
angle. 
 
J) Summary plot of the data in panel (I). The distribution of FEV across neurons is plotted for 
each factor (block, head angle, and interaction). Individual points represent individual rule-
encoding PFC neurons: pluses when that factor was a significant (p < 0.05, ANOVA) predictor, 
open circles where that factor was not significant. The red line shows the median; the blue box 
outlines the inter-quartile range. Across the population, most of the variance (median: 67.1%) is 
explained by block; in contrast, only a small amount is explained by head angle (median: 5.6%) 
and the rest (12.2%) is explained by the interaction between the two. (These values do not sum 
to 100% because of the use of the median.) 
 
K) No evidence for a correlation between the pre-stimulus firing rate of PFC neurons and the 
animal’s reaction time, defined as the time between stimulus onset and withdrawal from 
center port. We plot here the distribution of correlation coefficients obtained in both blocks, 
with red representing significantly correlated neurons (p < 0.05 after correction with the false 
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discovery rate). Only a small minority of neurons showed a significant correlation, and the 
overall distribution is not significantly different from zero (p > 0.05, one-sample t-test). Similar 
results were obtained when considering only rule-encoding neurons, i.e., those that with a 
significantly increased pre-stimulus firing rate in one block or the other. 
 
L) Similar to (K), but now correlating the anticipatory firing rate with the “motion time” – the 
time necessary for the rat to move to the choice port on successful GO trials. Again, only a small 
minority of neurons show an individually significant correlation and the population distribution 
is not significantly different from zero. Similar results were obtained when considering only 
rule-encoding neurons. 
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FIGURE S3 
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Figure S4. A1 hold period, related to Figure 4 

A, B) Same as Figure S3A,B, but for A1 neurons instead of mPFC neurons. 
 
C) Same as Figure S3C (correct trials: white; go-on-nogo errors: gray; interference trials: 
orange), but for A1 neurons instead of mPFC neurons. The effects are similar to those for mPFC, 
but the effect on interference trials is stronger. Now the direction of hold period modulation is 
significantly reversed -- the firing rate is higher during such trials in the non-preferred block 
than in the preferred block. However, there is no difference between the other trial types, 
regardless of whether the rat performed a go or nogo response. 
 
D) Histogram of the number of neurons preferring pitch discrimination (red), localization (blue), 
and neither (black). In one rat, no A1 neurons were recorded (marked N/A). 
 
E) Proportion of rule-encoding neurons in A1 is consistent across rats. The data from (D) are 
now expressed a percentage of total neurons. No percentages are plotted for rats with fewer 
than 8 neurons total recorded in A1. 
 
F) On average, firing rates are bidirectionally modulated in both blocks, versus the spontaneous 
rate. We defined the spontaneous rate as the average rate during epochs more than 2 s from 
the nearest stimulus onset. Localization-preferring neurons (left) fire significantly more than 
spontaneous in localization and significantly less than spontaneous in pitch discrimination. A 
similar statement holds for pitch discrimination-preferring neurons (center). Neurons that do 
not prefer either block (right), that is, neurons for which the pre-stimulus firing rate does not 
significantly differ between blocks, showed no change in their firing rates versus spontaneous. 
The bars show the average and SEM across neurons of the hold period firing rates minus the 
spontaneous firing rate for that neuron. We assessed significance with a paired Mann-Whitney 
test. 
 
G) The azimuthal (left/right) angle of the rat’s head during center poke differs by approximately 
30 degrees between blocks. Red: pitch discrimination. Blue: localization. Values are normalized 
such that the average head angle across all trials is zero. These data are from an example 
session but all analyzed sessions yielded similar results. This preparatory motor activity is 
presumably an adaptive behavioral strategy in response to the fact that the choice port differs 
between blocks. 
 
H) Example A1 neuron.  Each point shows the square root of the number of spikes fired and 
head angle on a single trial. (Square root is a normalizing transformation for Poisson-like 
counts.) Across all trials, these variable are significantly correlated (black trend line). However, 
this correlation between firing rate and head angle is almost entirely explained by block type. 
Within each block, there is no such correlation – the red and blue trend lines are not 
significantly different from horizontal. 
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I) Fraction of explainable variance (FEV) in the spike counts (again square root-normalized) that 
the least-squares linear fit attributes to block (yellow), head angle (black), and interaction 
between block and head angle (purple), individually for each rule-encoding A1 neuron during 
the analyzed video  sessions. Red horizontal line shows 50%. Most bars are mostly yellow, 
indicating that block is the major explanatory factor in the spike count. Only one bar is more 
than 50% black, corresponding to a neuron whose firing rate was mostly (50.2%) explained by 
head angle. 
 
J) Summary plot of the data in panel (I). The distribution of FEV across neurons is plotted for 
each factor (block, head angle, and interaction). Individual points represent individual rule-
encoding A1 neurons: pluses when that factor was a significant (p < 0.05, ANOVA) predictor, 
open circles where that factor was not significant. The red line shows the median; the blue box 
outlines the inter-quartile range. Across the population, most of the variance (median: 71.5%) is 
explained by block; in contrast, only a small amount is explained by head angle (median: 14.1%) 
and the rest (17.8%) is explained by the interaction between the two. (These values do not sum 
to 100% because of the use of the median.) 
 
K) No evidence for correlation between pre-stimulus firing rate of A1 neurons and the animal’s 
reaction time, defined here as the time between stimulus onset and withdrawal from center 
port. We plot here the distribution of correlation coefficients obtained in both blocks, with red 
representing significantly correlated neurons (p < 0.05 after correction with the false discovery 
rate). Only a small minority of neurons showed a significant correlation, and the overall 
distribution is not significantly different from zero (p > 0.05, one-sample t-test). Similar results 
were obtained when considering only rule-encoding neurons, i.e. those with a significantly 
increased pre-stimulus firing rate in one block or the other. 
 
L) Similar to (K), but now correlating the anticipatory firing rate with the “motion time” – the 
time necessary for the rat to move to the choice port on successful GO trials. Again, only a small 
minority of neurons show an individually significant correlation and the population distribution 
is not significantly different from zero. Similar results were obtained when considering only 
rule-encoding neurons. 
 



 

50 
 

FIGURE S4 
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Figure S5. More information on timecourse, related to Figure 5 

A) Similar to figure 5C but now locked to entry into the center port that initiated the trial, rather 
than the subsequent stimulus onset. This shows the population time course during the 
preferred block, averaged over all rule-encoding neurons in each region (purple: mPFC; orange: 
A1). Throughout this figure, firing rates were first normalized to zero mean and unit variance 
and then averaged over neurons; the thickness of the trace represents SEM over neurons. This 
demonstrates more clearly that the increase in anticipatory activity definitely precedes the 
center-poke entry. 
 
B) Population time course during the preferred block for rule-encoding neurons in mPFC (left) 
and A1 (right). In this panel, we include only trials following a successful NOGO. Along the lower 
edge of the figure we also plot the distribution of latencies to the end of the previous trial, 
defined as the withdrawal from the center port following the NOGO stimulus onset. The 
increased activity persists between the trials, even though the rat is typically remaining 
motionless near the center port during this time. This demonstrates that the anticipatory effect 
is not due to the rat’s motion toward the center port. 
 
C) Similar to Figure 5D in the main text, but now showing activity in the non-preferred block 
(green) in addition to activity during the preferred block (purple); also, only correct NOGO trials 
are included to demonstrate the persistence of the effect. The population time course is locked 
to exit from center-port after the stimulus onset. Before exiting the center port, average 
activity in the non-preferred block is suppressed below baseline; average activity in the 
preferred block is increased above baseline. This remains true for at least several seconds after 
the rat exits the center port, during which time the rat typically had already initiated the next 
trial. To illustrate this last point, along the lower edge of the figure we also plot the distribution 
of latencies to the relevant trial events: stimulus onset (black) and the center-poke beginning 
the next trial (gray). 
  
D) Similar to panel (C), except we now include only correct GO trials. After exiting the center 
port, the firing rate during the preferred block (again averaged over neurons) falls below 
baseline and remains there as the rat moves to the choice port and drinks a reward (which 
always required at least several seconds). In contrast, during the non-preferred block A1 
neurons are actually activated above baseline during this period, thus inverting the usual rule 
encoding. Along the lower edge of the figure we also plot the distribution of latencies to the 
relevant trial events: stimulus onset (black) and reward delivery (green). We finally note that 
these results depict the population average; individual neurons displayed a wide variety of 
dynamics (Figure 4). 
 
E) Similar to (C) and (D), but now separately plotting the population activity during localization 
(blue) and pitch discrimination (red) blocks from neurons preferring localization (left column) 
and pitch discrimination (right column) on correct NOGO trials (top two rows) and correct GO 
trials (bottom two rows). The dynamics of the pitch discrimination-preferring and localization-
preferring neurons are quite similar (compare left and right columns), other than the fact that 
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the red and blue traces are roughly reversed (by definition of preferred block). Along the lower 
edge of the figure we also plot the distributions of latencies to stimulus onset (black), reward 
delivery (green, GO trials only), and center-poke beginning next trial (gray, NOGO trials only). 
 

 
FIGURE S5 
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Figure S6. More information on evoked activity, related to Figure 6 

A) PSTH of a typical A1 neuron, to illustrate the notion of "evoked response strength." This 
neuron’s response strength is near the median of the A1 population. All stimuli and trials are 
included in this PSTH. Note that the response to the onset of the sound is rapid, short-latency, 
tightly stimulus-locked, and brief. The onset window is shaded. This was defined as the 
continuous set of time bins post-onset over which the firing rate was significantly greater than 
the rate preceding the stimulus. Some mPFC units also showed similar (though weaker) 
stimulus-driven responses.  
 
B) An example A1 neuron showing one of the strongest and most sustained recorded 
responses. 
 
C) Distribution of onset response strengths across n=49 auditory-responsive A1 neurons (blue) 
and n=31 auditory-responsive PFC neurons (orange). The response strength is expressed as the 
average number of additional spikes (over baseline) during the onset response window for that 
neuron. All trials and stimuli are included, and the baseline rate is calculated over the 50 ms 
preceding the stimulus onset. The responses are significantly stronger in A1 neurons (median: 
0.11 spikes) than in PFC neurons (median: 0.02 spikes), p < 0.05, unpaired Mann-Whitney U-
test. Note the long tail of the distribution: a small subpopulation fires much more strongly than 
the median. 
 
D) Alternative presentation of onset response strength. The data are the same as in (C), but 
now expressed as percentage of baseline firing rate. Because the response window is so brief, a 
small number of additional spikes over baseline typically represents a large (many-fold) 
increase in rate. Again the responses are stronger in A1 neurons (median: 209% of baseline) 
than in PFC neurons (median: 171% of baseline), p < 0.001, unpaired Mann-Whitney U-test. 
 
E) Distribution of latencies to center of onset response window across the same populations as 
(C) and (D). The PFC latencies are significantly longer (median: 19.75ms) than the A1 latencies 
(median: 16.75ms). p < 0.05, unpaired Mann-Whitney U-test. 
 
F) No correlation between stimulus tuning and the change in pre-stimulus rate for auditory-
responsive A1 neurons. We calculated the strength of the tuning for the noise burst (LEFT 
versus RIGHT) or the warble (LOW versus HIGH) using the difference in firing rate to those 
stimuli when they were presented on cue trials. Similar to Figure 6E in the main text, we 
quantified tuning using the performance of an ideal decoder. This metric has a value of 0.5 for 
identical responses, and 1.0 for perfectly discriminable responses. We found no correlation 
between how well the neurons were tuned for either stimulus and the change in pre-stimulus 
rate across blocks. Although these results were obtained using the cue trials to measure tuning, 
similar results were obtained when we calculated the tuning using the responses to the stimuli 
containing distractors (data not shown). 
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G) Same as (F), but for auditory-responsive PFC neurons. Note the difference in the scale of the 
x-axis vs (F), reflecting the fact that PFC neurons tend to be more poorly tuned for the stimuli 
than A1 neurons. Again there is no significant correlation, though there is a weak, non-
significant trend in the following direction: neurons that are well-tuned for the warble tend to 
show increased anticipatory firing in pitch discrimination; similarly, neurons that are well-tuned 
for the noise burst tend to show increased anticipatory firing during localization. 
 
H) Across the population of auditory-responsive neurons in both brain regions, all four stimulus 
pairs elicit equally small and non-significant changes across blocks in their evoked firing rate. 
Each box and whiskers plot shows the distribution across neurons of the difference in evoked 
firing rate between pitch discrimination and localization, for each stimulus pair. (We used 
square root as a normalizing transform but this did not affect the results.) The box’s top and 
bottom show the inter-quartile range (IQR); the tapered area of each box shows the 95% 
bootstrapped confidence intervals on the median. Pluses indicate outliers, defined as more 
than 1.25 times the IQR from the median; these points were still included in the analysis. We 
also repeated the analysis after subtracting the pre-stimulus rate from the evoked rate in both 
blocks (labeled “baseline-subtracted”). A one-way Kruskal-Wallis test revealed no significant 
difference between the stimulus pairs. We also assessed whether the change to each individual 
stimulus pair was different from zero using the Wilcoxon signed-rank test, correcting for 
multiple comparisons within each group (e.g., each group of four boxplots) using the false 
discovery rate. We found was no significant difference from zero for any individual stimulus 
pair, indicating that there was no consistent trend toward increased evoked firing rates in 
either block for any stimulus pair. 
 
I) Similar to (H), but here we took the absolute value of all of the data. We reasoned that some 
stimulus pairs might elicit increased firing rates during pitch discrimination in some neurons 
and in localization in other neurons, resulting in no net effect. Under this hypothesis, we would 
expect that the absolute value of the difference between blocks, across neurons, would be 
significantly greater for that stimulus pair versus the other stimulus pairs. However, a one-way 
Kruskal-Wallis test across stimulus pairs again revealed no significant difference: all stimulus 
pairs yield equivalent absolute differences in evoked firing rate across neurons. 
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Figure S7. More information on electrical disruption of mPFC, related to 
Figure 7 

A) Effect of electrical disruption of mPFC on performance for all individual sessions from three 
rats (red: Z1, yellow: Z2, green: Z3). Each line connects the performance on control trials (left) 
and zap trials (right) within the same session. Plus marks indicate a significant difference, which 
was a decrease in every case (p < 0.05, Fisher’s exact test). Trials are grouped according to GO 
and NOGO in both blocks. Asterisks indicate trial types for which the effect of disruption was 
significant across sessions (p < 0.05, binomial test on the number of sessions showing 
impairment). 
B) Impairment caused by electrical disruption by stimulus pair, averaged across sessions for 
each rat. Error bars: SEM across sessions. Impairment is defined as the difference between 
performance on control trials and zap trials. Colors represent individual rats, following (A). Two 
rats (Z1 and Z2) showed a significant decrease for RIGHT+HIGH during pitch discrimination 
across sessions (p < 0.05, binomial test on the number of sessions showing impairment). One 
rat (Z3) showed a deficit for both NOGO sounds during localization. 
 

 
FIGURE S7  
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Figure S8. Behavior of the model over parameter space, related to Figure 8 

A) The model described in Figure 8 operates well over a wide range of parameters. We quantify 
its performance as the strength of the task signal (x-axis in Figure 8B) necessary for the model 
to reach a criterion performance of 80%. As in Figure 8B, we normalize this task signal strength 
to the sensory noise (the variance of the Gaussian noise that was added to each A1 neuron’s 
activation during the simulation). This plot shows a color-coded map of the strength of the task 
signal necessary to reach criterion, for various values of N (x-axis) and of the sensory signal-to-
noise ratio (y-axis), defined as the strength of the tuning of each neuron to the variance of the 
same Gaussian noise mentioned above. Darker colors are good: they indicate that a weak task 
signal was sufficient to reach criterion; lighter colors indicate that a stronger signal was 
necessary. It is desirable for the model to operate with as weak a task signal as possible, 
because when the task signal becomes quite strong it overwhelms the sensory input and the 
performance drops again. We found that larger networks invariably performed better, as 
expected. For a given network size (any column of the figure), the performance was stable 
across a certain range of SNRs, but quickly degraded below a certain SNR cutoff. In the white 
region (small network sizes and/or very poor sensory signal-to-noise ratio), the model never 
reaches criterion performance. 
B) Similar to panel A, but now we show the maximum magnitude of the task signal before 
performance falls below criterion again. Here, lighter colors (as in the upper right corner) are 
good, because they indicate that the network performs well over a wide range of task signal 
strengths; this is associated with large network sizes and/or high sensory signal-to-noise ratios. 
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Supplementary Experimental Procedures 

Behavioral parameters 

Each stimulus was 250 ms in duration. The warbles were frequency-modulated tones, centered 
at 6 KHz and 16 KHz with a 10 Hz modulation frequency of amplitude 0.07 octaves, and 
presented with equal intensities (65 dB SPL) from both speakers. The white noise bursts were of 
approximately equal power at all frequencies between 5KHz and 50KHz, decaying rapidly 
outside of this range; the total acoustic power over this range was 55 dB SPL, delivered from 
only one speaker at a time (LEFT or RIGHT). We used a Lynx L22 sound card to convert digital 
signals to analog voltages, and Fostex FT17H tweeters to produce the sound. 
 
In a subset of sessions, we presented task-irrelevant natural sounds during epochs when the rat 
was not initiating trials for the purpose of probing receptive fields. These probe sounds were 
terminated as soon as the rat began performing the task again. We did not observe any 
correlation between the neural results presented in this study and the receptive fields thus 
obtained. 
 

Surgical implantation 

Rats were anesthetized using ketamine/xylazine and isoflurane as necessary to maintain a deep 
anesthesia, assessed using toe pinch. Skin and fascia were resected from the midline and the 
skull cleaned. Titanium screws (Small Parts) were inserted into each cranial plate. Two stainless 
steel screws with a wire soldered onto the head were inserted into the occipital plate above the 
cerebellum. These were later soldered onto the reference and ground inputs on the microdrive. 
 
Craniotomies were performed directly dorsal to the target areas (A1: 5.25 mm posterior and 6.5 
mm left from bregma; PL: 3.0 mm anterior and 1.0 mm left from bregma). The dura was 
removed and the tetrodes gradually inserted into each region. The craniotomy was filled with 
agar, which surrounded and protected the tetrodes. Methyl methacrylate (Teet’s, Henry 
Schein) was used to affix the entire drive to the skull and screws. 
 
Finally the tissue was flushed thoroughly with sterile saline and sutures were used if necessary 
to seal the skin around the implant. Aseptic technique was maintained throughout and the 
tetrodes themselves were disinfected before implantation. Post-operatively, the rat was given 
buprenorphine and/or meloxicam to provide analgesia and its health and weight monitored 
twice daily. Once the rat was fully recovered, the behavioral task was resumed, now concurrent 
with electrophysiological recording. 
 

Analysis of possible confounds: waveform variation and firing rate drift 

In addition to the standard spike-sorting procedure for identifying stable units, we also used an 
extra, stricter check on the quality of our data to ensure that the hold period effect could not 
be due to sorting errors arising from small variations in waveform between blocks. For each 
neuron, we identified the sub-cluster of sorted spikes occurring just during the localization hold 
period, and calculated the Mahalanobis distance (in the first four PCA feature dimensions) 
between this subcluster and the entire cluster of spikes from this unit. We assessed the 
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significance of this distance by randomly permuting the labels on the subcluster and the full 
cluster 2000 times, and calculating the probability of observing a distance less than or equal to 
the true distance. We repeated this analysis for the other block (pitch discrimination). We 
discarded the neuron from analysis entirely if the subcluster in either block was significantly 
more separated from the full cluster than the permuted subclusters were (p < 0.05, 
permutation test). We also repeated the analysis with simulated Gaussian sub-clusters of the 
same size as the actual sub-clusters and derived the distribution of mean-squared distance 
from the cluster center, again rejecting any neuron whose sub-cluster that exceeded the 95th 
percentile of this distribution in either block. 
 
Additionally, we also considered the possibility that a spurious hold period effect could arise 
from a slow increase or decrease in firing rate over the entire session, perhaps due to drift or 
motivation, even though the multiple switches between blocks within each session made such a 
possibility unlikely. We reasoned that, if this were true, then when taking block number into 
account the difference between block types should no longer be significant. We fit a linear 
model to the square root of the spike count in the hold period on each trial, using both block 
type (localization or pitch discrimination) and block number (1, 2, 3, …) as predictors. (Square 
root is a variance-stabilizing transform for Poisson counts.) We assessed the significance of each 
predictor with ANOVA. Any neuron that showed a hold period effect according to the analysis 
described in the text, but that failed to show a significant effect of block type or failed the 
overall F-test (p > 0.05) was discarded from the analysis. 8/231 neurons (combined across brain 
regions) were discarded for this reason. 
 
For this ANOVA we used the type-III sum of squares. For all ANOVA analyses in this study, we 
avoided using type-I sum of squares because we found it to be much more sensitive to unequal 
trial counts (e.g., more hits in one block than in the other). 
 

Power analysis 

We analyzed the statistical power of our methods (unpaired Mann-Whitney U-test on the spike 
counts across blocks) on simulated Poisson counts. We determined the total spike count had to 
be at least 20 spikes to detect a change between blocks; therefore neurons with fewer total 
spikes than this in the hold period of all trials combined were discarded from analysis. For the 
typical trial counts in our dataset, we would not be able to detect any less than a doubling of 
firing rate for a neuron with this minimum firing rate (though the method becomes much more 
sensitive at higher firing rates). For this reason, selection rule encoding could be even more 
common than we have shown. Also, due to the fact that some of our A1 data was collected in 
earlier animals for which the hold periods were shorter and the trial counts lower, we have less 
statistical power in that portion of the dataset. 
 

Calculation of evoked responses 

For each neuron, the spike times on each trial were smoothed with a Gaussian kernel with 1 ms 
standard deviation. For every 0.5 ms time bin after stimulus onset, the distribution of smoothed 
spike counts was compared to the combined distribution of all 0.5ms time bins in the 50 ms 
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preceding stimulus onset with a Mann-Whitney U test. The first window of contiguous time bins 
that were all significantly greater than the spontaneous rates was defined as the onset 
response window. Windows of less than 1 ms were discarded because these neurons emitted 
far too few spikes to analyze statistically. A few neurons showing atypical auditory onset 
responses (e.g., 4/108 showed a slow build rather than a short-latency peak) were discarded 
because we were concerned that their activity might be driven by the decision rather than the 
stimulus. 
 
For the average evoked response plotted on the y-axis of Figures 6C and 6D, we used a 
bootstrap procedure to draw equally from each stimulus, separately for each block. This 
procedure accounts for differences in the proportion of each stimulus type across blocks, 
arising from random chance or from better performance on some stimuli than others (e.g., 
better performance on go than on nogo, Figure S2A) since only correct trials were included for 
this analysis. 
 

Changes in evoked response not explained by changes in baseline 

We asked whether there were any additional changes in evoked response, above and beyond 
what could be explained by pre-stimulus effects, by subtracting the block-specific baseline firing 
rate from the evoked response on each trial and then repeating the bootstrap procedure 
described immediately above. We found that a small population (6/43, or 14%) of neurons 
increased their evoked response significantly (p < 0.05 from the overlap of the bootstrapped 
distributions in each block), above and beyond any baseline changes. (Another analysis in which 
we directly compared across blocks the number of spikes emitted in response to each stimulus 
individually yielded similar results, as did a stimulus*block ANOVA on each neuron.) However, 
unlike the other results in the paper, these neurons were largely (4/6) observed in a single 
animal (Rat 1), the rat that had the most difficulty with pitch discrimination trials, and in these 
neurons the firing rate was higher during pitch discrimination. One possibility is that the greater 
difficulty this rat had with one block led to this block-specific increased in evoked rate; our 
other rats were more evenly matched in performance between blocks. 
 

Disruption of mPFC by electrical stimulation 

Electrical microstimulation of cortex produces first a strong and synchronous activation of 
nearby neurons and later a slower, long-lasting suppression (Logothetis et al., 2010). This 
rebound is thought to be a homeostatic response, either network-level or cell-autonomous. 
 
We injected a train of 1 ms current pulses at 10 Hz into mPFC on a subset of trials (“zap trials”) 
and only during the center-poke hold and stimulus presentation. In one animal we used a single 
pair of electrodes centered near the dorsal portion of the prelimbic region in each hemisphere; 
in the other animals we used an array of three electrodes spanning the anterior-posterior and 
dorsal-ventral extent of the prelimbic region in each hemisphere. Stimulation was always 
bipolar, first positive and then negative, with respect to a cranial ground screw. Two rats (Z1 
and Z3) were also implanted with recording drives in auditory cortex. 
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We began with a very low current, around 10uA per electrode, which was typically too low to 
produce any behavioral effect. We used pilot sessions to increase the amount of current until 
performance on the task became moderately impaired. This typically occurred at around 25 uA 
per electrode (although in rat Z2, current levels of twice this were required to have any effect). 
We wanted to use a minimal perturbation to ensure that the effects were as localized as 
possible in both time and space. We emphasize that these current levels are far lower than are 
typically used, for instance to evoke a sensory percept or motor response, demonstrating that 
the mPFC is particularly sensitive to disruption at least during our behavior. 
 
We sometimes used the same stimulation protocol during epochs in between trials when the 
rats were not behaviorally engaged in the task. We never noticed any overt behavioral 
response to stimulation under these conditions. Besides the impairment described in the main 
text, the only additional effect we observed during behavior was that rats appeared to have 
more trouble completing the center poke. The sound does not play until the rat holds for a 
random duration between 250ms and 350ms. Shorter (“failed”) center-pokes do not initiate a 
trial. Consistent with the proposed role of the mPFC in estimating temporal duration, we 
noticed that rats exhibited more failed center-pokes during disruption (data not shown), 
especially at higher current levels. Typically they did not go to the choice port after a failed 
center-poke (that is, the stimulation did not directly elicit a choice motion); they simply 
repeated the center-poke until successfully initiating a trial. 
 
For some individual sessions, the disruption caused a significant increase in the number of 
“wrong-port” responses, that is, trials in which the rat went to the choice port associated with 
the other block (data not shown). This suggested a possible specific deficit in stimulus selection, 
or in the memory of the current block, but the effects were insufficiently consistent to draw 
firm conclusions. We only included sessions for which the performance on control trials was 
significantly above chance, using the same definitions of chance as we did previously for the 
non-stimulated animals (see: “Chance performance on the task” in the Methods section of the 
main text). 
 
We observed that rats appeared to be particularly impaired on the “congruent” NOGO stimulus 
RIGHT+HIGH in one or both blocks (Figure S7B). This is interesting because this stimulus should, 
in theory, be the least ambiguous stimulus of all: it always means NOGO. For this reason, there 
was no significant increase in the proportion of trials on which the rat gave the response that 
would have been appropriate in the other block, as one might have expected were stimulus 
selection the only cognitive ability that was affected. Future experiments will be needed to 
disentangle the role of the mPFC in holding the center port, interpreting the stimulus, and 
producing the correct motor act. 
 

Simulated network model 

The weights from the A1 neurons to the command neurons were trained using a non-negative 
least squares algorithm (scipy.optimize.nnls). Each subpopulation was trained separately – the 
first subpopulation, which projects to two command neurons, was trained to produce the 
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responses appropriate for the first block; the process was repeated for the second 
subpopulation and the second block. 
 
For a given SNR, as the task switch signal increases in strength, the model’s performance 
eventually drops to 50%. This is because the size of the task switch signal begins to dominate 
the sensory input (the “overdriven” regime). In this regime, the model still produces responses 
that are appropriate to the block (i.e., it does not “go to the wrong port”) but the responses are 
no longer related to the sensory input.  
 
When the task signal corresponding to task 1 is activated, but the model is assessed on its 
performance on task 2, it performs poorly (as expected). These data are shown in Figure 8B of 
the main text: negative values of the task signal correspond to activation of the “wrong” 
network. This corresponds to doing localization instead of pitch discrimination in the real task; 
in such a case, only 25% of trials will be correct: those which present the RIGHT+HIGH stimulus 
which always means NOGO. 
 
For a network size N = 640, and at very low SNRs <1%, our model reached the overdriven 
regime before it ever produced good performance. We measured the minimum and maximum 
values of the task switch signal that produced good performance (>80%) over a range of 
network sizes and SNRs. Increasing the size of the network increases the working range of the 
model by decreasing the minimum task signal that is necessary to reach criterion performance 
and increasing the maximum acceptable task signal before reaching the overdriven regime 
(Figure S8). 
 

Video analysis of preparatory head positioning 

We recorded video of all behavioral sessions using an infrared camera. We hypothesized that 
the rat might use a different posture in each block since the reward ports were different. We 
took the video frame closest to the center of the hold period on each trial and manually scored 
the position of each ear.  We did this by asking a human observer (CR), who was blind to the 
block and outcome of each trial, to click on each ear in the frame from every trial and recorded 
the position of the clicks. This manual scoring was time-consuming so we analyzed only the 
three sessions during which we recorded the most rule-encoding neurons (one session from 
Rats 2, 4, and 6). Using the position of each ear, and knowing that the nose was located in the 
center port during this interval, we were able to construct the center position and azimuthal 
angle of the head. We found a prominent correlation between the head angle and the block in 
all analyzed sessions (e.g., Figure S3G, S4G).  
 
Because head angle is correlated with block, and because we analyzed rule-encoding neurons 
for which, by definition, the firing rate correlated with block, it stands to reason that head angle 
correlates with firing rate. In an example neuron (Figure S3H, S4H), the firing rate is highly 
significantly correlated with block (black trend line). However, for this neuron the firing rate is 
not correlated with head angle within each block separately (red and blue trend lines), 
suggesting that this is a mere side effect of the fact that the neuron is encoding block.  
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We obtained these results by regressing the square root of the spike counts on each trial onto a 
2-way linear model including both head angle and block as factors. We used ANOVA to 
calculate the explainable variance and statistical significance of head angle and block for each 
neuron. Importantly, this class of linear models explicitly accounts for the correlation between 
explanatory factors by inverting the covariance matrix. Thus, the explainable variance obtained 
is a measure of the information uniquely available from each factor in the model. Across our 
population of rule-encoding neurons, far more of the variability was explained by block than by 
head position or by the interaction (cross-term) between these two variables (Figure S3I, J; S4I, 
J). Moreover head angle was rarely a statistically significant predictor of firing rate (4/16 PFC 
neurons, 2/8 A1 neurons). The fact that some neurons do encode head angle, not block, 
according to this analysis is consistent with the known role of some neurons in this brain region 
and it is also a proof of principle that, in at least some cases, the head angle scoring procedure 
is sufficiently sensitive to uncover these effects.  
 
We chose to focus on head angle because this was the most prominent and easily quantifiable 
postural difference between blocks and is therefore likely to be correlated with preparatory 
motor activity in general. No analysis can rule out the possibility that PFC is actually encoding 
some unknown, subtle difference in behavior between blocks. However, the effects we observe 
favor the hypothesis that activity of PFC neurons primarily encodes the current task. It is 
possible that a side effect of this difference in cognitive state is a block-specific difference in 
motor planning and execution; these motor effects would thus correlate with PFC activity even 
though they may not be directly encoded by PFC activity. In fact, even our neurons that seem to 
be encoding primarily head angle may actually be encoding cognitive state: trials on which the 
rat most strongly plans to perform localization might also produce the strongest preparatory 
actions. 
 
We also asked whether the effects could be explained by the motion history of the animal 
preceding center-poke entry. We reasoned that the rat’s movement history before each trial 
would strongly correlate with the choice on the previous trial. In particular, if the rat had just 
completed a successful NOGO trial, it was likely to have remained relatively motionless in the 
center port; on trials following a successful GO trial, it was likely to have just moved from the 
choice port to the center port. When we analyzed only trials following a successful NOGO and 
found that the rule-encoding remained the same: the firing rate was still elevated during the 
preferred block and suppressed during the non-preferred block (Figure S5B). This demonstrates 
that the rule encoding cannot be purely an effect of the motion to the center port. 
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Chapter 3. Detailed procedure for training rats on stimulus 
selection 
 
We describe here the procedure we developed for training rats to perform stimulus selection. It 
is presented in stages. Each stage may take multiple, in some cases many, sessions until the rat 
is ready to move on to the next stage. Begin each day where the previous day left off, or 
perhaps a small step backward if necessary. 
 

Materials 

We used a three-port behavioral chamber with three nose-pokes (left, center, and right) and 
two speakers mounted such that they were on the left and right side of the rat’s head when it 
poked in the center. The left and right nose-pokes could also deliver water rewards. We used 
10 uL of water per reward. We found that one hour was a reasonable amount of time to train 
each rat. Our rats received ad lib water after every behavioral session to satiation. They were 
then deprived of water until the next behavioral session, approximately 24 hours later. 
 
Our entire system, both hardware and software, was modeled on that used by Dr Carlos 
Brody’s lab at Princeton University. They have graciously shared an extensive amount of code 
and guidelines on their website (brodylab.princeton.edu).  
 

Stimulus parameters 
We use Fostex FT17H tweeters as speakers. These can be calibrated to produce sound between 
5KHz and 50KHz.  
 
The LEFT and RIGHT white noise bursts were 250 ms in duration. Each was played entirely from 
a single speaker (left or right); the other speaker remained silent. We began with random 
samples (e.g., the “rand” function in Matlab) and applied a filter that we calculated to 
counteract the frequency response of the tweeter. The end result was roughly flat over the 
range 5KHz to 50KHz and contained very little power outside of this range. The total amount of 
power over this range was 60 dB SPL. 
 
The LOW and HIGH warbles were also 250 ms in duration. Each was an FM modulated tone 
with amplitude 0.07 octaves, modulation frequency 10 Hz, and carrier frequency 6KHz (LOW) 
and 16KHz (HIGH). Each was presented at 65 dB SPL. 
 
The stimulus pairs used in the task (LEFT+HIGH, LEFT+LOW, RIGHT+LOW, RIGHT+HIGH) were 
simultaneous combinations of the above sounds: the stereo waveforms were simply added 
together. 
 
Pilot experiments demonstrated that rats’ predilection for performing pitch discrimination or 
localization could be titrated by adjusting the relative volumes of these sounds. For instance, by 
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increasing the volume of the tones by 5 dB SPL, the rats were noticeably better at pitch 
discrimination and correspondingly worse at localization. The volumes stated above were 
chosen to make the tasks approximately equal in difficulty. Nonetheless, it was quite common 
for rats to be better at localization. We speculate that this is an innately easier task for them; 
alternatively, this may have been because we always trained the rats on localization first. 
 

Stage 0: Initial handling 

Goal: The rats should become comfortable with the experimenter.  
 
Spend five to ten minutes getting to know the rats and letting them become accustomed to 
being picked up. The rats should not be water deprived until they are comfortable with the 
experimenter. 
 

Stage 1: Nose-poke training 
Goal: The rats should learn how to nose-poke; that the nose-pokes produce water; and that 
persistent nose-poking is sometimes required. 
 
Cover the center and right nose pokes, leaving only the left exposed. Every time the rat pokes 
once into the left nose-poke, a water reward is dispensed. Slowly increase the number of 
required nose-pokes in order to receive reward, to about five or six. Once the rat has consumed 
approximately 1 mL of water (100 rewards), cover the left port and uncover the right port. 
Repeat the process. 
 
If the rat does not realize how to nose-poke, dispense water rewards manually from the nose-
pokes until it discovers the water. 
 

Stage 2: Center-out training 

Goal: The rats should learn the “center-out” structure of the task; that all trials begin by poking 
the center port; and that subsequently poking the side port will produce reward 
 
Cover the right port. Leave the left and center ports uncovered. Turn on a white LED in the 
center port. For the duration of the stages, the white LED means that the rat can poke the 
center port to initiate a trial. The rats cannot yet know this, but they will hopefully be curious 
about the LED and will poke the center port. 
 
As soon as they poke the center port, the LED should turn off. The rats needs to learn that this 
means it now needs to make a behavioral choice, i.e. go to the choice port. If it pokes to the left 
port within a certain time after the end of the stimulus (referred to hereafter as the maximum 
choice time, or MCT), then it will receive water at the left port. Set the MCT to 30 s at the 
beginning of this stage. 
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This can be the most frustrating stage for all concerned because the rats cannot know to 
perform the center-out structure until they have randomly done it by accident enough times to 
realize a pattern. We speculate that this notion of “action at a distance” -- that is, that center-
poking enables water delivery at the choice port -- is not an innate concept for the rats. 
 
We often found it useful to give a reward to the choice port as soon as the rat center-pokes. 
We also would reward successful center-out motions with multiple rewards. Typically rats 
perform only a few correct trials per session for the first day or two. 
 
For particularly recalcitrant learners, water can be delivered to the center port before the rat 
performs a trial. This will encourage the rat to investigate the center port and increase its 
chances of discovering the center-out pattern. 
 
Once the rats begin reliably producing the center-out pattern, gradually taper the MCT to 1 s. 
Ensure the rats are still successfully receiving reward at least 90% of the time before continuing. 
 

Stage 3: Localization 

Goal: The rats should learn that auditory stimuli will play upon poking the center port; that this 
is not something to be feared; that LEFT means “go left”; and that RIGHT means “nogo” 
 
Begin the session as before, with 10-20 trials of center-out without any sound at MCT of 1 s. 
Now, raise the MCT to 3 s and enable the sound. Ensure that only go trials, that is, LEFT stimuli, 
are presented. No LOW or HIGH sounds should be presented at any point during this stage. 
 
The first time the rat hears the sound it will be startled. The higher MCT gives it time to receive 
its reward even though it was startled. It is important that it knows center-out structure very 
well. Once it does 2-3 trials with sound, it will no longer be scared of the sound. It may be 
necessary to deliver extra rewards during this time. Some rats will attempt to partially center-
poke in order to avoid triggering a trial. Do not reward this behavior. 
 
Once the rat is consistently doing trials, lower the MCT again to 1 s and ensure the rat can still 
perform well. 
 
At this point we introduce NOGO stimuli. Raise the MCT again, to 1.5 s or so, before doing this. 
Then begin to present LEFT and RIGHT stimuli randomly on each trial. We call this the “mixed” 
mode, as opposed to the “forced-go” or “forced-nogo” mode in which only one stimulus is 
presented. We do not recommend using any other mode, e.g. 80%/20% go/nogo or structures 
in which the next trial is contingent on the current trial. This will encourage the rats to learn 
spurious strategies. The rats should learn that all trials are independent and equally likely. 
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The first time the rat hears the RIGHT it may be startled. It will soon grow accustomed to it and 
will attempt to give the same “go left” response regardless of the sound. Here for the first time 
we introduce the error timeout. Set this initially to a very low amount, like 0.5 s. After each go-
on-nogo error, the rat must wait this long before the center LED turns on again and the next 
trial may be initiated. There is no need to punish nogo-on-go errors with a timeout: the lack of 
reward is punishment enough. 
 
Rats may sometimes grow discouraged that the “go left” response no longer invariably yields a 
reward. Maintain motivation by alternating between forced-go and mixed modes. Continue 
until the rats can consistently work and do not give up after nogo trials. 
 
Next, let the rats perform this task until they begin to learn the nogo response by trial and 
error. The first sign is that the rats will move visibly more slowly to the choice port on nogo 
trials, because they know they are not going to be rewarded. Eventually they will learn that 
there is no need to move away from the center port at all; they simply should wait until the 
MCT has expired and the next trial can begin. 
 
We generally found it necessary for the MCT to be somewhere between 1 s and 2 s. Note that 
decreasing the MCT will increase the difficulty of go trials (because the rat must move more 
quickly) and decrease the difficulty of nogo trials (because the rat doesn’t have to wait as long 
and/or responses that are slightly too slow will be scored as correct). Do not vary the MCT more 
than necessary. Only lower it if the rats are performing over 85% on go trials, performing very 
badly on nogo trials, and are not improving. Do not lower it so far that the rats perform under 
80% on go trials or they will lose motivation. Remember that the rats primarily care about the 
number of rewards received, not the numerical performance. 
 
We found that most rats would learn the localization task to a reasonable level (over 80% 
overall, over 70% on nogo trials) in a few days to a week. Sometimes it was necessary to 
increase the error timeout to 2 s or 4 s, if the rats were doing large numbers of trials (over 350 
in an hour) and all of the above manipulations did not work. We view increasing the error 
timeout as the last resort because it decreases the yield of trials. 
 

Stage 4: Pitch discrimination 

Goal: the rats should learn to go the right port; that LOW means “go right”; and that HIGH 
means “nogo”. 
 
This stage is quite similar to the previous stage. Begin by covering the left port only, with no 
sound playing, a high MCT, and with only “go right” trials. 
 
Once the rats have learned to go right, follow the above protocol for turning the sound on, 
mixing in nogo trials, and gradually increasing performance. 
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Stage 5: Task switching 

Goal: the rats should learn to switch between localization and pitch discrimination; and to 
achieve very high and equally high performance on both 
 
Uncover all ports. Set the MCT a bit higher than was necessary for the individual tasks, perhaps 
2 s. Alternate the trials in blocks: 40 localization, 40 pitch discrimination, etc. At the block 
changes, some rats will instantly switch because they remember the sounds. Others will persist 
at the previous task. If necessary, switch to “all go” mode to encourage a block switch, then 
return to mixed when possible. 
 
Continue this stage until the rats are quite good at both tasks. They will need to know these 
basic stimuli, as well as the go/nogo structure, quite well in order to succeed at the stimulus 
selection task. 
 
Follow the protocol outlined in Stage 3 for adjusting the MCT and error timeout parameters. 
Keep performance on go trials high, but if it is very high (above 95%) and nogo performance is 
very low, the MCT should probably be decreased. Do not let the go performance fall below 
75%. Increase error timeout if the rats are doing many trials with poor nogo performance. We 
found that increasing error timeout beyond 6 s was counterproductive. 
 
Use the “forced nogo” mode when all other strategies fail. Present only nogo stimuli until the 
rat stops responding. As soon as the rat gives 1-3 correct nogo responses in a row (out of 
frustration), then immediately give a few go trials to keep motivation up. But do not give too 
many go trials in a row as this is the opposite of what the rat should learn. 
 
The general philosophy is a 50/50 compromise between adjusting the parameters based on the 
rat’s behavior, and leaving the parameters fixed so that the rat adjusts to them. A certain 
amount of intuition and user intervention is necessary, though this should be minimized. 
Certainly the parameters should not be “overcorrected” and wildly varied within a session. 
Eventually they should be fixed within each session. 
 

Stage 6: Introducing the distractor 

Goal: the rats should learn how to perform the task with a distractor; to switch between the 
blocks even with the distractor; and to achieve an equally high performance in both blocks 
 
We found this stage to be surprisingly easy for the rats to learn. Use a trial structure of 20 cue 
trials (no distractor), followed by 60 trials with distractor. Then switch to the other task, again 
using 20 cue trials and 60 trials with distractor. 
 
If the rats persistently do the wrong task or go to the wrong port, switch to “all go” mode or (in 
extreme circumstances) give water manually to the port they are avoiding. At first, be generous 
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with the “all go” mode and help them to switch between the tasks. Later, avoid the “all go” 
mode and let the rats learn to switch by trial and error. 
 
We found that rats very often adopted a strategy in which they would perform well at one task, 
then switch to an “always go” strategy in the other block. This is a simple, but undesired, form 
of task switching. Use the techniques above (increasing error timeout, forcing nogo) to combat 
this. Very recalcitrant rats can be switched to a block structure in which they only perform only 
their non-preferred task until they begin to perform well at it. However, we found it useful to 
have the rats do at least one block of each task, every day, so that they still have to switch 
every day. 
 
As rats become very highly trained on this task, we typically had to lower MCT gradually. In the 
most extreme cases an MCT of 0.4 s was necessary because rats simply would not wait longer 
than this on nogo trials under any conditions. 
 
Our best rats were able to learn to perform both tasks above 90% correct and to switch almost 
instantly, reaching plateau performance within 2 trials of a block change. 
 

Why the complicated go-left/nogo/go-right structure? 

As social animals who live in burrows, rats probably have the capability to identify and select 
important sounds (e.g., vocalizations from other rats) in order to preferentially respond to 
them. We have found that the bottleneck in developing new behaviors is not the rat’s ability, 
but the researcher’s ability to incentivize the rat to perform the desired task. We have found 
rats to be excellent at making very difficult sensory discriminations; however, it is much more 
difficult to train them to perform tasks requiring cognitive flexibility, especially if there is an 
alternative, suboptimal strategy that works pretty well (such as always-go, as described  above). 
 
We first conceived of the task as a “two-alternative forced choice” paradigm. In that paradigm, 
the rat has two behavioral choices on every trial: to poke its nose in the left port, or to poke its 
nose in the right port. Each sound in the pair could mean either “go left” or “go right”. The 
problem we encountered was that rats would always select the same sound (e.g., always do 
localization), regardless of the block. That meant that they performed at 100% in one block and 
at 50% in the other block, by random chance. The overall performance was 75%, more than 
acceptable to the rat.4 We tried a wide variety of workarounds to avoid this but found no 
success. Even when we carefully selected the stimulus pairs such that the rat would perform at 
0% if it selected the wrong sound, it still took several daily sessions before the rat began to 
select the other sound. 
 
Our solution was to modify the task to the form described above. We found that rats learned 
this task much more quickly, even though the only difference was the motor act required to 
report a decision, an implementation detail of seemingly incidental importance. One possible 

                                                      
4
 Also sufficient to pass a course at Berkeley. 
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explanation is that, with the current version of the task, the rat never receives reward for 
performing the action associated with the distractor. Another possibility is that the association 
of a separate reward port with each task makes it cognitively easier for the rat to switch 
between them. 
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Chapter 4. Interpretation and perspective 

Models of prefrontal control 

I began my research with a “feedforward” hypothesis in mind. Under this hypothesis, 
information flows from sensory organs in the periphery, through sensory cortex, and eventually 
reaches the “apex” region: prefrontal cortex. At this point, a final decision is made based on all 
available information. The correct motor action is determined and transmitted downwards 
through premotor and motor areas, eventually entering the periphery again and activating 
musculoskeletal effectors. This hypothesis remains popular among some authors (Mante 2013, 
Gilbert 2002) 
 
Lesion studies (Rich 2009, Pai 2011) showed that animals are still able to make sensory 
discriminations even without prefrontal cortex (though not necessarily on all tasks, especially 
those requiring cognitive flexibility). I modified my feedforward model with an exception for 
simple sensory discriminations: for instance, in tone detection, the information might follow a 
tighter loop directly from auditory cortex to striatum and from there to the motor effectors. 
This could occur without any input from PFC. I suggest the striatum here because activating this 
projection is sufficient to bias pitch discrimination decisions (Znamenskiy 2013). 
 
After having taken the data, I now take a different view. I now propose that the decision is 
always made in sensory cortex, regardless of the task. When necessary, contextual information 
(e.g., the current task and appropriate rules) flows downward from PFC and mixes with bottom-
up sensory information in sensory cortex. In my case I suggest that these streams converge in 
A1 and the decision is produced there. Downstream regions like the striatum read out this 
decision from the activity in A1 and signal the appropriate motor act to the peripheral motor 
system.  
 
I cannot definitively identify the regions involved in this model because I did not record in other 
structures, such as striatum, motor cortex, or higher sensory cortex. The specific proposal that I 
am making is that information is flowing primarily from PFC to sensory cortex, and only weakly 
in the other direction. The most obvious piece of evidence in support of these ideas is that I 
observed only weak and poorly tuned sensory information in PFC. This seems incompatible with 
the notion that PFC not only receives sensory information but performs the final computation 
on it.  
 
Secondly, I observed a surprising amount of cognitive and motor signals in A1. In fact, I found 
A1 and PFC to be extremely similar in the variables they encoded. There were some exceptions: 
A1 encoded sounds more strongly; PFC encoded the task more strongly; but to a first pass the 
regions were more similar than they were different. 
 
I proposed a quantitative model to make these ideas more explicit. In this model, contextual 
information from PFC is simply an additive excitatory signal that activates the appropriate 
subnetwork in A1. One important limitation of this model is that it can only activate 
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subnetworks that already exist in A1. New subnetworks can only be formed via behavioral 
training. A question for future work is how this model could be improved to more closely 
resemble the cocktail party problem. Clearly a subject can direct attention to a new speaker, 
whom he has never heard before, rapidly and without extensive retraining. To understand such 
a behavior, I would need to design a task in which the subject must generalize to a new 
stimulus perhaps even on every trial. 
 

How do we know what we know in neuroscience? 

Consider a simple thought experiment5. The subject is a trained mathematician. The task is to 
view a long and complex mathematical proof and to evaluate its correctness. The subject 
reports his decision by pressing a button if and only if he believes the proof to be true. Clearly 
this cognitive ability is quite elaborate and we would like to understand how the brain can 
perform this. 
 
Now imagine that I have found a neuron in the subject’s brain with the following 
characteristics: 
 

1) It is highly correlated with the task -- i.e., the neuron fires when the proof is true; the 
neuron does not fire when the proof is false 

 
2) We have the ability to perturb this neuron. When we cause the neuron to fire, the 

subject reports that the proof is true. When we silence it, the subject reports that the 
proof is false. 

 
By the standards of the field, we have found a neuron of critical importance to mathematical 
proving. A variety of experiments might be suggested to understand what computations it is 
performing. 
 
Now I reveal the identity of this neuron -- it is the motor neuron controlling the 
mathematician’s index finger which pushes the button. Suddenly the results seem trivial and 
uninteresting. But why? 
 
One simple answer is that we did not do certain control experiments. For instance, if a follow-
up task had required the subject to report using his big toe, then our results would have 
disappeared. But it is easy to imagine that there is a neuron one single step upstream from the 
putative motor neuron, that would exhibit the above properties regardless of what effector was 
used. In fact, such a neuron almost certainly exists, simply because mathematicians can be 
trained to report their answers with any appendage without any additional effort. 
 

                                                      
5
 The original version of this was posed to me by Jack Gallant. In those days perturbational techniques were less 

common and I have updated it to include them. 
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Another control experiment is to consider error trials, but this would not change anything 
either. When the mathematician makes a mistake, the neuron would correlate with his 
response; perturbing the neuron would still affect his response. It seems extremely unlikely 
that we would discover an “oracular” neuron that encodes the veracity of the proof regardless 
of the mathematician’s response. 
 
These follow-up experiments and many more are ad hoc: we know that they are important, but 
they don’t fit into the standard approach for understanding neural functioning, which is to 
search for physiological correlates, then to silence or to activate the relevant neurons and 
observe, respectively, an abolishment and a rescue of the behavior. These experiments are the 
accepted standard for proving sufficiency and necessity, i.e., logical truth. 
 
So in any experiment, once we have satisfied the physiological and perturbational conditions, 
what do we do next in order to determine what role the neuron plays in behavior? I would 
argue that the next step is to characterize quantitatively the computations at every point in the 
circuit which we believe to be necessary. We must be able to re-implement the same 
computations in a simulation and produce generally the same results (at least on average 
across trials). Only then can we answer the underlying question (“how is the computation 
done”) in addition to the questions answered by physiology (“what is the brain doing”) and 
perturbation (“where is the computation done”). 
 
Throughout my experiments, presented in Chapter 2, I struggled with this problem. Do our 
effects represent stimulus selection? Motor planning? Memory of the current block? This 
problem is not specific to our study. I am evoking here the words of J Erlich, M Bialek, and C 
Brody (Erlich 2011), who raised a very similar question about their own work, an extremely 
careful investigation into decision making in the rat frontal orienting field (FOF). 
 

There are several possible interpretations as to what component(s) of response 
preparation FOF neurons might encode: do they represent a motor plan? A memory of 
the identity of the motor plan? Attention? Intention? Our data do not discriminate 
between these possibilities. (Erlich 2011) 

 
Psychology is a useful framework for understanding human (or rat) behavior by conceptualizing 
the aspects of cognition (attention, motor planning, stimulus processing, etc.), but there is no 
reason to assume that these concepts map on physiology in a one-to-one fashion. In attempting 
to do so, we risk falling into the trap of being unable to dissociate effects that may be different 
aspects of the same neural processing. 
 
Instead, I propose an alternative approach. (Unfortunately it is at the limits of what is 
technically feasible presently.) Not only must we identify what neurons are involved (by 
perturbational techniques) and what activity patterns they produce (by physiological 
recordings); we must also identify the computations they perform. This will require measuring 
their inputs, their outputs, and potentially their entire internal state, and finally entering all of 
the data simultaneously into a model of the entire system. The model must produce the same 
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result as the actual brain, at least on average. This is based on the engineering doctrine: if you 
really understand something, you can take it apart and put it together again (and it will still 
work). 
 
Assuming we could actually do this, what form would our understanding of the neural circuit 
take? I do not think it would change the way we conceptualize behavior, which will remain 
rooted in a psychological/ethological model. Nor would it change our beliefs about what 
individual neurons are doing, which we can already investigate with physiology. Instead it 
would answer an entirely different question at an intermediate level of abstraction: how do 
thoughts form?  
 
It remains to be seen whether we could even understand the computations performed at such 
an intermediate level. It may be that there is no simpler description of the system, other than a 
complete one. Even with purpose-built neural networks, designed by humans ab initio without 
attempting to recapitulate an actual brain, it can be extremely difficult to understand how they 
work, just that they do. Nonetheless, I believe a full description of the computation is a 
prerequisite for understanding it. 
 

Ruminations on perturbational techniques 

Throughout the history of neuroscience, experimenters have both observed the brain and 
interfered with it, sometimes in the same experiment. In decades past, commonly used 
techniques for interfering with the brain were lesioning it (perhaps reversibly), stimulating it, 
applying drugs to it, and so on. The invention of optogenetics has made it possible to interfere 
with much greater resolution and control, by expressing light-gated ion channels in genetically-
identified neuronal cell types, and has correspondingly increased the popularity of studies 
which manipulate neuronal activity and measure the effect on behavior. 
 
I am not aware of an accepted term for the general approach of interfering with the brain. It is 
sometimes just called optogenetics, but this is a technique, not an approach, just as 
extracellular recording is a single technique within physiology. It is sometimes called “causal 
manipulation”, in the sense that it causally affects the brain, but I consider this a misnomer 
because it seems to imply that other manipulations somehow violate causality, a logical 
impossibility. I prefer the term perturbation (after Erlich 2011, though it has surely been used 
before).  
 
Correlational physiology explores the relationship between neural activity and behavior under 
the endogenous state, when every attempt is made to interfere as little as possible. 
Perturbation probes this relationship by manipulating the state and observing the results. Both 
are critical for understanding the functioning of the circuit. 
 
What is the logical basis of the perturbational approach? It is typically understood in terms of 
activation and silencing which are understood to be opposing manipulations that should yield 
opposing behavioral results. If activating a neuron (or set of neurons, or brain area) N produces 
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a behavior B, this is taken to be evidence that “the neuron is sufficient for the behavior” (N 
implies B). If silencing a neuron abolishes a behavior then this is taken as evidence that “the 
neuron is necessary for the behavior” (not N implies not B)6. I call this the classical 
interpretation of perturbation experiments. The combination of these two logical statements is 
B⇔N, that is, a logical identity between the firing of a neuron and the behavior.7 
 
The classical interpretation is initially satisfying. Yet there are some extremely simple examples 
in which it completely breaks down. Consider these three examples:  
 

 
Figure 4.1 - Three example relationships (cases A, B, and C) between neural activity and behavior. Circles represent the initial 
(endogenous) state of the system. Perturbing the neural activity moves the state rightward or leftward along the curve. 

 
Case A: The simple case. Behavior is positively correlated with neural firing. In this case, 
activating the neuron increases behavior (sufficiency); silencing the neuron suppresses it 
(necessity). Conclusion: high firing in this neuron is both necessary and sufficient for the 
behavior. 
 
Case B: Only slightly more complex. Behavior is negatively correlated with neural firing. In this 
case, activating the neuron suppresses the behavior and silencing the neuron enhances it. What 
do we conclude? It stands to reason that we should conclude the opposite of (A): low firing is 
both necessary and sufficient for behavior.  
 
The experiment that abolishes behavior must always be the necessity test, so in case (B) the 
activation experiment is the necessity test, in apparent violation of the classical interpretation. 
This is not at all an unusual case however; for instance, this neuron may be inhibiting the 
neuron in case A. 

                                                      
6
 This is logically equivalent to B implies N. The phrasing may suggest that the behavior preceded the neural 

activity but this is incorrect: logical implications do not have a temporal order. 
7
 Typically ignored in these arguments is another variable C: the entire context in which the experiment occurs. 

This includes the subject’s environment, but also the functioning of every other neuron and the rest of the body. 
Strictly speaking, no neuron can be sufficient for any behavior, because firing this neuron in a paralyzed subject (or 
isolated in a dish) would never produce the behavior. It is also likely that vast swathes of the brain and body are 
necessary for almost every behavior, for instance the brainstem respiratory systems. 
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Case C: The inverted-U relationship. In this case, the results of the experiment depend on the 
initial conditions. At point C1, the results match case (A); at point C3, the results match case (B); 
at point C2, both perturbations suppress the behavior. What do we conclude? 
 
Clearly medium firing is both necessary and sufficient for behavior, but we could only know this 
if we had access to preparations beginning at all three points. In the worst case, if we had 
access only to preparations near point C2, then all manipulations would perturb behavior and 
we could only conclude that the endogenous firing patterns were necessary for behavior; never 
being able to enhance the behavior, we could not conclude anything about sufficiency. 
 
Any more complex relationship between neuronal firing and behavior can only make these 
matters worse. Moreover, it is reasonable to expect (by both evolutionary and efficiency 
arguments) that the brain typically operates close to a local optimum similar to the 
troublesome point C2. In such cases, it is unlikely that activating or silencing neurons will move 
the system toward a more optimal state. Both manipulations are likely to “disrupt” activity – to 
move it further from its optimal state. (Unfortunately, such results are likely to be perceived as 
“null” or “conflicting” and remain unpublished.)  
 
The common phrase “the neurons are necessary and sufficient for the behavior” is shorthand 
for “increased firing of the neurons is necessary and sufficient for behavior”. And in cases like 
(A) above where the classical interpretation holds true, that conclusion is indeed valid. These 
are exactly the circumstances under which perturbation techniques have been the most 
illuminating (Lin 2011). This argument does not invalidate those results by any means; it simply 
shows that there are quite simple examples where the endogenous firing pattern of the neuron 
is both necessary and sufficient for behavior but the classical interpretation will yield incorrect 
or confusing results. 
 
In summary: 

1) Silencing is not the only way to show that a neuron’s firing is necessary for a behavior. 
Any manipulation that abolishes behavior (silencing, activation, even random 
disruption) are equally valid.8 

2) A neuron’s observed firing pattern can be sufficient for the behavior, but in such a way 
that neither stimulation nor any other manipulation could reveal it.9 

 
Throughout, I have only considered the case where the neuron is actually controlling behavior. 
Under the null hypothesis, perturbation techniques would produce a null result. This is a very 
useful conclusion, subject of course to the usual caveats of null results.  

                                                      
8
 Of course, the type of manipulation constrains our interpretation of what exactly about the neuron’s firing is 

necessary. But such interpretations must be drawn carefully anyway. For instance, we may mistakenly conclude we 
are in case A when we are actually at point C1. 
9
 If we already know the full dynamics of the network and could calculate the optimum exactly, we might be able 

to do a very impressive sufficiency test. This would be equivalent to knowing that we were close to point C2, 
measuring the exact location and curve, and delivering exactly the right perturbation to reach C2 exactly. 
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I make one final technical note. Thus far I have assumed that activating and silencing neurons 
do exactly that. However, perturbing a system typically results in a rebound in the opposite 
direction, possibly because the network is attempting to regain its desired state. For instance, 
activating a system with electrical or optogenetic perturbations can paradoxically produce 
widespread and long-lasting suppression a bit later. These are typically viewed as undesirable 
side effects to be controlled via clever experimental design, but if one is willing to consider all 
of these manipulations as necessity tests via disruption, it becomes a non-issue or even a 
strength. 
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