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Cognitively assistive robots have great potential to improve the accessibility of healthcare

services by extending existing clinical interventions to a person’s home. This provides a variety

of benefits, including extending the reach of professional services, allowing people to engage

with these interventions at their own convenience, and reducing risk of exposure to illness

at clinics. However, there are many obstacles to deploying these robots longitudinally and

autonomously, particularly for populations with lower technology literacy such as older adults.

These obstacles include enabling robots to leverage the expert domain knowledge of clinicians

and other stakeholders, contextualizing the robot and intervention to the lives of users, and
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understanding and adapting to a person’s intervention preferences and goals.

The goal of my work is to design systems that enable robots to continuously learn from

and adapt to people in real-world environments. In this dissertation, I will describe three main

contributions of my work.

First, I developed new methods to recognize complex motion reflective of real-world

activities to enable robots to accurately understand human intention. Recognizing human activity

can help robots understand a person’s state and their reactions to its behavior. My work revealed

the complementary strengths of two common sensor modalities for recognizing gross and fine

motion, which can be leveraged to recognize complex activities and help robots better understand

human intention. In addition, I designed a novel deep learning architecture for recognizing fine

motion using nonvisual sensors, enabling robots to recognize human activity in dynamic, privacy

sensitive settings such as homes.

Second, I developed the first robotic system (JESSIE) which makes control synthesis

accessible to novice programmers, allowing all stakeholders to quickly and easily specify complex

robot behaviors through a tangible specification interface. Stakeholders such as clinicians and

end users can provide robots with valuable domain and personal knowledge which can inform its

behavior. My work revealed key insights regarding how robots can learn and adapt to people with

cognitive impairments longitudinally at home. JESSIE makes control synthesis more accessible

to novice programmers, enabling stakeholders to imbue robots with their domain knowledge and

extend the reach of their work.

Third, I developed an autonomous robot (CARMEN) which extends clinical healthcare

interventions to the home, and longitudinally supports goal progress and motivation. In collab-

oration with clinicians and people with cognitive impairments, I identified interaction design

patterns for translating clinical interventions to robots in order to maintain longitudinal engage-

ment and maximize efficacy. Furthermore, I developed a new framework for roboticists creating

longitudinal, robot-delivered health interventions with collaborative goal setting capabilities.

My work lays the foundation for enabling robots to support motivation and goal achievement

xix



throughout a longitudinal intervention at home.

My research contributes to building robotic systems which can longitudinally personalize

their behavior to people in real-world environments. My work aims to transform how robots

longitudinally interact with people, with the ultimate goal of enabling more safe and effective

human-robot interaction, particularly for underserved populations.
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Chapter 1

Introduction

Robots are rapidly entering everyday human-centered environments where they have

shown great promise for supporting people in their daily lives. For example, robots can provide

assistance and improve safety in settings such as hospitals and homes [4, 301, 329, 441], support

education for children and healthcare workers [358,418], and enhance operations such as surgery

or manufacturing [95, 145, 220, 373]. The COVID-19 pandemic has highlighted the need for

increased access to key services from the home, including quality healthcare and education,

particularly for underserved populations such as people with disabilities [22, 260, 302]. For

instance, physically and socially assistive robots in the home can deliver personalized physical

and cognitive rehabilitation interventions [94, 126, 218, 225, 277, 368, 409, 497], provide social

support for care partners [166, 269, 316], and connect students who are physically unable to

attend school with their in-person counterparts [456, 483].

In order to successfully support people in real-world settings, robots will need to be able

to exhibit personalized actions and behaviors, such as adapting their communication modalities

or personality [84, 146]. Personalization is a prominent research area in the field of human robot

interaction (HRI), with many HRI researchers exploring how to personalize robots to be more

accessible, engaging, and effective [83, 320, 397]. Personalization is particularly important when

developing systems for people with disabilities and their care partners, as these populations

can have a wide range of physical and cognitive abilities, potential comorbidities, and other

1



personal preferences [5, 447]. Thus, robots will need to consider these preferences and abilities

appropriately in order to be more usable and accessible to these populations.

Enabling robot personalization can be difficult as a person’s preferences can change due

to a variety of factors, including their current context, needs, or mood. Therefore, learning those

preferences and adapting to a person can be challenging for a robot to achieve longitudinally and

autonomously. This is especially true for people with cognitive impairments, whose abilities and

preferences may change as their condition progresses over time [431].

In addition, robot behaviors for clinical applications will need to be grounded in current

clinical practice to ensure that they are personalized to a person’s current abilities, adhere to the

best practices of clinical experts, and maximize accessibility to users. Thus, in order to determine

what behavior is appropriate for different people and situations, robots can leverage domain

expertise from clinicians, or personal knowledge from family members or care partners. Thus,

roboticists as well as robots themselves will need to learn from and engage with all stakeholders,

including end-users, family members, care partners, and clinicians, in order to provide a more

personalized, effective, and inclusive interaction.

My work is situated in this problem domain of enabling robots to safely and continually

learn from and adapt to people in dynamic, real-world environments, such as homes. By incorpo-

rating implicit feedback from users (i.e., data obtained via sensors during an interaction) and

explicit directives from domain experts such as clinicians (i.e., commands given or programmed

into a robot), my work enables robots to support a broader range of people, including those with

disabilities.

1.1 Motivation and scope

Many HRI researchers are exploring the deployment of assistive robots to deliver per-

sonalized interventions, including for applications such as supporting social and academic

learning [227, 341, 369], physical rehabilitation [129, 271], and mental health [15, 226, 401].
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Figure 1.1. Integrating domain knowledge from clinicians and personal knowledge from
family members can help maintain engagement and adherence to a robot-delivered intervention
longitudinally.

These personalized systems are typically able to adjust features such as intervention content

and difficulty, or the frequency of an interaction. They have shown great promise for improving

learning and health outcomes.

However, there are still many challenges to deploying these systems autonomously and

longitudinally, which are more pronounced when developing them for people with cognitive

impairments. First, people with cognitive impairments and their care partners may have low

technology literacy, limiting their interactions with a robot. In healthcare contexts, domain and

personal knowledge from end users (e.g., patients and people with disabilities), clinicians, and

family members can inform robot behavior throughout an intervention, which is essential to

maintaining engagement and adherence longitudinally [258] (see Figure 1.1). Neither robot

developers nor clinicians can predict how a person’s needs may change over time, so these

stakeholders may need to program robots to exhibit custom behavior without advanced skills in

robotics or programming.

Another key challenge is with regards to real-time personalization, or enabling a cog-
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nitively assistive robot (CAR) to understand a person’s current context and preferences. A

CAR’s behaviors may need to vary widely to suit a user’s state, such as their mood, abilities,

or performance. This is essential for ensuring that a robot’s behavior is appropriate for a given

user and their current situation, and integrates seamlessly into their existing lives. Doing so

can improve accessibility and reduce barriers to use, which can increase engagement with the

intervention and ultimately improve its efficacy [83, 253].

Another major challenge is enabling robots to continually learn and adapt to a person

over a long period of time, especially as their preferences, goals, and abilities may change over

time. In the context of robot-delivered interventions, people may show progress as they continue

to engage with the robot. On the other hand, their cognitive impairment may prohibit them from

seeing the therapeutic outcomes they would like. Robots will need to recognize these changes

and adapt appropriately in order to promote engagement and health outcomes.

Thus, the research goal of my work is to enable robots to learn from and adapt to

people longitudinally in real-world environments, with a focus on supporting people with

cognitive impairments. While there are many dimensions to this problem, this dissertation

explores the following aspects:

• How robots can recognize human activity in dynamic, real-world environments.

• How to develop robots to autonomously and longitudinally deliver a cognitive intervention

in home settings.

• How novice programmers can create custom programs for social robots.

• How to design social robot behaviors appropriate for people with cognitive impairments.

• How to translate an intervention traditionally delivered by a person in clinic, to be delivered

by a robot at home.

• How robots can support key components of longitudinal interventions, including collabo-

rative goal setting.
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• How to ethically personalize robot systems for people with cognitive impairments.

1.2 Contributions

The contributions of this work are as follows:

• Identified how multiple sensor modalities can be combined in a complementary

fashion to detect human activity [254]. This study explored the relative efficacies of

motion capture cameras and wearable sensors for recognizing both gross (e.g., full body)

and fine motion (e.g., hands or fingers). I collected a new dataset of people performing

two tasks predominantly characterized by each motion type. Using this data, I employed

common classification algorithms for human activity recognition (HAR), and found that

motion capture yielded 37% higher accuracy than wearable sensors for gross motion

recognition, while the wearable sensor yielded up to 28% higher accuracy for fine motion.

This suggests that the sensors offer complementary strengths which can be leveraged to

recognize complex activities and help robots better understand human intention.

• Developed a new deep learning method for automatically recognizing human activity

using non-visual sensors in dynamic, real world settings [137]. I designed a hybrid

Convolutional Neural Network (CNN) Long Short-Term Memory (LSTM) classifier which

captures both convolutional and temporal features from a wearable sensor that gathers

both inertial and muscle activity data. The convolutional features represent the state at

each timestep, while the temporal features capture how that state evolves over time. I

evaluated my system on two publicly available datasets and found that augmenting inertial

data with muscle activity yielded 13% higher accuracy than inertial data alone. Moreover,

my hybrid architecture outperformed existing state-of-the-art approaches by up to 200%.

Thus, my work can enable robots to more robustly recognize human activity in dynamic,

privacy sensitive settings such as homes.
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• Developed CARMEN (Cognitively Assistive Robot for Motivation and Neurorehabilita-

tion), a robot which delivers a cognitive intervention autonomously and longitudinally

to people with cognitive impairments at home [255]. CARMEN affords people with

mild cognitive impairment (MCI) opportunities to learn and practice compensatory strate-

gies that mitigate the effects of impairment (e.g., using a calendar, mindfulness exercises).

People with MCI will learn and practice a new compensatory strategy in each interaction

with CARMEN. They can then employ these strategies in their real lives, thus minimizing

the impact of MCI on daily life. CARMEN is implemented on a tabletop social robot and

leverages a tablet display to promote a variety of communication modalities (e.g., visual,

auditory, tactile) and accessibility. CARMEN will extend the accessibility of healthcare

interventions to the home and ultimately improve health equity.

• Developed Just Express Specifications, Synthesize, and Interact (JESSIE), a new

robotic system which enables novice programmers to program social robots by ex-

pressing high-level specifications and control synthesis approaches [256]. JESSIE

allows users to specify and synthesize personalized behaviors, so programmers can focus

on their overarching goals (e.g., which cognitive rehabilitation strategies to practice), rather

than specific implementation details. I developed a tangible system which allows pro-

grammers to easily express the desired behavior, improving the learnability of the system

and the accessibility of control synthesis. As a first version of CARMEN, I demonstrated

JESSIE in the context of a robot longitudinally delivering a neurorehabilitative intervention

to people with MCI via a home deployed robot. Neuropsychologists, who had no prior

experience programming robots, were able to successfully program the robot to deliver

interactive cognitive intervention sessions for a person with MCI. JESSIE makes control

synthesis more accessible to novice programmers, enabling stakeholders to imbue robots

with their domain knowledge and extend the reach of their work.

• Proposed interaction design patterns for translating an existing clinical intervention
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to a robot in order to maintain longitudinal engagement and maximize efficacy [253].

Using CARMEN as a design probe, I engaged in a collaborative design research process

with key stakeholders including clinicians and people with cognitive impairments. I iden-

tified design considerations to make robots both physically and cognitively accessible

to people with cognitive impairments. This research identified how neuropsychologists

envision translating a cognitive training intervention to a CAR, and features the robot

intervention needs to be successful, such as supporting goal setting, personalizing content,

encouraging real-world transfer, and maintaining engagement longitudinally. We also con-

ducted interviews with people with MCI, the end users of the robot-delivered intervention,

which revealed how they envision using the CAR long term at home. This work estab-

lishes the foundations of translating neuropsychologist-delivered, clinic-based cognitive

interventions to robot-delivered, home-based interventions, and provides a framework to

researchers to support this process.

• Defined a framework for developing longitudinal, robot-delivered health interventions

with collaborative goal setting capabilities [255]. This framework comprised design

considerations and concrete examples of robot behaviors for the major components of

collaborative goal setting which were co-designed with clinicians and people with cognitive

impairments. This includes how robots can help users set goals, measure goal progress,

deliver intervention content to support transfer to the real world, and motivate people to

achieve their goals. My work lays the foundation for enabling robots to support motivation

and goal achievement throughout a longitudinal intervention at home.

• Identified ethical considerations of developing personalized robots for people with

cognitive impairments [257]. This work weighed the benefits of personalization with

its potential risks, such as risks to a person’s safety and autonomy, the potential to ex-

acerbate social isolation, and risks of being taken advantage of due to dark patterns in

robot design. We explored ethical considerations for developing personalized CARs,
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including how a robot can practice beneficence, where responsibility falls if a robot causes

harm to a user, and how a user can acquire informed consent from users with cognitive

impairments. This work highlighted the challenges that accompany personalized care

technologies, and demonstrated the need for continued and critical exploration into the

potential consequences of personalizing CARs, particularly for people with cognitive

impairments.
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1.4 Ethical procedures

This dissertation describes human subject experiments that have been formally reviewed

by the Institutional Review Board (IRB) at the University of California, San Diego. Participants

provided informed consent to participate in experimental research in all human subjects experi-

ments. All collected data were appropriately anonymized and securely stored. Participants were

compensated for their participation.

1.5 Dissertation overview

The dissertation is organized as follows:

• Chapter 2 provides a brief overview of related work in the areas of cognitively assistive

robots, longitudinal robot behavior adaptation, and compensatory cognitive training.

• Chapter 3 introduces new methods for enabling robots to recognize human activity using

non-visual sensors.

• Chapter 4 describes the design and implementation of CARMEN, a new robot system

which longitudinally and autonomously delivers cognitive neurorehabilitation in home

settings.

• Chapter 5 presents JESSIE, a new robot system which enables novice programmers to

create custom programs for social robots.

• Chapter 6 discusses interaction design patterns and design considerations for translating

clinical interventions to robots in order to maintain longitudinal engagement and maximize

efficacy.

• Chapter 7 presents a new framework for developing robot-delivered health interventions

with collaborative goal setting capabilities.
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• Chapter 8 discusses ethical considerations for developing personalized robot systems for

people with cognitive impairments.

• Chapter 9 summarizes the main contributions of this dissertation, discusses plans for

future work and open questions for the HRI community, and provides concluding remarks.
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Chapter 2

Background

2.1 Mild Cognitive Impairment and Neurorehabilitation

2.1.1 Mild cognitive impairment

Dementia is an irreversible syndrome that entails noticeable decline of cognitive function

[316, 335]. Approximately 11% of people aged over 65 are impacted by dementia, and each

case is unique. Symptoms can range across the spectrum, from early stage (e.g. forgetfulness)

to late stage (e.g. difficulty recognizing friends and family). It can affect a person’s physical

abilities, mental abilities, and behavior, and can lead to hazardous behaviors such as wandering,

medication errors, and domestic or financial abuse. Furthermore, the number of people who

need support exceed the availability and resources of full-time care providers, and informal care

partners (e.g. family) must often assume much of the care responsibility [135, 334], yet are

provided few resources to do so, leading to stress and burnout [316]. There are no known cures

to slow or prevent its onset which can cause reduced quality of life to family members when

adopting the role of informal care partners [444].

Mild cognitive impairment (MCI) is the prodromal, or intermediate, state between

normal aging and several neurodegenerative disorders such as Alzheimer’s disease and vascular

dementia [202, 346]. An estimated 20% of adults aged over 65 experience MCI, approximately

10% of whom convert to some type of dementia each year [62, 202]. To date, no existing

pharmacological treatments have proven effective for slowing or preventing this conversion, but
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Figure 2.1. Robots used to support people with cognitive impairments vary widely in morphology,
including mobile, tabletop, humanoid, mechanistic, and zoomorphic. From left to right: Bandit
[439] (Provided by Maja Matarić), Care-O-bot [243] (Provided by Fraunhofer IPA [139]),
KOMPAÏ-2 [12] (Provided by KOMPAÏ Robotics [245]), Kuri [256] (Provided by Mayfield
Robotics), Mabu [84] (Provided by Catalia Health), PARO [474] (Provided by Carlton SooHoo
[339]).

studies suggest that behavioral interventions can help [202].

MCI can affect numerous cognitive domains including memory, visuospatial functioning,

complex attention, and executive functions, though not to a level of severity that would warrant a

diagnosis of dementia [11, 346]. Studies indicate that many people will remain at the MCI stage

without ever converting to dementia, and up to 40% of those with MCI will return to normal levels

of cognitive functioning over time [202]. However, as people lose their independence, it can

severely impact their quality of life [133, 202]. It can also adversely affect their family members,

put strain on their relationship with the person with MCI, and cause stress [17,111,143,202,316].

This change in lifestyle and role can cause feelings of guilt, anxiety, and depression in a person

with MCI and their care partners [17, 143].

2.1.2 Neurorehabilitation

Many researchers have explored strategies to promote the reablement of people with

dementia, or mitigating the impact of dementia on their function to promote independence [357].

In particular, non-pharmacological approaches such as behavioral interventions can slow the

onset of MCI, which can prolong independence and maintain quality of life [202]. Treatment

approaches include cognitive rehabilitation and restoration therapies, which aim to minimize or

compensate for lost cognitive function in everyday life. Among the most widely used strategies
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are compensatory cognitive training (CCT) and restorative cognitive training [202].

CCT teaches a person with MCI metacognitive strategies to help bypass impaired function

and minimize its impact on daily life [133, 202]. These strategies may include reorganizing

their environment (e.g. always placing their keys next to the door when they return home),

integrating new tools into their daily routine (e.g. routinely keep and check a daily planner),

and using different skills to compensate for memory difficulties (e.g. using visual imagery or

acronyms). Depending on an individual’s impacted cognitive abilities, clinicians may prescribe

different training regimens to focus on specific skills. CCT has been shown to improve cognitive

performance and daily functioning in people with MCI, and these improvements are often

sustained even after a person has completed training [202]. In our work, we focus on employing

CCT with a robot [256].

In contrast, restorative cognitive training attempts to enhance or restore a person’s lost

cognitive abilities. It relies on consistent practice and repetition of standardized cognitive

exercises designed to target specific skills such as attention or memory, e.g., “drill and practice”.

While this approach can help strengthen neural circuits and improve a person’s performance on

similar tasks, these exercises are generally standardized (i.e. not personalized to an individual)

and may not be relevant to a person’s everyday life [85]. Furthermore, these skills typically do

not generalize well (i.e. transfer) to other tasks [202].

2.2 Robots for Neurorehabilitation

Robots have shown great potential to help people across numerous aspects of health and

wellness. Examples range across many of settings, including homes, clinics, and hospitals, and

different tasks, including reducing clinician workload, supporting people with disabilities, and

supporting care partners [115, 248, 316, 348, 350, 375, 376, 405, 474].

Robots for physical neurorehabilitation typically help people by physically supporting

or correcting movement with the goal of restoring neuromotor function, e.g., restoring or
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supplementing limb function in people who had a spinal cord injury or stroke [115, 248, 405].

These robots take many forms, such as robotic arms to help people control their arms and hands

to complete activities of daily living (ADL) tasks [248, 405], or exoskeletons to help people

walk [115].

Researchers also use CARs to support people’s health and prolong their independence

by supporting cognitive neurorehabilitation.1 These robots interact with people through social

signals such as speech or gestures. Figure 2.1 shows a number of examples, which vary in

form and function. For example, PARO is a zoomorphic, pet-like robot that has been shown to

help reduce negative feelings such as stress and anxiety among people with dementia and their

care partners [324, 474], and can also alleviate pain and improve mood [148]. Researchers are

also exploring CARs to help people with cognitive impairments learn to manage their condition

through cognitive training [94, 256, 350, 436]. They help people practice cognitive skills and

social interactions that they can transfer to everyday life [272, 439].

In addition to dementia, researchers have increasingly explored the use of CARs to sup-

port people with social and developmental disorders, particularly autistic children or those with

attention-deficit/hyperactivity disorder (ADHD) [64, 241, 378, 393] and people with schizophre-

nia [366, 375, 459]. For instance, autistic children expressed more spontaneous behavior, both

nonverbal and emotional, after interacting with a robot mediator which they were able to translate

to interactions with another person [92, 150]. Robots can also help improve communication be-

tween older adults with schizophrenia and their medical providers, and increase their engagement

with recreational activities [375, 459].

2.2.1 Benefits of robots for neurorehabilitation

Robots present many exciting opportunities for supporting rehabilitation. They are

a natural fit for the repetitive, task-oriented nature of many cognitive interventions, such as

1To our knowledge, there are no commercially available robot systems to deliver cognitive neurorehabilitation at
the time of writing.
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restorative cognitive training exercises which are often structured. They can also provide real-

time, adaptive feedback, providing unique opportunities for rehabilitative therapy.

Robots can enable clinicians to have more meaningful and productive interactions with

people even if there is reduced face-to-face interaction overall, such as during the COVID-19

pandemic. They have the potential to enable clinicians to treat more patients, particularly if the

robots are deployed longitudinally in a person’s home to help observe, assist with ADLs, or

extend interventions. Additionally, robots can reduce the cost of treatment for patients, as they

take less of a clinician’s time [419]. Robots also have potential to provide support to people who

live in areas where access to clinicians is limited or nonexistent (e.g., rural areas), and possibly

reduce health disparities [166].

While computer-assisted strategies for delivering neurorehabilitation exercises have

shown to improve attention, memory, and executive skills in people with memory impairments

[25], robots have even greater potential to improve training, as their physical embodiment

plays an important role in stroke patient compliance and engagement [121, 438]. Robots can

increase engagement and enjoyment in social interactions due to their increased capacity for

richer communication as compared to virtual systems [106]. They have many attributes that are

important for initiating and sustaining interactions including shared physical context, physical

movement, and the ability to appear to be observing a user [240].

A robot can also monitor and assess a person’s well-being or task behaviors, which can

be shared with their care team, as well as with a user. For example, in the space of cognitive

training, a robot could collect information on task performance and progress. It may also infer

other attributes such as their level of engagement and interest through gaze tracking, proxemics,

or voice recognition. The information that a robot gathers has the potential to provide clinical

insights which may help reduce a clinician’s cognitive load. Clinicians can use this information

to adjust training to match a person’s abilities and preferences. They may also use it to help

inform a person about their condition or to understand what aspects of the training are most

effective. Section 2.4 overviews various behaviors about a person that a robot can sense, as well
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Figure 2.2. Exemplar robots which have been used to support neurorehabilitation and therapy.
Specifically for dementia, robots are typically used for assistance, companionship, or therapeutic
applications such as animal-assisted therapy or reminiscence therapy. Many are fully user-
adjustable, while others can automatically adapt their behavior in response to users. Their
morphologies can vary depending on the application, such as mobile robots used to provide
physical assistance or tabletop robots used for cognitive therapy. Giraff [323] (Provided by
Camanio AB), Care-O-bot [159] (Provided by Fraunhofer IPA [139]), CompanionAble [165]
(Provided by Steffen Müller), PARO [474] (Provided by Carlton SooHoo [339]), aibo [434],
Hugvie [492] (Provided by ATR Hiroshi Ishiguro Laboratories), KOMPAÏ-2 [12] (Provided by
KOMPAÏ Robotics [245]), NAO [350], Bandit [439] (Provided by Maja Matarić).

as how the robot may respond to those behaviors.

2.2.2 Exemplar robots for MCI and dementia

There are many robots to support people with dementia (see Figure 2.1). They fill

numerous roles such as assistive robots to help users complete ADLs, companion robots for

emotional support, or robots to facilitate therapy or coach people practicing cognitive skills.

Figure 2.2 overviews selected robots, some designed specifically for people with dementia and

others applied to this space.
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They are typically mobile robots that provide monitoring and care, helping to ease the

responsibilities of informal care partners (e.g. family, friends), and extending the independence

of people with cognitive impairments. Their capabilities may include reminding a person to take

medication, facilitating communication between the person and their care network (e.g. video

calls with clinicians or family), and delivering cognitive stimulation [165, 323]. Others include

walking assistance, fetching items, or setting a table for people with mobility difficulties [159].

These usually occur within a home, though some researchers are also exploring robots that can

accompany users on errands outside of the home [348, 435].

Robots may also serve as companions for people with MCI and dementia. Many of

these robots have been shown to reduce stress and anxiety while improving relaxation and

motivation among people with dementia and their care partners [324, 474]. They can help

stimulate interaction and serve as a point of connection between people with dementia and their

care partners [474]. Many of these robots resemble animals, making them recognizable even to

people with severe memory impairments. For instance, PARO [474] is based on a baby harp seal,

and AIBO [434] resembles a dog. These types of robots do not necessarily communicate with

people via speech, but can instead move or make sounds in response to stimuli such as touch,

sound, or light [474].

These companion robots are often used in therapy. For instance, many of the aforemen-

tioned robots serve as safer alternatives to real animals in animal-assisted therapy and activities,

often in hospitals and nursing homes [278, 434, 474]. In addition, researchers have explored

using PARO to facilitate multi-sensory behavior therapy [70, 387], which stimulates different

senses in a controlled setting to reduce agitation in uncontrolled ones.

More recently, researchers have used robots to facilitate reminiscence therapy among

people with dementia [12, 492]. Reminiscence therapy aims to help people recall long-term

autobiographical memories with the aid of photographs, music, familiar objects, etc. It is

highly regarded by participants and therapists, and viewed as enjoyable and effective [487]. The

approach is generally conversational, guided by either a human therapist or a robot itself, using a
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microphone and speaker in the robot to communicate with the person [12, 492]. In robot-guided

sessions, a robot relies on user-specific knowledge (e.g. photos from an event, a favorite location)

to prompt the user and maintain conversation and memory recollection.

Another role that robots may take for MCI and dementia is that of a coach. These are

often used to facilitate and assist with restorative cognitive training exercises. For example, the

Bandit robot plays cognitive stimulation games with users, and adjusts the difficulty based on

their performance [436]. Similarly, researchers have programmed humanoid robots such as the

NAO for clinicians to use to assist with memory training programs [350].

2.3 Principles for Designing Neurorehabilitation Technology

When designing technology for people with disabilities, to ensure it is usable and accept-

able, there are three key considerations: personalization, adaptation, and inclusion [375, 485],

which are discussed below. Personalization refers to tailoring the system to an individual by

considering factors such as their needs, goals, or preferences. Adaptation is the ability for a

technological system to automatically modify its behavior to be personalized to an individual.

Inclusion means involving stakeholders throughout the process of developing technology, partic-

ularly the intended users of that technology. These considerations are particularly important to

prevent unexpected consequences on potentially vulnerable populations, such as the exacerbation

of disability-based bias [313, 321] (also see Chapter 8).

2.3.1 Personalization and adaptation

In cognitive training and other behavioral treatments, it is critical to personalize training

to an individual’s preferences, needs, and goals to maximize its applicability to their lives.

This may be from simply including their name to adapting to suit their unique preferences and

abilities [194]. This is important when developing any technology for people who may not be

represented by a “typical” user [485].

Personalization helps improve engagement with training, retention of material, and
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long-term adherence to a training [25, 202]. These treatments are traditionally led by a human

neuropsychologist or cognitive therapist who works closely with a person to determine their

needs and goals, and tailor training to them. In fact, early studies on the efficacy of cognition-

based interventions suggested that they were ineffective and inappropriate for people at risk of

cognitive impairments because they could provoke frustration and depression in both a person

and their care partners [17, 412]. This is likely due to the repetition and structure that defined

these early interventions (e.g. memorizing and repeating a specific list of words), without a clear

connection to an individual’s life, abilities, or interests.

Especially when developing technology interventions for health contexts, each individual

has unique circumstances that can significantly impact how they interact with the technology.

For instance, up to 77% of older adults with MCI may be managing comorbidities (e.g. MCI,

diabetes) or have different living situations (e.g. living alone, in a nursing home) [382]. If the

system is not personalized to them, it may cause needless stress or frustration for the user and

their care partners, or have other detrimental effects on their health. By tailoring the training

to an individual, and meeting them where they are in terms of their performance and abilities,

modern neurocognitive interventions have shown to be significantly more effective and beneficial

for people with cognitive impairments and their care partners as compared to non-personalized

interventions [133, 138].

The ability for technology to be personalized calls for the system to either be adjustable

by a human, adapt its own behavior, or both. There are many situations in which a clinician,

care partner, or user may want to control or adjust a robot’s behavior. For instance, with the

domain expertise from clinicians and the fundamental personal knowledge from care partners

and users, they may already have a good idea of how they want a robot to behave to facilitate and

complement the training. Additionally, clinicians and other users may want to modify the system

to reflect the training. In a home setting, a user or care partner may want to adjust behavior

without the help of a clinician. Thus, any mechanism to manually adjust the system should be

easily learnable and usable by all stakeholders.
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Figure 2.3. The general framework of systems that adapt to users. We focus on Deciding and
Executing the robot’s response to a person. Figure inspired by [298].

There are also situations in which it may be beneficial to automatically adapt to a user.

Conditions such as dementia can be progressive, and the person receiving training may be

undergoing cognitive changes at a pace that is difficult for others to keep up with. Using a com-

putational model for automatic adaptation may have the advantage of learning and remembering

information about a user more quickly and accurately than a person.

Automatic adaptation alleviates the responsibility of continually adjusting a robot’s be-

havior from care partners or clinicians who can then spend more time in face-to-face interactions

with an individual. Additionally, studies indicate that older adults prefer assistive systems that

allow them to control the system while still being adaptable, over fully adjustable ones [184].

Thus, automatic adaptation to a user can lead to more rapid adjustments to a training regimen

which may improve its efficacy and sustain a user’s engagement.

In order to automatically adapt to a user, a system must be able to perceive and interpret

a person’s actions, and respond in a meaningful way (see Figure 2.3). This involves considering

what a robot will sense about a user and how to obtain that data. For instance, What sensors will

it need and where will they be placed? What information will it infer implicitly (e.g. from sensor

data, observations) vs. obtain explicitly (e.g. through questionnaires, surveys)? Section 2.4

overviews potential sensing modalities and inputs.

Once a robot has this information, it needs to contextualize and understand what it means

about a person. This could be their current state (e.g. mood, task performance) or an overarching
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understanding of the person (e.g. ability level). Finally, robots need to know how to modify their

behavior and respond to a user. Roboticists employ numerous computational models to achieve

this which we discuss further in Section 2.5.

2.3.2 Inclusive Design, e.g., “Nothing about us without us”

It is important for roboticists and researchers interested in building assistive robots to

involve stakeholders throughout the development process. This is exceptionally true while

developing a robot to be deployed in a person’s home with the goal of supporting their health.

These stakeholders may include the primary robot user, their healthcare providers, and their care

partners, who may or may not be living with them [111, 316, 376].

Nihil de nobis, sine nobis, or “Nothing about us without us” is a prominent motto of

disability activists [72]. It conveys that people with disabilities themselves know what is best for

them, and that they are integral in any conversation that may affect their life and community. In

other words, they must be consulted regularly throughout the technology development process,

from ideation to testing. As roboticists oftentimes develop technology for conditions they have

no personal experience with, involving people with disabilities early and often will help avoid

making assumptions about the community’s goals, ensure their needs are met, and help empower

them. This will ensure the maximum utility, usability, and acceptance of the technology by users

as well as other stakeholders [267, 376].

When co-designing technology with stakeholders, it is important to be transparent about

what the technology is capable of. As there are no known approaches to significantly impact the

course of dementia, technology should encourage stakeholders to “live well with dementia” [357].

This means setting realistic expectations about the benefits stakeholders can expect from the

technology. For instance, how it could change the roles of clinicians and care partners, the extent

of its impact on a user’s training process and results, or the data it collects. The onset of the

condition being treated is possibly one of the most challenging experiences the stakeholders have

undergone, so developers must develop trust and maintain compassion with them throughout the
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development process.

Additionally, those receiving neurorehabilitation are likely vulnerable populations and do

not necessarily have the technological literacy to effectively operate a system. Low technological

literacy and cognitive impairment can also impact informed consent [316, 375, 467]. Developers

of this technology must be mindful of this and work closely with experts in these communities

to protect user privacy while maintaining the system’s utility.

2.4 Sensing and Responding to Human Behavior

Modifying robot behavior to be personalized to an individual is crucial for maintaining

engagement and ensuring efficacy of the system, particularly for health applications [66, 327]. In

order for a robot to effectively adapt its behavior to a user, it must perceive the user’s actions and

behavior, understand what those mean in the given context, and respond accordingly [134, 438].

Below, we identify some features about people that robots can sense as well as behaviors that

robots can modify in order to personalize interactions.

2.4.1 Perceiving and understanding human behavior

Throughout an interaction, there are many ways robots can learn user preferences and

abilities. One approach is to first perceive a person’s low-level behavior, then infer how those

behaviors translate to higher-level attributes. Robots can gather this low-level information via

the use of sensors, or through interaction or performance data collected by the system. Examples

of low-level behaviors that a robot may gather include their speech (e.g. what they say, how they

say it), gestures and movement (e.g. human activity recognition), and physiological signals (e.g.

heart or respiration rate). Performance data is typically application specific and depends on the

task(s) (e.g. accuracy, time to complete a task).

Some major factors to consider when choosing which sensors to use are what kinds of

sensors a robot already has, whether others can be easily placed in the environment, and what

kind of information would be worthwhile to collect, process, and possibly store. These sensors
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Table 2.1. Robots can use a variety of sensors to perceive low-level interaction data about people,
which can be used to infer high-level information about a user’s state.

Behavior
Perception

Common Sensor(s) /
Indicator(s)

Description

Speech /
Prosody

Microphone Speech is a common means of communicating with a robot.
In addition to understanding what a person is saying, their
prosody and tone may also convey important information.

Gesture /
Movement

RGB camera, Motion
capture, Gyroscope,
Accelerometer

Arm and hand gestures are a common means of communi-
cating with a robot, both implicitly (e.g. everyday activities)
and explicitly (e.g. specific gestural commands).

Eye contact /
Gaze

Infrared camera,
RGB camera

Gaze tracking helps determine where a person is looking.

Touch Capacitive touch sensor,
Force sensor, Pressure
sensor, Strain gauge,
Switches

Determining whether a person is touching a robot or where
they are touching can add realism to interactions.

Physiological
signals

EEG sensor, EMG sensor,
Heart rate monitor,
Respiration sensor,
Thermometer

Signals generated by a person’s body, usually acquired
from specialized wearable sensors, can help determine their
state.

Explicit
feedback

Questionnaires, Surveys Asking users for their input directly is a straightforward
way to obtain information.

L
ow

-le
ve

l

Task
performance

Application specific In neurorehabilitation, the robot may deliver cognitive train-
ing activities with quantifiable scores.

Engagement Eye contact, Touch,
Speech

Longer and more positive interactions with a robot can help
sustain interactions over longer periods of time.

Mood Physiological signals,
Speech

A user’s current mood can help inform how a robot should
best interact with them.

H
ig

h-
le

ve
l

Motor
abilities

Touch, Movement A user’s motor abilities can help inform their preferred
means of communicating with a robot. For instance, a user
with tremors may prefer speaking over pressing buttons.

Cognitive
abilities

Task performance, Speech A user’s cognitive abilities can influence their goals and
what treatment regimens may be most effective.

may be on a robot, placed in the environment, or worn by a person. For instance, cameras or

microphones may be mounted on a robot or in the environment depending on the context, while

physiological or inertial sensors are typically worn by a person.

These sensor and interaction data are relatively low-level and can be used to infer higher

level information about a user’s state or preferences [386]. For instance, robots can use data they

acquire from RGB-D cameras to track a person’s gaze or movements, then use these features to
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infer higher level features such as how engaged or bored they are (e.g. the person is likely to be

engaged if they maintain eye contact with the robot and gesture often).

An alternate approach is to ask a user about their preferences such as in a questionnaire

or survey [386]. This is a straightforward and direct means of obtaining information that does

not require additional sensors. However, it risks people providing their ideal answers rather than

completely truthful ones. Table 2.1 provides an overview of common features to sense about

people, both low-level and higher level, for social robots for neurorehabilitation.

Once a robot perceives a person’s behavior, the robot must consider how that behavior

relates to a) the person’s current state and/or b) their overarching condition. How a robot

interprets a person’s behavior may depend on the application, length of interaction, or other

circumstances. It is important for the robot to understand a person’s actions and their current

state (e.g. mood) in order to maintain natural, real-time interactions. For example, a robot may

use a person’s body language or task performance to infer if the person is frustrated with or

challenged by a cognitive training exercise [438].

Particularly over long-term interactions, such as while completing a cognitive neuroreha-

bilitation session, it is important for the robot to store and update a model of a person, including

their preferences, needs, and abilities [386]. A robot can use this model to understand what

behavior is typical for a person, track their progress over time, and recognize if they deviate from

what is expected (e.g. recognizing if the person is more agitated or more forgetful than usual).

Understanding both individual actions and translating them into a more thorough model of a

person is important for personalizing robot behavior.

2.4.2 Synthesizing robot behavior in response to people

Effective HRI requires that robots understand people and respond to them. Individual

robot actions can be guided by a fundamental model of its interaction style (e.g. personality,

role) [66, 327]. In the context of neurorehabilitation, these behaviors can help improve a user’s

enjoyment of a training regimen and thus its efficacy [256, 386, 455].
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Table 2.2. Robots can modify low-level behaviors to personalize high-level aspects of an
interaction in order to fulfill a user’s preferences and needs.

Modality Description

Movement / Speed Movement can be used for mobility, communication, and to help interactions
feel natural.

Speech / Speed /
Prosody / Sounds

Speech is a common means of communication for both humans and robots.
In addition to dialogue, a robot may adjust speed, prosody, and other sounds
to improve clarity / function.

Screen display Robots may use a tablet when communicating with a user.

Facial expressions Many social robots have faces with dynamic expressions. As people have a
tendency to anthropomorphize robots, even those that are not humanoid [499],
robots can change their facial expressions to create a more natural and
interesting interaction.

L
ow

-le
ve

l

Proxemics Proxemics is the division of physical space around an agent (classified as
intimate, personal, social, and public). A robot can control how physically
close it is to a person to convey respect or intimacy.

Personality A robot may change its personality to suit a user’s preferences. This can be
influenced by personal and cultural background. E.g., a robot may adopt a
more passive communication style in countries where people tend to have
more reserved communication styles [167].

Initiative Initiative is whether a robot initiates interaction with a person or vice versa.
This may change with a robot’s role, such as initiating interaction with a user
with more severe MCI.

Encouragement Providing encouragement can help a person be more motivated or less
frustrated if they experience trouble with the training regimens.

Personal customization Integrating personal information into training and therapies can help them
be more applicable to a user, improving engagement and efficacy.

Cognitive customization Adjusting aspects of a training regimen to suit a person’s cognitive abilities
can help them practice relevant skills and reduce frustration.

H
ig

h-
le

ve
l

Primary communication
modality

Depending on a user’s physical abilities and preferences, a robot may adjust
how it receives input from them, such as aural, touch, or visual cues.

When interacting with people, a robot can personalize its behavior in response to a person

in numerous ways. At a low level, movement, speech, and visual cues are some major ways a

robot can communicate. Movement generally consists of physical motion of the base or limbs.

Speech can include dialogue, speed, prosody, tone, or other sounds. Visual cues may be a change

of expression, text or images on a tablet, or other cues.

A robot may change its communication modalities based on user abilities or state. For

example, a user with tremors may prefer to communicate via speech whereas someone who is
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non-verbal may prefer a tablet interface. Depending on a robot’s capabilities, it may also change

its effectors or display to convey emotion or emphasis to enhance an interaction.

These low-level behaviors can be utilized to produce higher-level aspects of the interaction

that consider user preferences and needs. By immediately reacting to a person, a robot can create

more natural and engaging interactions, such as by maintaining eye contact during conversation.

For instance, if a user seems distracted, a robot may change its dialogue and tone to return

their attention to the robot. This can help maintain engagement throughout an interaction, thus

improving retention of material and overall enjoyment [430].

Similarly, a robot may change longer-term aspects such as its personality. For example,

if a person responds better to an encouraging personality than an assertive one, the robot can

provide more encouragement throughout training. In this way, a robot can update its model of a

person and use it to guide the interactions, modifying its behavior to be more personalized to an

individual. This can help maximize a person’s adherence to a training regimen and improve their

perceptions of the robot [386, 455]. Table 2.2 overviews some common social robot behaviors

that may be altered throughout interactions with a person.

2.5 Common Technical Approaches to Behavior Adaptation

A key element for enabling robots to adapt their behavior to a user is understanding how

the data they receive can inform their actions, as well as how a user responds to those actions.

There are countless computational methods researchers have used to imbue social robots with

this ability, both within and outside of the context of neurorehabilitation. Table 2.3 provides a

summary of common approaches, which are further discussed below.2

While perceiving and understanding human behavior is an important aspect of knowing

how a robot should respond, the area of human behavior analysis is vast, and approaches may

vary widely depending on the behavior being perceived. As this dissertation focuses on methods

2As many social behaviors are not robot specific (e.g. dialogue), we also include select systems which were
demonstrated on non-physically embodied systems, such as virtual agents.
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Table 2.3. Common technical approaches for machines which adapt behavior to people.

Approach /
Existing Work

Strengths Limitations

Finite State
Machines
[136, 240, 270,
311]

• Straightforward
• Existing libraries for imple-

mentation on robots (e.g.
SMACH)

• Good for structured, short
interactions

• Interactions generally cannot be split into
discrete states

• Intricate interactions may be infeasible to
implement

• Does not easily allow for complex behaviors
or long-term understanding of a user

• Does not easily allow for dynamic behavior
adaptation

Thresholding
[282, 430, 439]

• Good for reacting to continuous
streams of data rather than windows
of time

• Does not easily allow for complex behaviors
or long-term understanding of a user

• Does not easily allow for dynamic behavior
adaptation

Q-Learning RL
and variants
(MDP)
[39, 74, 130, 142,
155, 234, 252, 284,
293, 341, 350, 362,
377, 455]

• Model-free, or can learn a model
about user behavior / preferences

• Assumes the world is fully observable, but
a person’s preferences cannot always be
directly observed

• Time and storage intensive which can inhibit
real-time interaction

• Interactions generally cannot be split into
discrete states

RL: POMDP
[192, 233, 298,
417, 433]

• Model-free, or can learn a model
about user behavior / preferences

• Does not assume the world is fully
observable which is beneficial as
most human preferences cannot be
directly observed

• State space becomes intractable for complex
interactions

• Interactions generally cannot be split into
discrete states

Hierarchical RL
[32, 67, 185, 348]

• Model-free, or can learn a model
about user behavior / preferences

• Makes complex (PO)MDPs more
manageable

• Can handle greater modularity of
sensors and behaviors

• Does not take combinations of behaviors into
consideration, so it is not guaranteed to find
a globally optimum policy

• Interactions generally cannot be split into
discrete states

Policy Gradient
RL
[314, 438]

• Naturally handles continuous states
and actions

• Difficult to derive an appropriate reward
function (i.e. preferences from behavior)

• Need to find appropriate parameter values

Inverse RL
[50, 68, 423, 488]

• Learns a reward function from a
human expert rather than relying on
exploration of different behaviors

• Requires feedback from a human expert
• Human experts do not necessarily behave

optimally or rationally

(Continued on next page)
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Neural Networks:
MLP
[406]

• Hierarchical layers enable
high-level feature extraction from
raw or low-level input data

• Does not take previous input into account
• Requires large amounts of training data

which can make it difficult to learn from an
individual person

• Difficult to optimize hyperparameters

Neural Networks:
LSTM
[107]

• Hierarchical layers enable
high-level feature extraction from
raw or low-level input data

• Learns temporal features using
previous input

• Reacts to continuous streams of
data rather than windows of time

• Requires large amounts of training data
which can make it difficult to learn from an
individual person

• Difficult to optimize hyperparameters

for robot behavior adaptation, we discuss approaches that assume the human behavior is already

recognized, as well as those that embed human perception into their process. For a detailed

survey on human behavior analysis, please refer to [340, 493].

2.5.1 Finite State Machines (FSM)

FSMs are a relatively straightforward approach address the behavior adaptation problem

[136, 240, 270, 311]. In an FSM, an interaction is broken into states which guide robot behavior.

The robot transitions to the next state depending on human and environmental factors.

For instance, Kidd and Breazeal [240] used an FSM on Autom, a robotic weight loss

coach. A user would engage in a short conversation with Autom once or twice a day. Its dialogue

could vary depending on the time of day, time since the last interaction, and recent data input by

a user. Each factor filled in parts of the conversation (e.g. Autom said “Good morning” or “Good

evening” depending on the time of day). Notably, the robot’s statements also varied depending on

the estimated relationship state between the robot and user, which offered a variety of dialogue

to avoid repetition during the six-week study.

This approach is useful for relatively structured and short interactions, many programmers

are already familiar with FSMs, and there are a number of existing libraries to implement them

on robots (e.g. SMACH (“State Machine,” a Python-based library) [47]). However, not all

interactions can be broken into discrete states, and states are generally defined manually so
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implementing long and involved interactions may be infeasible.

2.5.2 Thresholding

Another approach that roboticists use is thresholding [282, 430, 439]. In this approach,

a robot receives sensor data from a user and performs an action if the value crosses a given

threshold. Tapus et al. [439] used thresholding on a social robot for people with dementia. It

delivered a cognitive game and could adjust the difficulty to improve a person’s performance.

The robot used an Accepted Variation Band (AVB) to automatically adjust the difficulty based

on the person’s performance, with the goal of minimizing reaction time, maximizing the number

of correct answers, and maximizing the difficulty level. If the person’s performance (i.e. reaction

time, correct answers) improved, the difficulty increased, whereas it decreased if they performed

poorly. The authors report increased engagement and improved performance at higher difficulties

for people with dementia, highlighting the importance of adjusting to the user’s abilities.

Thresholding is advantageous when dealing with a continuous stream of data and reacting

in real-time. However, it is best suited for behaviors tied to a specific signal (e.g. increasing

voice volume when engagement is low, decreasing task difficulty if performance is low) and

does not easily allow for complex reactive behaviors. Additionally, while thresholding enables

a robot to react in real-time, it would require another underlying control system, such as those

discussed below, to support longer-term understanding about a person.

2.5.3 Reinforcement learning (RL)

In RL, an agent learns how to best interact with its environment to maximize its rewards

[426]. RL configurations are generally represented using a Markov Decision Process (MDP)

defined as (S , A , T , R, γ) where S is the set of possible states, A is the set of possible

actions the agent can take, T is the transition probability function between states, R is the

reward function of the environment, and γ is the discount factor for future rewards [426]. Actions

in MDPs can be deterministic (i.e. performing a given action in a given state always leads to the
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same next state) or stochastic (i.e. the next state is determined by a probability distribution). The

agent aims to learn an optimal policy π , or a mapping of states to actions, that maximizes its

expected rewards.

Q-learning is a widely used approach to solving MDPs with unknown reward and

transition probability functions. Traditionally, a robot can take an action and observe the

associated reward, as the environment updates to a new state. Many researchers have applied it to

the behavior adaptation problem [39,74,130,142,155,234,252,284,293,341,350,362,377,455].

For instance, Tsiakas et al. [455] used it to modify the kind of feedback a robot provided based

on a person’s engagement in a cognitive training session.

Multiple works frame the behavior adaptation problem as a multi-armed bandit problem

[39, 142, 480]. The multi-armed bandit problem aims to distribute resources among multiple

possible actions with uncertain results in order to maximize the reward, but the current state

remains the same. This approach is useful for ensuring that a robot can try each action and

observe a person’s behavior before relying too heavily on its learned knowledge of the person’s

reactions to its actions. In behavior adaptation, this can be thought of selecting behaviors in

order to maximize a person’s engagement, performance, etc.

Numerous algorithms exist to help balance exploration of new or uncertain actions with

exploitation of existing or learned knowledge, particularly when the available actions have

unpredictable outcomes. For instance, Gao et al. [142] implemented the Exponential-weight

algorithm for Exploration and Exploitation (Exp3) [14] on a Pepper robot for puzzle solving.

The robot would learn the person’s preference for supportive behaviors (e.g. give hints, provide

encouragement) and respond to a person’s performance (measured by the time since they last

made an action, total time elapsed, and correct actions).

Q-learning is “model-free,” meaning it does not require a preexisting model. This is

useful for behavior adaptation where human reactions (i.e. rewards) are difficult to define as a

model [377, 455]. However, Q-learning and MDPs have many limitations, such as assuming

the world is fully observable, and being time and storage intensive [314, 427, 438]. Real-time
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behavior adaptation for HRI is not always feasible with this approach as a person’s state cannot

always be directly observed, and heavy computations may slow a robot’s responses. Thus, there

are numerous alternatives to address these problems.

When the world is not fully observable, a Partially Observable Markov Decision

Process (POMDP) is often more suitable. It is defined as (S , A , T , R, ω , O , γ) where S , A ,

T , R, and γ are the same as in an MDP, ω is a set of observations, and O is a set of conditional

observation properties [413]. The agent does not know its underlying state and must maintain a

probability distribution of possible states based on previous observations.

Researchers have used POMDPs for behavior adaptation in health applications such as

managing food consumption [298], navigating a robotic wheelchair [433], and helping people

with dementia wash their hands by giving visual or verbal prompts [192]. This approach

is applicable to behavior adaptation as a person’s state is typically unknown and cannot be

explicitly observed by a robot (e.g. a frown could express frustration with training or sadness

due to external circumstances). However, the state space can become intractable to manage for

complex interactions and multiple behaviors which may make real-time responses infeasible.

For complex interactions with numerous human and robot behaviors, researchers have

used Hierarchical RL [32, 67, 185, 348]. This approach divides the overall MDP into smaller,

more manageable ones which simplifies the problem and can help reduce memory requirements

[67]. It can also allow for greater modularity of the system’s behaviors; for instance, Chan

et al. [67] used the MAXQ hierarchical RL approach [109] to abstract their system into a

temporal module, state module, and subtask module which each considered and controlled

specific behaviors in the context of cognitive training. While hierarchical RL approaches can

find the optimal policy for each individual MDP, the global policy is not guaranteed to be optimal

as there is no way to consider how behaviors can be combined.

Researchers have also applied policy gradient reinforcement learning (PGRL) methods

for behavior adaptation [314, 438]. PGRL directly adjusts the policy in relation to the gradient to

find a locally optimum policy, defined by behavioral parameters that a robot can adjust. It begins
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with an initial policy which it evaluates according to the reward function. Then, it perturbs the

policy by modifying each parameter. Finally, it evaluates the new policy, and repeats until a local

optimum is found.

This approach enables robot learning for continuous states and actions, and can update

a robot’s behavior in real time which are both important aspects of behavior adaptation in

HRI [314]. However, researchers have reported challenges deriving an appropriate reward

function to accurately translate user behavior to explicit preferences [314, 438].

A slightly different approach is inverse reinforcement learning (IRL) to learn how

to behave from an expert agent, assumed to behave optimally [50, 68]. The agent can then

use standard RL algorithms following the learned policy to maximize its own reward. In

neurorehabilitation, this may entail the robot observing a human therapist guiding the training

in order to learn how to respond to a patient in future interactions. However, humans do not

always behave rationally or optimally, and it is not always possible to discern an exact policy, so

researchers have expanded IRL to help overcome these limitations [423].

Additionally, researchers have worked to infer user preferences solely from observing

a user as in Observational Repeated Inverse Reinforcement Learning (ORIRL) [488]. In

ORIRL, a robot learns a user’s preferences by watching them complete different tasks, then

leverages those learned preferences when inferring preferences for future activities.

2.5.4 Artificial Neural Networks

Recently, researchers began to leverage advances in neural networks and deep learning

for robot behavior adaptation [107, 406]. Neural networks are a broad set of algorithms inspired

by biological neural networks that enable agents to recognize patterns in data, generally without

having to define underlying task-specific rules. Neural networks have a hierarchical structure

where the neurons (a computational unit) of each layer can extract information from the previous

one to learn higher-level features. Thus, deep learning approaches with multiple hidden layers

have gained popularity for their ability to extract features from raw data without the need for
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human-defined features, a large source of variation in other learning methods [222].

Senft et al. [406] used a multilayer perceptron (MLP) to enable a robot to learn

from a therapist how to interact with autistic children. An MLP is a supervised feed-forward

neural network composed of multiple perceptrons, or binary classifiers, with a unique set of

weights [144]. The use of multiple perceptrons allows the MLP to approximate nonlinear

functions for multi-class classification. The MLP used by Senft et al. estimates about the child’s

engagement level and motivation, labelled with a therapist’s resulting action, to train a robot to

become progressively more autonomous when responding to the child.

Another neural network architecture used for HRI is long short-term memory (LSTM)

recurrent neural networks (RNN). Unlike MLPs and other feed-forward neural networks,

RNNs leverage a feedback loop which retains and uses information about previous input when

processing future input. They can thus extract temporal features which is especially important

when learning over continuous data, as in HRI applications. LSTM networks, composed of LSTM

cells, are able to learn long-term dependencies throughout the data stream by implementing an

“input gate” and “output gate” to protect stored memory from irrelevant input [190]. This is

beneficial in HRI as a person’s behavior may be influenced by previous interactions (e.g. a person

might perform better on a task after the robot gives encouragement). For example, Dermouche et

al. [107] designed an Interaction Loop LSTM model which takes as input the behavior of both

the person and robot to continuously adapt to a user.

Neural networks and deep learning approaches have proven successful in a number of

areas, but the extensive amount of training data required may make this approach infeasible for

learning the behavior of a specific user. Additionally, deep neural networks can be very sensitive

to the values of hyperparameters, and care must be taken to avoid overfitting when tuning.
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2.6 Chapter Summary

People with cognitive impairments are in a unique position where their needs and

preferences may change dramatically over the course of a training regimen. However, existing

approaches assume a person’s preferences stay constant throughout an interaction, or do not take

their preferences into account at all. Thus, they are not necessarily appropriate when working

with people with cognitive impairments. The development of new methods that consider a

person’s dynamic state can help improve the efficacy of robot-assisted neurorehabilitation, for

dementia and beyond.

The robots and methods discussed in this review can improve existing cognitive training

practices, particularly in longitudinal home settings. By building on these approaches, behavior

adaptation methods can enable more engaging interactions between people and robots. Through

studies with stakeholders such as people with cognitive impairments, and their clinicians and care

partners, robots can improve engagement and adherence to benefit people in countless contexts,

from improving adherence to training regimens to bettering their daily life.

This chapter provided a brief discussion of technical concepts and computational methods

that are commonly used for adapting robot behavior in the context of neurorehabilitation. My

research explores many of these aspects, which informed my work on personalizing robot

behavior. The following chapter presents a new method for enabling robots to recognize human

activity using non-visual wearable sensors.
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Chapter 3

Human Activity Recognition with Non-
visual Wearable Sensors

Robots demonstrate great potential for decreasing physical and cognitive workload,

improving safety conditions, and enhancing work efficiency for their human teammates in a

variety of areas including hospitals and manufacturing environments [6,77,326,376]. Particularly

in safety-critical environments, robots need the ability to automatically and accurately infer

human activity. This will allow them to operate either autonomously or with minimal user input

to avoid distracting their human teammates.

Robots can learn valuable information about the activities of their human partners from

their motion [90, 214, 216, 261]. Gross motion detection (e.g. movement of the arms, legs,

or torso) is the primary area of focus for most human activity recognition (HAR) approaches,

traditionally using RGB cameras, depth sensors, or motion capture systems [90, 261]. Thus,

robots can recognize gross motion ADLs, such as walking or lifting items, with accuracies of as

high as 99% [180, 215, 217, 347].

However, recognizing fine-grained motion (e.g. movement of hands or fingers) is impera-

tive for enabling robots to accurately understand human intention in safety-critical environments.

For example, in order to infer what tool a person is using, the robot needs to perceive their hand

and wrist motion. However, most conventional sensors do not provide adequate information

to accurately detect these movements, so fine-grained activity recognition is unreliable using
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traditional HAR approaches.

To recognize these minute movements, one approach researchers have employed is hand-

centric motion capture [230, 263]. However, motion capture often requires expensive equipment

and a cumbersome installation procedure [261]. Furthermore, these sensors are easily occluded

in dynamic environments, resulting in reduced recognition accuracy [261].

Thus, many researchers instead employ wearable sensors such as accelerometers, gyro-

scopes, or surface electromyography (sEMG) sensors for fine-grained motion detection [261,325].

Recent examples include automatically recognizing American Sign Language, identifying ges-

tures to interface with technology, and detecting different types of grasps to control robotic

arms [29, 286, 490].

Both motion capture and wearable sensors have proved effective for HAR when recogniz-

ing different granularities of motion. However, especially in the context of robotics, their relative

efficacy for detecting gross and fine-grained motion is unclear. If their relative capabilities

were known in this context, then it may be possible to combine multiple sensor modalities in a

complementary fashion to more accurately detect a wider variety of activity.

3.1 Complementary Strengths of Motion Capture and
Wearable Sensors

To our knowledge, we are the first to directly compare the efficacy of motion capture and

wearable sensors for recognizing gross and fine-grained motion. We employed three common

classification algorithms for HAR (support vector machine (SVM), linear discriminant analysis

(LDA), k-nearest neighbors (k-NN)). We chose these classifiers due to their success in recognizing

activities using motion capture or wearable sensor data [90,247,261]. To evaluate these modalities

on both granularities of motion, we introduce the new MIT-UCSD Human Motion dataset. We

used a Vicon motion capture system and a Myo armband to record participants completing two

assembly tasks. The first is an automotive assembly task consisting of primarily gross motor
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movements. The second is a block assembly task which required fine grasping movements.

Our findings will help roboticists understand how motion capture and wearable sensors

compare when classifying activities of different motion granularities. In turn, this will unveil

which sensors are best suited for detecting activities that are relevant in a given context. Thus,

robots can better infer the person’s task by utilizing a multimodal system to simultaneously

detect gross and fine-grained motion.

3.1.1 Background

Many activities that occur in everyday life (e.g. walking, climbing stairs, lifting objects)

primarily entail gross motion. Thus, the majority of HAR algorithms are designed to recognize

these activities, typically using data gathered via external sensors such as RGB-D or motion

capture systems.

In particular, motion capture has many applications. It can help robots track people

and objects in an environment, generally using mounted cameras. For example, unmanned

aerial vehicles rely on motion capture data to guide them and prevent collisions while in

autopilot [197, 337]. It is also widely used for tracking human activity for applications such as

security in public spaces and entertainment [315, 352].

Many researchers have explored using motion capture data to help robots predict gross

motion in safety-critical environments such as manufacturing. For example, Unhelkar et al. [460]

used a Kinect to create human-aware robots that can safely deliver parts to human workers in

an automotive assembly environment. Similarly, Hayes and Shah [180] classified automotive

assembly activities using 3D joint locations of people and objects from a Vicon system. Mainprice

et al. [292] captured single-arm reaching movements of two people to help robots predict activities

in collaborative environments.

However, in many settings, robots need to be able to recognize pertinent activities that

involve fine-grained motion, such as grasping. Reliable classification of fine motion is particularly

difficult due to the small, ambiguous movements that human hands are capable of [261, 482].
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One approach to fine activity classification is using visual data to track hands and objects

in the environment. For instance, Lei et al. [273] achieved high classification accuracy of

seven kitchen activities by using RGB-D data to track hands interacting with 27 different objects.

However, using visual data is not necessarily viable in all settings, especially dynamic and chaotic

environments where cameras can often be occluded. Additionally, cameras for motion capture

and visual sensing are expensive to install, and their field of view is limited to a constrained

physical space.

On the other hand, wearable sensors are mobile and thus can be used to recognize activity

anywhere. Thus, body-worn non-visual sensors are another common approach to fine-grained

activity recognition. For example, Zhu et al. [498] used data from an inertial measurement unit

(IMU) worn on the finger to recognize five different hand gestures. Batzianoulis et al. [29] used

arm muscle activity data from sEMG sensors in tandem with finger joint locations to recognize

five different types of grasping motions.

A commonly used wearable sensor in recent studies is the Myo armband which measures

sEMG and inertial data. Researchers have used it to recognize a wide variety of activities such

as ADLs, gym exercises, and wandering behavior in the elderly [247, 453, 454].

All of the aforementioned work used either motion capture or a wearable sensor to

recognize gross or fine-grained motion. However, it is unclear whether they could have achieved

higher accuracy for their activity set had they used a different sensing modality. Accurate

recognition of both gross and fine motion is especially crucial for robots in safety-critical spaces

where an error could result in harm to a human partner. To this end, we investigate whether there

is an advantage to using one sensor modality over another for recognizing different granularities

of motion.

3.1.2 Methodology

In this chapter, we compared the efficacy of motion capture and wearable sensors for

recognizing gross and fine-grained motion. We collected the MIT-UCSD Human Motion dataset,
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Figure 3.1. Arrangement of sensors on a participant’s arm. Vicon markers are in red boxes. Myo
is circled in blue.

comprised of two tasks. The first task is an automotive assembly task entailing gross motion,

and the second is a block assembly task consisting of fine grasping motion. The automotive task

contains four activity classes, and the block task has five. Five participants (two female, three

male) performed both tasks. We trained three widely used machine learning algorithms with

these data, and used F1 scores as our evaluation metric (see Section 3.1.3). In this section, we

describe the data collection procedure, labeling method, and classification algorithms.

3.1.2.1 Data Collection

Sensors

We collected data using a Vicon motion-capture system and Myo armband simultaneously

(see Figure 3.1). We placed Vicon markers on the shoulders, elbow, and back of the hand on

each of the participants’ arms. Participants wore the Myo on the forearm of their dominant arm.

We solely tracked participants’ arm movements to avoid burdening them with excessive Vicon

markers, while still capturing relevant information as they completed activities.

We connected the sensors to a single machine (Intel i7-6820HQ CPU, 16GB of RAM) to

ensure a consistent timestamp across all data. We used the Robot Operating System (ROS) (ROS

version Indigo) to save time-synchronized data in rosbag format. The Vicon has a sampling rate

of 120Hz, while the Myo has a sampling rate of 50Hz for IMU data and 200Hz for sEMG data. In

accordance with other real-time activity recognition systems, we sampled our data at a consistent
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Figure 3.2. Activities from the automotive assembly task. From left to right, top to bottom:
Walking, Receiving Part, Scanning Part, Attaching Part.

Figure 3.3. Grasping activities in the block assembly task. From left to right: Palmar, Thumb-3
Fingers, Thumb-2 Fingers, Pincer, Ulnar pinch.

rate of 30Hz in order to reduce the computation required by the systems [172, 180, 333].

Dataset Creation

To evaluate the efficacy of these sensors on different granularities of motion, we con-

structed the automotive and block assembly tasks to have activities composed of either gross or

fine-grained motion respectively.

The automotive assembly task, inspired by the Dynamic-AutoFA dataset, consists of four

gross motion activities [180]. As such, no actions in this task depend on dexterous hand or finger

movements. The four main activities are Walking, Receiving Part, Scanning Part, and Attaching

Part (see Figure 3.2, Table 3.1). There are between two and four instances, or occurrences, of

each activity throughout the task. Each participant completed five trials (i.e. repetitions of the

task) yielding a total of 50 to 100 instances of each activity.

The block assembly task consists of five fine grasping motions. Participants received a

box with one flat base block and four rectangular blocks. In order to simulate different dexterous

hand movements, we asked participants to grab and affix each block to the structure in a distinct
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Table 3.1. Sequence of activities performed in the MIT-UCSD automotive task.

Class Description

Walk to dashboard

Scan dashboard

Walk to left side of dashboard

Receive speedometer

Scan speedometer

Attach speedometer

Walk to right side of dashboard

Receive navigation unit

Scan navigation unit

Attach navigation unit

Walk to exit

manner. The activities in this dataset are Palmar Grab, Thumb-3 Fingers, Thumb-2 Fingers,

Pincer Grab, and Ulnar Pinch Grab (see Figure 3.3, Table 3.2). These grasps are similar to

those used in other grasp recognition studies [29, 498]. Each participant completed five trials,

performing each grasp once per trial, which yielded a total of 25 instances of each grasp.

We collected data from five participants who engaged in both the automotive and block

assembly tasks. Participants were between the ages of 26 and 34, with a mean age of 28.2 years.

Two of the five participants were female, and three were male. Four of the participants were

right-handed, and one was left-handed.

3.1.2.2 Data Processing and Labeling

Feature Selection

For both the Vicon and Myo data, we use low-level, raw data features in the temporal

domain. This is to assess the baseline capabilities of these sensor modalities without the influence

of high-level feature selection, which can drastically impact a classifier’s accuracy [222]. Data

are partitioned using a sliding window technique, with window size of 1 second with 50%

overlap.

The Vicon markers provided the 3D position (x-, y-, z- coordinates) of the selected joints
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Table 3.2. Grasp types used in the block task. Each grasp used a different combination of fingers.

Grasp Name Fingers Involved

Palmar All

Thumb-3 Fingers Thumb, Index, Middle, Fourth

Thumb-2 Fingers Thumb, Index, Middle

Pincer Thumb, Index

Ulnar Pinch Thumb, Pinky

with respect to the Vicon’s internal coordinate system. Since there were six joints (three on each

arm), there were a total of 18 of these features in the dataset. We chose to track these joints

because they are similar to the arm joints tracked in the Carnegie Mellon University Motion

Capture Database [102].

For the Myo data, we collected the linear acceleration, angular velocity, and muscle

activity data of each participants’ dominant arm. This included x-, y-, and z- linear acceleration,

x-, y-, and z- angular velocity, and the eight channels of sEMG data, yielding a total of 14 features.

We chose these features to help detect arm position and orientation relative to the wearer, as

the Myo does not sense movements relative to the global environment. Additionally, the sEMG

signals can help detect differences in hand motion.

Data Labeling

Two annotators manually labeled the data by reviewing recorded video played back from

a rosbag file. Annotators used a script to record the start and end time of each activity. In

order to ensure consistency in our class labels, we conducted inter-rater reliability analysis by

computing the two-way mixed intraclass correlation (ICC) for our labeled data. ICC is a measure

of similarity between class labels, in our case the similarity of the start and end times of the

activities between annotators [170]. Thus, we normalized the timestamps to the start of each

trial.

We found Cronbach’s α = .81 which indicates that our labels were consistent between

annotators [440].
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3.1.2.3 Classification algorithms

We trained three machine learning classifiers on both datasets to determine which sensor

modality is better suited for recognizing gross and fine-grained motion. We used a SVM with a

linear kernel function (C = 1), LDA, and k-NN (k = 5) [343]. We chose these classifiers as they

have proven successful in HAR and other applications [90,261]. As our goal was not to compare

the classifiers against each other, we used standard values for additional parameters (e.g. C for

SVM, k for k-NN) to simplify the selection process.

SVMs are widely used for pattern recognition, classification, and regression [181].

They use kernel functions to calculate hyperplanes with which to divide training instances into

proposed classes. These are then used to classify new instances. They have shown success in

high dimensional spaces while producing interpretable results [181, 261].

LDA models training instances parametrically as multivariate means then uses linear

decision boundaries to separate them into classes [247]. They inherently handle multiclass data

such as ours and do not require hyperparameter tuning.

k-NNs are a type of instance-based learning that classifies new samples as the most

prevalent class of the k most similar training instances [261]. We chose k = 5 to maintain distinct

classification boundaries between classes.

3.1.2.4 Evaluation

To evaluate the relative efficacies of motion capture and wearable sensors, we performed

leave-one-out cross-validation for each task (i.e. we tested each individual trial by training the

classifier on all other trials of that task and then classified the original trial). In the case where we

fused the Vicon and Myo data, we employed early fusion techniques, or combined the features

before classification, which showed success in our prior work [331].

We calculated the mean F1 score to evaluate the classification efficacy across all trials

of each participant for both tasks (see Table 3.3). As such, the training set is not subject

specific, but does contain data from that participant. The F1 score of a class is the average of
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Table 3.3. Mean F1 scores obtained for each data modality on each dataset using different
classifiers. Across the datasets and sensors, we averaged the F1 scores from every trial. A higher
F1 score is better.

SVM LDA k-NN

Vicon Myo Both Vicon Myo Both Vicon Myo Both

Automotive (Gross motion) .79 .42 .43 .76 .48 .49 .88 .58 .59

Block (Fine-grained motion) .09 .37 .36 .23 .39 .36 .32 .43 .43

Table 3.4. F-tests of factors. p ≤ .05 indicates a significant effect on F1 score for individual
variables, and significant interaction between variables for multiple. Confidence for all p-values
is 95%. r-value is effect size.

Source p r

Motion Granularity < .001 0.98

Sensor Modality < .001 0.69

Classifier < .001 0.75

Motion Granularity * Sensor Modality < .001 0.96

Sensor Modality * Classifier > .05 0.21

Motion Granularity * Classifier > .05 0.28

Motion Granularity * Sensor Modality * Classifier < .001 0.54

its classification precision and recall. Its value lies in the range of 0 to 1, where values closer

to 1 indicate higher precision and recall. We chose to use the mean F1 score over raw accuracy

as our performance measure as it is a better indicator of performance, especially when class

distributions are imbalanced [223]. This was the case for the automotive task, since each trial

contained up to twice as many more instances of some activities than others.

To determine the significance of our independent variables on our dependent variable (F1

score), we performed a three-way repeated-measures analysis of variance (ANOVA) test. The

independent variables we tested were motion granularity (gross or fine), sensor modality (Myo

or Vicon), and classifier (SVM, LDA, or k-NN) (see Table 3.4).
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3.1.3 Results

Mauchly’s Test of Sphericity indicated that all combinations of motion granularity, sensor

modality, and classifier violated the assumption of sphericity, i.e. the variances of differences

between data of the same participant were not equal. The exceptions to this were Sensor Modality

* Classifier), χ2(2) = 1.37, p = .504, and Motion Granularity * Sensor Modality * Classifier,

χ2(2) = 0.68, p = .712. Thus, we corrected the degrees of freedom for all other combinations

using Greenhouse-Geisser estimates of sphericity. We corrected family-wise error rate in post

hoc comparisons using Bonferroni correction.

3.1.3.1 Motion Granularity

Motion granularity had a significant main effect on F1 score. Regardless of the sensor

modality or classifier used, the type of motion being classified significantly impacted the F1

score, F(1,19) = 532.76, p < .001, r = 0.98.

3.1.3.2 Sensor Modality

The sensor modality also had a significant main effect on F1 score. Regardless of the

motion granularity or classifier, the sensor significantly impacted F1 score, F(1,19) = 17.08,

p < .001, r = 0.69.

3.1.3.3 Classifier

We also found that the main effect of the classifier was significant, F(1.54,29.24) =

38.07, p < .001, r = 0.75. Contrasts between each classifier found that the k-NN achieved

higher F1 scores than the SVM, F(1,19) = 52.22, p < .001, r = 0.86, as well as the LDA,

F(1,19) = 29.00, p < .001, r = 0.78. The LDA also outperformed the SVM, F(1,19) = 17.53,

p < .001, r = 0.693.
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3.1.3.4 Motion Granularity * Sensor Modality

There was a significant interaction between the motion type and sensor type, F(4,19) =

219.39, p < .001. This indicates that the sensor had significantly different effects on the F1 score

depending on the motion granularity being recognized, and vice-versa. Contrasts revealed that

the Vicon yielded higher accuracy than the Myo for gross motion, but lower accuracy for fine.

Conversely, the Myo yielded higher accuracy than the Vicon for fine-grained motion, but lower

for gross, F(1,19) = 219.39, p < .001, r = 0.96 (see Figure 3.4a).

3.1.3.5 Sensor Modality * Classifier

There was no significant interaction between sensor modality and classifier, F(2,38) =

1.83, p > .05, r = 0.21. The interaction graph supports this finding (see Figure 3.4b).

3.1.3.6 Motion Granularity * Classifier

There was also no significant interaction between the granularity of motion being classi-

fied and the classifier, F(1.53,29.10) = 3.27, p > .05, r = 0.28. The interaction graph supports

this finding (see Figure 3.4c).

3.1.3.7 Motion Granularity * Sensor Modality * Classifier

Finally, the was significant interaction between all three of the independent variables,

F(2,38) = 15.34, p < .001, r = 0.54. This indicates that F1 score was significantly different for

each combination of motion granularity, sensor modality, and classifier. This is reflected in the

interaction graphs as the difference in F1 score is consistently greatest between the SVM and

k-NN (see Figure 3.4b,c).

3.1.4 Discussion

Our results suggest that motion capture and wearable sensors offer complementary

strengths for HAR. Motion capture is more accurate for detecting gross motion, while wearable

sensors are more accurate for recognizing fine-grained motion. Our results also indicate that
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Figure 3.4. Interactions between each pair of variables. The y-axis represents mean F1 score over
all trials. Similar slopes between lines indicate insignificant interaction between variables. There
was significant interaction between sensor modality and motion granularity, and insignificant
interaction of classifier with both motion granularity and sensor modality.

both sensor modalities yielded significantly more accurate recognition of gross motion than

fine-grained which suggests that fine-grained motion is more difficult to classify than gross.

For gross motion recognition, we found that motion capture data yielded significantly

higher accuracy than the wearable sensor data. This may be because the Vicon utilizes 3D

position in the environment, so the relative position of the person may help the classifiers more

accurately recognize gross motion. For example, the Receiving Part and Attaching Part activities

occur in consistent, but different, locations in the environment. Thus, the classifiers can use the

consistent arm positions to distinguish between these two activity classes. On the other hand, the

Myo only obtains data relative to the user, so it does cannot distinguish activities in the same

way. Arm movement may not be enough information to accurately detect gross body motion.

For recognizing fine-grained motion, we found that the wearable sensor data yielded

significantly higher accuracy than motion capture data. The Myo can detect the muscle activity

generated by the minute motion variations of each grasp to help the classifiers differentiate

between them. In contrast, the Vicon tracks the position of the hands as opposed to the fingers, so

the 3D motion it captures is similar between these fine-grained finger activities. Moreover, joints

were often occluded from view, resulting in lower accuracy, a known problem when working
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with visual sensors [171].

Our results also indicate that fine-grained motion is more difficult to classify than gross.

Across all classifiers, both the Myo and Vicon yielded lower accuracy on the block assembly

task than on the automotive one. This may be because the movements between the grasps

were similar (overhand, using some number of fingers) which led to ambiguities in the data.

Fine-grained hand motion, as seen in our dataset, can be difficult to discern as it often entails

analogous arm motion and muscle activity. In future work, we will explore higher level features

and combinations of sensors to more accurately recognize these activities.

Our results also suggest that multimodal sensor fusion resulted in lower classification

accuracy than when using a single sensor for both tasks. Prior work in other recognition tasks

showed that using similar multimodal approaches can improve classification accuracy, so we

expected a similar result here [330, 331]. However, it is possible that the additional modalities

contributed more noise than meaningful information, resulting in lower accuracy. In future work,

we may be able to mitigate this by performing higher level feature extraction (e.g. mean absolute

value for sEMG data, frequency domain features for inertial data), training a deep learning model

to extract more significant information, or exploring alternate fusion techniques [331].

Depending on the types of relevant activities in the space, robots may need different kinds

of sensor data in order to accurately recognize the intentions of their human counterparts. Our

findings can help the robotics community make more informed decisions regarding which sensor

modalities would be most beneficial for their specific tasks. This decision depends considerably

on which activities are important for robots to recognize as well as the motion granularity of

these activities. For instance, if the robot needs to know that a person is lifting a heavy object

and may need help, motion capture systems are reliable. On the other hand, wearable sensors

would better help a robot to determine which tool to fetch next depending on whether the person

is currently assembling a part with a hammer versus a screwdriver.

A limitation of this work is that we only recorded the arm motion of the participants. In

many HAR scenarios, movement of other body parts and environmental features can improve
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activity detection [180]. While it is possible that motion capture would have performed better

with more markers, recognizing precise finger movements would still be a challenge due to their

close proximity. Therefore, it is unlikely that using more markers would have increased accuracy

of fine-grained motion, and improvements in accuracy of gross motion would further support

our findings. Additionally, motion capture is not always viable for small tools and parts (e.g.

screwdrivers for assembling small electronics). Thus, we subject both the Vicon and Myo to the

difficult scenario where only human arm movements are measured.

Our findings suggest promising avenues for improving HAR of complex tasks in safety-

critical settings. However, a limitation that should be addressed to improve the robustness of such

systems is that we assume the classifier is trained on previous data from each participant, which

may not always be the case in real-world scenarios. Additionally, as the amount of training data

increases, so does the computational complexity of these classifiers. This is not ideal for a robot

that must react quickly in dynamic settings. Therefore, as more data is collected, approaches that

can handle larger datasets such as deep learning may be more suitable.

As we continue research in this area, we plan to develop a multimodal system that can

leverage the complementary nature of these sensor modalities to recognize both gross and fine-

grained motion so robots can better infer human activity. We will also extend our dataset in order

to create a more reliable unimodal activity recognition system. Once we have a classifier that

can reliably detect human activity, we plan to explore how robots can improve safety conditions

for human workers in safety-critical settings.

Our findings can help the robotics community to understand which sensors work best

for certain activities. These insights will enable researchers to design algorithms for robots that

incorporate complementary multimodal approaches to better recognize activities that entail both

motion types. These findings can also help guide both the robotic learning from demonstration

and grasping communities as they choose sensor modalities best suited for their contexts. Our

findings will help robots infer human intention regardless of the nature of the activities and

environment. With the means to accurately distinguish particular activities, they can better
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support people and improve safety conditions in more specialized, safety-critical settings.

3.2 Multimodal Deep Learning for Fine Motion Recognition

In this section, we present a novel non-visual HAR system to support robust human-

robot teaming in safety-critical environments. Our system informs the robot of its teammates’

actions through inertial and sEMG signals captured by an unobtrusive armband. This raw

multimodal input is processed by an hybrid neural network architecture that leverages the

complementary benefits of convolutional and recurrent layers to capture complex spatial and

temporal features. We evaluate our work on two datasets representative of tasks performed

in safety-critical environments: MIT-UCSD Human Motion [254], which consists of common

manufacturing tasks (see Section 3.1.2.1), and MyoGym, a dataset of strenuous exercises

demonstrating action primitives for manual labor. Evaluation results show that our system

achieves state-of-the-art performance when presented with ample training data of relevant

safety-critical tasks.

The contributions of the section are threefold: First, to our knowledge, we are the first to

compare the performance of several prominent non-visual HAR classifiers in addressing tasks

specific to safety-critical environments, rather than everyday activities such as ADLs. Second,

we conduct an analysis of the effect of supplementing inertial data with sEMG on the feasibility

of classifying whole-body tasks from single-sensor recordings. Finally, we present a novel

wearable non-visual HAR system that leverages hybrid deep learning to improve upon rival

algorithms and achieve state-of-the-art human task awareness for robots in these settings.

The approach presented in this section will enable robots to fluently understand and

collaborate with human partners on complex, strenuous tasks, and confer the numerous benefits

of human-robot collaboration to people in safety-critical environments worldwide.
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3.2.1 Background

3.2.1.1 Wearable Non-visual HAR Sensors

The most common sensors used for non-visual HAR are IMUs [90, 261]. IMUs measure

linear acceleration, rotational acceleration, orientation, or a combination of the three, and are

often worn on the limbs or torso. Researchers have also taken advantage of the IMUs found in

mobile devices for a variety of studies in-the-wild [90, 261, 325, 462].

A limited number of prior work investigated IMUs for non-visual HAR in safety-critical

environments. Stiefmeier et al. [420] fused 27 IMUs and radio-frequency identification sensors

to recognize tasks on a car assembly line. Inoue et al. [213] recorded inertial data from multiple

accelerometers to recognize a variety of nursing tasks. In contrast to these past systems, which

employ complicated and bulky sensor arrays, our approach uses a single armband sensor in order

to recognize activities with minimal encumbrance.

Recently, researchers have begun to investigate sEMG sensors for non-visual HAR, either

alone or as a supplement to inertial signals. Several groups have employed sEMG in recognition

and assessment of ADLs [76], balance [149], and gait [424]. Others have investigated fine

hand motions, and have used arm and wrist sEMG to determine hand gestures [390], or to

recognize American Sign Language [489]. However, these tasks do not represent the specialized

activities or equipment that robots would encounter in safety-critical environments. Furthermore,

these systems often utilize numerous obtrusive sensors and are thus not appropriate for use in

real-world environments.

In contrast, the Myo armband (see Figure 3.5) is a compact, arm-worn device that houses

an 8-channel sEMG and a 9-axis IMU [211]. Recent studies leverage affordable, unobtrusive

sensor for exploring multimodal non-visual HAR [2, 247, 254, 453]. Researchers found that

augmenting inertial sensors with sEMG sensors from the Myo considerably improves classifi-

cation accuracy of strenuous exercises [247] and ADLs [453]. However, approaches such as

that presented by Koskimäki et al. [247] still exhibit substandard results (up to 72% accuracy),
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Figure 3.5. (a) The Myo armband can measure sEMG, linear acceleration, and angular accelera-
tion of the wearer’s arm movements. (b) Recognizing activities in a manufacturing setting with
the Myo.

leaving considerable room for improvement. Totty et al. [453] achieved up to 89.2% accuracy

classifying ADL functional groups. However, the approach exhibits several limitations. First,

the approach presented is unable to recognize the specific activity performed, but only the high

level category (e.g. “no activity”, “functional”). In addition, the dataset considered only included

basic upper extremity tasks, and does not represent the intensive whole-body tasks relevant to

safety-critical environments.

Despite the success of the Myo and of sEMG HAR in general, to our knowledge, there

is no work demonstrating a system that can reliably recognize realistic, complex worker tasks

performed in real-world environments. The complex networks of sensors suggested in studies

such as [76] and [420] are cumbersome and delicate, which makes them unfit for use in real-world

environments. Furthermore, none of these studies explored more than a few basic classifiers on

inertial+sEMG data. It remains an open question what classification approach is best suited to

decoding these complicated multimodal signals.

3.2.1.2 Non-visual HAR Classification

Researchers have employed a variety of classification techniques to address non-visual

HAR. One attractive method is LDA as it easily generalizes to multiclass classification and

does not require hyperparameter tuning [247]. Another widely-used approach is k-NN, which
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Figure 3.6. The architectures of the deep HAR models used in this work. For clarity, the input
vectors displayed represent a single time window in a batch. (a) The CNN extracts local patterns
among multiple data channels. (b) The LSTM network identifies important temporal features.
(c) The hybrid CNN-LSTM identifies temporal patterns using convolutional features.

classifies new instances as the most common class of the k most similar training samples. k-NNs

produce noteworthy results for inertial non-visual HAR of ADLs compared to other popular

algorithms [388, 453].

Recently, successes in areas such as image and speech recognition have inspired re-

searchers to employ deep learning for non-visual HAR. Deep learning approaches mitigate the

need for hand-crafted features, which are difficult to design for mobile and wearable sensor

streams [179]. The most common deep learning approaches for non-visual HAR are convolu-

tional neural networks (CNN) and recurrent neural networks (RNN) [172]. CNNs construct

spatial features from signals by taking convolutions of input channels at each timepoint. On

the other hand, RNNs extract temporal features, i.e. how the evolution of the signal over time

informs the prediction. Long short-term memory (LSTM) networks, the most widely used RNN,

improve upon traditional RNNs by selectively truncating error gradients in backpropagation to

allow the network to learn long-term dependencies in input signals [190].

54



Table 3.5. Mean F1 scores obtained for each data modality on each dataset for each classifier.
Across the classifiers, data modality, and dataset, we averaged the F1 scores from every trial. A
higher F1 score is better.

MIT-UCSD Human Motion MyoGym
CNN-
LSTM CNN LSTM k-NN LDA

CNN-
LSTM CNN LSTM k-NN LDA

Inertial+sEMG .35 .36 .22 .31 .33 .84 .39 .28 .36 .74

Only Inertial .31 .36 .24 .35 .30 .84 .38 .23 .39 .69

CNNs have become popular in non-visual HAR for applications such as classifying ADLs

(c.f. [494]) and fall detection (c.f. [238]). In addition, the ability to leverage the temporal structure

of activity signals makes LSTMs a promising tool for non-visual HAR of tasks with complicated,

time-dependent patterns [172]. Other recent work uses a combination of convolutional and

recurrent layers for non-visual HAR (c.f. [172]). These combined CNN-LSTM architectures

capitalize on the CNN layers’ ability to extract convolutional features that best represent the state

at each timestep, from which the LSTM layers learn the temporal evolution of that state over

the input sequence. While CNN-LSTMs are rather new to non-visual HAR, they can achieve

state-of-the-art accuracy on non-visual data [172].

3.2.2 Methodology

In this section, we expand upon past work in the following ways. First, we evaluate

the performance of several prominent non-visual HAR algorithms on realistic worker tasks

to determine the most effective techniques for use in real-world environments. In particular,

we investigate three deep learning approaches (CNN, LSTM, CNN-LSTM) and two machine

learning classifiers (k-NN, LDA). Second, we investigate the promise of supplementing inertial

wearable sensors with sEMG across each dataset, task, and algorithm. Finally, we present and

validate a cohesive non-visual HAR system that employs a single, practical armband sensor to

effectively classify tasks, enabling fluent HRI in these spaces.
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3.2.2.1 Datasets and Preprocessing

We evaluate our system on two datasets representative of tasks common in safety-critical

environments: MIT-UCSD Human Motion (see Section 3.1.2.1) [254] and MyoGym [247].

MyoGym includes 10 participants performing 30 strenuous gym exercises, representative of

lifting, pushing, and carrying tasks. All data in both datasets were collected by a Myo armband

worn on the dominant forearm, and contain 6-channel inertial (tri-axial accelerometer, tri-axial

gyroscope) and 8-channel sEMG data collected at 50 Hz.

Data were segmented into 50% overlap 1 second and 1.5 second input windows for

MIT-UCSD and MyoGym, respectively. We use a shorter window for MIT-UCSD due to shorter

task durations. We standardized each input channel of each train set to µ = 0 and σ = 1 over

all training data. To simulate real-time performance, we standardized test data to µ = 0 and

σ = 1 with a moving window of data points in the past 1 second. Because data in MyoGym were

collected continuously through all 30 exercises, the null class represents approximately 78% of

all training data. To discourage the trivial solution (i.e. always predicting the majority class), we

reduced the number of null class instances through random undersampling of null sequences.

3.2.2.2 Classifiers

We built three neural network classifiers to perform non-visual HAR: a CNN, an LSTM,

and a hybrid CNN-LSTM. We aimed to minimize variation due to arbitrary hyperparameter

choices (e.g. number of layers, activation functions) by making analogous design choices across

networks. In this way, we ensure that differences in classification accuracy are more closely tied

to the type of network than differences in these hyperparameters. Each network was designed

with two convolutional or recurrent layers, a fully connected layer, and a softmax output layer

(see Figure 3.6). We use two feature-extracting layers for each network to control for layer

ordering effects and isolate the effect of layer type on classification.

All kernels use a stride of 20 ms, the sample rate of the Myo. Convolutional layers used

a kernel of 500 ms for MIT-UCSD, and a kernel of 1200 ms for MyoGym. We chose these
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relatively large kernels to simulate temporal memory in convolutional layers. Per convention, we

apply a max-pooling layer between convolutional layers. This layer uses a kernel size of 40 ms.

LSTM layers contained 64 hidden units, and fully connected layers contained 1000, as chosen

by cross-validation. Convolutional, LSTM, and fully connected layers were activated with ReLU

functions, and output layers used softmax activation for classification.

In order to compare to existing literature, we tested each dataset on an LDA (see [247])

and a k-NN (k = 5) (see [254, 453]). Since these classifiers cannot autonomously select in-

formative features from data, we extracted 57 linear acceleration features, 54 angular velocity

features, and 112 sEMG-based features as input, as recommended by Koskimaki et al. [247]. In

contrast, our network algorithms were only fed raw data. This allows us to compare the efficacy

of expert-recommended features against those generated autonomously by NNs for classifying

real-world tasks.

3.2.2.3 Evaluation

All classifiers were trained separately on both datasets until convergence. We evaluated

performance metrics based on leave-n-trials-out cross-validation. In order to ensure sufficient

training data was available, we used n = 1 for MIT-UCSD, and n = 3 for MyoGym. We did not

perform resampling or class-balancing on the test data to simulate a robot perceiving human

actions in real-time.

We report micro-F1 score as our evaluation metric, as it more faithfully represents

classification performance across unbalanced classes compared to accuracy and macro-F1 score.

To analyze the variation in outcome measures, we performed a three-way repeated-measures

ANOVA across classifier, data modality, and dataset.

3.2.3 Results

All effects are reported significant at p < 0.05. Mauchly’s tests indicated that that the

assumption of sphericity was violated for the main effect of classifier, as well as the interac-
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Figure 3.7. Average micro-F1 scores (across all trials) for the classifier type and sensor data
channels, separated by dataset.

tion effects of classifier and data modality, and that of classifier and dataset. We corrected

for this using Greenhouse-Geisser estimates of sphericity. Each of our measures had a signif-

icant main effect on F1 score (classifier: F(2.06,267.36) = 472.1, modality: F(1,130) = 5.9,

dataset: F(1,130) = 642.3). There were also significant interaction effects between modality

and classifier, F(2.79,362.76) = 10.9, between dataset and classifier, F(1.952,253.76) = 359.7,

and between modality and dataset F(1,130) = 35.1. This suggests that the type of sensing

capabilities as well as dataset have different effects on classification accuracy depending on the

classifier used.

Contrasts reveal that the CNN-LSTM performed significantly better than the other

classifiers overall on the MyoGym dataset. This architecture performed consistently better

than the LSTM and k-NN across all evaluations. The CNN-LSTM also performed significantly

better than the LDA on MyoGym when sEMG was present, but saw no significant improvement

over LDA in the other scenarios. On MIT-UCSD, there was no significant advantage shown

using CNN-LSTM instead of LDA or CNN. There was no significant difference between the

performance of the CNN-LSTM and LDA or CNN on the MIT-UCSD dataset. The classifier’s

performance decreased slightly but significantly across both datasets when no sEMG signal was

available, suggesting our system performs adequately even with less information available.

The average F1 score for the MIT-UCSD dataset across all classifiers and modalities was
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31.2 ± 5.0%, significantly lower than the performance on the MyoGym dataset (51.6 ± 23.6%.).

All classifiers performed significantly better on the MyoGym dataset or had no significant change.

Including sEMG in training and classification had significant overall positive effect on F1 score

across classifier. The inclusion of sEMG significantly assisted every classifier except the overall

performance of the LSTM, and the performance of the CNN on the MIT-UCSD dataset.

3.2.4 Discussion

Our evaluation suggests that a hybrid CNN-LSTM architecture offers superior identifica-

tion of safety-critical tasks in a realistic environment compared to prominent rival techniques.

We found that CNN-LSTM architecture excels in environments that exhibit strenuous pushing,

pulling, and lifting tasks, attaining 84% accuracy across 30 different actions on the MyoGym

dataset. Additionally, the hybrid architecture is on par with other state-of-the-art classifiers

over the MIT-UCSD dataset. This suggests that the combination of convolutional and recurrent

layers with forearm sEMG and inertial signals is a promising approach for supporting robot

understanding of complex human activities in real-world environments.

Although popular in recent literature, our evaluation suggests that k-NN is unsuited

to non-visual HAR in real-world environments, even when aided by expert feature selection.

This is interesting, as it has been widely validated as a suitable means for identifying ADLs

[254, 388, 453]. This implies that more specific, alternative approaches, such as a hybrid CNN-

LSTM, may be necessary to support safe and robust non-visual HAR in safety-critical and other

complex environments. Tasks in real-world environments are complex and stochastic, and take

even humans substantial time to learn when newly introduced [465]. In order to ensure safe

and accurate non-visual HAR, it is important not to take a previously successful classifier’s

effectiveness for granted. Instead, one must evaluate all robot systems on realistic data for the

target environment.

Beyond classifiers, our results also suggest benefits of supplementing inertial data with

sEMG. We found that sEMG signals were informative for pushing and pulling tasks, and assisted
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most classifiers in broadly categorizing tasks that involved targeted hand movements, such as

assembling blocks. They also helped in discerning between tasks with similar movements, such

as reaching forward to receive an automobile part versus doing so to install it in the dashboard.

However, one limitation of this work is that due to the small size of the MIT-UCSD

dataset (approximately 4000 1-second sequences), the relative performance of each classifier

is difficult to gauge. In particular, the CNN-LSTM still has significant room for improvement,

as it is widely known that neural networks require substantial training data to learn informative

features. This premise is supported by the poor performance of the other classifiers when trained

on this dataset. Nevertheless, given our system requires only an unobtrusive wearable sensor to

gather data, a real-world implementation should have little issue collecting ample training data

for robust performance.

While we found that sEMG signals are beneficial in some cases, sEMG had a detrimental

effect when classifying tasks that involved raising the arms and lifting. Furthermore, several deep

learning approaches performed worse when sEMG was included, suggesting that the additional

modalities may confound classification on smaller or more intricate datasets. Caution and

careful testing should be used when exploring whether sEMG sensing benefits future non-visual

HAR applications. Future work will explore several avenues for expanding this non-visual

HAR system. As the purpose of this work was to identify the most effective technique for

safety-critical environments, we performed no hyperparameter optimization. Moving forward,

we will fine-tune hyperparameters and explore other neural network architectures. In addition,

in order to continue developing systems that perform in real-world environments, we intend to

to gather a larger dataset of real-world manufacturing and clinical tasks. We will make these

datasets publicly available to empower the robotics community to investigate non-visual HAR in

real-world environments.
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3.3 Chapter Summary

In this chapter, we introduced new methods for recognizing human activity in dynamic

environments. This work enables robots to infer the intentions of the people around them

by recognizing a variety of motion using non-visual sensors. We also proposed a novel non-

visual HAR system that aims to to support robot integration into real-world environments by

enabling robust identification of human activity. To our knowledge, this system is the first

non-visual HAR approach that is able to robustly identify complex full-body tasks using a single,

unobtrusive sensor feasible for real-world use in safety-critical environments. With the ability

to more accurately distinguish between complex activities, robots will no longer be excluded

from human-dense, safety-critical environments. Through our work, researchers will be able to

develop advanced robots that can improve health and quality of life of the millions of workers

worldwide. The next chapter focuses on a robot platform that we developed which can learn

from and adapt to people when delivering cognitive training.
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Chapter 4

Cognitively Assistive Robot for Motivation
and Neurorehabilitation (CARMEN)

Many types of robots exist to cognitively and socially assist people with cognitive

impairments. These robot-delivered health interventions have many benefits, including the

potential to expand access to healthcare by extending it into a person’s home, reducing treatment

time and cost, and prolonging a person’s independence [154]. Robots can provide support on

multiple dimensions, including socially and cognitively.

Robots can also provide social support and provide non-pharmaceutical therapeutic

interventions for people with cognitive impairments. Often, zoomorphic robots such as PARO

or AIBO act as companions, or therapists may use them to augment interventions such as

animal-assisted therapy or multi-sensory behavior therapy [205, 319]. These robots can help

reduce negative feelings such as stress and anxiety among people with cognitive impairments

and caregivers, and even improve their mood [148, 212, 324, 338].

Researchers have also explored the use of CARs to support cognitive training and cogni-

tive stimulation among people with cognitive impairments which can help slow the progression

of their disease [258, 466]. These robots can remind users of appointments, medication, and

dietary requirements to reduce reliance on their memory [322]. In addition, they may assist

users with cognitive training games to support their memory, or accompany human clinicians

with memory training programs [350, 436]. Researchers are also exploring the use of robots to
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teach people with cognitive impairments metacognitive strategies which help strengthen memory,

planning, and executive functioning in order to help them manage their impairment in their daily

life [256]. Often, the cognitive support that an assistive robot provides can extend or supplement

a health intervention.

For the past several years, our team has worked with neuropsychologists to develop

CARs that deliver CCT [204] autonomously and longitudinally to people with MCI at home.

In this chapter, we introduce CARMEN, a cognitively assistive robot which autonomously and

longitudinally delivers cognitive training to people with MCI in home settings. Our system helps

users practice cognitive strategies to strengthen skills such as planning and executive functioning.

4.1 Design Requirements

In developing CARMEN, we collaborated closely with clinical researchers and people

with MCI to ensure that the robot would be physically and cognitively accessible for this

population, as well as useful as an intervention tool. Our explorations into this space revealed

major design requirements which we considered as we developed the system (see Chapters 5, 6,

and 7). These included delivering intervention material autonomously, requiring minimal internet

connection, being robust over the course of the intervention, supporting multiple communication

modalities, and having few physical components.

4.1.1 Autonomous Intervention Delivery

Our prior work with stakeholders revealed that it is important that people can use

CARMEN in their homes without constant mediation from researchers or clinicians. While our

clinical collaborators expressed interest in manually adjusting a robot’s behavior in order to better

suit a person’s goals or abilities, robots should also interact with a person and deliver intervention

content autonomously. Thus, CARMEN needs to automatically start running the intervention

upon startup, and advance between different cognitive strategies and areas in alignment with the

original ME-CCT manual. This allows for a more streamlined and straightforward experience,
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which is particularly important for people with low technology literacy, to help reduce frustration

and minimize barriers to using the system.

Intelligent and autonomous behavior adaptation of a system is also crucial for maintain-

ing adherence and maximizing efficacy to longitudinal interventions such as ME-CCT [258].

Therefore, a key feature of CARMEN will be a machine learning algorithm that enables it to

automatically learn a person’s preferences and abilities, and adjust its behavior (e.g. intervention

content, communication modality) accordingly.

4.1.2 Limited Internet Connectivity

Many people with MCI are older adults who may not have reliable internet access in

their homes [175]. In addition, disability status and health problems are known factors which

reduce internet adoption [175]. Therefore, to improve accessibility and ensure that CARMEN

will be usable in real world settings, it needs to perform most of its processing locally in order to

minimize its reliance on internet connectivity. Keeping CARMEN primarily offline will also

minimize its vulnerability to security threats, which is important to protect the privacy of users

in sensitive spaces such as their homes.

However, due to the longitudinal nature of cognitive interventions such as ME-CCT, the

amount of data that CARMEN gathers throughout the intervention may be too large to be stored

locally. Furthermore, the machine learning models we expect to develop and train using this data

may require large amounts of processing time and power. To balance these considerations, we

perform certain real-time capabilities (e.g. speech synthesis, adaptive robot behaviors) locally on

the robot. Once a day, CARMEN opens a secure connection to communicate data with a remote

supercomputer where we store data that the robot collects and update our machine learning

models.
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4.1.3 Longitudinally Robust

CARMEN will need to be able to work robustly throughout the duration of an intervention,

in our case approximately eight weeks. It is important that robots will execute their tasks as

expected so that people with MCI will not have to troubleshoot problems or contact researchers

often. Our clinical collaborators provided suggestions for supporting troubleshooting, including

providing written instructions and having a phone help line. But to minimize frustration for

users, we designed CARMEN to be robust over a long period of time.

4.1.4 Straightforward Physical Setup

Our studies with stakeholders revealed that people with MCI may have difficulty main-

taining focus, so systems with multiple components could cause confusion or break concentration.

Therefore, we aimed to keep the physical setup of CARMEN as straightforward as possible,

including keeping the hardware compact and with no additional components that a user might

need to keep track of or maintain. In addition, we adopted a plug-and-play system with minimum

human intervention to set up and start to use the robot.

4.1.5 Accessible Communication Modalities

People with MCI are often older adults and may have varying physical and cognitive abil-

ities which can impact how they can comfortably interact with technology. For example, people

with MCI may experience tremors which can make it difficult to press buttons, or they may have

audio or visual impairments.. Therefore, these systems need to support multiple communication

modalities to improve accessibility for people with different physical abilities and preferences.

Designers should take steps to make robots both physically and cognitively accessible for

communication with people with MCI, which we adopted while designing CARMEN [253, 363].

For example, to support physical accessibility, our clinical collaborators indicated that

many of the best technology design practices for older adults are also applicable for people with

MCI. These included having options for large font sizes for text, high contrast visuals, loud
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volumes for speech and sounds, and using large buttons with adequate spacing between them. At

the same time, they expressed the importance of letting people adjust these settings to match

their abilities and preferences [253].

In addition, people with MCI may have difficulty with verbal comprehension or memory

[299]. Therefore, to improve clarity and comprehensibility of CARMEN, we kept its vocal

utterances short and concise [93]. We also implemented means to have CARMEN repeat

information, and let people advance through the intervention at their own pace.

4.1.6 Approachable Physical Appearance

The aim of CARMEN is to be deployed in a person’s home longitudinally, and ideally

maintain engagement and adherence with the intervention throughout its deployment. Research

shows that the physical appearance of a robot can significantly impact the acceptance and use by

older adults, with many older adults rejecting systems that were too human-like or implied any

disability [108]. Our initial explorations also indicate that people with MCI may see robots as a

companion throughout the intervention, and care should be taken to avoid Turing Deceptions (i.e.

when someone mistakes interactions with a robot for those with a person) when designing robots

for people with cognitive impairments [257, 376].

However, the “face-to-face” nature of interactions with robots has been shown to improve

intervention outcomes, engagement, and trust of the system [57]. Therefore, we aimed to make

CARMEN’s appearance anthropomorphic and approachable, but not overly realistic.

4.2 CARMEN System Architecture

We envision CARMEN will serve as a tool to supplement cognitive training at home

in between weekly appointments with a human clinician. Depending on a person’s needs and

their confidence with each cognitive strategy, they may interact with CARMEN to practice

the strategies multiple times each week throughout the intervention. We define each of these

interactions as a session. During each session, the robot will explain a cognitive strategy and
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Figure 4.1. Design iterations of our robot CARMEN which delivers cognitive interventions
longitudinally to people with MCI. The robots help users practice cognitive strategies with
activities to minimize the impact MCI on daily life [204].

give the person an opportunity to practice that strategy via one or more activities. It will collect

interaction and performance data from the person which it will use to update its behavior for the

next session in order to support the user’s engagement and goals.

We describe the hardware and software components of CARMEN below.

4.2.1 Hardware

CARMEN is a system which comprises a social robot platform coupled with a tablet

to support multimodal communication and promote accessibility. We have explored multiple

robot embodiments for the system, including the Kuri and FLEXI [10] platforms (see Figure 4.1).

For customizability purposes, we decided to primarily develop CARMEN based on the FLEXI

platform.

FLEXI is a low cost, open source social robot embodiment kit [10]. It is a tabletop social

robot designed to be customizable so HRI researchers can use it for a broad range of applications.

The tablet provides an avenue for the robot to display visual information to users, and enables

users to communicate with the robot via the touch screen (e.g. pressing buttons, on-screen

keyboard). FLEXI also leverages a smartphone which displays its face.
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To support movement, FLEXI has four degrees of freedom. One motor at the base enables

it to swivel left and right, one in the neck allows it to lean forward and back, and a two-joint

motor in the head allows it to tilt and rotate its face.

We made several modifications to the original FLEXI system to better suit our needs..

While the FLEXI uses a Microsoft Surface Tablet, we use a MeLE mini PC running Ubuntu so

CARMEN can utilize ROS [364]. We integrated an Apple iPad as the tablet interface which

connects to the mini PC via a websocket, and replaced the smartphone with an LCD monitor to

minimize wireless connections between physical components. We also developed an alternative

system to control the face locally, as the original FLEXI system requires an internet connection

for this functionality. In addition, we connected an external speaker and microphone to support

verbal communication and sounds with users. Finally, we enclosed the hardware in a 3D printed

case to secure all of the components.

To support longitudinal machine learning, CARMEN also has software which runs on

two supercomputer systems. First is Expanse [421], a high performance computing (HPC) cluster

which will support our longitudinal machine learning objects by helping both train and update

our machine learning models to adjust the robot’s behavior to suit a person’s preferences and

abilities. CARMEN also communicates with Jetstream2 [173], a virtual data container where we

run a database that stores user interaction data.

4.2.2 CARMEN Software

There are three main software components of CARMEN that control each hardware

component, as well as transfer data between them (see Figure 4.2). We split these into the

physical robot platform, the tablet, and the supercomputer.

CARMEN runs Ubuntu 20.04 LTS, ROS Noetic. ROS is a middleware which abstracts

software from the hardware and allows programs to be platform agnostic. In addition, different

processes can be modularized using ROS nodes, which can communicate with one another by

passing messages.
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Figure 4.2. CARMEN has three main software components which control the physical robot
platform, the tablet application, and communication with supercomputers.

CARMEN itself has three main types of software modules, each of which we imple-

mented as ROS nodes. We categorize these into intervention content modules, robot behavior

modules, and human perception modules. In order to enable CARMEN to be extensible to multi-

ple robot platforms, we abstract the intended behaviors from the specific robot implementation,

and run just a single node that is specific to the current hardware.

4.2.2.1 Intervention content modules

Intervention content modules control details related to the neurorehabilitation intervention

itself. These details include the order in which the robot presents cognitive training strategies

for users to practice, the activities used to practice those strategies, and the difficulty of those

activities.

We specify the overall order of the strategies in a configuration file (YAML), which

follow the order in which people with MCI learn them in the in-person intervention.

Each session follows the same general template which we implement as a finite state

machine (FSM) (see Figure 4.3). We refer to this FSM as the Navigation Controller, as it guides

the user through each part of the session. The states include 1) greeting the person, 2) giving an
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Figure 4.3. Each session with CARMEN follows the same general structure, which we imple-
ment as an FSM.

overview of that day’s cognitive strategy, 3) giving instructions for the activity they will use to

practice that strategy, 4) running the activity, 5) providing feedback about their performance on

the activity, and 6) concluding the session. Edges correspond to the conclusion of the previous

state.

Each state of the FSM is written as its own ROS node which is executed by the Navigation
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Controller at the appropriate point The specific activity and its difficulty are determined at the

beginning of each day based on the person’s preferences and their performance on previous

activities.

4.2.2.2 Robot behavior modules

Robot behavior modules work in real time to control how the robot behaves, including

what it says, what it displays on the tablet, and how it moves, facial expressions it makes. Each of

these components (speech, tablet display, motor movement, facial expressions) work in tandem

to create different animations which the robot can execute to convey different emotions or

personality traits when interacting with users.

Speech

Throughout the session, the robot speaks to the user and displays the words it says on the

tablet in order to support multimodal communication. This also enables the user to reread what

the robot said if they forgot or could not understand its speech.

We use a ROS service to handle the text to be spoken and/or displayed, which we refer

to as the Dialogue Controller. The ROS node that is actively running (as defined by the current

state) sends a message to the Dialogue Controller in JSON format. This message specifies 1) the

text, 2) whether that text should be spoken aloud, displayed on the screen, or both, and 3) how

the user can provide input back to the robot (e.g. buttons, keyboard).

The Dialogue Controller then forwards the message to the Speech Controller and Tablet

Controller, which handle communication between the robot and their respective components.

Upon receiving a response from the user, the Dialogue Controller will send the user’s response

back to the current active node, and the session will proceed.

CARMEN uses the CereVoice SDK for text-to-speech synthesis, and more details about

the tablet application can be found in Section 4.2.2.4.

Motor movement

In order to control CARMEN’s movement, we leverage the Dynamixel motors SDK
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Figure 4.4. CARMEN displays different facial expressions.

which we access via a custom wrapper class. We wrote this class in order to more easily program

the motors and create custom movements for different animations. We also limit the speed at

which the motors can move as well as their range of rotation to minimize the risk of user harm

and motor burnout.

Facial expressions

CARMEN exhibits different facial expressions on the smartphone display in order to

convey different emotions. There are two main components to CARMEN’s face. First, we

developed a front-end module to design and display different facial expressions, including

different types and animations for eyes, mouth, and eyebrows (see Figure 4.4). This front-

end module is implemented with PixiJS (a 2D WebGL renderer) and AngularJS (a Javascript

framework).

Second, we created a back-end module that runs fully locally on CARMEN to serve

and manage the front-end module. The back-end module allows REST API and websocket

connections using NodeJS. Thus, to control which expression is currently displayed, a script

sends a POST request to set the desired expression. Then the back-end uses websockets to
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Figure 4.5. Images from activities that users can complete to practice cognitive training strategies.
From left to right: Word Game, Color Game, Number Game, Mindful Breathing Exercise.

communicate with the front-end client to display the proper facial expression animation.

4.2.2.3 Human perception modules

Human perception modules enable CARMEN to receive and respond to input from the

user. At this time, CARMEN supports input via the tablet, which can be a button response or

keyboard input depending on the type of activity (more details about each activity and possible

responses can be found in Section 4.2.2.4). These responses may provide the robot with a

variety of information, including a person’s intention to advance to the next set of dialogue, their

responses to an activity, or adjustments to system settings. The tablet will automatically send

these interactions back to the Tablet Controller.

4.2.2.4 Tablet Application

We developed a web application through which users can interact with CARMEN on

a tablet. The tablet serves two main functions. First, it displays the text that the robot speaks

so users can follow along more easily. Second, it provides a means for users to interact with

the robot throughout a session, including advancing to the next set of dialogue and completing

activities with the robot.

We developed the application using Flutter. It connects to the system via a websocket.

We programmed four main activities that users can engage in to practice the cognitive

training strategies. These include the Word Game, Color Game, Number Game, and Mindful

Breathing Exercises (see Figure 4.5).
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• In the Word Game, the robot gives a list of words which are spoken aloud, displayed on

the tablet, or both, and the user can type as many words as they remember via the tablet

keyboard.

• In the Color Game, the robot shows a series of colors, and asks the user to input them on

the tablet in the order that they appeared.

• In the Number Game, the robot speaks aloud a series of numbers, and the user has to add

the two most recent numbers, and type them in with a numeric keyboard.

• In the Mindful Breathing Exercise, the robot talks the user through a mindfulness exercise

to help them relax and focus.

The Word Game, Number Game, and Mindful Breathing Exercise were drawn directly

from ME-CCT and are employed by human clinicians when delivering the intervention. The

Color Game was an activity that we co-designed with our clinical collaborators while exploring

additional ways that people can practice each cognitive strategy (see Chapter 6). We worked

closely with clinicians to translate these activities so the robot could conduct them effectively

and accessibly. In addition, each activity can be personalized to suit a person’s goals and abilities

(e.g. which strategies they practice, difficulty or duration of the activity).

4.2.2.5 Data Collection and Processing

Throughout each session, CARMEN collects interaction and performance data from

users in order to help learn their preferences and abilities, and adjust its behavior and intervention

content for the next session. Interaction data includes the frequency with which the user engages

with the robot, the duration of the session, and the date and time of the session. Performance

data includes which activity they completed, how long it took them to complete that activity, and

their score on that activity if applicable. After each session, CARMEN saves the collected data

locally.
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At the end of each day, the robot runs a scheduled job to securely transfer the interaction

data file into a central location on a Jetstream2 allocation. Once all files from each robot have

been sent over, another job on the allocation runs a script that takes each data file from each

robot, and inserts them into a SQLite database.

4.3 Chapter Summary

This chapter introduced CARMEN, a new robot system that delivers a cognitive in-

tervention autonomously and longitudinally to people with cognitive impairments at home.

Thus, people with cognitive impairments can practice compensatory strategies and transfer them

into their life. This work provides the basis for my subsequent work, which focuses on how

stakeholders can program robots like CARMEN.
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Chapter 5

Control Synthesis for Accessible Robot
Programming

Healthcare is an important domain to support key stakeholders by creating customized

robot programs [23, 100, 101]. Thus, HRI researchers are exploring robots to fill these care gaps,

particularly home-based social robots deployed longitudinally [16, 23, 30, 69, 82, 99, 183, 360,

380, 385, 394, 410, 437].

As HRI researchers collaborate with clinicians, community health workers, and family

members, many have reported challenges stymieing their progress [18, 32, 182]. First, they lack

the tools to enable clinicians to create tailored, personalized interventions and modify robot

behavior at a high level. Personalization is critical in any robotics healthcare application, as

no care receiver is the same and requires uniquely tailored interventions to support their health.

Another challenge is that HRI researchers must manually and painstakingly create customized

programs for each stakeholder domain, limiting the scalability and potential impact of their work.

Most stakeholders, particularly clinicians, lack the time to learn how to program robots

to exhibit custom behavior, especially if they must consider each individual action the robot

should perform (e.g. what to say, how to move). This can cause unusable code or unexpected

robot behavior, and must be extensively tested, else risks unintended consequences on potentially

vulnerable populations.

While prior work exists to support novice programmers via visual, aural, and tactile
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Figure 5.1. JESSIE employs control synthesis with a tangible front-end to enable people to
create customizable programs for social robots within the context of neurorehabilitation.

languages (i.e., via End-user programming) [28, 81, 289, 342, 403, 404], these frameworks are

almost entirely procedural, require understanding code structure, and do not allow high level

specification of desired behavior, including constraints on the robot’s actions. For example, a

novice user can typically program a sequence of actions (e.g. pick, then move, then place), but

implementing multiple conditions and constraints on behavior is more difficult (e.g. pick, place,

and play music if the user is bored, and turn on lights if it is dark). For complex behaviors, users

would have to compose constructs such as if statements and for loops, which can be difficult and

error prone even in end-user programming contexts.

To address this gap, we leverage our prior work on control synthesis for robot behavior
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from high-level specifications [249, 486]. Such techniques and tools take a description of robot

behavior, typically in temporal logic, and automatically synthesize a robot controller guaranteed

to satisfy the task, if one exists. Control synthesis enables users to reason about the overall

behavior, then automatically creates the specific implementation for the robot. It automatically

transforms complex behaviors (e.g. sequences of actions, reactions to external events, constraints

on robot behavior) into code. It removes the burden of deciding a program structure, which is

non-trivial and difficult for non-programmers, and eliminates implementation errors. However,

using existing control synthesis tools requires understanding of temporal logic and typically

lack an interface to easily to express the desired behavior, prohibiting novice users from taking

advantage of control synthesis.

To address these gaps, we present JESSIE (Just Express Specifications, Synthesize, and

Interact), an end-to-end system that enables programmers of any level to quickly and easily

program social robots to exhibit complex behaviors. JESSIE leverages existing control synthesis

methods coupled with an accessible high-level specification interface to enable users to specify

and synthesize social robot controllers which afford personalized activities, reactions, and

behavioral constraints. Thus, users need not concern themselves with specific implementation

details or individual robot actions, and can instead focus on overarching goals (e.g. therapeutic).

To demonstrate our approach, we implemented our system on a Kuri robot in the context

of developing cognitive training treatments for people with MCI. We evaluated JESSIE with six

neuropsychologists, its envisioned end-users. Overall, participants without prior programming

experience successfully created personalized, interactive therapies for people with MCI, and

reported positive comments with regard to its usability. Furthermore, they gave suggestions for

improvement including increased support for personalization, varying the robot’s status, and

collaborative goal setting (see Section 5.4).

The contributions of this chapter are as follows: First, we present an end-to-end system

that allows non-programmers to specify complex robot behavior through a tangible interface,

and automatically generates the associated robot control. This will help inform future real-world
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HRI research by enabling on-the-fly robot customization. Second, we demonstrate JESSIE in

the context of cognitive training for MCI, an important application area for social robotics. We

report our findings from our evaluation with six neuropsychologists, representative end-users

who did not have prior programming experience. To our knowledge, this is the first evaluation

of a control synthesis framework by end-users. Third, we demonstrate the reproducibility and

extensibility of the system by executing a clinician-created behavior on another platform, the

TurtleBot 2. Finally, as an artifact to support reproducibility for other HRI and robotics research

contexts, all software, documentation, and supplemental materials discussed in this chapter are

available as open-source at https://github.com/UCSD-RHC-Lab/JESSIE.

5.1 Background

5.1.1 Control Synthesis

Control and program synthesis are techniques to automatically transform high-level

specifications into control or programs guaranteed to satisfy the specification. In robotics,

researchers typically use different temporal logics to express tasks and automatically transform

them into robot behaviors [250]. Thus, users can reason about the robot’s overall task rather than

implementation details.

In this work, we build on reactive synthesis from linear temporal logic (LTL) specifica-

tions [120]. Roughly speaking, LTL formulas are composed of atomic propositions (Boolean

variables), logical and temporal operators as follows:

ϕ ::= π | ¬ϕ | ϕ ∨ϕ | ⃝ϕ | ϕ U ϕ

where “not” (¬) and “or” (∨) can be used to create “and” (∧) and “implies” (→), and the temporal

operators “next” (⃝) and “until” (U ) can be used to create “eventually” (♢) and “always” (□).

The formal semantics of LTL formulas can be found in [120]. Intuitively, a formula ⃝ϕ

is true if ϕ is true in the next time step, □ϕ is true if ϕ is always true during the execution, and
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♢ϕ is true if at some point in the execution, ♢ϕ is true.

LTL allows users to encode assumptions about the behavior of the robot’s environment

(e.g., the state of the person with MCI) and requirements on the robot behavior (e.g., if the person

with MCI is not engaged, play music). Furthermore, there exist algorithms that automatically

transform an LTL formula into a finite state controller [250] that is then used for robot control.

For computational reasons, we use the GR(1) fragment of LTL [46] as the underlying formalism.

We leverage free and open-source tools for LTL synthesis and execute the resulting

controller with ROS [365]. For LTL synthesis, we use slugs [118], which computes a symbolic

representation of the controller from the specification. At runtime, slugs provides the next state

for LTLstack [486] to execute.

LTLstack is a tool for mapping the propositions in the LTL formula to ROS nodes and

executing the synthesized controller. At each time step, LTLstack reads information from the

sensor nodes, finds the next state in the controller, and activates behavior nodes.

5.1.2 End-User Programming

End-user programming methods enable those with limited or no programming experience

to write programs, and provide visual, aural, tangible, and tactile interfaces for programming

[24, 28, 81, 198, 289, 342, 403, 404]. A main concept in end-user programming is empowered

computing – allowing users to personalize systems to their needs and preferences [141]. They are

used widely in educational contexts [156, 196, 309, 428], and are used in HRI, home automation,

and healthcare contexts [51,58,65,91,100,152,157,200,300,332,353,398,403]. However, these

methods are typically procedural, so users require a basic understanding of coding constructs.

Thus, creating a correct implementation with the desired behavior is highly dependent on the

user’s coding skills. For simple behaviors (e.g. sequencing actions), users of all levels can

produce programs with minimal instruction. However, increasing complexity of implementation

(i.e. there are conditionals and possibly conflicting behaviors) can lead to incorrect programs

and excessive testing before achieving the desired behavior.
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In robotics, visual programming environments are the most commonly employed end-

user programming technique [8, 91, 100, 110, 151, 152, 200, 285, 300, 332, 354]. For instance,

Choregraphe [356] is used to program robots such as Nao, and TagTrainer [446] is used to

create rehabilitation exercises. Visual programming environments such as these require users

to reason about the implementation of the code - for and while loops, if statements, etc. In

contrast, JESSIE provides a specification interface to the user and automatically generates the

code implementation. Reasoning at the specification level enables users to specify constraints,

such as what the robot should not do, reactions to external events (without worrying about

the code structure to implement them), sequences, conditionals, etc. While anything specified

in JESSIE can be written as code in a visual programming environment, reasoning about the

required behavior rather than the implementation of the behavior lowers the barrier of entry for

end-users, such as therapists, to create custom robot behavior.

While there is recent work on incorporating formal methods (e.g. model checking

for verification, satisfiable modulo theories (SMT) solvers for synthesis) into such languages

[353, 354], the use of reactive synthesis as we employ in this work (i.e. generating a controller

with multiple possible correct executions rather than a trace) has not been demonstrated.

Due to disparate backgrounds of stakeholders in our application domain, including

people with low technology literacy [71, 283], we implement a card-based tangible specification

interface inspired by prior work [24, 45, 81, 196, 198, 289, 309, 403, 404]. Tangible end-user

programming systems typically feature icons on blocks that are strung together in sequence,

similar to what JESSIE supports, but unlike our work, tend to be procedural. While a few tangible

end-user programming approaches have been demonstrated in therapeutic contexts [48, 105], to

our knowledge making control synthesis accessible to this population is unexplored.
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5.2 System Overview

JESSIE enables end-users to specify high-level robot behavior, such as constraints and

reactions, and automatically generates and executes a robot controller using LTLstack. It

comprises ROS nodes representing sensor information and behaviors for a social robot, made

accessible to users through a tangible specification interface. We implemented JESSIE in the

context of cognitive training programmed by neuropsychologists and delivered via a Kuri robot.

5.2.1 Proposed Approach

JESSIE is comprised of LTL synthesis with a tangible specification front-end to enable

novice programmers to leverage control synthesis to program robots via high-level specifications.

These specifications enable programmers to define desired robot behavior without grappling

with unfamiliar code or creating the implementation. Additionally, the synthesis approach is

correct-by-construction, so the generated controller is guaranteed to satisfy the specification,

eliminating “bugs” that may be introduced by novice programmers.

One goal for our specification interface is to clearly convey the possible robot actions

and behaviors, as well as how each one fits in the overall program execution. As people may

not be familiar with the robot’s capabilities or fundamental computer science concepts (e.g.

conditionals), we abstracted these ideas in an intuitive form while still communicating the robot’s

possible behaviors. In neurorehabilitation, the ability to quickly develop unique programs is

essential for clinicians to create customized programs for each individual they work with, each

with distinct needs and preferences.

5.2.2 Computational Back End

5.2.2.1 Specification to Execution Flow

Figure 5.2 summarizes our use of LTL synthesis via a specification interface. First,

the end-user programmer uses our tangible interface (see Section 5.2.4) to define the robot
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Figure 5.2. Overview of JESSIE. Users specify the robot’s activities and behaviors with our
tangible interface. A specification file is then created which includes the desired sensor and
actuator nodes, the robot’s initial conditions, event ordering, and sensor-reaction maps. LTLstack
then synthesizes a controller to execute the associated ROS nodes.

behavior through activities, or activity modules (e.g. play music, play a number game) (see

Section 5.2.2.2). They can also specify constraints for behaviors (e.g. congratulate the user

only when they achieve a high score on a game). Then, JESSIE automatically transforms these

activities and constraints into LTL specifications by reading the identifying QR tags to determine

the order in which the cards were placed. LTLstack [486] then calls slugs [118] and synthesizes

a controller to execute the specified activity nodes and reactive behaviors based on sensor input

at runtime (see Section 5.2.2.3).

5.2.2.2 ROS Nodes

The specifications are transformed into LTL formulas over a set of atomic propositions.

These propositions are grounded to sensor data and robot behaviors, used to execute the controller.

We consider three types of propositions and their grounding as ROS nodes: Activity module

nodes represent behaviors the robot can execute during the session (e.g. give a greeting, practice

number game). Activity completion nodes signal the completion of activity modules. Sensor

nodes are associated with stimuli the robot should respond to (e.g. whether the person touched

the robot).

Activity modules represent a particular action which clinicians can have the robot execute.

They choose the order of activities for interactive sessions (e.g. they can create a program to

first play a number game then congratulate the person with MCI on their performance). These
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modules consist of dialogue, movement, and other actions. For instance, the Greeting module

utilizes Kuri’s ability to move its head, speak, and play sounds to convey excitement about

meeting the person. In the Mindfulness exercise module, Kuri asks the person with MCI to close

their eyes, then talks them through a script to improve self-awareness. When executed, each

activity varies in duration, spanning from between a few seconds to up to ten minutes.

Clinicians can also use activity modules to specify robot reactions to sensor stimuli. For

instance, rather than always congratulating the person with MCI after a game, clinicians may

choose to do so only if they scored above some threshold. We created 14 activity modules,

including cognitive training games and mindfulness exercises developed with input of our

clinical collaborators [203], giving greetings, providing instructions, and delivering cognitive

assessments.

Each activity module node has a corresponding completion node to signal when that

activity has completed. While these nodes are necessary for LTLstack to transition between a

sequence of activities, we automatically create and link one to each activity. Thus, users need

not worry about their implementation or execution.

Sensor nodes enable the robot to perceive its environment. They leverage Kuri’s built-in

sensors to translate environmental data to a higher-level understanding of the person interacting

with it. For instance, the If tactile interaction... node uses Kuri’s capacitive touch sensor to detect

when the person is physically interacting with it.

While we created these nodes specifically for our platform and application domain (see

Section 5.2.3), researchers can create other ROS nodes and cards for their desired application

and platform by following the guide in our supplementary materials. We demonstrated the

reproducibility of our system by implementing ROS nodes for a TurtleBot 2, and synthesizing

and executing programs clinicians created for the Kuri. Actions and stimuli are mapped to the

new platform (e.g. TurtleBot made a sound whereas Kuri nodded its head). These nodes can

be found in our supplemental materials to enable a side-by-side comparison. Note that no other

files were modified to execute our approach on a new platform.
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5.2.2.3 Synthesis and Execution

For control synthesis and execution, we used LTLstack, which consists of ROS pack-

ages for running with correct-by-construction controllers [486]. It takes a mapping between

propositions and ROS nodes and a slugs specification file (LTL formula), and generates and

executes an associated controller by listening to sensor and completion nodes and activating

activity nodes. The specification file encodes the constraints and requirements that should be

satisfied throughout the program’s execution, including environment assumptions and system

guarantees [46, 118].

To our knowledge, JESSIE is the first end-to-end reactive synthesis framework demon-

strated in an HRI context, and the first evaluated by end users. This evaluation informs future

control synthesis specification and framework design (see Section 5.4).

5.2.3 Platform

JESSIE is intended to facilitate reproducibility and systems engineering in HRI, and thus

is intended to be used on any platform and within any context. In this work, we demonstrated

our system on Kuri, a social robot from Mayfield Robotics (see Figure 5.1), in the context of

neurorehabilitation. It contains a multitude of sensors to perceive its environment, including

an RGB-D camera, microphones, and bump and touch sensors. It can communicate through

numerous modalities, such as expressive eyes, a multi-color chest light, speech, motion, and

sound. To minimize the risk of older adults tripping over Kuri, we deploy it as a tabletop robot,

though it is capable of being mobile as well. Kuri runs ROS Indigo on Ubuntu 14.04.

We developed an iPad application (iPad Air, iOS 12.4.1) that connects to Kuri via a

websocket as another means of interaction. Clinicians do not interact directly with the Kuri or

iPad; they control the behavior and display by selecting which activities to execute.
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Figure 5.3. Left: Example cards and descriptions from our tangible specification interface. Blue
cards are activities the robot can do; orange cards represent stimuli the robot can sense and react
to. Right: A program created by a clinician and a partial implementation in LTL. Programmers
lay out activity module cards in the order of execution they desire, in addition to reactions to
stimuli.

5.2.4 Tangible Specification Interface

We created a tangible specification interface as an intuitive way to program social robots

via control synthesis. Users simply input actions and reactions, with no need for extensive

training or external programmers. Thus, clinicians can create custom treatments for people with

MCI via high-level specifications without altering source code.

We designed the interface to be both intuitive and descriptive so it is easy to learn while

encompassing the actions of an interaction. Each card depicts a symbol and short descriptor

(Figure 5.3, left) that represents actions programmers may include, associated with ROS activity

module and sensor nodes described in Section 5.2.2.2. Activity module nodes are blue, and

sensor nodes are orange. The arrow on sensor nodes reflects conditionality, analogous to the

logical “implies” symbol. Each card has a unique marker to facilitate the automatic translation

from cards to specifications to code.

Programmers may place activity cards in any order, from top-to-bottom, left-to-right

(Figure 5.3, right). Sensor cards can be placed anywhere, as they run in parallel with main

activity modules. Users simply place the desired reaction below the sensor card, such that the

arrow points to it. Then, the sensor nodes will allow the robot to react to the associated stimuli

throughout program execution.
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5.3 Evaluation

To evaluate the JESSIE system and determine how to improve it, we conducted a

study with six neuropsychologists interested in using it. We assessed the system’s usability,

specifically for clinicians with no programming experience. We taught participants how to use

our specification interface to create a program, then allowed them to design their own sessions

for people with MCI to complete with Kuri. Our study was approved by the UC San Diego

Institutional Review Board, under protocol number 181341.

After giving informed consent, we introduced participants to Kuri and gave an overview

of the study. As most participants did not have experience with robots, we showed them a video

demonstrating some capabilities they can use in their programs. We then explained how to

use our tangible interface, computer science concepts (e.g. conditionals), and actions Kuri can

perform.

We then began the programming phase. We asked participants to create an interactive

session for a person with MCI they are working with and encouraged them to ask the researcher

for help if needed. We recorded the time it took participants to complete their programs. Then,

they watched Kuri execute their program1. To conclude the session, we conducted an open

interview to receive feedback on our system, including ease of use, how often they would

recommend people interact with it, and other features they would like implemented in the future,

and they completed written questionnaires.

We employed mixed methods approaches in our data collection and analysis. Quantitative

measures included the System Usability Scale (SUS) score [61] which measures perceived usabil-

ity, task completion time, and card usage. Qualitative measures included post-study interviews

and researcher observations of challenges participants faced during the study. Questions we

asked included Would you consider using this kind of system to support your work?, What other

1Automatically generating specifications from the tangible interface was not fully implemented during evaluation,
so a researcher conducted a manual translation. Automatic translation is now complete and available in our open-
source code.
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features would you like to see implemented?, and Did you feel like you could express the robot

behavior you desired with the card-based language? We recorded and transcribed all interviews.

Two researchers employed a grounded theory [73] approach, and individually coded

the audio recordings to find emerging themes through an inductive coding process. They then

compared codes and identified three overarching themes among the participants, specifically:

increased support for personalization (see Section 5.4.1), means to longitudinally vary the robot’s

operating mode and interaction style (see Section 5.4.2), and collaborative goal setting (see

Section 5.4.3).

5.4 Results

We recruited six clinical researcher participants through word of mouth, all of whom

work with people with MCI. These included four neuropsychologists, a psychiatry professor,

and a research coordinator. Five were female and one was male; their ages were 28-49 years old

(mean = 34 years, SD. = 7.67 years). They had between 14 months to 23 years of experience

working with people with cognitive impairments (mean = 6.53 years, SD = 8.31 years), had little

to no general programming experience, and none had ever programmed robots.

All participants were able to successfully program at least one interactive session for

a person with MCI, each of which could run to completion on Kuri. Four participants each

created one program, and two participants each created two programs, yielding a total of eight

programs. These programs can be found in the supplementary materials. On average, participants

spent 2:15m (SD = 1:40m) creating a program. They spent an average of 12:35m (SD = 7:45m)

viewing their programs. They used an average of 8.25 cards (SD = 4.37) with an average of 7.38

activity cards (SD = 3.78) and 0.88 sensor cards (SD = 0.83) in each program. Greeting (8) and

Congratulate (8) cards were used most often, and Tell a joke (1) and Sneeze (0) the least.

On SUS, participants scored JESSIE an average of 90.83 (SD = 9.31) which is above

average compared to other systems [21]. Participants described using the system as, “easy,”
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“simple,” and “straightforward”. One participant commented: “I’ve never interacted with a robot

before, so it’s brand new for me, but it’s easy to use. I thought it was fairly engaging.” Overall, no

participants explicitly expressed frustration or confusion using the system, though they suggested

improvements, discussed below. While several of these suggestions can be easily incorporated

into the JESSIE system by creating more ROS nodes, other articulate future research directions.

5.4.1 Increased Support for Personalization

Personalized sessions are critical for people with MCI because their needs and goals can

change as their condition progresses [79]. Participants described a range of different people with

MCI for whom they imagined using the system, such as people managing comorbidities (e.g.

heart disease) interfering with their planning abilities, and people living alone who often forget

to bring important objects when they went out. Participants suggested three main ways JESSIE

could be extended to enable increased personalization: feedback customization, communication

modalities, and adaptation.

5.4.1.1 Feedback Customization

The frequency and type of feedback the robot provides can greatly impact people’s

engagement and perception of it [79], so providing personalized feedback and encouragement

is imperative. Participants stated that feedback style can significantly impact the person with

MCI’s recollection of different cognitive strategies and how they apply them outside of training.

For example, the robot could vary its feedback depending on the activity type and person’s

performance. One participant explained: “In the word game... if the robot could give [the person

with MCI] feedback... ‘When you use this strategy, you really benefited and your recall is better.’...

For the number game, ... [therapists] will give more trial-by-trial feedback, [so the robot could

give] some indication that [the person with MCI] had gotten one wrong and [needs] to get back

on track.”

In contrast, clinicians may not always want the person to receive immediate feedback. For
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instance, a participant who primarily conducts research assessments stated, “We don’t normally

tell [people with MCI] how they perform, ...during the research tests, [we] don’t want them to

know how they’re doing, because it could discourage [or encourage] them on the next test. ”

5.4.1.2 Communication Modalities

Depending on the person’s sensory abilities and personal preferences, they may require

the robot use and respond to different communication modalities. Participants wanted to be

able to specify which modalities the robot use at a given time or for certain populations. One

participant expressed, “For older participants, it might be nice to have some more verbal cues,

in case they don’t keep up with the robot.” However, they also mentioned that during certain

activities, such as mindfulness where Kuri asks the person to close their eyes, visual output on

the tablet may be distracting. Thus, more control over each modality, such as speech, the tablet,

and movement, would help clinicians tailor each session to individual needs and preferences.

In addition to the tablet, participants discussed other ways people with MCI could

communicate with the robot, both explicitly and implicitly. One commonly requested modality

was speech, especially as an alternative for people with tremors or difficulty spelling. They also

suggested that the robot sense different behaviors about the people with MCI to infer their state,

such as sedentary time, social activity, and mood.

5.4.1.3 Adaptation

It is important for the robot to be able to adapt to the person with MCI, especially as their

preferences, cognitive abilities, and moods may change over time, in order to keep them engaged

and support consistent interaction with the robot. As one participant suggested, “Depending

on a particular person and what they like, their strengths and weaknesses, the robot might say

different things or suggest different strategies.” And another said: “If the participant seems

frustrated, [it could] give them encouragement... if they scored low [it could say], ‘Don’t worry.

Not everyone gets them all right.’ ”

91



Another important aspect of cognitive training is forming habits to routinize tasks [202],

so participants wanted the ability to specify the frequency and schedule of activities. Then, either

the clinician and person with MCI could work together to define a schedule, or the robot could

facilitate scheduling. Participants also wanted to tailor the length and difficulty of activities to

help them better integrate with a person’s schedule, and thus better support adherence.

5.4.2 Varying Robot Status

All participants indicated that being able to change the state of the robot at various points

would be useful. Since MCI can be progressive, people’s needs, goals, and abilities can change

over time. Thus, participants identified three categories for which they might want the robot to

differ its interaction style, discussed below.

5.4.2.1 Staged Robot Deployment Support

Depending on the MCI stage, clinicians may have different goals for the robot, such as

monitoring, education, or intervention delivery. One participant mentioned, “The first work we

do [with people with MCI] is getting their patterns down. Sometimes they can provide you with

what a typical day looks like, but they might be over or underestimating... The first step would be

to use Kuri to play more of an observational role in their home environments.” This can also

help clinicians identify the ideal intervention strategy. “Part of us identifying interventions is,

how can we help individuals remain independent?” Thus initially, the robot could observe the

person with MCI to help clinicians understand their behavioral patterns and establish a baseline

for usual behavior.

Once a baseline is established, the robot could transition to educating the person with

MCI on how to navigate their life with MCI, and support independence. For instance, it can

help people with MCI form habits and stick to a schedule, which our participants noted is an

important step to living with MCI. “Perhaps they’re beginning to form those habits. That’s done

by pairing it with day-to-day activities that have become habitual, so [these] things don’t rely on
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memory as much.” During this stage, it may also be more explicit when communicating the

reason behind each activity. One participant noted that, “I liked when it gave a break, that it also

explained the benefits of taking breaks, because I know that’s part of the [cognitive training].”

As the MCI progresses, the clinician may want to use the robot for further intervention,

and allow the person wiwth MCI to rely on it more. For instance, “ If this can help someone

retain some level of efficiency and functioning, I think that’d be really important. I’m definitely

thinking of those who are on the extreme end of the impairment spectrum.” To help facilitate

these stage transitions, clinicians wanted affordances to manage different programs and settings

on the robot.

5.4.2.2 Active vs. Passive Robot Interaction Style

An open problem in HRI is how active or passive a robot should be during interaction [193,

316]. Our participants also raised this concern, particularly when the robot is interacting

with the person with MCI. Participants noted that at first, the person with MCI may be more

independent, so a passive approach would probably be preferred. They suggested the robot

conduct observations, and inform the person with MCI during their normal interactions if any

different behaviors were observed.

In other cases, the clinician may want the robot to take on a more active role and give the

person with MCI suggestions about how to handle their condition. For instance, a participant

suggested having “moments where we’re checking in and saying, ‘Well, how stressed are you

feeling?’ Or, ‘How is your mood right now and how much have you exercised so far?’ Those

could be moments where we tell them it’s time to go on a walk rather than just monitoring their

behavior.”

Participants also discussed initiative - should the robot initiate interaction, or wait for the

person with MCI to do so? They imagined being able to leverage Kuri’s physical embodiment to

have it prompt people when it is time to begin the session. “But the benefit potentially of having

this kind of thing is that... it could remind the patient to do the [activity].” Another participant
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mentioned that at set times each day, “It would present an option of ‘Would you like to play the

word game now? Yes or no.’ Then provide those word game options.”

Other times, it might make sense for the person to initiate engagement with the robot.

Participants wondered how this might occur given the varying ability levels of people with MCI.

For instance, “I’m wondering [if] somebody who might be not as mobile would maybe need

to wave their hands to get its attention. Or if they’re not even able to do that well, are there

instructions such as saying, ‘Kuri’, or a specific codeword that activates the robot.”

5.4.2.3 Research vs. Intervention Mode Switching

Many of our participants work with people with MCI across both clinical and research

contexts, which each have different goals, and the role of the robot in them may change sig-

nificantly. Thus, clinicians wanted a way to easily create and switch between “modes” on the

robot.

The first main context for which participants imagined using the system was for clinical

intervention. In this context, “We are interested in what sorts of problems [people with MCI]

are having in their daily life. And then the intervention, we use it as sort of like a crutch to help

people who already have some impairment. We can’t cure their impairment. We can teach them

strategies to get by.” In intervention mode, people with MCI would regularly interact with the

robot in their home, as prescribed by the clinician.

5.4.3 Collaborative Goal Setting Support

Participants wanted ways to collaboratively set goals with people with MCI. This is an

important aspect of cognitive training, where clinicians and people with MCI work closely to

identify goals in training, and set actions to address them [17]. Participants identified three types

of relationships where this may occur: the clinician and people with MCI, the robot and people

with MCI, and between clinicians. These activities might occur in clinic or at home, and may be

clinician-led or person with MCI-led.
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5.4.3.1 Clinician - People with MCI

Participants expressed interest in a way of working with people with MCI to create

sessions that support their goals by specifying aspects such as schedules, activities, and reminders.

For instance, one participant mentioned that during a session, they “work with the patient in

developing the [session]. ‘Based on your routine and the time you get up, what time do you think

we should have this thing remind you to take your medications? Or check the mail?” Similarly,

“A clinician and the patient can collaboratively work to decide, ‘We are noticing these are your

patterns. We’ve identified these patterns are certain risk factors or protective factors. Let’s

work towards helping Kuri to be that point of contact when you’re at home. How can we set

up these cards to then help nip certain behaviors in the bud before they turn a little bit more

worrisome?’”

Alternatively, the clinicians could also specify higher-level goals for or with people with

MCI, then allow them more freedom to choose specific activities. One participant suggested,

“They could pick, ‘Today I want to do a [mindfulness exercise].’ Or I could pick, ‘Today I want

them to [practice mindfulness].’ Or focus, attention, exercise, [etc.] ” Another participant

stated, “I think there should be several standard things that could be informed by what we know

of the patient population that this is being targeted towards. Then certain customizable options

that talk about how certain instructions can be changed or activities can be changed but the

underlying programming wouldn’t change.” Then, the person could choose a specific activity

that exercises the broader area each time they interact with the robot.

5.4.3.2 People with MCI - Robot

Participants discussed how the person with MCI might work with the robot to develop

their goals and cater to their preferences. As the clinician will usually not be with the person

with MCI when they interact with the robot, people with MCI need ways to work directly with

the robot to develop and assess their goals. For instance, one participant mentioned, “Kuri can

[...] recognize those patterns together and intervene in those moments of providing that feedback
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to that person to be able to help them assess points to improve.”

However, they noted that the card-based specification interface might not be the best

means of interaction between the person and the robot directly, particularly those who are not

familiar with technology. While participants believed they might be able to create an activity

using the cards, they also mentioned that they might have trouble taking a picture of the program

for the robot to process and execute. Instead, they suggested allowing the person to interact with

the robot primarily directly through the tablet or verbally.

5.4.3.3 Clinician - Clinician

People with MCI may be working with multiple healthcare providers in addition to a

neuropsychologist, such as their primary care physician. Our participants were mindful of this,

and suggested that our system allow for multiple providers to program the robot. “I’m not a

primary care physician, so I don’t know what that person might need in terms of exercise, or

what their physical limitations might be. I’m not allowed to prescribe an hour of exercise a day.

So there might be [...] a way for multiple providers to program [the robot].”

5.5 Discussion

By making the benefits of control synthesis accessible, JESSIE enabled clinicians, who

had no prior experience programming robots, to program cognitive therapy sessions with per-

sonalized activities, reactions, and constraints after little time, training, and without errors. Our

observations and assessments of participants’ experience with JESSIE suggest that our system

enables novice programmers to leverage control synthesis techniques to create complex, interac-

tive sessions on a social robot, which would take more time to write and test with procedural

programming languages.

Our evaluation using Kuri to execute programs written by clinicians, and the subsequent

replication and execution of these programs on a TurtleBot reflects the reproducibility and

extensibility of our approach to numerous robot platforms. Researchers can modify our provided
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ROS nodes to replicate our behaviors on different platforms, or create entirely new behaviors to

leverage our approach for many different applications, such as in manufacturing or entertainment.

The approach presented in this chapter will expand the accessibility of control synthesis for

social robots for people of all programming skill levels across many domains.

5.5.1 Key HRI Considerations

In our discussions, participants raised some crucial HRI concepts that have yet to be

thoroughly explored, which we discuss below.

5.5.1.1 Robot Roles

Since a person’s needs and goals may change as the MCI progresses, participants imag-

ined the role of the robot would change accordingly. For instance, they envisioned the robot

would take a passive role during the beginning stages of the condition, such as monitoring the

person’s baseline behavior. As their condition progresses and they need to rely more on the robot,

it could take a more active role in educating them about different cognitive strategies, completing

interactive sessions, and serving as a virtual assistant. The ability to fulfill different roles is a

fundamental aspect of adapting to the individual’s needs and preferences. This capability to shift

between the foreground and background when interacting with the person with MCI aligns with

other HRI research.

Participants also discussed how people with MCI may see the robot as a “companion”

as they complete the cognitive training activities. This raises the question of the robot’s role

in the relationship between the clinician and person with MCI. Whether the robot should be

a companion, serve as a point of connection between them, or act as a personal assistant,

programming languages and robotic systems need a way for programmers to specify and explore

this concept of robot role.

Participants suggested ways the person with MCI might initiate the interaction with

the robot as well as how the robot could initiate the interaction. As suggested by other HRI
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research [3, 316], the initiating party and methodology depends heavily on factors such as the

robot’s role. This work helps to inform the problem of initiative, particularly in longitudinal HRI

where users interact with the robot over long periods of time. Additionally, it is currently unclear

how we might design a language to reflect this sort of robot behavior.

5.5.1.2 Timing

The concept of timing is an important aspect of social interaction and robotics research.

Participants identified multiple levels of timing to specify for different people and purposes,

such as scheduling trial-by-trial feedback, feedback after numerous sessions, and setting the

duration of different activities. Thus, our system may need to integrate complex representations

of timing to give programmers more control over the timing of activities. However, the specifics

of how these details can be both implemented within LTLStack and reflected in the tangible

specification interface requires further research, the results of which will improve the accessibility

and expressivity of end-to-end systems for social robots.

5.5.1.3 Multi-party programming and longitudinal HRI

In addition to supporting a single novice user programming a robot to perform a task in

longitudinal HRI settings, our study illustrated that multiple stakeholders with different goals

and backgrounds may need to program the robot at various points throughout its deployment,

including neuropsychologsts, people with MCI, family members, and other clinicians. This

raises a series of interesting questions about how to support these differing needs within a system

like JESSIE, particularly with users (people with MCI) who may be experiencing rapid changes

to their brains in ways where it is difficult for others to keep up.

5.5.1.4 Cultural Considerations

Cultural background plays a key role in determining an individual’s preferences, such as

the robot’s communication style [268,477]. For instance, in Western culture, the robot may adopt

a more direct, proscriptive communication style. Contrastly in Finland, where people tend to
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have more reserved communication styles [296], people may prefer a more passive robot. Even

non-verbal aspects of communication (e.g. eye contact) may impact a person’s interaction with

a robot. This can significantly impact adherence to treatment plans [186] and robot adoption.

More research is needed to explore how to support this variablity.

5.5.1.5 Ethical Considerations

As we designed this system to support people with MCI, a vulnerable population, there

were several ethical considerations that arose in our discussions with participants. Many partici-

pants wanted the robot to monitor people with MCI and send reports back to the clinician. They

imagined the robot could monitor daily patterns to establish baselines and identify abnormal

behavior, as well as to produce compliance reports about treatment adherence. While this may

have clinical benefits, it raises privacy concerns, particularly for people whose MCI is more

advanced or who may have lower levels of technological literacy, which impacts informed

consent [177, 316, 375, 467, 479]. This requires thoughtful consideration and additional research

to identify how to best balance these potentially conflicting constraints both with JESSIE and

more broadly.

5.5.2 Limitations and Future Work

There are some limitations of this work that must be considered researchers build on our

system. First, we only tested with our expected end-user, neuropsychologists. While their input

was invaluable for our particular system and context, other end-users may want other features

implemented for their applications, and constraints unique to their domain. Additionally, we

pre-programmed activity module and sensor nodes to represent behavior specific to cognitive

training. To alter existing behaviors or create additional ones, one needs some familiarity with

ROS and Python or C++. Nevertheless, JESSIE is a simple and accessible means for novice

programmers to specify high-level robot behavior for people with MCI.

As we continue to research this area, we plan to continue an iterative design process with
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stakeholders, including usability improvements, longitudinal deployments, and evaluations with

people with MCI.

5.6 Chapter Summary

In this chapter, we presented JESSIE, an end-to-end system that affords control synthesis

techniques to enable novice programmers to generate high-level behaviors for a social robot.

Robots have shown great potential to support people with MCI [98, 350], and this system

will extend the scalability, accessibility, and personalization of social robots. Additionally,

this chapter presents the first evaluation by possible end-users of a system whose back-end

employs control synthesis layered with a tangible front-end. The evaluation and feedback from

participants shows that the system is easy to use and articulates future research challenges the

community should address. As an open-source, intuitive way of utilizing control synthesis, and

artifact to support reproducibility, this work will enable the robotics community to leverage our

approach to customize robot behavior, adapt to end-user preferences, and promote longitudinal

HRI within their own application domains. We hope that this work inspires researchers to make

robot programming more accessible and collaborative, expanding the potential for robots to

support people throughout the HRI community. This work served as a platform for my later work,

which explores how a home robot can deliver and support a longitudinal cognitive intervention

in the home.
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Chapter 6

HRI Design Patterns for Translational
Science

The COVID-19 pandemic has illustrated great health disparities worldwide, particularly

for minoritized populations, who lack access to quality healthcare services [187, 195, 295, 367,

461]. While telemedical interventions have proliferated, they still require one-on-one clinician

time (which has become even further reduced during the pandemic) and technology knowhow

on the part of the clinician and user. Thus, many robotics researchers are motivated to explore

how to extend clinic delivered interventions longitudinally into the home.

Researchers have explored long-term robot-delivered interventions at home for children

to support social and academic learning [83, 221, 276, 312, 378, 394, 429], and young adults to

support mental health [38, 43, 224]. Others have explored longitudinal, clinic or nursing-home

based interventions for adults with social robots, e.g., to provide upper limb rehabilitation [128],

music [439, 463] and behavioral therapy [75, 387], and assistance to clinicians [242]. These

interventions illustrate the promise of using robots long term in real world contexts. However,

for older adults with cognitive impairments (such as MCI) undergoing neurorehabilitation, there

is less guidance on translating provider-delivered interventions in clinic to robot-delivered ones

at home.

There are considerable barriers to developing robots for this purpose. First, roboticists

typically lack the clinical expertise to safely and effectively translate interventions to a robot, and
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it can be challenging to locate clinical collaborators to ensure an intervention’s success. Similarly,

clinicians typically lack technology expertise to fully understand a robot’s capabilities and

limitations, and are rarely trained in interaction design, limiting their ability to co-design robot

behaviors, roles, and functionalities. There are also well-known research-to-practice gaps when

clinicians attempt to implement digital technology interventions without deep understanding

of their contextualization in a user’s life [160, 275]. These barriers can result in interventions

ineffective on an intended population, and for some vulnerable individuals, such as people with

dementia, they can be harmful [37, 244]. Thus, both HRI researchers and clinicians would

benefit greatly from practical methods and examples on how to design robot-delivered home

interventions.

Our work focuses on designing home-based, robot-delivered interventions for people

with MCI. These interventions strengthen the memory and attention skills of people with

MCI via cognitive stimulation and training [202]. Many researchers have delivered these

interventions via computer programs [26, 132, 411], and explored how to improve engagement

and motivation [111, 158, 294, 317, 392].

Physically embodied robots offer great potential to support engagement [106]. However,

there is a lack of common techniques to support users and sustain engagement in longitudinal

interventions delivered by a CAR, particularly without supervision from a clinician or researcher.

Another key challenge is transfer - can the person with MCI apply these skills broadly to

their real life, outside the context of the computer-delivered intervention [163,237]. Variation

in how different populations (e.g. children vs. adults, people with cognitive vs. physical

impairments) and individual users might engage with their respective interventions can make it

difficult to ensure that they are effective when delivered by a CAR [127, 394]. Thus, establishing

strategies for translating these interventions to a robot is crucial to ensuring that they are adopted

by both clinicians and users, and the HRI community needs more systematic approaches to

support this process.

In this chapter, we report on how neuropsychologists envision translating CCT to a CAR,
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and features the robot intervention needs to be successful, such as supporting goal setting, content

personalization, encouragement for real-world transfer, and ways to longitudinally maintain

engagement. We also conducted interviews with people with MCI, the end users of the robot-

delivered intervention, which revealed how they envision using the CAR long term at home.

This work establishes the foundations of translating neuropsychologist-delivered, clinic-based

cognitive interventions to robot-delivered, home-based interventions, and provides a framework

to researchers to support this process.

The contributions of this work are as follows. First, we provide insights for translating

neurorehabilitation interventions to CARs in order to contextualize them to the lives of people

with MCI. Second, we present new interaction design patterns for robot-delivered neuroreha-

bilitation interventions to maintain longitudinal engagement and intervention efficacy. Finally,

we propose design considerations for developing robots for people with MCI, a population with

unique needs and abilities distinct from those of people with dementia and older adults. This

work will guide roboticists through translating clinical interventions to robots, support their

longitudinal efficacy and engagement, and ultimately extend the accessibility of longitudinal

health interventions for people with cognitive impairments.

6.1 Background

6.1.1 Design patterns in HRI

Design patterns are repeatable, general solutions for a specific design problem [351].

Software design patterns have been created for clinical contexts, such as to support system

explainability [328, 399] or personalized care [472]. In HRI, design patterns describe social and

physical interactions between humans and robots which can be used for interaction design. These

patterns may be designed by observing human-human interactions or exploring how people

expect robots to behave.

Prior work has defined patterns for various HRI applications, including modeling inter-
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actions and interactive storytelling [232, 279, 345, 351, 391]. For instance, Ligthart et al. [279]

proposed design patterns to encourage engagement and agency of children in interactive story-

telling (e.g. Co-reenactment: the robot animates the story and invites the child to join). These

patterns are tools the robot can use to support engagement.

To our knowledge, there are no HRI design patterns for translational science, particularly

to support adults with cognitive impairments during clinical interventions at home. Methods

and examples based in current clinical practice are essential to translating these interventions to

CARs effectively. We propose design patterns to address this in Section 6.4.

6.2 Methodology

Given our robot prototypes (see Chapter 4), our research has reached the point where we

can shift our focus from functionality to an in-depth understanding of how to contextualize the

CCT intervention into the homes and lives of people with MCI. We engaged in a collaborative

design research process [42] with neuropsychologists and people with MCI to explore how to

best translate clinician-delivered CCT into a robot-delivered intervention at home.

Using our prototypes as a design probe, we conducted interviews with our two key

stakeholders: clinical researchers and people with MCI. We explored how clinical participants

deliver CCT and how they envision a CAR doing so. They were familiar with CCT, and could

thus share key considerations for delivering it. For people with MCI, we focused on their use of

technology, how they envision using a robot for support in an intervention, and initial impressions

of our robot prototypes. Our study was approved by the UC San Diego IRB, under protocol

number 800004. All participants gave informed consent to participate in the study, and agreed to

be recorded.

6.2.1 Participants

Clinical participants: We recruited six clinical participants via word of mouth, all of

whom work closely with and deliver CCT to people with MCI. They included four neuropsy-
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chologists, a psychiatry faculty member, and a research coordinator. All were female and work

at the same location. Their ages ranged from 24-51 years (mean = 34.83, SD = 9.20). They had

between 18 months and 25 years of experience working with people with cognitive impairments

(mean = 6.50, SD = 9.18).

People with MCI: We recruited three people with MCI via word of mouth. All

completed CCT in a clinic-based setting. All were male1, and their ages were 73 - 77 years old

(mean = 74.33, SD = 2.31). They reported moderate familiarity with technology.

6.2.2 Procedure

Clinical participants: We explored participants’ experiences with CCT and their per-

ception of using CARs to deliver it at home. We used the same interview script to guide

conversation with each participant, but adjusted the order and questions based on their responses.

We conducted all interviews virtually to minimize risk from the pandemic.

First, we conducted individual semi-structured interviews to explore their experiences

delivering CCT to people with MCI. We first gave participants an overview of the study, and

asked about how they interact with people with MCI in clinic. We also explored the unique space

of designing for people with MCI, population-specific considerations, and ethical considerations.

We did not show participants our robot prototypes during this phase to avoid biasing their

responses, as the focus was on clinicians’ general experiences working with people with MCI.

Following this, we conducted focus groups to understand how robots can longitudinally

support people with MCI during CCT at home. Each consisted of two clinical participants and

three members of our team. We explored how people with MCI and a robot might interact during

training, how to implement intervention strategies on a CAR, and obtained feedback on our

prototypes.

1While we ideally would have more gender diversity in both participant groups, our recruitment strategy was
limited due to gender skews in our local population of CCT practitioners and recipients of CCT interventions. We
recruited people with MCI from a larger study testing MCI treatments, whose population is all veterans. In the US,
veterans are approximately 90% male.
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Figure 6.1. Storyboards which demonstrate potential interactions with a robot during CCT.
These activities were drawn from an existing CCT intervention [204] and aim to help users
practice using visual imagery to improve memory. We showed these to clinicians to obtain
feedback on their translation to the robot.

We showed video demonstrations of our existing CCT activities on our robot prototypes,

and storyboards of potential new activities to practice the strategies (see Figure 6.1). We discussed

roles a robot might play while longitudinally delivering CCT at home and explored how people

with MCI might integrate a CAR into their lives, such as for people with low technology literacy.

People with MCI: We conducted individual, semi-structured interviews with people

with MCI. We used a script to guide conversation, but adjusted the questions and their order

based on the responses.

These interviews aimed to understand the context in which people with MCI might use

a robot to support CCT. We asked about their daily lives, including their routines, challenges,

and current use of technology to understand their context. Before moving on to the rest of the

interview, we offered a short break as people with MCI may have difficulty focusing for extended

periods.

We then explored how they imagine using a CAR for support in an intervention. As

people with MCI may not be familiar with robots, we showed examples of social robots in

the healthcare space, including Jibo, Mabu, and Pepper, and a demonstration of our prototypes

leading CCT activities. These videos helped participants imagine how social robots could

support their daily life and health. Then, we asked how they imagined incorporating the robot

into their lives (e.g. when and where they would interact with it), how they envisioned using it to
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support CCT (e.g. cognitive areas to focus on), and additional capabilities they might want (e.g.

reminders).

6.2.3 Analysis

We recorded and transcribed all interviews and focus groups. Three researchers each

analyzed all the data using a grounded theory approach [73], enabling us to analyze for con-

siderations that participants found important, rather than potentially interpreting them through

preconceived ideas of what we thought was important. We individually coded the transcripts

through an inductive coding process [449] to identify emerging themes before discussing the

final themes together. Any inconsistencies were resolved through discussion.

6.3 Findings

6.3.1 Insights for translating a clinical intervention to a robot

Participants discussed several themes regarding how to implement CCT on a CAR. These

themes included working together with people with MCI to identify their intervention goals,

personalizing intervention content, encouraging the use of intervention concepts in the real world,

providing feedback to people with MCI, and recognizing and maintaining engagement.

6.3.1.1 Help people with MCI identify intervention goals

Working with people to establish goals is essential for improving motivation to engage

in an intervention and increasing its efficacy [17]. People with MCI may not explicitly report

impairment, yet may show awareness of dysfunction when confronted with difficult tasks [473].

The people with MCI in our study may have anosognosia, or imperception of disease [308]. As

one person with MCI expressed, “I don’t have [cognitive] issues. I don’t need [reminders] at

this stage in my life. Because my life is simple, the methods I’m using now fully compensate [for

my memory].” Thus, helping people with MCI set goals that reflect their needs can ensure they

benefit from the intervention. Clinicians may help people with MCI identify initial goals, and
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during the intervention, the robot can suggest areas of improvement or update goals with people

with MCI.

The robot can prompt people with guiding questions to help them form and evaluate their

solution. One clinician suggested asking questions such as, “ ‘Do you think that the [cognitive]

skill would be helpful to you? How likely is it that the skill will help you meet your goals?’

” These questions allow people to consider why the goal is appropriate, which can increase

long-term motivation, commitment, and belief that it is achievable.

A robot can then validate the solution and/or offer alternatives. Validating a person’s ideas

can improve motivation and self-confidence, but sometimes people may propose unrealistic goals.

One clinician explained, “It might be something like, ‘I want to remember all my appointments

for next week,’ but [the person is] cognitively not able to do that. In which case, we might try to

modify the goal.” The robot can help guide people to an attainable goal, thus uniting clinical

expertise with the person’s own knowledge of what is realistic for them.

Participants with MCI imagined that using the robot could be an interesting way to

achieve goals they are unmotivated to work on. One person with MCI explained, “I’ve been

trying to learn Spanish for a long time, so [practicing with the robot] could definitely help.”

Another stated, “I need to take on more challenges. That’s where I could see a robot being

beneficial.”

6.3.1.2 Personalization of intervention content

CARs can personalize the intervention to a person’s goals, which is crucial, as a person’s

needs may vary with the severity of their impairment, progress in the intervention, or other

circumstances [79].

People with MCI have existing routines a robot should consider to improve adoption

and engagement. One person with MCI stated, “I don’t need more creative avenues because

I usually find a way to eat up my day. I could make room for [a robot] in some capacity, but

how much? I’m not sure.” Thus, finding opportunities to incorporate the robot in their routine is
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essential to increasing its use. Another person with MCI imagined having “the robot sit in as

another person in a [multiplayer] game.”

Robots can also ask about their concerns to personalize intervention content. One

clinician suggested, “[A robot] might ask if sleep is a problem. And if it is, then [it] launches

that content. That might help them work on it if it needs to be fixed, or not stress about it if it’s

fine.” People may have different needs and goals, so asking them what content they want to

review can help them focus on activities that suit them.

Clinicians also emphasized letting users choose the content they focus on. As one

clinician explained, “The robot can say, ‘You indicated that you want to try [these strategies].

Which one do you want to try today?’ ”

In longitudinal interventions, a person’s cognitive abilities can change over time. The

goals and content of CCT, as well as the robot’s behavior and role, must also adapt to sustain

engagement. Over time, a robot may need to modify CCT content to avoid monotonous and

predictable sessions. As one participant with MCI said about a 6-week mindfulness intervention,

“At least 30 - 45 minutes, [the breathing exercise goes] through your whole body, over and over

every week. That got boring.”

6.3.1.3 Encouraging real-world use of intervention concepts

One major benefit to using robots to deliver clinical interventions in the home is their

potential to encourage and facilitate intervention practice in a person’s daily life. As one clinician

explained, “If [people] don’t practice [the skills] in the real world, they’re probably not going to

get much better at them.” Clinicians suggested that a CAR can help people learn and practice the

intervention content with examples from their lives, such as with their grocery list. “[The robot

could] say, ‘How might you remember your grocery list for this week?’ They’re practicing their

skills, but this is also the list they need to remember when they’re going to the store.”

Furthermore, a CAR can help people practice content by relating it to a person’s personal

life, making it more actionable and concrete. Clinicians suggested that people with MCI identify

110



opportunities to apply cognitive strategies to events outside of the home. “Having [people]

identify an opportunity to [practice], like, ‘I’m going to church and am going to be meeting

new people. What strategies am I going to use [to remember their names]?’ ” Clinicians also

proposed that a robot can help people recognize steps they can take in their daily life to support

their goals, such as to improve sleep.

Clinicians also mentioned the importance of checking in and asking people to reflect on

their experiences. “If [people with MCI] identify a time and setting to try [a strategy], the robot

can ask how it went so there’s some accountability. Like, ‘Hey, did you try learning some new

names at this event you went to? Do you feel like you should practice that [strategy] again? Do

you feel like you have it?’ ” Asking people with MCI to reflect on their experience can help

motivate them to continue applying the content in the future, while identifying what works best.

Using the intervention content in the real world may also give people the opportunity

to involve family and/or care partners which can improve motivation. Participants with MCI

expressed interest in using the robot with friends and family, such as by practicing the intervention

together. One participant stated, “I like to get [my wife] involved [with training]. I think [I

could] engage better with the [robot] and we can learn together.”

6.3.1.4 Providing feedback to people with MCI

Clinicians identified feedback as important for increasing engagement and understanding

of content. Thus, they provided a few suggestions for how a robot can give feedback to people,

including focusing on effort over performance and showing progress over time.

Clinicians emphasized that robots should reward people with MCI for the effort they give,

rather than their performance on a task. “I might give rewards for consistent practice, like the

amount of time they engage with the robot or complete exercises.” They expressed that rewarding

people for interacting with the robot consistently can help improve their motivation to engage

with the intervention. In addition, this behavior may be more attainable and fair, as “it wouldn’t

be fair to those who are more cognitively impaired that they are not doing well.”
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Table 6.1. Design considerations for cognitively assistive robots for people with MCI.

Consideration Description

Simplicity of content Information should be presented in a clear and concise manner to help
people with MCI maintain focus.

Visual aids Visual aids may convey information more effectively and can help
people with MCI focus on important points.

Organization Organizing important information in a logical manner can help people
with MCI focus on those points.

Repetition Repeating information can help people with MCI review it if they do
not remember or understand it the first time.

Minimize distractions Minimizing distractions from the robot and the environment can help
people with MCI focus.

C
og

ni
tiv

e

Take breaks Taking breaks can give people with MCI an opportunity to process the
information or clear their minds.

Adjustable physical settings Adjusting these attributes can improve communication with people
with physical or sensory impairment.

Physical size The robot should be small enough to move between rooms easily, but
large enough to not get lost.Ph

ys
ic

al

Straightforward physical setup Minimizing the area that a person with MCI is expected to pay attention
to can help reduce distraction.

Clinicians also wanted to track a person’s progress over time to show progress toward

goals. This could be a relatively short-term comparison, such as informing people with MCI of

improvement from their last session, or long term, such as throughout the intervention. These

longitudinal statistics can help both people with MCI and clinicians keep track of their progress.

6.3.1.5 Strategies for recognizing and maintaining engagement

Maintaining engagement throughout an intervention is vital to improving its efficacy

and retention of material [202]. Some clinical assessments can be long and tedious, so people

may become frustrated or bored. Thus, clinicians shared ways they recognize and maintain

engagement with people with MCI, as well as suggestions for how a robot can do so in an

intervention.

For example, clinicians observe a person with MCI’s speech and eye contact to identify

engagement and disengagement. Active participation such as “asking clarifying questions,” or
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“coming up with ideas or goals” indicates engagement. In addition, clinicians suggested that

a robot could identify engagement based on how long and often a person interacts with it. In

contrast, people with MCI “will vocalize that they don’t want to do [a task] anymore,” or “close

or roll their eyes” when disengaged.

Taking breaks was a common way to maintain engagement, as it “works for most people.”

Breaks allow people to rest and potentially address the cause of distraction (e.g. taking a

bathroom break, answering a call). Thus, it is important that a person “can take their own breaks

and initiate their own breaks if they want to” during a session with a robot, and that the robot

“checks in and sees when they need a break.”

Clinicians also use physical cues to draw attention and convey information. One clinician

gave the example of raising her hand in a “stop” sign to convey that a person should slow down

and focus on what she is saying. They suggest robots could similarly use cues to communicate

with users.

Clinicians also use verbal cues, such as reminders or encouragement. For instance,

a robot could cue people to continue if they get distracted. They also suggested providing

encouragement, particularly if users get frustrated. Encouraging phrases they suggested included,

“Give it your best guess,” “Thank you for hanging in there,” “You’re almost done.” Reminding

people of intervention benefits can also motivate people with MCI to continue, even if they

do not yet see improvement. One clinician recommended “making [people] cognizant of why

they’re seeking treatment and what benefits they hope to see.”

6.3.2 Design considerations for people with MCI

Clinical participants and people with MCI discussed key considerations to improve

accessibility and usability of CARs for people with MCI. These included ways to improve both

the physical and cognitive accessibility of robots for this population.
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6.3.2.1 Making robots physically accessible to people with MCI

Clinicians were mindful that most people with MCI are older adults who may also have

physical or sensory disabilities. Thus, they suggested spacing tablet buttons apart to avoid

“tapping the wrong [one],” such as if someone has tremors. In addition, “Visuals must be big,

high contrast, clear, and not too busy,” and “speech must be clear and understandable.” They

also warned, “[loud, slow speech] might seem demeaning to someone without hearing loss or

impaired mobility,” so they proposed that people could adjust these attributes to their needs.

People with MCI may have low technology literacy, so a robot using familiar commu-

nication modalities, such as speech, can improve its usability [166]. These are easier to learn

and may be more reliable. One person with MCI expressed, “I definitely have a hesitancy about

[my] ability to learn [new technology], getting it to work correctly, and figuring out why it’s not

working.”

The physical size of a robot is also important to consider. People may need to move it

between rooms (e.g. if one room is too distracting because of a TV). Thus, clinicians suggested

it be relatively small and lightweight “to make it easier... to transfer it” if necessary. However,

people with MCI often misplace personal items, and “[too small a device] could get lost.”

The physical setup of a robot can also help people with MCI focus. Narrowing the area

of interest, such as by “having [the robot and tablet] in one straight shot” can promote a focused

presentation. Additionally, as people with MCI cited technology as a challenge they face, a

simple setup with few components can help reduce risk of error and increase usability [267].

6.3.2.2 Making robots cognitively accessible to people with MCI

Minimizing cognitive demand can help reduce cognitive fatigue.

Simple and succinct content is more digestible so people do not need to remember as

much at once. “If [the material] is too complicated, [the intervention] is going to be difficult

because they’ll feel like they’re not able to master it.” Thus, a robot needs to be concise to help

people with MCI maintain focus. “The longer [people with MCI] are expected to follow along,
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Table 6.2. Interaction design patterns for translational science to support clinical interventions
delivered via a CAR at home.

Design Pattern Examples

Promote engagement Robots can offer breaks after long tasks, or use physical or verbal cues to sustain
engagement.

Connect the intervention to
the real world

Robots can use features from the real world (e.g. grocery lists), and encourage
users to practice intervention content in their lives and with other people.

Relate the intervention to a
user’s interests

Robots can be incorporated into a person’s existing routines, or use books or
games that a person is familiar with to practice intervention strategies.

Reward perseverance over
performance

A robot can reward users for engaging with it a certain number of times, main-
taining a “streak,” or for trying new intervention content.

Obtain feedback from users Robots can obtain implicit feedback (e.g. performance), or ask for explicit
feedback on preferences, etc.

Goal setting Robots can ask users about any concerns and help identify solutions.

Reminders Robots can verbally cue users to engage, or remind them of intervention goals.

Personalization Robots can adjust activity difficulty based on performance, or communication
modality to suit user abilities.

the easier it is to lose their attention.” In addition, grouping important points together makes

them easier to keep track of.

Visual aids can also help convey information without overwhelming people with MCI.

In general, “icons are more accessible than text” if people have difficulty reading the font or

understanding the text itself. Clinicians also explained, “the visual component really clues you

in to the main points.” As such, a robot might use gestures or facial cues to help emphasize

important ideas.

Repetition can help people with MCI review material if they do not remember or under-

stand it at first. Clinicians suggested asking if people would like anything repeated, such as after

giving instructions, or reiterating important points during a session.

Furthermore, minimizing distractions from the robot and the environment can help people

with MCI focus. Clinicians suggested that a robot’s behavior could be minimal while providing

information, “because that might break their train of thought,” but it could be more engaging

at other points. In addition, a robot could encourage people with MCI to engage in a “quiet

environment where they can pay attention.” One person with MCI envisioned using the robot “in
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my computer room. That would be a quiet place [where I] can close the door and separate the

noise.”

Breaks can also improve focus and engagement, such as by giving people time to process

information or clear their minds, making the interaction more enjoyable and manageable.

6.4 Design patterns for translational science to support
robot-delivered clinical interventions

We propose interaction design patterns for translating clinical interventions to CARs to

maintain longitudinal engagement and maximize efficacy (see Table 6.2). They are intentionally

broad so they can be applied to other contexts. They can be combined to be more complex, e.g.

adjusting goals based on user feedback. For each pattern, we describe what it is, how human

clinicians use it, and example robot implementations.

Promoting engagement is essential to improving adherence to an intervention over

weeks or months. Clinicians use strategies including humor, showing empathy for a person’s

situation, redirecting conversation back to the intervention, or taking a break to help keep people

motivated. A CAR can employ similar strategies, such as taking a break after long or challenging

tasks, to help reduce cognitive load and minimize frustration. CARs can also use physical (e.g.

gestures) or verbal cues (e.g. encouragement, sounds) to sustain engagement.

Generally, an intervention aims to enact change in a person’s life. Connecting the

intervention to the real world is essential to improving a person’s ability to transfer the content.

A clinician might ask a person to reflect on opportunities where they can practice a cognitive

strategy. Similarly, a CAR could help users practice strategies with real world examples, such

as asking them to recall their grocery list, or helping users identify opportunities to practice

strategies in their life.

Relatedly, relating an intervention to a person’s interests can make it more enjoyable.

Clinicians might encourage people to consider scenarios that are meaningful to them during an
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intervention, such as family or music. A CAR might adjust the activities themselves, such as

asking users to recall details about a book they are reading, or using games like chess to help

users practice intervention skills. There may also be opportunities to incorporate the robot in

their existing routines, such as engaging in conversation while they watch the news.

A person’s progress in an intervention may not be linear, and it may be demotivating

if they are not progressing as much as they would like. Thus, it is important to reward

perseverance over performance. When delivering cognitive assessments, clinicians may not

tell people their performance to avoid influencing future performance. A CAR may reward users

for engaging with the intervention a certain number of times, or for trying new strategies to keep

them motivated.

To ensure the intervention is interesting, effective, and applicable to a person’s life,

it is important to obtain feedback from users. For instance, a clinician might ask people

whether they would like to take a break to keep them focused on the intervention, or which

cognitive strategies work best for them in order to evaluate their use of the strategies in their

lives. Similarly, a CAR can ask users for feedback in order to personalize the intervention to

their goals or preferences, or ask users to reflect on their experiences using a strategy.

Encouraging users to set intervention goals can sustain motivation and help them be

more aware of its impacts. Clinicians often work closely with people with MCI to set achievable

goals. CARs can also facilitate this by asking users to reflect on their concerns and helping them

identify potential solutions.

Reminding people to engage in an intervention can also improve engagement. Clinicians

might remind their clients of upcoming appointments. Similarly, a CAR could verbally ask

people to complete a session together or cue users to continue a session. It might also remind

people with MCI of their goals and benefits they hope to see to help keep them motivated.

Personalization can help ensure the intervention and robot behavior are appropriate for

a person’s preferences, goals, and abilities. A clinician might adjust the intervention based on a

person’s abilities. A CAR could also adjust the difficulty of activities based on their performance,
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or modify its communication modalities to suit a person’s abilities.

6.5 Discussion

6.5.1 Translating clinical interventions to robots

6.5.1.1 Opportunities to explore design patterns in other HRI contexts

While developed for home-based CCT for people with MCI, our proposed design patterns

are also relevant to other HRI applications. Many robotic interventions emphasize connecting

skills to the real world, e.g., including care partners in interventions with autistic children

[378, 394], encouraging students to identify personal strengths to support mental health [224], or

conducting physical rehabilitation with everyday items [126]. This can help improve transfer of

skills to a user’s real life.

To our knowledge, no robots that deliver longitudinal interventions reward perseverance

over performance. Users may become discouraged and stop using the robot if they perform

poorly [83], whereas they may stay engaged if rewarded perseverance, e.g. maintaining a

“streak” [310]. Rewarding effort, rather than objective performance, may improve motivation

and engagement, especially in longitudinal applications.

More research is also needed on collaborative goal setting with robots, which clinicians

cited as vital to increasing motivation in interventions. Identifying goals can also help focus an

intervention, such as by focusing on strength vs. flexibility exercises in post-stroke rehabilitation.

Clinicians or care partners could also help with goal setting, such as for children who might not

understand what goals are realistic.

6.5.1.2 Challenges to translating clinical interventions to robots

Design tensions arose from our discussions with clinicians and people with MCI. For

instance, participants with MCI thought a CAR would be most useful for people with severe

cognitive impairment and were therefore unsure of how often they would use it. In contrast,

clinicians envisioned people with MCI engaging with it regularly, perhaps multiple times a week.

118



Clinicians also envisioned the robot primarily delivering CCT, whereas people with MCI were

excited by other potential functions (e.g. game partner). Clinicians were concerned that robot

behaviors (e.g. lights, movement) could distract people with MCI, but no participant with MCI

indicated this. Continued research on balancing these tensions is essential to improving the

efficacy of these interventions.

Clinicians emphasized the importance of people with MCI using the intervention content

in real life, but a person’s progress in a cognitive intervention is often more ambiguous to measure

than in contexts such as physical rehabilitation. A robot cannot necessarily observe a person’s

everyday behavior to measure progress. Instead, it may need to infer progress from activities

completed together, or feedback from the user or family members [394, 429]. Other sensors

could be used to observe a person and gauge progress, but this may infringe on privacy.

Despite reporting low technology literacy, people with MCI viewed robots as an oppor-

tunity to improve their understanding of technology. In contrast to children who may be more

curious about new technologies [443], older adults may be hesitant to adopt new technology,

as evidenced by two participants with MCI who did not own a computer. While others have

suggested adapting the robot’s role during an intervention [256], our findings suggest that a

period before the intervention, where users can become familiar with the robot as a companion,

may help improve adoption and acceptability.

Our discussions also touched on ethical concerns for robots for people with cognitive

impairments such as MCI or dementia, aligning with recent work [207, 209, 257, 407] (also see

Chapter 8). For instance, people with MCI imagined the robot as a companion, which could

increase trust, but also lead to overreliance or social isolation. A robot may also influence (i.e.

“nudge”) users to support their goals, but this may be seen as manipulation [383]. Furthermore,

users with anosognosia may not understand why they should use a CAR. If a clinician or care

partner requires that they use it, this could limit their decision-making ability and infringe on

their autonomy. Further exploration is required to support ethical robot design for people with

MCI.
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6.5.1.3 Challenges co-designing with stakeholders

While people with MCI in our study showed interest in the robot, they stated they do not

need assistance for their level of cognitive impairment. They believed a CAR would be most

beneficial for people with severe impairment, either later in life or others in their age group.

Thus, they had difficulty imagining how such a robot could fit in their lives. Researchers may

need to rethink how they propose CARs to users, considering the possibility of anosognosia to

improve adoption. E.g., a CAR may be introduced as a companion rather than cognitive support.

In addition, the pandemic highlighted the importance of remote solutions to collaborate

with all stakeholders, such as clinicians and people with MCI with low technology literacy [168].

Others have explored co-designing with end-users remotely [124, 290], but more research is

needed.

6.5.2 Limitations and Future Work

There are limitations we will address in future work. First, our sample size was small.

Recruiting people with cognitive impairments can be challenging [290, 448], exacerbated by

the pandemic. Additionally, our participants did not physically interact with the robot. While

this may impact their perception of some physical attributes (e.g. size, volume), we believe the

majority of our findings would not be impacted (e.g. translating clinician behaviors to robots).

This was our first step to robot-deployed CCT, and we have a longitudinal in-home study planned

with people with MCI to further explore using robots to transition interventions from clinic to

home. We will implement our design patterns on robots to validate with users.

6.6 Chapter Summary

We presented interaction design patterns for translational science to support longitudinal

clinical interventions deployed via CARs. We introduced design considerations for people with

MCI, unique from those of older adults and people with dementia. These contributions will
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reduce barriers to robot-delivered clinical interventions, and enhance the potential for robots to

expand telemedical solutions, which are invaluable during the pandemic. This work is a basis

for supporting longitudinal interaction at home for intervention contexts and beyond. The next

chapter dives deeper into how robots can facilitate collaborative goal setting, which is a key

component of clinician-led cognitive interventions.
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Chapter 7

Robot-Facilitated Collaborative Goal Set-
ting

When translating clinician-led interventions to robot-delivered ones, one key aspect to

consider is collaborative goal setting. Collaborative goal setting is the process in which people

receiving a cognitive intervention work closely with a clinician to identify and modify their

goals [306]. Collaborative goal setting can increase motivation, confidence, and self-efficacy

among patients, and lead to more concrete and achievable expectations of an intervention’s

impact [122, 372, 458]. Thus, CARs should support collaborative goal setting to ensure their

efficacy. This may also enable these systems to tailor intervention content for a more personalized

experience that focuses on a person’s most pertinent needs and goals.

Clinicians usually help people develop goals using the SMART framework (specific,

measurable, achievable, relevant, and time-based), which is essential to establishing appropriate

and realistic goals for an intervention [52, 475]. However, clinicians may not be available to help

people using a robot at home. Even if a robot supports goal setting, people may set goals that

are unrealistic for their current abilities without clinician guidance. This can lead to decreased

motivation and engagement with the intervention if people do not see the therapeutic outcomes

they expect [266].

There are many digital health technologies that autonomously deliver health interventions,

many of which enable users to set goals. For instance, many cognitive training games incorporate
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Figure 7.1. CARMEN teaches people cognitive strategies to support their goals and minimize
the impact of MCI on their daily life.

in-game reward systems which may serve as goals for users [40, 161, 344].

While this work illustrates the importance of integrating goals with technology-delivered

health interventions, there are still many open questions with regard to designing CARs that can

autonomously support collaborative goal setting. First, measuring goal progress can be challeng-

ing due to a wide variety of possible rehabilitation goals, and variation in what progress might

look like for each person. This is particularly difficult for cognitive interventions, as performance

on robot-led activities does not necessarily correlate with ability to transfer intervention skills

to real life. Robots need to be able to help a person set, measure, and manage goals, as this is

vital to improving efficacy of and adherence to the intervention, and possibly supplement what a

human clinician is able to observe in an intervention.

In addition, with many existing systems, users must choose from a set of goals pre-defined

by clinicians or developers, limiting applicability to their context and abilities. Allowing users to

set their own real world goals can also help improve motivation and adherence to an intervention,

particularly over long periods of time. One open question is how robots can help users develop

their own SMART goals and adapt an intervention to support those goals.
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In this chapter, we address these challenges in the context of delivering CCT to people

with MCI via CARMEN (see Figure 7.1, Chapter 4). We interviewed neuropsychologists

to explore how robots can support collaborative goal setting. We also conducted co-design

workshops with people with MCI to explore robot behaviors in an intervention, including how

users can convey goals to a robot, how to measure goal progress, and how to adapt intervention

content to support goals. We prototyped several of these behaviors on our robot CARMEN, and

obtained additional feedback from people with MCI.

The contributions of this work are four-fold. First, we report insights, grounded in

current clinical practice, on how robots can support collaborative goal setting during longitudinal

interventions at home. Second, we present a framework which will support HRI researchers

to develop robot-delivered health interventions which can help users set and meet their goals.

Third, we present concrete examples of how robots can interact with people during the goal

setting process, which were co-designed with clinicians and people with MCI. Fourth, to support

reproducibility within HRI, we have submitted these interactions as supplementary materials.

This work will help researchers design CARs which can support collaborative goal setting with

clinicians, users, and a robot to improve the efficacy of robot-delivered health interventions.

7.1 Background

7.1.1 Goal Setting with People with MCI

As MCI may impact each person differently, people with MCI often have unique goals

they wish to achieve. Rehabilitation goals refer to the real-world outcomes a person wishes to see

from the intervention [291]. For instance, people may wish to remember to attend their doctor’s

appointments, get a job, or improve their relationship with their family. This is in contrast to

cognitive training goals, such as practicing a certain strategy some number of times. While

cognitive training goals typically aim to help a person reach their larger rehabilitation goals, this

is not guaranteed. In this work, we focus on enabling technology to help people achieve their
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rehabilitation goals, as these are the most relevant to their everyday life.

7.1.2 Goal Setting in Technology-Delivered Health Interventions

Many existing cognitive training systems for older adults incorporate gamification fea-

tures to improve and sustain engagement, motivation, and intervention effects [161, 288,344].

In-game reward systems can increase intrinsic motivation and encourage users to continue using

the system [297, 452]. The benefits of applying gamification to cognitive training systems are

varied. Gamified interventions can challenge and support various overarching goals, such as

challenging and exercising different cognitive and motor functions (e.g. attention, memory,

perceptuomotor skills) [464]. Although gamification efforts can be a strong motivator for people

to achieve their self-set goals, achieving in-game rewards does not necessarily translate to real

world changes, which can reduce the efficacy of these interventions [318].

In addition, there are a multitude of technology-delivered health interventions [59], many

of which include goal-setting as a key component and strategy [89, 422, 484]. For example,

UbiFit [89] is a mobile, persuasive technology meant to encourage individuals to incorporate

physical activity into their lives. They found that participants were more motivated to work

towards goals they set for themselves or in collaboration with a domain expert. [422], who created

a patient-center tablet app, noted collaborative goal setting is a key aspect of the rehabilitation

process between healthcare professionals and patients, and that it is important patients feel in

control of their healthcare decisions during the rehabilitation process.

Longitudinal robot interventions are becoming more widespread, including helping

autistic children learn neurotypical social cues, supporting mental health, or delivering physical

rehabilitation [38, 94, 226, 240, 253, 312, 378]. Kidd and Breazeal [240] introduced Autom, a

robot that interacts with people to support their weight management goals over time. Autom

facilitates goal setting by enabling users to input and update their daily exercise and calorie goals

in accordance with their weight management goals. While Autom does support goal setting

and participant motivation toward goals, it was specific to the context of weight loss (e.g., daily
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exercise, calorie intake). In contrast, we aim to enable robots to support broader, real-world

goals in order to help improve intervention efficacy and motivation.

Thus, while there exist robots which can deliver longitudinal interventions, it is still

unclear how these systems can support people with identifying, measuring, and achieving their

real world goals throughout an intervention. Users should be able to effectively interact with the

robot in order to progress towards and assess the goals they set. In this work, we explore how

robots can support the collaborative goal setting process for longitudinal health interventions.

7.2 Methodology

We explored how to support collaborative goal setting with a robot-delivered intervention

at home. We employed a collaborative design research process with clinical neuropsychologists

and people with MCI. We conducted interviews with neuropsychologists to explore how they

facilitate collaborative goal setting in clinic and how they envision a CAR doing so. With

people with MCI, we explored the goals that they might have for a cognitive intervention and

co-designed robot interactions for supporting collaborative goal setting at home. Our study was

approved by the UC San Diego IRB, under protocol number 800004. All participants gave

informed consent to participate.

7.2.1 Participants

Clinical neuropsychologists: We recruited two clinical neuropsychologists who deliver

CCT to people with MCI. They include a psychiatry faculty member and a neuropsychologist,

and both work in the same location. Both were female, with a mean age of 45 years (SD=9.9).

They had on average 16 years (SD=14.1) of experience working with people with cognitive

impairments.

People with MCI: We recruited 5 people with MCI via word of mouth. 4 were male

and 1 was female1, aged 65-80 years (mean=73.4, SD=5.5). All previously completed CCT in

1We recruited people with MCI from a larger study exploring MCI treatments with veterans. In our country,

126



clinic, and most (n=4) reported moderate to high technology familiarity, e.g. computers and

smartphones.

7.2.2 Procedure

Clinical Neuropsychologists: We virtually conducted individual semi-structured in-

terviews to explore neuropsychologists’ experiences with collaborative goal setting during a

longitudinal intervention and how they envision CARs can support this process. We used an

interview script to guide conversation with each participant, but adjusted the order and questions

based on their responses.

We asked neuropsychologists about how they conduct collaborative goal setting in clinic,

including how they determine what goals are achievable for each person, how they measure goal

progress, and how they modify goals during the intervention. Following this, we explored how a

robot can help people achieve their goals during an intervention, and co-designed appropriate

robot interactions with participants. We presented a hypothetical scenario about a person with

MCI following CCT with a robot at home. This helped contextualize the robot and its interactions

during the intervention, which was important because clinicians may be unfamiliar with robotic

technology and may therefore have difficulty imagining how people might interact with it [442].

For these scenarios, we intentionally chose a name that is considered gender neutral in our

country, “Sam,” as the name for the person with MCI.

We conducted live sketching sessions with participants, where we presented a scenario,

and a member of our research team sketched storyboards and designs based on ideas the

participant discussed. Then, we showed them the sketch and iterated based on their feedback. In

this way, we collaboratively explored how a robot can interact with users to set up their goals,

adapt its behavior to support user goals and encourage engagement throughout the intervention.

People with MCI: We performed a two-phase study with people with MCI. First, we

conducted individual semi-structured interviews to explore goals that participants may have had

veterans are about 90% male, leading to a gender skew in our local population of CCT practitioners and recipients.
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during their in-person intervention and how they envision a robot supporting those goals during

a longitudinal intervention at home. We used a script to guide the conversation, but adjusted

the questions and order based on their responses. Throughout the interview, we periodically

offered breaks as people with MCI may have difficulty focusing for extended periods of time. In

the second phase, we showed video demonstrations of these behaviors and got feedback from

participants.

In our interviews with participants, we asked about their intervention goals in clinic,

including their motivation for beginning the intervention, goals during the intervention, and

what progress towards those goals looked like. Then, we showed examples of home-deployed

social robots (e.g. Jibo, Kuri), and a video demonstration of CARMEN delivering CCT to help

them imagine the capabilities of these robots. We then conducted live sketching sessions with

participants, where we explored how they would collaboratively set goals with a robot, and

how a robot could provide motivation during an intervention. A member of our research team

sketched storyboards and designs based on the participants’ responses, showed them the sketch,

and then iterated based on their feedback. To co-design longitudinal interactions, we focused on

participants’ experiences setting and managing goals during the 8 week ME-CCT intervention.

We asked them to recall when they felt unmotivated to work on their goal, and how they managed

that situation. Thus, we captured how a robot can support CGS across an intervention.

We selected six robot behaviors that people with MCI designed which were common

across multiple participants with MCI and/or aligned with our discussions with neuropsycholo-

gists, and implemented them on CARMEN (see Figure 7.2). These included how a robot can: a)

help people identify intervention goals, b) suggest goals if people do not have a specific goal in

mind, c) respond if people complete a (sub)goal, d) support people if they do not complete a

(sub)goal, e) connect a goal to the intervention content, and f) show goal progress visually. We

have submitted videos of these behaviors as supplementary material.

We recorded videos of these interactions and showed them to the same people with MCI2.

2Due to scheduling constraints, we met with three of the original five participants with MCI.
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Figure 7.2. Left: CARMEN helping a user identify their intervention goals. Right: CARMEN
showing the user a mock graph of their progress toward their goal.

We virtually conducted individual, semi-structured interviews to get feedback, including whether

these interactions could support their goals and motivation during an intervention.

7.2.3 Analysis

We recorded and transcribed all interviews. We analyzed all the data using a reflexive

thematic analysis (RTA) approach [54, 55]. This enabled us to center the perspectives of our

participants, and helped limit interpretation of the data through preconceived ideas of what

we may have thought was important. We coded the transcripts through an inductive coding

process [449] individually, then discussed the final themes as a group. Inconsistencies were

resolved via discussion. As we aimed to generate recurring themes and salient concepts, we did

not calculate inter-rater reliability, as per current best practices in the RTA literature [56, 307].

As the focus was different for each participant group (leading collaborative goal setting

with neuropsychologists, and designing these interactions with participants with MCI), we

analyzed each set of interviews separately. Two researchers analyzed each interview, and one
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researcher analyzed both sets.

7.3 Insights for Collaborative Goal Setting with Robots

7.3.1 Robot Behaviors to Support Users

Robot Roles: Passive and Active. People with MCI imagined a robot could play both

passive and active roles in setting and supporting goals. For instance, people with MCI imagined

a more passive robot to offer suggestions to help them identify their own tasks and goals. “I’d

like to maybe start out having the robot suggest some [strategies or goals] and then I can, as

I get more comfortable, [...] start coming up with my own ideas” (Person with MCI-2). “If it

could suggest some strategies, that would be good. Like, ‘Would it work if you were to do such

and such?’ ” (Person with MCI-3).

People with MCI also imagined a robot could take a more active role, such as by providing

solutions to questions a person might have about their goals. For instance, in response to a

video where a robot asked guiding questions to a user, one participant noted, “The robot was

asking questions that should have been answered by the robot, like [...], ‘Okay, how do I get

organized?’ ” (Person with MCI-5). They later emphasized, “Just keep it light and try to give

answers, because that’s what [the user is] there for. They’re looking for answers to their issues.”

(Person with MCI-5).

In most CAR scenarios though, the robot will be in a person’s life temporarily [44].

“We want to train people to be their own [neuropsychologist], so we want to have them take

on all the skills themselves and not be dependent on the robot for anything really” (Clinical

Neuropsychologist-1).

People with MCI expressed that a robot could serve as a companion throughout the

intervention to encourage them to achieve their goals. “It’s like having some support to help you

reach your goals, you know. You’re not all alone trying to do it.” (Person with MCI-3). They

imagined the robot could be like a friend, “I think that it would be good for me and be like, ‘My
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friend the robot is going to check up on me and I’ve done a really good job and I can’t wait to

tell it.’ [...] When the robot checks in and asks me, ‘How’d it go? Did you get it done?’ Then I

could say, ‘Yes, I did.’ I rarely finish things, so if I’m with someone who would check up on me,

maybe it would be motivating.” (Person with MCI-3).

Robot Having a Positive Personality: Participants expressed the importance of a robot

providing encouragement and motivation. “It’s encouraging. The interaction makes me feel like

I could actually do things, you know?” (Person with MCI-3). It was also important that a robot

is not judgmental if they do not accomplish their goals. “I think the biggest thing for me was,

there isn’t a big stress on accomplishing everything right now. More laid back. ‘Okay, we’ll try

again tomorrow. Maybe look at some different ways to do it.’ ” (Person with MCI-2). Another

Person with MCI stated, “ Even if I didn’t complete my goal for the day, the robot’s not gonna

say, ‘Well you screwed up,’ you know?” (Person with MCI-3).

In addition, people with MCI suggested ways that a robot could be more humanized in

its interactions. “Might put some laughter in there. A scoff or a giggle.” (Person with MCI-5).

Participants also pointed out its appearance. “He’s as cute as he can be all dressed up” (Person

with MCI-3).

They also suggested adding humor and more expressions. “There might be some things

that you could pull in that seem funny to people, just to keep them on a bit of a light side. Wise

cracks or something. [...] Like, ‘Good morning, Sam. I can’t be much help today. I’m a little

hungover’ ” (Person with MCI-5). “Actually it’d be funny if when you’re going through, ‘Here’s

the progress you’ve made on your goal,’ for the next screen, the robot’s eyes get really big.

‘Whoaa’ ” (Person with MCI-5).

Privacy Considerations: Participants discussed privacy, particularly when collecting

data from participants. For instance, they wanted it to be more clear when a robot was recording

a user. “When [the user] is talking, is it being recorded on [the tablet display] or is it just what

the robot is saying?’ ” (Person with MCI-5). Furthermore, neuropsychologists believed that

maintaining privacy could help reduce bias in user responses. “If [goal progress is] just saying
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internal to themselves, I think it’s a lot less prone to that bias of trying to look good.” (Clinical

Neuropsychologist-2).

7.3.2 Identifying Goals

Set Priorities: Due to the variety of ways that MCI can impact a person’s cognitive

abilities and life, people with MCI may have many goals they would like to accomplish. “There’s

a whole list of things I want to do, but I just don’t know where to start” (Person with MCI-

5). Throughout the course of an intervention, neuropsychologists emphasized the importance

of working towards a few goals at a time. When it comes to identifying goals with a robot,

“You want to limit it. You don’t want people to be working on a dozen different goals at the

same time, so they should select probably their top [...] four would be the maximum. Two or

three is probably best [...], so you’d have them rank their most prioritized goals” (Clinical

Neuropsychologist-1). Then once people have learned the skills to accomplish their goals with

the robot, “they can hopefully take this education and then apply it to their next round of goals”

(Clinical Neuropsychologist-2).

Enable Users to Identify Their Own Goals: To ensure that a goal is relevant and useful

to a person’s life, it is important for a robot to let users identify goals that matter for them.

“Setting a goal that is important to [the person] is probably a good idea” (Person with MCI-5).

This can help improve a person’s motivation to achieve those goals.

If users are unsure what goals they might want to work towards, participants proposed

that the robot could provide possible goal suggestions. One neuropsychologist stated, “We

could probably give them a list of examples, like example goals, and have them select” (Clinical

Neuropsychologist-1). One participant with MCI imagines a robot leading such an interaction as

follows: “ ‘What are your goals?’ Input my goals and hopefully it can come [up] with a strategy

to help me reinforce those. Maybe come up with some suggestions for other things that I haven’t

tried” (Person with MCI-2).

However, neuropsychologists were aware of the limitations of supporting such open-
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ended goals on robots. “I think the problem might arise that if the person lists a goal that the

robot doesn’t have [in its knowledge base], the robot’s not going to understand that” (Clinical

Neuropsychologist-1).

Create Specific and Achievable Goals: Enabling a robot to support users with fitting

their goals to the SMART framework is an essential part of collaborative goal setting. “In

terms of measuring the goals or figuring out some outcomes, [...] the goal should be specific,

measurable, achievable, relevant, and time based. [...] Having those goals be specific and

measurable can help create a system that’s better” (Clinical Neuropsychologist-2).

Robots can ask questions to help users reflect and step through fitting their goals to this

framework. “What’s your goal? All right, is it measurable? How are you going to measure

[it]? Is it achievable? Is it relevant? Is it time-based? What is your timeframe?” (Clinical

Neuropsychologist-2).

People with MCI also thought setting a time limit on goals could be helpful. “As long as

I know I’ve got a time limit, I can dedicate myself more to accomplish it (Person with MCI-2).

Another noted, “My desire [is] to actually accomplish the goal, even if it’s a small thing like

cleaning off my desk. It might take me two times, but I’ll get it done, you know? (Person with

MCI-3).

Set Subgoals: To help ensure that goals are achievable, participants suggested setting

subgoals. “If you want to get a job, for example, you’re going to have to get yourself organized,

you’re going to have to do some job searching, you’re going to have to create a resume,

you’re going to have to apply for a job, and so on. So there are all these subgoals” (Clinical

Neuropsychologist-1). A participant with MCI noted, “I need to look at things connecting to the

big picture. Take things a step at a time [...]. I like that better than, I have to do all of this today.”

(Person with MCI-3).

Several participants with MCI imagined setting daily subgoals that align with their

overarching goals with a robot. “That way, [the goals] are broken down into smaller steps that

can be done in a short period” (Person with MCI-5). One participant imagined a robot “to
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just start out in the morning saying, ‘Okay, today is the 1st of September. What are your goals

today?’ ” (Person with MCI-2). This can help people identify concrete and achievable tasks to

work on during the day. “If they had a suggestion and concrete path to take toward [achieving

their goal], [...] that would definitely be helpful, I think. And then you start narrowing it down

from ‘get organized’ to ‘store your screwdrivers’ ” (Person with MCI-5).

Set Goals Based On Existing Behavior: To help identify goals that are realistic, robots

can encourage people to base their goals around existing behavior. “Achievable might be taking

what they’re doing now and expanding it by 10-20%” (Clinical Neuropsychologist-2). They

stepped through an example of helping someone remember to check their calendar. “How are

you going to remember to check your calendar? And so we might set up some systems around

that. Maybe he checks it during meals, maybe it’s checked in the morning and then in the evening,

maybe it’s checked when he has [his] morning coffee” (Clinical Neuropsychologist-2).

7.3.3 Goal Progress Measurement

Scaling Goals for an Individual: Goal progress can be difficult to measure as it can

vary widely based on individual goals. Thus, neuropsychologists expressed how HRI researchers

might use goal scaling techniques to measure and set appropriate goals for people with MCI.

“[Asking] ‘How far are you toward your goal now?’ at the start and end of the training can be a

way of ‘goal attainment scaling,’ allowing for a better understanding of what strategies work”

(Clinical Neuropsychologist-1). They also expressed how a standard self rating measurement

would allow for easier data collection, which can lead to better understanding of which strategies

work for each goal. “If you keep it simple and you just measure self rated progress toward a goal

on a one to ten scale, it puts every goal on the same metric which is really useful for data analysis

later on, because they’re all going to be on the same scale” (Clinical Neuropsychologist-1).

Highlight the Wins: People with MCI feel more encouraged to incorporate strategies

presented by the robot when they feel like they are improving. One participant discussed

how it felt “reward[ing] if you do something” (Person with MCI-3). During the intervention,
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neuropsychologists suggested giving positive feedback on a person’s improvement to encourage

people with MCI to try strategies in their lives. “In an ideal world, they’re going to do better when

they use more strategies and so you’d be able to give feedback to them that their performance

improved when they categorize the information, when they wrote it down, when they use visual

imagery, and so on. Then you would encourage them to try the strategies that just helped them”

(Clinical Neuropsychologist-1).

Visualize Progress: People with MCI stated that seeing progress and feedback can help

them advance towards their goals. “The feedback is good. And I can see how it would help

me progress” (Person with MCI-3). Visualization of progress can positively reinforce working

towards goals. “If the person is motivated to do the goal, it would be a handy thing to have a

motivational point. You do something and you go, wow, I didn’t know that I got that far. It was

kind of like, yay” (Person with MCI-5).

7.3.4 Intervention Delivery

Highlight Goals Throughout Intervention: Participants expressed how reminders about

their goals can keep them on track to complete their goals. People with MCI discussed how

reminders about their goals (both overarching and subgoals) at the start and end of sessions

could help them focus. “I think if you’re working towards the goals, then it’s a good idea to keep

indicating, here’s a small goal or here’s a larger goal, whatever. You emphasize the goal thing

because it’s where it seems to be going” (Person with MCI-5).

Participants found repetition to be a key part of retaining memory and focus on their

goals. “If I go over something more than one time, it helps my memory. If I say my goal is to do

that this afternoon [...] to myself, it goes right in and right out of my brain, you know? And I

forget that I was going to do that this afternoon. So a reminder is good” (Person with MCI-3). A

neuropsychologist also suggested using repetition in terms of having users, “do some writing

about using [. . . ] strategies to improve this domain is going to help with the real world goal”

(Clinical Neuropsychologist-1).
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Reflecting on their goals can also help keep people with MCI focused. “[Reflecting can]

make me think about progressing toward getting my life more organized, rather just drifting, not

actually accomplishing anything” (Person with MCI-3). Another participant suggested the robot

could ask, “ ‘Were you able to use this strategy anywhere else?’ [...] That way it would be a

daily thing to get that new task embedded” (Person with MCI-5).

Cover All Intervention Content: It is important for people with MCI to try all strategies

presented by the robot to determine the most applicable strategies for them. “With these cognitive

[interventions], I’ve taken the approach that we want to offer everything. So we want to at least

expose them to all the strategies and then see what they find helpful, even if they don’t initially

report a problem in that domain [...] There’s usually a few things that at first blush, it doesn’t

feel natural to the person, or it doesn’t feel like something that they would use, but we really

want to encourage them to try it anyway” (Clinical Neuropsychologist-1).

7.3.5 Transfer to the Real World

Build Good Routines: Participants stated how the robot could help them practice

cognitive strategies that incorporate into their daily routines. “Once I get something attached

in my morning routine and I keep working on it, hopefully it will become more ingrained. And

then I can add something else” (Person with MCI-2). A neuropsychologist gave an example

of connecting strategies to a daily routine. “Attaching this calendar planning to something

you do everyday. And then you have a little note on your coffee pot say[ing], ‘So let’s check

your calendar.’ And so, Sam looks at it, [they go] to get the coffee in the morning and it says

to check your calendar. And that’s [their] cue to review [their] calendar that day” (Clinical

Neuropsychologist-2). People with MCI also expressed interest in having flexibility when

practicing with the robot and completing goals on their own time. “I like the idea that [...] you’re

busy this morning but you have time this afternoon to organize your desk” (Person with MCI-3).

Check In and Reflect: Participants imagined that the robot can check in with their goals

and help people with MCI reflect on the strategies they have been using. This provides direction
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with goals, understanding which strategies work, and strengthening the investment levels of

people with MCI. “Having Sam be a part of the solution and having Sam generate some of

those solutions can be really helpful to support that investment level and that level of interaction

and kind of bolster it a little bit” (Clinical Neuropsychologist-2). “Every once in a while the

robot can check in. ‘Now you’ve finished this module on prospective memory. How do you think

this list of strategies is going to help you with your goals over here? Take some time, think

about it, jot down some notes. Which strategies do you need to practice more?’ ” (Clinical

Neuropsychologist-1).

Connecting With Other People: People with MCI articulated how practicing strategies

with others would be helpful. A participant with MCI expressed, “if it’s a home task? It might

be a good idea to have the other person in the house working on it with you” (Person with

MCI-5). The same participant also stated, “if it is something somebody wants to do, it would be

motivational” (Person with MCI-5) and how goals can be “embed[ed] [...] especially if you’re

in a group situation working on a common task” (Person with MCI-5).

7.3.6 Providing Motivation

Be Empathetic: Enabling a robot to exhibit empathy can be motivating for users to

achieve their goals regardless of any discouragement they may experience. For instance, people

with MCI stated that reinforcement and guidance from the robot can be encouraging if they did

not complete the goal they set for the day. “It’s like saying, you know, to me, ‘It’s OK if you didn’t

quite make your goal. We’ll try again tomorrow.’ ” And maybe, you know, ‘Just rethink how we

want to accomplish it.”’ (Person with MCI-2). Neuropsychologists also stated that empathetic

phrasing from the robot can prevent people with MCI from feeling a sense of failure if they do

not accomplish their goals. “Normalizing the likelihood that they won’t have achieved [their

goals] 100% right off the bat can be a good way to phrase it” (Clinical Neuropsychologist-2).

Show Goal Progress: Participants expressed that being able to see their goal progress

can also increase their motivation. For example, a participant with MCI stated that seeing their
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progress can inspire them to strive for more, and “[it would feel like] now you can move on to

something more challenging” (Person with MCI-2). Similarly, a neuropsychologist suggested

having dialogue that can encourage participants to keep working towards their cognitive goals.

“Just kind of being like, ‘Look, these are all the things you’ve done so far. Let’s try one more’ ”

(Clinical Neuropsychologist-2). Additionally, a participant felt as if seeing progress is a form

of positive feedback that shows the impactful progress they have made. “Especially seeing [a]

chart that shows what my accomplishments were will [make me] more likely to want to do more”

(Person with MCI-2).

Provide Check-Ins: Participants suggested having the robot check on them at some

point during the day to increase their motivation. “I think that it would be good for me and be

like sort of, my friend the robot is going to check up on me and I’ve done a really good job and I

can’t wait to tell it, you know?” (Person with MCI-3).

7.4 Discussion

7.4.1 Proposed Framework for Collaborative Goal Setting in HRI

We propose a framework for developing longitudinal, robot-delivered health interventions

with collaborative goal setting capabilities. We provide key considerations for each step of the

collaborative goal setting process to support goal achievement and motivation. While we discuss

this framework with respect to our population and intervention context (People with MCI, ME-

CCT), our conversations with neuropsychologists suggest that it could be helpful for other health

conditions of interest to the HRI community.

Support Self-Identified Goals: When helping people identify goals for an intervention, it

is important to allow space for self-identified goals. For some people, this may be straightforward

(they may already have a goal in mind), but others might be unsure about what they want to

achieve. Thus, robots can ask open-ended questions to help people reflect on particular challenges

they face, or changes they might want to see in their life. If people are still unsure, robots may
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Table 7.1. Our proposed framework for supporting collaborative goal setting in HRI.

Goal Setting
Component

Robot Considerations

Support Self-
Identified Goals

Robots should allow people to self-identify intervention goals, and provide goal suggestions
if needed. They can help users set SMART goals with preset questions, or ask users to set
daily goals.

Goal Progress
Measurement

Robots can scale goals and progress to an individual using the Goal Attainment Scale.
People can then track their own progress, and this will also simplify progress visualization.
Robots might use sensors to observe user behavior, or use visual aids (e.g. facial expres-
sions, gestures) to highlight wins.

Intervention
Delivery

Robots can remind people of their goals and encourage them to connect their goals to the
intervention content via multiple communication modalities (e.g. speech, tablet, gestures).
Roboticists may explore additional modalities to support different goals and abilities, e.g.
a memory game where users speak aloud vs. touch the robot.

Transfer to the
Real World

Robots should let people identify their own“homework” that is specific to their lives and
goals, possibly based on their existing behaviors or involving other people. Robots might
cue users to build routines verbally or nonverbally. And as a social presence, they may
facilitate the inclusion of family with intervention activities or discussion of goal progress.

Provide
Motivation

Robots can adjust facial expressions, movements, or tone of voice to convey empathy or
excitement, remind them of the “bigger picture”, or provide positive reinforcement.

suggest goals to start with, such as recommendations from professionals. Either way, robots

should encourage people to focus on just a few goals for the duration of the intervention so they

do not get too overwhelmed. In particular, asking users to identify a daily task that is in service

of their larger goals can help them set achievable and time-based subgoals.

Goal Progress Measurement: Due to the highly individualized nature of goals and what

success might look like for each person, it is important that robots measure and scale goals based

on the individual. Neuropsychologists suggested using the Goal Attainment Scale (GAS) [457]

which allows for each person to set their own goals and what success means for them, set around

their current and expected levels of performance. Then, robots can ask people to track their

own behaviors that may correspond to their progress between sessions, such as how many times

they took their medication or whether they completed their daily goal. Robots can check in

periodically and record progress, enabling people to view their progress over time, which can

also help with motivation. Or depending on a robot’s capabilities, it might observe a person’s

behaviors relevant to that activity and possibly give feedback (e.g. as one particpant with MCI
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suggested, giving specific instructions for how to organize a desk).

Intervention Delivery: Robots can also support goals in how they deliver intervention

content. For instance, they can remind or ask users to reflect on their goals throughout the

intervention, including at the beginning and end of a session. In doing so, they can encourage

users to connect the intervention content to their goals and promote motivation to follow through

with the intervention. This is especially important for contexts such as ME-CCT where it is

beneficial to expose people to all of the content from the intervention, and they can choose for

themselves which strategies to integrate into their lives. On the other hand, it is important to not

overload people so robots could focus on content that may be most relevant or interesting to the

individual. This could help maintain adherence, especially at the beginning of an intervention.

Transfer to the Real World: Providing people with opportunities to consider how

they can put the ideas they learn with a robot into practice is key to enabling them to transfer

those skills to the real world. This may come in the form of assigning or helping them identify

“homework” where they can try out the skills. These homework assignments should be specific

and fit into a person’s existing life so it is easy to achieve and can become a new habit over time

if they see fit. If applicable, robots might also encourage them to engage other people in their

lives as they complete their goal. Then, in the following session, robots can ask open-ended

questions to help people reflect on how it went, including identifying any challenges they faced

and possible solutions for the future.

Provide Motivation: Motivating people to achieve their goals is key to maintaining

adherence to an intervention and improving its efficacy. Robots can leverage many strategies

that neuropsychologists use, including showing empathy if people do not show progress towards

their goals, reminding people of “big picture” goals and changes they want to see in their life,

and providing positive feedback such as by highlighting any progress or celebrating when people

show progress (e.g. dancing, playing music, telling a family member). It may also be beneficial

to modify goals if the original goal turns out to be unattainable, or if their priorities change over

time.
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7.4.2 Connection with Other HRI Contexts

We developed this goal setting framework in the context of a robot delivering CCT to

people with MCI, but we hope that researchers can apply it to other populations and applications.

Our population very much wanted to be able to set goals in collaboration with a robot, and we

expect this to be true more broadly as well. Collaborative goal setting can help people determine

what real world behaviors will help achieve those goals, and likely will be more inclined to

follow a robot’s suggestions for reaching those goals. This is particularly important for HRI

applications where interactions with a robot do not necessarily correspond to goal progress or

how well a person can transfer the skills to their real life. In these cases, it is important for people

to be truthful with themselves and the robot about goal progress, and decide for themselves what

is useful for their lives.

For example, consider a scenario proposed by Jeong et al. [224, 226], where a robot aims

to support the mental health of students. If a student aims to improve their social relationships,

identifying personal strengths might improve their confidence and indirectly help their social

life. Applying the collaborative goal setting framework, the robot can further help a student

identify and scale their goals to their behaviors to ensure those goals are achievable and relevant

(e.g. joining a club or messaging an old friend). Letting individuals define and scale their goals

around their existing life and priorities can help improve motivation and confidence that they can

achieve those goals.

Furthermore, collaborative goal setting with robots may need to support input from other

stakeholders, including domain experts (e.g. clinicians) who may have intervention goals, or

family members who can provide support if someone cannot set achievable goals for themselves.

Supporting all stakeholders in the collaborative goal setting process will be crucial to improving

the efficacy of these interventions in numerous contexts, such as for academic and social learning

for children [378, 394], or interventions for people with cognitive impairments [253, 387].
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7.4.3 Robot Implementation Considerations

People with MCI suggested additional robot implementation considerations that would

help support goal achievement and motivation. For instance, they suggested the robot ask open

ended questions to help people reflect on their day. In this case, the robot does not need to

necessarily understand what the person says in response. For example, the robot can ask people

if they accomplished their goal(s) for the day, and if there were any challenges they faced.

Providing an opportunity for them to reflect can help them contextualize their goals and increase

motivation in working towards their goals regardless of whether or not they accomplished it for

the day.

Roboticists can also simplify implementation of robot behaviors through goal scaling and

similar self-report measures. Since goal progress varies based on an individual, this can enable

the robot to easily help people assess progress without implementing a system that can handle

all permutations of robot content and goals.

Participants also suggested that the robot record audio and play it back to the person.

For example, people could record themselves saying their goals and the robot would store that

audio recording to play back to the person later. This feature can help people keep accountability

to their goals and provide an additional motivational push to reach their goals. As technology

advances, robots could use many abilities to enhance collaborative goal setting, such as open-

ended discussion to lead motivational interviews and personalized conversation.

In addition to the goals people with MCI have for the intervention, other stakeholders,

including clinicians and family, may have different, possibly conflicting goals [256]. Some

challenges that may arise include implementing a system which can consider and balance these

differing goals and priorities. For example, clinicians expressed how people with MCI should try

all of the strategies to gain a sense of which strategies work the best for them. However, this may

be demotivating for people with MCI who may not see success with strategies they do not think

are applicable or can be integrated into their life. More research needs to be done in order to
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determine methods that can be used to support the multiple, differing goals of each stakeholder.

Design tensions also emerged from discussions with neuropsychologists and participants

with MCI. For instance, they differed in how integrated the robot would be in their lives.

Neuropsychologists recommended more independence from the robot through shorter, more

user-led interactions. In contrast, people with MCI seemed to prefer if the robot provided daily

support in their lives indefinitely, e.g., an alarm clock, daily reminders, or answering questions

and giving recommendations on how to do tasks.

Another tension was how to use the intervention to achieve goals. Neuropsychologists

imagined concrete “homework” where people can directly apply and practice the strategies in

their lives. However, people with MCI imagined tasks that were not necessarily related to the

strategies. For example, participants with MCI focused on goals such as making their bed or

doing dishes, where their main barriers were motivation rather than cognitive abilities. Practicing

the strategies would not necessarily contribute to achieving these goals, so the question arises

whether a robot should still encourage the use of the strategies.

Ethical considerations also arose in our discussions, which HRI researchers will need to

thoroughly explore before deploying collaborative goal setting on robots longitudinally in the

real world, particularly for people with cognitive impairments. For instance, people with MCI

had high expectations for the support a robot could provide, such as holding full conversations,

knowing details about their lives and abilities, and providing support with various tasks through-

out the day. Realistically, clinicians and possibly robot developers will be in-the-loop while

robots complement care, so more research is needed on how to set appropriate expectations while

considering user privacy and technical limitations [201, 208]. Furthermore, most robot-delivered

interventions will only be in a person’s life for the duration of the intervention. While neuropsy-

chologists envisioned people with MCI learning the skills but ultimately being independent of

the robot, participants with MCI envisioned the robot integrated in their lives indefinitely. This

raises questions regarding how to design robot behaviors to promote independence from the

robot, especially if people begin to see it as a companion that motivates them to achieve their
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goals [44, 257, 370].

7.4.4 Limitations and Future Work

There are some limitations we will address in future work. First, we kept our sample

size small to avoid burdening the community, following recommendations from participatory

health research [20]. As MCI affects people differently, participants had a diversity of behavioral

and motivational factors which arose in the challenges and goals they shared (e.g. improved

organization vs. prospective memory). While we were mindful of these differences in our

analysis, people with MCI expressed commonalities in how they set and manage goals over time

(e.g. daily subgoals), and how robots can provide support (e.g. reminders). In this work, we

aimed to establish generalizable collaborative goal setting concepts and approaches for robotic

technologies, and we will explore how CARMEN can support personalized goal setting in future

work. In addition, due to the pandemic, participants viewed video demonstrations of robot

interactions rather than physically interacting with it. While participants would ideally interact

with CARMEN to understand its abilities, we aimed to design robot interactions and explore their

potential to support collaborative goal setting. Thus, we do not believe video demonstrations

impacted our findings significantly.

7.5 Chapter Summary

In this chapter, we presented our findings from co-designing robot behaviors with people

with MCI and clinical neuropsychologists on how CARs can support collaborative goal setting

in the context of supporting a home-deployed cognitive intervention. Based on these insights, we

introduced a collaborative goal setting framework, which we hope other HRI researchers can use

within their application domains. We demonstrated concrete examples of goal setting interactions

with CARMEN, co-designed with stakeholders, to support reproducibility and extensibility in

HRI. These contributions lay the foundation for enabling robots to support motivation and goal

achievement throughout a longitudinal intervention at home, which will ultimately extend their
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efficacy, support accessibility, and improve care for countless people.
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Chapter 8

Ethical Considerations for Personalizing
Care Robots

Imagine the following scenario: A person with dementia lives at home with a full-time

care partner. That care partner is overburdened, stressed, and is an older adult with their own

health problems. This scenario is experienced by over 16 million informal dementia care

partners in the US, and this number will only continue to grow, representing a global health

emergency [13].

Over the past 20 years, many researchers have explored the use of assistive robots that

can aid both people with dementia and their care partners with a range of daily living tasks,

including to provide companionship, deliver cognitive stimulation, and support household chores

(see Figure 8.1) [94,154,166,256,316,323,474,478]. For example, PARO (see Figure 8.1.3) is a

robotic seal which has been shown to provide companionship to people with dementia and reduce

stress, anxiety, and pain among people with dementia and their care partners [148, 324, 474].

In addition, researchers have used CARs with the goal of slowing the progression of cognitive

impairment and/or reducing the severity of its impact [27,94,256,439,466]. For instance, JESSIE

(see Figure 8.1.1, Chapter 5) teaches people metacognitive strategies to reduce the impact of

cognitive impairment on their daily lives [256].

For these assistive robots, a key concept discussed in the health technology community

is personalization, which reflects how well a system can adapt to a person longitudinally.
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Figure 8.1. Three exemplar robots used to support people with cognitive impairments and their
care partners. From left to right: 1) JESSIE is a tabletop robot developed by our lab, and is
used to support people with mild cognitive impairment and early-stage dementia. It provides
personalized, adaptive cognitive training to help teach users metacognitive strategies to minimize
the impact of cognitive impairment on their daily lives [256]. 2) Spoonbot is a tabletop robot
radio developed by our lab, and is used to support people with late-stage dementia who have
trouble eating. It leverages embodied cueing, mimicry, and music to encourage eating [166]. 3)
PARO is a robotic seal and is used to stimulate social interaction and support therapy for people
with dementia, including robot-assisted therapy and sensory therapy [387, 474].

Personalization offers many benefits, such as improving adherence to cognitive interventions,

increasing engagement with intervention content, and enabling goal-oriented health management

[258, 381, 445].

Personalizing assistive robots for people with cognitive impairments is especially impor-

tant due to the progressive and unpredictable nature of conditions such as dementia, as one’s

individual needs and preferences will evolve over time [166, 262]. For example, for people

with early stage dementia, a robot can interact verbally with someone (e.g., provide medication

reminders) [264], whereas for those with late stage dementia verbal prompts will not work, and

physical and nonverbal aural cues are more appropriate [166, 191]. Spoonbot (see Figure 8.1.2)

is an example of a robot our team built for people with late-stage dementia - it uses mimicry

cues and a person’s favorite music to assist with eating. Therefore, it is important to adapt to

a person’s physical and cognitive abilities, personal preferences, care setting, and other life

circumstances [262].

Roboticists have made great strides in developing personalized systems for people with

cognitive impairments and their care partners. However, a large body of this work has been

147



either primarily technology-focused or health-outcomes focused, yet there’s a growing need

for further investigation into the potential negative consequences assistive robots could have

on this population. For example, researchers have raised concerns about some robots used in

dementia caregiving, such as PARO use being associated with irritability, hallucinations, and

disinhibition among people with severe dementia, or overstimulation of people with dementia in

group settings [231, 463]. People with cognitive impairments are a vulnerable population who

are already at high risk of manipulation and abuse [305], so one must think critically about how

these robots could cause harm, and possible means for mitigation.

We are currently at an inflection point, where it is becoming relatively easy and inexpen-

sive to develop and deploy CARs to deliver personalized interventions to people with cognitive

impairments, and many companies are vying to capitalize on this trend. However, it is important

to carefully consider the ramifications: What are the potential consequences of introducing

underdeveloped personalized CARs to care for people with cognitive impairments? Furthermore,

what are some unintended consequences of a highly personalized CAR for people with cognitive

impairments?

In this chapter, we draw upon empirical data from our own work, as well as from

the literature, to explore these questions. We contextualize concerns regarding inaccurate

personalization of CARs for people with cognitive impairments, and the potential unintended

consequences of personalizing robot behavior accurately. We also propose key technical and

policy concepts to enable robot designers, law-makers, and others to develop CARs that protect

users from unintended consequences, particularly those designed for people with cognitive

impairments. We hope that our work will inspire roboticists to consider the potential risks and

benefits of robot personalization, and support future ethically-focused robot design.
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8.1 Background

8.1.1 Person-Centered Care for People with Cognitive Impairments

Person-centered care is one predominant care approach that can help maintain the rela-

tionship between a person with cognitive impairments and their care partners by encouraging

care partners to recognize the personhood and individuality of a person with cognitive impair-

ments. As a strengths-based approach, person-centered care recognizes an individual’s goals,

abilities, and preferences, such as by understanding their culture or building on their strengths

and current abilities, rather than trying to replace the abilities they have lost, to promote their

well-being [123, 131, 262].

One important aspect of person-centered care is supporting the autonomy of people with

cognitive impairments. Being active in daily decision making can help a person preserve their

dignity and identity, which can help them lead more full and rewarding lives [131, 262]. These

decisions may be major, such as deciding which health interventions to receive, or relatively

minor, such as choosing what food to eat. It is generally agreed that people should be able

to make and act on their own decisions whenever possible, and care partners should structure

interactions to support the autonomy of people with cognitive impairments.

However, as conditions such as dementia progress, people often begin to lose their

capacity to make or communicate decisions. Thus, they may not know or be able to reason about

what is best for their health. Care partners may be forced to choose between supporting a person’s

autonomy vs. ensuring their health or safety. For example, if a person with cognitive impairments

refuses to maintain basic personal hygiene (e.g. bathing), should a care partner respect their

desire to not do so and risk causing harm (e.g. a urinary tract infection, social ostracism), or

should they override the person’s wishes and force them to complete these activities [414]?

Neither scenario is ideal for satisfying both the person’s autonomy and health, so there is much

debate surrounding whether to prioritize respecting a person’s autonomy or abiding by the

principle of non-maleficence (i.e. preventing harm). The care partner’s decision may change
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based on culture, situation, and personal preference, but a person’s independence and privacy are

often considered secondary to harm prevention [131, 169].

8.1.2 Critical Dementia in Technology Design

The majority of assistive technologies have been designed and developed without thor-

ough consideration or understanding of the needs and perspectives of people with cognitive

impairments, particularly those in the later stages of their disease. In addition, many commercial

technologies center themselves around a person with dementia’s cognitive limitations, rather

than their strengths which can lead to them being stigmatized and disempowered [166, 210].

Fortunately, researchers are increasingly adopting more inclusive approaches when de-

signing robots for people with dementia through a critical dementia lens [166, 265]. Critical

dementia encapsulates person-centered dementia care, and focuses on understanding and support-

ing the strengths and personhood of people with dementia in technology design. It explores how

embodiment, context, and emotional and sensorial experience impact how people with dementia

interact with the world around them [265]. It draws from approaches including participatory

design, which aims to involve all stakeholders (e.g. people with cognitive impairments, care

partners, clinicians) throughout the design/development process in order to ensure that the end

product is usable and valuable to them [281, 400]. It also includes user-centered design, which

prioritizes the interests and needs of users and entails gathering iterative feedback at each stage

of the development process [1, 113]. These approaches enable technology creators to move away

from a deficit model of aging, which focuses on a person’s potential disabilities and loss of

ability, and instead incorporate a social model of aging, which better captures the preferences

and contexts of users [267]. This framing can help promote the dignity and personhood of people

with cognitive impairments when designing assistive robots.

While it is vital to include the perspectives of people with cognitive impairments and care

partners in the development of robots, their respective values may not always align, particularly in

relation to the autonomy of a person with cognitive impairments. For example, care partners may
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use cameras to surveil a person with cognitive impairments to ensure their safety (e.g. see if they

are wandering or have fallen) which can infringe upon the person’s privacy. Care partners may

also imagine using robots to encourage people with cognitive impairments to do something that

they do not want to do (e.g. eat, bathe), or prevent them from doing something unsafe that they

want to do (e.g. go out alone, eat unhealthy food) which can limit their autonomy [316,336,414].

Thus, it is important to also consider these design tensions and how they might impact the

autonomy of a person with cognitive impairments and their relationship with their care partners.

We further explore this in Section 8.2.2.

8.1.3 Personalization of CARs that Deliver Health Interventions

To ensure assistive robots are usable and acceptable for individuals living with cognitive

impairments, it is critical that the robots are personalized. Personalization is tailoring a health

intervention or system to suit an individual’s factors such as their preferences, abilities, and

goals, and it reflects how well a system can adapt an intervention to a person longitudinally.

Personalization is essential in this space because there is no singular experience shared by

everyone living with or caring for someone with cognitive impairments. Personalization can

maximize the utility and efficacy of interventions for each person’s individual situation by

enabling assistive robots to address the heterogeneity of people with cognitive impairments

including cultural and personal backgrounds, living situations (e.g. at home, in a long-term

care facility), how conditions progress in different people, and individual preferences. For

instance, an assistive robot can be personalized to a user physically (e.g. adjusting movement

speed, proxemics), cognitively (e.g. adjusting the difficulty level of cognitive training tasks), and

socially (e.g. referring to a person by name) [258, 386]. In this chapter, we primarily focus on

the personalization of CARs that deliver health interventions [466].

Personalized CARs offer many benefits, including improving adherence to and adoption

of an intervention, as well as adoption of and engagement with the technology. For example,

cognitive stimulation is most effective and enjoyable if it meets a person where they are in terms

151



of their cognitive abilities [133,138]. Tapus et al. [439] demonstrated that adjusting the difficulty

of a robot-delivered cognitive stimulation game to the performance of a person with dementia

improved their overall task performance, engagement with the intervention, and enjoyment

during the task. In contrast, if a health intervention is not personalized, it can provoke frustration

and depression in a person with cognitive impairments and their care partners [17, 412].

Research also demonstrates that adapting robot behavior to an individual can help improve

its adoption and engagement with users. For example, a robot can adapt its behavior in real

time to a user to maintain engagement, such as changing its tone of voice to draw their attention

back if they are distracted during an interaction. This can help maintain engagement with users

for longer periods of time, and thus improve retention of material (such as in a therapeutic

intervention) [430]. A robot may also adapt its behavior to be more acceptable to a user, such as

adjusting its communication style to be more passive or assertive depending on a user’s cultural

background or which they respond better to [386].

There are also health applications for which personalization to people with cognitive

impairments is necessary. For instance, reminiscence therapy encourages people with dementia

to recall memories from their past. So, robots that provide this intervention must have some

knowledge of a user’s history in order to ask relevant questions and guide the therapy. The

MARIO robot is one such example, which could store and retrieve user-specific knowledge

provided by family members and care partners in order to facilitate reminiscence therapy [12].

Robots that can autonomously personalize their behavior are particularly important in

this space to fulfill the needs of people with cognitive impairments. The ability to adapt with

little to no input from users is especially important when users have low technology literacy

and do not have the time or resources to learn how to use the system, as is often the case for

clinicians, informal care partners, and people with cognitive impairments [168, 256].
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8.1.4 Key Technical Concepts for Personalization

From a technical perspective, developers often use machine learning algorithms to

enable robots to autonomously personalize their behavior to users (see Chapter 2). This can be

decomposed into two main phases: preference learning and behavior adaptation. In this section,

we will provide a brief overview of these topics and why existing computational approaches may

not be appropriate for use with people with cognitive impairments.

One technique for personalizing robots to an individual is to learn and understand what

that person’s likes and dislikes are, i.e., learning their preferences. Preference learning aims to

predict what a person will prefer based on their known preferences, often inferred from previous

behavior [140]. For instance, in the context of assistive robots for people with dementia, a robot

might take note of songs that elicited a positive response in order to play new music for a person.

Common computational approaches to preference learning include classification algorithms such

as k-nearest neighbors and decision trees [140]. While most work in preference learning is

limited to only ranking a specific set of items, more recent work aims to infer a user’s underlying

preferences so that learned preferences can be generalized across contexts [480, 481, 488].

Once a system has an understanding of a person’s preferences, it can adapt its behavior

to suit those preferences. Behavior adaptation refers to how a robot adjusts its behavior, usually

in response to external stimuli. This adaptation can occur over short periods of time (e.g. making

a noise to draw attention to itself if a user is distracted), or longer periods of time (e.g. adopting

an encouraging personality if a user responds better to that during a therapy). Reinforcement

learning (RL) approaches are among the most common for autonomous behavior adaptation,

though researchers are also exploring other methods such as neural networks and Gaussian

processes [258]. Inverse RL is another approach which enables systems to learn from human

experts; for instance, a therapeutic robot might observe how a human therapist interacts with a

user in order to learn how it should behave.

While existing approaches to preference learning and behavior adaptation have proven
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effective for applications such as post-stroke rehabilitation and teaching social skills to children

[33, 376], most may not be appropriate for longitudinally personalizing robots to people with

cognitive impairments for a few reasons.

First, the majority of approaches assume people’s preferences and abilities stay constant.

However, learning the preferences of people with cognitive impairments can be difficult due to

the complex and fluctuating nature of these conditions. For example, many people with dementia

experience “sundowning,” or increased confusion, anxiety, and agitation later in the day [236],

as well as fluctuating levels of lucidity, which may make it challenging for robots to learn what

types behaviors to communicate when. Furthermore, one cannot assume that a person will have

the same preferences over time or in different contexts. This concern is especially true for people

with cognitive impairments whose cognitive abilities may change dramatically as their condition

progresses, so a personalized assistive robot must be able to keep up with these changes. For

instance, the roles of an assistive robot may transition from delivering a one-on-one cognitive

intervention, to observing and sharing information with a care partner as a person needs more

support from care partners as their condition progresses.

Next, many approaches suffer from the “cold start” problem, where a system must begin

interacting with a user with no prior knowledge about them [395]. In order to learn more about

a user, many approaches rely on exploration of possible actions. However, depending on the

possible actions and the context, acting without knowing the preferences or abilities of a person

with cognitive impairments may have the potential to harm them. For instance, a robot may need

to know a person’s level of dementia, tolerance for sensory input, or emotional state to avoid

overstimulating them or causing distress during an interaction.

Finally, there are existing computational approaches that learn from human experts (e.g.

inverse RL). These approaches require stakeholders to commit much time and effort to use them

effectively. However, in the context of assistive robots for people with cognitive impairments,

these experts are often care partners and clinicians who are already overburdened, and may lack

the time and technical literacy to communicate their expertise to a robot. Thus, these robots may
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not interact with a person with cognitive impairments to their full potential or in the way that

these experts intend.

8.2 Risks to Personalizing Robots for People with Cognitive
Impairments

While personalizing robots offers many benefits, there are also risks associated with

doing so, even for people without cognitive impairments. Inherently, personalization requires the

collection of personal information, including health-related information, which raises privacy

concerns. Furthermore, these data are often collected longitudinally, fused with other data,

and then used by other machine learning systems to infer and predict behavioral patterns of

individuals. This not only raises the risks of bias and proxy discrimination [361], but also

violates users’ ability to provide informed consent as they are unwitting recipients of these

opaque systems [228].

Personalizing technology to users has led to a rise in concerns such as privacy violations,

over attachment to the technology, “echo chambers” (i.e. only conveying content that reinforces

a user’s existing beliefs), and manipulation of users [178, 201, 370]. For instance, social media

platforms have become adept at presenting users personalized content in order to maintain

engagement with the platform. They can even use a person’s personal information to show them

targeted advertisements in order to maximize advertisement revenue, sometimes at the cost of

a user’s well-being, through the dissemination of inaccurate information or falsely advertised

products [35]. In addition, researchers have identified content personalization as a mechanism that

has amplified extreme behavior among radicalist groups, including violent extremists, by enabling

large-scale personal expression and collective action with little moderation [34, 450, 476].

The physical embodiment of robots introduces additional concerns that are not present in

virtual systems. Research shows that a robot’s physical embodiment affords it many advantages

that can increase engagement and trustworthiness in social interactions (e.g. richer communica-
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tion channels, physical presence) [106]. However, these characteristics can be problematic if

used in a careless or manipulative manner. For instance, perceived trustworthiness of a robot

based on its appearance can significantly influence a user’s intention to purchase the device [415]

or cause them to find a robot more authoritative [176]. Thus, a robot could exploit a user’s

trust and manipulate them to behave in ways they might not otherwise (e.g. share personal

information, purchase products). Researchers predict that robots will be used to surveil users

and market products to them, but with access to far richer and more intimate data than can be

gathered by a web-based system, resulting in more persuasive advertisement [114].

Personalizing robots could further exacerbate these risks by leading to the development

of “Spybot” robots which gather personal information and can lead to more effective deception

by “Scambot” robots or manipulation by “Nudgebot” robots [178]. For instance, a CAR might

be perceived as more trustworthy by a person with cognitive impairments if it resembles a

family member or clinician, which could inadvertently deceive users and give the robot more

authority [316].

Lying and deception are widely discussed concerns in both the dementia caregiving and

personalized technology communities [36, 116, 178, 304, 338]. In HRI, deception can occur

if a robot leads someone to believe something that is not true. This deception may happen

intentionally or unintentionally, and there are many ways it might occur when interacting with

people with cognitive impairments, including Turing Deceptions and misconceptions of a robot’s

capabilities.

Turing Deceptions: People with cognitive impairments may experience Turing Decep-

tions when interacting with a robot, i.e. believe they are interacting with a human when in fact

they are interacting with a robot, and assume the robots have their own motives, goals, beliefs,

and feelings [349, 376]. For instance, if a robot visually or aurally resembles a trusted care

partner or clinician, people with cognitive impairments may be more willing to cooperate with

the robot, share personal information with it, or otherwise act in a way that they would not

otherwise [316, 374]. While this may be desirable in some cases (e.g. using a care partner’s face
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or voice to encourage people with cognitive impairments to return to bed, take medication, or

eat [316, 336]), this is also a form of deception.

Misconceptions of a robot’s capabilities. Another major source of unintentional decep-

tion is a disconnect between the actual capabilities of a robot and the capabilities that users think

it is capable of. This disconnect is problematic because over- or underestimation of a robot’s

capabilities can impede users from making informed decisions regarding how robots are involved

in their care [470]. This can also affect the level of trust that a user has in a robot, which may

lead users to overtrust it and attribute it too much authority during an interaction, or undertrust it

and not follow the guidance it provides. Either scenario may result in negative health outcomes,

or misuse of the robot [19, 491].

Vandemeulebroucke et al. [470] suggest that increased use and familiarity of robots

earlier in life can moderate such deception. However, the memory challenges of people with

cognitive impairments may prohibit them from becoming familiar with a robot in this way once

the condition has progressed. To proactively help circumvent this, an increasing number of older

adults integrate assistive technology into their lives in preparation for the potential development

of future memory challenges [112]. In addition, dementia community health workers and family

care partners suggest incorporating features that people with cognitive impairments may already

be familiar with (e.g. touch screens, common objects) into robot design in order to increase their

usability and acceptability among people with cognitive impairments [166, 316].

Furthermore, Moharana et al. [316] found that people with dementia have greater trust in

robots that resemble people they are already comfortable and familiar with. Integrating familiar

features into robot design can help convey its capabilities to a person with cognitive impairments

and build trust between a robot and a person.

Personalizing CARs to people with cognitive impairments amplifies these concerns and

introduces many others. In this chapter, we identify and discuss four major risks of personalizing

CARs to people with cognitive impairments (see Figure 8.2), which include: 1) Safety risks

that arise from inaccurate personalization, 2) (Human) autonomy infringement risks, 3) Social
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1 Safety Risks

Inaccurate personalization of CARs can contribute to 
safety risks if they are inaccurate, perpetuate bias, or 
fail to understand the context of care.

How was your day?

What did you do today?

Did you take your medication?

Would you like to set an alarm?

When would you like to go to bed?

2 Infringement on Autonomy

Personalized CARs may need to choose between 
respecting a person’s autonomy or protecting their 
health.

From 8AM to 11AM go 
grocery shopping, 

from 12PM to 1PM go 
to the bookstore, ...

3 Social Isolation

People with cognitive impairments may become 
socially isolated if they prefer to interact with CARs 
over other people, become overly attached to these 
robots, or their care partners replace human care 
with a robot’s.

4 Vulnerability to Dark Patterns in 

Personalized Robotics

A personalized CAR may leverage robotic dark 
patterns, such as by being customized to suit a 
person’s preferences to gain acceptance and 
facilitate a bond.

Please purchase this meal 
kit our company sponsors. 
What is your credit card 
information?

Of course! My credit card 
number is XXXX-XXXX-XX...

Figure 8.2. Personalizing CARs to people with cognitive impairments introduces many ethical
concerns, including 1) Safety risks that arise from inaccurate personalization, 2) (Human)
autonomy infringement risks, 3) Social isolation risks, and 4) Risks of being taken advantage of
due to dark patterns in robot design.

isolation risks, and 4) Risks of being taken advantage of due to dark patterns in robot design.

To support discussion of these risks, we introduce three exemplar robots representative of those

currently in use in dementia care, as shown in Figure 8.1.
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8.2.1 Risk 1: Inaccurate Personalization can Lead to Safety Risks

While carrying benefits such as autonomy, machine learning approaches have the potential

to cause physical or mental harm when they are not adequately personalized to people with

cognitive impairments, such as not understanding the context of care, perpetuating bias, or

simply being inaccurate. One of the most significant risks of inaccurately personalized CARs is

providing a person with cognitive impairments with inadequate care or care that is misaligned

with the stage of their condition. A robot may not necessarily understand the complexities of

care, so there is a rising concern that automating these decisions without human supervision will

cause them to be ineffective or harmful. For example, the automation of a medical diagnosis

system may cause physical harm without supervision of a human medical professional [41],

demonstrating the challenges of health automation technology even before introducing the

additional complexity levels of physical embodiment, home settings, or cognitive impairments.

Also, the robot may provide self-care instructions that do not account for a person’s comorbidities,

which may contribute to harm.

As a person’s condition progresses, they may require different levels of support to use

or understand a CAR effectively. However, if a robot fails to adequately understand or adapt

to a person’s conditions, this can limit their ability to fully utilize an assistive robot. This

failure may be considered an error of omission (if the robot did not adapt its behavior at all)

or commission (if the robot adapted its behavior incorrectly) [384]. In either case, these errors

may have negative effects including reducing the usability of the robot, which can reduce a

person’s use of the robot, lower their self-confidence in their cognitive abilities, and possibly

lead to depression and anxiety [17, 147]. People with cognitive impairments may also be unable

to communicate what they want or need to the robot if it fails to account for their physical or

cognitive considerations, which can leave people feeling as though they have lost their autonomy

and dignity [147]. Although this problem could be avoided through care partner supervision,

care partners are often already overburdened by existing caregiving responsibilities, and having
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to monitor an adaptive robot would simply add further cognitive load.

ML algorithms for therapeutic interventions could demonstrate biases that unintentionally

exclude or harm people with cognitive impairments. In the case of robots for people with

dementia, most existing work frames dementia and aging as a series of losses, rather than

acknowledging the full life and identity of the person with dementia. This narrow understanding

of people with dementia may perpetuate existing biases about this population, limit an algorithm’s

performance, and ultimately place the mental and physical health of users at risk [432]. Thus, it

is vital to develop concrete guidelines for assessing the potential mental and physical impact of

inaccurate personalization on people with cognitive impairments and ways to avoid harm.

While researchers will ideally test ML algorithms extensively before using them in real

world applications, there are still limitations to what these algorithms can achieve, such as for

uncommon scenarios (i.e. “edge cases”) or populations not reflected in test data (e.g. people

with cognitive impairments). Developers may be tempted to naively apply an algorithm to the

context of personalizing robots to people with cognitive impairments. However, if that algorithm

was not tested or validated with this population and possible scenarios were not considered in the

design while personalizing the algorithm, it may lead to inaccurate physical and mental health

assessments of these people (e.g. depression, detection of pain in non-verbal individuals) which

can cause serious harm to their mental and physical health. For instance, pre-trained models

of facial analysis technology such as Facial Alignment Network (FAN) achieve relatively high

accuracy for older adults without dementia, but the accuracy drops significantly for people with

dementia [432].

Care partners may rely on such algorithms to automatically identify and alert them of

agitation and aggression in people with cognitive impairments so they can reliably intervene in a

timely and appropriate manner. However, if the algorithm was not developed with or trained on

data from these people, a system may not alert a care partner of agitation or aggression until the

harm has already occurred (e.g. causing distress, emotional withdrawal, physical harm) [239].

On the other hand, a system may give the care partner false alarms, which may cause them
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unnecessary stress and cause them to become desensitized to alarms, so they are unprepared to

react in the case of a true agitated or aggressive episode.

8.2.2 Risk 2: Infringement on the Autonomy of People with Cognitive
Impairments

As discussed in Section 8.1.2, respecting the autonomy of people with cognitive im-

pairments empowers them to construct their lives based on their values and personality. This

entails supporting their freedom, independence, and privacy. Although people with cognitive

impairments may not be able to execute all their decisions (i.e., agent autonomy), they often

can express their interests (i.e., choice autonomy), which care partners or assistive robots can

consider in order to make choices that support their values [414]. The choices a person makes

reflect their unique identity, personality, and lifestyle (i.e., actual autonomy). It is important for

family members, care partners, and technology developers to support a person’s choice autonomy

and respect their actual autonomy longitudinally [414]. Studies suggest using personalized

assistive robots can promote the autonomy of people with cognitive impairments and support

person-centered care [209].

However, just as care partners may be forced to choose between respecting the autonomy

or protecting the health and safety of a person with cognitive impairments, personalized assistive

robots may also be forced to make this decision. This places personalized robots for people with

cognitive impairments in a peculiar position where their actions (or lack thereof) may depend on

how autonomy and control are distributed between themselves and the person.

Consider a scenario encountered in our prior work, told to us by a dementia care partner

[316]. A person with dementia, who also has diabetes and cancer, was feeling ill, and only

wanted to eat popsicles, to the point where she wanted to have more than ten each day. Even

though the popsicles brought her joy, consuming too many popsicles upset her stomach and

detrimentally affected her blood sugar. Care partner participants in our study suggested an

assistive robot could “be the bad guy,” denying the frequent popsicle requests, so that the care
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partner did not have to. On the one hand, offloading emotional labor from an overwhelmed care

partner may be beneficent; however, the scenario raises questions regarding the autonomy of

the person with dementia. A fully autonomous robot may, indeed, be configured to limit the

consumption of sweets and keep the person on a strict diet to promote their wellbeing. However,

situations like this can also create conflicts between the autonomy of the person with dementia

and the beneficence of the care partner [414].

One approach to sharing autonomy is to always give users ultimate control of assistive

robots. In the context of supporting older adults, Sharkey and Sharkey suggest this will have

positive effects on a user’s sense of autonomy and can reduce the risks of infringing on their

privacy [407]. However, people with cognitive impairments may have impaired judgment, so

respecting their autonomy may be at the cost of their own health. Furthermore, personalized

robots that must wait for approval from a person with cognitive impairments before acting may

be limited in their ability to protect users, such as if the robot recognizes a dangerous situation

but cannot autonomously take steps to prevent it (e.g. if a person tries to reach a tall cupboard

by climbing on a precarious chair [407]). Thus, it is infeasible and potentially harmful to give

people with cognitive impairments full control over assistive robots.

On the other hand, assistive robots may act in opposition to or without user feedback.

Sharkey and Sharkey [407] suggested that assistive robots might help people with cognitive

impairments as “autonomous supervisors” to help protect their safety. This can happen by

designing robots such that they autonomously take steps to prevent the dangerous situation, or

restraining people with cognitive impairments from performing a potentially dangerous action. In

the case of the person with dementia who loves popsicles, a personalized robot might recognize

her dietary restrictions and choose to protect her health by limiting her popsicle consumption,

even if doing so defies her wishes. As people with cognitive impairments often have impaired

judgment abilities, a robot may be unable to obtain accurate (or any) feedback when trying to

make decisions, which further raises the risk of autonomy infringement [188, 287]. However, the

ethical problem here is that restraining a person with cognitive impairments to prevent potential
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harm could be “a slippery slope towards authoritarian robotics” [407].

Another alternative to sharing the autonomy between assistive robots and people with

cognitive impairments suggests developing robot technology with the aim of having robots

provide care to the older adults while considering their autonomy. This means that instead

of overriding the person, the system should allow them to make decisions about their daily

activities, and warn them to stop a potentially dangerous activity, if needed [207]. Including

people with cognitive impairments in decision making can decrease infantilization and improve

their independence [207]. So rather than just outright refusing to give the person with dementia

a popsicle, the robot might try to explain why it cannot give her a popsicle right now or distract

her from the topic altogether [166]. While a downside to this is that the person with dementia

may not pay attention to the robot, understand the suggestions the robot is making, or simply not

trust the capabilities of the robot to make reliable suggestions, a personalized CAR may be able

to more effectively understand and coordinate with a person with cognitive impairments to reach

a satisfactory outcome.

How a personalized robot should behave in these situations is still an open question, as

each of these approaches requires considering the tradeoffs between a person’s autonomy and

safety. While a personalized assistive robot will likely be forced to decide which tradeoffs to

make, the ideal solution will be much more nuanced than simply adapting to a user’s preferences.

However, as with human care partners, a robot will likely be expected to prioritize a person’s

health and safety over their autonomy. Personalized robots may be particularly adept at distracting

or redirecting a person from their potentially unsafe desire (e.g. to eat a popsicle), such as by

knowing what alternatives they might like or how to change the topic of conversation. This

can preserve the health of people with cognitive impairments, but it effectively restricts their

autonomy. Thus, roboticists need to consider developing personalized assistive robots that suit

a person’s individual personality to support their actual autonomy as well as their needs and

choices to support their choice autonomy. However, when designing CARs, roboticists should

be mindful of the fact that the cognitive limitations that restrict a person’s agent autonomy may
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also limit how they can interact with these robots.

8.2.3 Risk 3: Social Isolation

Social isolation has significant effects on the physical and mental health of people with

cognitive impairments. Anxiety, boredom, depression, and lack of meaningful activities are

prevalent among people with cognitive impairments living in assisted living facilities [9, 63, 174].

Given that having strong social connections has been shown to protect against various adverse

health outcomes, including depression [389], it is important that the social support needs of

people with cognitive impairments are considered when designing assistive technology.

In an effort to encourage social connectedness for people with cognitive impairments,

care partners use technology such as robots to connect people to family members [323] and

to provide companionship [231]. To better address the social support needs of a person with

cognitive impairments and encourage social interactions, many researchers are exploring how to

personalize these systems and tailor them to an individual’s interests and capabilities. However,

while personalized robots are intended to be more effective, using them in the context of cognitive

impairments care may pose more risks than benefits, including preferring to interact with robots

over other people, over-attachment to these robots, and the supplanting of human interaction by

a robot.

A personalized assistive robot that aims to combat social isolation among people with

cognitive impairments may have the unintended consequence of over-attachment. For instance, it

might emulate the “perfect companion” by learning the likes and dislikes of a person. A person

with cognitive impairments might find the companionship of such a robot to be preferable to

another person’s, so they might choose the company of these robots over other people. This

problem becomes even more pronounced as people with cognitive impairments may believe

they are interacting with another person when they are actually interacting with a robot (i.e., a

Turing deception) [374]. While some people believe that robots can help mitigate feelings of

isolation and help improve social connectedness (e.g. serving as a social facilitator, establishing
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virtual visits with family and friends) [407], many scholars question whether the relationship

between a person with cognitive impairments and a robot can be considered meaningful or

moral [338, 407, 470].

If people with cognitive impairments prefer the companionship of a robot to that of

another person, there is also the risk of becoming overly attached to the robots. A personalized

CAR could understand how and when a person would be receptive to social cues such as touch

and eye contact in order to establish and maintain a bond with the them [467]. Over attachment

can lead to distress and loss of therapeutic benefits when robots are taken away, and further

exacerbate social isolation [470].

As CARs become more adept at providing care and more personalized to suit a person’s

individual needs, they can help relieve some care responsibilities of human care partners [470].

However, some researchers are concerned that robots that are adept at providing care to people

with cognitive impairments could lead to reduced interaction between a person and care partners

[470]. Furthermore, a robot that is highly personalized to a person with cognitive impairments

may be able to provide comprehensive care, potentially replacing human care partners entirely

[407, 470]. Care partners may also trust a personalized robot to be more proficient at providing

care than a robot that is not personalized, leading them to leave the person with cognitive

impairments under the care of a robot for longer periods of time, further reducing human

interaction and exacerbating the potential for social isolation.

In addition to the aforementioned risks of highly personalized care robots, non-personalized

(or poorly personalized) robots may also lead to social isolation, such as by causing confusion or

lowering the confidence of people with cognitive impairments. For instance, a CAR that fails

to appropriately adapt to a person’s capabilities could cause them to lose confidence in their

communicative or cognitive abilities. This can lead to anxiety or depression, and cause them to

withdraw from their friends and family [17].

165



8.2.4 Risk 4: Vulnerability to Dark Patterns in Personalized Robotics

Conditions such as dementia gradually diminishes an individual’s communication abilities

and judgment, making it more difficult for them to avoid, prevent, and report deception. While

some researchers believe that introducing assistive robots for care can reduce the abuse that many

people with cognitive impairments experience [338], it is not a stretch to imagine a scenario

where a robot could take advantage of a person, particularly if these robots follow a model similar

to existing adaptive technologies (e.g. maximizing engagement, prioritizing advertising revenue

over user well-being) [178].

In the field of user interface design, dark patterns are user experience (UX) and user

interface (UI) interactions designed to mislead or trick users to make them do something they

do not want to do. In existing technologies such as online social media, designers have been

known to leverage dark patterns, or use their knowledge of human behavior and the desires of

end users, to implement deceptive functionality that is not in the user’s best interest [60,162]. For

instance, on social media platforms, dark patterns may be used to increase engagement with the

platform, increase ad revenue, or get users to share personal information. While these behaviors

are beneficial for the platform, they can be detrimental to users, as over-engagement with these

media can lead to addiction, social isolation, anxiety, and depression [104, 251].

In the context of CARs that personalize their interactions based on the data collected

from a person with cognitive impairments, there may be dark patterns that designers could use to

take advantage of these users. Thus, as robots become more sophisticated and autonomous, it is

important to research how personalized robots that collect personal information from users may

be designed to leverage or exploit this data to facilitate deceptive interactions with people with

cognitive impairments.

Dark patterns in robotics is a largely unexplored area. Lacey et al. [259] discuss how

cuteness of robots can be a deceptive tactic that roboticists use to gather information from users.

For example, Blue Frog’s Buddy is an emotional robot whose marketing website states: “How
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not to resist to his cuteness and not want to adopt him?”. Prior research has found that “cute”

technology is “lovable” and fosters an affectionate relationship [153, 259]. Among people with

cognitive impairments, a personalized CAR may be customized to suit a user’s preferences (e.g.

have a “cute” appearance or friendly personality) to gain acceptance and facilitate a bond.

However, a person with cognitive impairments may therefore more readily share sensitive

information with a personalized robot, unwittingly give them access to private accounts, or be

manipulated into purchasing other products from the robot’s developer. Additionally, because a

personalized robot could have information on the wants and needs of a person with cognitive

impairments, and these users and care partners often have low technology familiarity, developers

may have the power to intentionally make turning off the robot or disengaging from the robot

difficult. It is important that dark patterns in the context of personalized CARs among people

with cognitive impairments are further explored to avoid negative consequences for people with

cognitive impairments and to hold technology creators accountable.

8.3 Additional Ethical Considerations

In addition to the risks discussed in Section 8.2, there are some additional ethical

considerations when developing personalized CARs for people with cognitive impairments.

These include: a) how a robot can practice beneficence to people with cognitive impairments, b)

where responsibility falls should harm to a person with cognitive impairments occur because of a

robot, and c) how a robot can acquire informed consent from a person with cognitive impairments.

While these considerations are not necessarily unique to personalized CARs for people with

cognitive impairments, it is important that roboticists keep them in mind in order to understand

how these robots may impact users in real world environments. Thus, we explore each of these

considerations in this section.
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8.3.1 How can a robot practice beneficence toward people with cognitive
impairments?

Human care partners are often very intentional with their language and actions in order

to set a person with cognitive impairments up for success and practice beneficence to these

people (e.g. minimizing confusion or agitation). For instance, they will purposefully phrase their

sentences to be short and simple, and ask closed questions such as those that can be answered

with a “yes” or “no” response. In addition, care partners will use non-verbal cues such as gestures

or visual aids to help communicate with people with cognitive impairments, particularly as a

person’s verbal communication abilities deteriorate with the progression of the disease. This

can help improve comprehension, increase their ability to respond successfully, and reduce the

chances of causing frustration or confusion [103, 166].

Even so, frustrating or confusing interactions are largely inevitable, especially for people

with advanced dementia. These individuals may have difficulty processing abstract language or

not even recognize they have dementia (i.e., anosognosia), which can lead to reduced confidence

or perceiving themselves as being “faulty”. In addition, as the disease progresses and prospective

memory becomes weaker, technologies that were previously helpful (e.g., reminder technologies)

may become less effective and can cause tensions and frustration between a person with cognitive

impairments and care partners [166]. Therefore, it is not a stretch to imagine that even the most

accurately personalized CARs are likely to inadvertently cause confusing or frustrating feelings

in interactions with people with cognitive impairments.

It is not uncommon for human care partners to deceive people with cognitive impairments,

often coming from a place of compassion with the goal of minimizing disorientation or distress

that might come along with correcting a person’s perception of the world [116]. In fact, human

care partners may deceive people with cognitive impairments to help improve their sense of self-

agency and autonomy [49, 86, 88, 402, 470]. For instance, in our prior work [166], a professional

dementia care partner told us about a person with dementia who used to be an accountant.

168



The professional care partner allowed her to think that she was the current accountant of their

dementia caregiving organization, thereby respecting and acknowledging her domain expertise.

On the other hand, many researchers argue that deceiving people in such a way is a “moral

failure” because this alters the person’s perception of reality and may lead them to believe a

different reality than those around them [116, 396, 416, 470].

However, these experiences beg the question of whether it is appropriate for assistive

robots to actively deceive people with cognitive impairments, as a human care partner might.

Thus, while these robots could leverage the knowledge, background, and expertise of a person

in order to respect their autonomy, whether or to what extent they (or human care partners)

should deceive a person with cognitive impairments is still an open question. Some scholars

argue that this deception is benign and permissible as long as it is in the best interest of a

person [164,496]. In addition, regardless of whether a person with cognitive impairments can tell

if a robot’s empathic response is real or not, users may still experience real feelings of comfort

and companionship [97] which many argue is acceptable [87, 408]. On the other hand, some

people express discomfort with the idea that people with cognitive impairments might perceive

and engage with robots (even non-personalized ones) as living agents [53].

It is generally agreed that assistive robots should, whenever possible, practice nonmalef-

icence and not bring harm to people [125, 246, 471]. Indeed, under the beneficence principle,

assistive robots should actively behave in a person’s best interest. This might entail telling white

lies to promote a person’s dignity, provide comfort, or avoid confusion or distress [402]. But

while it is possible that a personalized CAR may be more effective at practicing beneficence,

they cannot necessarily avoid frustrating or confusing interactions with people with cognitive

impairments. It can be difficult to avoid frustrating or confusing interactions even for human

care partners, so we propose that these robots can practice beneficence by: a) taking appropriate

precautions to mitigate frustrating or confusing interactions before they occur, b) taking steps to

alleviate feelings of frustration or confusion should they occur (even if that means notifying a

human care partner), and c) striving to ensure that these feelings are no worse than that which
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the person might experience with a human care partner.

8.3.2 Responsibility for harm

There has been much debate around who or what should be held responsible if a machine

causes harm to a person, particularly in healthcare contexts [235, 469]. Traditionally, care

providers are required to assume responsibility for the outcome of a medical intervention [468].

Historically, if a machine causes harm to a person, there is a clear entity at fault. For instance, an

operator controlling a machine may be blamed if they make a mistake, or a manufacturer may

take responsibility for defective hardware.

However, when considering personalized CARs for people with cognitive impairments,

there are many gray areas that arise due to impaired reasoning abilities and the “responsibility

gap” (i.e., the inability to trace responsibility to any particular entity due to the unpredictable

nature of an autonomous robot’s future behavior) [303]. With the introduction of personalized

robots into caregiving, there needs to be a sense of moral, legal, and/or fiscal responsibility in

order to ensure that people with cognitive impairments and other users of personalized assistive

robots are safe.

There is much discussion about who should be held responsible for the actions of an

autonomous robot. Some researchers suggest that the autonomous systems themselves should be

held responsible [199]. However, others argue that machines cannot understand the consequences

of their actions and thus hold the concept of responsibility meaningless [280]. Others argue that

the manufacturers (e.g. researchers, developers, designers) should take responsibility for the

robots they created, since they have a professional responsibility to follow proper ethical and

professional design protocols before getting into the hands of users [280, 469].

Alternatively, others adopt antiquated views of user blaming [206], suggesting users are

responsible, as they supervise and manage the robots, and they are the ones that the system is

learning from [31, 469]. Elish [119] coined the term “moral crumple zone” to describe such

scenarios, in which responsibility for harm caused by an autonomous agent may be misattributed
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to a human who in fact had little control over the agent’s actions.

The responsibility gap can make it difficult to attribute responsibility for harm caused

by autonomous systems [303]. Inherently, personalized assistive robots must learn to behave in

ways that were not explicitly defined by a human programmer. This can lead to unpredictable

robot behavior, so nobody, from the programming team to the end user, can be seen as clearly

responsible for a robot’s behavior. As a personalized robot learns from more people and must base

its decisions on potentially conflicting information (e.g. if a person with cognitive impairments

enjoys baking, but a care partner does not want them to use an oven, and a clinician suggests

avoiding desserts), this can add an additional layer of complexity and uncertainty when trying to

attribute responsibility for harm, should it occur.

So, how does one determine who should be held responsible in the case that a personalized

robot harms a person with cognitive impairments? It is imperative that the field of autonomous

systems protect users from misattributed responsibility and avoid moral crumple zones [119].

Instead, there is an increasing emphasis on “responsible robotics” which places the responsibility

on the researchers and developers [469]. This requires that an organization determines ethical

issues that arise from use of the robot, as well as to assign people to resolve those issues [469].

Furthermore, some researchers suggest that determining how to regulate the responsible use of

these robots will require more thorough exploration and testing across populations and cultures

with multidisciplinary studies and collaborations [125, 470].

8.3.3 Acquiring consent from people with cognitive impairments

Informed consent is a person’s adequate comprehension and subsequent voluntary choice

to participate in some event, such as a medical intervention [96]. It is important for both human

and artificial agents providing healthcare services to obtain consent (or assent) from people with

cognitive impairments to protect a person’s wellbeing and agency. However, in the context of

dementia, the problem of acquiring informed consent is difficult because it is challenging to

determine whether their condition affected their capacity of giving informed consent [207], and
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their capacity to provide consent may change as their dementia progresses. Difficulty obtaining

consent can be especially problematic for personalized health interventions such as assistive

robots personalized to people with cognitive impairments, as data collection and processing are

essential for a robot to learn a person’s preferences.

To help address this challenge in the medical and research spaces, organizations have

developed various recommendations for acquiring informed consent from people with cognitive

impairments. In general, there are three ways to acquire informed consent from or on behalf

of a person with cognitive impairments: (i) direct consent from a person with acceptable level

of competence and cognitive capacity, (ii) proactive consent through advanced directives (i.e.

externalizations of a person’s wishes, decisions, and choices about future actions), or (iii) through

proxy decision making (e.g. assent from a third party) [207]. Ienca et al. [207] suggest that the

combination of the three may better protect the autonomy of a person with cognitive impairments.

In the context of personalized robots for people with cognitive impairments, third parties (e.g.

children, spouses) can help identify the aspects of an assistive robot that they would like to

adjust [207].

However, there are no standard protocols for obtaining consent from people with cognitive

impairments across institutions, sectors, or countries, including in the context of personalized

robots for these users [189,355]. Even the question of who is responsible for providing informed

consent (the person with cognitive impairments, care partners, researchers, or another party) has

no clear answer [147]. Researchers and developers across numerous communities (e.g. dementia

caregiving, robotics, gerontechnology) have proposed recommendations for obtaining consent

from people with cognitive impairments and have called for regulatory frameworks to standardize

this process [207, 451].

In the case of personalized CARs for people with cognitive impairments, researchers

recommend using an iterative model known as “ongoing consent” [208]. For instance, a robot

learning to personalize its behavior to fit an individual’s personality and goals should obtain

consent at multiple intervals during an intervention. It should be able to answer questions or
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provide additional information in a clear and transparent manner (e.g. employing visual aids).

A robot should also communicate with people with cognitive impairments using well-designed

communication modalities suitable to the person’s stage of their condition (e.g. non-verbal

embodied cueing, mimicry, and music) to better convey meaning, improve self-agency, and

reduce care partner burden [166]. The specific points at which a robot might provide this

information and ask for consent might vary depending on the context, but it is generally agreed

that a person may withdraw consent at any time, whether verbally or by expressing signs of

distress [208].

In addition, as a personalized CAR further learns from a person’s choices and decisions,

it may be able to help clinicians with more in-depth competency assessments, by being able to

provide insights into longitudinally observed behaviors. Care partners and clinicians would then

have a better understanding to reprogram the robot (or remove it) as needed [256].

8.4 Key Policy Concepts

There are some key policy concepts that robot designers, law-makers, and others should

keep in mind to develop safe and ethically-informed approaches for longitudinal robot-delivered

health interventions, particularly those designed for people with cognitive impairments. These

include a) Community care approaches to design, b) Justice and accessibility, c) Educating care

partners and clinicians, and d) Promoting the agency of people with cognitive impairments (see

Table 8.1). In this section, we provide a brief overview of each of these concepts and how they

relate to personalized CARs for people with cognitive impairments.

8.4.1 Community care approaches to design

In order to ensure CARs will accurately address and personalize their behavior to the

needs of people with cognitive impairments, robot developers should adopt community-centered

care approaches to design and closely involve key stakeholders such as people with cognitive

impairments, their care partners, and clinicians throughout the development process. In particular,
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Table 8.1. Key policy concepts to help guide the creation of safe and ethically-informed
robot-delivered health interventions, and help protect people with cognitive impairments from
unintended consequences.

Policy Concept Description Example

Community-
centered care
approaches to
design

In order to ensure robots can accurately
address and adapt to the needs of people
with cognitive impairments, robot de-
velopers must closely involve key stake-
holders, including people with cogni-
tive impairments, care partners, and
clinicians throughout the development
process.

User-centered design approaches and offering
“whole person care.”

Justice and
accessibility

Roboticists should support and encour-
age accessibility of care robots in order
to ensure that they are affordable and
usable for people with cognitive impair-
ments and their care partners.

Curb the cost of production, use affordable
materials, and leverage open-source solutions.
Partner with health systems to understand lo-
cal community needs and barriers with regard
to technology adoption.

Educating care
partners and
clinicians

It is important for care partners and
clinicians to be educated on the poten-
tial risks of using a personalized care
root in order to mitigate its potential for
harm.

Provide care partners the knowledge, re-
sources, and skills to be able to use robots
to best support people with cognitive impair-
ments through in-person education sessions
and resources they can refer back to later.

Promoting the
agency of people
with cognitive
impairments

A robot’s morphology and behaviors
should support the autonomy of people
with cognitive impairments when possi-
ble in order to support their dignity and
individuality.

Practice user-centered design, make systems
intuitive and easy to control, and establish
systems through which people with cognitive
impairments (and/or care partners) can ex-
press their preferences.

adopting user-centered design approaches and offering “whole person care” (i.e. care that aims

to improve a person’s situation as a whole by addressing their social and/or behavioral needs in

addition to their physical health) is essential to recognizing a user as a person and addressing

their well-being as individuals beyond simply someone living with cognitive impairments [262].

Our earlier work suggests several design guidelines to contextualize new roles and

behaviors for assistive robots within the person’s family caregiving paradigm, including: a)

relieving a care partner’s emotional burden by communicating facts and information people with

cognitive impairments may not want to hear or make them do things they may not want to do,

b) redirect people with cognitive impairments to more positive interactions during emotionally

difficult times, and c) accentuating positive shared moments [316]. Furthermore, our recent
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work on community-centered design for people with dementia suggests that using non-verbal,

embodied action prompts as a health intervention for caregiving technology can help convey

meaning, improve the sense of self of a person with dementia, and reduce the burden of care

partners [166].

As researchers continue this avenue of exploration, it will be important to consider the

needs and goals of the community in addition to those of individual end users, which may

require closer collaborations between ethicists, engineers, and other stakeholders [166, 209].

This will help empower people with cognitive impairments and their care partners by supporting

their independence and promoting their agency, as well as mitigate the risks of social isolation,

objectification, and deception that personalization might cause [470].

Both Dixon et al. [113] and Guan et al. [166] suggest several methods for engaging

in these research practices, such as conducting interviews, community design workshops, and

family meetings. Robotics researchers have used tools including low fidelity design probes,

sketches, and foam blocks to help stakeholders communicate their ideas and envision interactions

with a robot during these design sessions [166, 316]. In addition, employing these methods

remotely is particularly important because people with cognitive impairments and their care

partners are primarily older adults, and thus at a higher risk for severe illness and death from

COVID-19. Furthermore, remote studies provide the opportunity of having people in their

normal home environment rather than controlled environments during the study [113], which

can help provide better contextualization to researchers.

8.4.2 Justice and accessibility

There is a growing movement among the robotics and caregiving communities to support

fair distribution and universal access to technologies for care [166, 207]. Nonetheless, robots

that can adapt their behavior to be personalized to people with cognitive impairments may

be more expensive to develop and produce than their non-personalized counterparts due to

more complex hardware or software. However, due to the limited low-cost and open-source
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technologies currently available or in development, the adoption of personalized care technologies

is likely to be limited by socio-economic factors, or even exacerbate a growing socio-economic

divide [209]. This concern underlies the fact that many people with cognitive impairments may

live in poverty, may not have access to broadband internet, and care partners often have low

technology literacy [166]. Thus, it is crucial that those developing and deploying personalized

assistive robots for caregiving consider the unique needs of this population to prioritize access.

There are many steps roboticists can take to support accessibility of these robots, which

may traditionally be prohibitively expensive for people with cognitive impairments and care

partners to adopt into their homes. These include curbing the cost of production, using affordable

materials, and utilizing and developing open-source solutions [207]. These steps can help reduce

the cost of a product for end users, or potentially make it possible for them to create their own (e.g.

3D printing hardware and downloading software). Decommodification of assistive technology

for people with cognitive impairments is an alternative solution to lowering cost for users and

improving the accessibility of these products (e.g. offering robots through a rental service or

long-term care insurance system) [80].

In addition, roboticists across industry and academia can partner with health systems

to learn more about the cost-related barriers to technology adoption and sustainment unique to

the populations they serve. Such partnerships can help roboticists create robots that are more

likely to be purchased by healthcare systems, rather than patients. Most healthcare systems are

incentivized by payers to improve health outcomes (e.g., reducing unplanned hospital visits

among home health patients [359]), which in turn incentivizes them to adopt new interventions

in support of those goals.

Increasing accessibility to technology also entails ensuring it is intuitive and usable by

the intended end users: people with cognitive impairments and their care partners. However, this

population tends to be older adults with low technology literacy. One approach to improving

usability for this population is to integrate familiar features into the design of a device, such

as touch screens or verbal communication. Developers can also design technologies that are
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based off of or extend the functionality of existing items in a person’s home, such as a smart

photo frame. Leveraging aspects of objects and technologies that people may already be familiar

with can improve the acceptability and usability of new technologies for people with cognitive

impairments and care partners.

8.4.3 Educating care partners and clinicians

As the number and quality of robots to support people with cognitive impairments

increase, so too will the number of care partners who will adopt personalized assistive robots

into their caregiving routine. While these robots will ideally help alleviate their caregiving

responsibilities and enable them to have more productive interactions with people with cognitive

impairments, it is essential that care partners and clinicians understand how to use these robots,

as well as the potential risks associated with using them. This will help ensure that stakeholders

have realistic expectations of the robot’s capabilities and expected impacts, as well as help them

understand how to regulate responsible use of these robots. For example, it is important that

care partners are aware of the possibility that the personalized behavior of these robots can

lead a person to form stronger attachments with them, so care partners can recognize signs of

over-attachment and know what steps to take to prevent escalation to social isolation.

To help facilitate this education, there are several approaches the robotics and caregiving

communities can take, including face-to-face content delivery and providing easily accessible

information that stakeholders can refer back to. Research shows that the majority of education

about dementia caregiving in general is delivered in face-to-face interactions [371], so this is a

natural way to teach care partners about personalized CARs as well. In fact, in our conversations

with clinicians who work with people with cognitive impairments and their care partners, they

recommended having an individual in-person session with stakeholders to teach them about

technology before they use it. This enables roboticists to immediately answer any questions a

care partner might have, show them demonstrations of the robot in a controlled environment, and

help lower technical barriers to use. Berridge et al. [36] similarly recommends including people
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with cognitive impairments in the installation and onboarding processes of new technologies.

In addition to an in-person education session, our conversations with clinicians revealed

that it is beneficial to provide important information in a form that stakeholders can easily refer

back to later. For instance, developers might give stakeholders a manual that covers the main

points that they should know, or print a QR code on the robot itself that links to a digital version of

the information. Regardless of the form, the information should be written in common language,

preferably accompanied by icons or images to improve its accessibility, as care partners often

have low technology literacy [168]. Thus, they can easily find and refer back to the information

if they have questions.

In addition to the many opportunities for personalized CARs to support people with

cognitive impairments, robots can also be a powerful tool that support training and education for

care partners and other stakeholders. Neither formal nor informal care partners receive adequate

training and support to provide effective care for people with cognitive impairments [371, 379].

However, studies have shown that having this knowledge can help improve both the quality of

care they can provide [7], as well as health outcomes for care partners themselves [7, 425]. Thus,

it is crucial that care partners are provided the knowledge, resources, and skills to be able to use

personalized CARs to best support people with cognitive impairments, while also maintaining

their own health and well-being [262].

8.4.4 Promoting the agency of people with cognitive impairments

As discussed in Section 8.2.2, it is extremely important to encourage the autonomy of

people with cognitive impairments when designing personalized assistive robots in order to

support their dignity and individuality. There are multiple steps developers can take to help

promote a person’s agency, including practicing user-centered design to make systems intuitive

and easy to control and establishing systems through which people with cognitive impairments

(or care partners, in their place) can express their preferences.

Developing robots that are intuitive for people with cognitive impairments will help
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ensure that they can easily communicate their needs to the robot. This can improve their

ability to modify the robot’s behavior, thus promoting their agency [117]. As discussed in

Section 8.4.2, intuitive interaction can be achieved by leveraging familiar features such as voice

commands or touch screens, and using or alluding to common objects such as a radio as shown

in Figure 8.1.2 [166]. Applying a critical dementia lens to the design of personalized robots (and

care technology in general) is essential to ensuring that robots can best support stakeholder needs

and interests while also preserving their agency and personhood.

In addition, developers can also promote the agency of people with cognitive impairments

by establishing systems through which they can express their preferences. For example, people

with cognitive impairments may provide advanced directives (i.e. specifying their desires before

the onset of their condition) or consent by proxies (i.e. delegating decisions to a trusted individual

such as a family member) [207]. Moreover, developers can design robotic systems that require

people with cognitive impairments to be active participants in decision making. For instance,

the robot can offer a variety of stimulating activities for a person and prompt them to choose.

While these are not foolproof methods to understanding the wishes of a person with cognitive

impairments, these approaches may be the closest that an assistive robot can get to understanding

the desires of a person when they are not necessarily in a state of mind to communicate or fully

reason about a decision.

8.5 Chapter Summary

Personalized robots have the potential to vastly improve whole person care for people

with cognitive impairments, but it is also important to minimize the risks they might pose. The

risks raised in this work are but a few potential challenges that accompany these technologies,

demonstrating the need for continued and critical exploration into the potential consequences of

personalizing CARs, particularly for people cognitive impairments.

Weighing the benefits and risks of behavior adaptation in this domain can help guide
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robot developers, policy makers, and other stakeholders as they help shape a world where robots

can assist with care in homes, hospitals, and other community care settings. Moving forward,

it will be essential for these stakeholders to acknowledge and address the potential risks of

these technologies when developing technology, policy, and other advancements in this space.

Promoting this culture of ethical awareness will be more likely to produce safe and ethically-

informed personalized technologies which mitigate their risks while augmenting their benefits.

We hope that our work will inspire roboticists to consider the potential risks and benefits of robot

personalization, and support future ethically-focused robot design.
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Chapter 9

Conclusion

This chapter discusses the main contributions of my research to the the fields of HRI,

robotics, and pervasive health. I then briefly introduce future research avenues which follow from

my work, and broader open questions which will need to be addressed to enable personalized

robot interactions in real-world settings. Finally, this chapter concludes with closing remarks.

9.1 Contributions

9.1.1 Identified how non-visual sensor modalities can be combined in a
complementary fashion to detect human activity.

When robots are deployed to dynamic, real-world environments such as a person’s home,

they need to be able to perceive their surroundings. A robot must be able to reliably understand

what a person is doing, how to react to it, and observe the person’s response to its actions.

Many existing activity recognition systems rely on visual cameras, sometimes in con-

junction with audio sensors. But in real-world environments, visual sensors are often impractical

due to occlusion caused by poor lighting or dynamic objects. In addition, these sensors introduce

privacy vulnerabilities when placed in spaces such as a person’s home [78].

In order to enable robots to understand human activity in these privacy-sensitive envi-

ronments, I identified how non-visual sensors can be combined to recognize human activity

automatically (see Chapter 3). I explored the relative efficacies of two prevalent sensor modalities,
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motion capture camera and wearable sensors, for recognizing gross and fine motion. While both

sensor modalities have proved effective for activity recognition, I aimed to discern how they

might be combined in a complementary fashion to more accurately detect a wider variety of

activity.

Thus, I collected a new dataset of people performing two tasks predominantly charac-

terized by each motion type. Using this data, I employed standard classification algorithms for

HAR, and found that motion capture yielded higher accuracy than wearable sensors for gross

motion recognition, while the wearable sensor yielded higher accuracy for fine motion.

These findings suggest that the motion capture and wearable sensors offer complemen-

tary strengths which can be leveraged to recognize complex activities and help robots better

understand human intention. Thus, depending on the types of relevant activities in the space,

robots may need different kinds of sensor data, or even a combination of sensor modalities, to

accurately recognize the intentions of their human counterparts.

9.1.2 Developed a new deep learning algorithm for recognizing fine-
grained activity for dynamic, real world settings.

Robots can quite accurately recognize activity consisting of full-body movements such

as walking or bending down. However, recognizing fine-grained motion, like hand or finger

movements, is much more difficult, but imperative for accurately understanding human intention

in the real world.

Thus, I explored the use of multimodal, deep learning approaches and non-visual wearable

sensors to recognize fine hand and finger movements (see Chapter 3). In this work, I designed a

hybrid Convolutional Neural Network Long-Short-Term Memory classifier (CNN-LSTM) which

captures both convolutional and temporal features from a wearable sensor which captures both

inertial and muscle activity data.

I compared this classifier to other common approaches and found that my hybrid CNN-

LSTM architecture outperformed existing state-of-the-art approaches, likely due to its ability to

182



automatically extract relevant features from raw data and leverage the temporal nature of activity

data. I also found that augmenting inertial data with muscle activity yielded higher accuracy than

inertial data alone, suggesting that it assisted most classifiers in categorizing tasks that involved

targeted hand movements and helped discern between tasks with similar broad arm movements.

However, it had a detrimental effect on the recognition of other activities, which suggests that

additional modalities may confound classification on smaller or more intricate datasets.

These results underline the importance of evaluating all robotic systems on realistic data

for their target environment, as it cannot be assumed that previously successful classifiers will

perform well in all settings. Researchers must also carefully test the use of additional modalities

to select the ones that are most effective for their tasks.

9.1.3 Developed CARMEN, a robot which delivers a cognitive interven-
tion autonomously and longitudinally.

Home-deployed robots have great potential to fill care gaps to support the independence

of people with disabilities, and extend the accessibility of health interventions to the home.

However, a robot’s behaviors may need to vary widely depending on the user and context in

order to maximize engagement and intervention efficacy. Roboticists can leverage expertise from

stakeholders who have experience working with these populations in order to build algorithms to

enable robots to learn and adapt to users longitudinally.

I developed CARMEN in collaboration with neuropsychologists and people with MCI

(see Chapter 4). CARMEN is a robot which delivers cognitive interventions autonomously and

longitudinally to people with cognitive impairments at home. CARMEN sets the stage to extend

the accessibility of healthcare interventions to the home and ultimately improve health equity.

9.1.4 Developed JESSIE, a new robotic system which enables novice
programmers to program social robots.

Particularly in healthcare contexts, integrating expert and personal knowledge into a

robot’s behavior is essential to maintaining engagement and adherence over long periods of time,
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and ensuring that it is safe and appropriate for these populations. Robots can leverage domain

knowledge from stakeholders such as clinicians or family members to inform what actions are

most effective or appropriate.

Thus, it is critical that end users (e.g., people with disabilities), clinicians, and family

members can program robots without advanced skills in robotics or programming. However,

existing frameworks to support novice programmers are entirely procedural, require understand-

ing code structure, or do not allow high-level specification of desired behavior. This can lead to

unusable code or unexpected robot behavior, and must be extensively tested.

To address this problem, I developed JESSIE, a robotic system which enables novice

programmers to program social robots by expressing high-level specifications and leveraging

control synthesis approaches (see Chapter 5). JESSIE enables users to specify and synthesize

personalized activities, reactions, and behavioral constraints. Users can therefore focus on their

overarching goals, such as the training goals of a session, rather than specific implementation

details.

Overall, we found that by improving the accessibility of control synthesis, our system

enabled neuropsychologists to successfully program at least one interactive session for a person

with MCI. My analyses also revealed additional considerations robotic systems will need to

support stakeholders throughout longitudinal health interventions at home. Thus, this system

enables stakeholders to imbue robots with their domain knowledge and extend the reach of their

work by making control synthesis more accessible to novice programmers.

9.1.5 Proposed interaction design patterns for translating an existing
clinical intervention to a robot.

Existing robot-delivered interventions illustrate the promise of using robots long-term

in real-world contexts. For instance, there are numerous robot interventions to support social

and academic learning, mental health, and physical rehabilitation. For people with cognitive

impairments though, robots are just beginning to enter the space of delivering neurorehabilitation
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in the home, and they may increasingly be seen as an intervention themselves.

I explored how robots can longitudinally deliver an existing clinical intervention to

people with cognitive impairments at home. Using CARMEN as a design probe, I engaged in

a collaborative design research process with key stakeholders, including clinicians and people

with cognitive impairments (see Chapter 6). I identified design considerations to make robots

both physically and cognitively accessible to people with cognitive impairments. In addition,

my analysis revealed interaction design patterns for translating clinical interventions to robots in

order to maintain longitudinal engagement and maximize efficacy.

This work will guide roboticists through translating clinical interventions to robots,

support their longitudinal efficacy and engagement, and ultimately extend the accessibility of

longitudinal health interventions for people with cognitive impairments.

9.1.6 Defined a framework for robot-delivered health interventions with
collaborative goal setting capabilities.

Collaborative goal setting can help users be more aware of the impacts they see from the

intervention, and increase motivation, confidence, and self-efficacy. However, people may set

unrealistic goals for their current abilities without the guidance of a clinician, which can lead to

decreased motivation and engagement with the intervention if they do not see the therapeutic

outcomes they expect.

Thus, I explored how robots can support collaborative goal setting at home in collab-

oration with clinical participants and people with MCI. I co-designed how they envision a

robot supporting collaborative goal setting longitudinally at home. I implemented select robot

behaviors on CARMEN, and showed these interactions to participants with MCI.

I developed a new framework for roboticists creating longitudinal, robot-delivered health

interventions with collaborative goal setting capabilities (see Chapter 7). This framework com-

prised design considerations and concrete examples of robot behaviors for the major components

of collaborative goal setting which were co-designed with clinicians and people with cognitive
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impairments. This includes how robots can help users set goals, measure goal progress, deliver

intervention content to support transfer to the real world, and motivate people to achieve their

goals.

My work lays the foundation for enabling robots to support motivation and goal achieve-

ment throughout a longitudinal intervention at home.

9.1.7 Identified ethical considerations of personalized robots for people
with cognitive impairments.

CARs have great potential to support people with cognitive impairments and their care

partner. Personalizing these robots to an individual’s abilities and preferences can help enhance

the quality of support they provide, increase usability and acceptability, and alleviate care partner

burden [7, 166, 316]. However, personalization can also introduce many risks, which I explored

in Chapter 8.

These risks include risks to a person’s safety and autonomy, the potential to exacerbate

social isolation, and risks of being taken advantage of due to dark patterns in robot design. I

weighed the risks and benefits of personalization by drawing on empirical data garnered from

the existing ecosystem of robots used for dementia caregiving.

I also explored ethical considerations for developing personalized CARs for people with

cognitive impairments, including how a robot can practice beneficence, where responsibility falls

if harm occurs to a person because of a robot, and how a robot can acquire informed consent

from people with cognitive impairments. I proposed key technical and policy concepts to help

robot designers, lawmakers, and others to develop personalized robots that protect users from

unintended consequences, particularly for people with cognitive impairments. We hope that by

promoting a culture of ethical awareness, technologists will produce safe and ethically-informed

personalized systems which mitigate their risks while augmenting their benefits.
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9.2 Future work

9.2.1 Learning from multiple data sources

Chapter 4 introduced CARMEN, which utilizes information such as interaction frequency

and activity performance in order to learn about a person and their goals and goal progress.

However, this work only scratched the surface of what robots can learn in order to safely and

appropriately adapt their behavior to users, particularly people with disabilities. There are other

kinds of data that robots can leverage to understand a person’s state, preferences, and abilities. For

example, in Chapter 3, I introduced new methods that enable robots to automatically recognize

human activity using non-visual wearable sensors. This work was essential for automatically

recognizing a person’s physical movements and responses in privacy-sensitive environments.

Robots can also leverage data communicated directly from users and other stakeholders, such as

through systems like JESSIE which I introduced in Chapter 5.

In my future work, I will explore how a robot can automatically infer a person’s state

and appropriately adapt its behavior by leveraging data from interactions between the person

and robot, external sensors, and explicit feedback from stakeholders. There are many exciting

questions I plan to explore in this space to support human-centered AI and design. For instance,

what data are representative of different goals and goal progress, and how can robots collect that

information while respecting user privacy? How can a robot balance these different, possibly

conflicting, streams of data to develop an interaction that can support a person’s personal needs

and health goals? These investigations are critical to developing systems that can safely and

accurately support people longitudinally in privacy-sensitive environments.

9.2.2 Quantification of goals and goal progress

In Chapter 7, I introduced the first framework for enabling robots to facilitate collaborative

goal setting with users during a longitudinal clinical intervention. This framework was drawn

from existing clinical practice and co-designed with clinicians and people with MCI. However,
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measuring intervention goals and goal progress can be challenging due to the broad nature of

these goals, as well as the fact that goal progress may vary widely depending on the individual

person and current context.

To address this problem, clinicians recommended using self-report measures such as the

Goal Attainment Scale to measure progress, motivation, and confidence in achieving goals over

time [457]. This scale allows each person to set their own goals and what success means for

them, based on their current and expected levels of performance. However, this approach relies

on users to self-report their progress, which may not always be accurate due to bias in reporting,

or misremembering past behavior.

Thus in my future work, I plan to develop quantitative representations of goals and goal

progress in order to enable robots to automatically measure a person’s progress using other types

of data. For instance, a robot could leverage explicit data from users such as survey responses,

and implicit data such as their performance on activities and interaction frequency or duration. I

will explore how to combine existing clinical measures with the behaviors that a robot observes

in order to provide a more accurate understanding of goal progress and enable robots to better

understand their human counterparts.

9.2.3 Learning from and adapting to groups of people

The work discussed in this dissertation assumes dyadic interactions, where the robot

learns from and delivers a cognitive intervention to one person. However, there are many

situations where a home-deployed robot may have to interact with many people at once, such as

facilitating a group activity among family members, or conveying a person’s intervention goal

progress to clinicians and family.

Thus, I will explore how robots can learn and interact with groups of people. Interacting

with a group of people may also help a robot understand how to translate preferences shared by

the group (e.g., cultural preferences, intervention goals) to individual interactions. This work

will enable robots to learn and adapt to multiple people, extending their utility and acceptance,
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and opening their feasibility for additional applications and settings, such as senior living

communities.

9.3 Open questions

9.3.1 How can robots leverage knowledge from limited previous interac-
tions to adapt to new scenarios?

In real-world environments, robots will undoubtedly encounter scenarios they were not

trained to handle, and robots may respond with unpredictable behavior that may be inappropriate

for the given context. This can lead to disastrous consequences, particularly in potentially risky

situations such as when interacting with people with disabilities. For example, a robot might

need to provide different types of support to a person with dementia than to a person with both

dementia and diabetes.

Many existing systems rely on large amounts of data (i.e. “big data”) gathered from a

variety of users to train machine learning algorithms which can help increase the number of

previously seen scenarios [229]. However, people with disabilities are often underrepresented in

these datasets, and these datasets typically lack context surrounding their conditions, so these

models may not fully address the needs of these users [495]. Thus, it will be critical for robots to

quickly and accurately adapt to new scenarios from a small number of interactions in order to

best support people in new contexts.

In addition to these technical challenges, there are also ethical considerations that arise

in the context of home-deployed robots for people with disabilities as discussed in Chapter 8.

For example, robots will need to gather an adequate amount of data about a person in order to

robustly exhibit personalized behavior, but it is unclear how to accomplish this without infringing

on a person’s privacy.

Robots may be able to transfer knowledge from interactions with previous users in

order to quickly adapt to new users or contexts. However, biases and stereotypes about certain
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populations may be reflected in the data used to train a robot system. It will be important for

robotics researchers to avoid perpetuating harmful stereotypes or causing harm to these people.

9.3.2 How can a robot continually learn and adapt its behavior to best
support a person throughout an intervention?

Continuous adaptation is essential for maintaining a person’s interest and engagement,

which may then translate to increased adherence to and efficacy of a longitudinal intervention.

While much existing research in robot learning and adaptation has focused on short-term in-

teractions, researchers are exploring how robots can continually learn and adapt to users over

long periods of time [219, 274]. The longitudinal nature of home-deployed health interven-

tions presents unique challenges for robotics, including enabling robots to exhibit personalized

behavior that evolves with the user’s current context or needs.

For instance, a person’s abilities may change as their condition progresses over time.

In an ideal world, they will maintain their current abilities or level of independence, or even

show improvement as a result of the intervention. However, it is also possible that their abilities

will decline over time. A clinician may also have different goals for a robot depending on the

individual and their abilities, such as for observation or intervention delivery. Thus, a robot’s

role may need to change throughout an intervention, for example, by providing more active or

passive support.

This is a highly nuanced problem that will need to be explored thoroughly in order for

robots to successfully provide appropriate support to users. Some challenges include how a robot

can understand what level of support a user needs, when to switch between different roles, and

what behavior is appropriate for a user in a given situation.

9.3.3 How can robots be deployed longitudinally to support people in
dynamic, privacy-sensitive environments?

As researchers continue to design robots for dynamic, privacy-sensitive environments

such as the home, there are many considerations to ensure these systems are safe, effective, and
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robust. Researchers are increasingly exploring the use of assistive robots to support people, but

more work is required to understand the long-term impact of personalized cognitively assistive

robots in home settings.

Long term robot deployments are notoriously complex, which reveals many open research

questions with regards to developing and deploying these robots longitudinally for real world

applications. These include: How can home-deployed robots and embodied AI systems be

engineered to support longitudinal system reliability? How can robots be designed to maximize

usability for non-technical users?

Roboticists will also need to collaborate with clinical experts and end users to evaluate the

efficacy of these systems on human factors such as intervention outcomes, transfer of intervention

skills to the real world, and clinician workflow. This will help contextualize these systems to

home settings for the target population, and ultimately help researchers understand the technical,

ethical, and social implications of these personalized robot systems.

9.4 Closing remarks

My research addresses fundamental challenges in robot design, learning, and adaptation,

which are critical to enabling them to support people in dynamic, real-world environments.

My work aims to transform how robots longitudinally interact with people, with the ultimate

goal of enabling more safe and effective human-robot interaction, particularly for underserved

populations.

As robots enter human-centered spaces, they will need to accurately and robustly adapt

their behavior in ways that are safe and appropriate for an individual. Robots have great potential

to improve the accessibility of key services such as healthcare and make great strides to reducing

health disparities, and my work will shape how technology supports and empowers people.

Throughout my Ph.D., I designed and developed algorithms and systems which enable robots to

continuously learn from people in the real world.
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My research opens the door for the development of socially impactful technologies which

can autonomously learn from and adapt to people. It is my hope that this work encourages other

robotics researchers to critically consider how these systems can safely, effectively, and ethically

support people in their everyday lives.
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Glossary

adaptation The ability for a system to autonomously modify its behavior to be personalized to

an individual. 19

attention and concentration A cognitive domain which focuses on the ability to focus on

something for a prolonged period of time. 193

behavioral interventions A health intervention that aims to alter a person’s behaviors. 13

CARMEN (Cognitively Assistive Robot for Motivation and Neurorehabilitation) A robot

we developed which autonomously and longitudinally delivers ME-CCT to people with

MCI at home. 6

cognitive domains Areas of functioning which MCI may affect. The domains targeted by the

strategies taught during ME-CCT include organization and prospective memory, attention

and concentration, learning and memory, and executive functions. 13

cognitively assistive robot (CAR) Robots designed to support healthy cognitive functioning. 3

collaborative goal setting The process in which clinicians and people receiving an intervention

will work together to identify and manage their goals for the intervention. It can help

improve motivation, increase engagement, and set realistic expectations for the intervention.

122

compensatory cognitive training (CCT) A type of behavioral treatment that teaches metacog-

nitive strategies to help strengthen a person’s cognitive abilities to minimize the impact of
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MCI on their daily life. 14

control synthesis A technique to automatically transform high-level specifications into control

guaranteed to satisfy the specification. 78

convolutional neural networks (CNN) Deep learning architectures that extract convolutional

features from input data. 54

dark patterns A design element that aims to deliberately manipulate users into doing something

they would otherwise not do. 158

dementia A syndrome entailing noticeable cognitive decline. It can also lead to significant phys-

ical, social, and economic burden for both the person with dementia and their caregivers.

There are numerous types and causes of dementia, including degenerative neurological

diseases (e.g. Alzheimer’s, Parkinson’s) and vascular disorders (e.g. stroke). 12

design considerations Factors that may affect the requirements of a system. 104

design patterns In HRI, design patterns describe repeatable, general social and physical inter-

actions between humans and robots which can be used for interaction design. 104

design probe An object used to engage with users and explore its use with regards to a particular

question or context. 105

executive functions A cognitive domain which focuses on the ability to perform higher-level

thinking tasks, such as decision-making, problem solving, and planning. 193

FLEXI The robot platform on which we based our development of CARMEN. It was originally

designed by the Momentary Experience Lab at the University of Washington. 68

Goal Attainment Scale (GAS) An individualized outcome measure that enables clinicians and

people receiving an intervention to set their own goals and success measures based on

their current and expected levels of performance. 139
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grounded theory A qualitative data analysis approach. Researchers analyze the data for codes,

and iteratively categorize these codes into themes to reveal the main concepts of the data.

89

human robot interaction (HRI) A field of study focusing on the interaction between people

and robots. 1

JESSIE (Just Express Specifications, Synthesize, and Interact) A robotic system we devel-

oped to enable novice programmers to program social robots by expressing high-level

specifications. 79

Kuri One of the robot platforms on which we prototyped CARMEN. It was developed by

Mayfield Robotics. 68

learning and memory A cognitive domain which focuses on the ability to store and retrieve

information from memory. 193

linear temporal logic (LTL) A temporal logic formalism which can be used to express tasks

and automatically transform them into robot behaviors. In our context, this may include

specifying assumptions about the robot’s environment (e.g. the state of the PwMCI) and

requirements on the robot’s behavior (e.g. how to react if the PwMCI is not engaged). 80

long short-term memory (LSTM) A type of recurrent neural network that extracts temporal

features over time to learn long-term dependencies from input data. 54

longitudinally Across a long period of time. In the context of delivering CCT, approximately

eight weeks. 2

LTLstack A tool for mapping LTL formulas to ROS nodes and executing the synthesized

controller. At each time step, LTLstack reads information from the sensor nodes, finds the

next state in the controller, and activates behavior nodes. 81
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metacognitive strategies Methods which help people understand the way they learn. 14

mild cognitive impairment (MCI) A prodromal, or intermediate, state between normal aging

and dementia. It can impact numerous areas of cognitive functioning including memory,

attention, and executive functioning. Approximately 10-15% of people who experience

MCI convert to some form of dementia. 6

motion capture Technology that records a person’s movement. 36

neurorehabilitation Rehabilitation interventions which aim to compensate for challenges expe-

rienced due to cognitive impairment. 14

organization and prospective memory A cognitive domain which focuses on the ability to

organize one’s life in order to help remember to do things in the future. 193

people with MCI People diagnosed with MCI. 6

personalization Tailoring a system to an individual by considering factors such as their needs,

goals, or preferences. 1

reflexive thematic analysis (RTA) A qualitative data analysis approach. RTA is a thematic

analysis approach which acknowledges that researchers analyze and engage with the data

through their own lens. It aims to reveal richer themes and interpretations of the data. 129

Robot Operating System (ROS) A middleware suite of software libraries which abstracts

hardware to enable robot programmers to develop platform-agnostic programs. 40

social robots Robots that communicate with people using social cues such as gestures, speech,

and facial expressions. 4

stakeholders People with an interest in the developed technology. In our context, these may

include people with cognitive impairments, family members, and clinicians. 2
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translational science The process of translating fundamental research to the real world. In

our work, we explore how to translate a clinician-delivered cognitive intervention to a

robot-delivered intervention at home. 105
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Acronyms

k-NN k-Nearest Neighbors. 37

ADL Activity of Daily Living. 15

ANOVA Analysis of Variance. 45

CAR Cognitively Assistive Robot. 4

CARMEN Cognitively Assistive Robot for Motivation and Neurorehabilitation. 6

CCT Compensatory Cognitive Training. 14

CNN Convolutional Neural Network. 54

FSM Finite State Machine. 29

HAR Human Activity Recognition. 36

HRI Human Robot Interaction. 1

ICC Intraclass Correlation. 43

IMU Inertial Measurement Unit. 39

IRB Institutional Review Board. 10

JESSIE Just Express Specifications, Synthesize, and Interact. 79
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LDA Linear Discriminant Analysis. 37

LSTM Long Short-term Memory. 55

LTL Linear Temporal Logic. 80

MCI Mild Cognitive Impairment. 6

MIT-UCSD Massachusetts Institute of Technology - University of California San Diego. 37

RGB Red Green Blue. 24

RL Reinforcement Learning. 30

RNN Recurrent Neural Network. 34

ROS Robot Operating System. 40

RTA Reflexive Thematic Analysis. 129

sEMG Surface Electromyography. 37

SMART Specific Measurable Achievable Relevant Time-based. 122

SUS System Usability Scale. 88

SVM Support Vector Machine. 37
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[70] W.-L. Chang, S. Šabanovic, and L. Huber. Use of seal-like robot paro in sensory group
therapy for older adults with dementia. In 2013 8th ACM/IEEE International Conference
on Human-Robot Interaction (HRI), pages 101–102. IEEE, 2013.

[71] C.-A. Chao. The impact of electronic health records on collaborative work routines: A
narrative network analysis. International Journal of Medical Informatics, 94:100–111,
2016.

[72] J. I. Charlton. Nothing about us without us: Disability oppression and empowerment.
Univ of California Press, 2000.

[73] K. Charmaz. Constructing grounded theory. Sage, 2014.

205



[74] H. Chen, H. W. Park, and C. Breazeal. Teaching and learning with children: Impact of
reciprocal peer learning with a social robot on children’s learning and emotive engagement.
Computers & Education, 150:103836, 2020.

[75] S.-C. Chen, W. Moyle, C. Jones, and H. Petsky. A social robot intervention on depression,
loneliness, and quality of life for taiwanese older adults in long-term care. International
psychogeriatrics, 32(8):981–991, 2020.

[76] R. Chereshnev and A. Kertész-Farkas. Rapidhare: A computationally inexpensive method
for real-time human activity recognition from wearable sensors. J Amb Intel Smart En,
10(5):377–391, 2018.

[77] A. Cherubini, R. Passama, A. Crosnier, A. Lasnier, and P. Fraisse. Collaborative man-
ufacturing with physical human–robot interaction. Robotics and Computer-Integrated
Manufacturing, 40:1–13, 2016.

[78] C. Chhetri and V. Motti. Identifying vulnerabilities in security and privacy of smart home
devices. In National Cyber Summit (NCS) Research Track 2020, pages 211–231. Springer,
2021.

[79] J. Choi and E. W. Twamley. Cognitive rehabilitation therapies for alzheimer’s disease: a
review of methods to improve treatment engagement and self-efficacy. Neuropsychology
review, 23(1):48–62, 2013.

[80] Y. Chou, S. B. Wang, and Y. Lin. Long-term care and technological innovation: the
application and policy development of care robots in taiwan. Journal of Asian Public
Policy, 12(1):104–123, 2019.

[81] D. J. Christensen, R. Fogh, and H. H. Lund. Playte, a tangible interface for engaging
human-robot interaction. In The 23rd IEEE International Symposium on Robot and
Human Interactive Communication, pages 56–62. IEEE, 2014.

[82] C. Clabaugh, D. Becerra, E. Deng, G. Ragusa, and M. Matarić. Month-long, in-home
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J. C. Millán-Calenti. Verbal fluency, naming and verbal comprehension: three aspects of
language as predictors of cognitive impairment. Aging & mental health, 18(8):1037–1045,
2014.

[300] C. Mateo, A. Brunete, E. Gambao, and M. Hernando. Hammer: An android based appli-
cation for end-user industrial robot programming. In 2014 IEEE/ASME 10th International
Conference on Mechatronic and Embedded Systems and Applications (MESA), pages 1–6.
IEEE, 2014.

[301] S. Matsumoto, P. Ghosh, R. Jamshad, and L. D. Riek. Robot, uninterrupted: Telemedical
robots to mitigate care disruption. In Proceedings of the 2023 ACM/IEEE International
Conference on Human-Robot Interaction, pages 495–505, 2023.

[302] S. Matsumoto, S. Moharana, N. Devanagondi, L. C. Oyama, and L. D. Riek. Iris: A
low-cost telemedicine robot to support healthcare safety and equity during a pandemic. In
International Conference on Pervasive Computing Technologies for Healthcare, pages
113–133. Springer, 2022.

[303] A. Matthias. The responsibility gap: Ascribing responsibility for the actions of learning
automata. Ethics and information technology, 6(3):175–183, 2004.

[304] A. Matthias. Robot lies in health care: When is deception morally permissible? Kennedy
Institute of Ethics Journal, 25(2):169–162, 2015.

224



[305] B. McCausland, L. Knight, L. Page, and K. Trevillion. A systematic review of the preva-
lence and odds of domestic abuse victimization among people with dementia. International
Review of Psychiatry, 28(5):475–484, 2016.

[306] C. McClain. Collaborative rehabilitation goal setting. Topics in stroke rehabilitation,
12(4):56–60, 2005.

[307] N. McDonald, S. Schoenebeck, and A. Forte. Reliability and inter-rater reliability in
qualitative research: Norms and guidelines for cscw and hci practice. Proceedings of the
ACM on human-computer interaction, 3(CSCW):1–23, 2019.

[308] S. M. McGlynn and D. L. Schacter. Unawareness of deficits in neuropsychological
syndromes. Journal of clinical and experimental neuropsychology : official journal of the
International Neuropsychological Society, 11(2):143–205, 1989.

[309] T. S. McNerney. From turtles to tangible programming bricks: explorations in physical
language design. Personal and Ubiquitous Computing, 8(5):326–337, 2004.

[310] K. Mehr, J. Silverman, M. Sharif, A. Barasch, and K. Milkman. The motivating power
of streaks: Incentivizing streaks increases engagement in effortful tasks. ACR North
American Advances, 2020.

[311] Q. Meng and W. Wu. Artificial emotional model based on finite state machine. Journal of
Central South University of Technology, 15(5):694–699, 2008.

[312] S. E. Mengoni, K. Irvine, D. Thakur, G. Barton, K. Dautenhahn, K. Guldberg, B. Robins,
D. Wellsted, and S. Sharma. Feasibility study of a randomised controlled trial to investigate
the effectiveness of using a humanoid robot to improve the social skills of children with
autism spectrum disorder (kaspar rct): A study protocol. BMJ open, 7(6):e017376, 2017.

[313] M. Mills and M. Whittaker. Disability, bias, and ai. 2019.

[314] N. Mitsunaga, C. Smith, T. Kanda, H. Ishiguro, and N. Hagita. Robot behavior adaptation
for human-robot interaction based on policy gradient reinforcement learning. Journal of
the Robotics Society of Japan, 24(7):820–829, 2006.
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[437] A. Tapus, C. Tapus, and M. Matarić. Long term learning and online robot behavior
adaptation for individuals with physical and cognitive impairments. In Field and Service
Robotics, pages 389–398. Springer, 2010.
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