UC San Diego

UC San Diego Electronic Theses and Dissertations

Title
Essays on Structural Breaks and Forecasting in Econometric Models

Permalink
https://escholarship.org/uc/item/0gx089z4

Author
Baek, Yaein

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/0gx089z4
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO
Essays on Structural Breaks and Forecasting in Econometric Models

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy
in
Economics
by

Yaein Baek

Committee in charge:

Professor Graham Elliott, Chair
Professor Brendan K. Beare
Professor James D. Hamilton
Professor Dimitris N. Politis
Professor Allan Timmermann

2019



Copyright
Yaein Baek, 2019
All rights reserved.



The dissertation of Yaein Baek is approved, and it is accept-
able in quality and form for publication on microfilm and

electronically:

Chair

University of California San Diego

2019

iii



DEDICATION

To my parents, Seung-Gwan Baek and Kyung-Hee Cho.

v



TABLE OF CONTENTS

Signature Page . . . . . . .. e iii
Dedication . . . . . . . . . L e v
Table of Contents . . . . . . . . . . . . . e v
Listof Figures . . . . . . . . . . . e e vii
Listof Tables . . . . . . . . . . e viii
Acknowledgements . . . . . . . ... X
Vita . . e Xxi
Abstract of the Dissertation . . . . . . . . . . ... L L Xii
Chapter 1 Estimation of Structural Break Point in Linear Regression Models . . . . . 1
1.1 Introduction . . . . . . .. . .. .. 1
1.2 Structural Break Point Estimator . . . . . . ... ... ... .... 5
1.3 Partial Break with Multiple Regressors . . . . . . . ... ... ... 13
1.4 In-fill Asymptotic Distribution . . . . . . ... ... ... ..... 24
1.4.1 Partial break in a stationary process . . . . . .. ... ... 25
1.4.2 Break in an autoregressive model . . . . .. ... ... .. 33
1.5 Monte Carlo Simulation . . . . . ... .. .. ... ... .. ... 35
1.5.1 Univariate stationary process . . . . . . . . . . . . . . . .. 35
1.5.2  Autoregressive process . . . . . . . . . oo ou v a0 . 40
1.6 Empirical Application. . . . . . .. ... ... ... .. ... 45
1.6.1 U.S.real GDP growthrate . ... ... ........... 45
1.6.2  Stock return predictionmodels . . . . . .. ... ... ... 49
1.6.3  Oil price shock and output growth . . . . . ... ... ... 55
1.7 Conclusion . . . . .. ... ... 60

Chapter 2 Tests for Break in Coefficients in Linear Regression when the Direction of
the Breakis Known . . . . . ... ... .. L Lo 63
2.1 Introduction . . . . . . .. . ... 63
2.2 Directional Break Tests . . . . . . ... ... ... ... ..., . 65
2.2.1 The model and test statistics . . . . . .. ... .. ..... 65
2.2.2  Derivation and asymptotic distribution of test statistics . . . 70
2.3 Monte Carlo Simulation . . . . .. ... ... ... ....... 76
24 Empirical Application. . . . . . . ... ... Lo 93
241 US.realGDPgrowth . . ... ... ... ......... 94
24.2 US.labor productivity . . . . . ... ... ... ... 97



25 Conclusion . . . ... 99

Chapter 3 Forecasting in Long Horizons using Smoothed Direct Forecast . . . . . . . 101
3.1 Introduction . . . . . . . .. . L 101

3.2 Smoothness Mechanism on Direct Forecasts . . . . . . . ... ... 104

3.2.1 Direct versus iterated forecasting . . . . . . ... ... ... 104

3.2.2 Smoothed direct forecasts . . . . . ... ... 107

3.3 Empirical Applications . . . . . .. .. ... ... .. 111

33.1 Realoilprices .. ... ... ... ... .. .. ... ... 111

3.3.2 Macroeconomic variables . . . . ... ... L. 117

34 ConcludingRemarks . . ... ... ... ... ... ... ... 125

Appendix . . ... e 127
A.1 Proofs for Chapter 1 . . . .. ... ... ... .. ......... 127

A2 Appendix forChapter2 . . . . . .. ... ... ... ... ..... 142

A.2.1 Comparingmethods . . ... ... ............. 142

A.2.2 ProofsforChapter2 . . .. ... ... ... ........ 144

A3 Appendix forChapter3 . . . . . ... .. ... ... ... 148

Bibliography . . . . . . .. 159

Vi



Figure 1.1:
Figure 1.2:
Figure 1.3:
Figure 1.4:
Figure 1.5:
Figure 1.6:
Figure 1.7:
Figure 1.8:
Figure 1.9:

Figure 1.10:

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:

Figure 2.9:

Figure 3.1:

LIST OF FIGURES

Finite sample distribution of Pz
Mean and one standard deviation of |Vr (k)| and Vr (k)

Finite sample distribution of the break point estimator p
Conditional prior distribution 8|p ~ N(0,p(1—p))
(po = 0.15) Finite sample distribution of pPygw (left) and prg (right) . . . .
(po = 0.30) Finite sample distribution of pPygw (left) and prg (right) . . . .
(po = 0.85) Finite sample distribution of Pygw (left) and prg (right) . . . .
(Stationary to stationary) Finite sample distributions of pygw (left) and prg
(right)
(Local-to-unity to stationary) Finite sample distributions of pygw (left) and

ﬁLS (right) . . . . . o e
U.S. dividend yield (left) and term spread (right), 1952:7-2003:12

(Model 1, § correct) Finite sample power of the 5% level structural break
tests when 8 = (1,—1)’
(Model 1) Finite sample rejection probability of the 5% level structural break
tests when 8 = (1,1)’
(Model 1) Finite sample rejection probability of the 5% level structural break
tests when 8 = (—1,—1)’
(Model 2) Finite sample power of the 5% level structural break tests when
O=1 .
(Model 2) Finite sample rejection probability of the 5% level structural break
tests when 8 = —1
(Model 3) Finite sample power of the 5% level structural break tests when

O= (L, 1) . .
(Model 3) Finite sample power of the 5% level structural break tests when
O=(—1,1) . .

(Model 4) Finite sample power of the 5% level structural break tests when
Od=—1 .

(Model 5) Finite sample power of the 5% level structural break tests when

5—

Government spending response toanewsshock . . . . . ... ... ...

vil

13
37
38
39
43

44
55

87

88

90



Table 1.1:

Table 1.2:

Table 1.3:

Table 1.4:

Table 1.5:

Table 1.6:

Table 1.7:

Table 1.8:
Table 1.9:

Table 1.10:

Table 1.11:

Table 2.1:
Table 2.2:
Table 2.3:
Table 2.4:
Table 2.5:
Table 2.6:
Table 2.7:
Table 2.8:
Table 2.9:
Table 2.10:

Table 2.11:

Table 2.12:

Table 2.13:

Table 2.14:
Table 2.15:

LIST OF TABLES

Finite sample RMSE, bias, and standard error of the new estimator and the LS

eStMAtOr . . . . . . . . e e e e e e 40
In-fill asymptotic RMSE, bias, and standard error of the new estimator and
the LSestimator . . . . . . . . . ... L 41
Finite sample RMSE, bias, and standard error of the new estimator and the LS
estimator of the break point under the AR(1) model . . . . . ... .. ... 42
In-fill asymptotic RMSE, bias, and standard error of the new estimator and
the LS estimator of the break point under the AR(1) model . . . ... ... 45
Structural break date estimates of postwar U.S. real GDP growth rate in a
AR(I)model . . . . . . . . .. 48
Structural break date estimates of postwar U.S. real GDP growth rate in a
AR(1) model using 54 sub-samples . . . . . . ... ... L. 50
Structural break date estimates of the U.S. stock return (S&P 500) prediction
model . ... 53

Structural break date estimates of the UK (FTSE) stock return prediction model 54
Structural break point estimates of the relation between oil price change and

the U.S. real GDP growthrates . . . . . . ... ... ... ... ..... 56
Structural break date estimates of the relation between oil price change and

the U.S. real GDP growth rates from 50 sub-samples . . . . . ... .. ... 59
Structural break point estimates of the relation between oil price change and

the U.S. real GDP growth rates from 50 sub-samples . . . . . . .. .. ... 60
Asymptotic critical values for directional test statistics db% and dbl% ... 5
(Model 1) Pitman efficiency (or ARE) . . . . ... ... ... ....... 77
(Model 1) Rejection rate of structural break tests under no break . . . . . . 78
(Model 2) Rejection rate of structural break tests under no break . . . . . . 85
(Model 3) Rejection rate of structural break tests under no break . . . . . . 86
(Model 4) Rejection rate of structural break tests under no break . . . . . . 89
(Model 4) Pitman efficiency (or ARE) . . . . . ... ... ... .. ..... 91
(Model 5) Rejection rate of structural break tests under no break . . . . . . 93
(Model 5) Rejection rate of WLS directional break tests under no break . . . 93
Autoregressive Model of U.S. Real GDP Growth 1947Q1-2017Q2: Direc-

tional break test . . . . . . .. L 95
Autoregressive Model of U.S. Real GDP Growth 1947Q1-2017Q2: WLS

directional break test. . . . . . . .. . ... o 96
Autoregressive Model of U.S. Real GDP Growth 1947Q1-2017Q2; variance

is estimated pre- and post-1984Q1 . . . . . . .. ... ... 96
Autoregressive Model of U.S. Real GDP Growth 1960Q1-2017Q2: WLS

directional break test. . . . . . . . .. ... L 96
Autoregressive Model of U.S. labor productivity Feb 1947-Apr 2001 . . . . 98
Autoregressive Model of U.S. labor productivity Jan 1964-Dec 1994 . . . . 99

viii



Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:
Table 3.5:
Table 3.6:
Table 3.7:
Table 3.8:
Table A.9:
Table A.10:

Table A.11:
Table A.12:

Relative MSFEs of univariate direct forecast and iterated forecast (RAC). . .
Relative MSFEs of univariate direct forecast and iterated forecast (WTI). . .
Pointwise MSFE of univariate direct forecast and smoothed direct forecast

Pointwise MSFE of univariate direct forecast and smoothed direct forecast
(WTD. . .
Category (A) MSFE ratio of univariate smoothed direct forecast and direct
forecast. . . . . . . L
Category (B) MSFE ratio of univariate smoothed direct forecast and direct
forecast. . . . . . ..
Category (C) MSFE ratio of univariate smoothed direct forecast and direct
forecast. . . . . . L
Category (D) MSFE ratio of univariate smoothed direct forecast and direct
forecast. . . . . . . .
Category (A) Income, Output, Sales, Capacity Utilization . . . . . .. . ..
Category (B) Employment and Unemployment . . . . . .. ... ... ...
Category (C) Construction, Inventories and Orders . . . . . . ... .. ...
Category (D) Interest Rate and Asset Prices . . . . . ... ... ......

iX

113
113

116

117

120

122



ACKNOWLEDGEMENTS

I would like to thank my advisor Professor Graham Elliott, for his invaluable guidance and
advice throughout my graduate studies. I would also like to express gratitude to other members
of my committee, Professors James Hamilton, Brendan Beare, Allan Timmermann and Dimitris
Politis for their insightful comments in developing the dissertation.

I am also grateful to my friends in UCSD for their encouragement. Last but not the least,
I thank my parents and sister for their endless support along the way.

Chapter 1, in full, is currently being prepared for submission for publication of the material.
Baek, Yaein. The dissertation author was the sole author of this paper.

Chapter 2, in full, is currently being prepared for submission for publication of the material.
Baek, Yaein.; Elliott, Graham. The dissertation author was a primary author of this paper.

Chapter 3, in full, is a reprint of the material that has been accepted for publication at

Journal of Forecasting. Baek, Yaein. The dissertation author was the sole author of this paper.



VITA

2011 B. A. in Applied Statistics and Economics, Yonsei University, South Korea

2013 M. A. in Economics, Yonsei University, South Korea

2019 Ph. D. in Economics, University of California San Diego
PUBLICATIONS

“Testing Linearity Using Power Transforms of Regressors” with Jin Seo Cho and Peter C. B.
Phillips, Journal of Econometrics, 187(1), 376-384, 2015.

“Forecasting in Long Horizons Using Smoothed Direct Forecast”, Journal of Forecasting, Forth-
coming.

xi



ABSTRACT OF THE DISSERTATION

Essays on Structural Breaks and Forecasting in Econometric Models

by

Yaein Baek

Doctor of Philosophy in Economics

University of California San Diego, 2019

Professor Graham Elliott, Chair

Instability of parametric models is a common problem in many fields of economics. In
econometrics, these changes in the underlying data generating process are referred to as structural
breaks. Although there is an extensive literature on estimation and statistical tests of structural
breaks, existing methods fail to adequately capture a break. This dissertation consists of three
papers on developing econometric methods for structural breaks and forecasting.

The first chapter develops a new method in estimating the location of a structural break in
a linear model and provide theoretical results and empirical applications of the estimator. In finite
sample the conventional least-squares estimates a break occurred at either ends of the sample with

high probability, regardless of the true break point. I suggest an estimator of the break point that

xii



resolves this pile up issue and thus, provide a more accurate estimate of the break. The second
chapter constructs a statistical test to test existence of a structural break when the direction of
the parameter shift is known. In practice it is likely that a researcher is interested in testing for a
structural break in a particular direction because the direction is known, such as policy change or
historical data. We incorporate this information in constructing three tests that have higher power
when direction is correctly specified. The last chapter proposes a multi-period forecasting method
that is robust to model misspecification. When we are interested in obtaining long horizon ahead
forecasts, the direct forecast method is more favorable than the iterated forecast because it is
more robust to misspecification. However, direct forecast estimates tend to have jagged shapes
across horizons. I use a mechanism analogous to ridge regression on the direct forecast model to

maintain robustness while smoothing out erratic estimates.
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Chapter 1

Estimation of Structural Break Point in

Linear Regression Models

1.1 Introduction

Parameter instability in models is widely addressed in many economic fields. In macroe-
conomics and finance it is a common empirical problem, such as decrease in output growth
volatility in the 1980s known as “the Great Moderation”, oil price shocks, labor productivity
change, inflation uncertainty and stock return prediction models. It is often reasonable to assume
that a change occurs over a long period of time or some historical event affects the dynamics
of a structural model. Hence, interpretation of structural model dynamics or prediction models
would rely heavily on estimation and testing of parameter instability. In econometrics literature
these changes in the underlying data generating process (DGP) of time-series are referred to as
structural breaks. The timing of the break as a fraction of the sample size is called the break point.

Estimation methods in the structural break literature have been used to analyze threshold
effects and tipping points. Studies of policy change, income inequality dynamics and social

interaction models have used estimation methods from the structural break literature. Card, Mas,



and Rothstein (2008) estimate a tipping point of segregation arising in neighborhoods with white
preferences. The tipping point indicates the minority racial share of a neighborhood in which all
whites in the neighborhood would leave if the share exceeds the tipping point. Gonzélez-Val and
Marcén (2012) explore the effect of child custody law reforms and Child Support Enforcement
on U.S. divorce rates using the method of Bai and Perron (1998, 2003). Adapting structural break
tests allows testing without imposing any a priori timing which confirms the effect of policy
changes and also provides estimated break dates that can be matched with actual reform dates.

There is an extensive literature on structural break estimation methods, starting with
maximum likelihood estimators (MLE) on break points. Hinkley (1970), Bhattacharya (1987) and
Yao (1987) provide asymptotic theory of the MLE of the break point in a sequence of independent
and identically distributed random variables. Asymptotic theory of least-squares (LS) estimation
of a one-time break in a linear regression model has been developed by Bai (1994, 1997), with
extension to multiple breaks in Bai and Perron (1998) and Bai, Lumsdaine, and Stock (1998).
However there are few alternatives in literature to LS estimation of the break point, which is
equivalent to MLE in linear regression models. The main issue of LS estimation of the break
point is that its finite sample behavior depends on the size of the parameter shift. In many cases,
break magnitudes that are empirically relevant are “small” in a statistical sense. For instance,
quarterly U.S. real gross domestic product (GDP) growth rate from 1970Q1 to 2018Q2 has mean
0.68 and a standard deviation of 0.8 in percentage points. A break that decreases the quarterly
mean growth rate by 0.25 percentage point is less than a half standard deviation change, but it is
equivalent to a 1 percentage point decrease in annual growth which is a significant event for the
economy.

In asymptotic analysis a small break can be represented by a magnitude O(T’l/ 2) that
shrinks with sample size T so that structural breaks tests have asymptotic power strictly less
than one (Elliott and Miiller, 2007). In the presence of such small breaks, the LS estimate of

the break date is either the start or the end date of the sample period with high probability. In



other words, the LS estimator of the break point has a finite sample distribution that exhibits
tri-modality with one mode at the true value and two modes at zero and one. Break points at zero
or one do not give us any information about a structural break, nor is it likely to be true in practice.
Therefore, inference in practical applications based on LS estimation of structural breaks would
seem unreliable.

In this paper I provide a estimator of the structural break point that has a unique mode
at the true break and flat tails in finite sample. This is achieved by the modification of the
conventional LS objective function using a weight scheme. The LS break point estimates pick
zero or one with high probability due to the functional form of the objective, which is the sum of
two sub-samples partitioned by each potential break date k = 1,...,7 — 1. For k near the 1 or
T — 1, the objective function has large estimation uncertainty due to small sub-sample size. |
construct a weight function of the break point p = k/T on the unit interval and impose it on the
LS objective function to incorporate different estimation uncertainty across potential break dates.
Small weights shrink the variance of the objective at ends of the sample toward zero. Construction
of the weight function is explained intuitively and motivated by the Fisher information under a
Gaussian assumption. The new break point estimator is asymptotically equivalent to the mode of
the Bayesian posterior distribution! when the prior depends on the Fisher information.

The new break point estimator is consistent with the same rate of convergence as the
LS estimator (Bai, 1997) under regularity conditions on the weight functional form, in a linear
regression model with a structural break on a subset (or all) coefficients. I provide a limit
distribution of the break point estimator when the break magnitude is small, under a in-fill
asymptotic? framework. I follow the approach of Jiang, Wang, and Yu (2017, 2018) that shows the
in-fill asymptotic distribution captures the asymmetric and tri-modal finite sample properties of the

LS estimator in contrast to the conventional long-span asymptotic theory. The in-fill asymptotic

! Also known as the maximum a-posteriori probability (MAP) estimator.
’In-fill/continuous record asymptotics derives the limit distribution by assuming the time span is fixed with a
shrinking sampling interval under a continuous time approximation model.



distribution of the new estimator is also asymmetric due to dependence on the true break point,
but has flat tails with a unique mode. Thus, the new estimation method accurately estimates the
structural break point compared to LS estimation. Moreover, Monte Carlo simulations show that
the break point estimator has smaller mean squared error (MSE) than the LS estimator in finite
sample for all break point values considered.

I provide three empirical applications of my method: structural breaks on post-war U.S.
real GDP growth rate, the relation between oil price shock and U.S. output growth and one finance
application on U.S. and UK stock return prediction models. For the quarterly U.S. real GDP
growth rate under different sample periods, the new method estimates a break in early 1970s
whereas the LS estimates varies from 1970s to 1952 or 2000, which are near ends of the sample.
The break date estimate in early 1970s is matched with the “productivity growth slowdown”
suggested in literature such as Perron (1989) and Hansen (2001). Thus, the new method gives
reasonable break point estimates compared to the LS estimates, which is sensitive to trimming
of the sample. For the estimation of structural break on stock return prediction models and oil
price shocks, I follow the approach of Paye and Timmermann (2006) and Hamilton (2003); both
use LS estimation on structural break points. Similar to the first application, the new break point
estimates are not close to ends of the sample period and are robust to trimming.

The remainder of the paper proceeds as follows. Section 1.2 motivates and constructs the
new break point estimator for a mean shift in a linear process. Section 1.3 provides a generalized
linear regression model with multiple regressors, and proves consistency of the break point
estimator. Section 1.4 contains in-fill asymptotic theory for stationary and local-to-unit root
processes. Monte Carlo simulation results are in Section 1.5 and Section 1.6 provides three
empirical applications of the new structural break estimation method. Concluding remarks are

provided in Section 1.7. Additional theoretical results and proofs are in the Appendix.



1.2 Structural Break Point Estimator

We consider a linear regression model with multiple regressors under a one-time structural
break at an unknown date, which allows for partial break in parameters. Theoretical results are
provided in Section 1.3 under the general linear regression model. In this section we consider the
simplest regression model with a constant term to provide intuitive explanation on the construction
of the break point estimator. Suppose a single break occurs at time kg = [po7’| where pgy € (0, 1),
[-] is the greatest smaller integer function, and 1{r > k¢} is an indicator function that equals one

if t > ko and zero otherwise.

The disturbances {€;} are independent and identically distributed (i.i.d.) with mean zero with
E etz = 62. The pre-break mean is u and the post-break mean is u+ 8. Assume we know a one-time
break occurs but the break point py and parameters (u, 9, 62) are unknown.

The LS estimator of the break date is obtained by finding a value k that minimizes the
objective function S7(k)?, which is the sum of squared residuals (SSR) under the assumption
that k is the break date, S7(k)? = ¥~ (v — %) + Lty (r — 5;)%, where 3 = k! ZIJ‘-ZI y;j and
yi=(T—- k)~! ):]T:k +1Yj are pre- and post-break LS estimates under break date k, respectively.
Following the expression of Bai (1994), I use the identity Y7, (y; — 7)? = Sr(k)? + TVr(k)?
(Amemiya, 1985) where Vr(k)> =k/T(1—k/T) (5; —yk)z, to substitute the SSR. Then the LS

estimator of the break date is equivalent to

IQLS: argmax |VT<k>|, ﬁLS:]/%Ls/T. (12)
k=1,...,T—1

Denote p = k/T and pgo = ko/T. Under a small break magnitude |8|, the LS estimator pzg has

a finite distribution that is tri-modal, which has two modes at ends of the unit interval and one



mode at the true point pg. A break magnitude that is statistically small is not necessarily small in
an economic sense. For example, quarterly U.S. real gross domestic product (GDP) growth rate
from 1970Q1 to 2018Q2 has mean 0.68 and a standard deviation around 0.8 in percentage points.
A break that decreases the mean quarterly growth rate by 0.3 percentage point (1.2 percentage
point decrease in yearly growth) is a significant event for the economy. Suppose model (1.1)
has parameter values similar to the U.S. real GDP growth rate: assume pg = 0.3, the pre-break
mean is u = 0.88 percentage points and the shift in the mean of growth rate is d = —0.29. The
expectation of y, is u+ (1 — pg)d = 0.68, which matches the quarterly U.S. real GDP growth rate.
The finite sample distribution of the LS estimator of p under this model is provided in Figure
1.1 from a Monte Carlo simulation with 2,000 replications, assuming Gaussian disturbances
& "N (0,0.8%) and T = 100 observations. The finite distribution of ps shows tri-modality with
modes at {0.01,0.30,0.99}. The LS estimator fails to accurately detect the break that occurs in
the constant term of a univariate linear regression model. Thus we would expect that in practice,

structural breaks that are economically important are not large enough for the LS estimator to

detect in many cases. We can understand the finite sample property of LS estimator having two

Finite sample distribution of ¢ when (p,,4) = (0.3,-0.29)
0.12 T T

01
0.08 =
0.06
0.04

0021

o 01 02 03 04 05 06 07 08 09 1

Figure 1.1: Finite sample distribution of p.s when (pg,d) = (0.3,—0.29), T = 100 and €&, ~
i.i.d N(0,0.8%) with 2,000 replications.

modes at ends p € {0, 1} intuitively by examining the LS objective function in (1.2). For each



potential break date k = 1,...,T — 1, the objective function |V (k)| is constructed by partitioning
the sample into two sub-samples, before and after k. Each sub-sample is used to estimate two
different means, y; and )7;. If k is near 1, the pre-break sub-sample size k is small and likewise,
if k is near T — 1, the post-break sub-sample size T — k is small. Hence, when the potential
break date k of |V (k)| is near either ends of the sample, estimates of pre- or post-break mean is
imprecise due to small sub-sample size. This implies large variance of |V (k)| at boundaries so
that kzg is equal to 1 or 7 — 1 with high probability.

The left plot of Figure 1.2 shows the mean and one standard deviation band of the LS
objective function |Vr(k)|, and the function without the absolute term V7 (k) under standard
normal disturbances €& "N (0,1). Due to large estimation error the variance of |V (k)| is large
when & is near ends of the sample. In contrast, V7 (k) has a constant variance 7' across k.
Although both functions have a unique maximum at true break, the value of |V (k)| at boundaries
is only slightly less than its value at ko. Thus, it is likely that |Vr (k)| > |Vr(ko)| when k is near
ends such that the LS estimator is kzg = 1 or 7 — 1 with high probability.

Because the issue arises from large variance of the objective function at boundaries, we
can think of shrinking the variance accordingly. Suppose we impose non-negative “weights”
oy, for each k on the LS objective function |Vr(k)|, so that k with large estimation error has
smaller weights than k£ with small estimation error. For ends of the sample period k =1 and 7T — 1,
weights near zero are imposed, which implies the variance of the weighted objective function
oy|Vr (k)| would shrink toward zero. If we normalize the sample period into a unit interval so
thatp =k/T € {1/T,...,(T —1)/T}, the weights are represented by a continuous function ®(p)
on p € [0,1] that is zero at p € {0,1} and has positive values otherwise. Functions with such
properties would look like an inverse U-shaped (or concave downward) function on the unit
interval. The right plot of Figure 1.2 shows an example of a weight function, o(p) = (p(1—p))'/2.

The new break point estimator is the maximizing value of the objective function |Q7(k)|,



Weight function w(p) = (p(1-p))'?

0.18 s X 08
016} 7 S~ il 08t
/ ~~_ T 07
012, >SS 1 0.6
0.1 —/\, 05t
0.08 04f
0.06 [ 1 03
004 f g oz /

0.02 4 01

Figure 1.2: Mean and one standard deviation of |V (k)| and V7 (k) as a function of k, (po,8) =
(0.3,47~1/2) with T = 100 and &; ~ i.i.d N(0, 1). The blue (red) solid line is the mean of |V (k)|
(Vr(k)) and the blue (red) dotted line corresponds to the mean plus one standard deviation. The
right plot is weight function o(p) = (p(1 —p))'/2.

defined by multiplying weights @y to the LS objective |Vr (k).

k= argmax |Qr(k)|, p=k/T (1.3)
k=1,..T—1
KT -0\ _,
0= Vil =0 (5) sl

The distribution of |Q7 (k)| has smaller variance at ends of the sample. Hence, the weight function
eliminates small sample uncertainty of |V7 (k)| when k is near boundaries. Due to smaller variance
of the objective function at ends of the sample, the maximizing value & is less likely to pick either
ends.

Figure 1.3 shows the finite sample distribution of the break point estimator in (1.3), under
the same DGP of Figure 1.1. As expected, the break point estimator has flat tails at ends of the
unit interval with a mode at true break point pg = 0.3, whereas the LS estimator has modes at
zero and one. Additional Monte Carlo simulations are provided in Section 1.5. It shows that
the break point estimator has a finite sample distribution with a unique mode at true break and

flat tails regardless of the actual break location and magnitude. In contrast, the finite sample



distribution of the LS estimator is tri-modal for any true break point values.

Finite sample distribution of p when (pu,ﬁ] =(0.3,-0.29)

NEW

012

01

0.081

Figure 1.3: Finite sample distribution of the break point estimator p with weight function
o(p) = (p(1—p))'/? when (po,8) = (0.3,-0.29), T = 100 and & ~ i.i.d N(0,0.8?) with 2,000
replications.

It is intuitive to guess the inverse U-shaped functional form of weights, but where does
the particular weight function o(p) = (p(1 —p))'/? come from? This is equivalent to the square
root of the Fisher information of & conditional on p, assuming Gaussian disturbances. Suppose
& EY (0,62) in model (1.1). Lets fix the break point p and denote the conditional log-likelihood

function as /7(8|p), and the information matrix as /(8 |p), which is

el
1(8|p>.—E[—W}—c Tp(1-p) (1.4)

and thus, (p) o< [I(8]p)]'/2. Note that the Fisher information /(3 |p) is interpreted as a way of
measuring the amount of information about the unknown parameter 8, given p. In this case, the
Fisher information depends only on p (omit 62 for simplicity). Given two different values py # pa,
the inequality (8| p1) > I(8|p2) reflects the fact that observations carry more information on
the break magnitude if a break occurs at pj, compared to p;. In other words, we have more

information on the structural break at p; than when it happens at p,. If a break occurs with high

probability, the magnitude of d is far away from zero. If it is less likely, then d is close to zero.



Therefore, we can make use of the information on structural breaks by constructing a Bayesian

prior distribution of 8 conditional on p, depend on /(3| p).

8[p~N(0,1(8]p)), I(8]p)=p(1—p) (1.5)

When we have more information of a break occurring at some fixed p, the variance of the prior
distribution is large. Then d is more spread out from zero and has large magnitude with high
probability. If we have less information of a break at p, then J is centered toward mean zero and
the break magnitude is likely to be small. Similarly, a prior belief on p can be expressed using the

Fisher information?; a break is less likely to occur near ends of the unit interval.

£(8) o< det[I(8|p)]"/* = (p(1—p))'/2 (1.6)

The break point estimator in (1.3) with weight function @(p) = (p(1 —p))'/? can be
motivated by a Bayesian framework because it is asymptotically equivalent to the mode of the
Bayesian posterior distribution of p with priors (1.5) and (1.6). Estimation of a structural break
model is nonstandard and hence, it is likely that estimators such as the mode of the posterior, would
have smaller variance than the maximum likelihood estimator (MLE). Asymptotic efficiency of
the MLE of p has not been established under an unknown break magnitude* 8. A brief explanation
of why the MLE no longer has optimal properties is as follows. Denote the likelihood function
of model (1.1) as f(y|p,d) where y = (y1,...,yr)". The nuisance parameter u is eliminated by

using the maximal invariant, y; — y.

T
Inf(y[p,d) = Z [1{t < [pT]} Inf(y:) + 1{z > [pT]} In f (v 8)] (1.7)

Because both d and p are unknown, this is a conditional likelihood function assuming p is equal

3The prior distribution (1.6) is equivalent to a Beta distribution with shape parameters (3/2,3/2).
“4Consistency has been proved by Yao (1987).
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to the true break point. That is, the log-likelihood function in (1.7) is equivalent to the average
of the conditional density of y, on the regressor, In f(y;|v;;p,d), where v, = 1{r < [pT|} is a
latent variable. The unconditional log-likelihood is the average of the joint density function
F e vesp,0) fr(ve;p), where the density of v; depends on p and 7. The two parameters § and
p are related to each other (p is not identified if & = 0), so the conditional ML estimators of
the break magnitude §(p) and p that maximizes the concentrated likelihood f(y|p,d(p)) is not
asymptotically efficient.

Under the prior distributions (1.5) and (1.6), the posterior distribution of p is obtained
when 8 is integrated out. The LS estimator of 6 under a fixed p is (¥ — yx), which has the

following normal distribution under Gaussian disturbances.

— o ) —2

From (1.2), let Vr(k) = (p(1 —p))"/2(5; — %) with p = k/T, and the prior of §|p in (1.5) is
normal so the joint distribution of (V7 (k),d) conditional on p is also a normal distribution.

Vr (k) N 0| | S+p2(1—p)? p¥2(1-p)32

5 0] | p21=p)**  p(1-p)
Then the marginal distribution of data conditional on the break point Vr (k) |p is normal with
mean zero and variance (62/T 4 p?(1 —p)?). The posterior distribution of p is proportional to
the conditional distribution V7 (k) | p. Denote the posterior distribution of p conditional on data y
as f(p|y) and assume that p is bounded away from {0, 1} so that 6>/T = O(T ') is substituted

into o(1). Assuming prior of the break point in (1.6), we have

—Vr(k)?

1nf(P|Y)°‘m-

11



Given the function of data V7 (k), the argmax function of the monotone transformation of the
log-likelihood is asymptotically equivalent to the argmax of Q7 (k)? defined in (1.3) with @y =
(k/T(1—k/T))/2.

argmaxIn f(p|y) = argmax Qr (k),  Qr(k)* = p*(1—p)*Vr(k)*.
P P

The log-likelihood function is equivalent to the objective function of the break point estimator
in (1.3) up to order O(T~'). Hence, the mode of the log posterior density In f(p|y) which is

denoted as Puqp, is asymptotically equivalent to the break point estimator that maximizes Qr (k)?.

Pmap = argmax In f(p|y)
pefo,1—0]

&2 1/ 8 \*
£(8,p) o< (p(1—p))'?exp {—m} = o(p)exp [_5 (@) ]

If the weight is equivalent to the square root of the Fisher information o(p) = (p(1 —p))'/?,

then the joint prior density f(,p) can be expressed as a function of the weight function’.
Figure 1.4 shows the conditional prior distribution 8|p ~ N(0,/(8|p)) on & € [—1.2,1.2] for
p € {0.1,0.3,0.5,0.7,0.9}, which visualizes our prior belief on the break based on the Fisher
information. A structural break where p is close to the median has |3| spread out from zero,
whereas when p is near zero or one || is close to zero. Therefore, we are uncertain of the presence
of a break (6 = 0) and if a break occurs, it does not happen at either end of the sample period.
In the next section I show that the break point estimator is consistent for any true break
point pg € [a, 1 —a] where 0 < o < 1/2. Consistency holds under a general functional form of
weights under regularity conditions, but if o is arbitrary close to zero it may restrict the functional

form. In a univariate model with a break in the mean, a weight function that is sufficient for

SThis is equivalent to Jeffreys (1946) prior of 8 conditional on p. Jeffreys rule is to use the square root of the
determinant of the Fisher information matrix as a uniform prior. This does not correspond to our motivation of using
the Fisher information as an informative prior.

12



consistency would be a concave downward (inverse U-shaped) function that is differentiable on
the unit interval with restrictions on the slope magnitude. Thus, assuming that o is arbitrarily close
to zero may restrict the choice of the weight function unless we choose w(p) = (p(1 — p))l/ 2,

Details on the restriction of the weight function is provided in Section 1.3.

fi5]p)

Figure 1.4: Conditional prior distribution §|p ~ N(0,p(1 —p)). Parameter values are p €
{0.1,0.3,0.5,0.7,0.9} and § € [~1.2,1.2]

1.3 Partial Break with Multiple Regressors

In this section, the assumptions and proof of consistency of the break point estimator are
provided under a general linear regression model with multiple regressors. The model incorporates
a partial break in coefficients and assumes a one-time break occurs at an unknown date ky = [po7]
with pg € (0,1). I follow the notations of Bai (1997); denote the vector of variables associated
with a stable coefficient as w; and variables associated with coefficients under a break as z;. Let

x; = (w},z)) be a (p x 1) vector where the variable z; is a (¢ x 1) vector and ¢ < p,

B+ ifr=1,....k e
(1.8)

Yt
XB+z0r+¢ ift=ky+1,...,T

13



where ¢€; is a mean zero error term. In general, z; can be expressed as a linear function of x; so
that z; = R'x; where R is a (p X ¢) matrix with full column rank. Let Y = (y1,...,yr)’ and define
X :=1(0,...,0,X¢41,...,x7r) and X := (0,...,0,X¢,+1, ... ,x7)". Define Z; and Z, analogously
so that Z; = X;R and Zy = XoR. Let M := I — X(X'X)~'X’ and use the maximal invariant to
eliminate the nuisance parameter f3.

The subscript on the break magnitude d7 shows that it may depend on the sample size.

For consistency we assume the break magnitude is outside the local T-1/2

neighborhood of zero.
This is because the break point is not consistently estimable if the break magnitude is in the local
T—1/2 neighborhood of zero such that 8 = O(T~'/2). In this case structural break tests have
asymptotic power that is strictly less than one. Hence, we proceed assuming that o7 is fixed, or it
converges to zero at a rate slower than T—1/2 5o that power of structural break tests converge to
one (Assumption 3).

Let § = Y’MY, and denote S7(k)? as the SSR regressing MY on MZ;. The LS estimator
of break date kg is the value that minimizes S (k)? and thus, maximizes V7 (k)? from the identity

S = S7(k)? 4 Vr(k)?* (Amemiya, 1985),

/ACLS = argmax VT(k)Z, FA)LS = ]ACLS/T
k=1,....T—1

Vr(k)? = 8(Z,MZ;)y,

where Sk is the LS estimate of 87 by regressing MY on MZ.
Note that V7 (k)? is non-negative from the inner product of the vector (Z;MZ;)"/ 28;. The
LS objective function can be modified by multiplying a positive definite weight matrix € to

1/21 ~1/2
k 'Q‘k

the vector. Decompose the weight matrix so that Q; = Q , then Q,i/ 2 is multiplied to

the vector (Z,’{MZk)l/ 28;. Take the inner product and obtain the objective function Q7 (k)? :=

14



& (ZLMZ;)' 2 Qu(Z,MZ,) /2§, Then the estimator of the break point is

k= argmax Qr(k)*, p=k/T. (1.9)

k=1,...,T—1
An example of the weight matrix is Qy = T_IZ,’CMZk which is proportional to the Fisher infor-
mation matrix under a Gaussian assumption. This is analogous to the squared weight function
o(p)? =p(1—p) inmodel (1.1). When R=1and X isa (T x 1) vector of ones, Q = T~ Z,MZ,
is equal to @7 = k/T (1 —k/T). Thus, the weight matrix € is a generalization of @y for a linear
regression model with multiple regressors. Similar to oy, the matrix T_IZ,’CMZk “decreases” as k

is approaches the either end of the sample from the following rearrangement of terms.

T-'zZMz =T, — Z,X (X'X)"'X'Z]

=T 'R (X]X)(X'X) " (XX — X/ X;)R. (1.10)

I prove consistency of the break point estimator p in (1.9) under regularity condi-
tions on model (1.8) and weight matrix ;. The notation ||-|| denotes the Euclidean norm

]| = (X x2)1/2 for x € RP. For a matrix A,

i=1"

|A|| represents the vector induced norm

|A|| = sup, ||Ax|| / ||x|| for x € R” and A € RP*P.
Assumption 1. (i) ko = [poT] where po € [0,1 — 0], 0 < 00 < 3;

(ii) The data {y,r,x;r,z7 : 1 <t <T,T > 1} form a triangular array. The subscript T is
omitted for simplicity. In addition, z; = R'x,, where R is p X q, rank(R) = q, z; € RY, x, € RP

and g < p;

: 1y / T / ] vk /
(iii) The matrices (] Yo xtx,>, <] YT jt1 xtx,>, <] Z[iko_jﬂxtxt) and
( j! Zfi—/t()j 41 x,xf) have minimum eigenvalues bounded away from zero in probability for

all large j. For simplicity we assume these matrices are invertible when j > p. In addition,

15



these four matrices have stochastically bounded norms uniformly in j. That is, for example,

is stochastically bounded;

—1yvJ ’
supj21 H] thlxlxt

(iv) T! ZI[SZTI] XX, TN s¥y uniformly in s € [0,1], where X, is a nonrandom positive definite

matrix;
(v) For random regressors, sup, E ||x; || < K for some y> 0 and K < oo;

(vi) The disturbance €; is independent of the regressor xs for all t and s. For an increasing
sequence of o-fields F, {€, F: } form a sequence of L"-mixingale sequence with r =4+ for
somey >0 (McLeish (1975) and Andrews (1988)). That is, there exists nonnegative constants
{c; 1t > 1} and {y; : j > 0} such that y; | 0 as j— oo and for allt > 1 and j > 0, we
have: () E |E(&| Fi—j)|" < W, (b) E |& — E(&/| )| < /W, (¢) maxfe;| < K <o,

(d) ijHKWj < oo for some ¥ > 0.

Assumption 2. Q is a positive definite (q x q) matrix (q =dim(z;)) that is a continuous function
of data {y;,x;,7:;1 <t < T} and have stochastically bounded norms uniformly ink=1,...,T — 1.

In addition, for any nonzero vector ¢ € RY,

1/2 1/2 _
| @mz0) || > | Zmz) A Zmzo )|
holds for all k and ko, where M =1 —X(X'X)"'X'. When k/T — p as T — oo, then Oy 2> Q(p)

where Q(p) is a differentiable function of p, element-wise.

Assumption 1 conditions are similar to assumptions Al to A6 in Bai (1997), with ad-
ditional restrictions on (iv) and (vi). Assumption 1(vi) allows for general serial correlation in
disturbances and requires x; to be strict exogeneous. This is because €; depends on the moments
of regressors and we want to impose zero weights on the ends of the unit interval. For instance,
if the second moments of z; changes at the true break point pg, then ; depends on the ratio of

the pre- and post-break second moments and pg. The ends of the unit interval may have positive
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weights that depends on the distribution of z;. These cases are avoided under strict exogeneity
because € converges in probability to a nonrandom matrix that varies across p only. Note that
if Qy is a non-stochastic matrix that satisfies the norm inequality in Assumption 2, consistency
holds under weakly exogeneous regressors (see Assumption 4).

Assumption 2 guarantees that the matrix

1
AT(k) = ’k()—k|

[(ZéMZO) V20, (ZgMZp)' 2

—(ZoMZi) (M Z) ™ Qu (M Zy) ™V (ZiM Z) (1.11)

is positive definite and hence ||A7 (k)|| > Amin (A7 (k)) > 0 where Ay, denotes the minimum eigen-
value of A7 (k). Under the univariate model (1.1), this condition is equivalent to | (p)/®(p)| <
(2p(1—p))~! for all p, where @' (p) = 0®(x) /0x|¢—p. Thus, I assume a in 1(i) is strictly greater
than zero because if it is arbitrarily close to zero, it may restrict the functional of ®(-). If
o(p) = (p(1 —p)'/2, then Assumption 2 is satisfied regardless of the value of o.. However, for
the model with multiple regressors, {; may be close to a singular matrix in finite sample if o is
extremely close to zero. Under Assumption 1(iv), the weight matrix converges in probability to a

function of p and X, as T increases. Because Q(p) is a differentiable function of p element-wise,

we have || — Q|| < blk—ko|/T for some finite b > 0 and all k.

Assumption 3. 87 — 0 and T'/>7¥87 — o for some y € (0,4).

As mentioned previously, we assume that the break magnitude is outside the local T-1/2

neighborhood of zero in order to establish consistency of the break point estimator. The consis-
tency of the break point estimator is proved by showing that if 7 # 0, then with high probability
Q7 (k)? can only be maximized near the true break ko. The objective function Q7 (k)? is defined
in (1.9) and Sk is the LS estimator of the break magnitude assuming that k is the break date:

&k = (ZLMZy) = (Z,MZo)S1 + (Z,MZy)~' ZMe. Tf k = ko then &, = 87 + (ZyMZo)~' Z\ M.
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Theorem 1. Under Assumptions 1 and 2, suppose Ot is fixed or shrinking toward zero such that
Assumption 3 is satisfied. Then k = ko + 0,(||37 || ~2) and the break point estimator p in (1.9) is

consistent.

B —pol = Op(T 1137 7%) = 0, (1).

Proof. By rearranging terms we have
Or(k)* — Qr(ko)* = —|ko — k|Gr (k) + Hr (k) (1.12)
where G (k) and Hr (k) are defined as follows.

1
GT(k) = |k0——k|

&, [(Z(’)MZO)l/zﬂko (Z\MZp)'/?

—(ZoMZ) (ZMZ) ™\ 2 (ZM 7))~V 2 (Z M Z) | 87 (1.13)
Hr (k) := €' MZ(Z\MZ;) ™\ 2 (M Z;) ™ 2, Me

— &' MZy(Z\MZy) ™2 (ZeM Zo) V> Z\ Me

+ 28 (ZWMZ) (ZMZy )~ P (ZiM Zy )~ 2 7z, Me (1.14)

— 28 (ZMZ0) 2, (ZOM Zo) "2 Z\ M

Proofs of lemma 1 and lemma 3 are in the Appendix. Lemma 2 is equivalent to lemma A.3
from Bai (1997), which is the generalized Hajek-Rényi inequality for martingale differences to

mixingales. For the proof see Bai and Perron (1998).

Lemma 1. Under Assumptions 1 and 2, for every € > 0, there exists A > 0 and C < oo such that

mf\kfko\>c|\6T|\*2 Gr(k) > A||07||” with probability at least 1 — €.

Lemma 2. Under Assumption 1, there exist a M < oo such that for every ¢ > 0 and m > 0,

k ) M

S
c*m

Z &
=1

1
P| sup -
mgkng
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Lemma 3. Under Assumptions 1 and 2, suppose Ot is fixed or shrinking toward zero such that
Assumption 3 is satisfied. Then the break point estimator p in (1.9) is consistent. That is, for every

€ > 0andn > 0, there exists Ty > 0 such that when T > Ty

P(|p—po|>n) <e.

p—pol = 0, (772|837 | VInT ).

Moreover,

The rate of convergence of the break point estimator p in (1.9) can be improved from
lemma 3. For a fixed € > 0 and 1 > 0, the following inequality holds for any true break point

Po € [, 1 —a] when T is large.

P( sup  Qr(k)? > QT(k0)2> <e. (1.15)

|k—ko|>TM

This is equivalent to lemma 3 because given the estimator &, then Q7 (k)? — Qr(ko)? > 0 by
definition. This implies that to prove the improved rate of convergence O, <T_1 87| _2), it is

sufficient to show that for all € > 0, there exists a finite C > O so that for all T > T¢,

P ( sup  Qr(k)* > QT(k0)2> <E&.
kEKT,g(C)

Here, K7 (C) = {k Ck—ko| > C||87|| 7%, [k —ko| < Tn} for some small fraction 1. From identity

(1.12), Q7 (k)?> > Qr(ko)? is equivalent to Hr (k) /|k — ko| > G (k). From lemma 1, it is sufficient

to prove that

Hy (k)
ko —k

P( sup ’>x||8T||2> <e. (1.16)
keKr(C)

Use the expression Zy = Z; — Zasgn(ko — k) to rewrite the third and fourth terms of Hr (k) given
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in (1.14) as

25, [(Z{)MZk) (ZMZy) "\ P (ZiMZ) "2z, Me — (Z,MZo) 2 O, (ZMZo) 226M8]
=28, [(Z;Mzk) 120 (ZhMZy) V272, Me — (ZyMZo) 2y, (ZhMZo) ™ ZZ,QMs]
+ 285 (ZMZo) 2y (ZoM Z0) ™/ (ZMe) sgn (ko — k) (1.17)

— 284 (Z\MZy) (ZMZ4) ™\ P (ZeM Zy) V2 (Z M) sgn (ko — k).

Note that for nonsingular matrices S and A with bounded norms, SAS~! = A + op(1). Also,
(ZMZy) ' ZiMe = 0,(T~"/?) and (Z)MZy)~ " (Z,MZ;) = O,(1) uniformly on K7 (C). We use

this to find the order of the first line of the right-side in (1.17).

Hza} { (ZMZy) 20 (ZMZy) ™2 ZLMe — (Z\MZo) 2, (Z4M Zo) ™V 2Z,QMe} H
< st’ { (ZIMZ) 2Qu(ZIMZi) 2 — (ZhMZo) 2O, (Z4MZo) 20,5 (1 }H
x |(ZiMzy) ™ ZzMe || + 0, (1)
<1287 || [|ZiMZi&% — ZgM ZoQ, || Op(T1/2) +0,(1)

= 1287 || || (ZiMZy — ZyMZo) Q. — Z\MZo (4 — 1) || O (T1/2) +0p(1)

Then the second norm can be rearranged by subtracting and adding Z)MZ; to the term (Z;MZ; —

Z{MZy) and Assumption 2.
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ZIMZy—Z\MZ
RIXXAX'X)NX'X =X Xi) — X Xo(X'X)TIXAXAR  ifk <k
RIXXA(X'X) XX — (X'X — X{X0)(X'X)"IX)XA)R  if k> ko
= [ko —k|Op(1), (1.18)

Qko —Q = |k() —k|T710p(1)

The norm || (ko — k)_]X AXAH is bounded by assumption, hence the first line of (1.17) has order

ko — k| ||87]] Op(T~'/2). The second and third lines of (1.17) are

285 (ZyMZo) 2 Qu, (ZoM Zo) ™2 (Z\Me) sgn (ko — k)
= 287y, (Z\Me) sgn(ko — k) + 0, (1)
= 287, (Zhe — ZWX (X'X) "' X'e) sgn(ko — k) + 0, (1)
— 28,0, Zyesgn(ko — k) + [ko — k| T~V ||87]] 0, (1) +0,(1),
280 (Z\MZ ) (Z,MZy) ™ 2y (Z,M 7)™V /* (Z, M) sgn(ko — k)
= — 287 (ZAMZ;) 2 (ZMZy) ™ (ZiMe) sgn(ko — k) + 0, (1)

= |ko— kT2 (|87]| 0p(1)-

The first and second terms of Hr (k) in (1.14) are O, (1) uniformly in K7(C) under Assumptions
1 and 2. Therefore Hr (k) divided by |ko — k| is

Hr(k) _
ko — k|

0,(1)
ko — k|

1 -
26’TQk0mZ’Assgn(ko—k)+T V211871 0,(1) + (1.19)

Now we can prove (1.16) using the above expression. Let 1/]/Q, || = A where A < o by
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Assumption 2. Without loss of generality, consider the case k < kg. The first term of (1.19) is

bounded by lemma 2.
1 M3
P| sup [|287Q,—— 28| >
(keK(C) “ko—k z_;rl 3
1 & VA
§P< sup [ Z Zt& || > %)
ko—k>Cl|87 (|72 || 0 T * r=k+1

-2
SM(MHSTH) 1 _
6 Cllor||

The probability is negligible for large 7" because we can choose a large C value accordingly. For
any € > 0 and 1 > 0, we proved that the probability in (1.15) is negligible for large 7. Thus we
can choose C such that K7 (C) is non-empty and the inequality above is satisfied for all € > 0 and
T > Te. The second term of (1.19) is bounded due to the assumption (7''/2||87(|)~! — 0.

7\.”57‘”2 0] (1) A €
1/2 il e LI _Zpr 7 z
d (T or|Op(1) > 3 d /2|87 || “3)%3

The third term of (1.19) is bounded for kg —k > C || 87| > since 0,(1)/lko—k| <0p(1) 157/ /cC,

0,(1) _ A&7 0,(1) A\ ¢
< — 7 — —
p< sup 2|k0—k|> 3 <P c >3 <3

ko—k>C||d]|~

where O,(1)/C is small for large 7', by choosing a large constant C. Hence the bound (1.16)
holds and the rate of convergence of the break point estimator p = IAc/ T in Theorem 1 is proved:

10— pol = 0,(T"|87[). O

For weakly exogenous regressors x; in model (1.8), the break point estimator is consistent
with the same rate of convergence in Theorem 1, under the following conditions that substitutes

Assumption 1 and Assumption 2.
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Assumption 4. Assume the following conditions in model (1.8) with Assumption 1(i)-(iii) and

(v).
(i) (X'X)/T converges in probability to a nonrandom positive definite matrix, as T — oo;

(ii) {&,F:} form a sequence of martingale differences for F, = o-field {€;,x51+1 : s < t}. More-

over, for all t, E|&,|**7 < K for some K < oo and y> 0;

(iii) The weight matrix Qy is a nonrandom (q X q) positive definite matrix, and for any nonzero

vector ¢ € RY,

Hg,i(fz(ngzo)l/ch > "Qllc/z(Z,'cMZk)_l/z(Z,’cMZO)c

holds for all k and ko, where M =1 —X(X'X)~1X'. Q; converges to Q(p) as k/T — oo,

which is a differentiable function of p on the unit interval.

Theorem 2. Under Assumption 4, suppose Ot is fixed or shrinking toward zero that satisfies
&7 — 0 and T'/* Y81 — oo for some y € (0, D). Then k= ko+ 0p(||8T||_2) and the break point

estimator P in (1.9) is consistent.
[p—pol = O, (T 1|87 %) = 0,(1).

The proof of Theorem 2 is similar to the proof of Theorem 1, hence omitted. Under Assumptions
1(v), 2(i) and 2(ii), the strong law of large numbers holds for x;€, because the conditions in
Hansen (1991) are satisfied. The weight matrix € in Assumption 4(iii) depends on k/T but
not on the data {x;,&}. Thus, by setting p = k/T, it is a function of p which is assumed to be
differentiable with respect to p. Then the bound ||Q, —Qy, || < c|ky — k2|/T holds for any k;
and k, for some finite ¢ > 0. Using these properties, proving consistency of the estimator under

Assumption 4 follows the same process as in the proof under Assumptions 1 and 2.
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Given the consistency of the break point estimator from Theorem 1 or 2, the estimator of
the break magnitude corresponding to k is consistent and asymptotically normally distributed.

Let 8([5) = Sk then the following results hold. The proof is provided in Appendix A.1.

Corollary 1. Under Assumptions 1 and 2, suppose O is fixed or shrinking toward zero such that
Assumption 3 is satisfied. Let S(ﬁ) be a consistent estimator of Ot corresponding to k, which is
defined in (1.9). Then,

VT (8(p)~87) <L N (0.v'Uv )

where

2
Vi=plim7'ZMZ, U:= lim E [(T_I/ZZ(')M8> } .
—»00

T—roo

1.4 In-fill Asymptotic Distribution

Under the conventional long-span asymptotic framework, Bai (1997) shows that the limit
distribution of the break point estimator is symmetric if the second moment of variables associated
with coefficients under break (z; in Section 1.3) do not change before and after break. However,
the finite distribution of the break point estimator is asymmetric even though second moment
values do not change across regimes.

In order to provide a better approximation of the finite distribution of the break point
estimator, a continuous record asymptotic framework have been employed by Jiang, Wang, and
Yu (2017, 2018) and Casini and Perron (2017). By assuming that a continuous record is available,
a continuous time approximation to the discrete time model is constructed and a in-fill asymptotic
distribution is developed. In contrast to the long-span asymptotic where the time span of the data
increases, the in-fill asymptotic assumes a fixed time span with shrinking sampling intervals. For
instance, if there are T equally spaced observations of data available over a fixed time horizon
[0,N], then N = Th denotes the time span of the data where £ is the sampling interval. Asymptotic

inference is conducted by shrinking the time interval / to zero while keeping N fixed, which is
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equivalent to 7 increasing. Jiang et al. (2017) obtains a in-fill asymptotic distribution of the MLE
of structural break in the drift function of a continuous time model that is analogous to discrete
time models where a break occurs in the coefficient of an autoregressive (AR) model®, and
Jiang et al. (2018) derives it for a break in the mean. The asymptotic distribution is asymmetric,
tri-modal and dependent on the initial condition, which are also the properties of the finite sample
distribution of the LS break point estimator in discrete time models.

The structural break point estimator in this paper is no longer tri-modal but is asymmetric,
depending on the true break point. The long-span asymptotic theory does not capture this because
the sample size before and after break increases proportionally as T increases, eliminating the
asymmetry of information. Therefore, I use the in-fill asymptotic framework, following Jiang

et al. (2018) in deriving the limit distribution of the break point estimator.

1.4.1 Partial break in a stationary process

Consider the linear regression model (1.8) with continuous time process {W;, Zs, E }s>0
defined on a filtered probability space (2, F, (¥s)s>0,P), where s can be interpreted as a con-
tinuous time index. Assume that we observe at discrete points of time so that {Y;,, W;;,, Zyp, 1 t =
0,1,...,7 = N/h} where N is the time span. For simplicity normalize the time span N = 1. De-
note the increment of processes as AyY; := Yy — ¥(;_1);. Let Xy = (W},,Z],)" so that Z, = R'X;.

The model (1.8) can be expressed as

(AnX:) B+ AnEr ift=1,...,[poT]
ApYy =

(AhXt>/Bh+(Ath)/8h +AME it = [poT]+ 1,...,T

Divide both sides by v/ so that the error term variance is O(1). Let & := A% /vVh, y; ==
AhYt/\/E, Xt = AhXt/\/E = Ath/\/E = R/xt,

%Ornstein-Uhlenbeck process is a continuous time analogue of a discrete time AR(1) model
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B +e ift=1,....[poT]
V= (1.20)

xBn+270,+¢ ift=I[poT]+1,...,T.
Assumption 5. {z,&} is a covariance stationary process that satisfies the functional central
limit theorem as T = 1/h — oo,
[sT]
T-1/2 ZZtSt = Bi(s)
t=1

where B (s) is a multivariate Gaussian process on [0, 1] with mean zero and covariance

2
E[Bi(u)B;(v)'] = min{u,v}E, and E := limy_,e E [(Tl/2 Y-, zt8,> }

Assumption 6. The break magnitude is 8, = do\, where dy € R? is a fixed vector and Ay, is a

scalar that depends on the sampling interval h. Assume one of the following cases on A as

h—0,
(i) A, = O(h'/?) so that 8, = dov/h;

(ii) A = O(hY/2~1) = O(T~'/2+Y) where 0 < y < 1/2 so that 8, /\/h — oo simultaneously with

Sh—>0.

The same notations from Section 1.3 are used for model (1.20): MY = MZy0;, + Me,
where € = (g1,...,&7) and M = I — X(X'X)~'X’. The estimator of break date ko = [poT] is

written in (1.9). The objective functions of the estimator in (1.9) is restated below.
0r (k) = VT (T ' ZLMZ) > Qu (T~ Z,MZy) PN TS, (1.21)

The in-fill asymptotic distribution is derived for the two different magnitudes of §;, in Assumption

6. Theorem 3 provides the limit distribution under 6(i), which represents small breaks.

Theorem 3. Consider the model (1.20) with unknown parameters (B, 0y). Assumption 1, 2, 5,

and 6(i) holds. Then the break point estimator p = k/T defined in (1.9) has the following in-fill
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asymptotic distribution as h — 0,

A d AT
T8 p - Habl!zarg(rgla;cW(p)’Q(p)Wm)
pe(0,1

with

_ _172B1(p) —pBi (1 1/2 _
W (p) = xo1/2B1P) —PBI )_(1_p0)< pp) 24 ifp < po

p(1—p) -
~ —pBi(1 1—p\ /2
=Y 1/231@3)(1‘)_;)( )y (—pp) = dy ifp > po

where B (+) is a Brownian motion defined in Assumption 5.

Proof. When &, = dyv/h, the break point estimator ||84]|* (k — ko) = ||dol|* (p — po) = 0,(1)
has values in the interval (—po ||dol|*, (1 — po)||do||?). Therefore, we only need to examine
the behavior of the objective function Q7 (k)? for those k in the neighborhood of ko such that
k= [ko +s HdO\/EHZ} with s € (—po |do||?, (1 — po) [l do|2). Then for any fixed s, when & — 0
it has k — oo with k/T — p =po+u, and T —k — o with (T —k)/T - 1—p=1—pg—u,

where u = s||do|| "> € (—po, 1 — po). From the objective function (1.21), we have
(T'ZMZ) >VTE = (T ZuMz) V(T ZiMZo)do + (T~ ZiMZy )~ /217127, Me

Consider each of the terms as 4 — 0, which is equivalent to T — oo,

T T T
T'ziMzo=T"" ) z,z;—<T—1 ) R’x,x;> (T7'x'x)~! (T—l Y x,x;R>

t=max{k,ko}+1 t=k+1 t=ko+1

— (1—=max{p,po}) T, — (1—p)(1 — po)R'EZ; ' TR

= (min{p,po} —p-pPo)X;
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T T T
T'zMz =T Y 77— (T_l Y R’x,x;> (T~ 1x'x)! (T“ Y x,x;R>
t= =

t=k+1
— p(l - p)Zz
T T
T12ZiMe=T""2 Y ze—(T7'ZX)(T'X'X)"! (T_'/ZZ)C,S,>
t=k+1 =1

= Bi(p) —pB1(1).

By assumption, Q& = Q(p) as k/T — p. This implies that for a fixed do, the objective function
Qr (k)? weakly converges as follows. For p < po,

Or(k)* = [B1(p) —pB1(1) —p(1 — po)Z.do]

b
p(1—-p)
x 2 20(p) 2 [Bi(p) — pBi (1) — p(1 — po)Zodo],

and for p > po,

Or(k)* = [B1(p) — pB1(1) — po(1 —p)Z.do)’

1
p(1—p)

x 2. 20(p)z ' * [Bi(p) — pBi(1) — po(1 — p)Eed]

By continuous mapping theorem, the the in-fill asymptotic distribution of T ||8;||* p is the argmax

functional of the limit of Q7 (k)?, stated in Theorem 3. O

An equivalent representation of the in-fill asymptotic distribution is (let p = po + )

T (184112 (b — po) —% |ldo]? a(rgmax)W<po+u>’s‘z<po+u>v”v<po+u>,
ue 9071*90

where W (-) is defined in Theorem 3.

In the special case where the weight matrix is equivalent to the sample information matrix
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under Gaussian disturbances Q; = T~1Z/MZ, 2 Q(p) = p(1 — p)Zz uniformly, as k/T — p.

Then the limit of Q7 (k)? is simplified as follows.

Qr(k)*> = [Bi(p) — pBi(1) — (min{p,po} — p - po)Z.do)’

X [Bi(p) —pB1(1) — (min{p,po} — p - po)Z:do]

In this case, the difference between the in-fill asymptotic distribution of our estimator and the LS

estimator is evident because

VP(l—p) Vp(1-p)

X Z—l [Bl (p) _ pBl(l) _ (mln{p7p0} —P- pO)ZZd()] )

Vp(1—-p) Vel —p)

vy = | Bi0)—PBi(1) (mm{p,po}—p-pwzzdol'

thus, the LS objective function Vr (/’c)2 weakly converges to a squared function of a normalized
Brownian bridge (p(1 —p))~'/2(B;(p) — pBi(1)) that has a covariance matrix that does not
depend on p.

Next, consider the case of Assumption 6(ii), where A, = O(T ~'/2t) with 0 < y< 1/2 so
that h~1/2§), increases as sampling interval shrinks but at a slower rate than v/%. In this case the
break point estimator is asymptotically equivalent to the LS estimator and the in-fill asymptotic

distribution is equivalent to the long-span asymptotic distribution of Bai (1997).

Theorem 4. Consider the model (1.20) with unknown parameters (B, dy). Assumption 1, 2, 5,
and 6(ii) holds. For simplicity denote Qg for Q(po). Then the break point estimator p = k/T

defined in (1.9) has the following in-fill asymptotic distribution as h — 0,

(8,Z:Q08,)% d { |u| }
It~ = T(p—pg) — argmax s W(u) — = ¢,
(8, B0=005,) Po) v lenr) () =3

where W (u) = Wi (—u) for u <0 and W (u) = Wa(u) for u > 0. Wi (-) and W»(+) are two indepen-
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dent Wiener processes on [0,0).

Proof. We omit the proof of consistency of the break point estimator p — pg, because it fol-
lows the same procedure as the proof of Theorem 1. Given the rate of convergence p — pg =
0, <T’17u;2>, we only need to examine the behavior of Q7 (k)? — Q7 (ko)? for those k in the

neighborhood of kg such that k € K(C), where K(C) = {k: |k — ko| < CA,*} for some C > 0.

Lemma 4. Consider the model (1.20) and the weight matrix € that satisfies Assumption 2. For

the break magntiude &, = dy\y, that satisfies Assumption 6(ii),
Or(k)* — Q1 (ko) = —NdyZAZaAQu, do + 205,d(Quy Zhe sgn(ko — k) + 0, (1)

where Zp 1= sgn(ko — k)(Zx — Zo) and 0, (1) is uniform on K(C).

For the proof of Lemma 4, see Appendix A.1. Because 8, = dyhy, for any constant C of K(C), we
consider the limiting process of Q7 (k)? — Qr (ko)? for k = [ko +V7u;2] and v € [—C,C]. Consider

v <0 (i.e., p < po). From Lemma 4,

ko ko
0r (k)2 — O (ko)? = —dj) (xﬁ ) z,z;> Qi do +2d(Qy, (xh )y z,e,) +0p(1).

t=k+1 t=k+1

For kg —k = [—V?x,;z] ,
ko )
k% Z w7 — |V[Z,.
t=k+1
In addition, the partial sum of z,& weakly converges to a Brownian motion process Bj(—V) on
[0,c0) that has variance |v|Z.
ko
7\.;, Z 2:& = Bl(—V).
t=k+1

By assumption, €2, 2, Q. Therefore,

2 _ _
Or ([kﬁvk,;z}) — 07 (ko) = —|V|dh.Dodo +2d)D0B1 (—)
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Let Wi (-) and W, (+) be an Wiener processes that are independent of each other on [0,). Define

G(v) = _%(d()zzgodo)+<d690390d0)1/2W1(—v) ifv<0

~ (3. Qodo) + (diQoEDedy) PWa(v)  if v > 0.

From the continuous mapping theorem, the in-fill asymptotic distribution of the break point
estimator is A7 (k — ko) = argmax, G(v). Let v = cu, where ¢ = (d},QoEQody) / (d)Z.Qodo)? and

u € (—oo,00). Forv <0,

i

argmax G(v) = argmax ——¢(dyX.Qodo) + c'/*(d)yQoEQodo) > W) (—u)
VE(—e0,0] cu€(—eo,0] 2
o A ol
= argmax  Wi(—u) — — p = cargmax § Wi (—u) — —
cu€(—e0,0] 2 UE(—e0,0] 2

where the second equality is from ¢(d(X.Qodo) = cl/ z(déﬂoEQOdo)l/ 2. For v > 0 we have

argmax, ¢ ) G(V) = cargmax,,¢ ¢ o) {W2(u) — |u|/2}. Thus,

¢ "2 (k — ko) = argmax {W(u) - %}

MG(_mtm)

I = (8,2.908,,)%/(8],$202005),)

for W(-) defined in Theorem 4. N

Under the assumptions of Theorem 4, we can construct confidence intervals of the break
point from consistent estimators of X, E, §;, and Qo. Let 2 =71 Zthl %7,. For serially
correlated and heteroskedastic disturbances, use a heteroskedasty and autocorrelation consistent
(HAC) estimator of T-1/2 Zthl 7:& and denote it as =. Denote the break magnitude estimator
corresponding to P as §. From Corollary 1 we have §= On+o0p(1). Lastly, Qo is consistently

estimated by replacing k to k from the continuous mapping theorem, which we denote as



we can show that (£ — L)(k — ko) % 0, and the 100(1 — a)% confidence interval is given by
[IAc— lca/L] — 1,k + [co /L] + 1] where cq, is the (1 —a/2)th quantile of the random variable
argmax, {W (u) — |u|/2}, and [co /L] is the integer part of cq /L. The quantile cq can be computed
from the cumulative distribution function formula (B.4) in appendix B of Bai (1997).

Under small break magnitudes, the limit distribution of the break point estimator depends
on nuisance parameters in a complicated way (see Theorem 3). In this case we can use bootstrap
methods to approximate the distribution of the break point estimator. Under the assumption that
the errors of model (1.8) are i.i.d., we can use a residual-based method to estimate the model.
Let (,8) be OLS estimates of coefficients corresponding to break date estimate k = [pT]. The
estimated residuals are & = y, —x)p — 2281{r > k} forr = 1,...,T. We draw a random sample
from {€; —§,... &y — €} with replacement and label it as @(*b) ={&,....&}forb=1,...,B,
where & := T ! Zszl &, and B is the number of bootstrap replications. We can construct a new
process {y’} as

vi=xIB+281{r >k} +&

fort =1,...,T and obtain break date estimate IAcz‘b) associated each bootstrap sample %(*b) for

b=1,...,B. To account for heteroskedasticity of errors, we can use the wild bootstrap method
of Liu (1988). To construct the confidence interval of break date, first sort the estimated break
dates ]A{?b) in ascending order with the estimate & included. The 100(1 — &)% confidence interval
is obtained by finding the a/2 and (1 — a/2) quantiles.

The residual-based bootstrap method is also valid when regressors include lags of the
dependent variable. We construct y; recursively by using y; = yo. To account serially correlated
errors we can use the sieve bootstrap by Biithlmann (1997); for heteroskedasticity use the wild

bootstrap method by Liu (1988).
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1.4.2 Break in an autoregressive model

In this section I derive the in-fill asymptotic distribution of an autoregressive (AR) model
with a structural break in its lag coefficient, using a deterministic weight function ®(-). As
mentioned in Section 1.3, Assumption 1 excludes lagged dependent variables, due to dependence
of weight function on regressors. We relax this condition to allow weakly exogeneous regressors
by assuming non-stochastic weights. I follow the approach of Jiang et al. (2017) of using a discrete

model closely related to the Ornstein-Uhlenbeck process with a break in the drift function:
dx(t) = —(u+81{t > po})x(t)dt +cdB(r)

where ¢ € [0, 1] and B(+) denotes a standard Brownian motion. The discrete time model has the
form of
x = (Bil{r < ko}+Bal{t > ko})xi—1 +Vier, & % (0,6%), xo=0,(1)
where 1 = exp{—u/T} and B, = exp{—(u+93)/T} are the AR roots before and after the break.
Denote y; = x,/+v/h so that the order of errors is O,(1) as in model (1.8). Then, we have for
t=1,...,T,
i.d.

v = (Bil{r < ko} +Bal{r > koo e, & K (0,6%), o=,/ V=0, (T"/?). (122)
The initial condition of y; in (1.22) diverges at rate T'/2, thus the in-fill asymptotic distribution
will depend explicitly on the initial value xy. The break size is f, — 1 = O(T_l), whereas in
literature using long-span asymptotics it is assumed to be O(7~Y) with 0 < y < 1. Also, note that
B =exp{—u/T} — 1 and B, = exp{—(u+98)/T} — 1 as T — o for any finite (u,d). Hence,

the AR(1) model (1.22) is a local-to-unit root process. In contrast, long-span asymptotic theory

incorporates stationary AR(1) processes where |B;| < 1 and |B2| < 1 in model (1.22), where
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Chong (2001) derives the long-span distribution under |B; — B1| = O(T~"/**") with 0 < y < 1/2.
Because this paper focuses on the break point under small break magnitudes, the in-fill asymptotic
theory is adapted instead of long-span asymptotics. Moreover, Jiang et al. (2017) provides
simulation results that the in-fill asymptotic theory works well even when [B; and/or B, are distant
from unity in finite sample.

The new break point estimator and the LS estimator in model (1.22) takes the form

S(k)* = i (yt - Al(k)}’t—l>2+ _i (yz - BZ(k)Yt—l)z

t=1 t=k+1

k= argmin oS(k)?, p=k/T (1.23)

where B1 (k) = Y5 yiyr1/ X5 »2 | and Ba(k) = Y i1t/ X1 y? | are LS estimates

of B and B, under break at k, respectively.

Theorem 5. Consider the model (1.22) with fixed parameters (u,8) so that Inp; = O(T~") and
InBy = O(T ™). Assume the weight function oy, is nonrandom and bounded on the unit interval
with oy — @(p) as k/T — p. Then the break point estimator p = k/T in (1.23) has the in-fill

asymptotic distribution as

. oo (Jo(p) ~Jo(0 —p)” (7 e - )’
argmax _ _
i p§(0,1) i Jo Jo(r)?dr Jp Jo(r)?dr

where Jo(r), for r € [0,1] is a Gaussian process defined by
dJo(r) = —(u+81{r > po})Jo(r)dr+dB(r) (1.24)

with the initial condition Jo(0) = yo/6 = xo/(6+/h), and B(-) is a standard Brownian motion.
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The results of Theorem 5 are derived from applying the continuous mapping theorem to
the limit distribution S(k)? in Theorem 4.1 of Jiang et al. (2017). See Appendix A.1 for proof. The
difference of the two estimators’ asymptotic distributions is the weight function ®(p) multiplied
to the stochastic process in the argmax function. Both estimators are asymmetrically distributed
around the true point pg # 1/2 and biased. In Section 1.5 we see that the variance of the in-fill

distribution of the break point estimator is smaller than that of the LS estimator.

1.5 Monte Carlo Simulation

Finite sample distributions of the new estimator and the LS estimator are compared by
Monte Carlo simulation. I consider structural breaks in two different models: a break in the mean
of a univariate regression model and a break in the lag coefficient of a AR(1) process. The root
mean squared error (RMSE), bias and standard errors of the two estimators are compared in finite

sample and in-fill asymptotics.

1.5.1 Univariate stationary process

The first model is when a structural break occurs in model (1.8) where x;, = z; = 1 for all
t. The break magnitude 87 = doT /2 is in the local T~!/2 neighborhood of zero to represent
small break magnitudes.

yi = u+0r1{t > [poT]} +& (1.25)

where 0 = 1 and & i'ri'vd’N((),Gz). Parameter values are pg € {0.15,0.3,0.5,0.7,0.85}, u=4,dp €

{1,2,4} and T = 100 with 5,000 replications. The weight function is w; = (k/T (1 —k/T))'/?,

which is the representative weight function motivated in Section 1.2 7. The break point estimator

"If weight function is @y = (k/T (1 —k/T)), Assumption 2 is satisfied if 0 <y < 1/2 for an arbitrary small o in
Assumption 1(i). Forye {1/8,1/4,3/8} the results (omitted due to space constraints) do not change qualitatively; the
probability at boundaries decrease compared to the finite sample distribution of LS. Because o(p) = (p(1 —p))" — 1
as Y — 0, the difference between the two estimators finite sample behavior shrinks when 7 is close to zero.
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Pnew is defined in (1.3) and the LS estimator pzg in (1.2).

Table 1.1 provides the RMSE, the bias and the standard error for the finite sample
distribution. The values are extremely close to those computed using the in-fill asymptotic
distribution in Table 1.2. We can see that for all py € {0.15,0.3,0.5,0.7,0.85} and dy € {1,2,4},
the RMSE of the estimator Pygw is smaller than that of Py in finite sample. The RMSE in limit
distribution shows the same results. The break point estimator outperforms the LS estimator
uniformly in terms of the RMSE. The difference in asymptotic RMSE of the two estimators
are minimized when (pg,dp) = (0.15,4) and maximized when (pg,dp) = (0.5,1). We can see a
trade-off of slightly larger bias but a large decrease in standard error for Pygw compared to Pz,
that leads to a decrease in RMSE.

Figures 1.5, 1.6 and 1.7 shows the finite sample distribution of the two estimator under
po = 0.15,0.30 and 0.85. In finite sample the LS estimator performs particularly worse when
po =0.15 or 0.85, and dyp = 1 is small. Under these parameter values, the tri-modal LS estimator
distribution becomes bi-modal with modes at zero and one. In contrast, the new break point
estimator has an unique mode at the true break pg, or at a point very close to true value. This finite
sample property of the break point estimator holds uniformly across breaks pg € [0.15,0.85] for
all dy values considered; the distributions look similar to Figures 1.5, 1.6 and 1.7 and are omitted
here. This implies that regardless of the true break point, the new estimator outperforms, or is not
worse off than the LS estimator in finite sample under a small break magnitude. This result is
quite strong because the performance of the new estimator is superior or at least as reliable as the

LS estimator.
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Finite sample distribution of PrEw when T=100, (po,s) =(0.15, 0.1)
T T T T T T T T

Finite sample distribution of s ‘when T=100, (po,.i) =(0.15, 0.1)
7 T 0.1 T — T T T T T T T

Finite sample distribution of PrEW when T=100, (po,zS) =(0.15, 0.2) Finite sample distribution of s ‘when T=100, (po,J) =(0.15, 0.2)
T T T T T T T T T — T T T T T T

Finite sample distribution of PrEw when T=100, (po,rS) =(0.15, 0.4)
T T T T T T T T

Finite sample distribution of Ps when T=100, (po,ri) =(0.15, 0.4)
- - 0.09 — T T - T T T

Figure 1.5: (pg = 0.15) Finite sample distribution of pygw (left) and Pprg (right) under model
(1.25) with parameter values (po,87) = (0.15,7-'/2), (0.15,27'/2) and (0.15,4T'/?) and
T = 100, respectively.
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Finite sample distribution of PrEW when T=100, (pa,fi) =(0.30,0.1) Finite sample distribution of PLs when T=100, (pn,ﬂl =(0.30,0.1)

0.09 T T T 0.09 — T T T T T
008 1 0.08 1
0.07 | 1 0.07

0.06 [ 1 0.06 [

o 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Finite sample distribution of PrEW when T=100, (pa,fi) =(0.30,0.2) Finite sample distribution of Ps when T=100, (pn,ﬁ] =(0.30,0.2)
0.09 7 T T T T T T T T T 0.09 — T T T T T T T T T T

008 1 0.08

0.07 1 0.07

0.05

0.04

0,03

0021

0 0.1 02 03 04 05 06 07 08 08 0 01 02 03 04 05 06 07 08 09 1

Finite sample distribution of p ... when T=100, (p;.4) = (0.30, 0.4) Finite sample distribution of p, o when T=100, (p,,d) = (0.30, 0.4)

012 T T T T 012 T T T T T
01 01 b
0.08 0.08
0.06 0.06
0.04 0.04
0021 0,021
o 0

Figure 1.6: (pg = 0.30) Finite sample distribution of Pygw (left) and Pprg (right) under model
(1.25) with parameter values (po,d7) = (0.3,71/2), (0.3,27'/2) and (0.3,4T " '/?) and T =
100, respectively.
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Finite sample distribution of PrEW when T=100, (pn,fi) =(0.85,0.1) Finite sample distribution of PLs when T=100, (pn,rS] = (0.85,0.1)

0.09 T T T 0.09 — T T T T ; T
0.08 1 0.08
0.07 1 0.07
0.06 1 0.06
0.05 1 0.05
0.04
0.03
0.02
0.01
0
1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 02 03 04 05 06 07 08 09 1
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Figure 1.7: (pg = 0.85) Finite sample distribution of Pygw (left) and prg (right) under model
(1.25) with parameter values (po,7) = (0.85,7'/2), (0.85,27'/2) and (0.85,4T'/?) and
T = 100, respectively.
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Table 1.1: Finite sample RMSE, bias, and the standard error of the new estimator and the LS
estimator of the break point under model (1.25) with parameter values (po,dp) and T = 100.
The number of replications is 5,000.

RMSE Bias Standard error
Po do NEW LS NEW LS NEW LS

0.4086 0.4970 0.3442 0.3387 0.2206 0.3636
0.3949 0.4789 0.3262 0.3181 0.2226 0.3580
0.3468 0.4099 0.2678 0.2368 0.2204 0.3346

0.2862 0.4104 0.1876 0.1935 0.2161 0.3618
0.2672 0.3821 0.1667 0.1686 0.2087 0.3429
0.2041 0.2972 0.1137 0.1009 0.1695 0.2795

0.2104 0.3563 -0.0041 -0.0138 0.2103 0.3561
0.1908 0.3333 0.0043 0.0036 0.1907 0.3333
0.1375 0.2592 -0.0007 -0.0043 0.1375 0.2592

0.2866 0.4061 -0.1886 -0.1896 0.2158 0.3591
0.2693 0.3827 -0.1707 -0.1673 0.2083 0.3442
0.2073 03093 -0.1165 -0.1127 0.1715 0.2880

0.4096 0.5030 -0.3467 -0.3459 0.2181 0.3652
0.3959 0.4800 -0.3255 -0.3180 0.2253 0.3595
0.3496 0.4123 -0.2693 -0.2370 0.2230 0.3374
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1.5.2 Autoregressive process

For the AR(1) process, I replicate two experiments from Jiang et al. (2017). The first
experiment is a break in the lag coefficient so that the stationary process changes to another
stationary AR(1) process. The second case is a change from a local-to-unit root to a stationary

AR(1) process. Each experiment is generated from model (1.22) with 4= 1/200 (T =200),c =1,
iid.

g ~ N(0,1), po € {0.3,0.5,0.7} and different combinations of u and & with B; = exp(—u/T)
and B = exp(—(u+8)/T).
1. Stationary to stationary: (u,8) = (138,55) which implies (B1,B2) = (0.5,0.38);

2. Local-to-unity to stationary: (u,8) = (1,5) which implies (B1,2) = (0.995,0.97).

The stochastic integrals of in-fill asymptotic distributions are approximated over a grid size
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Table 1.2: In-fill asymptotic RMSE, bias, and standard error of the new estimator and the LS
estimator of the break point under model (1.25) with parameter values (po,dp) and T = 100.
The number of replications is 5,000.

RMSE Bias Standard error
Po do NEW LS NEW LS NEW LS

I 04138 04951 0.3486 0.3400 0.2228 0.3598
0.15 2 03947 04780 0.3270 0.3140 0.2210 0.3604
4 03493 04126 0.2699 0.2385 0.2217 0.3367
I 02928 0.409 0.1953 0.1989 0.2181 0.3574
030 2 0.2670 0.3849 0.1689 0.1694 0.2068 0.3456
4 02040 03025 0.1128 0.1045 0.1700 0.2839
1 02109 03562 0.0023 0.0011 0.2109 0.3562
0.50 2 0.1933 0.3355 0.0011 -0.0068 0.1933 0.3354
4 0.1372 0.2612 0.0007 -0.0002 0.1372 0.2612
I 0.2909 0.4091 -0.1958 -0.1979 0.2150 0.3581
0.70 2 02649 0.3797 -0.1657 -0.1638 0.2067 0.3426
4 02069 03065 -0.1150 -0.1072 0.1720 0.2871
I 04066 0.4948 -0.3429 -0.3347 0.2185 0.3644
0.85 2 03935 04768 -0.3250 -0.3108 0.2218 0.3616
4 03503 04151 -0.2699 -0.2406 0.2232 0.3383

h = 0.005. The break point estimator Pygw of the AR(1) model is defined in (1.23) and its
asymptotic distribution is stated in Theorem 3. The in-fill asymptotic distribution of the LS
estimator Pyzg is stated Theorem 4.1 of Jiang et al. (2017).

Tables 1.3 and 1.4 provide the RMSE, bias and the standard error of Pygw and prgs for the
finite sample and the asymptotic distribution, respectively. Similar to the structural break in the
mean of a stationary model, the RMSE of pygw is smaller than that of pyg for all parameter values
(B1,B2,po) considered. This is also holds in the limit. In addition, the asymptotic distribution
approximates the finite sample better for the local-to-unit root process change. We can see that
the decrease in the RMSE of pygw is from the trade-off a relatively large decrease in variance
compared to the increase in the squared bias.

Figures 1.8 and 1.9 are finite sample distributions of the break point in the stationary and
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the local-to-unity AR(1) processes, respectively. For the stationary to another stationary process
change, the LS estimator Pz s mode at the true break point is almost negligible unless it is the
median pg = 0.5. In contrast, the estimator Pygw has a unique mode at the true break point for
all pg € {0.3,0.5,0.7}. For the local-to-unit root to a stationary AR(1) change, both estimators
have a higher probability at the true break point. However, the LS estimator continues to exhibit
tri-modality with modes at ends whereas our estimator has a unique mode at pg. Thus, simulation
results of the AR(1) model gives the same conclusion as section 1.5.1; the performance of the

break point estimator is superior or at least as reliable as the LS estimator.

Table 1.3: Finite sample RMSE, bias, and standard error of the new estimator and the LS
estimator of the break point under the AR(1) model (1.22) with parameter values (B1,B1,po)
and T = 200. The number of replications is 5,000.

RMSE Bias Standard error
Bi B po NEW LS NEW LS NEW LS

0.3 0.2627 03091 0.1821 0.1657 0.1893 0.2610
0.5 0.38 0.5 0.1763 0.2452 0.0204 0.0282 0.1751 0.2436
0.7 0.2285 0.2725 -0.1379 -0.1223 0.1822 0.2435

0.3 0.2369 0.2780 0.1319 0.1279 0.1967 0.2469
0995 097 0.5 0.1754 0.2328 -0.0042 -0.0047 0.1754 0.2327
0.7 0.2375 0.2784 -0.1358 -0.1336 0.1948 0.2442
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Finite Sample Distribution of ., When (f3,.5,) = (0.5, 0.38), s, = 0.3 and T=200 Finite Sample Distribution of s ¢ when (,./4,) = (0.5, 0.38), p; = 0.3 and T=200
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Figure 1.8: (Stationary to stationary) Finite sample distributions of Pygw (left) and pys (right)
when the lag coefficient pre- and post-break are (B,B2) = (0.5,0.38) at break points py =
0.3,0.5, and 0.7, respectively.
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Finite Sample Distribution of g, When (f,,55,) = (0.995, 0.97), p, = 0.3 and T=200 Finite Sample Distribution of s ¢ when (/3,.4,) = (0.995,0.97), p, = 0.3 and T=200
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Figure 1.9: (Local-to-unity to stationary) Finite sample distributions of the new estimator
(left) and the LS estimator (right) when the lag coefficient pre- and post-break are (B1,[2) =
(0.995,0.97) at break points po = 0.3,0.5, and 0.7, respectively.
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Table 1.4: In-fill asymptotic RMSE, bias, and standard error of the new estimator and the LS
estimator of the break point under the AR(1) model (1.22) with parameter values (B1,B1,po)
and T = 200. The number of replications is 5,000.

RMSE Bias Standard error
Bi B po NEW LS NEW LS NEW LS

0.3 0.1911 0.2944 0.1888 0.0422 0.0298 0.2913
0.5 0.38 0.5 0.0270 0.2969 -0.0053 -0.0518 0.0264 0.2923
0.7 0.1995 0.3553 -0.1970 -0.1623 0.0316 0.3160

0.3 0.1325 0.2391 0.0472 -0.1148 0.1238 0.2097
0995 097 0.5 0.1118 0.3650 -0.0205 -0.2383 0.1099 0.2765
0.7 0.1975 0.5229 -0.1022 -0.3897 0.1690 0.3487

1.6 Empirical Application

In this section I use the new estimation method for structural breaks in three empirical
applications. I analyze the performance of the break point estimator by comparing with the LS
estimator and historical events documented in literature. Furthermore, I show that the estimator is
robust to trimming the sample period whereas the LS estimator varies significantly depending on
the trimmed sample. The first application is about the structural break in postwar U.S. real GDP
growth rate, where an autoregressive model is used to estimate the break. The second application
is estimating the break date on the U.S. and the UK stock returns using the return prediction
model of Paye and Timmermann (2006). Lastly, I analyze the structural break of the relation

between oil price shocks and the U.S. output growth rate studied in Hamilton (2003).

1.6.1 U.S. real GDP growth rate

In macroeconomics literature, shocks that affect mean growth rate are often modelled
as a one-time structural break because of its rare occurrence. However, existing estimation
methods fail to capture the graphical evidence of postwar European and U.S. growth slowing

down sometime in the 1970s, known as the “productivity growth slowdown”. For instance, Bai,
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Lumsdaine, and Stock (1998) show that for the U.S., most test statistics reject the no-break
hypothesis, but the estimated confidence interval does not contain the slowdown in the 1970s.

I estimate a structural break of an autoregressive model using postwar quarterly U.S. real
GDP growth rate. Real GDP in chained dollars (base year 2012) data are obtained from the
Bureau of Economic Analysis (BEA) website for the sample period 1947Q1-2018Q2, seasonally
adjusted at annual rates. Annualized quarterly growth rates are calculated as 400 times the first
differences of the natural logarithms of the levels data. I assume that log output has a stochastic
trend with a drift and a finite-order representation. Following the approach of Eo and Morley
(2015), I use the modified Bayesian information criterion (BIC) of Kurozumi and Tuvaandorj
(2011) for lag selection in order to account for structural breaks. The highest lag order selected
is 1 for output growth given an upper bound of four lags and four breaks. The AR(1) model is
estimated under three cases. First case is a break in the drift term only (the constant term y = 0),
second case is a break in the coefficient of lags only, the “propagation term” (§; = 0), and lastly a

break in both constant and coefficient.

Ay, = B+¢1Ayt71 + l{t > ko} (’Y—l— 51Ayt,1) + &. (1.26)

Assume the error term {€;} are serially uncorrelated mean zero disturbances. If a structural break
occurs in both constant and lag coefficient, the long-run growth rate of log output will change
from E[Ay,] =B/(1—¢1) to (B+7v)/(1 —¢; — 8;) and the volatility of growth rate will change
from Var[Ay,] = 6%/(1 —07) to 6%/(1 — (¢1 +81)?) at time ko.

Using the notations of model (1.8), we have x; = (1, Ay,_)’, the dependent variable is

Ay, and for each model z; = R'x; is as follows.

e MI: R=(1,0),z =1
e M2: R=(0,1),z, = Ay,

e M3: R=(1,1),z, = (1,Ay;—1)’
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The break point estimator kygw defined in (1.9) is obtained by using the weight Q = (x),%lq
where wy = (k/T(1 —k/T))"/? and ¢ = dim(z,) 8. The full sample 1947Q3-2018Q2 (T = 284)
is used to estimate the structural break date, then a shorter sub-sample is used to see if break date
estimates change. k is searched over a trimmed sample with fraction o0 = 0.1 at both ends; the
grid starts at 1954Q2 and ends at 2011Q]1 for the full sample. The second and third columns
of Table 1.5 shows break date estimates for the full sample. The two estimates are extremely
different from each other for M1 and M3, kyew is 1973Q1 whereas ks is 2000Q2. The break
point estimates on the unit interval are approximately 0.36 and 0.75, respectively. Without any
knowledge of historical events, one might think that the finite sample properties of pys do not
appear here because it is not close to oo = 0.1 or I —a = 0.9.

However, the LS estimate switches to boundary of search grid if we consider a sub-sample
that is one decade shorter. Consider a sub-sample that ends at 2007Q1 with starting date 1947Q3,
so that the search grid includes kzs from all models. The LS estimate of M1 changes drastically
to 1953Q1 which is the end of the search grid, prs = 0.1. In contrast, our estimator under M1
provides the same break date estimate lAcNEW =1973Q1. For M3 both estimates change so that
knew =1966Q1 and ks =1958Ql. Compared to the full sample estimate, the change of the new
estimate is 7 years whereas the LS estimate change is over 40 years.

The 95% confidence interval is obtained under each model and samples by residual-based
bootstrap (see Section 1.4) with the number of bootstrap samples set to 999. Under M1 the LS
estimator switches to a break date estimate outside the confidence interval when the sample is
trimmed (under M3 it switches to boundary value of the confidence interval). This implies that
LS estimates vary significantly depending on trimming and it is likely to be at boundaries due to
its finite sample behavior. In addition, we can check that the confidence interval of our estimation

method has shorter length than LS for all cases.

8For consistency of the break point estimator in a AR(1) model, we use Q; = 0)%1,1 where @y is a function of k/T
only.
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Table 1.5: Structural break date estimates of postwar U.S. real GDP growth rate in a AR(1)
model. For each model the first row is the break date estimate and the third row is the break
point estimate (fraction within corresponding sample). The second and fourth rows are 95%
confidence intervals obtained by bootstrap with 999 replications.

1947Q3-2018Q2 1947Q3-2007Q1
Model NEW LS NEW LS
1973Q1 2000Q2 1973Q1 1953Q1
NT [59Q4,02Q2] [57Q4, 10Q3] | [56Q1,96Q4] [53Q1, 00Q2]
0.36 0.75 0.43 0.10
[0.18,0.77]  [0.15,0.89] | [0.15,0.83]  [0.10,0.89]
1966Q1 1966Q1 1966Q1 1966Q1
M2 [57Q2,07Q4] [54Q3, 10Q4] | [55Q2,97Q1] [53Q2, 00Q3]
0.26 0.26 0.32 0.32
[0.14,0.85]  [0.10,0.89] | [0.13,0.84]  [0.10,0.90]
1973Q1 2000Q2 1966Q1 1958Q1
M3 [59Q4,02Q1] [57Q4, 10Q3] | [56Q1,96Q4] [53Q1, 00Q3]
0.36 0.75 0.32 0.18
[0.18,0.77]  [0.15,0.89] | [0.15,0.83]  [0.10,0.90]

The break date estimate kyzw =1973Q1 under M1 corresponds to the productivity growth
slowdown in early 1970s, which is widely hypothesized in macroeconomics literature. The U.S.
labor productivity experienced a slowdown in growth after the oil shock in 1973 (see Perron
(1989) and Hansen (2001)). None of the models estimate a break date in 1980s, which is known as
“the Great Moderation”. It refers to a empirical fact of a large reduction of volatility of U.S. real
GDP growth in 1984Q1, established by Kim and Nelson (1999) and McConnell and Perez-Quiros
(2000). In model (1.26), the change in volatility is not a linear function of the change in the lag
coefficient. Hence, we focus on events that affect the mean rather than the volatility of growth
rate.

Because the sample is over 70 years, it is likely that there exists multiple structural breaks
in the output growth rate. Estimates that vary depending on the sub-sample could be evidence
of more than one break in the sample period. The break date estimate krs = 2000Q2 can be

associated with the tech bubble, also known as the dot-com crash in 2000. In relation to business
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cycles, lAcLS =1953Q1 and 1958Q1 are both in recession, at 1953 is the Korean war ended. Under
M2 both estimates from the full sample are 1966Q1, and the closest historical event that is likely
to affect the output growth rate is the Vietnam war.

Estimating multiple structural breaks using the weighting scheme is beyond the scope of
this paper. For LS estimation of multiple breaks see Bai and Perron (1998) and Bai, Lumsdaine,
and Stock (1998). Instead, I compute the two estimators for sub-samples that end at different
dates from 2005Q1 to 2018Q2, for total 54 sub-samples. Because the sample is trimmed one
quarter at a time, switching to a different estimate that is far apart implies that the estimator
is sensitive to trimming, rather than suggesting multiple breaks. Table 1.6 shows that the LS
estimates of M1 and M3 vary from pzg = 0.1 to 0.9, which is equivalent to the trim fraction
o = 0.1. However, the new estimates are either mid 1960s or early 1970s, which is always in the
fraction interval p € [0.2,0.5].

In short, estimating a structural break of postwar U.S. real GDP growth rate using our
estimation method provides evidence of a break occurring in 1973Q1, which corresponds to the
productivity growth slowdown period. However, the LS estimates a break occurs in 2000 or
1953, depending on the time interval. Break date estimates are obtained for sub-samples with end
dates 2005Q1 to 2018Q2 for both methods; the LS estimates vary considerably, with p;g near
0.1 and 0.9 for almost 40% of the sub-samples considered under M 1. In contrast, our estimates
are 1966Q1 or 1973Q1 for all sub-samples and models. This suggests that the difference in LS
estimates depending on the sample period is due to its finite sample behavior (tri-modality) rather

than evidence of multiple structural breaks.

1.6.2 Stock return prediction models

Paye and Timmermann (2006) studies the instability in models of ex-post predictable

components in stock returns by examining structural breaks in the coefficients of state variables.
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Table 1.6: Structural break date estimates of postwar U.S. real GDP growth rate in a AR(1)
model using 54 sub-samples. The entries are the fraction of the number of sub-samples that has
break date estimates corresponding to the first column. The second column is the interval of
break point estimates that depend on the sub-sample size. The start date is 1947Q3 and the end
dates of sub-samples change across 2005Q1 to 2018Q2.

Ml M2 M3

Break date  pinterval NEW LS NEW LS NEW LS
1953Q1 0.10 0.17

1958Q1 [0.17,0.19] 0.22
1966Q1 [0.26, 0.33] 0.06 1 I 030 0.09
1973Q1 [0.36, 0.45] 1 0.05 0.70
2000Q2 [0.74, 0.86] 0.52 0.48
2006Q1 [0.85, 0.90] 0.20 0.21

The regression model (1.27) is specified with four state variables: the lagged dividend yield,
short interest rate, term spread and default premium. The model allows for all coefficients to
change since there is no strong reason to believe that the coefficient on any of the regressors
should be immune from shifts. The multivariate model with a one-time structural break at k with

t=1,...,Tis

Ret; = Bo + B1Div;_1 + P2 Thill; 1 + B3Spread, 1 + BaDef; 1 (1.27)

+1{t > k} (80 + 81 Div;—1 + 8 Tbill,_y + d3Spread;—| + d4Defi_1) + &,

where Ret; represents the excess return for the international index in question during month
t, Div;_1 is the lagged dividend yield, Thill;_ is the lagged local country short interest rate,
Spread;_1 1s the lagged local country spread and Def;_1 is the lagged US default premium. From
the notation of model (1.8), y; = Ret; and for the multivariate model, x; = z; = (1, Div,_, Tbill,_,
Spread,_1,Def;_1). For the univariate model with dividend yield x, = z; = (1, Div,_1), which is
defined analogously for other univariate models. The weight matrix is Q; = T_IZ,’(MZk where

Zi = (0,...,0,2k41,...,27) and M = I — X(X'X)~'X’. Following the approach of Paye and
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Timmermann (2006), I examine univariate models to facilitate interpretation of coefficients, in
addition to the multivariate model (1.27).

Under the univariate model with the lagged dividend yield as a single forecasting regressor,
the LS estimate of the break point for the S&P 500 is close to the end date of the trimmed sample.
Paye and Timmermann notes that the NYSE or S&P 500 indices have the same estimated break
date when the trimming window is shortened, and thus the discrepancy is not the sole explanation
of the timing of the break. However, it is likely that estimated break dates of the return prediction
model are near the end of the sample due to the finite sample behavior of the LS estimator. 1
check whether the new estimator provides a different break date estimate of the model (1.27)
using data similar to the first dataset of Paye and Timmermann, which is monthly data on the
U.S. and the UK stock returns from 1952:7 to 2003:12. The trimming window is also identical to
fraction 15%, thus potential break date starts from February, 1960 and ends at March, 1996. For
comparison I also estimate the break using a shorter period 1970:1-2003:12, which is equivalent
to the sample period of their second dataset. For each model and sample the 95% confidence
interval is obtained by wild bootstrap (Liu, 1988) with the number of bootstrap samples set to
499.

Data are collected from Global Financial Data and Federal Reserve Economic Data
(FRED). The indices to which the total return and dividend yield series are the S&P 500 for the
U.S. and the FTSE All-share for the UK. The dividend yields is expressed as an annual rate and
is constructed as the sum of dividends over the preceding 12 months, divided by the current price.
For both countries, a 3-month Treasury bill (T-bill) rate is used as a measure of the short interest
rate and the 20-year government bond yield is the measure of the long interest rate. Excess returns
are computed as the total return on stocks in the local currency less the total return on T-bills. The
term spread is constructed as the difference between the long and the short local country interest
rate. U.S. default premium is defined as the differences in yields between Moody’s Baa and Aaa

rated bonds. For each sample period the break date is obtained from a grid that is trimmed by
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fraction a0 = 0.15. For the full sample the grid is 1960:2-1996:3, and for the sub-sample it is
1975:1-1998:10.

Table 1.7 provides the estimates of the two samples using the S&P 500 index. One notable
feature is that the LS estimates a break occurred in December 1994, with break point prs = 0.85
whereas the new method estimates a break in the mid 1980s and pyew = 0.62. Although the
LS estimate is close to the end of trimmed sample, it gives the same break estimate in the sub-
sample starting at 1970. This suggests that a break may have occurred multiple times. Paye and
Timmermann uses the method of Bai and Perron (1998) and find that two structural breaks occur
in the return model (1.27) using S&P 500, where each break occurs at 1987:7 and 1995:3. They
note that the break at 1987 appears to be an isolated break not appearing in other international
markets. These two break date estimates are similar to estimates in Table 1.7 that assume a
one-time structural break.

Another explanation of the break in the early 1980s is that our estimation method captures
a change in the individual state variable itself rather than the coefficient of the prediction model
(1.27), because it is extremely difficult to detect a break due to the noisy nature of stock market
returns. For instance, the estimate Bl could be capturing noise caused by the movement in Div;_1.
Figure 1.10 plots the two state variables, U.S. dividend yield and term spread. Both series have
a change in its trend in the early 1980s. If we compare the two break date estimates from the
univariate model in Table 1.7, our estimate is closer to the date of the change in trend occurred.

For UK stock returns, both estimation methods obtain break date estimate that is (or close
to) 1975:1 under all models and sample periods. In addition, the LS estimator has a slightly
shorter length of the 95% confidence interval compared to our estimator for all models except
the term spread univariate model. This is different from the result using S&P 500 index series
because the excess return for the FTSE All-share index increases near 10 standard deviations

from 1975:1 to 1975:2 °. Hence, the change in excess returns is large enough for the LS to detect

For sample period 1952:7-2003:12 the mean excess return of the FTSE All-share index is 0.5949 and standard
deviation is 5.4890. Att =1975:1 the excess return Ret, = 0.4556 and at t =1975:2 we have Ret; = 53.2187, so the
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the break point appropriately. Paye and Timmermann relates the break in mid 1970s to the large
macroeconomic shocks reflecting large oil price increases; the breaks in the underlying economic
fundamentals process can explain breaks in financial return models. If this is the case, then the

break magnitude is large enough so that both methods accurately estimates the break date 1975:1.

Table 1.7: Structural break date estimates of the U.S. stock return (S&P 500) prediction model
for samples 1952:7-2003:12, and 1970:1-2003:12. For each model the first row is the break date
estimate and the third row is the break point estimate (fraction within corresponding sample).
The second and fourth rows are 95% bootstrap confidence intervals obtained by 499 replications.

1952:7-2003:12 1970:1-2003:12
Model NEW LS NEW LS
1984:8 1994:12 1982:8 1994:12
Multi [77:4, 88:9] [83:5, 95:1] [79:5, 88:3] [75:5, 95:1]
: 0.62 0.83 0.37 0.74
[0.48, 0.70] [0.60, 0.83] [0.28, 0.54] [0.16, 0.74]
1982:8 1995:1 1982:8 1996:9
Di ‘eld [68:9, 84:8] [74:11, 95:2] | [76:12, 84:3] [75:1, 98:9]
vy 0.59 0.83 0.37 0.79
[0.32, 0.62] [0.44, 0.83] [0.21, 0.42] [0.15, 0.85]
1974:10  1974:10 1982:8 1975:1
Tobill [74:7, 81:11] [70:7, 81:1] [77:6, 88:6] [75:1, 90:7]
0.43 0.43 0.37 0.15
[0.43, 0.57] [0.35, 0.56] [0.22, 0.55] [0.15, 0.61]
1983:5 1976:2 1987:9 1976:2
S d [80:9, 92:4] [72:6, 83:7] [82:7,92:9] [75:7, 86:10]
prea 0.60 0.46 0.52 0.18
[0.55, 0.77] [0.39, 0.60] [0.37, 0.67] [0.16, 0.50]
1968:12  1965:11 1982:8 1975:7
[63:1, 92:2] [62:4,95:12] | [78:1,91:12] [75:3, 86:9]
Def.prem. =4 35 0.26 0.37 0.16
[0.21, 0.77] [0.19, 0.84] [0.24, 0.65] [0.15, 0.49]

change is approximately 9.6 standard deviations.
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Table 1.8: Structural break date estimates of the UK (FTSE) stock return prediction model for
samples 1952:7-2003:12 and 1970:1-2003:12. For each model the first row is the break date
estimate and the third row is the break point estimate (fraction within corresponding sample).
The second and fourth rows are 95% bootstrap confidence intervals with 499 replications.

1952:7-2003:12

1970:1-2003:12

Model NEW LS NEW LS
1975:1 1975:1 1975:1 1975:1
Multi [77:4, 88:9] [83:5,95:1] | [75:1,88:10] [75:1,76:11]
wi 0.44 0.44 0.15 0.15
[0.44, 0.74] [0.44, 0.45] [0.15, 0.55] [0.15, 0.20]
1975:1 1975:1 1975:1 1975:1
Di ield [67:3,76:11] [75:1, 77:12] [75:1, 77:1] [75:1, 75:9]
1V yie 0.44 0.44 0.15 0.15
[0.29, 0.47] [0.44, 0.50] [0.15, 0.21] [0.15, 0.17]
1975:1 1974:12 1975:1 1975:1
Tbill [74:10, 81:11] [73:11,77:1] | [73:1, 81:12] [73:11,76:10]
o 0.44 0.29 0.15 0.15
[0.43, 0.57] [0.42, 0.48] [0.15, 0.35] [0.15, 0.20]
1975:1 1975:6 1975:1 1975:3
[73:1,78:2]  [68:2,89:12] | [75:1,77:12]  [75:1,78:2]
Spread 0.44 0.45 0.15 0.15
[0.40, 0.50] [0.31, 0.73] [0.15, 0.24] [0.15, 0.24]
1979:5 1975:6 1975:1 1975:3
Def.prem [69:2, 90:4] [70:11, 80:8] [75:1,91:4] [75:1, 76:6]
-prem. 0.52 0.45 0.52 0.15
[0.32, 0.73] [0.36, 0.55] [0.15, 0.63] [0.15,0.19]
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U.S. Dividend yield, 1952:7-2003:12 U.S. Term Spread, 1952:7-2003:12

1 -4
1949 1954 1960 1965 1971 1976 1982 1987 1993 1998 2004 1949 1954 1960 1965 1971 1976 1982 1987 1993 1998 2004

Figure 1.10: U.S. dividend yield (left) and term spread (right), 1952:7-2003:12. Red and blue
dotted lines are the new and LS break date estimates from the univariate model, respectively.

1.6.3 Oil price shock and output growth

Hamilton (2003) tests the existence of a structural break on the relation between real U.S.
GDP growth rates and nonlinear transforms of oil price measures. I use the same model and
data'®, but assume that the nonlinear relation is unstable. That is, I assume there is a structural
break in the nonlinear oil price transforms and GDP growth rate and estimate the structural
break date using the new estimation method. Let y; denote the real output, which is the quarterly
growth rate of chain-weighted real U.S. GDP. The oil price series is denoted as o;, which is 100
times the quarterly logarithmic growth rate of nominal crude oil producer price index, seasonally
unadjusted. The sample used for estimation starts from 1949Q2 to 2001Q3, for a total of 7' =210
observations, not including the lagged initial values for conditioning.

Four different oil price measures are used, the percentage change rate in nominal crude
oil prices and three measures that are nonlinear transforms of the percentage change rates of the
oil price. The formulation of Mork (1989) uses the positive values o,", where o, = o, if 0; > 0
and O if o, < 0. The annual net oil price is the amount by which the oil price in quarter ¢ exceeds

its peak value over the previous 12 months, and the 3-year net oil price is defined analogously

for horizon 3 years instead of one year. For details on the oil price measures see Hamilton

19Data were downloaded from http://econ.ucsd.edu/~jhamilton
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(2003). Assume model (1.8) with lags of the oil price measure as z; = (0;—1,0;-2,0;—3,0;—4)" and

xr = (1,yr—1,Y1—2,Y1—3,Y1—4,2¢)". The weight matrix is Q; = 0)%14 where 0y = (k/T(1—k/T))

1/2

and Iy is a (4 x 4) identity matrix. The search grid of k is trimmed by fraction oo = 0.15 on both

ends.

Table 1.9: Structural break point estimates of the relation between oil price change and the U.S.
real GDP growth rates, 1949Q2-2001Q3. The oil price measures are percentage change rate of
nominal crude oil price, the positive percentage change rate of nominal crude oil price (Mork),
the annual net oil price increase, and the 3-year net oil price increase, respectively. For each
model the first row is the break date estimate and the third row is the break point estimate p.
The second and fourth rows are 95% bootstrap confidence intervals with 999 replications.

Oil price measure NEW LS
1982Q1 1985Q3
[74Q2, 87Q1] [74Q1, 89Q2]
% rate 0.64 0.70
[0.49, 0.73] [0.49, 0.77]
198201 1991Q1
[71Q1, 89Q3] [70Q2,93Q2]
Mork 0.64 0.80
[0.43, 0.78] [0.42, 0.85]
1970Q4 1990Q4
[67Q3, 82Q1]  [70Q2, 93Q2]
Net 1-yr 0.43 0.80
[0.36, 0.64] [0.42, 0.85]
1970Q4 1970Q2
[67Q3, 82Q1] [55Q4, 91Q3]
Net 3-yr 0.43 0.42
[0.36, 0.64] [0.15, 0.81]

Table 1.9 shows the break location estimates for the full sample 1949Q2-2001Q3 (exclud-

ing lagged initial values for conditioning). Our method estimates are either 1982Q1 or 1970Q4,

whereas the LS estimates vary across 1970, 1985 and early 1990s. The 95% confidence interval

is obtained from residual based bootstrap with number of bootstrap samples set to 999. For all

models our method has a shorter interval length compared to LS. Because the LS estimates vary
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substantially depending on the start date of the sample, we obtain break date estimates for various
sub-samples. The start date of the sub-sample changes across 1949Q3 to 1957Q2 and 1961Q3 to
1965Q4!!. All sub-samples end at 2001Q3 and the estimates from the full sample are included in
the search grid trimmed by fraction o = 0.15. Total 50 sub-samples are considered. Table 1.10
provides the fraction of sub-samples (the number of sub-samples divided by 50) that gives the
same break date estimates.

From 1949Q2 to 2001Q3, there are five military conflicts in the Middle East that have
significantly disrupted world petroleum supplies (Hamilton, 2003). The Suez crisis in November
1956, the Arab-Israel war in November 1973, the Iraninan revolution in November 1978, the Iran-
Iraq war in October 1980 and the Persian Gulf war in August 1990, where the month indicates
the largest observed drop in oil production. The events are in the first column of Table 1.10 next
to the corresponding break date in the second column. If an oil supply shock occurred in the
quarter, it is categorized with the next four quarters due to the number of lags in the regression.
For the Arab-Israel war there were no break date estimates equivalent to 1973Q4, so it is with
1974Q1-1974Q4. There are no break date estimates close to the earliest event at 1956Q4, the Suez
crisis, for all oil price measures and estimation methods. For a large oil supply shock at quarter
t, the annual net and the 3-year net oil price measures would be affected up to quarter ¢ +4 and
t + 12, respectively. Thus, for a event occurring at ¢, the break date estimates are categorized for
t+5 to t + 16 due to the construction of the net oil price measures and four lags in the regression.

For all oil price measures, the LS estimator has a higher fraction of sub-samples with
estimates that are near the start date of the trim, which corresponds to the first row. However
both estimation methods did not have sub-sample estimates near the end date of the trim; the
latest estimate date is 1991Q2. Our estimator has a higher fraction of sub-samples with estimates
within the following 16 quarters from the Iraninan revolution and the Iran-Iraq war, for all oil

price measure. For the Arab-Israel war, our estimator using oil price measures except the annual

'Sub-samples with start dates 1957Q3 to 1961Q2 has matrix (X'X) that are near singular for nonlinear oil price
measures.
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net oil price also has a higher fraction of sub-samples with estimates in the following 16 quarters.
In this period the difference in the number of sub-samples is only one between the two estimation
methods using the 3-year net oil price.

Table 1.11 summarizes the fraction of sub-samples with break point estimates closer
or further away from the end of the unit interval. For all measures there are sub-samples with
Prs € [0.15,0.25), which corresponds to dates earlier than the Arab-Israel war, but almost ten
years past the Suez crisis in 1956. In contrast, the break point estimator Pyzw does not have any
sub-samples in [0.15,0.25) except one sub-sample using the 3-year net oil price measure. This
also holds for the interval close to 0.85; for all oil price measures none of the sub-samples have
Pnew in [0.75,0.85] whereas the LS estimator has one or three sub-samples with pys included
in the interval. Although this interval include dates following the Persian Gulf war, the fraction
0.02 and 0.06 of sub-samples seems quite small to think that the LS estimator actually estimates
the break date of this event. Rather, for these sub-samples the finite sample behavior of the LS
estimator leads to estimates near the ends.

Kilian (2008) argues that nonlinear transforms of oil price data do not identify the
exogenous component of oil price changes. Hence, I also find the structural break point using the
measure of exogenous oil supply shocks constructed in Kilian (2008). A quarterly measure of the
OPEC oil production shock series'? from 1971Q1 to 2004Q3 is employed as o,. The regression
model and weight matrix is the same as before; four lags of oil shock measures are associated
with coefficients under structural break!3. Both methods estimates a break occurred at 1980Q3,
corresponding to break point of 0.27.

Overall, the difference between our estimator and the LS estimator of the break point is

less prominent than the applications in section 1.6.1 and 1.6.2 but similar to previous results: our

2Data were downnloaded from https://sites.google.com/site/lkilian2019/research/data-sets

3Kilian (2008) does not estimate for structural breaks but considers OLS regression of real GDP growth on a
constant, four lags of the dependent variable and eight lags of the exogenous oil shock measure to see the effect of
oil shock to real GDP. The break date estimates using eight lags of exogenous oil shock measure are 1981Q2 for
both methods, similar to the estimate using four lags.
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estimator is robust to trimming of the sample in estimating the structural break of the relation
between oil price shock and output growth. Furthermore, in obtaining estimates across different
trimmed samples, our estimator has a higher number of sub-samples that estimates the three
exogenous events that caused a drop in total world crude oil production: the Arab-Israel war in
1973, the Iranian revolution in 1978, and the Iran-Iraq war in 1980. Although a more rigorous
hypothesis test is required to conclude that the new estimation method accurately estimates a
break caused by these military conflicts, the results suggest that the relation of nonlinear oil price
measures and output growth in not stable. This is different from the results of Hamilton (2003) in
that a stable nonlinear relation between oil price and output can be represented using positive
changes of oil price. That is, even when nonlinear transforms of measures are used, it is likely

that a structural break occurs from a oil price shock.

Table 1.10: Structural break date estimates of the relation between oil price change and the U.S.
real GDP growth rates from 50 sub-samples. The start date changes across 1948Q3 to 1956Q2;
1960Q3 to 1964Q4 and the end date is 2001Q3 for all sub-samples. The entries are the fraction
of the number of sub-samples with break date estimates in the first column.

Oil price measure

% rate Mork Net 1-yr Net 3-yr
Event Break date NEW LS NEW LS NEW LS NEW LS
65Q1-66Q4 0.02 0.08 0.02 0.06 0.02 0.02 0.02

67Q1-73Q3 0.10 0.14 0.08 0.08 0.16 0.16 0.14 0.18
Arab-Israel ~ 74Q1-74Q4 0.06 0.08 0.12 0.08 0.12 0.12 0.12 0.08
75Q2-77Q4 024 020 024 024 022 024 0.18 0.20
78Q1-78Q3  0.08 0.06 0.04 0.04 0.12 0.12 0.06 0.06

Iranian 78Q4-79Q4 0.12 0.10 0.04 0.04 0.08 0.04 0.14 0.06
80Q1-80Q3  0.02 0.06 006 0.12 0.08 0.10 0.08
Iran-Iraq 80Q4-81Q4 0.16 0.12 0.16 0.14 0.10 0.08 0.12 0.10
82Q1-84Q4 0.10 0.10 0.10 0.10 0.06 0.04
85Q1-87Q3 0.08 0.10 0.10 0.10 0.02 0.06
88Q1-90Q2  0.02 0.04 0.04 0.06 0.10
Persian Gulf  90Q3-91Q2 0.02 0.02 0.02 0.04 0.08
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Table 1.11: Structural break point estimates of the relation between oil price change and the
U.S. real GDP growth rates from 50 sub-samples. The start date changes across 1948Q3 to
1956Q2; 1960Q3 to 1964Q4 and the end date is 2001Q3 for all sub-samples. The entries are the
fraction of the number of sub-samples with break point estimates included in the first column
interval.

Oil price measure
% rate Mork Net 1-yr Net 3-yr

P interval NEW LS NEW LS NEW LS NEW LS

0 0.02 0 0.02 0 0.06 0 0.06

[0.15,0.25) 0 0.12 0 0.04 0 0.02 0.02 0.02
[0.25,0.35) 0.18 020 0.16 0.16 0.18 024 0.06 0.14
[0.35,0.45) 024 0.18 024 020 044 036 042 032
[0.45,0.55) 022 0.18 022 022 0.12 0.12 024 0.20
[0.55,0.65) 028 0.18 028 026 0.18 0.12 020 0.14
[0.65,0.75) 0.08 0.12 0.10 0.10 0.08 0.08 0.06 0.12
[ ]

0.75,0.85

1.7 Conclusion

This paper provides a estimation method of the structural break point in multivariate linear
regression models, when a one-time break occurs in a subset of (or all) coefficients. In particular,
this paper focuses on break magnitudes that are empirically relevant. That is, in practice it is
likely that the shift in parameters are small in a statistical sense. The least-squares estimation
widely used in literature fails to accurately estimate the break point under small break magnitudes,
which motivates the construction of the estimation method in this paper.

I show that the functional form of the objective function leads to tri-modality of the finite
sample distribution of the LS estimator. A weight function is constructed on the sample period
normalized to the unit interval, which assigns small weights on the LS objective for potential
break points with large estimation uncertainty. The break point estimator is the argmax functional
of the objective that is equivalent to the LS objective function multiplied by weights. The weight
function is proportional to the Fisher information under a Gaussian assumption on the model.

The Fisher information reflects a belief that a structural break is less likely to occur near ends of
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the sample period. I show that the break point estimator is asymptotically equivalent to the mode
of the Bayesian posterior distribution if we use a prior that depends on the Fisher information.
The break point estimator is consistent under regularity conditions on a general weight
function, with the same rate of convergence as the LS estimator from Bai (1997). The limit
distribution under a small break magnitude is derived under a in-fill asymptotic framework,
following the approach of Jiang, Wang, and Yu (2017, 2018). For a structural break in a stationary

1/2

linear process with a break magnitude that is inside the local 7~ '/“ neighborhood of zero, the

asymptotic distribution of the new estimator explicitly depends on the weight function. However,

~1/2 peighborhood of zero, the limit distribution of

if the break magnitude is outside the local T
the estimator is equivalent to that of the LS estimator. The in-fill asymptotic distribution is also
derived for a break in a local-to-unit root process, assuming the break magnitude is O(T_l). This
is smaller than the break sizes assumed in conventional long-span asymptotic theory. Monte Carlo
simulation results show that under a small break the break point estimator reduces the RMSE
compared to the LS estimator for all parameter values considered.

The paper provides three empirical applications: structural breaks on the U.S. real GDP
growth, the U.S. and the UK stock return prediction models, the relation between oil price shocks
and the U.S. output growth. The break point estimates are robust to trimming of the sample, in
contrast to LS estimates. In particular, our method estimates the break date 1973Q1 in U.S. real
GDP growth rates, which LS estimation has failed to confirm. In macroeconomics literature the
“productivity growth slowdown” in early 1970s is a widely known empirical fact.

In short, this paper provides a estimation method that accurately estimates the timing of
the structural break in linear regression models, under empirically relevant break sizes. The new
estimator resolves the tri-modality issue of the least-squares estimation in finite sample. To my
knowledge it is the first in the literature for a break point estimator to have a uni-modal finite
sample distribution under statistically small break magnitudes. The paper provides theoretical

results of consistency of the estimator and a asymptotic distribution that represents finite sample
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behavior. If the break magnitude is small, the new estimator outperforms the least-squares
estimation and if the magnitude is large, it becomes similar to the LS estimator. Thus, the
estimator of this paper provides reliable inference of the change point in models, and does not
perform worse than LS estimator uniformly. The estimation method can be generalized to estimate

multiple structural breaks, which is for future research.

Chapter 1, in full, is currently being prepared for submission for publication of the material.

Baek, Yaein. The dissertation author was the sole author of this paper.
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Chapter 2

Tests for Break in Coefficients in Linear
Regression when the Direction of the Break

is Known

2.1 Introduction

One of the main concerns in modelling parametric models that represent econometric
relationships is that parameters are likely to be unstable. In time series regression we refer the
change in parameters over time as structural breaks in the model. In statistics and econometrics
literature there is an extensive amount of work on testing for structural breaks. Earlier works such
as Chow (1960) tests for parameter stability under a known break date using a F-statistic, and
Quandt (1958, 1960) suggests using a maximum F-statistic over all values of the potential break
date when the break date is unknown. Andrews (1993) studies the properties of such tests and
derives the asymptotic distribution of the test statistic. Brown, Durbin, and Evans (1978) provides
a test on the stability of parameters by considering partial sums of the standardized forecast errors

of rolling regressions, referred as the CUSUM test. Ploberger, Kriamer, and Kontrus (1989) and
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Ploberger and Kridmer (1992) provides test that are functions of the partial sums of OLS residuals
from a regression ignoring the breaks. Papers that discuss optimality of tests are Nyblom (1989),
which provides small sample locally optimal tests that are valid for a single structural break model.
Andrews and Ploberger (1994) derive asymptotically optimal tests by employing an weighted
average power criterion function.

Previous literature on structural break tests, including all tests stated above, studies a two-
sided test where the null hypothesis sets the parameter change equal to zero and the alternative
hypothesis states it is nonzero. That is, existing methods tests for breaks of either direction of
a parameter change. However in practice there are instances where the researcher is interested
in testing for breaks of a particular direction. For example, in Lucas critique type problems the
direction of the policy change may be known and hence the direction of the subsequent effect of
the reduced form regressions are also known. Or the direction may be known based on historical
data of relevant series. Through not directing power towards uninteresting alternatives, the power
of a test aimed in the correct direction should improve power. To the best of our knowledge, tests
for a known direction of break has not been discussed in literature.

In this paper we provide three tests where the direction of the break, i.e., the sign of the
parameter change in a linear regression model is known. By incorporating the information of
known directions, the test statistics are directed toward the alternative which leads to increase in
power. The first two tests have optimality properties under restrictive assumptions. The third test,
although lacking optimality properties, has an asymptotic null distribution equivalent to a standard
normal distribution and thus simple to calculate. We refer these test with known direction of
breaks as “directional break tests”. The directional break tests also accommodate cases where the
variance of the error term changes simultaneously with coefficients.

We compare the three directional break tests with other structural break tests widely used
in literature, the Nyblom (1989) test, the average exponential Lagrange multiplier (LM) test from

Andrews and Ploberger (1994), and the gLL test from Elliott and Miiller (2006). Monte Carlo
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simulations show that directional break tests with correct directions have higher power than these
tests. Furthermore, our empirical application on testing for a break in postwar U.S. real GDP
growth rate show that our tests suggest significant evidence of a break whereas other tests show
insignificance or weak evidence.

The plan of the paper is as follows. Section 2.2 provides our basic model and derives the
three directional break tests with their null asymptotic distribution. Section 2.3 discusses finite
sample power of tests from Monte Carlo simulations. Section 2.4 applies directional break tests
on testing for a break in U.S. real GDP growth rate series, U.S. labor productivity and compare

results with other structural break tests. Concluding remarks are in Section 2.5.

2.2 Directional Break Tests

2.2.1 The model and test statistics

Consider a linear regression model where a structural break occurs at time To.

v =X/p+Xd1{t >t} +Zy+u, t=1,....,T 2.1)

where y; is a scalar, X;, B, 8 are (k x 1) vectors, Z; and y are (m x 1) vectors, u, is a mean zero
disturbance with long-run variance 67 that is possibly heterogeneous and autocorrelated. 1{¢ >
To} is an indicator function that equals one if 7 > T( and zero otherwise. The break magnitude &
and break date T( are unknown to the researcher but the direction of the break & := sgn(§,) is
known; § corresponds to the signs of the coefficient under the alternative hypothesis 8, where

each element is 1 or —1. Denote §; and 5 ; as the jth element of 6 and 3, respectively.

Hy:8;8,<0, Vj=1,... .k (2.2)

,7‘[1:8j8j>0, EIj
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Under the null hypothesis all elements of vector d are either equal to zero (no structural break)
or its direction is incorrectly specified. The alternative hypothesis indicates that at least one
(nonzero) element of J is correctly specified. For asymptotic results, we impose the following
regularity condition on model (2.1). Let Q; = (X/,Z])" and [-] is the greatest smaller integer

function.
Condition 1. (i) t9 = [roT| for some 0 < ry < 1.

(i) T-1/2 ZES:TI] Xou; = Q}/2W(s) for0<s<ryand T‘l/ZZt[S:TT}OHX,u, = Q;/Z(W(s) —Wi(rp)
forrg <s <1 with Q; and Q) some symmetric positive definite k x k matrices and W(+) a

k x 1 standard Wiener process.
_ T
(i) supocyer |7 V2 L) Zut | = 0p(1).

T . B | Ex Xxz . . .
(iv) T 100, = sXp=s uniformly in 0 < s < 1 where ¥ is full rank.
t=1 t o 0

Yzx Xz

These assumptions are standard in the literature on tests for structural breaks. Condition
1(i) assumes the break point r( is bounded away from end points. Conditions (ii)-(iv) are standard
high-level time series conditions, that allow for heterogeneous and serially correlated {u, } and
regressors {Q; }. As in Bai (1997), we allow for the long-run variance of {X;u, } to change at the
break date Tg.

We denote the tests of break under known directions as “directional break tests”. First,
consider the case of no break in the variance of {X;u, }, such that Q = Q; = Q,. Denote V; := X; i
where #; are the OLS residuals from regressing {y;} on {Q;}. If we relax the conditional
homoskedasticity assumption such that the error term has a variance-covariance matrix E[UU’] =
Q, that is not necessary diagonal, the directional test statistics are as follows. Note that d
is a (k x 1) vector that needs to be specified for the first two test statistics. It represents the

“normalized” local break magnitude of each element of &, which we further discuss in section
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2.2.2.

i - 1/2
! dd <l T 1, -/t t
a _ —1 / /2 —1/2 5 __ _ _
db} =T tziexp <8/2X1/2A2X1/28> oL\ T S;]vs 2dd(T> (1 T)
(2.3)
I _ 1/2
T d/d el 1/2 T
dbh. =T~ 'Y exp k ) §sSA 2y g, (2.4)
t:Zl (5/2 ”%zi;”%s) X S:fz‘il
12 1/2 T P T
Pl pe—— R N5 v AN R (2.5)
(8’2X1/2Q2X1/28> [-21 . s—;—l

where Q is the long-run variance estimator of {X;u; } and L is a consistent estimator of the second
moment of X;. Note that under conditional homoskedasticity, Q= 622;( and the denominator of
the first term simplifies to (628’ S)l/ 2 = 6+/k. Each test statistic depends on the known direction
vector &. The first two test statistics depend on the local break magnitude d. In section 2.2.2
we show that these two test statistics are derived from a likelihood ratio test statistic and thus
have optimality properties under i.i.d Gaussian disturbances and strictly exogenous regressors. In
contrast, the third test statistic db% do not depend on d and follow a standard normal distribution
in the limit under no break. The construction of the test statistic is not based on a likelihood test
statistic and hence do not share optimal properties. However, the limit is invariant of d which
makes it easier to use the test statistic.

The tests that assume € = Q; and allow for heteroskedastic and serially correlated errors
{u,} are constructed as follows. Choose 8, where each element & j corresponds to the sign of the

alternative we are testing for.

1. Compute the least squares regression of {y,}7_, on {X;,Z}’_ | and compute the OLS

residuals ;.

2. Construct {9}, = {X;4,}"_,.
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3. Compute the long-run variance estimator Q of {#}L_,. An example would be to use the

estimator of Newey and West (1987, 1994).
4. Compute test statistics as in (2.3), (2.4) or (2.5).

5. All tests reject for large values regardless of the choice of 8. Critical values for (2.3) and

(2.4) are in Table 2.1 for d € {1.5,2,2.5}.

Now suppose there is a break in the variance of X;u;. We assume conditional ho-
moskedasticity and use a weighted least square (WLS) approach to construct test statistics. Let
Q= G%ZX and Q) = G%ZX in Condition 1(ii), where 6| # ;. In matrix form the model (2.1) is
Y =00+ (X —X(7))d+U, where Q = (X,Z), X(10) = (Xi,...,Xz,,0...,0)and 6 = (B',y)".

Let Qp, := diag{c3l;,63Ir .} and transform (2.1) by pre-multiplying Q{]}/ 2,

Q. y =0,200+ 0,2 (X —x(10))8+ 9, *U

&V =00+ (X—-X(1))8+0.
For a fixed 7, Condition 1(ii) and (iv) holds for the transformed model.

7]
T2 Y Xja; =5 iW(s) for0<s<1,
j=1
L. Ex1 Xxzi
T~ ZQjQ;—)SZQJ:s ’ 7
/= Yzx1 Xz

Note that subscript / =¢/T of Yo, denotes its dependence on Q. Let v; be the OLS residuals
from regressing ¥ on 0. We have T~'X'X % ¥y ;, which is well-defined for all € [¢, 1 — €] for

some fraction € > 0. Denote flx_‘, as a consistent estimator of Xy ;. Then 2;“ =71 1x’ QU’,X ,

T

Ly 07 and 65 = YT, 47. The

which is obtained from Qg = diag{é%lt, 6%IT,,} where 6% =Y

68



three directional break test statistics using WLS estimators are as follows.

dba _T—l d i d_/d_ 1/2812*1/2 1/2 d_/ 1
1 F o (22) a5 (0 £ 8 Saa(2) (-1

s=t+1

T 7 7\ 1/2 T
=7! Ziexp <%) 8’2;71/2 <T1/2 Z \7s>]
=

T 1/2
dbs. — T Z <£) 6’2 1/2 ( —-1/2 Z )
t=1 8/8 s=t+1

(2.6)

2.7)

(2.8)

The tests that allow for a break in the long-run variance of {X;u, } is constructed as follows.

1. Compute the least squares regression of {y J} _,on {X;,Z; } _, and compute the

residuals ;.

OLS

2. For a fixed break date 7, compute the pre-break variance estimate 6% = tj:] ﬁ? and the

post-break variance estimate 65 = }.;_, | ]

3. Construct transformed series {J;}’_; = {67y; e X525 = (67'x;,6,'z

~1 ~1
{y,}] 1 =16, yj}j r+1> and {X;,Z; }] 11 =16, X, 6, Z}] =t+1

et

4. Compute Sy, = T*lijle jf(J’. and the OLS residuals {i j}]T':1 from the transformed

regression of {)7]'};:1 on {XJ’ZJ}]TZI

5. Construct {ﬁj}]TZI = {Xjﬁj}JT-zl and compute the partial sum 7~'/2 ZJT:tH V.

6. Repeat steps 2 to 5 fort = [eT],...,[(1 —€)T] for some € > 0 and compute test statistics

(2.6), (2.7) and (2.8).

Likewise, the three directional break tests reject for large values and critical values are in Table

2.1. We restrict the break point such that / =¢/T € [g,1 — €] in order to have enough observations

for identification in finite sample.

69



2.2.2 Derivation and asymptotic distribution of test statistics

We derive the first two test statistics db% and dbl% under i.i.d Gaussian disturbances
{u;} and strictly exogenous regressors. Under restricted assumptions the test statistics have
optimality properties because they are derived from a likelihood ratio test statistic. Assume
Uy AN (0,62), conditionally homoskedastic so that Q = 6?Ly, and Q is strictly exogeneous.
Let M := Ir — Q(Q'Q)~'Q’ and pre-multiply to the model so that MY = M(X — X (1))8+ MU
with MU ~ N(0,6%M). Under these assumptions the likelihood ratio test statistic of hypotheses,
Hy : 6 = 0 against # : 6 = §, with break at time ¢, have optimal properties. The alternative

hypothesis is a weighted average with w; as the weight on the alternative that a break occurs at

time t.

LRy = iw, exp {—%G_Z(MY —M(X —X(1))8,) (MY —M(X —X(1))8,)

1 -2y
+§G Y'MY

1=

W exp {o—zs’a(x —X(1))My — %6_28;(X —X())M(X —X(1))3,]| . (2.9)

t=1

The directional break test statistics tests the null of no break against the alternative hypothesis
that is a weighted average of a break occurring at time . For any sample size, and rejecting for
large values, the test statistic (2.9) along with the appropriate critical values results in a test that is
optimal for testing null hypothesis of no break against the alternative hypothesis a break occurs at
time ¢ with weights w; (under restricted assumptions stated above).

We consider the asymptotic properties of the test statistic (2.9) by setting the magnitude of
the break 8, = T~/ 2(52;1/ 2 (d 08), where o indicates the Hadamard product. The vector d > 0
represents a “normalized” local break magnitude, so that d o § represents the (k x 1) vector of
local parameter change (positive or negative) under the alternative hypothesis. We set d = dj1;

where 14 is a (k x 1) vector of ones so that each element is equal to a constant d;. Specifically,
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in sections 2.3 and 2.4 we set d; = 2 from setting 8, = 26B, where Op is the standard deviation
of the OLS coefficient estimator under the null hypothesis. If the break magnitude is at least
twice the standard error of B the break is significant to reject the null of no break. Hence, we
can rewrite the local alternative as 8, = T~'/20d, Z;l/ 23. Note that under the null hypothesis we
have MY = MU. We use the following lemma to derive the asymptotic distribution. For proof

see Appendix A.2.2.

Lemma 5. Under Condition 1,
T'2(X =X (1))MU = Q2 (W (1) — 1w (1))

where W(-) is a (k x 1) standard Brownian Motion on the unit interval and 21 is the spectral
density of {Xu; }

Under the null hypothesis, the first term of the exponential function in (2.9) weakly

converges as follows, by Lemma 5.

T 12671 (do8)xy (X — X (1)) MY = 6~ (do )Ty 2QV2(W (1) — W (1))

= J(W (1)~ W (1)),

where the last equation is from Q!/% = GZ)I/ ? and W(l) —IW (1) is symmetric. The second term
of the exponential function in (2.9) converges in probability to %d_’ 11(1 — 1), which we show in
the proof of Theorem 6. Under the assumption that weights w; satisfy Tw; — w(l) uniformly

on/ € (0,1) and by continuous mapping theorem, the likelihood ratio test statistic has the null

asymptotic distribution,
! 77 1 71 7
LRt :>/ w(l)exp |d'(W(l)—IW(1))— Ed dl(1-1)|dl. (2.10)
0

The first two directional break tests db% and db? are motivated from these results and are given
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by specifying the weights w;. For db%., the weights are uniformly distributed over possible
break dates, i.e., w; = T~!. The second term inside the exponential function is by a term that is

asymptotically equivalent, 3d'd (%) (1 — £).

db"—T’lT dd 1/28’2*1/2 -1/2 d’ 1 2.11
= t;eXP 5255 X Z 2 (T)( _7> 1D

s=t+1

Note that (d'd/(628'8))!/? = 6~ d. The test statistic (2.3) simplifies to (2.11) under conditional
homoskedasticity. For the second test db’., the weights are selected to offset the second term

inside the exponential term of (2.10), which is independent of the data asymptotically.

= oe[324(2) (- 7)

The weights here depend on the potential break date, and is maximized at the center of the sample.
Thus the weights place more emphasis on finding breaks in the center of the sample rather than
the edges of the data'.

Before providing the null limit distribution of directional test statistics, we provide

Proposition 1 which states that = 0 under the null hypothesis is the least favorable distribution.

Proposition 1. Denote the null set of parameters Ay = {5 | 8]-51' <0,Vj=1,... ,k}, the bound-

ary set as A, = {6]81-6]- =0,Vj=1,... ,k}, and Aj = Ao \ Ap. For some fixed constant ¢ > 0,
lim Pr[db7 > c|d € Aj] < lim Pr[db7 > c|d € Ap].
T—oo T—o0

The inequality also holds for db’% and db5.

This result is explained in detail after we present Theorem 7 on the local alternative

distribution of test statistics. Under the least favorable distribution of no break, we have the

IFor critical values of db% in Table 2.1 we assumed weights w, = T~ 'exp [3d'd (%) (1— %) — 3d'd(0.1)(0.9)]
so that critical values are not too large at 1% significance level. It essentially does not change the test statistic because
the additional term of weights is a constant.
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null limit distribution of the three directional break test statistics in Theorem 6. For proof see

Appendix A.2.2.

Theorem 6. Under Condition 1 and the least favorable distribution 8 = O under the null hypoth-

esis, the directional break tests (2.3), (2.4) and (2.5) have the following asymptotic distributions.

1

dbé = / exp {(J’J)”ZBB(I)—%J/JIU—1)} dl (2.12)
0
1

dbh. = /0 exp [(d"d‘)l/ZBB(l) di (2.13)
1

dbs = / V12BB(l)dl (2.14)
0

BB(l) is an univariate Brownian Bridge, W(l) — IW (1) on the unit interval | € [0,1]. The

asymptotic distribution in (2.14) is a standard normal distribution.

If Q is weakly exogenous, the three directional test statistics have equivalent asymptotic
distributions but loses the optimal property of the likelihood ratio test statistic. Previously when
we assumed serially uncorrelated and homoskedastic disturbances, we chose d in test statistics
db% and dbl} by setting 8, = 26, which gives us d equal to 2. Although this is not true under
relaxed assumptions (Q # 62Yy) we will maintain d; = 2 to avoid finite sample estimation error.

Now we derive the local alternative limit distribution of test statistics assuming & =
T-1/ 202;1/ 2a’, such that the break magnitude is inside the local T-1/2 neighborhood of zero

(note that d can be either positive or negative). For proof see Appendix A.2.2.

Theorem 7. Under Condition 1, suppose the break magnitude is & = T/ 262);1/ 2d with fixed d.
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Let d = di\. Then the local alternative limit distribution of directional break test statistics are

[ o(d'd)\/?(min{l, ro} — Iro)

I (8/2;1/292;1/28)1/2

[ 6(d'd)"/?(min{l, ro} — Iro)
(812;1/2Q2;1/28>1/2

¢ o 12(min{l,r0}—lr0)—
de:/ 08 V12BB() | i
0\ (8%, "QI, 78V

1 _ o I
b’ = / exp 6'd+<d/d>1/zBB<l>—%d’dl(l—l)] dl,
0

1
avh = / exp
0

8d+ (J’J)VZBB(Z)] dl

The limit distributions in Theorem 7 shifts depending on the sign of &'d. Under the case
of no break § = 0 we have &'d = 0. In other cases of the null hypothesis where & ;8; < 0 holds for
all j with strict inequality for at least one j, we have &'d < 0. Because the test statistic rejects
for large values, given some critical value ¢ and dd < 0, Pr[db% > c| is smaller than that when
&'d = 0 in the limit. Hence we have the results of Proposition 1, which is analogous to Lemma
1 of Wolak (1989). The paper examines tests when imposing linear inequality restrictions on
parameters of a linear model. In our case &8 = 0 is the unique least favorable value of &'$ that
specifies the the null hypothesis to obtain critical values for any size test. When &'8 < 0, the test
statistic shifts away from the alternative and the rejection probability is less than o in the limit.
Therefore we obtain critical values of any size test from the limit distribution under 6 = 0.

Note that in some cases of the alternative hypothesis, we have &d < 0 and thus the tests
do not have power. That is, if the directions are incorrectly specified for coefficient that has
magnitude dominating the correctly specified magnitude, we lose power. In the opposite case,
where correctly specified coefficients’ magnitude is larger than those that are incorrectly specified,
we have &'d > 0 and the tests will still have power.

The asymptotic power function and power envelope of the directional test statistics can
be computed under the local alternative distributions in Theorem 7. For simplicity assume

conditional homoskedastiticy, then the asymptotic power function of the three directional test
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statistics are as follows.

n(d,d) :=Pr _ /0 1 exp <J1 (min{l,ro} — Iro)8'd + (d'd)"/*BB(1) — %d_’d_l(l — l)> dl > cv“(d_)l

_ (2.15)
2(d.d) = Pr | /O Lexp (d‘l (min{Z,ro} — Iro)&d + (J’J)1/233(1)> dl > cvb(a?)} (2.16)
n(d,d) :=Pr _ /0 1 (\/E(min{z, ro} —1ro)d'd + \/EBB(I)> dl > 1.645} : (2.17)

The critical values ¢v*(d) and ¢v*(d) are determined by n¢(0,d) = 0.05 and =”(0,d) = 0.05,
respectively. Table 2.1 presents asymptotic critical values of db% and dbl} at 1%, 5% and 10%

depending on the value and dimension of d.

Table 2.1: Asymptotic critical values for directional test statistics db$ and db’

d=1.5 d=2 d=25
dim(d) 1% 5%  10% 1% 5%  10% 1% 5% 10%
| cvt 2542 1.883 1.589 | 3328 2213 1.756 | 4.264 2.534 1.889
cob 2843 2094 1.760 | 4.146 2.699 2.122 | 6.059 3.495 2.552
> cvt 3546 2294 1793 | 4935 2740 1.951 | 6.497 3.090 2.016
o’ 4542 2876 2222 | 7.876 4.155 2.879 | 14.010 5962 3.704
3 cvt 4454 2.602 1907 | 6347 3.061 2.011 | 8.190 3.235 1.933

e’ 6552 3.677 2.653 | 13.208 5.763 3.616 | 23.360 8913 4.843

In sections 2.3 and 2.4 we compare the three directional break test statistics with the L
statistic from Nyblom (1989) (denote as Nyblom), the (average) exponential LM test statistic
from Andrews and Ploberger (1994) (denote as AP) and gLL test statistic from Elliott and Miiller
(2006). The three test statistics and asymptotic distributions under the null and local alternatives

are described in Appendix A.2.1.
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2.3 Monte Carlo Simulation

This section examines finite sample rejection probabilities of the three directional break
tests, Nyblom, AP, and gLL test statistics. The rejection probabilities are computed from 5,000
replications, except Model 2 that is computed from 10,000 replications. We consider five different

cases of model (2.1) with T = 100. For simplicity assume Z; = 0 for all five cases.
1. Break in the mean with 1.1.d. Gaussian disturbances

2. Break in the mean with serially correlated disturbances

(98]

. Misspecification of number of parameters under break
4. Break in the drift of a AR(1) model

5. Break in coefficient and variance

Model 1: i.i.d. Gaussian disturbances

The data generating process is a bivariate model (2.1) where a break occurs in both coeffi-

cients of regressor X; simultaneously; X; = (1,g/)’, g Hid N(2,1),B=(0,0),8= T"/ZZ;I/zd,

d=(2¢,—c),cel0,10], u Hid N(0,1) and T = 100. For directional break test statistics db4. and
dbl} we use d = (2,2)’. Table 2.3 shows the size of each test statistic and Figure 2.1 shows the
power of test statistics. Figures 2.2 and 2.3 are rejection probabilities of directional break tests
when one direction is correct but the other is incorrect.

To assess the power differences in Figure 2.1, we compute the Pitman efficiency of the
directional test and comparative tests. The Pitman efficiency (or asymptotic relative efficiency,
ARE) is the ratio of sample sizes giving, asymptotically, the same power for that sequence (Stock,

1994). In our case, suppose that db% and AP(eo) tests achieve 50 percent power against the local

alternative ¢ and c», respectively. Then the ARE of the AP(e0) test relative to the db% test is
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¢2/c1 = 1.0645 under ry = 0.50. To achieve 50 percent power against a local alternative using
the AP(e0) test statistic asymptotically requires 6.45 percent more observations than are needed
using the directional test statistic db%.. For all comparative methods relative to directional test
statistics, the ARE range between 1.03 to 1.08 under the bivariate model (2.1) with i.i.d Gaussian

disturbances. Because the values are similar across different ry values, we show the case for

ro € {0.20,0.50}.

Table 2.2: (Model 1) Pitman efficiency (or ARE) of directional break tests, Nyblom, AP and

qLL tests.
ARE

ro Test Nyblom AP(«~) AP(0) ¢LL
dbf 1.0833  1.0536 1.0714 1.0536

0.2 dbl% 1.0769 1.0473 1.0651 1.0473
dbs 1.0643  1.0351 1.0526 1.0351
dbf 1.0452  1.0645 1.0581 1.0581

0.5 db]% 1.0519 1.0714 1.0649 1.0649
dbs 1.0452  1.0645 1.0581 1.0581
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Table 2.3: (Model 1) Rejection rate of structural break tests under no break 6 =0, 7 = 100.

Test Statistic

10 S db}  dbh  db;  Nyblom AP(0) AP(w) gLL
(1,-1)  0.0530 0.0534 0.0482
(1,L1)  0.0490 0.0500 0.0516

02 [111) 00520 00518 00546 00520 0:0468 00462 0.0626
(-1,1)  0.0518 0.0524 0.0526
(1,-1)  0.0444 0.0450 0.0462
(1,L1)  0.0476 0.0458 0.0446

03 [111) 00458 00466 0.0456 00492 00440 00430 0.0586
(-1,1)  0.0516 0.0522 0.0556
(1,-1)  0.0424 0.0438 0.0446
(1,1)  0.0488 0.0500 0.0512

04 1171 00498 00514 00540 00442 00384 00376 0.0514
(-1,1)  0.0478 0.0476 0.0472
(1,-1)  0.0420 0.0444 0.0438
(1,1)  0.0500 0.0496 0.0534

05 [111) 00504 00514 00526 C0478 0:0430 00414 0.0594
(-1,1)  0.0488 0.0502 0.0476
(1,-1)  0.0460 0.0470 0.0496
(1,L1)  0.0494 0.0492 0.0492

06 [1'1) 00482 00516 0.04g2 C0450  0:0422 00420 0.0560
(-1,1)  0.0448 0.0452 0.0442
(1,-1)  0.0430 0.0448 0.0452
(1,1)  0.0462 0.0484 0.0508

07 [111) 00468 00478 00508 C0452 0:0410 00374 0.0556
(-1,1)  0.0464 0.0466 0.0458
(1,-1)  0.0514 0.0494 0.0510
(1,L1)  0.0456 0.0462 0.0492

08 [111) 00454 00470 00472 00446 00376 00422 0.0562
(-1,1)  0.0540 0.0538 0.0538
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Power of Structural Break Test (’o =0.20, sgn(&a} =1,41)
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Figure 2.1: (Model 1, 5 correct) Finite sample power of the 5% level structural break tests when
8 = (1,—1)" across local parameter d = (2¢,—c)’, ¢ € [0,10]. The plots correspond to break
location rg = 0.20,0.30,0.40,0.50,0.60 and 0.70, respectively.
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Figure 2.2: (Model 1) Finite sample rejection probability of the 5% level structural break tests
when 6 = (1,1)" across local parameter d = (2¢,—c)’, ¢ € [0, 10]. The plots correspond to break
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Figure 2.3: (Model 1) Finite sample rejection probability of the 5% level structural break tests
when 6 = (—1,—1)" across local parameter d = (2¢,—c)’, ¢ € [0,10]. The plots correspond to
break location ry = 0.20,0.30,0.40,0.50,0.60 and 0.70, respectively.



Model 2: Serially correlated disturbances

Consider an univariate model (2.1) where the error term is an AR(1) process: u; =
Ou;_1+¢,0p=03andg AN (0,62), oe = 0.9. Hence the long-run variance of the error term
is 6> = 62 /(1 — ¢?) ~ 1.29. The regressor is a constant term X; = 1, =0 and 8 = T~'/?cd,
d € ]0,20]. Under correctly specified 8 = 1 we compare the power of the structural break test
statistics. Estimation of Q = 62 = limy_,. Var <T’1/ 2 Zthl v,) is conducted by the Newey-
West estimator with a bandwidth ¢(T") = 4(T/100)%/° (Newey and West, 1987, 1994) and for
directional break test statistics db$ and db%. we choose d = 2.

Figures 2.4 and 2.5 show finite sample rejection probabilities of three directional tests
under directions & = 1 (correct) and d=—1 (incorrect), respectively. In Figure 2.4 we see there
is power improvement compared to the Nyblom and the AP(e0) tests for all break locations
considered, although the power increase is not as large as the model with i.1.d disturbances. Figure

2.5 show that tests have rejection rate less than size under the wrong direction.
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Figure 2.4: (Model 2) Finite sample power of the 5% level structural break tests when
d = 1 across local parameter d € [0,20]. The plots correspond to break location ry =
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83



Rejection Rate of Directional Break Test (ra =0.20, sgn[é‘a] =)

0.08 T T : T : T :
* —*—dkf‘r
0.07 ant| ]

—#—db®
0.06 [ 11
0.05
0.04 J
0.03 | 1
0.02r 1
0.01[ 1
0 . . et s mmmm
0 2 4 [ 8 0 12 14 16 18 20
dq
Rejection Rate of Directional Break Test (ra = 0.40, sgn[é‘a] =)
0.08 T T T T T T T T T
—k—adb]
0.073 an? ]
| ——db
0.06 1
\
0.05
0.04 J
0.03 | 1
002 | 1
0.01[ \ 1
0 it
0 2 4 [ 8 0 12 14 16 18 20
dq
Rejection Rate of Directional Break Test (ro = 0.60, sgn[é‘a] =)
0.08 T T T T T T T T T
E. —k—adb]
0.07 ant| |
—#—dbZ
0.06 T
0.05
0.04 J
0.03| 1
ooz | 1
%
0.01[ ;{ 1
‘K**
0 i i ) A " " A = & = 4
R L B o o o o

0 2 4 6 B 10 12

14

16 18 20

Rejection Rate of Directional Break Te:

st (ra = 0.30, sgn(ﬁa) =)

0.08 T T T T : : T
—k—db]
- i
0.07 dh_"r
‘i o
0.06 H T
\
II
0.05 3
0.04 1 q
0,03 1
002 1
0011 q
0 + o o o e
0 2 4 8 10 12 14 16 8 20
dD
Rejection Rate of Directional Break Test (r, = 0.50, sgn(d_) = -1)
0.08 T T T T T T T T T
E —*—dkfr
0.07+ dtl_"r 1
—#—dbt
0.06 gl
0.05
0.04 1 q
0,03 1
00z K 1
0.01[ % E
L ke SO, . . " "
0 o o i o o e
0 2 4 6 8 10 12 14 16 8 20
dD
Rejection Rate of Directional Break Test (ro = 0.70, sgn(ﬁa) =)
0.08 T T T T T T T T T
—k—db]
* 4
D.DT_ dh:,
—#—dbt
0.06 gl
0.05 ﬁ
0.04 | ]
\
*
0.03[ | 1
00z q
0011 q
0 t o L s e

o 2 4 6 B 10 12 14 16 18 20
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Table 2.4: (Model 2) Rejection rate of structural break tests under no break 8 = 0, T = 100.

Test Statistic

o § vt dbh dbS  Nyblom AP(0) AP(w) gLL

0.2 _11 8:8;?? 8:8;22 8:8322 00778  0.0637 0.0633 0.0656
0.3 _11 8:8;‘8 8:8;';’3 8:8;5? 0.0748  0.0609 0.0610 0.0637
0.4 _11 8:82;2 8:8;38 8;8;1; 00723 0.0603 0.0594 0.0633
0.5 _11 8:8% 8;8;?? 818232 0.0745  0.0623 0.0608 0.0657
0.6 _11 8:8;(3% 8:8;i2 8;832; 0.0757 0.0614 0.0630 0.0637
0.7 _11 8:8;(1)(3) 8:8;(1)2 828222 0.0744 00597 0.0584 0.0613
08 ! 0.0726 - 0.0728 - 0.0706 5783 0.0653 0.0653 0.0657

-1 0.0733 0.0732 0.0714

Model 3: Misspecification of number of parameters under break

As mentioned in Section 2.2.2, we check whether the directional break tests have power
when there exists a structural break in only one (unknown) coefficient of bivariate variable X;.
Consider model (2.1) where X; = (1,g;)’, g Hd (1,0.25) and assume conditionally homoskedas-
tic and serially uncorrelated errors u; N (0,62), 6 = 1. There are two cases of a structural
break in one coefficient, 8; = 0 or 8, = 0 where & = (81,8,)’. We consider the case of a positive
break in the second variable g, such that 8 = T~'/2d and d = (0,d,)". B is a vector of zeros and
dg € ]0,30]. All structural break test statistics are computed under the possibility that there is
a break in any coefficient parameter. If we specify both coefficients under break, there are two
cases in which the direction § is correct: = (1,1)" and & = (—1,1)’. We plot the finite sample

power under each case and compare with Nyblom and AP(e0) tests.

Under & = (1,1)’, Figure 2.6 shows that the three directional break tests have higher
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power than Nyblom or AP(eo) tests. In contrast, Figure 2.7 under 8 = (—1, 1)’ shows the power
of directional break tests are significantly smaller than the power of Nyblom or AP tests. The
asymptotic power function of directional break test statistics depend on the term & Z)l(/ *d. Because
it depends on a positive definite matrix xY 2, the term &' Z)lf/ 2d is larger when 8 = (1,1)’. This is
also true for the case when the constant term is under break, d = (d;,0)’. Hence, under a bivariate
model there is power improvement if & has both elements equal to the direction of coefficient

under break.

Table 2.5: (Model 3) Rejection rate of structural break tests under no break 6 = 0, 7 = 100.

Test Statistic
ro 8 db%  dbh  db5  Nyblom AP0) AP(~) ¢LL

(1,-1)  0.0470 0.0468 0.0460
(1,1 0.0462 0.0472 0.0490

0.2 C1-1) 00452 00474 0.0472 0.0444  0.0438 0.0410 0.0586
(-1,I)  0.0462 0.0478 0.0472
(1,-1)  0.0490 0.0512 0.0480
(1,1 0.0524 0.0526 0.0528

0.3 C1-1) 00478 00494 0.0510 0.0408 0.0364 0.0358 0.0512
(-1,1)  0.0430 0.0444 0.0398
(1,-1)  0.0432 0.0440 0.0432
(1,1) 0.0468 0.0466 0.0476

0.4 C1-1) 00476 00478 0.0472 0.0442  0.0350 0.0354 0.0524
(-1,I)  0.0516 0.0522 0.0516
(1,-1)  0.0448 0.0450 0.0430

0.5 (4,1 0.0510°-0.0514 0.0512 0.0444  0.0398 0.0398 0.0564

(-1,-1)  0.0444 0.0452 0.0466
(-1,I)  0.0444 0.0444 0.0436
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Figure 2.6: (Model 3) Finite sample power of the 5% level structural break tests when & = (1,1)
across local parameter d, € [0,30]. The plots correspond to break location ry = 0.20,0.30,0.40
and 0.50, respectively.
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Figure 2.7: (Model 3) Finite sample power of the 5% level structural break tests when & =
(—1,1)" across local parameter d, € [0,30]. The plots correspond to break location ry =

0.20,0.30,0.40 and 0.50, respectively.

Model 4: AR(1) with a drift

The DGP is an autoregressive model with one lag where the constant term and lag
coefficient is under structural break simultaneously. In model (2.1) the regressor is X; = 1 and
Zy =Vi—1.

e =B+t > [roT]} +y—1+u, t=1,....,T (2.18)

where B=0, ¢ = 0.3, u, "*¢" N(0,62), 6 = 0.7, 8= T~/26d, d € [~15,0], and T = 100. For

test statistics db?- and db’% we choose d = 2.

Table 2.6 shows that AP(e) and gLL tests have rejection probability less than 0.03 under
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the null hypothesis, given 5% significance level. The loss of power in AP(e0) test is shown in
Figure 2.8, where we can see that the power improvement of directional break tests compared
to comparative methods is quite large. Pitman efficiency in Table 2.7 ranges between 1.10 to
1.18, which are larger than the values in Table 2.2 under i.i.d disturbances. This is because other
break tests are conservative under the DGP (2.18) while directional break tests maintain their

performance.

Table 2.6: (Model 4) Rejection rate of structural break tests under no break 8 =0, T = 100.

Test Statistic
db% dbl; db; Nyblom AP() AP(e) ¢LL

1 0.0446 0.0456 0.0456
0.2 1 00454 00458 0.0480 0.0408  0.0338 0.0260 0.0238

1 0.0406 0.0418 0.0428
03 | 00404 00424 0oalg 00372 00276 00246 0.0252

1 0.0460 0.0460 0.0498
0.4 1 0.0460 0.0474 0.0468 0.0386  0.0326 0.0296 0.0256

1 0.0520 0.0536 0.0512
0.5 B 0.0400 0.0402 00442 0.0402  0.0302 0.0288 0.0248

1 0.0410 0.0418 0.0436
0.6 1 0.0516 0.0534 00540 0.0408 0.0312 0.0268 0.0296

1 0.0406 0.0424 0.0426
0.7 1 0.0460 00472 0.0472 0.0386  0.0276 0.0280 0.0276

1 0.0426 0.0424 0.0432
0.8 1 00516 00528 0.0546 0.0446  0.0312 0.0278 0.0276

[e%]]

ro
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Table 2.7: (Model 4) Pitman efficiency (or ARE) of directional break tests, Nyblom, AP and

gLL tests.
ARE

ro Test Nyblom AP(e) AP(0) ¢LL
dbs 1.1308  1.1017 1.1477 1.1477

0.2 dbh, 1.1363  1.1071 1.1533 1.1533
dbs 1.1172  1.0885 1.1340 1.1340
dbs- 1.1667  1.1574 1.1358 1.1821

0.5 db’. 1.1560  1.1468 1.1254 1.1713
db5 1.1631  1.1538 1.1323 1.1785

Model 5: Break in variance and coefficient

We consider the case where there is an one-time break in the variance of the disturbance
and coefficient simultaneously. We compute our “usual” directional break test statistics using
OLS estimators and test statistics using WLS estimators, which takes into account the break in
variance of the error term {u;}. The DGP is model (2.1) where X; = 1, Z;, = 0, i, i N(0,6?)
when # < [roT] and u, iid N(O,G%) when 7 > [rpT]. Let 61 =2 and 6, = 1 so that Q; # Qp;
B=0,8=T""26,d,d € [0,30] and T = 100.

None of the structural break tests in Table 2.8 accommodate a break in the variance of u;,
which results in rejection rate larger than size under the null hypothesis. WLS directional break
tests in Table 2.9 shows size control. Thus, we cannot directly compare the finite sample power
of WLS directional break tests and other tests. Nonetheless we plot the power of tests in Figure
2.9. The left plot shows directional break tests using OLS estimators have larger power in finite
sample than Nyblom and AP(e0) tests for all break location considered. The right plot shows that

WLS directional break test statistics have smaller power than comparing methods, as expected,

except the case when a break occurs at the median of the sample ro = 0.5.
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Table 2.8: (Model 5) Rejection rate of structural break tests under no break 8 = 0, T = 100.

Test Statistic
) S dby dbl% dbs Nyblom AP(0) AP(e) ¢gLL
1 0.0764 0.0749 0.0788
0.2 1 00827 0.0807 0.0822 0.0934  0.0937 0.1750 0.0946
1 0.0704 0.0697 0.0719
0.3 B 00730 0.0722 0.0736 0.0805 0.0752 0.1280 0.0832
1 0.0658 0.0658 0.0653
04 B 00643 0.0637 0.0647 0.0700  0.0618 0.1069 0.0726
0.5 ! 0.0493 - 0.0491 0.0487 0.0479  0.0409 0.0775 0.0651

-1 0.0529 0.0533 0.0504

Table 2.9: (Model 5) Rejection rate of WLS directional break tests under no break 6 = 0,
T = 100.

Test Statistic
0 d db(WLS) db’; (WLS) db7(WLS)
1 0.0454 0.0451 0.0496

0.2 -1 0.0468 0.0473 0.0513
03 1 0.0420 0.0412 0.0451
-1 0.0447 0.0446 0.0487
04 1 0.0449 0.0436 0.0499
-1 0.0443 0.0423 0.0471
05 1 0.0415 0.0406 0.0429

-1 0.0435 0.0427 0.0456

2.4 Empirical Application

Previous literature has attempted to test the existence of breaks in mean macroeconomic
growth rates, particularly because shocks that affect mean growth rates occur rarely and hence
useful to model them as a one-time event. Bai, Lumsdaine, and Stock (1998) tests existence of a
break in the output growth in postwar European and U.S., in which graphical evidence points

to growth slowing down sometime in the 1970s. The authors finds that for the U.S. most of the
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test statistics reject for the no-break hypothesis but the estimated confidence interval does not
contain the growth slowdown in the 1970s. Eo and Morley (2015) applies an inverted likelihood
ratio test and the testing method of Qu and Perron (2007) on postwar quarterly U.S. real GDP
and consumption on nondurable goods and services. Under the assumption of no-break in the
unconditional mean of the co-integrating relationships of output and consumption, they test for
the break in the long-run growth rate. The results suggest weak evidence in the timing of the
“productivity growth slowdown” in the early 1970s and the Great Moderation in the mid-1980s. It
is likely that the directional break tests will be able to find stronger evidence of a structural break
by specifying its direction. Section 2.4.1 investigates a structural break in U.S. real GDP growth

rate and Section 2.4.2 considers U.S. labor productivity based on the work of Hansen (2001).

2.4.1 U.S. real GDP growth

We consider a simple univariate model to test for a structural break in postwar quarterly
U.S. real GDP growth rate. Data are obtained from the Bureau of Economic Analysis (BEA)
website for the sample period 1947Q1 - 2017Q2. Quantity indexes are seasonally adjusted and
the base year is 2009 (2009 = 100). We assume that log output has a stochastic trend with a drift
and a finite-order representation. We test for a structural break in a AR(1) model for three cases.
The lag order is selected using Kurozumi and Tuvaandorj’s (2011) modified Bayesian information
criterion (BIC), following Eo and Morley (2015) approach. The model selection method takes
into account structural breaks, given an upper bound of four lags and four breaks in output growth.
The first case is a break in the drift term only (the constant term Yy = 0), second case is a break in
the lag coefficient only, i.e., “propagation term” (8 = 0), and lastly a break in both constant and

coefficient terms 6 = (7, 8)’.

Ay; :B+¢Ayt—l+1{t >T()} ('Y+8Ay;_1)+u,. (219)
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We assume the error term {u, } are serially uncorrelated mean zero disturbances with a break in
variance: E[u?] = 67 att < 19 and E[u?] = 05 at t > To. At break date Ty, the long-run growth
rate of log output change from E[Ay;| =B/(1—0) to (B+7Y)/(1 — 6 — d) and the volatility of
growth rate change from Var[Ay,] = 67/(1 — ¢?) to 63/(1 — (0 +8)?). Previous literature have
investigated the decrease in volatility of U.S. real GDP growth rate occurring in mid-1980s (Stock
and Watson, 2002). We incorporate the change in variance by using WLS in addition to OLS
estimation for directional break tests.

We would like to see if directional break tests reject the null hypothesis of no break for
three cases. In the first two cases when a break occurs in one coefficient of an AR(1) model, we
would expect a negative direction in break? 8 = —1. For the third case when both coefficients are
under a break, we set & = (—1,—1)’. For comparison we compute the Nyblom, AP and gLL test
statistics which do not allow break in variance. Table 2.10 computes all test statistics ignoring the
break in volatility, using OLS residuals for directional test statistics (2.3), (2.4) and (2.5). Table

2.11 computes the WLS directional test statistics (2.6), (2.7) and (2.8).

Table 2.10: Autoregressive Model of U.S. Real GDP Growth 1947Q1-2017Q2: Directional
break test statistics, Nyblom, AP and gLL test statistics; **: Rejects the null hypothesis of no
break at 5% significance level; *: Rejects the null hypothesis of no break at 10% significance

level.
Test Statistic
Null  db% abh. dbs. Nyblom AP(0)  AP(«) ¢LL
Y=0 25915%% 3.1663%* 2.0624%%* 2.3120% 1.3797 -5.8025
§=0 1.5708 1.8752 1.2087 1.0295  0.6856 -3.7586

0=0 3.2003*% 4.8278** 2.0725** 0.5204 2.8558 1.7168 -9.5463

For three different null hypotheses on the model (2.19), all three directional tests reject the

null hypothesis of no break in the constant term, Y= 0 and the null of no break in both coefficients,

>The mean of annualized growth rate from 1947Q1 to 1984Ql1 is 3.5 percent and the standard deviation is 4.7
percent. From 1984Q1 to 2017Q2 the mean is 2.6 percent and the standard deviation is 2.4 percent.
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Table 2.11: Autoregressive Model of U.S. Real GDP Growth 1947Q1-2017Q2: WLS directional
break test statistics, Nyblom, AP and gLL test statistics; *: Rejects the null hypothesis of no
break at 10% significance level.

Test Statistic
Null  db5(WLS) d bl; (WLS) db7(WLS) Nyblom AP(0) AP(e0) gLL
vy=0 1.5801 1.8595 1.2462 2.3120*% 1.3797 -5.8025

=0 1.9484* 2.2735% 1.5426%* 1.0295  0.6856 -3.7586
0=0 2.1572% 2.9710%* 1.5324* 0.5204  2.8558 1.7168 -9.5463

Table 2.12: Autoregressive Model of U.S. Real GDP Growth 1947Q1-2017Q?2; variance is
estimated pre- and post-1984Q1: Directional break test statistics, Nyblom, AP and gLL test
statistics; **: Rejects the null hypothesis of no break at 5% significance level; ***: Rejects the
null hypothesis of no break at 1% significance level.

Test Statistic
Null db% dbl; dbs Nyblom AP(0) AP() qLL
Yy=0 0.6799 0.7469 -0.6634 2.9976%*  4.0594%*** .9 4593%**

d=0 0.6438 0.7017 0.6592 1.0860 0.6341 -3.5761
6=0 0.589% -0.6786 -0.7701 0.5773  3.3682 4.2376**  -12.1004

Table 2.13: Autoregressive Model of U.S. Real GDP Growth 1960Q1-2017Q2: WLS directional
break test statistics, Nyblom, AP, gLL test statistics and & := (,8;). **: Rejects the null
hypothesis of no break at 5% significance level; *: Rejects the null hypothesis of no break at
10% significance level.

Test Statistic
Null  db7(WLS) db’; (WLS) db7(WLS) Nyblom AP(0) AP(0) qLL
vy=0 1.6547 1.9511 1.3315% 2.5826* 1.6511* -7.1101
0=0 1.5107 1.7033 0.9249 04966 04127 -3.3896

0=0 2.1731% 2.9902%* 1.5238%* 0.5662  3.0547 1.9861 -10.3368

0 = 0 at 5% significance level. WLS directional tests reject the null hypothesis of no break in the
lag coefficient, d = 0 and the null 6 = 0 at 10% significance level. Other structural break tests fail
to reject the null of no break except for AP(0) which rejects the null Y= 0 at 10% significance

level. Therefore, all three directional break tests provide significant evidence of a break in U.S.
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real GDP growth rate whereas Nyblom, AP and gLL tests suggests weak or no evidence.

Allowing for 6% # 63 using WLS estimation provides a weak evidence a break in the
lag coefficient, in contrast to a significant break in the constant term using OLS. Nonetheless, it
suggests a structural break while taking into account the shift in growth rate volatility, such as the
Great Moderation, that might be caused from the change in second moment of disturbances.

If we assume a break in variance at a specific date we can allow volatility break in all
structural break test statistics, including directional break test statistics using OLS estimators.
Based on previous literature on the Great Moderation, we estimate the variance of the AR(1)
disturbance term pre- and post-1984Q1. Hence 67 =1 ' Y'*_, i? where T =1984Q1 and 63 =
(T — ’l:)*1 Zthr 41 ﬁtz The results in Table 2.12 are in striking contrast to Table 2.10. AP(0) and
gLL tests reject the null Y= 0 at 5% significance level. AP(e0) test rejects Y= 0 at 1% significance
level and 6 = 0 at 5% significance level. However, all directional break tests fail to find evidence
of a break for all three hypotheses. We also compute tests for sub-sample 1960Q1-2017Q2.
Table 2.13 shows that AP(0) and AP(0) test statistics reject the null hypothesis y= 0 at 10%
significance level. WLS directional break tests reject the null © = 0 at 10% significance level but
db% and dbl% tests to reject y = 0.

Overall, allowing for a break in variance and assuming a negative direction in a AR(1)
model of output growth rate leads to rejection of no break in the U.S. real GDP growth rate. Other
structural break methods fail to reject the null of no break (or has weaker evidence of a break),
unless we assume there is a break in the variance at time of Great Moderation. This suggests
that using directional break tests on U.S. real GDP growth rate provides stronger evidence of the

output growth rate slowdown.

2.4.2 U.S. labor productivity

We also consider the structural break in U.S. labor productivity, using the productivity

data from Hansen (2001). Under a AR(1) model Hansen (2001) measures labor productivity
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in the manufacturing/durables sector as the growth rate of the Industrial Production Index for
manufacturing/durables to average weekly labor hours, a monthly time series from February
1947 to April 2001 (total 651 observations). The author finds that the test of Andrews (1993)
rejects the null hypothesis of no structural break. Subsample estimates of mean growth rates (in
annualized units) are 3.4% for 1947-1964, 2.5% for 1964-1982, 4.2% for 1982-1995 and 7.7%
for 1995-2001. Clearly there is an increase in the mean growth rate compared to previous history.

Under the model (2.19) and considering three cases of the change in coefficient parameters
that causes a increase in the mean E[Ay;]. We would expect a positive direction & = 1 for the
change in the constant term or the lag coefficient. For the change in both terms, consider

0= (11)". Table 2.14 shows that all three directional break tests and comparative break tests

provides significant evidence of a break in the constant term y and both coefficients 6 = (y,3)’.

Table 2.14: Autoregressive Model of U.S. labor productivity Feb 1947-Apr 2001: Directional
break test statistics, Nyblom, AP and gLL test statistics; ***: Rejects the null hypothesis of no
break at 1% significance level; **: Rejects the null hypothesis of no break at 5% significance
level; *: Rejects the null hypothesis of no break at 10% significance level.

Test Statistic

Null dbé- dbb. ans. Nyblom  AP(0) AP(0) qLL
Y=0 3.8714%%% 4.6545%+% 2 1862%* 4.0219%%%  4.2037+%%  _11.5064%%*
§=0 07202 0.8299 -0.0085 1.6134 1.4806 -8.3101%*

0=0 2.8498**  3.6454* 0.8081 1.0277%*  5.77627**  4.4869*%*  -19.6957***

We follow the sub-sample analysis of Hansen (2001) and partition the sample based on
the break date estimate from the full sample (January 1982). All three directional break tests and
four comparative tests fail to reject the null of no break in period [1947,1982] but all tests find
evidence of break during [1982,2001] with results similar to Table 2.14. The break date estimate
in [1982,2001] is December 1994. For period [1947,1994], only the Nyblom test finds evidence
of a break at 10% significance level and others fail to reject the null of no break. The break date

estimate in period [1947,1994] is December 1963. For subsample period [1964,1994] in Table
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2.15, none of the tests finds evidence of a break at 10% significance level. Finally, taking the
subsample [1964,2001], all tests finds evidence of a structural break, similar to results in Table
2.14. In summary, directional break tests results are similar to other break tests in providing

significant evidence of a break in U.S. labor productivity, for all sub-samples considered.

Table 2.15: Autoregressive Model of U.S. labor productivity Jan 1964-Dec 1994: Directional
break test statistics, Nyblom, AP and gLL test statistics; *: Rejects the null hypothesis of no
break at 10% significance level.

Test Statistic

Null  dbe dbb dbS  Nyblom AP(0) AP(w)  gLL
y=0 16332 20089 1.1616 11319 0.7270 -4.6487
§=0 07011 0.7805 -0.3196 03657 0.1685 -3.0092

6=0 1.9871* 3.1668* 1.2241 0.3006 1.5537 1.0235 -7.9184

2.5 Conclusion

This paper provides three structural break tests when the direction of the coefficient
change in a linear regression model is known. We construct test statistics that are directed toward
the alternative by incorporating the known direction of a break, which leads to increase in power.
We denote these break tests under known direction of a break as “directional break tests”. The first
two directional break test statistics are motivated from a likelihood ratio test statistic that tests the
null of no break against the alternative hypothesis that is a weighted average of a break occurring
at each potential break date. Thus, the first two directional break tests have optimality properties
under 1.1.d Gaussian disturbances and strictly exogeneous regressors. The third directional break
test does not have optimality properties, but it has a null limit distribution equivalent to a standard
normal distribution and thus simple to calculate.

The null asymptotic distribution of directional break test statistics are derived under
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assumptions that allow for heterogeneous and autocorrelated error terms and regressors. We also
allow the long-run variance of the error term to change simultaneously with coefficients, and
provide directional break test statistics using weighted least squares.

In Monte Carlo simulations and empirical applications we compare the three directional
break tests with other structural break tests widely used in literature. We consider five different
DGPs under a structural break for Monte Carlo simulations. Results show that under correct
directions, finite sample power of directional break tests are higher than that of conventional
structural break tests. In particular, the case when a break occurs in the drift of a AR(1) model
(Model 4) shows the most improvement in power. Two empirical applications are provided:
postwar U.S. real GDP growth rate and U.S. labor productivity. Directional break tests suggest
significant evidence of a break in U.S. real GDP growth rate whereas other break tests fail to find

evidence of a break.

Chapter 2, in full, is currently being prepared for submission for publication of the material.

Baek, Yaein.; Elliott, Graham. The dissertation author was a primary author of this paper.
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Chapter 3

Forecasting in Long Horizons using

Smoothed Direct Forecast

3.1 Introduction

In forecasting multiperiod time series we confront two different methods. The “iterated”
forecast specifies a one-period-ahead model such as autoregression, then iterates forward to obtain
the multiperiod horizon forecast. In contrast the “direct” forecast has each horizon specified
in a model where the dependent variable on the left hand side of the regression is multiple
periods ahead. The idea of direct forecasting goes back to Cox (1961) and Weiss (1991), where
asymptotic properties of the direct forecasts under general conditions are established. Direct
forecast methods are also used in estimating the impulse response of a dynamic system, referenced
as local projections by Jorda (2005).

In theory the iterative method would provide more efficient estimates compared to the
direct method if the model is correctly specified. For instance, suppose we want to forecast a time
series by specifying an autoregression model with four lags for estimation. If the data-generating

process (DGP) of this series is indeed a stationary autoregressive model with four lags or less,
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then the iterated forecast will have smaller mean square forecast error (MSFE) than the direct
method. Under a Gaussian process, the iterated method provides estimates that are asymptotically
equivalent to the maximum likelihood estimator. Analytic expressions are provided by Bhansali
(1996) and Ing (2003) under a non-Gaussian assumption.

Instead of the true lags of four, suppose we use an autoregressive model with two lags.
Then the iterated forecasts are biased and the compounding misspecification error from recursive
iteration would lead to larger bias in long horizons. In contrast, direct forecast is more robust to
misspecification of an unknown DGP. The two forecasting methods involve a bias and variance
trade-off; thus, a forecaster who is particularly interested in predicting long horizons would
prefer the direct-forecast method over the iterated approach. Furthermore, the direct method is
flexible because control variables can differ across horizons and it is relatively easy to estimate
for non-linear dynamic systems.

Although obtaining long-horizon forecasts through the direct forecast method seems
attractive due to its robustness, direct method estimates tend to be erratic across horizons. Because
direct forecasting imposes less structure than the iterated method, the obtained forecasts are not
“smooth” across horizons, contradicting what we would expect in theory. For example, Figure
3.1 is a replication of Owyang, Ramey, and Zubairy (2013) Figure 5, which shows the response
of government spending to a news shock equal to 1 percent of GDP, based on quarterly data
from 1920:1 to 2011:1V for Canada. The direct method is used to estimate impulse responses
instead of standard vector autoregressions (VAR) due to construction of government multipliers.
The estimates show jagged shapes across time whereas in theory, impulse responses are smooth.
Hence a forecaster using a direct method is likely to report unreliable multiperiod forecasts.

This view motivates us to provide a smoothness mechanism on direct forecasts to resolve
the erratic behavior of estimates. We expect improvement in long-horizon forecast performance
by imposing smoothness across multiperiod forecasts while maintaining flexibility of the direct

method.
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Figure 3.1: Government spending response to a news shock. The solid line is the impulse
response estimated by the direct-forecast method. The dotted line is the corresponding two
standard error band.

The main goal of this paper is to develop a method that can be implemented in direct
forecasts to obtain long-horizon forecasts with improved performance. A smoothness prior is
imposed across horizons of direct forecasts such that multiperiod forecasts show less jagged
shapes as the horizon length increases. The new method is more robust to misspecification
compared to the iterative method, conducted through a restricted regression in which we impose a
smoothing parameter on the first differences of estimators, which is analogous to ridge regression.
The smoothing parameter can be implemented as a prior distribution from a Bayesian perspective.
Shiller (1973) introduced the concept of imposing a smoothness to the lag curve. We apply our
method to time series where long-horizon forecasts are of interest: real oil prices and the U.S.
macroeconomic time series from Marcellino, Stock, and Watson (2006). Both results show that
our method shows improvement over the direct forecast approach in long horizons such as 3 to
5 years. For most series, forecasts based on our method have uniformly less MSFE than direct
forecasts across horizons.

The rest of this paper is organized as follows. Section 3.2 briefly introduces the direct and
iterated forecast methods and describes the estimation of our forecast model. Section 3.3 applies

the method to forecasting real oil prices and the macroeconomic series and evaluates performance.
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Section 3.4 includes an outline of further research and concluding remarks.

3.2 Smoothness Mechanism on Direct Forecasts

Section 3.2.1 introduces the difference in forecasts obtained from the direct and iterated
methods in addition to the literature that compares the performance of the two forecasts. Section
3.2.2 describes the construction and intuition of our forecast method, which is based on the direct-

forecast model. We explain how to choose the smoothing parameter used for our estimation.

3.2.1 Direct versus iterated forecasting

Several researchers have evaluated the performance of direct forecasts compared to
iterated forecasts. Marcellino, Stock, and Watson (2006) compared the performance of iterated
and direct forecasts using 170 U.S. monthly macroeconomic time series, spanning 1959 to 2002.
A parametric bootstrap is conducted by assuming an autoregression as the DGP. This method
allows examination of the spread of the distribution of MSFEs to see whether the direct method
improves on the iterated method, on average, over the population of macroeconomic variables.
Results show that iterated forecasts outperform the direct forecasts under correct specification. In
contrast, Bhansali (1996) provided simulation results in which the direct method has a smaller
MSEFE than the iterated method if an underparameterized autoregressive model is fit on a generated
autoregressive moving average process. Ing (2003) obtained asymptotic expressions of MSFE of
the two methods in an AR(p) process with 1 < p < oo and compared their performance. If the
fitted order k is such that k < p, the multistep MSFE of the direct forecast is less than that of the
iterated forecast for almost all points in the parameter space. In addition, the paper shows that
under certain nonstationary processes, the relative performance of direct and iterated forecasts are
ambiguous.

We introduce properties of the direct and iterated forecast approach in the following
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model. Assume observations {y;} are generated from a stationary autoregressive process and
{»1,...,y:} are observable at time . Suppose a forecaster is interested in obtaining h = 1,...,H
period ahead forecasts for this series, where H is the maximum forecast horizon of interest. An

iterated forecast would be obtained from an AR(p) model below.

p
Yer1 = Y 0¥ttt 3.1
j=1

A one-period ahead regression model is specified and for multiperiod forecasts we iterate over
equation (3.1). Suppose the companion form is expressed as wy1 = Yw; +v;41. At time T, the
iterated forecast is Wz, = §wr for horizon h =1,... H.

In contrast, the direct forecasting method specifies different regression for each horizon in
obtaining % period-ahead forecasts. On the left side is the 4 period-ahead variable of interest, and
for the regressors we specify variables that are available at time ¢. In addition to the lags of y;, we

can include a multivariate exogenous variable x; available at time ¢, unlike the iterated method.

p—1
Yt+h = ZBh,jyt—j+X1{’Yh+ut+ha hzl?aH (32)
j=0
The estimators (ﬁhp, ety [Aih, »—1,7,) depend on / due to different regression models for each

horizon. At time T the direct forecast is y7,, = Z?;é Bh, yr—j -+ X737, for horizon h.

Suppose our data has T periods of series {y;,x; }. Divide the sample into two subsamples:
the first R observations are included in the pseudo in-sample set and the remaining 7" — R
observations are in the pseudo out-of-sample set. Denote J; ., as the i horizon forecast using
information available at time ¢ (this notation is necessary for our method due to joint estimation
at each period). Forecasts are evaluated by comparing 4 horizon MSFE for all horizons.

1 T—h . . .
MSFE () = 7y L eens haeh = Yin—Frt (33)
t=R
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If the iterated forecast model (3.1) is correctly specified, the iterated MSFE is smaller than
the direct MSFE, and under a Gaussian assumption, it is efficient. However if the model is
misspecified, such as an incorrect lag order p, the misspecification error compounds across
horizons in predicting multiperiod forecasts.

In practice we do not know the “true” lag order; thus, p is likely to be misspecified. The
advantage of the direct method is that it is robust to such misspecification. The drawback is when
h > 1, overlap in data affects the covariance of forecast errors, and serial correlation of the errors
lead to erratic estimations across horizons. That is, the forecast error #; ;1 in regression (3.2) is
an MA(h — 1) process that needs to be incorporated in estimation.

To illustrate this, we use the VAR example from Jorda (2005). Suppose the true DGP is a
VAR(p). Then the horizon h forecast can be obtained by recursively substituting the companion

form W, j, = whw, + lPh_lv,ﬂ + - +¥YV; 1 +Vi1p, and therefore y, ., is

Yion =@y, + Py, 1+ +Phy, . (3.4)

+ (Yign ‘i‘q)%vz—kh—l + e ‘|‘q)}11_lvt+1)>

(. J/
~~

€th

where ®” is the ith upper (k x k) block of the matrix ®". We can see that the error term at
horizon h is €5, a moving average of errors from time 7 + 1 to 7 + . Under known data-
generating processes, we can use this moving-average structure to construct the covariance matrix
of horizon /& > 1 forecast errors and obtain an efficient estimate by using generalized least squares
(GLS). In practice, however, the true DGP is unknown; hence, we cannot use the standard GLS
formula. Because we do know that the forecast error & follows an MA(h — 1) process in which
heteroskedasticty and autocorrelation robust standard errors can be used.

Chang and Sakata (2007) provided asymptotic normality and consistency of direct forecast
regression. The authors proposed the direct method to estimate impulse response functions using

a two-stage procedure. First, innovations are estimated in a prior stage by a “long autoregression”
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that fits an AR(p) model to the data. Then the data y; are regressed on the estimated innovation
at lag h to estimate the impulse response at horizon 4. The local projection estimator by Jorda
(2005) 1s a special case of this procedure; it uses an & step-ahead linear prediction model which is

equivalent to this two-stage method with the last 4 observations discarded in the first stage.

3.2.2 Smoothed direct forecasts

To resolve the erratic behavior of direct forecasts across horizons, we impose a smoothness
prior on estimators that is analogous to the method developed by Shiller (1973) imposing a
Bayesian prior regarding the “smoothness” of the lag curve. The first degree smoothness priors
will cause jagged shapes to be unlikely to occur; hence, we expect less erratic shapes by imposing
a prior on first differences. A restricted regression that has a penalty term (smoothing parameter)
on the first differences of coefficients are estimated, similar to the ridge regression. The resulting
estimator is numerically equivalent to the Bayesian posterior mean if we assume a Gaussian prior
distribution on parameters, where the smoothing parameter is embedded in the covariance matrix.

Consider the direct forecast regression of horizon 4 that is univariate: y, ., = X, + ;11
The dependent variable y;, is an element of multivariate variable y, , the regressor X; consists
of lags of y, and a constant: x, = (1,y/,... ,y;_pH)’. Let n = kp+ 1 be the dimension of x; and f3,,
foreach h =1,...,H. We impose a smoothness prior through a smoothing parameter A(h,T) in
the following restricted regression. The smoothing parameter A, = A(h, T') is a function of horizon
h and sample size T', which is described in detail later. Different units of variables are incorporated
by standardizing the error term and first difference of coefficients. Thus we minimize the sum of
squared terms that has a standard deviation of one. Denote G,% = limy e Var(T_l/ 2 ZtT;ph Urip)
and Q, := diag(Var(v/T (B, — B,_,))) is a diagonal matrix that is equal to the diagonal elements

of the covariance matrix of first differences.
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H T—-p—H+1 H .
min (ZTI )y 6h2<yf+h—x;sh>2+gxh<sh—sh_1>'szh1<Bh—sh_1>>. (3.5)

Bl7"'7BH h=1 t=p h=2

Since o}, and Q;, are unknown, we replace them with the estimators 6;, and Q,, from the direct

forecast regression. The FOC with respect to B, ..., By results in the following estimator,
- o - N .
}\QQZ —}\4292 0 ot 0 B]
A1 A1 A1 Al N
—)\4292 ()\4292 + }\4393 ) —7\,393 e 0 [32

v ®T_12thg—|—
t

A—1 A

0 0 0 Al By

P P
G T X Xeyit1

A D]
G, T LiXtyii2

PO, P
| On T Y Xeyi+H ]

where 0 is a (1 x n) matrix of zeros and V := diag{67,63,...,6%}. Denote the matrix with
Q;l terms as M~ !. Then the above equation is equivalent to (Vfl QT 'Y, x,x + M_l) B =
<T‘1 th‘lYt ®x,> where f§ = (Bll,,B;,)’ and Y; := (Y141, .- -,yr+n) . From the FOC equa-
tion (3.6), note that all H horizon coefficients are jointly estimated due to the first differences in
the objective function (3.5). Thus a total Hn number of parameters are jointly estimated, which
is likely to be large. However, even though there are a large number of coefficients to estimate,
it is not difficult to compute. This is because estimated matrices with kronecker products v
and Q;l are diagonal for all 4 so that M~ consists of diagonal matrices. Therefore the FOC
(3.6) looks complicated at first sight but easy to compute. Furthermore, the estimators can be

interpreted as a Bayesian posterior mean where a smoothness prior is imposed on the direct
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forecast model. Suppose we assume a Gaussian prior distribution on the coefficients B with
covariance matrix M; that is, inverse of the matrix M~! above. The prior mean is a (nH x 1)

vector 0 where all elements are zero. The posterior distribution of [ is
A1 A1 -
BlY ~N (M* [T‘l YVy, ®x,] ,M*) M = (V T 'Y xx] +M—1> . (37
t 1t

derived from conjugate Gaussian prior. The posterior mean is equivalent to the estimator from
the restricted regression with a smoothing parameter on first differences. Thus we have used
a Bayesian interpretation of the restricted least square with smoothing parameter A(4,T) that
differs across standardized first difference of coefficients Q;l/ 2A[3h with rate of convergence
O(1). If Ay, is large, we are imposing a strong smoothness prior on horizon & forecast toward
horizon i — 1 forecast.

The intuition of the smoothing parameter A(h,T) is to think of this as weights on the &
horizon loss function (the standardized square of first differences). A larger weight means more
penalty on a large loss. That is, the smoothing parameter can be interpreted as the ratio of the
weight on the sum of squared error and the weight on the square of standardized first differences.

Suppose we impose weights (1 — ®;,) and ®;, on each term of the objective function (3.5).

H | Topch H A
Z 1—,)T Y 8,20 —xiB) + Y on(By— B )R (B —Byy)
h= 1=p h=2

Then, for each horizon, we minimize a weighted average of loss functions: the objective function
of the direct-method estimator and the first differences of coefficients across horizons. This
objective function is identical to (3.5) with A, = @,/(1 — ®,). If we assign equal weights
®;, = 0.5 on both objective functions then A, = 1. In the two extreme cases, @, — 0 and @, — 1
implies A;, — 0 and A, — oo, respectively. If A, approaches zero, we obtain estimates that are
similar to the direct estimates whereas a large value of A, results in constant coefficients across

horizons.
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To incorporate different penalties on different horizons and sample size, a linear and an

exponential function of 4 and T is adapted. The exponential function is
Mh,T) = exp(h/VT)

where weight on the sum of squared error and standardized first differences of coefficients are as

below, respectively.

! o ep(h/VT)

O VD) T T exp(h/VT)

The exponential smoothing parameter increases with horizon length and shrinks as sample size
increases. The parameter increases with 4 because we want to “pull” toward the previous horizon
estimator that is more reliable and shorter horizons are estimated better, relative to longer horizon
estimates. Furthermore, if / is large relative to sample size 7', we would like to rely on shorter
horizon estimators due to lack of information.

In general we can modify the exponential smoothing parameter through multiplication
of constants inside and outside the exponential term, such as aexp(b-h/\/T). However this
generalization is rather unnecessary; as the smoothing parameter increases exponentially in longer
horizons, the weight @y, on A, is close to one and different values of (a,b) will not make a large
difference in estimates. In addition, empirical results in section 3.3 show us that forecasts are
robust to the choice of the smoothing parameter.

One may think of imposing smoothness after obtaining direct forecast estimates instead
of incorporating smoothness in the estimation stage. This is equivalent to a linear function of
direct forecast estimates [AS = (Bll, ceey BL)’ . Our method is a special case in which we take a
particular linear function (see Appendix A.3 for details). We choose to incorporate smoothing in
the estimation stage because it is easier to interpret this linear function. For instance, if we want

to smooth out the direct estimates in a simple weighted average of horizon 4 and & — 1 estimates,
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it is unclear how to choose the weights intuitively.

From now on, we denote estimators obtained by imposing smoothness prior on direct
forecast regressions through ridge regression (3.5) as “smoothed direct forecasts”. In addition to
the smoothing parameter on first differences, we can impose a penalty term on coefficients of
stationary variables themselves. Suppose prior information shows that the impulse response to
a shock dies out quickly. Then a prior that is analogous to a shrinkage estimator is imposed on

long-horizon impulse responses. We add in an additional parameter 7y, in regression (3.5).

H T—p—H+1
min 7! Z 6,2 (Vien — X1By)?
Blv'"aBH h=1 [:p

H H
+ Z M (B, — Bhfl)léﬁl(ﬁh —Bp1)+ Z YhBZVAV;lﬁh> (3.8)
h=2 h=1

The parameter 7j, is set to be zero for shorter horizons 2 = 1,...,/ — 1 and a function of 4 and
T for longer horizons h = [,...,H. The FOC with respect to 3;,...,B, can be written similar
to (3.6) so that the inverse prior covariance matrix M~ ! is modified by adding a matrix that has

{Ylwl_l YW, 1, e ,YHVAV;} as the diagonal (n x n) block elements and zero otherwise.

3.3 Empirical Applications

3.3.1 Real oil prices

Forecasts of the price of crude oil have been considered a key variable in predicting
macroeconomic risks and generating forecasts of macroeconomic outcomes. In this section,
direct forecasts and smoothed direct forecasts of the price of real oil at horizons up to 5 years are
obtained and then the MSFE are compared.

First we check whether the direct forecasts of real oil prices obtain smaller MSFE relative

to the iterated forecast in long horizons. The measures for real oil prices are obtained from
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monthly nominal oil prices and the U.S. CPI as the deflator. We use two nominal oil price
measures obtained from the U.S. Energy Information Administration (EIA). The West Texas
Intermediate (WTTI) price is the spot price for crude oil in dollars per barrel, and the U.S. refiners’
acquisition cost (RAC) of imported crude oil in dollars per barrel!. The WTI price sample period
1s 1986.1-2016:7 with size T = 367, and the RAC imported price sample period is 1974.1-2016:7
with size T = 511. 2 The in-sample data set (estimation sample) is 1986:1-2001:12 for the
WTI price with size R = 192, and 1974:1-2001:12 for the RAC price with size R = 336. The
sub-sample used for to evaluate out-of-sample forecasts (validation sample) is 2002:1-2011:8
for both measures®, with size P = 175. The out-of-sample forecasts are obtained from recursive
estimation. For the WTI price, the iterated forecasts are obtained from an autoregressive model
with lags selected by SIC (p = 2) and AIC (p = 8). Likewise, direct forecasts are computed under
lags p = 2 and p = 8. Both criteria select the same lags p = 3 for the RAC imported price. A
bootstrap p-value of the mean relative MSFE ratios is constructed under the null hypothesis that
the iterated model is efficient. *

If the MSFE ratio is less than one, then the direct forecast performs better than the iterated
forecast. Tables 3.1 and 3.2 show that direct forecasts performs worse than iterated forecasts for
all horizons and slightly less so in longer horizons for both measures. Bootstrap p-values shows
that when rejecting the null hypothesis, the iterated forecast performs better and fails to reject all
horizons; the p-value is almost one at short horizons but decreases to 0.6 at 5 years. Hence the

MSEFE difference of the two methods are statistically insignificant. If the smoothed direct-forecast

IData are obtained from the EIA website: https://www.eia.gov/petroleum/data.php. The West Texas Intermediate
(WTTI) monthly price for crude oil are calculated by EIA from daily data by taking an unweighted average of the daily
closing spot prices for a given product over the specified time period. For the U.S. refiners’ acquisition cost (RAC)
of crude oil, the U.S. is defined as the 50 states, the District of Columbia, Puerto Rico, the Virgin Islands, and all
American territories and possessions. Values reflect the PAD District in which the crude oil is intended to be refined.

There is evidence of a major structural change in the distribution of pre- and post-1973 real oil prices; Alquist,
Kilian, and Vigfusson (2013), Dvir and Rogoff (2009). Hence we use data the of post-1973 real oil price only.

3Smoothed direct forecasts are jointly estimated for horizon 1 to 60 months, hence the validation sample is
trimmed by 60 months from the end of the data set.

*AR(p) model is estimated using in-sample data (1986.1-2001.12 for WTI price and 1974.1-2001.12 for RAC
price) and then 500 replication of out-of-sample pseudodata are generated.
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method is implemented in predicting in longer horizons, we expect to obtain smaller MSFE values

compared to direct forecasts and also iterated forecasts in long horizons.

Table 3.1: Relative MSFEs of univariate direct forecast and iterated forecast (RAC). The entry
in parentheses is the p-value of the hypothesis test that the iterated model is efficient against the
alternative that the direct model is more efficient, using the parametric bootstrap algorithm.

Forecast Horizon
Lag 3 6 12 24 36 48 60

AR(3) 1.4885 1.0250 1.0584 1.1014 1.0935 1.1587 1.1931
(1.000) (0.888) (0.758) (0.668) (0.558) (0.628) (0.656)

Table 3.2: Relative MSFEs of univariate direct forecast and iterated forecast (WTI). The entry
in parentheses is the p-value of the hypothesis test that the iterated model is efficient against the
alternative that the direct model is more efficient, using the parametric bootstrap algorithm.

Forecast Horizon

Lag 3 6 12 24 36 48 60

AR(2) 1.5141 1.3889 1.8894 2.1791 1.1410 1.1003 1.3120
(0.988) (0.924) (0.950) (0.930) (0.466) (0.400) (0.594)

AR(8) 24617 22329 27092 25984 1.2709 13172 1.6789

(0.994) (0.972) (0.966) (0.934) (0.528) (0.582) (0.770)

We compute the smoothed direct forecasts with different smoothing parameters and
compare MSFE values with the direct forecasts. The direct and smoothed direct forecast models
have the same lag length p. Let y, be the series of interest, in our case the real oil price.
Denote x; := (1,yr,...,y— p+1)/ . The direct forecast of horizon 4 is obtained from estimating the

following regression

Ye+h = Yoh T Y10yt + - +YphYi—p41 T Ur4n = XYy +Uin, t=1,-- R (3.9

where the estimate of vy, is §,, = (le:1 X jX}> <Z’j: 1 X5y j+h>. The h horizon direct forecast
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at time ¢ is Y, ;15 = X;¥y,,. The residual is d; ;1 = yron —X;¥), for t =R+1,...,T —h in
which we compute the MSFE of horizons i, P~' Y,/ 42, where P=T —h—Rand h €
{3,6,12,24,36,48,60}. Denote the dimension of ¥, , as k := p+ 1.

The smoothed direct forecast is obtained from the restricted regression (3.5). The
smoothed direct forecast also has the same model specification (3.9) but different coefficient
estimates for 4 > 1. Denote fShJ as the vector of estimated coefficients so that y; ;1 = X;ﬁm is the

h horizon smoothed direct forecast at time #. The estimator fi,m is the (h — 1)k + 1 to hk elements

of the estimator ﬁ,.

~1
15 1
N Al _ _ o1
B, = (Vt Xt ]ijxlj—i—M 1) (t IZV, yj®xj).
J=1

j=1

wherey; = (yj1,--+,y j+60)" and th /2 is a (60 x 60) diagonal matrix that consists of standard
1/2

estimates Gy, = (t_l tj:l ﬁ? j+h> for h =1,...,60 from (3.9). M is the prior covariance

matrix of B, and the coefficients are jointly estimated for horizons 7 = 1, ...,60. The smoothing
parameter is an exponential function A, = aexp(bh/+/T) and uses different constant combinations
(a,b) for a € {1,50,500} and b € {1,2}.

Both forecasts are obtained from recursive estimation so that the in-sample size changes
for each out-of-sample date, i.e. ;1 7 Y1144, the forecasts for period ¢ + h are different
when we forecast at time ¢ for horizon 4 and at time ¢ + 1 for horizon 4 — 1. We compare the
forecast accuracy of direct and smoothed direct forecasts using West’s (1996) test procedure,
which provides a tool to test predictive accuracy when the predictions rely on regression estimates.
Details of the test statistic and null hypothesis are in Appendix A.3.

Tables 3.3 and 3.4 exhibit the MSFE values of direct and smoothed direct forecast of RAC
and WTI price, respectively, for different (a,b) values of the smoothing parameter. Compared to
direct forecasts, the MSFE of smoothed direct forecasts are smaller except for the short horizon

(h = 3) where it increases for the WTI price. For the RAC real oil price, the MSFE of smoothed
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direct forecasts are less than that of direct forecasts in all horizons. The parentheses show the p-
values of the hypothesis test that the MSFE of direct and smoothed direct forecasts are equivalent.
For both measures and all horizons, the p-values are larger than .9; thus the tables omit p-values
other than A;, = exp(h/\/T).

For both WTI and RAC real oil prices, the MSFE of smoothed direct forecasts are less
than direct forecasts and for WTI prices, particularly at long horizons. However, West’s test show
that the MSFE differences of smoothed direct and direct forecasts are statistically insignificant at
10% significance level for all (a,b) values considered and both measures.

Between the smoothed direct forecasts with different smoothing parameters, various
constants (a,b) in the exponential function have small differences and are sometimes almost
identical in short horizons. Consider the MSFE values of the direct forecast (A;, = 0) and smoothed
direct forecast with parameter A;, = 1 and A, = 500exp(2k/+/T) at horizon 60 months under
AR(8) in table 3.4. The MSFE decreases approximately 0.91 to 0.64 when A;, = 0 changes to 1,
but when it changes from A, = 1 to an exponential function with a = 500, it decreases to 0.50.
The p-value of West’s test statistic is approximately .9999 for both A;, = 1 and A, = 500e27 "2,
Therefore the difference of smoothed direct forecast on direct forecast is robust to the smoothing
parameter, which implies that we do not need to worry about determining A, in estimation.

So far we have seen that the smooth direct forecast results in improvement at long horizon
such as 4 or 5 years. Although West’s test results imply that the difference in MSFE of the
direct and the smoothed direct forecasts are statistically insignificant, it does not imply that the
improvement is economically insignificant. For instance, consider the root mean squared error
(RMSFE) in evaluating forecast accuracy at horizon 5 years. Using the WTI real oil price with 8
lags, the direct forecast RMSFE is 0.9554 and the smoothed direct forecast with A, = 500e20T '
has RMSFE is 0.7049, in log scale. In units of real oil price, the forecast accuracy of the direct
and the smoothed direct method are approximately 2.60 and 2.02 (deflated) U.S. dollars per barrel,

respectively. Then the difference between the two forecasts is 0.58 real U.S. dollars per barrel,
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which is a significant difference considering that 2016:7 oil price is 0.056 real U.S dollars per
barrel.

Furthermore the smoothed direct forecasts are robust to the choice of the smoothing
parameter, whether it is a constant or an exponential function. Because we did not construct an
optimal smoothing parameter that depends on data, we do not want forecasts to drastically deviate
from direct forecasts due to our choice of parameter. In conclusion, our results show that the

smoothed direct method is preferable in forecasting 4 to 5 years forward for real oil prices.

Table 3.3: Pointwise MSFE of univariate direct forecast and smoothed direct forecast (RAC).
The entry in parentheses is the p-value of the hypothesis test that the MSFE of direct and
smoothed direct forecasts at horizon & are equivalent.

Forecast Horizon

Lag A 3 6 12 24 36 48 60
Direct 0.0856  0.1037  0.1496 02326 03441 04578  0.5211
1 0.0838  0.1118  0.1416 02178 03280 04296  0.5014
hT1/2 0.0839  0.1120  0.1435 02220 0.3273 04268  0.5039
AR(3) T 0.0839  0.1119  0.1415 02126 03114 04178  0.5101
(0.9988) (0.9968) (0.9981) (0.9978) (0.9978) (0.9978) (0.9994)
22 0.0839  0.1119  0.1415 02107 03054 04115  0.5055
50e2 70,0840 0.1116  0.1398  0.1976 02797 03792  0.4688

1/2

5007 0.0841 0.1114 0.1379 0.1901 0.2675 0.3630 0.4489
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Table 3.4: Pointwise MSFE of univariate direct forecast and smoothed direct forecast (WTI).
The entry in parentheses is the p-value of the hypothesis test that the MSFE of direct and
smoothed direct forecasts at horizon / are equivalent. The p-values under AR(8) are omitted;
p-values are approximately 1 for all horizons and smoothing parameters.

Forecast Horizon

Lag M 3 6 12 24 36 48 60
Direct 0.0844  0.1649 03947 07555 05611  0.6333  0.7923
1 0.1072  0.1390  0.1857 02778 04179 05078  0.5927
hT~1/2 0.1055  0.1474  0.1994 02853 03945 04758  0.5575

ARQ) T 0.1124  0.1487  0.1920 02608 03455 04296  0.5108

(0.9999)  (1.0000) (0.9997) (0.9996) (0.9999) (0.9999) (0.9999)

AT 0.1153  0.1507  0.1902 02496 03353 04216 04791
50277701156 01507  0.1901 02497 03378 04191  0.4839
5006277 01151 0.1151  0.1918 02513 03392 04190 04810
Direct 0.1258 02336 04441 06560 04846  0.6344 09127
1 0.1465  0.1668  0.1881 02916 04150  0.5719  0.6414
hT—1/2 0.1509  0.1767 02037 03054 04135 04956  0.5767

AR T 0.1565  0.1764  0.1956  0.2810 03690  0.4547  0.5365
2 0.1590  0.1780  0.1941 02699 03564 04519 05242

502777 0.1599 0.1765 0.1896 0.2676 0.3573 0.4440 0.5061
500277 0.1592 0.1770 0.1913 0.2687 0.3565 0.4399 0.4969

3.3.2 Macroeconomic variables

In this section we replicate the simulation in Marcellino, Stock, and Watson (2006) using
a partition of their data and conduct a test of forecast accuracy of direct and smoothed direct
forecasts on each series. The data consists of 80 U.S. monthly macroeconomic series from the
Basic Economics database (IHS Global Insight). Marcellino et al. (2006) categorized 170 series
into five categories of which we use 80 series from four categories described below. Detailed

description of the data is available in Appendix A.3.

(A) Income, output, sales and capacity use (26 series)

(B) Employment and unemployment (24 series)

(C) Construction, inventories and orders (17 series)
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(D) Interest rate and asset prices (13 series).

For each series we obtain the MSFE of the smoothed direct forecast, direct forecast, and
iterated forecast. Pseudo out-of-sample forecasts are obtained starting from 1990:1 and the final
forecast date is the last available observation (2016:6) minus the forecast horizon /. A univariate
model with 4 lags and a constant is specified for each series and the subsample used for estimation
starts at 1974:4 for all 80 series. Marcellino et al. (2006) specified AR(p) using four different lag
selections: p =4, p = 12 and lags selected by AIC and BIC. Instead, we use a fixed lag p =4 for
all series.

Of 80 series, we only display variables that have an MSFE ratio of the smoothed direct
forecast relative to the direct forecast less than one, and MSFE ratio relative to the iterated
forecast less than one for any horizon & € {3,6,12,24,36,48,60} to check for improvement on
the iterated approach as well. A total 26 of 80 series showed improvement on direct and iterated
forecasts, indicating our method improves on the direct forecast, but fails to outperform the
iterated forecast for most macroeconomic series.

Tables 3.5, 3.6, 3.7 and 3.8 show the MSFE ratio of smoothed direct forecasts relative
to direct forecasts for each category A, B, C and D, respectively. For most series in category B
(employment and unemployment) and category C (construction, inventories and orders), direct
forecasts have extremely large MSFE compared to iterative forecasts. Due to the poor performance
of the direct method, the relative ratio of smoothed direct forecasts are quite small, although
the MSFE ratio relative to the iterated forecast would be larger than one or close to one. These
variables are also omitted.

A huge change emerged in the MSFE ratio for series in category B in which the smoothed
direct forecast performance improves as horizon length increases. The difference in MSFE of
direct and smoothed direct forecasts remains statistically insignificant. Category A series such
as Industrial Production Index business equipment or Personal Consumption Index services

show statistically significant differences in MSFE, where the direct forecast outperforms in the
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short horizon (3 months) and the smooth direct forecast outperforms in longer horizons. In
outperforming direct and iterated forecasts, category D has 7 of 13 variables in which the MSFE
of the smoothed direct forecast is less than iterated and direct forecasts, although the improvement
is statistically insignificant for all horizons and series. The p-values are omitted except for
the exponential smoothing parameter when (a,b) = (1,1). Similar to the results in section 3.1,
the MSFE ratios change only slightly as constants (a,b) vary. Large values of the smoothing
parameter, such as a = 500, are omitted due to difficulty in computation.’

Although statistically insignificant, it is plausible that there is economically significant
improvement in forecasts. For example, consider personal consumption expenditure of durable
goods in Table 3.5. Under the smoothing parameter A;, = exp(h/+/T), the 60-month horizon
MSEFE ratio of smoothed direct and direct forecast is 0.2349 so the RMSFE is approximately
0.485. The difference in MSFE of the two methods is statistically insignificant with a p-value
of .94 from West’s test. However, it turns out that this difference is economically significant.
Suppose personal consumption expenditure of durable goods (denote this variable as PCE for
simplicity) has a 4% growth rate on average, and the direct forecast of PCE growth rate 5 years
ahead is 10%. Reverting the transform of log first differences, the smoothed direct forecast of
PCE growth rate 5 years ahead is 6%. Hence the forecast error of PCE growth rate is 2% for

the smoothed direct forecast whereas it is 6% for the direct forecast, which is a large difference

economically.

Because the inverse of the variance estimates have extremely small values relative to the penalty term, the matrix
M* from (3.7) is close to singular.
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Table 3.5: Category (A) MSFE ratio of univariate smoothed direct forecast and direct forecast.
The entry in parentheses is the p-value of hypothesis test that horizon # MSFE of direct and
smoothed direct forecasts are equivalent.

Forecast Horizon

Variable A 3 6 12 24 36 48 60
1 10.4844 8.8916  3.2269  0.9705 0.5272 0.4041 0.3242
hT—1/2 10.4394 8.8666  3.2278  0.9720 0.5281 0.4046 0.3244

IPI, Business “1)2
equipment T 10.6011 9.0112  3.2285 09726 0.5274 0.4034 0.3228

(0.009) (0.764)  (0.450) (0.763) (0.933) (0.969) (0.986)
50MT'% 10.6898  9.0917 32278 09728 0.5270 0.4028  0.3223

1 262042 16.6506 19.6070 3.2278 1.4184 0.7619  0.7229
IPI, hT-'/2 270694 167260 19.4242 32052 14096 0.7667 0.7587
Non-durable — on7"'2 248913 159290 19.3219 3.2057 14159 0.7799 0.7853
goods materials (0.912)  (0.904) (0.975) (0.977) (0.983) (0.986) (0.992)
50e""7 232206 151815 19.1181 32154 14308 07914 0.7971
1 394572 89542 33762 09569 0.5387 03790 0.2163

IPI hT—1/? 36.3910 9.1037  3.4054  0.9563 0.5299 0.3780 0.2194

Manufacturing €7 43.0451 9.6027 34378 09413 05217 03745 02193
(0.839)  (0.694) (0.724)  (0.851) (0.930) (0.960) (0.906)

50e""7 535834 111153 34981 09253 0.5092 0.3673 0.2159
P1 1 68.1065 14.0836 20.1583 32446 14569 0.7821 0.7895
Nondurabl AT-12 645383 41.6229 203190 3.2365 14397 0.7847 0.8061
ondurable 12
200ds e 70.0496 414488 20.1801 32016 14250 0.7857 0.8141
manufacturing (0.870)  (0.919) (0.955) (0.953) (0.966) (0.972) (0.984)
50e"'7 755174 423381 202062 3.1782 14141 07811 0.8108
1 47970 43853 19966 1.3671 02780 03252 0.2276

IPL Electiciy P72 48666 43738 19794 13666 02789 03263  0.2260
, Electricity R

and gas utilities 46399 42677 19563 13763 02818 03280 0.2269

(0.436)  (0.638) (0.680) (0.896) (0.605) (0.893) (0.885)

45103 4.1889 19381  1.3821 0.2837 03307 0.2280

~1/2

SoehT
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Table 3.5: Category (A) MSFE ratio of univariate smoothed direct forecast and direct forecast.
The entry in parentheses is the p-value of hypothesis test that horizon # MSFE of direct and
smoothed direct forecasts are equivalent; continued from previous page.

Forecast Horizon

Variable " 3 6 12 24 36 48 60
1 125942  3.1900 08517 0.1507 0.0637 0.0244 0.0115
Nominal RT-Y2 124946  3.1791  0.8538 0.1505 0.0645 0.0244 0.0114
Personal T 127645 32389  0.8566 0.1493 0.0646 0.0242 0.0113
Income 0.104)  (0.187)  (0.371) (0.338) (0.476) (0.361) (0.304)
50¢"T 7 13.0102 32860  0.8602 0.1486 0.0645 0.0241 0.0112
1 27.1339  8.4365 1.8213 0.3793 0.1576 0.0756 0.0452
PCE excluding AT~-'/2 272527  8.4308 1.8087 0.3780 0.1565 0.0760 0.0461
Food and M 065410 82703 17945 03793 0.1571  0.0768  0.0469
Energy (0.432)  (0.556)  (0.649) (0.654) (0.645) (0.732) (0.762)
50¢ 7 26,0687 81547 17831 0.3805 0.1580 0.0773  0.0472
1 622185 433796 8.3233 13843 04970 02754 0.2426
PCE Durable T 7"/2 633413 466166 83697 13636 04894 02694 02397
g00ds TP 63.0750 469324 85165  1.3857  0.4848  0.2639  0.2349
(0.881)  (0.937) (0.944) (0.855) (0.819) (0.920) (0.941)
50e"T 7 63.0485  47.0669 8.5881 13924 04820 02615 0.2327
1 274503  9.8219 22934 0.5576 0.1701 0.0577 0.0191
PCE, AT-V2 275531 99546 23158 0.5625 0.1642 0.0567 0.0188
Nondurable M 307323 109595 2.5638 05582 0.1556  0.0532  0.0173
goods (0.595)  (0.671)  (0.707) (0.689) (0.678) (0.680) (0.397)
50¢" 7 341423 120156 27311 05512 0.1488  0.0501  0.0160
1 4.1523 0.9974 02436 0.0509 0.0209 0.0095 0.0048
RT-V2 41386 0.9887 02403 0.0505 0.0209 0.0096  0.0050
PCE, Services  h7!/? 4.0151 09643  0.2365 0.0505 0.0210 0.0097  0.0051
(<0.001) (0.001) (0.010) (0.061) (0.094) (0.114) (0.105)
50¢" % 3.9469 0.9500  0.2344 0.0506 0.0211 0.0098  0.0051
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Table 3.6: Category (B) MSFE ratio of univariate smoothed direct forecast and direct forecast.
The entry in parentheses is the p-value of hypothesis test that horizon 7 MSFE of direct and
smoothed direct forecasts are equivalent.

Forecast Horizon

Variable My 3 6 12 24 36 48 60
1 17.6892 5.1690  2.6165 0.9015 0.6631 0.2554 0.2358
Employment ofall AT /2 17.4714 52605 27243 0.9326 0.6568 0.2469 0.2324
employees, T 20.2539 5.9734 2.8871 0.9511 0.6403 0.2351 0.2233
Government (0.394)  (0.474)  (0.763) (0.828) (0.891) (0.859) (0.914)
50e 7 231397 67610 3.0367 09529  0.6247 02270  0.2166
Avgaveekly 1 63.9248 17.6614 9.1001 5.8294 25567 0.7475 0.1623
overtime hes. of RT-Y2  64.6093 17.5542 89325 5.7954 25339 0.7514 0.7132
prod. & nonsup. AN 60.6430 16.5763 8.7989 58263 2.5563 0.7695 0.1827
grr?f;fge“: Total (0.963)  (0.927) (0.982) (0.973) (0.982) (0.974) (0.985)
50e 7 574704 157023  8.6404 5.8540 2.5884 0.7854  0.1882
1 56.1628 17.6579 42179 0.8942 0.4436 0.1787 0.1001
Civilian labor RT=Y2 549540 17.8853 4.2784 0.9150 0.4382 0.1705 0.0967
force: 16yrsand 7 ~!/2 53.9402 18.4024 4.4965 09391 0.4322 0.1635 0.0926
over (0.680)  (0.857)  (0.866) (0.877) (0.857) (0.748) (0.871)
50¢M 7 538839 187104 4.6202 09458 04276  0.1605  0.0907
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Table 3.7: Category (C) MSFE ratio of univariate smoothed direct forecast and direct forecast.
The entry in parentheses is the p-value of hypothesis test that horizon 7 MSFE of direct and
smoothed direct forecasts are equivalent.

Forecast Horizon
Variable M 3 6 12 24 36 48 60
1 0.2012 0.2579 0.3932 09365 0.8608 1.1646 1.1784
Housi . hT—1/2 0.1715 0.2234 03451 05973  0.6993 0.8116 0.8174
ousing starts: iy
South e 0.1861 0.2399 0.3594 0.5780 0.6826 0.7604 0.7869

(0.969)  (0.982) (0.992) (0.997) (0.997) (0.997) (0.995)
50¢T77 02222 02795 04003 0.5556  0.6655 07389  0.7797

1 03342 03771 0.4496 0.5756 1.0481 1.3684  1.5429

. . hT'? 0.2021  0.2253 0.2682 0.2833 0.2930 0.2803  0.3300
Housing starts: s

West et 0.2059 02273 0.2674 0.2758 0.2581 0.2679 0.3138

(0.998)  (0.998) (0.999) (0.999) (0.999) (0.999) (0.999)

50e""7 02095 02303 02681 02729 02562 02666 0.3124
1 252450 3.6875 09135 25459 13650 13829 03652
Ratio of mf AT-V2 243819 3.6896 09147 25280 13425 13614 0.3994
atio of mfg. 12
and trade e 247990 35447 0.8824 24703 13362 13841 04286

0.994)  (0.990) (0.972) (0.983) (0.987) (0.978) (0.997)
507 246399 3.4255 0.8646 24464 13510 1.4087  0.4400
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Table 3.8: Category (D) MSFE ratio of univariate smoothed direct forecast and direct forecast.
The entry in parentheses is the p-value of hypothesis test that horizon 4 MSFE of direct and
smoothed direct forecasts are equivalent.

Forecast Horizon

Variable My 3 6 12 24 36 48 60
R US. 1 1.9083  1.8183 02612 07633 41354  1.0791  1.3473
ren sury const RT-V/2 18717 17988 02664  0.8214  4.4321 1.0751  1.0719
maturities, T 1.9807 1.8855 02565 08077 49284  1.0729  0.9017
10-yr (0.990)  (0.993) (0.966)  (0.998)  (0.994)  (0.999)  (0.999)
5077 21515 20102 02528 07930 49587  1.0462  0.8612
1 0.6536  1.8021 1.1709  2.4904  1.2894 15329  0.2540
IR, federal AT-Y2 07507 1.6851 1.1036 22032 14234 15782  0.2393
funds M 06456 1.8964 12277 24122 13558 15669  0.2671
(effective) 0.986)  (0.992) (0.998) (0.994) (0.994)  (0.994)  (0.977)
50777 04173 14742 13212 26719 1.4206 1.5365  0.2507
1 14115  4.0744 19826  27.0994 164.0314 90.3570 7.8115
IR, U.S. AT-V/2 05214 13963 0.5995 22837  1.1878 15714  0.1408
treasury const 7"/ 0.5563  1.7176  0.7797 42135  0.6232 2.1706  0.2476
maturities, 1-yr 0.984)  (0.994) (0.992)  (0.992) (0.998)  (0.997)  (0.998)
5077 04327 14335 0.6410 25178 0.9653 1.6965  0.1476
EIR 1 20.0875 7.1791 22.1647 44942  0.0989 03692  0.2959
comventional AT-1/2 35337 1.0061 23216  5.8254  1.1788 1.7701  1.2316
home mtge ST 55798 15891 3.0834  6.6599  0.8488 13041  0.8418
loans 0.924)  (0.947) (0.976) (0.965) (0.982)  (0.948)  (0.985)
50T 86436 24601 42549 59025 07557  1.1659  0.7212
1 0.2467 02585 03576 02858 04190  0.8238  0.5038
FER RT=1/2 02466 02647 03709 02931 03657 65491  10.4281
Switzerland ST 002483 02582 03460 02403 02987  0.7498  0.5581
(0.898)  (0.922) (0.946) (0.973) (0.978)  (0.987)  (0.990)
507702632 02703 03516 02385 02968  0.7473  0.5463
1 0.1803  0.1913 02171 02600 02754 03562  0.3829
AT-12 01776 0.1925 02209 0.2665 02738 03480  0.3753
FER: Japan T 0.1888 02000 02245 02710 02698 03374 03707
(0.898)  (0.922) (0.946) (0.973) (0.978)  (0.987)  (0.990)
5077 02004 02100 02306 02721 02662 03313 0.3664
1 03022 09337 0.1911 05862 0.1799  0.7057  0.3536
RT-1/2 03042 07361 0.1945  0.5887  0.1793  0.7033  0.3485
FER, Canada 7' 03174 07723  0.1995 0.5844  0.1768  0.6962  0.3464
0.928)  (0.992) (0.887) (0.986) (0.917)  (0.995)  (0.985)
5077 03283 07985 02032 05802 0.1749  0.6919  0.3463
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3.4 Concluding Remarks

In this paper we construct a method to obtain long-horizon forecasts that outperform the
conventional iterated or direct-forecast methods. The direct method estimation is modified by
imposing a smoothing parameter on the first differences of parameters across horizons. This
obtains estimators that are more robust than the iterated method, but less erratic across horizons
compared to direct forecasts. This is an extension of the ridge regression where we impose a
smoothness prior by restricted regression. Our application of the ridge regression by “smoothing
out” estimates across horizons is similar to the smoothness method developed in Shiller (1973).
The smoothing parameter (or penalty term) is either a constant or a exponential/linear function
that depends on the horizon length and data size so that stronger restriction is imposed on longer
horizon forecasts. Our forecasting method is denoted as the “smoothed direct forecast”.

We apply the smoothed-direct-forecast method to two empirical applications where long
horizon forecasts are of interest. Our first application on forecasting real oil prices shows
improvement on direct forecasts for MSFE, from 3 to 5 years horizons. The difference in MSFE
of direct and smoothed direct forecasts are statistically insignificant for all horizons using West’s
(1996) forecast accuracy test. Regardless of the test results, we argued that the improvement
of real oil price forecasts of 5 years ahead are economically significant. In addition, due to our
simple functional form of the smoothing parameter, it is preferable to have small deviations from
direct forecasts. Smoothed direct forecasts show only slight differences for various exponential
functions, which implies robustness of the choice of the smoothing parameter.

Our second empirical application of data is with the U.S. macroeconomic time series from
Marcellino, Stock, and Watson (2006). We apply the smoothed-direct-forecasting method on 80
macroeconomic series and compare with the direct and iterated forecasts. Overall, the smoothed
direct forecast for most series shows improvement on the direct forecast in long horizons, partly

due to poor performance of the direct method. Similar to the real oil price application, the

125



differences in MSFE remain statistically insignificant but that does not mean the differences are
economically insignificant.

In conclusion, the two empirical application results suggest that our forecast method
provides long-horizon forecasts that improve on direct forecasts and might improve on iterated
forecasts as well. In future research an optimal choice of the functional form of the smoothing

parameter can provide further improvement in performance of forecasts.

Chapter 3, in full, is a reprint of the material that has been accepted for publication at

Journal of Forecasting. Baek, Yaein. The dissertation author was the sole author of this paper.
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Appendix

A.1 Proofs for Chapter 1

Proof of Lemma 1

Proof. Assumption 2 implies that A7 (k) from (1.11) is positive definite and thus Gr(k) =
& A7 (k)or > Ar(k) |87||> where Az (k) is the minimum eigenvalue of A7 (k). It is sufficient to
argue that Ay (k) is bounded away from zero with probability tending to 1 as |ko — k| increases.

The matrices Z\MZy and Z\,MZ; are rearranged as follows, similar to Z;MZ; in (1.10).

Z\MZy = R (X Xo) (X'X) "1 (X'X — X{X0)R
R (X}X0)(X'X) ' (X'X —X/X,)R ifk<ko

Z\MZ) = (A.1)
R(X'X — X[ X0)(X'X) 1 (X/Xx)R if k> ko

Without loss of generality assume k < kg. The second term of |ko — k|A7 (k) from (1.11) is

(ZoMZi)(ZiMZi) " P Qu(ziMZy) ™ (ZiM Zo)
-1
= [R(X{Xo)(X'X) ' (X'X — X/X;)R) [(Z,’CMZk)]/ZQI:I(Z,’CMZk)l/z (A.2)

x [R'(X'X — X Xi) (X'X) ™ (X{Xo)R] .
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Define the following matrices.

Fo=XX) ' —(xX'x) = (X'X) 7 (XX — X{X) (X{X;) !

Fo:= (XoXo) ™' — (X'X) ™" = (X'X) ™" (X'X — X0X0) (XX0) ™ (A.3)
I _ 0,
QX,k - (r—q) (r—aq)xq : B:— Q;}k/szl/zXéXk-
0y (p—q) Q

Both F; and Fy are positive definite matrices under Assumption 1. Hence, each matrix can

be decomposed into F; = <Fk1/ 2>2 and Fp = <F01/ 2>2 where Fkl/ % and FO1 /2 are nonsingular

(p x p) matrices with p = dim(x;). Qy  is a (p x p) matrix where I, _,) is an identity matrix

with rank (p —¢), and zeros in non-diagonal block matrices such that R'Qx (R = Q. The

projection matrix of BR is I, — BR(R'B'BR)~'R'B’, which is positive semi-definite. If we multiply
1/2~1/2

R'(X)Xo)F,'~Qy; to the left and its transpose to the right of the projection matrix, the following

inequality is obtained.

1/2 1/2
R (X4X0)F*Qx «F ! (X Xo)R

> R (XgXo) Fe(XyXi)R(R'B'BR) ™' R' (X; Xi) Fi (XgXo) R
= R'(X{Xo)(X'X)"(X'X' — X]X,)R(R'B'BR) !

x R'(X'X — XX;)(X'X) "1 (X, Xo)R.

From (A.3), RB'BR = R'(X|X)F, QL F! > (XIX()R = (Z,MZ,)'/?Q; " (Z,MZ,)'/? and the

right side of the inequality is equivalent to (A.2). Therefore it is sufficient to show that the

right-side of inequality (A.4) is bounded away from zero for large ko — k.

1

S 1/2 1/2
~ |ko — k|

Az (k) (ZeMZo) 2, (ZiMZ0)' /> — R (X X0)F,/“Qx 4 F (X(’)XO)R] (A.4)
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Also from (A.3), (Z4MZo)\/>Qu, (ZbMZo)'/? = R (X} Xo)Fy*Qx o Fy > (X, X0)R. Thus,

1/2 1/2
2 plig,

ko — kA7 (k) > R (X}Xo) | Fy > Qu s, Fy R | (XiXo)R

= |ko — k|R'Ar(k)R.
Define the (¢ x ¢) matrix on the right-side as |ko — k|A7 (k). Then,

a1 = ho | (X530 730010~ BP0t

1 1 1

< o=kl R | e

QX k()

Note that for a nonsingular, bounded (p X p) matrix S, the norm does not change by multiplying
S on the left and S~! on the right of a matrix: HQXkH = HSQX?;(S_1 H By assumption, Qy ; >

Amin(Qx k) > 0 where Api, denotes the minimum eigenvalue. Therefore, (F, 1/2 )~ IQX ko Fl/ 2

Qx i, +0p(1) > Anin(Qx k) +0,(1). By subtracting and adding the matrix F; (F, 1/2 )_IQXJCOFOI/2

to the denominator of the second term, the following inequality holds.

1/2 U2 1/2

| sy~ B o
= ([ = AR R~ B (B @b — () s |
e T I i B R (A R e i i |

= ||| (Fo = Fi) Qx ko || — || Fie (@ — Qx.p0) ||| +0p(1)

where the inequality is from the inverse triangular inequality. Let A be the minimum value of

Amin(Qx &) and Amin(Qx k, ). From Assumption 2 we have |kg — k|71 | @ — Q|| <b/T. Hence,
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_ 1/2 1/2 1/2 1/2

> |(ko =)™ ||(Fo —~ FOR|| — b/ T ]| + ko &I 0y (1)

> A|| (ko — k)N (Fo — F) || +0p(1)

Let X, := sgn(ko — k)(Xx — Xo), then by rearranging terms similar to (A.3), Fy — F, = (X{Xo) !

X (X3Xa) (X[ Xi) ! so that

1 1
Xo||* Mko — k|~ || Fo — Fi|
1
A |X5o || (| (X5 X0) =" (ko — k)~ XA XA (X(Xi) |

A ()71 <
X5

<

From Assumptions 1 and 2, the right-side of the inequality is bounded:

) | T_'X(SXOH2 | T2(XX0) " (X{Xi) ™" || < M for some M < co. In addition, the minimum eigen-
value of (ko — k) ! (X}Xa) is bounded away from zero with large probability so that

1/|(ko — k) "' X4 Xa|| is bounded with large probability for all large ko — k. Thus ||A7(k)~!|| is
bounded with large probability for all large ko — k. This implies that the minimum eigenvalue of
Ar (k) is bounded away from zero for all large ko — k and this is also true for A7 (k) = R'Ar (k)R

because R has full column rank. O]

For the proof of Lemma 3 we use results from Proposition 2 and Lemma A.1. Hajek and
Rényi (1955) proved the inequality assuming i.i.d. random variables, and was later generalized
to martingales by Birnbaum and W. (1961). We use the generalized Hajek-Rényi for martin-
gale difference sequences to prove Lemma A.1, where {¢&;, %} are mixingale sequences under

Assumption 1.

Proposition 2. Let €1,¢,,..., be a sequence of martingale differences with E[e?] = 6 and {c;}
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be a decreasing positive sequence of constants. The Hdjek-Rényi inequality takes the following

2
>Oc<—mc+Zc,.
t=m+1

Lemma A.1. Under Assumption 1, for every o. > 0 and m > 0O there exists C < oo such that

) CInT
>0 < —

form.
k

Y&

t=1

P| max ¢,
m<k<T

2:&8;

o2

( sup
m<k<T
and thus, supy, T-1/2 HZ,’CSH =0, <\/ln T)

Proof. Denote & = z;€, and proceed. Let {&;, F; } be (¢ x 1) L"-mixingales, r = 4 4y for some
Y> 0 satisfying Assumption 1(vi). Define & := E[& | F—j] —E[&|Fi—j—1]. Then& =Y7_ . &jr,
and hence Y*_ & =¥ oo YX_,&;:. Denote |-, for the L*-norm. For each T > 0,

Pl sup — al| <P Z sup — al. (A.5)
m<k<T je—eem<k<T VK ||/=1

For each j, {€;;, %—;} forms a sequence of martingale difference and the generalized Héjek-

Rényi inequality (Proposition 2) holds for this sequence. Let b; > 0 for all j and }°7 =1.

j*—oo
> bjOC)

) bz< ”ZEHaﬂ||2+ y z-lEHaﬂHz>

Jj=— "] i=m+1

The right-side of (A.5) is bounded by

§P<sup_

jm—oeo \m<k<T

Note that ||§ JtHz < H§ JfH by Liapounov’s inequality. By definition, for j > 0, we have H§ jt” <
ER ] Fi= M, + 1 ETE:] Fi— ][l and for 7 <0, ||, < [[& = E&] Fijrll], + & — EL&i] a1

Hence, from the definition of a mixingale, E ||& ||r <d4c? I|I|j‘ and with Assumption 1(vi)(c), this
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2 < 4c,.2\|;|2j| < 4K2\|;|2j‘. Then the right-side of (A.5) is bounded by

impliesEHﬁjiH2

1 ¢ 25202 S 1 ¢ 25202

p Y 4 e <1+_Z i SJ.Z 472 K>y (1+InT). (A.6)
Jj=—00 i=m+1 J=—o0

We can choose appropriate {b;} so that ) ; b;zwfﬂ are bounded. From lemma A.6 of Bai and

Perron (1998), let vo = 1 and v; = j~17* for j > 1, where k > 0 is given in Assumption 1(vi)(d).

Letbj=v;/(14+2Y;,Vvi) and b_; = b; for all j > 0. Then Y7

i=—ebj=1. By Assumption

1(vi)(d), we have

Z bJ—2W|ZJ‘ _ <W0+22]2+2K 2) (1 +22j—2—21<) < oo.
. =

J=—0°

for some C > 0 and we obtain the

Hence, the right-side inequality of (A.6) is bounded by C(lxnzT

result of Lemma A.1. O

Proof of Lemma 3

Proof. We use the expression (1.12); the estimator k must satisfy Or(k )2 > Qr(ko)? which is

equivalent to Hy (k) > |ko — k|G (k). Therefore we have

P(Ip—pol >n) =P (lk—ko| > Tm)

<P| sup [Hr(k)|= —inf |ko—k|Gr(k)
lk—ko|>Tm lk—ko[>Tm
<P sup |Hr(k)|>Tn inf Gr(k)
lk—ko|>Tm lk—ko|>Tm
<P(G' sup TUHr(k)|>n (A7)
p<k<T—p

where G := inf; 1> Gr (k) which is positive and bounded away from zero by Lemma 1 and
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the restriction p < k < T — p is imposed to guarantee existence of Hr(k). Thus consistency

follows by showing that 7! sup,<x<7—p |Hr (k)| = 0p(1), where

T Hy (k)| < ‘T—le’MZk(Z,QMzk)—1/29k(Z,QMZk)—1/Zz,QMe’
+ ‘ T\ MZo(Z\MZo) "2 Qu (ZoMZo) ™" ZZ(’)MS‘
2|78, (Z(’)MZk)(Z,’(MZk)*I/ZQk(Z,’(MZk)*l/ZZ,’{Me’ (A8)

+2 T_IS’T(Z(’)MZO)l/szo(Z()MZO)_l/zz{)Me’.

Lemma A.1 implies that supk) 71/ 2Z,’(M%:H =0, (\/ In T). We use the following to verify

uniform convergence for all k.

sup ‘)(z,gMzk)—l/zz,QMe“zop <\/1 T). (A.9)
p<k<T—p

We show the third and fourth terms of (A.8) are O, (T_1/2 |87 In T) and O, (T‘1/2 H8T||),
respectively. Denote Dr := T~'/2(Z,MZ;)(Z,MZ;)~"/2. From (1.10) and (A.1), ZyMZ; <

Z,MZj for all k, and thus
sup DyDr < sup T 'ZiMZ, = 0,(1),
P<k<T-—p p<k<T-p
then the third term of (A.8) is bounded by

2 HT—l/ZS’T(T—lzIQMZk)l/ZQk)’ “(Z,QMZk)—l/zz,QMe” = |I57]/0, (T—l/zx/ﬁ)

For the true break date kg,

(Z\MZy) =Y/ 2Z(’)M.s“ = O,(1) under our regularity conditions. Hence,

the fourth term of (A.8) has order

‘T*IS’T(Z(’,MZO)I/ZQkO(Z{)MZO)*I/ZZ{)Me’ = (|57 0, (T*l/z) .
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From (A.9) and boundedness of Q, we have sup, ”Q,i/z(Z,’cMZk)*l/ZZ,’(MSH =0, (\/lnT>.

Then the first and second terms of (A.8) are bounded as below, respectively.

2
supT || % (ZMz) " PZiMe||” = 0, (T~ InT),
k

2
_ 1/2 _ _
T IHQk({ (ZbMZo) 1/22(’)M8H =0,(T").

By combining all four terms,

7' sup [Hr(K)| = 0, (TV2)j37]| VInT ) = 0,(1)

p<k<T—p

hence, the probability (A.7) is negligible for large 7. [

Proof of Corollary 1

Proof. Let Zy denote Z; when k is replaced by k. Then the LS estimator of S(ﬁ) is obtained
by regressing MY on MZy. The true model (1.8) multiplied by M can be rewritten as MY =

MZyd7 + Me*, where £* = €+ (Zo — Zo)87. Then,

VT (8([5) _ 8T> — (T2, M20) "' T~ 127 Me*

— (T2, M2p)~! <T‘1/226M8 + T2 M(Zo - 20)6T> .

We show that the right side converges in probability to the same limit as when Zj is replaced
by Zo. First, we show that plim 7~/ 270 M (Zo — Zo)87 = 0. Without loss of generality, consider
k < ko.
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HT’I/ZZ(’)M(ZO —Zo)STH <7712 126(Z0 — Z0) — ZoX (X'X) 7' X' (20— Zo) || 187 |

1 kzo ! 2
<= 2z || 187 ||
VT |87 ||, 25
T T -1 1
/ /
+ Y x| | ) xx \/_H5 ” Z X2 |18
t=k+1 =1 T | =k+1

1

= m%(l) =op(1).

Note that the sum has ko —k = O, (HSTH_z) terms, so HZ 0 187> = O,(1). Also,

/
g1 %1%

T 20MZo — ZoMZo|| < T~ || 2020 — ZoZo|| + T ||(Zo — 20)' X (X'X) ' X' 2|

+77! HZ(’)X X'X)"'X'(Zo - 20)|

1 & / 2
Zztzt 18717 + 7 || X x| | 187[17 0p(1)
THSTH k+1 T||5T|| k+1
1
= 0,(1)=0,(1).
2P p
T3]

Thus, /T <8(f)) — 8T> = (T7'ZyMZy) ' T~'/2Z)Me +0,(1) and the normality follows from

the central limit theorem. ]

Proof of Lemma 4

Proof. Use equation (1.12) to express terms in Fy, Fp and Qy 4, defined in (A.3).

ko — k|G (k) = 8, (Z,MZo) '/ (ZMZy)' /3,

— n(ZhMZ) (ZMZy) ™\ 2 (M Zy) V2 (2, M Z0)

= NdGR (X(Xo0) | Fy*Qx o Fo > — FL2Qx kL2 | (X4 X0)Rdo.
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The second equality is from Lemma A.2 and (X;MX) (X[MX,) ™' = (X{Xo) (X[ Xi) !

Lemma A.2. Under Assumption 1(i)-(iii),

(ZeMZi)(ZMZy) ™" = R (XMX) (XM Xi) ™' R.

Similar to the proof of Lemma 1, the norm of the middle matrix is bounded by rearranging terms

and from Assumption 2 where we have || Qi — Qy, || < blko — k|/T for some finite » > 0 and all k.
1/2 12

1/2 1/2
HFO QX~,koFo Fk/ QX,ka/ H

= H (Fo— Fk)(Fol/z)*le,koFol/z —F {(Fkl/zrlgx’kauz _ (Fol/z)’lﬂx . F01/2} H

KO

< || (Fo — F)Qx o || + D Fill ko — k| /T +0,(1)
Because ||Fx|| = 0,(T 1) and (Fp — F) = (X{Xo0) ' (X, Xa)(X;Xx) "', we have
1/2 1/2 1/2 1/2 _ _
Fo 2y g, Ry — BP0 iR = (X5Xo0) ™ (XAXa) (X(X0) ™! Qg + 0 (1),

Then,

ko — k|G (k) = Ajp [R'(XpXa) (XiXa) ™ Qx g (X5X0)R] do + 0 (1)

= N d{\(ZAZA) Quydo + 0, (1). (A.10)

where the second line is from (X X;) ~1Qy 4, (X;X0) = Qx 4,0, (1) +0,(1) by assumption. Next,

consider Hr (k) in equation (1.19).
Hr (k) = 2MdyQu, Zpe sgn(ko — k) + T2 ||84]| [ko — k|0, (1) + O, (1).

Because |ko — k| < C||8;]| 7> on K(C), the second term in the equation above is bounded by

CT /2|5, " O,(1) =0,(1). The last term O,(1) is 0,(1) uniformly on K(C), which can be
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verified by rearranging terms using Zy = Z — Zasgn(ko — k).

& MZ(ZiMZ;) ™\ 2 (ziM Zy) ™V Z, Me — € M Zo (ZoM Zo) V> Qu, (ZoM Zo) ™' /> ZiMe
—e'MZ, [(Z,QMZk)*l/ 2Q0u(ZiMZy) V2 — (Z\MZo) V2, (ZoM Zo) V2| ZiMe

+ €' MZ(Z\MZo) ™V 2 (ZoM Zo) > Z)Me sgn(ko — k)

+ &' MZo(Z,MZo) V20, (ZoM Zo) ~ 2 Zj Me sgn (ko — k)

=0, (T 84l172) +0, (T84 1) +0,(1)
The first line is O, <T_1 HShH_2> is uniformly on K(C):

& MZ [(ZiMZy) ' Q. — (Z4MZo) ™' Q] ZiMe +0,(1)
= & MZ(ZLMZ) ™ (ZiM Zo — ZLMZ,) (ZgM Zo) ™' QuZi Me
+ € MZi(ZoMZo) ™' (4 — Qi) ZpMe + 0, (1)

=T 1282 0p(T71/%) +0p(1)

from (1.18) and (Z,MZ;)~'Z,Me = 0,(T~'/?) uniformly on K(C). The second and third lines

are 0, (T*I/Z ||5h||—1) from Z\Me sgn (ko — k) = ko — k|1/20,(1) = 0, (||5h\|—1). Hence,
Hr (k) = ZKhdégkOZ/AE sgn(ko — k) + Op(l)

Combine this with (A.10), we obtain the expression in Lemma 4. ]
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Proof of Lemma A.2
Proof. Use the block matrix inverse formula (below) on (X/MX;)~!.

-1
(A-BD~'C)~! —(A-BD"'C)"'BD!

C D -D-'c(A-BD"'C)"! D'+ D 'c(A-BD~'C)"'BD!
Note that X; = [Wj:Z;] for all k. Then,

R (XgMX) (X{MX;.) ™' R = —(ZgMWy) (W, MW,) ~ (WoMZy.)
x [Z4MZi — (ZuMW,) (WiMWy) ™ (WiMZ,)] ™
+ ZYMZy [ZiMZi — (ZMW) (WiMWy) ™ (WM Z:)] ™

= (ZMMMZ,) (Z,MMMZ,) "' (A1)

where M := I — MW(W/MW,)~'W/M. Note that this is the OLS estimate of coefficients of
multiple equation regression when we regress MMZy on MMZ;. This is equivalent to the
coefficient of MZ; when we regress MZy on [MW;.: MZ;] = MX;. Thus, (A.11) is equivalent to
the corresponding (¢ x ¢) block matrix of OLS estimate of regression MXy on MX;, which is

R'(X{MXy) (X[MXi) " 'R. O

Proof of Theorem 5

Proof. Lemma B.1 from Jiang et al. (2017) is restated below, and used without proof.

Lemma A.3. For the process y; defined in (1.22) the following equations hold when T =1/h — o
with a fixed po = ko /T, for any p € [0,1],

(@) T 2Ny = &2 [P To(r)dB(r);

~ 2
b) 22PN 32 = 2 9 [Io(r)]
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© [o(e)] [0 =21 Tor)aBr) 2.8 (w810 > po}) [7o(r)] e+ p;
~ 2 ~ 2 ~ ~ 2
@ ] = [Jo(p)| =2 Jo(r)dB(r) =2 f (u+31{r > po}) [Io(r)| "dr+(1-p);

where Jo(r) for r € [0,1] is a Gaussian process defined in (1.24) and B(-) is a standard Brownian

motion.

Define the (T x 2) matrix Y (k) = [Y; (k) :Y2(k)] with ¥ (k) = (yo, - - -, Yk—1,0...,0)", Ya(k) =
(0...,0,y,...,y7—1) and Y = (y1,...,yr)". Then the LS objective function can be expressed as

S(k)?> = Y'MY where
M =Ir = Yi(K)[Y1 (k) Y1 (k)] ~'Y1 (k) = Y2 (k) [V (k) Ya (k)] ' Yo (K)',
where I is a (T x T') identity matrix. The model (1.22) can be written as
ye = Bryr—1+ (B2 — B){z > kotyr—1 +& = Biy—1 +Mr,

where 1, := (B2 — B1)1{t > ko}yr—1 +&. LetY_ = (yo,...,y7—1) andm = (M1,...,M7)’". Then

we have Y = Y_[; 41, and the LS objective function is

S(k)* = (Y_B1+n)'M'M(Y_B; +m)

=M =Y (k) [Y1 (k)1 (k)] Y1 (k)N —'Ya (k) [Ya (k) Ya (k)] Y2 (k)

because M is a idempotent matrix and MY_ = (. Note that

ko T ko T
M=Yn+ Y n?=Ye+ Y ((B2—Bi)y1+&)?
=1 t=ko+1 =1 t=ko+1
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which holds regardless of the choice of k, and

(Zt 1 YVi— lﬂz)
thlyt—l
(Zf:kﬂyrfmr)z
YV

Y1 (k) [Yi (k)Y (k)] ' Y1 (k) =

Y

'Y (k) V2 (k) Y2 (k)] ™' Y2 (k)m =
Therefore, the break point estimator is

p = argmaxo(p)> ¥ (p), (A.12)
pe(0,1)

(Zz [ Vi— mt> (Zf:[pﬂﬂyzm;)z

V(p):= -
Zt[pji y, 1 ZtT:[pTHlytzfl

When p < py, the terms in the numerator and denominator of ¥/(p) weakly converges as follows.

[p7] [
IZ)’t me=71" Z)’t 1€t:>5/-]0 )dB(r

From Lemma A.3,

T [PoT] T
T Z e =T"" Z Ye—1Mr + Z Ye—1Ms
1=[pT]+1 1=[pT]+1 t=[poT]+1
T T
=7 Y yae+TER-B)T> Y
1=[pT]+1 t=[poT]+1
1 1r_ 12
=& [ Jo(rdB(r) - 85> / [Jo(r)] ",
p Po
[pT] P 2 T 1 r_ 2
EZy, 1=>G/ [Jo(r)] dr, and T2 Z yt2_1:><52/ [Jo(r)] dr.
0 1=[pT]+1 p
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Then the LS objective function V/(p) in (A.12) weakly converges to

V(p) = o> <f0pJ~0(r)dB(r)>2 ) (fp1 Jo(r)dB(r) =38 [ [fo(r)rdr)z
’ .

3 [ior)]ar i [i)] ar

Lemma A.3 (c) and (d) implies that each term is rearranged as follows.

(18 Jotr)as(r))” ([JB(P)T 0] —p+2uff [fo(r)]zdr)z

2 [t ar 419 [0 ar

4P [fo(r)rdr
+u ([fo(l))r— [fo(O)]z—p)

(i as) s, [ 'ar) ([B00] - o]~ -0)
~ 2 - ~ 2
o [do(r)] ar A gt o] ar

vt [ i) area ([30)] - [i)]- 1-9)

2

As a result, the objective function of the break point estimator in (A.12) weakly converges to

oo vip)_ O ([ae)] - [fa«»}z—p)z ot ([a] - [ae)] -0 —p>)2

o’ 418 [Jotr )]2 dr 4] [fo(r)]zdr
ritoe) [ (1] ar+uoter ([3n] - [G0)] 1),

Following the same procedure above, ®(p)?4/(p)/c? has the same limit when p > po. Therefore,
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by deleting the terms which are independent of the choice of p, the in-fill asymptotic distribution

of p in (A.12) is

p = argmax w(p)* ¥ (p)

pe(0,1)
(T~ 2 o 2 2 (T~ 2 2 2
op)” ([e)] - [10)] ~p) e ([a] - [ie)] - (1-9)
= argmax — o) + — 5 ,
pE(O.1) 1 Jotr)|ar Iy [Jo(r)]"ar
which is identical to the distribution in Theorem 5. ]

A.2 Appendix for Chapter 2

A.2.1 Comparing methods

Based on model (2.1) the Nyblom test statistic is

L/T>=T"%tr

T[T T !
Q' Zl (Z Qsﬁs> (Z Qsﬁs> ] (A.13)
= s=t s=t

:>/(W(Z)—lW(l))’(W(l)—lW(l))dl.

where Qg = lim7_,., Var <T‘1/ 2 Z,TZI Qtut> and the Wiener process W (1) has dimension equal
to dim(Q) = k+ m. The Nyblom test statistic null limit distribution is the square of independent
scalar Brownian bridges. The asymptotic critical value of /72 depends only on the dimension
of Oy = (X/,Z/)’. The Nyblom test does not assume that the direction of test statistic is known,
hence the null hypothesis is & = 0 against the alternative & # 0. The local alternative asymptotic
distribution under & = T~1/2d is as follows. Denote the inner product as A¥? = A’A where A is a
(k x 1) vector.

. ~1/2 ®2
/ (W) = 1w (1) + (minl,ro}) — r0) Qg *Eoa | L.
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The (average) exponential LM test from Andrews and Ploberger (1994) has the same
asymptotic properties to the exponential Wald and LR test under the null and local alternatives.
The exponential LM test statistic (denote as Exp-LM7) does not specify the direction of the

structural break like the Nyblom test statistic, hence the null and alternative hypotheses are

Hy:6=0,

Hi : & # 0 and the likelihood function depends on the parameter /.

Exp-LM7 test statistic is derived under local alternatives to the null ® of the form f7 (8¢ —|—B}1h, l)
for some [ € IT C (0, 1), some h € R?, and By = /T I, in our model without trending variables.
The test has the greatest weighted average power asymptotically in the class of all test of
asymptotic significance level oo with weighting function over &, Q;(h) and over [, J(I). Given a
constant ¢ > 0 that depends on the weight functions Q;(+), the asymptotically optimal test statistic
Exp-LM7. is

Exp-LM7. = (1 —l—c)_p/z/exp (%FLMT(Z)) dJ(1). (A.14)

The larger c is, the more weight is given to alternatives for which break magnitude 9 is large. We
consider two cases ¢ — 0 and ¢ — oo which is as follows, suitably normalized.
l1m2(Exp LMr.—1)/c = /LMT )dJ (1)

lim log ((1 +c)p/2Exp—LMTC = log/exp (ELMT(I)> dJ(1)

C—roo

The directional break test statistics are similar to Exp-LR7 under Gaussian disturbances and

¢ — 0. If we assume J(/) is an uniform weight function over [€, 1 — €], € > 0 then under the null,
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_g 1—¢ _ ! —
81 LM}(l)dl:>/€ (W) lW(ll()l)_(";’)(l) w() ,
log/glgexp (%LM}(Z)) y :>10g/818€XP <%(W(l) —lW(ll()l)/_(VlV)(l) —lW(l))) dl.

From our model (2.1) the test statistic LM (/) is the test statistic when the break location [ is

known.

!/
1 T . T
LM;(I):M_Z) (T—W Y X,ﬁ,) Ot (T—1/2 Y X,ﬁ,).

t=[TI+1 1=[T1]+1
where #; is the residual under the null (no break). Under the local alternative d = T-1/2d and

c—0,

l1—¢ 1—¢ 2
/ LM;(Z)dZ:»/ 1(11 ) (W)= 1w (1) + (min{L, ro} — )@~ 5xd “a
€ € -

where ry is the true break location and Q is the long-run variance of {X;u;}.
Refer to Elliott and Miiller (2006) for the construction and asymptotic distribution of the

“quasi Local Level” test statistic q/lz

A.2.2 Proofs for Chapter 2
Proof of Lemma 5

Proof. Let R = [I; 0]’ be a ((k+m) x k) matrix where I; is an identity matrix with dimension
k and 0 a (k x m) matrix of zeros. Then we have R'Q’'Q = X'Q. From the definition of M and

I =1t/T we have
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T-2(X =X (1)/MU =T"'2(X —X (1)U~ (X —X(1))'Q(Q'Q)"'T~"?QU
=T"'"2(X—X())U-T"'R(Q-0())Q(T~'Q'Q)"'T~'?QU
=T XX —X(1))U—(1-1)R'Eex,'T~2Q'U

+ |(1=DREezg TR (@ - 00 (T 0'0) | 772 QU

_ T’l/z(X —X(1)U—(1— Z)Rlezélel/ZQ/U +o0p(1)

where the last equation is from (1 — l)R’ZQZél —~T'R(0—01))o(T'0'0)~" & 0 by Con-

T-12X'U
dition 1(iv) and T-1/2Q'U = = 0,(1) from Condition 1(7i) and (iii). Hence we
T-127'U
have
T-1V2(X —X(1))MU =T V2(X=X(1))U—- (1 =0T VXU +0,(1)
= Q2w —w(@)—(1-DQY2w(1)
= QW) —1w(1)).
We can ignore the minus sign because the distribution W (I) — W (1) is symmetric. O
Proof of Theorem 6

Proof. From Lemma 5, consistency of estimators 3y, Q, and continuous mapping theorem we

have
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_ 1/2
dd
_ _ 6/ 1/2
(5’2;(1/2?22;(1/25) ( sél

. 1/2
dd ) 172
= &xy Q2 (W () —1w(1))
Sw—1/2 —1/23
(8/2X 2oy, '%s

— (@d)"BB(1),

where the last equation is from &% 1/291/2( W()—IW(1)) = (S’Z;I/ZQZQI/ZS)I/ZBB(Z) where
BB(I) is a univariate Brownian Bridge. The second term inside the exponential function of db%,
which is 3d'd () (1 — %), is asymptotically equivalent to the second term of the likelihood ratio

test statistic in (2.9):

L (do8)zy T (X — X (1) M(X — X(1)) 24 /A (d 08)

N |

(dod)zy [T (X —X(1)) (X —X(1))

—T7'R(Q—0(1))Q(T~'Q'0) ' T7'Q'(Q— 0(1))R] 25 /*(d 0 §)

[(1—1)2X—(1—1)2R2Q2 IZQR}Z V2(d08)

where the last equation is from (d 08)'(d 0 8) = d'd.

For db% the application of the continuous mapping theorem yields the distribution
1 1 1
bs = \/12/ BB(l)dl = V12 V Wi(1)dl - SWi(1)
0 0

where Wi (1) is a univariate Brownian Motion. The mean and variance of the distribution can be
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computed from
1
Wi (1)dl 0
JoWi(D) N
Wi (1) 0

= W=
— N —

The mean is zero and the variance is % + % -2 % ‘5= 13 thus the null limit distribution of db%-

is a standard normal distribution. O]

Proof of Theorem 7

Proof. Under the alternative we have MY = M(X — X(t9))8+ MU, and if § = T‘l/zcE;l/zd

then

71/ Z T=12(X X (1)) MU +T~'o(X —X(1))M(X — X (x0))Zx /*d.
s=t+1

The first term is the same as under the null hypothesis. Consider the second term:

TH(X —X(1))M(X — X (1))

=T' (X -X(1)) (XX (1))~ T'R(Q— Q1)) (T™'Q'0)"'T~'0' (0~ 0(1))R

From Condition 1(iv),

T\ (X —X(1))' (X —X(10)) & (1 —max{l,r})Ex

TIR(Q- () (T™'Q'Q) ' T Q/(Q~ 0(r0))R 5 (1-1)(1 = ro)RToT ToR

Hence, by continuous mapping theorem the second term converges as follows.
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T '6(X —X(1))M(X — X (10))E5 /d
2 6 [(1—max{l,ro})Zx — (1 —1)(1 — ro)Zx] Zx "/ *d

= o(min{l,ro} — Iro)=y *d
Again, by continuous mapping theorem we have

7d V2 et r
_ | ¥ T2 Y vy
(5/2X1/2Q2X1/25> * ( s—zzil

o(d'd)"?(min{l,ro} —Iry)
(812;1/292;(1/28)1/2

§d+ (d'd)'/*BB(I)

Under conditional homoskedasticity, we have o(d’d)"/? /(&' Z;l/ 292);1/ 28)1/ 2= (d'd/(§§))"/?
= dy under d = dj1; and the local alternative asymptotic distribution of the test statistics reduces

to the distribution inside the probability function of (2.15), (2.16) and (2.17). [

A.3 Appendix for Chapter 3

We show that our method is a special case of smoothing the direct forecast estimates
themselves. Denote [ASLSJL a (n x 1) vector as the horizon & direct regression least-square estimates.
Suppose we want to smooth out the estimates by taking a weighted average of the previous 4 — 1
and  to obtain a smoothed forecast, f3;, = (x)hBL&h +(1- (Dh)fiLS’hfl. Let f = ([3/1 oo B;I)’ and

A Al Al . . . .
Brs= (Brs.1»---»Brsy)’- Then we can express the smoothing procedure in a linear function of
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direct forecasts p = Af, s, where A is a (nH x nH) matrix.

A I, 0 - 0 0 A
Bl BLS,]
. (1—w)L, oI, - 0 0 .
BH BLS,H
0 0 (1—O)H>In oyl
A

The smoothed direct forecasts can also be expressed as a linear function of B s With a coefficient

matrix. In section 2.2 we showed the smoothed direct forecasts are

B— {T‘l ; (V‘l ®x[x;) +M‘1] o {T‘l y (\7_1 ®xt) Y,}

t

= [T7XX,+ M1 {T—IZ (V'ex) Y,] , (A.15)
t

where X/ X, = vV '@X'X. Since M isa positive definite matrix by construction, M~! = P'AP

by triangular factorization. If we use the matrix inversion lemma on the first term of B, then

_ _1\—1 _ _
(77X X, +M 1) = (r7'X/X,)"!

—(r X X,)""P(A+P(TIX X)) IP) T TP(rIX X)L
If we plug this into (A.15),

B=(T71X'X,)"! (T—l y (\7‘1 ®x,> Y,> —(TIXX,) P
t

x (AL P(TIXX,) P IR(TIXUX,) ! <T1 y (V‘l ®x,> Y,) .
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The first line is equivalent to the least-square estimates of the direct forecast regression since the

. ol .
diagonal matrix V  is cancelled out and gives us

BLs = (T_lg,IH@XtX;)_I (T_lg(ly ®X,)Y,) .

The last two terms of the second line also gives us least-square estimates. Therefore the smoothed

direct forecast estimates can be expressed as a linear function of direct forecast estimates.
B= Ly — (T7'XX,) "P (A +P(T7'XX,) " "P)"'P] B

Forecast accuracy test

We describe West’s (1996) forecast accuracy test of two competing models. The competing
models are described in section 3.2, which are the direct forecast and smoothed direct forecast.

For the smoothed direct forecast, “asymptotic irrelevance” does not hold and we need
to take into account estimation uncertainty. Asymptotic irrelevance means that one conducts
inference by applying standard results to the mean of the loss function of interest, treating
parameter estimation as irrelevant (West, 1996). Asymptotic irrelevance holds when predictors
are uncorrelated with the prediction error if the object of interest is the out-of-sample MSFE.
Because smoothed direct forecasts of all horizons are estimated jointly, we need to derive a joint
distribution of the horizon 4 direct forecast and smoothed direct forecasts of all horizons in order
to compare the MSFE at horizon .

Assumptions 1-4 from West (1996) are maintained and the same notations are used to
derive the joint distribution of direct and smoothed forecasts. Let E f;., := E[(y;+n — X)Y,)]
be the forecast measure of interest, which is the MSFE at horizon 4. Then the estimate is
fran = (ﬁ%,l+h’ ‘9%,:+1 , ﬁ%,t+2"%t+3’ . ,\%JJFH)’ where i s = yi+n — Xy, is the direct forecast

residual and Vs = yrn — x;f3,, is the smoothed direct forecast residual, each from horizon h
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regression. Estimators ¥, and f,, satisfies ¥, —y* = B(¢)H() and B, — B* = B(¢)H(¢), where

IH®X] Yk)®xj

— (Iy ®x;)'p" )®Xj—M_]B*,

Lot B
PR AR

and y, = (Yr+1,--.,y+1). Hence expectations of /2;(y*) and /;(B*) are orthogonality conditions
for each estimator: E[h;(y")] = 0, E[h;(B*)] = 0. Denote the horizon 2 component of /(") as
hjn(Y') = Xjtj -

Let [ = P~ L g fron 0= (4 BrsBos - Br): fio = gt 1i(8) := (yn(v). s (B):

and F := E|[f;g]. Below are terms we need to derive the distribution of (f — Ef;).

Cn(j) = E(fi —Efi)hy_;, Z Cyn(J)

Jj=—o0

Uin(j) = E(hihy_;), Spn= Z Con(J

j*—oo

Crr(J) =El(fi —Ef)(fi —ES)), Spr= i Lrr(),

jzfoo

O=1-7n""In(1+mn), lim (P/R) =7, 0 <7< oo,
—>00
Theorem 4.1 of West (1996) implies that

P2(F—Ef,) A N(0,Q)

Q = Sy; +T1(FBSY), +S7;,B'F) 4 2ITFBS,,;,B'F'.

A consistent estimator of  is obtained by replacing the parameters to the sample analogue. The
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test statistic for the null hypothesis E[uj , ,] = E[v; . ,] has a chi-squared limit distribution,

where oo = (1,0,---,0,—1,0,---1) has —1 at the (h+ 1)th element.
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Data description

Table A.9: Category (A) Income, Output, Sales, Capacity Utilization

Series Trans. Sample period  Description

IPNB50030.M ALn 1939:1 - 2016:7 Industrial Production Index - Final
Products & Nonindust Supplies
(2012=100, NSA)

IPNB50002.M ALn 1939:1 - 2016:7 Industrial Production Index - Final
Products (2012=100, NSA)

IPNB51000.M ALn 1939:1 - 2016:7 Industrial Production Index - Consumer
goods (2012=100, NSA)

IPNB51100.M ALn 1947:1 - 2016:7 Industrial Production Index - Durable
consumer goods (2012=100, NSA)

IPNB51200.M ALn 1947:1 - 2016:7 Industrial Production Index -
Nondurable consumer goods
(2012=100, NSA)

IPNB52100.M ALn 1947:1 - 2016:7 Industrial Production Index - Business
equipment (2012=100, NSA)

IPNB53000.M ALn 1939:1 - 2016:7 Industrial Production Index - Materials
(2012=100, NSA)

IPNB53100.M ALn 1947:1 - 2016:7 Industrial Production Index - Durable
goods materials (2012=100, NSA)

IPNB53200.M ALn 1954:1 - 2016:7 Industrial Production Index -
Nondurable goods materials
(2012=100, NSA)

IPSB00004.M ALn 1919:1 - 2016:7 Industrial Production Index -
Manufacturing (SIC) (2012=100, SA)

IPSGMFD.M  ALn 1972:1 - 2016:7 Industrial Production Index - Durable
manufacturing (NAICS) (2012=100,
SA)

IPSGMFN.M  ALn 1972:1 - 2016:7 Industrial Production Index -

Nondurable manufacturing (NAICS)
(2012=100, SA)
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Table A.9: Category (A) Income, Output, Sales, Capacity Utilization; continued from previous
page.

Series Trans. Sample period  Description

IPSG21.M ALn 1972:1 - 2016:7 Industrial Production Index - Mining
(2012=100, SA)

IPSG2211A2.M ALn 1972:1 - 2016:7  Industrial Production Index - Electricity
and gas utilities (2012=100, SA)

UTLB50001.M  Lev 1967:1 - 2016:7 Capacity Utilization - Total Index (%,
SA)

UTLB00004.M  Lev 1948:1 - 2016:7 Capacity Utilization - Manufacturing
(SIC) (%, SA)

UTLGMFD.M  Lev 1967:1 - 2016:7 Capacity Utilization - Durable manufac-
turing (NAICS) (%, SA)

UTLGMEFN.M  Lev 1967:1 - 2016:7 Capacity Utilization - Nondurable
manufacturing (NAICS) (%, SA)

UTLG21.M Lev 1967:1 - 2016:7 Capacity Utilization - Mining (%, SA)

UTLG335.M Lev 1972:1 - 2016:7 Capacity Utilization - Electrical equip.,
Appliance & component (%, SA)

YPM ALn 1959:1 - 2016:6 Nominal Personal Income (Bil $,
SAAR

AOMO51.M ALn 1959:1 - 2016:6  Personal Income less Transfer
Payments (Bil/Chained 2009 $, SAAR

CXFAE.M ALn 1959:1 - 2016:6  Personal Consumption Expenditures
excluding Food and Energy (Bil $,
SAAR)

CD.M ALn 1959:1 - 2016:6  Personal Consumption Expenditures -
Durable goods (Bil $, SAAR)

CN.M ALn 1959:1 - 2016:6  Personal Consumption Expenditures -
Nondurable goods (Bil $, SAAR)

CSV.M ALn 1959:1 - 2016:6  Personal Consumption Expenditures -

Services (Bil $, SAAR)
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Table A.10: Category (B) Employment and Unemployment

Series

Trans.

Sample period

Description

EPNEGP.M

EPNET.M

EPNECON.M

EPNEPSP.M

EPNETTU.M

EPNEWST.M

EPNERET.M

EPNEFIN.M

EPNEOTS.M

EG.M

ALn

ALn

ALn

ALn

ALn

ALn

ALn

ALn

ALn

ALn

1947:1 - 2016:7

1964:1 - 2016:7

1947:1 - 2016:7

1964:1 - 2016:7

1964:1 - 2016:7

1972:1 - 2016:7

1972:1 - 2016:7

1964:1 - 2016:7

1964:1 - 2016:7

1939:1 - 2016:7

Employment of prod and nonsup on
nonfarm payrolls - Goods (thous., SA)
Employment of prod and nonsup on
nonfarm payrolls - Total, private
(thous., SA)

Employment of prod and nonsup on
nonfarm payrolls - Construction
(thous., SA)

Employment of prod and nonsup on
nonfarm payrolls - Private service pro-
viding (thous., SA)

Employment of prod and nonsup on
nonfarm payrolls - Trade, trans. and
utilities (thous., SA)

Employment of prod and nonsup on
nonfarm payrolls - Wholesale trade
(thous., SA)

Employment of prod and nonsup on
nonfarm payrolls - Retail trade (thous.,
SA)

Employment of prod and nonsup on
nonfarm payrolls - Financial activities
(thous., SA)

Employment of prod and nonsup on
nonfarm payrolls - Other services
(thous., SA)

Employment all employees - Govern-
ment (thous., SA)
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Table A.10: Category (B) Employment and Unemployment; continued from previous page.

Series

Trans.

Sample period

Description

EPNEND.M

EPNEMEM

EPNED.M

EPNEML.M

Ul5@26WZM

UIS&WZM

U@5WZM

US@14WZM

WEEKSU.M

RDUTTTODSU.M

HOPMEM

HPEAP.M

HPMEM

LCZM

ALn

ALn

ALn

ALn

Lev

Lev

Lev

Lev

Lev

Lev

Lev

Dif

Lev

ALn

1939:1 - 2016:7

1939:1 - 2016:7

1939:1 - 2016:7

1947:1 - 2016:7

1948:1 - 2016:7

1948:1 - 2016:7

1948:1 - 2016:7

1948:1 - 2016:7

1948:1 - 2016:7

1948:1 - 2016:7

1956:1 - 2016:7

1964:1 - 2016:7

1939:1 - 2016:7

1948:1 - 2016:7

Employment of prod and nonsup on
nonfarm payrolls - Nondurable goods
(thous., SA)

Employment of prod and nonsup on
nonfarm payrolls - Manufacturing
(thous., SA)

Employment of prod and nonsup on
nonfarm payrolls - Durable goods
(thous., SA)

Employment of prod and nonsup on
nonfarm payrolls - Mining and logging
(thous., SA)

Unemployment level of duration: 15-26
wks (thous, SA)

Unemployment level of duration: 15
wks+ (thous, SA)

Unemployment level of duration: less
than 5 wks (thous, SA)
Unemployment level of duration: 5-14
wks (thous, SA)

Unemployed average duration in weeks
(weeks, SA)

Unemployment rate: 15 wks and over
(%, NSA)

Avg. weekly overtime hrs. of prod.
and nonsup. employees: mfg., overtime
(SA)

Avg. weekly overtime hrs. of prod. and
nonsup. employees: Total private (SA)
Avg. weekly overtime hrs. of prod.
and nonsup. employees: manufactur-
ing (SA)

Civilian labor force: 16 years and over
(thous., SA)
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Table A.11: Category (C) Construction, Inventories and Orders

Series Trans. Sample period  Description

HUSTSSO.M Ln 1959:1 - 2016:7 Housing starts: South (mil.u., SAAR)

HUSTSWT.M Ln 1959:1 - 2016:7 Housing starts: West (mil.u., SAAR)

HUSTSNC.M Ln 1959:1 - 2016:7 Housing starts: Midwest (mil.u.,
SAAR)

HUSTSNE.M Ln 1959:1 - 2016:7 Housing starts: Northeast (mil.u.,
SAAR)

UHS.M Ln 1947:1 - 2016:7 Housing starts: Total (thous.u., SAAR)

HUINOFFERZ.M Ln 1963:1 - 2016:6 New 1-family houses for sale at end of
month (thous.u., SA)

HUINSOLDZ.M Ln 1963:1 - 2016:6 New 1-family houses for sale during
month (thous.u., SA)

HUATZNSTNS.M Ln 1968:1 - 2016:7 Housing authorized but not started at
end of period (thous.u., NSA)

SHPMH.M Ln 1959:1 - 2016:6 Mobile homes: manufactures’
shipments (thous.u., SAAR)

RISMAT.M ALn 1959:1 - 2016:7 Ratio of mfg. and trade: inventory or
sales (SAAR NIPA)

PMIM Lev 1948:1 - 2016:7 Purchasing managers’ index (SA)

PMPM Lev 1948:1 - 2016:7 Napm production index (%)

JDIFFO@NAPMZ.M ALn 1948:1 - 2016:7 New orders index (%, SA)

PMDEL.M Lev 1948:1 - 2016:7 Napm vendor deliveries index (%)

PMNV.M Lev 1948:1 - 2016:7 Napm inventories index (%)

PMEMPM Lev 1948:1 - 2016:7 Napm employment index (%)

PMCPM Lev 1948:1 - 2016:7 Napm commodity prices index (%)
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Table A.12: Category (D) Interest Rate and Asset Prices

Series Trans. Sample period Description
RMGFCM@10NS.M Diff 1953:4 - 2016:7  Interest rate: U.S. treasury
const maturities, 10-yr (% per ann.,
NSA)
RMFEDFUNDNS.M  Diff 1954:7 - 2016:7  Interest rate: federal funds (effective)
(% per ann., NSA)
RMGFCM@INS.M  Diff 1953:4 - 2016:7  Interest rate: U.S. treasury
const maturities, 1-yr (% per ann.,
NSA)
RMGFCM@5NS.M  Diff 1953:4 -2016:7  Interest rate: U.S. treasury
const maturities, 5-yr (% per ann.,
NSA)
ALCIBLO0.M ALn 1959:1 -2016:7  Commerical and industiral
loans outstanding in 2009 dollars (bci)
INYSE02Z.M ALn 1966:1 - 2016:7  Nyse common stock price index: com-
posite (12/31/02 = 5000)
JS&PNS.M AlLn 1901:1 -2016:7  S&P’s common stock price index:
composite (1941-43=10)
JS&PINDNS.M ALn 1901:1 -2016:7  S&P’s common stock price index: in-
dustrial (1941-43=10)
MNY2@00.M ALn 1959:1 - 2016:6 ~ Money supply, m2 in 2009
dollars (bci)
RMMTGNS.M ALn 1963:1 - 2016:6  Effective interest rate:
conventional home mtge loans (%)
RXC146%USNS.M  ALn 1967:11 - 2016:7 Foreign exchange rate:
Switzerland (swiss franc per U.S. $)
RXC158%USNS.M  ALn 1967:11 - 2016:7 Foreign exchange rate:
Japan (yen per U.S. $)
RXC156%USNS.M  ALn 1956:1 - 2016:7  Foreign exchange rate:

Canada (canadian $ per U.S. $)
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