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ABSTRACT OF THE DISSERTATION

Essays on Structural Breaks and Forecasting in Econometric Models

by

Yaein Baek

Doctor of Philosophy in Economics

University of California San Diego, 2019

Professor Graham Elliott, Chair

Instability of parametric models is a common problem in many fields of economics. In

econometrics, these changes in the underlying data generating process are referred to as structural

breaks. Although there is an extensive literature on estimation and statistical tests of structural

breaks, existing methods fail to adequately capture a break. This dissertation consists of three

papers on developing econometric methods for structural breaks and forecasting.

The first chapter develops a new method in estimating the location of a structural break in

a linear model and provide theoretical results and empirical applications of the estimator. In finite

sample the conventional least-squares estimates a break occurred at either ends of the sample with

high probability, regardless of the true break point. I suggest an estimator of the break point that

xii



resolves this pile up issue and thus, provide a more accurate estimate of the break. The second

chapter constructs a statistical test to test existence of a structural break when the direction of

the parameter shift is known. In practice it is likely that a researcher is interested in testing for a

structural break in a particular direction because the direction is known, such as policy change or

historical data. We incorporate this information in constructing three tests that have higher power

when direction is correctly specified. The last chapter proposes a multi-period forecasting method

that is robust to model misspecification. When we are interested in obtaining long horizon ahead

forecasts, the direct forecast method is more favorable than the iterated forecast because it is

more robust to misspecification. However, direct forecast estimates tend to have jagged shapes

across horizons. I use a mechanism analogous to ridge regression on the direct forecast model to

maintain robustness while smoothing out erratic estimates.
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Chapter 1

Estimation of Structural Break Point in

Linear Regression Models

1.1 Introduction

Parameter instability in models is widely addressed in many economic fields. In macroe-

conomics and finance it is a common empirical problem, such as decrease in output growth

volatility in the 1980s known as “the Great Moderation”, oil price shocks, labor productivity

change, inflation uncertainty and stock return prediction models. It is often reasonable to assume

that a change occurs over a long period of time or some historical event affects the dynamics

of a structural model. Hence, interpretation of structural model dynamics or prediction models

would rely heavily on estimation and testing of parameter instability. In econometrics literature

these changes in the underlying data generating process (DGP) of time-series are referred to as

structural breaks. The timing of the break as a fraction of the sample size is called the break point.

Estimation methods in the structural break literature have been used to analyze threshold

effects and tipping points. Studies of policy change, income inequality dynamics and social

interaction models have used estimation methods from the structural break literature. Card, Mas,
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and Rothstein (2008) estimate a tipping point of segregation arising in neighborhoods with white

preferences. The tipping point indicates the minority racial share of a neighborhood in which all

whites in the neighborhood would leave if the share exceeds the tipping point. González-Val and

Marcén (2012) explore the effect of child custody law reforms and Child Support Enforcement

on U.S. divorce rates using the method of Bai and Perron (1998, 2003). Adapting structural break

tests allows testing without imposing any a priori timing which confirms the effect of policy

changes and also provides estimated break dates that can be matched with actual reform dates.

There is an extensive literature on structural break estimation methods, starting with

maximum likelihood estimators (MLE) on break points. Hinkley (1970), Bhattacharya (1987) and

Yao (1987) provide asymptotic theory of the MLE of the break point in a sequence of independent

and identically distributed random variables. Asymptotic theory of least-squares (LS) estimation

of a one-time break in a linear regression model has been developed by Bai (1994, 1997), with

extension to multiple breaks in Bai and Perron (1998) and Bai, Lumsdaine, and Stock (1998).

However there are few alternatives in literature to LS estimation of the break point, which is

equivalent to MLE in linear regression models. The main issue of LS estimation of the break

point is that its finite sample behavior depends on the size of the parameter shift. In many cases,

break magnitudes that are empirically relevant are “small” in a statistical sense. For instance,

quarterly U.S. real gross domestic product (GDP) growth rate from 1970Q1 to 2018Q2 has mean

0.68 and a standard deviation of 0.8 in percentage points. A break that decreases the quarterly

mean growth rate by 0.25 percentage point is less than a half standard deviation change, but it is

equivalent to a 1 percentage point decrease in annual growth which is a significant event for the

economy.

In asymptotic analysis a small break can be represented by a magnitude O(T−1/2) that

shrinks with sample size T so that structural breaks tests have asymptotic power strictly less

than one (Elliott and Müller, 2007). In the presence of such small breaks, the LS estimate of

the break date is either the start or the end date of the sample period with high probability. In

2



other words, the LS estimator of the break point has a finite sample distribution that exhibits

tri-modality with one mode at the true value and two modes at zero and one. Break points at zero

or one do not give us any information about a structural break, nor is it likely to be true in practice.

Therefore, inference in practical applications based on LS estimation of structural breaks would

seem unreliable.

In this paper I provide a estimator of the structural break point that has a unique mode

at the true break and flat tails in finite sample. This is achieved by the modification of the

conventional LS objective function using a weight scheme. The LS break point estimates pick

zero or one with high probability due to the functional form of the objective, which is the sum of

two sub-samples partitioned by each potential break date k = 1, . . . ,T −1. For k near the 1 or

T − 1, the objective function has large estimation uncertainty due to small sub-sample size. I

construct a weight function of the break point ρ = k/T on the unit interval and impose it on the

LS objective function to incorporate different estimation uncertainty across potential break dates.

Small weights shrink the variance of the objective at ends of the sample toward zero. Construction

of the weight function is explained intuitively and motivated by the Fisher information under a

Gaussian assumption. The new break point estimator is asymptotically equivalent to the mode of

the Bayesian posterior distribution1 when the prior depends on the Fisher information.

The new break point estimator is consistent with the same rate of convergence as the

LS estimator (Bai, 1997) under regularity conditions on the weight functional form, in a linear

regression model with a structural break on a subset (or all) coefficients. I provide a limit

distribution of the break point estimator when the break magnitude is small, under a in-fill

asymptotic2 framework. I follow the approach of Jiang, Wang, and Yu (2017, 2018) that shows the

in-fill asymptotic distribution captures the asymmetric and tri-modal finite sample properties of the

LS estimator in contrast to the conventional long-span asymptotic theory. The in-fill asymptotic

1Also known as the maximum a-posteriori probability (MAP) estimator.
2In-fill/continuous record asymptotics derives the limit distribution by assuming the time span is fixed with a

shrinking sampling interval under a continuous time approximation model.
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distribution of the new estimator is also asymmetric due to dependence on the true break point,

but has flat tails with a unique mode. Thus, the new estimation method accurately estimates the

structural break point compared to LS estimation. Moreover, Monte Carlo simulations show that

the break point estimator has smaller mean squared error (MSE) than the LS estimator in finite

sample for all break point values considered.

I provide three empirical applications of my method: structural breaks on post-war U.S.

real GDP growth rate, the relation between oil price shock and U.S. output growth and one finance

application on U.S. and UK stock return prediction models. For the quarterly U.S. real GDP

growth rate under different sample periods, the new method estimates a break in early 1970s

whereas the LS estimates varies from 1970s to 1952 or 2000, which are near ends of the sample.

The break date estimate in early 1970s is matched with the “productivity growth slowdown”

suggested in literature such as Perron (1989) and Hansen (2001). Thus, the new method gives

reasonable break point estimates compared to the LS estimates, which is sensitive to trimming

of the sample. For the estimation of structural break on stock return prediction models and oil

price shocks, I follow the approach of Paye and Timmermann (2006) and Hamilton (2003); both

use LS estimation on structural break points. Similar to the first application, the new break point

estimates are not close to ends of the sample period and are robust to trimming.

The remainder of the paper proceeds as follows. Section 1.2 motivates and constructs the

new break point estimator for a mean shift in a linear process. Section 1.3 provides a generalized

linear regression model with multiple regressors, and proves consistency of the break point

estimator. Section 1.4 contains in-fill asymptotic theory for stationary and local-to-unit root

processes. Monte Carlo simulation results are in Section 1.5 and Section 1.6 provides three

empirical applications of the new structural break estimation method. Concluding remarks are

provided in Section 1.7. Additional theoretical results and proofs are in the Appendix.
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1.2 Structural Break Point Estimator

We consider a linear regression model with multiple regressors under a one-time structural

break at an unknown date, which allows for partial break in parameters. Theoretical results are

provided in Section 1.3 under the general linear regression model. In this section we consider the

simplest regression model with a constant term to provide intuitive explanation on the construction

of the break point estimator. Suppose a single break occurs at time k0 = [ρ0T ] where ρ0 ∈ (0,1),

[·] is the greatest smaller integer function, and 1{t > k0} is an indicator function that equals one

if t > k0 and zero otherwise.

yt = µ+δ1{t > k0}+ εt , t = 1, . . . ,T (1.1)

The disturbances {εt} are independent and identically distributed (i.i.d.) with mean zero with

Eε2
t = σ2. The pre-break mean is µ and the post-break mean is µ+δ. Assume we know a one-time

break occurs but the break point ρ0 and parameters (µ,δ,σ2) are unknown.

The LS estimator of the break date is obtained by finding a value k that minimizes the

objective function ST (k)2, which is the sum of squared residuals (SSR) under the assumption

that k is the break date, ST (k)2 = ∑
k
t=1(yt− ȳk)

2 +∑
T
t=k+1(yt− ȳ∗k)

2, where ȳk = k−1
∑

k
j=1 y j and

ȳ∗k = (T − k)−1
∑

T
j=k+1 y j are pre- and post-break LS estimates under break date k, respectively.

Following the expression of Bai (1994), I use the identity ∑
T
t=1(yt − ȳ)2 = ST (k)2 +TVT (k)2

(Amemiya, 1985) where VT (k)2 = k/T (1− k/T )
(
ȳ∗k− ȳk

)2, to substitute the SSR. Then the LS

estimator of the break date is equivalent to

k̂LS = argmax
k=1,...,T−1

|VT (k)| , ρ̂LS = k̂LS/T. (1.2)

Denote ρ = k/T and ρ0 = k0/T . Under a small break magnitude |δ|, the LS estimator ρ̂LS has

a finite distribution that is tri-modal, which has two modes at ends of the unit interval and one
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mode at the true point ρ0. A break magnitude that is statistically small is not necessarily small in

an economic sense. For example, quarterly U.S. real gross domestic product (GDP) growth rate

from 1970Q1 to 2018Q2 has mean 0.68 and a standard deviation around 0.8 in percentage points.

A break that decreases the mean quarterly growth rate by 0.3 percentage point (1.2 percentage

point decrease in yearly growth) is a significant event for the economy. Suppose model (1.1)

has parameter values similar to the U.S. real GDP growth rate: assume ρ0 = 0.3, the pre-break

mean is µ = 0.88 percentage points and the shift in the mean of growth rate is δ =−0.29. The

expectation of yt is µ+(1−ρ0)δ = 0.68, which matches the quarterly U.S. real GDP growth rate.

The finite sample distribution of the LS estimator of ρ under this model is provided in Figure

1.1 from a Monte Carlo simulation with 2,000 replications, assuming Gaussian disturbances

εt
i.i.d.∼ N(0,0.82) and T = 100 observations. The finite distribution of ρ̂LS shows tri-modality with

modes at {0.01,0.30,0.99}. The LS estimator fails to accurately detect the break that occurs in

the constant term of a univariate linear regression model. Thus we would expect that in practice,

structural breaks that are economically important are not large enough for the LS estimator to

detect in many cases. We can understand the finite sample property of LS estimator having two

Figure 1.1: Finite sample distribution of ρ̂LS when (ρ0,δ) = (0.3,−0.29), T = 100 and εt ∼
i.i.d N(0,0.82) with 2,000 replications.

modes at ends ρ ∈ {0,1} intuitively by examining the LS objective function in (1.2). For each
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potential break date k = 1, . . . ,T −1, the objective function |VT (k)| is constructed by partitioning

the sample into two sub-samples, before and after k. Each sub-sample is used to estimate two

different means, ȳk and ȳ∗k . If k is near 1, the pre-break sub-sample size k is small and likewise,

if k is near T − 1, the post-break sub-sample size T − k is small. Hence, when the potential

break date k of |VT (k)| is near either ends of the sample, estimates of pre- or post-break mean is

imprecise due to small sub-sample size. This implies large variance of |VT (k)| at boundaries so

that k̂LS is equal to 1 or T −1 with high probability.

The left plot of Figure 1.2 shows the mean and one standard deviation band of the LS

objective function |VT (k)|, and the function without the absolute term VT (k) under standard

normal disturbances εt
i.i.d.∼ N(0,1). Due to large estimation error the variance of |VT (k)| is large

when k is near ends of the sample. In contrast, VT (k) has a constant variance T−1 across k.

Although both functions have a unique maximum at true break, the value of |VT (k)| at boundaries

is only slightly less than its value at k0. Thus, it is likely that |VT (k)| ≥ |VT (k0)| when k is near

ends such that the LS estimator is k̂LS = 1 or T −1 with high probability.

Because the issue arises from large variance of the objective function at boundaries, we

can think of shrinking the variance accordingly. Suppose we impose non-negative “weights”

ωk, for each k on the LS objective function |VT (k)|, so that k with large estimation error has

smaller weights than k with small estimation error. For ends of the sample period k = 1 and T −1,

weights near zero are imposed, which implies the variance of the weighted objective function

ωk|VT (k)| would shrink toward zero. If we normalize the sample period into a unit interval so

that ρ = k/T ∈ {1/T, . . . ,(T −1)/T}, the weights are represented by a continuous function ω(ρ)

on ρ ∈ [0,1] that is zero at ρ ∈ {0,1} and has positive values otherwise. Functions with such

properties would look like an inverse U-shaped (or concave downward) function on the unit

interval. The right plot of Figure 1.2 shows an example of a weight function, ω(ρ) = (ρ(1−ρ))1/2.

The new break point estimator is the maximizing value of the objective function |QT (k)|,
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Figure 1.2: Mean and one standard deviation of |VT (k)| and VT (k) as a function of k, (ρ0,δ) =
(0.3,4T−1/2) with T = 100 and εt ∼ i.i.d N(0,1). The blue (red) solid line is the mean of |VT (k)|
(VT (k)) and the blue (red) dotted line corresponds to the mean plus one standard deviation. The
right plot is weight function ω(ρ) = (ρ(1−ρ))1/2.

defined by multiplying weights ωk to the LS objective |VT (k)|.

k̂ = argmax
k=1,...,T−1

|QT (k)| , ρ̂ = k̂/T (1.3)

|QT (k)| := ωk |VT (k)|= ωk

(
k(T − k)

T 2

)1/2

|ȳ∗k− ȳk| .

The distribution of |QT (k)| has smaller variance at ends of the sample. Hence, the weight function

eliminates small sample uncertainty of |VT (k)| when k is near boundaries. Due to smaller variance

of the objective function at ends of the sample, the maximizing value k̂ is less likely to pick either

ends.

Figure 1.3 shows the finite sample distribution of the break point estimator in (1.3), under

the same DGP of Figure 1.1. As expected, the break point estimator has flat tails at ends of the

unit interval with a mode at true break point ρ0 = 0.3, whereas the LS estimator has modes at

zero and one. Additional Monte Carlo simulations are provided in Section 1.5. It shows that

the break point estimator has a finite sample distribution with a unique mode at true break and

flat tails regardless of the actual break location and magnitude. In contrast, the finite sample
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distribution of the LS estimator is tri-modal for any true break point values.

Figure 1.3: Finite sample distribution of the break point estimator ρ̂ with weight function
ω(ρ) = (ρ(1−ρ))1/2 when (ρ0,δ) = (0.3,−0.29), T = 100 and εt ∼ i.i.d N(0,0.82) with 2,000
replications.

It is intuitive to guess the inverse U-shaped functional form of weights, but where does

the particular weight function ω(ρ) = (ρ(1−ρ))1/2 come from? This is equivalent to the square

root of the Fisher information of δ conditional on ρ, assuming Gaussian disturbances. Suppose

εt
i.i.d.∼ N(0,σ2) in model (1.1). Lets fix the break point ρ and denote the conditional log-likelihood

function as lT (δ |ρ), and the information matrix as I(δ |ρ), which is

I(δ |ρ) := E
[
−∂2lT (δ |ρ)

∂δ∂δ′

]
= σ

−2T ρ(1−ρ) (1.4)

and thus, ω(ρ) ∝ [I(δ|ρ)]1/2. Note that the Fisher information I(δ |ρ) is interpreted as a way of

measuring the amount of information about the unknown parameter δ, given ρ. In this case, the

Fisher information depends only on ρ (omit σ2 for simplicity). Given two different values ρ1 6= ρ2,

the inequality I(δ |ρ1) > I(δ |ρ2) reflects the fact that observations carry more information on

the break magnitude if a break occurs at ρ1, compared to ρ2. In other words, we have more

information on the structural break at ρ1 than when it happens at ρ2. If a break occurs with high

probability, the magnitude of δ is far away from zero. If it is less likely, then δ is close to zero.
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Therefore, we can make use of the information on structural breaks by constructing a Bayesian

prior distribution of δ conditional on ρ, depend on I(δ |ρ).

δ |ρ∼ N (0, I(δ |ρ)) , I(δ |ρ) = ρ(1−ρ) (1.5)

When we have more information of a break occurring at some fixed ρ, the variance of the prior

distribution is large. Then δ is more spread out from zero and has large magnitude with high

probability. If we have less information of a break at ρ, then δ is centered toward mean zero and

the break magnitude is likely to be small. Similarly, a prior belief on ρ can be expressed using the

Fisher information3; a break is less likely to occur near ends of the unit interval.

f (δ) ∝ det[I(δ |ρ)]1/2 = (ρ(1−ρ))1/2 (1.6)

The break point estimator in (1.3) with weight function ω(ρ) = (ρ(1− ρ))1/2 can be

motivated by a Bayesian framework because it is asymptotically equivalent to the mode of the

Bayesian posterior distribution of ρ with priors (1.5) and (1.6). Estimation of a structural break

model is nonstandard and hence, it is likely that estimators such as the mode of the posterior, would

have smaller variance than the maximum likelihood estimator (MLE). Asymptotic efficiency of

the MLE of ρ has not been established under an unknown break magnitude4 δ. A brief explanation

of why the MLE no longer has optimal properties is as follows. Denote the likelihood function

of model (1.1) as f (y |ρ,δ) where y = (y1, . . . ,yT )
′. The nuisance parameter µ is eliminated by

using the maximal invariant, yt− ȳ.

ln f (y |ρ,δ) = T−1
T

∑
t=1

[1{t ≤ [ρT ]} ln f (yt)+1{t > [ρT ]} ln f (yt ;δ)] (1.7)

Because both δ and ρ are unknown, this is a conditional likelihood function assuming ρ is equal

3The prior distribution (1.6) is equivalent to a Beta distribution with shape parameters (3/2,3/2).
4Consistency has been proved by Yao (1987).
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to the true break point. That is, the log-likelihood function in (1.7) is equivalent to the average

of the conditional density of yt on the regressor, ln f (yt |vt ;ρ,δ), where vt = 1{t ≤ [ρT ]} is a

latent variable. The unconditional log-likelihood is the average of the joint density function

f (yt |vt ;ρ,δ) fT (vt ;ρ), where the density of vt depends on ρ and T . The two parameters δ and

ρ are related to each other (ρ is not identified if δ = 0), so the conditional ML estimators of

the break magnitude δ̂(ρ) and ρ̂ that maximizes the concentrated likelihood f (y |ρ, δ̂(ρ)) is not

asymptotically efficient.

Under the prior distributions (1.5) and (1.6), the posterior distribution of ρ is obtained

when δ is integrated out. The LS estimator of δ under a fixed ρ is (ȳ∗k − ȳk), which has the

following normal distribution under Gaussian disturbances.

(ȳ∗k− ȳk) |ρ,δ ∼ N
(

δ,
σ2

T ρ(1−ρ)

)
.

From (1.2), let VT (k) = (ρ(1−ρ))1/2(ȳ∗k − ȳk) with ρ = k/T , and the prior of δ |ρ in (1.5) is

normal so the joint distribution of (VT (k),δ) conditional on ρ is also a normal distribution.

 VT (k)

δ


∣∣∣∣∣∣∣ ρ∼ N


 0

0

 ,
 σ2

T +ρ2(1−ρ)2 ρ3/2(1−ρ)3/2

ρ3/2(1−ρ)3/2 ρ(1−ρ)




Then the marginal distribution of data conditional on the break point VT (k) |ρ is normal with

mean zero and variance (σ2/T +ρ2(1−ρ)2). The posterior distribution of ρ is proportional to

the conditional distribution VT (k) |ρ. Denote the posterior distribution of ρ conditional on data y

as f (ρ |y) and assume that ρ is bounded away from {0,1} so that σ2/T = O(T−1) is substituted

into o(1). Assuming prior of the break point in (1.6), we have

ln f (ρ |y) ∝
−VT (k)2

2ρ2(1−ρ)2 .
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Given the function of data VT (k), the argmax function of the monotone transformation of the

log-likelihood is asymptotically equivalent to the argmax of QT (k)2 defined in (1.3) with ωk =

(k/T (1− k/T ))1/2.

argmax
ρ

ln f (ρ |y) = argmax
ρ

QT (k)2, QT (k)2 ≡ ρ
2(1−ρ)2VT (k)2.

The log-likelihood function is equivalent to the objective function of the break point estimator

in (1.3) up to order O(T−1). Hence, the mode of the log posterior density ln f (ρ |y) which is

denoted as ρ̂map, is asymptotically equivalent to the break point estimator that maximizes QT (k)2.

ρ̂map = argmax
ρ∈[α,1−α]

ln f (ρ |y)

f (δ,ρ) ∝ (ρ(1−ρ))1/2 exp
[
− δ2

2ρ(1−ρ)

]
= ω(ρ)exp

[
−1

2

(
δ

ω(ρ)

)2
]

If the weight is equivalent to the square root of the Fisher information ω(ρ) = (ρ(1−ρ))1/2,

then the joint prior density f (δ,ρ) can be expressed as a function of the weight function5.

Figure 1.4 shows the conditional prior distribution δ |ρ ∼ N(0, I(δ |ρ)) on δ ∈ [−1.2,1.2] for

ρ ∈ {0.1,0.3,0.5,0.7,0.9}, which visualizes our prior belief on the break based on the Fisher

information. A structural break where ρ is close to the median has |δ| spread out from zero,

whereas when ρ is near zero or one |δ| is close to zero. Therefore, we are uncertain of the presence

of a break (δ = 0) and if a break occurs, it does not happen at either end of the sample period.

In the next section I show that the break point estimator is consistent for any true break

point ρ0 ∈ [α,1−α] where 0 < α < 1/2. Consistency holds under a general functional form of

weights under regularity conditions, but if α is arbitrary close to zero it may restrict the functional

form. In a univariate model with a break in the mean, a weight function that is sufficient for

5This is equivalent to Jeffreys (1946) prior of δ conditional on ρ. Jeffreys rule is to use the square root of the
determinant of the Fisher information matrix as a uniform prior. This does not correspond to our motivation of using
the Fisher information as an informative prior.
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consistency would be a concave downward (inverse U-shaped) function that is differentiable on

the unit interval with restrictions on the slope magnitude. Thus, assuming that α is arbitrarily close

to zero may restrict the choice of the weight function unless we choose ω(ρ) = (ρ(1−ρ))1/2.

Details on the restriction of the weight function is provided in Section 1.3.

Figure 1.4: Conditional prior distribution δ |ρ ∼ N(0,ρ(1− ρ)). Parameter values are ρ ∈
{0.1,0.3,0.5,0.7,0.9} and δ ∈ [−1.2,1.2]

1.3 Partial Break with Multiple Regressors

In this section, the assumptions and proof of consistency of the break point estimator are

provided under a general linear regression model with multiple regressors. The model incorporates

a partial break in coefficients and assumes a one-time break occurs at an unknown date k0 = [ρ0T ]

with ρ0 ∈ (0,1). I follow the notations of Bai (1997); denote the vector of variables associated

with a stable coefficient as wt and variables associated with coefficients under a break as zt . Let

xt = (w′t ,z
′
t)
′ be a (p×1) vector where the variable zt is a (q×1) vector and q≤ p,

yt =


x′tβ+ εt if t = 1, . . . ,k0

x′tβ+ z′tδT + εt if t = k0 +1, . . . ,T
(1.8)
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where εt is a mean zero error term. In general, zt can be expressed as a linear function of xt so

that zt = R′xt where R is a (p×q) matrix with full column rank. Let Y = (y1, . . . ,yT )
′ and define

Xk := (0, . . . ,0,xk+1, . . . ,xT )
′ and X0 := (0, . . . ,0,xk0+1, . . . ,xT )

′. Define Zk and Z0 analogously

so that Zk = XkR and Z0 = X0R. Let M := I−X(X ′X)−1X ′ and use the maximal invariant to

eliminate the nuisance parameter β.

The subscript on the break magnitude δT shows that it may depend on the sample size.

For consistency we assume the break magnitude is outside the local T−1/2 neighborhood of zero.

This is because the break point is not consistently estimable if the break magnitude is in the local

T−1/2 neighborhood of zero such that δT = O(T−1/2). In this case structural break tests have

asymptotic power that is strictly less than one. Hence, we proceed assuming that δT is fixed, or it

converges to zero at a rate slower than T−1/2 so that power of structural break tests converge to

one (Assumption 3).

Let S̄ = Y ′MY , and denote ST (k)2 as the SSR regressing MY on MZk. The LS estimator

of break date k̂LS is the value that minimizes ST (k)2 and thus, maximizes VT (k)2 from the identity

S̄ = ST (k)2 +VT (k)2 (Amemiya, 1985),

k̂LS = argmax
k=1,...,T−1

VT (k)2, ρ̂LS = k̂LS/T

VT (k)2 := δ̂
′
k(Z
′
kMZk)δ̂k,

where δ̂k is the LS estimate of δT by regressing MY on MZk.

Note that VT (k)2 is non-negative from the inner product of the vector (Z′kMZk)
1/2δ̂k. The

LS objective function can be modified by multiplying a positive definite weight matrix Ωk to

the vector. Decompose the weight matrix so that Ωk = Ω
1/2′
k Ω

1/2
k , then Ω

1/2
k is multiplied to

the vector (Z′kMZk)
1/2δ̂k. Take the inner product and obtain the objective function QT (k)2 :=
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δ̂′k(Z
′
kMZk)

1/2Ωk(Z′kMZk)
1/2δ̂k. Then the estimator of the break point is

k̂ = argmax
k=1,...,T−1

QT (k)2, ρ̂ = k̂/T. (1.9)

An example of the weight matrix is Ωk = T−1Z′kMZk which is proportional to the Fisher infor-

mation matrix under a Gaussian assumption. This is analogous to the squared weight function

ω(ρ)2 = ρ(1−ρ) in model (1.1). When R = I and X is a (T ×1) vector of ones, Ωk = T−1Z′kMZk

is equal to ω2
k = k/T (1− k/T ). Thus, the weight matrix Ωk is a generalization of ωk for a linear

regression model with multiple regressors. Similar to ωk, the matrix T−1Z′kMZk “decreases” as k

is approaches the either end of the sample from the following rearrangement of terms.

T−1Z′kMZk = T−1[Z′kZk−Z′kX(X ′X)−1X ′Zk]

= T−1R′(X ′kXk)(X ′X)−1(X ′X−X ′kXk)R. (1.10)

I prove consistency of the break point estimator ρ̂ in (1.9) under regularity condi-

tions on model (1.8) and weight matrix Ωk. The notation ‖·‖ denotes the Euclidean norm

‖x‖ =
(
∑

p
i=1 x2

i
)1/2 for x ∈ Rp. For a matrix A, ‖A‖ represents the vector induced norm

‖A‖= supx ‖Ax‖/‖x‖ for x ∈ Rp and A ∈ Rp×p.

Assumption 1. (i) k0 = [ρ0T ] where ρ0 ∈ [α,1−α], 0 < α < 1
2 ;

(ii) The data {ytT ,xtT ,ztT : 1 ≤ t ≤ T,T ≥ 1} form a triangular array. The subscript T is

omitted for simplicity. In addition, zt = R′xt , where R is p×q, rank(R) = q, zt ∈Rq, xt ∈Rp

and q≤ p;

(iii) The matrices
(

j−1
∑

j
t=1 xtx′t

)
,
(

j−1
∑

T
t=T− j+1 xtx′t

)
,
(

j−1
∑

k0
t=k0− j+1 xtx′t

)
and(

j−1
∑

k0+ j
t=k0+1 xtx′t

)
have minimum eigenvalues bounded away from zero in probability for

all large j. For simplicity we assume these matrices are invertible when j ≥ p. In addition,
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these four matrices have stochastically bounded norms uniformly in j. That is, for example,

sup j≥1

∥∥∥ j−1
∑

j
t=1 xtx′t

∥∥∥ is stochastically bounded;

(iv) T−1
∑
[sT ]
t=1 xtx′t

p→ sΣx uniformly in s ∈ [0,1], where Σx is a nonrandom positive definite

matrix;

(v) For random regressors, supt E ‖xt‖4+γ ≤ K for some γ > 0 and K < ∞;

(vi) The disturbance εt is independent of the regressor xs for all t and s. For an increasing

sequence of σ-fields Ft , {εt ,Ft} form a sequence of Lr-mixingale sequence with r = 4+γ for

some γ> 0 (McLeish (1975) and Andrews (1988)). That is, there exists nonnegative constants

{ct : t ≥ 1} and {ψ j : j ≥ 0} such that ψ j ↓ 0 as j→ ∞ and for all t ≥ 1 and j ≥ 0, we

have: (a) E
∣∣E(εt |Ft− j)

∣∣r ≤ cr
t ψr

j, (b) E
∣∣εt−E(εt |Ft+ j)

∣∣r ≤ cr
t ψr

j+1, (c) max j |c j|< K < ∞,

(d) ∑ j j1+κψ j < ∞ for some κ > 0.

Assumption 2. Ωk is a positive definite (q×q) matrix (q =dim(zt)) that is a continuous function

of data {yt ,xt ,zt ;1≤ t ≤ T} and have stochastically bounded norms uniformly in k = 1, . . . ,T −1.

In addition, for any nonzero vector c ∈ Rq,

∥∥∥Ω
1/2
k0

(Z′0MZ0)
1/2c

∥∥∥> ∥∥∥Ω
1/2
k (Z′kMZk)

−1/2(Z′kMZ0)c
∥∥∥

holds for all k and k0, where M = I−X(X ′X)−1X ′. When k/T → ρ as T → ∞, then Ωk
p→ Ω̄(ρ)

where Ω̄(ρ) is a differentiable function of ρ, element-wise.

Assumption 1 conditions are similar to assumptions A1 to A6 in Bai (1997), with ad-

ditional restrictions on (iv) and (vi). Assumption 1(vi) allows for general serial correlation in

disturbances and requires xt to be strict exogeneous. This is because Ωk depends on the moments

of regressors and we want to impose zero weights on the ends of the unit interval. For instance,

if the second moments of zt changes at the true break point ρ0, then Ωk depends on the ratio of

the pre- and post-break second moments and ρ0. The ends of the unit interval may have positive
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weights that depends on the distribution of zt . These cases are avoided under strict exogeneity

because Ωk converges in probability to a nonrandom matrix that varies across ρ only. Note that

if Ωk is a non-stochastic matrix that satisfies the norm inequality in Assumption 2, consistency

holds under weakly exogeneous regressors (see Assumption 4).

Assumption 2 guarantees that the matrix

AT (k) :=
1

|k0− k|

[
(Z′0MZ0)

1/2
Ωk0(Z

′
0MZ0)

1/2

−(Z′0MZk)(Z′kMZk)
−1/2

Ωk(Z′kMZk)
−1/2(Z′kMZ0)

]
(1.11)

is positive definite and hence ‖AT (k)‖≥ λmin(AT (k))> 0 where λmin denotes the minimum eigen-

value of AT (k). Under the univariate model (1.1), this condition is equivalent to |ω′(ρ)/ω(ρ)|<

(2ρ(1−ρ))−1 for all ρ, where ω′(ρ) = ∂ω(x)/∂x|x=ρ. Thus, I assume α in 1(i) is strictly greater

than zero because if it is arbitrarily close to zero, it may restrict the functional of ω(·). If

ω(ρ) = (ρ(1−ρ)1/2, then Assumption 2 is satisfied regardless of the value of α. However, for

the model with multiple regressors, Ωk may be close to a singular matrix in finite sample if α is

extremely close to zero. Under Assumption 1(iv), the weight matrix converges in probability to a

function of ρ and Σx as T increases. Because Ω̄(ρ) is a differentiable function of ρ element-wise,

we have ‖Ωk−Ωk0‖ ≤ b|k− k0|/T for some finite b > 0 and all k.

Assumption 3. δT → 0 and T 1/2−γδT → ∞ for some γ ∈
(
0, 1

2

)
.

As mentioned previously, we assume that the break magnitude is outside the local T−1/2

neighborhood of zero in order to establish consistency of the break point estimator. The consis-

tency of the break point estimator is proved by showing that if δT 6= 0, then with high probability

QT (k)2 can only be maximized near the true break k0. The objective function QT (k)2 is defined

in (1.9) and δ̂k is the LS estimator of the break magnitude assuming that k is the break date:

δ̂k = (Z′kMZk)
−1(Z′kMZ0)δT +(Z′kMZk)

−1Z′kMε. If k = k0 then δ̂k0 = δT +(Z′0MZ0)
−1Z′0Mε.
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Theorem 1. Under Assumptions 1 and 2, suppose δT is fixed or shrinking toward zero such that

Assumption 3 is satisfied. Then k̂ = k0 +Op(‖δT‖−2) and the break point estimator ρ̂ in (1.9) is

consistent.

|ρ̂−ρ0|= Op(T−1 ‖δT‖−2) = op(1).

Proof. By rearranging terms we have

QT (k)2−QT (k0)
2 =−|k0− k|GT (k)+HT (k), (1.12)

where GT (k) and HT (k) are defined as follows.

GT (k) :=
1

|k0− k|
δ
′
T

[
(Z′0MZ0)

1/2
Ωk0(Z

′
0MZ0)

1/2

−(Z′0MZk)(Z′kMZk)
−1/2

Ωk(Z′kMZk)
−1/2(Z′kMZ0)

]
δT (1.13)

HT (k) := ε
′MZk(Z′kMZk)

−1/2
Ωk(Z′kMZk)

−1/2Z′kMε

− ε
′MZ0(Z′0MZ0)

−1/2
Ωk0(Z

′
0MZ0)

−1/2Z′0Mε

+2δ
′
T (Z

′
0MZk)(Z′kMZk)

−1/2
Ωk(Z′kMZk)

−1/2Z′kMε (1.14)

−2δ
′
T (Z

′
0MZ0)

1/2
Ωk0(Z

′
0MZ0)

−1/2Z′0Mε

Proofs of lemma 1 and lemma 3 are in the Appendix. Lemma 2 is equivalent to lemma A.3

from Bai (1997), which is the generalized Hájek-Rényi inequality for martingale differences to

mixingales. For the proof see Bai and Perron (1998).

Lemma 1. Under Assumptions 1 and 2, for every ε > 0, there exists λ > 0 and C < ∞ such that

inf|k−k0|>C‖δT ‖−2 GT (k)≥ λ‖δT‖2 with probability at least 1− ε.

Lemma 2. Under Assumption 1, there exist a M < ∞ such that for every c > 0 and m > 0,

P

(
sup

m≤k≤T

1
k

∥∥∥∥∥ k

∑
t=1

ztεt

∥∥∥∥∥> c

)
≤ M

c2m
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Lemma 3. Under Assumptions 1 and 2, suppose δT is fixed or shrinking toward zero such that

Assumption 3 is satisfied. Then the break point estimator ρ̂ in (1.9) is consistent. That is, for every

ε > 0 and η > 0, there exists T0 > 0 such that when T > T0

P(|ρ̂−ρ0|> η)< ε.

Moreover, |ρ̂−ρ0|= Op

(
T−1/2 ‖δT‖

√
lnT
)

.

The rate of convergence of the break point estimator ρ̂ in (1.9) can be improved from

lemma 3. For a fixed ε > 0 and η > 0, the following inequality holds for any true break point

ρ0 ∈ [α,1−α] when T is large.

P

(
sup

|k−k0|>T η

QT (k)2 ≥ QT (k0)
2

)
< ε. (1.15)

This is equivalent to lemma 3 because given the estimator k̂, then QT (k̂)2−QT (k0)
2 ≥ 0 by

definition. This implies that to prove the improved rate of convergence Op

(
T−1 ‖δT‖−2

)
, it is

sufficient to show that for all ε > 0, there exists a finite C > 0 so that for all T > Tε,

P

(
sup

k∈KT,ε(C)

QT (k)2 ≥ QT (k0)
2

)
< ε.

Here, KT (C)=
{

k : |k− k0|>C‖δT‖−2 , |k− k0| ≤ T η

}
for some small fraction η. From identity

(1.12), QT (k)2 ≥QT (k0)
2 is equivalent to HT (k)/|k−k0| ≥GT (k). From lemma 1, it is sufficient

to prove that

P

(
sup

k∈KT (C)

∣∣∣∣HT (k)
k0− k

∣∣∣∣> λ‖δT‖2

)
< ε. (1.16)

Use the expression Z0 = Zk−Z∆sgn(k0− k) to rewrite the third and fourth terms of HT (k) given
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in (1.14) as

2δ
′
T

[
(Z′0MZk)(Z′kMZk)

−1/2
Ωk(Z′kMZk)

−1/2Z′kMε− (Z′0MZ0)
1/2

Ωk0(Z
′
0MZ0)

−1/2Z′0Mε

]
= 2δ

′
T

[
(Z′kMZk)

1/2
Ωk(Z′kMZk)

−1/2Z′kMε− (Z′0MZ0)
1/2

Ωk0(Z
′
0MZ0)

−1/2Z′kMε

]
+2δ

′
T (Z

′
0MZ0)

1/2
Ωk0(Z

′
0MZ0)

−1/2(Z′∆Mε)sgn(k0− k) (1.17)

−2δ
′
T (Z

′
∆MZk)(Z′kMZk)

−1/2
Ωk(Z′kMZk)

−1/2(Z′kMε)sgn(k0− k).

Note that for nonsingular matrices S and A with bounded norms, SAS−1 = A+ op(1). Also,

(Z′kMZk)
−1Z′kMε = Op(T−1/2) and (Z′0MZ0)

−1(Z′kMZk) = Op(1) uniformly on KT (C). We use

this to find the order of the first line of the right-side in (1.17).

∥∥∥2δ
′
T

{
(Z′kMZk)

1/2
Ωk(Z′kMZk)

−1/2Z′kMε− (Z′0MZ0)
1/2

Ωk0(Z
′
0MZ0)

−1/2Z′kMε

}∥∥∥
≤
∥∥∥2δ

′
T

{
(Z′kMZk)

1/2
Ωk(Z′kMZk)

1/2− (Z′0MZ0)
1/2

Ωk0(Z
′
0MZ0)

1/2Op(1)
}∥∥∥

×
∥∥(Z′kMZk)

−1Z′kMε
∥∥+op(1)

≤ ‖2δT‖
∥∥Z′kMZkΩk−Z′0MZ0Ωk0

∥∥ Op(T−1/2)+op(1)

= ‖2δT‖
∥∥(Z′kMZk−Z′0MZ0)Ωk−Z′0MZ0(Ωk0−Ωk)

∥∥ Op(T−1/2)+op(1)

Then the second norm can be rearranged by subtracting and adding Z′0MZk to the term (Z′kMZk−

Z′0MZ0) and Assumption 2.
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Z′kMZk−Z′0MZ0

=


R′[X ′

∆
X∆(X ′X)−1(X ′X−X ′kXk)−X ′0X0(X ′X)−1X ′

∆
X∆]R if k ≤ k0

R′[X ′
∆

X∆(X ′X)−1X ′kXk− (X ′X−X ′0X0)(X ′X)−1X ′
∆

X∆]R if k > k0

= |k0− k|Op(1), (1.18)

Ωk0−Ωk = |k0− k|T−1Op(1)

The norm
∥∥(k0− k)−1X ′

∆
X∆

∥∥ is bounded by assumption, hence the first line of (1.17) has order

|k0− k|‖δT‖Op(T−1/2). The second and third lines of (1.17) are

2δ
′
T (Z

′
0MZ0)

1/2
Ωk0(Z

′
0MZ0)

−1/2(Z′∆Mε)sgn(k0− k)

= 2δ
′
T Ωk0(Z

′
∆Mε)sgn(k0− k)+op(1)

= 2δ
′
T Ωk0(Z

′
∆ε−Z′∆X(X ′X)−1X ′ε)sgn(k0− k)+op(1)

= 2δ
′
T Ωk0Z′∆εsgn(k0− k)+ |k0− k|T−1/2 ‖δT‖Op(1)+op(1),

−2δ
′
T (Z

′
∆MZk)(Z′kMZk)

−1/2
Ωk(Z′kMZk)

−1/2(Z′kMε)sgn(k0− k)

=−2δ
′
T (Z

′
∆MZk)Ωk(Z′kMZk)

−1(Z′kMε)sgn(k0− k)+op(1)

= |k0− k|T−1/2 ‖δT‖Op(1).

The first and second terms of HT (k) in (1.14) are Op(1) uniformly in KT (C) under Assumptions

1 and 2. Therefore HT (k) divided by |k0− k| is

HT (k)
|k0− k|

= 2δ
′
T Ωk0

1
|k0− k|

Z′∆εsgn(k0− k)+T−1/2 ‖δT‖Op(1)+
Op(1)
|k0− k|

. (1.19)

Now we can prove (1.16) using the above expression. Let 1/‖Ωk0‖ = A where A < ∞ by
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Assumption 2. Without loss of generality, consider the case k < k0. The first term of (1.19) is

bounded by lemma 2.

P

(
sup

k∈K(C)

∥∥∥∥∥2δ
′
T Ωk0

1
k0− k

k0

∑
t=k+1

ztεt

∥∥∥∥∥> λ‖δT‖2

3

)

≤ P

(
sup

k0−k≥C‖δT ‖−2

∥∥∥∥∥ 1
k0− k

k0

∑
t=k+1

ztεt

∥∥∥∥∥> λA‖δT‖
6

)

≤M
(

λA‖δT‖
6

)−2 1

C‖δT‖−2

=
36M

λ2A2C
<

ε

3

The probability is negligible for large T because we can choose a large C value accordingly. For

any ε > 0 and η > 0, we proved that the probability in (1.15) is negligible for large T . Thus we

can choose C such that KT (C) is non-empty and the inequality above is satisfied for all ε > 0 and

T > Tε. The second term of (1.19) is bounded due to the assumption (T 1/2 ‖δT‖)−1→ 0.

P

(
T−1/2 ‖δT‖Op(1)>

λ‖δT‖2

3

)
= P

(
Op(1)

T 1/2 ‖δT‖
>

λ

3

)
<

ε

3
.

The third term of (1.19) is bounded for k0−k≥C‖δT‖−2 since Op(1)/|k0−k| ≤Op(1)‖δT‖2 /C,

P

(
sup

k0−k≥C‖δ‖−2

Op(1)
|k0− k|

>
λ‖δT‖2

3

)
≤ P

(
Op(1)

C
>

λ

3

)
<

ε

3

where Op(1)/C is small for large T , by choosing a large constant C. Hence the bound (1.16)

holds and the rate of convergence of the break point estimator ρ̂ = k̂/T in Theorem 1 is proved:

|ρ̂−ρ0|= Op(T−1 ‖δT‖2).

For weakly exogenous regressors xt in model (1.8), the break point estimator is consistent

with the same rate of convergence in Theorem 1, under the following conditions that substitutes

Assumption 1 and Assumption 2.
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Assumption 4. Assume the following conditions in model (1.8) with Assumption 1(i)-(iii) and

(v).

(i) (X ′X)/T converges in probability to a nonrandom positive definite matrix, as T → ∞;

(ii) {εt ,Ft} form a sequence of martingale differences for Ft = σ-field {εs,xs+1 : s≤ t}. More-

over, for all t, E|εt |4+γ < K for some K < ∞ and γ > 0;

(iii) The weight matrix Ωk is a nonrandom (q×q) positive definite matrix, and for any nonzero

vector c ∈ Rq,

∥∥∥Ω
1/2
k0

(Z′0MZ0)
1/2c

∥∥∥> ∥∥∥Ω
1/2
k (Z′kMZk)

−1/2(Z′kMZ0)c
∥∥∥

holds for all k and k0, where M = I−X(X ′X)−1X ′. Ωk converges to Ω̄(ρ) as k/T → ∞,

which is a differentiable function of ρ on the unit interval.

Theorem 2. Under Assumption 4, suppose δT is fixed or shrinking toward zero that satisfies

δT → 0 and T 1/2−γδT → ∞ for some γ ∈ (0, 1
2). Then k̂ = k0 +Op(‖δT‖−2) and the break point

estimator ρ̂ in (1.9) is consistent.

|ρ̂−ρ0|= Op(T−1 ‖δT‖−2) = op(1).

The proof of Theorem 2 is similar to the proof of Theorem 1, hence omitted. Under Assumptions

1(v), 2(i) and 2(ii), the strong law of large numbers holds for xtεt because the conditions in

Hansen (1991) are satisfied. The weight matrix Ωk in Assumption 4(iii) depends on k/T but

not on the data {xt ,εt}. Thus, by setting ρ = k/T , it is a function of ρ which is assumed to be

differentiable with respect to ρ. Then the bound ‖Ωk1−Ωk2‖ ≤ c|k1− k2|/T holds for any k1

and k2, for some finite c > 0. Using these properties, proving consistency of the estimator under

Assumption 4 follows the same process as in the proof under Assumptions 1 and 2.
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Given the consistency of the break point estimator from Theorem 1 or 2, the estimator of

the break magnitude corresponding to k̂ is consistent and asymptotically normally distributed.

Let δ̂(ρ̂) = δ̂k̂, then the following results hold. The proof is provided in Appendix A.1.

Corollary 1. Under Assumptions 1 and 2, suppose δT is fixed or shrinking toward zero such that

Assumption 3 is satisfied. Let δ̂(ρ̂) be a consistent estimator of δT corresponding to k̂, which is

defined in (1.9). Then,
√

T
(

δ̂(ρ̂)−δT

)
d−→ N

(
0,V−1UV−1)

where

V := plim
T→∞

T−1Z′0MZ0, U := lim
T→∞

E
[(

T−1/2Z′0Mε

)2
]
.

1.4 In-fill Asymptotic Distribution

Under the conventional long-span asymptotic framework, Bai (1997) shows that the limit

distribution of the break point estimator is symmetric if the second moment of variables associated

with coefficients under break (zt in Section 1.3) do not change before and after break. However,

the finite distribution of the break point estimator is asymmetric even though second moment

values do not change across regimes.

In order to provide a better approximation of the finite distribution of the break point

estimator, a continuous record asymptotic framework have been employed by Jiang, Wang, and

Yu (2017, 2018) and Casini and Perron (2017). By assuming that a continuous record is available,

a continuous time approximation to the discrete time model is constructed and a in-fill asymptotic

distribution is developed. In contrast to the long-span asymptotic where the time span of the data

increases, the in-fill asymptotic assumes a fixed time span with shrinking sampling intervals. For

instance, if there are T equally spaced observations of data available over a fixed time horizon

[0,N], then N = T h denotes the time span of the data where h is the sampling interval. Asymptotic

inference is conducted by shrinking the time interval h to zero while keeping N fixed, which is
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equivalent to T increasing. Jiang et al. (2017) obtains a in-fill asymptotic distribution of the MLE

of structural break in the drift function of a continuous time model that is analogous to discrete

time models where a break occurs in the coefficient of an autoregressive (AR) model6, and

Jiang et al. (2018) derives it for a break in the mean. The asymptotic distribution is asymmetric,

tri-modal and dependent on the initial condition, which are also the properties of the finite sample

distribution of the LS break point estimator in discrete time models.

The structural break point estimator in this paper is no longer tri-modal but is asymmetric,

depending on the true break point. The long-span asymptotic theory does not capture this because

the sample size before and after break increases proportionally as T increases, eliminating the

asymmetry of information. Therefore, I use the in-fill asymptotic framework, following Jiang

et al. (2018) in deriving the limit distribution of the break point estimator.

1.4.1 Partial break in a stationary process

Consider the linear regression model (1.8) with continuous time process {Ws,Zs,Es}s≥0

defined on a filtered probability space (Ω,F ,(Fs)s≥0,P), where s can be interpreted as a con-

tinuous time index. Assume that we observe at discrete points of time so that {Yth,Wth,Zth : t =

0,1, . . . ,T = N/h} where N is the time span. For simplicity normalize the time span N = 1. De-

note the increment of processes as ∆hYt := Yth−Y(t−1)h. Let Xth = (W ′th,Z
′
th)
′ so that Zth = R′Xth.

The model (1.8) can be expressed as

∆hYt =


(∆hXt)

′βh +∆hEt if t = 1, . . . , [ρ0T ]

(∆hXt)
′βh +(∆hZt)

′δh +∆hEt if t = [ρ0T ]+1, . . . ,T

Divide both sides by
√

h so that the error term variance is O(1). Let εt := ∆hEt/
√

h, yt :=

∆hYt/
√

h, xt := ∆hXt/
√

h, zt := ∆hZt/
√

h = R′xt ,

6Ornstein-Uhlenbeck process is a continuous time analogue of a discrete time AR(1) model
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yt =


x′tβh + εt if t = 1, . . . , [ρ0T ]

x′tβh + z′tδh + εt if t = [ρ0T ]+1, . . . ,T.
(1.20)

Assumption 5. {zt ,εt} is a covariance stationary process that satisfies the functional central

limit theorem as T = 1/h→ ∞,

T−1/2
[sT ]

∑
t=1

ztεt ⇒ B1(s)

where B1(s) is a multivariate Gaussian process on [0,1] with mean zero and covariance

E[B1(u)B1(v)′] = min{u,v}Ξ, and Ξ := limT→∞ E
[(

T−1/2
∑

T
t=1 ztεt

)2
]

.

Assumption 6. The break magnitude is δh = d0λh where d0 ∈ Rq is a fixed vector and λh is a

scalar that depends on the sampling interval h. Assume one of the following cases on λh as

h→ 0,

(i) λh = O(h1/2) so that δh = d0
√

h;

(ii) λh = O(h1/2−γ) = O(T−1/2+γ) where 0 < γ < 1/2 so that δh/
√

h→ ∞ simultaneously with

δh→ 0.

The same notations from Section 1.3 are used for model (1.20): MY = MZ0δh +Mε,

where ε = (ε1, . . . ,εT )
′ and M = I−X(X ′X)−1X ′. The estimator of break date k0 = [ρ0T ] is

written in (1.9). The objective functions of the estimator in (1.9) is restated below.

QT (k)2 =
√

T δ̂
′
k(T
−1Z′kMZk)

1/2
Ωk(T−1Z′kMZk)

1/2
√

T δ̂k (1.21)

The in-fill asymptotic distribution is derived for the two different magnitudes of δh in Assumption

6. Theorem 3 provides the limit distribution under 6(i), which represents small breaks.

Theorem 3. Consider the model (1.20) with unknown parameters (βh,δh). Assumption 1, 2, 5,

and 6(i) holds. Then the break point estimator ρ̂ = k̂/T defined in (1.9) has the following in-fill
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asymptotic distribution as h→ 0,

T ‖δh‖2
ρ̂

d−→ ‖d0‖2 argmax
ρ∈(0,1)

W̃ (ρ)′Ω̄(ρ)W̃ (ρ)

with

W̃ (ρ) := Σ
−1/2
z

B1(ρ)−ρB1(1)√
ρ(1−ρ)

− (1−ρ0)

(
ρ

1−ρ

)1/2

Σ
1/2
z d0 if ρ≤ ρ0

:= Σ
−1/2
z

B1(ρ)−ρB1(1)√
ρ(1−ρ)

−ρ0

(
1−ρ

ρ

)1/2

Σ
1/2
z d0 if ρ > ρ0

where B1(·) is a Brownian motion defined in Assumption 5.

Proof. When δh = d0
√

h, the break point estimator ‖δh‖2 (k̂− k0) = ‖d0‖2 (ρ̂− ρ0) = Op(1)

has values in the interval (−ρ0 ‖d0‖2 ,(1− ρ0)‖d0‖2). Therefore, we only need to examine

the behavior of the objective function QT (k)2 for those k in the neighborhood of k0 such that

k =
[

k0 + s
∥∥∥d0
√

h
∥∥∥−2
]

with s ∈ (−ρ0 ‖d0‖2 ,(1−ρ0)‖d0‖2). Then for any fixed s, when h→ 0

it has k→ ∞ with k/T → ρ = ρ0 + u, and T − k→ ∞ with (T − k)/T → 1− ρ = 1− ρ0− u,

where u = s‖d0‖−2 ∈ (−ρ0,1−ρ0). From the objective function (1.21), we have

(T−1Z′kMZk)
1/2
√

T δ̂k = (T−1Z′kMZk)
−1/2(T−1Z′kMZ0)d0 +(T−1Z′kMZk)

−1/2T−1/2Z′kMε

Consider each of the terms as h→ 0, which is equivalent to T → ∞.

T−1Z′kMZ0 = T−1
T

∑
t=max{k,k0}+1

ztz′t−

(
T−1

T

∑
t=k+1

R′xtx′t

)
(T−1X ′X)−1

(
T−1

T

∑
t=k0+1

xtx′tR

)

−→ (1−max{ρ,ρ0})Σz− (1−ρ)(1−ρ0)R′ΣxΣ
−1
x ΣxR

= (min{ρ,ρ0}−ρ ·ρ0)Σz
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T−1Z′kMZk = T−1
T

∑
t=k+1

ztz′t−

(
T−1

T

∑
t=k+1

R′xtx′t

)
(T−1X ′X)−1

(
T−1

T

∑
t=k+1

xtx′tR

)

−→ ρ(1−ρ)Σz

T−1/2Z′kMε = T−1/2
T

∑
t=k+1

ztεt− (T−1Z′kX)(T−1X ′X)−1

(
T−1/2

T

∑
t=1

xtεt

)

⇒ B1(ρ)−ρB1(1).

By assumption, Ωk
p→ Ω̄(ρ) as k/T → ρ. This implies that for a fixed d0, the objective function

QT (k)2 weakly converges as follows. For ρ≤ ρ0,

QT (k)2⇒ 1
ρ(1−ρ)

[B1(ρ)−ρB1(1)−ρ(1−ρ0)Σzd0]
′

×Σ
−1/2
z Ω̄(ρ)Σ

−1/2
z [B1(ρ)−ρB1(1)−ρ(1−ρ0)Σzd0] ,

and for ρ > ρ0,

QT (k)2⇒ 1
ρ(1−ρ)

[B1(ρ)−ρB1(1)−ρ0(1−ρ)Σzd0]
′

×Σ
−1/2
z Ω̄(ρ)Σ

−1/2
z [B1(ρ)−ρB1(1)−ρ0(1−ρ)Σzd0] .

By continuous mapping theorem, the the in-fill asymptotic distribution of T ‖δh‖2
ρ̂ is the argmax

functional of the limit of QT (k)2, stated in Theorem 3.

An equivalent representation of the in-fill asymptotic distribution is (let ρ = ρ0 +u)

T ‖δh‖2 (ρ̂−ρ0)
d−→ ‖d0‖2 argmax

u∈(ρ0,1−ρ0)

W̃ (ρ0 +u)′Ω̄(ρ0 +u)W̃ (ρ0 +u),

where W̃ (·) is defined in Theorem 3.

In the special case where the weight matrix is equivalent to the sample information matrix

28



under Gaussian disturbances Ωk = T−1Z′kMZk
p→ Ω̄(ρ) = ρ(1−ρ)ΣZ uniformly, as k/T → ρ.

Then the limit of QT (k)2 is simplified as follows.

QT (k)2⇒ [B1(ρ)−ρB1(1)− (min{ρ,ρ0}−ρ ·ρ0)Σzd0]
′

× [B1(ρ)−ρB1(1)− (min{ρ,ρ0}−ρ ·ρ0)Σzd0]

In this case, the difference between the in-fill asymptotic distribution of our estimator and the LS

estimator is evident because

VT (k)2⇒

[
B1(ρ)−ρB1(1)√

ρ(1−ρ)
− (min{ρ,ρ0}−ρ ·ρ0)√

ρ(1−ρ)
Σzd0

]′

×Σ
−1
z

[
B1(ρ)−ρB1(1)√

ρ(1−ρ)
− (min{ρ,ρ0}−ρ ·ρ0)√

ρ(1−ρ)
Σzd0

]
,

thus, the LS objective function VT (k)2 weakly converges to a squared function of a normalized

Brownian bridge (ρ(1− ρ))−1/2(B1(ρ)− ρB1(1)) that has a covariance matrix that does not

depend on ρ.

Next, consider the case of Assumption 6(ii), where λh = O(T−1/2+γ) with 0 < γ < 1/2 so

that h−1/2δh increases as sampling interval shrinks but at a slower rate than
√

h. In this case the

break point estimator is asymptotically equivalent to the LS estimator and the in-fill asymptotic

distribution is equivalent to the long-span asymptotic distribution of Bai (1997).

Theorem 4. Consider the model (1.20) with unknown parameters (βh,δh). Assumption 1, 2, 5,

and 6(ii) holds. For simplicity denote Ω̄0 for Ω̄(ρ0). Then the break point estimator ρ̂ = k̂/T

defined in (1.9) has the following in-fill asymptotic distribution as h→ 0,

(δ′hΣzΩ̄0δh)
2

(δ′hΩ̄0ΞΩ̄0δh)
T (ρ̂−ρ0)

d−→ argmax
u∈(−∞,∞)

{
W (u)− |u|

2

}
,

where W (u) =W1(−u) for u≤ 0 and W (u) =W2(u) for u > 0. W1(·) and W2(·) are two indepen-
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dent Wiener processes on [0,∞).

Proof. We omit the proof of consistency of the break point estimator ρ̂→ ρ0, because it fol-

lows the same procedure as the proof of Theorem 1. Given the rate of convergence ρ̂−ρ0 =

Op

(
T−1λ

−2
h

)
, we only need to examine the behavior of QT (k)2−QT (k0)

2 for those k in the

neighborhood of k0 such that k ∈ K(C), where K(C) = {k : |k− k0| ≤Cλ
−2
h } for some C > 0.

Lemma 4. Consider the model (1.20) and the weight matrix Ωk that satisfies Assumption 2. For

the break magntiude δh = d0λh that satisfies Assumption 6(ii),

QT (k)2−QT (k0)
2 =−λ

2
hd′0Z′∆Z∆Ωk0d0 +2λhd′0Ωk0Z′∆εsgn(k0− k)+op(1)

where Z∆ := sgn(k0− k)(Zk−Z0) and op(1) is uniform on K(C).

For the proof of Lemma 4, see Appendix A.1. Because δh = d0λh, for any constant C of K(C), we

consider the limiting process of QT (k)2−QT (k0)
2 for k =

[
k0 +νλ

−2
h

]
and ν∈ [−C,C]. Consider

ν≤ 0 (i.e., ρ≤ ρ0). From Lemma 4,

QT (k)2−QT (k0)
2 =−d′0

(
λ

2
h

k0

∑
t=k+1

ztz′t

)
Ωk0d0 +2d′0Ωk0

(
λh

k0

∑
t=k+1

ztεt

)
+op(1).

For k0− k =
[
−νλ

−2
h

]
,

λ
2
h

k0

∑
t=k+1

ztz′t
p−→ |ν|Σz.

In addition, the partial sum of ztεt weakly converges to a Brownian motion process B1(−ν) on

[0,∞) that has variance |ν|Ξ.

λh

k0

∑
t=k+1

ztεt ⇒ B1(−ν).

By assumption, Ωk0

p→ Ω̄0. Therefore,

QT

([
k0 +νλ

−2
h

])2
−QT (k0)

2⇒−|ν|d′0ΣzΩ̄0d0 +2d′0Ω̄0B1(−ν)
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Let W1(·) and W2(·) be an Wiener processes that are independent of each other on [0,∞). Define

G̃(ν) :=


− |ν|2 (d′0ΣzΩ̄0d0)+(d′0Ω̄0ΞΩ̄0d0)

1/2W1(−ν) if ν≤ 0

− |ν|2 (d′0ΣzΩ̄0d0)+(d′0Ω̄0ΞΩ̄0d0)
1/2W2(ν) if ν > 0.

From the continuous mapping theorem, the in-fill asymptotic distribution of the break point

estimator is λ2
h(k̂−k0)⇒ argmaxν G̃(ν). Let ν = cu, where c = (d′0Ω̄0ΞΩ̄0d0)/(d′0ΣzΩ̄0d0)

2 and

u ∈ (−∞,∞). For ν≤ 0,

argmax
ν∈(−∞,0]

G̃(ν) = argmax
cu∈(−∞,0]

−|u|
2

c(d′0ΣzΩ̄0d0)+ c1/2(d′0Ω̄0ΞΩ̄0d0)
1/2W1(−u)

= argmax
cu∈(−∞,0]

{
W1(−u)− |u|

2

}
= cargmax

u∈(−∞,0]

{
W1(−u)− |u|

2

}

where the second equality is from c(d′0ΣzΩ̄0d0) = c1/2(d′0Ω̄0ΞΩ̄0d0)
1/2. For ν > 0 we have

argmaxν∈(0,∞) G̃(ν) = cargmaxu∈(0,∞){W2(u)−|u|/2}. Thus,

c−1
λ

2
h(k̂− k0)⇒ argmax

u∈(−∞,∞)

{
W (u)− |u|

2

}
c−1

λ
2
h = (δ′hΣzΩ̄0δh)

2/(δ′hΩ̄0ΞΩ̄0δh)

for W (·) defined in Theorem 4.

Under the assumptions of Theorem 4, we can construct confidence intervals of the break

point from consistent estimators of Σz, Ξ, δh and Ω̄0. Let Σ̂z = T−1
∑

T
t=1 ztz′t . For serially

correlated and heteroskedastic disturbances, use a heteroskedasty and autocorrelation consistent

(HAC) estimator of T−1/2
∑

T
t=1 ztεt and denote it as Ξ̂. Denote the break magnitude estimator

corresponding to ρ̂ as δ̂. From Corollary 1 we have δ̂ = δh +op(1). Lastly, Ω̄0 is consistently

estimated by replacing k to k̂ from the continuous mapping theorem, which we denote as Ω̂k

instead of Ωk̂. Define L̂ := (δ̂′Σ̂zΩ̂kδ̂)2/(δ̂′Ω̂kΞ̂Ω̂kδ̂), and L as the parameter analogue. Then
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we can show that (L̂− L)(k̂− k0)
p→ 0, and the 100(1−α)% confidence interval is given by[

k̂− [cα/L̂]−1, k̂+[cα/L̂]+1
]

where cα is the (1−α/2)th quantile of the random variable

argmaxu{W (u)−|u|/2}, and [cα/L̂] is the integer part of cα/L̂. The quantile cα can be computed

from the cumulative distribution function formula (B.4) in appendix B of Bai (1997).

Under small break magnitudes, the limit distribution of the break point estimator depends

on nuisance parameters in a complicated way (see Theorem 3). In this case we can use bootstrap

methods to approximate the distribution of the break point estimator. Under the assumption that

the errors of model (1.8) are i.i.d., we can use a residual-based method to estimate the model.

Let (β̂, δ̂) be OLS estimates of coefficients corresponding to break date estimate k̂ = [ρ̂T ]. The

estimated residuals are ε̂t = yt − x′t β̂− z′t δ̂1{t > k̂} for t = 1, . . . ,T . We draw a random sample

from {ε̂1− ε̃, . . . , ε̂T − ε̃} with replacement and label it as Ê∗(b) = {ε̂
∗
1, . . . , ε̂

∗
T} for b = 1, . . . ,B,

where ε̃ := T−1
∑

T
t=1 ε̂t and B is the number of bootstrap replications. We can construct a new

process {y∗t } as

y∗t = x′t β̂+ z′t δ̂1{t > k̂}+ ε̂
∗
t

for t = 1, . . . ,T and obtain break date estimate k̂∗(b) associated each bootstrap sample Ê∗(b) for

b = 1, . . . ,B. To account for heteroskedasticity of errors, we can use the wild bootstrap method

of Liu (1988). To construct the confidence interval of break date, first sort the estimated break

dates k̂∗(b) in ascending order with the estimate k̂ included. The 100(1−α)% confidence interval

is obtained by finding the α/2 and (1−α/2) quantiles.

The residual-based bootstrap method is also valid when regressors include lags of the

dependent variable. We construct y∗t recursively by using y∗0 = y0. To account serially correlated

errors we can use the sieve bootstrap by Bühlmann (1997); for heteroskedasticity use the wild

bootstrap method by Liu (1988).
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1.4.2 Break in an autoregressive model

In this section I derive the in-fill asymptotic distribution of an autoregressive (AR) model

with a structural break in its lag coefficient, using a deterministic weight function ω(·). As

mentioned in Section 1.3, Assumption 1 excludes lagged dependent variables, due to dependence

of weight function on regressors. We relax this condition to allow weakly exogeneous regressors

by assuming non-stochastic weights. I follow the approach of Jiang et al. (2017) of using a discrete

model closely related to the Ornstein-Uhlenbeck process with a break in the drift function:

dx(t) =−(µ+δ1{t > ρ0})x(t)dt +σdB(t)

where t ∈ [0,1] and B(·) denotes a standard Brownian motion. The discrete time model has the

form of

xt = (β11{t ≤ k0}+β21{t > k0})xt−1 +
√

hεt , εt
i.i.d.∼ (0,σ2), x0 = Op(1)

where β1 = exp{−µ/T} and β2 = exp{−(µ+δ)/T} are the AR roots before and after the break.

Denote yt = xt/
√

h so that the order of errors is Op(1) as in model (1.8). Then, we have for

t = 1, . . . ,T ,

yt = (β11{t ≤ k0}+β21{t > k0})yt−1 + εt , εt
i.i.d.∼ (0,σ2), y0 = xo/

√
h = Op

(
T 1/2

)
. (1.22)

The initial condition of yt in (1.22) diverges at rate T 1/2, thus the in-fill asymptotic distribution

will depend explicitly on the initial value x0. The break size is β2−β1 = O(T−1), whereas in

literature using long-span asymptotics it is assumed to be O(T−γ) with 0 < γ < 1. Also, note that

β1 = exp{−µ/T} → 1 and β2 = exp{−(µ+ δ)/T} → 1 as T → ∞ for any finite (µ,δ). Hence,

the AR(1) model (1.22) is a local-to-unit root process. In contrast, long-span asymptotic theory

incorporates stationary AR(1) processes where |β1| < 1 and |β2| < 1 in model (1.22), where
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Chong (2001) derives the long-span distribution under |β2−β1|= O(T−1/2+γ) with 0 < γ < 1/2.

Because this paper focuses on the break point under small break magnitudes, the in-fill asymptotic

theory is adapted instead of long-span asymptotics. Moreover, Jiang et al. (2017) provides

simulation results that the in-fill asymptotic theory works well even when β1 and/or β2 are distant

from unity in finite sample.

The new break point estimator and the LS estimator in model (1.22) takes the form

S(k)2 =
k

∑
t=1

(
yt− β̂1(k)yt−1

)2
+

T

∑
t=k+1

(
yt− β̂2(k)yt−1

)2

k̂ = argmin
k=1,...,T−1

ω
2
k S(k)2, ρ̂ = k̂/T (1.23)

k̂LS = argmin
k=1,...,T−1

S(k)2, ρ̂LS = k̂LS/T

where β̂1(k) = ∑
k
t=1 ytyt−1/∑

k
t=1 y2

t−1 and β̂2(k) = ∑
T
t=k+1 ytyt−1/∑

T
t=k+1 y2

t−1 are LS estimates

of β1 and β2 under break at k, respectively.

Theorem 5. Consider the model (1.22) with fixed parameters (µ,δ) so that lnβ1 = O(T−1) and

lnβ2 = O(T−1). Assume the weight function ωk is nonrandom and bounded on the unit interval

with ωk→ ω(ρ) as k/T → ρ. Then the break point estimator ρ̂ = k̂/T in (1.23) has the in-fill

asymptotic distribution as

ρ̂ =⇒ argmax
ρ∈(0,1)

ω(ρ)2


(

J̃0(ρ)
2− J̃0(0)2−ρ

)2

∫ ρ

0 J̃0(r)2dr
+

(
J̃0(1)2− J̃0(ρ)

2− (1−ρ)
)2

∫ 1
ρ

J̃0(r)2dr


where J̃0(r), for r ∈ [0,1] is a Gaussian process defined by

dJ̃0(r) =−(µ+δ1{r > ρ0})J̃0(r)dr+dB(r) (1.24)

with the initial condition J̃0(0) = y0/σ = x0/(σ
√

h), and B(·) is a standard Brownian motion.
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The results of Theorem 5 are derived from applying the continuous mapping theorem to

the limit distribution S(k)2 in Theorem 4.1 of Jiang et al. (2017). See Appendix A.1 for proof. The

difference of the two estimators’ asymptotic distributions is the weight function ω(ρ) multiplied

to the stochastic process in the argmax function. Both estimators are asymmetrically distributed

around the true point ρ0 6= 1/2 and biased. In Section 1.5 we see that the variance of the in-fill

distribution of the break point estimator is smaller than that of the LS estimator.

1.5 Monte Carlo Simulation

Finite sample distributions of the new estimator and the LS estimator are compared by

Monte Carlo simulation. I consider structural breaks in two different models: a break in the mean

of a univariate regression model and a break in the lag coefficient of a AR(1) process. The root

mean squared error (RMSE), bias and standard errors of the two estimators are compared in finite

sample and in-fill asymptotics.

1.5.1 Univariate stationary process

The first model is when a structural break occurs in model (1.8) where xt = zt = 1 for all

t. The break magnitude δT = d0T−1/2 is in the local T−1/2 neighborhood of zero to represent

small break magnitudes.

yt = µ+δT 1{t > [ρ0T ]}+ εt (1.25)

where σ = 1 and εt
i.i.d.∼ N(0,σ2). Parameter values are ρ0 ∈ {0.15,0.3,0.5,0.7,0.85}, µ = 4, d0 ∈

{1,2,4} and T = 100 with 5,000 replications. The weight function is ωk = (k/T (1− k/T ))1/2,

which is the representative weight function motivated in Section 1.2 7. The break point estimator

7If weight function is ωk = (k/T (1− k/T ))γ, Assumption 2 is satisfied if 0≤ γ≤ 1/2 for an arbitrary small α in
Assumption 1(i). For γ∈{1/8,1/4,3/8} the results (omitted due to space constraints) do not change qualitatively; the
probability at boundaries decrease compared to the finite sample distribution of LS. Because ω(ρ) = (ρ(1−ρ))γ→ 1
as γ→ 0, the difference between the two estimators finite sample behavior shrinks when γ is close to zero.
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ρ̂NEW is defined in (1.3) and the LS estimator ρ̂LS in (1.2).

Table 1.1 provides the RMSE, the bias and the standard error for the finite sample

distribution. The values are extremely close to those computed using the in-fill asymptotic

distribution in Table 1.2. We can see that for all ρ0 ∈ {0.15,0.3,0.5,0.7,0.85} and d0 ∈ {1,2,4},

the RMSE of the estimator ρ̂NEW is smaller than that of ρ̂LS in finite sample. The RMSE in limit

distribution shows the same results. The break point estimator outperforms the LS estimator

uniformly in terms of the RMSE. The difference in asymptotic RMSE of the two estimators

are minimized when (ρ0,d0) = (0.15,4) and maximized when (ρ0,d0) = (0.5,1). We can see a

trade-off of slightly larger bias but a large decrease in standard error for ρ̂NEW compared to ρ̂LS,

that leads to a decrease in RMSE.

Figures 1.5, 1.6 and 1.7 shows the finite sample distribution of the two estimator under

ρ0 = 0.15,0.30 and 0.85. In finite sample the LS estimator performs particularly worse when

ρ0 = 0.15 or 0.85, and d0 = 1 is small. Under these parameter values, the tri-modal LS estimator

distribution becomes bi-modal with modes at zero and one. In contrast, the new break point

estimator has an unique mode at the true break ρ0, or at a point very close to true value. This finite

sample property of the break point estimator holds uniformly across breaks ρ0 ∈ [0.15,0.85] for

all d0 values considered; the distributions look similar to Figures 1.5, 1.6 and 1.7 and are omitted

here. This implies that regardless of the true break point, the new estimator outperforms, or is not

worse off than the LS estimator in finite sample under a small break magnitude. This result is

quite strong because the performance of the new estimator is superior or at least as reliable as the

LS estimator.
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Figure 1.5: (ρ0 = 0.15) Finite sample distribution of ρ̂NEW (left) and ρ̂LS (right) under model
(1.25) with parameter values (ρ0,δT ) = (0.15,T−1/2), (0.15,2T−1/2) and (0.15,4T−1/2) and
T = 100, respectively.
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Figure 1.6: (ρ0 = 0.30) Finite sample distribution of ρ̂NEW (left) and ρ̂LS (right) under model
(1.25) with parameter values (ρ0,δT ) = (0.3,T−1/2), (0.3,2T−1/2) and (0.3,4T−1/2) and T =
100, respectively.
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Figure 1.7: (ρ0 = 0.85) Finite sample distribution of ρ̂NEW (left) and ρ̂LS (right) under model
(1.25) with parameter values (ρ0,δT ) = (0.85,T−1/2), (0.85,2T−1/2) and (0.85,4T−1/2) and
T = 100, respectively.
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Table 1.1: Finite sample RMSE, bias, and the standard error of the new estimator and the LS
estimator of the break point under model (1.25) with parameter values (ρ0,d0) and T = 100.
The number of replications is 5,000.

RMSE Bias Standard error

ρ0 d0 NEW LS NEW LS NEW LS

0.15
1 0.4086 0.4970 0.3442 0.3387 0.2206 0.3636
2 0.3949 0.4789 0.3262 0.3181 0.2226 0.3580
4 0.3468 0.4099 0.2678 0.2368 0.2204 0.3346

0.30
1 0.2862 0.4104 0.1876 0.1935 0.2161 0.3618
2 0.2672 0.3821 0.1667 0.1686 0.2087 0.3429
4 0.2041 0.2972 0.1137 0.1009 0.1695 0.2795

0.50
1 0.2104 0.3563 -0.0041 -0.0138 0.2103 0.3561
2 0.1908 0.3333 0.0043 0.0036 0.1907 0.3333
4 0.1375 0.2592 -0.0007 -0.0043 0.1375 0.2592

0.70
1 0.2866 0.4061 -0.1886 -0.1896 0.2158 0.3591
2 0.2693 0.3827 -0.1707 -0.1673 0.2083 0.3442
4 0.2073 0.3093 -0.1165 -0.1127 0.1715 0.2880

0.85
1 0.4096 0.5030 -0.3467 -0.3459 0.2181 0.3652
2 0.3959 0.4800 -0.3255 -0.3180 0.2253 0.3595
4 0.3496 0.4123 -0.2693 -0.2370 0.2230 0.3374

1.5.2 Autoregressive process

For the AR(1) process, I replicate two experiments from Jiang et al. (2017). The first

experiment is a break in the lag coefficient so that the stationary process changes to another

stationary AR(1) process. The second case is a change from a local-to-unit root to a stationary

AR(1) process. Each experiment is generated from model (1.22) with h= 1/200 (T = 200), σ= 1,

εt
i.i.d.∼ N(0,1), ρ0 ∈ {0.3,0.5,0.7} and different combinations of µ and δ with β1 = exp(−µ/T )

and β2 = exp(−(µ+δ)/T ).

1. Stationary to stationary: (µ,δ) = (138,55) which implies (β1,β2) = (0.5,0.38);

2. Local-to-unity to stationary: (µ,δ) = (1,5) which implies (β1,β2) = (0.995,0.97).

The stochastic integrals of in-fill asymptotic distributions are approximated over a grid size
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Table 1.2: In-fill asymptotic RMSE, bias, and standard error of the new estimator and the LS
estimator of the break point under model (1.25) with parameter values (ρ0,d0) and T = 100.
The number of replications is 5,000.

RMSE Bias Standard error

ρ0 d0 NEW LS NEW LS NEW LS

0.15
1 0.4138 0.4951 0.3486 0.3400 0.2228 0.3598
2 0.3947 0.4780 0.3270 0.3140 0.2210 0.3604
4 0.3493 0.4126 0.2699 0.2385 0.2217 0.3367

0.30
1 0.2928 0.4090 0.1953 0.1989 0.2181 0.3574
2 0.2670 0.3849 0.1689 0.1694 0.2068 0.3456
4 0.2040 0.3025 0.1128 0.1045 0.1700 0.2839

0.50
1 0.2109 0.3562 0.0023 0.0011 0.2109 0.3562
2 0.1933 0.3355 0.0011 -0.0068 0.1933 0.3354
4 0.1372 0.2612 0.0007 -0.0002 0.1372 0.2612

0.70
1 0.2909 0.4091 -0.1958 -0.1979 0.2150 0.3581
2 0.2649 0.3797 -0.1657 -0.1638 0.2067 0.3426
4 0.2069 0.3065 -0.1150 -0.1072 0.1720 0.2871

0.85
1 0.4066 0.4948 -0.3429 -0.3347 0.2185 0.3644
2 0.3935 0.4768 -0.3250 -0.3108 0.2218 0.3616
4 0.3503 0.4151 -0.2699 -0.2406 0.2232 0.3383

h = 0.005. The break point estimator ρ̂NEW of the AR(1) model is defined in (1.23) and its

asymptotic distribution is stated in Theorem 3. The in-fill asymptotic distribution of the LS

estimator ρ̂LS is stated Theorem 4.1 of Jiang et al. (2017).

Tables 1.3 and 1.4 provide the RMSE, bias and the standard error of ρ̂NEW and ρ̂LS for the

finite sample and the asymptotic distribution, respectively. Similar to the structural break in the

mean of a stationary model, the RMSE of ρ̂NEW is smaller than that of ρ̂LS for all parameter values

(β1,β2,ρ0) considered. This is also holds in the limit. In addition, the asymptotic distribution

approximates the finite sample better for the local-to-unit root process change. We can see that

the decrease in the RMSE of ρ̂NEW is from the trade-off a relatively large decrease in variance

compared to the increase in the squared bias.

Figures 1.8 and 1.9 are finite sample distributions of the break point in the stationary and
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the local-to-unity AR(1) processes, respectively. For the stationary to another stationary process

change, the LS estimator ρ̂LS mode at the true break point is almost negligible unless it is the

median ρ0 = 0.5. In contrast, the estimator ρ̂NEW has a unique mode at the true break point for

all ρ0 ∈ {0.3,0.5,0.7}. For the local-to-unit root to a stationary AR(1) change, both estimators

have a higher probability at the true break point. However, the LS estimator continues to exhibit

tri-modality with modes at ends whereas our estimator has a unique mode at ρ0. Thus, simulation

results of the AR(1) model gives the same conclusion as section 1.5.1; the performance of the

break point estimator is superior or at least as reliable as the LS estimator.

Table 1.3: Finite sample RMSE, bias, and standard error of the new estimator and the LS
estimator of the break point under the AR(1) model (1.22) with parameter values (β1,β1,ρ0)
and T = 200. The number of replications is 5,000.

RMSE Bias Standard error

β1 β2 ρ0 NEW LS NEW LS NEW LS

0.5 0.38
0.3 0.2627 0.3091 0.1821 0.1657 0.1893 0.2610
0.5 0.1763 0.2452 0.0204 0.0282 0.1751 0.2436
0.7 0.2285 0.2725 -0.1379 -0.1223 0.1822 0.2435

0.995 0.97
0.3 0.2369 0.2780 0.1319 0.1279 0.1967 0.2469
0.5 0.1754 0.2328 -0.0042 -0.0047 0.1754 0.2327
0.7 0.2375 0.2784 -0.1358 -0.1336 0.1948 0.2442
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Figure 1.8: (Stationary to stationary) Finite sample distributions of ρ̂NEW (left) and ρ̂LS (right)
when the lag coefficient pre- and post-break are (β1,β2) = (0.5,0.38) at break points ρ0 =
0.3,0.5, and 0.7, respectively.
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Figure 1.9: (Local-to-unity to stationary) Finite sample distributions of the new estimator
(left) and the LS estimator (right) when the lag coefficient pre- and post-break are (β1,β2) =
(0.995,0.97) at break points ρ0 = 0.3,0.5, and 0.7, respectively.
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Table 1.4: In-fill asymptotic RMSE, bias, and standard error of the new estimator and the LS
estimator of the break point under the AR(1) model (1.22) with parameter values (β1,β1,ρ0)
and T = 200. The number of replications is 5,000.

RMSE Bias Standard error

β1 β2 ρ0 NEW LS NEW LS NEW LS

0.5 0.38
0.3 0.1911 0.2944 0.1888 0.0422 0.0298 0.2913
0.5 0.0270 0.2969 -0.0053 -0.0518 0.0264 0.2923
0.7 0.1995 0.3553 -0.1970 -0.1623 0.0316 0.3160

0.995 0.97
0.3 0.1325 0.2391 0.0472 -0.1148 0.1238 0.2097
0.5 0.1118 0.3650 -0.0205 -0.2383 0.1099 0.2765
0.7 0.1975 0.5229 -0.1022 -0.3897 0.1690 0.3487

1.6 Empirical Application

In this section I use the new estimation method for structural breaks in three empirical

applications. I analyze the performance of the break point estimator by comparing with the LS

estimator and historical events documented in literature. Furthermore, I show that the estimator is

robust to trimming the sample period whereas the LS estimator varies significantly depending on

the trimmed sample. The first application is about the structural break in postwar U.S. real GDP

growth rate, where an autoregressive model is used to estimate the break. The second application

is estimating the break date on the U.S. and the UK stock returns using the return prediction

model of Paye and Timmermann (2006). Lastly, I analyze the structural break of the relation

between oil price shocks and the U.S. output growth rate studied in Hamilton (2003).

1.6.1 U.S. real GDP growth rate

In macroeconomics literature, shocks that affect mean growth rate are often modelled

as a one-time structural break because of its rare occurrence. However, existing estimation

methods fail to capture the graphical evidence of postwar European and U.S. growth slowing

down sometime in the 1970s, known as the “productivity growth slowdown”. For instance, Bai,
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Lumsdaine, and Stock (1998) show that for the U.S., most test statistics reject the no-break

hypothesis, but the estimated confidence interval does not contain the slowdown in the 1970s.

I estimate a structural break of an autoregressive model using postwar quarterly U.S. real

GDP growth rate. Real GDP in chained dollars (base year 2012) data are obtained from the

Bureau of Economic Analysis (BEA) website for the sample period 1947Q1-2018Q2, seasonally

adjusted at annual rates. Annualized quarterly growth rates are calculated as 400 times the first

differences of the natural logarithms of the levels data. I assume that log output has a stochastic

trend with a drift and a finite-order representation. Following the approach of Eo and Morley

(2015), I use the modified Bayesian information criterion (BIC) of Kurozumi and Tuvaandorj

(2011) for lag selection in order to account for structural breaks. The highest lag order selected

is 1 for output growth given an upper bound of four lags and four breaks. The AR(1) model is

estimated under three cases. First case is a break in the drift term only (the constant term γ = 0),

second case is a break in the coefficient of lags only, the “propagation term” (δ1 = 0), and lastly a

break in both constant and coefficient.

∆yt = β+φ1∆yt−1 +1{t > k0}(γ+δ1∆yt−1)+ εt . (1.26)

Assume the error term {εt} are serially uncorrelated mean zero disturbances. If a structural break

occurs in both constant and lag coefficient, the long-run growth rate of log output will change

from E[∆yt ] = β/(1−φ1) to (β+ γ)/(1−φ1−δ1) and the volatility of growth rate will change

from Var[∆yt ] = σ2/(1−φ2
1) to σ2/(1− (φ1 +δ1)

2) at time k0.

Using the notations of model (1.8), we have xt = (1, ∆yt−1)
′, the dependent variable is

∆yt and for each model zt = R′xt is as follows.

• M1: R = (1, 0)′, zt = 1

• M2: R = (0, 1)′, zt = ∆yt−1

• M3: R = (1, 1)′, zt = (1,∆yt−1)
′
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The break point estimator k̂NEW defined in (1.9) is obtained by using the weight Ωk = ω2
kIq

where ωk = (k/T (1− k/T ))1/2 and q = dim(zt) 8. The full sample 1947Q3-2018Q2 (T = 284)

is used to estimate the structural break date, then a shorter sub-sample is used to see if break date

estimates change. k is searched over a trimmed sample with fraction α = 0.1 at both ends; the

grid starts at 1954Q2 and ends at 2011Q1 for the full sample. The second and third columns

of Table 1.5 shows break date estimates for the full sample. The two estimates are extremely

different from each other for M1 and M3, k̂NEW is 1973Q1 whereas k̂LS is 2000Q2. The break

point estimates on the unit interval are approximately 0.36 and 0.75, respectively. Without any

knowledge of historical events, one might think that the finite sample properties of ρ̂LS do not

appear here because it is not close to α = 0.1 or 1−α = 0.9.

However, the LS estimate switches to boundary of search grid if we consider a sub-sample

that is one decade shorter. Consider a sub-sample that ends at 2007Q1 with starting date 1947Q3,

so that the search grid includes k̂LS from all models. The LS estimate of M1 changes drastically

to 1953Q1 which is the end of the search grid, ρ̂LS = 0.1. In contrast, our estimator under M1

provides the same break date estimate k̂NEW =1973Q1. For M3 both estimates change so that

k̂NEW =1966Q1 and k̂LS =1958Q1. Compared to the full sample estimate, the change of the new

estimate is 7 years whereas the LS estimate change is over 40 years.

The 95% confidence interval is obtained under each model and samples by residual-based

bootstrap (see Section 1.4) with the number of bootstrap samples set to 999. Under M1 the LS

estimator switches to a break date estimate outside the confidence interval when the sample is

trimmed (under M3 it switches to boundary value of the confidence interval). This implies that

LS estimates vary significantly depending on trimming and it is likely to be at boundaries due to

its finite sample behavior. In addition, we can check that the confidence interval of our estimation

method has shorter length than LS for all cases.

8For consistency of the break point estimator in a AR(1) model, we use Ωk = ω2
kIq where ωk is a function of k/T

only.
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Table 1.5: Structural break date estimates of postwar U.S. real GDP growth rate in a AR(1)
model. For each model the first row is the break date estimate and the third row is the break
point estimate (fraction within corresponding sample). The second and fourth rows are 95%
confidence intervals obtained by bootstrap with 999 replications.

1947Q3-2018Q2 1947Q3-2007Q1
Model NEW LS NEW LS

M1

1973Q1 2000Q2 1973Q1 1953Q1
[59Q4, 02Q2] [57Q4, 10Q3] [56Q1, 96Q4] [53Q1, 00Q2]

0.36 0.75 0.43 0.10
[0.18, 0.77] [0.15, 0.89] [0.15, 0.83] [0.10, 0.89]

M2

1966Q1 1966Q1 1966Q1 1966Q1
[57Q2, 07Q4] [54Q3, 10Q4] [55Q2, 97Q1] [53Q2, 00Q3]

0.26 0.26 0.32 0.32
[0.14, 0.85] [0.10, 0.89] [0.13, 0.84] [0.10, 0.90]

M3

1973Q1 2000Q2 1966Q1 1958Q1
[59Q4, 02Q1] [57Q4, 10Q3] [56Q1, 96Q4] [53Q1, 00Q3]

0.36 0.75 0.32 0.18
[0.18, 0.77] [0.15, 0.89] [0.15, 0.83] [0.10, 0.90]

The break date estimate k̂NEW =1973Q1 under M1 corresponds to the productivity growth

slowdown in early 1970s, which is widely hypothesized in macroeconomics literature. The U.S.

labor productivity experienced a slowdown in growth after the oil shock in 1973 (see Perron

(1989) and Hansen (2001)). None of the models estimate a break date in 1980s, which is known as

“the Great Moderation”. It refers to a empirical fact of a large reduction of volatility of U.S. real

GDP growth in 1984Q1, established by Kim and Nelson (1999) and McConnell and Perez-Quiros

(2000). In model (1.26), the change in volatility is not a linear function of the change in the lag

coefficient. Hence, we focus on events that affect the mean rather than the volatility of growth

rate.

Because the sample is over 70 years, it is likely that there exists multiple structural breaks

in the output growth rate. Estimates that vary depending on the sub-sample could be evidence

of more than one break in the sample period. The break date estimate k̂LS = 2000Q2 can be

associated with the tech bubble, also known as the dot-com crash in 2000. In relation to business
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cycles, k̂LS =1953Q1 and 1958Q1 are both in recession, at 1953 is the Korean war ended. Under

M2 both estimates from the full sample are 1966Q1, and the closest historical event that is likely

to affect the output growth rate is the Vietnam war.

Estimating multiple structural breaks using the weighting scheme is beyond the scope of

this paper. For LS estimation of multiple breaks see Bai and Perron (1998) and Bai, Lumsdaine,

and Stock (1998). Instead, I compute the two estimators for sub-samples that end at different

dates from 2005Q1 to 2018Q2, for total 54 sub-samples. Because the sample is trimmed one

quarter at a time, switching to a different estimate that is far apart implies that the estimator

is sensitive to trimming, rather than suggesting multiple breaks. Table 1.6 shows that the LS

estimates of M1 and M3 vary from ρ̂LS = 0.1 to 0.9, which is equivalent to the trim fraction

α = 0.1. However, the new estimates are either mid 1960s or early 1970s, which is always in the

fraction interval ρ̂ ∈ [0.2,0.5].

In short, estimating a structural break of postwar U.S. real GDP growth rate using our

estimation method provides evidence of a break occurring in 1973Q1, which corresponds to the

productivity growth slowdown period. However, the LS estimates a break occurs in 2000 or

1953, depending on the time interval. Break date estimates are obtained for sub-samples with end

dates 2005Q1 to 2018Q2 for both methods; the LS estimates vary considerably, with ρ̂LS near

0.1 and 0.9 for almost 40% of the sub-samples considered under M1. In contrast, our estimates

are 1966Q1 or 1973Q1 for all sub-samples and models. This suggests that the difference in LS

estimates depending on the sample period is due to its finite sample behavior (tri-modality) rather

than evidence of multiple structural breaks.

1.6.2 Stock return prediction models

Paye and Timmermann (2006) studies the instability in models of ex-post predictable

components in stock returns by examining structural breaks in the coefficients of state variables.
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Table 1.6: Structural break date estimates of postwar U.S. real GDP growth rate in a AR(1)
model using 54 sub-samples. The entries are the fraction of the number of sub-samples that has
break date estimates corresponding to the first column. The second column is the interval of
break point estimates that depend on the sub-sample size. The start date is 1947Q3 and the end
dates of sub-samples change across 2005Q1 to 2018Q2.

M1 M2 M3

Break date ρ̂ interval NEW LS NEW LS NEW LS

1953Q1 0.10 0.17
1958Q1 [0.17, 0.19] 0.22
1966Q1 [0.26, 0.33] 0.06 1 1 0.30 0.09
1973Q1 [0.36, 0.45] 1 0.05 0.70
2000Q2 [0.74, 0.86] 0.52 0.48
2006Q1 [0.85, 0.90] 0.20 0.21

The regression model (1.27) is specified with four state variables: the lagged dividend yield,

short interest rate, term spread and default premium. The model allows for all coefficients to

change since there is no strong reason to believe that the coefficient on any of the regressors

should be immune from shifts. The multivariate model with a one-time structural break at k with

t = 1, . . . ,T is

Rett = β0 +β1Divt−1 +β2T billt−1 +β3Spreadt−1 +β4De ft−1 (1.27)

+1{t > k}(δ0 +δ1Divt−1 +δ2T billt−1 +δ3Spreadt−1 +δ4De ft−1)+ εt ,

where Rett represents the excess return for the international index in question during month

t, Divt−1 is the lagged dividend yield, T billt−1 is the lagged local country short interest rate,

Spreadt−1 is the lagged local country spread and De ft−1 is the lagged US default premium. From

the notation of model (1.8), yt =Rett and for the multivariate model, xt = zt = (1,Divt−1,T billt−1,

Spreadt−1,De ft−1). For the univariate model with dividend yield xt = zt = (1,Divt−1), which is

defined analogously for other univariate models. The weight matrix is Ωk = T−1Z′kMZk where

Zk = (0, . . . ,0,zk+1, . . . ,zT )
′ and M = I−X(X ′X)−1X ′. Following the approach of Paye and
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Timmermann (2006), I examine univariate models to facilitate interpretation of coefficients, in

addition to the multivariate model (1.27).

Under the univariate model with the lagged dividend yield as a single forecasting regressor,

the LS estimate of the break point for the S&P 500 is close to the end date of the trimmed sample.

Paye and Timmermann notes that the NYSE or S&P 500 indices have the same estimated break

date when the trimming window is shortened, and thus the discrepancy is not the sole explanation

of the timing of the break. However, it is likely that estimated break dates of the return prediction

model are near the end of the sample due to the finite sample behavior of the LS estimator. I

check whether the new estimator provides a different break date estimate of the model (1.27)

using data similar to the first dataset of Paye and Timmermann, which is monthly data on the

U.S. and the UK stock returns from 1952:7 to 2003:12. The trimming window is also identical to

fraction 15%, thus potential break date starts from February, 1960 and ends at March, 1996. For

comparison I also estimate the break using a shorter period 1970:1-2003:12, which is equivalent

to the sample period of their second dataset. For each model and sample the 95% confidence

interval is obtained by wild bootstrap (Liu, 1988) with the number of bootstrap samples set to

499.

Data are collected from Global Financial Data and Federal Reserve Economic Data

(FRED). The indices to which the total return and dividend yield series are the S&P 500 for the

U.S. and the FTSE All-share for the UK. The dividend yields is expressed as an annual rate and

is constructed as the sum of dividends over the preceding 12 months, divided by the current price.

For both countries, a 3-month Treasury bill (T-bill) rate is used as a measure of the short interest

rate and the 20-year government bond yield is the measure of the long interest rate. Excess returns

are computed as the total return on stocks in the local currency less the total return on T-bills. The

term spread is constructed as the difference between the long and the short local country interest

rate. U.S. default premium is defined as the differences in yields between Moody’s Baa and Aaa

rated bonds. For each sample period the break date is obtained from a grid that is trimmed by
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fraction α = 0.15. For the full sample the grid is 1960:2-1996:3, and for the sub-sample it is

1975:1-1998:10.

Table 1.7 provides the estimates of the two samples using the S&P 500 index. One notable

feature is that the LS estimates a break occurred in December 1994, with break point ρ̂LS = 0.85

whereas the new method estimates a break in the mid 1980s and ρ̂NEW = 0.62. Although the

LS estimate is close to the end of trimmed sample, it gives the same break estimate in the sub-

sample starting at 1970. This suggests that a break may have occurred multiple times. Paye and

Timmermann uses the method of Bai and Perron (1998) and find that two structural breaks occur

in the return model (1.27) using S&P 500, where each break occurs at 1987:7 and 1995:3. They

note that the break at 1987 appears to be an isolated break not appearing in other international

markets. These two break date estimates are similar to estimates in Table 1.7 that assume a

one-time structural break.

Another explanation of the break in the early 1980s is that our estimation method captures

a change in the individual state variable itself rather than the coefficient of the prediction model

(1.27), because it is extremely difficult to detect a break due to the noisy nature of stock market

returns. For instance, the estimate β̂1 could be capturing noise caused by the movement in Divt−1.

Figure 1.10 plots the two state variables, U.S. dividend yield and term spread. Both series have

a change in its trend in the early 1980s. If we compare the two break date estimates from the

univariate model in Table 1.7, our estimate is closer to the date of the change in trend occurred.

For UK stock returns, both estimation methods obtain break date estimate that is (or close

to) 1975:1 under all models and sample periods. In addition, the LS estimator has a slightly

shorter length of the 95% confidence interval compared to our estimator for all models except

the term spread univariate model. This is different from the result using S&P 500 index series

because the excess return for the FTSE All-share index increases near 10 standard deviations

from 1975:1 to 1975:2 9. Hence, the change in excess returns is large enough for the LS to detect

9For sample period 1952:7-2003:12 the mean excess return of the FTSE All-share index is 0.5949 and standard
deviation is 5.4890. At t =1975:1 the excess return Rett = 0.4556 and at t =1975:2 we have Rett = 53.2187, so the
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the break point appropriately. Paye and Timmermann relates the break in mid 1970s to the large

macroeconomic shocks reflecting large oil price increases; the breaks in the underlying economic

fundamentals process can explain breaks in financial return models. If this is the case, then the

break magnitude is large enough so that both methods accurately estimates the break date 1975:1.

Table 1.7: Structural break date estimates of the U.S. stock return (S&P 500) prediction model
for samples 1952:7-2003:12, and 1970:1-2003:12. For each model the first row is the break date
estimate and the third row is the break point estimate (fraction within corresponding sample).
The second and fourth rows are 95% bootstrap confidence intervals obtained by 499 replications.

1952:7-2003:12 1970:1-2003:12
Model NEW LS NEW LS

Multi.

1984:8 1994:12 1982:8 1994:12
[77:4, 88:9] [83:5, 95:1] [79:5, 88:3] [75:5, 95:1]

0.62 0.83 0.37 0.74
[0.48, 0.70] [0.60, 0.83] [0.28, 0.54] [0.16, 0.74]

Div. yield

1982:8 1995:1 1982:8 1996:9
[68:9, 84:8] [74:11, 95:2] [76:12, 84:3] [75:1, 98:9]

0.59 0.83 0.37 0.79
[0.32, 0.62] [0.44, 0.83] [0.21, 0.42] [0.15, 0.85]

T-bill

1974:10 1974:10 1982:8 1975:1
[74:7, 81:11] [70:7, 81:1] [77:6, 88:6] [75:1, 90:7]

0.43 0.43 0.37 0.15
[0.43, 0.57] [0.35, 0.56] [0.22, 0.55] [0.15, 0.61]

Spread

1983:5 1976:2 1987:9 1976:2
[80:9, 92:4] [72:6, 83:7] [82:7, 92:9] [75:7, 86:10]

0.60 0.46 0.52 0.18
[0.55, 0.77] [0.39, 0.60] [0.37, 0.67] [0.16, 0.50]

Def.prem.

1968:12 1965:11 1982:8 1975:7
[63:1, 92:2] [62:4, 95:12] [78:1, 91:12] [75:3, 86:9]

0.32 0.26 0.37 0.16
[0.21, 0.77] [0.19, 0.84] [0.24, 0.65] [0.15, 0.49]

change is approximately 9.6 standard deviations.

53



Table 1.8: Structural break date estimates of the UK (FTSE) stock return prediction model for
samples 1952:7-2003:12 and 1970:1-2003:12. For each model the first row is the break date
estimate and the third row is the break point estimate (fraction within corresponding sample).
The second and fourth rows are 95% bootstrap confidence intervals with 499 replications.

1952:7-2003:12 1970:1-2003:12
Model NEW LS NEW LS

Multi.

1975:1 1975:1 1975:1 1975:1
[77:4, 88:9] [83:5, 95:1] [75:1, 88:10] [75:1, 76:11]

0.44 0.44 0.15 0.15
[0.44, 0.74] [0.44, 0.45] [0.15, 0.55] [0.15, 0.20]

Div. yield

1975:1 1975:1 1975:1 1975:1
[67:3, 76:11] [75:1, 77:12] [75:1, 77:1] [75:1, 75:9]

0.44 0.44 0.15 0.15
[0.29, 0.47] [0.44, 0.50] [0.15, 0.21] [0.15, 0.17]

T-bill

1975:1 1974:12 1975:1 1975:1
[74:10, 81:11] [73:11, 77:1] [73:1, 81:12] [73:11, 76:10]

0.44 0.29 0.15 0.15
[0.43, 0.57] [0.42, 0.48] [0.15, 0.35] [0.15, 0.20]

Spread

1975:1 1975:6 1975:1 1975:3
[73:1, 78:2] [68:2, 89:12] [75:1, 77:12] [75:1, 78:2]

0.44 0.45 0.15 0.15
[0.40, 0.50] [0.31, 0.73] [0.15, 0.24] [0.15, 0.24]

Def.prem.

1979:5 1975:6 1975:1 1975:3
[69:2, 90:4] [70:11, 80:8] [75:1, 91:4] [75:1, 76:6]

0.52 0.45 0.52 0.15
[0.32, 0.73] [0.36, 0.55] [0.15, 0.63] [0.15, 0.19]
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Figure 1.10: U.S. dividend yield (left) and term spread (right), 1952:7-2003:12. Red and blue
dotted lines are the new and LS break date estimates from the univariate model, respectively.

1.6.3 Oil price shock and output growth

Hamilton (2003) tests the existence of a structural break on the relation between real U.S.

GDP growth rates and nonlinear transforms of oil price measures. I use the same model and

data10, but assume that the nonlinear relation is unstable. That is, I assume there is a structural

break in the nonlinear oil price transforms and GDP growth rate and estimate the structural

break date using the new estimation method. Let yt denote the real output, which is the quarterly

growth rate of chain-weighted real U.S. GDP. The oil price series is denoted as ot , which is 100

times the quarterly logarithmic growth rate of nominal crude oil producer price index, seasonally

unadjusted. The sample used for estimation starts from 1949Q2 to 2001Q3, for a total of T = 210

observations, not including the lagged initial values for conditioning.

Four different oil price measures are used, the percentage change rate in nominal crude

oil prices and three measures that are nonlinear transforms of the percentage change rates of the

oil price. The formulation of Mork (1989) uses the positive values o+t , where o+t = ot if ot > 0

and 0 if ot ≤ 0. The annual net oil price is the amount by which the oil price in quarter t exceeds

its peak value over the previous 12 months, and the 3-year net oil price is defined analogously

for horizon 3 years instead of one year. For details on the oil price measures see Hamilton

10Data were downloaded from http://econ.ucsd.edu/∼jhamilton
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(2003). Assume model (1.8) with lags of the oil price measure as zt = (ot−1,ot−2,ot−3,ot−4)
′ and

xt = (1,yt−1,yt−2,yt−3,yt−4,zt)
′. The weight matrix is Ωk = ω2

kI4 where ωk = (k/T (1−k/T ))1/2

and I4 is a (4×4) identity matrix. The search grid of k is trimmed by fraction α = 0.15 on both

ends.

Table 1.9: Structural break point estimates of the relation between oil price change and the U.S.
real GDP growth rates, 1949Q2-2001Q3. The oil price measures are percentage change rate of
nominal crude oil price, the positive percentage change rate of nominal crude oil price (Mork),
the annual net oil price increase, and the 3-year net oil price increase, respectively. For each
model the first row is the break date estimate and the third row is the break point estimate ρ̂.
The second and fourth rows are 95% bootstrap confidence intervals with 999 replications.

Oil price measure NEW LS

% rate

1982Q1 1985Q3
[74Q2, 87Q1] [74Q1, 89Q2]

0.64 0.70
[0.49, 0.73] [0.49, 0.77]

Mork

1982Q1 1991Q1
[71Q1, 89Q3] [70Q2, 93Q2]

0.64 0.80
[0.43, 0.78] [0.42, 0.85]

Net 1-yr

1970Q4 1990Q4
[67Q3, 82Q1] [70Q2, 93Q2]

0.43 0.80
[0.36, 0.64] [0.42, 0.85]

Net 3-yr

1970Q4 1970Q2
[67Q3, 82Q1] [55Q4, 91Q3]

0.43 0.42
[0.36, 0.64] [0.15, 0.81]

Table 1.9 shows the break location estimates for the full sample 1949Q2-2001Q3 (exclud-

ing lagged initial values for conditioning). Our method estimates are either 1982Q1 or 1970Q4,

whereas the LS estimates vary across 1970, 1985 and early 1990s. The 95% confidence interval

is obtained from residual based bootstrap with number of bootstrap samples set to 999. For all

models our method has a shorter interval length compared to LS. Because the LS estimates vary
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substantially depending on the start date of the sample, we obtain break date estimates for various

sub-samples. The start date of the sub-sample changes across 1949Q3 to 1957Q2 and 1961Q3 to

1965Q411. All sub-samples end at 2001Q3 and the estimates from the full sample are included in

the search grid trimmed by fraction α = 0.15. Total 50 sub-samples are considered. Table 1.10

provides the fraction of sub-samples (the number of sub-samples divided by 50) that gives the

same break date estimates.

From 1949Q2 to 2001Q3, there are five military conflicts in the Middle East that have

significantly disrupted world petroleum supplies (Hamilton, 2003). The Suez crisis in November

1956, the Arab-Israel war in November 1973, the Iraninan revolution in November 1978, the Iran-

Iraq war in October 1980 and the Persian Gulf war in August 1990, where the month indicates

the largest observed drop in oil production. The events are in the first column of Table 1.10 next

to the corresponding break date in the second column. If an oil supply shock occurred in the

quarter, it is categorized with the next four quarters due to the number of lags in the regression.

For the Arab-Israel war there were no break date estimates equivalent to 1973Q4, so it is with

1974Q1-1974Q4. There are no break date estimates close to the earliest event at 1956Q4, the Suez

crisis, for all oil price measures and estimation methods. For a large oil supply shock at quarter

t, the annual net and the 3-year net oil price measures would be affected up to quarter t +4 and

t +12, respectively. Thus, for a event occurring at t, the break date estimates are categorized for

t +5 to t +16 due to the construction of the net oil price measures and four lags in the regression.

For all oil price measures, the LS estimator has a higher fraction of sub-samples with

estimates that are near the start date of the trim, which corresponds to the first row. However

both estimation methods did not have sub-sample estimates near the end date of the trim; the

latest estimate date is 1991Q2. Our estimator has a higher fraction of sub-samples with estimates

within the following 16 quarters from the Iraninan revolution and the Iran-Iraq war, for all oil

price measure. For the Arab-Israel war, our estimator using oil price measures except the annual

11Sub-samples with start dates 1957Q3 to 1961Q2 has matrix (X ′X) that are near singular for nonlinear oil price
measures.
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net oil price also has a higher fraction of sub-samples with estimates in the following 16 quarters.

In this period the difference in the number of sub-samples is only one between the two estimation

methods using the 3-year net oil price.

Table 1.11 summarizes the fraction of sub-samples with break point estimates closer

or further away from the end of the unit interval. For all measures there are sub-samples with

ρ̂LS ∈ [0.15,0.25), which corresponds to dates earlier than the Arab-Israel war, but almost ten

years past the Suez crisis in 1956. In contrast, the break point estimator ρ̂NEW does not have any

sub-samples in [0.15,0.25) except one sub-sample using the 3-year net oil price measure. This

also holds for the interval close to 0.85; for all oil price measures none of the sub-samples have

ρ̂NEW in [0.75,0.85] whereas the LS estimator has one or three sub-samples with ρ̂LS included

in the interval. Although this interval include dates following the Persian Gulf war, the fraction

0.02 and 0.06 of sub-samples seems quite small to think that the LS estimator actually estimates

the break date of this event. Rather, for these sub-samples the finite sample behavior of the LS

estimator leads to estimates near the ends.

Kilian (2008) argues that nonlinear transforms of oil price data do not identify the

exogenous component of oil price changes. Hence, I also find the structural break point using the

measure of exogenous oil supply shocks constructed in Kilian (2008). A quarterly measure of the

OPEC oil production shock series12 from 1971Q1 to 2004Q3 is employed as ot . The regression

model and weight matrix is the same as before; four lags of oil shock measures are associated

with coefficients under structural break13. Both methods estimates a break occurred at 1980Q3,

corresponding to break point of 0.27.

Overall, the difference between our estimator and the LS estimator of the break point is

less prominent than the applications in section 1.6.1 and 1.6.2 but similar to previous results: our

12Data were downnloaded from https://sites.google.com/site/lkilian2019/research/data-sets
13Kilian (2008) does not estimate for structural breaks but considers OLS regression of real GDP growth on a

constant, four lags of the dependent variable and eight lags of the exogenous oil shock measure to see the effect of
oil shock to real GDP. The break date estimates using eight lags of exogenous oil shock measure are 1981Q2 for
both methods, similar to the estimate using four lags.
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estimator is robust to trimming of the sample in estimating the structural break of the relation

between oil price shock and output growth. Furthermore, in obtaining estimates across different

trimmed samples, our estimator has a higher number of sub-samples that estimates the three

exogenous events that caused a drop in total world crude oil production: the Arab-Israel war in

1973, the Iranian revolution in 1978, and the Iran-Iraq war in 1980. Although a more rigorous

hypothesis test is required to conclude that the new estimation method accurately estimates a

break caused by these military conflicts, the results suggest that the relation of nonlinear oil price

measures and output growth in not stable. This is different from the results of Hamilton (2003) in

that a stable nonlinear relation between oil price and output can be represented using positive

changes of oil price. That is, even when nonlinear transforms of measures are used, it is likely

that a structural break occurs from a oil price shock.

Table 1.10: Structural break date estimates of the relation between oil price change and the U.S.
real GDP growth rates from 50 sub-samples. The start date changes across 1948Q3 to 1956Q2;
1960Q3 to 1964Q4 and the end date is 2001Q3 for all sub-samples. The entries are the fraction
of the number of sub-samples with break date estimates in the first column.

Oil price measure
% rate Mork Net 1-yr Net 3-yr

Event Break date NEW LS NEW LS NEW LS NEW LS

65Q1-66Q4 0.02 0.08 0.02 0.06 0.02 0.02 0.02
67Q1-73Q3 0.10 0.14 0.08 0.08 0.16 0.16 0.14 0.18

Arab-Israel 74Q1-74Q4 0.06 0.08 0.12 0.08 0.12 0.12 0.12 0.08
75Q2-77Q4 0.24 0.20 0.24 0.24 0.22 0.24 0.18 0.20
78Q1-78Q3 0.08 0.06 0.04 0.04 0.12 0.12 0.06 0.06

Iranian 78Q4-79Q4 0.12 0.10 0.04 0.04 0.08 0.04 0.14 0.06
80Q1-80Q3 0.02 0.06 0.06 0.12 0.08 0.10 0.08

Iran-Iraq 80Q4-81Q4 0.16 0.12 0.16 0.14 0.10 0.08 0.12 0.10
82Q1-84Q4 0.10 0.10 0.10 0.10 0.06 0.04
85Q1-87Q3 0.08 0.10 0.10 0.10 0.02 0.06
88Q1-90Q2 0.02 0.04 0.04 0.06 0.10

Persian Gulf 90Q3-91Q2 0.02 0.02 0.02 0.04 0.08
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Table 1.11: Structural break point estimates of the relation between oil price change and the
U.S. real GDP growth rates from 50 sub-samples. The start date changes across 1948Q3 to
1956Q2; 1960Q3 to 1964Q4 and the end date is 2001Q3 for all sub-samples. The entries are the
fraction of the number of sub-samples with break point estimates included in the first column
interval.

Oil price measure
% rate Mork Net 1-yr Net 3-yr

ρ̂ interval NEW LS NEW LS NEW LS NEW LS

[0.15,0.25) 0 0.12 0 0.04 0 0.02 0.02 0.02
[0.25,0.35) 0.18 0.20 0.16 0.16 0.18 0.24 0.06 0.14
[0.35,0.45) 0.24 0.18 0.24 0.20 0.44 0.36 0.42 0.32
[0.45,0.55) 0.22 0.18 0.22 0.22 0.12 0.12 0.24 0.20
[0.55,0.65) 0.28 0.18 0.28 0.26 0.18 0.12 0.20 0.14
[0.65,0.75) 0.08 0.12 0.10 0.10 0.08 0.08 0.06 0.12
[0.75,0.85] 0 0.02 0 0.02 0 0.06 0 0.06

1.7 Conclusion

This paper provides a estimation method of the structural break point in multivariate linear

regression models, when a one-time break occurs in a subset of (or all) coefficients. In particular,

this paper focuses on break magnitudes that are empirically relevant. That is, in practice it is

likely that the shift in parameters are small in a statistical sense. The least-squares estimation

widely used in literature fails to accurately estimate the break point under small break magnitudes,

which motivates the construction of the estimation method in this paper.

I show that the functional form of the objective function leads to tri-modality of the finite

sample distribution of the LS estimator. A weight function is constructed on the sample period

normalized to the unit interval, which assigns small weights on the LS objective for potential

break points with large estimation uncertainty. The break point estimator is the argmax functional

of the objective that is equivalent to the LS objective function multiplied by weights. The weight

function is proportional to the Fisher information under a Gaussian assumption on the model.

The Fisher information reflects a belief that a structural break is less likely to occur near ends of

60



the sample period. I show that the break point estimator is asymptotically equivalent to the mode

of the Bayesian posterior distribution if we use a prior that depends on the Fisher information.

The break point estimator is consistent under regularity conditions on a general weight

function, with the same rate of convergence as the LS estimator from Bai (1997). The limit

distribution under a small break magnitude is derived under a in-fill asymptotic framework,

following the approach of Jiang, Wang, and Yu (2017, 2018). For a structural break in a stationary

linear process with a break magnitude that is inside the local T−1/2 neighborhood of zero, the

asymptotic distribution of the new estimator explicitly depends on the weight function. However,

if the break magnitude is outside the local T−1/2 neighborhood of zero, the limit distribution of

the estimator is equivalent to that of the LS estimator. The in-fill asymptotic distribution is also

derived for a break in a local-to-unit root process, assuming the break magnitude is O(T−1). This

is smaller than the break sizes assumed in conventional long-span asymptotic theory. Monte Carlo

simulation results show that under a small break the break point estimator reduces the RMSE

compared to the LS estimator for all parameter values considered.

The paper provides three empirical applications: structural breaks on the U.S. real GDP

growth, the U.S. and the UK stock return prediction models, the relation between oil price shocks

and the U.S. output growth. The break point estimates are robust to trimming of the sample, in

contrast to LS estimates. In particular, our method estimates the break date 1973Q1 in U.S. real

GDP growth rates, which LS estimation has failed to confirm. In macroeconomics literature the

“productivity growth slowdown” in early 1970s is a widely known empirical fact.

In short, this paper provides a estimation method that accurately estimates the timing of

the structural break in linear regression models, under empirically relevant break sizes. The new

estimator resolves the tri-modality issue of the least-squares estimation in finite sample. To my

knowledge it is the first in the literature for a break point estimator to have a uni-modal finite

sample distribution under statistically small break magnitudes. The paper provides theoretical

results of consistency of the estimator and a asymptotic distribution that represents finite sample
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behavior. If the break magnitude is small, the new estimator outperforms the least-squares

estimation and if the magnitude is large, it becomes similar to the LS estimator. Thus, the

estimator of this paper provides reliable inference of the change point in models, and does not

perform worse than LS estimator uniformly. The estimation method can be generalized to estimate

multiple structural breaks, which is for future research.

Chapter 1, in full, is currently being prepared for submission for publication of the material.

Baek, Yaein. The dissertation author was the sole author of this paper.
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Chapter 2

Tests for Break in Coefficients in Linear

Regression when the Direction of the Break

is Known

2.1 Introduction

One of the main concerns in modelling parametric models that represent econometric

relationships is that parameters are likely to be unstable. In time series regression we refer the

change in parameters over time as structural breaks in the model. In statistics and econometrics

literature there is an extensive amount of work on testing for structural breaks. Earlier works such

as Chow (1960) tests for parameter stability under a known break date using a F-statistic, and

Quandt (1958, 1960) suggests using a maximum F-statistic over all values of the potential break

date when the break date is unknown. Andrews (1993) studies the properties of such tests and

derives the asymptotic distribution of the test statistic. Brown, Durbin, and Evans (1978) provides

a test on the stability of parameters by considering partial sums of the standardized forecast errors

of rolling regressions, referred as the CUSUM test. Ploberger, Krämer, and Kontrus (1989) and

63



Ploberger and Krämer (1992) provides test that are functions of the partial sums of OLS residuals

from a regression ignoring the breaks. Papers that discuss optimality of tests are Nyblom (1989),

which provides small sample locally optimal tests that are valid for a single structural break model.

Andrews and Ploberger (1994) derive asymptotically optimal tests by employing an weighted

average power criterion function.

Previous literature on structural break tests, including all tests stated above, studies a two-

sided test where the null hypothesis sets the parameter change equal to zero and the alternative

hypothesis states it is nonzero. That is, existing methods tests for breaks of either direction of

a parameter change. However in practice there are instances where the researcher is interested

in testing for breaks of a particular direction. For example, in Lucas critique type problems the

direction of the policy change may be known and hence the direction of the subsequent effect of

the reduced form regressions are also known. Or the direction may be known based on historical

data of relevant series. Through not directing power towards uninteresting alternatives, the power

of a test aimed in the correct direction should improve power. To the best of our knowledge, tests

for a known direction of break has not been discussed in literature.

In this paper we provide three tests where the direction of the break, i.e., the sign of the

parameter change in a linear regression model is known. By incorporating the information of

known directions, the test statistics are directed toward the alternative which leads to increase in

power. The first two tests have optimality properties under restrictive assumptions. The third test,

although lacking optimality properties, has an asymptotic null distribution equivalent to a standard

normal distribution and thus simple to calculate. We refer these test with known direction of

breaks as “directional break tests”. The directional break tests also accommodate cases where the

variance of the error term changes simultaneously with coefficients.

We compare the three directional break tests with other structural break tests widely used

in literature, the Nyblom (1989) test, the average exponential Lagrange multiplier (LM) test from

Andrews and Ploberger (1994), and the qLL test from Elliott and Müller (2006). Monte Carlo
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simulations show that directional break tests with correct directions have higher power than these

tests. Furthermore, our empirical application on testing for a break in postwar U.S. real GDP

growth rate show that our tests suggest significant evidence of a break whereas other tests show

insignificance or weak evidence.

The plan of the paper is as follows. Section 2.2 provides our basic model and derives the

three directional break tests with their null asymptotic distribution. Section 2.3 discusses finite

sample power of tests from Monte Carlo simulations. Section 2.4 applies directional break tests

on testing for a break in U.S. real GDP growth rate series, U.S. labor productivity and compare

results with other structural break tests. Concluding remarks are in Section 2.5.

2.2 Directional Break Tests

2.2.1 The model and test statistics

Consider a linear regression model where a structural break occurs at time τ0.

yt = X ′t β+X ′t δ1{t ≥ τ0}+Z′tγ+ut , t = 1, . . . ,T (2.1)

where yt is a scalar, Xt , β, δ are (k×1) vectors, Zt and γ are (m×1) vectors, ut is a mean zero

disturbance with long-run variance σ2 that is possibly heterogeneous and autocorrelated. 1{t ≥

τ0} is an indicator function that equals one if t ≥ τ0 and zero otherwise. The break magnitude δ

and break date τ0 are unknown to the researcher but the direction of the break δ̄ := sgn(δa) is

known; δ̄ corresponds to the signs of the coefficient under the alternative hypothesis δa where

each element is 1 or −1. Denote δ j and δ̄ j as the jth element of δ and δ̄, respectively.

H0 : δ̄ jδ j ≤ 0, ∀ j = 1, . . . ,k (2.2)

H1 : δ̄ jδ j > 0, ∃ j
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Under the null hypothesis all elements of vector δ are either equal to zero (no structural break)

or its direction is incorrectly specified. The alternative hypothesis indicates that at least one

(nonzero) element of δ is correctly specified. For asymptotic results, we impose the following

regularity condition on model (2.1). Let Qt = (X ′t ,Z
′
t)
′ and [·] is the greatest smaller integer

function.

Condition 1. (i) τ0 = [r0T ] for some 0 < r0 < 1.

(ii) T−1/2
∑
[sT ]
t=1 Xtut ⇒Ω

1/2
1 W (s) for 0≤ s≤ r0 and T−1/2

∑
[sT ]
t=τ0+1 Xtut ⇒Ω

1/2
2 (W (s)−W (r0)

for r0 ≤ s≤ 1 with Ω1 and Ω2 some symmetric positive definite k× k matrices and W (·) a

k×1 standard Wiener process.

(iii) sup0≤s≤1 ‖T−1/2
∑
[sT ]
t=1 Ztut‖= Op(1).

(iv) T−1
∑
[sT ]
t=1 QtQ′t → sΣQ = s

 ΣX ΣXZ

ΣZX ΣZ

 uniformly in 0≤ s≤ 1 where ΣQ is full rank.

These assumptions are standard in the literature on tests for structural breaks. Condition

1(i) assumes the break point r0 is bounded away from end points. Conditions (ii)-(iv) are standard

high-level time series conditions, that allow for heterogeneous and serially correlated {ut} and

regressors {Qt}. As in Bai (1997), we allow for the long-run variance of {Xtut} to change at the

break date τ0.

We denote the tests of break under known directions as “directional break tests”. First,

consider the case of no break in the variance of {Xtut}, such that Ω = Ω1 = Ω2. Denote v̂t := Xt ût

where ût are the OLS residuals from regressing {yt} on {Qt}. If we relax the conditional

homoskedasticity assumption such that the error term has a variance-covariance matrix E[UU ′] =

Ωu that is not necessary diagonal, the directional test statistics are as follows. Note that d̄

is a (k× 1) vector that needs to be specified for the first two test statistics. It represents the

“normalized” local break magnitude of each element of δ, which we further discuss in section
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2.2.2.

dba
T = T−1

T

∑
t=1

exp

( d̄′d̄

δ̄′Σ̂
−1/2
X Ω̂Σ̂

−1/2
X δ̄

)1/2

δ̄
′
Σ̂
−1/2
X

(
T−1/2

T

∑
s=t+1

v̂s

)
− 1

2
d̄′d̄
( t

T

)(
1− t

T

)
(2.3)

dbb
T = T−1

T

∑
t=1

exp

( d̄′d̄

δ̄′Σ̂
−1/2
X Ω̂Σ̂

−1/2
X δ̄

)1/2

δ̄
′
Σ̂
−1/2
X

(
T−1/2

T

∑
s=t+1

v̂s

) (2.4)

dbc
T =

(
12

δ̄′Σ̂
−1/2
X Ω̂Σ̂

−1/2
X δ̄

)1/2

T−1
T

∑
t=1

δ̄
′
Σ̂
−1/2
X

(
T−1/2

T

∑
s=t+1

v̂s

)
. (2.5)

where Ω̂ is the long-run variance estimator of {Xtut} and Σ̂X is a consistent estimator of the second

moment of Xt . Note that under conditional homoskedasticity, Ω̂ = σ̂2Σ̂X and the denominator of

the first term simplifies to (σ̂2δ̄′δ̄)1/2 = σ̂
√

k. Each test statistic depends on the known direction

vector δ̄. The first two test statistics depend on the local break magnitude d̄. In section 2.2.2

we show that these two test statistics are derived from a likelihood ratio test statistic and thus

have optimality properties under i.i.d Gaussian disturbances and strictly exogenous regressors. In

contrast, the third test statistic dbc
T do not depend on d̄ and follow a standard normal distribution

in the limit under no break. The construction of the test statistic is not based on a likelihood test

statistic and hence do not share optimal properties. However, the limit is invariant of d̄ which

makes it easier to use the test statistic.

The tests that assume Ω1 = Ω2 and allow for heteroskedastic and serially correlated errors

{ut} are constructed as follows. Choose δ̄, where each element δ̄ j corresponds to the sign of the

alternative we are testing for.

1. Compute the least squares regression of {yt}T
t=1 on {Xt ,Zt}T

t=1 and compute the OLS

residuals ût .

2. Construct {v̂t}T
t=1 = {Xt ût}T

t=1.
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3. Compute the long-run variance estimator Ω̂ of {v̂}T
t=1. An example would be to use the

estimator of Newey and West (1987, 1994).

4. Compute test statistics as in (2.3), (2.4) or (2.5).

5. All tests reject for large values regardless of the choice of δ̄. Critical values for (2.3) and

(2.4) are in Table 2.1 for d̄ ∈ {1.5,2,2.5}.

Now suppose there is a break in the variance of Xtut . We assume conditional ho-

moskedasticity and use a weighted least square (WLS) approach to construct test statistics. Let

Ω1 = σ2
1ΣX and Ω2 = σ2

2ΣX in Condition 1(ii), where σ1 6= σ2. In matrix form the model (2.1) is

Y = Qθ+(X −X(τ0))δ+U , where Q = (X ,Z), X(τ0) = (X1, . . . ,Xτ0,0 . . . ,0)
′and θ = (β′,γ′)′.

Let ΩU,t := diag{σ2
1It ,σ2

2IT−t} and transform (2.1) by pre-multiplying Ω
−1/2
U,t .

Ω
−1/2
U,t Y = Ω

−1/2
U,t Qθ+Ω

−1/2
U,t (X−X(τ0))δ+Ω

−1/2
U,t U

⇔ Ỹ = Q̃θ+(X̃− X̃(τ0))δ+Ũ .

For a fixed t, Condition 1(ii) and (iv) holds for the transformed model.

T−1/2
[sT ]

∑
j=1

X̃ jũ j⇒ Σ
1/2
X ,l W (s) for 0≤ s≤ 1,

T−1
[sT ]

∑
j=1

Q̃ jQ̃′j→ sΣQ,l = s

 ΣX ,l ΣXZ,l

ΣZX ,l ΣZ,l


Note that subscript l = t/T of ΣQ,l denotes its dependence on ΩU,t . Let ṽ j be the OLS residuals

from regressing Ỹ on Q̃. We have T−1X̃ ′X̃
p→ ΣX ,l , which is well-defined for all l ∈ [ε,1− ε] for

some fraction ε > 0. Denote Σ̂X ,t as a consistent estimator of ΣX ,l . Then Σ̂X ,t = T−1X ′Ω̂U,tX ,

which is obtained from Ω̂U,t = diag{σ̂2
1It , σ̂2

2IT−t} where σ̂2
1 = ∑

t
j=1 û2

t and σ̂2
2 = ∑

T
j=t+1 û2

t . The

68



three directional break test statistics using WLS estimators are as follows.

dba
T = T−1

T

∑
t=1

exp

[(
d̄′d̄
δ̄′δ̄

)1/2

δ̄
′
Σ̂
−1/2
X ,t

(
T−1/2

T

∑
s=t+1

ṽs

)
− 1

2
d̄′d̄
( t

T

)(
1− t

T

)]
(2.6)

dbb
T = T−1

T

∑
t=1

exp

[(
d̄′d̄
δ̄′δ̄

)1/2

δ̄
′
Σ̂
−1/2
X ,t

(
T−1/2

T

∑
s=t+1

ṽs

)]
(2.7)

dbc
T = T−1

T

∑
t=1

(
12
δ̄′δ̄

)1/2

δ̄
′
Σ̂
−1/2
X ,t

(
T−1/2

T

∑
s=t+1

ṽs

)
. (2.8)

The tests that allow for a break in the long-run variance of {Xtut} is constructed as follows.

1. Compute the least squares regression of {y j}T
j=1 on {X j,Z j}T

j=1 and compute the OLS

residuals û j.

2. For a fixed break date t, compute the pre-break variance estimate σ̂2
1 = ∑

t
j=1 û2

j and the

post-break variance estimate σ̂2
2 = ∑

T
j=t+1 û2

j .

3. Construct transformed series {ỹ j}tj=1 = {σ̂
−1
1 y j}tj=1, {X̃ j, Z̃ j}tj=1 = {σ̂

−1
1 X j, σ̂

−1
1 Z j}tj=1,

{ỹ j}T
j=t+1 = {σ̂

−1
2 y j}T

j=t+1, and {X̃ j, Z̃ j}T
j=t+1 = {σ̂

−1
2 X j, σ̂

−1
2 Z j}T

j=t+1

4. Compute Σ̂X ,t = T−1
∑

T
j=1 X̃ jX̃ ′j and the OLS residuals {ũ j}T

j=1 from the transformed

regression of {ỹ j}T
j=1 on {X̃ j, Z̃ j}T

j=1.

5. Construct {ṽ j}T
j=1 = {X̃ jũ j}T

j=1 and compute the partial sum T−1/2
∑

T
j=t+1 ṽ j.

6. Repeat steps 2 to 5 for t = [εT ], . . . , [(1− ε)T ] for some ε > 0 and compute test statistics

(2.6), (2.7) and (2.8).

Likewise, the three directional break tests reject for large values and critical values are in Table

2.1. We restrict the break point such that l = t/T ∈ [ε,1−ε] in order to have enough observations

for identification in finite sample.
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2.2.2 Derivation and asymptotic distribution of test statistics

We derive the first two test statistics dba
T and dbb

T under i.i.d Gaussian disturbances

{ut} and strictly exogenous regressors. Under restricted assumptions the test statistics have

optimality properties because they are derived from a likelihood ratio test statistic. Assume

ut
i.i.d∼ N(0,σ2), conditionally homoskedastic so that Ω = σ2ΣX , and Q is strictly exogeneous.

Let M := IT −Q(Q′Q)−1Q′ and pre-multiply to the model so that MY = M(X −X(τ))δ+MU

with MU ∼ N(0,σ2M). Under these assumptions the likelihood ratio test statistic of hypotheses,

H0 : δ = 0 against H1 : δ = δa with break at time t, have optimal properties. The alternative

hypothesis is a weighted average with wt as the weight on the alternative that a break occurs at

time t.

LRT =
T

∑
t=1

wt exp
[
−1

2
σ
−2(MY −M(X−X(t))δa)

′(MY −M(X−X(t))δa)

+
1
2

σ
−2Y ′MY

]
=

T

∑
t=1

wt exp
[

σ
−2

δ
′
a(X−X(t))′MY − 1

2
σ
−2

δ
′
a(X−X(t))′M(X−X(t))δa

]
. (2.9)

The directional break test statistics tests the null of no break against the alternative hypothesis

that is a weighted average of a break occurring at time t. For any sample size, and rejecting for

large values, the test statistic (2.9) along with the appropriate critical values results in a test that is

optimal for testing null hypothesis of no break against the alternative hypothesis a break occurs at

time t with weights wt (under restricted assumptions stated above).

We consider the asymptotic properties of the test statistic (2.9) by setting the magnitude of

the break δa = T−1/2σΣ
−1/2
X (d̄ ◦ δ̄), where ◦ indicates the Hadamard product. The vector d̄ > 0

represents a “normalized” local break magnitude, so that d̄ ◦ δ̄ represents the (k×1) vector of

local parameter change (positive or negative) under the alternative hypothesis. We set d̄ = d̄1ιk

where ιk is a (k×1) vector of ones so that each element is equal to a constant d̄1. Specifically,
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in sections 2.3 and 2.4 we set d̄1 = 2 from setting δa = 2σ
β̂
, where σ

β̂
is the standard deviation

of the OLS coefficient estimator under the null hypothesis. If the break magnitude is at least

twice the standard error of β̂, the break is significant to reject the null of no break. Hence, we

can rewrite the local alternative as δa = T−1/2σd̄1Σ
−1/2
X δ̄. Note that under the null hypothesis we

have MY = MU . We use the following lemma to derive the asymptotic distribution. For proof

see Appendix A.2.2.

Lemma 5. Under Condition 1,

T−1/2(X−X(t))′MU ⇒Ω
1/2(W (l)− lW (1))

where W (·) is a (k×1) standard Brownian Motion on the unit interval and 2πΩ is the spectral

density of {Xtut}

Under the null hypothesis, the first term of the exponential function in (2.9) weakly

converges as follows, by Lemma 5.

T−1/2
σ
−1(d̄ ◦ δ̄)′Σ

−1/2
X (X−X(t))′MY ⇒ σ

−1(d̄ ◦ δ̄)′Σ
−1/2
X Ω

1/2(W (l)− lW (1))

= d̄′(W (l)− lW (1)),

where the last equation is from Ω1/2 = σΣ
1/2
X and W (l)− lW (1) is symmetric. The second term

of the exponential function in (2.9) converges in probability to 1
2 d̄′d̄l(1− l), which we show in

the proof of Theorem 6. Under the assumption that weights wt satisfy Twt → w(l) uniformly

on l ∈ (0,1) and by continuous mapping theorem, the likelihood ratio test statistic has the null

asymptotic distribution,

LRT ⇒
∫ 1

0
w(l)exp

[
d̄′(W (l)− lW (1))− 1

2
d̄′d̄l(1− l)

]
dl. (2.10)

The first two directional break tests dba
T and dbb

T are motivated from these results and are given
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by specifying the weights wt . For dba
T , the weights are uniformly distributed over possible

break dates, i.e., wt = T−1. The second term inside the exponential function is by a term that is

asymptotically equivalent, 1
2 d̄′d̄

( t
T

)(
1− t

T

)
.

dba
T = T−1

T

∑
t=1

exp

[(
d̄′d̄

σ̂2δ̄′δ̄

)1/2

δ̂
′
Σ̂
−1/2
X

(
T−1/2

T

∑
s=t+1

v̂s

)
− 1

2
d̄′d̄
( t

T

)(
1− t

T

)]
(2.11)

Note that (d̄′d̄/(σ̂2δ̄′δ̄))1/2 = σ̂−1d̄1. The test statistic (2.3) simplifies to (2.11) under conditional

homoskedasticity. For the second test dbb
T , the weights are selected to offset the second term

inside the exponential term of (2.10), which is independent of the data asymptotically.

wt = T−1 exp
[

1
2

d̄′d̄
( t

T

)(
1− t

T

)]

The weights here depend on the potential break date, and is maximized at the center of the sample.

Thus the weights place more emphasis on finding breaks in the center of the sample rather than

the edges of the data1.

Before providing the null limit distribution of directional test statistics, we provide

Proposition 1 which states that δ = 0 under the null hypothesis is the least favorable distribution.

Proposition 1. Denote the null set of parameters ∆0 =
{

δ | δ̄ jδ j ≤ 0, ∀ j = 1, . . . ,k
}

, the bound-

ary set as ∆b =
{

δ | δ̄ jδ j = 0, ∀ j = 1, . . . ,k
}

, and ∆i = ∆0 \∆b. For some fixed constant c > 0,

lim
T→∞

Pr [dba
T > c |δ ∈ ∆i]≤ lim

T→∞
Pr [dba

T > c |δ ∈ ∆b] .

The inequality also holds for dbb
T and dbc

T .

This result is explained in detail after we present Theorem 7 on the local alternative

distribution of test statistics. Under the least favorable distribution of no break, we have the
1For critical values of dbb

T in Table 2.1 we assumed weights wt = T−1 exp
[ 1

2 d̄′d̄
( t

T

)(
1− t

T

)
− 1

2 d̄′d̄(0.1)(0.9)
]

so that critical values are not too large at 1% significance level. It essentially does not change the test statistic because
the additional term of weights is a constant.
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null limit distribution of the three directional break test statistics in Theorem 6. For proof see

Appendix A.2.2.

Theorem 6. Under Condition 1 and the least favorable distribution δ = 0 under the null hypoth-

esis, the directional break tests (2.3), (2.4) and (2.5) have the following asymptotic distributions.

dba
T ⇒

∫ 1

0
exp
[
(d̄′d̄)1/2BB(l)− 1

2
d̄′d̄l(1− l)

]
dl (2.12)

dbb
T ⇒

∫ 1

0
exp
[
(d̄′d̄)1/2BB(l)

]
dl (2.13)

dbc
T ⇒

∫ 1

0

√
12BB(l)dl (2.14)

BB(l) is an univariate Brownian Bridge, W (l)− lW (1) on the unit interval l ∈ [0,1]. The

asymptotic distribution in (2.14) is a standard normal distribution.

If Q is weakly exogenous, the three directional test statistics have equivalent asymptotic

distributions but loses the optimal property of the likelihood ratio test statistic. Previously when

we assumed serially uncorrelated and homoskedastic disturbances, we chose d̄ in test statistics

dba
T and dbb

T by setting δa = 2σ̂β, which gives us d̄1 equal to 2. Although this is not true under

relaxed assumptions (Ω 6= σ2ΣX ) we will maintain d̄1 = 2 to avoid finite sample estimation error.

Now we derive the local alternative limit distribution of test statistics assuming δ =

T−1/2σΣ
−1/2
X d, such that the break magnitude is inside the local T−1/2 neighborhood of zero

(note that d can be either positive or negative). For proof see Appendix A.2.2.

Theorem 7. Under Condition 1, suppose the break magnitude is δ = T−1/2σΣ
−1/2
X d with fixed d.
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Let d̄ = d̄1ιk. Then the local alternative limit distribution of directional break test statistics are

dba
T ⇒

∫ 1

0
exp

[
σ(d̄′d̄)1/2(min{l,r0}− lr0)

(δ̄′Σ
−1/2
X ΩΣ

−1/2
X δ̄)1/2

δ̄
′d +(d̄′d̄)1/2BB(l)− 1

2
d̄′d̄l(1− l)

]
dl,

dbb
T ⇒

∫ 1

0
exp

[
σ(d̄′d̄)1/2(min{l,r0}− lr0)

(δ̄′Σ
−1/2
X ΩΣ

−1/2
X δ̄)1/2

δ̄
′d +(d̄′d̄)1/2BB(l)

]
dl

dbc
T ⇒

∫ 1

0

(
σ
√

12(min{l,r0}− lr0)

(δ̄′Σ
−1/2
X ΩΣ

−1/2
X δ̄)1/2

δ̄
′d +
√

12BB(l)

)
dl.

The limit distributions in Theorem 7 shifts depending on the sign of δ̄′d. Under the case

of no break δ = 0 we have δ̄′d = 0. In other cases of the null hypothesis where δ̄ jδ j ≤ 0 holds for

all j with strict inequality for at least one j, we have δ̄′d < 0. Because the test statistic rejects

for large values, given some critical value c and δ̄′d < 0, Pr[dba
T > c] is smaller than that when

δ̄′d = 0 in the limit. Hence we have the results of Proposition 1, which is analogous to Lemma

1 of Wolak (1989). The paper examines tests when imposing linear inequality restrictions on

parameters of a linear model. In our case δ̄′δ = 0 is the unique least favorable value of δ̄′δ that

specifies the the null hypothesis to obtain critical values for any size test. When δ̄′δ < 0, the test

statistic shifts away from the alternative and the rejection probability is less than α in the limit.

Therefore we obtain critical values of any size test from the limit distribution under δ = 0.

Note that in some cases of the alternative hypothesis, we have δ̄′d < 0 and thus the tests

do not have power. That is, if the directions are incorrectly specified for coefficient that has

magnitude dominating the correctly specified magnitude, we lose power. In the opposite case,

where correctly specified coefficients’ magnitude is larger than those that are incorrectly specified,

we have δ̄′d > 0 and the tests will still have power.

The asymptotic power function and power envelope of the directional test statistics can

be computed under the local alternative distributions in Theorem 7. For simplicity assume

conditional homoskedastiticy, then the asymptotic power function of the three directional test
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statistics are as follows.

π
a(d, d̄) := Pr

[∫ 1

0
exp
(

d̄1(min{l,r0}− lr0)δ̄
′d +(d̄′d̄)1/2BB(l)− 1

2
d̄′d̄l(1− l)

)
dl > cva(d̄)

]
(2.15)

π
b(d, d̄) := Pr

[∫ 1

0
exp
(

d̄1(min{l,r0}− lr0)δ̄
′d +(d̄′d̄)1/2BB(l)

)
dl > cvb(d̄)

]
(2.16)

π
c(d, d̄) := Pr

[∫ 1

0

(√
12(min{l,r0}− lr0)δ̄

′d +
√

12BB(l)
)

dl > 1.645
]
. (2.17)

The critical values cva(d̄) and cvb(d̄) are determined by πa(0, d̄) = 0.05 and πb(0, d̄) = 0.05,

respectively. Table 2.1 presents asymptotic critical values of dba
T and dbb

T at 1%, 5% and 10%

depending on the value and dimension of d̄.

Table 2.1: Asymptotic critical values for directional test statistics dba
T and dbb

T

d̄ = 1.5 d̄ = 2 d̄ = 2.5
dim(d̄) 1% 5% 10% 1% 5% 10% 1% 5% 10%

1
cva 2.542 1.883 1.589 3.328 2.213 1.756 4.264 2.534 1.889
cvb 2.843 2.094 1.760 4.146 2.699 2.122 6.059 3.495 2.552

2
cva 3.546 2.294 1.793 4.935 2.740 1.951 6.497 3.090 2.016
cvb 4.542 2.876 2.222 7.876 4.155 2.879 14.010 5.962 3.704

3
cva 4.454 2.602 1.907 6.347 3.061 2.011 8.190 3.235 1.933
cvb 6.552 3.677 2.653 13.208 5.763 3.616 23.360 8.913 4.843

In sections 2.3 and 2.4 we compare the three directional break test statistics with the L

statistic from Nyblom (1989) (denote as Nyblom), the (average) exponential LMT test statistic

from Andrews and Ploberger (1994) (denote as AP) and qLL test statistic from Elliott and Müller

(2006). The three test statistics and asymptotic distributions under the null and local alternatives

are described in Appendix A.2.1.
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2.3 Monte Carlo Simulation

This section examines finite sample rejection probabilities of the three directional break

tests, Nyblom, AP, and qLL test statistics. The rejection probabilities are computed from 5,000

replications, except Model 2 that is computed from 10,000 replications. We consider five different

cases of model (2.1) with T = 100. For simplicity assume Zt = 0 for all five cases.

1. Break in the mean with i.i.d. Gaussian disturbances

2. Break in the mean with serially correlated disturbances

3. Misspecification of number of parameters under break

4. Break in the drift of a AR(1) model

5. Break in coefficient and variance

Model 1: i.i.d. Gaussian disturbances

The data generating process is a bivariate model (2.1) where a break occurs in both coeffi-

cients of regressor Xt simultaneously; Xt = (1,gt)
′, gt

i.i.d∼ N(2,1), β = (0,0)′, δ = T−1/2Σ
−1/2
X d,

d = (2c,−c)′, c ∈ [0,10], ut
i.i.d∼ N(0,1) and T = 100. For directional break test statistics dba

T and

dbb
T we use d̄ = (2,2)′. Table 2.3 shows the size of each test statistic and Figure 2.1 shows the

power of test statistics. Figures 2.2 and 2.3 are rejection probabilities of directional break tests

when one direction is correct but the other is incorrect.

To assess the power differences in Figure 2.1, we compute the Pitman efficiency of the

directional test and comparative tests. The Pitman efficiency (or asymptotic relative efficiency,

ARE) is the ratio of sample sizes giving, asymptotically, the same power for that sequence (Stock,

1994). In our case, suppose that dba
T and AP(∞) tests achieve 50 percent power against the local

alternative c1 and c2, respectively. Then the ARE of the AP(∞) test relative to the dba
T test is
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c2/c1 = 1.0645 under r0 = 0.50. To achieve 50 percent power against a local alternative using

the AP(∞) test statistic asymptotically requires 6.45 percent more observations than are needed

using the directional test statistic dba
T . For all comparative methods relative to directional test

statistics, the ARE range between 1.03 to 1.08 under the bivariate model (2.1) with i.i.d Gaussian

disturbances. Because the values are similar across different r0 values, we show the case for

r0 ∈ {0.20,0.50}.

Table 2.2: (Model 1) Pitman efficiency (or ARE) of directional break tests, Nyblom, AP and
qLL tests.

ARE
r0 Test Nyblom AP(∞) AP(0) qLL

0.2
dba

T 1.0833 1.0536 1.0714 1.0536
dbb

T 1.0769 1.0473 1.0651 1.0473
dbc

T 1.0643 1.0351 1.0526 1.0351

0.5
dba

T 1.0452 1.0645 1.0581 1.0581
dbb

T 1.0519 1.0714 1.0649 1.0649
dbc

T 1.0452 1.0645 1.0581 1.0581
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Table 2.3: (Model 1) Rejection rate of structural break tests under no break δ = 0, T = 100.

Test Statistic

r0 δ̄ dba
T dbb

T dbc
T Nyblom AP(0) AP(∞) qLL

0.2

(1,-1) 0.0530 0.0534 0.0482

0.0520 0.0468 0.0462 0.0626
(1,1) 0.0490 0.0500 0.0516
(-1,-1) 0.0520 0.0518 0.0546
(-1,1) 0.0518 0.0524 0.0526

0.3

(1,-1) 0.0444 0.0450 0.0462

0.0492 0.0440 0.0430 0.0586
(1,1) 0.0476 0.0458 0.0446
(-1,-1) 0.0458 0.0466 0.0456
(-1,1) 0.0516 0.0522 0.0556

0.4

(1,-1) 0.0424 0.0438 0.0446

0.0442 0.0384 0.0376 0.0514
(1,1) 0.0488 0.0500 0.0512
(-1,-1) 0.0498 0.0514 0.0540
(-1,1) 0.0478 0.0476 0.0472

0.5

(1,-1) 0.0420 0.0444 0.0438

0.0478 0.0430 0.0414 0.0594
(1,1) 0.0500 0.0496 0.0534
(-1,-1) 0.0504 0.0514 0.0526
(-1,1) 0.0488 0.0502 0.0476

0.6

(1,-1) 0.0460 0.0470 0.0496

0.0450 0.0422 0.0420 0.0560
(1,1) 0.0494 0.0492 0.0492
(-1,-1) 0.0482 0.0516 0.0482
(-1,1) 0.0448 0.0452 0.0442

0.7

(1,-1) 0.0430 0.0448 0.0452

0.0452 0.0410 0.0374 0.0556
(1,1) 0.0462 0.0484 0.0508
(-1,-1) 0.0468 0.0478 0.0508
(-1,1) 0.0464 0.0466 0.0458

0.8

(1,-1) 0.0514 0.0494 0.0510

0.0446 0.0376 0.0422 0.0562
(1,1) 0.0456 0.0462 0.0492
(-1,-1) 0.0454 0.0470 0.0472
(-1,1) 0.0540 0.0538 0.0538
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Figure 2.1: (Model 1, δ̄ correct) Finite sample power of the 5% level structural break tests when
δ̄ = (1,−1)′ across local parameter d = (2c,−c)′, c ∈ [0,10]. The plots correspond to break
location r0 = 0.20,0.30,0.40,0.50,0.60 and 0.70, respectively.
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Figure 2.2: (Model 1) Finite sample rejection probability of the 5% level structural break tests
when δ̄ = (1,1)′ across local parameter d = (2c,−c)′, c ∈ [0,10]. The plots correspond to break
location r0 = 0.20,0.30,0.40,0.50,0.60 and 0.70, respectively.
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Figure 2.3: (Model 1) Finite sample rejection probability of the 5% level structural break tests
when δ̄ = (−1,−1)′ across local parameter d = (2c,−c)′, c ∈ [0,10]. The plots correspond to
break location r0 = 0.20,0.30,0.40,0.50,0.60 and 0.70, respectively.
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Model 2: Serially correlated disturbances

Consider an univariate model (2.1) where the error term is an AR(1) process: ut =

φut−1 + εt , φ = 0.3 and εt
i.i.d∼ N(0,σ2

ε), σε = 0.9. Hence the long-run variance of the error term

is σ2 = σ2
ε/(1−φ2) ≈ 1.29. The regressor is a constant term Xt = 1, β = 0 and δ = T−1/2σd,

d ∈ [0,20]. Under correctly specified δ̄ = 1 we compare the power of the structural break test

statistics. Estimation of Ω = σ2 = limT→∞Var
(

T−1/2
∑

T
t=1 vt

)
is conducted by the Newey-

West estimator with a bandwidth q(T ) = 4(T/100)2/9 (Newey and West, 1987, 1994) and for

directional break test statistics dba
T and dbb

T we choose d̄ = 2.

Figures 2.4 and 2.5 show finite sample rejection probabilities of three directional tests

under directions δ̄ = 1 (correct) and δ̄ =−1 (incorrect), respectively. In Figure 2.4 we see there

is power improvement compared to the Nyblom and the AP(∞) tests for all break locations

considered, although the power increase is not as large as the model with i.i.d disturbances. Figure

2.5 show that tests have rejection rate less than size under the wrong direction.

82



Figure 2.4: (Model 2) Finite sample power of the 5% level structural break tests when
δ̄ = 1 across local parameter d ∈ [0,20]. The plots correspond to break location r0 =
0.20,0.30,0.40,0.50,0.60 and 0.70, respectively.
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Figure 2.5: (Model 2) Finite sample rejection probability of the 5% level structural break
tests when δ̄ =−1 across local parameter d ∈ [0,20]. The plots correspond to break location
r0 = 0.20,0.30,0.40,0.50,0.60 and 0.70, respectively.
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Table 2.4: (Model 2) Rejection rate of structural break tests under no break δ = 0, T = 100.

Test Statistic

r0 δ̄ dba
T dbb

T dbc
T Nyblom AP(0) AP(∞) qLL

0.2
1 0.0725 0.0738 0.0698

0.0778 0.0637 0.0633 0.0656
-1 0.0751 0.0754 0.0729

0.3
1 0.0745 0.0738 0.0716

0.0748 0.0609 0.0610 0.0637
-1 0.0713 0.0712 0.0701

0.4
1 0.0716 0.0726 0.0711

0.0723 0.0603 0.0594 0.0633
-1 0.0693 0.0699 0.0712

0.5
1 0.0719 0.0726 0.0715

0.0745 0.0623 0.0608 0.0657
-1 0.0741 0.0751 0.0698

0.6
1 0.0702 0.0714 0.0693

0.0757 0.0614 0.0630 0.0637
-1 0.0738 0.0746 0.0722

0.7
1 0.0713 0.0719 0.0695

0.0744 0.0597 0.0584 0.0613
-1 0.0700 0.0709 0.0675

0.8
1 0.0726 0.0728 0.0706

0.0783 0.0653 0.0653 0.0657
-1 0.0733 0.0732 0.0714

Model 3: Misspecification of number of parameters under break

As mentioned in Section 2.2.2, we check whether the directional break tests have power

when there exists a structural break in only one (unknown) coefficient of bivariate variable Xt .

Consider model (2.1) where Xt = (1,gt)
′, gt

i.i.d∼ N(1,0.25) and assume conditionally homoskedas-

tic and serially uncorrelated errors ut
i.i.d∼ N(0,σ2), σ = 1. There are two cases of a structural

break in one coefficient, δ1 = 0 or δ2 = 0 where δ = (δ1,δ2)
′. We consider the case of a positive

break in the second variable gt such that δ = T−1/2d and d = (0,dg)
′. β is a vector of zeros and

dg ∈ [0,30]. All structural break test statistics are computed under the possibility that there is

a break in any coefficient parameter. If we specify both coefficients under break, there are two

cases in which the direction δ̄ is correct: δ̄ = (1,1)′ and δ̄ = (−1,1)′. We plot the finite sample

power under each case and compare with Nyblom and AP(∞) tests.

Under δ̄ = (1,1)′, Figure 2.6 shows that the three directional break tests have higher
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power than Nyblom or AP(∞) tests. In contrast, Figure 2.7 under δ̄ = (−1,1)′ shows the power

of directional break tests are significantly smaller than the power of Nyblom or AP tests. The

asymptotic power function of directional break test statistics depend on the term δ̄′Σ
1/2
X d. Because

it depends on a positive definite matrix Σ
1/2
X , the term δ̄′Σ

1/2
X d is larger when δ̄ = (1,1)′. This is

also true for the case when the constant term is under break, d = (d1,0)′. Hence, under a bivariate

model there is power improvement if δ̄ has both elements equal to the direction of coefficient

under break.

Table 2.5: (Model 3) Rejection rate of structural break tests under no break δ = 0, T = 100.

Test Statistic

r0 δ̄ dba
T dbb

T dbc
T Nyblom AP(0) AP(∞) qLL

0.2

(1,-1) 0.0470 0.0468 0.0460

0.0444 0.0438 0.0410 0.0586
(1,1) 0.0462 0.0472 0.0490
(-1,-1) 0.0452 0.0474 0.0472
(-1,1) 0.0462 0.0478 0.0472

0.3

(1,-1) 0.0490 0.0512 0.0480

0.0408 0.0364 0.0358 0.0512
(1,1) 0.0524 0.0526 0.0528
(-1,-1) 0.0478 0.0494 0.0510
(-1,1) 0.0430 0.0444 0.0398

0.4

(1,-1) 0.0432 0.0440 0.0432

0.0442 0.0350 0.0354 0.0524
(1,1) 0.0468 0.0466 0.0476
(-1,-1) 0.0476 0.0478 0.0472
(-1,1) 0.0516 0.0522 0.0516

0.5

(1,-1) 0.0448 0.0450 0.0430

0.0444 0.0398 0.0398 0.0564
(1,1) 0.0510 0.0514 0.0512
(-1,-1) 0.0444 0.0452 0.0466
(-1,1) 0.0444 0.0444 0.0436
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Figure 2.6: (Model 3) Finite sample power of the 5% level structural break tests when δ̄= (1,1)′

across local parameter dg ∈ [0,30]. The plots correspond to break location r0 = 0.20,0.30,0.40
and 0.50, respectively.
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Figure 2.7: (Model 3) Finite sample power of the 5% level structural break tests when δ̄ =
(−1,1)′ across local parameter dg ∈ [0,30]. The plots correspond to break location r0 =
0.20,0.30,0.40 and 0.50, respectively.

Model 4: AR(1) with a drift

The DGP is an autoregressive model with one lag where the constant term and lag

coefficient is under structural break simultaneously. In model (2.1) the regressor is Xt = 1 and

Zt = yt−1.

yt = β+δ1{t ≥ [r0T ]}+φyt−1 +ut , t = 1, . . . ,T (2.18)

where β = 0, φ = 0.3, ut
i.i.d.∼ N(0,σ2), σ = 0.7, δ = T−1/2σd, d ∈ [−15,0], and T = 100. For

test statistics dba
T and dbb

T we choose d̄ = 2.

Table 2.6 shows that AP(∞) and qLL tests have rejection probability less than 0.03 under
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the null hypothesis, given 5% significance level. The loss of power in AP(∞) test is shown in

Figure 2.8, where we can see that the power improvement of directional break tests compared

to comparative methods is quite large. Pitman efficiency in Table 2.7 ranges between 1.10 to

1.18, which are larger than the values in Table 2.2 under i.i.d disturbances. This is because other

break tests are conservative under the DGP (2.18) while directional break tests maintain their

performance.

Table 2.6: (Model 4) Rejection rate of structural break tests under no break δ = 0, T = 100.

Test Statistic

r0 δ̄ dba
T dbb

T dbc
T Nyblom AP(0) AP(∞) qLL

0.2
1 0.0446 0.0456 0.0456

0.0408 0.0338 0.0260 0.0238
-1 0.0454 0.0458 0.0480

0.3
1 0.0406 0.0418 0.0428

0.0372 0.0276 0.0246 0.0252
-1 0.0404 0.0424 0.0418

0.4
1 0.0460 0.0460 0.0498

0.0386 0.0326 0.0296 0.0256
-1 0.0460 0.0474 0.0468

0.5
1 0.0520 0.0536 0.0512

0.0402 0.0302 0.0288 0.0248
-1 0.0400 0.0402 0.0442

0.6
1 0.0410 0.0418 0.0436

0.0408 0.0312 0.0268 0.0296
-1 0.0516 0.0534 0.0540

0.7
1 0.0406 0.0424 0.0426

0.0386 0.0276 0.0280 0.0276
-1 0.0460 0.0472 0.0472

0.8
1 0.0426 0.0424 0.0432

0.0446 0.0312 0.0278 0.0276
-1 0.0516 0.0528 0.0546
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Figure 2.8: (Model 4) Finite sample power of the 5% level structural break tests when
δ̄ = −1 across local parameter d ∈ [−15,0]. The plots correspond to break location r0 =
0.20,0.30,0.40,0.50,0.60 and 0.70, respectively.
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Table 2.7: (Model 4) Pitman efficiency (or ARE) of directional break tests, Nyblom, AP and
qLL tests.

ARE
r0 Test Nyblom AP(∞) AP(0) qLL

0.2
dba

T 1.1308 1.1017 1.1477 1.1477
dbb

T 1.1363 1.1071 1.1533 1.1533
dbc

T 1.1172 1.0885 1.1340 1.1340

0.5
dba

T 1.1667 1.1574 1.1358 1.1821
dbb

T 1.1560 1.1468 1.1254 1.1713
dbc

T 1.1631 1.1538 1.1323 1.1785

Model 5: Break in variance and coefficient

We consider the case where there is an one-time break in the variance of the disturbance

and coefficient simultaneously. We compute our “usual” directional break test statistics using

OLS estimators and test statistics using WLS estimators, which takes into account the break in

variance of the error term {ut}. The DGP is model (2.1) where Xt = 1, Zt = 0, ut
i.i.d∼ N(0,σ2

1)

when t ≤ [r0T ] and ut
i.i.d∼ N(0,σ2

2) when t > [r0T ]. Let σ1 = 2 and σ2 = 1 so that Ω1 6= Ω2;

β = 0, δ = T−1/2σ2d, d ∈ [0,30] and T = 100.

None of the structural break tests in Table 2.8 accommodate a break in the variance of ut ,

which results in rejection rate larger than size under the null hypothesis. WLS directional break

tests in Table 2.9 shows size control. Thus, we cannot directly compare the finite sample power

of WLS directional break tests and other tests. Nonetheless we plot the power of tests in Figure

2.9. The left plot shows directional break tests using OLS estimators have larger power in finite

sample than Nyblom and AP(∞) tests for all break location considered. The right plot shows that

WLS directional break test statistics have smaller power than comparing methods, as expected,

except the case when a break occurs at the median of the sample r0 = 0.5.
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Figure 2.9: (Model 5) Finite sample power of the 5% level structural break tests when δ̄ = 1
across local parameter d ∈ [0,30] and σ1/σ2 = 2. The left (right) panel shows directional break
test statistics using OLS (WLS). The plots correspond to break location r0 = 0.20,0.30, and
0.50 respectively.
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Table 2.8: (Model 5) Rejection rate of structural break tests under no break δ = 0, T = 100.

Test Statistic

r0 δ̄ dba
T dbb

T dbc
T Nyblom AP(0) AP(∞) qLL

0.2
1 0.0764 0.0749 0.0788

0.0934 0.0937 0.1750 0.0946
-1 0.0827 0.0807 0.0822

0.3
1 0.0704 0.0697 0.0719

0.0805 0.0752 0.1280 0.0832
-1 0.0730 0.0722 0.0736

0.4
1 0.0658 0.0658 0.0653

0.0700 0.0618 0.1069 0.0726
-1 0.0643 0.0637 0.0647

0.5
1 0.0493 0.0491 0.0487

0.0479 0.0409 0.0775 0.0651
-1 0.0529 0.0533 0.0504

Table 2.9: (Model 5) Rejection rate of WLS directional break tests under no break δ = 0,
T = 100.

Test Statistic

r0 δ̄ dba
T (WLS) dbb

T (WLS) dbc
T (WLS)

0.2
1 0.0454 0.0451 0.0496
-1 0.0468 0.0473 0.0513

0.3
1 0.0420 0.0412 0.0451
-1 0.0447 0.0446 0.0487

0.4
1 0.0449 0.0436 0.0499
-1 0.0443 0.0423 0.0471

0.5
1 0.0415 0.0406 0.0429
-1 0.0435 0.0427 0.0456

2.4 Empirical Application

Previous literature has attempted to test the existence of breaks in mean macroeconomic

growth rates, particularly because shocks that affect mean growth rates occur rarely and hence

useful to model them as a one-time event. Bai, Lumsdaine, and Stock (1998) tests existence of a

break in the output growth in postwar European and U.S., in which graphical evidence points

to growth slowing down sometime in the 1970s. The authors finds that for the U.S. most of the
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test statistics reject for the no-break hypothesis but the estimated confidence interval does not

contain the growth slowdown in the 1970s. Eo and Morley (2015) applies an inverted likelihood

ratio test and the testing method of Qu and Perron (2007) on postwar quarterly U.S. real GDP

and consumption on nondurable goods and services. Under the assumption of no-break in the

unconditional mean of the co-integrating relationships of output and consumption, they test for

the break in the long-run growth rate. The results suggest weak evidence in the timing of the

“productivity growth slowdown” in the early 1970s and the Great Moderation in the mid-1980s. It

is likely that the directional break tests will be able to find stronger evidence of a structural break

by specifying its direction. Section 2.4.1 investigates a structural break in U.S. real GDP growth

rate and Section 2.4.2 considers U.S. labor productivity based on the work of Hansen (2001).

2.4.1 U.S. real GDP growth

We consider a simple univariate model to test for a structural break in postwar quarterly

U.S. real GDP growth rate. Data are obtained from the Bureau of Economic Analysis (BEA)

website for the sample period 1947Q1 - 2017Q2. Quantity indexes are seasonally adjusted and

the base year is 2009 (2009 = 100). We assume that log output has a stochastic trend with a drift

and a finite-order representation. We test for a structural break in a AR(1) model for three cases.

The lag order is selected using Kurozumi and Tuvaandorj’s (2011) modified Bayesian information

criterion (BIC), following Eo and Morley (2015) approach. The model selection method takes

into account structural breaks, given an upper bound of four lags and four breaks in output growth.

The first case is a break in the drift term only (the constant term γ = 0), second case is a break in

the lag coefficient only, i.e., “propagation term” (δ = 0), and lastly a break in both constant and

coefficient terms θ = (γ,δ)′.

∆yt = β+φ∆yt−1 +1{t > τ0}(γ+δ∆yt−1)+ut . (2.19)
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We assume the error term {ut} are serially uncorrelated mean zero disturbances with a break in

variance: E[u2
t ] = σ2

1 at t ≤ τ0 and E[u2
t ] = σ2

2 at t > τ0. At break date τ0, the long-run growth

rate of log output change from E[∆yt ] = β/(1−φ) to (β+ γ)/(1−φ− δ) and the volatility of

growth rate change from Var[∆yt ] = σ2
1/(1−φ2) to σ2

2/(1− (φ+δ)2). Previous literature have

investigated the decrease in volatility of U.S. real GDP growth rate occurring in mid-1980s (Stock

and Watson, 2002). We incorporate the change in variance by using WLS in addition to OLS

estimation for directional break tests.

We would like to see if directional break tests reject the null hypothesis of no break for

three cases. In the first two cases when a break occurs in one coefficient of an AR(1) model, we

would expect a negative direction in break2 δ̄ =−1. For the third case when both coefficients are

under a break, we set θ̄ = (−1,−1)′. For comparison we compute the Nyblom, AP and qLL test

statistics which do not allow break in variance. Table 2.10 computes all test statistics ignoring the

break in volatility, using OLS residuals for directional test statistics (2.3), (2.4) and (2.5). Table

2.11 computes the WLS directional test statistics (2.6), (2.7) and (2.8).

Table 2.10: Autoregressive Model of U.S. Real GDP Growth 1947Q1-2017Q2: Directional
break test statistics, Nyblom, AP and qLL test statistics; **: Rejects the null hypothesis of no
break at 5% significance level; *: Rejects the null hypothesis of no break at 10% significance
level.

Test Statistic

Null dba
T dbb

T dbc
T Nyblom AP(0) AP(∞) qLL

γ = 0 2.5915** 3.1663** 2.0624** 2.3120* 1.3797 -5.8025
δ = 0 1.5708 1.8752 1.2087 1.0295 0.6856 -3.7586
θ = 0 3.2003** 4.8278** 2.0725** 0.5204 2.8558 1.7168 -9.5463

For three different null hypotheses on the model (2.19), all three directional tests reject the

null hypothesis of no break in the constant term, γ = 0 and the null of no break in both coefficients,
2The mean of annualized growth rate from 1947Q1 to 1984Q1 is 3.5 percent and the standard deviation is 4.7

percent. From 1984Q1 to 2017Q2 the mean is 2.6 percent and the standard deviation is 2.4 percent.
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Table 2.11: Autoregressive Model of U.S. Real GDP Growth 1947Q1-2017Q2: WLS directional
break test statistics, Nyblom, AP and qLL test statistics; *: Rejects the null hypothesis of no
break at 10% significance level.

Test Statistic

Null dba
T (WLS) dbb

T (WLS) dbc
T (WLS) Nyblom AP(0) AP(∞) qLL

γ = 0 1.5801 1.8595 1.2462 2.3120* 1.3797 -5.8025
δ = 0 1.9484* 2.2735* 1.5426* 1.0295 0.6856 -3.7586
θ = 0 2.1572* 2.9710* 1.5324* 0.5204 2.8558 1.7168 -9.5463

Table 2.12: Autoregressive Model of U.S. Real GDP Growth 1947Q1-2017Q2; variance is
estimated pre- and post-1984Q1: Directional break test statistics, Nyblom, AP and qLL test
statistics; **: Rejects the null hypothesis of no break at 5% significance level; ***: Rejects the
null hypothesis of no break at 1% significance level.

Test Statistic
Null dba

T dbb
T dbc

T Nyblom AP(0) AP(∞) qLL

γ = 0 0.6799 0.7469 -0.6634 2.9976** 4.0594*** -9.4593**
δ = 0 0.6438 0.7017 0.6592 1.0860 0.6341 -3.5761
θ = 0 0.5896 -0.6786 -0.7701 0.5773 3.3682 4.2376** -12.1004

Table 2.13: Autoregressive Model of U.S. Real GDP Growth 1960Q1-2017Q2: WLS directional
break test statistics, Nyblom, AP, qLL test statistics and δ := (γ,δ1). **: Rejects the null
hypothesis of no break at 5% significance level; *: Rejects the null hypothesis of no break at
10% significance level.

Test Statistic

Null dba
T (WLS) dbb

T (WLS) dbc
T (WLS) Nyblom AP(0) AP(∞) qLL

γ = 0 1.6547 1.9511 1.3315* 2.5826* 1.6511* -7.1101
δ = 0 1.5107 1.7033 0.9249 0.4966 0.4127 -3.3896
θ = 0 2.1731* 2.9902* 1.5238* 0.5662 3.0547 1.9861 -10.3368

θ = 0 at 5% significance level. WLS directional tests reject the null hypothesis of no break in the

lag coefficient, δ = 0 and the null θ = 0 at 10% significance level. Other structural break tests fail

to reject the null of no break except for AP(0) which rejects the null γ = 0 at 10% significance

level. Therefore, all three directional break tests provide significant evidence of a break in U.S.

96



real GDP growth rate whereas Nyblom, AP and qLL tests suggests weak or no evidence.

Allowing for σ2
1 6= σ2

2 using WLS estimation provides a weak evidence a break in the

lag coefficient, in contrast to a significant break in the constant term using OLS. Nonetheless, it

suggests a structural break while taking into account the shift in growth rate volatility, such as the

Great Moderation, that might be caused from the change in second moment of disturbances.

If we assume a break in variance at a specific date we can allow volatility break in all

structural break test statistics, including directional break test statistics using OLS estimators.

Based on previous literature on the Great Moderation, we estimate the variance of the AR(1)

disturbance term pre- and post-1984Q1. Hence σ̂2
1 = τ−1

∑
τ
t=1 û2

t where τ =1984Q1 and σ̂2
2 =

(T − τ)−1
∑

T
t=τ+1 û2

t . The results in Table 2.12 are in striking contrast to Table 2.10. AP(0) and

qLL tests reject the null γ = 0 at 5% significance level. AP(∞) test rejects γ = 0 at 1% significance

level and θ = 0 at 5% significance level. However, all directional break tests fail to find evidence

of a break for all three hypotheses. We also compute tests for sub-sample 1960Q1-2017Q2.

Table 2.13 shows that AP(0) and AP(∞) test statistics reject the null hypothesis γ = 0 at 10%

significance level. WLS directional break tests reject the null θ = 0 at 10% significance level but

dba
T and dbb

T tests to reject γ = 0.

Overall, allowing for a break in variance and assuming a negative direction in a AR(1)

model of output growth rate leads to rejection of no break in the U.S. real GDP growth rate. Other

structural break methods fail to reject the null of no break (or has weaker evidence of a break),

unless we assume there is a break in the variance at time of Great Moderation. This suggests

that using directional break tests on U.S. real GDP growth rate provides stronger evidence of the

output growth rate slowdown.

2.4.2 U.S. labor productivity

We also consider the structural break in U.S. labor productivity, using the productivity

data from Hansen (2001). Under a AR(1) model Hansen (2001) measures labor productivity
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in the manufacturing/durables sector as the growth rate of the Industrial Production Index for

manufacturing/durables to average weekly labor hours, a monthly time series from February

1947 to April 2001 (total 651 observations). The author finds that the test of Andrews (1993)

rejects the null hypothesis of no structural break. Subsample estimates of mean growth rates (in

annualized units) are 3.4% for 1947-1964, 2.5% for 1964-1982, 4.2% for 1982-1995 and 7.7%

for 1995-2001. Clearly there is an increase in the mean growth rate compared to previous history.

Under the model (2.19) and considering three cases of the change in coefficient parameters

that causes a increase in the mean E[∆yt ]. We would expect a positive direction δ̄ = 1 for the

change in the constant term or the lag coefficient. For the change in both terms, consider

δ̄ = (1 1)′. Table 2.14 shows that all three directional break tests and comparative break tests

provides significant evidence of a break in the constant term γ and both coefficients θ = (γ,δ)′.

Table 2.14: Autoregressive Model of U.S. labor productivity Feb 1947-Apr 2001: Directional
break test statistics, Nyblom, AP and qLL test statistics; ***: Rejects the null hypothesis of no
break at 1% significance level; **: Rejects the null hypothesis of no break at 5% significance
level; *: Rejects the null hypothesis of no break at 10% significance level.

Test Statistic

Null dba
T dbb

T dbc
T Nyblom AP(0) AP(∞) qLL

γ = 0 3.8714*** 4.6545*** 2.1862** 4.0219*** 4.2237*** -11.5064***
δ = 0 0.7202 0.8299 -0.0085 1.6134 1.4806 -8.3101*
θ = 0 2.8498** 3.6454* 0.8081 1.0277** 5.7627** 4.4869** -19.6957***

We follow the sub-sample analysis of Hansen (2001) and partition the sample based on

the break date estimate from the full sample (January 1982). All three directional break tests and

four comparative tests fail to reject the null of no break in period [1947,1982] but all tests find

evidence of break during [1982,2001] with results similar to Table 2.14. The break date estimate

in [1982,2001] is December 1994. For period [1947,1994], only the Nyblom test finds evidence

of a break at 10% significance level and others fail to reject the null of no break. The break date

estimate in period [1947,1994] is December 1963. For subsample period [1964,1994] in Table
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2.15, none of the tests finds evidence of a break at 10% significance level. Finally, taking the

subsample [1964,2001], all tests finds evidence of a structural break, similar to results in Table

2.14. In summary, directional break tests results are similar to other break tests in providing

significant evidence of a break in U.S. labor productivity, for all sub-samples considered.

Table 2.15: Autoregressive Model of U.S. labor productivity Jan 1964-Dec 1994: Directional
break test statistics, Nyblom, AP and qLL test statistics; *: Rejects the null hypothesis of no
break at 10% significance level.

Test Statistic

Null dba
T dbb

T dbc
T Nyblom AP(0) AP(∞) qLL

γ = 0 1.6332 2.0089 1.1616 1.1319 0.7270 -4.6487
δ = 0 0.7011 0.7805 -0.3196 0.3657 0.1685 -3.0092
θ = 0 1.9871* 3.1668* 1.2241 0.3006 1.5537 1.0235 -7.9184

2.5 Conclusion

This paper provides three structural break tests when the direction of the coefficient

change in a linear regression model is known. We construct test statistics that are directed toward

the alternative by incorporating the known direction of a break, which leads to increase in power.

We denote these break tests under known direction of a break as “directional break tests”. The first

two directional break test statistics are motivated from a likelihood ratio test statistic that tests the

null of no break against the alternative hypothesis that is a weighted average of a break occurring

at each potential break date. Thus, the first two directional break tests have optimality properties

under i.i.d Gaussian disturbances and strictly exogeneous regressors. The third directional break

test does not have optimality properties, but it has a null limit distribution equivalent to a standard

normal distribution and thus simple to calculate.

The null asymptotic distribution of directional break test statistics are derived under
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assumptions that allow for heterogeneous and autocorrelated error terms and regressors. We also

allow the long-run variance of the error term to change simultaneously with coefficients, and

provide directional break test statistics using weighted least squares.

In Monte Carlo simulations and empirical applications we compare the three directional

break tests with other structural break tests widely used in literature. We consider five different

DGPs under a structural break for Monte Carlo simulations. Results show that under correct

directions, finite sample power of directional break tests are higher than that of conventional

structural break tests. In particular, the case when a break occurs in the drift of a AR(1) model

(Model 4) shows the most improvement in power. Two empirical applications are provided:

postwar U.S. real GDP growth rate and U.S. labor productivity. Directional break tests suggest

significant evidence of a break in U.S. real GDP growth rate whereas other break tests fail to find

evidence of a break.

Chapter 2, in full, is currently being prepared for submission for publication of the material.

Baek, Yaein.; Elliott, Graham. The dissertation author was a primary author of this paper.
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Chapter 3

Forecasting in Long Horizons using

Smoothed Direct Forecast

3.1 Introduction

In forecasting multiperiod time series we confront two different methods. The “iterated”

forecast specifies a one-period-ahead model such as autoregression, then iterates forward to obtain

the multiperiod horizon forecast. In contrast the “direct” forecast has each horizon specified

in a model where the dependent variable on the left hand side of the regression is multiple

periods ahead. The idea of direct forecasting goes back to Cox (1961) and Weiss (1991), where

asymptotic properties of the direct forecasts under general conditions are established. Direct

forecast methods are also used in estimating the impulse response of a dynamic system, referenced

as local projections by Jordà (2005).

In theory the iterative method would provide more efficient estimates compared to the

direct method if the model is correctly specified. For instance, suppose we want to forecast a time

series by specifying an autoregression model with four lags for estimation. If the data-generating

process (DGP) of this series is indeed a stationary autoregressive model with four lags or less,
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then the iterated forecast will have smaller mean square forecast error (MSFE) than the direct

method. Under a Gaussian process, the iterated method provides estimates that are asymptotically

equivalent to the maximum likelihood estimator. Analytic expressions are provided by Bhansali

(1996) and Ing (2003) under a non-Gaussian assumption.

Instead of the true lags of four, suppose we use an autoregressive model with two lags.

Then the iterated forecasts are biased and the compounding misspecification error from recursive

iteration would lead to larger bias in long horizons. In contrast, direct forecast is more robust to

misspecification of an unknown DGP. The two forecasting methods involve a bias and variance

trade-off; thus, a forecaster who is particularly interested in predicting long horizons would

prefer the direct-forecast method over the iterated approach. Furthermore, the direct method is

flexible because control variables can differ across horizons and it is relatively easy to estimate

for non-linear dynamic systems.

Although obtaining long-horizon forecasts through the direct forecast method seems

attractive due to its robustness, direct method estimates tend to be erratic across horizons. Because

direct forecasting imposes less structure than the iterated method, the obtained forecasts are not

“smooth” across horizons, contradicting what we would expect in theory. For example, Figure

3.1 is a replication of Owyang, Ramey, and Zubairy (2013) Figure 5, which shows the response

of government spending to a news shock equal to 1 percent of GDP, based on quarterly data

from 1920:I to 2011:IV for Canada. The direct method is used to estimate impulse responses

instead of standard vector autoregressions (VAR) due to construction of government multipliers.

The estimates show jagged shapes across time whereas in theory, impulse responses are smooth.

Hence a forecaster using a direct method is likely to report unreliable multiperiod forecasts.

This view motivates us to provide a smoothness mechanism on direct forecasts to resolve

the erratic behavior of estimates. We expect improvement in long-horizon forecast performance

by imposing smoothness across multiperiod forecasts while maintaining flexibility of the direct

method.
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Figure 3.1: Government spending response to a news shock. The solid line is the impulse
response estimated by the direct-forecast method. The dotted line is the corresponding two
standard error band.

The main goal of this paper is to develop a method that can be implemented in direct

forecasts to obtain long-horizon forecasts with improved performance. A smoothness prior is

imposed across horizons of direct forecasts such that multiperiod forecasts show less jagged

shapes as the horizon length increases. The new method is more robust to misspecification

compared to the iterative method, conducted through a restricted regression in which we impose a

smoothing parameter on the first differences of estimators, which is analogous to ridge regression.

The smoothing parameter can be implemented as a prior distribution from a Bayesian perspective.

Shiller (1973) introduced the concept of imposing a smoothness to the lag curve. We apply our

method to time series where long-horizon forecasts are of interest: real oil prices and the U.S.

macroeconomic time series from Marcellino, Stock, and Watson (2006). Both results show that

our method shows improvement over the direct forecast approach in long horizons such as 3 to

5 years. For most series, forecasts based on our method have uniformly less MSFE than direct

forecasts across horizons.

The rest of this paper is organized as follows. Section 3.2 briefly introduces the direct and

iterated forecast methods and describes the estimation of our forecast model. Section 3.3 applies

the method to forecasting real oil prices and the macroeconomic series and evaluates performance.
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Section 3.4 includes an outline of further research and concluding remarks.

3.2 Smoothness Mechanism on Direct Forecasts

Section 3.2.1 introduces the difference in forecasts obtained from the direct and iterated

methods in addition to the literature that compares the performance of the two forecasts. Section

3.2.2 describes the construction and intuition of our forecast method, which is based on the direct-

forecast model. We explain how to choose the smoothing parameter used for our estimation.

3.2.1 Direct versus iterated forecasting

Several researchers have evaluated the performance of direct forecasts compared to

iterated forecasts. Marcellino, Stock, and Watson (2006) compared the performance of iterated

and direct forecasts using 170 U.S. monthly macroeconomic time series, spanning 1959 to 2002.

A parametric bootstrap is conducted by assuming an autoregression as the DGP. This method

allows examination of the spread of the distribution of MSFEs to see whether the direct method

improves on the iterated method, on average, over the population of macroeconomic variables.

Results show that iterated forecasts outperform the direct forecasts under correct specification. In

contrast, Bhansali (1996) provided simulation results in which the direct method has a smaller

MSFE than the iterated method if an underparameterized autoregressive model is fit on a generated

autoregressive moving average process. Ing (2003) obtained asymptotic expressions of MSFE of

the two methods in an AR(p) process with 1≤ p≤ ∞ and compared their performance. If the

fitted order k is such that k < p, the multistep MSFE of the direct forecast is less than that of the

iterated forecast for almost all points in the parameter space. In addition, the paper shows that

under certain nonstationary processes, the relative performance of direct and iterated forecasts are

ambiguous.

We introduce properties of the direct and iterated forecast approach in the following
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model. Assume observations {yt} are generated from a stationary autoregressive process and

{y1, . . . ,yt} are observable at time t. Suppose a forecaster is interested in obtaining h = 1, . . . ,H

period ahead forecasts for this series, where H is the maximum forecast horizon of interest. An

iterated forecast would be obtained from an AR(p) model below.

yt+1 =
p

∑
j=1

φ jyt+1− j + εt+1. (3.1)

A one-period ahead regression model is specified and for multiperiod forecasts we iterate over

equation (3.1). Suppose the companion form is expressed as wt+1 = ψwt + vt+1. At time T , the

iterated forecast is ŵT+h = ψ̂hwT for horizon h = 1, . . . ,H.

In contrast, the direct forecasting method specifies different regression for each horizon in

obtaining h period-ahead forecasts. On the left side is the h period-ahead variable of interest, and

for the regressors we specify variables that are available at time t. In addition to the lags of yt , we

can include a multivariate exogenous variable xt available at time t, unlike the iterated method.

yt+h =
p−1

∑
j=0

βh, jyt− j +x′tγh +ut+h, h = 1, . . . ,H. (3.2)

The estimators (β̂h,0, . . . , β̂h,p−1, γ̂h) depend on h due to different regression models for each

horizon. At time T the direct forecast is ŷT+h = ∑
p−1
j=0 β̂h, jyT− j +x′T γ̂h for horizon h.

Suppose our data has T periods of series {yt ,xt}. Divide the sample into two subsamples:

the first R observations are included in the pseudo in-sample set and the remaining T − R

observations are in the pseudo out-of-sample set. Denote ŷt,t+h as the h horizon forecast using

information available at time t (this notation is necessary for our method due to joint estimation

at each period). Forecasts are evaluated by comparing h horizon MSFE for all horizons.

MSFE (h) =
1

T −h−R+1

T−h

∑
t=R

û2
t,t+h, ût,t+h = yt+h− ŷt,t+h (3.3)
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If the iterated forecast model (3.1) is correctly specified, the iterated MSFE is smaller than

the direct MSFE, and under a Gaussian assumption, it is efficient. However if the model is

misspecified, such as an incorrect lag order p, the misspecification error compounds across

horizons in predicting multiperiod forecasts.

In practice we do not know the “true” lag order; thus, p is likely to be misspecified. The

advantage of the direct method is that it is robust to such misspecification. The drawback is when

h > 1, overlap in data affects the covariance of forecast errors, and serial correlation of the errors

lead to erratic estimations across horizons. That is, the forecast error ût,t+h in regression (3.2) is

an MA(h−1) process that needs to be incorporated in estimation.

To illustrate this, we use the VAR example from Jordà (2005). Suppose the true DGP is a

VAR(p). Then the horizon h forecast can be obtained by recursively substituting the companion

form Wt+h = Ψ
hWt +Ψ

h−1vt+1 + · · ·+Ψvt+h−1 +vt+h, and therefore yt+h is

yt+h = Φ
h
1yt +Φ

h
2yt−1 + · · ·+Φ

h
pyt−p+1 (3.4)

+(vt+h +Φ
1
1vt+h−1 + · · ·+Φ

h−1
1 vt+1)︸ ︷︷ ︸

εt+h

,

where Φ
h
i is the ith upper (k× k) block of the matrix Φ

h. We can see that the error term at

horizon h is εt+h, a moving average of errors from time t + 1 to t + h. Under known data-

generating processes, we can use this moving-average structure to construct the covariance matrix

of horizon h > 1 forecast errors and obtain an efficient estimate by using generalized least squares

(GLS). In practice, however, the true DGP is unknown; hence, we cannot use the standard GLS

formula. Because we do know that the forecast error εt+h follows an MA(h−1) process in which

heteroskedasticty and autocorrelation robust standard errors can be used.

Chang and Sakata (2007) provided asymptotic normality and consistency of direct forecast

regression. The authors proposed the direct method to estimate impulse response functions using

a two-stage procedure. First, innovations are estimated in a prior stage by a “long autoregression”
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that fits an AR(p) model to the data. Then the data yt are regressed on the estimated innovation

at lag h to estimate the impulse response at horizon h. The local projection estimator by Jordà

(2005) is a special case of this procedure; it uses an h step-ahead linear prediction model which is

equivalent to this two-stage method with the last h observations discarded in the first stage.

3.2.2 Smoothed direct forecasts

To resolve the erratic behavior of direct forecasts across horizons, we impose a smoothness

prior on estimators that is analogous to the method developed by Shiller (1973) imposing a

Bayesian prior regarding the “smoothness” of the lag curve. The first degree smoothness priors

will cause jagged shapes to be unlikely to occur; hence, we expect less erratic shapes by imposing

a prior on first differences. A restricted regression that has a penalty term (smoothing parameter)

on the first differences of coefficients are estimated, similar to the ridge regression. The resulting

estimator is numerically equivalent to the Bayesian posterior mean if we assume a Gaussian prior

distribution on parameters, where the smoothing parameter is embedded in the covariance matrix.

Consider the direct forecast regression of horizon h that is univariate: yt+h = x′tβh +ut+h.

The dependent variable yt+h is an element of multivariate variable yt+h, the regressor xt consists

of lags of yt and a constant: xt = (1,y′t , . . . ,y′t−p+1)
′. Let n = kp+1 be the dimension of xt and βh

for each h = 1, . . . ,H. We impose a smoothness prior through a smoothing parameter λ(h,T ) in

the following restricted regression. The smoothing parameter λh = λ(h,T ) is a function of horizon

h and sample size T , which is described in detail later. Different units of variables are incorporated

by standardizing the error term and first difference of coefficients. Thus we minimize the sum of

squared terms that has a standard deviation of one. Denote σ2
h := limT→∞Var(T−1/2

∑
T−h
t=p ut+h)

and Ωh := diag(Var(
√

T (β̂h− β̂h−1))) is a diagonal matrix that is equal to the diagonal elements

of the covariance matrix of first differences.
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min
β1,...,βH

(
H

∑
h=1

T−1
T−p−H+1

∑
t=p

σ̂
−2
h (yt+h−x′tβh)

2 +
H

∑
h=2

λh(βh−βh−1)
′
Ω̂
−1
h (βh−βh−1)

)
. (3.5)

Since σh and Ωh are unknown, we replace them with the estimators σ̂h and Ω̂h from the direct

forecast regression. The FOC with respect to β1, . . . ,βH results in the following estimator,


V̂−1⊗T−1

∑
t

xtx′t +



λ2Ω̂
−1
2 −λ2Ω̂

−1
2 0 · · · 0

−λ2Ω̂
−1
2 (λ2Ω̂

−1
2 +λ3Ω̂

−1
3 ) −λ3Ω̂

−1
3 · · · 0

...
...

...
...

...

0 0 0 · · · λHΩ̂
−1
H







β̂1

β̂2
...

β̂H



=



σ̂
−2
1 T−1

∑t xtyt+1

σ̂
−2
2 T−1

∑t xtyt+2

...

σ̂
−2
H T−1

∑t xtyt+H


, (3.6)

where 0 is a (n× n) matrix of zeros and V̂ := diag{σ̂2
1, σ̂

2
2, . . . , σ̂

2
H}. Denote the matrix with

Ω̂
−1
h terms as M−1. Then the above equation is equivalent to

(
V̂−1⊗T−1

∑t xtx′t +M−1
)

β̂ =(
T−1

∑t V̂−1Yt⊗xt

)
where β̂ = (β̂

′
1, . . . , β̂

′
H)
′ and Yt := (yt+1, . . . ,yt+H)

′. From the FOC equa-

tion (3.6), note that all H horizon coefficients are jointly estimated due to the first differences in

the objective function (3.5). Thus a total Hn number of parameters are jointly estimated, which

is likely to be large. However, even though there are a large number of coefficients to estimate,

it is not difficult to compute. This is because estimated matrices with kronecker products V̂−1

and Ω̂
−1
h are diagonal for all h so that M−1 consists of diagonal matrices. Therefore the FOC

(3.6) looks complicated at first sight but easy to compute. Furthermore, the estimators can be

interpreted as a Bayesian posterior mean where a smoothness prior is imposed on the direct

108



forecast model. Suppose we assume a Gaussian prior distribution on the coefficients β with

covariance matrix M; that is, inverse of the matrix M−1 above. The prior mean is a (nH× 1)

vector 0 where all elements are zero. The posterior distribution of β is

β|Y∼ N
(

M∗
[

T−1
∑
t

V̂−1Yt⊗xt

]
,M∗

)
, M∗ =

(
V̂−1⊗T−1

∑
t

xtx′t +M−1
)−1

, (3.7)

derived from conjugate Gaussian prior. The posterior mean is equivalent to the estimator from

the restricted regression with a smoothing parameter on first differences. Thus we have used

a Bayesian interpretation of the restricted least square with smoothing parameter λ(h,T ) that

differs across standardized first difference of coefficients Ω
−1/2
h ∆βh with rate of convergence

O(1). If λh is large, we are imposing a strong smoothness prior on horizon h forecast toward

horizon h−1 forecast.

The intuition of the smoothing parameter λ(h,T ) is to think of this as weights on the h

horizon loss function (the standardized square of first differences). A larger weight means more

penalty on a large loss. That is, the smoothing parameter can be interpreted as the ratio of the

weight on the sum of squared error and the weight on the square of standardized first differences.

Suppose we impose weights (1−ωh) and ωh on each term of the objective function (3.5).

H

∑
h=1

(1−ωh)T−1
T−p−H+1

∑
t=p

σ̂
−2
h (yt+h−x′tβh)

2 +
H

∑
h=2

ωh(βh−βh−1)
′
Ω̂
−1
h (βh−βh−1)

Then, for each horizon, we minimize a weighted average of loss functions: the objective function

of the direct-method estimator and the first differences of coefficients across horizons. This

objective function is identical to (3.5) with λh = ωh/(1−ωh). If we assign equal weights

ωh = 0.5 on both objective functions then λh = 1. In the two extreme cases, ωh→ 0 and ωh→ 1

implies λh→ 0 and λh→ ∞, respectively. If λh approaches zero, we obtain estimates that are

similar to the direct estimates whereas a large value of λh results in constant coefficients across

horizons.
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To incorporate different penalties on different horizons and sample size, a linear and an

exponential function of h and T is adapted. The exponential function is

λ(h,T ) = exp(h/
√

T )

where weight on the sum of squared error and standardized first differences of coefficients are as

below, respectively.

1−ωh =
1

1+ exp(h/
√

T )
, ωh =

exp(h/
√

T )
1+ exp(h/

√
T )

.

The exponential smoothing parameter increases with horizon length and shrinks as sample size

increases. The parameter increases with h because we want to “pull” toward the previous horizon

estimator that is more reliable and shorter horizons are estimated better, relative to longer horizon

estimates. Furthermore, if h is large relative to sample size T , we would like to rely on shorter

horizon estimators due to lack of information.

In general we can modify the exponential smoothing parameter through multiplication

of constants inside and outside the exponential term, such as aexp(b · h/
√

T ). However this

generalization is rather unnecessary; as the smoothing parameter increases exponentially in longer

horizons, the weight ωh on ∆βh is close to one and different values of (a,b) will not make a large

difference in estimates. In addition, empirical results in section 3.3 show us that forecasts are

robust to the choice of the smoothing parameter.

One may think of imposing smoothness after obtaining direct forecast estimates instead

of incorporating smoothness in the estimation stage. This is equivalent to a linear function of

direct forecast estimates β̂ = (β̂
′
1, . . . , β̂

′
H)
′. Our method is a special case in which we take a

particular linear function (see Appendix A.3 for details). We choose to incorporate smoothing in

the estimation stage because it is easier to interpret this linear function. For instance, if we want

to smooth out the direct estimates in a simple weighted average of horizon h and h−1 estimates,
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it is unclear how to choose the weights intuitively.

From now on, we denote estimators obtained by imposing smoothness prior on direct

forecast regressions through ridge regression (3.5) as “smoothed direct forecasts”. In addition to

the smoothing parameter on first differences, we can impose a penalty term on coefficients of

stationary variables themselves. Suppose prior information shows that the impulse response to

a shock dies out quickly. Then a prior that is analogous to a shrinkage estimator is imposed on

long-horizon impulse responses. We add in an additional parameter γh in regression (3.5).

min
β1,...,βH

(
H

∑
h=1

T−1
T−p−H+1

∑
t=p

σ̂
−2
h (yt+h−x′tβh)

2

+
H

∑
h=2

λh(βh−βh−1)
′
Ω̂
−1
h (βh−βh−1)+

H

∑
h=1

γhβ
′
hŴ−1

h βh

)
(3.8)

The parameter γh is set to be zero for shorter horizons h = 1, . . . , l−1 and a function of h and

T for longer horizons h = l, . . . ,H. The FOC with respect to β1, . . . ,βh can be written similar

to (3.6) so that the inverse prior covariance matrix M−1 is modified by adding a matrix that has

{γ1Ŵ−1
1 ,γ2Ŵ−1

2 , . . . ,γHŴ−1
H } as the diagonal (n×n) block elements and zero otherwise.

3.3 Empirical Applications

3.3.1 Real oil prices

Forecasts of the price of crude oil have been considered a key variable in predicting

macroeconomic risks and generating forecasts of macroeconomic outcomes. In this section,

direct forecasts and smoothed direct forecasts of the price of real oil at horizons up to 5 years are

obtained and then the MSFE are compared.

First we check whether the direct forecasts of real oil prices obtain smaller MSFE relative

to the iterated forecast in long horizons. The measures for real oil prices are obtained from
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monthly nominal oil prices and the U.S. CPI as the deflator. We use two nominal oil price

measures obtained from the U.S. Energy Information Administration (EIA). The West Texas

Intermediate (WTI) price is the spot price for crude oil in dollars per barrel, and the U.S. refiners’

acquisition cost (RAC) of imported crude oil in dollars per barrel1. The WTI price sample period

is 1986.1-2016:7 with size T = 367, and the RAC imported price sample period is 1974.1-2016:7

with size T = 511. 2 The in-sample data set (estimation sample) is 1986:1-2001:12 for the

WTI price with size R = 192, and 1974:1-2001:12 for the RAC price with size R = 336. The

sub-sample used for to evaluate out-of-sample forecasts (validation sample) is 2002:1-2011:8

for both measures3, with size P = 175. The out-of-sample forecasts are obtained from recursive

estimation. For the WTI price, the iterated forecasts are obtained from an autoregressive model

with lags selected by SIC (p = 2) and AIC (p = 8). Likewise, direct forecasts are computed under

lags p = 2 and p = 8. Both criteria select the same lags p = 3 for the RAC imported price. A

bootstrap p-value of the mean relative MSFE ratios is constructed under the null hypothesis that

the iterated model is efficient. 4

If the MSFE ratio is less than one, then the direct forecast performs better than the iterated

forecast. Tables 3.1 and 3.2 show that direct forecasts performs worse than iterated forecasts for

all horizons and slightly less so in longer horizons for both measures. Bootstrap p-values shows

that when rejecting the null hypothesis, the iterated forecast performs better and fails to reject all

horizons; the p-value is almost one at short horizons but decreases to 0.6 at 5 years. Hence the

MSFE difference of the two methods are statistically insignificant. If the smoothed direct-forecast

1Data are obtained from the EIA website: https://www.eia.gov/petroleum/data.php. The West Texas Intermediate
(WTI) monthly price for crude oil are calculated by EIA from daily data by taking an unweighted average of the daily
closing spot prices for a given product over the specified time period. For the U.S. refiners’ acquisition cost (RAC)
of crude oil, the U.S. is defined as the 50 states, the District of Columbia, Puerto Rico, the Virgin Islands, and all
American territories and possessions. Values reflect the PAD District in which the crude oil is intended to be refined.

2There is evidence of a major structural change in the distribution of pre- and post-1973 real oil prices; Alquist,
Kilian, and Vigfusson (2013), Dvir and Rogoff (2009). Hence we use data the of post-1973 real oil price only.

3Smoothed direct forecasts are jointly estimated for horizon 1 to 60 months, hence the validation sample is
trimmed by 60 months from the end of the data set.

4AR(p) model is estimated using in-sample data (1986.1-2001.12 for WTI price and 1974.1-2001.12 for RAC
price) and then 500 replication of out-of-sample pseudodata are generated.
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method is implemented in predicting in longer horizons, we expect to obtain smaller MSFE values

compared to direct forecasts and also iterated forecasts in long horizons.

Table 3.1: Relative MSFEs of univariate direct forecast and iterated forecast (RAC). The entry
in parentheses is the p-value of the hypothesis test that the iterated model is efficient against the
alternative that the direct model is more efficient, using the parametric bootstrap algorithm.

Forecast Horizon
Lag 3 6 12 24 36 48 60

AR(3) 1.4885 1.0250 1.0584 1.1014 1.0935 1.1587 1.1931
(1.000) (0.888) (0.758) (0.668) (0.558) (0.628) (0.656)

Table 3.2: Relative MSFEs of univariate direct forecast and iterated forecast (WTI). The entry
in parentheses is the p-value of the hypothesis test that the iterated model is efficient against the
alternative that the direct model is more efficient, using the parametric bootstrap algorithm.

Forecast Horizon
Lag 3 6 12 24 36 48 60

AR(2) 1.5141 1.3889 1.8894 2.1791 1.1410 1.1003 1.3120
(0.988) (0.924) (0.950) (0.930) (0.466) (0.400) (0.594)

AR(8) 2.4617 2.2329 2.7092 2.5984 1.2709 1.3172 1.6789
(0.994) (0.972) (0.966) (0.934) (0.528) (0.582) (0.770)

We compute the smoothed direct forecasts with different smoothing parameters and

compare MSFE values with the direct forecasts. The direct and smoothed direct forecast models

have the same lag length p. Let yt be the series of interest, in our case the real oil price.

Denote xt := (1,yt , . . . ,yt−p+1)
′. The direct forecast of horizon h is obtained from estimating the

following regression

yt+h = γ0h + γ1hyt + · · ·+ γphyt−p+1 +ut+h ≡ x′tγh +ut+h, t = 1, · · · ,R. (3.9)

where the estimate of γh is γ̂h,t =
(

∑
t
j=1 x jx′j

)−1(
∑

t
j=1 x jy j+h

)
. The h horizon direct forecast
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at time t is ŷt,t+h = x′t γ̂h,t . The residual is ût,t+h = yt+h− x′t γ̂h,t for t = R + 1, . . . ,T − h in

which we compute the MSFE of horizons h, P−1
∑

T−h
t=R+1 û2

t,t+h where P = T − h−R and h ∈

{3,6,12,24,36,48,60}. Denote the dimension of γ̂h,t as k := p+1.

The smoothed direct forecast is obtained from the restricted regression (3.5). The

smoothed direct forecast also has the same model specification (3.9) but different coefficient

estimates for h > 1. Denote β̂h,t as the vector of estimated coefficients so that ŷt,t+h = x′t β̂h,t is the

h horizon smoothed direct forecast at time t. The estimator β̂h,t is the (h−1)k+1 to hk elements

of the estimator B̂t .

B̂t =

(
V̂−1

t ⊗ t−1
t

∑
j=1

x jx′j +M−1

)−1(
t−1

t

∑
j=1

V̂−1
t y j⊗x j

)
.

where y j = (y j+1, · · · ,y j+60)
′ and V̂1/2

t is a (60×60) diagonal matrix that consists of standard

estimates σ̂ht =
(

t−1
∑

t
j=1 û2

j, j+h

)1/2
for h = 1, . . . ,60 from (3.9). M is the prior covariance

matrix of Bt and the coefficients are jointly estimated for horizons h = 1, ...,60. The smoothing

parameter is an exponential function λh = aexp(bh/
√

T ) and uses different constant combinations

(a,b) for a ∈ {1,50,500} and b ∈ {1,2}.

Both forecasts are obtained from recursive estimation so that the in-sample size changes

for each out-of-sample date, i.e. ŷt,t+h 6= ŷt+1,t+h, the forecasts for period t + h are different

when we forecast at time t for horizon h and at time t + 1 for horizon h− 1. We compare the

forecast accuracy of direct and smoothed direct forecasts using West’s (1996) test procedure,

which provides a tool to test predictive accuracy when the predictions rely on regression estimates.

Details of the test statistic and null hypothesis are in Appendix A.3.

Tables 3.3 and 3.4 exhibit the MSFE values of direct and smoothed direct forecast of RAC

and WTI price, respectively, for different (a,b) values of the smoothing parameter. Compared to

direct forecasts, the MSFE of smoothed direct forecasts are smaller except for the short horizon

(h = 3) where it increases for the WTI price. For the RAC real oil price, the MSFE of smoothed
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direct forecasts are less than that of direct forecasts in all horizons. The parentheses show the p-

values of the hypothesis test that the MSFE of direct and smoothed direct forecasts are equivalent.

For both measures and all horizons, the p-values are larger than .9; thus the tables omit p-values

other than λh = exp(h/
√

T ).

For both WTI and RAC real oil prices, the MSFE of smoothed direct forecasts are less

than direct forecasts and for WTI prices, particularly at long horizons. However, West’s test show

that the MSFE differences of smoothed direct and direct forecasts are statistically insignificant at

10% significance level for all (a,b) values considered and both measures.

Between the smoothed direct forecasts with different smoothing parameters, various

constants (a,b) in the exponential function have small differences and are sometimes almost

identical in short horizons. Consider the MSFE values of the direct forecast (λh = 0) and smoothed

direct forecast with parameter λh = 1 and λh = 500exp(2h/
√

T ) at horizon 60 months under

AR(8) in table 3.4. The MSFE decreases approximately 0.91 to 0.64 when λh = 0 changes to 1,

but when it changes from λh = 1 to an exponential function with a = 500, it decreases to 0.50.

The p-value of West’s test statistic is approximately .9999 for both λh = 1 and λh = 500e2hT−1/2
.

Therefore the difference of smoothed direct forecast on direct forecast is robust to the smoothing

parameter, which implies that we do not need to worry about determining λh in estimation.

So far we have seen that the smooth direct forecast results in improvement at long horizon

such as 4 or 5 years. Although West’s test results imply that the difference in MSFE of the

direct and the smoothed direct forecasts are statistically insignificant, it does not imply that the

improvement is economically insignificant. For instance, consider the root mean squared error

(RMSFE) in evaluating forecast accuracy at horizon 5 years. Using the WTI real oil price with 8

lags, the direct forecast RMSFE is 0.9554 and the smoothed direct forecast with λh = 500e2hT−1/2

has RMSFE is 0.7049, in log scale. In units of real oil price, the forecast accuracy of the direct

and the smoothed direct method are approximately 2.60 and 2.02 (deflated) U.S. dollars per barrel,

respectively. Then the difference between the two forecasts is 0.58 real U.S. dollars per barrel,
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which is a significant difference considering that 2016:7 oil price is 0.056 real U.S dollars per

barrel.

Furthermore the smoothed direct forecasts are robust to the choice of the smoothing

parameter, whether it is a constant or an exponential function. Because we did not construct an

optimal smoothing parameter that depends on data, we do not want forecasts to drastically deviate

from direct forecasts due to our choice of parameter. In conclusion, our results show that the

smoothed direct method is preferable in forecasting 4 to 5 years forward for real oil prices.

Table 3.3: Pointwise MSFE of univariate direct forecast and smoothed direct forecast (RAC).
The entry in parentheses is the p-value of the hypothesis test that the MSFE of direct and
smoothed direct forecasts at horizon h are equivalent.

Forecast Horizon
Lag λh 3 6 12 24 36 48 60

AR(3)

Direct 0.0856 0.1037 0.1496 0.2326 0.3441 0.4578 0.5211
1 0.0838 0.1118 0.1416 0.2178 0.3280 0.4296 0.5014
hT−1/2 0.0839 0.1120 0.1435 0.2220 0.3273 0.4268 0.5039
ehT−1/2

0.0839 0.1119 0.1415 0.2126 0.3114 0.4178 0.5101
(0.9988) (0.9968) (0.9981) (0.9978) (0.9978) (0.9978) (0.9994)

e2hT−1/2
0.0839 0.1119 0.1415 0.2107 0.3054 0.4115 0.5055

50e2hT−1/2
0.0840 0.1116 0.1398 0.1976 0.2797 0.3792 0.4688

500e2hT−1/2
0.0841 0.1114 0.1379 0.1901 0.2675 0.3630 0.4489
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Table 3.4: Pointwise MSFE of univariate direct forecast and smoothed direct forecast (WTI).
The entry in parentheses is the p-value of the hypothesis test that the MSFE of direct and
smoothed direct forecasts at horizon h are equivalent. The p-values under AR(8) are omitted;
p-values are approximately 1 for all horizons and smoothing parameters.

Forecast Horizon
Lag λh 3 6 12 24 36 48 60

AR(2)

Direct 0.0844 0.1649 0.3947 0.7555 0.5611 0.6333 0.7923
1 0.1072 0.1390 0.1857 0.2778 0.4179 0.5078 0.5927
hT−1/2 0.1055 0.1474 0.1994 0.2853 0.3945 0.4758 0.5575
ehT−1/2

0.1124 0.1487 0.1920 0.2608 0.3455 0.4296 0.5108
(0.9999) (1.0000) (0.9997) (0.9996) (0.9999) (0.9999) (0.9999)

e2hT−1/2
0.1153 0.1507 0.1902 0.2496 0.3353 0.4216 0.4791

50e2hT−1/2
0.1156 0.1507 0.1901 0.2497 0.3378 0.4191 0.4839

500e2hT−1/2
0.1151 0.1151 0.1918 0.2513 0.3392 0.4190 0.4810

AR(8)

Direct 0.1258 0.2336 0.4441 0.6560 0.4846 0.6344 0.9127
1 0.1465 0.1668 0.1881 0.2916 0.4150 0.5719 0.6414
hT−1/2 0.1509 0.1767 0.2037 0.3054 0.4135 0.4956 0.5767
ehT−1/2

0.1565 0.1764 0.1956 0.2810 0.3690 0.4547 0.5365
e2hT−1/2

0.1590 0.1780 0.1941 0.2699 0.3564 0.4519 0.5242
50e2hT−1/2

0.1599 0.1765 0.1896 0.2676 0.3573 0.4440 0.5061
500e2hT−1/2

0.1592 0.1770 0.1913 0.2687 0.3565 0.4399 0.4969

3.3.2 Macroeconomic variables

In this section we replicate the simulation in Marcellino, Stock, and Watson (2006) using

a partition of their data and conduct a test of forecast accuracy of direct and smoothed direct

forecasts on each series. The data consists of 80 U.S. monthly macroeconomic series from the

Basic Economics database (IHS Global Insight). Marcellino et al. (2006) categorized 170 series

into five categories of which we use 80 series from four categories described below. Detailed

description of the data is available in Appendix A.3.

(A) Income, output, sales and capacity use (26 series)

(B) Employment and unemployment (24 series)

(C) Construction, inventories and orders (17 series)
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(D) Interest rate and asset prices (13 series).

For each series we obtain the MSFE of the smoothed direct forecast, direct forecast, and

iterated forecast. Pseudo out-of-sample forecasts are obtained starting from 1990:1 and the final

forecast date is the last available observation (2016:6) minus the forecast horizon h. A univariate

model with 4 lags and a constant is specified for each series and the subsample used for estimation

starts at 1974:4 for all 80 series. Marcellino et al. (2006) specified AR(p) using four different lag

selections: p = 4, p = 12 and lags selected by AIC and BIC. Instead, we use a fixed lag p = 4 for

all series.

Of 80 series, we only display variables that have an MSFE ratio of the smoothed direct

forecast relative to the direct forecast less than one, and MSFE ratio relative to the iterated

forecast less than one for any horizon h ∈ {3,6,12,24,36,48,60} to check for improvement on

the iterated approach as well. A total 26 of 80 series showed improvement on direct and iterated

forecasts, indicating our method improves on the direct forecast, but fails to outperform the

iterated forecast for most macroeconomic series.

Tables 3.5, 3.6, 3.7 and 3.8 show the MSFE ratio of smoothed direct forecasts relative

to direct forecasts for each category A, B, C and D, respectively. For most series in category B

(employment and unemployment) and category C (construction, inventories and orders), direct

forecasts have extremely large MSFE compared to iterative forecasts. Due to the poor performance

of the direct method, the relative ratio of smoothed direct forecasts are quite small, although

the MSFE ratio relative to the iterated forecast would be larger than one or close to one. These

variables are also omitted.

A huge change emerged in the MSFE ratio for series in category B in which the smoothed

direct forecast performance improves as horizon length increases. The difference in MSFE of

direct and smoothed direct forecasts remains statistically insignificant. Category A series such

as Industrial Production Index business equipment or Personal Consumption Index services

show statistically significant differences in MSFE, where the direct forecast outperforms in the
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short horizon (3 months) and the smooth direct forecast outperforms in longer horizons. In

outperforming direct and iterated forecasts, category D has 7 of 13 variables in which the MSFE

of the smoothed direct forecast is less than iterated and direct forecasts, although the improvement

is statistically insignificant for all horizons and series. The p-values are omitted except for

the exponential smoothing parameter when (a,b) = (1,1). Similar to the results in section 3.1,

the MSFE ratios change only slightly as constants (a,b) vary. Large values of the smoothing

parameter, such as a = 500, are omitted due to difficulty in computation.5

Although statistically insignificant, it is plausible that there is economically significant

improvement in forecasts. For example, consider personal consumption expenditure of durable

goods in Table 3.5. Under the smoothing parameter λh = exp(h/
√

T ), the 60-month horizon

MSFE ratio of smoothed direct and direct forecast is 0.2349 so the RMSFE is approximately

0.485. The difference in MSFE of the two methods is statistically insignificant with a p-value

of .94 from West’s test. However, it turns out that this difference is economically significant.

Suppose personal consumption expenditure of durable goods (denote this variable as PCE for

simplicity) has a 4% growth rate on average, and the direct forecast of PCE growth rate 5 years

ahead is 10%. Reverting the transform of log first differences, the smoothed direct forecast of

PCE growth rate 5 years ahead is 6%. Hence the forecast error of PCE growth rate is 2% for

the smoothed direct forecast whereas it is 6% for the direct forecast, which is a large difference

economically.

5Because the inverse of the variance estimates have extremely small values relative to the penalty term, the matrix
M∗ from (3.7) is close to singular.
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Table 3.5: Category (A) MSFE ratio of univariate smoothed direct forecast and direct forecast.
The entry in parentheses is the p-value of hypothesis test that horizon h MSFE of direct and
smoothed direct forecasts are equivalent.

Forecast Horizon
Variable λh 3 6 12 24 36 48 60

IPI, Business
equipment

1 10.4844 8.8916 3.2269 0.9705 0.5272 0.4041 0.3242
hT−1/2 10.4394 8.8666 3.2278 0.9720 0.5281 0.4046 0.3244
ehT−1/2

10.6011 9.0112 3.2285 0.9726 0.5274 0.4034 0.3228
(0.009) (0.764) (0.450) (0.763) (0.933) (0.969) (0.986)

50ehT−1/2
10.6898 9.0917 3.2278 0.9728 0.5270 0.4028 0.3223

IPI,
Non-durable
goods materials

1 26.2042 16.6506 19.6070 3.2278 1.4184 0.7619 0.7229
hT−1/2 27.0694 16.7260 19.4242 3.2052 1.4096 0.7667 0.7587
ehT−1/2

24.8913 15.9290 19.3219 3.2057 1.4159 0.7799 0.7853
(0.912) (0.904) (0.975) (0.977) (0.983) (0.986) (0.992)

50ehT−1/2
23.2206 15.1815 19.1181 3.2154 1.4308 0.7914 0.7971

IPI,
Manufacturing

1 39.4572 8.9542 3.3762 0.9569 0.5387 0.3790 0.2163
hT−1/2 36.3910 9.1037 3.4054 0.9563 0.5299 0.3780 0.2194
ehT−1/2

43.0451 9.6027 3.4378 0.9413 0.5217 0.3745 0.2193
(0.839) (0.694) (0.724) (0.851) (0.930) (0.960) (0.906)

50ehT−1/2
53.5834 11.1153 3.4981 0.9253 0.5092 0.3673 0.2159

IPI,
Nondurable
goods
manufacturing

1 68.1065 14.0836 20.1583 3.2446 1.4569 0.7821 0.7895
hT−1/2 64.5383 41.6229 20.3190 3.2365 1.4397 0.7847 0.8061
ehT−1/2

70.0496 41.4488 20.1801 3.2016 1.4250 0.7857 0.8141
(0.870) (0.919) (0.955) (0.953) (0.966) (0.972) (0.984)

50ehT−1/2
75.5174 42.3381 20.2062 3.1782 1.4141 0.7811 0.8108

IPI, Electricity
and gas utilities

1 4.7970 4.3853 1.9966 1.3671 0.2780 0.3252 0.2276
hT−1/2 4.8666 4.3738 1.9794 1.3666 0.2789 0.3263 0.2260
ehT−1/2

4.6399 4.2677 1.9563 1.3763 0.2818 0.3289 0.2269
(0.436) (0.638) (0.680) (0.896) (0.605) (0.893) (0.885)

50ehT−1/2
4.5103 4.1889 1.9381 1.3821 0.2837 0.3307 0.2280
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Table 3.5: Category (A) MSFE ratio of univariate smoothed direct forecast and direct forecast.
The entry in parentheses is the p-value of hypothesis test that horizon h MSFE of direct and
smoothed direct forecasts are equivalent; continued from previous page.

Forecast Horizon
Variable λh 3 6 12 24 36 48 60

Nominal
Personal
Income

1 12.5942 3.1900 0.8517 0.1507 0.0637 0.0244 0.0115
hT−1/2 12.4946 3.1791 0.8538 0.1505 0.0645 0.0244 0.0114
ehT−1/2

12.7645 3.2389 0.8566 0.1493 0.0646 0.0242 0.0113
(0.104) (0.187) (0.371) (0.338) (0.476) (0.361) (0.304)

50ehT−1/2
13.0102 3.2860 0.8602 0.1486 0.0645 0.0241 0.0112

PCE excluding
Food and
Energy

1 27.1339 8.4365 1.8213 0.3793 0.1576 0.0756 0.0452
hT−1/2 27.2527 8.4308 1.8087 0.3780 0.1565 0.0760 0.0461
ehT−1/2

26.5410 8.2703 1.7945 0.3793 0.1571 0.0768 0.0469
(0.432) (0.556) (0.649) (0.654) (0.645) (0.732) (0.762)

50ehT−1/2
26.0687 8.1547 1.7831 0.3805 0.1580 0.0773 0.0472

PCE, Durable
goods

1 62.2185 43.3796 8.3233 1.3843 0.4970 0.2754 0.2426
hT−1/2 63.3413 46.6166 8.3697 1.3636 0.4894 0.2694 0.2397
ehT−1/2

63.0750 46.9324 8.5165 1.3857 0.4848 0.2639 0.2349
(0.881) (0.937) (0.944) (0.855) (0.819) (0.920) (0.941)

50ehT−1/2
63.0485 47.0669 8.5881 1.3924 0.4820 0.2615 0.2327

PCE,
Nondurable
goods

1 27.4503 9.8219 2.2934 0.5576 0.1701 0.0577 0.0191
hT−1/2 27.5531 9.9546 2.3158 0.5625 0.1642 0.0567 0.0188
ehT−1/2

30.7323 10.9595 2.5638 0.5582 0.1556 0.0532 0.0173
(0.595) (0.671) (0.707) (0.689) (0.678) (0.680) (0.397)

50ehT−1/2
34.1423 12.0156 2.7311 0.5512 0.1488 0.0501 0.0160

PCE, Services

1 4.1523 0.9974 0.2436 0.0509 0.0209 0.0095 0.0048
hT−1/2 4.1386 0.9887 0.2403 0.0505 0.0209 0.0096 0.0050
ehT−1/2

4.0151 0.9643 0.2365 0.0505 0.0210 0.0097 0.0051
(< 0.001) (0.001) (0.010) (0.061) (0.094) (0.114) (0.105)

50ehT−1/2
3.9469 0.9500 0.2344 0.0506 0.0211 0.0098 0.0051
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Table 3.6: Category (B) MSFE ratio of univariate smoothed direct forecast and direct forecast.
The entry in parentheses is the p-value of hypothesis test that horizon h MSFE of direct and
smoothed direct forecasts are equivalent.

Forecast Horizon
Variable λh 3 6 12 24 36 48 60

Employment of all
employees,
Government

1 17.6892 5.1690 2.6165 0.9015 0.6631 0.2554 0.2358
hT−1/2 17.4714 5.2605 2.7243 0.9326 0.6568 0.2469 0.2324
ehT−1/2

20.2539 5.9734 2.8871 0.9511 0.6403 0.2351 0.2233
(0.394) (0.474) (0.763) (0.828) (0.891) (0.859) (0.914)

50ehT−1/2
23.1397 6.7610 3.0367 0.9529 0.6247 0.2270 0.2166

Avg.weekly
overtime hrs. of
prod. & nonsup.
employees: Total
private

1 63.9248 17.6614 9.1001 5.8294 2.5567 0.7475 0.1623
hT−1/2 64.6093 17.5542 8.9325 5.7954 2.5339 0.7514 0.7132
ehT−1/2

60.6430 16.5763 8.7989 5.8263 2.5563 0.7695 0.1827
(0.963) (0.927) (0.982) (0.973) (0.982) (0.974) (0.985)

50ehT−1/2
57.4704 15.7023 8.6404 5.8540 2.5884 0.7854 0.1882

Civilian labor
force: 16yrs and
over

1 56.1628 17.6579 4.2179 0.8942 0.4436 0.1787 0.1001
hT−1/2 54.9540 17.8853 4.2784 0.9150 0.4382 0.1705 0.0967
ehT−1/2

53.9402 18.4024 4.4965 0.9391 0.4322 0.1635 0.0926
(0.680) (0.857) (0.866) (0.877) (0.857) (0.748) (0.871)

50ehT−1/2
53.8839 18.7104 4.6202 0.9458 0.4276 0.1605 0.0907
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Table 3.7: Category (C) MSFE ratio of univariate smoothed direct forecast and direct forecast.
The entry in parentheses is the p-value of hypothesis test that horizon h MSFE of direct and
smoothed direct forecasts are equivalent.

Forecast Horizon
Variable λh 3 6 12 24 36 48 60

Housing starts:
South

1 0.2012 0.2579 0.3932 0.9365 0.8608 1.1646 1.1784
hT−1/2 0.1715 0.2234 0.3451 0.5973 0.6993 0.8116 0.8174
ehT−1/2

0.1861 0.2399 0.3594 0.5780 0.6826 0.7604 0.7869
(0.969) (0.982) (0.992) (0.997) (0.997) (0.997) (0.995)

50ehT−1/2
0.2222 0.2795 0.4003 0.5556 0.6655 0.7389 0.7797

Housing starts:
West

1 0.3342 0.3771 0.4496 0.5756 1.0481 1.3684 1.5429
hT−1/2 0.2021 0.2253 0.2682 0.2883 0.2930 0.2803 0.3300
ehT−1/2

0.2059 0.2273 0.2674 0.2758 0.2581 0.2679 0.3138
(0.998) (0.998) (0.999) (0.999) (0.999) (0.999) (0.999)

50ehT−1/2
0.2095 0.2303 0.2681 0.2729 0.2562 0.2666 0.3124

Ratio of mfg.
and trade

1 25.2450 3.6875 0.9135 2.5459 1.3650 1.3829 0.3652
hT−1/2 24.3819 3.6896 0.9147 2.5280 1.3425 1.3614 0.3994
ehT−1/2

24.7990 3.5447 0.8824 2.4703 1.3362 1.3841 0.4286
(0.994) (0.990) (0.972) (0.983) (0.987) (0.978) (0.997)

50ehT−1/2
24.6399 3.4255 0.8646 2.4464 1.3510 1.4087 0.4400
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Table 3.8: Category (D) MSFE ratio of univariate smoothed direct forecast and direct forecast.
The entry in parentheses is the p-value of hypothesis test that horizon h MSFE of direct and
smoothed direct forecasts are equivalent.

Forecast Horizon
Variable λh 3 6 12 24 36 48 60

IR, U.S.
treasury const
maturities,
10-yr

1 1.9083 1.8183 0.2612 0.7633 4.1354 1.0791 1.3473
hT−1/2 1.8717 1.7988 0.2664 0.8214 4.4321 1.0751 1.0719
ehT−1/2

1.9807 1.8855 0.2565 0.8077 4.9284 1.0729 0.9017
(0.990) (0.993) (0.966) (0.998) (0.994) (0.999) (0.999)

50ehT−1/2
2.1515 2.0102 0.2528 0.7930 4.9587 1.0462 0.8612

IR, federal
funds
(effective)

1 0.6536 1.8021 1.1709 2.4904 1.2894 1.5329 0. 2540
hT−1/2 0.7507 1.6851 1.1036 2.2032 1.4234 1.5782 0.2393
ehT−1/2

0.6456 1.8964 1.2277 2.4122 1.3558 1.5669 0.2671
(0.986) (0.992) (0.998) (0.994) (0.994) (0.994) (0.977)

50ehT−1/2
0.4173 1.4742 1.3212 2.6719 1.4206 1.5365 0.2507

IR, U.S.
treasury const
maturities, 1-yr

1 1.4115 4.0744 1.9826 27.0994 164.0314 90.3570 7.8115
hT−1/2 0.5214 1.3963 0.5995 2.2837 1.1878 1.5714 0.1408
ehT−1/2

0.5563 1.7176 0.7797 4.2135 0.6232 2.1706 0.2476
(0.984) (0.994) (0.992) (0.992) (0.998) (0.997) (0.998)

50ehT−1/2
0.4327 1.4335 0.6410 2.5178 0.9653 1.6965 0.1476

EIR,
conventional
home mtge
loans

1 20.0875 7.1791 22.1647 4.4942 0.0989 0.3692 0.2959
hT−1/2 3.5337 1.0061 2.3216 5.8254 1.1788 1.7701 1.2316
ehT−1/2

5.5798 1.5891 3.0834 6.6599 0.8488 1.3041 0.8418
(0.924) (0.947) (0.976) (0.965) (0.982) (0.948) (0.985)

50ehT−1/2
8.6436 2.4601 4.2549 5.9025 0.7557 1.1659 0.7212

FER,
Switzerland

1 0.2467 0.2585 0.3576 0.2858 0.4190 0.8238 0.5038
hT−1/2 0.2466 0.2647 0.3709 0.2931 0.3657 6.5491 10.4281
ehT−1/2

0.2483 0.2582 0.3460 0.2403 0.2987 0.7498 0.5581
(0.898) (0.922) (0.946) (0.973) (0.978) (0.987) (0.990)

50ehT−1/2
0.2632 0.2703 0.3516 0.2385 0.2968 0.7473 0.5463

FER: Japan

1 0.1803 0.1913 0.2171 0.2600 0.2754 0.3562 0.3829
hT−1/2 0.1776 0.1925 0.2209 0.2665 0.2738 0.3480 0.3753
ehT−1/2

0.1888 0.2000 0.2245 0.2710 0.2698 0.3374 0.3707
(0.898) (0.922) (0.946) (0.973) (0.978) (0.987) (0.990)

50ehT−1/2
0.2004 0.2100 0.2306 0.2721 0.2662 0.3313 0.3664

FER, Canada

1 0.3022 0.9337 0.1911 0.5862 0.1799 0.7057 0.3536
hT−1/2 0.3042 0.7361 0.1945 0.5887 0.1793 0.7033 0.3485
ehT−1/2

0.3174 0.7723 0.1995 0.5844 0.1768 0.6962 0.3464
(0.928) (0.992) (0.887) (0.986) (0.917) (0.995) (0.985)

50ehT−1/2
0.3283 0.7985 0.2032 0.5802 0.1749 0.6919 0.3463
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3.4 Concluding Remarks

In this paper we construct a method to obtain long-horizon forecasts that outperform the

conventional iterated or direct-forecast methods. The direct method estimation is modified by

imposing a smoothing parameter on the first differences of parameters across horizons. This

obtains estimators that are more robust than the iterated method, but less erratic across horizons

compared to direct forecasts. This is an extension of the ridge regression where we impose a

smoothness prior by restricted regression. Our application of the ridge regression by “smoothing

out” estimates across horizons is similar to the smoothness method developed in Shiller (1973).

The smoothing parameter (or penalty term) is either a constant or a exponential/linear function

that depends on the horizon length and data size so that stronger restriction is imposed on longer

horizon forecasts. Our forecasting method is denoted as the “smoothed direct forecast”.

We apply the smoothed-direct-forecast method to two empirical applications where long

horizon forecasts are of interest. Our first application on forecasting real oil prices shows

improvement on direct forecasts for MSFE, from 3 to 5 years horizons. The difference in MSFE

of direct and smoothed direct forecasts are statistically insignificant for all horizons using West’s

(1996) forecast accuracy test. Regardless of the test results, we argued that the improvement

of real oil price forecasts of 5 years ahead are economically significant. In addition, due to our

simple functional form of the smoothing parameter, it is preferable to have small deviations from

direct forecasts. Smoothed direct forecasts show only slight differences for various exponential

functions, which implies robustness of the choice of the smoothing parameter.

Our second empirical application of data is with the U.S. macroeconomic time series from

Marcellino, Stock, and Watson (2006). We apply the smoothed-direct-forecasting method on 80

macroeconomic series and compare with the direct and iterated forecasts. Overall, the smoothed

direct forecast for most series shows improvement on the direct forecast in long horizons, partly

due to poor performance of the direct method. Similar to the real oil price application, the
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differences in MSFE remain statistically insignificant but that does not mean the differences are

economically insignificant.

In conclusion, the two empirical application results suggest that our forecast method

provides long-horizon forecasts that improve on direct forecasts and might improve on iterated

forecasts as well. In future research an optimal choice of the functional form of the smoothing

parameter can provide further improvement in performance of forecasts.

Chapter 3, in full, is a reprint of the material that has been accepted for publication at

Journal of Forecasting. Baek, Yaein. The dissertation author was the sole author of this paper.
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Appendix

A.1 Proofs for Chapter 1

Proof of Lemma 1

Proof. Assumption 2 implies that AT (k) from (1.11) is positive definite and thus GT (k) =

δ′T AT (k)δT ≥ λT (k)‖δT‖2 where λT (k) is the minimum eigenvalue of AT (k). It is sufficient to

argue that λT (k) is bounded away from zero with probability tending to 1 as |k0− k| increases.

The matrices Z′0MZ0 and Z′0MZk are rearranged as follows, similar to Z′kMZk in (1.10).

Z′0MZ0 = R′(X ′0X0)(X ′X)−1(X ′X−X ′0X0)R

Z′0MZk =


R′(X ′0X0)(X ′X)−1(X ′X−X ′kXk)R if k ≤ k0

R′(X ′X−X ′0X0)(X ′X)−1(X ′kXk)R if k > k0

(A.1)

Without loss of generality assume k ≤ k0. The second term of |k0− k|AT (k) from (1.11) is

(Z′0MZk)(Z′kMZk)
−1/2

Ωk(Z′kMZk)
−1/2(Z′kMZ0)

=
[
R′(X ′0X0)(X ′X)−1(X ′X−X ′kXk)R

][
(Z′kMZk)

1/2
Ω
−1
k (Z′kMZk)

1/2
]−1

(A.2)

×
[
R′(X ′X−X ′kXk)(X ′X)−1(X ′0X0)R

]
.
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Define the following matrices.

Fk := (X ′kXk)
−1− (X ′X)−1 = (X ′X)−1(X ′X−X ′kXk)(X ′kXk)

−1

F0 := (X ′0X0)
−1− (X ′X)−1 = (X ′X)−1(X ′X−X ′0X0)(X ′0X0)

−1 (A.3)

ΩX ,k :=

 I(p−q) 0(p−q)×q

0q×(p−q) Ωk

 , B := Ω
−1/2
X ,k F1/2

k X ′kXk.

Both Fk and F0 are positive definite matrices under Assumption 1. Hence, each matrix can

be decomposed into Fk =
(

F1/2
k

)2
and F0 =

(
F1/2

0

)2
where F1/2

k and F1/2
0 are nonsingular

(p× p) matrices with p = dim(xt). ΩX ,k is a (p× p) matrix where I(p−q) is an identity matrix

with rank (p− q), and zeros in non-diagonal block matrices such that R′ΩX ,kR = Ωk. The

projection matrix of BR is Ip−BR(R′B′BR)−1R′B′, which is positive semi-definite. If we multiply

R′(X ′0X0)F
1/2
k Ω

1/2
X ,k to the left and its transpose to the right of the projection matrix, the following

inequality is obtained.

R′(X ′0X0)F
1/2
k ΩX ,kF1/2

k (X ′0X0)R

≥ R′(X ′0X0)Fk(X ′kXk)R(R′B′BR)−1R′(X ′kXk)Fk(X ′0X0)R

= R′(X ′0X0)(X ′X)−1(X ′X ′−X ′kXk)R(R′B′BR)−1

×R′(X ′X−X ′kXk)(X ′X)−1(X ′0X0)R.

From (A.3), R′B′BR = R′(X ′kXk)F
1/2
k Ω

−1
X ,kF1/2

k (X ′kXk)R = (Z′kMZk)
1/2Ω

−1
k (Z′kMZk)

1/2 and the

right side of the inequality is equivalent to (A.2). Therefore it is sufficient to show that the

right-side of inequality (A.4) is bounded away from zero for large k0− k.

AT (k)≥
1

|k0− k|

[
(Z′0MZ0)

1/2
Ωk0(Z

′
0MZ0)

1/2−R′(X ′0X0)F
1/2
k ΩX ,kF1/2

k (X ′0X0)R
]

(A.4)
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Also from (A.3), (Z′0MZ0)
1/2Ωk0(Z

′
0MZ0)

1/2 = R′(X ′0X0)F
1/2
0 ΩX ,k0F1/2

0 (X ′0X0)R. Thus,

|k0− k|AT (k)≥ R′(X ′0X0)
[
F1/2

0 ΩX ,k0F1/2
0 −F1/2

k ΩX ,kF1/2
k

]
(X ′0X0)R

≡ |k0− k|R′ÃT (k)R.

Define the (q×q) matrix on the right-side as |k0− k|ÃT (k). Then,

∥∥ÃT (k)−1∥∥= |k0− k|
∥∥∥∥(X ′0X0)

−1
[
F1/2

0 ΩX ,k0F1/2
0 −F1/2

k ΩX ,kF1/2
k

]−1
(X ′0X0)

−1
∥∥∥∥

≤ |k0− k| 1∥∥X ′0X0
∥∥ 1∥∥∥F1/2

0 ΩX ,k0F1/2
0 −F1/2

k ΩX ,kF1/2
k

∥∥∥ 1∥∥X ′0X0
∥∥ .

Note that for a nonsingular, bounded (p× p) matrix S, the norm does not change by multiplying

S on the left and S−1 on the right of a matrix:
∥∥ΩX ,k

∥∥= ∥∥SΩX ,kS−1
∥∥. By assumption, ΩX ,k ≥

λmin(ΩX ,k)> 0 where λmin denotes the minimum eigenvalue. Therefore, (F1/2
0 )−1ΩX ,k0F1/2

0 =

ΩX ,k0 +op(1)≥ λmin(ΩX ,k0)+op(1). By subtracting and adding the matrix Fk(F
1/2
0 )−1ΩX ,k0F1/2

0

to the denominator of the second term, the following inequality holds.

∥∥∥F1/2
0 ΩX ,k0F1/2

0 −F1/2
k ΩX ,kF1/2

k

∥∥∥
=
∥∥∥(F0−Fk)(F

1/2
0 )−1

ΩX ,k0F1/2
0 −Fk

{
(F1/2

k )−1
ΩX ,kF1/2

k − (F1/2
0 )−1

ΩX ,k0F1/2
0

}∥∥∥
≥
∣∣∣∥∥∥(F0−Fk)(F

1/2
0 )−1

ΩX ,k0F1/2
0

∥∥∥−∥∥∥Fk

{
(F1/2

k )−1
ΩX ,kF1/2

k − (F1/2
0 )−1

ΩX ,k0F1/2
0

}∥∥∥∣∣∣
=
∣∣∥∥(F0−Fk)ΩX ,k0

∥∥−∥∥Fk
(
ΩX ,k−ΩX ,k0

)∥∥∣∣+op(1)

where the inequality is from the inverse triangular inequality. Let λ̃ be the minimum value of

λmin(ΩX ,k) and λmin(ΩX ,k0). From Assumption 2 we have |k0− k|−1 ‖Ωk−Ωk0‖ ≤ b/T . Hence,
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|k0− k|−1
∥∥∥F1/2

0 ΩX ,k0F1/2
0 −F1/2

k ΩX ,kF1/2
k

∥∥∥
≥
∣∣∣(k0− k)−1

∥∥∥(F0−Fk)λ̃
∥∥∥−b/T ‖Fk‖

∣∣∣+ |k0− k|−1op(1)

≥ λ̃
∥∥(k0− k)−1(F0−Fk)

∥∥+op(1)

Let X∆ := sgn(k0− k)(Xk−X0), then by rearranging terms similar to (A.3), F0−Fk = (X ′0X0)
−1

×(X ′
∆

X∆)(X ′kXk)
−1 so that

∥∥ÃT (k)−1∥∥≤ 1∥∥X ′0X0
∥∥2

1
λ̃|k0− k|−1 ‖F0−Fk‖

≤ 1

λ̃
∥∥X ′0X0

∥∥2∥∥(X ′0X0)−1(k0− k)−1X ′
∆

X∆(X ′kXk)−1
∥∥ .

From Assumptions 1 and 2, the right-side of the inequality is bounded:

λ̃
∥∥T−1X ′0X0

∥∥2∥∥T 2(X ′0X0)
−1(X ′kXk)

−1
∥∥< M for some M < ∞. In addition, the minimum eigen-

value of (k0− k)−1(X ′
∆

X∆) is bounded away from zero with large probability so that

1/
∥∥(k0− k)−1X ′

∆
X∆

∥∥ is bounded with large probability for all large k0− k. Thus
∥∥ÃT (k)−1

∥∥ is

bounded with large probability for all large k0− k. This implies that the minimum eigenvalue of

ÃT (k) is bounded away from zero for all large k0− k and this is also true for AT (k) = R′ÃT (k)R

because R has full column rank.

For the proof of Lemma 3 we use results from Proposition 2 and Lemma A.1. Hájek and

Rényi (1955) proved the inequality assuming i.i.d. random variables, and was later generalized

to martingales by Birnbaum and W. (1961). We use the generalized Hájek-Rényi for martin-

gale difference sequences to prove Lemma A.1, where {εt ,Ft} are mixingale sequences under

Assumption 1.

Proposition 2. Let ε1,ε2, . . . , be a sequence of martingale differences with E[ε2
t ] = σ2 and {ck}
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be a decreasing positive sequence of constants. The Hájek-Rényi inequality takes the following

form.

P

(
max

m≤k≤T
ck

∣∣∣∣∣ k

∑
t=1

εt

∣∣∣∣∣> α

)
≤ σ2

α2

(
mc2

m +
T

∑
t=m+1

c2
t

)
.

Lemma A.1. Under Assumption 1, for every α > 0 and m > 0 there exists C < ∞ such that

P

(
sup

m≤k≤T

1√
k

∣∣∣∣∣ k

∑
t=1

ztεt

∣∣∣∣∣> α

)
≤ C lnT

α2

and thus, supk T−1/2
∥∥Z′kε

∥∥= Op

(√
lnT
)

Proof. Denote ξt = ztεt and proceed. Let {ξt ,Ft} be (q×1) Lr-mixingales, r = 4+ γ for some

γ > 0 satisfying Assumption 1(vi). Define ξ jt := E[ξt |Ft− j]−E[ξt |Ft− j−1]. Then ξt = ∑
∞
j=−∞ ξ jt ,

and hence ∑
k
t=1 ξt = ∑

∞
j=−∞ ∑

k
t=1 ξ jt . Denote ‖·‖s for the Ls-norm. For each T > 0,

P

(
sup

m≤k≤T

1√
k

∥∥∥∥∥ k

∑
t=1

ξt

∥∥∥∥∥
2

> α

)
≤ P

(
∞

∑
j=−∞

sup
m≤k≤T

1√
k

∥∥∥∥∥ k

∑
t=1

ξ jt

∥∥∥∥∥
2

> α

)
. (A.5)

For each j, {ξ jt ,Ft− j} forms a sequence of martingale difference and the generalized Hájek-

Rényi inequality (Proposition 2) holds for this sequence. Let b j > 0 for all j and ∑
∞
j=−∞ b j = 1.

The right-side of (A.5) is bounded by

∞

∑
j=−∞

P

(
sup

m≤k≤T

1√
k

∥∥∥∥∥ k

∑
t=1

ξ jt

∥∥∥∥∥
2

> b jα

)

≤ 1
α2

∞

∑
j=−∞

1
b2

j

(
m−1

m

∑
i=1

E
∥∥ξ ji

∥∥2
2 +

T

∑
i=m+1

i−1E
∥∥ξ ji

∥∥2
2

)
.

Note that
∥∥ξ jt

∥∥
2 ≤

∥∥ξ jt
∥∥

r by Liapounov’s inequality. By definition, for j ≥ 0, we have
∥∥ξ jt

∥∥
r ≤∥∥E[ξt |Ft− j]

∥∥
r+
∥∥E[ξt |Ft− j−1]

∥∥
r and for j < 0,

∥∥ξ jt
∥∥

r≤
∥∥ξt−E[ξt |Ft− j−1]

∥∥
r+
∥∥ξt−E[ξt |Ft− j]

∥∥
r.

Hence, from the definition of a mixingale, E
∥∥ξ jt

∥∥2
r ≤ 4c2

t ψ2
| j| and with Assumption 1(vi)(c), this
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implies E
∥∥ξ ji

∥∥2
2 ≤ 4c2

i ψ2
| j| ≤ 4K2ψ2

| j|. Then the right-side of (A.5) is bounded by

1
α2

∞

∑
j=−∞

4b−2
j K2

ψ
2
| j|

(
1+

T

∑
i=m+1

i−1

)
≤ 1

α2

∞

∑
j=−∞

4b−2
j K2

ψ
2
| j| (1+ lnT ) . (A.6)

We can choose appropriate {b j} so that ∑ j b−2
j ψ2

| j| are bounded. From lemma A.6 of Bai and

Perron (1998), let ν0 = 1 and ν j = j−1−κ for j ≥ 1, where κ > 0 is given in Assumption 1(vi)(d).

Let b j = ν j/(1+2∑
∞
i=1 νi) and b− j = b j for all j ≥ 0. Then ∑

∞
j=−∞ b j = 1. By Assumption

1(vi)(d), we have

∞

∑
j=−∞

b−2
j ψ

2
| j| =

(
ψ

2
0 +2

∞

∑
j=1

j2+2κ
ψ

2
j

)(
1+2

∞

∑
j=1

j−2−2κ

)
< ∞.

Hence, the right-side inequality of (A.6) is bounded by C lnT
α2 for some C > 0 and we obtain the

result of Lemma A.1.

Proof of Lemma 3

Proof. We use the expression (1.12); the estimator k̂ must satisfy QT (k̂)2 ≥ QT (k0)
2 which is

equivalent to HT (k̂)≥ |k0− k̂|GT (k̂). Therefore we have

P(|ρ̂−ρ0|> η) = P
(
|k̂− k0|> T η

)
≤ P

(
sup

|k−k0|>T η

|HT (k)| ≥ inf
|k−k0|>T η

|k0− k|GT (k)

)

≤ P

(
sup

|k−k0|>T η

|HT (k)| ≥ T η inf
|k−k0|>T η

GT (k)

)

≤ P

(
G̃−1 sup

p≤k≤T−p
T−1|HT (k)| ≥ η

)
(A.7)

where G̃ := inf|k−k0|>T η GT (k) which is positive and bounded away from zero by Lemma 1 and
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the restriction p ≤ k ≤ T − p is imposed to guarantee existence of HT (k). Thus consistency

follows by showing that T−1 supp≤k≤T−p |HT (k)|= op(1), where

T−1|HT (k)| ≤
∣∣∣T−1

ε
′MZk(Z′kMZk)

−1/2
Ωk(Z′kMZk)

−1/2Z′kMε

∣∣∣
+
∣∣∣T−1

ε
′MZ0(Z′0MZ0)

−1/2
Ωk0(Z

′
0MZ0)

−1/2Z′0Mε

∣∣∣
+2
∣∣∣T−1

δ
′
T (Z

′
0MZk)(Z′kMZk)

−1/2
Ωk(Z′kMZk)

−1/2Z′kMε

∣∣∣ (A.8)

+2
∣∣∣T−1

δ
′
T (Z

′
0MZ0)

1/2
Ωk0(Z

′
0MZ0)

−1/2Z′0Mε

∣∣∣ .
Lemma A.1 implies that supk

∥∥∥T−1/2Z′kMε

∥∥∥ = Op

(√
lnT
)

. We use the following to verify

uniform convergence for all k.

sup
p≤k≤T−p

∥∥∥(Z′kMZk)
−1/2Z′kMε

∥∥∥= Op

(√
lnT
)
. (A.9)

We show the third and fourth terms of (A.8) are Op

(
T−1/2 ‖δT‖ lnT

)
and Op

(
T−1/2 ‖δT‖

)
,

respectively. Denote DT := T−1/2(Z′0MZk)(Z′kMZk)
−1/2. From (1.10) and (A.1), Z′0MZk ≤

Z′kMZk for all k, and thus

sup
p≤k≤T−p

D′T DT ≤ sup
p≤k≤T−p

T−1Z′kMZk = Op(1),

then the third term of (A.8) is bounded by

2
∥∥∥T−1/2

δ
′
T (T

−1Z′kMZk)
1/2

Ωk

∥∥∥∥∥∥(Z′kMZk)
−1/2Z′kMε

∥∥∥= ‖δT‖Op

(
T−1/2

√
lnT
)

For the true break date k0,
∣∣∣(Z′0MZ0)

−1/2Z′0Mε

∣∣∣= Op(1) under our regularity conditions. Hence,

the fourth term of (A.8) has order

∣∣∣T−1
δ
′
T (Z

′
0MZ0)

1/2
Ωk0(Z

′
0MZ0)

−1/2Z′0Mε

∣∣∣= ‖δT‖Op

(
T−1/2

)
.
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From (A.9) and boundedness of Ωk, we have supk

∥∥∥Ω
1/2
k (Z′kMZk)

−1/2Z′kMε

∥∥∥ = Op

(√
lnT
)

.

Then the first and second terms of (A.8) are bounded as below, respectively.

sup
k

T−1
∥∥∥Ω

1/2
k (Z′kMZk)

−1/2Z′kMε

∥∥∥2
= Op

(
T−1 lnT

)
,

T−1
∥∥∥Ω

1/2
k0

(Z′0MZ0)
−1/2Z′0Mε

∥∥∥2
= Op(T−1).

By combining all four terms,

T−1 sup
p≤k≤T−p

|HT (k)|= Op

(
T−1/2 ‖δT‖

√
lnT
)
= op(1)

hence, the probability (A.7) is negligible for large T .

Proof of Corollary 1

Proof. Let Ẑ0 denote Zk when k is replaced by k̂. Then the LS estimator of δ̂(ρ̂) is obtained

by regressing MY on MẐ0. The true model (1.8) multiplied by M can be rewritten as MY =

MẐ0δT +Mε∗, where ε∗ = ε+(Z0− Ẑ0)δT . Then,

√
T
(

δ̂(ρ̂)−δT

)
= (T−1Ẑ′0MẐ0)

−1T−1/2Ẑ′0Mε
∗

= (T−1Ẑ′0MẐ0)
−1
(

T−1/2Ẑ′0Mε+T−1/2Ẑ′0M(Z0− Ẑ0)δT

)
.

We show that the right side converges in probability to the same limit as when Ẑ0 is replaced

by Z0. First, we show that plimT−1/2Ẑ′0M(Z0− Ẑ0)δT = 0. Without loss of generality, consider

k ≤ k0.
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∥∥∥T−1/2Ẑ′0M(Z0− Ẑ0)δT

∥∥∥≤ T−1/2∥∥Ẑ′0(Z0− Ẑ0)− Ẑ′0X(X ′X)−1X ′(Z0− Ẑ0)
∥∥‖δT‖

≤ 1√
T ‖δT‖

∥∥∥∥∥ k0

∑
t=k̂+1

ztz′t

∥∥∥∥∥‖δT‖2

+

∥∥∥∥∥∥
(

T

∑
t=k̂+1

ztx′t

)(
T

∑
t=1

xtx′t

)−1
∥∥∥∥∥∥ 1√

T ‖δT‖

∥∥∥∥∥ k0

∑
t=k̂+1

xtz′t

∥∥∥∥∥‖δT‖2

=
1√

T ‖δT‖
Op(1) = op(1).

Note that the sum has k0− k̂ = Op

(
‖δT‖−2

)
terms, so

∥∥∥∑
k0
t=k̂+1

ztz′t
∥∥∥‖δT‖2 = Op(1). Also,

T−1∥∥Ẑ′0MẐ0−Z′0MZ0
∥∥≤ T−1∥∥Ẑ′0Ẑ0−Z′0Z0

∥∥+T−1∥∥(Ẑ0−Z0)
′X(X ′X)−1X ′Ẑ0

∥∥
+T−1∥∥Z′0X(X ′X)−1X ′(Ẑ0−Z0)

∥∥
≤ 1

T ‖δT‖2

∥∥∥∥∥ k0

∑
k̂+1

ztz′t

∥∥∥∥∥‖δT‖2 +
1

T ‖δT‖2

∥∥∥∥∥ k0

∑
k̂+1

xtz′t

∥∥∥∥∥‖δT‖2 Op(1)

=
1

T ‖δT‖2 Op(1) = op(1).

Thus,
√

T
(

δ̂(ρ̂)−δT

)
= (T−1Z′0MZ0)

−1T−1/2Z′0Mε+ op(1) and the normality follows from

the central limit theorem.

Proof of Lemma 4

Proof. Use equation (1.12) to express terms in Fk, F0 and ΩX ,k, defined in (A.3).

|k0− k|GT (k) = δ
′
h(Z
′
0MZ0)

1/2
Ωk0(Z

′
0MZ0)

1/2
δh

−δh(Z′0MZk)(Z′kMZk)
−1/2

Ωk(Z′kMZk)
−1/2(Z′kMZ0)δh

= λ
2
hd′0R′(X ′0X0)

[
F1/2

0 ΩX ,k0F1/2
0 −F1/2

k ΩX ,kF1/2
k

]
(X ′0X0)Rd0.
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The second equality is from Lemma A.2 and (X ′0MXk)(X ′kMXk)
−1 = (X ′0X0)(X ′kXk)

−1.

Lemma A.2. Under Assumption 1(i)-(iii),

(Z′0MZk)(Z′kMZk)
−1 = R′(X ′0MXk)(X ′kMXk)

−1R.

Similar to the proof of Lemma 1, the norm of the middle matrix is bounded by rearranging terms

and from Assumption 2 where we have ‖Ωk−Ωk0‖ ≤ b|k0− k|/T for some finite b > 0 and all k.

∥∥∥F1/2
0 ΩX ,k0F1/2

0 −F1/2
k ΩX ,kF1/2

k

∥∥∥
=
∥∥∥(F0−Fk)(F

1/2
0 )−1

ΩX ,k0F1/2
0 −Fk

{
(F1/2

k )−1
ΩX ,kF1/2

k − (F1/2
0 )−1

ΩX ,k0F1/2
0

}∥∥∥
≤
∥∥(F0−Fk)ΩX ,k0

∥∥+b‖Fk‖|k0− k|/T +op(1)

Because ‖Fk‖= Op(T−1) and (F0−Fk) = (X ′0X0)
−1(X ′

∆
X∆)(X ′kXk)

−1, we have

F1/2
0 ΩX ,k0F1/2

0 −F1/2
k ΩX ,kF1/2

k = (X ′0X0)
−1(X ′∆X∆)(X ′kXk)

−1
ΩX ,k0 +op(1).

Then,

|k0− k|GT (k) = λ
2
hd′0
[
R′(X ′∆X∆)(X ′kXk)

−1
ΩX ,k0(X

′
0X0)R

]
d0 +op(1)

= λ
2
hd′0(Z

′
∆Z∆)Ωk0d0 +op(1). (A.10)

where the second line is from (X ′kXk)
−1ΩX ,k0(X

′
0X0) = ΩX ,k0Op(1)+op(1) by assumption. Next,

consider HT (k) in equation (1.19).

HT (k) = 2λhd′0Ωk0Z′∆εsgn(k0− k)+T−1/2 ‖δh‖|k0− k|Op(1)+Op(1).

Because |k0− k| ≤ C‖δh‖−2 on K(C), the second term in the equation above is bounded by

CT−1/2 ‖δh‖−1 Op(1) = op(1). The last term Op(1) is op(1) uniformly on K(C), which can be
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verified by rearranging terms using Z0 = Zk−Z∆sgn(k0− k).

ε
′MZk(ZkMZk)

−1/2
Ωk(ZkMZk)

−1/2Z′kMε− ε
′MZ0(Z0MZ0)

−1/2
Ωk0(Z0MZ0)

−1/2Z′0Mε

= ε
′MZk

[
(Z′kMZk)

−1/2
Ωk(Z′kMZk)

−1/2− (Z′0MZ0)
−1/2

Ωk0(Z
′
0MZ0)

−1/2
]

Z′kMε

+ ε
′MZk(Z′0MZ0)

−1/2
Ωk0(Z

′
0MZ0)

−1/2Z′∆Mεsgn(k0− k)

+ ε
′MZ0(Z′0MZ0)

−1/2
Ωk0(Z

′
0MZ0)

−1/2Z′∆Mεsgn(k0− k)

= Op

(
T−1 ‖δh‖−2

)
+Op

(
T−1/2 ‖δh‖−1

)
+op(1)

The first line is Op

(
T−1 ‖δh‖−2

)
is uniformly on K(C):

ε
′MZk

[
(Z′kMZk)

−1
Ωk− (Z′0MZ0)

−1
Ωk0

]
Z′kMε+op(1)

= ε
′MZk(Z′kMZk)

−1(Z′0MZ0−Z′kMZk)(Z′0MZ0)
−1

ΩkZ′kMε

+ ε
′MZk(Z′0MZ0)

−1(Ωk−Ωk0)Z
′
kMε+op(1)

= T−1/2 ‖δh‖−2 Op(T−1/2)+op(1)

from (1.18) and (Z′kMZk)
−1Z′kMε = Op(T−1/2) uniformly on K(C). The second and third lines

are Op

(
T−1/2 ‖δh‖−1

)
from Z′

∆
Mεsgn(k0− k) = |k0− k|1/2Op(1) = Op

(
‖δh‖−1

)
. Hence,

HT (k) = 2λhd′0Ωk0Z′∆εsgn(k0− k)+op(1)

Combine this with (A.10), we obtain the expression in Lemma 4.
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Proof of Lemma A.2

Proof. Use the block matrix inverse formula (below) on (X ′kMXk)
−1.

A B

C D


−1

=

 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1



Note that Xk = [Wk
...Zk] for all k. Then,

R′(X ′0MXk)(X ′kMXk)
−1R =−(Z′0MWk)(W ′kMWk)

−1(W ′0MZk)

×
[
Z′kMZk− (Z′kMWk)(W ′kMWk)

−1(W ′kMZk)
]−1

+Z′0MZk
[
Z′kMZk− (Z′kMWk)(W ′kMWk)

−1(W ′kMZk)
]−1

=
(
Z′0MM̄MZk

)(
Z′kMM̄MZk

)−1 (A.11)

where M̄ := I−MWk(W ′kMWk)
−1W ′kM. Note that this is the OLS estimate of coefficients of

multiple equation regression when we regress M̄MZ0 on M̄MZk. This is equivalent to the

coefficient of MZk when we regress MZ0 on [MWk
...MZk] = MXk. Thus, (A.11) is equivalent to

the corresponding (q× q) block matrix of OLS estimate of regression MX0 on MXk, which is

R′(X ′0MXk)(X ′kMXk)
−1R.

Proof of Theorem 5

Proof. Lemma B.1 from Jiang et al. (2017) is restated below, and used without proof.

Lemma A.3. For the process yt defined in (1.22) the following equations hold when T = 1/h→∞

with a fixed ρ0 = k0/T , for any ρ ∈ [0,1],

(a) T−1
∑
[ρT ]
t=1 yt−1εt ⇒ σ2 ∫ ρ

0 J̃0(r)dB(r);

(b) T−2
∑
[ρT ]
t=1 y2

t−1⇒ σ2 ∫ ρ

0

[
J̃0(r)

]2
dr;
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(c)
[
J̃0(ρ)

]2
−
[
J̃0(0)

]2
= 2

∫ ρ

0 J̃0(r)dB(r)−2
∫ ρ

0 (µ+δ1{r > ρ0})
[
J̃0(r)

]2
dr+ρ;

(d)
[
J̃0(1)

]2
−
[
J̃0(ρ)

]2
= 2

∫ 1
ρ

J̃0(r)dB(r)−2
∫ 1

ρ
(µ+δ1{r > ρ0})

[
J̃0(r)

]2
dr+(1−ρ);

where J̃0(r) for r ∈ [0,1] is a Gaussian process defined in (1.24) and B(·) is a standard Brownian

motion.

Define the (T×2) matrix Y (k)= [Y1(k)
...Y2(k)] with Y1(k)= (y0, . . . ,yk−1,0 . . . ,0)′, Y2(k)=

(0 . . . ,0,yk, . . . ,yT−1)
′ and Y = (y1, . . . ,yT )

′. Then the LS objective function can be expressed as

S(k)2 = Y ′MY where

M = IT −Y1(k)[Y1(k)′Y1(k)]−1Y1(k)′−Y2(k)[Y2(k)′Y2(k)]−1Y2(k)′,

where IT is a (T ×T ) identity matrix. The model (1.22) can be written as

yt = β1yt−1 +(β2−β1)1{t > k0}yt−1 + εt = β1yt−1 +ηt ,

where ηt := (β2−β1)1{t > k0}yt−1 + εt . Let Y− = (y0, . . . ,yT−1)
′ and η = (η1, . . . ,ηT )

′. Then

we have Y = Y−β1 +η, and the LS objective function is

S(k)2 = (Y−β1 +η)′M′M(Y−β1 +η)

= η
′
η−η

′Y1(k)[Y1(k)′Y1(k)]−1Y1(k)′η−η
′Y2(k)[Y2(k)′Y2(k)]−1Y2(k)′η

because M is a idempotent matrix and MY− = 0. Note that

η
′
η =

k0

∑
t=1

η
2
t +

T

∑
t=k0+1

η
2
t =

k0

∑
t=1

ε
2
t +

T

∑
t=k0+1

((β2−β1)yt−1 + εt)
2
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which holds regardless of the choice of k, and

η
′Y1(k)[Y1(k)′Y1(k)]−1Y1(k)′η =

(
∑

k
t=1 yt−1ηt

)2

∑
k
t=1 y2

t−1
,

η
′Y2(k)[Y2(k)′Y2(k)]−1Y2(k)′η =

(
∑

T
t=k+1 yt−1ηt

)2

∑
T
t=k+1 y2

t−1
.

Therefore, the break point estimator is

ρ̂ = argmax
ρ∈(0,1)

ω(ρ)2 V (ρ), (A.12)

V (ρ) :=


(

∑
[ρT ]
t=1 yt−1ηt

)2

∑
[ρT ]
t=1 y2

t−1

+

(
∑

T
t=[ρT ]+1 yt−1ηt

)2

∑
T
t=[ρT ]+1 y2

t−1

 .
When ρ≤ ρ0, the terms in the numerator and denominator of V (ρ) weakly converges as follows.

T−1
[ρT ]

∑
t=1

yt−1ηt = T−1
[ρT ]

∑
t=1

yt−1εt ⇒ σ
2
∫

ρ

0
J̃0(r)dB(r).

From Lemma A.3,

T−1
T

∑
t=[ρT ]+1

yt−1ηt = T−1

[
[ρ0T ]

∑
t=[ρT ]+1

yt−1ηt +
T

∑
t=[ρ0T ]+1

yt−1ηt

]

= T−1
T

∑
t=[ρT ]+1

yt−1εt +T (β2−β1)T−2
T

∑
t=[ρ0T ]+1

y2
t−1

⇒ σ
2
∫ 1

ρ

J̃0(r)dB(r)−δσ
2
∫ 1

ρ0

[
J̃0(r)

]2
dr,

T−2
[ρT ]

∑
t=1

y2
t−1⇒ σ

2
∫

ρ

0

[
J̃0(r)

]2
dr, and T−2

T

∑
t=[ρT ]+1

y2
t−1⇒ σ

2
∫ 1

ρ

[
J̃0(r)

]2
dr.
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Then the LS objective function V (ρ) in (A.12) weakly converges to

V (ρ)⇒ σ
2


(∫ ρ

0 J̃0(r)dB(r)
)2

∫ ρ

0

[
J̃0(r)

]2
dr

+

(∫ 1
ρ

J̃0(r)dB(r)−δ
∫ 1

ρ0

[
J̃0(r)

]2
dr
)2

∫ 1
ρ

[
J̃0(r)

]2
dr

 .

Lemma A.3 (c) and (d) implies that each term is rearranged as follows.

(∫ ρ

0 J̃0(r)dB(r)
)2

∫ ρ

0

[
J̃0(r)

]2
dr

=

([
J̃0(ρ)

]2
−
[
J̃0(0)

]2
−ρ+2µ

∫ ρ

0

[
J̃0(r)

]2
dr
)2

4
∫ ρ

0

[
J̃0(r)

]2
dr

=

([
J̃0(ρ)

]2
−
[
J̃0(0)

]2
−ρ

)2

4
∫ ρ

0

[
J̃0(r)

]2
dr

+µ2
∫

ρ

0

[
J̃0(r)

]2
dr

+µ
([

J̃0(ρ)
]2
−
[
J̃0(0)

]2
−ρ

)

(∫ 1
ρ

J̃0(r)dB(r)−δ
∫ 1

ρ0

[
J̃0(r)

]2
dr
)2

∫ 1
ρ

[
J̃0(r)

]2
dr

=

([
J̃0(1)

]2
−
[
J̃0(ρ)

]2
− (1−ρ)

)2

4
∫ 1

ρ

[
J̃0(r)

]2
dr

+µ2
∫ 1

ρ

[
J̃0(r)

]2
dr+µ

([
J̃0(1)

]2
−
[
J̃0(ρ)

]2
− (1−ρ)

)

As a result, the objective function of the break point estimator in (A.12) weakly converges to

ω(ρ)2V (ρ)

σ2 ⇒
ω(ρ)2

([
J̃0(ρ)

]2
−
[
J̃0(0)

]2
−ρ

)2

4
∫ ρ

0

[
J̃0(r)

]2
dr

+

ω(ρ)2
([

J̃0(1)
]2
−
[
J̃0(ρ)

]2
− (1−ρ)

)2

4
∫ 1

ρ

[
J̃0(r)

]2
dr

+µ2
ω(ρ)2

∫ 1

0

[
J̃0(r)

]2
dr+µω(ρ)2

([
J̃0(1)

]2
−
[
J̃0(0)

]2
−1
)
.

Following the same procedure above, ω(ρ)2V (ρ)/σ2 has the same limit when ρ > ρ0. Therefore,
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by deleting the terms which are independent of the choice of ρ, the in-fill asymptotic distribution

of ρ̂ in (A.12) is

ρ̂ = argmax
ρ∈(0,1)

ω(ρ)2V (ρ)

⇒ argmax
ρ∈(0,1)

ω(ρ)2
([

J̃0(ρ)
]2
−
[
J̃0(0)

]2
−ρ

)2

∫ ρ

0

[
J̃0(r)

]2
dr

+

ω(ρ)2
([

J̃0(1)
]2
−
[
J̃0(ρ)

]2
− (1−ρ)

)2

∫ 1
ρ

[
J̃0(r)

]2
dr

,

which is identical to the distribution in Theorem 5.

A.2 Appendix for Chapter 2

A.2.1 Comparing methods

Based on model (2.1) the Nyblom test statistic is

L̂/T 2 = T−2tr

[
Ω̂
−1
Q

T

∑
t=1

(
T

∑
s=t

Qsûs

)(
T

∑
s=t

Qsûs

)′]
(A.13)

⇒
∫
(W (l)− lW (1))′(W (l)− lW (1))dl.

where ΩQ = limT→∞Var
(

T−1/2
∑

T
t=1 Qtut

)
and the Wiener process W (1) has dimension equal

to dim(Q) = k+m. The Nyblom test statistic null limit distribution is the square of independent

scalar Brownian bridges. The asymptotic critical value of L̂/T 2 depends only on the dimension

of Qt = (X ′t ,Z
′
t)
′. The Nyblom test does not assume that the direction of test statistic is known,

hence the null hypothesis is δ = 0 against the alternative δ 6= 0. The local alternative asymptotic

distribution under δ = T−1/2d is as follows. Denote the inner product as A⊗2 = A′A where A is a

(k×1) vector. ∫ [
W (l)− lW (1)+(min{l,r0})− lr0)Ω

−1/2
Q ΣQd

]⊗2
dl.
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The (average) exponential LM test from Andrews and Ploberger (1994) has the same

asymptotic properties to the exponential Wald and LR test under the null and local alternatives.

The exponential LM test statistic (denote as Exp-LMT ) does not specify the direction of the

structural break like the Nyblom test statistic, hence the null and alternative hypotheses are

H0 : δ = 0,

H1 : δ 6= 0 and the likelihood function depends on the parameter l.

Exp-LMT test statistic is derived under local alternatives to the null Θ0 of the form fT (θ0+B−1
T h, l)

for some l ∈Π⊂ (0,1), some h ∈ Rp, and BT =
√

T Ip in our model without trending variables.

The test has the greatest weighted average power asymptotically in the class of all test of

asymptotic significance level α with weighting function over h, Ql(h) and over l, J(l). Given a

constant c > 0 that depends on the weight functions Ql(·), the asymptotically optimal test statistic

Exp-LMT c is

Exp-LMT c = (1+ c)−p/2
∫

exp
(

1
2

c
1+ c

LMT (l)
)

dJ(l). (A.14)

The larger c is, the more weight is given to alternatives for which break magnitude δ is large. We

consider two cases c→ 0 and c→ ∞ which is as follows, suitably normalized.

lim
c→0

2(Exp-LMT c−1)/c =
∫

LMT (l)dJ(l)

lim
c→∞

log
(
(1+ c)p/2Exp-LMT c

)
= log

∫
exp
(

1
2

LMT (l)
)

dJ(l)

The directional break test statistics are similar to Exp-LRT under Gaussian disturbances and

c→ 0. If we assume J(l) is an uniform weight function over [ε,1− ε], ε > 0 then under the null,
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∫ 1−ε

ε

LM∗T (l)dl⇒
∫ 1−ε

ε

(W (l)− lW (1))′(W (l)− lW (1))
l(1− l)

dl

log
∫ 1−ε

ε

exp
(

1
2

LM∗T (l)
)

dl⇒ log
∫ 1−ε

ε

exp
(

1
2
(W (l)− lW (1))′(W (l)− lW (1))

l(1− l)

)
dl.

From our model (2.1) the test statistic LM∗T (l) is the test statistic when the break location l is

known.

LM∗T (l) =
1

l(1− l)

(
T−1/2

T

∑
t=[T l]+1

Xt ût

)′
Ω̂
−1

(
T−1/2

T

∑
t=[T l]+1

Xt ût

)
.

where ût is the residual under the null (no break). Under the local alternative δ = T−1/2d and

c→ 0,

∫ 1−ε

ε

LM∗T (l)dl⇒
∫ 1−ε

ε

1
l(1− l)

[
W (l)− lW (1)+(min{l,r0}− lr0)Ω

−1/2
ΣX d

]⊗2
dl

where r0 is the true break location and Ω is the long-run variance of {Xtut}.

Refer to Elliott and Müller (2006) for the construction and asymptotic distribution of the

“quasi Local Level” test statistic q̂LL.

A.2.2 Proofs for Chapter 2

Proof of Lemma 5

Proof. Let R = [Ik 0]′ be a ((k+m)× k) matrix where Ik is an identity matrix with dimension

k and 0 a (k×m) matrix of zeros. Then we have R′Q′Q = X ′Q. From the definition of M and

l = t/T we have
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T−1/2(X−X(t))′MU = T−1/2(X−X(t))′U− (X−X(t))′Q(Q′Q)−1T−1/2Q′U

= T−1/2(X−X(t))′U−T−1R′(Q−Q(t))′Q(T−1Q′Q)−1T−1/2Q′U

= T−1/2(X−X(t))′U− (1− l)R′ΣQΣ
−1
Q T−1/2Q′U

+
[
(1− l)R′ΣQΣ

−1
Q −T−1R′(Q−Q(t))′Q(T−1Q′Q)−1

]
T−1/2Q′U

= T−1/2(X−X(t))′U− (1− l)R′ΣQΣ
−1
Q T−1/2Q′U +op(1)

where the last equation is from (1− l)R′ΣQΣ
−1
Q −T−1R′(Q−Q(t))′Q(T−1Q′Q)−1 p→ 0 by Con-

dition 1(iv) and T−1/2Q′U =

 T−1/2X ′U

T−1/2Z′U

= Op(1) from Condition 1(ii) and (iii). Hence we

have

T−1/2(X−X(t))′MU = T−1/2(X−X(t))′U− (1− l)T−1/2X ′U +op(1)

⇒Ω
1/2(W (1)−W (l))− (1− l)Ω1/2W (1)

=−Ω
1/2(W (l)− lW (1)).

We can ignore the minus sign because the distribution W (l)− lW (1) is symmetric.

Proof of Theorem 6

Proof. From Lemma 5, consistency of estimators Σ̂X , Ω̂, and continuous mapping theorem we

have
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(
d̄′d̄

δ̄′Σ̂
−1/2
X Ω̂Σ̂

−1/2
X δ̄

)1/2

δ̄
′
Σ̂
−1/2
X

(
T−1/2

T

∑
s=t+1

v̂s

)

⇒

(
d̄′d̄

δ̄′Σ
−1/2
X ΩΣ

−1/2
X δ̄

)1/2

δ̄
′
Σ
−1/2
X Ω

1/2(W (l)− lW (1))

= (d̄′d̄)1/2BB(l),

where the last equation is from δ̄′Σ
−1/2
X Ω1/2(W (l)− lW (1)) = (δ̄′Σ

−1/2
X ΩΣ

−1/2
X δ̄)1/2BB(l) where

BB(l) is a univariate Brownian Bridge. The second term inside the exponential function of dba
T ,

which is 1
2 d̄′d̄

( t
T

)(
1− t

T

)
, is asymptotically equivalent to the second term of the likelihood ratio

test statistic in (2.9):

1
2
(d̄ ◦ δ̄)′Σ

−1/2
X T−1(X−X(t))′M(X−X(t))Σ−1/2

X (d̄ ◦ δ̄)

=
1
2
(d̄ ◦ δ̄)′Σ

−1/2
X

[
T−1(X−X(t))′(X−X(t))

−T−1R′(Q−Q(t))′Q(T−1Q′Q)−1T−1Q′(Q−Q(t))R
]

Σ
−1/2
X (d̄ ◦ δ̄)

→ 1
2
(d̄ ◦ δ̄)′Σ

−1/2
X

[
(1− l)ΣX − (1− l)2R′ΣQΣ

−1
Q ΣQR

]
Σ
−1/2
X (d̄ ◦ δ̄)

=
1
2

d̄′d̄l(1− l),

where the last equation is from (d̄ ◦ δ̄)′(d̄ ◦ δ̄) = d̄′d̄.

For dbc
T the application of the continuous mapping theorem yields the distribution

dbc
T ⇒
√

12
∫ 1

0
BB(l)dl =

√
12
[∫ 1

0
W1(l)dl− 1

2
W1(1)

]

where W1(l) is a univariate Brownian Motion. The mean and variance of the distribution can be
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computed from  ∫ 1
0 W1(l)dl

W1(1)

∼ N


 0

0

 ,

 1
3

1
2

1
2 1


 .

The mean is zero and the variance is 1
3 +

1
4 −2 · 1

2 ·
1
2 = 1

12 , thus the null limit distribution of dbc
T

is a standard normal distribution.

Proof of Theorem 7

Proof. Under the alternative we have MY = M(X −X(τ0))δ+MU , and if δ = T−1/2σΣ
−1/2
X d

then

T−1/2
T

∑
s=t+1

v̂s = T−1/2(X−X(t))′MU +T−1
σ(X−X(t))′M(X−X(τ0))Σ

−1/2
X d.

The first term is the same as under the null hypothesis. Consider the second term:

T−1(X−X(t))′M(X−X(τ0))

= T−1(X−X(t))′(X−X(τ0))−T−1R′(Q−Q(t))′Q(T−1Q′Q)−1T−1Q′(Q−Q(τ0))R

From Condition 1(iv),

T−1(X−X(t))′(X−X(τ0))
p→ (1−max{l,r0})ΣX

T−1R′(Q−Q(t))′Q(T−1Q′Q)−1T−1Q′(Q−Q(τ0))R
p→ (1− l)(1− r0)R′ΣQΣ

−1
Q ΣQR

Hence, by continuous mapping theorem the second term converges as follows.
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T−1
σ(X−X(t))′M(X−X(τ0))Σ

−1/2
X d

p→ σ [(1−max{l,r0})ΣX − (1− l)(1− r0)ΣX ]Σ
−1/2
X d

= σ(min{l,r0}− lr0)Σ
1/2
X d

Again, by continuous mapping theorem we have

(
d̄′d̄

δ̄′Σ̂
−1/2
X Ω̂Σ̂

−1/2
X δ̄

)1/2

δ̄
′
Σ̂
−1/2
X

(
T−1/2

T

∑
s=t+1

v̂s

)

⇒ σ(d̄′d̄)1/2(min{l,r0}− lr0)

(δ̄′Σ
−1/2
X ΩΣ

−1/2
X δ̄)1/2

δ̄
′d +(d̄′d̄)1/2BB(l)

Under conditional homoskedasticity, we have σ(d̄′d̄)1/2/(δ̄′Σ
−1/2
X ΩΣ

−1/2
X δ̄)1/2 = (d̄′d̄/(δ̄′δ̄))1/2

= d̄1 under d̄ = d̄1ιk and the local alternative asymptotic distribution of the test statistics reduces

to the distribution inside the probability function of (2.15), (2.16) and (2.17).

A.3 Appendix for Chapter 3

We show that our method is a special case of smoothing the direct forecast estimates

themselves. Denote β̂LS,h a (n×1) vector as the horizon h direct regression least-square estimates.

Suppose we want to smooth out the estimates by taking a weighted average of the previous h−1

and h to obtain a smoothed forecast, β̂h = ωhβ̂LS,h +(1−ωh)β̂LS,h−1. Let β̂ = (β̂
′
1, . . . , β̂

′
H)
′ and

β̂LS = (β̂
′
LS,1, . . . , β̂

′
LS,H)

′. Then we can express the smoothing procedure in a linear function of
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direct forecasts β̂ = Aβ̂LS, where A is a (nH×nH) matrix.


β̂1
...

β̂H

=



In 0 · · · 0 0

(1−ω2)In ω2In · · · 0 0
...

... · · · ...
...

0 0 · · · (1−ωH)In ωHIn


︸ ︷︷ ︸

A


β̂LS,1

...

β̂LS,H



The smoothed direct forecasts can also be expressed as a linear function of β̂LS with a coefficient

matrix. In section 2.2 we showed the smoothed direct forecasts are

β̂ =

[
T−1

∑
t

(
V̂−1⊗xtx′t

)
+M−1

]−1[
T−1

∑
t

(
V̂−1⊗xt

)
Yt

]
=
[
T−1X′vXv +M−1]−1

[
T−1

∑
t

(
V̂−1⊗xt

)
Yt

]
, (A.15)

where X′vXv = V̂−1⊗X′X. Since M−1 is a positive definite matrix by construction, M−1 = P′ΛP

by triangular factorization. If we use the matrix inversion lemma on the first term of β̂, then

(
T−1X′vXv +M−1)−1

= (T−1X′vXv)
−1

− (T−1X′vXv)
−1P′(Λ+P(T−1X′vXv)

−1P′)−1P(T−1X′vXv)
−1.

If we plug this into (A.15),

β̂ = (T−1X′vXv)
−1
(

T−1
∑
t

(
V̂−1⊗xt

)
Yt

)
− (T−1X′vXv)

−1P′

× (Λ−1 +P(T−1X′vXv)
−1P′)−1P(T−1X′vXv)

−1
(

T−1
∑
t

(
V̂−1⊗xt

)
Yt

)
.
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The first line is equivalent to the least-square estimates of the direct forecast regression since the

diagonal matrix V̂−1 is cancelled out and gives us

β̂LS =

(
T−1

∑
t

IH⊗xtx′t

)−1(
T−1

∑
t
(IH⊗xt)Yt

)
.

The last two terms of the second line also gives us least-square estimates. Therefore the smoothed

direct forecast estimates can be expressed as a linear function of direct forecast estimates.

β̂ =
[
InH− (T−1X′vXv)

−1P′(Λ−1 +P(T−1X′vXv)
−1P′)−1P

]
β̂LS.

Forecast accuracy test

We describe West’s (1996) forecast accuracy test of two competing models. The competing

models are described in section 3.2, which are the direct forecast and smoothed direct forecast.

For the smoothed direct forecast, “asymptotic irrelevance” does not hold and we need

to take into account estimation uncertainty. Asymptotic irrelevance means that one conducts

inference by applying standard results to the mean of the loss function of interest, treating

parameter estimation as irrelevant (West, 1996). Asymptotic irrelevance holds when predictors

are uncorrelated with the prediction error if the object of interest is the out-of-sample MSFE.

Because smoothed direct forecasts of all horizons are estimated jointly, we need to derive a joint

distribution of the horizon h direct forecast and smoothed direct forecasts of all horizons in order

to compare the MSFE at horizon h.

Assumptions 1-4 from West (1996) are maintained and the same notations are used to

derive the joint distribution of direct and smoothed forecasts. Let E ft+h := E[(yt+h− x′tγh)]

be the forecast measure of interest, which is the MSFE at horizon h. Then the estimate is

f̂t+h := (û2
h,t+h, v̂

2
1,t+1, v̂

2
2,t+2, v̂

2
3,t+3, . . . , v̂

2
H,t+H)

′ where ûh,t+h = yt+h−x′t γ̂ht is the direct forecast

residual and v̂h,t+h = yt+h−x′t β̂ht is the smoothed direct forecast residual, each from horizon h
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regression. Estimators γ̂ht and β̂ht satisfies γ̂t− γ∗ = B(t)H(t) and β̂t−β
∗ = B̃(t)H̃(t), where

H(t) = t−1
t

∑
j=1

h j(γ
∗) = t−1

t

∑
j=1

(y j− (IH⊗x j)
′
γ
∗)⊗x j

H̃(t) = t−1
t

∑
j=1

h̃ j(γ
∗) = t−1

t

∑
j=1

V̂−1
(y j− (IH⊗x j)

′
β
∗)⊗x j−M−1

β
∗,

and yt = (yt+1, . . . ,yt+H). Hence expectations of h j(γ
∗) and h̃ j(β

∗) are orthogonality conditions

for each estimator: E[h j(γ
∗)] = 0, E[h̃ j(β

∗)] = 0. Denote the horizon h component of h j(γ
∗) as

h j,h(γ
∗)≡ x ju j+h.

Let f̄ = P−1
∑

T
t=R f̂t+h, θ = (γh,β1,β2, . . . ,βH), ftθ := ∂ ft+h

∂θ
, h j(θ) := (h j,h(γ

∗), h̃ j(β
∗)),

and F := E[ ftθ]. Below are terms we need to derive the distribution of ( f̄ −E ft).

Γ f h( j) = E( ft−E ft)h′t− j, S f h =
∞

∑
j=−∞

Γ f h( j),

Γhh( j) = E(hth′t− j), Shh =
∞

∑
j=−∞

Γhh( j),

Γ f f ( j) = E[( ft−E ft)( ft−E ft)′], S f f =
∞

∑
j=−∞

Γ f f ( j),

Π = 1−π
−1 ln(1+π), lim

T→∞
(P/R) = π, 0≤ π < ∞,

Theorem 4.1 of West (1996) implies that

P1/2( f̄ −E ft)
A∼ N(0,Ω)

Ω = S f f +Π(FBS′f h +S f hB′F)+2ΠFBShhB′F′.

A consistent estimator of Ω is obtained by replacing the parameters to the sample analogue. The
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test statistic for the null hypothesis E[u2
h,t+h] = E[v2

h,t+h] has a chi-squared limit distribution,

P(α f̄ )2

α′Ω̂α

A∼ χ
2(1),

where α = (1,0, · · · ,0,−1,0, · · ·1) has −1 at the (h+1)th element.
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Data description

Table A.9: Category (A) Income, Output, Sales, Capacity Utilization

Series Trans. Sample period Description

IPNB50030.M ∆Ln 1939:1 - 2016:7 Industrial Production Index - Final
Products & Nonindust Supplies
(2012=100, NSA)

IPNB50002.M ∆Ln 1939:1 - 2016:7 Industrial Production Index - Final
Products (2012=100, NSA)

IPNB51000.M ∆Ln 1939:1 - 2016:7 Industrial Production Index - Consumer
goods (2012=100, NSA)

IPNB51100.M ∆Ln 1947:1 - 2016:7 Industrial Production Index - Durable
consumer goods (2012=100, NSA)

IPNB51200.M ∆Ln 1947:1 - 2016:7 Industrial Production Index -
Nondurable consumer goods
(2012=100, NSA)

IPNB52100.M ∆Ln 1947:1 - 2016:7 Industrial Production Index - Business
equipment (2012=100, NSA)

IPNB53000.M ∆Ln 1939:1 - 2016:7 Industrial Production Index - Materials
(2012=100, NSA)

IPNB53100.M ∆Ln 1947:1 - 2016:7 Industrial Production Index - Durable
goods materials (2012=100, NSA)

IPNB53200.M ∆Ln 1954:1 - 2016:7 Industrial Production Index -
Nondurable goods materials
(2012=100, NSA)

IPSB00004.M ∆Ln 1919:1 - 2016:7 Industrial Production Index -
Manufacturing (SIC) (2012=100, SA)

IPSGMFD.M ∆Ln 1972:1 - 2016:7 Industrial Production Index - Durable
manufacturing (NAICS) (2012=100,
SA)

IPSGMFN.M ∆Ln 1972:1 - 2016:7 Industrial Production Index -
Nondurable manufacturing (NAICS)
(2012=100, SA)
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Table A.9: Category (A) Income, Output, Sales, Capacity Utilization; continued from previous
page.

Series Trans. Sample period Description

IPSG21.M ∆Ln 1972:1 - 2016:7 Industrial Production Index - Mining
(2012=100, SA)

IPSG2211A2.M ∆Ln 1972:1 - 2016:7 Industrial Production Index - Electricity
and gas utilities (2012=100, SA)

UTLB50001.M Lev 1967:1 - 2016:7 Capacity Utilization - Total Index (%,
SA)

UTLB00004.M Lev 1948:1 - 2016:7 Capacity Utilization - Manufacturing
(SIC) (%, SA)

UTLGMFD.M Lev 1967:1 - 2016:7 Capacity Utilization - Durable manufac-
turing (NAICS) (%, SA)

UTLGMFN.M Lev 1967:1 - 2016:7 Capacity Utilization - Nondurable
manufacturing (NAICS) (%, SA)

UTLG21.M Lev 1967:1 - 2016:7 Capacity Utilization - Mining (%, SA)
UTLG335.M Lev 1972:1 - 2016:7 Capacity Utilization - Electrical equip.,

Appliance & component (%, SA)
YP.M ∆Ln 1959:1 - 2016:6 Nominal Personal Income (Bil $,

SAAR
A0M051.M ∆Ln 1959:1 - 2016:6 Personal Income less Transfer

Payments (Bil/Chained 2009 $, SAAR
CXFAE.M ∆Ln 1959:1 - 2016:6 Personal Consumption Expenditures

excluding Food and Energy (Bil $,
SAAR)

CD.M ∆Ln 1959:1 - 2016:6 Personal Consumption Expenditures -
Durable goods (Bil $, SAAR)

CN.M ∆Ln 1959:1 - 2016:6 Personal Consumption Expenditures -
Nondurable goods (Bil $, SAAR)

CSV.M ∆Ln 1959:1 - 2016:6 Personal Consumption Expenditures -
Services (Bil $, SAAR)
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Table A.10: Category (B) Employment and Unemployment

Series Trans. Sample period Description

EPNEGP.M ∆Ln 1947:1 - 2016:7 Employment of prod and nonsup on
nonfarm payrolls - Goods (thous., SA)

EPNET.M ∆Ln 1964:1 - 2016:7 Employment of prod and nonsup on
nonfarm payrolls - Total, private
(thous., SA)

EPNECON.M ∆Ln 1947:1 - 2016:7 Employment of prod and nonsup on
nonfarm payrolls - Construction
(thous., SA)

EPNEPSP.M ∆Ln 1964:1 - 2016:7 Employment of prod and nonsup on
nonfarm payrolls - Private service pro-
viding (thous., SA)

EPNETTU.M ∆Ln 1964:1 - 2016:7 Employment of prod and nonsup on
nonfarm payrolls - Trade, trans. and
utilities (thous., SA)

EPNEWST.M ∆Ln 1972:1 - 2016:7 Employment of prod and nonsup on
nonfarm payrolls - Wholesale trade
(thous., SA)

EPNERET.M ∆Ln 1972:1 - 2016:7 Employment of prod and nonsup on
nonfarm payrolls - Retail trade (thous.,
SA)

EPNEFIN.M ∆Ln 1964:1 - 2016:7 Employment of prod and nonsup on
nonfarm payrolls - Financial activities
(thous., SA)

EPNEOTS.M ∆Ln 1964:1 - 2016:7 Employment of prod and nonsup on
nonfarm payrolls - Other services
(thous., SA)

EG.M ∆Ln 1939:1 - 2016:7 Employment all employees - Govern-
ment (thous., SA)
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Table A.10: Category (B) Employment and Unemployment; continued from previous page.

Series Trans. Sample period Description

EPNEND.M ∆Ln 1939:1 - 2016:7 Employment of prod and nonsup on
nonfarm payrolls - Nondurable goods
(thous., SA)

EPNEMF.M ∆Ln 1939:1 - 2016:7 Employment of prod and nonsup on
nonfarm payrolls - Manufacturing
(thous., SA)

EPNED.M ∆Ln 1939:1 - 2016:7 Employment of prod and nonsup on
nonfarm payrolls - Durable goods
(thous., SA)

EPNEML.M ∆Ln 1947:1 - 2016:7 Employment of prod and nonsup on
nonfarm payrolls - Mining and logging
(thous., SA)

U15@26WZ.M Lev 1948:1 - 2016:7 Unemployment level of duration: 15-26
wks (thous, SA)

U15&WZ.M Lev 1948:1 - 2016:7 Unemployment level of duration: 15
wks+ (thous, SA)

U@5WZ.M Lev 1948:1 - 2016:7 Unemployment level of duration: less
than 5 wks (thous, SA)

U5@14WZ.M Lev 1948:1 - 2016:7 Unemployment level of duration: 5-14
wks (thous, SA)

WEEKSU.M Lev 1948:1 - 2016:7 Unemployed average duration in weeks
(weeks, SA)

RDUTTTOD5U.M Lev 1948:1 - 2016:7 Unemployment rate: 15 wks and over
(%, NSA)

HOPMF.M Lev 1956:1 - 2016:7 Avg. weekly overtime hrs. of prod.
and nonsup. employees: mfg., overtime
(SA)

HPEAP.M Dif 1964:1 - 2016:7 Avg. weekly overtime hrs. of prod. and
nonsup. employees: Total private (SA)

HPMF.M Lev 1939:1 - 2016:7 Avg. weekly overtime hrs. of prod.
and nonsup. employees: manufactur-
ing (SA)

LCZ.M ∆Ln 1948:1 - 2016:7 Civilian labor force: 16 years and over
(thous., SA)
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Table A.11: Category (C) Construction, Inventories and Orders

Series Trans. Sample period Description

HUSTSSO.M Ln 1959:1 - 2016:7 Housing starts: South (mil.u., SAAR)
HUSTSWT.M Ln 1959:1 - 2016:7 Housing starts: West (mil.u., SAAR)
HUSTSNC.M Ln 1959:1 - 2016:7 Housing starts: Midwest (mil.u.,

SAAR)
HUSTSNE.M Ln 1959:1 - 2016:7 Housing starts: Northeast (mil.u.,

SAAR)
UHS.M Ln 1947:1 - 2016:7 Housing starts: Total (thous.u., SAAR)
HU1NOFFERZ.M Ln 1963:1 - 2016:6 New 1-family houses for sale at end of

month (thous.u., SA)
HU1NSOLDZ.M Ln 1963:1 - 2016:6 New 1-family houses for sale during

month (thous.u., SA)
HUATZNSTNS.M Ln 1968:1 - 2016:7 Housing authorized but not started at

end of period (thous.u., NSA)
SHPMH.M Ln 1959:1 - 2016:6 Mobile homes: manufactures’

shipments (thous.u., SAAR)
RISMAT.M ∆Ln 1959:1 - 2016:7 Ratio of mfg. and trade: inventory or

sales (SAAR NIPA)
PMI.M Lev 1948:1 - 2016:7 Purchasing managers’ index (SA)
PMP.M Lev 1948:1 - 2016:7 Napm production index (%)
JDIFFO@NAPMZ.M ∆Ln 1948:1 - 2016:7 New orders index (%, SA)
PMDEL.M Lev 1948:1 - 2016:7 Napm vendor deliveries index (%)
PMNV.M Lev 1948:1 - 2016:7 Napm inventories index (%)
PMEMP.M Lev 1948:1 - 2016:7 Napm employment index (%)
PMCP.M Lev 1948:1 - 2016:7 Napm commodity prices index (%)
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Table A.12: Category (D) Interest Rate and Asset Prices

Series Trans. Sample period Description

RMGFCM@10NS.M Diff 1953:4 - 2016:7 Interest rate: U.S. treasury
const maturities, 10-yr (% per ann.,
NSA)

RMFEDFUNDNS.M Diff 1954:7 - 2016:7 Interest rate: federal funds (effective)
(% per ann., NSA)

RMGFCM@1NS.M Diff 1953:4 - 2016:7 Interest rate: U.S. treasury
const maturities, 1-yr (% per ann.,
NSA)

RMGFCM@5NS.M Diff 1953:4 - 2016:7 Interest rate: U.S. treasury
const maturities, 5-yr (% per ann.,
NSA)

ALCIBL00.M ∆Ln 1959:1 - 2016:7 Commerical and industiral
loans outstanding in 2009 dollars (bci)

JNYSE02Z.M ∆Ln 1966:1 - 2016:7 Nyse common stock price index: com-
posite (12/31/02 = 5000)

JS&PNS.M ∆Ln 1901:1 - 2016:7 S&P’s common stock price index:
composite (1941-43=10)

JS&PINDNS.M ∆Ln 1901:1 - 2016:7 S&P’s common stock price index: in-
dustrial (1941-43=10)

MNY2@00.M ∆Ln 1959:1 - 2016:6 Money supply, m2 in 2009
dollars (bci)

RMMTGNS.M ∆Ln 1963:1 - 2016:6 Effective interest rate:
conventional home mtge loans (%)

RXC146%USNS.M ∆Ln 1967:11 - 2016:7 Foreign exchange rate:
Switzerland (swiss franc per U.S. $)

RXC158%USNS.M ∆Ln 1967:11 - 2016:7 Foreign exchange rate:
Japan (yen per U.S. $)

RXC156%USNS.M ∆Ln 1956:1 - 2016:7 Foreign exchange rate:
Canada (canadian $ per U.S. $)
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