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ABSTRACT OF THE THESIS

Secure Reinforcement Learning And The Detection Of Man-In-The-Middle Attacks

by

Rishi Rani

Master of Science in Electrical Engineering (Communication Theory and Systems)

University of California San Diego, 2023

Professor Massimo Franceschetti, Chair

In this thesis, we study the the detection of man-in-the-middle (MITM) attacks in model-

free reinforcement learning. We consider the problem of a learning-based, where the system may

be subject to an adversarial attack that hijacks the feedback signal and the controller actions. The

adversary first learns the dynamics of the system in a learning phase before hijacking the system

in a attack phase. We then propose simple attack detection algorithms to detect such MITM

attacks without for two different system models. Firstly, when the system can be modelled as a

Markov decision process. Secondly, when it can modelled as a discrete linear time invariant (LTI)

system with stochastic distrubances. We also show that a necessary and sufficient “informational

advantage” condition must be met for both systems to guarantee the detection of attacks with
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high probability, while also avoiding false alarms.
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Chapter 1

Detection of Man-in-The-Middle Attacks
for Markov Decision Process Systems
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Detection of Man-in-the-Middle Attacks
in Model-Free Reinforcement Learning

Rishi Rani SMR@UCSD.EDU and Massimo Franceschetti MFRANCESCHETTI@ENG.UCSD.EDU

Dept. of Electrical and Computer Engineering,
University of California, San Diego
La Jolla, CA-92093

Editors: N. Matni, M. Morari, G. J. Pappas

Abstract
This paper proposes a Bellman Deviation algorithm for the detection of man-in-the-middle

(MITM) attacks occurring when an agent controls a Markov Decision Process (MDP) system
using model-free reinforcement learning. This algorithm is derived by constructing a “Bellman
Deviation sequence” and finding stochastic bounds on its running sequence average. We show
that an intuitive, necessary and sufficient “informational advantage” condition must be met for the
proposed algorithm to guarantee the detection of attacks with high probability, while also avoiding
false alarms.
Keywords: Cyber-Physical Systems, Learning Based Attacks, Man-in-the-Middle Attacks, Model-
Free Reinforcement Learning.

1. Introduction

Recent advancements in wireless technology and computation have enabled the possibility of per-
forming networked control in cyber-physical systems (CPS), leading to a multitude of applications
such as cloud robotics, autonomous navigation and industrial processes (Kehoe et al., 2015). These
modern learning and decision making systems are inherently online as they make decisions on the
fly, in a closed-loop fashion and based on past observations. However, the distributed nature of
CPS leads to security vulnerabilities that drives a need for developing secure optimal control strate-
gies. The consequences of security breaches can be catastrophic as the attackers’ target can range
from systems for financial gain, to hijacking autonomous vehicles or unmanned aerial vehicles, to
breaching life-critical systems as an act of terror (Urbina et al., 2016; Dibaji et al., 2019a; Jamei
et al., 2016). Some instances of attacks that were discovered and made public include the Ukraine
power grid cyber-attack, the German steel mill cyber-attack, the revenge sewage attack in Australia,
the David Besse nuclear power plant attack in Ohio and the Iranian uranium enrichment facility at-
tack by the Stuxnet malware (Sandberg et al., 2015). These recent events motivated several studies
on prevention of security breaches at a control-theoretic level (Bai et al., 2017; Dolk et al., 2017;
Shoukry et al., 2016; Chen et al., 2016; Shi et al., 2018; Dibaji et al., 2018; R. et al., 2018; Niu
et al., 2021; Chong et al., 2019; Tomić et al., 2018; Ding et al., 2019; Teixeira et al., 2015; M. Xue
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and Das, 2012; Cetinkaya et al., 2017; Brown et al., 2019; Law et al., 2015; Pirani et al., 2021;
Hashemi et al., 2018). In this general framework, the “man-in-the-middle” (MITM) class of at-
tacks in CPS is an important paradigm that has been widely studied (Smith, 2011). An adversary
overrides the sensor feedback signals transmitted from the physical plant to the legitimate agent
with spoofed signals that mimic safe and stable operation. Simultaneously, the plant is pushed
towards a catastrophic trajectory by overriding the control signal with malicious inputs. The legit-
imate agent must therefore constantly monitor the plant outputs and look for statistical anomalies
in the spoofed feedback signals to detect such attacks. The adversary, on the other hand, aims to
generate spoofed sensor readings in a way that would be indistinguishable, in a statistical sense,
from the legitimate ones while at the same time attempting to drive the system to a catastrophic
state.

Two special cases of the MITM attack have been studied extensively. The first case is the re-
play attack, in which the adversary observes and records the true system behavior for a given time
period and then replays this recording periodically at the agent’s input (Mo et al., 2015; Zhu and
Martı́nez, 2014; Miao et al., 2013). The second case is the statistical-duplicate attack, here the
adversary is assumed to have perfect knowledge of the system dynamics therefore allowing the
adversary to construct arbitrarily long trajectories that are statistically identical to the true system
(Smith, 2011; Satchidanandan and Kumar, 2017; Hespanhol et al., 2018). The replay attack, by
nature, is relatively easy to detect as it assumes no knowledge of system parameters. One strategy
to counter replay attacks is to superimpose a watermark signal on the control signal, unbeknownst
to the adversary (Hespanhol et al., 2018; Fang et al., 2017; Hosseini et al., 2016; Ferdowsi and
Saad, 2019; Liu et al., 2018). The statistical-duplicate attack assumes full knowledge of the sys-
tem dynamics and parameters. As a consequence, it is barred from observing the control actions,
as otherwise it would be omniscient and undetectable. Due to the adversary having complete in-
formation, it requires a more sophisticated detection procedure to ensure it can be detected. To
combat the adversary’s full knowledge, the agent may adopt moving target (Weerakkody and Si-
nopoli, 2015; Kanellopoulos and Vamvoudakis, 2020; Zhang et al., 2020; Griffioen et al., 2019)
or baiting (Dibaji et al., 2019b; Hoehn and Zhang, 2016) techniques. Alternatively, introducing
private randomness through watermarking also proves to be a viable strategy (Satchidanandan and
Kumar, 2017).

Another class of MITM attacks are learning-based attacks, which are related to the broader
study of learning based control (Fisac et al., 2019a; Berkenkamp et al., 2017; Fisac et al., 2019b;
Yuan and Mo, 2015; Tu and Recht, 2018). In learning based attacks, the adversary initially has
no knowledge of the system dynamics, but spends some time learning the system from observa-
tion before it hijacks the control signal to achieve catastrophic effects while attempting to remain
undetected. This paradigm is more practical, as it is unreasonable to assume perfect knowledge
of system models as is done in a statistical duplicate attacks. Yet, it remains powerful, as the
adversary learned model may allow sophisticated deception schemes instead of relying on simple
techniques like the replay attack. Using an information theoretic approach, upper and lower bounds
were drawn on the asymptotic probability of deception for scalar and vector linear time invariant
systems (Khojasteh et al., 2021). Similar approaches were used to draw bounds on the time re-
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quired by an agent to declare a deception attack or no breach with a certain confidence, along with
lower bounds on the adversaries training time and energy spent by the agent to guarantee a certain
confidence in detection (Rangi et al., 2021).

Our contributions are as follows: we extend the model of learning-based attacks to include
the learning of the agent itself. Specifically, we consider a legitimate agent performing model-
free control through reinforcement learning (RL). In this context, since the agent has no explicit
model of the system, attack detection (AD), which typically occurs through the observation of
anomalous behavior, becomes particularly challenging. Detection, in our case, is performed by
careful monitoring of the Q-function, which provides an implicit model of the system. We propose
an AD algorithm, named the “Bellman Deviation Detection” algorithm. The proposed algorithm
asymptotically guarantees AD with high probability while also avoiding false alarms, when an
“informational advantage” condition is met. The informational advantage condition relates the
error in the agent’s Q-function to the adversary’s error in the model parameters. The analysis
also provides useful insights into the nature of the problem in terms of the information pattern
required for successful detection. Finally, we point out that our analysis accounts for errors in the
learning techniques of both the agent and the adversary, models the system as an MDP rather than
a deterministic system, and assumes that the reward function is unknown and rewards are subject
to added white noise. These assumptions are made in an effort to make the analysis closer to
real-world scenarios.

2. Mathematical Preliminaries and Notation

A Markov Decision Process is defined by the quadruple (X ,U ,P, r), where X is the set of states
with cardinality |X | = N and U is the set of actions with cardinality |U| = M, while P is the
transition probability matrix and r() is the reward function. The probabilistic transitions from state
to state are Markov and are given by

Pr(xt+1|xt, ut) ∼ pxt,ut ≡ [pxt,ut(x1), . . . pxt,ut(xN )] (1)

and P =



px1,u1

...
pxN ,uM


 .

Similarly, the reward for each transition from state xt by action ut is given by

r(xt, ut) ≜ rxt,ut = Ext+1∼P r(xt, ut, xt+1). (2)

The model-free control objective is to learn a policy function π(x) : X → U such that the following
discounted reward is maximized

π∗(x) = argmax
π

= E

[ ∞∑

t=0

γtr(xt, π(xt), xt+1)

]
, x0 ∈ X , (3)
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where γ is the discount factor and represents how much the future reward is discounted. This
problem is termed the infinite time horizon discounted reward problem. This objective is achieved
by learning the optimal Q-function of the problem, which is

Q∗(x) = max
π

= E

[ ∞∑

t=0

γtr(xt, π(xt), xt+1)

]
, x0 ∈ X . (4)

The optimal Q-function relates to the optimal policy as π∗(x) = argmaxuQ
∗(x, u) and the optimal

value function, which describes the total accrued reward of an optimal trajectory, is defined as

V ∗(x) = max
x

Q∗(x, u), (5)

v = [V ∗(x1) . . . , V ∗(xN )],

where v denotes the optimal value function as a vector. Finally, we note that the optimal Q-function
can be recursively written using the Bellman equation as

Q∗(x, u) =r(x, u) + γ
∑

x′∈X
p(x, u, x′) ·

(
maxu′Q∗(x′, u′)

)
(6)

=r(x, u) + γ
∑

x′∈X
p(x, u, x′) · V ∗(x′)

=r(x, u) + γ px,uv
T .

Throughout out the paper we describe vectors using bold face and vectors are row vector by
default (to align with MDP convention). Matrices are bold face and capitalized, ∥ · ∥2 refers to the
vector euclidean norm. Finally, we say that an event occurs with high probability (w.h.p.) if its
probability pn tends to one as the parameter n tends to infinity.

3. Problem Setup

The system is modeled as an MDP that is controlled by an agent receiving a reward that is corrupted
by additive white noise. The reward noise wt, is i.i.d., with zero mean and variance maybe infinite.
We assume that the agent has learned an estimate of the optimal Q-function of the system using a
trajectory τA described as

τA = (xA1 , u
A
1 , . . . x

A
tA
, uAtA), (7)

where tA is the agent training time. No additional assumption is made on τA itself and the trajectory
can be controlled by the agent. The agent has no information about the system model or reward
function and uses a generalised learning algorithm with the following stochastic guarantee
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|Q̂tA(x, u)−Q(x, u)| ≤ ε(tA),w.h.p (8)

and ∀x ∈ X , u ∈ U
s.t ϵ(t)→ 0 as t→∞.

(a) Adversary Learning Phase: During this
phase, the attacker eavesdrops and learns
the system, without altering the feedback
signal to the agent.

(b) Adversary Attack Phase: During this
phase, the adversary hijacks the system
and intervenes as a MITM in two places:
acting as a fake system to the agent and
acting as a fake agent to the system.

Figure 1: Adversary Attack Model

As described in Figure 1(a)subfigure, the adversary initially is in its learning phase where it
observes a trajectory τB and it learns the system giving it an estimate of the transition model P̂.
During its learning phase the adversary has no control over its learning trajectory τB , as it merely
learns by observing and does not control the system. Therefore, no asymptotic convergence guar-
antees are placed on its estimate P̂. In the attack phase (as described in Figure 1(b)subfigure) the
agent takes control of the system and feeds the agent a spoofed state feedback signal. This feedback
signal is statistically consistent with its transition model estimate P̂. Note that P̂ need not be an
be an explicit estimate made by the adversary (for example the adversary may also use model-free
learning), however there exists an implicit statistical model it follows. The trajectory τCformed
during the attack phase is used by the agent to detect for perform AD. The adversary in this phase
steers the true system towards catastrophe and the agent is tasked with detecting the attack and
declaring a breach. The adversary’s strategy to lead the system to catastrophe does not affect AD,
namely the adversary’s closed feedback with system is not of strict concern to the detection prob-
lem.

Problem Statement: Given the agent has a learned estimate of the optimal Q-function Q̂() and
the adversary spoofs the system with a transition model estimate P̂, devise a detection algorithm
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that uses the trajectory during attack τC and provides guarantees on AD as the trajectory length
tC →∞.

4. A Detection Algorithm Based on “Bellman Deviation”

In this section we describe our proposed algorithm and prove its stochastic guarantees.

4.1. Algorithmic Description

Before we describe the detection algorithm, we start by defining all the required quantities. The
trajectory during attack is a tuple of the form

τC = (xC1 , u
C
1 , . . . x

C
tC
, uCtC ). (9)

Let tC(i, j) be the number of times the state action pair (i, j) is observed and the sequence xi,j(k)
and the ui,j(k) are the respective states and actions that followed them each subsequent time.
Similarly let ri,j be the immediate reward doled out at that instant and wi,j(k) be its associated
white noise.

Definition 1 (Bellman Deviation Sequence) Let

di,j(k) =Q̂(i, j)− ri,j − wi,j(k) (10)

− γV̂ (xi,j(k)) ,∀k ∈ [1, tC(i, j)],

be the Bellman deviation sequence . This sequence represents the deviations from Bellman like
behavior in the observed trajectory during the attack phase.

The Bellman deviation sequence (BDS) is simply the temporal difference (TD) errors separated
by state-action pair to form M×N different sequence. Each representing the sequence of TD errors
measured in the trajectory when the system transitioned through the respective state-action pair.

Definition 2 (Bellman Deviation Average) Let

d̄i,j =

∑tC(i,j)
k=1 di,j(k)

tC(i, j)
(11)

be the Bellman deviation averages (BDAs). This average helps us eliminate the disturbances we
find due to noise in rewards and the stochastic transitions.

The Bellman deviation average (BDA) is simply an average of the BDS. We use bounds on
the BDA to determine if the system is under a MITM attack. A high BDA would suggest that the
system is under attack. To draw the exact bounds on the deviation averages however, we need to
define useful measures on the system and adversary model estimates as well.
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Definition 3 (Maximum System Discernibility) Given an MDP system (X ,U ,P, r), we can de-
fine its system discernibility as

Φ(v) =
γ · ∥v − µ(v)∥2√

N
, (12)

where v is the associated optimal value function represented as a vector and the function µ(·) is
a function that returns a vector (of same dimension 1 × N ) where all the elements are the simple
average of the input vector.

The above definition can be understood intuitively as a measure that tells us how easy it is to
observe deviation in that system’s trajectory during the attack phase. For example, if system with
Φ(v) = 0. This implies that the value function gives us no information about the different trajec-
tories as they have the same accrued reward. This makes the a deviation from optimal trajectory
indiscernible and hence AD infeasible. So the system discernibility measure is a key feature of the
system and should be kept in mind while designing secure systems.

Finally, we define a quantity to measure the minimum error in an adversary’s system model.

Definition 4 (Minimum Adversary Model Error) Given the system state transition model is P
and the adversary estimate is P̂ we define the minimum adversary model error as

∆(P, P̂) = σ2(P− P̂) = σ2(P̃), (13)

where the function σ2(·) returns the second smallest singular value of the matrix.

The minimum adversary model error gives us a measure of the minimum error of the adversary’s
estimate of the conditional distribution p̂ across all state-action pairs. Note that the rows of prob-
ability error matrix P̃ sum to 0, since its the difference of two stochastic matrices. Therefore its
smallest singular value is trivially 0 making the second smallest singular value a good measure
of minimum error. With the above quantities defined we are now ready to present the Bellman
deviation detection algorithm (see Algorithm 1) and prove its correctness.

In Algorithm 1 the division D
T is an element-wise division of the two matrices. The algorithm

essentially calculates the BDAs d̄i,j , takes the maximum value among them and compares it to the
bound ξ = δ · ϕ − (1 + γ)ϵ. If it crosses this bound a breach is declared. Note that the condition
δ ·ϕ >= 2 · (1+ γ)ϵ is the informational advantage condition that essentially puts an upper-bound
on the adversary errors with respect to the adversary’s model error. The algorithm guarantees AD
and no false alarms, with high probability, if and only if this condition is met.

Remark 5 We point out how the algorithm does not need exact estimates of the error bound on the
Q-function ε(tA), the system discernibility Φ(v) or minimum adversary model error ∆(P, P̂), but
only an over estimate (ϵ) or under estimate (ϕ, δ) respectively. This allows for a more practical
scenarios where exact values of these quantities would be unavailable and could be obtained by
bootstrap methods.
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Algorithm 1: Bellman Deviation Detection
require:
tC ≥ 0, length(τC)= tC // run when trajectory is non-empty
ϵ ≥ ε(tA) // have an over estimate of agent error

δ ≤ ∆(P, P̂) // have an under estimate of adversary minimum error
ϕ ≤ Φ(v) // have an under estimate of system discernibility
δ · ϕ ≥ 2 · (1 + γ)ϵ // meet informational advantage condition
initialize:
ξ ← δ · ϕ− (1 + γ)ϵ // Set Bellman deviation bound
D← [0]M×N // Initialize Bellman deviation averages
T← [0]M×N // Initialize counter for state action pairs
for i← 1 to tC do

i← τC [n][0] // current state
j ← τC [n][1] // current action
k ← τC [n+ 1][0] // next state

D[i, j]← Q̂(i, j)− r(i, j, k)− γV̂ (k) +D[i, j] // sum TD errors in Bellman
deviation sequence

T[i, j]← T[i, j] + 1 // increment counter

end
D← D

T // normalize to get Bellman deviation averages
if max(D) > ξ // compare largest deviation average with bound
then

declare breach
else

declare no breach
end

4.2. Correctness of the Algorithm

In this section we prove the correctness of the proposed algorithm. We first start by proving an
asymptotic upper bound on the BDAs if no attack is underway. Complete proofs of the Theorems 6
and 7 can be found in the supplementary material (Rani and Franceschetti, 2022).

Theorem 6
In the case when no attack takes place, we have that the following inequality holds for all

BDAs,

|d̄i,j | ≤ (1 + γ)ε(tA),w.h.p as (14)

tC(i, j)→∞ ∀(i, j) ∈ X × U ,

where ε(tA) is the error in the agent’s estimate of the optimal Q-function.

9



Proof Sketch
We rearrange the terms of the Bellman equation (6) and subtract it from (11) to get,

d̄i,j =

∑tC(i,j)
k=1 Q̂(i, j)− ri,j − wi,j(k)− γV̂ (xi,j(k))

tC(i, j)
(15)

−Q∗(i, j) + ri,j + γpi,jv
T

=

∑tC(i,j)
k=1

(
Q̂(i, j)−Q∗(i, j)

)

tC(i, j)
−
(∑tC(i,j)

k=1 ri,j
tC(i, j)

− ri,j

)

− γ

(∑tC(i,j)
k=1 V̂ (xi,j(k))

tC(i, j)
− pi,jv

T

)
−
∑tC(i,j)

k=1 wi,j(k)

tC(i, j)
.

We then use the convergence bound on the Q-function from (8) along with the law of large numbers
(LLN) to show that the first term involving the Q̂(i, j)−Q∗(i, j) is bound by ϵtA and the third term
involving V̂ (xi,j(k) and pi,jv

T is also bounded by ϵtA .

∣∣∣∣∣∣

∑tC(i,j)
k=1

(
Q̂(i, j)−Q∗(i, j)

)

tC(i, j)

∣∣∣∣∣∣
≤ ε(tA) (16)

γ

∣∣∣∣∣

∑tC(i,j)
k=1 V̂ (xi,j(k))

tC(i, j)
− pi,jv

T

∣∣∣∣∣ ≤ γε(tA) (17)

Clearly the term with rewards is trivially 0 and using the LLN we show that the term involving the
reward noise asymptotically tends to 0.

Therefore, by finally using triangular inequalities we can prove that,

|d̄i,j | ≤ (1 + γ)ϵ(tA),w.h.p as

tC(i, j)→∞ ∀(i, j) ∈ X × U .

Similarly we now prove a theorem that lower-bounds the largest BDA when the system is under
attack.

Theorem 7 Given the system is under attack, the largest BDA can be lower bounded as follows,

max
i,j
|d̄i,j | ≥ Φ(v) ·∆(P, P̂)− (1 + γ)ε(tA), (18)

w.h.p as tC(i, j)→∞.
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Proof Sketch In a manner similar to the proof of Theorem 6 we subtract equation (6) from (11)
but also introduce additional terms as,

d̄i,j =

∑tC(i,j)
k=1 Q̂(i, j)− ri,j − wi,j(k)− γV̂ (xi,j(k))

tC(i, j)
(19)

−Q∗(i, j) + ri,j + γp̂i,jv
T + γp̃i,jv

T

=

∑tC(i,j)
k=1

(
Q̂(i, j)−Q∗(i, j)

)

tC(i, j)
−
(∑tC(i,j)

k=1 ri,j
tC(i, j)

− ri,j

)

− γ

(∑tC(i,j)
k=1 V̂ (xi,j(k))

tC(i, j)
− p̂i,jv

T

)
−
∑tC(i,j)

k=1 wi,j(k)

tC(i, j)

+ γp̃i,jv
T .

And similar to the proof of the Theorem 6 we show using arguments involving the LLN and the
convergence bound on Q̂(·) in (8) that the first term is bounded as in (16) , while

γ

∣∣∣∣∣

∑tC(i,j)
k=1 V̂ (xi,j(k))

tC(i, j)
− p̂i,jv

T

∣∣∣∣∣ ≤ γε(tA) (20)

since the trajectory of the spoofed system being controlled has parameters P̂. And unlike the pre-
vious the case the new term γp̃i,jv

T can be lower bounded using the Cauchy- Schwartz inequality
and other further analysis as,

max
i,j
|γp̃i,jv

T | ≥ Φ(v) ·∆(P, P̂). (21)

The term involving the reward is trivially 0 and the reward noise term tends to 0 due too the LLN.
Therefore by finally using triangular inequalities we can prove that,

max
i,j
|d̄i,j | ≥ Φ(v) ·∆(P, P̂)− (1 + γ)ε(tA),

w.h.p as tC(i, j)→∞.

With an upperbound on the deviation proven, we finally prove the correctness of Algorithm 1
when the informational advantage condition is met.

Theorem 8 The informational advantage condition,

δ · ϕ > 2 · (1 + γ)ϵ, (22)

is necessary and sufficient for Algorithm 1 to guarantee AD while avoiding false alarms with high
probability as tC → ∞. Here δ and ϕ are under-estimates of the adversary minimum model
error and maximum system system discernibility as, δ ≤ ∆(P, P̂) and ϕ ≤ Φ(v), and ϵ is an
over-estimate of agent error in Q-function as ϵ ≥ ε(tA)
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Proof
Due to Theorem 6,

|d̄i,j | ≤ (1 + γ)ε(tA) ≤ (1 + γ)ϵ (23)

with high probability as tC →∞, since ϵ ≥ ε(tA). Similarly by Theorem 7,

max
i,j
|d̄i,j | ≥ Φ(v) ·∆(P, P̂)− (1 + γ)ε(tA) ≥ ϕ · δ − (1 + γ)ϵ (24)

with high probability as tC →∞, since ϕ ≤ Φ(v) and δ ≤ ∆(P, P̂). Therefore, we can guarantee
AD with no false alarms as tC →∞ for Algorithm 1, if and only if

ϕ · δ − (1 + γ)ϵ > (1 + γ)ϵ.

That is, when the lower bound on the largest BDA during attack exceeds the upper bound on all
BDAs during no attack. This allows us to detect if an attack takes place when the lower bound is
exceeded. We can now rewrite the above equation as

ϕ · δ > 2 · (1 + γ)ϵ.

Since asymptotic AD with no false alarms with high probability can be achieved by Algorithm 1
if and only if Equation (22) is true. This proves that Equation (22) is a necessary and sufficient
condition.

Remark 9 (On Asynchronous Detection) We note here that Theorem 8 proves the detection guar-
antees for when the start of the adversary’s attack and the agent’s detection algorithm are synchro-
nized. However, it is easy to extend this proof to the case when the start of the attack and detection
are offset by finite time (by using the Cesaro Mean theorem).

5. Conclusion

In this paper we proposed a Bellman Deviation Detection algorithm that is a simple statistical
test that can be used by an agent that performs a model-free reinforcement learning to guarantee
attack detection in an asymptotic sense. We proved stochastic guarantees of the proposed algorithm
which reveal how an informational advantage condition can be exploited by the agent to guarantee
detection. Our Bellman Deviation Detection algorithm provides security guarantees against MITM
attacks in the context of model-free RL, while also account for the imperfect knowledge of the
system at both the agent and the adversary ends.
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Detection of Man in the Middle Attacks in

Model-Free Reinforcement Learning for the

Linear Quadratic Regulator

Rishi Rani and Massimo Franceschetti

Abstract

We consider the problem of a learning-based, man-in-the-middle (MITM) attack in a

cyber-physical system. We use a simple abstraction where an agent performs linear quadratic

regulation (LQR) of a discrete-time, linear, time-invariant (LTI) system with stochastic distur-

bances, using model-free reinforcement learning. The system may be subject to an adversarial

attack that overrides the feedback signal and the controller actions. We propose a “Bellman

Deviation” algorithm that can be used by the agent to detect the attack. This algorithm

only requires an estimate of the Q-function, and optimal average stage cost, and no explicit

information of the system parameters. We show that the proposed algorithm asymptotically

guarantees attack detection (AD) with high probability while avoiding false alarms, when an

“informational advantage” condition is met. This condition compares the amount of informa-

tion the agent has aquired about the system with the one aquired by the adversary.
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I. INTRODUCTION

The use of networked control in cyber-physical systems (CPS) coupled with advance-

ments in computation and wireless technology has led to several innovative applications

in cloud robotics and automation [1]. In all of these contexts, security considerations

have become critical. Attacks on CPS can have severe and varied consequences such as

hijacking autonomous vehicles and drones, hijacking life-critical infrastructure as an act

of terror and attacks on financial systems [2]–[4]. Examples of security breaches that

have been made public are the revenge sewage attack in Maroochy Shire, Australia; the

German steel mill cyber-attack; the Ukraine power grid cyber-attack; the Davis-Besse

nuclear power plant attack in Ohio, USA; and the Iranian uranium-enrichment facility

attack via the Stuxnet malware [5]. These attacks have inspired several studies of security

from a control-theoretic perspective [6]–[22].

One well studied paradigm is the man-in-the-middle (MITM) attack [23]–[26], where

the adversary overrides the feedback channel with spoofed signals that indicate stable

and safe operation of the system while the adversary simultaneously steers the system

to a catastrophic trajectory. To detect the attack and ensure safety the legitimate agent

must monitor the feedback observations with the intent to find statistically anomalous

behaviour in an online fashion. Conversely, the attacker’s objective is to produce spoofed

feedback signals that are statistically indistinguishable from the true system behavior to

avoid being detected by the agent. Some of the techniques developed to protect from

MITM attacks include watermarking, moving target and baiting [27]–[38].

In recent years, there has been much activity in the field of learning based control [39]–

[43] and in the context of security this has lead to the study of learning based attacks.
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The learning based attack is broken into two phases- in the learning phase, the adversary

initially has no knowledge of the system dynamics, but learns its dynamics by observing

the system’s trajectory. In the attack phase, it overrides the control signal to achieve

catastrophic effects while attempting to remain undetected. The imperfect knowledge

the adversary has of the system is one of the elements of the learning based attack that

makes it prone to detection. Asymptotic upper and lower bounds on the probability of

deception in scalar and vector LTI systems were obtained in [44]. A similar approach

was used to study a control-cost trade-off that analysed the training time required by the

adversary to deceive the legitimate agent and the energy required by the agent to detect

the attack in vector LTI systems [45].

In our previous work, [46], we considered the problem of detecting MITM attacks

for a model-free reinforcement learning based controller in a system whose dynamics

are described by a finite Markov decision process (MDP). Our work in this paper also

considers attack detection, but in the different context of a Linear Quadratic Regulator

(LQR). In a finite MDP, the set of states and actions are finite and state dynamics

are defined as Markov transitions. The expected rewards doled are defined for each

state-action transition. It follows that finding the optimal control strategy for an MDP

is equivalent to solving a linear program, as the objective of maximizing the expected

accrued reward can be modeled as a linear objective function. On the other hand, the

LQR has state and actions defined over real Euclidean spaces, with dynamics modeled

as a discrete linear time-invariant (LTI) system and the cost is modeled as a non-negative

quadratic function on the state and action vectors. In this case, the problem of finding

the optimal control strategy is equivalent to solving a convex quadratic program. In both

scenarios, we tackle the infinite time-horizon problem, however in the MDP case the

accrued reward over the infinite time horizon is made analytically tractable and finite by

introducing a discount factor γ < 1. The LQR problem sidesteps this tractability issue

by subtracting the optimal average stage cost from each stage cost, making the objective
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function finite. These key differences make the LQR problem require a novel analysis to

derive an attack detection algorithm. The LQR problem can be viewed as a continuous

MDP with quadratic costs and an infinite time horizon problem with a discount factor

of γ = 1.

Our contributions are as follows: we extend the model of learning-based attacks to

account for errors the agent has due to limited learning. Specifically, we assume the

agent performs model-free reinforcement learning based control on the linear quadratic

regulator (LQR) problem. We assume the agent constructs an estimate of the optimal Q-

function and optimal average stage cost, and has no other information about the system.

In this context, since the agent has no explicit model of the dynamics, attack detection

(AD), which typically occurs through the observation of statistically anomalous behavior,

becomes particularly challenging. In our case, detection is performed by estimating the

temporal difference (TD) error through an approximate Bellman equation and averaging

it over time. This method is motivated by the fact that the Q-function estimate has some

implicit information on the system dynamics. We propose an AD algorithm, named the

“Bellman Deviation” algorithm that asymptotically guarantees AD with high probability

while also avoiding false alarms, when an “informational advantage” condition is met.

The informational advantage condition determines whether the adversary can avoid

detection by relating the error in the agent’s Q-function to the adversary’s error in the

model parameters. The analysis also provides a functional understanding of the nature

of the problem in terms of the information pattern required for successful detection.

Notation: in what follows we use the variable x to denote states, u to denote actions

and y to denote the stacked state-action vectors. Vectors are column vectors by default.

Matrices are capitalized, ∥ · ∥2 refers to the vector euclidean norm or the induced matrix

spectral norm and ∥·∥F is the Frobenius matrix norm. A ⪰ 0 means a square matrix A is

positive semi-definite (PSD). Finally, we say that an event occurs with high probability

(w.h.p.) if its probability pn limits to 1 as the index n tends to infinity.
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II. SYSTEM MODEL & MATHEMATICAL PRELIMINARIES

We consider a discrete LTI system with the state dynamics modeled as

xt+1 = Axt +But + wt, (1)

where xt ∈ Rn is the state vector at time t, ut ∈ Rm is the action taken at time t and wt

is a 0 mean i.i.d noise of finite covariance Σ. We rewrite the above equation as follows,

xt+1 =
[
A B

]

︸ ︷︷ ︸
C


xt

ut




︸ ︷︷ ︸
yt

+wt (2)

= Cyt + wt.

The system is assumed to be fully observable and stabilizabl and for the sake of simplicity

we take the feedback signal to be xt+1 itself.

The regulation stage cost is defined as

c(xt, yt) + nt = xT
t Sxt + uT

t Rut + nt (3)

where S ⪰ 0 and R ⪰ 0 (positive semi-definite) and nt is a 0-mean cost noise that may

have infinite variance. The optimization problem is to minimize the average expected

stage cost over an infinite time horizon. This is done by finding the optimal stationary

policy π∗(x) as

λ = min
π

lim
T→∞

E

[
1

T

T∑

t=1

xT
t Sxt + uT

t Rut + nt

]
. (4)

We define the optimal Q-function (associated with optimal policy) as

Q∗(x, u) = E

[ ∞∑

t=1

(xT
t Sxt + uT

t Rut + nt − λ)

]
(5)

given x1 = x, u1 = u, s.t ut = π∗(xt),
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where λ is the average accrued stage cost over the infinite trajectory. The optimal value

function V ∗(x), defined as V ∗(x) = argmaxuQ
∗(x, u), can be described as

V ∗(x) = E

[ ∞∑

t=1

(xT
t Sxt + uT

t Rut + nt − λ)
∣∣∣x1 = x

]
(6)

s.t ut = π∗(xt).

Due to the system being LTI and the cost noise/state disturbance being i.i.d, we find

that the optimal policy function is a linear function of the state vector as π∗(xt) = Kxt.

Similarly, since the regulation costs are quadratic functions of the state and actions

vectors we find that the value function is a quadratic function of the state vector as

V ∗(xt) = xT
t V xt and the Q-function is quadratic as

Q∗(xt, ut) =
[
xT
t u

T
t

]



S 0

0 R


+

[
A B

]T
V
[
A B

]



xt

ut


 (7)

= yTQyt.

The optimal average stage cost λ can also be described through the value function as

λ = E [V ∗(wt)] = E
[
wT

t V wt

]
= Tr(V Σ), (8)

and we finally rewrite (7) as a recursive relation as follows

Q(xt, ut) = c(xt, ut)− λ+ E [V ∗(xt+1)] . (9)

This is called the Bellman equation.

The solution for V can be computed by solving the discrete algebraic Riccati equation

V = ATV A− ATV B(R +BTV B)−1BTV A+Q, (10)

and K can computed from V as

K = −(R +BTV B)−1BTV A. (11)
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Note, however, that in a model-free RL setting this is not possible as the agent does not

know A and B and uses algorithms to estimate Q and V directly from the trajectory.

III. PROBLEM FORMULATION

We assume an agent uses model-free RL to control the system with the goal of

performing LQR. The agent learns an estimate of the optimal Q-function from an

observed trajectory τA

τA = (xA
1 , u

A
1 , c

A
1 . . . xA

tA
, uA

tA
, cAtA), (12)

where xA
t is the state vector at time t, yAt is the control vector, cAt is the stage cost and

tA is the agent training time. No assumption is made on whether the agent has control

over τA or it merely observes the trajectory. The estimate of the optimal value function

can be computed from the Q-function as V̂ (x) = maxu Q(x, u). The agent also has

no information about the system model or cost function and uses an arbitrary learning

algorithm to estimate the optimal Q-function and average stage cost with the following

stochastic guarantee

∥Q̂tA −Q∥2 ≤ ε1(tA), ∥V̂tA − V ∥2 ≤ ε1(tA) (13)

and |λ̂− λ| ≤ ε2(tA), w.h.p

s.t ε1(tA)→ 0, ε2(tA)→ 0 as tA →∞.

The only other conditions we place on V̂ and Q̂ are that V̂ ⪰ 0 and Q̂ ⪰ 0 as it is

trivial to show that V and Q are PSD.

As described in Fig.1a, during the learning phase, the adversary observes the system

trajectory τB and it learns the system, obtaining an estimate of the dynamics model as

(Â, B̂) . During this phase, the adversary has no control over its learning trajectory τB, as

25



(a) Learn Phase (b) Attack Phase

Figure 1: a) In the learning phase, the attacker eavesdrops and learns the system, without

highjacking the system. b) In the attack phase, the adversary intervenes as a MITM in

two places: acting as a fake system to the agent and controlling the system.

it simply observes and does not control the system. Therefore, no asymptotic convergence

guarantees are placed on its estimates (Â, B̂). In the attack phase (as described in Fig.1b),

the adversary takes control of the system and feeds the agent fake state feedback vectors.

These fake signals are generated to be statistically consistent with its dynamics model

estimate (Â, B̂). We assume the adversary has full information of Σ so as to introduce the

appropriate state disturbances in its fictitious feedback signals. The adversary does not

need to have an explicit model estimate (Â, B̂), but as long as the adversary’s fictitious

state feedback signals x̃t and the agent’s actions ut form linear dynamics, there will

exist an implicit linear model that describes these dynamics.

The trajectory formed during the attack phase, τC , is now used by the agent to detect

attacks. The adversary during attack steers the true system towards catastrophe and

the agent is tasked with detecting the attack and declaring a breach. The adversary’s

strategy to lead the system to catastrophe does not affect the detection problem, i.e, the

adversary’s closed feedback with the system is not of strict concern to the detection
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problem.

Problem Statement: Given the agent has a learned estimate of the optimal Q-function

Q̂() and an estimate of the optimal average stage cost λ̂, and the adversary spoofs the

system with a model estimate (Â, B̂), devise a detection algorithm that uses the trajectory

during the attack τC to provide guarantees on AD as the trajectory length tC →∞.

IV. ALGORITM DESCRIPTION AND PROOF

In this section we describe the detection algorithm and then prove its stochastic

guarantees.

A. Algorithm Description

Before we describe the detection algorithm, we start by defining all the required

quantities. The trajectory during theattack is a tuple of the form

τC = (xC
1 , u

C
1 , c

C
1 . . . xC

tC
, uC

tC
, cCtC ). (14)

where tC is the length of the trajectory observed and the sequence xC
i , uC

i and cCi are

the respective state, action and cost sequence that form the trajectory. For the rest of

the section the superscript C notation is dropped to improve readability and referring to

any of the above sequences implies it is from τC unless stated otherwise.

Definition IV.1 (Bellman Deviation Sequence). Let di be the Bellman deviation sequence

di =Q̂(xi, ui) + λ̂− ci − V̂ (xi+1). (15)

This sequence represents the deviations from Bellman-like behaviour in the observed

trajectory during the attack phase.

The Bellman deviation sequence (BDS) is simply the temporal difference (TD) errors

defined over an approximate Bellman equation, Q̂(xi, ui) ≈ ci + ni − λ̂− V̂ (xi+1).
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Definition IV.2 (Bellman Deviation Average). Let d̄ be the Bellman deviation average

d̄ =

∑tC
i=1 di∑tC

i=1 ∥yi∥22
. (16)

This average helps us eliminate the variability we find due to the disturbance in the state

transitions.

The Bellman deviation average (BDA) is a simple average of the BDS normalized

by the energy of the combined state-action vectors yi. Since a system not under attack

should display approximate Bellman behaviour a large BDA would suggest that the

system is under attack. We use bounds on the BDA to determine if the system is under

a MITM attack. To draw the exact bounds on the deviation averages however, we need

to define useful measures on the system and adversary model estimates as well.

Definition IV.3 (System Discernibility Semi-Metric). Given an LQR problem with state

transition matrices (A,B) and cost matrices (S,R), we define the system discernibility

semi-metric ΦV : Rn×(n+m) × Rn×(n+m) → R+as

ΦV(M1,M2) = σmin(M
T
1 VM1 −MT

2 VM2), (17)

where V is the optimal value function of the system expressed as a PSD matrix and the

function σmin(·) returns the smallest singular value of the matrix.

The above function is a semi-metric as it has most properties of a metric over the

space Rn×(n+m), though ΦV(M1,M2) = 0 ≠⇒ M1 = M2 and the triangular inequality

does not hold for this semi-metric. Finally, we define a quantity to measure the minimum

adversary discernibility.

Definition IV.4 (Minimum Adversary Discernibility). Given the system state transition

model is C = [A B] and the adversary estimate is Ĉ = [Â B̂] we define the minimum

adversary discernibility as

ΦV(C, Ĉ) = σmin(C
TV C − ĈTV Ĉ), (18)

28



where the function σmin(·) returns the smallest singular value of the matrix.

The minimum adversary discernibility gives us a measure of the minimum deviation

in the value function for the subsequent stage due to the error in the adversary’s estimate

of the state transition model C. The definition can be understood intuitively as a measure

that tells us how easy it is to observe deviation in the value function during the attack

phase. For example, in a system with ΦV = ϕ, we can lower bound the difference in

the subsequent state’s value for the current state-action vector y as

(Cy)TV (Cy)− (Ĉy)TV (Ĉy) = yT (CTV C − ĈTV Ĉ)y (19)

|yT (CTV C − ĈTV Ĉ)y| ≥ ϕ∥y∥22,

where Cy, Ĉy are the next states when there an attack does not underway and is

underway respectively. We point out that this example ignores stochastic disturbances in

state transitions but these are accounted for in the proof of theorem IV.3. A minimum

adversary discernibility of ΦV(C, Ĉ) = 0 implies that the value function give us no in-

formation about a non-trivial lower bound on the change in values. A non-zero adversary

discernibility is required to guarantee a discernible change in value of the trajectory that

can guarantee AD. It follows that the system discernibility semi-metric is a key property

of the system and should be kept in mind while designing secure systems.

With the above quantities defined, we can now present the Bellman deviation detection

algorithm (see Algorithm 1) and prove its correctness. Algorithm 1 constructs the BDS

and averages this sequence to calculate the BDA. The BDA is then compared with a

certain bound (d̄ ≥ ϕ − (ϵ1 +
tc
e
ϵ2)), and if the BDA crosses this bound an attack is

declared. Note that this lower bound for AD is a function of the error in the agent’s

estimate of the optimal Q-function and optimal average stage cost but the algorithm only

needs an over-estimate of these errors. The lower bound is similarly a function of the

minimum adversary discernibility but the agent only requires an under-estimate of this
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quantity. This allows for more practical scenarios where exact values of these quantities

would be unavailable. The algorithm guarantees AD and no false alarms, w.h.p, if and

only if the informational advantage condition is met (ϕ > 2 · (ϵ1+ tc
e
ϵ2)). This condition

relates an error metric on the adversary’s model to an error metric on the agent’s estimate

of the optimal Q-function and λ. In essence, we condition on the agent having more

information on the system than the adversary in order to detect a MITM attack.
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Algorithm 1 Bellman Deviaion Detection
Require: tC ≥ 0, length(τC)= tC

ϵ1 ≥ ε1(tA)

ϵ2 ≥ ε2(tA)

ϕ ≤ ΦV(C, Ĉ)

initialize d← 0

initialize e← 0

initialize n← 1

while n < tC do

xn ← τC [n][0]

un ← τC [n][1]

cn ← τC [n][2]

xn+1 ← τC [n+ 1][0]

yn ← [xT
n , y

T
n ]

T

d← yTn Q̂yn + λ̂− cn − xT
n+1V̂ xn+1 + d

e← ∥yn∥22 + e

n← n+ 1

end while

e← ∥ytC∥22 + e

d← d
e

ξ = ϕ− (ϵ1 +
tc
e
ϵ2)

if ϕ > 2 · (ϵ1 + tc
e
ϵ2) then ▷ Information Advantage Condition

if d ≥ ξ then

declare breach

else

declare no breach

end if

end if
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B. Correctness of the Algorithm

In this section we prove the stochastic guarantees of the proposed algorithm. The

general approach we use for the proof is to derive asymptotic upper and lower bounds

on the BDA based on attack conditions. We derive these bounds using stochastic analysis

and rely on stochastic linear systems theory, the strong law of large numbers (SLLN)

and Kolmogorov’s strong law of large numbers (KSLLN), which for completeness we

now state as follows.

Theorem IV.1 (Kolmogorov’s Strong Law of Large Numbers). Suppose X1, X2 . . . are

independent random variables such that E[Xn] = 0 and

lim
n→∞

∑n
i=1 Var(Xi)

n2
<∞

then the sequence mean asymptotically converges as

lim
n→∞

∑n
i=1Xi

n

a.s−→ 0.

Proof. Refer to Theorem 2.3.10 in [47]. ■

Complete proofs of the Theorem IV.3 and IV.2 can be found in the supplementary

material [48]. We now start by proving an asymptotic upper bound on the BDA when

no attack is underway.

Theorem IV.2. When no attack occurs, the Bellman deviation average can be lower

bounded as

|d̄| ≤ ε1(tA) +
tc ε2(tA)∑tC
i=1 ∥y∥22

,w.h.p as (20)

tC →∞,

where ε1(tA) is the spectral error norm bound on Q̂ and V̂ , and ε2(tA) is the error

bound on the estimate λ̂.
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Proof Sketch: We rearrange the terms of the Bellman equation (9) and subtract it from

(16) to get,

d̄ =

∑tC
i=1 y

T
i Q̂yi + λ̂− ci − nt − xT

i+1V̂ xi+1∑tC
i=1 ∥y∥22

(21)

∑tC
i=1−yTi Qyi − λ+ ci + (Cyi)

TV (Cyi) + λ∑tC
i=1 ∥y∥22

=

∑tC
i=1 y

T
i Q̃yi + λ̃− xT

i+1V̂ xi+1 − nt∑tC
i=1 ∥y∥22

+(xi+1 − wi+1)
TV (xi+1 − wi+1) + λ∑tC
i=1 ∥y∥22

=

∑tC
i=1 y

T
i Q̃yi + λ̃− xT

i+1Ṽ xi+1 − nt∑tC
i=1 ∥y∥22

+λ− wT
i+1V wi+1 + wT

i+1V Cyi + (Cyi)
TV wi+1∑tC

i=1 ∥y∥22
,

where the super script tilde denotes the error of the estimates. We then use the conver-

gence bound on the Q̂, V̂ and λ̂ from (13) to show that the first terms involving Q̃, Ṽ

and λ̃ are upper bound as
∣∣∣∣∣

∑tC
i=1 y

T
i Q̃yi − xT

i+1Ṽ xi+1∑tC
i=1 ∥y∥22

∣∣∣∣∣ ≤ ε1(tA), (22)

∣∣∣∣∣

∑tC
i=1 λ̃∑tC

i=1 ∥y∥22

∣∣∣∣∣ ≤
tC ε2(tA)∑tC

i=1 ∥y∥22
. (23)

We then use the strong law of large numbers to show that the following terms converge

as follows,
∑tC

i=1w
T
i+1V wi+1∑tC

i=1 ∥y∥22
a.s−→ tCλ∑tC

i=1 ∥y∥22
, (24)

∑tC
i=1 nt∑tC

i=1 ∥y∥22
a.s−→ 0, (25)
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as tC → ∞. We then apply the Kolmogorov’s strong law of large numbers (Theorem

IV.1) as
∑tC

i=1w
T
i+1V Cyi∑tC

i=1 ∥y∥22
=

∑tC
i=1CyTi V wi+1∑tC

i=1 ∥y∥22
a.s−→ 0, (26)

as tc →∞.

Finally, using triangular inequalities we can prove (20).

■
With a upper bound on the BDA derived when no attack is under way, we now derive

an asymptotic lower-bound on the BDA when the system is under attack. This allows

us to detect attacks if the lower bound during attacks strictly exceeds the upper bound

when no attack occurs. We claim the agent has an informational advantage over the

adversary when this condition occurs.

Theorem IV.3. Given the system is under attack, the Bellman deviation average can be

lower bounded as follows,

|d̄| ≥ ΦV(C, Ĉ)−
(
ε1(tA) +

tc ε2(tA)∑tC
i=1 ∥y∥22

)
, (27)

w.h.p as tC →∞,

where ε1(tA) is the spectral error norm bound on Q̂ and V̂ , ε2(tA) is the error bound

on the estimate λ̂ and ΦV(C, Ĉ) is the minimum adversary discernibility.

Proof Sketch: In a manner similar to the proof of Theorem IV.2 we subtract equation
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(9) from (16) but also introduce additional terms as

d̄ =

∑tC
i=1 y

T
i Q̂yi + λ̂− ci − xT

i+1V̂ xi+1∑tC
i=1 ∥y∥22

(28)

∑tC
i=1−yTi Qyi − λ+ ci + (Cyi)

TV (Cyi) + λ∑tC
i=1 ∥y∥22

=

∑tC
i=1 y

T
i Q̃yi + λ̃− xT

i+1V̂ xi+1 + λ∑tC
i=1 ∥y∥22

+(xi+1 − wi+1)
TV (xi+1 − wi+1)∑tC

i=1 ∥y∥22
+yTi (C

TV C − ĈTV Ĉ)yi∑tC
i=1 ∥y∥22

=

∑tC
i=1 y

T
i Q̃yi + λ̃− xT

i+1Ṽ xi+1∑tC
i=1 ∥y∥22

+λ− wT
i+1V wi+1 + wT

i+1V Cyi + (Cyi)
TV wi+1∑tC

i=1 ∥y∥22
+yTi (C

TV C − ĈTV Ĉ)yi∑tC
i=1 ∥y∥22

.

Similar to the proof of the Theorem IV.2 we can show using arguments involving the

convergence bounds in (13) that (22, 23) hold true, using the SLLN we show (24, 25)

hold true and finally using the KSLLN that (26) holds true. Now, from Definition IV.4

we know that

yTi (C
TV C − ĈTV Ĉ)yi ≥ ΦV(C, Ĉ)∥yi∥22.

Hence we can show that,
∑tC

i=1 y
T
i (C̃

TV C̃)yi∑tC
i=1 ∥y∥22

≥ ΦV(C, Ĉ) (29)

with the minimum adversary discernibility providing a lower bound for the term. With

asymptotic bounds drawn on all terms, all but one term being upper bounded and one

term being lower bounded, we can now use the triangular inequality to prove (27).
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■
With an upperbound and lower bound on the deviation average proven, we finally

prove the correctness of Algorithm 1 when the informational advantage condition is

met.

Theorem IV.4. The informational advantage condition,

ϕ >= 2 ·
(
ϵ1 +

tc∑tC
i=1 ∥y∥22

ϵ2

)
, (30)

is necessary and sufficient for Algorithm 1 to guarantee AD while avoiding false alarms

with high probability as tC →∞. Here ϕ is an under-estimate of the minimum adversary

discernibility as ϕ ≤ ΦV(C, Ĉ), and ϵ1 and ϵ2 are over-estimates of agent error in Q-

function and optimal average stage cost λ as ϵ1 ≥ ε1(tA) and ϵ2 ≥ ε2(tA).

Proof. Due to Theorem IV.2,

|d̄| ≤ ε1 +
tc∑tC

i=1 ∥y∥22
ε2 (31)

with high probability as tC → ∞, since ϵ1 ≥ ε1(tA) and ϵ2 ≥ ε2(tA). Similarly by

Theorem IV.3,

|d̄| ≥ ΦV(C, Ĉ)−
(
ε1(tA) +

tc ε2(tA)∑tC
i=1 ∥y∥22

)
(32)

with high probability as tC →∞, since ϕ ≤ Φ(V ) and δ ≤ ∆(C, Ĉ). Therefore, we can

guarantee AD with no false alarms as tC →∞ for Algorithm 1, if and only if

ϕ−
(
ϵ1 +

tc
e
ϵ2

)
> ϵ1 +

tc∑tC
i=1 ∥y∥22

ϵ2.

That is, when the lower bound on the largest BDA during attack exceeds the upper

bound on all BDAs during no attack. This allows us to detect if an attack takes place

when the lower bound is exceeded. We can now rewrite the above equation as

ϕ > 2 ·
(
ϵ1 +

tc∑tC
i=1 ∥y∥22

ϵ2

)
.
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Since asymptotic AD with no false alarms with high probability can be achieved by

Algorithm 1 if and only if (30) is true. This proves that (30) is a necessary and sufficient

condition for the algorithm’s correctness. ■

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We discussed the problem of a learning based man-in-the-middle (MITM) attack on a

CPS in a where the system is a discrete-time, LTI system with stochastic disturbances.

This system is subject to an adversarial attack that overrides the system feedback and

takes control of the system. The agent, on the other hand, performs model-free reinforce-

ment learning and is constantly on a look-out for an attack; once the agent detects an

attack, it declares a breach of the system. We propose a “Bellman Deviation” detection

algorithm that can be used by an agent that performs linear quadratic regulation using

model-free RL to detect a MITM attack on the system. This algorithm requires only the

estimate of the Q-function and the optimal average stage cost, and needs no explicit

information on the parameters of the system dynamics to detect an MITM attack.

We proved the correctness of the algorithm and showed that the proposed algorithm

asymptotically guarantees attack detection (AD) with high probability while avoiding

any false alarms, provided that an intuitive informational advantage condition that relates

the agent and adversary’s learning costs is satisfied. The Bellman Deviation detection

algorithm provides security guarantees against MITM attacks in the context of model-

free RL for the LQR, while also accounting for the imperfect knowledge of the system

at both the agent and the adversary ends.

B. Future Work

An open question is whether the proposed algorithm is the most sample efficient

or even order efficient. Obtaning an information-theoretic lower bound on the sample
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efficiency of such AD algorithm that takes imperfect information of the system into

account on both agent and adversary ends would be of great interest.

Additionally, the proposed informational advantage condition relates the errors in the

agent’s model and the adversary’s model using abstract quantities that can be intuitively

interpreted. Extending this condition using more explicit quantities, like the training

times of the agent and the adversary, would be practically useful as it would describe

the cost related to securing the system using tangible quantities.
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