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Systems Biology Approaches for Identifying 

Synthetic Lethal Targets in Cancer 

 
Angel A. Ku 

 
Abstract 

 
The development of therapeutic agents against cancer is based on targeting key 

signaling proteins that tumors highjack and use to survive. Although progress has been 

made to define cancer’s vulnerabilities, a subset of cancer drivers remain undruggable. 

To address this problem the field has attempted to identify drug targets that would 

selectively kill cancer cells and spare wild type tissue, a concept known as synthetic 

lethality. My work here seeks to address major challenges in identifying synthetic lethal 

targets. First, I provide an overview of the platforms for synthetic lethal screening 

methodologies and considerations for screening. Chapter three is focused on a case 

study where we developed a network-based integration method for published KRAS 

synthetic lethal studies and derived principles that affect reproducibility. The major 

findings of this study highlight principles of synthetic lethal screening and identify a 

subset of genes, which may offer new therapeutic targets in the context of oncogenic 

KRAS. Chapter four explores the response of PARP inhibitors to a non-small cell lung 

cancer cell panel and I derive molecular signatures associated with response and 

resistance to PARP inhibitor. Chapter 5 summarizes the results of a KRAS 4a/4b drug 

screen that uncovered isoform specific vulnerabilities that may have implications for the 

use of MEK inhibitors in KRAS mutant cancers.    
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Chapter 1: Introduction 

 
1.1 Challenges to targeting cancer in the era of 

targeted therapies 

 
Cancer is a complex disease driven by dysregulation of pathways that allow normal 

cells to break free of tumor suppressor and constitutively activate oncogenes1. A 

simplistic view of cancer suggests that targeting oncogenic drivers would be sufficient to 

halt tumor growth; however, tumors are highly dynamic and are able to adapt and 

overcome therapies2. Therefore, to effectively target tumors, we must understand the 

vulnerabilities and the adaptive mechanisms that can render therapies ineffective over 

time3.  

 

Seminal studies using viral vectors initially discovered a subset of genes that 

transformed NIH/3T3 cells and conferred outgrowth4. With the advent of whole genome 

sequencing the field applied these tools to the study the genomes of tumors. This 

approach reveled recurring mutations in tumors, which not surprisingly were the same 

set of oncogenes revealed in earlier studies5. Several studies supported that these 

oncogenes were necessary for tumor growth, which motivated the development of 

chemical agents to inhibit the kinase activity of these tumors. The generally principle 

has held up for and Bcr-Abl fusion oncogene and mutant EGFR in which mutations in 

the kinase domain were targetable through inhibitors like gleevec and gefitinib 

respectively6. However, there are three major limitations to this approach: 1) tumors 
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with no obvious oncogenic drivers 2) oncogenic proteins that have no clear targetable 

pockets and 3) the emergence of resistance to initial drug treatments2.  

 

1.2 Targeting KRAS Mutant Tumors 

 
Mutations in the KRAS oncogene are present in 30% of all human cancers and are 

required for tumor development and maintenance in many tumor types7. There are 

three major areas of research that have emerged to targeting KRAS: 1) blocking the 

post-translational modifications (PTMs) required for localization KRAS protein to the 

plasma membrane 2) blocking downstream effectors of KRAS 3) and combination 

strategies. KRAS requires PTM to be properly shuttled to the cell membrane where it 

can be activated. Early studies focused on developing inhibitors to block the PTMs, but 

due to compensatory pathways this strategy was not viable8,9. Focusing on downstream 

KRAS effectors, MEK and PI3K have been the focus for targeting KRAS mutant 

cancers. MEK inhibitors were developed to block activation of the MAPK pathway which 

is required for cell survival and proliferation; however, while promising preclinical data 

supported this strategy, there has been no major benefit again in clinical settings10. 

Finally, the combination of MEK and PI3K inhibitors have been proposed, but it remains 

unclear of the toxicology profiles of these two drugs will be tolerated in patients11. 

 

An alternative approach to targeting KRAS directly is to selectively kill tumor cells 

harboring mutations in KRAS through the identification of alternative pathways that are 

required in KRAS mutant tumor cells but are otherwise non-essential in normal cells. 
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This approach, termed synthetic lethality, is an exciting approach to indirectly target this 

‘undruggable’ oncogene.  

 

1.3 Synthetic Lethality 

Synthetic lethality is when a single knock down a gene is viable, but inhibition of both is 

lethal12. In the context of cancer therapeutics, it describes a condition where one gene is 

mutated and inhibition of a second gene kills cells with the first mutation. The current 

standard for synthetic lethality in cancer is the loss of PARP1 in BRCA1 mutant cells. 

Through the loss of BRCA1, cell are dependent in alternative pathways to repair DNA 

such as Non-Homologous End Joining (NHEJ) and thus inhibiting PARP1, a NHEJ gene 

completely abolishes a tumors ability to repair damaged DNA13. These finding have led 

to the development and approval of PARP inhibitors for BRCA1 mutant breast and 

ovarian cancers14,15.  

 

The BRCA1 PARP1 model has inspired several systematic approaches to target KRAS 

mutant cancers pathways through targeted and genome-scale RNAi screens to identify 

Synthetic Lethal (SL) genes16–21. However, all these studies so far have been 

unsuccessful in identifying effective clinical therapies for patients with KRAS mutations. 

The results of these studies have been a set of non-overlapping SL candidates that do 

not point to any obvious common targets22. Given the discordance between previous 

studies, the identification of vulnerabilities in KRAS cancers remains a major question in 

the field. Additionally, a systematic re-analysis of previously published has not been 

conducted which may reveal new insights into. And while advances in screening 
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technologies (i.e. CRISPRi) are set for the next generation our basic understanding of 

synthetic lethality in the context of cancer is still limited23. 

 

1.4 Future Directions 

There has been great progress in the technologies for synthetic lethal screening; 

however, there is a gap to define principles for identifying synthetic lethal targets. 

Studies from model organism suggest that synthetic lethal targets are context 

dependent, and thus future work should focus on understanding how contexts governs 

synthetic lethality in order to define better and robust therapeutic targets.  
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Chapter 2: Methodologies for Synthetic 

Lethal Screening 

 

2.1 Abstract 

 
Genetic interaction mapping was initially used to study pathway structure in model 

organism and one type of interaction from these screens were negative or synthetic 

lethal (SL) interaction. Negative genetic interactions are of major interest for cancer 

research in order to identify mutation specific vulnerabilities. There is a wide array of 

tools and methods for identifying SL in cancer. In this review, I will discuss the use of 

RNAi technologies, including CRISPR platforms to define new therapeutic targets for 

genetically defined cancers. I will also discuss the use of chemical genetic screens to 

combat drug resistance and define novel combination therapies for cancer. Finally, I will 

highlight some key consideration when screening in order to account best define the 

biological contexts where SLs are present. 
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2.2 Target Identification through loss of function 

approaches 

 

The methodologies used for exploring the vulnerable in cancer started with the advent 

of RNA interference (RNAi) technologies that allowed for the high throughput screening 

of mammalian cell lines. RNAi technologies generally fall under two categories: siRNAs 

and short-harpin RNA (shRNA) libraries24. siRNA are synthetic RNAs which target 

mRNAs and this siRNA/mRNA complex is process by the RISC complex which 

degrades the target mRNA. siRNA are transfected into cells and often have more than 

one oligo targeting the same mRNA in order to test multiple siRNA oligos and control for 

off target effects. Short harpin RNA (shRNAs) libraries are usually lentiviral, and each 

vector will express and shRNA that will be processed by Dicer/Ago complex to make a 

mature siRNA and the RISC complex to silence the target transcript. The workflow for 

shRNA requires generate lentivirus pools for all hairpin-containing vectors to infect a 

population of cells. Stable shRNA expressing cells are selected for through antibiotic 

treatment and then allowed to proliferate for several days. The basic principle of this 

approach depends on the “drop out” of cells where the knock down of genes are lethal. 

DNA is harvested from the cells and prepared for sequencing by amplifying the 

barcodes in the vectors. Given that a library was prepared at earlier timepoints it is 

possible to identify which shRNA dropped out or enriched over time. While these were 

the first tools to screen for synthetic lethal targets there were major issues with off target 

effects and knock down efficiencies25. However, advances in RNAi have allowed for the 
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development of new flavors of siRNAs, for example esiRNAs are endoribonuclease 

treated siRNAs, which allow for the transfection of short and heterogeneous population 

of short siRNAs target the same mRNA26.  

 

A major breakthrough in functional genomics occurred through the discovery and 

engineering of the Cas9 proteins for gene perturbation screens. There are two 

approaches for loss of function screen with CRISPR: 1) the first is to use the native 

protein to cut target genes to disrupt the sequence 2) through modified CRISPR 

proteins (dCas9-KRAB) that enabled the silencing of genes through fusing KRAB 

(Kruepple-associated box) domains to the modified Cas9 protein27. An attractive feature 

of these approaches is that gene expression silencing occurs at transcription, which 

increases the efficacy of knock-down and minimizes off target effects. Furthermore, as 

long as a cell stably expresses the dCas9-KRAB protein, a pooled screen can be 

conducted by lentivirally introducing a guide RNA library. For the most part CRISPRi 

screens have been conducted in non-adherent K562 cell lines, but these technologies 

are quickly being adapted to other cancer cell line models. While these technologies 

continue to evolve an emerging concern with the CRISPR system is the off target 

effects, however, this is likely to only affect the traditional CRISPR screens versus the 

CRISPRi approach28. In summary, we are reaching a point where our gene pertubation 

technologies are robust and optimized, which opens several opportunities for synthetic 

lethal screening as well as revisiting former challenging problems in this area of 

research.  
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2.3 Genetic interaction maps to uncover resistance 

mechanism to targeted therapies.  

 

Once a target has been identified a reasonable question to ask is: what are the genes 

that can alter the response to the primary target. There are several methods to ask this 

question, but here I will focus my discussion on chemical-genetic approaches to combat 

resistance to targeted therapies. An example of this approach has been in the context of 

MEK inhibitors. While MEK inhibitor showed great preclinical efficacy, human trails have 

shown that there is no added benefit to MEK inhibitor in the context of KRAS mutant 

cancers10. One potential hypothesis is that there are other genetic factors beyond KRAS 

mutations and may govern response to MEK inhibitors. Two studies have shown that 

ERBB2 and FGFR1 expression confer resistance to MEK inhibitors, the study by Sun 

and colleagues implicated FGFR1 through a MEK inhibitor plus shRNA screen29,30. This 

approach has also been used to systematic test dozens of drugs and genetic factors in 

ovarian and breast cancer, the end result which was a chemical-genetic map of 

chemotherapies31. A CRIPSR/olaparib screen identified RNA-DNA lesions as another 

source of PARP lesions which was previously an unknown mechanism contributing to 

PARP sensitivity32. Taken together these findings highlight that chemical-genetic 

approaches are capable of identifying factors that contribute to resistance and 

sensitivity to targeted agents. As more drug targets are identified through SL screening, 

complementing the results with chemical-genetic screen can support development of 
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therapeutic strategies to better define the patient populations that will be at relapse or 

respond to therapies.   

 

2.4 Considerations for SL Screening 

 
2.4.1 Cell Lines:  

  

Cell lines are the battleground we apply our gene perturbation technologies and thus it 

is important to consider early what is the best platform for the research question on 

hand. There are generally two options for screening: isogenic pairs and cancer cell line 

panels. Isogenic cells, offer defined genetic background to start that can aid in 

identifying mutation specific vulnerabilities33. However, the major caveat is that isogenic 

cell line may not be representative of tumors, but if exploring the nuances of genetic 

interaction in defined genetic background is the question being considered this is a 

reasonable approach. A popular tool for studying MAPK signaling is using NIH/3T3 mice 

cells4. In the absence of growth factors these cells do not proliferate, however upon 

introducing oncogenic KRAS cells proliferate in the absence of factors. In a similar vein, 

mammary epithelial cell line MCF10as have also been used to study the signaling 

profiles and therapeutic vulnerabilities of oncogenes34,35. The advantage of these 

oncogene “add in” platforms is that removing growth factors allows for a system were 

proliferation is driven by the introduction oncogenes, which provide a positive control 

through genetic or chemical inhibition of the oncogene.  
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In comparison cell line panels offer a heterogeneous panel of cells which can be screen 

in order to identify subsets which respond to an inhibitor36. Systematic efforts to classify 

drug sensitivity across cell lines have been conducted by the CCLE and the Broad  

Institute along with other ‘Omic’ (RNA-seq, DNA-seq) characterization of the cell lines37–

39. However, a major challenge in these efforts have been those of reproducibility of 

findings across different laboratories40. Nevertheless, cell lines do offer diverse panels 

of cells which can aid in defining responder and non-responder subsets.  

 

2.4.2 Growth Conditions 

 

Context dependency has been attributed to the failure to identify robust SL targets for 

genetically defined cancers23,41. However, I argue that context is an innate feature of 

genetic interactions. Studies from model organism show that essential genes between 

two strains of yeast often do not overlap, which suggest than in tumors that are 

constantly evolving that a drug target may not be viable over time or across tumors with 

minor difference in genomic backgrounds42. Therefore, SLs hits from primary screens 

should be framed as a starting point for therapeutic strategies and elucidating the 

context that preserve or mask these types of interaction should be explored. Work by 

Bandyopadhyay and colleagues have highlighted the context dependency of genetic 

interactions. The study showed that 70% of the positive genetic interactions in the 

presence of MMS were not observed in the untreated conditons43. This highlights the 

highly plastic nature of genetic interactions and suggests that only subsets of genetic 

interactions are preserved.  
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2.5 Conclusion 

 
The toolkit of functional genomics is greatly expanding through the ability to use 

CRISPR expand genetic backgrounds to explore. This will allow for the development of 

isogenic cell lines where we can begin to test the robustness of synthetic lethal targets 

against relevant mutations. Furthermore, RNAi technologies are quickly becoming more 

efficient and robust which allow for higher dimensional screens where we can test a 

library across dozens of growth of mutational backgrounds. Chemical-genetic are able 

to take our drug targets of interest and further test the genetic factors important for 

mediating drug resistance. The next hurdle in making precision medicine a reality will be 

in identifying the “contexts” altering synthetic lethality. Fundamental studies have been 

conducted to characterize the nature of genetic interactions across growth conditions 

and genetic background, but we will also need to consider other factors that are relevant 

to tumor biology. This will require investigators to develop high throughput assays that 

mimic tumor microenvironments, and tumor-immune interactions in order to account for 

these emerging themes in synthetic lethality.  
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Chapter 3: Integration of pathway, cellular 

and genetic context reveals principles of 

synthetic lethality that affect reproducibility 

 

3.1 Abstract 

Synthetic lethal screens have the potential to identify new vulnerabilities incurred by 

specific cancer mutations but have been hindered by lack of agreement between 

studies. Using KRAS as a model, we identified that published synthetic lethal screens 

significantly overlap at the pathway rather than gene level. Analysis of pathways 

encoded as protein networks identified synthetic lethal candidates that were more 

reproducible than those previously reported. Lack of overlap likely stems from biological 

rather than technical limitations as most synthetic lethal phenotypes were strongly 

modulated by changes in cellular conditions or genetic context, the latter determined 

using a pairwise genetic interaction map that identified numerous interactions that 

suppress synthetic lethal effects. Accounting for pathway, cellular and genetic context 

nominates a DNA repair dependency in KRAS-mutant cells, mediated by a network 

containing BRCA1. We provide evidence for why most reported synthetic lethals are not 

reproducible which is addressable using a multi-faceted testing framework. 
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3.2 Introduction 

Synthetic lethality is a type of genetic interaction that occurs when the simultaneous 

perturbation of two genes results in cell death. Such an approach has been used to 

define new vulnerabilities in cancer cells harboring defined mutations, such as the case 

of BRCA1- or BRCA2- mutant cells which are sensitive to PARP inhibition 13,44. In 

search of such vulnerabilities, functional genomic screens have enabled the rapid 

mapping of potential synthetic lethal relationships using isogenic or collections of cell 

lines harboring specific mutations of interest. Although experimental technologies to 

map synthetic lethality such as those using shRNA and CRISPR-pooled screens are 

rapidly scalable, significant challenges remain that limit the utility of using high 

throughput approaches for the development of new synthetic lethal therapies. It has 

been suggested that the predominant barrier to identifying relevant synthetic lethals is 

that of interaction penetrance, or resiliency against modulation by additional genetic 

changes found in cancers, also called “hard” versus “soft” synthetic lethality 23,45. 

Computational and experimental strategies geared toward overcoming this challenge 

are largely unexplored. 

  

KRAS is the most commonly mutated oncogene in cancer.  It is as yet undruggable, 

activates a variety of signaling pathways, and is exemplary to the challenges in 

identifying synthetic lethals. While a multitude of studies have sought to define KRAS 

synthetic lethal genes 16–19,46,47, they have been notable for the fact that they hardly 

overlap, which has been attributed to the use of different cell lines and screening 

libraries that may suffer from off-target effects and partial knockdowns 22. As a result, 
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many of the published synthetic lethal genes that have been explored independently 

have failed to reproduce 48,49.  While a meta-analysis of published synthetic lethals 

could be an effective way to identify more robust candidates, a systematic integration 

and re-testing has not yet been performed 22,50.  

 

The bulk of our knowledge of the organization of genetic interactions comes from model 

organisms through single and combination knockout studies 42.  Large scale mapping of 

such interactions, including synthetic lethals, have been found to link functionally related 

proteins and used to delineate pathway structure 51,52. Genetic interactions have been 

shown to be highly context specific with changes in environment and strain dramatically 

altering pathway usage and synthetic lethal relationships in yeast 43,53. The plasticity of 

genetic interactions present in single-celled organisms likely foreshadows the 

challenges in the identification of clinically relevant synthetic lethal interactions in a 

heterogeneous disease such as cancer. 

 

We hypothesized that challenges in identifying synthetic lethal interactions stems from 

the fact that differences in gene dependencies among cancer cells parallel the 

widespread differences in gene essentiality observed in model organisms that are 

exposed to environmental or genetic changes 42,53. Integrating across studies, we show 

that previously published KRAS synthetic lethal screens contain significant information 

regarding the pathways required for KRAS mutant cells in a manner that extends 

beyond the single gene that is often reported.  Genes involved in these pathways were 

more likely to be recapitulated in confirmatory studies, indicating that they are more 
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likely to be context-independent. Further testing of synthetic lethal genes identified that 

most were profoundly influenced by changes in cellular conditions and presence of 

genetic modifiers, likely explaining why published synthetic lethals have had limited 

utility. Accounting for context highlights a DNA repair pathway as a dependency in 

KRAS mutant cancers, which was reproducibly observed in multiple studies but not 

always the top hit and therefore not immediately apparent. We delineate why most 

synthetic lethal interactions are not reproducible, and define a new approach to process 

and integrate synthetic lethal screens to identify context-independent genetic 

interactions that operate at the level of a pathway rather than a single gene. 

 

3.3 Results  

 

3.3.1 Meta-analysis of published KRAS synthetic lethal screens 

identifies reproducible synthetic lethal networks 

 

The concept of synthetic lethality is a powerful tool to identify new dependencies and 

gene targets in cancer, but despite their potential their utility has been limited by 

challenges in robustness and reproducibility related to cellular context 22,23,41,54. We 

hypothesized that integrating multiple independent studies may reveal synthetic lethal 

interactions that are independent of cellular context and hence more reproducible. To 

determine the degree to which this was the case, we analyzed three seminal studies 

which sought to define KRAS synthetic lethal genes through loss of function screens, 

hereafter called the Luo, Barbie and Steckel studies 17,19,20. The Luo and Steckel studies 
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used unique pairs of isogenic cells whereas the Barbie study used a panel of KRAS 

mutant and wild-type cell lines. As a basis for comparison we selected the top 250 

KRAS synthetic lethal genes reported in each study as hits (KSL genes, Table 1), and 

found that there was marginal overlap between any pair of studies based on a 

hypergeometric test accounting for total number of tested genes in each study, 

consistent with previous reports (Figure 3.1A) 22,50. We next explored whether each 

screen could have identified distinct but related genes, indicating shared essentiality at 

the pathway rather than gene level. For example, different subunits of the 26S 

proteasome (PSMB6, PSMD14) were identified by different studies 22, suggesting 

convergence between studies at the pathway level (Figure 3.1A). We integrated these 

gene lists with a protein-protein interaction (PPI) network comprising known protein 

complexes from CORUM and high confidence physical and functional interactions from 

HumanNet 55,56. In total we identified 6,830 interactions involving a protein product of a 

KSL gene from any of the three studies (Figure 3.1B). We found 260 interactions 

connecting KSL genes found in different studies. To assess if this was a significant 

number we compared the number of interactions spanning between pairs of studies to 

the number of interactions expected among randomly selected gene sets, controlling for 

sample size and test space (see Methods). In all cases, we observed significantly more 

connections between KSL genes from two independent studies than expected at 

random (Figure 3.1C). For example, we observed 162 PPIs between the top 250 genes 

in the Luo and Steckel studies, which was approximately 8-fold higher than expected 

between 250 random genes, representing a p<0.0001. In contrast, the gene level 

overlap between these two studies was not significant (p=0.17) (Figure 3.1A).  
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Since KSL genes from different studies were enriched to interact functionally and 

physically, we next asked if they converge into molecular sub-networks representing 

known pathways and protein complexes. We applied a network clustering algorithm 

called MCODE on this network to identify dense gene sub-networks, or modules, 

enriched with KSL genes spanning multiple studies 57. Based on our requirement that a 

subnetwork must include a gene found in two or more studies, we identified 7 

functionally distinct KRAS synthetic lethal networks, all of which could be traced back to 

a specific protein complex or pathway (Figure 3.1D, Table 2A). For example, one of the 

networks corresponds to the Proteasome and Anaphase promoting complex (CORUM 

ID: 181 & 96), which includes subunits encoded by genes identified in the Luo, Barbie 

and Steckel studies (Figure 3.1D). Other complexes and pathways we identified in this 

study were the Nop56p-associated pre-rRNA complex (containing Steckel and Luo 

genes), BRCA1-RNA polymerase II complex (Steckel and Barbie), the RC complex 

during S-phase of the cell cycle (all three studies), LCR-associated remodeling complex 

also called LARC (all three studies), the Chaperonin containing TCP1 complex also 

called CCT (Luo and Steckel) and the Insulin signaling pathway (Steckel and Barbie). In 

all cases, these complexes and pathways were significantly enriched for KSL genes 

(Figure 3.1D). In total we predicted 105 KRAS synthetic lethal network genes (Network 

SL genes), of which 65% (68/105) were not covered in our original KSL lists (Figure 

3.1D, Table 2, 3). Hence, despite the limited gene level overlap in published studies, 

network integration reveals that independent KRAS synthetic lethal studies converge on 

shared protein complexes and pathways. 
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3.3.2 KRAS synthetic lethal networks gene are more like to be hits in 

other published studies 

 

Since our network analysis highlighted shared pathways and complexes across studies, 

we hypothesized that Network SL genes may represent synthetic lethals that are more 

robust, and hence more likely to be reproduced in follow up studies. To address this we 

asked if they were more likely to be recovered in a series of more recent RNAi screens 

that were not used for network identification as compared to 26 previously published 

KRAS synthetic lethal genes curated from the literature (Literature SL) (Table 2B) 

16,46,47. Both Kim et al. 2013 46 and Kim et al. 2016 47 studies used panels of KRAS 

mutant versus wild-type lung cancer lines, and the Costa-Cabral study 16 used an 

isogenic panel of colorectal cancer lines. To facilitate comparison, we independently 

ranked genes identified from each of these three studies into percentiles, with genes in 

the lowest percentile showing the strongest evidence of KRAS synthetic lethality (see 

Methods).  Network SL genes were more likely to be among the top percentile of hits 

than Literature SL genes previously published. For example, in the Kim et al 2016 

study, 15% of the Network SL genes tested were in the top one percentile of hits as 

compared to 3% of Literature SL genes, a 5-fold increase (Figure 3.2). Similarly, 9% of 

Network SL genes were in the top 1% of hits in the Kim et al. 2013 study, compared to 

0% using Literature SL genes. Network SL genes also predicted the top candidate from 

the Costa-Cabral study, CDK1. Taken together as a meta-analysis of six studies, these 

data provide additional support for genes involved in the RC complex during S-phase 
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(CDK1, RPA1, RPA2) and the BRCA1-RNA polymerase II complex (POLR2B, 

POLR2D, POLR2G, BRCA1) as KRAS synthetic lethal candidates that were repeatedly 

replicated in multiple studies. Hence a network approach to identifying synthetic lethal 

genes based on their pathway context identifies reproducible synthetic lethals in a 

manner that is superior to the standard single study, single gene approach. 

 

3.3.3 Evaluation of published and predicted KRAS SLs in an isogenic 

KRAS dependency model. 

 

We next sought to obtain independent experimental evidence that the incorporation of 

pathway context could identify robust KRAS synthetic lethals. We established an 

isogenic model using MCF10A cells expressing KRAS G12D or eGFP as control and 

screened them in parallel using an arrayed gene knockdown library independently 

targeting 28 Literature SL genes, 40 Network SL genes and 128 genes in KRAS 

pathway (Figure 3.3A, Supplementary Figure 3.1S, Table 3). MCF10A cells are non-

transformed and have been used extensively to model RAS signaling 34,35 and mutant 

KRAS is often amplified in human cancer, indicating the relevance of our approach 58,59. 

KRAS G12D cells did not proliferate significantly more than control eGFP expressing 

cells and KRAS cells were growth factor independent and sustained MAPK activity in 

the absence of growth factor, a hallmark of oncogenic transformation and key feature of 

KRAS biology (Figure 3.3B,C). As positive control, we observed that knockdown of 

KRAS only reduced the proliferation of KRAS-expressing cells in the absence of all 

media supplements and growth factors (minimal media), demonstrating KRAS 
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dependency in this model (Figure 3.3D). Comparison of the proliferative impact of gene 

knockdown in control eGFP versus KRAS mutant cells grown in minimal media was 

used to define an interaction score related to the significance of effect over four 

replicates, with negative scores representing putative synthetic lethal hits (see 

Methods). Using a False Discovery Rate (FDR) cutoff of 5%, we identified 28 hits 

including KRAS (Figure 3.3E). Among the top 10 genes were predicted Network SL 

genes BRCA1 (S=-6.3) and RPA3 (S=-4.2), and previously described Literature SL 

genes GATA2 (S=-4.9), YAP1 (S=-2.9) and RHOA (S=-5.4) (Figure 3.3F). At the 

pathway level KRAS cells were notably dependent on genes in the RAS, ribosomal 

protein S6 kinase (S6K), cell cycle and YAP pathway (Figure 3G). Inhibition of receptor 

tyrosine kinase (RTK) signaling had the least effect on the KRAS cells, as typified by 

knockdown of GRB2, which links RTKs and RAS signaling, that was more toxic to eGFP 

than KRAS cells (S=5.9) (Figure 3.3F,G). Most hits were independent of the particular 

KRAS allele used as screening results between G12V and G12D expressing cells were 

highly correlated (r=0.81, Supplementary (Figure 3.2, Table 4). With respect to 

previously published Literature SL genes, we found that 6/27 (22%) were recovered at 

an FDR<10% but on average they did not have negative interaction scores consistent 

with synthetic sickness or lethality as a group (p=0.48 based on Student’s t-test) (Figure 

3.3I). In contrast, the 39 predicted Network SL genes as a group had overall strong 

negative scores (p=4.6e-5 based on Student’s t-test) that were overall more negative 

than Literature SL genes (p=0.046), and 33% were synthetic lethal hits (13/39 at a FDR 

of 10%) (Figure 3.3I). Taking our retrospective analysis and new experimental data 
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together, our findings indicate that a network meta-analysis approach is an effective 

strategy to identify robust and reproducible synthetic lethal genes. 

 

3.3.4 Dependency of KRAS synthetic lethals on genetic context 

 

Limitations in gene knockdown technologies have been suggested to contribute to the 

lack of reproducibility of KRAS synthetic lethals and potentially resolved using CRISPR-

based approaches 22. Another explanation could be that synthetic lethal effects are 

incompletely penetrant and do not manifest equally in cells with different genetic 

backgrounds 23. To establish the degree to which genetic context influences synthetic 

lethal identification and to elucidate targets that are resilient to this effect, we 

systematically screened for secondary perturbations that alter synthetic lethal 

phenotypes. We generated a quantitative epistasis map (E-MAP) through the 

systematic measurement and comparative analysis of the fitness of single and pairwise 

gene perturbations using RNA interference 60. In this system, positive scoring 

interactions constitute buffering or epistatic interactions and occur when the effect of 

combination knockdown is less than what is expected given the two gene knockdowns 

separately, in the extreme case causing a complete suppression of the phenotype of 

one perturbation by the another 61,62.  Negative interactions indicate gene pairs that 

operate independently and when co-depleted produce a stronger phenotype than 

expected 61. We generated an E-MAP in MCF10A KRAS G12D cells by knocking down 

the 31 of the top synthetic lethal genes we identified in our single gene study (query 

genes) in combination with 188 genes mostly involved in the broader RAS signaling 
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pathway (Figure 3.4A, Table 5). Together, we measured interactions among 5,828 gene 

pairs and identified 170 positive and 105 negative interactions at a score cutoff of 2 

(Z>|2|) corresponding to two standard deviations from the mean (Figure 3.5B). At this 

score cutoff we found strong interactions occurring between 4.6% of gene pairs, 

consistent with observed genetic interaction rates in yeast 63.  

 

For the 31 query genes we tested, we identified 170 genetic interactions that suppress 

their synthetic lethal phenotype in KRAS mutant cells (Z>2, average of 5.5 per gene). 

We validated several of the strongest hits in small-scale studies. For example, while 

CCND1 knockdown was selectively toxic to KRAS cells, co-knockdown of RASSF5 

reverted KRAS mutant cells back to normal proliferation (Z=3.9) (Figure 3.4C). The 

impact of knockdown of CDK6 was also significantly rescued by knockdown of RASSF5 

(Z=3.8) and ERBB2 (Z=3.3). Genetic modifiers could also modulate dependency on 

published KRAS synthetic lethal targets. For example, while knock down of STK33 was 

selectively toxic in KRAS G12D but not eGFP cells it was suppressed by simultaneous 

knockdown of SHP2 (Z=5.1) or ARID1B (Z=3.0) (Figure 3.4C). A pathway-based 

analysis identified 32 connections between query genes and cellular pathways where 

interactions could be organized as a bundle that were significantly positive or negative 

(p=0.05, Figure 3.4D, see Methods). For example, we identified that knockdown of 

RALGDS-Like 1 (RGL1) displayed positive interactions with genes involved in stress-

linked MAPK, RHO, and RAC pathways (Figure 3.4D,E) and found largely negative 

interactions between DNA Methyltransferase 3 Alpha (DNMT3A) and the spliceosome 

and anaphase and proteasome complex (Figure 3.4E). These results demonstrate that 
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KRAS synthetic lethal gene inhibition may be suppressed by loss of secondary genes 

and pathways, in some instances completely rescuing lethal phenotypes. 

 

3.3.5 Dependency of KRAS synthetic lethals on media complexity 

 

Environmental differences such as variation in the growth factors and nutrients available 

in serum and media can alter cell biology 64,65 and have been postulated to contribute to 

challenges in validating candidate therapeutic targets in cancer 66. We postulated that 

such changes in cellular context may be a potential source of the lack of durability in 

reported synthetic lethal genes in vitro. If correct, this could be a significant detriment to 

advancing synthetic lethal targets in vivo and in humans where such variability certainly 

exists in the complex tumor microenvironment. To model such changes, we iteratively 

added supplements back into the minimal media that was used in our initial screen to 

MCF10A KRAS G12D cells. To minimal media we added insulin, cholera toxin, and 

hydrocortisone (termed intermediate media) and found that it partially rescued cellular 

dependency on KRAS and further addition of EGF (full media) completely abolished 

KRAS dependency (Figure 3.5A). We performed parallel single gene knockdown 

screens using these three different conditions and found dramatic differences in the 

synthetic lethal interactions we observed (Figure 3.5B, Table 4). Strikingly, genetic 

interaction scores between experiments performed in minimal or intermediate media 

were weakly correlated and not significant (r = 0.11) (Figure 3.5B, Table 4).  
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We next explored the degree to which media conditions modulate the dependency on 

published KRAS synthetic lethal genes. We observed that synthetic lethality with 

members of the proteasome (e.g. PSMA2, PSMA5) 17,19 was only evident in cells that 

were grown in more complex media (and KRAS independent) suggesting that this 

pathway may only be necessary for KRAS-mutant cells when both KRAS and growth 

factor signaling are present (Condition Specific SLs, Figure 3.5C,D). Similarly, two 

published KRAS synthetic lethal genes, STK33 and YAP1, were only a dependency in 

minimal media conditions, but not in others providing a possible basis for why STK33 

has been difficult to reproduce (Figure 3.5D) 18,67,68. Of the 26 literature synthetic lethal 

genes we analyzed, the vast majority (92%) demonstrated synthetic lethality only in 

specific media conditions or not at all in the conditions we tested. Although most of the 

synthetic lethal relationships were specific to certain conditions, some were independent 

of condition and were consistent synthetic lethal interactions the strongest and most 

consistent of which were BRCA1 and RGL1 (Figure 3.5B,D). Together with our 

combinatorial genetic interaction map, these results demonstrate the dependence of 

most reported synthetic lethal genes on cellular and genetic context.  

 

3.3.6 KRAS mutant cells are DNA repair deficient and PARP inhibitor 

sensitive 

 

Our studies suggest that considering pathway, cellular and genetic context may help 

delineate robust synthetic lethal effects. We first developed a composite score based 

resiliency of a candidate SL gene based cellular and genetic context screens (Figure 
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3.6A, see Methods). Ranking 31 single synthetic lethal genes from our initial isogenic 

screen, we found that Network SL genes trended towards being more context 

independent than Literature SL genes (p=0.05 via rank sum test). This analysis 

identified the Network SL gene BRCA1 as a top candidate. Supporting this finding, our 

network meta-analysis identified two complexes involved in DNA repair and replication 

that included top hits from all three original RNAi studies including BRCA1 as well as 

POLR2G, POLR2D, POLR2B, RPA1, RPA2, RPA3 (Figure 3.1D). Six out of seven 

genes in this network were also found in the top 5% of hits from three additional studies 

(Figure 3.2). BRCA1 was the top hit in our single gene synthetic lethal screen, was a 

consistent synthetic lethal across media conditions (Figure 3.5B), and had a lower than 

average number of genetic suppressors (Suppl Figure 3.3S). Based on the function of 

BRCA1, we hypothesized that KRAS mutant cells harbor a unique dependence on DNA 

repair. We confirmed the dependency on BRCA1 in MCF10A-KRAS cells using 

independent siRNA reagents (Supp Figure 3.4S). We next sought further corroborative 

evidence of a DNA repair defect by identifying related chemically addressable 

vulnerabilities. An independent screen of 91 anti-cancer compounds highlighted several 

drugs targeting the DNA repair pathway as top hits in MCF10A KRAS G12D cells 

including WEE1, CHK1/2 and PARP inhibitors (Figure 3.6B, Table 6). We validated 

PARP inhibitor sensitivity using three different PARP inhibitors, with talazoparib showing 

a ~1,000 fold difference in IC50 between parental and KRAS mutant cells, and with 

rucaparib and olaparib demonstrating 2-5-fold sensitization (Figure 6C, D). These PARP 

inhibitors equally inhibit PARP enzymatic activity, but talazoparib most strongly traps it 

onto DNA causing DNA double strand breaks that are preferentially repaired by 
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homologous recombination via BRCA1 69.  Hence these KRAS cells have a dependence 

on BRCA1 that creates a vulnerability to PARP inhibition and are preferentially sensitive 

to agents that trap PARP onto chromatin. 

 

We hypothesized that KRAS mutant cells are defective in DNA repair resulting in a 

dependency on this pathway to maintain genome fidelity.  At baseline, KRAS-mutant 

cell lines harbored more γH2AX foci, a marker of DNA double strand breaks, compared 

to control cells indicating that mutant KRAS induces DNA damage (Figure 3.6E, F). 

These results were independent of proliferation, as control and mutant cells grew at the 

same rate (Figure 3.3D). Treatment for 18 hours with talazoparib led to approximately 

equivalent amount of total DNA damage indicating that PARP inhibitors do not simply 

increase the induction double strand breaks in KRAS mutant cells (Figure 6G). In 

contrast, after wash out of the PARP inhibitor, KRAS cells had a delay in the resolution 

of double strand breaks that persisted for at least 24 hours indicating that KRAS causes 

a deficiency in the repair of double strand breaks caused by PARP inhibition (Figure 

3.6G).  

 

We sought to determine if sensitivity to PARP inhibitors was resilient against changes in 

cellular and genetic context, the same key features that led us to focus on BRCA1. 

Sensitivity to PARP inhibition in KRAS cells was independent of media conditions 

(Supplementary Figure 3.5S). Knockdowns of 191 genes against talazoparib treatment 

identified one suppressor, far lower than the number of suppressors associated with 

most of the genetic knockdowns in our study (Supplementary Figure 3.3S). Hence, 
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PARP inhibition demonstrates KRAS synthetic lethality that is robust to changes both in 

genetic and cellular context in this system. To determine if these findings extended to 

other models of RAS mutant cancer we analyzed cells derived from skin tumors initiated 

in mice using a dimethylbenz[a]anthracene (DMBA)-initiated and a 12-O-

tetradecanoylphorbol-13-acetate (TPA)-promoted two-stage skin carcinogenesis 

protocol resulting in tumors that characteristically harbor an oncogenic HRAS mutation 

70,71. HRAS-mutant CCH85 carcinoma cells were sensitive to all three PARP inhibitors 

as compared to C5N keratinocytes controls with a 10-25 fold change in IC50 for 

talazoparib (Supplementary Figure 2-S6A) which was also corroborated in long term 

colony formation assays (Supplementary Figure 3.6S B). Next, we analyzed PARP 

inhibitor sensitivity in panels of cell lines derived from tumor types where RAS mutations 

are prevalent enough for statistical comparison in the genomics of drug sensitivity 

(GDSC) dataset which include colorectal, lung and ovarian cancer cell lines 37. Among 

these tumor types, we identified numerous significant associations between KRAS 

mutation and olaparib sensitivity (p<0.002 for Colorectal and ovarian, p=3e-6 overall, 

(Supplementary Figure 3.6S C). Compared to other mutations or copy number 

associations present in the genome, KRAS mutation was often among the top genomic 

features associated with olaparib sensitivity (Supplementary Figure 3.6S D). We 

conclude that considering pathway, cellular and genetic context identifies a dependency 

on DNA repair that is targetable with PARP inhibitors warranting further investigation in 

other RAS-mutant cancers.   
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3.4 Discussion 

 

The concept of synthetic lethality is an exciting approach to target cancer cells 

harboring specific cancer mutations that may otherwise be undruggable. We provide 

evidence for why most results from synthetic lethal studies have proven difficult to 

reproduce and offer a framework for identifying more robust synthetic lethal candidates. 

Recently improved genetic perturbation techniques such as those using CRISPR/Cas9 

have led to renewed interest in synthetic lethal screening 72. We argue that these 

technologies alone cannot intrinsically overcome limitations due to differences in cellular 

and genetic context present between cancer models. We provide key experimental 

evidence for and strategies to resolve the differences in genetic context that have been 

thought to contribute to failures in synthetic lethal identification 23,45. 

 

Here we show that most synthetic lethals are highly dependent on cellular and genetic 

context. While testing published synthetic lethals we found that most were highly 

modified by cellular and genetic perturbations. For example, STK33 and GATA2 

displayed synthetic lethality with KRAS only in a single isolated media condition and had 

among the most number of genetic suppressors. KRAS specific dependence on both 

these proteins has been disputed 67,68. We propose computational and experimental 

approaches that we anticipate will identify more robust synthetic lethal interactions for 

further study. First, we provide a computational approach that enables the identification 

of synthetic lethals that are more context independent. This retrospective approach 

leverages pathway information to integrate functional genomics data as opposed to 
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previous work based on gene list analyses 22,50. Second, we propose an experimental 

framework to rigorously test synthetic lethal effects using a panel of changes in cellular 

conditions as well as screening against a panel of secondary perturbations to determine 

genetic resiliency, potentially using an E-MAP approach. In addition to changes in 

media conditions, variation may also be achieved by modulating the environment (e.g. 

hypoxia), growth density and batch of cell lines used 73. While our framework attempts 

to model the genetic and environmental heterogeneity present in cancers in a manner 

that is still amenable to high-throughput screening, future work could extend these 

approaches to vastly more secondary genetic perturbations as well as modulate the 

environment in different ways. 

 

Applying our meta-analysis approach to three early KRAS screens we identified a set of 

networks representing protein pathways and complexes that were recurrently identified 

in different studies. Many components of these networks were found to re-validate in 

three held out studies and our isogenic model. Among these we investigated a network 

involved in DNA replication and repair. One component of this network, BRCA1, was a 

strong synthetic lethal regardless of cellular condition and had among the lowest 

number of genetic suppressors in our panel. The CCT complex, a chaperone complex 

involved in helping to fold part of the proteome 74, was also highlighted by our meta-

analysis approach, and components of this complex were highlighted in 4 independent 

studies in total, warranting further investigation. This network framework enhances 

target discovery by accounting for pathway context in synthetic lethal screens to identify 

robust and potentially new targets for genetically defined cancers. 
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Our data highlight a potential role for PARP inhibitors in KRAS mutant cancers and 

warrants further investigation. PARP inhibitors inhibit PARP by both enzymatic inhibition 

as well as trapping PARP onto DNA and impairing replication during S-phase 69. We 

observed the most differential inhibition of wild-type versus KRAS mutant cells with the 

strongest PARP trapper, talazoparib suggesting that KRAS cells are dependent on 

unencumbered progression through S-phase which is consistent with the role of the 

DNA replication network we identified. This interaction was also evident in a chemically 

induced murine tumor model and in small molecule profiling data across colorectal, lung 

and ovarian cancer cell lines tested for sensitivity to olaparib (Supplementary Figure 

3.6S). Both enhancement 75 and suppression (Gilad et al., 2010; Kalimutho et al., 2017; 

Kotsantis et al., 2016) of DNA repair processes have been linked with mutant KRAS. 

These differences may be explained by the cell line panel profiling results, where 

although KRAS mutant cells tend to be more sensitive to PARP inhibitors on average, a 

subset are more drug resistant. Therefore, one possibility is that additional genetic 

contexts not investigated in this study may influence this synthetic lethal relationship 

and determining which KRAS mutant contexts predict dependence on specific DNA 

repair pathways will require future work. Such work may define the impact of changes in 

genetic context in terms of secondary mutations that co-occur with mutant KRAS, such 

as TP53 and LKB1, on PARP inhibitor sensitivity.  
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3.5 Methods 

 

3.5.1 Synthetic lethal screen analysis 

 

We obtained screen data from supplementary information from the Luo, Steckel and 

Barbie studies and ranked all genes based on the scoring criterion reported in the 

supplementary material from each manuscript. Since the Barbie study only reported 250 

hits as significant, this cutoff was used for further analysis and all other studies reported 

>250 hits. Significance in overlap between gene sets was determined by calculating a 

hypergometric p-value of overlap between the top 250 genes from each study, and 

setting the background tested genes. The hypergeometric was 1-phyper(x, m, n, k) 79 

505150with x as the overlap in hits between study 1 and study 2, m is the number of total 

genes tested in study 1, n is the number of hits found in study 2 that were also tested in 

study 1, k is the top 250 hit genes in study 1.  

 

For the human protein-protein interaction (PPI) dataset we downloaded all CORUM 

protein complexes and HumanNet PPIs with scores > 3 to derive a list of high 

confidence PPIs. In order to identify highly connected subnetworks we applied the 

MCODE clustering algorithm with default parameters to this network in Cytoscape and 

considered clusters with genes that were reported in multiple KRAS SL studies for 

downstream analysis 57. Clusters were analyzed using the gProfiler web tool 80 against 

the CORUM or the KEGG signaling pathway in order to functionally categorize clusters, 

with p-values of enrichment corrected for multiple testing. To determine the significance 
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in network based overlap between two KRAS studies we randomly selected 250 genes 

from the list of genes tested in each study and determined the number of interactions 

spanning genes from two studies to establish a null distribution. This null distribution 

was compared to the actual overlap observed between two studies to determine a p-

value defined as the fraction of 10,000 random simulations that had more interactions 

than what was observed in the real data. 

 

To compare gene sets in additional studies we used a percentile approach because of 

the subjectivity evaluating a p-value cutoff to select hits from screening data of different 

types (i.e. isogenic vs cell line panels). To perform evaluation in held out KRAS SL 

screen datasets we obtained gene level screening data from three published KRAS 

studies 16,46,47. Hits were taken as ranked in the Costa Cabral study. For the Kim studies 

genes were ranked into percentiles based on the average difference in essentiality 

scores between KRAS wild-type and mutant cell lines.  

 

3.5.2 Pathway Genetic Interaction Enrichment Analysis 

 

Genes were assigned to curated pathways based on a combination of the RAS 2.0 

pathway annotations (https://www.cancer.gov/research/key-initiatives/ras/ras-

central/blog/2015/ras-pathway-v2) and manual curation. The significance of sets of 

genetic interactions between a gene and a particular pathway was evaluated using a 

two-sided t-test to determine significance from a median of zero.  
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3.5.3 Cell Lines & Tissue Culture  

 

MCF10A Isogenic cells were grown in three conditions for our experiments. Full Media 

defined as: DMEM/F12, 5% Horse Serum, 20ng/ml EGF, 0.5mg/ml Hydrocortisone, 

100ng/ml Cholera Toxin, and 10ug/ml Insulin; Intermediate Media is DMEM/F12, 5% 

Horse Serum, 0.5mg/ml Hydrocortisone, 100ng/ml Cholera Toxin, and 10ug/ml Insulin; 

and Minimal Media is DMEM/F12 and 5% Horse Serum. Mouse cell lines were grown 

DMEM at 10%FBS plus 1X GlutaMAX (ThermoFisher  #35050061). 

 

3.5.4 Western Blotting 

 

Cells were lysed with RIPA buffer (25mM Tri-HCl, ph 7.5, 150nM NaCl, 0.1% SDS, 1% 

Sodium deoxycholate, 10% Triton-X, 5mM EDTA, pH 8.0 for 30 minutes on ice and cell 

debris was pelleted and supernatant was collected and BCA protein quantification was 

used to obtain protein concentrations.  

 

3.5.5 RNAi Screening and Scoring 

 

1000 cells/well were reverse transfected in quadruplicate with 0.05µl/well of RNAiMax 

and 5ng/well of each esiRNA, 72 hours after transfection plates were fixed with 3% 

PFA, and permeabilized with 0.5% TritonX. Hoechst 33342 Solution (Themo #62249) 

was added at a final concentration of 4µg/mL and incubated at 37°C for 30 minutes. 
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Nuclei were counted using a Thermo CellInsight microscope.  Cell counts were 

normalized to a negative control non-targeting targeting esiRNA included in each plate 

and a Student’s t-test was used to determine a p-value of significance by comparing 

normalized counts for each esiRNA in KRAS versus eGFP cells. Genetic interactions 

scores were based on Log10(p-value) and signed to reflect synthetic sickness (negative) 

and enhancement (positive). P-values were used to estimate false discovery rates 

(FDR) using Benjamin-Hochberg method 81. For esiRNA studies non-targeting esiRNA 

targeting eGFP (Sigma, #EHUEGFP). For siRNA studies, siBRCA1 is an ON-TARGET 

SMARTpool (Dharmacon, #L-003461-00-0005) and siNT is ON-TARGET NT4 

(Dharmacon #D001810-04-05). 

 

For the combinatorial E-MAP screen 5ng of each of 96 esiRNAs (“array”) was plated in 

quadruplicate into 384 well plates to which was added a second constant “query” 

esiRNA (5ng) using a Mantis Liquid Handler to all wells along with 10 µl of RNAiMax to 

prepare reverse transfection mix, cells were plated and allowed to grow for 72 hours. At 

end point plates were processed as above for cell count. Counts were normalized to the 

median of each plate and Z-scored. Four replicates were averaged to obtain a mean Z-

score per esiRNA combination.  

 

The cellular context score of each gene was defined as the variance of KRAS genetic 

interaction scores across three conditions. The genetic context score was based on the 

number of significant genetic suppressors (E-MAP interaction score Z>2) identified for 
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each gene. The product of these two metrics was used to define the ranking and then Z-

normalized for visualization. 

 

3.5.6 Drug Screening 

 

1000 cells/well in a 384 well plate were seeded and exposed to the drug library the next 

day. Drug plates were prepared by diluting stock drug into a 4 replicate 4-point dilutions 

series  (500, 250, 50, 5ng/mL). Each dose was added in 4 replicates using a Caliper 

Zephyr liquid handler. Cells were allowed to grow for 72 hours before nuclei counting. 

Cell counts were normalized to DMSO control wells and area under the dose-response 

curve (AUC) was calculated as the sum of proliferation values over all 4 concentrations.  

 

3.5.7 γH2AX Immunofluorescence  

  

Cells were plated into 6-well plates containing coverslips and allowed to grow overnight 

prior to treatment with talazoparib. For washout, cells were washed twice with PBS, and 

allowed to grow in fresh media without talazoparib. Cells were fixed using 4% PFA for 

10 minutes at room temperature, permeabilized using 0.3% Triton-X in DPBS, and 

blocked with 3% BSA in PBS. Cells were incubated with the primary antibody overnight 

at 4 C (Anti-Histone γ-H2AX, #07-627 clone PC130, Millipore Sigma 1:1000) and the 

secondary antibody (Goat anti-Mouse Alexa Fluor 647 Polyclonal, Thermo Fisher) for 1 

hour at room temperature. Following washes with PBS and water, coverslips were 
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mounted using Prolong Antifade containing DAPI (P36931). Foci were quantified using 

ImageJ plugin Foci Counter (The Bioimaging Center, University of Konstanz). 

 

3.5.8 Drug response curves and colony formation assays 

 

For IC50 determination, 500 cells were seeded into 384-well plates overnight, then 

exposed to drugs and allowed to proliferate for 96 hours. Cells were quantified using 

nuclei counting and compared to cell counts with DMSO treatment. Curves were fit and 

IC50 determined using Graphad Prism nonlinear regression analysis. For colony 

formation assays, 500 cells were plated onto 12-well plates overnight before drug 

addition. Media and drugs were changed every 72 hours. Cells were fixed and stained 

with 1% crystal violet in 20% methanol. Plates were washed with water, dried and 

imaged using Epson V600 scanner. 
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3.8 Main Figures 
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Figure 3.1 Meta-analysis of published studies identifies common KRAS synthetic lethal 
networks. 
(A) Gene overlap between the top 250 hit genes reported from three published KRAS synthetic 
lethal studies, Luo et al, Barbie et al., and Steckel et al. 17,19,20. P-values based on two-tailed 
hypergeometric test calculated between pairwise comparisons taking into account all tested 
genes per study. (B) Data integration strategy for mapping top 250 KRAS synthetic lethal 
reported from each study onto a protein-protein interaction network composed on interactions 
from HumanNet and CORUM protein complexes. The number of genes that were tested in each 
study, n. (C) Comparison of the number of interactions observed in the protein-protein 
interaction (PPI) network spanning between hits reported in the two indicated studies versus the 
number of similar interactions observed between random genes. Histogram represents results 
from 10,000 simulations conducted from randomly picking 250 genes that were tested in each 
respective study and the p-value represents the fraction of simulations where the same or more 
interactions than the actual observed number were obtained. (D) The PPI network was limited to 
interactions where at least one of the proteins was identified in previous studies and then 
subjected to network clustering to identify densely connected components using MCODE. 
Individual subnetworks were filtered to those which contained genes from multiple studies and 
grouped based on gene function into 7 clusters. The set of genes identified in each subnetwork 
was assessed for overlap with the CORUM or KEGG complex or pathway listed using a two-
tailed hypergeometric test. 
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Figure 3.2 Comparison of genes in KRAS synthetic lethal networks and previously 
published KRAS synthetic lethal genes in held-out studies.  
105 predicted KRAS synthetic lethal network genes and 26 previously published KRAS 
synthetic lethals were evaluated using data from Kim et al 2013, Kim et al 2016, and Costa-
Cabral et al. 16,46,47. Genes in each study were ranked into percentiles based on the difference in 
proliferation after knockdown in KRAS-mutant versus wild-type cell lines. The lower the 
percentile the more evidence for KRAS specific synthetic lethality. Accuracy calculated as the 
number of genes in the top 5% (pink dots) out of all the tested genes per category. The number 
of genes tested in each study, n. 
  



 41 
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Figure 3.3 A new isogenic cell line screen validates KRAS synthetic lethal network genes.  
(A) Overview of approach. MCF10A cells stably expressing eGFP or a mutant KRAS construct 
were reverse transfected with esiRNAs targeting specific genes. After 72 hours, relative 
proliferation was compared between eGFP and KRAS mutant cells to score genetic interactions. 
(B) Proliferation based on cell count of uniformly plated MCF10A cells expressing eGFP, KRAS 
G12V or G12D grown in the presence or absence of 20ng/ml EGF for 72 hours. (C) Immunoblot 
of lysates from isogenic cells grown in the presence or absence of 20ng/ml EGF for 24 hours. 
(D) Proliferation of eGFP or KRAS G12D cells grown in the indicated media conditions after 
non-targeting (NT) or KRAS knockdown for 72 hours, normalized to NT control. (E) Volcano plot 
of KRAS G12D screen reflecting the magnitude of change in proliferation after gene knockdown 
in KRAS G12D versus eGFP expressing lines versus the significance of this effect calculated 
among replicates. Dotted lines represent the indicated false discovery rate (FDR) cutoffs. (F) 
Relative proliferation of knockdown of listed genes in eGFP or KRAS G12D cells compared to 
non-targeting control in each respective cell line. Genes selected based on genetic interactions 
with <1% FDR. (G) Signed genetic interaction scores for genes in the broader RAS pathway 
grouped into functional categories. The most negative scoring genes in each category are listed. 
(H) Signed genetic interaction score of retested literature curated KRAS synthetic lethal genes 
and their source. Only a subset of genes from Luo et al. are indicated for clarity. (I) Comparison 
of genetic interaction scores for genes involved in the RAS or MAPK pathway (RAS/MAPK), 
RTK signaling, KRAS synthetic lethal genes from the literature (green), or predicted synthetic 
lethal network genes (purple). P-values based on comparison against a median interaction 
score of zero (bottom) and between groups (above), both by two-tailed Student’s t-test. Boxes 
represent the median, hinges span 25-75th percentile and whiskers span 10-90th percentile. 
Error bars are s.d. 
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Figure 3.4 A genetic interaction map identifies KRAS synthetic lethal suppressors.  
 
(A) Overview of approach to generate an epistatic mini-array profile (E-MAP) using 
combinatorial RNAi to measure 5,828 pairwise genetic interactions in MCF10A KRAS G12D 
cells. esiRNAs targeting a set of genes are arrayed in a pairwise fashion (in quadruplicate) in 
tissue culture plates. Reverse transfection is then performed, and the resulting fitness defects 
are observed using high-content imaging. Raw data is normalized and scored (see Methods) (B) 
Overview of genetic interaction map for 30 KRAS synthetic lethal genes and candidate 
modifiers. Interactions scoring >2 or <-2 are shown. (C) Relative proliferation of knockdown of 
three KRAS synthetic lethals identified or confirmed in this study, CCND1, CDK6 and STK33, in 
eGFP or KRAS G12D MCF10A cells alone and in combination with their top positive interaction 
partners. Proliferation normalized to mock. P-values based on a two-sided t-test, error bars s.d. 
(D) Categorical annotations for groups of genes displaying significantly strong genetic 
interactions with synthetic lethal query genes with p<0.01 (see Methods). (E) Genetic interaction 
partners involving two KRAS synthetic lethal genes identified in this study, RGL1 and DNMT3A, 
and associated pathways enriched for genetic interactions. Edge thickness is proportional to 
interaction score. 
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Figure 3.5 Dependency on synthetic lethal genes vary based on cellular conditions.  
(A) Knockdown of KRAS or non-targeting (NT) in MCF10A eGFP or KRAS G12D cells in the 
indicated media condition for 72 hours. Proliferation measured relative to NT. (B) Heatmap of 
genetic interaction scores for KRAS G12D cells grown in full, intermediate or minimal media 
conditions compared to eGFP cells. Highlighted gene sets show consistent or condition specific 
synthetic lethality across conditions. Red arrow highlights BRCA1 as a consistent KRAS 
synthetic lethal. (C) Heatmap of genetic interaction scores for previously published KRAS 
synthetic lethals across different growth conditions. (D) Proliferation of cells grown in the 
indicated conditions harboring knockdown of indicated genes normalized to NT transfection 
control. Full = full media, Int = intermediate media, Min = minimal media. Error bars are s.d.  
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Figure 3.6 PARP inhibitors are more effective in oncogenic KRAS expressing cells.  
(A) Ranking of candidate KRAS synthetic lethal genes based on integration of genetic and 
cellular perturbation screens. Genes were selected for analysis based on evidence of synthetic 
lethality in MCF10A KRAS cells grown in minimal media. The conceptual source of each gene is 
listed. (B) Drug screen of 91 clinically relevant compounds ranked by sensitivity based on 
difference in the drug area under the curve (AUC) between eGFP and KRAS G12D cells. 
DMSO and EGFR inhibitors indicated as controls for no effect and KRAS induced drug 
resistance, respectively. (C) Relative proliferation of control eGFP, KRAS G12D or G12V 
expressing MCF10A lines after treatment with PARP inhibitors talazoparib, rucaparib or olaparib 
for 72 hours. IC50 values are shown. (D) Long-term clonogenic growth of MCF10A KRAS G12D 
and eGFP cells treated with DMSO or talazoparib for two weeks. (E) γH2AX 
immunofluorescence in eGFP or G12D expressing cells, red. Nuclei outlines in dotted lines 
based on DAPI staining. (F) Quantification of γH2AX foci in the indicated cell lines treated with 
DMSO or with 500nM of talazoparib for 18 hours. (G) Treatment of the indicated cells with 
500nM talazoparib for 18 hours then washed out. γH2AX foci quantified before, 8 and 24 hours 
after washout. Error bars, s.d. except E and F which are s.e.m. Not significant, n.s.  
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3.9 Supplementary Figures 

 

Supplementary Figure 3.1S: Distribution of 196 genes tested in esiRNA screen. 
Individual genes are listed in Supplementary Table 4.  
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Supplementary Figure 3.2S:  Comparison of KRAS G12V and G12D screens. 
Isogenic KRAS G12V and KRAS G12D expressing MCF10A lines were screened using 
the same esiRNA library and scores for genes compared. P-value of Pearson’s 
correlation (r) is shown. 
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Supplementary Figure 3.3S: siRNA mediated validation of BRCA1 dependency in 
mutant KRAS cells. The indicated MCF10A isogenic cell lines were transfected with 
BRCA1 siRNA and proliferation measured over 72 hours. Data are proliferation relative 
to control non-targeting knockdown. P-values based on two-sided t-test. Error bars are 
s.d. 
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Supplementary Figure 3.4S: Suppressors of synthetic lethal genes. Histogram of 
the number of suppressor genes identified for KRAS synthetic lethal genes and 
talazoparib. Suppressors defined as genes with a Z-score > 2. Purple gene highlight 
network genes from the cell cycle/replication cluster, red genes highlight two published 
KRAS synthetic lethal genes with suppressor counts greater than average.  
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Supplementary Figure 3.5S: PARP inhibitor sensitivity is independent of media 
conditions. Relative proliferation of control eGFP and KRAS G12D MCF10A lines after 
treatment with PARP inhibitors talazoparib, rucaparib or olaparib for 96 hours in full, 
intermediate or minimal media conditions. Error bars, s.d. 
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Supplementary Figure 3.6S: Olaparib drug response analysis in cancer cell lines 
collections. (A) Cell lines from the three different tumor types that harbor >5 KRAS 
mutant and >5 wild-type cell lines were analyzed with respect to olaparaib sensitivity in 
the genomics of drug sensitivity database (GDSC) 37. Responses were compared based 
on drug area under the dose response curve (AUC) analysis 37 with lower values 
indicating more drug sensitivity. Shown are responses for each tumor type individually 
as well as all three combined. The number of cell lines in each category are shown. P-
values based on a two-sided t-test. (B) Associations of genomic features with olaparib 
sensitivity downloaded from the GDSC database. P-values of association were 
converted into a signed score by taking the log of the p-value and adding a sign to 
indicate association with sensitivity (negative values) and association with resistance 
(positive values). Mutation based features in red and copy-number based features in 
green.  
  



 52 

Chapter 4: Exploration of PARP inhibitors 

for KRAS mutant Non-Small Cell Lung 

Cancer  

4.1 Abstract  

 

PARP inhibitors are currently approved for BRCA mutant ovarian and breast cancers; 

however, there is interest cancers with DNA repair deficiencies (BRCAness) that may 

also benefit from PARP inhibitors. Recent studies have linked oncogenic RAS with 

increased DNA damage that may leave cells vulnerable to DNA repair inhibition. 

Similarly, work from my research has uncovered a DNA repair dependency in a 

MCF10A KRAS isogenic model; here I seek to characterize the response of KRAS 

mutant lung cancer cells to PARP inhibitors. I compare both traditional IC50 metrics and 

Growth Rate inhibition metric (GR50) to correct for differences in growth rates. My 

findings highlight heterogeneous response to both short term and long-term exposure to 

PARP inhibitor. Gene Set Enrichment Analysis (GSEA) of resistant and sensitive cell 

lines revealed molecular pathways associated with response. These findings highlight 

the complexity of developing therapeutic strategies and highlight the need for more a 

systematic interrogation of factors that affect PARP inhibitor sensitivity in KRAS mutant 

cell lines.   
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4.1 Introduction 

 

Genome instability and telomere maintenance is hallmark of cancer and has been an 

area of great interest for therapeutic interventions82. Cancer cells depend on 

maintaining their genomes and therefore inhibiting DNA repair pathways was an early 

method of treating cancer (i.e. chemotherapy). Additionally, small molecule inhibitors 

have also been developed to target DNA repair kinases and mediators like CHK1, 

PARP1 and RAD5183. PARP inhibitors are currently used in the clinic to target BRCA1 

mutant cancer, and an open area of research is to determine if PARP inhibitors can be 

used in cancers which have impaired DNA repair through non-BRCA1 mutant 

mechanism, a phenomenon known as “BRCAness”54.  

 

DNA damage repair defects and increased dependencies in DNA repair has been linked 

to oncogenic KRAS. For example, Oncogenic HRAS has been shown to drive the 

formation of DNA-RNA hybrids known as R-loops which causes DNA damage through 

stalling of replication forks78. When stalled replication forks collapse it forms a double 

stranded break that requires RAD51 for repair53. Mutant KRAS has been linked to 

inhibition of DNA repair through wild type HRAS and NRAS repressing CHK1 

signaling84. Findings from my research have uncovered a DNA repair dependency in 

KRAS mutant isogenic MCF10a cells and demonstrated sensitivity to both genetic 

knockdown and chemical inhibition of PARP, BRCA1 and other DNA repair genes. An 

open area of research remains to determine if targeting these DNA repair dependencies 

in KRAS mutant cancers is a viable therapeutic strategy. 
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In this study we characterize the response of PARP inhibitors to a panel of KRAS 

mutant NSCLC cell lines. Due to the heterogeneity in growth rates we adopt a growth 

rate (GR) drug response metric and show that there is modest agreement between GR 

and IC50 metrics85. I leverage publicly available gene expression profiles from the 

Genomic of Drug Sensitivity portal for the cell lines tested in this study and identify 

pathways associated with response37. We identify a set of signatures linked to response 

and propose a model where KRAS dependent cells repress DNA repair, which leaves 

them vulnerable to PARP inhibition. 

 

4.2 Results  

 

4.2.1 Characterization of PARP inhibitor response across a panel of 

KRAS mutant NSCLC cell lines.  

 

To test the efficacy of PARP inhibitor in KRAS mutant cancer we tested three inhibitors 

olaparib, rucaparib, and talazoparib on a panel of RAS mutant NSCLC cell lines (Figure 

4.1A). A major limitation of the traditional sensitivity metric is that it is confounded by 

differences in growth rates. Data from recent study show that IC50 metrics are highly 

influenced by growth rates and propose the use of a GR50 (Concentration to inhibit 50% 

of the growth rate) metric account for growth rate of cells85. After 96 hours of drug 

exposure we fixed and counted cells (see Methods) and calculated GR50 and IC50 

values for each cell line. My data shows variable response to all three inhibitors (Figure 
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4.2 B-E), and so to obtain one summary response metric I derived an aggregate rank 

for all three inhibitors by averaging rank in response per cell line across inhibitors. The 

mechanism of action for talazoparib is unique among the three drugs due to its ability to 

trap PARP onto the DNA and further increased DNA damage in cells69. Therefore, I 

derived an individual rank for talazoaparib and non-trappers oalaparib, and rucaparib to 

see if there are differences between the two types of PARP inhibitors. The most 

sensitive cells to talazoparib were H1573, H1373, and H358 (Figure 4.1F), while H647, 

H358 and H2347 were the most sensitive to non-trapping PARP inhibitors (Figure 

4.1G). H1373 was the second most sensitive to talazoparib, but it was the second most 

resistant cell line to non-trapping PARP inhibition (Figure 4.1F, G). This suggest that 

although the enzymatic activity of PARP is not required for this cell, that having bound 

PARP enzymes to DNA is lethal. Finally, A549 and H2122 were consistently the most 

resistant cell line across all the PARP inhibitors. The only outlier in this analysis was 

H460, which was sensitive by IC50 metrics but resistant by GR50 metrics therefore we 

dropped this cell line from downstream analyses. These results show that GR50 metrics 

can correct growth rates and assist in characterizing drug sensitivity across panels of 

cell with variable growth rates.  

 

4.2.2. Long term exposure to PARP inhibitors  

 

PARP inhibitors are more effective over multiple cell cycles due to more opportunities to 

inhibit DNA repair and synthesis during S-phase, therefore to characterize PARP 

sensitivity we obtained drug sensitivity metrics over the course of 14-18 days. We 
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initially seeded 100 cells per cell and changed growth media and added drug every 72 

hours. Once DMSO condition treatments reached confluency we prepared each cell line 

for staining and image analysis. Consistent with short-term exposure we observed 

variable response in the long-term exposure to PARP inhibitors (Figure 4.2A). We 

calculated IC50 values by using an ImageJ plug (see Methods). I then asked if long term 

and short-term metrics correlated, I compared the ranks of IC50 and GR50 values with 

the rank of long-term survival. Interestingly only talazoparib IC50 and GR50 correlated 

significantly with the long-term IC50 values (Figure 4.2B), while neither olaparib’s nor 

rucparib’s short term metrics had no significant correlation to long term IC50 (Figure 

4.2C, D). These findings highlight that both long term and short-term response to PARP 

inhibition is variable for non-trapping PARP inhibitors, but that talazoparib’s long term 

and short-term IC50 metrics correlated significantly.  

 

4.2.3 GSEA analysis reveals molecular signatures associated with 

PARP response. 

 

With established sensitivity profiles for reach of our cell lines I then asked if these two 

subsets exhibit molecular profile which may nominate genes correlating with response. I 

obtained gene expression profiles from the Genomics of Drug Sensitivity (GDSC) portal 

and analyzed the top three responders and non-responders using classic GSEA against 

the Hallmarks and Oncogenic gene sets37,86. This revealed 16 Hallmark and 18 

Oncogenic signatures with FDR values less than 15% and nominal p-values less than 

0.05. We observed that PARP sensitive cell lines had down regulated DNA repair, UV 
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response Up, E2F Targets, and G2M Checkpoints while in resistant cells had up 

regulated these pathways (Figure 4.3A). The Singh Et al. KRAS dependency signature 

was up regulated in KRAS PARP sensitive cell line and vice versa in resistant cells 

(Figure 4.3B).  

 

To gain a better insight to the specific genes which contributed to significance I 

investigated the leading-edge subset of genes. Hallmarks signature “DNA Damage” 

response was down regulated in PARP sensitive cell lines, and within the top 50 leading 

edge genes LIG1, RAD51, ERCC3, and RPA3 were down regulated (Figure 4-3C). It is 

likely that a subset of KRAS mutant cell line suppress these genes that leave cells 

vulnerable to further inhibition to DNA repair. RAD51 is a mediator of double stranded 

DNA repair and is required for BRCA1 to repair DNA87, it is possible that homology 

directed repair is suppressed not via BRCA1, but RAD51 in this model. This proposes a 

model where “BRCAness” manifests through loss of RAD51 and thus PARP inhibition 

lethal in this state.  

 

The Singh et al KRAS Dependency signature was also up regulated in PARP sensitive 

cell lines (Figure 4-3D). KRAS dependency has been reported to be inversely correlated 

with epithelial to mesenchymal transition (EMT)88. In other words, KRAS dependent 

cells display epithelial markers, whereas KRAS independent cell lines are often 

mesenchymal. Additionally, I observed that PARP sensitive cells up regulated the 

“KRAS Signaling up” signature. Take together our data suggest that PARP sensitivity is 

linked to KRAS dependency and a suppression of DNA repair pathways.  
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4.3 Discussion 

 

PARP inhibitors are approved for BRCA1/2 mutant ovarian and breast cancers; 

however, and open area of research is to identify other DNA repair deficient tumors 

where PARP inhibitors could be effective. One approach is to identify non-BRCA1 

mutant cells which have repressed DNA repair pathways which leave them vulnerable 

DNA repair inhibitors, and phenomena known as BRCAness54. 

 

Here I show that KRAS mutant lung cancer cells’ response to PARP inhibition is 

heterogeneous by both traditional and growth rate drug sensitivity metrics. This also 

revealed that GR50 metrics can correct for large differences in growth rates and identify 

problematic cells which can confound validation studies. Interestingly only talazoparib’s 

short term metrics correlated significantly with long term IC50 (Figure 4-2D), and overall 

the short term IC50 correlated better (r=0.95).  

 

Leveraging public data sets I used the molecular profiles of cell lines tested here to 

query the pathways associated with response and resistance. GSEA analysis revealed 

EMT as a molecular signature associated with PARP inhibitor resistance. EMT has 

been linked to altering the degree of KRAS dependency in 2D cell culture61. Consistent 

with this observation, we observed the enrichment of “Signh et al KRAS dependency” 

signature in PARP inhibitor sensitive cell (Figure 4-3 D). We also observed that PARP 

inhibitor sensitive cells suppressed DNA repair signatures (Figure 4-2A), with RAD51 as 
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a leading-edge subset gene. This proposes a model where KRAS dependent cell lines 

have a compromised DNA damage repair pathway which be exploited with PARP 

inhibition. It remains unclear if KRAS dependency is altered in vivo, however 3D cell 

culture experiments in the context of KRAS inhibitors suggest that all cell line become 

KRAS dependent in 3D cell culture89. While, this may indeed play a major role in 

dictating sensitivity there may be other factor that were not present in our focused panel 

of cell lines. Future work will focus on systematically interrogating genes that modulate 

response to PARP inhibitors in the context of mutant KRAS.   
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4.4 Methods 

 

4.4.1 Drug sensitivity profiling and Growth Rate metric calculations 

 
For IC50 determination, 500 cells were seeded into 384-well plates overnight, then 

exposed to drugs and allowed to proliferate for 96 hours. For G50 determination a 

replicate plate was fixed before drug exposure to obtain at T0 time point plate. Cells 

were quantified using nuclei counting and compared to cell counts with DMSO 

treatment. GR50 and IC50 metrics were calculated using the GR50 calculator 

(http://www.grcalculator.org)90. For colony formation assays, 100 cells were plated onto 

24-well plates overnight before drug addition. Media and drugs were changed every 72 

hours. Cells were fixed and stained with 1% crystal violet in 20% methanol. Plates were 

washed with water, dried and imaged using Epson V600 scanner. Cell were quantified 

using relative area (Imagej plugin ColonyArea91) to area of DMSO treatments, IC50 

were calculated using GraphPad’s nonlinear regression analysis. 

 

4.4.2 Expression profiles and GSEA analysis of NSCLC responders 

 
Processed and normalized gene expression profiles were downloaded from the 

Genomics of Drug Sensitive portal37 and formatted to meet the requirements for classic 

GSEA. Classic GSEA was conducted on expression profiles, and permutations settings 

were set to ‘gene set’ for all analyses. Only signatures with FDR values less than 15% 

and adjusted p-values less than 0.05 were considered a significant and used for 

downstream analysis.  
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4.5 Figures 
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Figure 4.1 PARP inhibitors response across KRAS mutant NSCLC cell lines.  
(A) List of RAS mutant Non-Small Cell Lung cancer cell lines used for short term PARP inhibitor 
screen and the number of divisions during the 96 hours of drug exposure (B) Conventional dose 
response profiles of KRAS mutant lung cancer cell lines for talazoparib, olaparib, and 
rucacparib. (C) Growth Rate metric response profile for RAS mutant cell lines across three 
PARP inhibitors. (D) IC50 (µM) table for PARP inhibitors. (E) GR50 metrics (µM) for PARP 
inhibitors. (F) Talazoparib (Trapper) IC50 versus GR50 ranks plot G) Non-trapping PARP 
inhibitors IC50 versus GR50 average ranks plot. 
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Figure 4.2 Clonegenic growth in presence of PARP inhibitor across NSCLC panel.  
(A) Representative (quadruplicates) images of long-term drug exposure assays for talazoparib 
(B) IC50 values from clonegenic growth assays. (B) Correlation of talazoparib’s short-term GR50 
and IC50 values with clonegenic IC50 values. (C) Correlation of olaparib’s short-term GR50 and 
IC50 values with clonegenic IC50 values. (B) Correlation of rucaparib’s short-term GR50 and IC50 
values with clonegenic IC50 values. 
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Figure 4.3 GSEA of PARP inhibitor sensitive and resistant cell lines.  
(A) Bar plot of significantly enriched hallmark gene sets with FDR less than 15% and nom-p-
values less than 0.05. (B) Bar plot of significantly enriched ‘oncogenic signatures’ sets with FDR 
less than 15% and nom-p-values less than 0.05 (C) Enrichment plot for Hallmarks DNA REPAIR 
gene set and the top 50 leading edge genes heatmap of sensitive and resistant cell lines. Blue 
text denotes DNA repair genes involved in repair of double stranded breaks. (D) Oncogenic 
signature’s “Singh et al. KRAS Dependency” gene set and leading-edge subset heatmap.  
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Chapter 5: A KRAS 4a and 4b drug screen 

identifies isoform specific therapeutic 

opportunities for KRAS mutant cancers.  

 

5.1 Abstract: 

 
KRAS 4b is the most studied isoform of KRAS and therefore many studies have 

focused on this specific splice variant of KRAS. However, recent studies have revealed 

that both isoforms have unique properties that may have implications for caner. This 

study we set out to determine if alteration in ratios between 4a and 4b offer any 

therapeutic opportunities. Through CRISPR edited KRAS mutant lung and pancreatic 

cancer cell lines we show that cell which express more 4a are sensitive to MEK 

inhibitors. While cell lines that express more 4b are sensitive to Checkpoint kinase, 

mitotic, and Protein Kinase C inhibitors. These results highlight that the ration between 

4a and 4b make cell vulnerable to different chemical agents and and sets forth a new 

avenue to explore to better target KRAS.   
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5.2 Introduction 

 
KRAS has two splice variants: KRAS 4a and 4b, 4b expresses only exon 4b, while 4a 

expresses both 4a and 4b exons. 4a and 4b code for the Hypervariable region (HVR) on 

the c-terminus of KRAS which is important for the regulation of KRAS through post 

translation modifications of the CAAX sequence92. It is possible that in the context of 

oncogenic mutation in KRAS that the two splice variants play both overlapping and 

mutually exclusive roles in driving tumor growth. Historically, KRAS 4b has been studied 

more due it being more highly expressed in cancers as well as being required for 

normal mouse development93,94. Therefore, it remains unclear if differences in the 

amounts of isoforms have any unique impacts on cancer biology.  

 

Work from the Philips laboratory has shown that KRAS 4b expression is greater than 4a 

across several KRAS mutant cell lines using rt-qPCR probes. In contrast to cancer cell 

lines, colorectal patient derived cell lines had varying levels of KRAS 4a and 4b95. This 

suggest that in 2D cell culture KRAS 4b is preferred, but it is unclear if this may be the 

case for tumors. While the body of literature characterizing the HVR between 4a and 4b 

and their respective signaling outputs, it is unclear if there are any therapeutic 

opportunities based on which isoform is dominant in tumors.   

 

To this end, I collaborated with the Balmain lab which generated KRAS 4a knock out 

(KO) cell lines, and KRAS 4b knock-down (KD) cells which alter the ration of 4a to 4b in 

these cells. I employed a high throughput drug screening strategy in order to determine 
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if there are differences in sensitivity to a large panel of clinical and tool compounds from 

the NCI’s Informer Set drug library. I identify that KRAS 4a-expressing cells are more 

sensitive to MEK inhibitors, and that 4b-expressing cells are sensitive to checkpoint 

kinase, and PKC inhibitors. These findings are the first step in exploring the therapeutic 

opportunities in regards to KRAS isoform differences and provides interesting set 

hypothesis to test.  

 

5.3 Results 

 

5.3.1 A high throughput drug screen of KRAS 4a and 4b isogenic cells 

For our drug screen we first characterize the growth of both A549 and SUIT2 cell lines 

over the course of 72 hours. I seeded cells at three different densities in 384-well format 

and allowed the cell proliferate for 72 hours, at which I fixed and imaged the cells for 

nuclei counting (see 5.4 Methods). This experiment showed that while SUIT2 KRAS 4a 

KO cells were able to proliferate to similar numbers as their parental counterparts, A549 

4a KO cells did not grow in 384-well formats (Figure 5.1 A). With this key piece of data 

on hand I prioritized SUIT2 cells for HTS drug screen.  

 

For our drug screen we used the NCI’s Cancer Drug Discovery and Development 

(CTD2) Informer Set that has over 300 compounds of clinical relevance. We screen 

using the SUIT2 cell lines, and calculated normalized AUC rations in order to rank hits 

between the two KRAS KO and KD cell lines (see Methods 5.4). This revealed 3 MEK 

inhibitors (selumetinib, rafemetinib and PD325901) to be the top hits in the 4b K.D. 
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background (Figure 5.1B, C). Among the top hits in the 4a K.O. cells I observed a PKC 

inhibitor (Go6976), two CHK inhibitors (unknown Chk2 and AZD7762), and an IKKβ 

inhibitor (TPCA-1) (Figure 5.1B, D). Interestingly, PKC dose response profile was 

among the best hits due to the 4B cell line being the most sensitive with an estimated 

IC50 value of ~0.564nM, the parental was intermediately sensitive (599nM), and the 4A 

KO was most resistant with an IC50 of 0.647nM. Take together these results highlight 

that there are vulnerabilities that arise once the KRAS isoforms balance is altered. 

 

5.4 Discussion: 

 
Efforts to target KRAS have had sobering results; however, despite these setbacks 

several advances have been made to better understand the RAS proteins and their role 

in cancer. It is becoming clear that KRAS isoform harbor unique biophysical properties 

that affect signaling output. My work here takes advantage of a KRAS 4a/4b isogenic 

platform in order to screen for therapeutic vulnerabilities. The screen uncovered that 4a-

expressing cells are sensitive to MEK inhibitors, while KRAS 4B-expressing cells are 

sensitive to PKC, and CHK inhibitors. These findings suggest that 4a is a major driver of 

MAPK signaling, while 4b is dependent on PCK for upstream activation, which is 

consistent with previous reports showing that KRAS 4b is phosphorylated by PKC at 

serine 181, and disrupts the localization to the plasma and mitochondrial membrane96. 

This might explain why the 4B isoform more resistant to MEK inhibitors, since 4A 

protein does not have the S181 residue, and would the major isoform to spend more 

time in the plasma membrane where it can interact with GEF and RAF proteins to 
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activate MEK and ERK. We also note that CHK1 and 2 inhibitors were among the top 

hits in our screens, which suggest that 4b-expressing cells suffer from high stress 

during S, and G2-M cell cycle checkpoints. Future work will seek to test these 

hypotheses in larger panels of cells to elucidate the mechanism that links KRAS 

isoforms to these specific vulnerabilities.  
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5.5 Methods 

 
5.5.1 Seeding density optimization, drug screening and AUCs 

calculations. 

We plated 500, 750 and 1000 cells in 40 microliters in 384 well plates and allowed the 

cells to proliferate for 72 hours. At 72 hours cells were fixed and stained for high content 

imaging to count nuclei. For liquid handling each drug plate was thawed on ice, and 

aliquoted 3.4µL into an intermediate plate with 70µL of opti-mem to make a 0.5 mM 

intermediate plate. We normalized drug treated cell counts to the median of DMSO 

treated wells and then calculated the average of the relative cell count for each drug 

condition. AUCs were normalized to parental treated cells and then calculated the ratio 

between 4a and 4b in order to obtain a final normalized AUC ratio.  
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5.6 Figures 

 

Figure 5.1 KRAS 4a and 4b Screen identifies isoform specific vulnerabilities.  
(A) 72-hour outgrowth in 384-well format for KRAS 4a KO SUIT2 and A549 cells. Error bars = 
s.d. n=4. (B) Top hits from screen ranked by normalized AUC ratio for 4A and 4B cell lines. (C) 
Dose response profiles of three MEK inhibitors which were the top hits for KRAS 4b K.D. cells 
(D) Dose response profiles of the top three hits for the KRAS 4a KO cell lines, values represent 
the average of 4 replicates.
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Figure 5. 2 Overview of liquid handling for KRAS 4a/4b informer set screen.  
Stock Informer Set plates were thawed on ice and 3.5 µL were dispensed into a 70µL 
Intermediate plate, which was used to make the dilution plates for remainder of screen and any 
future follow up validation experiments. Cells were dose in quadruplicate 10µL per well and 
allowed to proliferate for 72 hours post drug exposure, upon which cells were fixed and 
prepared for imaging.  
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