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Abstract 

 
Improving	Measurement,	Quantifying	Variation,	and	Predicting	Tree	Carbon	Mass	in	

California	Conifers	
 

By 
 

Dryw Aldwyn Jones 
 

Doctor of Philosophy in Environmental Science, Policy, and Management 
 

University of California Berkeley 
 

Professor Kevin L. O’Hara, Chair 
 

 
Carbon sequestration and storage are important areas of scientific research. Despite this 
importance, the current approach to carbon mass estimates consists primarily of estimating wood 
volume, multiplying that volume by a species average wood density value to obtain biomass, 
then multiplying biomass by 0.5. Alternatively biomass may be estimated from allometric 
equations and then converted to carbon with the same 0.5 carbon conversion value. This 
approach is fundamentally inaccurate. This dissertation presents three improvements in carbon 
mass estimation that are critical to moving the science forward. In the first chapter I explore the 
importance of utilizing carbon fraction measurement methods that are capable of capturing the 
volatile component of tree tissues. I demonstrate a novel method that captures an additional 
1.10% - 2.21% carbon mass in tree tissues. This increase is equivalent to “finding” an additional 
16 Pg of carbon at a global scale. In the second chapter I explore the variation in measured 
carbon fractions, wood densities, and carbon densities within tree boles of seven major conifer 
species. I determine the importance of accounting for this variation, and discover negative 
correlations between wood density and carbon fractions within trees suggesting that the current 
approach of studying these characteristics as two independent properties is potentially biased. 
Applying the carbon fraction measurements at the whole tree level led to increases in carbon 
mass estimates of between 3.6% to 10.6% compared to carbon mass estimates that used a carbon 
fraction of 0.5. These values point to a systematic bias in current carbon mass estimation 
protocols. In the third chapter I develop carbon mass prediction models for five conifer species 
that capture some of the variation determined in chapter two. The models developed are the first 
vertically integrable conifer tree models to be based on accurately measured carbon fraction data 
paired with wood density measurements. The models are validated with an independent database 
and applied to the whole tree level demonstrate that accounting correctly for carbon leads to 
carbon mass estimates that are between 98.4% and 109% of the carbon mass estimated using 
standard approaches. The data presented makes a strong argument for the need of models that 
accurately account for variation in and correlation of carbon fraction, and wood density. 
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1  The influence of preparation method on measured carbon 
fractions in tree tissues 
 
 
Introduction 
 
Forest carbon sequestration and storage are important tools in mitigating climate change 
(Hynynen et al. 2005, Neilson et al. 2006, Woodbury et al. 2007, Skog 2008, Fahey et al. 2009, 
Malmsheimer et al. 2011). Forests store large amounts of carbon in living biomass and managed 
forests are capable of producing long-lived timber products that store carbon for decades or 
longer (Skog 2008, Malmsheimer et al. 2011, McKinley et al. 2011). The distribution of carbon 
within trees, and within forest biomass, plays a critical role in forest ecosystem carbon cycling 
(Litton et al. 2007), and influences carbon estimation from the individual tree to global scales. 
The majority of studies that estimate forest carbon in trees typically multiply wood volume by a 
species-specific average wood density, and a carbon mass fraction of 50% (mass carbon / 
biomass) (e.g., Chave et al. 2009). Alternatively, studies may instead multiply measured biomass 
by the same 50% value (e.g. Houghton 2005). Bark, branch, root, and foliar carbon masses are 
usually calculated as proportions of bole carbon, or more commonly, calculated from bole 
volume estimates using biomass expansion factors (Brown 2002). These individual tree carbon 
estimates are then summed up to the stand, or forest scale depending on the analysis, and the 
available data. The resulting forest carbon estimates are known to have significant uncertainties 
related to underlying variation in tree volume estimates (Melson and Harmon 2011), wood 
densities (Chave et al. 2005), and carbon fractions (Jones and O’Hara 2012). Research into 
improving the accuracy of forest carbon estimation has focused primarily on improved 
estimation of wood volume in forests (Brown et al. 2002; Melson and Harmon 2011). In 
quantifying error in tree and forest carbon estimates few studies have focused on intra- and inter-
specific variation in wood density (Chave et al. 2005), and even fewer have analyzed carbon 
fraction variation within and between trees (Lamlom and Savidge 2003, Bert and Danjon 2006, 
Jones and O’Hara 2012, Thomas and Martin 2012b).  

Due to the large amounts of biomass stored in forests, small changes to forest carbon 
fractions can lead to large changes in forest carbon mass estimates (Jones and O’Hara 2012). For 
example, an increase in the global wood carbon fraction from 50% to 51% would lead to a global 
carbon storage estimate that is approximately 7 petagrams (Pg) higher than that estimated by 
Dixon et al. (1994). This amount of carbon is equivalent to approximately half of the carbon 
stored in all forested areas in the continental United States (Dixon et al. 1994). This sensitivity of 
forest carbon mass estimates to small changes in estimated carbon fractions requires that carbon 
fraction measurements be as accurate as possible in order to ensure accurate forest carbon 
estimates. Given the chemical complexity of tree tissues, carbon fraction measurements should 
be obtained for all tree tissue types to develop representative whole tree carbon mass estimates.  

Tree tissues are a complex mix of chemical compounds such as cellulose, hemicellulose, 
lignin and a variety of nonstructural chemicals (Kaar and Brink 1991, Schweingruber et al. 
2008). All of these chemical compounds contain different amounts of carbon by mass (Lamlom 
and Savidge 2006). Therefore variations in the proportions of these compounds at the cellular-, 
tissue-, tree- or species-level should lead to different carbon mass fractions. For example, 
cellulose is approximately 42% carbon, and lignin between 63-72% carbon by mass; it would 
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therefore be expected that trees with higher proportions of lignin, such as conifers, would have 
higher carbon fractions than angiosperms which have lower relative proportions of lignin 
(Savidge et al. 2000). This expectation has been confirmed by studies that found higher average 
carbon fractions in conifers compared to angiosperms (Lamlom and Savidge 2003, Thomas and 
Malczewski 2007, Thomas and Martin 2012b).  

Significant differences in carbon fractions have also been measured between different 
tree species within the broader conifer and angiosperm groupings (Elias and Potvin 2003, 
Lamlom and Savidge 2003, 2006, Thomas and Malczewski 2007, Martin and Thomas 2011, 
Jones and O’Hara 2012, Martin et al. 2015). Some studies have found inter-specific variation in 
carbon fractions between tree tissues including bark, foliage, root, bole, branch, sapwood, and 
heartwood (Bert and Danjon 2006, Lamlom and Savidge 2006, Peri et al. 2010, de Aza et al. 
2011, Jones and O’Hara 2012, Castaño-Santamaría and Bravo 2012, Martin et al. 2015). 
Environmental factors can also lead to differences in measured carbon fractions of tree tissues 
within a species (Elias and Potvin 2003, Lamlom and Savidge 2006). Taken together, these 
studies illustrate that carbon mass fractions of tree tissues are the result of complex biophysical 
processes resulting in highly varied carbon fractions between tree species, individual trees, and 
tree tissue types. This natural complexity argues for analyzing carbon fractions of every tree 
tissue type in order to derive representative whole tree carbon fractions.  

Carbon can be lost from tree tissues through volatilization of carbon containing chemicals 
(e.g. alpha-pinene, methanol), or through metabolism within living plant cells. These potential 
pathways for carbon loss make the argument for a method of measuring carbon fractions in tree 
tissues that captures, to the greatest extent possible, the volatile and nonvolatile carbon fractions 
of living tree tissues. Based on the dataset from Thomas and Martin (2012b), the majority of 
carbon fraction measurements from existing studies were derived using an oven-dry method of 
sample preparation, heating samples between 50 to 105 ºC until weights stabilized. This method 
accounts for 71% of the total carbon fraction measurements in the dataset. The next most 
common method, comprising 18% of the dataset, was freeze-drying, and the final method, 
comprising 11% of the dataset, was vacuum desiccation at ambient temperatures. All of the 
studies in the dataset utilized samples that had been ground to a powder. Although Lamlom and 
Savidge (2003) found that grinding samples to a fine consistency was important for lowering 
deviations between sample replicates, there has been no analysis to determine if grinding 
samples results in the loss of carbon. 

The oven-dry method is designed to remove water from tree tissues, and is most effective 
when performed at temperatures between 101 ºC and 105 ºC (Williamson and Wiemann 2010). 
Removing water from tree tissues allows for more consistent measurements of wood density, or 
biomass as the amount of water in tree tissues is highly variable. Oven-drying works well in 
deriving wood density values that are highly correlated to other key functional traits such as 
mechanical support and water transport (Chave et al. 2009). The majority of research into tree 
tissue biomass estimation uses oven-drying to remove moisture from sample tissues. In order to 
connect carbon fraction measurements to this larger body of biomass research, oven-dried 
samples must be used as a baseline method. However, the potential loss of carbon due to oven-
drying should be measured before carbon fractions obtained with this method are used to 
estimate carbon mass in living trees.  

Two alternative drying methods have been compared to oven-drying: freeze-drying, and 
vacuum desiccation. The few studies (Lamlom and Savidge 2003,  2006, Thomas and 
Malczewski 2007, Martin and Thomas 2011, Jones and O’Hara 2012) that used these alternative 
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methods for carbon fraction measurements found that oven-drying resulted in lower carbon 
fraction measurements than either freeze-drying or vacuum desiccation. The methods employed 
by these authors varied; Lamlom and Savidge (2003, 2006) utilized vacuum desiccation at 
ambient temperatures, Thomas and Malckewski (2007, 2011) utilized freeze-drying, and Jones 
and O’Hara (2012) utilized repeated measurements of paired samples that were vacuum 
desiccated, and then oven-dried. Estimated losses of volatile carbon ranged between 0.3% to 
2.5% in vacuum desiccated samples (Lamlom and Savidge 2003), 0.2% and 4.7% for freeze-
dried samples (Thomas and Martin 2012a), and between 1.23% and 1.47% for repeated 
measurements of paired samples of coast redwood (Sequoia sempervirens (D Don) Endl.) (Jones 
and O’Hara 2012). These studies also showed significant differences in volatile carbon fractions 
between species (Lamlom and Savidge 2003, Thomas and Malczewski 2007, Thomas and Martin 
2012b). Volatile carbon is known to be sensitive to high temperatures and low pressures. These 
factors vary by drying method and may be responsible for the loss of volatile compounds during 
oven-drying (Thomas and Martin 2012b), and freeze-drying (Díaz et al. 2002, Abascal et al. 
2005). To date no study has compared the performance of these alternative sample preparation 
methods to each other or across different tree tissue types. If volatile carbon is lost using the 
methods mentioned above then an alternative method that does not lose carbon via the same 
mechanisms is necessary for accurate tree carbon fraction measurements. 

This paper compares measured carbon fractions of tree tissue samples from nine conifer 
species prepared using four methods: oven-drying, freeze-drying, vacuum desiccation, and a 
method designed to minimize the loss of carbon (MLC). I use linear mixed effects modeling to 
analyze differences in equivalent carbon fractions from paired samples across the tested tree 
species, tissue types, and preparation methods. To assess the potential loss of carbon due to 
grinding samples, I ran separate comparisons of freeze-dried powdered samples to freeze-dried 
samples cut with a razor. My objectives were to: 

1. Determine if there were significant differences in carbon fractions between four 
preparation methods: oven-drying, freeze-drying, vacuum desiccation and the MLC 
method; 

2. Determine if there was a significant loss of carbon due to grinding tree tissues 
versus cutting tissues into small pieces with a razor; and 

3. Determine if differences in methods were consistent across tissue types and species. 
 
 

Materials and methods 
  
Plot locations 
Nine conifer tree species were sampled: sugar pine (Pinus lambertiana Dougl.), ponderosa pine 
(P. ponderosa Lawson & C. Lawson), Jeffrey pine (P. jeffreyi Balf.), coast Douglas-fir 
(Pseudotsuga menziesii (Mirb.) Franco var. menziesii), white fir (Abies concolor (Gord. & 
Glend.) Lindl. ex Hildebr.), red fir (A. magnifica A. Murray), incense-cedar (Calocedrus 
decurrens (Torr.) Florin), giant sequoia (Sequoiadendron giganteum (Lindl.) Buchholz), and 
coast redwood (Sequoia sempervirens (D. Don) Endl.). Trees were sampled at the following 
locations: 1) Baker Forest (39.916 N, 121.063 W), 2) Blodgett Research Forest Station (38.910 
N, 120.662 W), 3) Whitaker Forest (36.699 N, 118.939 W), 4) Teakettle Experimental Area 
(36.968 N, 119.036 W), outside of 5) Loyalton, CA (39.675 N, 120.165 W), 6) near Shaver 
Lake, CA (37.046 N, 119.211 W), and in 7) Jackson Demonstration State Forest (39.364 N, 
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123.708 W). Summary statistics for sample trees can be found in Table 1, along with locations 
each species was sampled in. 
 
Tissue sample collection and processing 
A total of 370 cores were extracted from randomly sampled trees within each site. The only 
requirement for selection of sample trees was that they could be safely climbed, or cut down and 
cored. Cores were taken at breast height (1.37 m), base of live crown (HLC), and every 4 m 
within the live crown for each tree sampled. Extraction was performed using a 400 mm long 
Haglöf three threaded increment borer with a measured aperture of 5.15 mm. Immediately after 
extraction, cores were placed in clear plastic straws, sealed using adhesive tape, labeled with tree 
number and extraction height, then placed in a white plastic tube to reduce exposure to sunlight. 
The borer was cleaned between sample trees using clean tissue paper and a silicon lubricant until 
tissue paper showed no signs of staining from either tree residues or the lubricant. Sapwood of 
the core was determined by holding the straw up to the sun and marking the end of the 
translucent section of the core on the outside of the straw with a permanent marker. Cores were 
then placed in a cooler with ice for transportation back to the lab, and then placed in the lab 
freezer, which was maintained between -24 and -18 ºC. A complete analysis of all cores was not 
possible due to limitations on time and funding, and so a randomized subsample of cores was 
used to avoid introducing bias into the analysis. This process led to the selection of 56 cores, 
from 45 trees and all nine species. These cores were separated into bark and stemwood for later 
carbon fraction analysis. The stemwood portions of these frozen cores were then cut with a razor 
into core segments of four, or eight tree rings, and the tissue type (heartwood or sapwood) 
recorded. The number of tree rings per segment depended on the average ring width, where very 
small average growth rings were segmented into eight ring segments and large average growth 
rings were segmented into four ring segments. This process ensured that enough mass was 
present in the segment for carbon analysis using multiple preparation methods.  
 Foliage was collected in the field from 375 randomly sampled tree branches within the 
crowns of climbed trees. Proportional foliage subsamples were collected from each needle age 
class from each branch and placed in a small plastic resealable bag. A minimum of 100 needles 
were placed in each sample bag. When fewer than 100 needles existed on a branch all needles 
were taken off the branch, and placed in a bag. Foliage sample bags were placed on ice in the 
field, and placed in a freezer once taken back to the lab. Twenty-one foliage samples were 
randomly selected for carbon fraction analysis from 12 different trees, representing six tree 
species.  
 
Core segment preparation 
Core segments from bark, sapwood, and heartwood of the selected cores had the outermost 
portion removed with a razor blade in order to remove oxidized tissue and any possible 
contaminants from the exterior of the core. In the case of bark samples, where removing the 
external tissue was more difficult, the central portion of the bark was cut out and used for carbon 
analysis. For bark samples there was typically less mass and so fewer methods could be applied 
to the bark sample material from a given core. This led to fewer overall bark samples compared 
to stemwood samples in the final analysis. Table 2 contains a summary of sample size data by 
various grouping categories. 

Individual core segments were cut with a razor into pieces weighing approximately 1 mg 
or less, and that material was placed into a sealed plastic sample tube labeled with core, and 
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segment ring numbers then placed back in the freezer. Foliage samples from individual branches 
were cut into pieces weighing approximately 0.5 mg or less, and that material was placed into 
sealed sample tubes labeled with a unique branch ID number then placed back in the freezer. For 
comparisons of carbon fractions between cut and powdered freeze-dried samples the core 
segments were first cut in half. One half of the segment was then ground to a fine powder 
(particle size < 0.3 mm) while still frozen following the methods in Jones and O’Hara (2012), 
while the other half was cut with a razor into small pieces weighing approximately 1 mg or less. 
The resulting material was then placed into separate sample tubes and labeled with unique core 
segment, or branch sample number along with information on whether the material had been 
ground or cut. The average mass of material in each sample tube by method was: 71.5 (5.7) mg 
for oven-drying; 57.9 (6.0) mg for vacuum-desiccation; 162.1 (18.9) mg for freeze-drying; and 
70.4 (6.6) mg for the MLC method.   

 
Core segment material processing methods 

The material contained within the sample tubes was then divided into subsample tubes, 
which were processed using one of the following methods: oven-drying, vacuum desiccation, 
freeze-drying or placed back in the freezer without additional drying (MLC method). Oven-
drying consisted of taking subsample material and drying it in a forced-air oven at 105 ºC until 
weight stabilized, typically less than 48 hours.  

Vacuum desiccation took place in an airtight vacuum chamber (Bel-Art Scienceware, 
model F42010) containing an indicator silica gel as desiccant. The chamber experienced a small 
vacuum pressure from the loss of water vapor, and once a day this pressure was released by 
opening the stop-cock. A small number of stemwood subsamples were taken from the chamber 
and weighed each day until weights stabilized using an Ohaus Analytical Plus balance model 
AP310, with a precision of 0.2 mg. Subsamples were found to reach stable weight within one 
week. This method is comparable to the method utilized by Lamlom and Savidge (2003, 2006) 
with the one exception that I did not apply any additional vacuum pressure to the system other 
than what naturally occurred due to the loss of water vapor.  

Freeze-dried subsamples were placed in a Labconco FreeZone 12 Freeze Dry System for 
one week as this was deemed a long enough period of time to sufficiently dry such small 
samples. The MLC method samples were placed in a test tube, sealed, and placed back in the 
freezer for later carbon analysis. To ensure that all samples were exposed to similar 
environmental conditions, the dried sample materials were also placed into separate test tubes, 
sealed, and placed in the freezer after their respective drying treatments. The result of this 
process was identical parent material treated using the four methods described above, and a 
separate group of freeze-dried samples that were used to determine if there was any difference in 
carbon fractions between cut samples paired with ground samples.   

 
Carbon analysis 

For subsamples from all methods described above, 3-5 mg of material from each 
subsample tube was weighed into a clean, dry tin capsule using a Metler Toledo XPE26 micro-
analytic balance with a calibrated precision of 0.004 mg. The tin capsules were crimped and 
placed into a Thermo Scientific MAS 200R autosampler attached to a CE Instruments Flash 
2000 CHNS/O analyzer for measurement of sample carbon mass using a modified Dumas 
method of flash combustion. The CHNS/O analyzer was calibrated between sample runs using 
acetanilide as the standard. Each sample run had a calibration curve R2 of 0.999, or higher. An 
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acetanilide standard weighing between 1-3 mg was run every tenth sample to insure that the 
accuracy of carbon fraction measurements. Immediately after removal of the 3-5 mg combustion 
samples from each of the subsample tubes, the weight of the remaining subsample material was 
recorded (Mrem). This remaining material was then placed in individual tins labeled with a unique 
sample ID, and dried in an oven at 105˚C until stable weight was achieved. This stable mass was 
then recorded as MOD. Carbon fractions of the combustion samples (Crem) were determined by 
dividing the mass of carbon in the combustion sample by the total mass of the combustion 
sample. All measured carbon fractions were converted to oven-dry biomass equivalent carbon 
fractions (Cc) using the following equation:  
 
Eq. 1     Cc = Crem*Mrem/MOD 

 
If there is no difference in the proportion of carbon lost due to the particular method used 

then the Cc of a given sample (core segment, foliage, or bark), would be the same for all 
methods. That is because the methods are applied to identical parent material. This design creates 
carbon fraction values that are on the same baseline moisture content and therefore directly 
comparable. This is a very similar approach to that used by Martin and Thomas (2011) in 
developing carbon conversion factors, however, my formulation is simpler and requires fewer 
calculations.  

In summary the MLC method consisted of the following: 1) frozen sample material was 
cut into small 1 mg pieces; 2) sample material was then placed into a test tube, sealed, and placed 
back in the freezer; 3) a 3-5 mg subsample was taken from the test tube to determine the carbon 
fraction of the sample (Crem); 4) the remaining material in the sample test tube was immediately 
weighed (Mrem) after removal of the combustion sample and placed back into the sample test 
tube; 5) the remaining material in the test tube was oven-dried, and weighed (MOD); 6) Crem was 
then multiplied by the ratio of Mrem to MOD in order to derive carbon conversion values as shown 
in Eq. 1. All other methods only differ from the MLC method in that the sample material from 
the other methods was dried prior to carbon fraction analysis.  

 
Adjusting carbon fraction for dissolved carbon 

Tree sap is known to contain small amounts of dissolved CO2, which could show up in 
carbon fraction mass measurements (Teskey et al. 2008), when moisture is retained in sample 
material. All of the dried samples contained some residual moisture, and material from the MLC 
method retained most of the original moisture content. The moisture content was determined for 
each combustion sample by assuming that the volatile mass fraction (VMF) in the remaining 
material was composed of water alone. Based on this assumption the moisture fraction of the 
combustion samples can be determined by the following:  

VMF = 1 - ( MOD  / Mrem). 
The concentration of dissolved carbon in all tree tissues was then determined using the 

equations in McGuire and Teskey (2002), assuming a CO2 concentration in the gas phase of 
14%, a temperature of 25 ºC, and a sap pH of 7. The resulting concentration of CO2 in tissue sap 
was then converted into a dissolved carbon mass estimate for each sample and subtracted from 
the respective sample Cc values calculated in Eq. 1. These assumptions more than likely led to an 
overestimate of the amount of dissolved carbon found in the samples making the treatment of all 
methods more conservative relative to the oven-drying method. This process led to slightly lower 
Cc values, however, to try to account for the maximum potential dissolved carbon these slightly 
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lower Cc values were used in all analyses. The MLC method Cc values were reduced the most by 
this process as those samples had higher moisture content values overall. 
 
Statistical analysis 
A linear mixed effects (LME) model (Eq. 2), was used to test for differences in carbon fractions 
(yi) between the different methods, and account for the unbalanced nested structure of the 
dataset. The fixed effects for Eq. 2 included a categorical variable that represented a tissue type 
within a given species (Sti), and a categorical variable representing the four preparation methods 
(Mj). The data structure was organized as sample ID (m), within core ID (l), within tree ID (k). 
For foliar samples, sample branch number was used in place of core ID. Random effects (φklm) 
were assigned to each level of the data structure using a compound symmetric correlation matrix. 
This model was used to estimate parameters for the method fixed effects (Mj) for the entire data 
set, after accounting for average values of the species level tissue types (Sti). 
 
Eq. 2    yi = Sti + Mj + φklm, 
    φklm ~ N(0,σb

2) 
 
For comparisons between Mj estimates within each tissue type, or within each species, 

the data was subset based on the specific tissue type (e.g. heartwood, foliage) or species (e.g. 
Douglas-fir, ponderosa pine, etc.) of interest. This subset of data was then fit using Eq. 2. This 
analysis required replacing Sti in Eq. 2, with either a categorical variable representing tissue type 
(St) or species (Si).  

All analyses was performed using the NLME package (version 3.1-118) (Pinheiro et al. 
2015), in the R statistical platform (R Development Core Team 2015). Different variance 
structures were tested until normality of residuals and random effects was achieved. Statistical 
significance of differences between fixed effect parameters were determined using the 
multicomp (version 1.3-8) library in R with the Tukey HSD method to account for multiple 
comparisons. Summaries of sample size data can be found in Table 1, and Table 2.  

A separate analysis was performed for the comparison of cut and powdered samples 
using Eq. 2 with Mj representing the powdered and cut preparation methods only. Conditional 
(Rc

2) and marginal (Rm
2) values were calculated following the procedures in Nakagawa, and 

Schielzeth (2013). Rc
2 values represent the portion of variance explained by the entire model 

including random effects, while the Rm
2 values represent the proportion of variance explained by 

the modeled fixed effects only. Standard errors are presented in parenthesis following all mean 
values with the exception of Table 1, where standard deviations are shown in parenthesis.  
 
 
Results 
 
Comparison of preparation methods across tissue types and species 
The fixed effect parameter estimates for the MLC method were significantly higher than the 
parameter estimates for the other three preparation methods (Table 3), indicating consistently 
higher carbon fraction (Cc) measurements using the MLC method compared to paired sample 
material prepared using other methods. The largest difference in method Cc, was 1.89 (0.14) 
between the MLC and oven-dry methods, and the smallest difference was 0.27 (0.19) between 
the freeze-drying and vacuum desiccation methods. The differences between fixed effect 
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parameter estimates for freeze-drying versus vacuum desiccation were not significant. Parameter 
estimates for freeze-drying and vacuum desiccation were significantly higher than parameter 
estimates for oven-drying indicating higher Cc fractions measured in samples of both of these 
methods relative to paired oven-dry samples. Significant differences in fixed effect parameter 
estimates were found between powdered and cut samples (Table 3), with cut samples having 
higher average carbon fractions than the powdered samples by 0.32 (0.15). The Rm

2 for the final 
LME model, fit to all data, was 0.74, while the conditional Rc

2 was 0.77. The small difference in 
Rc

2 and Rm
2 values indicates only moderate improvement in overall model fit when accounting 

for random effects. A power of variance structure was determined to best model the 
heterogeneity of the data, with separate variances for each tissue type. All carbon fractions in 
Figure 1 are reported as percentages of oven-dry mass (Cc) after adjusting for maximum 
potential dissolved carbon. The Rc

2 and Rm
2 values in Figure 1 are for the fit of the predicted 

values to the observed values within each tissue type.  
 
Comparison of preparation methods within tissue type 
There were significant differences between fixed effect parameter estimates for methods within 
all tissue types (Table 4). Parameter estimates for the MLC method were higher than all other 
methods within each tissue type tested, and significantly higher than all other methods within 
sapwood, and heartwood. Higher parameter estimates reflect higher average carbon fractions for 
the MLC method compared to the other methods within each tissue type. The order of methods 
from lowest average Cc to highest was oven-drying, vacuum desiccation, freeze-drying, and 
MLC. The significance of these differences varied by tissue type. For example, average Cc 
values for freeze-drying was significantly higher than vacuum desiccation within sapwood but 
not within heartwood, and MLC values were significantly higher than all other methods within 
heartwood and sapwood but not within bark.  
 
Comparison of preparation methods within species 
Differences between fixed effect parameter estimates for a given method compared to the oven-
drying method are shown in Table 5. The values in this table are equivalent to average volatile 
carbon mass fraction of the different methods adjusted to oven-dry mass weights. The MLC 
method parameter estimates are significantly higher than estimates for the oven-drying method 
for all species, and higher than both the freeze-drying and vacuum desiccation methods for all 
species. Differences ranged from 1.01 (0.13), to 1.86 (1.04) for MLC; 0.11 (0.08), to 1.25 (.46) 
for freeze-drying; and -0.30 (0.49), to 1.20 (0.28) for vacuum desiccation. Parameter estimates 
for the freeze-drying method were higher than the oven-drying method for all species and 
significantly higher for all species except Jeffrey pine, incense-cedar, and red fir. Parameter 
estimates for the vacuum desiccation method were lower than for oven-drying for sugar pine 
though not significantly different. For all other species, parameter estimates for the vacuum 
desiccation method were higher than estimates for the oven-drying method, and significantly 
higher for incense-cedar, Jeffrey pine, ponderosa pine, and red fir. The overall trend is for higher 
volatile carbon fractions to be measured by the MLC method, followed by the freeze-drying 
method, then the vacuum desiccation method and finally the oven-drying method.   
 
Mean carbon fraction 
Mean carbon fraction values for the methods by tissue type (bottom row of Figure 1) tended to 
follow the results of the fixed effects testing with higher mean values for the MLC method and 
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lower mean values for the oven-drying method within tissue types. The upper row of Figure 1 
shows that mean bark carbon fraction values were higher than heartwood and foliage, which are 
approximately equal, while sapwood showed the lowest carbon fractions. Of the four tissue 
types, bark had the largest 95% confidence intervals, indicated by the larger size of the shaded 
area around the mean value in the bottom row of Figure 1. This larger confidence interval for 
bark is due to high variability in bark samples, as indicated by the greater vertical spread 
between observations shown in the upper row of Figure 1. Mean values for species Cc (Table 6) 
ranged from a low of 49.58 (0.33) for oven dried white fir tissues, to a high of 54.42 (0.38) for 
giant sequoia processed by the MLC method. Standard errors were generally largest for the MLC 
and vacuum desiccated samples and lowest for oven-dried samples. For every species, the order 
of average Cc values from lowest to highest was: oven-drying, vacuum desiccation, freeze-
drying, and MLC. 
 
 
Discussion 
 
Differences between methods 
The significant differences between the tested methods are extremely important for the growing 
field of tree carbon analysis and its extension to tree, forest, landscape, regional, and global scale 
carbon mass estimation. My findings demonstrate that the MLC method more accurately 
represents carbon fraction in tree tissues in comparison to all other methods tested, and that 
carbon fractions in tree tissues are sensitive to a range of factors in addition to the effects of high 
heat from oven-drying determined by Lamlom and Savidge (2003). Given the varying results in 
species mean level Cc values in my study (Table 6), and in the literature (Lamlom and Savidge 
2003, Thomas and Martin 2012b), it is possible that analyzing a different set of tree species 
could have led to different results. However, the findings of this study leave little doubt that there 
is a significant potential to underestimate carbon fractions using the most common preparation 
methods, including freeze-drying, and vacuum desiccation.  
 
Vacuum desiccation method 
 Vacuum desiccated tree tissue samples have been shown to retain higher amounts of 
carbon compared to oven-dried samples (Lamlom and Savidge 2003, Jones and O’Hara 2012). 
My study confirms this finding, however, I found somewhat lower average volatile carbon 
fractions (Table 5) than these two studies using the vacuum desiccation method in similar, or 
identical, tree species. Lamlom and Savidge (2003) found an average volatile fraction of about 
1% in eastern white pine (Pinus strobus L.), while this study found an average of approximately 
0.4% in the three pine species analyzed. The lower volatile fraction detected in my vacuum 
desiccated samples is most likely due to inherent differences in volatile chemical composition of 
the species measured, and, to a lesser extent, utilizing cut samples instead of powdered samples. 
I found that cut samples retained higher amounts of carbon compared to powdered samples, so 
my cut oven-dried samples may have retained higher amounts of volatile carbon compared to the 
powdered oven-dried samples used by Lamlom and Savidge (2003).  

The difference in volatile carbon measured by Jones and O’Hara (2012) for coast 
redwood compared to values from this study are also likely due, in part, to utilizing cut samples 
instead of powdered. It is also possible there is an interaction between grinding samples and 
oven-drying that led to a greater loss of carbon in oven-dried samples from the Jones and O’Hara 
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(2012) study than occurred in my study. This interaction effect was not directly tested in this 
study, as I only used freeze-dried samples for my cut versus powdered comparison, and the exact 
interaction effect is not known. The redwood cores used by Jones and O’Hara (2012) were also 
tested after only a week in the freezer, while my cores where in the freezer for up to a month, and 
it is possible some carbon loss occurred in frozen cores over time, thereby reducing the 
measurable carbon present in the samples for this study. Some of the difference could also be 
due to the adjustment made to account for the maximum potential dissolved carbon that might 
have been present in the samples.  

The consistently poorer performance of vacuum desiccation compared to the MLC 
method is most easily attributable to the vacuum pressures the samples were exposed to, along 
with the samples being exposed to room temperature versus below freezing temperatures. 
Vacuum pressure applied to tree tissue samples at ambient temperatures may result in the loss of 
some carbon, though the amount of carbon loss would depend on the vapor pressures of the 
chemical constituents present in the material, the length of time the vacuum was applied, and the 
vacuum pressure applied.  
 
Freeze-drying method 

Freeze-drying performed better in recovering carbon than either oven-drying or vacuum 
desiccation (Table 3), and resulted in higher overall mean species Cc values (Table 6). There is 
ample evidence that freeze-drying retains more of the carbon contained in wood samples than 
does oven-drying, although most of that evidence comes from only two papers (Thomas and 
Malczewski 2007, Martin and Thomas 2011). The samples from both of these papers were 
compared to samples that were oven-dried at temperatures above 100 ºC for 48 hours, ensuring 
no residual moisture, though specific tests of residual moisture content were not performed prior 
to carbon analysis in either paper. The combination of similar drying temperatures and times 
makes their findings comparable to my findings in comparing the oven-drying to freeze-drying 
methods, though Thomas and Malczewski (2007) did not adjust their freeze-dry carbon fractions 
to an oven-dry basis as the Martin and Thomas (2011) paper did. The average difference in 
carbon fractions between freeze-drying and oven-drying found in the referenced papers was 
about 2%. The difference between freeze-drying and oven-drying found in my study was about 
0.8% (Table 3). The disparity between my findings and those of the referenced studies can be 
partially explained by the 0.32% difference in carbon fractions between cut samples and 
powdered samples (Table 3). The remaining difference is most likely related to the different 
species measured between studies, as species are known to have different volatile carbon 
fractions (Thomas and Martin 2012b), and within my study volatile carbon (Table 5) and mean 
carbon (Table 6) by species ranged significantly. 

Additionally, the studies that utilized freeze-dried samples only tested sapwood tissues 
(Thomas and Malczewski 2007, Martin and Thomas 2011). My analysis shows that sapwood 
displayed a higher potential loss of carbon than either bark or heartwood (Table 4), as measured 
by differences between the MLC method and the oven-drying method. My findings may 
therefore be more representative of the average volatile carbon fraction for conifer tissues than 
the findings of Thomas and Malczewski (2007) or Thomas and Martin (2011). My paired sample 
analysis of methods demonstrates that freeze-drying may not be suitable for all tree species or 
tissues types if the desired goal is to accurately measure the carbon fractions of fresh tree tissues. 
Freeze-drying has been shown to result in the loss of volatile carbon in tree foliage (Díaz et al. 
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2002), and this effect would likely impact all other tree tissues containing volatile carbon 
compounds (Abascal et al. 2005).  

 
MLC method 

The MLC method significantly outperformed all other methods (Table 3). The MLC 
method captured an additional carbon fraction of 1.10% compared to the next best method: 
freeze-drying. Compared to oven-drying, the most widely used preparation method, the MLC 
method captured an additional carbon fraction of 1.89% (Table 3). Given that cut samples also 
showed improvements in carbon fraction measurements of 0.32% (Table 3), the net improvement 
in the MLC method versus the most commonly used method, oven-drying of powdered samples, 
is 2.21%. This is a very important difference as it represents a potential systematic bias in the 
majority of available data on carbon fractions. This improvement in carbon fraction estimation is 
equivalent to “finding” an additional 16 Pg of carbon within forest vegetation at a global scale, 
assuming an estimate of global carbon of 359 Pg using a carbon fraction of 50% (Dixon et al. 
1994). As a note of caution, however, it is not advisable to take the fixed effect parameter 
estimates from my analysis and use them to adjust existing carbon fraction measurements, as this 
would ignore the significant variability in volatile carbon fractions that exist within different tree 
species and tissue types, and the highly variable methods used in the literature to date. Instead 
my findings make a strong argument for developing a standardized method for carbon fraction 
analysis within tree tissues along the lines of the MLC method, which could be incorporated into 
standardized methods of trait collection (Pérez-Harguindeguy et al. 2013). It should also be 
noted that the MLC method requires less equipment than freeze-drying or vacuum desiccation, 
which could reduce overall costs of carbon fraction analysis significantly compared to freeze-
drying and vacuum desiccation.  

 
Cutting vs. grinding 

Grinding samples to a powder has been the primary method of preparing tree tissue 
samples for carbon fraction analysis. Every study in the Thomas and Martin (2012b) review that 
described how samples were prepared used powdered samples. The primary purpose for grinding 
samples into a fine powder was to reduce the observed variation between repeated measurements 
for some species (Lamlom and Savidge 2003). Grinding tissue samples to a well-mixed powder 
should result in material with equal proportions of chemical constituents (lignin/cellulose etc.) as 
the source material. Cut core pieces that have representative proportions of early and latewood, 
and contain complete ring segments, should also contain equal proportions of chemical 
constituents as the source material. Cut core pieces can therefore be as effective at capturing 
representative proportions of tree chemical compounds as powdered samples if careful attention 
is paid to the dissection process. Cut samples are also much easier and faster to obtain than 
putting samples through a ball mill, or other grinding equipment.  

Loss of volatile carbon is significantly influenced by the surface area of the volatile 
material in question (Guo and Murray 2000). This relationship between volatilization and surface 
area is the likely explanation for my finding that powdered samples have significantly lower 
carbon conversion fractions than cut samples, as the surface area of sample material is much 
greater when that material is ground to a powder than when left in larger pieces. The comparison 
of cut versus powdered samples used freeze-drying only in preparing the sample material, had I 
used the MLC method for the comparison it is possible that the difference detected would have 
been larger, as the samples would have had a greater amount of carbon present in them to begin 
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with. Interactions between sample particle size, drying method and carbon losses should be 
considered when designing carbon fraction measurement methodologies in order to ensure that 
this potential source of carbon loss is accounted for.    

 
Tissue carbon fractions 

Measuring carbon fractions of different tree tissues is necessary for identifying the 
sources of variation in carbon fraction within trees. This variability is apparent in the carbon 
fractions shown in Figure 1, and in the variability of volatile carbon fractions shown in Table 4. 
Comparing the MLC method to the oven-drying method indicates that there was a greater 
amount of volatile carbon present in sapwood than in heartwood or bark (Table 4). Given that the 
majority of volatile carbon fraction data comes from one study that looked at freeze-dried 
sapwood samples (Martin and Thomas 2011), further investigation is needed to more fully 
describe the volatile component of whole tree carbon fractions.  

My data demonstrated different mean carbon fractions between tissue types (Figure 1), 
with higher average carbon fractions in bark tissue, followed by heartwood and foliage, and then 
sapwood. This is not the general trend reported in Thomas and Martin (2012b), which found a 
one-to-one relationship between bark and stem carbon fractions in their meta-analysis of tree 
carbon data. The reported one-to-one relationship is likely due to pooling data from angiosperms 
and conifers, and using simple linear regressions on the resulting pooled data. Interestingly, some 
of the studies in the Thomas and Martin (2012b) review reported higher carbon fractions for bark 
than stem wood within a species (Laiho and Laine 1997, Tolunay 2009), demonstrating the 
importance of using paired samples when analyzing the relationship between tree tissue type 
carbon fractions within a species. In a more recent study, Martin et al. (2015), also found 
significant differences between tissues within a species. Given that bark tissue has a higher lignin 
content than stem wood (Harkin and Rowe 1971), and lignin has a higher carbon fraction than 
cellulose (Lamlom and Savidge 2003), my findings that bark has higher average carbon fractions 
than stemwood are not surprising, though this higher carbon fraction in bark is not generalizable 
based on the findings of Martin et al. (2015). I believe that many tree species will demonstrate 
differences in carbon fractions between tissue types when analyzed directly rather than the 
utilizing the type of pooled data meta-analysis performed by Thomas and Martin (2012b). 

 
Species and tissue level volatile carbon fractions 

The species sampled in this study showed a large amount of variability in their volatile 
carbon fractions (Table 5), and in their mean carbon fractions as measured by a particular 
method (Table 6). The analysis reflected in these numbers is somewhat different than the 
analysis performed on the entire dataset (Table 3) as samples within a species are more likely to 
be unbalanced with respect to tree tissue types, than was the analysis for the entire dataset. Given 
the variability in volatile carbon fraction between tissue types this imbalance in data could lead 
to average volatile carbon fraction estimates that are more representative of the balance of tissue 
types represented in the samples, than of a species level average. The species data does 
demonstrate the general trend of higher levels of carbon fractions measured by the MLC method 
than all other methods, and the variability in volatile carbon fractions between species.  

The variety of methods utilized to measure carbon fractions in the literature result in 
different estimates of species-specific carbon fractions between studies that are not necessarily 
comparable. For example, there are two reported carbon fraction values reported for Manchurian 
walnut (Juglans mandshurica Maxim.) (Thomas and Malczewski 2007, Zhang et al. 2009). 
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Thomas and Malczewski (2007) reported a carbon fraction of 48.36% from sapwood samples 
that were freeze-dried, while Zhang et al. (2009) reported 52.8% from stemwood that was oven-
dried at 70 ºC without specifying the proportion of sapwood and heartwood. Without knowing 
what effect the different methods have on carbon fractions, or what tissue types are represented 
in the carbon fraction samples, there is no way to tell if the discrepancy between these studies is 
due to the balance of tissue types, regional differences in population genetics, or simply due to 
the different methods employed.  

 
Applying carbon fractions to existing biomass data 

Adjusting carbon fractions to oven-dry weights allows for easy conversion of oven-dry 
wood density to carbon density (mass C per unit volume) inclusive of the volatile carbon fraction 
retained by a particular method (freeze-dry, MLC etc.). Carbon density can be used to easily 
convert wood volume to carbon mass. To ensure that the correct carbon density is calculated, 
wood density data must be derived from material that has been oven-dried at the same 
temperature and for the same duration as the material used to calculate the carbon fraction 
conversion (Cc) values. Unfortunately, there is a great deal of variability in the temperatures and 
drying times used to oven-dry material for carbon fraction and wood density analysis. Most 
studies have used oven-drying temperatures of either 70º C or 105º C for carbon fraction analysis 
(Thomas and Martin 2012a), and various temperatures for wood density analysis (Williamson 
and Wiemann 2010). One approach that could be used to obtain carbon fraction values that are 
compatible with existing wood density data, would be to use my MLC method to obtain carbon 
fraction measurements, then record the stable mass of the residual wood tissue sample after 
oven-drying at 70º C, then continue to dry the sample at 105º C and record the new stable mass. 
The oven-dried mass results could then be used in Eq. 1 to obtain the appropriate Cc values for 
an oven-dry mass basis of 70º C, or 105º C. These temperatures represent the plurality of 
temperatures used to obtain carbon fraction values from the oven-drying method in the literature 
(70º C), and the suggested drying temperature for wood density samples (105º C) (Williamson 
and Wiemann 2010). This approach could be used to place carbon fractions from different 
studies on the same baseline moisture content and allow for more meaningful comparisons of 
carbon fractions between studies.  

 
Method improvements 

An ideal sampling method for tree tissue carbon fraction analysis would leave little room 
for volatilization of carbon compounds, similar to the MLC method employed in this study. 
Minimizing the loss of volatile carbon likely requires cooling samples as soon as they are 
collected, ensuring that they are not exposed to vacuum pressures, and cutting samples rather 
than grinding them to a fine powder. Where low temperature storage is not quickly available, a 
pressurized pre-chilled chamber could be utilized to store tree cores and foliage until they can be 
placed in a freezer. Although it may be impossible to completely prevent the loss of volatile 
carbon, it is important to attempt to reduce losses in order to capture the greatest amount of 
carbon stored in living tree tissues. Any future study designed to improve the accuracy of carbon 
fraction estimates in tree tissues must ensure that the methodology captures the greatest amount 
of carbon possible. 
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Conclusion 
 
The primary methods that have been used to measure tree carbon fractions have likely 
underestimated the total carbon present in tree tissues. Failure to account for inherent problems 
with existing methods could result in systematically underestimating tree carbon fractions by 
1.1% (0.15) to 1.89% (0.14), equivalent to a coefficient of variation of 2.2% to 3.78% 
respectively for the commonly used global carbon fraction of 0.5. I found a great deal of 
variability in volatile carbon fractions between species, between tissue types within species, and 
between methods used, leading to the conclusion that studies into carbon fractions must account 
for these sources of variation in order for meaningful comparisons of carbon fractions. 
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Table 1. Summary statistics for sample trees used in carbon fraction analysis. Standard 
deviations shown in parenthesis following the average value for each metric listed. 

Species DBH (cm) HT (m) HLC (m) # of trees # of C samples 
Douglas-fir 67.1  (41.7) 34.8 (11.6) 13.4  (5.2) 4 24 

Giant sequoia 338.2  (130.1) 72.1  (14.0) 20.9  (5.4) 5 22 
Incense-cedar 39.7  (30.1) 20.9  (8.3) 10.3  (2.7) 6 21 
Jeffrey pine 25.5  (13.6) 10.3  (4.2) 2.0  (1.0) 4 11 

Ponderosa pine 74.6  (40.4) 35.5  (14.3) 11.9  (5.9) 8 52 
Red fir 9.3  (9.5) 5.2  (6.6) 1.2  (0.8) 3 17 

Redwood 68.4  (15.0) 38.2  (4.3) 22.9  (3.3) 5 19 
Sugar pine 162.3  (84.2) 43.9  (12.3) 19.9  (9.8) 3 36 
White fir 81.8  (44.8) 37.7  (13.5) 13.5  (6.2) 9 26 

 
 
 
 
 
 
 
 

Table 2. Summary sample information by grouping category. 

  Grouping factor number of samples 

Sampling level 
Tree 45 
Core 56 

Core segment 111 

Method used 

MLC 46 
Freeze-drying 58 

Vacuum desiccation 27 
Oven-drying 97 

Cut 10 
Powdered 10 

Tissue type 

Foliage 21 
Bark 21 

Sapwood 102 
Heartwood 84 
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Table 3. Differences between fixed effect parameter estimates between methods for all 
tissue types.  

Fixed effects compared 
Difference between 

fixed effects Standard error P-value 
Vacuum desiccation vs. oven-drying 0.51 0.17 0.02 
Freeze-drying vs. oven-drying 0.79 0.11 <0.01 
MLC vs. oven-drying 1.89 0.14 < 0.01 
Freeze-drying vs. vacuum desiccation 0.28 0.19 0.48 
MLC vs. vacuum desiccation 1.38 0.19 < 0.01 
MLC vs. freeze-drying 1.10 0.15 < 0.01 
Powdered vs. cut -0.32 0.15 0.03 
Differences are determined only for paired samples measured by each method being 
compared. Positive differences indicate significantly (p < 0.05) higher carbon fractions for 
the method on the left hand side of the comparison. Fixed effects parameters estimated by 
fitting Eq. 2 to all carbon fraction data. Significance of differences determined by a Tukey 
HSD multiple comparisons test. 
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Table 4. Differences between fixed effects parameter estimates for compared methods within 
tissue types. Significant differences indicate that the parameter estimates of the compared 
methods within tissue types are not equal. Positive values for differences indicate higher carbon 
fractions for the method on the left hand side of the comparison. Fixed effect parameters 
estimated by fitting Eq. 2 to data for each tissue type listed. 

Tissue type Comparison made 

Difference in 
parameter 
estimates 

Standard 
error P-value 

Bark 
MLC vs. freeze-drying 1.664 1.071 0.26 
MLC vs. oven-drying 1.940 0.668 0.01 
Freeze-drying vs. oven-drying 0.275 1.021 0.96 

Heartwood 

MLC vs. freeze-drying 0.695 0.256 0.03 

MLC vs. oven-drying 1.860 0.233 < 0.01 

MLC vs. vacuum desiccation 1.148 0.261 < 0.01 

Freeze-drying vs. oven-drying 1.165 0.223 < 0.01 

Freeze-drying vs. vacuum desiccation 0.453 0.272 0.34 

Vacuum desiccation vs. oven-drying 0.712 0.245 0.02 

Sapwood 

MLC vs. freeze-drying 1.280 0.060 < 0.01 
MLC vs. oven-drying 2.286 0.049 < 0.01 
MLC vs. vacuum desiccation 1.839 0.121  < 0.01 
Freeze-drying vs. oven-drying 1.006 0.051  < 0.01 
Freeze-drying vs. vacuum desiccation 0.559 0.121  < 0.01 
Vacuum desiccation vs. oven-drying 0.447 0.113  < 0.01 

Foliage Freeze-drying vs. oven-drying 0.457 0.122  < 0.01 
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Table 5. Difference in fixed effect parameter estimates between listed method and 
oven-drying method. * Indicates significant differences between oven-dried sample 
carbon fractions and a given method. Standard errors for differences are shown in 
parenthesis. Positive values indicate higher carbon fractions for the listed method 
compared to the oven-drying method. Fixed effect parameters estimated by fitting Eq. 
2 to data for each species listed. 

Species Freeze-drying Vacuum desiccation MLC 
Douglas-fir 0.53 (0.19)* 0.35 (0.17) 1.05 (0.17)* 
Giant sequoia 0.98 (0.02)* NA 2.24 (0.03)* 
Incense-cedar 0.11 (0.08) 0.87 (0.01)* 2.66 (0.01)* 
Jeffrey pine 0.17 (0.21) 0.40 (0.14)* 2.23 (0.12)* 
Ponderosa pine 1.11 (0.18)* 1.20 (0.28)* 1.66 (0.23)* 
Red fir 0.06 (0.14) 0.65 (0.21)* 2.83 (1.04)* 
Redwood 1.25 (0.46)* 0.44 (1.05) 2.38 (0.56)* 
Sugar pine 1.16 (0.22)* -0.30 (0.45) 2.63 (0.34)* 
White fir 0.28 (0.10)* 0.32 (0.50) 1.80 (0.38)* 
 

  

Table 6. Mean carbon fraction values for each species as measured by a particular method.  

Species Oven-drying Freeze-drying Vacuum desiccation MLC 
Douglas-fir 49.93 (0.35) 50.94 (0.37) 50.48 (0.39) 51.95 (0.38) 
Giant sequoia 52.40 (0.35) 53.41 (0.37) 52.95 (0.39) 54.42 (0.38) 
Incense-cedar 51.86 (0.34) 52.87 (0.36) 52.40 (0.38) 53.88 (0.37) 
Jeffrey pine 50.67 (0.51) 51.68 (0.53) 51.22 (0.54) 52.69 (0.53) 
Ponderosa pine 50.51 (0.24) 51.52 (0.27) 51.05 (0.29) 52.53 (0.28) 
Red fir 49.97 (0.42) 50.97 (0.44) 50.51 (0.45) 51.98 (0.45) 
Redwood 50.64 (0.37) 51.65 (0.39) 51.18 (0.40) 52.66 (0.39) 
Sugar pine 51.56 (0.26) 52.57 (0.29) 52.11 (0.31) 53.58 (0.30) 
White fir 49.58 (0.33) 50.59 (0.35) 50.12 (0.37) 51.60 (0.36) 
Mean carbon fractions are the parameters of the model derived from fitting carbon fraction 
data for each species to Eq. 2. Standard errors for the parameters are shown in parenthesis. 
Mean carbon values include all tissue types.  
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2  Variation in carbon fraction, tissue density, and carbon 
density within conifer trees 
 
 
Introduction 
 
 Understanding where carbon is stored within a forest is an essential component of 
accurately estimating forest carbon stocks. Accurate estimates of carbon stocks can inform 
climate change mitigation efforts at global scales (Brown 2002), and at smaller scales are critical 
to understanding nutrient cycling as plant tissues release carbon due to disparate decay rates 
(Fogel and Cromack 1977, Johansson et al. 1995). This type of information could also inform 
land managers of the carbon consequences of particular forest management activities as 
treatments affect different components of a stand. In order to understand how carbon mass is 
allocated within a stand we need to first know how carbon mass is allocated within individual 
trees and if that allocation varies predictably from tree to tree.  

Forest carbon stock estimates typically utilize some version of the following approach. A 
species average wood density (dry mass wood / green volume wood) is used to convert tree bole 
volume into bole biomass (Dixon et al. 1994; Goodale et al. 2002). Tree bole biomass is then 
converted into total tree biomass using conversion factors based on ratios of tree component 
biomass (e.g. Goodale et al. 2002). Alternatively allometric models may be based on whole tree 
biomass measures and then related to diameter, or height and diameter (e.g. Jenkins et al. 2003; 
Chojnacky et al. 2014). However tree biomasses are calculated, stand, forest, or ecosystem level 
biomass is obtained by summing individual tree biomasses across the scale of interest. Total 
biomass values are then converted into carbon mass estimates using a carbon fraction of 0.5. 
This “standard” approach to estimating carbon mass is widely used in forest carbon research 
throughout the world (Karchesy and Koch 1979, Harmon et al. 1990, Dewar and Cannell 1992, 
Hollinger et al. 1993, Matthews 1993, Thuille et al. 2000, Pacala et al. 2001, Brown 2002, 
Goodale et al. 2002, Chave et al. 2005, Woodbury et al. 2007, Fahey et al. 2009, Van Deusen 
and Roesch 2011).  
 This approach to carbon mass estimation implies three assumptions: (1) intraspecific 
variation in wood density is insignificant; (2) intraspecific variation in carbon fraction is 
nonexistent or negligible; and (3) interspecific variation in carbon fraction is nonexistent or 
negligible. Using a species-level average wood density implies that a unit of wood volume from 
a given species has the same biomass regardless of the size, age, or location of the tree it came 
from. This assumption ignores known variation in wood density related to tree height and 
diameter (Chave et al. 2005, 2009, Nogueira et al. 2008), regional intraspecific variation in wood 
density (Nogueira et al. 2007), and variation related to radial position in the bole (Wiemann and 
Williamson 1989, Woodcock and Shier 2002). Failing to integrate known sources of variation in 
wood density may lead to inaccurate biomass estimates where the regional variation in wood 
density is significant, or where wood density varies significantly with tree size or other 
measurable features.  

The second assumption of this standard approach is that carbon fractions are constant for 
all species. This assumption is not supported by the literature, which shows significant 
interspecific variation in carbon fractions (Lamlom and Savidge 2003; Lamlom and Savidge 
2006; Martin and Thomas 2011; Jones and O’Hara 2012; Thomas and Martin 2012). Significant 
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differences between angiosperms and conifers were found in a literature review of available 
carbon fraction data by Thomas and Martin (2012), with conifers demonstrating higher carbon 
fractions as a group. Within the angiosperm and conifer groups significant differences in carbon 
fractions also exist, with a coefficient of variation greater than 20% of the mean 50% value 
between species within the same provenance (Thomas and Martin, 2012). Significant differences 
in carbon fraction estimates were also found across biomes (Thomas and Martin, 2012). Carbon 
fractions should be measured for each species of interest in order to come up with the most 
accurate carbon mass estimates. Failure to do so risks over- or under-estimating the mass of 
carbon contained within forests.  

In evaluating the third assumption listed above, Jones and O’Hara (2012), found 
significant differences in carbon fraction between heartwood and sapwood within individual 
coast redwood (Sequoia sempervirens (Lamb. ex Don D) Endl.) trees. Their results are similar to 
those found by Lamlom & Savidge (2006) in giant sequoia (Sequoiadendron giganteum (Lindl.) 
J. Buchholz), and by Bert and Danjon (2006) in maritime pine (Pinus pinaster Ait.). In all three 
cases heartwood contained significantly higher carbon fractions than sapwood. This finding was 
reversed for sugar maple (Acer saccharum Marshall) (Lamlom and Savidge 2006) where carbon 
fraction increased with distance from pith. There is currently insufficient data to determine if 
these findings hold true for other tree species; therefore, more research into intraspecific 
variation in carbon fraction is necessary in order to determine if carbon fraction varies 
predictably between wood types within trees. Differences between carbon fraction in heartwood 
and sapwood could also lead to significant differences in carbon mass estimates across tree sizes, 
as larger trees tend to have higher proportions of heartwood than smaller trees. 
 Depending on the tree species and growth history, wood density can be higher or lower in 
heartwood than sapwood (Woodcock and Shier 2002). When present, these different tissue 
densities can lead to higher or lower carbon densities (mass carbon/green wood volume) in 
heartwood compared to sapwood. Jones and O’Hara (2012) showed that in multiaged coast 
redwood stands, higher tissue densities in heartwood, combined with higher carbon fractions, 
resulted in higher stand carbon densities as stand-level heartwood proportions increased over 
time. Alternatively, if sapwood has a higher average carbon density than heartwood, lower stand 
average carbon densities would be expected over time. Despite demonstrated differences in 
wood types, most studies of stemwood density estimate stemwood average densities, and these 
averages ignore the potentially nonlinear relationships between tree size and sapwood to 
heartwood ratios (Jones et al. 2015).  

Tree bark density and carbon fraction are not well studied, though bark can be a 
significant portion of total tree biomass, and in some cases has much higher carbon fractions than 
stemwood (Correia et al. 2010, de Aza et al. 2011). This difference in carbon fraction between 
bark and stemwood suggests that bark carbon mass would be more accurately estimated directly 
rather than as a proportion of bole mass. Bark has also been shown to be strongly correlated with 
wood characteristics, such as wood density (Poorter et al. 2014) suggesting that tree species with 
similar bark characteristics may have similar tissue properties. The physical characteristics of 
bark, such as color, and texture are derived from the chemical constituents that comprise it. It 
would, therefore, be logical to conclude that the physical aspects of bark could be related to 
underlying tree properties such as carbon fraction, wood density, and carbon density. As bark 
descriptions are widely available for many species, bark groups would be a logical method of 
categorizing species. In addition to the potential improvement in carbon fraction modeling by 
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bark group, accounting for species-specific averages and sources of variation in bark carbon 
fraction, and bark tissue density should significantly improve carbon mass estimation models.  

Analyzing relationships between the species-specific tree tissue properties of carbon 
fraction, density, and carbon density is a necessary first step in improving the accuracy of carbon 
mass estimates. Additionally, quantifying the relationships, if any, between these species-specific 
tree tissue averages and measurable tree characteristics related to tree size, or stand conditions 
could significantly improve my understanding of forest carbon storage and sequestration. 

While tissue density has been studied across many species, including both conifer and 
angiosperm groups, the majority of carbon fraction studies have looked at angiosperms with data 
for only 37 conifer species reported in Thomas and Martin (2012a). This means that little 
information exists on variation in carbon fraction between conifer species, or between tissue 
types within conifers. Increasing the number of conifer species, and studying individual tissue 
types within conifers therefore would be an important part of improving overall understanding of 
carbon dynamics in forest stands.  

 
 Using data from nine conifer species across a range of sizes, elevations, bark 
characteristics, and latitudes, I approach these issues with the following objectives: 

1. Determine if accounting for tissue type leads to a significant improvement in 
estimates of carbon fraction, density, and carbon density over species level, and tree 
group averages alone;  

2. Determine what the differences in tree bole carbon mass estimates are due to using 
the typical 0.5 carbon fraction, versus measured tissue type carbon fractions; and 

3. Determine if carbon fractions, tissue densities, and carbon densities vary predictably 
from species-tissue type averages based on measureable tree characteristics and 
sample location within trees. 

	
	

Materials and Methods 
 
Plot locations and sampled species 
Nine conifer species were sampled: coast Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco 
var. menziesii), coast redwood, giant sequoia, incense-cedar (Calocedrus decurrens (Torr.) 
Florin), Jeffrey pine (Pinus jeffreyi Balf.), ponderosa pine (P. ponderosa Lawson & C. Lawson), 
red fir (Abies magnifica A. Murray), sugar pine (P. lambertiana Dougl.), and white fir (A. 
concolor (Gord. & Glend.) Lindl. ex Hildebr.). Study plots were located in the following 
locations: Jackson Demonstration State Forest (39.364 N, 123.708 W), Baker Forest (39.916 N, 
121.063 W), Blodgett Forest Research Station (38.910 N, 120.662 W), Whitaker Forest (36.699 
N, 118.939 W), Teakettle Experimental Area (36.968 N, 119.036 W), outside of Loyalton, CA 
(39.675 N, 120.165 W), and near Shaver Lake, CA (37.046 N, 119.211 W). Not all species were 
present in all locations. The nine species were placed into three tree groups, based on bark 
characteristics to determine if any significant improvement in model fit of the three tree 
properties (carbon fraction, tissue density, and carbon density) existed between these easily 
identified groups. The tree groups were: trees with furrowed bark, included Douglas-fir, white 
fir, and red fir; trees with fibrous bark, included redwood, giant sequoia, and incense-cedar; and 
trees with scaly bark, included ponderosa pine, sugar pine, and Jeffrey pine.  
 



 

	

23 

Core extraction and handling 
Summary statistics for the sampled trees are shown in Table 7. Tree cores were extracted from 
breast height (1.37 m), midway between breast height and base of live crown, and every 4 m 
within the live crown from randomly sampled trees within study plots. A 40.6 cm long increment 
borer with an aperture of 5.15 mm was used to extract all cores from sample trees. To prevent 
contamination, the increment borer was cleaned between each sample tree with a silicon-based 
lubricant and clean paper tissues. After extraction, cores were placed in plastic straws, sealed 
using adhesive tape, and placed in a white plastic tube to reduce exposure to sunlight. The 
sapwood component of each core was determined either by color, or by holding the core up to 
the sun and marking the translucent portion of the cores on the outside of the straw where sharp 
color differences were not obvious. Cores were then placed in a cooler with ice for transportation 
back to a lab freezer.  
 
Core processing 
In the lab, frozen cores were cut into segments that included 4 or 8 tree rings depending on the 
ring widths. It was necessary to use variable number of ring widths per segment to ensure that 
enough mass was present in the core segment sample for carbon and density analysis. A total of 
42 tree cores were used for carbon fraction analysis. The cores were randomly selected from the 
370 cores collected in the field. Core segments were taken from within the bark, sapwood, and 
heartwood sections of the selected tree cores. All core segments that were analyzed had the 
outermost portion removed with a razor blade in order to remove oxidized tissue and remove any 
possible contaminants from the exterior of the core. A razor was used to cut core segments into 
pieces less than 1 mg in mass. This material was separated into 2-4 vials and the material in each 
vial was prepared for carbon mass measurement using one or more of the following, common 
sample preparation methods: vacuum desiccation, freeze-drying, oven-drying, or left un-dried. 
After processing, all vials were placed back into the freezer.  
 
Carbon fraction analysis 
Tree tissue carbon fraction and density sample size data can be found in Table 8. For carbon 
fraction determination, weighed subsamples of 0.3 - 0.5 mg from each prepared vial were placed 
into tin capsules and then into a CE Instruments Flash 2000 CHNS/O analyzer (Rodano, Milano, 
Italy) for sample carbon fraction (CFR) determination using combustion and mass 
chromatography. The CN analyzer was calibrated between sample runs using acetilinide as a 
standard to develop a calibration curve. The calibration curve had a R2 of 0.999 or higher for all 
sample runs. After removing the subsample, the sample material remaining in each vial was 
weighed and this weight was recorded as MR. This material was then placed in an individual tin 
labeled with sample ID and dried at 105˚C until stable mass was achieved. This stable oven-dry 
mass was recorded as MOD. The final carbon fractions (CFC) were calculated using:  
 
 
Eq. 3    CFC = CFR*MR/MOD.  
 
 
This calculation was performed so that all carbon fractions used the same baseline tissue 
moisture content and could therefore be compared in a sensible way. A more complete 
description of the carbon fraction data can be found in Jones & O’Hara (2016).  
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Tissue density and carbon density analysis 
Paired tissue density and carbon fraction core segments were used to match carbon fraction with 
tissue density measurements from the same tree heights and ring ages within a given tree. The 
tissue density of each core segment was determined by dividing the green volume (cm3) of the 
core segment by the oven dry mass (g) of the core segment. The green volume of the segment 
was determined by multiplying the segment length (cm) by the internal area of the increment 
borer aperture (0.208 cm2). With one tissue density value per segment sample, the total number 
of density samples was 90. Carbon density was determined by multiplying the corresponding 
tissue density and carbon fraction measurement for all preparation methods used on a given 
sample, resulting in 203 carbon density values.  
 
Difference between 0.5 value and measured carbon fractions for species-tissue types 
 The average carbon fraction values for each species-tissue type were used to make 
comparisons of carbon mass for 1000 kg example trees for each of the 9 species. For consistency 
in biomass estimation, the BIOPAK equations (Means et al. 1994) were used to derive bark and 
bole masses. The total biomass of each example tree within each species was held constant to 
demonstrate the impact of measuring carbon fractions versus using the 0.5 value. Using the 
standard approach, the estimated biomass for each tree tissue component (bark or bole) was 
multiplied by 0.5 to obtain carbon mass estimates.  

To calculate bark carbon mass using measured carbon fractions, the mass of estimated 
bark was multiplied by the corresponding bark carbon fraction. For carbon mass of sapwood and 
heartwood, a sample tree for each species was selected from the database that most closely 
matched the DBH and height used to derive the 1000 kg example tree. Bole cross sectional 
sapwood and heartwood areas were determined for the cores from each sample tree. The cross 
sectional area represented by each tissue type within each core, was multiplied by the species 
average tissue type density. The results of these calculations were then summed across each core 
within a sample tree. The ratio of total heartwood core mass to total core mass was used to 
estimate heartwood biomass proportion in the 1000 kg example tree boles. Sapwood bole mass 
was determined by subtracting heartwood mass from total bole mass. The bole mass for each 
tissue type was then multiplied by the respective species-tissue type carbon fraction to derive 
total carbon mass for bark, sapwood and heartwood.  
 
  
Statistical analysis 
Linear mixed effects (LME) analysis was used to account for the nested structure of the data and 
to account for random effects related to sampling procedures. For carbon fraction and carbon 
density analyses the nested data structure was organized as sample ID (m) nested within core (n), 
nested within tree (o), nested within plot (p). For tissue density analysis, the nested data structure 
was organized as core nested within tree, nested within plot. Random effects (!) were assigned 
to each level of the data structures mentioned above and a compound symmetric correlation 
matrix was used to model relationships between observations. The equations for the most 
complex levels of analysis for each tree property were: 
 
Eq. 4    yi = CFijk + BlXl + ϕmnop, 

ϕmnop ∼ N(0,σb
2) 
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Eq. 5    yi = Dijk + BlXl + ϕnop,   
     ϕnop ∼ N(0,σb

2) 
 
Eq. 6    yi = CDijk + BlXl + ϕmnop, 

ϕmnop ∼ N(0,σb
2) 

 
In Eq. 4 - 6, fixed effects were assigned to the mean values for the combination of species 

(i), tissue type (j), and a given preparation method (k), resulting in the notation CFijk, for carbon 
fraction analysis, Dijk for tissue density analysis, and CDijk for carbon density analysis. In the 
case of Dijk only one preparation method, oven-drying, was used but for consistency with the 
other two properties the notation was kept. Models with species level averages (CFik, Dik, CDik) 
and models with species level averages with additional fixed effects related to other tree 
characteristics in the form of a covariate matrix (BlXl), were tested against each other to 
determine if the covariate matrix improved the overall model fit. Models with tree group level (t) 
averages (CFtk, Dtk, CDtk), were tested against method level models to determine if grouping by 
bark characteristics significantly improved the model fit. These simpler models had the same 
random effects structure as the models in Eq. 4 - 6. This modeling approach effectively centers 
the data on the average of a given grouping level. Accounting for grouping level averages allows 
for modeling the deviations from the respective means as functions of measurable tree 
characteristics, or location of samples within trees. This approach reduces the influence that any 
one grouping level (species, tissue type, tree group, method) has on the modeled relationships. 
Parameters (Bl) were estimated for several potential covariates and their interactions (Xl) using 
LME modeling. LME models for all three tree properties were limited to a maximum of five 
potential covariates and/or their interactions selected from a larger pool of covariates using the 
glmulti package v. 1.07 (Calcagno 2013) in the R programing language (R Development Core 
Team 2015). The glmulti package was used to fit the best combination of covariates and their 
interactions to the data using multiple linear regression. LME modeling was performed using the 
NLME package v. 3.1-118 (Pinheiro et al. 2015) in the R statistical platform. 

For the three tree properties of interest (CF, D, CD), the significance of accounting for 
grouping level, and additional covariates was determined by performing an ANOVA on nested 
LME models of increasing complexity: 1) a model with means for the given method used (CFk, 
Dk, and CDk), 2) models fit to means for the three tree groups (t) and method (CFik, Dik, and 
CDik), 3) models for species level averages (CFik, Dik, and CDik); 4) models with species level 
averages and additional covariates CFik + BlXl, Dik + BlXl, and CDik + BlXl; 5) models with 
average values for species-tissue types, CFijk, Dijk, and CDijk; and 6) models of the forms found 
in Eq. 4-6. Maximum log-likelihood (ML) was used during model covariate selection so that 
models with different fixed effects could be compared. Maximum log-likelihood ratios were also 
used to determine if nested models were significantly different from each other. The final 
reported LME models for a given tree property were fit using reduced maximum log-likelihood 
(REML) methods as this approach produces less biased parameter estimates (Pinheiro and Bates 
2000). This means that Akaike information criterion (AIC) (Akaike 1974) would be different 
between the final LME models and the models used to determine the importance of tissue type 
and additional covariates. Marginal r-squared (Rm

2), and conditional r-squared (Rc
2) values were 

calculated for the final LME model fits by tree group. These two values are most easily 
interpreted as the proportion of variation explained by the fixed effects alone (Rm

2), and the 
proportion of variation explained by fixed and random effects (Rc

2) (Nakagawa and Schielzeth 
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2013).  
Carbon fraction data was summarized by species-tissue type, along with the relative 

standard deviation of a given measurement from the widely used 0.5 average. These relative 
deviations were calculated as percentages of the mean value of 0.5 or CV50.  
 
 
Results  
 

Symbols, descriptions, and units for covariates used in the final LME models are shown 
in Table 9. Table 9 shows that the most common type of covariate to be included in the final 
models were related to height of sample in tree, crown length, or metrics related to height and 
crown length. Radial distance from pith and tissue density also significantly contributed to final 
models, though they were not as consistent as covariates related to vertical position within the 
tree.  

ANOVA results for comparisons of the nested models show that carbon fraction models 
were significantly improved with each increase in model complexity (Table 10). Accounting for 
tree group, or tissue type alone did not significantly improve model performance for either 
density or carbon density. For density, and carbon density models, significant improvements 
begin at the species level with additional covariates added. Models with tissue type and 
additional covariates (Table 10, model # 6, #12, and #18) performed significantly better than all 
simpler model forms for all three tree properties.   

The final models for each tree property included covariates representing location of 
samples within trees (RH, R, HAR), and tree crown metrics (LCR, NLCR, FHLC, HLC), but not 
covariates related to tree size such as diameter at breast height, or tree height though these 
covariates were tested (Table 11). The carbon fraction model was significantly improved with 
the addition of an interaction term for tissue density and relative height (p:RH), while the density 
and carbon density models were both significantly improved with the addition of an interaction 
term including radius from pith (RH:R).  

The potential influence of each term on a given model is demonstrated by the fraction of 
variation (FV) values in the FV-upper and FV-lower columns in Table 11. The upper fraction of 
variation was calculated by multiplying the given parameter estimate by the mean value of the 
term plus one standard deviation. The FV-lower values were determined my multiplying the 
parameter estimates by the mean value minus one standard deviation, then dividing by the mean 
tissue property value of CFijk, Dijk, or CDijk. For terms that included RH in them, the RH portion 
of the term was held at one. The FV values range from -0.8709 to 0.5361, with the largest FV 
values found in the density and carbon density models. The FV values for the CFijk model 
recalculated relative to the widely used 0.5 carbon fraction are the CV50 values for each term. 
The p:RH CV50 values range from -0.0279 to -0.0259; HLC:FHLC CV50 values range from 
0.0001 to 0.0106; and the HAR:HLC CV50 values range from -.0018 to 0.  

Carbon fraction data is shown in Table 12. Measured mean tree tissue carbon fractions 
(CFij) and standard deviations, shown in parenthesis, ranged from 0.507 (0.009) for white fir 
sapwood, to 0.588 (0.009) for Douglas-fir bark (Table 12). Corresponding CV50 values were 
0.014 (0.018), to 0.176 (0.018). A comparison of carbon mass estimates for each species tissue 
type within 1000 kg example trees is shown in Figure 2. Carbon mass by bark (Cbm), sapwood 
(Csm), and heartwood (Chm) are calculated using a carbon fraction of 0.5, and using the CFij 
values from Table 12. Each tree was set at 1000 kg mass, including bark so that the only 
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difference in carbon mass estimate is due to using measured carbon fraction values rather than 
the widely used 0.5 value. Total carbon masses for the trees estimated with a 0.5 fraction are 500 
kg. For the trees estimated using the CFij values from Table 12 the total carbon masses for each 
species are as follows: Douglas-fir, 519 kg; giant sequoia, 544 kg; incense cedar, 553 kg; Jeffrey 
pine, 529 kg; ponderosa pine, 518 kg; red fir, 522 kg; coast redwood, 532 kg; sugar pine, 541 kg; 
and white fir, 518 kg. The difference in these masses as a percentage of the trees estimated with a 
carbon fraction of 0.5 are: Douglas-fir, 3.8%; giant sequoia, 8.9%; incense cedar, 10.6%; Jeffrey 
pine, 5.8%; ponderosa pine, 3.6%; red fir, 4.4%; coast redwood, 6.4%; sugar pine, 8.2%; and 
white fir, 3.6%. 
 Bark carbon fraction values ranged from a low of 0.515 (0.005) for Jeffrey pine, to a high 
of 0.588 (0.009) for Douglas-fir (Table 12). Heartwood values ranged from a low of 0.513 
(0.010) for Douglas-fir, to a high of 0.551 (0.010) for giant sequoia. Sapwood values ranged 
from a low of 0.507 (0.009) for white fir, to a high of 0.541 (0.008) for incense-cedar. Carbon 
fractions were generally lower for sapwood than heartwood, though bark did not show a 
consistent trend. The CV50 values ranged from a low of 0.014 (0.018) for white fir sapwood, to a 
high of 0.176 (0.018) for Douglas-fir bark.  

LOESS regressions indicate vertical trends in each tree property (CF, D, CD) by tree 
group (Figure 3). The values on the x-axis are expressed as percentages of species tissue type 
values to center the data. This allows for a more meaningful comparison of deviations from 
average for each tree group. Density and carbon density showed the greatest range in deviations 
from the species-tissue type means ranging from approximately 0.8 to 1.4, while carbon fractions 
stayed relatively close to their respective means ranging from 0.96 to 1.04. Density and carbon 
fraction showed negative correlations in their trends with significant variation between tree 
groups. The fibrous bark group displayed the greatest range in deviations from the mean, 
followed by the furrowed bark group, with the scaly bark group displaying less variation. 

The shaded regions of the LME model predicted data versus observed data (Figure 4), 
represent the 95% confidence intervals for each tissue type within a given tree group – tree 
property. The lack of overlapping confidence intervals between the heartwood samples of the 
three tree groups, along with the lack of overlapping confidence intervals for the sapwood 
portion of the furrowed bark group and the other two groups indicates significant differences 
between those means across the tree groups. The wide confidence intervals for the bark portions 
of the graphs are mostly related to the high variation found in the bark samples, but is also a 
function of the smaller sample sizes of bark tissues. The Rc

2 values for the model fits range from 
0.64 to 0.95, while the Rm

2 values range from 0.34 to 0.91. The difference in these two values 
indicates the variation in the model that is explained by the random effects related to individual 
trees, and individual cores taken from those trees. Differences between the Rm

2 and Rc
2 are most 

pronounced in the density properties of the furrowed bark trees, with smaller differences 
displayed by carbon density compared to the tissue density. 
 
 
Discussion 
 
Measured carbon fractions versus 0.5  
The differences between carbon mass estimates derived from measured CFij values, versus the 
values derived from assuming a carbon fraction of 0.5 (Figure 2, Table 12), demonstrate the 
importance of correctly accounting for variation in carbon fractions within trees, and between 
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tree species. The increase in estimated carbon mass related to using CFij values ranged from 
3.6% to 10.6%, indicating the error caused by treating wood biomass from all species the same 
(i.e. using 0.5). Given that measured carbon fraction values for angiosperms average lower 
carbon fractions than 0.5 (Thomas and Martin 2012b), conifers almost certainly play a more 
important role in global carbon cycles than global estimates based on the 0.5 value currently 
suggest.  

The difference in carbon mass estimates of tissue types are equally important as different 
tissues store carbon for variable amounts of time (van Geffen et al. 2010). These different tissue 
decay rates mean different rates of carbon dioxide release from the separate tissue carbon pools. 
Correctly estimating these pools is an obvious first step in improving overall understanding of 
carbon decay dynamics in forests. These differences are also important in tracking carbon mass 
in timber products.  

     
Comparisons between model complexity levels 

The improvement in AIC and the significant difference determined through log-
likelihood ratios shown between model 1 and model 2, demonstrates the potential to partially 
explain the variation in carbon fraction values with easily observed bark characteristics (Table 
10). Interestingly, this improvement does not seem to apply to bark carbon, though this is more 
likely due to smaller sample sizes and high internal variation in bark samples within tree groups 
(Figure 4). There is no improvement in model performance for either tissue density or carbon 
density. This is partially due to the high variation found in these two properties between 
individuals within a species, and within individual trees as shown by the difference in Rc

2 and 
Rm

2 values in Figure 4.  
The lower AIC for the species average carbon density model (CDik) compared to the 

species-tissue type model (CDijk) (Table 10) provides interesting insights into carbon fractions in 
different tissue types. Tissue types can have different average carbon fractions (Bert and Danjon 
2006; Jones and O’Hara 2012), and different average densities (Miles and Smith 2009), so 
accounting for these known differences in any carbon density model should improve the 
predictive power of the model. The lack of improvement in AIC is most likely accounted for by 
the negative interaction between tissue density and carbon fraction demonstrated in Figure 2, 
along with the greater number of parameters necessary to estimate species-tissue type averages 
versus species level averages alone.  
 
Carbon fraction modeling 
Carbon mass estimates using a value of 0.5 have also assumed that no error is associated with 
this value. Measured CV50 values as high as 17.6% (Table 12) suggest that this assumption is 
incorrect for whole tree carbon mass, and certainly incorrect as it pertains to tree tissue carbon 
mass. There is a strong indication that conifer carbon fractions are generally higher than 0.5, and 
that angiosperms are generally lower than 0.5 (Thomas and Martin 2012b). My data supports this 
trend as all conifer tissues measured in my study had carbon fractions higher than 0.5. This 
supports the contention from Jones & O’Hara (2016) that all tissue types should be studied for 
carbon fraction in order to develop representative biomass weighted tree and forest-level carbon 
fractions. Failure to do so will result in biased carbon mass estimates for areas that are dominated 
by either conifers, or angiosperms. 

The improvement in carbon fraction estimation by accounting for bark features (Table 
10) could be beneficial for carbon estimation in other forest types. In species rich tropical forests 
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where measuring every species would be impractical, grouping species by easily recorded 
metrics, such as bark characteristics, could simplify the process of developing improved carbon 
estimates. Though this study did not measure angiosperms, my findings of significant differences 
between tissue types is consistent with the findings of studies that have specifically looked at 
carbon fractions in different angiosperm tissue types (Lamlom and Savidge 2006, Peri et al. 
2010, Castaño-Santamaría and Bravo 2012). The majority of carbon fraction studies, however, 
have not studied tissue types as potential sources of variation (Jones and O’Hara 2016). This is 
especially true for angiosperm species where sapwood has been the primary tissue type studied 
(Thomas and Martin 2012b). Given the potential for significantly different carbon fractions 
between tissue types, it is advisable that both heartwood, and sapwood be studied in developing 
tree stem carbon fraction values. Doing so could have major consequences for global carbon 
storage estimates.   

The improvement in model fit with increasing carbon fraction model complexity shown 
in Table 10, demonstrates that accounting only for species average values does not accurately 
estimate the fractions found within trees, though species-level averages are clearly superior to 
using a constant value of 0.5. This finding is consistent with other studies that have documented 
significant variation between sapwood, heartwood, and bark within conifers (Correia et al. 2010; 
de Aza et al. 2011; Jones and O’Hara 2012). In a review of existing carbon fraction studies, 
Thomas and Martin (2012b) found only six studies that measured different bole tree tissue 
carbon fractions and none of those studies looked at carbon fractions as measured by all of the 
common methodologies. By including multiple carbon fraction methods, my results are more 
broadly applicable to carbon fraction research as a whole.  

The significant improvement in model performance with the addition of the parameter 
covariate matrix BlXl (Table 10, model #4 & #6) indicates the potential to more accurately 
predict carbon fraction utilizing measureable tree characteristics. My best-fit carbon fraction 
model (Table 10, model #6), which included the BlXl matrix, demonstrates that in addition to 
tissue type, other tree characteristics contribute to more accurate estimation of carbon fractions. 
Model #4 did not outperform the more complex models and suggests that significant 
physiological differences between tissue types are driving the relationship and that these 
differences are not easily modeled with linear combinations of covariates alone (Table 10).  

The negative relationship between CFijk and the p:RH interaction term (Table 11) has not 
been identified in previous studies. This term has the potential to shift the mean model estimate 
by -2.7% to -2.5%, which indicates significant differences in carbon fractions between the top 
and bottom of the tree. Bert and Danjon (2006) found a quadratic relationship between carbon 
fraction and relative tree height, but did not use paired carbon fraction and tissue density 
measures in their analysis. The negative relationship found in my study suggests a reduction in 
carbon fraction within tissue types with increasing tree height. This negative relationship with 
height is enhanced for denser tissue samples within a given species-tissue type. Tissue density is 
often lower above the live crown (Chave et al. 2009), which would lead to a decrease in the 
negative impact from the p:RH term at heights above the live crown, and an increase in the effect 
below live crown. The negative correlation between carbon fraction and tissue density is most 
easily seen in the fibrous, and furrowed bark tree groups in Figure 2, as the carbon and density 
curves for those groups are nearly mirror images of each other. It is possible that, in isolation, the 
effect of the p:RH term would be very similar to the quadratic relationship found by Bert and 
Danjon (2006), as the highest density is found at intermediate RH values for the scaly and 
furrowed bark tree groups, with relative reductions in density at higher RH values (Figure 2). 
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The same cannot be said for the fibrous bark group as that group demonstrates the lowest 
densities at intermediate RH values. The significant improvement in carbon fraction estimation 
between model #1 and #2 in Table 10, and the lack of overlap in confidence intervals between 
mean tissue type values in Figure 4, indicates that grouping these trees by bark characteristics 
could be a reasonable first step in improving carbon fraction estimates. 

The negative relationship between tissue density and carbon fraction is an important 
finding as it suggests a more complex relationship between biomass and carbon mass within 
conifers than implied by utilization of a constant carbon fraction of 0.5. Two other studies that 
looked at the interaction between tissue density and carbon fraction found positive relationships 
in angiosperms (Elias and Potvin 2003, Becker et al. 2012). My finding of the opposite 
relationship is possibly due to my focus on conifers, though my inclusion of bark samples could 
also partially explain this relationship. Regardless of the cause, my results indicate that 
intraspecific carbon fraction and tissue density relationships are far more complex than a static 
carbon fraction value such as 0.5 would imply. This argument is bolstered by the species-level 
trends found by Thomas and Malczewski (2007), which showed a positive relationship between 
wood density and carbon fraction for angiosperms, while conifers displayed the opposite trend. 
The results of their analysis, however, were not statistically significant.  

The positive parameter estimate for the HLC:FHLC term indicates an increased carbon 
fraction for trees with high HLC values (Table 11). This term has the potential to shift the mean 
model estimate from 0.02% to 1.4%, depending on the size of the tree and the position relative to 
the live crown. This increase in carbon fraction is greater for tree tissues located in the live 
crown. Given this relationship, tall trees with high height to live crowns would be expected to 
have higher overall average carbon fraction values than short trees with small live crowns. This 
relationship could indicate the potential for canopy class to influence carbon fractions. Although 
both suppressed and dominant trees could have similar HLC values in a given stand, only the 
dominant trees would be expected to have longer live crowns, resulting in higher maximum 
FHLC values for dominant trees and therefore a larger positive effect of the HLC:FHLC term. 
The inclusion of this term also partially balances the negative terms in the model. 

The negative parameter estimate for the HAR:HLC term indicates a reduction of carbon 
fraction at the top of the tree, with a rapid weakening of this relationship with increasing distance 
from the tree top (Table 11). This term has the smallest potential impact ranging between -0.47% 
to 0%. This is because the HAR term decreases at a faster rate than does distance from the tree 
top. A rapidly decreasing HAR term and a constant HLC term within a tree results in a stronger 
negative relationship near the top of trees than exists further down, though with an overall 
strengthening of the relationship with increasing HLC values. This negative trend toward the top 
of trees is primarily displayed by the fibrous bark group from an RH value of 0.4 to the tree top, 
and may act to bring predicted carbon values back toward the mean species-tissue type value 
(Figure 2).  

The mean species-tissue type carbon fraction parameter estimate (CFijk) of 1.002 (0.002), 
suggests that observed carbon fractions are evenly distributed around the mean species-tissue 
type carbon fraction values (Table 11). If the parameter estimate were not equal to one, it could 
indicate that the variance might be better explained by additional covariates or that the variance 
was not equally distributed around the mean value. 

The modeled relationships were not improved much by accounting for random effects, as 
shown by the small differences between Rc

2 and Rm
2 values in Figure 4. This indicates that the 

fixed effects portions of the models, specifically the species-specific tissue type averages, and 
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the covariate matrix, are accounting for the majority of the variation in the data. This is critical to 
understanding carbon fractions, because it indicates most of the variation in carbon fraction in 
conifers can be accounted for simply by calculating species-tissue type averages. This approach 
may be infeasible in areas with high species diversity, however, in those cases grouping trees by 
bark characteristics could lead to some improvements in carbon fraction estimation similar to the 
improvement found between model #1 and #2 (Table 10).  
 
Tissue density 
Wood density has been studied for varying purposes for over a century (Stamm 1928, Chave et 
al. 2005). Appropriate application of this historical data to carbon mass estimation requires 
understanding the underlying relationships between carbon fraction and tissue density. The lack 
of improvement in AIC in comparing model #7 with models #8 through #11 (Table 10), indicates 
that partitioning tree density in species-level, and tissue type-level categories alone does not 
significantly improve model estimates. However, modeling tissue type averages and additional 
covariates, model #12, significantly improves model performance over all other models. This 
means that accounting for changes in tissue density in addition to tissue type averages not only 
results in a significant difference in log-likelihood ratios, but also improves overall model AIC 
relative to a means only model.  

In this study, the final density model (Table 11) estimates a negative parameter associated 
with RH, a phenomena that is common among conifers. Interestingly, the model suggests that the 
higher the average species-tissue type density (Dijk), the more negative the relationship will be. 
This interaction between RH and Dijk is likely driven by the tree species in the furrowed bark 
group which show the largest reduction in density with increasing RH values (Figure 2). The 
potential for this term to influence the mean model estimate is very large, ranging from between 
-52.4% to -36.5%. This indicates the potential improvement in model fit that could be obtained 
by accounting for position within the tree.  

The reduction in predicted density is partially balanced by the positive parameter estimate 
for the NLCR:RH interaction term (Table 11). The impact from this term ranges from 32.1% to 
53.6%, nearly equal to the negative range of values from the Dijk:RH term. The NLCR:RH term 
indicates that trees with higher NLCR values demonstrate an increase in density with increasing 
RH values. This could indicate the more suppressed trees with high NLCR values have higher 
density near the tree tops than dominant trees. This may be due to slower growth rates altering 
the percentage of early wood contained within tree rings, which is known to impact wood density 
(Ikonen et al. 2008), or it could be related to a smaller portion of crown wood found in trees with 
smaller live crown ratios.  

The negative parameter estimate for the RH:R term indicates a reduction in density 
within a species-tissue type with increasing distance from the pith. This is opposite of the trend 
observed by Ikonen et al. (2008) in Scots pine (Pinus sylvestris L.). The value of this parameter 
is low, however, the dataset included trees with radii over 230 cm, so some significant reductions 
in tissue density could occur in much larger trees, such as giant sequoia. Overall the potential 
impact on the mean model estimate ranges from -23.2% to 0%, which is a smaller range than the 
other two terms though still significant. The interaction of these positive and negative 
relationships with RH most likely corresponds to the trends in density values shown in Figure 2. 
 As with the carbon fraction model the term representing the species-tissue type average 
values (Dijk) had a parameter estimate statistically indistinguishable from 1 (Table 11). This 
indicates that the data was fairly evenly distributed around the mean values. The overall fit of the 
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model to the data was significantly improved with the inclusion of random effects related to 
individual trees, and cores (Figure 4). This is a result of the large inter- and intra-tree variability 
in tissue density. Although the addition of the parameter matrix improved the model, the vast 
improvement in the model fit due to inclusion of random effects clearly demonstrates that the 
fixed effects are not describing the majority of the variability. This could be remedied by adding 
variables that account for ring width, proportion of earlywood to latewood, and other tree ring 
specific variables as those have been shown to be closely correlated with wood density (Peng 
and Stewart 2013). These ring specific variables are not easily measured, and therefore not very 
useful in estimating overall tree biomass, or carbon mass without time consuming sampling 
procedures.  
 
Carbon density 
This study is the first to utilize paired density and carbon fraction samples in order to directly 
analyze the relationship between these two tree properties. The product of these values is carbon 
density, and, as can be seen in Figure 2, tissue density dominates the resulting relationship. The 
trend lines in the carbon density graph are somewhat less extreme versions of the corresponding 
tissue density curves with each carbon density curve remaining closer to the mean species-tissue 
type value at a given RH value, than either the carbon fraction or tissue density curves. This 
limited spread around the mean values is due to the negative relationships between carbon 
fraction and tissue density. The trend in carbon density has the same shape as the density curves 
and this is due to the much larger variation within density samples compared to the carbon 
fraction samples. When two values are multiplied together the property with the highest 
variability should drive the resulting trend.  
 The positive FHLC term for carbon density appears to be tracking the increase in 
observed carbon density samples above RH values of approximately 0.55 (Table 11, Figure 2). 
The potential impact of this term on the mean model value ranges from 1.2% to 38.9%. This 
term indicates that trees with lower HLC values and long live crowns should have higher carbon 
density near the top of the tree. This likely reflects the trends in the fibrous and scaly bark tree 
groups as the furrowed bark group trends toward lower carbon densities near tree tops. This 
increase is entirely driven by the trends in tissue density values as the carbon fraction values are 
trending back toward the species-tissue type averages near the tree tops (Figure 2). 
 The negative parameter estimate for the CDijk:RH term likely represents the strongly 
negative trend in the carbon density data for the furrowed bark group with increasing RH values 
(Table 11). The other tree groups do not demonstrate as consistent a negative trend with 
increasing RH values. Given that the furrowed bark species tend to have higher tissue density 
values, the effect of the interaction term is to increase the negative trend with RH for that group 
relative to the other two groups with lower density values. The potential influence of this term on 
the overall model mean estimate is between -87.1% to -61.0%, much higher than the comparable 
term found in the density model. 
 The LCR:NLCR term, with a simple substitution of (1-LCR) for the NLCR term, is equal 
to LCR-LCR2. This term is maximized when LCR is equal to 0.5, with symmetric reductions in 
value moving away from 0.5. This indicates the importance of live crown in determining overall 
carbon density, though it, like many of the terms in the carbon density model, appears to be 
primarily driven by changes in tissue density rather than carbon fraction. The potential impact of 
this term on mean model estimates is between 22.6% to 30.1%.  
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 The negative parameter for the FHLC:R term indicates a reduction in the effect of 
positive FHLC term related to samples further from the pith. This reduction is more significant 
for large diameter trees and would be applicable to each species-tissue type. This effect could 
partially be driven by the inclusion of large old-growth trees in the study such as giant sequoia 
and some individual pines. The FHLC:R term is very similar in effect to the RH:R term in the 
density model and it is this trend in density that is driving the trend in carbon density as the 
carbon fraction model suggests no significant effect related to distance from pith. The potential 
impact of this term on the overall mean model estimate is between -21.9% to 0%.  

Carbon density is the only modeled tree property with a parameter estimate not equal to 
one for the species-tissue type average covariate (CDijk) (Table 11). Both carbon fraction and 
tissue density have species-tissue type average covariates equal to one, suggesting that the 
negative correlation between these two values is the likely reason for a parameter estimate 
different than one for carbon density. Alternatively the model may be skewed by the strong 
negative relationship between density and relative height found in the upper part of the tree 
stems. There is a higher concentration of observed values near the base of the tree than at any 
other point on the tree. This data concentration near the tree base could increase the average 
values for the species-tissue types, and therefore a reduction in the parameter for the species-
tissue type (CDijk) would be necessary to more closely track the observed values throughout the 
tree.  

The best-fit models for carbon density are less influenced by the addition of random 
effects than the tissue density models, but more than the carbon fraction models (Figure 4). As 
carbon density is a combination of tissue density and carbon fraction, it is logical that the high 
variability displayed by the density samples would be somewhat reduced by the lower residual 
variance found in the carbon fraction values. It is also likely that the negative correlation 
between carbon fraction and tissue density are partially responsible for reducing the residual 
error allocated to the random effects. This finding is promising as the high variability in tissue 
density creates high variability in any final biomass or carbon mass estimate; however, if that 
variability can be partially offset by correctly accounting for carbon fraction values then the 
overall carbon mass estimate would display reduced error relative to biomass estimates. Biomass 
studies that rely on species average tissue density values rarely ascribe any error to the species 
tissue density values used. This is problematic as it artificially reduces the true error in the 
underlying biomass estimate. A similar approach is used in dealing with underlying errors in the 
carbon fraction value of 0.5, which is assumed to be errorless. The data in my study, and in all 
other studies of tree tissue carbon fractions have clearly demonstrated that the 0.5 value is far 
from errorless. Given the importance of forest carbon, it is extremely important that all values 
involved in deriving carbon mass estimates are correctly assigned any underlying, otherwise 
statistically meaningful comparisons of mean values cannot be made. 
 
 
Conclusion 
My study demonstrated significant differences in measured carbon fraction values from the 
widely used value of 0.5, with CV50 values as high as 17.6%. These differences in carbon 
fraction alone resulted in whole tree bole carbon mass estimate increases of  up to 10.6% over 
carbon mass estimates that use 0.5. My study determined that significant improvements in 
carbon mass estimation in conifer trees are possible by directly accounting for tissue type carbon 
fraction, and density, as well as measureable tree characteristics related to live crown and 
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position within the bole. Some improvement in carbon fraction modeling occurred by grouping 
tree species by visible bark characteristics. The negative relationship between tissue density and 
carbon fraction determined in this study had not been noted before and is very important in 
demonstrating why simple approaches to converting biomass into carbon are flawed. It is likely 
that this relationship would have gone unnoticed with an approach that only analyzed average 
values of carbon and density rather than paired samples as the variation in density is quite high 
relative to the variation in carbon, making significant trends between means more difficult to 
determine. Additionally this relationship suggests that these two key tree properties should be 
modeled separately in order to improve carbon mass estimates, rather than attempting to directly 
model the combined property of carbon density.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 35 

Figures and Tables 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Tissue carbon m
ass estim

ates for nine conifer species. Carbon m
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 (heartw
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 tree cores. 
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Figure 3.  Fractions of species-tissue type averages across relative heights are shown. 

Species values are grouped into three tree groups based on bark characteristics: fibrous, 

scaly, and furrowed. LOESS regressions are shown for each tree group to demonstrate the 

moving average change in tree property throughout the tree bole. 
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Figure 4. Measured values for carbon fraction, tissue density, and carbon density are shown 
relative to predicted values. Rc

2 values correspond to the proportion of variance explained by the 
fixed and random effects in the model, while Rm

2 values correspond to variance explained by the 
fixed effects alone. Shaded regions represent the 95% confidence interval in measured values for 
a given tissue type within a particular tree group.  

Fibrous bark Furrowed bark Scaly bark

R
m

2 = 0.91

R
c

2 = 0.94

R
m

2 = 0.91

R
c

2 = 0.95

R
m

2 = 0.87

R
c

2 = 0.93

0.500

0.525

0.550

0.575

0.500 0.525 0.550 0.50 0.52 0.54 0.56 0.58 0.51 0.53 0.55 0.57

Carbon fraction

Fibrous bark Furrowed bark Scaly bark

R
m

2 = 0.68

R
c

2 = 0.81

R
m

2 = 0.51

R
c

2 = 0.94

R
m

2 = 0.74

R
c

2 = 0.78

0.10

0.15

0.20

0.25

0.30

0.150 0.175 0.200 0.225 0.250 0.275 0.15 0.20 0.25 0.30 0.15 0.20 0.25

Carbon density

Fibrous bark Furrowed bark Scaly bark

R
m

2 = 0.51

R
c

2 = 0.64

R
m

2 = 0.34

R
c

2 = 0.91

R
m

2 = 0.75

R
c

2 = 0.79

0.2

0.3

0.4

0.5

0.6

0.30 0.35 0.40 0.45 0.50 0.3 0.4 0.5 0.20 0.25 0.30 0.35 0.40

Density

Tissue type Bark Heartwood Sapwood

Predicted values

M
e
a
s
u

re
d

 v
a
lu

e
s



 

	

38 

 
 
 
Table 7  Summary statistics for trees used in paired carbon fraction, tissue density, and carbon 
density analysis. Standard deviations are shown in parenthesis after mean values.	
Species DBH (cm) HT (m) HLC (m) n 
Douglas-fir 67.1  (41.7) 34.8 (11.6) 13.4  (5.2) 4 
Giant sequoia 338.2  (130.1) 72.1  (14.0) 20.9  (5.4) 5 
Incense-cedar 39.7  (30.1) 20.9  (8.3) 10.3  (2.7) 6 
Jeffrey pine 25.5  (13.6) 10.3  (4.2) 2.0  (1.0) 4 
Ponderosa pine 74.6  (40.4) 35.5  (14.3) 11.9  (5.9) 8 
Red fir 9.3  (9.5) 5.2  (6.6) 1.2  (0.8) 3 
Redwood 68.4  (15.0) 38.2  (4.3) 22.9  (3.3) 5 
Sugar pine 162.3  (84.2) 43.9  (12.3) 19.9  (9.8) 3 
White fir 81.8  (44.8) 37.7  (13.5) 13.5  (6.2) 9 

 
 
 
 
Table 8 Carbon fraction and density sample number summary by tissue types. 
 

Tissue type n - carbon n - density 
Bark 24 14 
Sapwood 94 36 
Heartwood 85 40 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

	

39 

Table 9  Symbols, descriptions, and summary statistics of covariates found in final LME models. 
Mean values are followed by corresponding standard deviations in parentheses. 

Symbol Covariate descriptions Mean Units 

CFijk 
Average carbon fraction value for a 
given species tissue type and method 0.5167 (0.0191) - 

Dijk 
Average oven dry tissue density value 
for a given species tissue type 0.3778 (0.0675) g/cm3 

CDijk 
Average carbon density value for a 
given species tissue type and method 0.1950 (0.0348) g/cm3 

p Segment dry mass divided by segment 
green volume 0.378 (0.068) g/cm3 

RH Height to core divided by total tree 
height 0.318 (0.294) - 

HLC Height to live crown 14.2 (6.6) m 

FHLC Height to core divided by HLC 0.813 (0.766) - 

HAR Height to core divided by bole cross 
sectional area at core height 0.013 (0.016) m/cm2 

LCR Length of live crown divided by tree 
height 0.398 (0.151) - 

NLCR One minus LCR 0.602 (0.151) - 
R Radius to center of segment from pith 36.5 (51.0) cm 
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Table 10  ANOVA results for comparisons of nested tree property models. All models were 
regressed using maximum log-likelihood methods. Test column shows model numbers that were 
compared. P-values result from log-likelihood ratio tests for listed comparison. 
 

Covariates DF AIC Model # Test p-value 
CFk 7 -1100.5 1 - - 
CFtk 15 -1106.0 2 1 vs. 2 0.006 
CFik 35 -1111.5 3 2 vs. 3 0.0009 
CFik + BlXl 38 -1114.7 4 3 vs. 4 0.0269 
CFijk 82 -1284.6 5 4 vs. 5 <.0001 
CFijk+BlXl 84 -1305.6 6 5 vs. 6 <.0001 
Dk 7 -630.3 7 - - 
Dtk 15 -622.6 8 7 vs. 8 0.4089 
Dik 35 -608.1 9 8 vs. 9 0.1814 
Dik  + BlXl 38 -626.0 10 9 vs. 10 <.0001 
Dijk 81 -627.1 11 10 vs. 11 0.0001 
Dijk + BlXl 85 -683.8 12 11 vs. 12 <.0001 
CDk 7 -888.3 13 - - 
CDtk 15 -877.9 14 13 vs. 14 0.6874 
CDik 35 -865.5 15 14 vs. 15 0.1204 
CDik + BlXl 39 -892.6 16 15 vs. 16 <.0001 
CDijk 81 -903.3 17 16 vs. 17 <.0001 
CDijk + BlXl 85 -935.9 18 17 vs. 18 <.0001 
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Table 11 Summary of LME model parameter fits from Eq. 4-6. Xl symbol descriptions can be 
found in Table 9. Bl is the matrix of parameter estimates for the given covariate matrix Xl. P-
values less than 0.05 indicate that the specified parameter estimate is significantly greater than 
zero. The upper and lower columns give the result of evaluating a given term at the mean 
covariate value from Table 9 plus one standard deviation (upper), and minus one standard 
deviation (lower). 
 

Tissue Property Xl Bl s.e. p-value FV - 
upper 

FV - 
lower 

Carbon fraction CFijk 1.002 0.002 <0.01 - - 
	 p:RH -0.026 0.011 0.02 -0.0270 -0.0250 
	 HLC:FHLC 2.20E-04 9.52E-05 0.02 0.0140 0.0002 
	 HAR:HLC -0.004 0.002 0.04 -0.0047 0 

Density 

Dijk 1.015 0.016 <0.01 - - 

Dijk:RH -0.444 0.109 <0.01 -0.5233 -0.3647 

RH:NLCR 0.269 0.073 <0.01 0.5361 0.3211 

RH:R -0.001 0 <0.01 -0.2316 0 

Carbon density 

CDijk 0.787 0.03 <0.01 - - 

FHLC 0.048 0.005 <0.01 0.3887 0.0116 

CDijk:RH -0.739 0.061 <0.01 -0.8709 -0.6071 
LCR:NLC
R 0.237 0.029 <0.01 0.3009 0.2261 

FHLC:R -3.09E-04 8.84E-05 <0.01 -0.2189 0 
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Table 12  Mean carbon fraction values, and coefficients of variation relative to an assumed 
carbon fraction of 0.5, for tissue types within nine conifer species. Standard deviations are shown 
in parenthesis after the mean carbon fraction, and coefficient of variation values.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Species Bark CF Bark - CV50 Heartwood CF Heartwood - 
CV50 

Sapwood CF Sapwood - 
CV50 

Douglas-fir 0.588 (0.009) 0.176 (0.018) 0.513 (0.010) 0.026 (0.02) 0.510 (0.009) 0.02 (0.018) 

Giant Sequoia 0.544 (0.004) 0.088 (0.008) 0.551 (0.010) 0.102 (0.02) 0.538 (0.010) 0.076 (0.02) 

Incense-cedar 0.567 (0.015) 0.134 (0.03) 0.545 (0.009) 0.09 (0.018) 0.541 (0.008) 0.082 (0.016) 

Jeffrey pine 0.515 (0.005) 0.03 (0.01) 0.539 (0.004) 0.078 (0.008) 0.513 (0.003) 0.026 (0.006) 

Ponderosa pine 0.528 (0.008) 0.056 (0.016) 0.527 (0.008) 0.054 (0.016) 0.512 (0.005) 0.024 (0.01) 

Red fir 0.528 (0.011) 0.056 (0.022) 0.533 (0.008) 0.066 (0.016) 0.511 (0.006) 0.022 (0.012) 

Redwood 0.531 (0.013) 0.062 (0.026) 0.538 (0.012) 0.076 (0.024) 0.527 (0.007) 0.054 (0.014) 

Sugar pine 0.570 (0.010) 0.14 (0.02) 0.534 (0.005) 0.068 (0.01) 0.532 (0.009) 0.064 (0.018) 

White fir 0.525 (0.010) 0.05 (0.02) 0.517 (0.004) 0.034 (0.008) 0.507 (0.009) 0.014 (0.018) 
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3  Biomass and carbon mass prediction models for five conifer 
species: Integrable biomass and carbon mass prediction models 
for whole trees and tree portions 
 
 
Introduction 
 
 Accurate forest carbon estimates are an increasingly important part of forest 
management, and are critical to understanding carbon dynamics within forests. Understanding 
how carbon is allocated within a forest is important to understanding carbon flux as forest carbon 
pools have different decay rates (Cousins et al. 2015). Accurate estimates of carbon storage, and 
fluxes, are critical to the success of forest management plans designed to store and sequester 
carbon. The total carbon flux from management activities, or natural disturbances, will be 
directly related to the total carbon stored on a given site, and directly influenced by how that 
carbon is distributed within the area (Hoover and Stout 2007).  Accurate estimates of carbon 
emissions, or net sequestration rates require accurate estimates of the total amount of carbon 
stored in the carbon pools present within a given forest.  

Current carbon mass estimation protocols utilized in forest management rely primarily on 
approaches that convert volume estimates to biomass using species average wood density 
estimates, and a universal carbon fraction conversion ratio of 0.5 (e.g. Woodall et al. 2010). The 
0.5 value is likely taken from research devoted to global estimates of carbon mass which suggest 
a global average around 0.5, though there is no clear indication that this value was ever 
validated, even at a global scale (Lamlom and Savidge 2003). This 0.5 carbon conversion factor, 
or carbon fraction, is commonly used in studies that estimate total forest carbon at smaller scales 
as well (Cohen et al. 1996, Goodale et al. 2002, Chave et al. 2005, Woodbury et al. 2007, Fahey 
et al. 2009). Carbon fractions have been shown to vary significantly between tree species, and 
within individual trees (Lamlom and Savidge 2003, 2006, Jones and O’Hara 2012, 2016, 
Thomas and Martin 2012b). Accounting for these known sources of variation would therefore 
significantly improve the accuracy of carbon mass estimates of trees and forests.  

In addition to improving carbon mass estimates by accounting for variation in tissue 
carbon fractions, there can be significant improvements in living carbon mass estimates by using 
the correct methods. The majority of measured carbon fractions likely underestimate the carbon 
fractions of living tissues by failing to capture some of the volatile carbon present (Jones and 
O’Hara 2016). The high variability in volatile carbon fractions within tree tissues suggests that 
accurate carbon mass estimates for the whole tree, and for separate tree tissue types, requires 
correctly measuring living carbon fractions, and applying those fractions to their respective 
tissue type biomasses. 

Biomass models using species average wood density values are used for several species 
across many regions (Woodall et al. 2010). The application of these models is most accurate for 
biomass estimates across an entire species range, or over an entire region, as local wood density 
averages vary significantly from species wide averages (Chave et al. 2009, Jones and O’Hara 
2012). Wood density is also known to vary within tree boles (Rueda and Williamson 1992, 
Woodcock and Shier 2002, Ver Planck and MacFarlane 2014), across tree ring ages and growth 
rates (Langum et al. 2009), and therefore biomass estimates would be expected to be more 
accurate when this variation is accounted for in a given biomass model.   
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 The significant deviations in wood density from the species average, and carbon fractions 
from the 0.5 value, can result in underestimates of carbon mass of as much as 16% in coast 
redwood (Sequoia sempervirens (D Don) Endl.) tree boles, and likely result in similar 
inaccuracies in other tree species (Jones and O’Hara 2012). These inaccuracies could be 
addressed by accounting for changes in wood density and carbon fraction related to easily 
measured tree characteristics (Jones and O’Hara 2012, 2016). Developing carbon prediction 
models that account for variation in wood density and carbon fraction utilizing tree 
characteristics commonly collected for forest inventories would be a significant step in 
improving carbon mass estimates.   
 Although whole tree biomass equations have been developed for several species 
(Chojnacky et al. 2014), there are no carbon mass prediction equations that have been developed 
to accurately capture the known variation in carbon fraction within trees, and between tree 
components. In order to improve carbon mass estimation in forests it is therefore necessary to 
develop a model that accurately accounts for the variation in wood density and carbon fraction 
that occurs between tree species and within individual trees. Converting existing biomass models 
to carbon models with an appropriately weighted carbon fraction could achieve this result; 
however, this approach risks ignoring potential covariance between carbon fraction and wood 
density that could best be addressed by analyzing carbon mass variation directly.  
 Biomass models exist that can predict biomass distributions (Parresol and Thomas 1989, 
Jordan et al. 2006, Zakrzewski and Duchesne 2012), and whole tree biomass (Ver Planck and 
MacFarlane 2014). These models have the advantage of allowing biomass estimates for standing 
trees and harvested logs, which could result in more accurate biomass accounting than is possible 
with whole tree biomass models alone. Although carbon is often assumed to be a fixed portion of 
biomass, the variation in carbon fraction between tree tissues suggests that a better approach to 
carbon mass estimates would be a biomass weighted carbon fraction that accounts for these 
known sources of variation. A model that accounts for this variation, and allows for easier 
tracking of carbon mass between harvests would be a valuable tool in the complex field of 
carbon accounting.  
 Branch and bark biomass have not been studied to the same degree as bole biomass, but 
are strongly correlated with bole biomass (Chojnacky et al. 2014). Bark and branch carbon 
masses are probably correlated with bole carbon masses; however, accounting for carbon 
fraction of tissues is necessary to determine exactly what that correlation might be (Elias and 
Potvin 2003, de Aza et al. 2011, Jones and O’Hara 2016).  
  This paper addresses these issues by developing integrable biomass and carbon mass 
models that directly account for variation in carbon fraction and wood density throughout 
sampled conifer trees. I present biomass, live carbon, and oven-dry carbon mass prediction 
models that can be used to determine the mass of above ground carbon contained in a forest 
stand, individual trees, whole logs, foliage, branches, and bark.  
 
 Specifically I set out these objectives: 

1. Develop biomass, and carbon mass area density (g/cm2) prediction models from tree bole 
core segments taken from multiple locations along tree boles; 

2. Develop an integrable linear density (g/cm) taper function using the values from 
integrated biomass and carbon mass area density models; 

3. Validate the predictions from the integrated linear density models with data from oven-
dried tree discs taken from independent sample trees;  
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4. Analyze bark and bole relationships among the tree discs to determine bark mass fraction 
relative to bole mass; 

5. Develop leaf mass, and leaf carbon mass prediction models for individual branches, and 
for the entire tree; 

6. Develop branch mass, and carbon mass, prediction models for individual branches, and 
for the entire tree; and  

7. Determine the deviation in mass proportions, and total masses between prediction models 
developed in this study, and estimates from commonly used “standard” approaches.  

 
 
Methods and materials 
 
Plot locations 
Five conifer tree species were sampled: sugar pine (Pinus lambertiana Dougl.), ponderosa pine 
(P. ponderosa Lawson & C. Lawson), coast Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco 
var. menziesii), white fir (Abies concolor (Gord. & Glend.) Lindl. ex Hildebr.), and incense-cedar 
(Calocedrus decurrens (Torr.) Florin). Trees were sampled at the following locations: 1) Baker 
Forest (39.916 N, 121.063 W), 2) Blodgett Research Forest Station (38.910 N, 120.662 W), and 
3) near Shaver Lake, CA (37.046 N, 119.211 W). Table 13 shows summary statistics for sample 
trees, along with sample locations for each species. 
 
Tissue sample collection and processing 
Sample cores were taken from different heights within randomly sampled trees from each site 
listed in Table 13. At each core extraction point, height of extraction, tree bole diameter and bark 
thickness were recorded. Sample trees were selected only if they could be safely climbed, or cut 
down and cored. Cores were taken at breast height (1.37 m), base of live crown (HLC), and 
every 4 m within the live crown for each tree sampled. A 400 mm long Haglöf increment borer, 
with an aperture of 5.15 mm, was used to extract all cores. After extraction cores were placed in 
clear plastic straws, sealed using adhesive tape, labeled, and placed in a white plastic tube. Core 
sapwood was determined by holding the straw up to the sun and marking translucent section of 
the core on the outside of the straw. Cores were placed in a cooler with ice and transported back 
to the lab. In the lab, cores were placed in the freezer, which was maintained between -24 and -
18 ºC. A total of 276 cores, from 86 trees were processed for wood density data. Wood density 
cores were separated into the bark portion of the core, and core segments containing 4 growth 
rings until the entire core was processed. In some cases the innermost core segment contained 
fewer than 4 growth rings, in these cases the segments lengths were measured and the number of 
rings recorded. A total of 41 cores were processed for carbon fractions. These cores were 
separated into tissue types for carbon fraction analysis. A more complete description of this 
process can be found in Jones and O’Hara (2016).  
 
Branch and foliage sampling 
Within each sample tree crown, two branches were randomly selected from each third of the 
crown, for a total of 6 branches per sample tree. Branch diameter was measured above the branch 
collar using calipers with a precision of 0.5 mm on the major and minor axis, along with height 
of branch from the ground to the nearest cm. Foliage was separated from the branch in the field 
and branches were cut up and placed in bags for processing back in the lab. In the lab branches 
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were placed in paper bags, labeled and oven dried at 103 ºC until weights stabilized, at which 
point their weights were recorded. Branch carbon mass was determined by multiplying total 
branch biomass by the biomass weighted average bole plus bark carbon fractions.  

Proportional foliage subsamples were collected from each needle age class on sample 
branches and placed in a small plastic resealable bag and labeled with tree ID and sample branch 
number. Foliage sample bags were placed on ice in the field, and placed in a freezer once taken 
back to the lab. Foliage was weighed in the lab after drying in a force air oven at 101 ºC for 24 
hours. A more detailed review of the leaf sampling can be found in Jones et al. (2015). Twelve 
foliage samples were randomly selected for carbon fraction analysis from 8 different trees, 
representing five tree species.  
 
Core segment density and carbon density 
Wood density core segments were measured for length using digital calipers with a precision of 
0.001 cm. The volume of each segment was calculated by multiplying segment length by the 
area of the increment borer aperture (0.832 cm2). Wood density segments were then wrapped in 
aluminum foil labeled with unique core ID, segment ring numbers, and oven-dried at 103 ºC 
until weights stabilized. Stable mass of the density segments was recorded and divided by the 
core segment volume resulting in core segment density (D) values in g/cm3.  

This study uses carbon fractions (CF) measured by oven-dry methods and the MLC 
method described by Jones and O’Hara (2016). Mean carbon fraction values are given for each 
species tissue type in Table 14. Carbon mass for each carbon sample was determined using a CE 
Instruments Flash 2000 CHNS/O analyzer, which was calibrated between runs of 40 samples 
using acetanilide as the standard. Standards were also placed every tenth sample to insure 
calibration accuracy. Carbon mass was divided by oven dry sample mass to adjust all carbon 
fractions to the same baseline moisture content. This process resulted in carbon fractions for 
living tissues and oven-dry tissues as shown in Table 14. Carbon fractions, for each species 
wood type, were multiplied by individual segment densities to yield carbon densities (CD) in 
units of grams carbon/cm3 for each segment. 
 
Area density  
Area density in this study is an estimate of mass per unit area in g/cm2. Modeling area density is 
advantageous in that the model can capture the density variation between core segments. This 
area density model can be integrated to yield the average mass per unit tree height represented by 
each tree core. This approach allows for filling in data for missing portions of tree cores. 
Representative area density (g/cm2), and area carbon density (g carbon/cm2) values were 
calculated by multiplying the segment density, or carbon density value, by the representative 
circumference at the midpoint of each segment. Representative radii were calculated when the 
measured core length, minus the bark portion, was greater than the measured inside bark radius 
of the bole at the point of core extraction. Measured segment lengths were multiplied by the 
inside bark bole radius and divided by the measured core length. These converted segment 
lengths were then used to determine representative radii, which were the distance from tree 
center to the center of the segment’s converted length. In cases where the measured core length 
was less than half the measured inside bark diameter, there were no adjustments made on the 
measured lengths of core segment as these cases were due to the increment borer not reaching 
the center of the bole. Core segment area density is equivalent to the mass of a wooden ring that 
is 1 cm tall, 1 cm thick, with a radius equal to the radius from the pith to the center of the core 
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segment, and a density equal to the core segment density. Effectively this means that area density 
is composed of a deterministic geometric component (2*π*r) and a highly variable core segment 
density component. To differentiate between the explanatory power of the geometric and density 
components, a model of the form α*2*π*r, where α is a species average density, was fit to the 
area density data. This model is equivalent to accounting only for the geometry of the 
relationship and allowing the model to choose an average density value for each species. If 
species level variation in density were negligible this geometry driven model would perform as 
well as models that allow density to vary between core segments.  

Linear density (g/cm) for the intact portion of the cores was calculated as the sum of core 
segment area densities. Representative segment areas were determined as the difference between 
the bole area represented by the outside of the core segment minus the bole area represented by 
the inside of the core segment. This linear density is best understood as representing the mass of 
a tree bole disc that is 1 cm high with a density equal to the area weighted densities of the tree 
core segments. To differentiate between the explanatory power of the geometric and density 
components, a model of the form α*π*IBR2, where IBR is inside bark bole radius and α is a 
species average density, was fit to the linear density data. This is equivalent to the cross sectional 
area of the tree bole at a given height times a species average density. If species level variation in 
density were negligible, the geometry driven model would be expected to perform as well as 
models that allow density to vary.  
 
Disc biomass and carbon mass  
Table 13 shows the summary statistics for trees that were used to validate the predictive models 
developed from core data. Each tree had discs removed from 0.3 m, 1.37 m, halfway between 
1.37 m and live crown, live crown, and every two meters within the live crown. A chainsaw was 
used to cut the tree discs from the tree bole. Each disc was labeled with a unique tree ID, and 
disc height. Discs were placed in labeled paper bags with bark attached, and sealed with adhesive 
tape. In the lab, discs were measured for disc thickness using digital calipers at four locations on 
the disc, starting with the tallest portion of the disc, and every 90 º around the disc until four 
measurements had been taken. Average disc thickness was calculated as the average of these 
measurements. Average disc thickness was used to determine the height of the bottom and top of 
the tree disk from the ground prior to the tree being cut down. Once measured, discs with bark 
still attached were placed back into labeled paper bags and placed in an oven set to 103 ºC, and 
dried until weight stabilized. Total disc masses were recorded using an Ohaus Analytical Plus 
balance (model AP310), with bark masses determined by subtracting the mass of the disk with 
bark removed from the total disc mass. 
 Tree discs were photographed in the field with a ruler placed on them for size reference. 
These photographs were used to determine the ratio of heartwood to sapwood present in the tree 
discs. Disc carbon mass was calculated by multiplying disc biomass by the weighted carbon 
fraction determined by the ratio of heartwood to sapwood area. This calculation was performed 
for both living carbon and oven-dry carbon estimates.  
 
Statistical analysis 
All analyses were performed using the NLME package (version 3.1-118) (Pinheiro et al. 2015), 
in the R statistical platform (R Development Core Team 2015). Where necessary, different 
variance structures were tested until normality of residuals and random effects was achieved. As 
part of the NLME modeling process additional covariates were added to model parameters to test 



 

	

48 

for improved model fit. All covariates that are used in the final models, along with their 
descriptions can be found in Table 15. 

Core area density and area carbon density were modeled using non-linear mixed effects 
(LME) models (Pinheiro et al. 2015). Table 16 shows the model forms that were evaluated for fit 
to area density. The overall best model was determined by log-likelihood ratio testing of models 
fit using maximum log-likelihood approaches (Pinheiro et al. 2015). Final model parameters 
were estimated using reduced log-likelihood regression. Random effects were assigned to cores 
nested within trees for models 19-24 in Table 16. For models 28 and 31 random effects were 
assigned at the individual tree level. For all mixed effects models additional covariates were 
tested in order to see if their inclusion explained a significant portion of the random effects 
associated with each parameter. If random effects for any parameter were not significantly 
different from zero they were dropped. Random effects were assigned to each level of the data 
structure using a compound symmetric correlation matrix. 

To estimate the missing portion of linear density in cores that did not reach the pith, the 
best-fit model for area density was integrated from zero to the radius of the missing portion of 
the core. This value was added to the sum of representative linear densities for the rest of the 
core resulting in total core linear density.  

Linear density was modeled throughout the tree bole using a taper function, that was 
originally developed for radial taper of the species in this study (Biging 1984). The model form 
has logical assumptions that apply equally well to linear density as they do to tree radial profiles. 
Those assumptions are that the taper at the base of a tree may be different than it is at the top of a 
tree, that the base of the tree has the largest value and values are progressively lower at every 
point above the base, and that any values above the top of the tree should be equal to zero. The 
model form was fit to the linear density data without the addition of any other covariates so as to 
insure logical consistency across the three modeled tree characteristics. This was also done to 
create a simpler integrated model form that would more easily be incorporate into existing 
estimation procedures for whole tree bole biomass, and carbon mass.  

Bark mass was modeled as a fraction of inside bark disc mass using linear regression and 
data from tree discs. Foliar mass and branch mass were modeled at the individual branch level by 
fitting the respective models in Table 16 to the data. These individual branch models were then 
applied to trees in which all branches had been measured for branch height along bole, and 
branch diameter. The resulting branch and foliage masses were summed for the whole tree. 
These whole tree masses were used to model whole tree foliage and branch masses by fitting the 
appropriate models from Table 16 to the whole tree data. 

For the best fit model of area density, individual branch, and foliage branch mass, 
conditional (Rc

2) and marginal (Rm
2) values were calculated following the procedures in 

Nakagawa and Schielzeth (2013). Rc
2 values represent the portion of variance explained by the 

entire model including random effects, while the Rm
2 values represent the proportion of variance 

explained by the modeled fixed effects only. Standard errors are presented in parenthesis 
following all mean values with the exception of Table 13 and 14, where standard deviations are 
shown in parenthesis. 
  
Biomass and carbon mass estimation comparisons 
To demonstrate differences in mass proportions, and total tissue masses, the final biomass 
models for foliage, branch, bark, and bole tissues were compared to models using a “standard” 
approach to biomass and carbon mass estimation (Woodall et al. 2010). It was assumed that 
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biomass estimates would differ from the models developed in this study when compared to 
models developed for entire species ranges, therefore, all example trees were set to a total 
biomass of 1000 kg. For the “standard” estimation approach branch, bole, and bark models from 
(Woodall et al. 2010) were used as these models are well established in carbon accounting 
protocols, and can predict most of the tissue types presented in this paper. Foliar mass was 
calculated separately using models from Chojnacky et al. (2014). To ensure representative tree 
dimensions, the average height:diameter ratio for the trees in this study was used to confine 
example tree heights to a proportion of a given diameter. Tree diameter was then set for each 
species so that the total estimated mass of the each example tree was equal to 1000 kg. To obtain 
heartwood and sapwood mass values the average heartwood to inside bark area density ratio was 
determined from tree cores, and applied to the total bole wood mass estimate. Sapwood mass 
was determined by subtracting heartwood mass from bole mass. 
 
 
Results 
 
Area density  
Goodness of fit metrics for models with no additional covariates added, and goodness of fit 
metrics for the final best-fit model with additional covariates are shown in Table 17. Model 23 
performed better than all of the other models measured by AIC, BIC and log-liklihood. R2 values 
were better for all other models with the exception of the geometry driven model which had a 
lower R2 value than all other models. The final parameter estimates for model 23, including any 
associated additional covariates, are listed in Table 18 for each species and each type of area 
density. Live crown ratio (LCR), and height to live crown divided by diameter at breast height 
(HLDR), both significantly improved the overall model fits as demonstrated by the significant 
improvement in model AIC (Table 18). Different covariates were tested for biomass and carbon 
mass area densities. Variation in covariates used across area density models led to illogical 
predictions of average core carbon fractions so all models were set to the same model form based 
on the best-fit biomass area density model. Random effects for parameter α were significant at 
the core within tree level, while parameter β and θ had no significant random effects. The 
random effects had a mean of 0 with the standard deviations listed in Table 18.  

Figure 5 shows the fit of the observed versus predicted area density values for biomass, 
oven-dry carbon mass, and living carbon mass models. Models with random effects included 
performed very well with R2

c values equal to or very close to 1 for the biomass, oven-dry carbon, 
and living carbon area density models. The closeness of the data points around the one to one 
line indicates that the chosen model form captured the radial variation in area density. The even 
distribution around the one to one line in Figure 5 indicates that the models account for radial 
and horizontal variation throughout a wide range of area density values.  
 
Linear density 
The mass taper model (model 26) performed better than the geometry driven model by all 
metrics listed in Table 17. The integrated form of model 23 with respect to representative core 
radius was used to predict the missing portion of core linear density in cases where the increment 
borer could not reach the pith. Random effects estimates for individual tree and cores were 
included in this prediction model to get values that were fit to each core and tree. As all other 
covariates in model 23 are constant relative to core radius, the integrated form of model 23 is 
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obtained by replacing the r covariate with ½ r2, where r is the representative radius to a point in 
the core. The constant of integration was set to zero as there cannot be any linear density when 
the radius is equal to zero. The parameter estimates remain unchanged for the integrated form of 
the model. The mean and standard deviation for the percent of linear density in the missing 
portion of all cores was 3.7 (7.9)%. Given the importance of including large trees in the data set 
it was deemed necessary to estimate the missing portion of linear density even though it made up 
a small portion of the overall dataset.  
 
Disc mass predictions 
The parameter estimates for model 26 fit to the linear density data from cores are shown in Table 
19. Figure 6 shows the predictions from fitting model 26 to the linear density data derived from 
cores versus observed values. The overall fit of the model was very good with measured R2 
values in the range of 0.94 to 0.99. The fit of the model was impressive given the range of area 
densities, and tree sizes covered by the core data. The majority of species demonstrated an even 
spread around the one to one line in Figure 6 indicating the models account for the variation in 
the data across the range of predicted values. There does appear to be a slight deviation from the 
one to one line in the incense-cedar data near the middle of the data range. This slight deviation 
could potentially have been addressed by the addition of covariates in either the α or β 
parameter. This deviation, however, does not appear to impact the predicted disc mass values 
shown in Figure 7. 
 The predicted disc mass estimates were derived through numerical integration of model 
26, using parameters from Table 19. The integration range was from the height above the ground 
from the bottom of the individual tree discs, to the top of the discs. The fit of the data shown in 
Figure 7 is very good, with the lowest R2 value being 0.98. There is divergence from a one to one 
relationship with slopes between 1.02 to 1.32, indicating that the inside bark mass predictions 
based on core data tend to underestimate the mass of the tree discs. This underestimate appears 
to be systematic as a simple adjustment in slope is all that is necessary to create a smooth fit of 
the data around the regression line. 
 Bark mass as a function of inside disc mass relationships for biomass, oven-dry carbon, 
and living carbon are shown in Figure 8. The data appears to be well-modeled using a linear fit 
of bark mass against inside bark mass of the individual tree discs. There is no apparent departure 
from the linear relationship along the spread of the data. The lowest R2 was 0.96. The slope of 
this relationship can be used to turn inside bark mass estimates into total mass estimates by 
adding the slope value to 1 and multiplying the resulting value by the corresponding inside bark 
mass estimates. As the relationship appears to hold for a range of masses this process should 
work for whole tree bole mass estimates as well. 
 
Branch and foliage mass 
 Parameter estimates for the individual, and tree total branch mass data fit to models 28 
and 29 are shown in Table 20. Branch mass predictions versus measurements are shown in 
Figure 9, and total branch mass predictions versus total tree branch mass estimates are shown in 
Figure 10. The random effects significantly improved the model fit for the individual branch 
mass models indicating that individual trees demonstrate significant differences in the modeled 
branch mass relationships. For tree total branch mass modeling, shown in Figure 10, the random 
effects did not improve the fit of the models as demonstrated by the Rm

2 and Rc
2 values being 

equal.  
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The addition of relative height (RH) to the parameters in the individual branch models 
improved the overall fit, indicating that branch position influences mass predictions in addition 
to branch cross sectional area. The influence of these additional covariates was significantly 
different between species. The RH parameter estimates significantly varied by species (Table 
20). Total tree branch mass models were significantly improved with the addition of live crown 
ratio (LCR), and height to the base of live crown (HLC) to the model parameters as reported in 
Table 20. The model fits were improved by allowing parameter estimates for the HLC covariate 
to vary for each species, while leaving all other parameters fixed within a given mass type 
estimate.   

Individual branch and total tree foliage mass model parameters are given in Table 21. 
The Rc

2 values are higher than the Rm
2 values for individual branch foliage models indicating an 

improvement in model fit with random effects included (Figure 11). The tree total foliage mass 
models were not improved by including random effects as shown by the equal Rc

2 and Rm
2 values 

in Figure 12.  
 The addition of RH, and RDC covariates to the individual branch foliage mass models 
significantly improved model fit. Allowing some parameter estimates to vary across species 
significantly improved the model fit. For tree total foliage mass estimates only the addition of 
LCR to the β parameter significantly improved model performance. Allowing the estimates for 
the intercepts of the β, and θ parameters to vary across species significantly improved the model 
fit.  
 
Biomass and carbon mass estimation comparisons 
Mass proportions, total tissue masses, and tree total masses for example trees representing each 
of the mixed conifer species are presented in Figure 13. The left half of the tree represents 
masses estimated for each tissue type using standard approaches, which includes using a carbon 
fraction of 0.5 for all tissue types, while the right half of the trees represent mass estimates based 
on the models and values from this study. Areas in the trees are proportional to the mass of the 
tissue type represented. Total tissue type mass is shown in the box next to each tissue type. For 
all species the standard approaches resulted in a greater proportion of mass allocated to branches, 
this can be seen by comparing the areas for branch mass between the left and right sides of each 
tree. Foliar mass estimates were fairly similar between the two approaches, while a greater 
proportion of mass was found in the boles of the example trees for this study. Bark mass 
estimates were the most variable between estimation approaches, with the standard approach 
sometimes predicting a higher mass proportion and sometimes a lower mass proportion for bark. 
 Tree carbon mass estimates for all of the standard approach trees are 500 kg, due to the 
application of a carbon fraction of 0.5. Oven-dried carbon tree masses ranged from 492 kg to 529 
kg, while living carbon tree masses ranged from 514 kg to 545 kg (Figure 13).    
 
 
Discussion 
 
Area density  
The distribution of area density values around the one to one line indicates that the high 
variability in wood, and carbon densities is well modeled. The random effects at the core within 
tree-level improved the fit of the data, and allowed for adjustments to the model fit for each core. 
This makes the predictive power of the model very high for each core. This approach would not 
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be advisable if the predictions were to be applied outside of the dataset, but this approach is 
excellent for predicting missing portions of cores within the dataset. The capture of variation in 
density is demonstrated by the significantly better AIC value in model 23 compared to the 
geometry driven model. Interestingly the R2 metric points in the other direction, though this more 
likely indicates that the larger data points are over represented in the geometry driven model, 
while AIC is less biased toward large data values. A similar approach to modeling wood density 
variation within boles was used by Ver Planck and MacFarlane (2014), except they used tree 
discs to develop average density values and then multiplied these values by a taper model with 
an assumed bole shape. My study does not rely on any assumptions about the tree bole shape, 
instead I fit the model directly to the linear density data. This approach allows the model to 
account for any correlation that might exist between linear density and bole geometry. If density 
and bole geometry are modeled separately then any potential correlation might not be accounted 
for. An additional advantage to my approach is that it is possible to directly model heartwood 
mass, and sapwood mass as separate tree components. Without measuring those tissue types 
separately that would not be possible, and when entire tree disks are used there is no clear way to 
separate those two tissue components. 
 
Linear density 
The superior performance of model 26 compared to the geometry driven model 27 (Table 17) 
demonstrates the significant improvement in model performance due to accounting for variation 
in density. By fitting model 26 to the linear density data, I have developed the first set of 
vertically integrable tree bole biomass and carbon mass prediction equations. Though other 
integrable biomass functions exist (Zakrzewski and Duchesne 2012, Ver Planck and MacFarlane 
2014), there are no carbon prediction models that account for the variation in carbon mass due to 
the proportion of wood types, integrable or otherwise. Accounting for the differences in carbon 
fraction shown in Table 14, is critical to creating accurate carbon mass predictions. 

The models developed here produce carbon mass predictions that account for the biomass 
proportions of sapwood, and heartwood in tree boles and bole portions. Predicting carbon mass 
in portions of trees is required to correctly account for carbon flow out of tree stands during 
timber harvesting operations, where portions of trees such as branches and tree tops may be left 
on site. Using the models presented here, tracking carbon in the living stand, and in the portions 
of the stand that are removed could be done with stand inventory and harvested data alone; this 
cannot be said for biomass and carbon mass models that only predict entire tree, or bole masses.  

Similar approaches have been used for biomass models, but no model has been 
specifically designed to account for the balance of wood types, or to incorporate accurately 
measured carbon fraction values. The mass models presented here are also easily modified to 
include bark carbon mass. Bark inclusive linear density is obtained through multiplying the 
linear density estimates by one plus the respective slope parameters shown in Figure 8. This 
allows for tracking biomass and carbon mass for each portion of the bole. Given that different 
bole tissue types decay at different rates (Cousins et al. 2015), it would be advantageous to be 
able to accurately estimate the portions of the bole in the main stem and bark that are left behind 
after site disturbances. 
 My models predict three types of mass: biomass, oven-dry carbon mass, and living 
carbon mass. This is a unique contribution of this work as the most commonly measured tree 
tissue oven-dry carbon fractions are not representative of living carbon, due to the loss of volatile 
carbon compounds during oven-drying (Jones and O’Hara 2016). This makes my carbon models 
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more accurate for two reasons: 1) they explicitly account for variation in carbon fractions 
between species, and 2) they further account for variation in carbon fraction between tissue 
types. The majority of carbon fraction estimation methods rely on simplified conversions of 
biomass to carbon mass utilizing a carbon fraction of 0.5 for all tree species and tissue types. My 
study directly accounts for both of these sources of carbon fraction variation. Using the models 
presented here it is a simple matter to derive whole tree, biomass weighted carbon fractions by 
dividing either of the carbon mass models for a particular tree tissue by the respective biomass 
model, for a given tree. The resulting biomass carbon fractions could then be used to convert 
biomass estimates derived from existing biomass models for the respective species to carbon 
mass estimates that are more accurate than using a value of 0.5. 
 
Disc mass predictions 
There are several sources of potential error in my approach to developing the linear density 
estimates from cores. The primary concern is that cores are not necessarily representative of the 
density measured in discs (Williamson and Wiemann 2010). That is why calibrating the model 
with data from tree discs taken along the tree bole is necessary. From the slopes shown in Figure 
7, which range from 1.02 to 1.32, it is clear that the predictions from cores consistently 
underestimated the disc mass values. This implies that the core samples expanded radially after 
extraction from the tree. There may have been compression of the cores perpendicularly to the 
core length, but this would not have made a difference as my density estimates used the 
measured aperture for the increment borer rather than relying on direct measurements of the core 
diameter.  

The quality of the adjusted prediction values demonstrates the viability of this approach 
in developing accurate prediction models. Additionally, by calibrating my models this way, I 
have demonstrated that the models I developed can accurately represent the variation contained 
within trees. There was no increase or decrease in model predictive power along the range of 
disc masses, indicating that the models worked well for the entire tree bole. I included stump 
height discs in the prediction calibration to make sure the models were correctly accounting for 
the rapid increase in linear density that is expected to occur at the base of trees. From the fit of 
the data, the models are accounting for the rapid increase in linear density at the stump, 
indicating that these models most likely are capable of estimating stump biomass in addition to 
the rest of the bole. 
 
Branch and foliage mass 
The tree total branch mass, and foliage mass models were the least accurate with respect to the 
tree total mass predictive value. This is somewhat expected as tree crowns can be highly 
variable, and my random sampling approach allowed for the possibility of small internode 
branches being measured throughout the crown. The predictions are still reasonably good with 
the lowest R2 of 0.60 (Figure 10), and an R2 of 0.88  (Figure 12) for ponderosa pine branch and 
foliage mass estimates respectively. Given that these two tree features tend to be smaller 
percentages of the total tree biomass, higher inaccuracies in these models do not necessarily lead 
to a significant impact on total tree biomass and carbon mass estimates. 

Tree total branch biomass has not been studied as thoroughly as bole biomass. Studies 
that modeled branch biomass have used a similar model form as model 29 (Jenkins et al. 2003, 
Chojnacky et al. 2014). My study allowed for modifications of this base model with the addition 
of covariates to the model parameters. For the species studied here, the addition of height to base 
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of live crown (HLC) to the exponential component of the model improved overall model fit. This 
intuitively makes sense as total branch biomass should increase with tree size, and larger trees 
tend to have higher HLC values. The improvement in model fit with the addition of live crown 
ratio (LCR) also makes sense as trees with high LCR ratios, and high HLC values would have 
long live crowns. The improvement in model fit with the addition of LCR could also imply 
variable responses to wind force on crowns as high LCR is expected to increase wind stress on a 
tree.  
 
Variations in mass proportion and total mass 
There are considerable deviations in biomass proportions between my models and estimates from 
more standard approaches (Figure 13). This can be seen by comparing the two sides of each 
example tree, and keeping in mind that each half represents a tree with total mass of 1000 kg. My 
study found higher proportions of bole wood mass and smaller proportions of branch mass 
compared to the standard approach. It is generally understood that trees produce a given amount 
of carbon each year that must be allocated to the various tissue types necessary for growth, as 
well as cellular respiration. Understanding how that carbon is allocated has important 
implications for timber production as well as carbon cycling.  

The largest differences shown in Figure 13 are between the standard carbon mass 
estimates and the estimates using carbon fraction data from this study. Because all of the 
example trees were 1000 kg, these differences are due only to the proportion of biomass in a 
given tissue type, and the difference between using the 0.5 value and measured carbon fractions. 
At the whole tree carbon mass level, the differences are effectively the impact of using biomass-
weighted carbon fractions for the individual tree components. In the oven-dried carbon row of 
Figure 13, white fir carbon mass is actually lower than the standard estimate due to the lower 
than 0.5 carbon fraction measured for oven-dried white fir tissue. Compare this to the living 
carbon mass estimates presented in the third row of the diagram and notice a “gain” in mass of 
22 kg. This mass gain represents the impact of accounting for volatile organic compounds that 
are lost due to oven-drying of tree tissues. Similar increases in carbon mass are demonstrated 
between the oven-dried carbon mass estimates and the living carbon estimates of the other 
species. These percent increase in carbon mass range from about 2.2% to 4.5% of the respective 
oven-dried carbon mass estimates. Those are important differences and those values are directly 
related to the impact of measuring all carbon present in living tissue, including the volatile 
portion.  

Compared to the standard approach, incense cedar living carbon mass is 9% higher. 
White fir showed the smallest increase in carbon mass at about 2.8% above the standard 
estimate. Though small, this increase in mass is important as it applies to all white fir biomass 
throughout the species range. The significance of a 2.8% to 9% increase in carbon mass 
estimates due only to accounting for carbon fractions correctly cannot be understated. 

 
Conclusion 
This study presents the first vertically integrable bole carbon mass model, along with branch and 
foliage prediction models, for five mixed conifer species in the Sierra Nevada. These models can 
be used to predict biomass, oven-dry carbon mass, and living carbon mass for whole trees, and 
tree portions. My models are the only models to directly account for known sources of variation 
in carbon fraction, and can be used to estimate biomass weighted carbon fractions for the species 
studied. Comparisons between my models and more standard approaches demonstrate significant 



 

	

55 

differences in carbon mass estimates, as well as overall biomass proportion estimates. I present 
relationships between bark mass and bole mass to allow for separate predictions of tree bark 
carbon, or for whole tree carbon mass.  
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Figure 5.  Predicted area density vs. measured area density values. The solid line represents a one to one 
relationship. Rm

2 is the proportion of variance in the data explained by the fixed effects of the model alone, 
while Rc

2 is the proportion of variance explained by the fixed and random effects of the model.  
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Figure 6.  Predicted linear density vs. measured linear density values. The solid line represents a one to one 
relationship. R2 values represent the proportion of variance in the data explained by the respective model. 
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Figure 7.  Disc mass values vs. values from numerical integration of the linear density models. Slope 
estimates and the standard errors of the slope estimates in parenthesis are shown. R2 and slopes are given 
for the linear regression of the disk data on the predicted data.  
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 Figure 8.  Bark mass vs. inside bark mass is shown. Slope estimates and the standard errors in parentheses 

are shown. R2 represent the proportion of variance in the data explained by the bark mass model.   
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Figure 9.  Predicted individual branch masses vs. observed. The solid line represents a one to one 
relationship between the values. Rm

2 is the proportion of variance in the data explained by the fixed effects 
of the model, while Rc

2 is the proportion of variance explained by the entire model.  
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Figure 10.  Predicted tree total branch masses vs. the observed. The solid line represents a one to one 
relationship between the values. Rm

2 is the proportion of variance in the data explained by the fixed effects 
of the model alone, while Rc

2 is the proportion of variance explained by the entire model.  
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Figure 11.  Predicted individual branch foliage masses vs. observed. The solid line represents a one to one 
relationship between the values. Rm

2 is the proportion of variance in the data explained by the fixed effects 
of the model alone, while Rc

2 is the proportion of variance explained by the entire model.  
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Figure 12.  Predicted tree total foliage masses vs. observed. The solid line represents a one to one 
relationship between the values. Rm

2 is the proportion of variance in the data explained by the fixed effects 
of the model alone, while Rc

2 is the proportion of variance explained by the entire model.  
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Table 13  Sam
ple sum

m
ary data for w

ood density, carbon fraction, tree cores, and tree discs 
 

 
 

 
 

 
 

 
Tree disc data 

Tree core data 
W

ood density 
C

arbon fraction 
Sam

ple 

Species 
D

B
H

 (cm
) 

H
eight (m

) 
n - 
tree 

n - 
disc 

D
B

H
 (cm

) 
H

eight (cm
) 

n - 
trees 

n - 
cores 

n - 
sam

ples 
n - 
trees 

n - 
cores 

n - 
sam

ples 
locations 

D
F 

15.9 (7.0) 
11.9 (5.7) 

5 
24 

61.2 (31.7) 
35.1 (9.6) 

14 
47 

565 
4 

6 
24 

1 &
 2 

IC
 

14.2 (8.2) 
7.2 (3.6) 

6 
17 

48.1 (32.0) 
22.26 (11.8) 

15 
51 

759 
7 

9 
24 

1, 2, &
 3 

PP 
18.1 (3.9) 

12.8 (5.0) 
6 

25 
71.8 (37.6) 

35.4 (13.6) 
16 

47 
950 

6 
8 

40 
1, 2, &

 3 

SP 
18.4 (11.1) 

11.6 (6.8) 
7 

39 
95.5 (47.4) 

40.0 (11.6) 
14 

55 
891 

6 
8 

23 
1, 2, &

 3 

W
F 

15.8 (10.4) 
10.6 (6.7) 

7 
36 

57.7 (26.8) 
31.4 (9.3) 

27 
76 

1009 
5 

10 
32 

1, 2, &
 3 

V
alues in parenthesis follow

 their respective m
ean values for a given category. Sam

ple size (n) is show
n for each species and given for each studied 

characteristic. See m
ethods for descriptions of sam

ple locations.  
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Table 14  Mean carbon fraction data  
   

      Carbon 
type Species Bark C HW C SW C Foliage C 
  DF 0.569 (0.009) 0.501 (0.005) 0.498 (0.001) 0.515 (0.004) 

 
IC 0.553 (0.03) 0.531 (0.009) 0.509 (0.008) 0.513 (0.004) 

Oven-dry PP 0.523 (0.008) 0.514 (0.009) 0.499 (0.009) 0.510 (0.005) 

 
SP 0.563 (0.007) 0.521 (0.005) 0.516 (0.002) 0.509 (0.002) 

  WF 0.493 (0.002) 0.488 (0.002) 0.494 (0.002) 0.521 (0.003) 

 
DF 0.588 (0.009) 0.503 (0.01) 0.51 (0.009) 0.518 (0.006) 

 
IC 0.567 (0.015) 0.545 (0.009) 0.541 (0.008) 0.517 (0.007) 

Living PP 0.528 (0.008) 0.527 (0.008) 0.512 (0.005) 0.522 (0.006) 

 
SP 0.57 (0.01) 0.534 (0.005) 0.532 (0.009) 0.517 (0.002) 

  WF 0.525 (0.01) 0.517 (0.004) 0.507 (0.009) 0.52 (0.001) 
Mean carbon fractions for four tissue types from five conifer species shown. Standard  
deviations are shown in parenthesis next to the mean value for each category. Data  
derived from work performed by Jones and O'Hara (2016). 
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Table 15 Symbols and descriptions of covariates found in final LME models.  

 	Symbol Covariate description 
Bbk Biomass of bark 
Bdisc Biomass of tree disc 
Bmi Biomass of individual component 
Bmt Biomass of tree total component 
BRA Branch cross sectional area immediately above the branch collar 
Da Area density 
DBH Diameter of tree bole at 1.37 m from the base of the tree 
Dl Linear density 
HFB Height from the base of the tree 
HFT Distance from the top of the tree 
HLC Height to base of tree live crown 
HLDR Height to live crown divided by diameter of tree bole at 1.37 m 
HT Tree height 
LCR Live crown length divided by tree height 
r Radius from the pith of the tree to the center of a core segment 
RDC Height from tree top divided by crown length 
RH Height to a point on the tree divided by total tree height 
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T
able 16  M

odel form
s for density, and m

ass m
odels for associated tree com

ponents 
Tree 
portion 

M
odeled tree 

characteristic 
M

odel 
# 

M
odel form

 

B
ole 

A
rea density 

19 
D
a 	=	(α

0 +α
ij )	*	r	*	exp(-exp(-(HFT^(β

0 	+	β
ij )	/	(HLC))))	+	φ

ij 	
20 

D
a 	=	(α

0 +α
ij )	*	r	*	exp(-exp(-(HFT^(β

0 	+	β
ij )	/	(HT))))	+	φ

ij 	
21 

D
a 	=	(α

0 +α
ij )	*	r	*	(1-exp(-(β

0 	+	β
ij )	*	(HFT^(θ

0 	+	θ
ij )/HLC)))	+	φ

ij 	

22 
D
a 	=	(α

0 +α
ij )	*	r	*	(1-exp(-(β

0 	+	β
ij )	*	(HFT^(θ

0 	+	θ
ij )/HT)))	+	φ

ij 	
23 

D
a 	=	(α

0 	+	α
ij )	*	r	*	exp((β

0 	+	β
ij )*HFT/HLC)*exp((-(θ

0 +θ
ij )/(β

0 	+	β
ij ))*(exp((β

0 	+	β
ij )*HFT/HLC)-1))	+	φ

ij 	
24 

D
a 	=	(α

0 	+	α
ij )	*	r	+	φ

ij 	

25 
D
a 	=	α

0 	*	2	*	π	*	r	

Linear density 
26 

D
l 	=	π	*	(DBH*(α

+β*log(1-(1-exp(-α
/β))*(HFB/HT)^(1/3))))^2	

27 
D
l 	=	α

0 	*	2	*	π	*	(IBR)^2	

B
ranch 

Individual 
biom

ass 
28 

B
m
i 	=	((α

0 	+	α
j )	*BRA	*	((RDC)^((β

0 	+	β
j) 	-	1))	*	exp(-(RDC)^(β

0 	+	β
j )))	+	φ

j 	

Total biom
ass 

29 
B
m
t 	=	α	*(DBH)^β*exp(θ*HLC)	

B
ark 

B
iom

ass of 
segm

ent 
30 

B
bk 	=	α*B

disc 	

Foliage 
B

ranch foliage 
31 

B
m
i 	=	((α

0 	+α
j )	*BRA	*	((RDC)^((β

0 	+	β
j )	-	1))	*	exp(-(RDC)^(β

0 	+	β
j )))	+	φ

j 	

A
ll foliage 

32 
B
m
t 	=	α	*(DBH)^β*exp(θ*HLC)	

M
odels fit to data for the respective tree portion. For m

ixed effects m
odels the random

 effects are assum
ed to be norm

ally distributed w
ith a 

m
ean of 0. M

odels 19 through 24 w
ere com

pared directly for perform
ance in predicting bole area densities and the best fit m

odel w
as 

determ
ined using log-likelihood ratio testing. 
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Table 17 Model comparisons for area density and linear density 
 

Density 
type Model # AIC BIC Log-likelihood Test p-value R2 

Area 
density 

Final: 23* 20724.49 20876.57 -10338.24     0.982 

23 23300.29 23338.31 -11644.15 Final vs. 23 < 0.001 0.995 
20 23348.75 23380.43 -11669.37 23 vs. 20 < 0.001 0.995 

22 23372.41 23410.43 -11680.20 20 vs. 22 < 0.001 0.993 
21 23379.60 23417.62 -11683.80 

  
0.992 

24 23377.73 23403.08 -11684.86 21 vs. 24 0.346 0.983 

19 23446.03 23477.71 -11718.01 24 vs. 19 < 0.001 0.996 
25 27929.10 27967.12 -13958.55 19 vs. 25 < 0.001 0.956 

Linear 
density 

26 3751.52 3794.95 -1863.76     0.992 
27 4421.87 4400.15 -2194.08 26 vs. 27 <0.001 0.465 

Models shown were fit to area density data, or linear density data from cores. Tests were for log-
likelihood ratio tests of the models specified in the test column. The final model was model 23 fit with 
additional covariates shown in Table 18 for area density, and model 26 for linear density with parameter 
estimates shown in Table 19. 
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T
able 18 Param

eter estim
ates for the area density m

odel fit to core segm
ent data 

 
 

fixed effect param
eter estim

ates (SD
) 

random
 effect SD

 

A
rea density type 

Species 
α

 
β 

θ 
α

ij  - tree 
α

ij  − core 
w

ithin tree 

 
D

F 
2.12 (0.053) 

LC
R

 * (0.141 (0.039)) 
H

LD
R

 * (-0.790 (0.190)) 
0.092 

0.131 

 
IC

 
1.876 (0.048) 

LC
R

 * (0.141 (0.039)) 
H

LD
R

 * (-0.325 (0.205)) 
0.092 

0.131 
B

iom
ass 

PP 
1.866 (0.055) 

LC
R

 * (0.141 (0.039)) 
H

LD
R

 * (-1.064 (0.237)) 
0.092 

0.131 

 
SP 

2.242 (0.046) 
LC

R
 * (0.141 (0.039)) 

H
LD

R
 * ( 0.004 (0.207)) 

0.092 
0.131 

 
W

F 
1.842 (0.042) 

LC
R

 * (0.141 (0.039)) 
H

LD
R

 * (-0.684 0.145)) 
0.092 

0.131 

 
D

F 
1.035 (0.035) 

LC
R

 * (0.213 (0.035)) 
H

LD
R

 * (-0.779 (0.166)) 
0.072 

0.061 

 
IC

 
0.955 (0.032) 

LC
R

 * (0.213 (0.035)) 
H

LD
R

 * (-0.242 (0.186)) 
0.072 

0.061 
O

ven-dry carbon 
PP 

0.923 (0.034) 
LC

R
 * (0.213 (0.035)) 

H
LD

R
 * (-0.925 (0.2)) 

0.072 
0.061 

 
SP 

1.144 (0.031) 
LC

R
 * (0.213 (0.035)) 

H
LD

R
 * (0.164 (0.153)) 

0.072 
0.061 

 
W

F 
0.873 (0.027) 

LC
R

 * (0.213 (0.035)) 
H

LD
R

 * (-0.719 (0.135)) 
0.072 

0.061 

 
D

F 
1.042 (0.037) 

LC
R

 * (0.219 (0.036)) 
H

LD
R

 * (-0.832 (0.172)) 
0.076 

0.063 

 
IC

 
0.994 (0.033) 

LC
R

 * (0.219 (0.036)) 
H

LD
R

 * (-0.244 (0.182)) 
0.076 

0.063 
Living carbon 

PP 
0.935 (0.037) 

LC
R

 * (0.219 (0.036)) 
H

LD
R

 * (-0.978 (0.208)) 
0.076 

0.063 

 
SP 

1.195 (0.032) 
LC

R
 * (0.219 (0.036)) 

H
LD

R
 * (0.293 (0.152)) 

0.076 
0.063 

 
W

F 
0.887 (0.028) 

LC
R

 * (0.219 (0.036)) 
H

LD
R

 * (-0.781 (0.139)) 
0.076 

0.063 
A

rea density param
eter estim

ates for m
odel 5. Live crow

n ratio (LC
R

), and height to live crow
n divided by diam

eter at 
breast height (H

LD
R

), both significantly im
proved the final m

odel. R
andom

 effect standard deviations are given for their 
respective param

eter and level of effect. 
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Table 19  Parameter estimates for the linear density model fit to core 
data. 
Linear density type Species α β 
  DF 0.363 (0.01) 0.15 (0.014) 

 
IC 0.309 (0.01) 0.119 (0.012) 

Biomass PP 0.356 (0.01) 0.149 (0.018) 

 
SP 0.331 (0.006) 0.114 (0.007) 

 
WF 0.327 (0.007) 0.122 (0.011) 

  DF 0.256 (0.007) 0.106 (0.01) 

 
IC 0.219 (0.007) 0.081 (0.008) 

Oven-dry carbon PP 0.252 (0.007) 0.104 (0.013) 

 
SP 0.238 (0.004) 0.082 (0.005) 

  WF 0.229 (0.005) 0.085 (0.008) 
  DF 0.259 (0.007) 0.107 (0.01) 

 
IC 0.228 (0.007) 0.087 (0.009) 

Living carbon PP 0.256 (0.007) 0.107 (0.013) 

 
SP 0.242 (0.004) 0.084 (0.005) 

  WF 0.234 (0.005) 0.087 (0.008) 
Mean parameter estimate are shown with standard deviation of the 
estimate shown in parenthesis for biomass, oven-dry carbon, and living 
carbon linear density for five species. 
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T
able 20  Param

eter estim
ates for individual branch m

ass, and tree total branch m
ass m

odels 

	
	

Individual branches 

	
Tree total branch m

ass 

	
M

ass type 
Species 

α
 

β 
α

 
β 

θ 

  
D

F 
146.699 (31.477) 

0.458 (0.945) + R
H

*(1.192 (1.178)) 
54.637 (22.431) 

1.425 (0.201) + LC
R

*(0.614 (0.138)) 
H

LC
*(-0.0036 (0.0041) 

	
IC

 
138.965 (22.422) 

-1.734 (1.678) + R
H

*(4.775 (2.139)) 
54.637 (22.431) 

1.425 (0.201) + LC
R

*(0.614 (0.138)) 
H

LC
*(0.0045 (0.0021) 

B
iom

ass 
PP 

89.035 (22.476) 
-12.161 (1.071) + R

H
*(18.484 (1.487)) 

54.637 (22.431) 
1.425 (0.201) + LC

R
*(0.614 (0.138)) 

H
LC

*(-0.0173 (0.0062) 

	
SP 

174.375 (27.842) 
5.851 (0.699) + R

H
*(-5.009 (0.822)) 

54.637 (22.431) 
1.425 (0.201) + LC

R
*(0.614 (0.138)) 

H
LC

*(-0.0096 (0.0041) 

	
W

F 
256.387 (27.577) 

-3.432 (0.327) + R
H

*(2.822 (0.391)) 
54.637 (22.431) 

1.425 (0.201) + LC
R

*(0.614 (0.138)) 
H

LC
*(0.0046 (0.0023) 

O
ven-dry 
carbon 

D
F 

76.273 (15.342) 
-1.445 (0.511) + R

H
*(0.673 (0.644)) 

28.709 (11.838) 
1.417 (0.204) + LC

R
*(0.623 (0.144)) 

H
LC

*(-0.0036 (0.0042) 

IC
 

64.956 (10.609) 
-3.644 (1.469) + R

H
*(6.957 (1.907)) 

28.709 (11.838) 
1.417 (0.204) + LC

R
*(0.623 (0.144)) 

H
LC

*(0.0046 (0.0021) 

PP 
42.989 (11.034) 

-11.729 (1.169) + R
H

*(17.479 (1.562)) 
28.709 (11.838) 

1.417 (0.204) + LC
R

*(0.623 (0.144)) 
H

LC
*(-0.0178 (0.0065) 

SP 
87.365 (13.186) 

5.9 (0.628) + R
H

*(-5.247 (0.726)) 
28.709 (11.838) 

1.417 (0.204) + LC
R

*(0.623 (0.144)) 
H

LC
*(-0.0103 (0.0043) 

W
F 

147.358 (14.224) 
5.577 (0.621) + R

H
*(-4.251 (0.823)) 

28.709 (11.838) 
1.417 (0.204) + LC

R
*(0.623 (0.144)) 

H
LC

*(0.004 (0.0024) 

Living 
carbon 

D
F 

79.38 (15.677) 
-1.426 (0.522) + R

H
*(0.65 (0.658)) 

28.906 (11.845) 
1.418 (0.203) + LC

R
*(0.62 (0.143)) 

H
LC

*(-0.0036 (0.0042) 

IC
 

66.143 (10.816) 
-3.615 (1.521) + R

H
*(6.913 (1.973)) 

28.906 (11.845) 
1.418 (0.203) + LC

R
*(0.62 (0.143)) 

H
LC

*(0.0046 (0.0021) 

PP 
43.506 (11.257) 

-11.695 (1.218) + R
H

*(17.434 (1.628)) 
28.906 (11.845) 

1.418 (0.203) + LC
R

*(0.62 (0.143)) 
H

LC
*(-0.0171 (0.0063) 

SP 
92.245 (13.436) 

5.889 (0.626) + R
H

*(-5.234 (0.723)) 
28.906 (11.845) 

1.418 (0.203) + LC
R

*(0.62 (0.143)) 
H

LC
*(-0.01 (0.0042) 

W
F 

139.707 (13.499) 
-3.822 (0.206) + R

H
*(3.318 (0.268)) 

28.906 (11.845) 
1.418 (0.203) + LC

R
*(0.62 (0.143)) 

H
LC

*(0.0039 (0.0023) 

Param
eter estim

ates for m
odel 28 for individual branch estim

ates and m
odel 29 for tree total branch m

ass estim
ates. A

dditional covariates that significantly im
proved m

odel 
perform

ance w
hen added to a given param

eter are show
n. Estim

ate standard deviations are show
n next to the m

ean param
eter estim

ate for the intercept and any additional 
covariate present. 
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T
able 21  Param

eter estim
ates for individual branch foliage m

ass, and tree total foliage m
ass m

odels 

 
	

Individual branch foliage 
Tree total foliage 

Leaf m
ass 

type 
Species 

α
 

β 
α

 
β 

B
iom

ass 

D
F 

R
H

*(189.118 (34.313)) + 29.367 (23.911) 
R

D
C

*(2.675 (0.406)) + R
H

*(29.367 (23.911)) 
2.324 (0.061) + LC

R
*(2 (0.272)) 

-0.231 (0.057) 

IC
 

R
H

*(189.118 (34.313)) + 45.071 (20.64) 
R

D
C

*(2.675 (0.406)) + R
H

*(45.071 (20.64)) 
2.324 (0.061) + LC

R
*(0.669 (0.154)) 

0.046 (0.03) 

PP 
R

H
*(189.118 (34.313)) + -31.095 (21.828) 

R
D

C
*(2.675 (0.406)) + R

H
*(-31.095 (21.828)) 

2.324 (0.061) + LC
R

*(1.138 (0.273)) 
-0.128 (0.049) 

SP 
R

H
*(189.118 (34.313)) + -35.802 (23.22) 

R
D

C
*(2.675 (0.406)) + R

H
*(-35.802 (23.22)) 

2.324 (0.061) + LC
R

*(1.053 (0.442)) 
-0.098 (0.083) 

W
F 

R
H

*(189.118 (34.313)) + 53.451 (19.732) 
R

D
C

*(2.675 (0.406)) + R
H

*(53.451 (19.732)) 
2.324 (0.061) + LC

R
*(1.513 (0.112)) 

-0.121 (0.01) 

O
ven-dry 
carbon 

D
F 

R
H

*(90.329 (13.776)) + 17.783 (11.544) 
R

D
C

*(-2.349 (0.142)) + R
H

*(17.783 (11.544)) 
2.324 (0.061) + LC

R
*(2 (0.272)) 

-0.231 (0.057) 

IC
 

R
H

*(90.329 (13.776)) + 25.606 (9.622) 
R

D
C

*(-2.349 (0.142)) + R
H

*(25.606 (9.622)) 
2.324 (0.061) + LC

R
*(0.669 (0.154)) 

0.046 (0.03) 

PP 
R

H
*(90.329 (13.776)) + -13.211 (9.965) 

R
D

C
*(-2.349 (0.142)) + R

H
*(-13.211 (9.965)) 

2.324 (0.061) + LC
R

*(1.138 (0.273)) 
-0.128 (0.049) 

SP 
R

H
*(90.329 (13.776)) + -15.008 (10.63) 

R
D

C
*(-2.349 (0.142)) + R

H
*(-15.008 (10.63)) 

2.324 (0.061) + LC
R

*(1.053 (0.442)) 
-0.098 (0.083) 

W
F 

R
H

*(90.329 (13.776)) + 32.012 (9.435) 
R

D
C

*(-2.349 (0.142)) + R
H

*(32.012 (9.435)) 
2.324 (0.061) + LC

R
*(1.513 (0.112)) 

-0.121 (0.01) 

Living 
carbon 

D
F 

R
H

*(91.689 (13.892)) + 17.529 (11.654) 
R

D
C

*(-2.353 (0.142)) + R
H

*(17.529 (11.654)) 
2.324 (0.061) + LC

R
*(2 (0.272)) 

-0.231 (0.057) 

IC
 

R
H

*(91.689 (13.892)) + 25.491 (9.71) 
R

D
C

*(-2.353 (0.142)) + R
H

*(25.491 (9.71)) 
2.324 (0.061) + LC

R
*(0.669 (0.154)) 

0.046 (0.03) 

PP 
R

H
*(91.689 (13.892)) + -13.062 (10.047) 

R
D

C
*(-2.353 (0.142)) + R

H
*(-13.062 (10.047)) 

2.324 (0.061) + LC
R

*(1.138 (0.273)) 
-0.128 (0.049) 

SP 
R

H
*(91.689 (13.892)) + -15.152 (10.726) 

R
D

C
*(-2.353 (0.142)) + R

H
*(-15.152 (10.726)) 

2.324 (0.061) + LC
R

*(1.053 (0.442)) 
-0.098 (0.083) 

W
F 

R
H

*(91.689 (13.892)) + 31.193 (9.531) 
R

D
C

*(-2.353 (0.142)) + R
H

*(31.193 (9.531)) 
2.324 (0.061) + LC

R
*(1.513 (0.112)) 

-0.121 (0.01) 

Param
eter estim

ates for m
odel 31 for individual branch foliage estim

ates and m
odel 32 for tree total foliage m

ass estim
ates. A

dditional covariates that significantly im
proved m

odel 
perform

ance w
hen added to a given param

eter are show
n. Estim

ate standard deviations are show
n next to the m

ean param
eter estim

ate for the intercept and any additional covariate 
present. 
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