
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Efficient inference algorithms for near-deterministic systems

Permalink
https://escholarship.org/uc/item/0g63029f

Author
Chatterjee, Shaunak

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0g63029f
https://escholarship.org
http://www.cdlib.org/

Efficient inference algorithms for near-deterministic systems

by

Shaunak Chatterjee

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Stuart Russell, Chair
Professor Jaijeet Roychowdhury

Professor Dan Klein
Professor Ian Holmes

Fall 2013

Efficient inference algorithms for near-deterministic systems

Copyright 2013
by

Shaunak Chatterjee

1

Abstract

Efficient inference algorithms for near-deterministic systems

by

Shaunak Chatterjee

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Stuart Russell, Chair

This thesis addresses the problem of performing probabilistic inference in stochastic systems where
the probability mass is far from uniformly distributed among all possible outcomes. Such near-
deterministic systems arise in several real-world applications. For example, in human physiology,
the widely varying evolution rates of physiological variables make certain trajectories much more
likely than others; in natural language, a very small fraction of all possible word sequences ac-
counts for a disproportionately high amount of probability under a language model. In such set-
tings, it is often possible to obtain significant computational savings by focusing on the outcomes
where the probability mass is concentrated. This contrasts with existing algorithms in probabilis-
tic inference—such as junction tree, sum product, and belief propagation algorithms—which are
well-tuned to exploit conditional independence relations.

The first topic addressed in this thesis is the structure of discrete-time temporal graphical mod-
els of near-deterministic stochastic processes. We show how the structure depends on the ratios
between the size of the time step and the effective rates of change of the variables. We also prove
that accurate approximations can often be obtained by sparse structures even for very large time
steps. Besides providing an intuitive reason for causal sparsity in discrete temporal models, the
sparsity also speeds up inference.

The next contribution is an eigenvalue algorithm for a linear factored system (e.g., dynamic
Bayesian network), where existing algorithms do not scale since the size of the system is expo-
nential in the number of variables. Using a combination of graphical model inference algorithms
and numerical methods for spectral analysis, we propose an approximate spectral algorithm which
operates in the factored representation and is exponentially faster than previous algorithms.

The third contribution is a temporally abstracted Viterbi (TAV) algorithm. Starting with a
spatio-temporally abstracted coarse representation of the original problem, the TAV algorithm it-
eratively refines the search space for the Viterbi path via spatial and temporal refinements. The
algorithm is guaranteed to converge to the optimal solution with the use of admissible heuristic
costs in the abstract levels and is much faster than the Viterbi algorithm for near-deterministic
systems.

2

The fourth contribution is a hierarchical image/video segmentation algorithm, that shares some
of the ideas used in the TAV algorithm. A supervoxel tree provides the abstraction hierarchy for this
application. The algorithm starts working with the coarsest level supervoxels, and refines portions
of the tree which are likely to have multiple labels. Several existing segmentation algorithms
can be used to solve the energy minimization problem in each iteration, and admissible heuristic
costs once again guarantee optimality. Since large contiguous patches exist in images and videos,
this approach is more computationally efficient than solving the problem at the finest level of
supervoxels.

The final contribution is a family of Markov Chain Monte Carlo (MCMC) algorithms for near-
deterministic systems when there exists an efficient algorithm to sample solutions for the corre-
sponding deterministic problem. In such a case, a generic MCMC algorithm’s performance wors-
ens as the problem becomes more deterministic despite the existence of the efficient algorithm in
the deterministic limit. MCMC algorithms designed using our methodology can bridge this gap.

The computational speedups we obtain through the various new algorithms presented in this
thesis show that it is indeed possible to exploit near-determinism in probabilistic systems. Near-
determinism, much like conditional independence, is a potential (and promising) source of com-
putational savings for both exact and approximate inference. It is a direction that warrants more
understanding and better generalized algorithms.

i

Contents

Contents i

List of Figures v

List of Tables viii

Acknowledgements x

1 Introduction 1
1.1 Near-determinism in graphical models . 4
1.2 Outline of the thesis . 5

2 Background 8
2.1 Graphical model . 8

Directed graphical models . 9
Undirected graphical models . 10
Conditional independence . 10

2.2 Inference algorithms . 11
Variable elimination . 11
Belief propagation . 12
Junction tree algorithm . 13
Approximate inference . 17
Hidden Markov model (HMM) . 17
The Viterbi algorithm . 18
Dynamic Bayesian network (DBN) . 19

2.3 Markov chain Monte Carlo . 20
Metropolis Hastings algorithm . 21
Gibbs sampling . 21

2.4 A∗ algorithm . 22
Application to MAP inference . 22

2.5 Matrices and vectors . 23
Definitions . 24

ii

Special matrices . 25
Kronecker product . 26

2.6 Eigenvalues and eigenvectors . 26
QR algorithm . 27
Krylov subspaces . 28
Lanczos method . 28
Power iteration . 28
Arnoldi iteration . 29

2.7 Linear systems . 30

3 Why are DBNs sparse? 31
3.1 Introduction . 31
3.2 Definitions . 34
3.3 A Motivating Example: Human pH Regulation System 34
3.4 Approximation scheme . 36

Correctness of the approximation scheme . 38
Special case . 40
Other approaches . 40

3.5 General Rules of Construction . 41
3.6 Experiment . 42
3.7 Conclusion . 44

4 Eigencomputation for factored systems 46
4.1 Linear systems . 46

Factored representation . 47
4.2 Computational complexity . 47
4.3 Factored belief vector and forward projection . 48
4.4 Revisiting Arnoldi . 49

Step 1: Forward projection through DBN . 49
Step 2: Orthogonalize . 50
Step 3: Find eigenvalues and eigenvectors . 52

4.5 Experiments . 53
Data generation . 53
Implementation details . 53
Results . 53

4.6 Discussion . 55

5 A temporally abstracted Viterbi algorithm 58
5.1 Introduction . 58
5.2 Problem Formulation . 60
5.3 Main algorithm . 62

Refinement constructions . 63

iii

Modified Viterbi algorithm . 65
Complete algorithm . 68

5.4 Heuristics for temporal abstraction . 69
5.5 Experiments . 71

Varying T, N and ε . 72
A priori temporal refinement . 72

Impact of heuristics . 72
5.6 Hierarchy induction . 73
5.7 Conclusion . 74

6 Hierarchical image and video segmentation 75
6.1 Introduction . 75
6.2 Problem formulation . 78

Hierarchical abstraction . 78
Coarse-to-fine inference . 79
Admissible heuristics and exactness of solution 79

6.3 Hierarhical video segmentation . 80
Cost definition . 80
Hierarchical Inference . 81
Optimization algorithm . 82
Practical considerations . 82

6.4 Experiments . 83
Dataset . 83
Learning potentials . 84
Experimental setup . 84
Results . 86
Accuracy vs time . 86

6.5 Conclusion . 87

7 MCMC and near-determinism 89
7.1 Introduction . 90
7.2 Preliminaries . 91

Notation . 91
Delayed Rejection MH . 92
Example of a near-deterministic problem . 93

7.3 General Framework and algorithm . 94
Designing AMCMC . 94

Properties of proposal distributions . 95
Distribution of AMCMC samples . 95

7.4 Specific problem I: Near-deterministic SAT . 96
Min-Conflicts and Gibbs sampling . 96
WalkSAT and WalkSAT-MCMC . 97

iv

SampleSAT and Sample-SAT MCMC . 98
Other noise models . 98

7.5 Problem Instance II - Sum constraint sampling . 101
Problem Definition . 101
ECSS and ECSS-MCMC . 101

7.6 Experiments . 102
Stochastic SAT . 102
Sum constraint sampling . 104

7.7 Discussion and Conclusion . 104

8 Conclusions 107
8.1 Summary . 107
8.2 Future Work . 108

Inference . 108
Learning . 109

8.3 Outlook . 109

v

List of Figures

1.1 caption . 3

2.1 An example of a directed graphical model or Bayesian network. There are 6 random
variables {A,B,C,D,E, F}. The edges denote conditional dependence relations, and
the tables are conditional probability tables. 9

2.2 An example of an undirected graphical model or Markov random field. There are 6
random variables {A,B,C,D,E, F}. The joint probability is a normalized product of
the individual potential functions. 10

2.3 The moralization process of introducing an edge between every pair of non-connected
parents of a node. 14

2.4 The moralization transformation on our example. 14
2.5 The clique tree corresponding to the moralized graph. 15
2.6 The clique tree corresponding to the moralized graph. 15
2.7 The triangulation process of introducing chords in cycles of length 4 or greater to

ensure maximal clique size of 3. 16
2.8 The clique tree before and after the triangulation process. The one after satisfies the

running intersection property. 16
2.9 The hidden Markov model (HMM). Xt is the latent (or unobserved) variable at time-

step t, and its transition dynamics are Markovian. Yt is the observed variable at time t,
and is conditionally independent of all other variables given Xt. 18

2.10 A sample dynamic Bayesian network (DBN) model of the blood acidity regulation
mechanism in humans. 20

3.1 Two variable DBN: The slow variable s is independent of the fast variable f . (a) Exact
model for small time-step δ. (b) Exact model for large time-step ∆. (c) Approximate
model for large time-step ∆. 33

3.2 Exact model for the pH control system for a small time-step δ. 35
3.3 Two variable general DBN: The slow variable s is also dependent on the fast variable

f . (a) Exact model for small time-step δ. (b) Exact model for large time-step ∆. (c)
Approximate model for large time-step ∆. 37

3.4 Structural transformation in the large time-step model when f1 and f2 have no cross
links in the small time-step model . 40

vi

3.5 Structural transformation in the large time-step model when f1 and f2 have cross links
in the small time-step model . 40

3.6 A slow cluster s1 has a new parent s2 in the larger time-step model when s2 is a parent
of f in the smaller time-step model . 40

3.7 Approximate models of the pH regulation system of the human body. (a) Approximate
model for ∆ = 20. (b) Approximate model for ∆ = 1000. (c) Approximate model for
∆ = 50000 . 43

3.8 Comparison of the average L2-error(per time-step) of the belief vector of the joint state
space for M20, M1000 and M50000. 44

3.9 Accuracy of M1000 and M50000 in tracking the marginal distribution of pH 45

4.1 A 2-TBN with 7 binary variables in each time slice. The belief vector is maintained as
a Kronecker product of belief vectors over clusters of variables – C1 = {X1, X2, X3},
C2 = {X4, X5} and C3 = {X6, X7} . 48

4.2 The percentage of examples where the stochastic gradient converged. For more deter-
ministic examples, a greater percentage of examples converged. 54

4.3 Matching of exact and approximate eigenvalues. 55
4.4 The RMSE of the approximate eigenvalues. 56
4.5 The L2 norm of the difference vector between the normalized approximate and exact

eigenvector. 57

5.1 The state–time trellis for a small version of the tracking problem. The links have
weights denoting probabilities of going from a city A to a city B in a day. The abstract
state spaces S1 (countries depicted in green) and S2 (continents in yellow) are only
shown for T=5 to maintain clarity. The observation links are also omitted for the same
reason. 60

5.2 A comparison of the performance of CFDP and TAV on the city tracking problem with
27 cities, 9 countries and 3 continents over 50 days. The plots indicate portions of the
state–time trellis each algorithm explored. Black, green and yellow squares denote the
cities, countries and continents considered during search. The cyan dotted line is the
optimal trajectory. 61

5.3 Spatial refinement: The optimal link, shown in bright red, is a direct link and is re-
placed with all possible links between its children. 65

5.4 Temporal refinement: When refining a cross or re-entry link, refine all links between
nodes that have the same parent as the nodes of the selected link. 67

5.5 Sample run: TAV: a Initialization. The optimal path is a direct link—hence spatial
refinement. The new additions are shadowed. b A re-entry link is optimal—hence
temporal refinement. Since one direct link among siblings was already refined in Step
1, we also temporally refine the spatially refined component. c The optimal path has
links at different levels of abstraction. Such scenarios necessitate the BestPath pro-
cedure. d More recursive temporal refinement is performed. Note the difference in the
numbers of links in the two graphs after 3 iterations. 69

vii

5.6 Simulation results: a The computation time of Viterbi, CFDP and TAV with vary-
ing T (left), ε (middle) and N (right). b The computation time of TAV and its two
extensions—pre-segmentation and using the Viterbi heuristic—with varying T (left),
ε (middle) and N (right). 71

5.7 Effect of abstraction hierarchy: For different underlying models (28, 44 and 162), deep
hierarchies outperform shallow hierarchies. Cases 1 and 2 have ε = 0.1 and .05 re-
spectively . 73

6.1 Supervoxel hierarchy for an image. The top row shows the various abstraction levels in
the supervoxel tree. The second row shows the portion of the supervoxel tree explored
to find the optimal labeling of segments. 76

6.2 Explored portions of the supervoxel tree. The blacked out portions in each superpixel
level denotes the patch of superpixels which were never refined during inference. The
top row shows results from the “football” video, the middle row from the “bus” video
and the bottom row from the “ice” video (all from the SUNY dataset). 85

6.3 Percentage of correctly classified supervoxels after every iteration of the hierarchical
belief propagation algorithm. 87

7.1 A stochastic CSP in conjunctive normal form, where the clauses are disjunctions. The
CPTs (corresponding to the example in the text) show the near-deterministic nature of
the disjunctions and conjunction. 93

7.2 The graphical model for the sum constraint problem for discrete variables. 102
7.3 Average Performance of Min-Conflicts, WalkSAT and SampleSAT on a 50 literal, 220

clause 3−SAT system. The leftmost figure tracks the number of satisfied clauses over
iterations. The other three figures plot histograms of the number of unique samples in
bins divided by number of satisfied clauses. It is evident that SampleSAT is the best
performer, since it gets the most number of unique solutions, followed by WalkSAT
and then Min-Conflicts. 103

7.4 Average Performance of Gibbs sampling vs AMCMC for the sum constraint sampling
problem. This graph plots the number of unique samples in bins divided by log likeli-
hood. V arε = 0.001. 104

7.5 V arε = 0.0001. 105
7.6 ε = 0.1 . 106
7.7 ε = 0.01 . 106
7.8 ε = 0.001 . 106
7.9 Comparison of the three algorithms – Gibbs, WalkSAT-MCMC, SampleSAT-MCMC.

The first figure shows the sample likelihood (analogous to the data likelihood) of the
three algorithms vs iteration. The next three graphs show histograms of unique sam-
ples generated by each algorithm. The y-axis denotes the number of unique samples
generated, the x-axis denotes the negative log likelihood of the sample. This panel is
for ε = 0.0001. 106

viii

List of Tables

3.1 Information about the variables in the DBN (including their state space and timescales) 36
3.2 Computational speed-up in different models . 43

6.1 Time taken by the different inference algorithms on different data sets (in minutes).
The times reported for the hierarchical case does not include supervoxel tree compu-
tation time. 88

ix

List of Algorithms

2.1 A∗(start, goal) . 23
2.2 Arnoldi iteration(A, q1) . 29
4.1 Factored Arnoldi iteration(A, q1) . 50
4.2 Stochastic gradient descent(α, β, γ, x1:r, y1:r) . 52
5.1 Spatial Refinement((p1, t1, p2, t2)) . 64
5.2 Temporal Refinement((parent, t1, t2)) . 66
5.3 BestPath(Links, usedStates, usedT imes) . 68
5.4 TAV(A,B,Π, φ, Y1:T) . 70
6.1 — Hierarchical Inference Algorithm(V1:m, ψ) . 81
7.1 — Min-conflicts(CSP(X, C, S), iter) . 97
7.2 — GibbsSampling(CSP(X, C, S), iter) . 97
7.3 — WalkSAT(CSP(X, C, S), α, iter) . 98
7.4 — WalkSAT-MCMC(CSP(X, C, S), α, iter) . 99
7.5 — SampleSAT(CSP(X, C, S), T , β, α iter) . 99
7.6 — SampleSAT-MCMC(CSP(X, C, S), T , β, α, iter) 100

x

Acknowledgments

This dissertation would not have been possible without the support, encouragement and help of my
advisors, colleagues, friends, and family.

First and foremost, I would like to thank my advisor, Prof. Stuart Russell. He was very patient
with me during my initial years in graduate school, very generous with both his time and advice
even during his years as the Chair of the Department. His guidance was crucial in identifying
the key problems addressed in this dissertation. At the same time, he has always encouraged
me to explore new ideas and pursue my academic interests, even if they did not conform to my
current research agenda. His influence has been instrumental in improving my writing, research
and thinking skills over my graduate career.

I am very grateful to my committee members — Professors Jaijeet Roychowdhury, Dan Klein
and Ian Holmes. Prof. Roychowdhury has especially been very helpful with several detailed
discussions on possible solutions for the eigenvalue computation problem. His ideas on numerical
methods were instrumental in designing the current solution. Prof. Holmes and Prof. Klein were
also helpful with their suggestions on guiding the research in this dissertation by serving on my
qualifying examination committee.

I would also like to thank all the professors at Berkeley and at the Indian Institute of Technol-
ogy (IIT) Kharagpur (my undergrad school), who have shaped my education and research skills.
Several teachers from high school have also been very influential in this journey. Prof. Rene Vidal
(Johns Hopkins University) was a key collaborator in the work on hierarchical video segmentation.

My fellow RUGS members have provided a constant reservoir of new research ideas, stimu-
lating academic (and non-academic) discussions, useful suggestions, and the weekly dose of Gre-
goire: Norm Aleks, Nimar Arora, Emma Brunskill, Kevin Canini, Daniel Duckworth, Yusuf Bugra
Erol, Nick Hay, Gregory Lawrence, Lei Li, Akihiro Matsukawa, David Moore, Rodrigo De Salvo
Braz, Fei Sha, Siddharth Srivastava, Erik Sudderth, Jason Wolfe. In particular, Norm Aleks was
my first collaborator in graduate school and helped me out a lot during the initial semesters. Jason
Wolfe has always been the person I turned to, to discuss an idea or get some feedback. Emma,
Nick, Dave, Sid, Lei and Nimar have also been very helpful on numerous instances.

I am also grateful to the anonymous reviewers at various conferences, whose feedback has
helped me better organize and present my research. I would also like to thank Intel Corporation,
UC Discovery Program and the NSF (grant no. IIS-0904672) for supporting and generously fund-
ing my research over the years.

Finally, none of this would have been possible without the continued support of my family and
friends. My parents, Dr. Ranjana Chatterjee and Dr. Sukanta Chatterjee, and my brother Sourav,
have always unconditionally stood by me and urged me to pursue my dreams. I cannot thank
them enough for all that they have done for me over the last three decades. My fiancee, Aastha
Jain, has been inspiring me to become a better researcher (and person) and has played more than
a supporting role in this venture (she was a collaborator in the video segmentation work). To all
my friends in Berkeley — Ajith, Jayakanth, Himanshu, Arka, Godhuli, Maniraj, Payel, Soumen,
Anindya, Debkishore, Arka, Raj, Momo, Piyush — thank you for being around all these years and
making it so much fun!

xi

1

Chapter 1

Introduction

One of the most important aspects of intelligence in humans and machines is the ability to reason
about uncertainty: to analyze the relevant available information, consider all the different possi-
bilities and act upon the resulting conclusions. Consider the problem of deciding whether or not to
arrange an outdoor picnic tomorrow (assuming that you do not have immediate access to a weather
forecast). Your decision would be based on the chances of rainfall tomorrow and could incorporate
factors like today’s temperature, cloud cover and the current season. A more detailed model might
also consider the amount of rain in the past couple of days.

Uncertainty is a result of one or more among several factors. We could have partial or noisy
observation of the world. Another possible source of uncertainty is the non-deterministic relation-
ship between variables. This non-determinism could be either innate or a result of a partial model
(i.e., due to a lack of detail in representation and/or understanding). In this example, even if we
include much more detailed information about yesterday’s weather, we cannot get a deterministic
prediction for tomorrow’s rainfall (as any experienced meteorologist would tell you).

Scientists and statisticians have long recognized the need for a common framework to represent
and reason about systems with uncertainty. A probabilistic model is a formalization to express the
stochastic relations among variables in a system. The model defines a probability distribution over
all (i.e., a set of mutually exclusive and exhaustive) possibilities, thereby facilitating reasoning
based on the relative importance of various outcomes.

A probabilistic model is an example of a declarative representation which separates the two
key aspects of knowledge representation and reasoning. The representation has its own well-
defined semantics, which are independent of the algorithms that can be applied to the model. This
has enabled the design of various algorithms that are applicable for any application that can be
expressed as a probabilistic model.

In a probabilistic model, there are several inter-related variables, but some variables might

2

be independent of one another when we know about a third set of variables. For instance, the
likelihood of rain today might not depend on yesterday’s cloud cover if we know about today’s
cloud cover. Such conditional independence relations can be expressed in a graph, and such a
representation is called a probabilistic graphical model. Algorithms which exploit such conditional
independence are much faster than ones that do not. Graphical models are explained in greater
detail in Chapter 2.

While there exists several algorithms to exploit the conditional independence relations in graph-
ical models, these algorithms are not designed to exploit the actual nature of the dependence rela-
tions. For instance, if yesterday’s cloud cover had a very weak effect on today’s likelihood of rain,
it might be possible to ignore that effect and still obtain the correct solution or accrue a very small
error. In this thesis, we focus on a particular type of dependence relation where there is very lim-
ited (but non-zero) stochasticity (hence the dependence relation is near-deterministic). Algorithms
designed for graphical models typically do well when the dependence relations are quite stochas-
tic, but in many near-deterministic cases they are unnecessarily slow as they cannot (intelligently)
ignore the large set of very unlikely possibilities.

In this thesis, we propose various ways to leverage near-determinism and obtain significant
speedups over runtimes from existing algorithms on the same problems. Each approach generally
has two components (in line with the declarative representation):

Firstly, we construct a modified representation (i.e., an abstract model) which is able to trans-
form the original probabilistic model in a way that makes it easier to exploit the near-deterministic
relations. This modified model could be approximate. The actual abstraction scheme varies based
on the nature of the inference problem (maximization vs marginalization) and also on the relative
amounts of near-determinism in different edges.

Secondly, we need to design modified algorithms which will work on either the original or the
modified representations and perform necessary refinements to obtain the final inference objective.
Often, these algorithms are slight variants of algorithms designed for the original representation,
since the modified model is designed to make near-determinism more exploitable. It should be
noted that for certain algorithms, one of the two components (modifying the abstraction and mod-
ifying the algorithm) might not be needed.

The ultimate goal of this line of work will be to exhaustively delineate strategies to exploit the
actual nature of the dependence relations in a graphical model – something that is mostly ignored
by the current algorithms which only utilize the graphical structure. This will lead to much faster
inference and learning in several real-world applications as the underlying mathematical nature of
many of these dependence relations are far from being completely random.

3

Season(S0)

Cloud
Cover (C0)

Rain(R0)

Day 0

Season(S1)

Cloud
Cover (C1)

Rain(R1)

Day 1

s0

0

1

0.99 0.01

0.02 0.98

10
s1

0.8 0.2

0.05 0.95

0.5 0.5

0.02 0.98

c1
0 1

0,0

0,1

1,0

1,1

c0,s1

c1

0

1

0.99 0.01

0.04 0.96

10
r1

Figure 1.1: The rain prediction example. There are 3 binary variables in this model for each day. The variables for
day 0 are 1. Current season (S0): “not monsoon” or “monsoon”, 2. Cloud cover (C0): “clear” or “cloudy”, and 3. Rain
(R0): “no rain” or “rain”. The same variables exist for day 1 – S1, C1 and R1. as well The edges denote conditional
dependence relations, and the tables are conditional probability tables, where the conditioning variable(s) are on the
vertical axis.
For each variable, the two possible values are denoted by 0 and 1 respectively in the table due to space constraints. For
S, 0: “Not monsoon” and 1: “monsoon”. For C, 0: “not cloudy” and 1: “cloudy”. For R, 0: “No rain” and 1: “Rain”.
The bold edges mark near-deterministic conditional dependence relations, while the dotted edge marks a contextual
near-deterministic relationship. The dependence of S1 on S0 is near-deterministic since seasons change very infre-
quently, while R1 on C1 is near-deterministic because clouds very often bring rains. During the monsoon season, the
dependence of C1 on S1 becomes near-deterministic , but it is otherwise quite stochastic.

4

1.1 Near-determinism in graphical models
While there has been extensive work on designing algorithms to exploit conditional independence
relations in probabilistic models, not much attention has been given to the nature of the direct
dependence relations. For example, in the rain prediction example introduced before and shown in
Figure 1.1, the season variable on day 1 (S1) is almost always the same as the season variable on
day 0 (S0) — i.e., their dependence is almost deterministic or “near-deterministic.” This is also true
for the dependence between cloud cover and rainfall on the same day. The relationship between
season and cloud cover is near-deterministic during the monsoon season, but much more stochastic
during other seasons. In a near-deterministic system, the probability mass (or density in the case of
continuous variables) is concentrated on a small subset (subspace) of states. The probability mass
is contained in a single state in the limiting case of a deterministic system.

While we shall define the notion of near-determinism mathematically in Chapter 2, the common
result of near-determinism is the concentration of probability mass (or density) in a small portion
of the overall joint state space. As a result, there exists an opportunity to do efficient inference by
focusing on the high probability states. Depending on how we handle the remaining low probability
states, the inference can be approximate (yet still fairly accurate) or exact. The varying amounts of
determinism in probabilistic systems are completely ignored by current inference algorithms for
graphical models, which can only distinguish between the presence and absence of a dependence.

In linear system literature, researchers have looked at tackling some aspects of near-determinism
with spectral transformations. However, these approaches were designed for the simulation task,
and do not apply directly to other inference tasks that are common in probabilistic models. Sec-
ondly, the transition model in such systems is not factored and there are no conditional indepen-
dence relations. Systems expressed via graphical models tend to be much larger and for such
models even creating the transition model explicitly (as needed by conventional spectral analysis)
is not feasible and hence these methods are not well-suited for such systems.

The primary reason to focus on near-determinism is twofold. First, the ubiquity of near-
determinism in real-life applications and second, the possibility afforded by near-determinism to
design much faster inference algorithms for the same problems is intriguing.

There are several instances of near-deterministic dependence relations in the everyday world.
They exist in several aspects of human physiology. For instance, in a temporal model of the
cardiovascular system, the elasticity of blood vessels changes very, very slowly and hence the
dependence on the elasticity in the previous time step is near-deterministic (in a 1-second or 1-
minute time step model).

Similarly, in natural language, any word in a valid English sentence is most likely to be fol-
lowed by one among a very “small” set of words (“small” as compared to the full English vocab-
ulary). Thus, the probability mass of a language model is concentrated on a very small subset of
all possible English word sequences. The same holds for possible phonetic sequences in speech
analysis.

5

In computer vision, large contiguous patches in an image or video are occupied by the same
object. As a result, two contiguous pixels are very likely to belong to the same object which
makes the dependence relation between their object labels. Thus, pixel labelings which assign the
same label to large, contiguous patches are much more likely than other pixel labelings — thus the
likelihood is concentrated on a small subset of the label space. Some of these examples are better
described as near-static. From a computational perspective, a near-static and a near-deterministic
system are analogous.

An interesting characteristic of near-determinism is its integral connection to space and time.
For the same application, changing the granularity of the state space or the size of the time step (in
a temporal model) can affect the degree of near-determinism in the dependence relations. For in-
stance, in a 1-decade time step model, the elasticity of blood vessels is no longer near-deterministic
. Conversely, in a 1-second model, body temperature evolution is near-deterministic (but that is not
true for a 1-hour model). Similarly, a person’s travel itinerary (for a 1-day time step model) can be
very near-deterministic at the country-scale but quite random at the zip code scale (but still largely
limited to a small set of well-connected zip codes). This characteristic hints at the possibility of
using hierarchical methods (in space and/or time) in various ways to exploit the near-determinism
for different inference problems.

In this dissertation, we present four primary results which use near-determinism to speed up
existing inference algorithms:

• We show how the interplay of near-determinism and time step size affects the structure of
causality in temporal models and how this can be used to do faster simulation and inference.

• We present an approximate eigenanalysis technique for factored systems.

• We design a spatio-temporally abstracted maximization algorithm which can exploit near-
determinism at different scales of the model in both space and time.

• We describe a general method to build fast MCMC algorithms for near-deterministic prob-
lems, which are inspired by algorithms for corresponding problems in the deterministic
realm.

1.2 Outline of the thesis
Chapter 2 begins with a detailed review of background material on graphical models, various in-
stances of important graphical models, related inference algorithms, a brief overview of linear
systems and a mathematical definition of near-determinism . Chapter 2 is divided into four sec-
tions: the first formally introduces graphical models and describes in a fair amount of detail some
of the main inference algorithms for graphical models. These inference algorithms are heavily

6

drawn upon to design the new algorithms for near-deterministic systems. The second section in-
troduces two families of graphical models – the hidden Markov model (HMM) and the dynamic
Bayesian network (DBN) – and their related inference algorithms. The third section is a brief
overview of linear systems which will be helpful for Chapter 4. The fourth section describes the
notion of near-determinism mathematically and presents a couple of illustrative examples to show
the potential for computational savings in near-deterministic systems and how this potential grows
as the size of the system increases.

Next, Chapters 3, 4, 5, 6 and 7 describe the primary contribution of the thesis.

Chapter 3 studies the effect of near-determinism on graphical models in a temporal setting
– namely, in dynamic Bayesian networks (DBNs). We show that near-determinism in a small-
time-step model can result in very sparse large-time-step models (which are approximate but very
accurate), whereas traditional graphical model wisdom suggests that the large-time-step model
be fully connected. The sparse DBN models for larger time-steps lead to very fast simulation
and inference using existing DBN algorithms. This chapter also provides some insights into the
implicit approximations human experts make while proposing any finite-time-step model.

Chapter 4 proposes a numerical method to compute approximate eigenvalues and factored
eigenvectors for the whole DBN (or any system whose transition model is presented in some fac-
tored form). While the abstraction in Chapter 3 depended upon varying levels of near-determinism
in the evolution of individual variables, this approach becomes applicable to linear combinations
of the variables and hence is strictly more powerful. The dominant eigenpairs (i.e., eigenvalues
and their corresponding eigenvectors) can be used to perform super-fast simulation.

Next, Chapter 5 focuses on the maximization problem and proposes a modified Viterbi algo-
rithm with spatial and temporal abstractions. The primary insight behind speeding up the maxi-
mization process is to prune away a large portion of the search space which has no chance of being
the solution. In order to do this pruning, we have to create the appropriate abstractions of the state
space and also define customized refinement operations.

After presenting a general maximization algorithm in Chapter 5, the next chapter describes an
application of that idea to the problem of video segmentation. We design a hierarchical video seg-
mentation that starts from a very abstract problem (very coarse/large supervoxels) and iteratively
refines those parts of the video which are likely to contain more than one object category. The
algorithm trivially extends to image segmentation.

Markov chain Monte Carlo (MCMC) algorithms are investigated in Chapter 7. These sam-
pling algorithms are used ubiquitously to numerically solve marginalization problems which are
analytically intractable. In the face of near-determinism , MCMC algorithms fare very poorly.
In fact, their performance worsens as the degree of near-determinism in the problem increases.
However, for many problems, there exist efficient algorithms which can sample from the solution
set of the corresponding deterministic problem and are much more efficient than an MCMC algo-
rithm in the near-deterministic domain. We propose a methodology to design MCMC algorithms
for near-determinism systems which are guided by the insights behind these deterministic domain

7

algorithms and are shown to significantly outperform generic MCMC algorithms and make for a
smooth performance curve in the determinism continuum.

Finally, Chapter 8 concludes the dissertation by identifying a few potential directions of re-
search to further exploit such skewed structures in graphical models. We also summarize our
contributions by highlighting both the benefits and limitations of the various algorithms presented
in this dissertation.

8

Chapter 2

Background

In this chapter, we review concepts and literature related to the material covered in this dissertation.
Additional references are also provided for readers interested in exploring the material in detail.

2.1 Graphical model
Probabilistic graphical models are graphs where the nodes represent random variables and the
edges represent conditional dependence relations. The variables can be discrete, continuous or
hybrid. The graphical structure provides a concise description of the joint probability of a system,
and several algorithms have been designed to exploit the conditional independence relations for
specific graph structures (e.g., chains, trees). There are broadly two families of graphical models
— undirected (Markov random fields and factor graphs are two popular examples) and directed
(these are also called Bayesian networks).

Random variables are denoted by capital letters (e.g., X and Y). The values a random variable
can take are denoted by small letters (e.g., X = x1 or X = x2). The probability of X = x
conditioned on Y = y is denoted by p(X = x|Y = y), or (when the context is clear) by p(x|y).
The conditional distribution of X given Y is denoted by p(X|Y). The independence between X
and Y is denoted by X ⊥⊥ Y while the independence between X and Y conditioned on Z (i.e., the
conditional independence) is denoted by X ⊥⊥ Y |Z. A group of variables is denoted by a block
capital letter (e.g., X or Y). The parents of a node (or variable) X is denoted by π(X).

9

Figure 2.1: An example of a directed graphical model or Bayesian network. There are 6 random variables
{A,B,C,D,E, F}. The edges denote conditional dependence relations, and the tables are conditional probability
tables.

Directed graphical models
The joint probability of a directed graphical model with variables {X1, · · · , Xn} is given by:

p(X1, · · · , Xn) =
n∏
i=1

p(Xi|π(Xi))

This is also called the chain rule of probability.

Hence, in order to completely specify a directed probabilistic graphical model, we need to
specify not only the graphical structure, but also the parameters of each conditional probability
distribution (namely the p(Xi|π(Xi))). If the variables are discrete, then this is specified in a con-
ditional probability table (CPT) and if they are continuous, then a conditional probability density
(CPD) is used. In Figure 2.1, the CPTs for each variable are placed next to the corresponding node.
In this example, the joint probability is given by:

p(A,B,C,D,E, F) = p(A)p(B)p(C|A,B)p(D|C)p(E|C)p(F |D,E)

10

Figure 2.2: An example of an undirected graphical model or Markov random field. There are 6 random variables
{A,B,C,D,E, F}. The joint probability is a normalized product of the individual potential functions.

Undirected graphical models
The joint probability of variables in an undirected graphical model is defined to be a product of
the potential of the cliques in the graph. More specifically, if we consider the graphical model in
Figure 2.2, the joint probability of the system is given by:

φ(A,B,C,D,E, F) = φ(A,C)φ(B,C)φ(C,D,E)φ(D,E, F)

where φ(A,B) denotes the potential of each configuration of the variable set {A,B}. Unlike
the conditional probability distributions in directed graphical model, the potential functions need
not be normalized. Hence, the joint probability is the normalized product of potentials. Computing
the normalization constant is generally computationally expensive, but is also avoidable for several
inference problems.

Conditional independence
In a directed graphical model, the conditional independence relations between two (sets of) vari-
ables, conditioned on a third, can be algorithmically determined by the d-separation algorithm
(also called the Bayes Ball algorithm) (Pearl, 1988). In an undirected model, conditional indepen-
dence is equivalent to non-connectivity, i.e., A ⊥⊥ B|C is true if by removing C, A and B become
disconnected.

11

The Markov blanket of a variable Xi is the minimal set of variables, conditioned on which
Xi becomes independent of every other variable. More formally, let MV (Xi) denote the Markov
blanket of Xi, then

∀Xi ∈ X, Xi ⊥⊥ Xj|MV (Xi)

for any Xj ∈ X \MV (Xi).

The important point to note here is that in the absence of conditional independence relations,
the number of parameters needed to specify the joint probability distribution is exponential in the
number of variables. In case of a graphical model where the maximum in-degree of a node is a
constant, the number of parameters needed is linear in the number of variables.

2.2 Inference algorithms
In order to answer any query of the form p(XH |XV), whereH and V are disjoint sets of indices rep-
resenting the query variables (which are generally a subset of the hidden or unobserved variables)
and evidence (or observed) variables respectively. Inference, or computing the conditional prob-
ability distribution p(XH |XV) comprises of computing the two marginals p(XH |XV) and p(XV)
since.

p(XH |XV) =
p(XH ,XV)∑
xH p(XH ,XV)

In a probabilistic system with n binary variables, the total number of possible states is O(2n).
Computing one of these marginals requires exponential (in n) amount of time in the worst-case.
However, there are important special cases where the computational complexity of inference is
much lower.

Variable elimination
During marginalization, the order in which the variables are summed out (or “eliminated”) can sig-
nificantly affect the computation time. The variable elimination algorithm uses a greedy heuristic
to determine the order by pushing each summation operator as far to the right in the expression as
possible. In the example in Figure 2.1, if we want to compute p(A|E), then we need to compute
p(A,E) and p(E). The greedy heuristic elimination ordering to compute p(A,E) would be F
followed by D followed by C and finally B.

12

p(A,E) =
∑
b

∑
c

∑
d

∑
f

p(A)p(B)p(C|A,B)p(D|C)p(E|C)p(F |D,E)

=
∑
b

∑
c

∑
d

p(A)p(B)p(C|A,B)p(D|C)p(E|C)
∑
f

p(F |D,E)

=
∑
b

∑
c

p(A)p(B)p(C|A,B)p(E|C)
∑
d

p(D|C)cf (D,E)

=
∑
b

p(A)p(B)
∑
c

p(C|A,B)p(E|C)cf,d(C,E)

= p(A)
∑

bp(B)cc,d,f (A,B,E)

= p(A)cb,c,d,f (A,E)

Finding the optimal variable elimination ordering is known to be an NP-hard problem. Greedy
heuristics, however, often provide good solutions. p(E) can be computed in a similar fashion to
complete the inference process.

Belief propagation
When we wish to compute the marginal probabilities of all (or several) variables in a system, then
one (expensive) alternative is to use variable elimination for each of those variables. However, this
approach is very wasteful, since several computations from one variable elimination can be reused
in the next iterations. A more general solution is to use dynamic programming to avoid redundant
computations.

For any singly-connected Bayesian network, Pearl’s polytree algorithm (Pearl, 1988) works
for any singly-connected Bayesian network. Let the parents of a node X be the set of nodes
{U1, · · · , UM} and its children be the set {Y1, · · · , YN}. Let the evidence variables be denoted by
E, with the evidence in the ancestor nodes denoted by e+ and evidence in the descendant nodes
denoted by e−.

Messages can be sent “down” the network (from parent to child) or “up” the network (from
child to parent). Let us label these messages πUi

and λYj . We wish to compute the marginal
probability of X , denoted by BEL(X), conditioned on the evidence, i.e., p(X|E = e), which is
given by

BEL(X) = p(X|e) = αλ(X)π(X)

where α is a normalizing constant, λ(X) = p(e−|X) and π(X) = p(X|e+). These are com-
puted as follows:

13

λ(X) =
N∏
i=1

λYiπ(X) =
∑
~u

p(X|~u)π(~u)

where ~u is a vector of possible values for {U1, · · · , UM}.

Once λ(X) and π(X) are computed andBEL(X) updated,X sends messages out to its parents
and children using all the information from every node other than the one it is sending the message
to. Thus, the message send to Ui and Yi are as follows:

π(Yi) =
BEL(X)

λYi
λ(Ui) = β

∑
X

λ(X)
∑
uk:k 6=i

p(X|~u)
∏
k 6=i

π(uk)

where β is a normalizing factor. The overall algorithm runs as follows:

1. Initialize the network.

2. Update beliefs.

3. Propagate changes in belief

4. If beliefs change, then go to step 2, else terminate.

The most general version of such a message passing algorithm is the junction tree algorithm,
which requires a transformation of the directed graph to an undirected one.

Junction tree algorithm
For a multiply-connected Bayesian network, belief propagation is not guaranteed to converge to
the exact marginals. In order to compute the exact marginals, we need to convert the Bayes net
to an equivalent singly-connected undirected graphical model—the junction tree—and then run a
similar message passing protocol.

In order to convert a directed graphical model to an undirected one, we need to convert local
conditional probabilities into potentials. In our running example, p(C|A,B) is essentially a func-
tion of three variables. The only obstacle to using this function as a potential is that {A,B,C}
is not a clique in the directed model. Or, in general, a node and its parents are generally not in
the same clique (if we just drop the directionality of the edges in a Bayes net). Thus, we need
to “marry” the two parents (i.e., introduce an edge between every pair of nodes which share a
common child). This process is called moralization as shown in Figure 2.3.

14

Figure 2.3: The moralization process of introducing an edge between every pair of non-connected parents of a node.

Figure 2.4: The moralization transformation on our example.

The potential on a clique is defined as the product over all the conditional probability distribu-
tions contained within the clique. The product of potentials defined in this manner results in the
same joint probability as in the directed graphical model.

p(A,B,C,D,E, F) = p(A)p(B)p(C|A,B)p(D|C)p(E|C)p(F |D,E)

= φ(A,B,C)φ(C,D,E)φ(D,E, F)

where

φ(A,B,C) = p(A)p(B)p(C|A,B)

φ(C,D,E) = p(D|C)p(E|C)

φ(D,E, F) = p(F |D,E)

Clique tree A clique tree is an undirected tree of cliques. The clique tree corresponding to the
moralized graph in Figure 2.4, is shown in Figure 2.5.

15

Figure 2.5: The clique tree corresponding to the moralized graph.

Figure 2.6: The clique tree corresponding to the moralized graph.

Neighboring cliques need to be consistent on the probability of nodes in their intersection.
For instance, the neighboring cliques {A,C} and {C,D,E} have an overlap of {C}. A general
instance is shown in Figure 2.6, where V and W denotes the two neighboring cliques and S is
their intersecting set of nodes. The consistency of the marginal distribution of the intersecting
set of variables is ensured by first marginalization and then re-scaling. The two steps together
constitute the update step.

φ∗(S) =
∑

V \S φ(V) Marginalization

φ∗(W) = φ(W)φ
∗(S)
φ(S)

Rescaling

A local message passing algorithm can ensure global consistency iff non-neighboring clique
nodes always have a null intersection set. However, moralization does not ensure this (an example
is shown in Figure 2.8). Local consistency entails global consistency iff the running intersection
property is satisfied, which states that if a node appears in two cliques, then it appears in every
clique on the path between those two cliques. The running intersection property is also called the
junction tree property.

A triangulated graph is one in which no cycles of four or more nodes exist without a chord.
We perform triangulation on the moralized graph by adding chords to every cycle of four or more

16

Figure 2.7: The triangulation process of introducing chords in cycles of length 4 or greater to ensure maximal clique
size of 3.

Figure 2.8: The clique tree before and after the triangulation process. The one after satisfies the running intersection
property.

nodes. Triangulation ensures that the clique tree corresponding to the triangulated graph satisfies
the running intersection property.

Message passing protocol After moralization and triangulation, we can perform local message
passing updates (as defined previously) to perform inference. These updates need to be propagated
in a particular order. Root the clique tree (obtained after triangulation) in an arbitrary node. Then,
first send messages from the leaves towards the root and then from the root back towards the
leaves. At the end of the two phases, all the cliques will have consistent non-normalized potentials
(conditioned on the evidence variables). This algorithm is called the Hugin algorithm.

The moralization and triangulation phases can be done offline for a graphical model. The
message passing phase is online (depending on the evidence and query variables).

17

Approximate inference
Variational inference The general idea is to formulate the inference problem as an optimization
problem and then “relax” the problem in different ways which include approximating the function
to be optimized or approximating the set over which the optimization is performed. These relax-
ations in turn approximate the quantity of interest. Popular variational inference techniques include
mean field approximation and variational Bayes (Attias, 1999; Xing et al., 2002; Wainwright &
Jordan, 2008).

Sampling methods We can approximate query distributions with a set of samples using different
sampling techniques like importance sampling, sequential Monte Carlo and Markov chain Monte
Carlo (MCMC). Most sampling methods asymptotically converge to the correct answer in the limit
of infinite samples. Although there are several computationally inexpensive sampling schemes,
they do not converge quickly enough in high-dimensional problems. MCMC algorithms, which
we will cover in more detail in Section 2.3, are well-suited for high-dimensional problems.

Loopy belief propagation The belief propagation algorithm for singly-connected Bayesian net-
work (Pearl, 1988), as described previously, can also be applied to a graphical model with cycles
(or which is multiply connected). In this case, the belief propagation process may not necessarily
converge, and even if it does, it need not converge to the exact distribution, but the approximation
quality is often found to be very good (Murphy et al., 1999).

Hidden Markov model (HMM)
A hidden Markov model (HMM) is a doubly stochastic process with one underlying discrete-
valued stochastic process that is not observable (hence hidden or latent), but can only be observed
through another stochastic process which produces a sequence of observations. A popular ap-
plication is speech processing, where the underlying latent stochastic process corresponds to the
sentence or phrase being expressed, while the observations correspond to the acoustic signals pro-
duced in the process. For a detailed introduction to hidden Markov models, please refer to (Rabiner
& Juang, 1986; Rabiner, 1989).

Consider the instance of an HMM shown in Figure 2.9, whose latent Markovian state X is in
one of N discrete states {1, 2, . . . , N}. Let the state variable at time t be denoted by Xt. The
transition matrix A = {aij : i, j= 1, 2, . . . , N} defines the state transition probabilities where
aij = p(Xt+1 = j |Xt = i). The Markov chain is assumed to be stationary, so aij is independent of
t. Let the discrete observation space be the set {1, 2, . . . ,M}. Let Yt be the observation symbol
at time t. The observation matrix B = {bik : i= 1, 2, . . . , N ; k= 1, 2, . . . ,M} defines the emis-
sion probabilities where bik = p(Yt = k |Xt = i). The definition extends naturally to continuous
observations. The initial state distribution is given by Π = {π1, . . . , πN} where πi = p(X0 = i).

18

X0 X1 X2 Xn-1 Xn

Y1 Y2 Yn-1 Yn

A: Transition matrix aij = p(Xt=j | Xt-1=i)
B: Observation matrix p(Yt | Xt)

Xt : hidden variable at time t
Yt : observation at time t

A

B

Figure 2.9: The hidden Markov model (HMM). Xt is the latent (or unobserved) variable at time-step t, and its
transition dynamics are Markovian. Yt is the observed variable at time t, and is conditionally independent of all other
variables given Xt.

The Viterbi algorithm
The Viterbi algorithm (Viterbi, 1967; Forney, 1973) finds the most likely sequence of hidden states,
called the “Viterbi path,” conditioned on a sequence of observations in a hidden Markov model
(HMM). If the HMM has N states and the sequence is of length T , there are NT possible state
sequences, but, because it uses dynamic programming (DP), the Viterbi algorithm’s time com-
plexity is just O(N2T). It is one of the most important and basic algorithms in the entire field of
information technology; its original application was in signal decoding but has since been used
in numerous other applications including speech recognition (Rabiner, 1989), language parsing
(Klein & Manning, 2003), and bioinformatics (Lytynoja & Milinkovitch, 2003).

Following Rabiner (1989), we define

δt(i) = max
X0:t−1

p(X0:t−1, Xt = i, Y1:t |A,B,Π) ,

i.e., the likelihood score of the optimal (most likely) sequence of hidden states (ending in state i)
and the first t observations. By induction on t, we have:

δt+1(j) = [max
i
δt(i)aij]bjYt+1 .

19

The actual state sequence is retrieved by tracking the transitions that maximize the δ(.) scores for
each t and j. This is done via an array of back pointers ψt(j). The complete procedure (Rabiner,
1989) is as follows:

1. Initialization
δ1(i) = πi biY1 , 1 ≤ i ≤ N
ψ1(i) = 0

2. Recursion

δt(j) = max1≤i≤N [δt−1(i)aij]bjYt , 2 ≤ t ≤ T

ψt(j) = argmax1≤i≤N [δt−1(i)aij], 2 ≤ t ≤ T

3. Termination

P ∗ = max
1≤i≤N

[δT (i)]

X∗T = argmax
1≤i≤N

[δT (i)]

4. Path backtracking

X∗t = ψt+1(X∗t+1), t=T − 1, T − 2, . . . , 1

The time complexity of this algorithm is O(N2T) and the space complexity is O(N2 +NT).

Dynamic Bayesian network (DBN)
A dynamic Bayesian network (DBN) (Dean & Kanazawa, 1989) is a discrete-time model of a
stochastic dynamical system. The system’s state is represented by a set of variables, Xt for each
time t ∈ Z∗ and the DBN represents the joint distribution over the variables

⋃∞
t=0 Xt. Typically we

assume that the system’s dynamics do not change over time, so the joint distribution is captured
by a 2-TBN (2-Timeslice Bayesian Network), which is a compact graphical representation of the
state prior P (X0) and the stochastic dynamics P (Xt+1|Xt). In turn, the dynamics are represented
in factored form via a collection of local conditional models P (X i

t+1|π(X i
t+1)), where π(X i

t+1) are
the parent variables of X i

t+1 in slice t or t+ 1. Henceforth, we will consider all X i
t to be discrete.

An instance of a DBN is shown in Figure 2.10. Since their introduction, DBNs have proved to
be a flexible and effective tool for representing and reasoning about stochastic systems that evolve
over time. DBNs include as special cases hidden Markov models (HMMs) (Baum & Petrie, 1966),
factorial HMMs (Ghahramani & Jordan, 1997), hierarchical HMMs (Fine et al., 1998), discrete-
time Kalman filters (Kalman, 1960), and several other families of discrete-time models. For a
detailed survey of inference algorithms for DBNs, please refer to (Srkk, 2013).

In this dissertation, we will mainly focus on directed graphical models, but the algorithms and
ideas presented are equally applicable to undirected models.

20

Figure 2.10: A sample dynamic Bayesian network (DBN) model of the blood acidity regulation mechanism in hu-
mans.

2.3 Markov chain Monte Carlo
Markov chain Monte Carlo (MCMC) methods are a family of algorithms for sampling from prob-
ability distributions, which are difficult to sample from directly. The methods construct a Markov
chain that has the desired distribution as its equilibrium distribution. The state of the chain gradu-
ally approaches the equilibrium distribution, and can then be used as samples.

While it is easy to design an MCMC algorithm for any desired distribution, the critical aspect
is to ensure that the equilibrium distribution is reached quickly. The number of steps taken to reach
the equilibrium distribution, starting from any arbitrary state, is called the mixing time. It should
also be noted that an MCMC algorithm can only approximate the desired distribution, as there is
always some residual effect of the starting state. Most practitioners discard a number of samples –
the burn-in – at the start (this number depends on the mixing time). Successive samples are often
highly correlated and there are several application-specific methods to counter that.

The most common application for MCMC algorithms is numerically calculating multi-dimensional
integrals. Each sample generated by the Markov chain is used to generate the integrand value and
that counts towards the integral. Let x(1), · · · , x(k) be k samples generated using an MCMC al-
gorithm (after accounting for the burn-in) and let π(.) be the desired distribution. Then we can

21

approximate the expected value of a function f(.) under the distribution π(.) by:

Eπ(f) =
1

k

k∑
i=1

f(x(i)) (2.1)

We will now briefly review some popular MCMC algorithms, which we use later in this dis-
sertation. To read more about MCMC algorithms, please refer to (Robert & Casella, 2005) and
(Andrieu et al., 2003).

Metropolis Hastings algorithm
The Metropolis-Hastings (hereafter MH) algorithm (Hastings, 1970) is possibly the most popular
MCMC algorithm. Let us say we want to generate samples from the probability distribution π(x)
(hereafter, also referred to as the target distribution). Let q(.|x) denote the proposal distribution
given the current state x. The MH algorithm states that a newly proposed state x′ using q(.|x) will
be accepted with probability:

α(x, x′) = min

(
1,
π(x′)q(x|x′)
π(x)q(x′|x)

)
(2.2)

If the proposed state x′ is accepted, then it becomes the next sample, else x is replicated as
the next sample. It can be shown that the Markov chain thus constructed has π(.) as its invariant
distribution, if the support of q(.|.) includes the support of π(.) (Tierney, 1994).

Gibbs sampling
Gibbs sampling (Geman & Geman, 1984) is another very popular MCMC algorithm which, in its
very basic form, is a special case of the MH algorithm. Named after the physicist Josiah Willard
Gibbs, the point of Gibbs sampling is that it is easier to sample from a conditional distribution
than to sample from a joint distribution. Let us focus on a problem of generating k samples of
x = {x1, x2, · · · , xn} from a joint distribution p(x1, x2, · · · , xn). The ith sample is denoted by x(i).

1. Start with some initial value x(0)

2. For each sample i= {1, 2, · · · , k}, sample each variable x(i)
j from the conditional distribu-

tion p(xj|x(i)
1, · · · , x(i)

j−1, x
(i−1)

j+1, · · · , x(i−1)
n)

In each iteration, we sample each variable conditioned on the current value of all the other
variables. The samples then approximate the joint distribution. One of the great things about the

22

Gibbs sampler is that it does not require any parameter tuning and hence is often the first MCMC
algorithm that practitioners resort to.

Important variations of the Gibbs sampler include the blocked Gibbs sampler (Jensen et al.,
1995) – where instead of sampling a single variable, we sample a block of variables conditioned
on all the other variables – and the collapsed Gibbs sampler (Liu, 1994) – where a subset of
variables are marginalized out when sampling for some other variable.

2.4 A∗ algorithm
A∗ is an algorithm that is widely used in graph search problems. It is a best-first search algorithm
that finds a minimum-cost path from an initial node to a goal node (which could be one among
many goal nodes). As the algorithm proceeds, it explores the optimal path given the currently
available information while maintaining a priority queue of the alternate paths.

The A∗ algorithm uses a knowledge-plus-heuristic cost function of a node x. This overall cost
is generally denoted by f(x). The cost function is a sum of two functions:

1. The path cost to reach x from the initial node. This is an exact cost and is denoted by g(x).

2. The estimated cost to reach a goal state from x, denoted by h(x). This is an estimate and is
called an admissible heuristic if it is a lower bound of the actual cost.

Thus, f(x) = g(x) + h(x). It is critical that h(x) is an admissible heuristic, since the algorithm
explores the node x∗ with the lowest f(.) value and terminates when it picks a goal state to explore.
If the heuristic is not admissible, then it might be possible to have a shorter path to a goal state
remaining unexplored, upon termination, which would in turn affect the correctness of the algo-
rithm. A good heuristic function is very application-specific and often requires extensive research
and domain expertise. A simple example of a heuristic function in a shortest route-finding problem
is the straight line distance between two cities. The full details of the algorithm are presented in
Algorithm 2.1, where e[x, y] is a function that returns the edge distance between neighboring nodes
x and y while h(x, y) is a function that returns an admissible heuristic distance between nodes x
and y. The Return Shortest Path method is a simple backtracking procedure which can return
the optimal path to the goal state. For more details about some of the subtleties, please refer to
(Russell & Norvig, 2010).

Application to MAP inference
The A∗ search algorithm can be used in other kinds of search problems too – one such application
is maximum a posteriori (MAP) inference. Given a joint probability distribution Pr(x, y), we

23

Algorithm 2.1 A∗(start, goal)

1: closedset← ∅
2: openset← {start}
3: previous← empty map
4: g[start]← 0
5: f [start]← g[start] + h(start, goal)
6: while openset 6= ∅ do
7: current← argminx∈openset f [x]
8: if current= goal then
9: Return Shortest Path(previous, goal)

10: end if
11: openset← openset \ current
12: closedset← closedset ∪ current
13: for all neighbor of current do
14: temp← g[current] + e[current, neighbor]
15: if neighbor ∈ closedset and temp ≥ g[neighbor] then
16: continue
17: end if
18: if neighbor /∈ openset or temp < g[neighbor] then
19: previous[neighbor]← current
20: g[neighbor]← temp
21: f [neighbor]← g[neighbor] + h(neighbor, goal)
22: if neighbor /∈ openset then
23: openset← openset ∪ neighbor
24: end if
25: end if
26: end for
27: end while
28: No path found.

wish to find argmaxx Pr(x | y). We can start off with an abstract model for Pr(.), say q(.), where
∀x, q(. | y) ≤ Pr(. | y). Thus, q(. | y) is an admissible heuristic function for Pr(. | y).

As we shall see in Chapters 5 and 6, we can use a succession of abstract models ending in the
actual probability distribution. Each abstract model is an admissible heuristic of the next abstract
model and this set of models can be used to define a hierarchical MAP inference algorithm.

2.5 Matrices and vectors
In this section, we will review some concepts and algorithms related to matrices. For more details
about any of these topics, please refer to (Golub & Van Loan, 2012).

24

Definitions
A matrix is a rectangular array of numbers, symbols or expressions, arranged in rows and columns.
In this dissertation, the matrix elements will be either numbers or symbols. Let A be a matrix with
m rows and n columns – an m×n matrix. ai,j denotes the element of the matrix at the ith row and
jth column.

A =

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

am,1 · · · am,n−1 am,n

 (2.3)

A vector is a special matrix which has only 1 column. For example, u is a vector with n
elements

u =

u1

u2
...
un

 (2.4)

A square matrix is one where the number of rows and columns are equal.

The diagonal of a square matrix is the set of elements whose row and column indices are
identical (i.e., ai,i for 1 ≤ i ≤ n, in an n× n matrix).

A diagonal matrix is a square matrix whose all non-diagonal entries are zeros.

An identity matrix is a diagonal matrix whose diagonal elements are all 1. Any square matrix
A multiplied with the identity matrix (of the same dimensions) results in A.

The transpose of an m× n matrix A is an n×m matrix B, where bi,j = aj,i for 1 ≤ i ≤ n, 1 ≤
j ≤ m. The transpose of A is generally denoted by AT .

The conjugate transpose of a matrix A, denoted by A∗, is the transpose of A with each entry
replaced by its complex conjugate entry.

The inverse of an n× n square matrix A, denoted by A−1, is the matrix which satisfies

AA−1 = I

where I is the n× n identity matrix.

A matrix is said to be invertible if its inverse exists.

For more information about standard matrix operations and their properties, please refer to
(Golub & Van Loan, 2012).

25

Special matrices

Triangular matrix

A triangular matrix is a square matrix where all the entries above or below the diagonal are zero.
If all the entries above the diagonal are zero (i.e., ai,j = 0 for i < j), then it is an lower triangular
matrix, while it is an upper triangular matrix if all the entries below the diagonal are zero (i.e.,
ai,j = 0 for i > j). An example of a 4× 4 upper triangular matrix is

A =

1 2 −1 0
0 8 −3 2
0 0 4 −1
0 0 0 6

Hessenberg matrix

A Hessenberg matrix is a square matrix that is “almost triangular”. If all the entries above the first
subdiagonal are zeros (i.e., ai,j = 0 for i < j− 1), then it is an lower Hessenberg matrix, while it is
an upper Hessenberg matrix if all the entries below the first subdiagonal are zero (i.e., ai,j = 0 for
i− 1 > j). An example of a 4× 4 upper Hessenberg matrix is

A =

1 2 −1 0
6 8 −3 2
0 −3 4 −1
0 0 1 6

Similar matrices

Two matrices A and B are said to be similar if

A=P−1BP (2.5)

where P is an n× n invertible matrix.

Unitary matrix

A square matrix is unitary, if its conjugate transpose is also its inverse, i.e., if it satisfies:

AA∗=A∗A= I

26

Orthogonal matrix

A square matrix with real entries is orthogonal, if its transpose is also its inverse, i.e., if it satisfies:

AAT =ATA= I

Orthonormal vectors

Two non-zero vectors x and y are said to be orthonormal if each have a norm of 1 and satisfy
xTy = 0. If they only satisfy the latter criterion, then they are called orthogonal vectors.

A set of vectors is said to be orthonormal if each pair is orthonormal.

Kronecker product
The Kronecker product, denoted by ⊗, is an operation on two matrices. If A is an m × n matrix
and B is a p× q matrix, then A⊗B is an mp× nq matrix of the form:

A⊗B=

a1,1B a1,2B · · · a1,nB
a2,1B a2,2B · · · a2,nB

...
am,1B · · · · · · am,nB

 (2.6)

It is a generalization of the outer product from vectors to matrices.

2.6 Eigenvalues and eigenvectors
An eigenvector of a square matrix A is a non-zero vector v, which when multiplied by A, results
in the eigenvector multiplied by a scalar λ

Av =λv (2.7)

The scalar λ is called the eigenvalue associated with the eigenvector v. The 2-tuple (λ, v) is
called an eigenpair.

The characteristic polynomial for a matrix A is given by:

Av− λv = 0 (2.8)

27

This is equivalent to

(A− λI)v = 0 (2.9)

For an equation of the form Bv = 0 to have a non-zero solution v, the determinant of B must
be 0. Therefore, the eigenvalues of A are the roots of the equation

det(A− λI) = 0 (2.10)

We know from the Abel–Rufini theorem that there are no algebraic formulae for roots of a
general polynomial of degree greater than 4. As a result, numerical methods are the only way for
eigenvalue computation for general matrices.

QR algorithm
Similar matrices have the same eigenvalues. The QR algorithm is an eigenvalue algorithm that is
used to calculate the eigenvalues and eigenvectors of a matrix. This is an iterative algorithm, where
in each iteration, the current matrix is factored into a product of an orthogonal matrix and an upper
triangular matrix (a QR decomposition) and then the factors are multiplied in reverse order.

Let Ak be the matrix in the kth iteration, so A0 =A. At the kth step, we compute the QR
decomposition Ak =QkRk where Qk is an orthogonal matrix and Rk is an upper triangular matrix.
We then form Ak+1 =RkQk.

Ak+1 =RkQk =Qk
TQkRkQk =Qk

TAkQk =Qk
−1AkQk (2.11)

Thus, Ak+1 and Ak are similar matrices and have the same eigenvalues and each iteration is a
similarity transformation. Under certain conditions, the matrixAk converges to a triangular matrix,
the Schur form of A. The eigenvalues of A are listed on the diagonal of the resultant triangular
matrix. It is impractical to iterate till we get perfect zeros in the left bottom half of Ak, but we can
bound the error with the Gershgorin circle theorem (Golub & Van Loan, 2012).

The cost of each iteration, in its current form, is O(n3). However, it can be sped up using a
Householder reduction to first bring A to an upper Hessenberg form. This reduction is an O(n3)
operation. After that, each iteration is O(n2) and it also reduces the number of iterations required.
This little detail will not be essential in our later analysis. Suffice to say that computational com-
plexity of the QR decomposition is O(n3). Upon termination, we have all the n eigenpairs of the
matrix A.

Sometimes though,we only need are a few eigenpairs (and not all of them). The QR algorithm
is not suitable for such an application since it only terminates upon the formation of the upper

28

triangular matrix (which contains all the eigenvalues) and hence is too expensive. This resulted
in a large body of work focused on finding a few (extreme) eigenvalues and their corresponding
eigenvectors.

Also, when A is a sparse matrix (also a very important subclass of applications), the QR al-
gorithm is not suitable since it cannot exploit sparsity. Similarity transformations are not sparsity-
preserving and the whole process still costs O(n3).

Krylov subspaces
The order-r Krylov subspace generated by an n× n matrix A and a vector x is the linear subspace
spanned by the images of x under the first r powers of A (A0 = I).

Kr = span{x, Ax, A2x, · · · , Ar−1x} (2.12)

Modern iterative methods for finding eigenvalues of large sparse matrices utilize the Krylov
subspace to avoid large matrix-matrix operations. Computing the different images of x require
only matrix-vector multiplications which can fully exploit any sparsity in A. Starting with x, we
first compute Ax, then multiply A with the resultant vector to obtain A2x, and so on. Since the
images of x soon become linearly dependent, all Kyrlov subspace methods require some form
of orthogonalization scheme. The method of orthogonalization distinguishes one algorithm from
another.

All Krylov subspace methods can yield partial results. If we only want k extreme eigenvalues
of a matrix, then we can work on a Krylov subspace whose order is O(k). If we assume the sparse
matrix A has O(n) non-zero entries, then the computational complexity of computing each basis
vector of the Krylov subspace is O(n2).

Lanczos method

Power iteration
One way to find the largest eigenvalue of a matrix A is the power iteration. Starting with an
initial random vector x, this method computes Ax, A2x, A3x, · · · , with the result being iteratively
normalized and stored in x. This sequence converges to the eigenvector corresponding to the largest
eigenvalue λ1.

However, this method does not utilize a lot of the information in the intermediate vectors that
are computed, since the power iteration only uses the final vector. If instead, we use an orthog-
onalized basis of the vectors {x, Ax, A2x, · · · , Ar−1x}, this orthogonal basis gives good approxi-

29

mations of the eigenvectors corresponding to the r largest eigenvalues, just like the final vector in
power iteration converges to the eigenvector corresponding to the largest eigenvalue.

Arnoldi iteration
Using Gram-Schmidt orthogonalization in the algorithm mentioned previously is numerically un-
stable. The Arnoldi iteration is an eigenvalue algorithm which fixes this numerical instability.

The Arnoldi iteration uses a variant of the Gram-Schmidt process to produce a series of or-
thonormal vectors {q1,q2, · · · } where q1 is the random initial vector (previously being referred to
as x). This set of vectors, called the Arnoldi vectors span the Krylov subspace Kr, after the rth

iteration. The exact steps are enumerated in Algorithm 2.2.

Algorithm 2.2 Arnoldi iteration(A, q1)
1: Start with an arbitrary vector q1 with norm 1
2: for i = 2 to r do
3: qi ← Aqi−1

4: for j = 1 to i-1 do
5: hj,i−1 ← q∗jqi
6: qi ← qi − hj,i−1qj
7: end for
8: hi,i−1 ← ||qi||
9: qi ←

qi

hi,i−1

10: end for

The i-loop computes the next orthonormal basis vector while the j-loop subtracts the projec-
tions of qi in the directions of q1, · · · ,qi−1.

After executing the Arnoldi iteration algorithm, we have an r × r upper Hessenberg matrix
formed by the coefficients hi,j .

Hr =

h1,1 h1,2 h1,3 · · · h1,r

h2,1 h2,2 h2,3 · · · h2,r

0 h3,2 h3,3 · · · h3,r
...
0 · · · 0 hr,r−1 hr,r

The eigenvalues of this coefficient matrix can be easily computed since it is pretty small (r �

n) and is also already in Hessenberg form, which makes it easy to use the QR algorithm. The
eigenvalues of Hr, called Ritz values, are good approximations of the eignenvalues of A (typically
of the largest r values). Let ui be an eigenvector of Hr corresponding to the eigenvalue λi. The

30

Ritz eigenvector of A corresponding to λi, vi, can be obtained by transforming the eigenvectors of
H using Qr:

vi =Qrui (2.13)

where Qr is the transformation matrix whose column vectors are q1, · · · ,qr.

2.7 Linear systems
A linear system is a mathematical model of a system whose evolution is defined by a linear op-
erator. Specific examples of linear systems discussed previously include hidden Markov models
(HMMs) and dynamic Bayesian networks (DBNs). In such systems, the output u′ is related to the
input u by the following relation:

u′=Au (2.14)

where A is an m× n matrix and the input and output are n× 1 vectors.

In temporal systems, u corresponds to the belief vector at the current time step t (i.e., ut) while
u′ corresponds to the belief vector at the next time step t+ 1 (i.e., ut+1). Let xt denote the state of
the system at time t – this is a value between 1 and n. Since the state space is generally identical
in subsequent time steps, A is a square matrix. The entry ai,j is the probability of transitioning to
state j if the current state is i (i.e., ai,j =Pr(xt+1 = j|xt = i)). Such a matrix is called a stochastic
matrix. Each column of a stochastic matrix represents a probability distribution and hence the sum
of the elements in each column is 1. Also, all its entries are non-negative.

We will revisit the specific properties of stochastic matrices and belief vectors along with the
eigenvalue problem in Chapter 4.

31

Chapter 3

Why are DBNs sparse?

Real stochastic processes operating in continuous time can be modeled by sets of stochastic dif-
ferential equations. On the other hand, several popular model families, including hidden Markov
models and dynamic Bayesian networks (DBNs), use discrete time steps. This chapter explores
methods for converting DBNs with infinitesimal time steps into DBNs with finite time steps, to
enable efficient simulation and filtering over long periods. An exact conversion—summing out
all intervening time slices between two steps—results in a completely connected DBN, yet nearly
all human-constructed DBNs are sparse. We show how this sparsity arises from well-founded ap-
proximations resulting from differences among the natural time scales of the near-deterministic or
“slow” and the stochastic or “fast” variables in the DBN. We define an automated procedure for
constructing an approximate DBN model for any desired time step and prove error bounds for the
approximation. We illustrate the method by generating a series of approximations to a simple pH
model for the human body, demonstrating speedups of several orders of magnitude compared to
the original model.

3.1 Introduction
As explained in detail in Section 2.2, a DBN represents the state of a system by the values of a set
of variables in a time slice, with connections between slices representing the stochastic evolution
of the system. Of particular importance is the fact that DBNs are often sparse—each variable in
a given slice includes among its parents only a small subset of variables from the preceding slice.
Thus, a DBN may require exponentially fewer parameters than an equivalent HMM.

Although there have been some attempts at DBN structure learning (Friedman et al., 1998),
for the most part DBNs are built by hand. As with ordinary (non-temporal) Bayesian networks,
this is a somewhat opaque process fraught with errors; but for DBNs, there is the additional issue

32

of choosing the size of the time step ∆ that separates the time slices. As we will see, the choice
of ∆ has a dramatic effect on both the computational cost of the model and the proper topology
of the DBN. Folk wisdom in the field—borrowed perhaps from standard practice in simulation
of differential equations—suggests that ∆ needs to be small enough so that the fastest-changing
variable in the model has only a small probability of changing its state in time ∆. Unfortunately,
in many systems this results in gross inefficiency. For example, the body’s pH setpoint changes on
a timescale of days or weeks, while breathing rate (which affects pH) changes on a timescale of
seconds; hence, a system that models both is forced to perform inference over millions of time steps
in order to track the pH setpoint over an extended period. This issue motivated the development
of continuous-time Bayes nets (CTBNs) (Nodelman et al., 2002), which avoid committing to any
fixed time step. Another approach, appropriate for regular but widely separated observations and
for certain restricted classes of models, is to convert a natural small-∆ model into an equivalent
model whose ∆ matches the observation frequency (Aleks et al., 2009).

The approach we take in this chapter is to think about how one might convert a continuous-
time model—a CTBN or a set of stochastic differential equations (SDEs)—into an equivalent, or
approximately equivalent, discrete-time DBN for a given ∆. This provides some insight into why
DBNs have the structures that they do, and also yields an automatic procedure for choosing time
steps and DBN structures, such that simulation over long periods can be both efficient and provably
(approximately) accurate.

Let us assume that the system can be modeled exactly by a set of n coupled SDEs that is sparse;
we can think of this model as a sparse DBN with a very small time step δ. Now, if we increase
the time step to, say, nδ by summing out n− 1 intervening steps in the model, the resulting model
will be completely connected (unless the original model has disjoint components). This presents a
puzzle, since most human-designed DBNs are sparse even with very large ∆. Such models must
implicitly be making approximations. In this chapter, we will show how these approximations are
a natural outcome when the variables have widely different timescales (rates of evolution).

In a deterministic dynamic model, the idea of using a wide separation of timescales to simplify
the model goes back at least to work by Michaelis and Menten (1913); see Iwasaki and Simon
(1994), Gómez-Uribe et al. (2008) for more recent surveys. The general analysis involves finding
gaps in the eigenspectrum of the coefficient matrix of the system of differential equations. Here,
we provide the simplest possible example: a system of two variables, s and f , where s (the “slow”
variable) influences f (the “fast” variable) but not vice versa:

ds

dt
= a1s ;

df

dt
= b1s+ b2f (3.1)

where we assume |a1| � |b2| and both negative. Viewed as a (deterministic) DBN, this looks like
Figure 3.1(a). The exact solution for some time t is

s = S0e
a1t ; f =

(
b1S0

a1 − b2

)
ea1t +

(
F0 −

b1S0

a1 − b2

)
eb2t (3.2)

33

where S0 and F0 are initial values for s and f . This is represented by the DBN structure shown in
Figure 3.1(b) for a large finite time step ∆. Although f is nominally a “fast” variable, the solution
shows that, for t� 1/|b2|, f follows a slowly changing equilibrium value that depends on s. Thus,
we need model only the dynamics of s and can compute f(t) directly from s(t). This corresponds
to the DBN structure in Figure 3.1(c). With this structure, we can use a large ∆ because s changes
very slowly.

Figure 3.1: Two variable DBN: The slow variable s is independent of the fast variable f . (a) Exact model for small
time-step δ. (b) Exact model for large time-step ∆. (c) Approximate model for large time-step ∆.

Effective model reduction methods have been developed in the dynamical systems literature
for deriving such simplified deterministic models in a semi-automated fashion. Moreover, any
discrete-state DBN model can be converted into an equivalent deterministic dynamical system
whose variables are the occupancy probabilities of individual states, and model-reduction tech-
niques can be applied to this system. Unfortunately, this approach involves an exponential blowup
in the model size; furthermore, even if it can be computed, the reduced version would not neces-
sarily correspond to a meaningful sparse model in terms of the original variables.

Instead, we work directly with the DBN, beginning with a very-small-time-step model, iden-
tifying time steps ∆ that nicely separate the model’s time scales, and deriving the corresponding
reduced DBN for each such ∆. A salient feature of the algorithm is that it avoids building the in-
tractably large full transition matrix. For large ∆, accurate simulation over very long time periods
becomes possible; moreover, the per-time-step inference cost for the reduced models can be much
less than for the original models, since the models become sparser as ∆ becomes larger. The larger
time-step combined with the simpler model result in speed-ups of several orders of magnitude
compared to the original model.

Section 3.2 presents timescales and other relevant definitions. Section 3.3 introduces an ex-
ample DBN that models the body’s pH control system. Section 3.4 presents the approximation
scheme, a proof of its correctness and an analysis of the associated error. Section 3.5 extends these
ideas to obtain a general set of rules to construct an approximate DBN for a large time-step. Sec-

34

tion 3.6 presents results on the accuracy and computational cost of the approximate DBNs of the
pH control mechanism.

3.2 Definitions
Consider a simple one-variable DBN, where the variable (say X) can be in one of k discrete states.
Let pi,j = Pr(Xt+1 = j|Xt = i). We define the timescale of X for state i, T iX , as the expected
number of time-steps that the variable spends in state i before changing state, given that it is
currently in state i. It can be shown that T iX = 1/(1− pi,i). Thus, the overall timescale of variable
X is actually a range of timescales from mini T

i
X to maxi T

i
X .

In a general DBN, let π̂(Xt+1) denote the parents of variable Xt+1 in the 2-TBN represen-
tation other than Xt. Then the conditional probability table (CPT) for Xt+1 is given by pki,j =

Pr(Xt+1 = j|Xt = i, π̂(Xt+1)t = k). We also define T i,kX = 1/(1− pki,i) to be the timescale of vari-
able X in state i when its parents are in state k, where k is any state in the joint state space of
π̂(Xt+1).

Now, consider two variables X1 and X2 in a general DBN. Let lX1 = mini,k T
i,k
X1

and hX2 =

maxi,k T
i,k
X2

. If lX1 � hX2 , then X1 and X2 are said to be slow and fast variables (respectively)
with respect to each other. Their timescale separation is defined as the ratio lX1/hX2 . For a set of
variables C = {X1, . . . , Xn}, the lower timescale bound is defined as lC = minXi∈C lXi

, with hC
also defined in a similar fashion. The existence of significant timescale separation in a DBN is
crucial in allowing accuracy-preserving model simplifications.

A continuous-time analog of the DBN is the continuous-time Markov chain. Formally, it is
defined as a Markov stochastic process {xt}t∈R+ with state space I. Let I = {1, 2, . . . , k}. The
transition matrix for the interval from 0 to t, Pij(t) = Pr(Xt = j|X0 = i), (i, j) ∈ I× I, is given by
P (t) = eLt, where the matrix L is called the generator of the Markov chain. L has the following
properties: (i)

∑
j lij = 0,∀i ∈ I (this makes L conservative); (ii) lij ∈ [0,∞), ∀(i, j) ∈ I× I with

i 6= j. L can be computed by:

L = lim
t→0

P (t)− I
t

(3.3)

We will assume that the transition matrix P (t) is standard (i.e., limt→0 Pii(t) = 1,∀i ∈ I).

3.3 A Motivating Example: Human pH Regulation System
pH is a measure of the concentration of hydrogen ions in a solution or substance. Measured on a
log scale of 0–14, higher numbers represent alkaline nature and lower numbers are characteristic of
acids. The pH balance of the human bloodstream is one of the most important biochemical balances

35

in the human body since it controls the speed of our body’s biochemical reactions (Guyton & Hall,
1997).

The human body has a complex system to maintain body pH around a setpoint (' 7.4) under
normal circumstances. Generally, metabolism leads to CO2 production, thereby producing car-
bonic acid, which lowers the pH of blood (an abnormal lowering leads to “acidosis”). On the other
hand, respiration brings O2 into the system and also removes CO2, which neutralizes the acid in
the blood, thus raising the pH. These are the two main compensatory mechanisms that we will con-
sider in our model. Chemical acid–base buffer systems of the body fluids (which provide the first
line of defense against fluctuations in blood pH) are not modeled. Metabolism rate increases with
increasing temperature and higher levels of exertion. The respiratory rate (measured as “Minute
Volume”, which is the volume of air inhaled in a minute) is raised by a lower pH value, if the pH
setpoint is normal. However, an overdose of certain narcotics might lower the pH setpoint of the
body. In this case, a low pH will not trigger a rise in the Minute Volume, causing the blood to
become more and more acidic and possibly resulting in death. Figure 3.2 shows the DBN model of
the system which controls the body pH. Variables with similar shades have comparable timescales.
The darkest shaded variable (i.e., “Minute Volume”) has the fastest dynamics, while the lightest
shaded variable (“pH setpoint”) has the slowest dynamics. Details of each variable in the model
are provided in Table 3.1.

Figure 3.2: Exact model for the pH control system for a small time-step δ.

36

Table 3.1: Information about the variables in the DBN (including their state space and timescales)

Details of the pH control system DBN
Variable State Timescale
Name Space (Seconds)

pH setpoint { Normal, Low } lpHst = 3.3e6
(pHst) hpHst = 1e7

Temperature { Hot, Warm, lTemp = 8e3
(Temp) Cool, Cold } hTemp = 1e4

Exertion { High, Normal, lEx = 5e3
(Ex) Low} hEx = 1e4
pH { Acid, Neutral, lpH = 100

(pH) Alkaline } hpH = 300
Metabolism { High, Normal, lMeta = 70

(Meta) Low } hMeta = 150
Minute Volume { High, Normal, lMV = 1.1

(MV) Low } hMV = 5

We chose this model as a motivating example, since there are interacting variables in this sys-
tem which evolve at very different timescales. We will construct approximate, sparsely connected
models for this system over large time-steps in Section 3.6.

3.4 Approximation scheme
Let us consider the general 2-variable DBN in Figure 3.3(a). (Although one might expect a link
between st+δ and ft+δ, we can reduce δ appropriately to drop the intra-time-slice links since any
differential equation system can be represented without contemporaneous edges.) For simplicity
of presentation, we will assume that s and f are binary random variables (although all the results
presented in this section are generally applicable to any finite discrete state space for the two
variables). Since we assume there is a timescale separation in the dynamics of s and f , their CPTs
should have the following structure:

p(st+1|st, ft) =

1− εx1 εx1

1− εx2 εx2

εx3 1− εx3

εx4 1− εx4

 (3.4)

37

Figure 3.3: Two variable general DBN: The slow variable s is also dependent on the fast variable f . (a) Exact model
for small time-step δ. (b) Exact model for large time-step ∆. (c) Approximate model for large time-step ∆.

p(ft+1|st, ft) =

1− a1 a1

a2 1− a2

1− a3 a3

a4 1− a4

 (3.5)

where ε � 1, 0 < ai, xi < 1 and ai, xi � ε. The rows correspond to (st, ft) = {(0, 0), (0, 1),
(1, 0), (1, 1)} respectively. The first column corresponds to st+1 (or ft+1) = 0. Using the definitions
in Section 3.2, ls = mini 1/εxi and hf = maxi 1/ai. Therefore ls/hf = O(1/ε). It should be noted
that ε is a redundant parameter in this specification—hence we have an option to choose an ε. This
choice has to be made such that the order of the xi’s and ai’s are similar and they also satisfy the
previous constraints.

The exact transition model for a larger time-step ∆ is shown in Figure 3.3(b). Without loss of
generality, let us assume δ = 1. As shown in Figure 3.3(c), for the large time-step ∆, the distribu-
tion of ft+∆ becomes (approximately) independent of the value of st and ft. The key observation
is that irrespective of the value of ft, the distribution of ft+i, for i ∈ [1,∆] will exponentially
converge to the equilibrium distribution of f for the current value of s. Once it does so (approxi-
mately), we can compute an exact expression for P̂ (st+(N+1)|st+N), where N is large enough for
f to approximately reach its equilibrium distribution. This expression will be equal to

P̂(st+1|st) =
∑
ft

p(st+1|st, ft)×P∞(ft|st) (3.6)

where P∞(ft|st) is the equilibrium distribution of f . Since f (nearly) reaches its equilibrium in a
short fraction of ∆, we ignore that portion of f ’s trajectory, and simply assign (P̂ (st+(N+1)|st+N))∆

to be the CPT of s for the large time-step ∆. Equation 3.6 is analogous to Forward Euler integration
since we use st only to determine the equilibrium distribution of f .

The CPT P̂ (ft+∆|st+∆) is simply the invariant distribution of f for the fixed value of st+∆.

38

Correctness of the approximation scheme
The above approximation heuristic is analogous to elimination of the fast variable through aver-
aging for the continuous-time Markov chain. (For a complete treatment of the continuous-time
case, see Pavliotis and Stuart (2007).) In particular, let the state spaces of s and f be Is and If re-
spectively. Let q((i, k), (j, l)) denote the element of the generator matrix associated with transition
from (i, k) ∈ Is×If to (j, l) ∈ Is×If . B0(i) is a generator with entries b0(k, l; i) where the indices
indicate transition from k ∈ If to l ∈ If for given fixed i ∈ Is. For each i ∈ Is, B0(i) generates
an ergodic Markov chain on If . Let ρB∞(k; i)k∈If be the invariant distribution of a Markov chain
on If , indexed by Is. Similarly, let B1(k) with indices b1(i, j; k) denote transition from i ∈ Is to
j ∈ Is, for each fixed k ∈ If . Let us introduce generators Q0 and Q1 of Markov chains on Is × If
by:

q0((i, k), (j, l)) = b0(k, l; i)δij,

q1((i, k), (j, l)) = b1(i, j; k)δkl,

where δij and δkl are Kronecker delta functions. Now, let us define another generator Q̄ of a
Markov chain on Is by q̄(i, j) =

∑
k ρ

B
∞(k; i)b1(i, j; k).

Lemma 1

If Q, the generator of a Markov chain, takes the form Q = 1
ε
Q0 + Q1, then for ε � 1 and times t

up to O(1), the finite-dimensional distribution of s ∈ Is is approximated by a Markov chain with
generator Q̄ with an error of O(ε).

The proof (Pavliotis & Stuart, 2007, Section 9.4) bounds the error on a vector v, such that vi(t)
= E(φx(t)|x(0) = i), where φ : I 7→ R. v(t) satisfies the backward Kolmogorov equation (i.e.,
dv/dt = Lv; v(0) = φ). Thus v(t) = P (t)φ, where P (t) is the transition matrix for the interval
from 0 to t. Since this is true for any mapping φ, the approximation error in any element of P (t)
is necessarily bounded by O(ε) too.

We now show how our approximation scheme for the discrete time-step is equivalent to their
solution for continuous time and thereby shares the same order of approximation error. The first
step towards proving equivalence is to show that the generator matrix corresponding to the discrete-
time process also has a similar structure (i.e., Q = 1

ε
Q0 + Q1). Firstly, for δ � 1 and an integer

n > 0,

[
1− δx δx
δy 1− δy

]n
≈
[

1− nδx nδx
nδy 1− nδy

]
(3.7)

39

when we ignore δ2 terms. If we consider 1/δ to be a large integer, Equation 3.7 implies[
1− x x
y 1− y

]δ
≈
[

1− δx δx
δy 1− δy

]
(3.8)

Let P δ
f (similarly P δ

s) be the CPT for the dynamics of f (s) over an infinitesimal time-step δ
when we freeze s (f). Using Equation 3.8, we get:

P δ
s ≈

1− δεx1 δεx1

1− δεx2 δεx2

δεx3 1− δεx3

δεx4 1− δεx4

 ;P δ
f ≈

1− δa1 δa1

δa2 1− δa2

1− δa3 δa3

δa4 1− δa4

We now combine P δ

s and P δ
f to form P δ

s,f .

P δ
s,f ≈

(1− δεx1)(1− δa1) · · · · · · δεx1δa1

...

...
δεx4δa4 · · · · · · (1− δεx4)(1− δa4)

The generator corresponding to this discrete-time process can be computed by the formula L =
limδ→0(P δ

s,f − I)/δ. Since we divide by δ when taking the limit, ignoring the higher order terms
of δ in the previous step(s) becomes inconsequential. The generator matrix L thus obtained is:

L =

−a1 a1 0 0
a2 −a2 0 0
0 0 −a3 a3

0 0 a4 −a4

+ ε

−x1 0 x1 0

0 −x2 0 x2

x3 0 −x3 0
0 x4 0 −x4

Hence, the generator has the form L0 + εL1. Thus, L = O(εQ). Since P (t) = eLt, the behavior
of L at time T/ε is similar to the behavior of Q at time T . Thus we can use Lemma 3.4 to say the
following:

If L, the generator of a Markov chain, takes the form L = L0 + εL1, then for ε� 1 and times
t up to O(1/ε), the finite-dimensional distribution of s ∈ Is is approximated by a Markov chain
with generator L̄ with an error of O(ε), where L̄(i, j) =

∑
k ρ

L
∞(k; i)l1(i, j; k).

It is easy to see that the generator corresponding to the transition matrix P̂ (st+1|st) (Equa-
tion 3.6) is exactly equal to the generator L̄, and hence we arrive at the following result.

40

Result 1

If a discrete time Markov process has conditional probability tables given by Equations 3.4 and
3.5, then for ε � 1 and times ∆ up to O(1/ε), the finite-dimensional distribution of s ∈ Is is
approximated by P̂ (st+1|st)

∆
(given by Equation 3.6), with error O(ε).

For very small values of ∆ (like O(1)), the error for f decays exponentially (O(|λ|∆)) where
λ is the maximum singular value of p(ft+1|st, ft). However, for ∆ = O(1/ε), the error for f
essentially replicates the error for s, since the fast ergodic dynamics of f has almost reached a
quasi-static equilibrium.

Figure 3.4: Structural transforma-
tion in the large time-step model
when f1 and f2 have no cross links
in the small time-step model

Figure 3.5: Structural transforma-
tion in the large time-step model
when f1 and f2 have cross links in
the small time-step model

Figure 3.6: A slow cluster s1 has
a new parent s2 in the larger time-
step model when s2 is a parent of f
in the smaller time-step model

Special case
In the exact model, if p(st+1|st, ft) = p(st+1|st) (i.e., the dynamics of s is independent of f as
shown in Figure 3.1), then the dynamics of s is tracked exactly by the above scheme. In Equa-
tion 3.6, the p(st+1|st, ft) term goes outside the summation, and the invariant distribution of f
sums to 1.

Other approaches
There is another line of work (Yin & Zhang, 2004) where discrete time transition models of the
form Pε = P + εQ are considered. Here, P is a stochastic matrix and Q is a generator matrix.
The approximation error for P k

ε can be made O(εn+1) by constructing a series of approximation
functions. While this approach has the benefit of a potentially much smaller error, the functions are
much more expensive to compute and the approximate model has no simple or intuitive mapping
to the original model.

41

3.5 General Rules of Construction
This section describes the general algorithm for constructing an approximate DBN for a larger
time-step when given the exact DBN for a small time-step δ. We will use the approximate CPT
construction discussed in section 3.4. Let the DBN have n variables X1, X2, . . . ,Xn. This algo-
rithm will produce a sequence of approximate DBNs for various increasing values of ∆ (the larger
time-step). The algorithm is as follows:

1. For each variable Xi, determine lXi
and hXi

.

2. Cluster the variables into {C1, C2, . . . , Cm} (m ≤ n), such that εi ≈
hCi

lCi+1
� 1, ∀i ∈

{1, 2, . . . ,m−1}, i.e., there is a significant timescale separation between successive clusters.
C1 is the cluster of fastest variables, while Cm is the cluster of slowest variables. In the worst
case, m can be 1, when all variables have very comparable timescales.

3. Repeat the following steps for i = {1, . . . ,m− 1}. Let ∆0 = 1.

a) Select ∆i = ∆i−1 ×O(1/εi)

b) For each configuration of the slower parents of Ci, compute the stationary point (equi-
librium distribution) of Ci to fill in the CPT of p((Ci)t+∆i

|π(Ci)t+∆i
) in the approxi-

mate model for time-step ∆i. If the fast variables in Ci are conditionally independent
given the slow parents Cj (j > i), then the individual equilibrium are calculated (see
Figure 3.4). However, if the variables in Ci are not conditionally independent given Cj
(j > i), we have to compute the joint equilibrium of Ci (as in Figure 3.5).

c) While Ci only has parents in the same time-slice in the approximate model, Cj (j > i)
will have parents from the previous time-slice. If there were no links to Cj from Ci in

the exact model, then the CPT of Cj is exactly equal to ˆCPT
(∆i/∆i−1)

Cj
(as mentioned in

section 3.4), where ˆCPTCj
is the joint CPT of Cj and its parents for time-step ∆i−1.

In the worst case, all Cj’s (j > i) can become fully connected.
However, if there are links from the fast cluster Ci to the slow cluster Cj , then we have
to use Equation 3.6 to compute the CPT of Cj for time-step ∆i. Since the equilibrium
distribution of Ci is parameterized by the parents of Ci, these variables now become
additional parents of Cj (see Figure 3.6).

d) Now we have an approximate model for time-step ∆i. This model only has links across
time-slices for Cj (j > i). This approximate model is used as the exact model for the
next iteration (since using the exact model would result in the same approximations).

The sequence of DBNs produced by this algorithm become more and more sparse. This makes
exact inference on these approximate models much more feasible than the fully connected exact
model for the same time-step. Let Ds be the number of variables in the slow clusters and Df be

42

the number of variables in the fast clusters and let all variables be binary. Then, the complexity of
exact inference (per time step) in the fully connected, exact model is O(22×(Ds+Df)) while that in
the approximate model is O(22×Ds + 2Ds+Df). This complexity is for the projection of the joint
state space distribution vector. Also, particle filters will run much faster on these approximate
models because particles are only needed to estimate the joint state space of Ds and not Ds ∪Df

(as is the case in the exact model). In the next section, we return to the pH regulation model from
Section 3.3 and create approximate models for appropriate values of ∆.

3.6 Experiment
As mentioned previously, the pH regulation model exhibits a wide range of timescales. Minute
Volume can potentially change every second, depending on the current needs of the body. The
pH of the body and the rate of metabolism have much slower dynamics relative to Minute Vol-
ume. Temperature and Exertion are even slower, while pH setpoint (which only changes upon a
heavy overdose of narcotics, a very rare event) is the slowest of all. (Timescales are specified in
Table 3.1.) Thus, there are four separate clusters of variables on which we can apply the algorithm
of Section 3.5.

The three approximate models created for ∆ = 20, ∆ = 1000 and ∆ = 50000 are shown
in Figure 3.7. For the first approximate model M20, only Minute Volume is the fast variable.
Hence, its parents are pH and pH-setpoint from the same time-slice. Also, since pH-setpoint
determines the equilibrium distribution of Minute Volume, which in turn is a parent of pH (in the
exact model), pH now has an additional parent, pH-setpoint (according to step 3.(c) in Section 3.5).
For the second approximate model M1000, pH and Metabolism are the new fast variables. Since
Metabolism is a parent of pH, we have to consider the joint equilibrium of the two variables, given
each configuration of their slow parents (i.e., pH-setpoint, Temperature and Exertion). For the third
approximate modelM50000, Temperature and Exertion also become fast variables. Since these were
independently evolving variables, they do not have any parents in M50000.

For evaluation purposes, we implemented the exact model and the three approximate models
in MATLAB. We chose 10 random starting configurations of the variables and simulated the exact
trajectory of the belief vector for each of these initial configurations for 1,000,000 time-steps. Then
we used the same starting configurations and M20 to simulate the trajectories at regular intervals
of 20 steps over 1 million time-steps. We repeated the same procedure with M1000 and M50000

to simulate the trajectories at intervals of 1000 and 50000 steps respectively. The L2-error (per
time step) of the joint state space belief vector was averaged over all 10 instances and plotted in
Figure 3.8. As expected, the error increases with the level of approximation—although all three
models perform well.

The performance speed-up details of the different models are summarized in Table 3.2. The
speed-up factor for M20 was less than 20 because the exact model required only matrix multi-

43

Figure 3.7: Approximate models of the pH regulation system of the human body. (a) Approximate model for ∆ = 20.
(b) Approximate model for ∆ = 1000. (c) Approximate model for ∆ = 50000

Table 3.2: Computational speed-up in different models

Model Avg. Simulation Speedup
Time (sec) Factor

Exact 385.44 1
∆ = 20 24.87 15.5

∆ = 1000 .0889 4300
∆ = 50000 .0006327 > 600000

plication (very efficient in MATLAB), while M20 needed some indexing work to compute the
distribution of the fast variable Minute Volume even though its matrix multiplication requirements
were less. The benefit of a much simpler (sparser) model was evident for both M1000 and M50000,
as the speed-up factor exceeded the size of the time-step (∆).

Since this is a model for pH regulation, we also decided to check the performance of the
approximate models on the marginal distribution of pH. Since pH is a slow variable in M20, it is

44

0 1 2 3 4 5 6 7 8 9 10

x 10
5

10
−4

10
−3

10
−2

10
−1

10
0

Time elapsed

L2
 e

rr
or

 (
pe

r
tim

e
st

ep
)

∆ = 20
∆ = 1000
∆ = 50000

Figure 3.8: Comparison of the average L2-error(per time-step) of the belief vector of the joint state space for M20,
M1000 and M50000.

simulated exactly in that model and hence is not relevant to this experiment. As we can see from
Figure 3.9, both M1000 and M50000 perform very well with an error of less than 0.04%.

3.7 Conclusion
We have shown how DBNs that are naturally sparse for a small time step may be converted to
(different) sparse DBNs for large time steps, even though an exact conversion methods would
yield a fully connected model. The sparse approximation becomes more and more accurate with
increasing separation of timescales among variables. Our error analysis also supports a quantitative
trade-off between accuracy and speed-up. The methods accommodate models with widely varying
timescales and/or intermittent observations and should be applicable to a broad range of chemical,
biological, and social systems with these properties.

Aleks et al. (2009) noted that specifying a DBN may be quite easy for a small time-step but
much harder for a larger time-step. This construction automates the conversion. Thus, it allows
the user to build a DBN at a natural time-step, yet run it at much larger time-steps to reduce
computational cost.

Further work along these lines includes extending the results to handle continuous variables;

45

0 200 400 600 800 1000

0.2554

0.2556

0.2558

0.256

0.2562

0.2564

0.2566

0.2568

Time elapsed (steps of 1000)

p(
pH

 =
 "

lo
w

")

exact
∆ = 1000
∆ = 50000

Figure 3.9: Accuracy of M1000 and M50000 in tracking the marginal distribution of pH

adding the possibility of replacing a state variable by another variable corresponding to its long-
term average value (e.g., replacing instantaneous blood pressure by its one-minute average); and
adding the possibility of replacing a set of variables by functions of those variables (e.g., replacing
two Boolean variables by their XOR, or two continuous variables by linear combinations thereof).
These two latter ideas both create additional scope for clean separation of timescales.

46

Chapter 4

Eigencomputation for factored systems

In the previous chapter, we limited ourselves to considering temporal systems where individual
variables were evolving at very different rates. However, we would like to ease this constraint and
instead generalize our technique to systems where different linear combinations of the variables
evolve at widely separated rates. In such a system, a spectral gap exists between the first few
eigenvalues and all the remaining ones. Accurate approximate inference on such a system can be
performed by only tracking the eigenvectors corresponding to the eigenvalues before (i.e., larger
than) the spectral gap. However, identifying these eigenpairs requires a spectral analysis, which
is computationally very expensive if we use conventional methods. This chapter presents an algo-
rithm that combines a numerical eigenpair algorithm (namely the Arnoldi iteration) with factored
representations of belief states to perform an approximate eigenanalysis of a DBN (or any factored
linear system).

4.1 Linear systems
A linear system is a mathematical model of a system whose transformation from input to output
is defined by a linear operator. Specific examples of linear systems discussed previously include
hidden Markov models (HMMs) and dynamic Bayesian networks (DBNs). In such systems, the
output u′ is related to the input u by the following relation:

u′=Au (4.1)

where A is an m× n matrix and the input and output are n× 1 vectors.

In temporal systems, u corresponds to the belief vector at the current time step t (i.e., ut) while

47

u′ corresponds to the belief vector at the next time step t+ 1 (i.e., ut+1). Let xt denote the state of
the system at time t – this is a value between 1 and n. Since the state space is generally identical
in subsequent time steps, A is a square matrix. The entry ai,j is the probability of transitioning to
state i if the current state is j (i.e., ai,j =Pr(xt+1 = i|xt = j)). Such a matrix is called a stochastic
matrix. Each column of a stochastic matrix represents a probability distribution and hence the sum
of the elements in each column is 1. Also, all its entries are non-negative.

Factored representation
For clarity of exposition, we will focus on systems with binary variables in the rest of this chapter.
However, the algorithms presented here extend trivially to any system of discrete-valued variables.
The number of independent parameters required to specify an HMM with n discrete states is n2−n
(since each column has one dependent parameter). Since the number of possible states for a system
increases exponentially with the number of variables, this specification is too expensive. Instead,
practitioners use conditional independence relations to specify the linear evolution of a temporal
system using DBNs (which were introduced in Chapter 2 and discussed further in Chapter 3.

The number of independent parameters required to specify a DBN with K binary variables (K
is O(log2 n)) is O(K), as long as the maximum number of parents of a variable is O(1). This
makes the specification of large systems feasible.

4.2 Computational complexity
In this chapter, we study the problem of computing the eigenvalues and eigenvectors of a linear
system which is specified in a factored form. The naive way to solve this problem would be to
convert the factored representation into the equivalent dense matrix (i.e., convert the DBN to its
equivalent HMM), and use the QR algorithm on the resultant dense matrix. The computational
complexity of this process would be O(n3) or O(23K).

If we are only interested in a few extreme eigenvalues, then we can use Arnoldi iteration on the
dense HMM representation. The computational complexity to compute r eigenvalues is O(r22K).
This is still too expensive since it is exponential in the size of the problem specification (i.e., the
input, which is O(K)). The exponential blowup is a result of converting the factored form to the
dense HMM.

However, it is possible to work with the original factored form and still perform an Arnoldi
iteration, although certain approximations need to be made, primarily to keep every representation
from suffering an exponential blowup.

48

4.3 Factored belief vector and forward projection
The key step in the Arnoldi iteration to find the r most extreme eigenvalues of a matrix A is to
compute the vectors x, Ax, · · · , Ar−1x, for a random initial vector x. Since in a DBN, x is the
belief vector over the state space, its uncompressed size would be n×1. However, this is too large.
So, instead we have to resort to some factored representation for the belief vector as well.

X1

X2

X3

X4

X5

X7

X6

X1

X2

X3

X4

X5

X7

X6

Time slice

t
Time slice

t+1

Cluster C1

Cluster C2

Cluster C3

Figure 4.1: A 2-TBN with 7 binary variables in each time slice. The belief vector is maintained as a Kronecker
product of belief vectors over clusters of variables – C1 = {X1, X2, X3}, C2 = {X4, X5} and C3 = {X6, X7}

One such possibility is to assume that there are variable clusters within the system which are
independent of one another. For instance, as shown in Figure 4.1, variablesX1, X2, X3 form cluster
C1 whereas X4, X5 form C2 and X6, X7 form C3. Therefore

Pr(X1, X2, X3, X4, X5, X6, X7) =Pr(X1, X2, X3)Pr(X4, X5)Pr(X6, X7) (4.2)

The joint belief vector, denoted by x, is the Kronecker product of the belief vectors of the

49

individual clusters
x = xC1 ⊗ xC2 ⊗ xC3 (4.3)

Henceforth, we will refer to such vectors as Kronecker product vectors. In this example, x is a
128× 1 vector, while xC1 , xC2 and xC3 are 8× 1, 4× 1 and 4× 1 vectors respectively. In general,
if the maximum size of a cluster is O(1), then the number of parameters required to specify a
Kronecker product vector is O(K).

The first thing to consider is that such a representation is an approximation. As we project
the initial random vector (which might be chosen as one that does factorize), it will no longer be
factored in the same manner as before. Due to the infeasibility of storing the full-blown joint belief
vector that it will eventually become, we store only the cluster marginals after every iteration. This
allows us to keep the representation size constant. The Boyen-Koller algorithm (Boyen & Koller,
1998) shows that such factored belief vectors have bounded error in tracking the evolution of a
factored system.

4.4 Revisiting Arnoldi
Let us now revisit the Arnoldi iteration algorithm that was introduced in Chapter 2 and identify the
modifications required to run the Arnoldi iteration for a factored system. The first modification, of
course, is the factored nature of the initial vector x.

Step 1: Forward projection through DBN
This step can be performed via the junction tree algorithm (see Chapter 2 for more details). The
cost of this operation is O(K) if the largest clique in the junction tree is O(1). The second part of
this step is to project back the resultant vector into the constituent factors – C1, C2 and C3 in this
case. (Boyen & Koller, 1998) showed that this back projection into a set of factors enables us to
keep the size of the representation of xt constant as t increases, while keeping the approximation
error bounded. In the absence of this projection step, the representation size would grow quickly
to O(2K). Another option is the factored frontier algorithm (Murphy & Weiss, 2001).

An important approximation we have to make is to pre-compute all the projected belief vectors
at the outset. After each Arnoldi iteration, the resultant vector will not necessarily have all non-
negative components. Since the forward projection algorithms only work with belief vectors, these
vectors can no longer be projected using the existing algorithms. Hence, we choose to compute
the projected belief vectors before performing the iterative orthogonalization process.

50

Step 2: Orthogonalize
In order to find a vector which is orthogonal to the existing vectors, we will follow the standard
steps of the Arnoldi iteration algorithm. We now present the methods and computational complex-
ities of the various operations required for this orthogonalization.

Dot product

Let two vectors x and y be Kronecker product vectors xC1 ⊗ xC2 ⊗ xC3 and yC1
⊗ yC2

⊗ yC3

respectively. We only consider the case where the clusters are the same since that in ensured by the
factorization step mentioned above. We need to compute the dot product of two such Kronecker
product vectors in Step 7 of Algorithm 4.1. This can be broken down as follows:

xTy = (xC1 ⊗ xC2 ⊗ xC3)
T (yC1

⊗ yC2
⊗ yC3

)
=
(
xC1

T ⊗ xC2

T ⊗ xC3

T
) (

yC1
⊗ yC2

⊗ yC3

)
=
(
xC1

T ⊗
(
xC2

T ⊗ xC3

T
)) (

yC1
⊗
(
yC2
⊗ yC3

))
= xC1

TyC1
⊗
(
xC2

T ⊗ xC3

T
) (

yC2
⊗ yC3

)
=
(
xC1

TyC1

)
⊗
(
xC2

TyC2

)
⊗
(
xC3

TyC3

)
=
(
xC1

TyC1

) (
xC2

TyC2

) (
xC3

TyC3

)
(4.4)

Thus, the computational complexity of the dot product isO(K) given the previous assumptions
hold. This also allows us to calculate the norm of a factored vector which is required in Step 11 of
the algorithm.

Algorithm 4.1 Factored Arnoldi iteration(A, q1)
1: Start with an arbitrary factored vector q1 with norm 1
2: for i = 2 to r do
3: qi ← Project&Factorize(D, qi−1)
4: end for
5: for i = 2 to r do
6: for j = 1 to i-1 do
7: hj,i−1 ← q∗jqi
8: qi ← qi − hj,i−1qj
9: end for

10: qi ← Compress (qi)
11: hi,i−1 ← ||qi||
12: qi ←

qi

hi,i−1

13: end for

51

Sum of two Kronecker product vectors

The next important operation is the summation (or subtraction) of two Kronecker product vectors,
as required in Step 11 of Algorithm 4.1. Firstly, it is not possible to perform this addition exactly
without creating the full vector (which requires O(2K) operations). Secondly, the exact result of
this operation cannot, in the general case, be factorized into the same clusters. As a result, we have
to resort to some sort of approximation.

The problem of approximating the sum of two (or more) Kronecker product vectors (or matri-
ces) has been studied in great detail (Loan & Pitsianis, 1992). The problem is posed as minimizing
an objective function of the form:

φq(x1:r, y1:r) = ||q1 ⊗ q2 −
r∑
i=1

xi ⊗ yi||
2

(4.5)

where xi and yi are m1× 1 and m2× 1 vectors (for all i), while q is a Kronecker product of q1

and q2, which have the same dimensions as xi and yi respectively.

The authors prove that the optimal form of q1 is a linear combination of the xi vectors:

q1 =
r∑
i=1

αixi (4.6)

The same relationship holds true for q2 and the yi vectors as well.

This minimization problem can now be solved using a gradient descent method. Let us break
down the objective function:

φq(x1:r, y1:r) =

m1∑
j=1

m2∑
k=1

(
q1
j q

2
k −

r∑
i=1

xijy
i
k

)2

(4.7)

Substituting q1 and q2 as linear combinations of x1:r and y1:r respectively, the objective function
reduces to:

φα,β(x1:r, y1:r) =

m1∑
j=1

m2∑
k=1

((
r∑
i=1

αix
i
j

r∑
i=1

βiy
i
k

)
−

r∑
i=1

xijy
i
k

)2

(4.8)

Computing the exact gradient of the objective function incurs a computational complexity of
O(m1m2r), which is infeasible as it is equivalent to O(nr) in our setting. Instead, we can resort to
a stochastic gradient method, where in each iteration, we approximate the gradient of the objective
function using a random subsample of O(m1 + m2) of the possible summation terms in the RHS

52

of Equation 4.8. Computing the approximate gradient via such a method requires O((m1 +m2)r)
computations (i.e., O(rK) computations in our setting).

Algorithm 4.2 Stochastic gradient descent(α, β, γ, x1:r, y1:r)

1: Choose an initial vector 〈α, β〉 and a learning rate γ
2: while an approximate minimum is not obtained do
3: P ← random m1 +m2 pairs of (j, k) s.t. 1 ≤ j ≤ m1, 1 ≤ k ≤ m2

4: φ̂(P)←
∑

(j,k)∈P
((∑r

i=1 αix
i
j

∑r
i=1 βiy

i
k

)
−
∑r

i=1 x
i
jy
i
k

)2

5: Compute5α,βφ̂(P)

6: 〈α, β〉 ← 〈α, β〉 − γ 5α,β φ̂
7: end while

However, it is not necessary to apply this approximation as soon as we encounter an addition (or
subtraction) operation. One possibility is to maintain the multiple Kronecker product vectors and
their coefficients (and perform the summation later). Thus, we do not perform any addition in Step
8 – instead, we save the coefficients of each of the qj vectors in the current value of qi. The reason
for this delayed addition, is to achieve a higher level of accuracy in the orthogonalization process.
As a result, the complexity of step 7 becomes O(jK) in the jth iteration and the complexity of
each iteration of the i loop becomes O(i2K).

Once, we have computed qi in this manner, we can apply the approximate sum operation to
reduce the sum to a single Kronecker product vector (with the same set of clusters).

Step 3: Find eigenvalues and eigenvectors
The r most extreme eigenvalues of A can be approximated with the eigenvalues of the upper
Hessenberg coefficient matrix H from algorithm 4.1. We can use the QR algorithm or one of its
variants to find the eigenvalues and corresponding eigenvectors in O(r3), which is very tractable
since r � n. The eigenvector of A corresponding to the eigenvalue λi can be computed in their
factored form by:

vi =Qrui (4.9)

where ui is the corresponding eigenvector of λi in Hr and Qr is the transformation matrix
whose column vectors are q1, · · · ,qr. Hence,

vi =ui,1q1 + ui,2q2 + · · ·+ ui,rqr (4.10)

This is again another summation of Kronecker product vectors and can be approximated as
described in Section 4.4. This completes our overall eigenvalue algorithm.

53

4.5 Experiments
In this section, we will outline a set of experiments that we performed to demonstrate the accuracy
and effectiveness of our approximate eigen-pair algorithm. More specifically, we want to show:

1. Empirical convergence rates of the stochastic gradient descent with increasing problem size

2. Quality of approximation with increasing problem size

3. Quality of approximation with increasing amount of near-determinism

Data generation
Without any loss of generalization, we will assume that all variables are binary. We generate a 2-
TBN with n variables in each time-slice such that there are no cycles. We set the maximum number
of parents for any node to be 3 to ensure sparse factors. The CPTs are generated with varying
degrees of near-determinism, based on the requirements of a specific experiment. The amount of
near-determinism is quantified by a parameter ε, where p(X t

i |π(X t
i)) is o(ε) when X t

i 6= X t−1
i .

Implementation details
We used the junction tree implementation of the LIBDAI library (Mooij, 2010). We implemented
the rest of the algorithm (the Arnoldi iteraton framework, the stochastic gradient descent) in
Python. For the QR algorithm and to compute the exact eigen-pairs for problem instances, we
used the linalg module of the numpy library in Python.

Results
We define the problem size as the number of binary variables in each time slice of the DBN. Hence
for a problem size of n, there are 2n states in the system. We solve for k eigen-pairs using our
approximate algorithm and compare them with the k dominant (maximum norm) eigenvalues and
their corresponding eigenvectors solved by using a regular eigen-analysis algorithm (we use the
linalg module of the numpy library in Python.

Stochastic gradient descent

We implemented a stochastic gradient descent with restarts (where the restart was triggered if the
error did not reduce by at least 0.1 × threshold over 100 iterations). The threshold is set based
upon the norm of the subsampled vector (comprising of the coordinates sampled in the current
iteration).

54

Figure 4.2: The percentage of examples where the stochastic gradient converged. For more deterministic examples, a
greater percentage of examples converged.

Unfortunately, the stochastic gradient descent often did not converge to an error which was
below the desired threshold. We set a time-out of 5 minutes. The percentage of cases where the
stochastic gradient converged falls sharply with increase in the size of the problem as shown in
Figure 4.2.

The rest of the results are for instances where the stochastic gradient descent converged in every
iteration. We will also focus on the first 5 iterations (and therefore, 5 eigen-pairs).

Quality of approximation

In order to determine the accuracy of the approximate eigenvalues and eigenvectors, we first match
the top k approximate eigenvalues to their nearest exact eigenvalue. A sample matching is shown
in Figure 4.3, where the circles correspond to the exact eigenvalues and triangles correspond to
approximate eigenvalues computed using our algorithm. Then, we look at the L2-norm of the
difference vector for the corresponding eigenvectors.

55

Figure 4.3: Matching of exact and approximate eigenvalues.

Eigenvalues Figure 4.4 shows the root mean squared error (RMSE) between the exact eigenval-
ues and their matched approximate eigenvalues. The exact eigenvalues are computed using the
linalg module in the scipy package in Python. As the figure shows, the approximation quality
improves as the problem size decreases and also as the amount of near-determinism increases.

Eigenvectors Figure 4.5 shows the average L2-norm of the difference vector between the exact
and approximate eigenvectors. The average is taken over 10 different runs. As the amount of near-
determinism increases, the accuracy increases and the average L2-norm decreases. Conversely,
with decreasing near-determinism, the accuracy decreases.

4.6 Discussion
The current approach has two main drawbacks:

56

Figure 4.4: The RMSE of the approximate eigenvalues.

Linear projection of factored belief vector In the current setup, we project the factored belief
vectors at the outset using the junction tree algorithm, since the orthogonalization process (e.g.,
the Arnoldi iteration) results in negative elements in the factored belief vector (or the belief vector
in general, even if we are working in a non-factored setting).

Stochastic gradient descent The exact summation of the Kronecker product vectors is not fea-
sible. Hence, we use the stochastic gradient descent to find an approximation to the sum. However,
our experiments suggest that it is often hard to converge to a good solution with an error threshold
small enough to maintain accuracy of the eigenvalue algorithm.

Because of the two above sources of error, the approximate eigenvalues and eigenvectors com-
puted by our algorithm are often not very accurate. Removing or alleviating either error source can
lead to much better approximations.

57

Figure 4.5: The L2 norm of the difference vector between the normalized approximate and exact eigenvector.

58

Chapter 5

A temporally abstracted Viterbi algorithm

The previous two chapters were focused on creating an abstract model that makes the general
inference task easier for temporal near-deterministic systems. We now focus on the maximization
problem and devise both an abstraction scheme and an associated algorithm to find the most likely
solution in a probabilistic model.

Hierarchical problem abstraction, when applicable, may offer exponential reductions in compu-
tational complexity. Previous work on coarse-to-fine dynamic programming (CFDP) has demon-
strated this possibility using state abstraction to speed up the Viterbi algorithm. In this chapter,
we show how to apply temporal abstraction to the Viterbi problem. Our algorithm uses bounds
derived from analysis of coarse timescales to prune large parts of the state trellis at finer timescales.
We demonstrate improvements of several orders of magnitude over the standard Viterbi algorithm,
as well as significant speedups over CFDP, for problems whose state variables evolve at widely
differing rates.

5.1 Introduction
The Viterbi algorithm (Viterbi, 1967; Forney, 1973), introduced in Section 2.2, finds the most likely
sequence of hidden states, called the “Viterbi path,” conditioned on a sequence of observations in
a hidden Markov model (HMM).

Finding a most-likely state sequence in an HMM is isomorphic to finding a minimum cost path
through a state–time trellis graph (see Figure 5.1) whose link cost is the negative log probability
of the corresponding transition–observation pair in the HMM. Thus, the cost of finding an optimal
path can be reduced further using an admissible (lower bound) heuristic and A* graph search.

Even with this improvement, the time and space cost can be prohibitive when N and T are

59

very large; for example, with a state space defined by 30 Boolean variables, running Viterbi for a
million time steps requires 1024 computations. One possible approach to handle such problems is
to use a state abstraction: a mapping φ : S0 7→ S1 from the original state space S0 to a coarser state
space S1. For stochastic models (such as an HMM), the parameters of the model in S1 are often
chosen to be the maximum of the corresponding constituent parameters in S0. Although these
parameters do not define a valid probability measure, they serve as admissible heuristics for an
A* search. The same idea can be applied to produce a a hierarchy of abstractions S0, S1, . . . , SL.
Coarse-to-fine dynamic programming or CFDP (Raphael, 2001a) begins with SL and iteratively
finds the shortest path in the current (abstracted) version of the graph and refines along it until the
current shortest path is completely refined. Several algorithms—e.g., hierarchical A* (Holte et al.,
1996) and HA*LD (Felzenszwalb & McAllester, 2007)—are able to refine only the necessary part
of the hierarchy tree and compute heuristics only when needed.

The Viterbi algorithm devotes equal effort to every link in the state–time trellis. CFDP and its
relatives can determine that an entire set of states need not be explored in detail, based on bounding
the cost of paths through that set; but they do so separately for each time step. In this paper, we
show how to use temporal abstraction to eliminate large sets of states from consideration over large
periods of time.

To motivate our algorithm, consider the following problem. We observe Judy’s daily tweets
describing what she eats for lunch, and wish to infer the city in which she is staying on each day.
The state space S0 is the set of all cities in the world. The abstract space S1 is the set of countries,
and S2 is the continents. (Figure 5.1 shows a small example.) The transition model suggests that
on any given day Judy is unlikely to leave the city she is in, even less likely to leave the country she
is in, and very unlikely indeed to travel to another continent. Thus, if Judy had Tandoori chicken
on a Thursday but the rest of the week was all hamburgers, then it is most likely that she was in
some American city for the entire week. However, if she had Tandoori chicken and/or biryani for
an entire week, then it is quite possible that she is in India. Our algorithm, temporally abstracted
Viterbi (henceforth TAV), facilitates reasoning over a temporal interval (like a week or month or
longer) and localized search within those intervals. Neither of these is possible with Viterbi or
state abstraction algorithms like CFDP. The computational savings of TAV on an instance of this
problem can be seen in Figure 5.2.

Temporal abstractions have been well-studied in the context of planning (Sutton et al., 1999)
and inference in dynamic Bayesian networks (Chatterjee & Russell, 2010). An excellent survey of
temporal abstraction for dynamical systems can be found in (Pavliotis & Stuart, 2007). To the best
of our knowledge, TAV is the first algorithm to use temporal abstraction for general shortest-path
problems. TAV is guaranteed to find the Viterbi path, and does so (for certain problem instances)
several orders of magnitude faster than the Viterbi algorithm and one to two orders of magnitude
faster than CFDP.

The rest of the paper is organized as follows. Section 5.2 reviews the Viterbi algorithm and
CFDP and introduces the notations and definitions used in the rest of the paper. Section 5.3 pro-
vides a detailed description of the main algorithm and establishes its correctness. Section 5.4

60

T=1 T=2 T=3 T=4 T=5

New York

Chicago

Montreal

Toronto

London

Manchester

Munich

Berlin

U.S.A.

Canada

England

Germany

Europe

North
America

Figure 5.1: The state–time trellis for a small version of the tracking problem. The links have weights denoting
probabilities of going from a city A to a city B in a day. The abstract state spaces S1 (countries depicted in green) and
S2 (continents in yellow) are only shown for T=5 to maintain clarity. The observation links are also omitted for the
same reason.

discusses the computation of temporal abstraction heuristics. Section 5.5 presents some empirical
results to demonstrate the benefits of TAV while section 5.6 provides some guidance on how to
induce abstraction hierarchies.

5.2 Problem Formulation
In coarse-to-fine (a.k.a. hierarchical) approaches, inference is performed in the coarser models to
reduce the amount of computation needed in the finer models. Typically, a set of abstract state
spaces S = {S0, S1, . . . , SL} and abstract models M= {M0,M1, . . . ,ML} are defined where S0

61

10 20 30 40 50

5

10

15

20

25

Days

C
it
ie

s
TAV refinements

10 20 30 40 50

5

10

15

20

25

Days

C
it
ie

s

CFDP refinements

Figure 5.2: A comparison of the performance of CFDP and TAV on the city tracking problem with 27 cities, 9
countries and 3 continents over 50 days. The plots indicate portions of the state–time trellis each algorithm explored.
Black, green and yellow squares denote the cities, countries and continents considered during search. The cyan dotted
line is the optimal trajectory.

(M0) is the original state space (model) and SL (ML) is the coarsest abstract state space (model).
Let the parameters of Ml be denoted by the set {Al, Bl,Πl}.

A state in this hierarchy is denoted by sli, where l is the abstraction level and i is its index within
level l. Nl denotes the number of states in level l. Let φ : Sl 7→ Sl+1 denote the mapping from any
level l to its immediate abstract level l + 1. The parameters at level l + 1 are defined by taking the

62

maximum of the component parameters at level l. Thus, Al+1 = {al+1
ij }, where

al+1
ij = max

p,q
alpq s.t. φ(slp) = sl+1

i , φ(slq) = sl+1
j .

Bl+1 and Πl+1 are defined similarly in terms of Bl and Πl. Any transition/emission probability
in an abstract model is a tight upper bound on the corresponding probability in its immediate
refinement. Hence, the cost (negative log probability) of an abstract trajectory can serve as an
admissible heuristic to guide search in a more refined state space.

CFDP works by starting with only the coarsest states sL1:NL
at every time step from 1 to T .

The states in t and t + 1 are connected by transition links whose values are given by AL. BL and
ΠL define the other starting parameters. It then iterates between computing the optimal path in
the current trellis graph and refining the states (and thereby the associated links) along the current
optimal path. The algorithm terminates when the current optimal path contains only completely
refined states (i.e., states in S0). A graphical depiction of how CFDP works is shown in Figure 5.5.
The TAV algorithm, which also has an iterative structure, is described in the next section. We will
be reusing notation and definitions from this section throughout the rest of the paper.

5.3 Main algorithm
The distinguishing feature of TAV is its ability to reason with temporally abstract links. A link in
the Viterbi algorithm and CFDP-like approaches describes the transition probability between states
over a single time step. A temporally abstract link starting in state s1 at time t1 and ending in state
s2 at time t2 > t1 represents all trajectories having those end points and is denoted by a 4-tuple—
((s1, t1), (s2, t2)). Links((s, t)) is the set of incoming links to state s at time t. Children(sl)
= {s′ : s′ ∈ Sl−1, φ(s′) = sl} is the set of children of state sl in the abstraction hierarchy. We define
three different kinds of temporally abstract links:

1. Direct links: d(s, t1, t2) represents the set of trajectories that start at (s, t1) and end in (s, t2)
and stay within s for the entire time interval (t1, t2).

2. Cross links: c((s1, t1), (s2, t2)) represents the set of trajectories from (s1, t1) to (s2, t2), when
s1 6= s2.

3. Re–entry links: r((s, t1), (s, t2)) represents the set of trajectories that start at (s, t1) and end
in (s, t2) but move outside s at least once in the time interval (t1, t2). r((s1, t1), (s1, t2)) = ∅
when t2 − t1 ≤ 1.

The direct and cross links are denoted graphically by straight lines, whereas the re-entry links
are represented by curved lines as shown in Figure 5.3. A generic link is denoted by the symbol k.
The (heuristic) score of a temporally abstract link has to be an upper bound on the probability of all

63

trajectories in the set of trajectories it represents. Computing admissible and monotone heuristics
will be discussed in Section 5.4.

Our algorithm’s computational savings over spatial abstraction schemes come from two avenues—
first, fewer time points to consider using temporal abstraction; second, fewer states to reason about
by considering constrained trajectories using direct links. Although the general flow of the algo-
rithm is similar to CFDP, the refinement constructions are different. The algorithm descriptions
provided omit details about observation matrix computations since they are standard. However,
the issue is revisited in Section 5.4 to focus on some subtleties. The correctness of the algorithm
depends only on the admissibility of the heuristics.

Refinement constructions
A refinement of a temporally abstract link replaces the original link with a set of refined links
that represent a partition—a mutually exclusive and exhaustive decomposition—of the set of tra-
jectories represented by the original link. The refinement allows us to reason about subsets of
the original set of trajectories separately and thereby potentially narrow down on a single optimal
trajectory. There are two different kinds of refinement constructions.

Spatial refinement

When a direct link, d(sl, t1, t2), lies on the optimal path, the natural thing to do is to refine (par-
tition) the set of trajectories it represents. The original direct link is replaced with all possible
cross, direct and re-entry links between Children(sl) at t1 and t2. This is depicted graphically in
Figure 5.3. A link is also refined spatially if its time span (t2 − t1) is 1 time step since temporal
refinement is not a possibility. The pseudocode for spatial refinement (see Algorithm 5.1) pro-
vides all the necessary details. It is trivial to show that the new links constitute a partition of the
trajectories represented by the original link.

Temporal refinement

When a cross link c((s1, t1), (s2, t2)) or a re-entry link r((s1, t1), (s1, t2)) is selected for refinement,
we are faced with the task of refining a set of trajectories that do not stay in the same state for the
abstraction interval. This is a case where temporal abstraction is not helping (not at the current
resolution at least).

An example of temporal refinement, which is only invoked when t2 − t1 > 1, is shown in
Figure 5.4. It results in splitting the time interval (t1, t2) into two sub-intervals that together span
the original interval. Let us assume that we select the (rounded off) mid-point of the interval.
When a link is temporally refined , we temporally split all cross, re-entry and direct links spanning
the interval (t1, t2) between states in Children(φ(s1)). We will show later that for any link longer

64

Algorithm 5.1 Spatial Refinement((p1, t1, p2, t2))

C ← Children(p1);D ← Children(p2)
if t2 − t1 > 1 then
Links(p1, t2)← Links(p1, t2) \ d(p1, t1, t2)

else
5: Links(p2, t2)← Links(p2, t2) \ k((p1, t1), (p2, t2))

end if
usedStates(t1)← usedStates(t1) ∪ C
usedStates(t2)← usedStates(t2) ∪D
for all s ∈ D do

10: Links(s, t2)← Links(s, t2) ∪ d(s, t1, t2)
for all s′ ∈ C do

if s = s′ then
Links(s, t2)← Links(s, t2) ∪ r((s, t1), (s, t2))

else
15: Links(s, t2)← Links(s, t2) ∪ c((s′, t1), (s, t2))

end if
end for

end for

than 1 time step, φ(s1) =φ(s2). It should be noted that re-entry links are only added when the
sub–interval length is longer than 1 time step. Also, if t2 − t1 = 1, then a cross link is spatially
refined (analogous to CFDP).

One possibility is that some of the direct links for states in Children(φ(s1)) between (t1, t2)
were already spatially refined. In that case, we apply temporal refinement recursively to the spa-
tially refined links of those direct links. The choice of the splitting point does not affect the correct-
ness of the algorithm as long as the split is replicated in the instantiated portion of the state space
tree rooted at φ(s1). The pseudocode (shown in Algorithm 5.2) provides details of this procedure.

Lemma 5.3.1 The sets of trajectories represented by links before and after any spatial or temporal

refinement are the same. Also, every trajectory is represented by exactly one temporally abstract

path.

Lemma 5.3.2 Any link created by TAV will always be between two states at the same level of

abstraction. If the time span of the link is greater than 1 time step, then those two states will also

have the same parent at all coarser levels of abstraction.

Proof The original links are all between states of level L. Both refinement constructions add links
only between states at the same abstraction level. This proves the first statement. Moreover, upon

65

Spatial
Refinement

s1
l

s2
l

s1
l

s2
l

s1
l s1

l

s2
l s2

l

s2
l-1 s2

l-1

s1
l-1 s1

l-1

T2T1

T2T1

Figure 5.3: Spatial refinement: The optimal link, shown in bright red, is a direct link and is replaced with all possible
links between its children.

initialization, there is no coarser level of abstraction—hence the second part of the statement is
vacuously true. Temporal refinement always considers links between descendants of the parent
node. Spatial refinement also adds links between Children(sl) of a state sl except when the time
step is 1. This proves the second statement. �

Modified Viterbi algorithm
It is possible to have links to a state s and to its abstraction φ(s) at the same time step t

(see Figure 5.5b). This was not possible in CFDP. Hence, we need a slightly modified scoring
and backtracking scheme. δt(s) is the best score of a trajectory ending in state s at time t and
ψt(s) contains the temporally abstract link’s information which connects (s, t) to its predecessor.
usedT imes is a sorted list of time steps which have links to or from it. usedStates(t) is the set of

66

Algorithm 5.2 Temporal Refinement((parent, t1, t2))

nT ← d(t1 + t2)/2e
if parent ∈ usedStates(nT) then

return
end if

5: usedT imes← usedT imes ∪ nT
C ← Children(parent)
usedStates(nT)← usedStates(nT) ∪ C
for all s ∈ C do

if d(s, t1, t2) /∈ Links(s, t2) then
10: Temporal Refinement(s, t1, t2)

Links(s, t2)← ∅
Links(s, nT)← ∅

else
Links(s, t2)← {d(s, nT, t2)}

15: Links(s, nT)← {d(s, t1, nT)}
end if
for all s′ ∈ C do
Links(s, t2)← Links(s, t2) \ k((s′, t1), (s, t2))
Links(s, t2)← Links(s, t2) ∪ k((s′, nT), (s, t2))

20: Links(s, nT)← Links(s, nT) ∪ k((s′, t1), (s, nT))
end for

end for

nodes at time t which have incoming or outgoing links. The score computation algorithm moves
forward in time like the normal Viterbi algorithm. The score computation (at each used time step
t) is done in 3 phases. The pseudocode is given in Algorithm 5.3.

1. δt(s) is computed using the best of its incoming links, Links(s, t) and ψt(s) points to that
link.

2. Starting at level L− 1 and going down to level 0, a state s gets its parent’s (φ(s)) score and
backpointer if φ(s) has a higher score.

3. Starting from level 0 and going up to level L− 1, a state s’s parent φ(s) gets its child’s score
and backpointer if s has a higher score

Theorem 5.3.3 The score δt(s) computed by the BestPath procedure is a strict upper bound on

all trajectories ending in state s at time t given the current abstracted version of the state-time

trellis.

67

Temporal
Refinement

T2T1 T2T1 T

s1
l

s2
l

s1
l

s2
l

s1
l

s2
l

s1
l

s2
l

s1
l

s2
l

Figure 5.4: Temporal refinement: When refining a cross or re-entry link, refine all links between nodes that have the
same parent as the nodes of the selected link.

Proof Any trajectory ending in a state ŝ, which is neither an ancestor nor a descendant of s, does
not include any trajectory to s. Hence, BestPath computes an upper bound on the score of the
best trajectory ending in state s at time t.

For the bound to be strict, it is sufficient to show that each phase of BestPath only considers
scores of such nodes where every incoming link includes at least one trajectory to s. The first
phase accounts for all the incoming links to node s itself. Let φ∗(s) denote an ancestor of s.
Any incoming link (direct, cross or re–entry) to φ∗(s) includes at least one trajectory to s. This
necessitates taking the maximum over δt(φ∗(s)) (step 2). Finally, any trajectory ending in state s′,
where s′ is a descendant of s, is by definition, a trajectory ending in s. Hence, the upper bound is
strict. �

The ordering of the phases is important to perform the desired computation correctly and effi-

68

Algorithm 5.3 BestPath(Links, usedStates, usedT imes)
curT ime← 1
while curT ime < T do
curT ime← nextUsedT ime(curT ime, usedT imes)
for all s ∈ UsedStates(curT ime) do

5: δt(s)←MaxOverLinks(Links((s, curT ime)), δ)
ψt(s)← ArgMaxOverLinks(Links((s, curT ime)), δ)

end for
for level = L− 1 to 0 do

for all s ∈ Slevel && s ∈ usedStates(curT ime) do
10: if δt(φ(s)) > δt(s) then

δt(s)← δt(φ(s))
ψt(s)← ψt(φ(s))

end if
end for

15: end for
for level = 0 to L-1 do

for all s ∈ Slevel && s ∈ usedStates(curT ime) do
if δt(φ(s)) ≤ δt(s) then
δt(φ(s))← δt(s)

20: ψt(φ(s))← ψt(s)
end if

end for
end for

end while
25: s∗ ← argmaxs∈usedStates(T) δT (s)

curT ime← 1; Path← ∅
while curT ime > 1 do
Path← Path ∪ ψcurT ime(s∗)
(s∗, curT ime)← ψcurT ime(s

∗)
30: end while

return Path

ciently.

Complete algorithm
The algorithmic structure of TAV and CFDP are quite similar. The complete specification of TAV is
presented in Algorithm 5.4. CFDP has a different initialization and refinement is node–based (TAV
is link–based) which introduces links between states at different levels of abstraction. The two
initializations are shown in Figure 5.5a. CFDP’s initial configuration has no temporally abstract
links. The algorithm iterates between two stages: computing the optimal path in the current graph
and refining links along the current optimal path. A few steps of execution of the two algorithms
are shown on an example in Figure 5.5.

The correctness of the algorithm follows from the optimality of A* search and Lemma 5.3.1

69

(a) (b) (c) (d)

Figure 5.5: Sample run: TAV: a Initialization. The optimal path is a direct link—hence spatial refinement. The new
additions are shadowed. b A re-entry link is optimal—hence temporal refinement. Since one direct link among siblings
was already refined in Step 1, we also temporally refine the spatially refined component. c The optimal path has links
at different levels of abstraction. Such scenarios necessitate the BestPath procedure. d More recursive temporal
refinement is performed. Note the difference in the numbers of links in the two graphs after 3 iterations.

and Theorem 5.3.3.

5.4 Heuristics for temporal abstraction
In hierarchical state abstraction schemes, computing heuristics involves taking the maximum of
a set of single time step transition probabilities. As mentioned in Section 5.2, this can be done
by hierarchically constructing Al, Bl and Πl. For temporal abstractions however, there are more
design choices to be made when it comes to computing heuristic scores of links. There is a more
significant tradeoff between cost of computation and quality of heuristic.

The heuristic score of a direct link is very easy to compute. We do not have to select between
possible state transitions. Thus, the heuristic for a link spanning the interval (t1, t2) can be done
in O(t2 − t1), since we still need to account for all the observations in that interval. If the score is

70

Algorithm 5.4 TAV(A,B,Π, φ, Y1:T)

δ1(.)← ScoreInitialization(Π)
usedStates(1) = usedStates(T) = SL

usedT imes = {1, T}
for all s ∈ SL do

5: Links(s, T)← d(s, 1, T)
for all s′ ∈ SL do
Links(s, T)← Links(s, T) ∪ k((s′, 1), (s, T))

end for
end for

10: V iterbiPathFound← 0
while V iterbiPathFound = 0 do
Path = BestPath(Links, usedStates, usedT imes)
V iterbiPathFound = 1
for all k ∈ Path do

15: ((s1, t1), (s2, t2))← details(k)
if level(s1) > 1 || ¬isDirect(k) then
V iterbiPathFound = 0

end if
if isDirect(k) || t2 − t1 = 1 then

20: Spatial Refinement(k)
else
Temporal Refinement(k)

end if
end for

25: end while

cached, the score for any sub-interval is computable in O(1) time.

Cross links and re–entry links require further consideration. A somewhat expensive option is
to compute the Viterbi path in the restricted scope. As Lemma 5.3.2 shows, a cross or a re–entry
link represents trajectories that can switch between sibling states (the ones which map to the same
parent via φ). In an abstraction hierarchy, if the cardinality of Children(s) for any state s is
restricted to some constant C, then computing this heuristic will require O(C2(t2 − t1)) time.

A computationally cheaper but relatively loose heuristic is the following:

h((si, t1), (sj, t2)) = max
k
Âik max

p,q
Ât2−t1−2
pq max

k
Âkj∏

t

max
k
B̂kYt

Â and B̂ represent the transition matrices for the set Children(φ(si)). This heuristic chooses
the best possible transition at every time step other than the two end points and also the best
possible observation probability. Its computational complexity is O(C2 + (t2 − t1)). Caching
values help in both cases. The Viterbi heuristic, being tighter, leads to fewer iterations but needs
more computation time. We will compare the two heuristics in our experiments.

71

5.5 Experiments
The simulations we performed were aimed at showing the benefit of TAV over Viterbi and CFDP.
The benefits are magnified in systems where variables evolve at widely varying timescales. The
timescale of a random variable is the expected number of time steps in which it changes state.
A person’s continental location would have a very large timescale, whereas his zip code location
would have a much smaller timescale.

A natural way to generate transition matrices with timescale separation is to use a dynamic
Bayesian network (DBN). We consider a DBN with n variables, each of which has a cardinality
of k. Hence, the state space size N is kn. We used fully connected DBNs in our simulations. Our
observation matrix was multimodal (hence somewhat informative). A DBN with a parameter ε
means that the timescales of successive variables have a ratio of ε. The fastest variable’s timescale
is 1/ε and the slowest variable’s (1/ε)k.

10
3

10
4

10
5

10
0

10
2

10
4

10
6

Time Horizon

C
om

pu
ta

tio
n

T
im

e
(s

ec
)

TAV−1

CFDP−1

TAV−2

CFDP−2

Viterbi

10
−3

10
−2

10
−1

10
0

10
2

10
4

10
6

ε

TAV

CFDP

Viterbi

64 256 1024

10
0

10
2

10
4

10
6

State space size

TAV−1

CFDP−1

TAV−2

CFDP−2

Viterbi

(a)

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

Time Horizon

C
om

pu
ta

tio
n

T
im

e
(s

ec
)

TAV

Pre−segmentation

TAV−Viterbi

10
−3

10
−2

10
−1

10
0

10
1

10
2

ε

TAV

Pre−segmentation

TAV−Viterbi

64 256 1024

10
2

10
3

10
4

State space size

TAV

Pre−segmentation

TAV−Viterbi

(b)

Figure 5.6: Simulation results: a The computation time of Viterbi, CFDP and TAV with varying T (left), ε (middle)
and N (right). b The computation time of TAV and its two extensions—pre-segmentation and using the Viterbi
heuristic—with varying T (left), ε (middle) and N (right).

The state space hierarchy at the most abstract level arises from the branching of the slowest
variable. In each subtree, we branch on the next slowest variable. In the experiments in this
section we assume that the abstraction hierarchy is given to us.

72

Varying T, N and ε
To study the effect of increasing T on the computation time, we generated 2 sequences of length
100000 with ε = .1 (case 1) and .05 (case 2). N was 256 and the abstraction hierarchy was a binary
tree. For each sequence, we found the Viterbi path for the first T timesteps using TAV, CFDP and
the Viterbi algorithm. The results are shown in Figure 5.6a. TAV’s computational complexity is
marginally super-linear. This is because TAV might need to search in the interval [0, T] even if it
had found the Viterbi sequence in that interval as new observations (after time T) come in. For the
ε values used, TAV is more than 2 orders of magnitude faster than Viterbi and 1 order of magnitude
faster than CFDP.

It is intuitive that TAV will benefit more from a smaller ε (i.e., a larger timescale). As Fig-
ure 5.6a shows, CFDP also benefits from the timescale artifact. However, TAV’s gains are larger
and also grow more quickly with diminishing ε. This set of experiments had N = 256 and
T = 10000.

Finally, to check the effect of the state space size, we chose ε = .5 (case 1) and .25 (case 2).
We chose fast timescales to show the limitations of TAV (having already demonstrated its benefits
for small ε). As Figure 5.6a shows, TAV is 3x to 10x faster than CFDP for N < 1024. However,
CFDP is about 6x faster than TAV for N = 2048. In this case, TAV performs poorly because of
its initialization as a single interval. For fast timescales, the first few refinements in this setting are
invariably temporal and these refinements can be computationally very expensive.

A priori temporal refinement
If T is comparable to the timescale of the slowest variable, then one or more temporal refinements
at the very outset of TAV is very likely. Performing these refinements a priori will be beneficial
if TAV actually had to perform those refinements. The benefit would be proportional to the cost of
deciding whether to refine or not. This decision cost increases with T and N (but does not depend
on ε).

Figure 5.6b shows the computation time for cases where we initialized TAV with 20 equal seg-
ments. The a priori refinement time was also included in the “Pre-Segmentation” time. Speedups
of 2x to 6x were obtained for varying values of N and T . When only ε was varied, the benefit was
approximately constant (between 3 to 6 seconds of computation time). This resulted in effective
speedups only for the smaller values of ε, which had small computation times.

Impact of heuristics
As discussed in Section 5.4, there is a trade-off in computing heuristics between accuracy and com-
putation time. Figure 5.6b compares the effect of using the Viterbi heuristic instead of the cheap
heuristic described previously. With increasing T , there was a small improvement in computation

73

time, although the speedup was never greater than 2x. The two computation times were virtually
the same with increasing ε. For large state spaces, the Viterbi heuristic produced more than 5x
speedup (which made it comparable to CFDP).

The main reason for the lack of improvement (in computation time) is the randomness of the
data generation process. The Viterbi heuristic can significantly outperform the cheap heuristic only
if the most likely state sequences according to the transition model receive very poor support from
the observations. In that case, the cheap heuristic will provide very inaccurate bounds and mislead
the search. In randomly generated models however, the two heuristics demonstrate comparable
performance.

5.6 Hierarchy induction

2^8 4^4 16^2

10
1

10
2

10
3

10
4

C
om

pu
ta

tio
n

T
im

e
(s

ec
)

2
8
 data model

TAV−1

CFDP−1
TAV−2

CFDP−2

2^8 4^4 16^2

10
1

10
2

10
3

10
4

Tree Structure

4
4
 data model

TAV−1

CFDP−1
TAV−2

CFDP−2

2^8 4^4 16^2

10
1

10
2

10
3

10
4

16
2
 data model

TAV−1

CFDP−1
TAV−2

CFDP−2

Figure 5.7: Effect of abstraction hierarchy: For different underlying models (28, 44 and 162), deep hierarchies out-
perform shallow hierarchies. Cases 1 and 2 have ε = 0.1 and .05 respectively

Till this point, we have assumed that the abstraction hierarchy will be an input to the algorithm.
However, in many cases, we might have to construct our own hierarchy. Spectral clustering (Ng
et al., 2001) is one technique which we have used in our experiments to successfully induce hierar-
chies. If the underlying structure is a DBN of binary variables with timescale separation between
each variable (as discussed in Section 5.5), there will be a gap in the eigenvalue spectrum after the
two largest values. The first two eigenvectors will be analogous to indicator functions for branch-
ing on the slowest variable. We can then apply the method recursively within each cluster. The
main drawback is the O(N3) computational cost. It can be argued that this is an offline and one-
time cost—nonetheless it is quite expensive. It should be noted that spatial hierarchy induction is
also a hard problem.

Let 28 denote a 8-variable DBN where each variable is binary. The slowest variables are placed
at the left—hence 4224 denotes a DBN whose two slowest variables are 4-valued. As we change the
underlying model from 28 to 44 to 162, is there a particular abstraction hierarchy which performs
well for all the models?

74

For the experiments, we generated 3 different data sets using the following DBNs—28 (left), 44

(middle) and 162 (right)—with N = 256. On each data set, we used the following abstraction hi-
erarchies (28; 2442; 4224; 44; 4182; 8241; 162). The results in Figure 5.7 show the computation time
for TAV and CFDP using different abstraction hierarchies (deepest on the left to shallowest on the
right) for two different values of ε. Both TAV and CFDP perform better with deeper hierarchies, al-
though the improvement is much more pronounced for TAV. The trend across all 3 underlying data
models indicates that we could always induce a deep hierarchy. The benefit of lightweight local
searches in a deep hierarchy seems to outweigh the cost of the necessary additional refinements.

5.7 Conclusion
We have presented a temporally abstracted Viterbi algorithm, that can reason about sets of trajecto-
ries and uses A* search to provably reach the correct solution. Direct links provide a way to reason
about trajectories within a set of states—something that previous DP algorithms did not do. For
systems with widely varying timescales, TAV can outperform CFDP handsomely. Our experiments
confirm the intuition—the greater the timescale separation, the more the computational benefit.

Another smart feature of our algorithm is that it can exploit multiple timescales present in a
system by adaptive spatial and temporal refinements. TAV’s limitations arise when the system
has frequent state transitions and in such cases, it is better to fall back on the conventional Viterbi
algorithm (CFDP is often slower as well in such cases). It might be possible to design an algorithm
that uses temporal abstraction and can also switch to conventional Viterbi when the heuristic scores
of direct links are low.

75

Chapter 6

Hierarchical image and video segmentation

We also present an image and video segmentation algorithm based on our proposed maximization
algorithm.

Existing image and video segmentation algorithms, such as graph cuts, allow every adjoin-
ing pixel (superpixel) or voxel (supervoxel) to have a different label. This leads to optimization
problems over an exponentially large search space. In practice, real images and videos are both
spatially and temporally coherent, and the space of coherent labelings is significantly smaller than
the space of all possible labelings. In this chapter, we propose an efficient coarse-to-fine optimiza-
tion scheme that uses a hierarchical abstraction of the supervoxel graph to distinguish the small
set of coherent labelings from the large set of not-so-coherent ones. This abstraction allows us to
solve the minimization problem over a coarser graph and to refine the solution only when needed.

The proposed approach is exact (i.e., it produces the same solution as minimization over the
finest graph), it can be used with many different segmentation algorithms (e.g., graph cuts and
belief propagation), and it gives significant speedups in inference for several datasets with vary-
ing degrees of spatio-temporal coherence. We also discuss the strengths and weaknesses of our
algorithm relative to existing hierarchical approaches, and the kinds of image and video data that
provide the best speedups.

6.1 Introduction
Segmenting moving objects in a video sequence is a key step in video interpretation. Most of
the prior work on motion segmentation (see, e.g., (Darrel & Pentland, 1991; Shi & Malik, 1998;
Cremers & Soatto, 2005; Vidal et al., 2008; Rao et al., 2010)) uses local motion and appearance
cues to segment the video in a bottom-up unsupervised manner. However, the use of category-

76

Original image Level 5 (coarsest) Level 4 Level 3 Level 2 Level 1 (finest)

Figure 6.1: Supervoxel hierarchy for an image. The top row shows the various abstraction levels in the supervoxel
tree. The second row shows the portion of the supervoxel tree explored to find the optimal labeling of segments.

specific information about the object being segmented can be really helpful in the segmentation
task. This has motivated the development of semantic motion segmentation algorithms, which use
supervision to label every pixel in video according to the object class it belongs to.

Many of the existing approaches for semantic video segmentation are graph based (Grundmann
et al., 2010; Galmar et al., 2008). Generally an over-segmentation of the video is obtained using
some standard methods (Floros & Leibe, 2012) and a random field (RF) is defined on a graph
whose nodes are the resulting supervoxels. The segmentation of the video is then obtained by
minimizing a cost defined on this RF. This minimization is done using different methods (e.g.,
graph cuts and belief propagation). However, the optimization procedure is typically very slow
because of the exponentially large number of possible labelings in a video. For instance, for a
video with 100 frames, where each frame has 100 × 100 superpixels and 10 possible labels, the
number of possible segmentations is 101000000.

In practice, contiguous supervoxels (both in space and in time) are very likely to have the same
label, and the space of coherent labelings is much smaller than the space of all labelings. For
instance, if we consider supervoxels of size k× k superpixels spanning k frames, then the number
of possible segmentations reduces to 10

1000000
k3 , which is significant even for k = 2.

In this chapter, we propose an efficient coarse-to-fine optimization scheme for image/video
segmentation that can be used to speedup any graph-based segmentation algorithm, e.g., graph cuts
and belief propagation. The key idea behind our approach is to define a hierarchical abstraction of
the supervoxel graph such that most supervoxels at the coarser scales belong to a single category.
We can solve a much smaller problem over the coarser graph and refine this solution only when
needed.

We use a hierarchical graph based supervoxel segmentation method (see (Xu & Corso, 2012)
for an overview) to identify the supervoxels (at various scales) that are likely to have the same
label. Such methods create a supervoxel tree with the biggest (coarsest) supervoxels at the highest

77

level. The top row of Figure 6.1 shows the hierarchy for one of the frames from a video of the
SUNY-Xiph.org dataset (Chen & Corso, 2010). The second row shows the set of superpixels that
our coarse-to-fine inference scheme uses. At each abstraction level, the blacked out portions denote
superpixels whose refinements were not required to find the optimal labeling. It is clear that we
can prune away a large part of the search space, by assigning several labels at the coarser levels.

Given this hierarchy, we define a coarse-to-fine refinement scheme to find the optimal segmen-
tation. The scheme we use is similar to the approach proposed in coarse-to-fine dynamic program-
ming (Raphael, 2001b) and temporally abstract Viterbi algorithm (Chatterjee & Russell, 2011).
We first augment the set of labels with an artificial “mixed” label, which accounts for the fact that
coarse supervoxels may contain finer supervoxels with more than one label. We then define the
edge costs at any level of the hierarchy as an admissible function of the costs at the next finer level.
The coarse-to-fine scheme starts at the coarsest level of supervoxels. If the solution at the current
level of refinement is such that some supervoxels have mixed labels, the mixed supervoxels are re-
fined. This process is repeated until the optimal labeling does not assign the “mixed” label to any
supervoxel. By properly defining the edge costs at each level, we can guarantee that the optimal
segmentation upon termination is identical to the segmentation we would have obtained had we
solved the original, non-hierarchical problem, which is exponentially larger in size. The speedup
of our approach increases with the spatio-temporal coherence of the data. We attain a speedup of
between 2x - 10x on videos from the SUNY-Xiph.org (Chen & Corso, 2010) and CamVid (Bros-
tow et al., 2009) datasets using the hierarchical inference scheme as opposed to the corresponding
flat algorithm (graph-cuts and belief propagation).

Related work. There are several existing approaches to hierarchical video (and image) segmenta-
tion. One family of work considers a hierarchical cost function which is defined over supervoxels
at all levels. This includes the Pylon model (Lempitsky et al., 2011), associative hierarchical CRFs
(Ladicky et al., 2009) and a different hierarchical variant of graph cuts (Kumar & Koller, 2009).
These approaches find a solution which is more accurate than the solution found by solving the
problem at the finest level, but they are also computationally more expensive (sometimes, only
marginally so). Our work finds the solution possessing the same accuracy but speeds up computa-
tion time.

Another line of work in hierarchical video segmentation is a bottom-up approach based on
merging supervoxels using similarity metrics based on variation of intensity inside a supervoxel
(Felzenszwalb & Huttenlocher, 2004; Grundmann et al., 2010). However, there is no explicit
cost minimization here, which makes it difficult to compare it with our method. The supervoxel
tree obtained by these approaches can be used as the abstraction hierarchy in our algorithmic
framework.

Finally, (Felzenszwalb & Huttenlocher, 2006) proposes a version of hierarchical belief propa-
gation for images. However, the abstraction used is image-agnostic and the messages at a coarse
level are only used to initialize messages at the finer level and not to prevent expanding all nodes
(unlike our work).

78

The remainder of the chapter is structured as follows. We present the exact problem formu-
lation and some intuition behind the coarse-to-fine (hierarchical) approach in Section 6.2. The
hierarchical inference scheme is presented in 6.3 along with the relevant refinement details for
a particular cost function. We discuss experimental results in Section 6.4 while also proposing
a new on-demand supervoxel tree construction scheme. Finally, in Section 6.5, we conclude by
identifying the pros and cons of our framework.

6.2 Problem formulation
Most of the graph-based segmentation algorithms define a random field (RF) whose nodes cor-
respond to pixels (superpixels) or voxels (supervoxels) in the image or video. For the sake of
concreteness, we will describe our formulation using a RF whose nodes are the supervoxels in a
video. However, the formulation is valid in the other cases as well.

Let V denote the set of supervoxels in a video V . Each supervoxel vi ∈ V is associated with a
state xi ∈ L = {1, . . . , L}, which corresponds to the category label at supervoxel vi. The labeling
of a video is denoted by a vector x ∈ LV . The edges of the RF are defined using the neighborhood
structure of the supervoxels E ⊂ V × V , where eij ∈ E if supervoxels i and j share a common
boundary.

Having defined the structure of the RF, a segmentation cost E(x, V) is associated with every
label assignment x, and the minimizer x∗ gives the segmentation of the video. Depending on the
form of the energy function E, minimization is done using a variety of graph inference methods
like α-expansion, belief propagation etc. As discussed before we need to create small supervoxels
to learn potentials for a good labeling. In the case of a video with around 100 frames, each frame
having a resolution of 960× 720, the number of supervoxels we get is of the order of 100, 000.

Hierarchical abstraction
Since the labels are coherent both in space and in time, we expect many large, contiguous patches
of supervoxels to have the same label (category). In other words, the set of coherent labelings,
which are very likely, is much smaller than the set of all other labelings, which are very unlikely.

An effective abstraction scheme that enables us to differentiate between these two sets is a
hierarchical supervoxel tree (Felzenszwalb & Huttenlocher, 2004; Grundmann et al., 2010). In the
hierarchical setup, a supervoxel at site i and level j is denoted by vij and its label is denoted by
xi
j . The finest level of supervoxels correspond to j = 1. The set of all supervoxels at level j is

denoted by Vj . The refinement of a supervoxel vij (j ≥ 2) is the set of supervoxels at the next
finer level (i.e., j − 1) that occupy the same set of voxels in the video as vij . Parent : Vj → Vj+1

is the reverse function mapping a supervoxel to its parent supervoxel at the next coarser level. In
this paper, we will only consider hierarchical supervoxel trees, and hence each supervoxel has a

79

unique parent. The aforementioned supervoxel hierarchy can be obtained by running hierarchical
segmentation as described in (Grundmann et al., 2010).

Coarse-to-fine inference
Given a hierarchical supervoxel tree, we propose a coarse-to-fine algorithm for efficient inference.
The algorithm is designed to distinguish between to scenarios. The likely scenario is when all the
(contiguous) supervoxels at level j−1 that constitute a supervoxel at level j get the same label (i.e.,
a label from the set L). The unlikely scenario is when a supervoxel at level j has constituents with
different labels. To represent the latter scenario, we introduce a new label L+1, which denotes that
the corresponding supervoxel vij (j ≥ 2) has constituents with more than one label. We refer to
label L+1 as the “mixed” label, and to the original L labels as “pure”. Of course, only supervoxels
which can be further refined, can have the “mixed” label, i.e., xi1 6= L + 1. The augmented label
set is denoted by LA = L∪{L+ 1}. A similar label augmentation scheme was used in (Chatterjee
& Russell, 2011).

Our coarse-to-fine hierarchical refinement scheme proceeds as follows. We start off with the
coarsest supervoxels Vm and find the optimal label allocation from the augmented label set LA,
using some inference algorithm. This inference algorithm can be graph cuts or belief propagation
or some linear program — the choice depends upon the form of the energy function being opti-
mized. Let us denote the selected algorithm by A. All current supervoxels which receive label
L+ 1 are replaced in the current problem by their constituent supervoxels from the next finer level
(this refinement is always possible, since a supervoxel can only receive the “mixed” label if it can
be further refined). After this refinement is done, we again find the optimal label allocation for
the current set of supervoxels using A. We repeat this process iteratively, until all supervoxels
receive “pure” labels. Since every supervoxel eventually refines to its finest constituents, which in
turn can only take “pure” labels, this process is guaranteed to terminate. Also, at any point in the
algorithm, there exists exactly one ancestor of every finest level supervoxel vi1 in the current set of
supervoxels.

Admissible heuristics and exactness of solution
In order to make our hierarchical graph cuts scheme converge to the same label allocation as
running A on the finest level of supervoxels (for instance, a flat graph cuts algorithm), we have to
define the potentials of the abstract supervoxels in a specific way. We use the notion of admissible
heuristics as used in the A* algorithm (Russell & Norvig, 2010). Since we are minimizing an
energy function, the admissible heuristic for the coarse-level component potentials (unary, pairwise
or other higher degree terms) need to be lower bounds of their exact values. The construction
of such lower bounds will be explained further in the context of a particular energy function in
Section 6.3. Let x denote any label assignment for the finest level supervoxels and let x∗ denote
the optimal labeling. Let xhier and x∗hier denote the same for the hierarchical setting at any stage of

80

the algorithm. If we use admissible heuristic costs, then

E(x∗, V) ≥ E(x∗hier, V) and E(x, V) ≥ E(xhier, V).

What this ensures is that when we terminate upon finding a “pure” label assignment to the
current set of supervoxels (at various levels), all other possible assignments have a higher or equal
cost (since their lower bound cost is worse than the current optimal cost of the “pure” labeling).

The next section gives the details of how we obtain the lower bounds on the energy potentials
for an energy consisting of unary and pairwise terms.

6.3 Hierarhical video segmentation
Let us now formulate a cost function to demonstrate how to use the hierarchical coarse-to-fine
strategy to speed up inference.

Cost definition
Consider a cost function which is a linear combination of the sum of unary costs associated with
every site vi ∈ V and pairwise costs associated with every edge eij ∈ E , i.e.,

E(x, V) = λU
∑
vi∈V

ψUi (xi, V) + λP
∑
eij∈E

ψPij(xi, xj, V) (6.1)

Here, λU and λP are weights representing the relative importance of the unary and pairwise poten-
tials. These weights are learnt using structural SVMs.

The unary potential, ψUi (xi, V), represents the cost of assigning the label xi ∈ L to the super-
voxel vi in video V . Unary potentials are usually obtained by training a classifier for every class
on appropriate supervoxel descriptors from the videos in the training data.

Supervoxel Size. Almost all the algorithms for creating supervoxels from a video (Grundmann
et al., 2010) provide an option of either creating very large and few supervoxels or very fine and
numerous supervoxels. Although it is tempting to choose large supervoxels to reduce the graph
size, such a decision could be detrimental to the overall objective because of two reasons. First,
large supervoxels might contain voxels from more than one category. Since all the voxels which
belong to a supervoxel (at the finest level) get the same label, having large supervoxels will lead
to inaccurate results. Second, we want the unary potentials to capture the local appearance and
motion characteristics of small patches from the object. The pose, scale and illumination variation
in the images make it harder to get consistent unary potentials for large supervoxels.

81

The pairwise potentials ψPij(x1, x2, V) for an edge eij ∈ E in video V captures the cost of
interaction for vi and vj for label assignments xi and xj . The pairwise potentials are usually
designed to enforce spatial smoothness and temporal continuity of the labels.

We will provide more details of the specific form of the unary and pairwise potentials in Section
6.4. For notational convenience, we might drop the video index V in later notation and use ψ(·)
and ψ(·, V) interchangeably.

Hierarchical Inference
Let us now introduce some more notation which will be helpful in defining the unary and pairwise
potentials of the coarser supervoxels and in formally specifying the general hierarchical inference
algorithm. The RF RVcurr is defined by a set of nodes Vcurr and the cost defined on this RF is
denoted by EVcurr . These nodes can correspond to supervoxels at different levels of refinement.
As before, a node associated with a supervoxel i at level j is denoted by vij and its label by xij . For
every pair of neighboring supervoxels vi1

j1 and vi2
j2 — neighboring supervoxels can be at different

levels of refinement — e(i1,j1),(i2,j2) ∈ E denotes the edge the connecting them. C(i, j, k), where
j ≥ k, gives the list of sites at level k which we can get by refining supervoxel vij ∈ Vj (this is
actually a refinement of j − k levels). The pseudocode of the hierarchical inference algorithm is
provided in Algorithm 6.1.

Algorithm 6.1 — Hierarchical Inference Algorithm(V1:m, ψ)
1: Vcurr ← Vm

2: repeat
3: Find xVcurr which minimizes EVcurr

4: for all vij ∈ Vcurr such that xij = L+ 1 do
5: Refine vij
6: Vcurr ← Vcurr ∪ C(i, j, j − 1) \ vij
7: end for
8: until L+ 1 /∈ xVcurr

As we discussed in Section 6.2, in order for the hierarchical inference algorithm to converge
to the exact solution, the unary and pairwise potentials associated with the nodes at the coarse
levels should be lower-bounds on the cost associated with the patches of fine nodes constituting
these coarse nodes. In what follows, we show how those lower bounds can be computed four our
specific energy.

Coarse Unary Potentials. The unary cost for a node vij taking one of the pure labels l is the sum
of the unary costs of assigning label l to all the nodes at level 1 that constitute vij , i.e.,

ψU(i,j)(xi
j) =

∑
k∈C(i,j,1)

ψU(k,1)(xi
j), xi

j ∈ L (6.2)

Notice that this is an exact cost.

82

The cost of assigning a “mixed” label to a coarse supervoxel is the minimum cost associated
with the RF defined by the constituent supervoxels at level 1 subject to the constraint that all the
constituent supervoxels cannot get the same label. This minimum can be obtained by using α-
expansion on RC(i,j,1) if we do not have the constraint that the the nodes in this subgraph can not
take the same label. This results in a weaker lower bound. To find the minimum cost with this
constraint, we can formulate it as an integer programming problem (Boros & Hammer, 2002) with
an extra constraint which prevents all the nodes from taking the same label.

Pairwise Potentials. We define the pairwise potential for nodes vj1i1 and vj2i2 , ψP(i1,j1)(i2,j2)(xi1
j1 , xi2

j2),
as follows {

0 if xi1
j1 = xi2

j2∑
Ê ψ

P
(i,1)(j,1)(xi1

j1 , xi2
j2), otherwise

Here, Ê ⊆ E and is defined by Ê = {e(i,1)(j,1) ∈ E : i ∈ C(i1, j1, 1), j ∈ C(i2, j2, 1)}. The cost of
the edge between two big supervoxels (i1, j1),(i2, j2) is the sum of the costs of the edges connecting
the constituent supervoxels of (i1, j1) and (i2, j2). In case one of the supervoxels gets the mixed
label the potential associated to the edge is set to zero. Although this is a loose lowerbound to the
actual cost of these edges (while minimizing the cost on RV1) this saves us a lot of computation
time.

Optimization algorithm
In Algorithm 6.1, the optimization in Step 3 can be performed using different methods. The most
popular choice is graph cuts (Boykov et al., 2001) via α-expansion and α-β swap moves. Another
algorithm frequently used is max belief propagation (Felzenszwalb & Huttenlocher, 2004). Other
alternatives include various linear and non-linear optimization algorithms. The choice is most
frequently guided by the particular form of the energy function we are trying to minimize.

Our hierarchical algorithm is exact only with respect to the underlying optimization algorithm.
For instance, α-expansion is guaranteed to find a solution within a factor of 2 for metric pairwise
potentials (Boykov et al., 2001). Since the hierarchical scheme will find the exact same solution
that α-expansion would find when run on the original finest level problem, it will share its ap-
proximation quality guarantees. For energy functions with higher order terms, we can still use the
hierarchical scheme with an appropriate optimization algorithm in every iteration.

Practical considerations

Trade-off between accuracy (tighter bounds) and computation time

Consider two scenarios: all the lower bounds on potentials in scenario 1 are tighter than the cor-
responding bounds in scenario 2, for the same supervoxel hierarchy. In that case, the number of

83

refinements required in scenario 1 will be strictly non-greater than the number of iterations re-
quired in scenario 2. Hence, it is always beneficial to consider tighter lower bounds. This is true
for any algorithm using admissible heuristics. However, the downside of using tighter bounds is
that they generally are more expensive to compute. Thus, a trade-off exists between accuracy of
heuristic costs and time required to compute them.

On demand supervoxel refinement

In most cases, only a small number of nodes in the supervoxel tree are used in the entire inference
procedure. Thus, we can save computation time by not computing the entire supervoxel tree up-
front, and only refining the desired supervoxels (the ones with the “mixed” label) when needed.
This on-demand refinement scheme, however, can be more expensive if we end up expanding most
of the nodes in the supervoxel tree. We see moderate benefits using this scheme as reported in
Section 6.4.

Extension to label hierarchy

In this work, we have only considered a flat label hierarchy. However, it is possible to consider a
hierarchy among labels as well. For instance, since the sky and the sea labels are (often) similar,
we might get additional computational benefits by considering them together (and therefore elim-
inating them via a single consideration for non-sky, non-sea nodes). Such a hierarchical scheme
would have a “mixed” label at every label level. For more details on how to manage a label hierar-
chy simultaneously with a supervoxel hierarchy, refer to (Chatterjee & Russell, 2011), where such
a scenario is considered.

6.4 Experiments
Although our proposed hierarchical scheme can be exponentially faster than flat optimization in
the best case, it could also be much slower when we need to refine all the supervoxels down to
their finest level. Hence, it is important to validate the usefulness of this coarse-to-fine approach
to see whether it actually provides a speedup and how large this speedup is. It is also expected that
the speedup will be much larger for videos with greater spatio-temporal coherence.

Dataset
For our experiments, we used two datasets — the SUNY Buffalo-Xiph.org 24-class Dataset (Chen
& Corso, 2010) and the CamVid dataset (Brostow et al., 2009).

84

The SUNY Buffalo-Xiph.org 24-class Dataset is a collection of general-purpose videos col-
lected at Xiph.org. The frame-by-frame labels in the video have a fair bit of temporal consis-
tency (which our algorithm is well-equipped to exploit). For each video, we use half of the frames
for training and the remaining half for testing. We retained all 24 labels for this dataset, although
most videos only had 5− 10 labels.

The CamVid Dataset has 700 hand segmented frames of street scenes with varying backgrounds
captured from a video camera in a moving car. The video sequence has been annotated into 32
classes. However in this chapter we have combined some of the classes and are working with a
total of 5 classes - people, vehicles, sky, road and background. Around 250 frames were used for
training and rest of them were used for testing. This represents a more challenging dataset (in
terms of an expected speedup).

Learning potentials
The unary potentials We obtained the unary potentials by learning an SVM on the supervoxel
descriptors for every class. The score associated with a supervoxel descriptor di of the supervoxel
vi for a class x defines the unary potential ψUi (x, V).

Supervoxel Descriptors: The supervoxel descriptor needs to be chosen such that it captures the
discriminative characteristics of the supervoxels (both appearance and motion attributes) across
various classes. In our experiments, we found the Spatio-Temporal Interest Points (STIP) (Laptev
& Lindeberg, 2003; Laptev, 2005) descriptors to be a good fit.

The pairwise potentials We define the pairwise potential between the sites i and j as:

ψPij(xi, xj) =
lij

1 + |Ii − Ij|
δ(xi 6= xj)

where lij is the area of the common boundary between the supervoxels vi and vj and Ii denotes the
average intensity of supervoxel vi.

Experimental setup
For our experiments, we use α-expansion (graph cuts (Boykov et al., 2001)) and belief propaga-
tion (Felzenszwalb & Huttenlocher, 2004) as the optimization algorithm in Step 3 of Algorithm 6.1.
We implemented the algorithms in Python and used various functionalities from the graph libraries
Python-graph (https://code.google.com/p/python-graph/) and igraph (Csardi &
Nepusz, 2006). We used the LIBSVX (http://www.cse.buffalo.edu/˜jcorso/r/
supervoxels/) library’s implementation of a graph-based hierarchical method (Grundmann
et al., 2010) to generate the supervoxel trees.

Xiph.org
https://code.google.com/p/python-graph/
http://www.cse.buffalo.edu/~jcorso/r/supervoxels/
http://www.cse.buffalo.edu/~jcorso/r/supervoxels/

85

O
ri

gi
na

li
m

ag
e

G
ro

un
d

Tr
ut

h
L

ev
el

5
(c

oa
rs

es
t)

L
ev

el
4

L
ev

el
3

L
ev

el
2

Football Bus Ice

Fi
gu

re
6.

2:
E

xp
lo

re
d

po
rt

io
ns

of
th

e
su

pe
rv

ox
el

tr
ee

.T
he

bl
ac

ke
d

ou
tp

or
tio

ns
in

ea
ch

su
pe

rp
ix

el
le

ve
ld

en
ot

es
th

e
pa

tc
h

of
su

pe
rp

ix
el

s
w

hi
ch

w
er

e
ne

ve
rr

efi
ne

d
du

ri
ng

in
fe

re
nc

e.
T

he
to

p
ro

w
sh

ow
s

re
su

lts
fr

om
th

e
“f

oo
tb

al
l”

vi
de

o,
th

e
m

id
dl

e
ro

w
fr

om
th

e
“b

us
”

vi
de

o
an

d
th

e
bo

tto
m

ro
w

fr
om

th
e

“i
ce

”
vi

de
o

(a
ll

fr
om

th
e

SU
N

Y
da

ta
se

t)
.

86

The parameters were adjusted such that the CamVid videos, which had much larger number
of voxels, only had about 2x the number of supervoxels at the finest level as the SUNY-Xiph.org
videos.

Results
Computational speedup: The computation time taken by the flat algorithm (both α-expansion
and belief propagation) and its hierarchical counterpart are reported in Table 6.1. For the CamVid
videos, the speedup is between 3x - 5x. The speedup obtained for the SUNY dataset videos is
between 7x -10x. The increased speedup for the SUNY videos is expected due to the increased
spatio-temporal consistency in those videos. These speedups do not account for the supervoxel tree
creation time, which is only required by our algorithm. If we include the time of the on-demand
refinement scheme discussed in Section 6.3, the overall speedup reduces to 2x - 4x for CamVid
and 5x - 6x for the SUNY videos.

Reduced problem size: Besides the computation time, it is also informative to look at the
explored portions of the supervoxel tree to get a better understanding of where the computational
savings come from. In Figure 6.2, we show the explored portions of the state space for one frame
each of three SUNY videos. The leftmost image is the original image, followed by the ground
truth label for the image. The next four images from left to right are superpixels (since we are
only looking at one frame) at different levels of abstraction (coarsest on the left). The blacked out
superpixels at each level are the ones which never received the “mixed” label and hence were never
refined. Eliminating such entire superpixel (supervoxel) trees rooted at these blackened superpixels
(supervoxels) is the key behind obtaining computational speedup.

We are not showing any segmentation results in the chapter since the quality of the segmen-
tation is the same as what would be obtained by using α-expansion or belief propagation with
the chosen energy function. We will include the segmentation videos (both final and intermediate
iterations) in the supplementary material.

Accuracy vs time
Another interesting metric to track is the percentage of correctly classified voxels. When the
hierarchical algorithm terminates, this percentage reaches the same value that would be obtained
by running inference on the flat problem formulation. As shown in Figure 6.3, this final accuracy
lies between 55% and 75%. However, there seems to be no clear trend in how this accuracy is
achieved as a function of iterations. For the “bus” video, the accuracy quickly spikes up and then
reaches a plateau, while for “ice”, it spikes up after a few iterations. A surrogate for this accuracy
(the percentage accuracy is often unavailable since there is no ground truth) is the cost function.
We can use the cost function to design an anytime version of the algorithm, where termination
could be guided by sharp spikes (or the lack thereof) in the cost function.

87

Figure 6.3: Percentage of correctly classified supervoxels after every iteration of the hierarchical belief propagation
algorithm.

6.5 Conclusion
In this chapter, we have presented a general coarse-to-fine or hierarchical scheme for video seg-
mentation. The key intuition behind the proposed solution is the fact that the set of likely label
assignments is exponentially smaller than the set of all possible label assignments. A flat problem
formulation works with the latter large set, while we use an abstraction scheme (namely super-
voxel trees) to identify the former smaller set and work on the smaller problem. The framework
is general since it can use any optimization algorithm to find the optimal label for the intermediate
problems. It is also exact since it uses admissible heuristic costs for the coarser supervoxel poten-
tials. We show results using α-expansion and belief propagation on two different video datasets
and obtain speedups ranging from 2x - 10x. As expected, the speedup obtained is larger for videos
with more spatio-temporal continuity.

As with any general framework, there remains a fair bit of exploration to do. Other abstraction
schemes and optimization algorithms could yield better results (for other specific data sets). There
is also the accuracy to computation time trade-off in the heuristics computation. Another direction
would be to compromise on the exact nature of the solution and design really fast (and perhaps,
slightly more inaccurate) segmentation algorithms.

88

A
lg

or
ith

m
C

am
V

id
SU

N
Y

C
am

V
id

1
C

am
V

id
2

C
am

V
id

3
C

am
V

id
4

C
am

V
id

5
B

us
Fo

ot
ba

ll
Ic

e
α

-e
xp

an
si

on
Fl

at
13

0.
1

13
7.

3
11

7.
6

14
5.

1
14

0.
1

35
.3

25
.0

32
.7

H
ie

ra
rc

hi
ca

l
32

.7
40

.9
27

.3
43

.8
29

.4
6.

5
2.

3
5.

3
B

el
ie

fP
ro

pa
ga

tio
n

Fl
at

25
6.

0
27

0.
1

25
8.

3
30

7.
0

31
9.

2
50

.3
34

.7
50

.9
H

ie
ra

rc
hi

ca
l

50
.5

79
.1

61
.5

10
7.

7
90

.5
9.

3
4.

1
8.

3

Ta
bl

e
6.

1:
Ti

m
e

ta
ke

n
by

th
e

di
ff

er
en

ti
nf

er
en

ce
al

go
ri

th
m

s
on

di
ff

er
en

td
at

a
se

ts
(i

n
m

in
ut

es
).

T
he

tim
es

re
po

rt
ed

fo
r

th
e

hi
er

ar
ch

ic
al

ca
se

do
es

no
ti

nc
lu

de
su

pe
rv

ox
el

tr
ee

co
m

pu
ta

tio
n

tim
e.

89

Chapter 7

MCMC and near-determinism

Markov chain Monte Carlo (MCMC) algorithms are notorious for getting stuck in the presence of
near-deterministic relationships in graphical models. In this chapter, we propose a methodology to
design MCMC algorithms for a subclass of near-deterministic probabilistic models.

In the previous chapters, we have focused on exploiting near-determinism in probabilistic mod-
els for exact inference algorithms. We now turn our focus to approximate inference algorithms,
namely Markov chain Monte Carlo (MCMC), and show how we can make these algorithms more
efficient in near-deterministic systems.

MCMC algorithms are used ubiquitously to generate samples from a probability distribution
where exact sampling is not feasible. However, in the presence of near-deterministic components
in a joint distribution, it is well-known that mixing is very slow and the chain often gets stuck in
local modes.

In this chapter, we explore one potential fix to this problem by visiting the deterministic prob-
lem corresponding to the near-deterministic components. If there exists an efficient algorithm (say
Adet) to sample from the solutions to this deterministic problem, then we show that it is often
possible to design an MCMC algorithm AMCMC which provides the computational benefits in the
near-deterministic domain that Adet provides in the deterministic scenario.

We present a general method to design AMCMC from Adet and enumerate specific MCMC al-
gorithms for two different constraint satisfaction problems. These new algorithms show promising
results in the near deterministic domain as compared to a Gibbs sampler.

90

7.1 Introduction
Markov chain Monte Carlo (MCMC) methods, introduced in Section 2.3, are a general class of
algorithms which have been used widely in the fields of computational biology, econometrics,
physics, statistics and many others over the past three decades. MCMC methods generate samples
from probability distributions based on the idea of constructing a Markov chain whose invariant
distribution corresponds to the probability distribution (often referred to as the target distribution)
of interest. They have been used in numerical integration, optimization and simulation of systems
in the various fields mentioned above. Specific instances of MCMC algorithms like the Metropo-
lis algorithm (Metropolis et al., 1953), the Metropolis-Hastings algorithm (Hastings, 1970) and
Gibbs sampling (Geman & Geman, 1984) have had great influence on computational aspects of
science and engineering in general. For a more detailed introduction to MCMC methods, and their
various theoretical and practical nuances, please refer to (Robert & Casella, 2005). Applications
in machine learning have been well highlighted in (Andrieu et al., 2003).

In the presence of near-determinism, MCMC methods often run into trouble. The process of
exploring the state space by an MCMC algorithm is inherently tied to the stochastic nature of the
problem. As the amount of stochasticity in a problem decreases, the solution modes become more
and more “isolated” in the probability density landscape. This makes navigation from one mode
to another increasingly difficult. As a result, the mixing time of the MCMC algorithm increases.

Certain approaches have previously been proposed. One potential solution is blocked Gibbs
sampling (Geman & Geman, 1984), (Robert & Casella, 2005), where any tightly coupled set of
variables (i.e., a set of variables having a near-deterministic relationship) are sampled as a block.
While this might solve the original problem, it introduces two new additional problems – identify-
ing such tightly coupled blocks and sampling for such potentially large blocks. In the worst case,
we might have to sample the entire system as a block (which was not feasible in the first place).
The blocked Gibbs sampling can also be used as a global kernel which jumps between modes, and
is then mixed with a local kernel which explores the space around each identified mode. Such
mixtures of kernels also form an important class of MCMC algorithms (Tierney, 1994).

An interesting alternative is MC-SAT (Poon & Domingos, 2006), which is an MCMC algo-
rithm to generate samples for Markov logic networks (MLNs) (Richardson & Domingos, 2006).
MC-SAT can handle near-deterministic and deterministic clauses in MLNs. It proceeds by first
identifying the set of clauses which are satisfied by the current state. It then samples from this set
of clauses based on their level of determinism (more the determinism, more the likelihood of the
clause getting sampled). Finally, it generates the new state by sampling from the solution space
of the set of sampled clauses from the previous step. The final sampling is done using Sample-
SAT (Wei et al., 2004) which can sample (approximately) uniformly from the solution set of any
deterministic SAT problem.

In this chapter, we explore a different approach to solving this problem. Let Pdet be a deter-
ministic problem (e.g., Pdet = k−SAT) and we are interested in sampling from Pnear−det which is
a near-deterministic version of Pdet. Let Adet be an algorithm which finds solutions to Pdet. Under

91

this setting, is it possible to design an MCMC algorithm, say AMCMC which converges1 to Adet as
Pnear−det approaches the limit of determinism (i.e., Pdet)? We show that the answer to this question
is in the affirmative, although Adet has to satisfy certain conditions.

While a conventional MCMC algorithm’s performance worsens as the problem approaches
determinism, AMCMC (which converges in behavior to Adet) is relatively unaffected. There are
two key intuitions which drive the design ofAMCMC based onAdet. Firstly,Adet is used to design a
proposal distribution for the next state, given the current state. Secondly, delayed rejection MCMC
(Mira, 2001), (Green & Mira, 2001) is used to retain the suboptimal samples that the proposal
distribution (analogous toAdet) generates, since they are often vital to get out of a local mode. This
differs from the conventional use of delayed rejection MH to shape proposals to stay away from
rejected samples. In the paper, we prove a theorem which states, that under certain assumptions,
it is always possible to design AMCMC for a problem Pnear−det given an Adet for the deterministic
problem Pdet. Another important point to note is that AMCMC will share both the advantages and
disadvantages of Adet as Pnear−det approaches determinism.

Using this principle, we design MCMC algorithms for the stochastic SAT problem and for a
class of sum constraint problems. We present guidelines on how to design AMCMC , given Adet.
Following these guidelines, we also show that Gibbs sampling for certain stochastic constraint
satisfaction problems (CSPs) converges to the Min-Conflicts heuristic algorithm in the limit of
determinism (i.e., AMCMC = Gibbs for Adet = Min-Conflicts). Our experiments show significant
improvement in the quality of samples generated by these new algorithms over Gibbs sampling.
Such a design of AMCMC from Adet will allow the user to incorporate well-research insights from
Adet into an MCMC algorithm for the near-deterministic realm with relative ease — this can be
considered to be the main contribution of the paper.

The rest of the chapter is structured as follows. Section 7.2 presents some notations and algo-
rithms which we use as building blocks in the following sections. We then describe the general
framework and guidelines on designing AMCMC based on Adet in Section 7.3. Section 7.4 and
Section 7.5 outline the stochastic SAT problem and the sum constraint problem respectively and
present corresponding MCMC algorithms. Empirical evaluations are reported and discussed in
Section 7.6 before we conclude in Section 7.7.

7.2 Preliminaries

Notation
We will be representing random variables with capital letters (e.g., X , Y) while sets of random
variables will be denoted by bold capital letters X,Y. Their instantiations will be symbolized by

1The convergence is in terms of the set of samples that Adet and AMCMC generate. A detailed definition of
convergence is provided in Section 7.3 and Theorem 7.3.1.

92

small letters – x and x respectively. For brevity, we will often use p(.|x, y) to represent p(.|X =
x, Y = y). For a brief introduction to MCMC algorithms and some of the notation we are using in
this chapter, please refer to Section 2.3. Let us now briefly review some specific MCMC algorithms
that we will use later in this chapter.

Delayed Rejection MH
The Metropolis-Hastings (MH) algorithm (Hastings, 1970) is an MCMC algorithm that was intro-
duced earlier is Section 2.3. We now introduce delayed rejection MH algorithm (Mira, 2001)(Green
& Mira, 2001), which is a specific example of an adaptive MCMC (Andrieu & Thoms, 2008)(Tier-
ney & Mira, 1999) algorithm. Adaptive MCMC is a family of MCMC algorithms where the
proposal distribution q(.|.) adapts as more samples are generated. In delayed rejection MH, when
a new proposed state x′ is rejected, the proposal distribution adapts and takes the form q(.|x, x′).
For instance, this can be used to avoid proposing states similar to x′ in case similar states have sim-
ilar probability values. This process can be continued until the current proposed state is accepted.
After a state (say x∗) is accepted, the proposal distribution reverts back to q(.|x∗). It should be
noted that x is not replicated as the sample while the intermediate proposed states are rejected. The
next sample is x∗.

The acceptance probability of an intermediate step (starting from x0 and having rejected x1,
· · · , xk−1) is given by:

α1(x0, x1) = min

(
1,
π(x1)q1(x0|x1)

π(x0)q1(x1|x0)

)
(7.1)

α2(x0, x1, x2) = min

(
1,
π(x2)q1(x1|x2)q2(x0|x1, x2)

π(x0)q1(x1|x0)q2(x2|x1, x0)
(7.2)

[1− α1(x2, x1)]

[1− α1(x0, x1)]

)
...

αk(x0, · · · , xk) = min

(
1,
π(xk)
π(x0)

q1(xk−1|xk) · · · qk(x0|x1, · · · , xk)
q1(x1|x0) · · · qk(xk|xk−1, · · · , x0)

[1− α1(xk, xk−1)] · · · [1− αk−1(xk, · · · , x1)]

[1− α1(x0, x1)] · · · [1− αk−1(x0, · · · , xk−1)]

)
where αi(x0, x1, · · · , xi) (i < k) denotes the acceptance probability of xi having started from x0

and previously rejecting x1, · · · , xi−1 before proposing xi. This is computed by enforcing detailed
balance at every intermediate step. For more details, please refer to (Mira, 2001).

93

Example of a near-deterministic problem
An example of a near-deterministic problem is a stochastic version of the well-studied 3 − SAT
problem. We will now explain what “near-determinism” means and how we can characterize
the amount of stochasticity. Let there be N literals X = {X1, X2, · · · , XN} and M disjunctive
clauses C = {C1, C2, · · · , CM} where Ci = Xi,1 ∨ Xi,2 ∨ Xi,3. Here, Xi,j ∈ X and could also
be the negation of a literal. Finally, there is a conjunctive clause denoted by a variable S, where
S = C1 ∧ C2 ∧ · · · ∧ CM . Pdet is the problem of generating x such that s = 1.

x1 x2 x3

c1 c2

S

x1 x2 x3 p(c1=1)

0 0 0 1-ε

0 0 1 ε

0 1 0 1-ε

0 1 1 1-ε

1 0 0 1-ε

1 0 1 1-ε

1 1 0 1-ε

1 1 1 1-ε

x1 x2 x3 p(c2=1)

0 0 0 1-ε

0 0 1 1-ε

0 1 0 ε

0 1 1 1-ε

1 0 0 1-ε

1 0 1 1-ε

1 1 0 1-ε

1 1 1 1-ε

p(S=1|C1,C2) = (1-δ) C1+C2 δ 2-C1-C2

Noisy-OR model

Noisy-AND model
Deterministic limit:

ε→0, δ→0

Figure 7.1: A stochastic CSP in conjunctive normal form, where the clauses are disjunctions. The CPTs (correspond-
ing to the example in the text) show the near-deterministic nature of the disjunctions and conjunction.

Now, we can introduce stochasticity in two ways – by having a prior distribution on X or by
adding noise to the disjunctive and conjunctive clauses. Let us focus on the latter for the moment.
In the example shown in Figure 7.1,N = 3,M = 2, C1 = X1∨X2∨¬X3 andC2 = X1∨¬X2∨X3.
Let us now introduce some noise in the disjunction and conjunction conditional probability tables
(CPTs) – the order of the noise is denoted by ε and δ respectively. The actual amount of noise
for each CPT entry can be obtained by multiplying ε (or δ) with a random number r ∈ (0, 1).

94

If we wish to have different values of ε for the different disjunctions, we can represent it with
~ε. As ε, δ → 0, the model approaches determinism. An example problem Pnear−det in this near-
deterministic graphical model could be to generate samples from p(x|S = 1).

7.3 General Framework and algorithm

Designing AMCMC

In this section, we outline the general procedure of designing the MCMC algorithm AMCMC given
the algorithmAdet for the deterministic problem Pdet. Firstly, Adet should satisfy the following two
properties:

1. Adet should generate solutions to Pdet using some local search heuristics. Adet can also
generate intermediate non-solution states.

2. The next state proposed by Adet can depend on all previous states upto and including the last
solution state. Of course, it is also okay if the proposal does not depend on the current state
at all.

An example of Adet can be the WalkSAT algorithm (Selman et al., 1994)(McAllester et al.,
1997) for generating solutions to SAT problems. The algorithm is outlined in Algorithm 7.3. In
every iteration, WalkSAT picks a clause which is currently unsatisfied, and then flips a variable
within that clause. The unsatisfied clause is generally selected at random. Then with probability
α (a parameter of the algorithm) the variable to flip is chosen randomly from the selected clause,
and with probability 1 − α, the variable to flip is chosen greedily so as to minimize the number
of unsatisfied clauses. It should be noted that WalkSAT (like many other search algorithms in
the deterministic space) makes suboptimal moves. In fact, these suboptimal moves often help the
algorithm escape a local non-solution maxima and find solutions. In order for AMCMC to perform
well as Pnear−det approaches determinism, we propose two general design choices:

1. The proposal distribution q(.|x) should be structured so that it converges, in the limit of
determinism, to the distribution of the next state that Adet would generate after x.

2. The suboptimal moves that Adet proposes should not be immediately discarded. These sub-
optimal states often help in moving between modes or escaping a local maxima. However,
the probability of accepting a suboptimal state tends to 0 as Pnear−det approaches deter-
minism. We work around this by employing delayed rejection Metropolis Hastings (Mira,
2001). As described in Section 7.2, the subsequent proposals can be based on all previous
states upto the last accepted sample, i.e., qk(.|x0, x1, · · · , xk−1). Depending on Adet, we

95

choose an appropriate q(.|.). For instance, when Adet is WalkSAT, then qk = q(xk|xk−1).
Note that x0 is the last accepted sample in AMCMC .

Based on these two principles, we can design AMCMC for Pnear−det when Adet satisfies the
aforementioned properties.

Properties of proposal distributions
There is some flexibility in the choice of the proposal distribution. For example, if we wish to
choose an unsatisfied clause in the SAT problem in the deterministic limit, then we could use either
∩p(Ci = 0) or ∩p(Ci = 0)2 to guide our selection (∩p(.) denotes an unnormalized distribution).
One way to potentially quantify the quality of the proposal distribution is to use a divergence
measure between the next state distribution of Adet and q(.|x) when the current state is x. This
divergence should monotonically decrease with ε and ε→ 0.

Distribution of AMCMC samples
Let us now prove an important property about the set of samples generated by anAMCMC designed
according to the guidelines mentioned above.

Theorem 7.3.1 Let Sdet represent the set of unique solution states that are visited infinitely often

by Adet and let SMCMC be the set of unique states that are sampled by AMCMC . Then, in the

deterministic limit, SMCMC = Sdet. Additionally, the frequency with which AMCMC generates

states in Sdet will follow the target distribution, even if Adet does not satisfy that property.

Proof To prove the above statement, let us refer back to the acceptance probability for delayed
rejection MH, as given in Equation 7.2 in Section 7.2. Also, we can ignore the initial phase of
AMCMC before it has found a solution state. We now focus on the case when x0 is a solution state.
If x1 is not a solution state, then π(x1)→ 0 and therefore α1(x0, x1)→ 0.

Now let x1, x2, · · · , xi−1 all be non-solution states. In Equation 7.2, π(xi)/π(x0) → 0. Addi-
tionally, the alpha terms in the numerator like α1(xi, xi−1) denote acceptance probability starting
from a non-solution state and ending in a non-solution state. Hence, these terms could be non-zero.
The denominator α terms however all approach 0. Hence, the ratio of the [1− α.(.)] terms is also
smaller than 1. Also, all the q.(.) terms in the denominator are bounded away from 0 since those
are actual states which were proposed. Therefore, αi(x0, x1, · · · , xi)→ 0.

96

Now, let xn be a solution state, and all the states x1, · · · , xn−1 are non-solution states. In
the expression for αn(x0, · · · , xn), all the α.(.) terms → 0, since they all start at a solution state
(either x0 or xn) and end in a non-solution state. Hence, the acceptance probability in the limit of
determinism can be calculated as follows:

αn(x0, · · · , xn)→ min

(
π(xn)

π(x0)

q(xn−1|xn) · · · q(x1|x0)

q(x1|x0) · · · q(xn|xn−1)

)
= min

(
π(xn)q∗(x0|xn)

π(x0)q∗(xn|x0)

) (7.3)

Thus, AMCMC , in the limit of determinism accepts only solution states. Additionally, the
proposal distribution is derived directly from Adet. Now, Adet is a first-order Markovian algorithm,
which satisfies the property ∀x ∈ Sdet, π∗(x) > 0, where π∗(.) is the invariant distribution for Adet.
This entails that ∀x′π(x′) > 0 =⇒ x′ ∈ SMCMC , where π(.) is the target distribution, which in
the deterministic limit is proportional to the prior probability of the solution state.

An alternate way of looking at it is that the support of the composite proposal distribution q∗(.)
includes the support of Adet. Thus SMCMC = Sdet.

Additionally, since AMCMC is a valid MCMC algorithm, it will sample all states in SMCMC

according to their posterior probability. So, even though WalkSAT is known to generate certain
samples exponentially more frequently than others, WalkSAT-MCMC (presented in Section 7.4)
would not exhibit a similar bias. �

However, if Adet has a bias towards certain solutions, then the mixing time of AMCMC will be
affected. We will show this through empirical results in Section 7.6.

7.4 Specific problem I: Near-deterministic SAT
We have already introduced the problem in Section 7.2. Now, let us look at some specific algo-
rithms for Pdet corresponding to generating solutions to a k−SAT problem (for k ≥ 3). Pnear−det
corresponds to generating samples from p(x|S = 1). For now, we assume δ = 0 for ease of
disposition. We will revisit other noise models later in this section.

Min-Conflicts and Gibbs sampling
The first algorithm we consider is the Min-conflicts algorithm, which is a popular local search
strategy for finding solutions to CSPs. At every iteration, a variable is selected which occurs in a

97

currently unsatisfied clause. The value of this variable is then set so as to minimize the number of
unsatisfied clauses. The details are provided in Algorithm 7.1.

Algorithm 7.1 — Min-conflicts(CSP(X, C, S), iter)
1: x← Initialize from prior of X
2: for i = 1 to iter do
3: Pick a variable Xk ∈ X which occurs in some unsatisfied clause Cj
4: Xk ← xk which minimizes #Conflicts(xk, x\k,C)
5: (Break ties randomly)
6: end for

Now, let us consider Gibbs sampling for the stochastic CSP (ε > 0, δ = 0). The full details are
shown in Algorithm 7.2.

Algorithm 7.2 — GibbsSampling(CSP(X, C, S), iter)
1: x← Initialize from prior of X
2: for i = 1 to iter do
3: Pick a variable Xk ∈ X
4: xk ∼ p(xk|x\k, S = 1)
5: end for

The conditional distribution in Line 4 of Algorithm 7.2 can be rewritten as:

p(xk|x\k, S = 1) = εm(xk,x\k)(1− ε)M−m(xk,x\k) (7.4)

wherem(xk, x\k) is the number of unsatisfied clauses (corresponding to the deterministic prob-
lem as ε → 0). In the limit of determinism (i.e., ε → 0), if m(xk, x\k) 6= M − m(xk, x\k), then
Xk is assigned the value which minimizes #Conflicts as that term dominates in the conditional
probability. Otherwise, if m(xk, x\k) = M −m(xk, x\k), the limiting conditional distribution (as
ε→ 0) is the uniform distribution and can be obtained using L’Hospital’s rule.

Since AMCMC is Gibbs sampling and it converges2 in behavior to the Min-Conflicts algorithm
in the deterministic limit. Thus, it shares the same set of problems that Min-Conflicts has (i.e.,
getting stuck in a local maxima).

WalkSAT and WalkSAT-MCMC
We have already described the WalkSAT algorithm in Section 7.3. It is outlined in Algorithm 7.3.

Now to design AMCMC (let us call this new algorithm WalkSAT-MCMC), we will first design
a proposal distribution. Instead of choosing randomly among the currently unsatisfied clauses

2as defined in Section 7.3

98

Algorithm 7.3 — WalkSAT(CSP(X, C, S), α, iter)
1: x← Initialize from prior of X
2: for i = 1 to iter do
3: Pick a clause C ∈ C unsatisfied by x
4: r ← Uniform(0, 1)
5: if r < α then
6: idx← Uniform(k : Xk ∈ C)
7: else
8: idx← argmink:Xk∈C #Conflicts(¬xk, x\k,C)
9: (Break ties randomly)

10: end if
11: xidx ← ¬xidx
12: end for

(as in WalkSAT), we now choose a clause Ci with probability proportional to it being current
unsatisfied, i.e., p(Ci = 0|x). Once a clause C∗ is selected, we select the literal in C∗ randomly
with probability α. With probability 1 − α, we flip a literal with probability proportional to the
posterior of the proposed state. It is straightforward to see that this proposal scheme is identical
to WalkSAT when ε = 0. After proposing the new state x′, we accept it using delayed rejection
MH. This acceptance probability is represented by αDRMH . If x′ is not accepted, the next state is
proposed using x′ (just like in WalkSAT). However, the set of samples generated by the algorithm
correspond to every accepted sample (whenever last sample is renewed).

SampleSAT and Sample-SAT MCMC
SampleSAT (Wei et al., 2004) is a more recently proposed algorithm, which improves over Walk-
SAT. The authors in (Wei et al., 2004) showed that WalkSAT was exponentially more likely to
generate certain solutions as compared to other solutions for a given SAT problem. SampleSAT
adds an occasional Simulated Annealing (Van Laarhoven & Aarts, 1987) step to make things much
more uniform. The details are outlined in Algorithm 7.5.

By now, we have already shown two examples. So we will keep the description for the design
process of SampleSAT-MCMC (Algorithm 7.6) brief. Our proposal for the next state involves a
mixture of simulated annealing and the proposal for WalkSAT-MCMC. The proposed sample is
then accepted via delayed rejection MH.

Other noise models

Case I : ε = 0, δ > 0

In this case, all the proposed algorithms remain almost identical. The unsatisfied clause selection in
WalkSAT-MCMC (and therefore in SampleSAT-MCMC) will be deterministic. This will be a good

99

Algorithm 7.4 — WalkSAT-MCMC(CSP(X, C, S), α, iter)
1: x← Initialize from prior of X
2: for i = 1 to iter do
3: accept← False
4: last sample← x
5: rejected samples← ∅
6: while accept = False do
7: Pick a clause C ∈ C ∝ p(C = 0|last sample)
8: r ← Uniform(0, 1)
9: if r < α then

10: idx← Uniform(k : xk ∈ C)
11: else
12: idx ∝ π(¬xidx, last sample\idx)
13: end if
14: x′ ← {¬xidx, last sample\idx}
15: r ← Uniform(0, 1)
16: if αDRMH(last sample, rejected samples) < r then
17: last sample← x′
18: rejected samples← ∅
19: else
20: rejected samples← rejected samples + x′
21: end if
22: end while
23: end for

Algorithm 7.5 — SampleSAT(CSP(X, C, S), T , β, α iter)
1: x← Initialize from prior of X
2: for i = 1 to iter do
3: r ← Uniform(0, 1)
4: if r < β then
5: x← Simulated-Annealing(x, T,CSP(X,C, S))
6: else
7: x←WalkSAT-Step(x,CSP(X,C, S), α)
8: end if
9: end for

100

Algorithm 7.6 — SampleSAT-MCMC(CSP(X, C, S), T , β, α, iter)
1: x← Initialize from prior of X
2: for i = 1 to iter do
3: accept← False
4: last sample← x
5: rejected samples← ∅
6: while accept = False do
7: r ← Uniform(0, 1)
8: if r < β then
9: x′ ← Simulated-Annealing(x, T,CSP(X,C, S))

10: else
11: Pick a clause C ∈ C ∝ p(C = 0|last sample)
12: r ← Uniform(0, 1)
13: if r < α then
14: idx← Uniform(k : xk ∈ C)
15: else
16: idx ∝ π(¬xidx, last sample\idx)
17: end if
18: x′ ← {¬xidx, last sample\idx}
19: end if
20: r ← Uniform(0, 1)
21: if αDRMH(last sample, rejected samples) < r then
22: last sample← x′
23: rejected samples← ∅
24: else
25: rejected samples← rejected samples + x′
26: end if
27: end while
28: end for

proposal distribution for small values of δ, since we are essentially ignoring δ during our proposal.
As δ becomes large, we might select the clause using either p(Ci = 0|x) or p(Ci = 0|S = 1) –
generally using a mixture of these would be prudent.

Case II : ε > 0, δ > 0

In this case, computing π(x) = p(x|S = 1) might be exponentially expensive since the set of
clause variables C have to be marginalized. This marginalization was trivial when either ε = 0 or
δ = 0. One potential solution is to update the clause variables using Gibbs sampling. The clause
selection for the various AMCMC algorithms can then proceed as before, as we use π(x, c) as a
proxy for π(x).

101

7.5 Problem Instance II - Sum constraint sampling

Problem Definition
Given s and k independent random variables X1, X2, · · · , Xk such that Xi Pi(x), the sum con-
straint sampling involves sampling these variables from the distribution P (x1, · · · , xk|

∑k
i=1 xi =

s).

ECSS and ECSS-MCMC
Efficient solutions have been proposed to the sum constraint problem which use dynamic pro-
gramming. The algorithm is called exact constrained sequential sampling algorithm (ECSS). The
idea behind ECSS is to sample the variables sequentially from the marginal distribution i.e., Xi is
sampled from P (Xi|s,X1, · · · , xi−1). The marginal probability is computed using the following
formula:

P (Xi = j|s,X1, · · · , xi−1) ∝ P (
k∑
l=1

Xl = s|x1, · · · , xi)

where P (
∑k

l=1Xl = s|x1, · · · , xi) is estimated using a dynamic programming approach.

For more details on ASCdet refer to (Huseby et al., 2004). In this chapter we will be discussing
a solution to a stochastic version of the above problem where s is influenced by a multiplicative
noise. In our setup Xi ∼ Pi(x) can take only discrete values.

Now we introduce stochasticity by adding multiplicative noise to S. Let O denote the variable
corresponding to observed noisy value of the sum. The graphical model for this problem is shown
in figure 7.2. We need to sample from the posterior distribution P (x1, · · · , xk|O = o) such that
Xi Pi(x), S =

∑k
i=1 xi, O = (1 + εS) where ε Pε(e) represents the noise model.

In ECSS-MCMC also variables are sampled sequentially. Let us first discuss the proposal
mechanism. At every time step the proposed sample is generated by sampling the noise first.
Noise is estimated by sampling ε from Pε(e). (x1, · · · , xk) can then be sampled using ECSS from
P (X1, · · · , Xk|

∑k
i=1Xi = s) where s = o/(1 + ε).

For a given current state (y1, · · · , yk, εy) the probability of proposing a state (x1, · · · , xk, εx),

q(x, y) ∝ Pε(εx)P (x1, · · · , xk|o, εx)

where P (x1, · · · , xk|o, ε) is the product of the individual marginals computed in ECSS.

102

x1 x2 x3 xk

S

O

S = Σk
i=1xi

p(O|S) = p(ε)

p(S|x1,x2,…,xk) = Πk
i=1p(xi)

O = (1+ε)S

Figure 7.2: The graphical model for the sum constraint problem for discrete variables.

7.6 Experiments
Let us now evaluate the various algorithms presented and see if they can be used to design better-
performing algorithms in the near-deterministic domain.

Stochastic SAT
For these experiments, we generated random 3 − SAT instances with 50 literals and 220 clauses.
The number of clauses were chosen to increase the chances of the problem being satisfiable, but
still close to unsatisfiable (Kamath et al., 1995). For each clause in each problem instance, 3 liter-
als were chosen and each of them was negated with probability 0.5. This defined Pdet. The average
performance of the three deterministic algorithms – Min-Conflicts, WalkSAT and SampleSAT over
5000 samples is shown in Figure 7.3. As expected, Min-Conflicts often gets stuck in local max-
ima, and has the worst performance. WalkSAT does much better while SampleSAT is the best

103

0 1000 2000 3000 4000 5000

Iteration
206

208

210

212

214

216

218

#
 s

a
ti

sf
ie

d
 c

la
u
se

s

SampleSAT
WalkSAT
Gibbs

195 200 205 210 215
0

100

200

300

400

500

#
 U

n
iq

u
e
 s

a
m

p
le

s

Gibbs

195 200 205 210 215
0

100

200

300

400

500

SampleSAT

195 200 205 210 215

satisfied clauses
0

100

200

300

400

500

WalkSAT

Figure 7.3: Average Performance of Min-Conflicts, WalkSAT and SampleSAT on a 50 literal, 220 clause 3 − SAT
system. The leftmost figure tracks the number of satisfied clauses over iterations. The other three figures plot his-
tograms of the number of unique samples in bins divided by number of satisfied clauses. It is evident that SampleSAT
is the best performer, since it gets the most number of unique solutions, followed by WalkSAT and then Min-Conflicts.

performing algorithm, as existing literature suggests.

The 2 key metrics that we will measure in our experiments are the following:

1. The sample log likelihood, which is analogous to the data log-likelihood.

2. The number of unique samples generated by each algorithm in each log likelihood bin. A
good algorithm should generate more unique samples in the high log likelihood bins.

Corresponding to each Pdet, we defined 4 instances of Pnear−det, for ε = {0.1, 0.01, 0.001, 0.0001}.
δ = 0 for all the experiments. We also set uniform priors on all the literals (each of them is equally
likely to be either 0 or 1).

The average performance of the three AMCMC algorithms – Gibbs, WalkSAT-MCMC and
SampleSAT-MCMC – are largely similar to the trends observed in the deterministic problem. Fig-
ures 7.6, 7.7, 7.8 and 7.9 show the details of the performance for ε = 0.1, 0.01, 0.001 and 0.0001
respectively. As we had mentioned in Section 7.3, the properties of the deterministic algorithm
that AMCMC derives from, affects its performance. This is why SampleSAT-MCMC outperforms
WalkSAT-MCMC and is likely to have a much smaller mixing time since SampleSAT visits solu-
tion states much more uniformly.

104

Sum constraint sampling
For experiments on the sum constraint problem, we once again generated random instances of the
problem with 50 discrete random variables, each having a bimodal prior. ε had a Gaussian prior
distribution with µ = 0. We varied the variance σ2 = 0.1, 0.01, 0.001, 0.0001. We noticed a
marked performance improvement in the last two cases, which has been in Figures 7.4 and 7.5.

22 20 18 16

Log probability
0

1000

2000

3000

4000

5000

6000

7000

#
 U

n
iq

u
e
 s

a
m

p
le

s

Gibbs

22 20 18 16

Log probability
0

1000

2000

3000

4000

5000

6000

7000

AMCMC

Figure 7.4: Average Performance of Gibbs sampling vs AMCMC for the sum constraint sampling problem. This
graph plots the number of unique samples in bins divided by log likelihood. V arε = 0.001.

7.7 Discussion and Conclusion
In this chapter, we have identified a general procedure to design effective MCMC algorithms for
the near-deterministic realm, by using algorithms for the corresponding deterministic problem. We
compare the performance of these MCMC algorithms against Gibbs sampling, as the amount of
time and effort to design and implement AMCMC from Adet is arguably similar to that required
to implement a Gibbs sampler for a particular problem. The AMCMC algorithms outperform the
Gibbs sampler as the amount of non-determinism decreases in the problem. We also identify cer-
tain properties of algorithms, which might make them better suited for our purpose. For instance,
SampleSAT is a better choice than WalkSAT since the former samples solutions more uniformly,
resulting in better mixing in SampleSAT-MCMC over WalkSAT-MCMC.

105

23 22 21 20 19 18 17 16 15

Log probability
0

1000

2000

3000

4000

5000

6000

#
 U

n
iq

u
e
 s

a
m

p
le

s

Gibbs

23 22 21 20 19 18 17 16 15

Log probability
0

1000

2000

3000

4000

5000

6000

AMCMC

Figure 7.5: V arε = 0.0001.

Also, similar ideas can be used to design MCMC optimization algorithms. Search heuristics
like k−opt can be used to design proposal moves which can be used in conjunction with simulated
annealing to tackle optimization problems.

A potential downside of these algorithms would be their speed. Depending on Adet and
Pnear−det, computing q(xi|xj) could be very expensive. Also, delayed rejection Metropolis Hast-
ings slows down quickly as the length of rejected samples grows. However, an MCMC algorithm
requires a lot more computations than a heuristic search algorithm – so perhaps this slowdown is
inevitable, but the extent of it can be alleviated.

106

0 1000 2000 3000 4000 5000

Iteration
5

10

15

20

25

30

35

40

45

50
Ne

ga
tiv

e L
og

 lik
elih

oo
d

SampleSAT
WalkSAT
Gibbs

10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

U
niq

ue
 sa

mp
les

Gibbs

10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

SampleSAT

10 20 30 40 50 60 70 80 90

Negative Log Likelihood
0

50

100

150

200

250

300

WalkSAT

Figure 7.6: ε = 0.1

0 1000 2000 3000 4000 5000

Iteration
0

10

20

30

40

50

60

Ne
ga

tiv
e L

og
 lik

elih
oo

d

SampleSAT
WalkSAT
Gibbs

20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

U
niq

ue
 sa

mp
les

Gibbs

20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140
SampleSAT

20 40 60 80 100 120 140 160

Negative Log Likelihood
0

20

40

60

80

100

120

140
WalkSAT

Figure 7.7: ε = 0.01

0 1000 2000 3000 4000 5000

Iteration
0

20

40

60

80

100

Ne
ga

tiv
e L

og
 lik

elih
oo

d

SampleSAT
WalkSAT
Gibbs

20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

U
niq

ue
 sa

mp
les

Gibbs

20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

SampleSAT

20 40 60 80 100 120 140 160

Negative Log Likelihood
0

20

40

60

80

100

120

140

160

WalkSAT

Figure 7.8: ε = 0.001

0 1000 2000 3000 4000 5000

Iteration
0

20

40

60

80

100

120

140

160

180

Ne
ga

tiv
e L

og
 lik

elih
oo

d

SampleSAT
WalkSAT
Gibbs

50 100 150 200 250 300
0

50

100

150

200

250

U
niq

ue
 sa

mp
les

Gibbs

50 100 150 200 250 300
0

50

100

150

200

250

SampleSAT

50 100 150 200 250 300

Negative Log Likelihood
0

50

100

150

200

250

WalkSAT

Figure 7.9: Comparison of the three algorithms – Gibbs, WalkSAT-MCMC, SampleSAT-MCMC. The first figure
shows the sample likelihood (analogous to the data likelihood) of the three algorithms vs iteration. The next three
graphs show histograms of unique samples generated by each algorithm. The y-axis denotes the number of unique
samples generated, the x-axis denotes the negative log likelihood of the sample. This panel is for ε = 0.0001.

107

Chapter 8

Conclusions

8.1 Summary
The primary contributions of this thesis are as follows: First, Chapter 3 investigates the effect
of near-determinism on the structure of temporal graphical models, namely dynamic Bayesian
networks (DBNs). We show that how the presence of widely varying evolution rates of variables
leads to sparse graphical models over large time-steps. The sparsity results from approximating
the distribution of the fast-evolving variables with the pseudo-equilibrium distribution conditioned
on the slow-evolving variable state. This decoupled approximation is shown to be quite accurate,
with the accuracy increasing with greater timescale separation between the slow and fast variables.
Using this insight, we provide a general algorithm to choose an appropriate time-step and find the
corresponding approximate graphical model (for the chosen time-step) given the original small
time-step DBN. We also show that the approximation scheme works well on a human physiology
model – namely, the blood pH control mechanism.

Second, Chapter 4 proposes an algorithm to approximately compute the few largest eigenvalues
and eigenvectors of a factored linear system, whose full specification is exponential in size in the
number of variables and hence too large to work with in its expanded form. We use a combination
of numerical methods (Arnoldi iteration and QR algorithm) and graphical model inference (the
junction tree algorithm) to compute the first few vectors in the relevant Krylov subspace while
working with Kronecker product vectors to avoid exponential blowup in dimensionality. Although
the results are mixed, this approach is a promising first step towards solving a critical problem.

Third, Chapter 5 studies the maximum a posteriori (MAP) estimation problem in a non-factored
temporal model and proposes a hierarchical inference scheme to prune out large parts of the search
space and find the provably optimal solution in (potentially) exponentially smaller time. The tem-

108

porally abstracted Viterbi (TAV) algorithm can provide significant speedups as shown in various
experiments on synthetic datasets by using appropriate spatio-temporal abstractions.

The idea of coarse-to-fine iterative refinement, as used in the TAV algorithm, can also be ap-
plied to the problem of image/video segmentation as shown in Chapter 6. We propose a hierar-
chical video segmentation algorithm, which leverages existing work in computer vision for both
abstraction creation (supervoxel tree) and inference (graph cuts) within each iteration.

Finally, Chapter 7 looks at the problem of approximate inference using sampling algorithms
for near-deterministic probabilistic systems. Markov chain Monte Carlo (MCMC) algorithms are
well-known to get stuck in local extrema and hence have large mixing times. This problem is
exacerbated as the problem becomes more deterministic. Yet, several deterministic problems
have efficient inference algorithms. We propose a general mechanism of designing MCMC al-
gorithms which are designed to mimic the behavior of the deterministic domain algorithm for
near-deterministic systems, and converge in behavior to the the deterministic domain algorithm in
the limit of determinism.

The high level contribution is to demonstrate the possibility of exploiting near-determinism in
probabilistic systems to speed up inference. Structure in causality can be expressed using graphical
models and can be exploited by several algorithms designed for specific types of graphical mod-
els. Like causal sparsity, near-determinism provides another potential source for more efficient
inference. This idea is applicable to all possible inference problems — exact and approximate
inference, marginal and MAP estimation.

8.2 Future Work

Inference
Based on the current work, structural sparsity from large time-step DBNs are useful only when
there is a timescale separation between the fast and slow sets of variables. If we can find a better
algorithm to compute the eigenvalues of a DBN (i.e. , a factored system), then we can use the
dominant eigen-pairs to make inference faster and more accurate.

In order to make the eigenvalue computation more accurate, we need to design an algorithm to
obtain projections of negative element vectors through a factored representation of a linear model.
We also need to improve the stochastic gradient based summation algorithm of factored Kronecker
products in order to increase the accuracy of the Arnoldi iteration process.

109

Learning
In this dissertation, we have focused on the inference problem in near-deterministic systems. Sim-
ilar ideas can be used to design better learning algorithms. Firstly, inference is often a sub-step of
a learning algorithm like expectation-maximization (EM) (namely in the E-step, we can compute
the expected value of the log likelihood function more efficiently for a near-deterministic system).

Another possibility is to explore better optimization algorithms where the posterior probability
distribution on the parameter space is highly skewed. This is analogous to the image/video seg-
mentation problem where the number of likely segmentations are far outnumbered by the possible
number of segmentations.

8.3 Outlook
Probabilistic models are increasing in complexity and size to achieve higher accuracy and also to
handle larger amounts of data. In order to scale inference, we need to exploit every possible avenue
of computational saving. Near-determinism is a commonly found property in several stochastic
systems. Using the various algorithms described in this dissertation, and other strategies yet to be
devised, we can solve many interesting problems within feasible computational limits.

110

Bibliography

Aleks, N., Russell, S., Madden, M. G., Morabito, D., Staudenmayer, K., Cohen, M., & Manley,
G. T. (2009). Probabilistic detection of short events, with application to critical care moni-
toring. In Koller, D., Schuurmans, D., Bengio, Y., & Bottou, L. (Eds.), Advances in Neural
Information Processing Systems 21, pp. 49–56. MIT Press.

Andrieu, C., de Freitas, N., Doucet, A., & Jordan, M. I. (2003). An introduction to mcmc for
machine learning. Machine Learning, 50(1-2), 5–43.

Andrieu, C., & Thoms, J. (2008). A tutorial on adaptive mcmc. Statistics and Computing, 18(4),
343–373.

Attias, H. (1999). Inferring parameters and structure of latent variable models by variational bayes.
In Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, pp. 21–
30. Morgan Kaufmann Publishers Inc.

Baum, L. E., & Petrie, T. (1966). Statistical inference for probabilistic functions of finite state
Markov chains. Annals of Mathematical Statistics, 41.

Boros, E., & Hammer, P. L. (2002). Pseudo-boolean optimization. Discrete Appl. Math., 123(1-3),
155–225.

Boyen, X., & Koller, D. (1998). Tractable inference for complex stochastic processes. In Uncer-
tainty in Artificial Intelligence: Proceedings of the Fourteenth Conference, Madison, Wis-
consin. Morgan Kaufmann.

Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph
cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11), 1222–1239.

Brostow, G. J., Fauqueur, J., & Cipolla, R. (2009). Semantic object classes in video: A high-
definition ground truth database. Pattern Recognition Letters, 30(2), 88–97.

Chatterjee, S., & Russell, S. (2010). Why are DBNs sparse?. Journal of Machine Learning Re-
search - Proceedings Track, 9, 81–88.

Chatterjee, S., & Russell, S. (2011). A temporally abstracted viterbi algorithm. In Cozman, F. G.,
& Pfeffer, A. (Eds.), UAI, pp. 96–104. AUAI Press.

111

Chen, A., & Corso, J. (2010). Propagating multi-class pixel labels throughout video frames. In
Image Processing Workshop (WNYIPW), 2010 Western New York, pp. 14 –17.

Cremers, D., & Soatto, S. (2005). Motion competition: A variational framework for piecewise
parametric motion segmentation. Int. Journal of Computer Vision, 62(3), 249–265.

Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research.
InterJournal, Complex Systems, 1695(5).

Darrel, T., & Pentland, A. (1991). Robust estimation of a multi-layered motion representation. In
IEEE Workshop on Visual Motion, pp. 173–178.

Dean, T., & Kanazawa, K. (1989). A model for reasoning about persistence and causation. Com-
putational Intelligence, 5(3), 142–150.

Felzenszwalb, P., & Huttenlocher, D. (2004). Efficient Graph-Based Image Segmentation. Inter-
national Journal of Computer Vision, 59(2), 167–181.

Felzenszwalb, P., & Huttenlocher, D. (2006). Efficient belief propagation for early vision. Inter-
national Journal of Computer Vision, 70, 41–54. 10.1007/s11263-006-7899-4.

Felzenszwalb, P. F., & McAllester, D. (2007). The generalized A* architecture. J. Artif. Int. Res.,
29, 153–190.

Fine, S., Singer, Y., & Tishby, N. (1998). The hierarchical hidden markov model: Analysis and
applications. In Machine Learning, pp. 41–62.

Floros, G., & Leibe, B. (2012). Joint 2d-3d temporally consistent semantic segmentation of street
scenes. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

Forney, G.D., J. (1973). The Viterbi algorithm. Proceedings of the IEEE, 61(3), 268 – 278.

Friedman, N., Murphy, K., & Russell, S. J. (1998). Learning the structure of dynamic proba-
bilistic networks. In Uncertainty in Artificial Intelligence: Proceedings of the Fourteenth
Conference, Madison, Wisconsin. Morgan Kaufmann.

Galmar, E., Athanasiadis, T., Huet, B., & Avrithis, Y. S. (2008). Spatiotemporal semantic video
segmentation. In MMSP, pp. 574–579. IEEE Signal Processing Society.

Geman, S., & Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., 6(6), 721–741.

Ghahramani, Z., & Jordan, M. I. (1997). Factorial hidden Markov models. Machine Learning, 29,
245–274.

Golub, G. H., & Van Loan, C. F. (2012). Matrix computations, Vol. 3. JHU Press.

112

Gómez-Uribe, C. A., Verghese, G. C., & Tzafriri, A. (2008). Enhanced identification and ex-
ploitation of time scales for model reduction in stochastic chemical kinetics. The Journal of
Chemical Physics, 129(24).

Green, P. J., & Mira, A. (2001). Delayed rejection in reversible jump metropolis–hastings.
Biometrika, 88(4), 1035–1053.

Grundmann, M., Kwatra, V., Han, M., & Essa, I. (2010). Efficient hierarchical graph-based video
segmentation. In Computer Vision and Pattern Recognition (CVPR 2010).

Guyton, A., & Hall, J. (1997). Human Physiology and Mechanisms of Disease. W.B. Saunders
Company.

Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57(1), 97–109.

Holte, R. C., Perez, M. B., Zimmer, R. M., & MacDonald, A. J. (1996). Hierarchical A*: Searching
Abstraction Hierarchies Efficiently. In AAAI/IAAI, Vol. 1, pp. 530–535.

Huseby, A. B., Naustdal, M., & Varli, I. D. (2004). System reliability evaluation using conditional
monte carlo methods. Statistical Research Report, 2.

Iwasaki, Y., & Simon, H. A. (1994). Causality and model abstraction. Artif. Intell., 67(1), 143–194.

Jensen, C. S., Kjærulff, U., & Kong, A. (1995). Blocking gibbs sampling in very large probabilistic
expert systems. International Journal of Human-Computer Studies, 42(6), 647–666.

Kalman, R. (1960). A new approach to linear filtering and prediction problems. Journal of Basic
Engineering, 82, 35–46.

Kamath, A., Motwani, R., Palem, K., & Spirakis, P. (1995). Tail bounds for occupancy and the
satisfiability threshold conjecture. Random Structures & Algorithms, 7(1), 59–80.

Klein, D., & Manning, C. D. (2003). A* Parsing: Fast Exact Viterbi Parse Selection. In HLT-
NAACL.

Kumar, M., & Koller, D. (2009). MAP estimation of semi-metric MRFs via hierarchical graph
cuts. In Proceedings of the Twenty-fifth Conference on Uncertainty in AI (UAI).

Ladicky, L., Russell, C., Kohli, P., & Torr, P. (2009). Associative hierarchical CRFs for object class
image segmentation.. In IEEE Int. Conf. on Computer Vision.

Laptev, I. (2005). On space-time interest points. Int. Journal of Computer Vision, 64(2-3), 107–
123.

Laptev, I., & Lindeberg, T. (2003). Space-time interest points. In IEEE International Conference
on Computer Vision, pp. 432–439.

113

Lempitsky, V. S., Vedaldi, A., & Zisserman, A. (2011). A pylon model for semantic segmentation.
In Neural Information Processing Systems.

Liu, J. S. (1994). The collapsed gibbs sampler in bayesian computations with applications to a gene
regulation problem. Journal of the American Statistical Association, 89(427), 958–966.

Loan, C. V., & Pitsianis, N. (1992). Approximation with kronecker products. Tech. rep., Cornell
University.

Lytynoja, A., & Milinkovitch, M. C. (2003). A hidden markov model for progressive multiple
alignment. Bioinformatics, 19(12), 1505–1513.

McAllester, D. A., Selman, B., & Kautz, H. A. (1997). Evidence for invariants in local search. In
Kuipers, B., & Webber, B. L. (Eds.), AAAI/IAAI, pp. 321–326. AAAI Press / The MIT Press.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation
of State Calculations by Fast Computing Machines. The Journal of Chemical Physics, 21(6),
1087–1092.

Michaelis, L., & Menten, M. (1913). Die kinetik der invertinwirkung. Biochem., 49, 333–369.

Mira, A. (2001). On metropolis-hastings algorithms with delayed rejection. Metron, 59(3-4),
231–241.

Mooij, J. M. (2010). libDAI: A free and open source C++ library for discrete approximate inference
in graphical models. Journal of Machine Learning Research, 11, 2169–2173.

Murphy, K., & Weiss, Y. (2001). The factored frontier algorithm for approximate inference in
dbns. In Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence,
pp. 378–385. Morgan Kaufmann Publishers Inc.

Murphy, K. P., Weiss, Y., & Jordan, M. I. (1999). Loopy belief propagation for approximate
inference: An empirical study. In Proceedings of the Fifteenth conference on Uncertainty in
artificial intelligence, pp. 467–475. Morgan Kaufmann Publishers Inc.

Ng, A. Y., Jordan, M. I., & Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm.
In NIPS, pp. 849–856.

Nodelman, U., Shelton, C., & Koller, D. (2002). Continuous time Bayesian networks. In Un-
certainty in Artificial Intelligence: Proceedings of the Eighteenth Conference, Edmonton,
Alberta. Morgan Kaufmann.

Pavliotis, G. A., & Stuart, A. M. (2007). Multiscale methods: Averaging and homogenization.
Springer.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan Kaufmann.

114

Poon, H., & Domingos, P. (2006). Sound and efficient inference with probabilistic and determin-
istic dependencies. In AAAI, pp. 458–463. AAAI Press.

Rabiner, L., & Juang, B. (1986). An introduction to hidden Markov models. ASSP Magazine,
IEEE, 3(1), 4 – 16.

Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2), 257 –286.

Rao, S., Tron, R., Vidal, R., & Ma, Y. (2010). Motion segmentation in the presence of outly-
ing, incomplete, or corrupted trajectories. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 32(10), 1832–1845.

Raphael, C. (2001a). Coarse-to-Fine Dynamic Programming. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 23, 1379–1390.

Raphael, C. (2001b). Coarse-to-Fine Dynamic Programming. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 23, 1379–1390.

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine learning, 62(1), 107–
136.

Robert, C. P., & Casella, G. (2005). Monte Carlo Statistical Methods (Springer Texts in Statistics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Russell, S. J., & Norvig, P. (2010). Artificial Intelligence - A Modern Approach (3. internat. ed.).
Pearson Education.

Selman, B., Kautz, H. A., & Cohen, B. (1994). Noise strategies for improving local search. In
Hayes-Roth, B., & Korf, R. E. (Eds.), AAAI, pp. 337–343. AAAI Press / The MIT Press.

Shi, J., & Malik, J. (1998). Motion segmentation and tracking using normalized cuts. In IEEE Int.
Conf. on Computer Vision, pp. 1154–1160.

Srkk, S. (2013). Bayesian Filtering and Smoothing. Cambridge University Press.

Sutton, R. S., Precup, D., & Singh, S. P. (1999). Between MDPs and Semi-MDPs: A Framework
for Temporal Abstraction in Reinforcement Learning. Artif. Intell., 112(1-2), 181–211.

Tierney, L. (1994). Markov Chains for Exploring Posterior Distributions. The Annals of Statistics,
22(4), 1701–1728.

Tierney, L., & Mira, A. (1999). Some adaptive monte carlo methods for bayesian inference. Statis-
tics in Medicine, 18(1718), 2507–2515.

Van Laarhoven, P. J., & Aarts, E. H. (1987). Simulated annealing. Springer.

115

Vidal, R., Tron, R., & Hartley, R. (2008). Multiframe motion segmentation with missing data using
PowerFactorization and GPCA. International Journal of Computer Vision, 79(1), 85–105.

Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. Information Theory, IEEE Transactions on, 13(2), 260 – 269.

Wainwright, M. J., & Jordan, M. I. (2008). Graphical models, exponential families, and variational
inference. Foundations and Trends R© in Machine Learning, 1(1-2), 1–305.

Wei, W., Erenrich, J., & Selman, B. (2004). Towards efficient sampling: Exploiting random walk
strategies. In McGuinness, D. L., & Ferguson, G. (Eds.), AAAI, pp. 670–676. AAAI Press /
The MIT Press.

Xing, E. P., Jordan, M. I., & Russell, S. (2002). A generalized mean field algorithm for vari-
ational inference in exponential families. In Proceedings of the Nineteenth conference on
Uncertainty in Artificial Intelligence, pp. 583–591. Morgan Kaufmann Publishers Inc.

Xu, C., & Corso, J. J. (2012). Evaluation of super-voxel methods for early video processing. In
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 1202–
1209. IEEE.

Yin, G. G., & Zhang, Q. (2004). Discrete-Time Markov Chains: Two-Time-Scale Methods and
Applications. Applications of Mathematics Stochastic Modelling and Applied Probability
55. Springer-Verlag.

	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Near-determinism in graphical models
	Outline of the thesis

	Background
	Graphical model
	Directed graphical models
	Undirected graphical models
	Conditional independence

	Inference algorithms
	Variable elimination
	Belief propagation
	Junction tree algorithm
	Approximate inference
	Hidden Markov model (HMM)
	The Viterbi algorithm
	Dynamic Bayesian network (DBN)

	Markov chain Monte Carlo
	Metropolis Hastings algorithm
	Gibbs sampling

	A* algorithm
	Application to MAP inference

	Matrices and vectors
	Definitions
	Special matrices
	Kronecker product

	Eigenvalues and eigenvectors
	QR algorithm
	Krylov subspaces
	Lanczos method
	Power iteration
	Arnoldi iteration

	Linear systems

	Why are DBNs sparse?
	Introduction
	Definitions
	A Motivating Example: Human pH Regulation System
	Approximation scheme
	Correctness of the approximation scheme
	Special case
	Other approaches

	General Rules of Construction
	Experiment
	Conclusion

	Eigencomputation for factored systems
	Linear systems
	Factored representation

	Computational complexity
	Factored belief vector and forward projection
	Revisiting Arnoldi
	Step 1: Forward projection through DBN
	Step 2: Orthogonalize
	Step 3: Find eigenvalues and eigenvectors

	Experiments
	Data generation
	Implementation details
	Results

	Discussion

	A temporally abstracted Viterbi algorithm
	Introduction
	Problem Formulation
	Main algorithm
	Refinement constructions
	Modified Viterbi algorithm
	Complete algorithm

	Heuristics for temporal abstraction
	Experiments
	 Varying T, N and epsilon
	 Apriori temporal refinement
	Impact of heuristics

	Hierarchy induction
	Conclusion

	Hierarchical image and video segmentation
	Introduction
	Problem formulation
	Hierarchical abstraction
	Coarse-to-fine inference
	Admissible heuristics and exactness of solution

	Hierarhical video segmentation
	Cost definition
	Hierarchical Inference
	Optimization algorithm
	Practical considerations

	Experiments
	Dataset
	Learning potentials
	Experimental setup
	Results
	Accuracy vs time

	Conclusion

	MCMC and near-determinism
	Introduction
	Preliminaries
	Notation
	Delayed Rejection MH
	Example of a near-deterministic problem

	General Framework and algorithm
	 Designing AMCMC
	Properties of proposal distributions
	 Distribution of AMCMC

	Specific problem I: Near-deterministic SAT
	Min-Conflicts and Gibbs sampling
	WalkSAT and WalkSAT-MCMC
	SampleSAT and Sample-SAT MCMC
	Other noise models

	Problem Instance II - Sum constraint sampling
	Problem Definition
	ECSS and ECSS-MCMC

	Experiments
	Stochastic SAT
	Sum constraint sampling

	Discussion and Conclusion

	Conclusions
	Summary
	Future Work
	Inference
	Learning

	Outlook

