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Biological organisms are complex systems that are composed of functional networks

of interacting molecules and macro-molecules. Complex phenotypes are the result of

orchestrated, hierarchical, heterogeneous collections of expressed genomic variants.

However, the effects of these variants are the result of historic selective pressure and

current environmental and epigenetic signals, and, as such, their co-occurrence can

be seen as genome-wide correlations in a number of different manners. Biomass

recalcitrance (i.e., the resistance of plants to degradation or deconstruction, which

ultimately enables access to a plant’s sugars) is a complex polygenic phenotype of

high importance to biofuels initiatives. This study makes use of data derived from

the re-sequenced genomes from over 800 different Populus trichocarpa genotypes

in combination with metabolomic and pyMBMS data across this population, as well

as co-expression and co-methylation networks in order to better understand the

molecular interactions involved in recalcitrance, and identify target genes involved

in lignin biosynthesis/degradation. A Lines Of Evidence (LOE) scoring system is

developed to integrate the information in the different layers and quantify the number

of lines of evidence linking genes to target functions. This new scoring system

was applied to quantify the lines of evidence linking genes to lignin-related genes

and phenotypes across the network layers, and allowed for the generation of new

hypotheses surrounding potential new candidate genes involved in lignin biosynthesis

in P. trichocarpa, including various AGAMOUS-LIKE genes. The resulting Genome Wide

Association Study networks, integrated with Single Nucleotide Polymorphism (SNP)

correlation, co-methylation, and co-expression networks through the LOE scores are

proving to be a powerful approach to determine the pleiotropic and epistatic relationships

underlying cellular functions and, as such, the molecular basis for complex phenotypes,

such as recalcitrance.
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1. INTRODUCTION

Populus species are promising sources of cellulosic biomass for
biofuels because of their fast growth rate, high cellulose content
and moderate lignin content (Sannigrahi et al., 2010). Ragauskas
et al. (2006) outline areas of research needed “to increase the
impact, efficiency, and sustainability of bio-refinery facilities”
(Ragauskas et al., 2006), such as research into modifying plants
to enhance favorable traits, including altered cell wall structure
leading to increased sugar release, as well as resilience to biotic
and abiotic stress. One particular research target in Populus
species is the decrease/alteration of the lignin content of cell walls.

A large collection of different data types has been generated
for Populus trichocarpa. The genome has been sequenced and
annotated (Tuskan et al., 2006), and the assembly is currently in
its third version of revision. A collection of 1,100 accessions of
P. trichocarpa that have been clonally propagated in four different
common gardens (Tuskan et al., 2011; Slavov et al., 2012; Evans
et al., 2014) have been resequenced, which has provided a large set
of ∼ 28,000,000 Single Nucleotide Polymorphisms (SNPs) that
has recently been publicly released (http://bioenergycenter.org/
besc/gwas/). Many molecular phenotypes, such as untargetted
metabolomics and pyMBMS phenotypes, that have been
measured in this population provide an unparalleled resource for
Genome Wide Association Studies (for example, see McKown
et al., 2014). DNA methylation data in the form of MeDIP
(Methyl-DNA immunoprecipitation)-seq has been performed
on 10 different P. trichocarpa tissues (Vining et al., 2012), and
gene expression has been measured across various tissues and
conditions.

This study involved the development of a method to integrate
these various data types in order to identify new possible
candidate genes involved in target functions of interest. The
importance of P. trichocarpa as a bioenergy crop, the availability
of the high density SNP data in a GWAS population, as well as the
increasing amount of genomic/phenotypic data being generated
for P. trichocarpa made it an excellent species in which to
demonstrate the method. Integrating Genome Wide Association
Study (GWAS) data with other data types has previously
been done to help provide context and identify relevant
subnetworks/modules (Bunyavanich et al., 2014; Calabrese et al.,
2017). Ritchie et al. (2015) reviewed techniques for integrating
various data types for the aim of investigating gene-phenotype
associations. Integrating multiple lines of evidence is a useful
strategy as the more lines of evidence that connect a gene to
a phenotype lowers the chance of false positives. Ritchie et al.
(2015) categorized data integration approaches into two main
classes, namely multi-staged analysis and meta-dimensional
analysis. Multi-staged analysis aims to enrich a biological
signal through various steps of analysis. Meta-dimensional
analysis involves the concurrent analysis of various data types,

Abbreviations: GWAS, Genome Wide Association Study; LOE, Lines of

Evidence; SNP, Single Nucleotide Polymorphism; pyMBMS, Pyrolysis Molecular

Beam Mass Spectrometer; DNA, Deoxyribonucleic acid; MeDIP, Methyl-DNA

immunoprecipitation; TPM, Transcripts Per Million; CCC, Custom Correlation

Coefficient; PNT, Potential New Targets.

and is divided into three subcategories (Ritchie et al., 2015):
Concatenation-based integration concatenates the data matrices
of different data types into a single matrix on which a model
is constructed (for example, see Fridley et al., 2012). Model-
based integration involves constructing a separate model for each
dataset and then constructing a final model from the results
of the separate models (for example, see Kim et al., 2013).
Transformation-based integration involves transforming each
data type into a common form (e.g., a network) before combining
them (see for example, Kim et al., 2012).

This study presents a new transformation-based integration
technique: the calculation of Lines Of Evidence (LOE) scores
across SNP correlation, GWAS, co-methylation, and co-
expression networks for P. trichocarpa. Association networks
for the various different data types were constructed, including
a pyMBMS GWAS network, a metabolomics GWAS network,
as well as co-expression, co-methylation, and SNP correlation
networks, and subsequently the information in the different
networks was integrated through the calculation of the newly
developed Lines Of Evidence (LOE) scores. These scores quantify
the number of lines of evidence connecting each gene to
target functions of interest. In this work, we apply this data
integration technique to the wealth of P. trichocarpa data
in order to identify new potential genes involved in lignin
biosynthesis/degradation/regulation in P. trichocarpa. The LOE
scores represent the number of lines of evidence that exist
connecting genes to lignin-related genes and phenotypes across
the network layers. This is a novel multi-omic data integration
approach which provides easily interpretable scores, and allows
for the identification of new possible candidate genes involved in
lignin biosynthesis/regulation throughmultiple lines of evidence.
This is also the first time all of these P. trichocarpa datasets have
been integrated on a genome-scale in a network-based manner,
allowing for the easy identification of new target genes through
their respective connections across network layers.

2. METHODS

2.1. Overview
This approach involved combining various data types in
order to identify new possible target genes involved in lignin
biosynthesis/degradation/regulation. Figure 1 summarizes the
overall approach. First, association networks were constructed
including metabolomics and pyMBMS GWAS networks, co-
expression, co-methylation and SNP correlation networks.
Known lignin-related genes and phenotypes were then identified,
and used as seeds to select lignin-related subnetworks from
these various networks. The Lines Of Evidence (LOE) scoring
technique was developed, and each gene was then scored based
on its Lines Of Evidence linking it to lignin-related genes and
phenotypes.

2.2. Metabolomics Phenotype Data
The P. trichocarpa leaf samples for 851 unique clones were
collected over 3 consecutive sunny days in July 2012. For 200
of those clones, a second biological replicate was also sampled.
Typically, leaves (leaf plastocron index 9 plus or minus 1) on a
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FIGURE 1 | Overview of pipeline for data layering and score calculation. First, the different network layers are constructed. Networks are layered, and lignin-related

genes and phenotypes (orange) are identified. LOE scores are calculated for each gene. An example of the LOE score calculation for the red-boxed gene is shown.

Thresholding the LOE scores results in a set of new potential target genes involved in lignin biosynthesis/degradation/regulation.

south facing branch from the upper canopy of each tree were
quickly collected, wiped with a wet tissue to clean both surfaces
and the leaf then fast frozen under dry ice. Leaves were kept
on dry ice and shipped back to the lab and stored at −80◦C
until processed for analyses. Metabolites from leaf samples were
lyophilized and then ground in a micro-Wiley mill (1 mm mesh
size). Approximately 25 mg of each sample was twice extracted
in 2.5 mL 80% ethanol (aqueous) for 24 h with the extracts
combined, and 0.5 mL dried in a helium stream. “Sorbitol [(75µl
of a 1mg/mL aqueous solution)] was added ... before extraction
as an internal standard to correct for differences in extraction
efficiency, subsequent differences in derivatization efficiency
and changes in sample volume during heating” (Zhao et al.,

2015). Metabolites in the dried sample extracts were converted
to their trimethylsilyl (TMS) derivatives, and analyzed by gas
chromatography-mass spectrometry, as described previously (Li
et al., 2012; Tschaplinski et al., 2012), and also described
here: Timm et al. (2016): Briefly, dried extracts of metabolites
“were dissolved in acetonitrile followed by the addition of
N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) with 1%
trimethylchlorosilane (TMCS), and samples then heated for 1 h
at 70◦C to generate trimethylsilyl (TMS) derivatives (Li et al.,
2012; Tschaplinski et al., 2012). After 2 days, aliquots were
injected into an Agilent 5975C inert XL gas chromatograph-
mass spectrometer (GC-MS). The standard quadrupole GC-MS
is operated in the electron impact (70 eV) ionization mode,

Frontiers in Energy Research | www.frontiersin.org 3 May 2018 | Volume 6 | Article 30

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Weighill et al. Integrated Networks for Target Gene Discovery

targeting 2.5 full-spectrum (50–650 Da) scans per second, as
described previously (Tschaplinski et al., 2012). Metabolite peaks
were extracted using a key selected ion, characteristic m/z
fragment, rather than the total ion chromatogram, to minimize
integrating co-eluting metabolites” (quotation from Timm et al.,
2016). As described in Zhao et al. (2015): “...[The peak areas
were] normalized to the quantity of the internal standard
(sorbitol) [injected, and the] amount of sample extracted... A
large user-created database (>2,400 spectra) of mass spectral
electron impact ionization (EI) fragmentation patterns of TMS-
derivatized metabolites, as well as the Wiley Registry [10th]
Edition combined with NIST [2014] mass spectral database, were
used to identify the metabolites of interest to be quantified”
(Zhao et al., 2015) (Brackets indicate deviations from quoted
text).

2.3. pyMBMS Phenotype Data
The pyMBMS phenotype data was generated using the
method as described in Biswal et al. (2015): “A commercially

available molecular beam mass spectrometer (MBMS) designed
specifically for biomass analysis was used for pyrolysis vapor
analysis (Evans and Milne, 1987; Tuskan et al., 1999; Sykes et al.,
2009). Approximately 4 mg of air dried 20 mesh biomass was
introduced into the quartz pyrolysis reactor via 80µL deactivated
stainless steel Eco-Cups provided with the autosampler. Mass
spectral data from m/z 30–450 were acquired on a Merlin
Automation data system version 3.0 using 17 eV electron impact
ionization.”

The pyMBMS mz peaks were annotated as described in Sykes
et al. (2009), as done previously in Muchero et al. (2015).

2.4. Single Nucleotide Polymorphism Data
A dataset consisting of 28,342,758 SNPs called across 882
P. trichocarpa (Tuskan et al., 2006) genotypes was obtained
from http://bioenergycenter.org/besc/gwas/. This dataset is
derived from whole genome sequencing of undomesticated
P. trichocarpa genotypes collected from the U.S. and Canada,
and clonally replicated in common gardens (Tuskan et al.,

FIGURE 2 | (A) Parallelization strategy for ccc calculation between all pairs of SNPs. (B) MPI jobs for within and cross-block comparisons.
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2011). Genotypes from this population have previously been
used for population genomics (Evans et al., 2014) and GWAS
studies in P. trichocarpa (McKown et al., 2014) as well
as for investigating linkage disequilibrium in the population
(Slavov et al., 2012).

Whole genome resequencing was carried out on a sample
882 P. trichocarpa natural individuals to an expected median
coverage of 15x using Illumina Genome Analyzer, HiSeq
2000, and HiSeq 2500 sequencing platforms at the DOE
Joint Genome Institute. Alignments to the P. trichocarpa
Nisqually-1 v.3.0 reference genome were performed using BWA
v0.5.9-r16 with default parameters, followed by post-processing
with the picard FixMateInformation and MarkDuplicates tools.
Genetic variants were called by means of the Genome Analysis
Toolkit v. 3.5.0 (GATK; Broad Institute, Cambridge, MA, USA)
(McKenna et al., 2010; van der Auwera et al., 2013). Briefly,
variants were called independently for each individual using
the concatenation of RealignerTargetCreator, IndelRealigner,
and HaplotypeCaller tools, and the whole population was
combined using GenotypeGVCFs, obtaining a dataset with all
the variants detected across the sample population. Biallelic
SNPs were extracted using the SelectVariants tool and quality-
filtered using the GATK’s machine-learning implementation
Variant Quality Score Recalibration (VQSR). To this end, the tool
VariantRecalibrator was used to create the recalibration file and
the sensitivity tranches file. As a “truth” dataset, we used SNP calls
from a population of seven female and seven male P. trichocarpa
that had been crossed in a half diallel design. “True” SNPs were
identified by the virtual absence of segregation distortion and
Mendelian violations in the progeny of these 49 crosses (ca. 500

offspring in total). As a “non-true” dataset, we used the SNP calls
of seven open-pollinated crosses from these 7 females (n = 90),
filtered using hard-filtering methods recommended in the GATK
documentation (tool: VariantFiltration; quality thresholds: QD
< 1.5, FS > 75.0, MQ < 35.0, missing alleles < 0.5 and
MAF > 0.05). The prior likelihoods for the true and non-true
datasets were Q = 15 and Q = 10, respectively, and the variant
quality annotations to define the variant recalibration space
were DP, QD, MQ, MQRankSum, ReadPosRankSum, FS, SOR,
and InbreedingCoeff. Finally, we used the ApplyRecalibration
tool on the full GWAS dataset to assign SNPs to tranches
representing different levels of confidence. We selected SNPs
in the tranche with true sensitivity <90, which minimizes false
positives, but at an expected cost of 10% false negatives. The
final filtered dataset had a transition/transversion ratio of 2.07,
compared to 1.88 for the unfiltered SNPs. To further validate the
quality of these SNP calls, we compared them to an Illumina
Infinium BeadArray that had been generated from a subset
of this population dataset (Geraldes et al., 2013). The average
match rate was 96% (±2% SD) for 641 individuals across 20,723
loci.

SNPs in this dataset were divided into different Tranches,
indicating the percentage of “true” SNPs recovered. For
further analysis in this study, we made use of the PASS SNPs,
corresponding to the most stringent Tranche, recovering 90%
of the true SNPs (see http://gatkforums.broadinstitute.org/
gatk/discussion/39/variant-quality-score-recalibration-vqsr).
VCFtools (Danecek et al., 2011) was used to extract the desired
Tranche of SNPs from the VCF file and reformat it into .tfam and
.tped files.

FIGURE 3 | (A) Lines of evidence for Potri.012G062300 (homolog of Arabidopsis AGL8). (B) Co-methylation of Potri.012G062300 with three lignin-related genes

(Table 3) The green line represents potential target Potri.012G062300 and yellow lines represent lignin-related genes. (C) GWAS associations of Potri.012G062300

with a lignin-related metabolite and a lignin-related pyMBMS peak (Table 1).
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2.5. GWAS Network Construction
The metabolomics and pyMBMS data was used as phenotypes
in a genome wide association analysis. The respective phenotype
measured over all the genotypes were analyzed to account
for potential outliers. A median absolute deviation (MAD)
from the median (Leys et al., 2013) cutoff was applied to
determine if a particular measurement of a given phenotype
was an outlier with respect to all measurements of that
phenotype across the population. To account for asymmetry,
the deviation values were estimated separately for values below
and above the median, respectively. The distribution of the
measured values together with the distribution of their estimated
deviation was analyzed and a cutoff of 5 was determined to
identify putative outlier values. Phenotypes that had non-outlier
measurements in at least 20 percent of the population were
retained for further analysis, this was to ensure sufficient signal
for the genome wide association model. This resulted in 1,262

pyMBMS derived phenotypes and 818 metabolomics derived
phenotypes.

To estimate the statistical significant associations between the
respective phenotypes and the SNPs called across the population,
we applied a linear mixed model using EMMAX (Kang et al.,
2010). Taking into account population structure estimated from a
kinship matrix, we tested each of the respective 2,080 phenotypes
against the high-confidence SNPs and corrected for multiple
hypotheses bias using the Benjamini–Hochberg control for false-
discovery rate of 0.1 (Benjamini and Hochberg, 1995). This
was done in parallel with a Python wrapper that utilized the
schwimmbad Python package (Price-Whelan and Foreman-
Mackey, 2017).

SNP-Phenotype GWAS networks were then pruned to
only include SNPs that resided within genes, and SNPs
were mapped to their respective genes, resulting in a
gene-phenotype network. SNPs were determined to be

TABLE 1 | GWAS associations for select new potential target genes, indicating the SNP(s) within the potential new target gene which are associated with the

lignin-related phenotype(s).

Source SNP Source gene Target phenotype

GWAS Associations for Potri.012G062300 (AGL8, AT5G60910)

12:6952245 Potri.012G062300 Quinic acid

12:6948543 Potri.012G062300 Lignin (Syringol)

12:6951532 Potri.012G062300 Lignin (Syringol)

GWAS Associations for Potri.013G102600 (AGL12, AT1G71692)

13:11604094 Potri.013G102600 3-O-caffeoyl-quinate

13:11606331 Potri.013G102600 Coumaroyl-tremuloidin

13:11600422 Potri.013G102600 Coumaroyl-tremuloidin

13:11601236 Potri.013G102600 Hydroxyphenyl lignan glycoside

GWAS Associations for Potri.007G115100 (AGL22, AT2G22540/AGL24, AT4G24540)

07:13650194 Potri.007G115100 Caffeoyl conjugate

07:13651354 Potri.007G115100 Caffeoyl conjugate

07:13642539 Potri.007G115100 Caffeoyl conjugate

07:13639923 Potri.007G115100 Lignin, syringyl (Syringaldehyde)

GWAS Associations for Potri.009G053900 (MYB46, AT5G12870)

09:5768381 Potri.009G053900 Hydroxyphenyl lignan glycoside

GWAS Associations for Potri.010G141000 (MYB111, AT5G49330)

10:15273000 Potri.010G141000 Benzoyl-salicylate caffeic acid conjugate

GWAS Associations for Potri.006G170800 (MYB36, AT5G57620)

06:17847162 Potri.006G170800 mz 297, RT 17.14

GWAS Associations for Potri.016G078600 (CPSRP54, AT5G03940)

16:5995136 Potri.016G078600 Caffeoyl conjugate

16:5995136 Potri.016G078600 Feruloyl conjugate

16:5996083 Potri.016G078600 Salicyl-coumaroyl-glucoside

16:5999408 Potri.016G078600 Salicyl-coumaroyl-glucoside

16:5999474 Potri.016G078600 Salicyl-coumaroyl-glucoside

16:6000236 Potri.016G078600 Salicyl-coumaroyl-glucoside

Additional RT and mz information for partially identified metabolites can be seen in Table S3.
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within genes using the gene boundaries defined in the
Ptrichocarpa_210_v3.0.gene.gff3 from the
P. trichocarpa version 3.0 genome assembly on Phytozome
(Goodstein et al., 2012).

2.6. Gene Expression Data
P. trichocarpa (Nisqually-1) RNA-seq dataset from JGI Plant
Gene Atlas project (Sreedasyam et al., unpublished) was obtained
from Phytozome. This dataset consists of samples for standard
tissues (leaf, stem, root, and bud tissue) and libraries generated
from nitrogen source study. List of sample descriptions was
accessed from: https://phytozome.jgi.doe.gov/phytomine/aspect.
do?name=Expression.

P. trichocarpa (Nisqually-1) cuttings were potted in 4′′ X 4′′

X 5′′ containers containing 1:1 mix of peat and perlite. Plants
were grown under 16-h-light/8-h-dark conditions, maintained at
20–23 ◦C and an average of 235µmol m−2s−1 to generate tissue
for (1) standard tissues and (2) nitrogen source study. Plants
for standard tissue experiment were watered with McCown’s

woody plant nutrient solution and plants for nitrogen experiment
were supplemented with either 10 mM KNO3 (NO3− plants)
or 10mM NH4Cl (NH4+ plants) or 10 mM urea (urea
plants). Once plants reached leaf plastochron index 15 (LPI-
15), leaf, stem, root, and bud tissues were harvested and
immediately flash frozen in liquid nitrogen and stored at −80◦C
until further processing was done. Every harvest involved at
least three independent biological replicates for each condition
and a biological replicate consisted of tissue pooled from
3 plants.

RNA extraction and sequencing was performed as previously
described in McCormick et al. (2018). Tissue was ground
under liquid nitrogen and high quality RNA was extracted
using standard Trizol-reagent based extraction (Li and
Trick, 2005). The integrity and concentration of the RNA
preparations were checked initially using Nano-Drop ND-1000
(Nano-Drop Technologies) and then by BioAnalyzer (Agilent
Technologies). “Plate-based RNA sample prep was performed on
the PerkinElmer Sciclone NGS robotic liquid handling system

FIGURE 4 | (A) Lines of evidence for Potri.013G102600 (homolog of Arabidopsis AGL12). (B) GWAS associations of Potri.013G102600 with three lignin-related

metabolites (Table 1). (C) Co-expression of Potri.013G102600 with three lignin-related genes (Table 2). (D) Co-methylation of Potri.013G102600 with four

lignin-related genes (Table 3). In line plots, the green lines represent potential target Potri.013G102600 and yellow lines represent lignin-related genes.
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using Illumina’s TruSeq Stranded mRNA HT sample prep kit
utilizing poly-A selection of mRNA following the protocol
outlined by Illumina in their user guide: http://support.illumina.
com/sequencing/sequencing_kits/truseq_stranded_mrna_ht_
sample_prep_kit.html, v. The quantified libraries were then
prepared for sequencing on the Illumina HiSeq sequencing
platform utilizing a TruSeq paired-end cluster kit, v4, and
Illumina’s cBot instrument to generate a clustered flowcell
for sequencing. Sequencing of the flowcell was performed on
the Illumina HiSeq2500 sequencer using HiSeq TruSeq SBS
sequencing kits, v4, following a 2 × 150 indexed run recipe”
(McCormick et al., 2018).

2.7. Co-expression Network Construction
Gene expression atlas data for P. trichocarpa consisting of
63 different samples were used to construct a co-expression
network. Reads were trimmed using Skewer (Jiang et al., 2014).
Star (Dobin et al., 2013) was then used to align the reads to the
P. trichocarpa reference genome (Tuskan et al., 2006) obtained
from Phytozome (Goodstein et al., 2012). TPM (Transcripts
Per Million) expression values (Wagner et al., 2012) were then
calculated for each gene. This resulted in a gene expressionmatrix
E in which rows represented genes, columns represented samples
and each entry ij represented the expression (TPM) of gene
i in sample j. The Spearman correlation coefficient was then
calculated between the expression profiles of all pairs of genes
(i.e. all pairs of rows of the matrix E) using the mcxarray and
mcxdump programs from the MCL-edge package (van Dongen,
2000, 2008) available from http://micans.org/mcl/. This was
performed in parallel using Perl wrappers making use of the

Parallel::MPI::Simple Perl module, (Alex Gough, http://search.
cpan.org/~ajgough/Parallel-MPI-Simple-0.03/Simple.pm) using
compute resources at the Oak Ridge Leadership Computing
Facility (OLCF).

Figure S1A shows the distribution of Spearman correlation
values for the co-expression network. An absolute threshold of
0.85 was applied.

2.8. Co-methylation Network Construction
Methylation data for P. trichocarpa (Vining et al., 2012) re-
aligned to the version 3.0 assembly of P. trichocarpawas obtained
from Phytozome (Goodstein et al., 2012). This data consisted of
MeDIP-seq (Methyl-DNA immunoprecipitation-seq) reads from
10 different P. trichocarpa tissues, including bud, callus, female
catkin, internode explant, leaf, male catkin, phloem, regenerated
internode, root, and xylem tissue.

BamTools stats (Barnett et al., 2011) was used to determine
basic properties of the reads in each .bam file. Samtools (Li et al.,
2009) was then used to extract only mapped reads. The number
of reads which mapped to each gene feature was determined
using htseq-count (Anders et al., 2014). These read counts were
then converted to TPM values (Wagner et al., 2012), providing
a methylation score for each gene in each tissue. The TPM value
for a gene g in a given sample was defined as:

TPMg =

cg
lg
× 106

∑

g
cg
lg

(1)

where cg is the number of reads mapped to gene g and
lg is the length of gene g in kb, calculated by subtracting

TABLE 2 | Co-expression associations for select new potential target genes. Annotations are derived from best Arabidopsis hit descriptions, GO terms and in some

cases MapMan annotations.

Source gene Target gene Target Arabidopsis best hit Annotation

Co-expression Associations for Potri.013G102600 (AGL12, AT1G71692)

Potri.013G102600 Potri.001G304800 AT4G34050 Caffeoyl Coenzyme A O-Methyltransferase 1

Potri.013G102600 Potri.009G099800 AT4G34050 Caffeoyl Coenzyme A O-Methyltransferase 1

Potri.013G102600 Potri.012G006400 AT5G54160 Caffeate O-Methyltransferase 1

Potri.013G102600 Potri.007G016400 AT4G36220 Ferulic acid 5-hydroxylase 1

Co-expression Associations for Potri.009G053900 (MYB46, AT5G12870)

Potri.009G053900 Potri.003G100200 AT1G32100 Pinoresinol reductase 1

Potri.009G053900 Potri.012G006400 AT5G54160 Caffeate O-Methyltransferase 1

Co-expression Associations for Potri.010G141000 (MYB111, AT5G49330)

Potri.010G141000 Potri.007G030300 AT3G50740 UDP-glucosyl transferase 72E1

Co-expression Associations for Potri.006G170800 (MYB36, AT5G57620)

Potri.006G170800 Potri.001G362800 AT3G26300 Cytochrome P450, family 71, subfamily B, polypeptide 34/F5H

Potri.006G170800 Potri.016G106100 AT3G09220 laccase 7

Potri.006G170800 Potri.013G120900 AT4G35160 N-acetylserotonin O-methyltransferase

Co-expression Associations for Potri.016G078600 (CPSRP54, AT5G03940)

Potri.016G078600 Potri.003G096600 AT2G35500 Shikimate kinase like 2

Potri.016G078600 Potri.017G062800 AT3G26900 Shikimate kinase like 1
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the gene start position from the gene end position, and
dividing the resulting difference by 1,000. A methylation
matrix M was then formed, in which rows represented genes,

columns represented tissues and each entry ij represented the

methylation score (TPM) of gene i in tissue j. A co-methylation
network (see Davies et al., 2012; Akulenko and Helms, 2013;

Busch et al., 2016) was then constructed by calculating

the Spearman correlation coefficient between the methylation

profiles of all pairs of genes using mcxarray and mcxdump
programs from the MCL-edge package (van Dongen, 2000, 2008)

http://micans.org/mcl/. Figure S1B shows the distribution of

Spearman Correlation values. An absolute threshold of 0.95 was

applied.
Read counting using htseq-count, as well as

Spearman correlation calculations were performed
in parallel using Perl wrappers making use of the
Parallel::MPI::Simple Perl module, developed by Alex
Gough and available on The Comprehensive Perl Archive
Network (CPAN) at www.cpan.org and used compute
resources at the Oak Ridge Leadership Computing Facility
(OLCF).

2.9. SNP Correlation Network Construction
The Custom Correlation Coefficient (CCC) (Climer et al.,
2014a,b) was used to calculate the correlation between the
occurrence of pairs of SNPs across the 882 genotypes. The CCC
between allele x at position i and allele y and position j is
defined as:

CCCixjy =
9

2
Rixjy

(

1−
1

fix

)

(

1−
1

fjy

)

(2)

where Rixjy is the relative co-occurrence of allele x at position i
and allele y at position j, fix is the frequency of allele x at position
i and fjy is the frequency of allele y at position j.

This was performed in a parallel fashion using similar
computational approaches as described for the co-expression
network above. The set of ∼10 million SNPs was divided into
20 different blocks, and the CCC was calculated for each within-
block and cross-block SNPs in separate jobs, to a total of 210
MPI jobs (Figure 2). A threshold of 0.7 was then applied. The
resulting SNP correlation network was pruned to only include
SNPs that resided within genes and SNPs were mapped to the

TABLE 3 | Co-methylation associations for select new potential target genes. Annotations are derived from best Arabidopsis hit descriptions and GO terms and in some

cases MapMan annotations.

Source gene Target gene Target Arabidopsis best hit Annotation

Co-methylation Associations for Potri.012G062300 (AGL8, AT5G60910)

Potri.012G062300 Potri.001G036900 AT3G21240 4-coumarate:CoA ligase 2

Potri.012G062300 Potri.008G120200 AT1G68540 Cinnamoyl CoA reductase-like 6

Potri.012G062300 Potri.004G105000 AT5G14700 (NAD(P)-binding Rossmann-fold Superfamily protein, cinnamoyl-CoA reductase activity/CCR1

Co-methylation Associations for Potri.013G102600 (AGL12, AT1G71692)

Potri.013G102600 Potri.001G334400 AT5G63380 4-coumarate-CoA ligase activity /4CL

Potri.013G102600 Potri.001G365300 AT3G26300 cytochrome P450, family 71, subfamily B, polypeptide 34/F5H

Potri.013G102600 Potri.006G265500 AT5G10820 Major facilitator superfamily protein/Phenylpropanoid pathway

Potri.013G102600 Potri.006G165200 AT2G19070 Spermidine hydroxycinnamoyl transferase

Co-methylation Associations for Potri.009G053900 (MYB46, AT5G12870)

Potri.009G053900 Potri.008G196100 AT3G06350 Bi-functional dehydroquinate-shikimate dehydrogenase enzyme

Potri.009G053900 Potri.002G018300 AT4G39330 Cinnamyl alcohol dehydrogenase 9

Potri.009G053900 Potri.004G102000 AT4G05160 4-coumarate-CoA ligase activity/4CL)

Potri.009G053900 Potri.008G136600 AT1G67980 Caffeoyl-CoA 3-O-methyltransferase

Co-methylation Associations for Potri.010G141000 (MYB111, AT5G49330)

Potri.010G141000 Potri.008G196100 AT3G06350 Bi-functional dehydroquinate-shikimate dehydrogenase enzyme

Potri.010G141000 Potri.004G102000 AT4G05160 4-coumarate-CoA ligase activity/4CL

Potri.010G141000 Potri.008G074500 AT5G34930 Arogenate dehydrogenase

Potri.010G141000 Potri.005G028000 AT5G48930 Hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase

Potri.010G141000 Potri.018G100500 AT2G23910 NAD(P)-binding Rossmann-fold superfamily protein, cinnamoyl-CoA reductase activity/CCR1

Potri.010G141000 Potri.010G230200 AT1G20510 OPC-8:0 CoA ligase1, 4-coumarate-CoA ligase activity/4CL

Co-methylation Associations for Potri.006G170800 (MYB36, AT5G57620)

Potri.006G170800 Potri.016G093700 AT4G05160 AMP-dependent synthetase and ligase family, 4-coumarate-CoA ligase activity/4CL

Co-methylation Associations for Potri.016G078600 (CPSRP54, AT5G03940)

Potri.016G078600 Potri.014G135500 AT3G06350 Bi-functional dehydroquinate-shikimate dehydrogenase enzyme
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genes in which they reside. Gene boundaries used were defined
in the Ptrichocarpa_210_v3.0.gene.gff3 file from
the P. trichocarpa version 3.0 genome assembly on Phytozome
(Goodstein et al., 2012). A local LD filter was then set,
retaining correlations between SNPs greater than 10kb apart.
The distribution of CCC values can be seen in Figure S1C
(Supplementary Note 1).

2.10. Target Lignin Genes/Phenotypes
A scoring system was developed in order to quantify the
Lines Of Evidence (LOE) linking each gene to lignin-related

genes/phenotypes. The LOE scores quantify the number of
lines linking each gene to lignin-related genes and phenotypes
across the different network data layers. Thus, the method
requires as input a list of known lignin-related genes/
phenotypes.

P. trichocarpa gene annotations in the
Ptrichocarpa_210_v3.0.annotation_info.txt

file from the version 3.0 genome assembly were used,
available on Phytozome (Goodstein et al., 2012). This
included Arabidopsis best hits and corresponding gene
descriptions, as well as GO terms (Ashburner et al.,

FIGURE 5 | (A) Lines of evidence for Potri.007G115100 ( homolog of Arabidopsis AGL22/24). (B) GWAS associations of Potri.007G115100 with a lignin-related

metabolite and a lignin-related pyMBMS peak (Table 1). (C,D) Correlations of SNPs in Potri.007G115100 with SNPs in two lignin-related genes (Table 4, Table S5).
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2000; Gene Ontology Consortium, 2017) and Pfam
domains (Finn et al., 2016). Genes were also assigned
MapMan annotations using the Mercator tool (Lohse et al.,
2014).

Lignin building blocks (monolignols) are derived from
phenylalanine in the phenylpropanoid and monolignol
pathways, and phenylalanine itself is produced from the
shikimate pathway (Vanholme et al., 2010). To compile a list
of P. trichocarpa genes which are related to the biosynthesis of
lignin, P. trichocarpa genes were assigned MapMan annotations
using the Mercator tool (Lohse et al., 2014). Genes in the
Shikimate (MapMan bins 13.1.6.1, 13.1.6.3, and 13.1.6.4),
Phenylpropanoid (MapMan bin 16.2) and Lignin/Lignan
(MapMan bin 16.2.1) pathways were then selected. A list of these
lignin-related genes and their MapMan annotations can be seen
in Table S1.

Lignin-related pyMBMS peaks, as described in Sykes et al.
(2009), Davis et al. (2006), and Muchero et al. (2015) were
identified among the pyMBMS GWAS hits, and are shown in
Table S2. Lignin-related metabolites and metabolites in the lignin
pathway were also identified among the metabolomics GWAS
hits, a list of which can be seen in Table S3. For partially identified
metabolites, additional RT and mz information can be seen in
Table S3.

2.11. Extraction of Lignin-Related
Subnetworks
Let LG, LM , and LP represent our sets of lignin-related genes,
metabolites and pyMBMS peaks, respectively (Tables S1–S3).
A network can be defined as N = (V ,E) where V is the set
of nodes and E is the set of edges connecting nodes in V .
In particular, let the co-expression network be represented
by Ncoex = (Vcoex,Ecoex), the co-methylation network by
Ncometh = (Vcometh,Ecometh) and the SNP correlation network by
Nsnp = (Vsnp,Esnp). The GWAS networks can be represented
as bipartite networks N = (U,V ,E) where U is the set of
phenotype nodes, V is the set of gene nodes, and E is the set
of edges, with each edge eij connecting node i ∈ U with node
j ∈ V . Let the metabolomics GWAS network be represented
by Nmetab = (Umetab,Vmetab,Emetab) and the pyMBMS
GWAS network by Npymbms = (Upymbms,Vpymbms,Epymbms).
We construct the guilt by association subnetworks of
genes connected to lignin-related genes/phenotypes as
follows:

NL
coex is the subnetwork of Ncoex including the lignin related

genes l ∈ LG and their direct neighbors:

NL
coex = (VL

coex,E
L
coex) where (3)

VL
coex = {g|g ∈ (LG ∩ Vcoex)} ∪ {g|

(

g ∈ Vcoex

)

∧
(

∃l ∈ LG|{l, g} ∈ Ecoex
)

} (4)

ELcoex = {e = {i, j} ∈ Ecoex|i ∈ VL
coex ∧ j ∈ VL

coex} (5)

NL
cometh

is the subnetwork of Ncometh including the lignin related
genes l ∈ LG and their direct neighbors:

NL
cometh = (VL

cometh,E
L
cometh) where (6)

VL
cometh = {g|g ∈ (LG ∩ Vcometh)} ∪ {g|

(

g ∈ Vcometh

)

∧
(

∃l ∈ LG|{l, g} ∈ Ecometh

)

} (7)

ELcometh = {e = {i, j} ∈ Ecometh|i ∈ VL
cometh ∧ j ∈ VL

cometh} (8)

NL
snp is the subnetwork of Nsnp including the lignin related genes

l ∈ LG and their direct neighbors:

NL
snp = (VL

snp,E
L
snp) where (9)

VL
snp = {g|g ∈ (LG ∩ Vsnp)} ∪ {g|

(

g ∈ Vsnp

)

∧
(

∃l ∈ LG|{l, g} ∈ Esnp
)

} (10)

ELsnp = {e = {i, j} ∈ Esnp|i ∈ VL
snp ∧ j ∈ VL

snp} (11)

NL
metab

is the subnetwork of Nmetab including the lignin related
metabolitesm ∈ LM and their direct neighboring genes:

NL
metab = (UL

metab,V
L
metab,E

L
metab) where (12)

UL
metab = {m|m ∈ (LM ∩ Umetab)} (13)

VL
metab = {g|

(

g ∈ Vmetab

)

∧
(

∃m ∈ LM|(m, g) ∈ Emetab

)

} (14)

ELmetab = {e = (i, j) ∈ Emetab|i ∈ UL
metab ∧ j ∈ VL

metab} (15)

TABLE 4 | SNP correlation associations for select new potential target genes. Annotations are derived from best Arabidopsis hit descriptions, GO terms and in some

cases MapMan annotations.

Source gene Target gene Target Arabidopsis best hit Annotation

SNP Correlations for Potri.007G115100 (AGL22, AT2G22540/AGL24, AT4G24540)

Potri.007G115100 Potri.007G116100 AT2G22570 Nicotinamidase 1

Potri.007G115100 Potri.016G107900 AT3G09220 Laccase 7

SNP Correlations for Potri.016G078600 (CPSRP54, AT5G03940)

Potri.016G078600 Potri.016G078300 AT4G37970 Cinnamyl alcohol dehydrogenase 6
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NL
pymbms

is the subnetwork ofNpymbms including the lignin related

pyMBMS peaks p ∈ LP and their direct neighboring genes:

NL
pymbms = (UL

pymbms,V
L
pymbms,E

L
pymbms) where (16)

UL
pymbms = {p|p ∈ (LP ∩ Upymbms)} (17)

VL
pymbms = {g|

(

g ∈ Vpymbms

)

∧
(

∃p ∈ LP|(p, g) ∈ Epymbms

)

}

(18)

ELpymbms = {e = (i, j) ∈ Epymbms|i ∈ UL
pymbms ∧ j ∈ VL

pymbms}

(19)

2.12. Calculating LOE Scores
For a given gene g, the degree of that gene D(g) indicates the
number of connections that the gene has in a given network. Let
Dcoex(g), Dcometh(g), Dsnp(g) , Dmetab(g) , Dpymbms(g) represent

the degrees of gene g in the lignin subnetworks NL
coex, N

L
cometh

,

NL
snp, N

L
metab

, and NL
pymbms

, respectively. The LOE breadth score

LOEbreadth(g) is then defined as

LOEbreadth(g) = bin
(

Dcoex(g)
)

+ bin
(

Dcometh(g)
)

+

bin
(

Dsnp(g)
)

+ bin
(

Dmetab(g)
)

+

bin
(

Dpymbms(g)
)

(20)

where

bin(x) =

{

1 if x ≥ 1

0 otherwise
(21)

The LOEbreadth(g) score indicates the number of different types
of lines of evidence that exist linking gene g to lignin-related
genes/phenotypes.

The LOE depth score LOEdepth(g) represents the total number
of lines of evidence exist linking gene g to lignin-related
genes/phenotypes, and is defined as

LOEdepth(g) = Dcoex(g)+ Dcometh(g)+ Dsnp(g)+ Dmetab(g)+

Dpymbms(g) (22)

The GWAS LOE score LOEgwas(g) indicates the number of
lignin-related phenotypes (metabolomic or pyMBMS) that a gene
is connected to, and is defined as:

LOEgwas(g) = Dmetab(g)+ Dpymbms(g) (23)

Distributions of the LOE scores can be seen in Figure S2.
Cytoscape version 3.4.0 (Shannon et al., 2003) was used for
network visualization. Expression, methylation, SNP correlation,
and GWAS diagrams were created using R (R Core Team,
2017) and various R libraries (Wickham, 2007, 2009; de Vries
and Ripley, 2016; Arnold, 2017; Auguie, 2017). Data parsing,
wrappers and LOE score calculation was performed using Perl.
Diagrams were edited to overlay certain text using Microsoft
PowerPoint.

3. RESULTS AND DISCUSSION

3.1. Layered Networks, LOE Scores, and
New Potential Targets
This study involved the construction of a set of networks
providing different layers of information about the relationships
between genes, and between genes and phenotypes, and the
development of a Lines Of Evidence scoring system (LOE
scores) which integrate the information in the different network
layers and quantify the number of lines of evidence connecting
genes to lignin-related genes/phenotypes. The GWAS network
layers provide information as to which genes are potentially
involved in certain functions because they contain genomic
variants significantly associated with measured phenotypes. The
co-methylation and co-expression networks provide information
on different layers of regulatory mechanisms within the cell. The
SNP correlation network provides information about possible
co-evolution relationships between genes, through correlated
variants across a population.

Marking known genes and phenotypes involved in lignin
biosynthesis in these networks allowed for the calculation of a
set of LOE (Lines Of Evidence) scores for each gene, indicating
the strength of the evidence linking each gene to lignin-related
functions. The breadth LOE score indicates the number of types
of lines of evidence (number of layers) which connect the gene
to lignin-related genes/phenotypes, whereas the depth LOE score
indicates the total number of lignin-related genes/phenotypes the
gene is associated with. Individual layer LOE scores (e.g., co-
expression LOE score or GWAS LOE score) indicate the number
of lignin-related associations the gene has within that layer.

This data layering approach differs from previous data
integration methods. Mizrachi et al. (2017) integrate gene
expression data with eQTN data and gene relationships from
KEGG though matrix multiplication, before correlating genes’
Network Based Data Integration (NBDI)-transformed values
with measured traits, allowing the ranking of genes. The
Mergeomics method (Shu et al., 2016) performs Marker Set
Enrichment Analysis, ranking predefined sets of molecular
markers based on their enrichment in a disease phenotype.
Knetminer (Hassani-Pak et al., 2016; Hassani-Pak, 2017) is a web
server which allows the user to search for keywords, producing
lists of genes and the associations they have to annotations,
genes, phenotypes, publications etc. which match the keywords
and that are available in public databases. Knetminer can also
produce a network view of the results. While Knetminer is also
an approach which utilizes multiple lines of evidence, the main
approach and the scoring systems differ. LOE requires input lists
of genes and phenotypes of interest to the user, Knetminer uses
gene lists and keyword searching. In terms of lines of evidence,
Knetminer counts the number of “concepts” (nodes, including
publications, phenotypes, annotations etc.) a gene has linking
it to a keyword (Hassani-Pak et al., 2016; Hassani-Pak, 2017).
However, LOE scores (particularly, breadth LOE scores) count
the number of types of relationships (e.g., GWAS association, co-
expression, co-methylation, variant correlation edges) connecting
a gene to specific input genes and phenotypes related to the
user’s function of interest. This is thus a valuable approach to
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identify new target genes based on the relationships of a gene to
target genes/phenotypes of interest in custom-made association
network layers where publically available data is not available.

To select the top set of potential new candidate genes involved
in lignin biosynthesis, genes which showed a number of different
lines of evidence connecting them to lignin-related functions
were identified by selecting genes with a LOE breadth score
≥3. Since the GWAS networks provide the highest resolution,
most direct connections to lignin-related functions, it was also
required that our potential new targets had a GWAS score
≥1. This provides a set of 375 new candidate genes potentially
involved in lignin biosynthesis, identified through multiple lines
of evidence (Table S4). This set of Potential New Target genes
will be referred to as set of PNTs. A selection of these potential
new candidates below and their annotations, derived from their
Arabidopsis best hits, will be discussed below.

3.2. Agamous-Like Genes
Genes in the AGAMOUS-LIKE gene family are MADS-box
transcription factors, many of which which have been found
to play important roles in floral development (Lee et al., 2000;

Yu et al., 2002, 2004, 2017; Yoo et al., 2006; Fernandez et al.,
2014). Three potential AGAMOUS-LIKE (AGL) genes are found
in the set of PNTs, in particular, a homolog of Arabidopsis
AGL8 (AT5G60910, also known as FRUITFUL), a homolog of
Arabidopsis AGL12 (AT1G71692), and a homolog of Arabidopsis
AGL24 (AT4G24540) and AGL22 (AT2G22540).

The first potential AGL gene in our set of PNTs is
Potri.012G062300, with a breadth score of 3 and a GWAS
score of 2 (Figure 3A), whose best Arabidopsis thaliana hit is
AGL8 (AT5G60910). It has GWAS associations with a lignin-
related metabolite (quinic acid) and a lignin pyMBMS peak
(syringol) (Figure 3C, Table 1) and is co-methylated with three
lignin-related genes (Figure 3B, Table 3). There is thus strong
evidence for the involvement of P. trichocarpa AGL8 in the
regulation of lignin-related functions. There is literature evidence
that supports the hypothesis of AGL8’s involvement in the
regulation of lignin biosynthesis. A patent exists for the use
of AGL8 expression in reducing the lignin content of plants
(Yanofsky et al., 2004). The role of AGL8 (FUL) was described in
Ferrándiz et al. (2000), in which they investigated the differences
in lignin deposition in transgenic plants in which AGL8 is

FIGURE 6 | (A) Lines of evidence for Potri.006G170800 (homolog of Arabidopsis MYB36). (B) GWAS associations of Potri.006G170800 with a lignin-related

metabolite (Table 1). (C) Co-expression of Potri.006G170800 with three lignin-related genes (Table 2). (D) Co-methylation of Potri.006G170800 with a lignin-related

gene (Table 3). In line plots, the green lines represent potential target Potri.006G170800 and yellow lines represent lignin-related genes.
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constitutively expressed, loss-of-function AGL8 mutants and
wild-type Arabidopsis plants (Ferrándiz et al., 2000). In wild-
type plants, a single layer of valve cells were lignified. In loss-
of-function AGL8 mutants, all valve mesophyl cell layers were
lignified, while in the transgenic plants, constitutive expression
of AGL8 resulted in loss of lignified cells (Ferrándiz et al.,
2000). This study thus showed the involvement of AGL8 in fruit
lignification during fruit development.

There is evidence of other AGAMOUS-LIKE genes affecting
lignin content. A study by Giménez et al. (2010) investigated
TALG1, an AGAMOUS-LIKE gene in tomato, and found that
TAGL1 RNAi-silenced fruits showed increased lignin content,
and increased expression levels of lignin biosynthesis genes
(Giménez et al., 2010). A recent study by Cosio et al. (2017)

showed that AGL15 in Arabidopsis is also involved in regulating
lignin-related functions, in that AGL15 binds to the promotor
of peroxidase PRX17, and regulates its expression (Cosio et al.,
2017). In addition, PRX17 loss of function mutants had reduced
lignin content (Cosio et al., 2017).

There is thus compelling evidence that various
AGAMOUS-LIKE genes are involved in regulating lignin
biosynthesis/deposition in plants. Two other AGAMOUS-
like genes are seen in the set of PNTs, namely a homolog
of Arabidopsis AGL12 (Potri.013G102600) and a homolog
of Arabidopsis AGL22/AGL24 (Potri.007G115100).
Potri.013G102600 (AGL12) has GWAS associations with
three lignin-related metabolites, namely hydroxyphenyl lignan
glycoside, coumaroyl-tremuloidin, and 3-O-caffeoyl-quinate

FIGURE 7 | (A) Lines of evidence for Potri.009G053900 (homolog of Arabidopsis MYB46) and Potri.010G141000 (homolog of Arabidopsis MYB111). (B) GWAS

associations of Potri.010G141000 with a lignin-related metabolite (Table 1). (C) Co-expression of Potri.010G141000 with a lignin-related gene (Table 2).

(D) Co-methylation of Potri.010G141000 with six lignin-related genes (Table 3). (E) GWAS associations of Potri.009G053900 with a lignin-related metabolite

(Table 1). (F) Co-expression of Potri.009G053900 with two lignin-related genes (Table 2). (G) Co-methylation of Potri.009G053900 with four lignin-related genes

(Table 3). In line plots, the green lines represent potential targets Potri.009G053900/Potri.010G141000 and yellow lines represent lignin-related genes.
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(Figures 4A,B, Table 1). It is co-expressed with four
lignin-related genes including two caffeoyl coenzyme A
O-methyltransferases, a caffeate O-methyltransferase and
a ferulic acid 5-hydroxylase (Figures 4A,C, Table 2) and
it is co-methylated with four other lignin-related genes
(Figures 4A,D, Table 3). Potri.007G115100 (AGL22/AGL24)
has GWAS associations with the syringaldehyde pyMBMS
phenotype and a caffeoyl conjugate metabolite (Figures 5A,B,
Table 1). It also has SNP correlations with a laccase and a

nicotinamidase (Figures 5A,C,D, Table 4, Table S5). The
combination of the multiple lines of multi-omic evidence
thus suggest the involvement of P. trichocarpa homologs of
A. thaliana AGL22/AGL24 and AGL12 in regulating lignin
biosynthesis.

3.3. MYB Transcription Factors
MYB proteins contain the conserved MYB DNA-binding
domain, and usually function as transcription factors.

FIGURE 8 | (A) Lines of evidence for Potri.016G078600 (homolog of Arabidopsis cpSRP54). (B) GWAS associations of Potri.016G078600 with three lignin-related

metabolite (Table 1). (C) Correlations of SNPs within Potri.016G078600 with SNPs in a lignin-related gene (Table 4). (D) Co-expression of Potri.016G078600 with

two lignin-related genes (Table 2). (E) Co-methylation of Potri.016G078600 with a lignin-related gene (Table 4). In line plots, the green lines represent potential target

Potri.016G078600 and yellow lines represent lignin-related genes.
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R2R3-MYBs have been found to regulate various functions,
including flavonol biosynthesis, anthocyanin biosynthesis, lignin
biosynthesis, cell fate, and developmental functions (Dubos
et al., 2010). The set of PNTs contains several genes which are
homologs of Arabidopsis MYB transcription factors, including
homologs of Arabidopsis MYB66/MYB3, MYB46, MYB36, and
MYB111.

There is already existing literature evidence for how some of
these MYBs affect lignin biosynthesis. Liu et al. (2015) reviews
the involvement of MYB transcription factors in the regulation of
phenylpropanoid metabolism. MYB3 in Arabidopsis is known to
repress phenylpropanoid biosynthesis (ZhouM. et al., 2017), and
a P. trichocarpa homolog of MYB3 is found in our set of potential
new targets. Another potential new target is the P. trichocarpa
homolog of Arabidopsis MYB36 (Potri.006G170800) which is
connected to lignin-related functions through multiple lines of
evidence (Figure 6). In Arabidopsis, MYB36 has been found to
regulate the local deposition of lignin during casparian strip
formation, and myb36 mutants exhibit incorrectly localized
lignin deposition (Kamiya et al., 2015).

MYB46 is known to be a regulator of secondary cell wall
formation (Zhong et al., 2007). Overexpression of MYB46 in
Arabidopsis activates lignin, cellulose and xylan biosynthesis
pathways (Zhong et al., 2007). The MYB46 homolog in
P. trichocarpa, Potri.009G053900, is connected to lignin-related
functions through multiple lines of evidence (Figure 7A),
including a GWAS association with a hydroxyphenyl lignan
glycoside (Figure 7E, Table 1), co-expression with pinoresinol
reductase 1 and caffeate O-methyltransferase 1 (Figure 7F,
Table 2) and co-methylation with dehydroquinate-shikimate
dehydrogenase enzyme, cinnamyl alcohol dehydrogenase 9, 4-
coumarate-CoA ligase activity/4CL), and caffeoyl-CoA 3-O-
methyltransferase (Figure 7G, Table 3).

A MYB transcription factor in the set of PNTs which has,
to our knowledge, not yet been directly associated with lignin
biosynthesis is MYB111 (Figures 7A–D). However, with existing
literature evidence, one can hypothesize that MYB111 can alter
lignin content by redirecting carbon flux from flavonoids to
monolignols. There is evidence that MYB111 is involved in
crosstalk between lignin and flavonoid pathways. Monolignols
and flavonoids are both derived from phenylalanine through the
phenylpropanoid pathway (Liu et al., 2015). There is crosstalk
between the signaling pathways of ultraviolet-B (UV-B) stress
and biotic stress pathways (Schenke et al., 2011). In the study
by Schenke et al. (2011), it was shown that under UV-B light
stress, Arabidopsis plants produce flavonols as a UV protectant.
Also, simultaniously applying the bacterial elicitor flg22, which
simulates biotic stress, repressed flavonol biosynthesis genes and
induced production of defense compounds including camalexin
and scopoletin, as well as lignin, which provides a physical
barrier preventing pathogens’ entry (Schenke et al., 2011). This
crosstalk involved regulation by MYB12 and MYB4 (Schenke
et al., 2011). This study by Schenke et al. (2011) was performed
using cell cultures. A second study (Zhou Z. et al., 2017) used
Arabidopsis seedlings, and found that MYB111 may be involved
in the crosstalk in planta (Zhou Z. et al., 2017). The multiple lines
of evidence connecting the P. trichocarpa homolog ofArabidopsis

MYB111 (Potri.010G141000) to lignin related functions, in
combination with the above literature evidence suggests the
involvement this gene in the regulation of lignin biosynthesis by
redirecting carbon flux from flavonol biosynthesis to monolignol
biosynthesis, as part of the crosstalk between UV-B protection
and biotic stress signaling pathways.

3.4. Chloroplast Signal Recognition Particle
Potri.016G078600, a homolog of the Arabidopsis chloropast
signal recognition particle cpSRP54 occurs in the set of
PNTs (Figure 8). It has a GWAS LOE score of 3, through
GWAS associations with salicyl-coumaroyl-glucoside, a caffeoyl
conjugate and a feruloyl conjugate (Figure 8B, Table 1, Table S4).
It also has a breadth score of 4, indicating that it is linked
to lignin-related genes/phenotypes though 4 different types
of associations (Figure 8). CpSRP54 gene has been found to
regulate carotenoid accumulation inArabidopsis (Yu et al., 2012).
CpSRP54 and cpSRP43 form a “transit complex” along with a
light-harvesting chlorophyll a/b-binding protein (LHCP) family
member to transport it to the thylakoid membrane (Groves
et al., 2001; Schünemann, 2004). A study in Arabidopsis found
that cpSRP43 mutants had reduced lignin content (Klenell
et al., 2005). Since CpSRP54 regulates carotenoid accumulation,
and cpSRP43 appears to affect lignin content, it is possible
that chloroplast signal recognition particles affect lignin and
carotenoid content through flux through the phenylpropanoid
pathway, the common origin of both of these compounds. In fact,
a gene mutation cue1 which causes LHCP underexpression also
results in reduced aromatic amino acid biosynthesis (Streatfield
et al., 1999). These multiple lines of evidence, combined with the
above cited literature suggests that chloroplast signal recognition
particles in P. trichocarpa could potentially influence lignin
content.

3.5. Practical Implications
The LOE method of data integration provides a useful way
for biologists to identify new target genes. Any genes and
phenotypes of interest that are present in the networks can
be used as input to the method, and thus, the results can
be tailored to the particular function of interest of the
biologist. The collection of LOE scores will allow the user
to rank genes in the genome based on the particular lines
of evidence most appropriate to function under investigation,
and in so doing, provides a shortlist of genes as targets
for genetic modification (knockout/knockdown/overexpression)
in order to alter the phenotype of interest. For example,
AGL genes, MYB transcription factors and CpSRP genes
discussed above could be seen as potential new targets for
knockout/knockdown/overexpression in order to alter the lignin
content of P. trichocarpa.

The LOE scoring method can be applied to any species for
which there is multiple data types that can be represented as
association networks which the scientist wishes to integrate in
order to identify new candidate genes involved in a particular
function. This method will be particularly useful for the
analysis of new, unpublished datasets where publically available
datasets/web servers would not necessarily be able to be used.
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4. CONCLUDING REMARKS

This study made use of high-resolution GWAS data, combined
with co-expression, co-methylation and SNP correlation
networks in a multi-omic, data layering approach which has
allowed the identification of new potential target genes involved
in lignin biosynthesis/regulation. Various literature evidence
supports the involvement of many of these new target genes
in lignin biosynthesis/regulation, and these are suggested for
future validation for involvement in the regulation of lignin
biosynthesis. The data layering technique and LOE scoring
system developed can be applied to other omic data types to
assist in the generation of new hypotheses surrounding various
functions of interest.
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