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ABSTRACT OF THE THESIS

Sound reception mechanism analysis of a Cuvier’s beaked whale (Ziphius
cavirostris)
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Professor Petr Krysl, Chair

Anthropogenic sound in the ocean, such as sonar, has been related to mass

strandings of marine life, in particular the Cuvier’s beaked whale (Ziphius cavirostris).

Since opportunities to study behavioral responses are limited, furthering our knowledge

of whales through simulation has become a well adopted process [15] [5]. To simulate

sound reception, the Ziphius ear complex was implemented as a three dimensional

finite element model with two mechanisms that enable hearing; pressure loading from

surrounding soft tissues and bone conduction from skull vibration. The numerical

formulation was summarized to demonstrate an assumed-strain technique using nodally

xii



integrated continuum elements (NICE) [11] for a forced harmonic vibration problem.

This work focuses on obtaining hearing responses using both mechanisms in

conjunction with each other, while also looking into the effects of each mechanism

individually. Mesh refinement with surface and volume smoothing reveals variations

of simulated auditory response for the two loading mechanisms considered. Effects

of the amplitudes and phase shifts, used in loading, along with material damping

were reviewed for cases of only one mechanism applied at a time, then with both

mechanisms active together.

A synthetic audiogram was generated from the stapes velocity transfer function

(SVTF) based on relative displacement of the hearing structure. Results found here

provide insight on the auditory sensitivity of the Cuvier’s beaked whale and its ability

to capture sound in the known range of mid-frequency sonar [3]. Since this marine

mammal has mass strandings heavily linked to sonar activity, this work allows for an

understanding of the whale’s hearing over a given range of frequencies.
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Chapter 1

Introduction

Background

Ziphius cavirostris are small- to medium-sized whales that span all oceanic

waters deeper than 200 meters and can grow up to 7 meters in length. The Cuvier’s

beaked whales (Ziphius cavirostris) are part of the second largest family of living

species in the order Cetacea and are the most widely distributed of any beaked whale

species [8]. Beaked whales feed on deep water squid, fish, and some crustaceans living

on the sea floor. From observations, it can be deduced that these whales can dive to

depths of about 1,000 meters or more to feed with their dives lasting over 30 minutes,

making them the deepest diving whale known to date [2].

In the process of diving, these whales will accumulate an increasing amount of

nitrogen in their blood, which requires the Ziphius to undergo a process of decompres-

sion. To do so, the whale performs a series of interval dives, where they surface to

take in new air and descend to a depth where the water pressure is enough to safely

expel the presence of nitrogen [16]. If the Ziphius is interrupted during this process,

1
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it runs the risk of experiencing nitrogen narcosis or even formation of bubbles in the

bloodstream, also known as bends, where the worst of symptoms leads to death [3].

With an increasing amount of anthropogenic sound in the ocean, there is a

necessary amount of understanding in marine life and our effect on them [9]. In the

past, a high number of Cetaceans, beaked whales in particular, were found stranded

in association with exposure to high intensity sound, such as mid-frequency sonar [3].

Ziphius are the species that were found stranded in higher numbers than any other

species in incidents involving high-intensity sound [7]. According to the International

Union for Conservation of Nature, the Ziphius cavirostris is currently classified as

data deficient, so opportunity to further our understanding of these whales through

simulation has become a well adopted process [15] [5].

Introduction

A finite element implementation of the Ziphius ear complex was studied to

develop an understanding of the hearing ability in a range of frequencies. The model

comes from a Cuvier’s beaked whale anatomy found stranded at Gearhart Beach,

Oregon on March 13, 2002. It was 5.15 m long and weighed 1,996 kg [7]. High-fidelity

anatomic images and geometric descriptions of the structures associated with the

biosonar apparatus in Cuvier’s beaked whales were acquired and used in creating the

mesh.

The hearing apparatus in the Ziphius is located along the posterior section

of the mandibles (Figure 1.1). The primary component of the hearing apparatus is

the organ of transduction, the dense bony ear (tympanoperiotic) complexes, referred

to as TPC, which contain the middle and inner ear. Displacement of the piston-like
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bone, the stapes, generates waves in the cochlear fluid which results in neural signals

received by the brain.

Figure 1.1: Skull view from bottom without the mandible from a scanned
imaging of a Cuvier’s beaked whale. The hearing apparatus, colored red, is
located in the posterior structure and is connected to the skull through the
periotic bone. Source: 2012 c© Springer Science+Business Media, LLC [4].

Here we model the sound reception apparatus with forced harmonic vibration

analysis applied to the TPC, by approximating the structure as a vibrating solid

with a finite element method similar to [5] and [15]. In a previous work using the

VibroAcoustic Toolkit (VATk) with voxel-based modeling techniques [9], a planar

harmonic wave ensonified the entire whale skull from directly ahead. Once steady

state was reached, the harmonic elastic waves acting on the whale head caused motion

of the TPC through two potential mechanisms. One mechanism considered a pressure

load from the mandibular fat body branches connected along the tympanic bone in

the TPC. The second mechanism followed from the vibration of the skull, leading to

shaking of the TPC, described as skull bone conduction as in [5]. Amplitudes and

phase shifts for both mechanisms were extracted and used to load models analyzed in

this work, where the driving mechanisms were later isolated for observation of their

unique effects.
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Loading procedures resulted in motion along the stapes footplate from which a

transfer function was developed by capturing relative velocity at the footplate center

for a frequency range of 10 Hz to 100 kHz. Parameters were varied to investigate their

effect on the Cuvier’s beaked whale hearing sensitivity, including mesh refinement,

phase shifting and amplitudes involved with loading the problem, and parameters

associated to viscous damping of the material. With the Stapes Velocity Transfer

Function (SVTF), synthetic audiograms were constructed to visualize the ability for

sound reception at a given range of frequencies for the Ziphius.



Chapter 2

Numerical Formulation

The TPC was modeled with forced harmonic vibration analysis for a given

range of frequencies where the body acted as a vibrating solid. Spatial discretization

of the equation of motion using the finite element method solved for displacements.

The boundary value problem for linear elastodynamics was considered in the

strong form as

(S)



BTσ + b = ρü on Ω,

ti = ti on ∂Ωt,i,

ui = ui on ∂Ωu,i,

(2.1)

with notation similar to [11]. The traction boundary condition was imposed as

ti = Pnσ. The displacement boundary condition expressed fixed displacement along

its prescribed surface as ui = 0. The stress divergence, B, and ’vector-stress vector

dot product’, Pn, operators are elaborated in Appendix A.1.

Taking Equation 2.1 as a weighted residual produces the weak form of the

5
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problem,

r =

∫
Ω

wT (BTσ + b− ρü)dV −
∫

∂Ωt,i

(ti − ti)widA = 0 (2.2)

Applying integration by parts via Gauss’ Divergence Theorem on the first term

allows for the traction term to cancel out with part of the boundary integral, where

traction was defined at a value of zero when not specified by boundary conditions. The

rest of the boundary integral drops out of the weak form due to the weight function

being set to zero along the boundary prescribed with fixed displacements,

r =

∫
Ω

−(Bw)Tσ +wTb− ρwT ü)dV +

∫
∂Ωt,i

tiwidA = 0. (2.3)

The total traction can split into components for the pressure loading and for

damping terms by creating two subsets, ∂Ωt,i = ∂Ωp,i ∪ ∂Ωd,i. For pressure loading,

the traction term becomes p = pn, where p is a pressure load value.

Damping was included in two forms: one due to the presence of fluid-exposed

boundaries, and the second from a system-level Rayleigh damping. The first type of

damping results from a plane-wave approximation on wet boundary surfaces, and was

considered as a damping term because of its dependence on velocity [9]. For damping

applied as an absorbing boundary condition, the term becomes d = −ρc(u̇·n)n, where

ρc can be determined as an impedance term or as is for a given material surrounding

the solid.

∫
∂Ωt,i

tiwidA =

∫
∂Ωp,i

piwidA+

∫
∂Ωd,i

di(u̇)widA. (2.4)

Determination of deformation involves the constitutive law for linear elasticity,
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σ = Dε, and the assumed-strain kinematic definition established in [11], ε = Bu.

With the residual of the weakly enforced kinematic equation,

rk =

∫
Ω

(Bw)TD(Bu−Bu)dV = 0, (2.5)

the residuals were combined to get

∫
Ω

−(Bw)TDBu+wTb− ρwT ü)dV +

∫
∂Ωp,i

piwidA+

∫
∂Ωd,i

di(u̇)widA = 0. (2.6)

An approximate solution to the boundary valued problem based on Galerkin’s

method takes the displacement and weight functions as interpolations with finite

element basis functions over the degrees of freedom, u =
∑
I

NIuI and w =
∑
J

NJwJ .

∑
I

∑
J

wTJ [

∫
Ω

(BT
NT
J )DBNIuI +NT

J b− ρNT
J NIüIdV+

∫
∂Ωp,i

NT
J,ipidA+

∫
∂Ωd,i

NT
J,idi(NI,iu̇I)dA] = 0. (2.7)

The strain-displacement matrix is defined as BJ = BNJ . The equality must

hold for any arbitrary test function coefficient, wJ , so the bracketed function must

equal zero,

∑
I

∫
Ω

−BT

JDBIuI +NT
J b− ρNT

J NIüIdV+

∫
∂Ωp,i

NT
J,ipidA+

∫
∂Ωd,i

NT
J,idi(NI,iu̇I)dA = 0. (2.8)
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The equation is rearranged for future convenience,

∑
I

∫
Ω

ρNT
J NIüIdV −

∫
∂Ωd,i

NT
J,idi(NI,iu̇I)dA+

∫
Ω

B
T

JDBIuIdV =

∑
I

∫
Ω

NT
J bdV +

∫
∂Ωp,i

NT
J,ipidA. (2.9)

From the nature of harmonic motion, loading and displacement were described

as,

F = F̃ eiωt and u = ũeiωt, (2.10)

where loading, F , was considered as the right hand side of Equation 2.9. Since

all components of the equation include a time-dependent term, it was canceled out

(u̇ = iωũeiωt and ü = −ω2ũeiωt) with F̃ and ũ accounting for amplitudes and phase

shifts. Extracting the negative sign in the damping term allowed for the discretized

system to be written as

∑
I

∫
Ω

+ω2ρNT
J NIũIdV −

∫
∂Ωd,i

iωNT
J,idi(NI,iũI)dA+

∫
Ω

BT
JDBIũIdV =

∑
I

∫
Ω

NT
J bdV +

∫
∂Ωp,i

NT
J,ipidA. (2.11)

After introducing element-wise integration, the expression can be written in

matrix form as,

−ω2Mũ+ iωCũ+Kũ = F̃ . (2.12)

The system above was solved for a given range of frequencies, with boundary

conditions applied along the surface. The mass, M , damping, C, and stiffness, K, ma-
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trices were discretized in space by linear tetrahedral elements with the nodal-integration

scheme established in [11] and [10]. The locking-free continuum displacement finite

elements with nodal integration (NICE elements) were selected because of their ability

in avoiding volumetric locking along with allowing highly distorted elements in the

discretized domain.

The stiffness matrix contains gradients of the basis functions. Instead of solving

with gradients of the basis functions, a weighted average of these gradients at each

node was taken using the elements connected to it,

∇Nk(xq) =

∑
e

∇Nk(xq)J (xq)Wq∑
e

J (xq)Wq

. (2.13)

The node-based finite element method was developed from the assumed-strain formu-

lation, which weakly enforces the kinematic equation along with the balance equation

[10]. Robustness of NICE elements comes from replacing the inverse of the Jacobian

matrix found in the gradient of the basis functions, ∇Nk(xq) = ∇Nk(ξ(xq))J(xq)
−1,

with the transpose of its cofactor matrix, known as its adjunct matrix,

∇Nk(xq) =

∑
e

∇Nk(ξ(xq)) adj(J(xq))J (xq)Wq∑
e

J (xq)Wq

. (2.14)

Integration was approximated using various quadrature rules. The volume

integrals were evaluated using a first-order simplex nodal quadrature with equally

weighted integration points located at the nodes. The surface integrals were computed

using first-order Gauss quadrature with three integration points on the interior of the

surface element as summarized in Table 2.1.
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Table 2.1: A table of quadrature points in the isoparametric domain along
with the corresponding weight for approximation of the volume and surface
integrals in order from top to bottom.

Node number Point Location (ξ) Weight
Linear Tetrahedron

1 0 0 0 1/6
2 1 0 0 1/6
3 0 1 0 1/6
4 0 0 1 1/6

Linear Triangle
1 2/3 1/6 1/3
2 1/6 2/3 1/3
3 1/6 1/6 1/3

The left-hand side of the formulation contains time-independent mass, damping,

and stiffness matrices. The stiffness matrix was constructed on the assumption that

all materials in the domain are isotropic. So the material stiffness matrix is dependent

on the Young’s Modulus, E, and Poisson’s ratio, ν,

D =



λ+ 2G λ λ 0 0 0

λ λ+ 2G λ 0 0 0

λ λ λ+ 2G 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G


.

where λ = Eν
(1+ν)(1−2ν)

is the Lame‘ constant and G = E
2(1+ν)

is the shear modulus.

The damping matrix was composed as a superimposition of the absorbing

boundary conditions. The Rayleigh proportional damping described material damping

where the contributions were included as a linear combination onto the mass and
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stiffness matrices,

[C] = am[M ] + ak[K]. (2.15)

The Rayleigh parameters, am and as, were determined by a minimum damping

ratio, ζmin = 1
2
(asω + am/ω) , where the minimum damping was assumed to occur at

a defined frequency, ωmin. The parameters were found as

am = ζminωmin and ak =
ζmin
ωmin

. (2.16)

The applied damping considered absorbing boundary conditions of the tissue

surrounding the the TPC and the cochlear fluid found in the inner ear to be elaborated

in the Modeling Approach (Chapter 3).

The mass matrix was assembled as a consistent mass, but since the volume

integration was approximated exclusively on the element nodes, this matrix appears

as with lumped mass, or with the only non zero-values being along the diagonal. With

this formulation, the problem at hand was able to be solved by defining the boundary

conditions and specifying the set of frequencies.



Chapter 3

Modeling Approach

High fidelity CT scans of a beached adult male Cuvier’s beaked whale found

in 2012 were taken of both the body and the ear complex [7]. From these scans,

an unstructured mesh was built using voxel-based discretization. Through the use

of the VibroAcoustic toolkit (VATk), models were created by simulating the entire

skull submerged under sea water and passing a harmonic sound waves through in the

direction of head to tail. Quantities extracted, used in this work, were amplitudes and

phase shifts of pressures in the soft tissues attached via mandibular fat bodies along

the ear bone and of vibrations from the skull onto the attachments to the ear bone

once steady state was reached. The software used to develop resutls was MATLab,

with an open source code, FinEALE, available through GitHub.

In this work, the tympanoperiotic complex (TPC) was investigated because it

was identified as an integral part of the hearing process [4] (Figure 3.1). The TPC

contains two materials, the bone and the annular stapedial ligament, where majority

of the body is composed of tympanic and periotic bone and a small ligament ring

around the stapes footplate connects to the surrounding bony oval window, sealing

12
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the inner ear.

Figure 3.1: Visualization of the tympanoperiotic complex (TPC) analyzed
for this study where (a) is the bottom view (b) is the top view, (c) is an
isometric view, (d) is the right side view, (e) is the front view, and (f) is the
back view.

Both materials were assumed as isotropic with parameters taken from previous

studies [5] summarized in Table 3.1.

The footplate of the stapes has a ring of ligament material sealing the oval

window (Figure 3.2), the pocket formed beneath the stapes footplate was considered

to be filled with cochlear fluid.

A point was chosen on the surface of the stapes footplate, roughly in the center,

and four points were selected on the periotic bone adjacent to the annular stapedial
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Table 3.1: A table of materials used in all simulations performed in this
study. The bone material is very stiff compared to the ligament. The stapedial
ligament is not as compressible as the bone material.

Material
name

Young’s
modulus
(MPa)

Density
(kg/m3)

Poisson’s
ratio

Bone 30,000.0 2,470 0.30
Ligament 0.1 1,200 0.47

Figure 3.2: Domain clip displaying both materials. The majority of the
domain consists of tympanic and periotic bone colored grey. A small ring
called the annular stapedial ligament, colored green, along with the stapes
footplate seal a dome filled with cochlear fluid.

ligament to extract relative displacements of the stapes footplate in the oval window.

Auditory response was determined from the displacement of the stapes footplate

relative to motion around the oval window (Figure 3.3).

Forced harmonic vibration analysis was run for a set of frequencies composed

of sets of equally spaced intervals on a logarithmic scale that were extended to

accommodate a range of frequencies from 10 Hz to 100 kHz (Appendix ??. All

conditions and applied loadings were found as linear interpolations of the extended

frequencies.

The boundary conditions were imposed as contributions of bone conduction and
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Figure 3.3: To determine the piston-like response of the stapes, four points
were picked on the surrounding bone interacting with the stapedial ligament,
colored blue, and the yellow point was taken as the center of the stapes
footplate. The mean displacement of the four blue points was subtracted from
the displacement in the center of the stapes to yield the relative movement
for each frequency.

pressure loading along given surface sets. Boundary conditions and loading were all

imposed as frequency dependent, where the amplitude and phase shifts were obtained

from a previously generated model using VATk. This model applied sound waves

hitting a Ziphius skull directly from the front and parameters were recorded for a

given set of incident frequencies (A.2).

Since the Ziphius skull was assumed to be submerged in water, the incident

pressure of seawater and its mechanical properties were used to normalize displacement

amplitudes with

Uinc =
Pinc

ρwcwω
, (3.1)

where ω = 2πf , Pinc is the incident pressure of the sound wave, ρw and cw are the

density and sound speed of seawater at 15◦C. The list of displacement amplitudes

was extended to incorporate frequencies that are both above and below the range of

used incident frequencies. Phase shifts were also extended to accommodate the larger

range of frequencies (Appendix A.2).
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The bone conduction excitation was applied as a frequency dependent body

load in all three directions with phase shifts on the second and third direction,

b̄ = [b̄x, b̄y, b̄z]
T , and was imposed on all volume elements in the domain,

b̄x = −ω2ρboneUx, b̄y = −ω2ρboneUye
iφy , and b̄z = −ω2ρboneU ze

iφz . (3.2)

The displacement amplitudes, Ux, Uy, and U z, and phase shifts, φy and φz,

were found by interpolating values from the VATk results mentioned earlier at the

incident frequencies. The density of the bone, ρbone, is found in Table 3.1.

At the bony attachment of the TPC to the entire skull, nodes were fixed to

remain motionless in all three directions (Figure 3.4). This differs from previous efforts

in modeling bone conduction [5], because the displacement driven mechanism was

applied as a body load with fixed nodes at the connection to the skull instead of a

frequency dependent essential boundary condition.

Figure 3.4: The essential boundary condition was fixed to a value of zero in
all three translation directions along nodes falling within the bounding boxes
colored red which are presented from the (a) top, (b) front, and (c) isometric
views. For the bone conduction mechanism, this boundary condition is active
in conjunction with the body load acting on all elements in the domain.

The second mechanism in this model was a pressure load applied at two patch
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surfaces as traction in the normal direction. Interaction between the branches of

mandibular fat bodies and TPC determined the placement of the patches [6]. Pressure

amplitudes from the VATk simulations were normalized by the surrounding seawater’s

incident pressure, Pinc, and, along with its phase shifts, were extended to include

frequencies above and below the range tested previously with VATk (Appendix A.2).

A frequency dependent traction loaded the TPC by pressure applied in the

normal direction of the given surface with phase shifting,

t = Peiφp · n, (3.3)

where P is the pressure amplitude and φp is the phase shift, both of which are

frequency dependent, and n is the outward pointing normal vector of the surface

element. The pressure amplitudes and phase shifts were found in the same way as for

the bone conduction mechanism, by linear interpolation of data obtained from the

VATk simulations.

The pressure loading was assumed to occur on patches adjacent on the dor-

sal region of the domain where the tympanic bone is assumed to be connected to

mandibular fat bodies (Figure 3.5). The surface elements chosen required an outward

pointing normal similar to that of the surface in the center of each respective patch

and a flooded connection from the center surface out to a bounding sphere.

Damping was considered due to the material itself, cochlear fluid interacting

along the stapes footplate, and soft tissues in contact with the tympanic bone. Rayleigh

proportional damping was assumed to have a minimum damping at 25 kHz of ζmin =

0.025, which made the parameters from Equation 2.16 have values of am = 3.927 e 3 1
s

and as = 1.592 e− 7 s. So, the mass and stiffness matrices were proportioned with
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Figure 3.5: The traction boundary condition was applied on two patches
whose surface elements lied entirely in the orange spots shown on the TPC,
and which had an outward pointing normal similar to that of the centermost
surface element. The orange patches were applied along the dorsal region of
the TPC as shown from the (a) top, (b) isometric, (c) front, and (d) bottom
views.

material damping using these values in Equation 2.15.

The cochlear perilymphatic fluid encased by the stapes and the dome formed

by the periotic bone provided impedance as an absorbing boundary condition along

the footplate of the stapes. Damping due to the cochlear fluid was applied with

a resistive impedance similar to that of humans, Z ≈ 95, 488 [Pa · m−1 · s] [5] [1].

This was applied on the surface of the footplate facing the dome filled by fluid, and

was defined by taking the surface element closest to the center of the footplate and

selecting surface elements connected to it with relatively similar outward pointing
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normals.

Figure 3.6: Damping due to interaction of the stapes footplate with the
surrounding cochlear fluid was interpreted as a damping parameter. The
surface, colored yellow, was assumed to have damping with an impedance
value found from cochlear fluid of human ears due mammalian similarities
among the two inner ears.

Non-coincident surface elements to those of the aforementioned pressure mech-

anism were selected to along the posterior section of the TPC for imposing damping

from soft tissues encasing the structure (Figure 3.7). The surface was strictly selected

not to overlap with the surface set determined for pressure loading so that simulations

could run with both conditions applied simultaneously. The soft tissues were assumed

to have mechanical properties of seawater at 15◦C, and were applied with the same

absorbing boundary condition technique as damping from cochlear fluid.

With these specifications, a fully loaded case was run (Appendix A.3). To

further consider the effect of each individual loading type, the mechanisms were

isolated into cases of bone conduction only and pressure loading only. The solutions

exclusively determined from bone conduction will also be mentioned as loading by the

displacement mechanism.

Relative displacement at the center of the stapes footplate was reported with
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Figure 3.7: The damping boundary condition was applied on one patch
whose surface elements lied entirely in the blue spots shown on the TPC. The
blue patch was applied along the dorsal region of the TPC as shown from the
(a) left, (b) right, (c) front, and (d) bottom views.

respect to the ’piston-like’ motion of the stapes itself (Figure 3.8). Displacement

at the center of the footplate, ũst, was subtracted from the mean displacement of

the four points chosen around the stapedial ligament, ūmean = (
4∑
i=1

ũi)/4, to obtain

the relative displacement, ur = ũst − ūmean. Finally, motion of the stapes footplate

was recorded as the relative displacement that applied in the normal direction of

’piston-like’ movement, m, as ust = |ur ·m|.

The results were interpreted as the Stapes Velocity Transfer Function (SVTF),

as in [5], which relates output from stapes motion to cochlear input from sound

occuring underwater. From the relative motion of the stapes footplate, ust, relative
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Figure 3.8: Piston-like motion of the stapes was found as back and forth
movement in the direction of the normal m.

velocity at the stapes footplate was determined, vst = ωust, and the transfer function

was found as

SVTF =
vst

Pinc
. (3.4)

Indicators for the cases where the model had only pressure loading or only

displacement loading are noted as (P) and (U) respectively. In the case of full loading,

simulations were run with both mechanisms active and have a transfer function

indicator of (UP).



Chapter 4

Results

From the three loading cases of combined loading (UP), displacement loading

(U), and pressure loading (P), Stapes Velocity Transfer Functions (SVTFs) were found

using Equation 3.4. Isolated loading cases provided insight on their contribution to

the most realistic loading case of both mechanisms acting in unison (UP).

Figure 4.1: The SVTF of all three loading cases applied on the finest
refinement of the mesh, Mesh 1. The solid black line represents the case of
all loading mechanisms active and was considered the simulation closest to
reality.

22
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Figure 4.1 shows the hearing response was dominated by bone conduction in

the mid-frequency range of about 1 − 11 kHz. Above this range, the response had

pressure loading as the leading effect between about 30 and 70 kHz.

In the interest of confirming the SVTF behavior, natural frequencies of the

geometry at a coarser discretization level (Mesh 4) were used as the evaluated frequency

range. The natural frequencies were found with modal analysis for all modes up to

100 kHz (Appendix A.4). It was determined that there was no need to include the

natural frequencies to the range being solved for (Figure 4.2).

Figure 4.2: SVTF of the combined mechanisms solved at the natural fre-
quencies (yellow triangles) and solved at the predefined range used in all
simulations.

For further parametric studies, quantification of differences was measured as a

relative difference compared to the base SVTF with values close to zero representing

closer similarity to the original case,

∆ =
‖SVTF− SVTFbase‖
‖SVTFbase‖

. (4.1)
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A measure of correlation was determined giving the least squares fit to the base

SVTF. This is found by dividing each term in the SVTF by its standard deviation

after subtracting the mean of the SVTF from each term,

s =
SVTFi − SVTFmean

SD
, (4.2)

where SD is the standard deviation of the given SVTF. The correlation coefficient was

determined between the base, sbase, and the curve comparing to it with a value of one

meaning the SVTFs being compared are completely related,

r =
sbases

T∑
i=1

s2
base i

. (4.3)

Both quantities determined variance from the original model with ∆ describing a

general change and r representing the linear relationship between curves.

Mesh Refinement Study

Using the same voxelization domain, several meshes were created beginning

with the finest and coarsening with each new mesh. As the mesh was coarsened from

the originally fine voxels, Laplacian smoothing on the surface and volume were applied.

This led to slight changes in the domain volume for each mesh (Table 4.1). Although

changes to the number of elements caused a change to the volume of the domain, the

overall difference in volumes between the finest and coarsest cases remained at a 4%

difference. As the number of elements increased, the volume more closely resembled

the original scanned domain (Figure 3.1).
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Table 4.1: A table of mesh discretization considered for this study. Since
both surface and volume smoothing of the mesh were computed with each
refinement the total volume of the domain is subject to differences.

Mesh
No.

No. of Ele-
ments

No. of Nodes Total Volume
(mm3)

1 527,725 96,350 39,193
2 222,975 39,544 39,062
3 130,557 23,526 38,971
4 83,917 15,444 38,829
5 57,260 10,729 38,531
6 39,700 7,610 38,135
7 27,297 5,283 37,617

Figure 4.3: Comparison of discretization from the most refined mesh on
the left to the coarsest mesh on the right. A total of seven refinements were
created using both surface and volume smoothing at each interval. Note that
as the mesh was coarsened the volume decreased.

The full list of discretization was applied to the most realistic case including

both loading mechanisms. All seven levels of meshes were plotted along the same

range of frequencies starting from the finest level and working down to the coarsest

level (Figure 4.4).
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Figure 4.4: SVTF of both bone conduction and pressure loading on seven
mesh discretizations, with increasing differences between curves as the mesh
was further coarsened.

As the mesh was coarsened, the SVTF grew further away from the best case

using Mesh 1. Comparing to the finest mesh, the largest difference was generated by

Mesh 7, ∆ = 0.497, and the differences decreased down to a value of ∆ = 0.113 for

Mesh 2. The lines were all above a 10% correlation, r > 0.900. The least correlated

SVTF to Mesh 1 results was Mesh 7, r = 0.929, and the most correlated grew as the

mesh size shrunk with Mesh 2 being correlated by r = 0.994. The middle mesh, Mesh

4, has a relative difference of ∆ = 0.375 and was correlated to the finest mesh by

r = 0.950. With the close correlation to the original data this mesh provided similar

results with a reduced amount of computation required. Detailed reporting of all the

relative differences and correlation coefficients can be found in Appendix A.5.

As the mesh size grew, small features of the TPC could have been lost resulting

in the nulls observed between 200 Hz and 7 kHz. All seven discretization were further

investigated by isolating the individual loading mechanisms in Figures 4.5 and 4.6.
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Figure 4.5: SVTF of pressure loading only on seven mesh discretization levels.
Overall, the variation between the finest and coarsest mesh are qualitatively
minimal, with differences potentially resulting from changes to the volume of
the domain.

Figure 4.6: SVTF of bone conduction loading only on seven mesh discretiza-
tion, with small differences between that mesh levels due to a combination of
element size and volume changes.

There was no dramatic qualitative variance from the most fine results with

each isolated case. In Figure 4.5, pressure loading is the isolated mechanism, and the
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results are most correlated with the smallest coefficient applied on the coarsest mesh,

r = 0.966. Mesh 7 had the most different SVTF with ∆ = 0.533, and Mesh 2 was the

most related to the finest mesh, ∆ = 0.111 and r = 0.995. The case of only pressure

loading was more correlated, and had a larger difference between meshes compared

to the original SVTF using both loading mechanisms. Figure 4.6 was less correlated

with the largest coefficient being r = 0.818. Again, Mesh 7 had the largest difference

with ∆ = 0.448. Mesh 2 had the smallest variance from Mesh 1 with ∆ = 0.102 and

r = 0.990. The case of isolating bone conduction was less correlated than the original

SVTF, and had a smaller difference. The same general relationship was exhibited

in the isolated cases, where as the mesh grew in size the relative difference, ∆, grew

and the correlation coefficient, r, decreased indicating the SVTF was further from the

most realistic solution using Mesh 1.

Further sensitivity studies were applied on the smoothed refinement of Mesh 4.

This level of discretization yielded results close enough to the finest mesh, Mesh 1,

while avoiding a high computation cost. Parameters under investigation were phase

shifts and amplitudes for both displacement and pressure loading, minimum and

damping and baseline angular frequency used for the Rayleigh proportional damping.

Phase Shift Study

The phase shift introduces an imaginary part into the problem that was

investigated. The three contributing phase shifts, φx, φy, and φp, were toggled on and

off. Two of which affected the bone conduction contribution, and one which affected

the pressure loading (applied in Eqs. 3.2 and 3.3). Each of these phase shifts was

individually toggled off, and a combination of cases was also applied (Figure 4.7).
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(a) (b)

(c) (d)

Figure 4.7: Phase shifting was toggled on and off to observe differences in
the response due to changes in the type of sound received. The different cases
were (a) φy off, (b) φz off, (c) φy and φz off, and (d) (a) φp off.

By turning off phase shifting individually, there was no increase to the Ziphius ’

capacity in the frequency range of ’best hearing’ (40 − 60 kHz). In Figure 4.7, the

effect of phase shifting was considered for the loading mechanism corresponding to

the type of phase shift treated (U or P) along with the realistic case of all loading

mechanisms active (UP). In most of the cases, removing phase shifting caused the

hearing response to lose details on which frequencies cannot be heard as well as others.

Figures 4.7b and 4.7c demonstrated a peak of hearing sensitivity between 10−11

kHz, but when the phase shifts were turned off that peak was reduced. This falsely

made it seem that the Ziphius could not capture sound as well at those frequencies.

Figures 4.7a and 4.7c showed that turning off the phase shifting caused the original
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peak between 2 and 5 kHz to be smaller. This was again a misrepresentation in the

hearing sensitivity of the Ziphius. Figure 4.7a has φy toggled off, and showed the

smallest difference of ∆ = 0.083 with r = 0.996. Figures 4.7b and 4.7c had larger

differences to the original SVTF of ∆ = 0.141 and ∆ = 0.168 respectively.

Toggling the phase shift corresponding to the pressure loading, Figure 4.7d,

created differences in the high end of the frequency range. Between 30− 40 kHz, the

threshold response failed to capture sensitivity with φp off and created a false null

in its place. By toggling off φp, the correlation coefficient was smaller than when

turning off displacement based phase shifts, r = 0.980. The difference between SVTFs

was ∆ = 0.194, which was larger than the previous comparisons making the pressure

related phase shift have the strongest effect on the SVTF.

By removing all phase shifts, the (UP) case displayed changed the SVTF peaks

between 2− 30 kHz (Figure 4.8).

Figure 4.8: SVTF of bone conduction and pressure loading (UP) with and
without all phase shifting present.

By toggling all phase shifts off, an artificial trough emerged between 30−40 kHz



31

and the peaks surrounding it failed to capture the full capacity of sound reception in

the TPC. A combination of errors from Figure 4.7 was displayed when not considering

phase shifting at all. This case was the least correlated, r = 0.979, but was not the

most different from the original SVTF, ∆ = 0.194. A fully detailed response included

all corresponding phase shifting, and further results were run with φy, φz, and φp

active.

Amplitude Scaling Study

Amplitudes of bone conduction and pressure loading, Ux, Uy, U z, and P , were

uniformly scaled by factors of 1
4
, 1

2
, 2, and 4. The amplitude linearly affected how

much or how little body and traction loads were applied (Eqs. 3.2 and 3.3).

Figure 4.9: SVTF of bone conduction and pressure loading (UP), with
all amplitudes scaled by factors of 1

4
, 1

2
, 2, and 4. The dark blue band

corresponded to amplitudes being scaled up and down by 2. The light blue
band used a scaling factor of 4 up and down.

By modifying the amplitudes, a bandwidth was created around the SVTF

results for each of the cases. As the amplification grew, the curve shifted upwards,
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and as the amplification was decreased, the curve shifted downwards causing the

amplification correlation coefficient to be of full value in all variations, r = 1.000. The

larger band, from 4 to 1/4 amplification, spanned over one decade giving a measure of

uncertainty to the transfer function. There were no changes to the behavior of the

SVTF besides vertical translation, which was expected for the case of both loading

mechanisms occurring together (UP).

The isolated loading cases (U) and (P) were considered to further look into

their individual effects (Figure 4.10).

(a) (b)

Figure 4.10: SVTF with uniform scaling of the amplitudes for (a) bone con-
duction only and (b) pressure loading only. The dark blue band corresponded
to amplitudes being scaled up by 2 and down by 1

2
. The light blue band used

scaling factors of 4 and 1
4
.

Figure 4.10 showed the same effect as in Figure 4.9. As the amplification

increased, the SVTF translated upwards and vice versa. This created bands around

the SVTF as variations of hearing responses due to increasing or decreasing the

amplifications. Since the factor was uniformly varied the SVTF was affected by a

factor causing a linear variation.



33

Rayleigh System Damping Study

As mentioned in Chapter 2, Rayleigh proportional damping is dependent on

the minimum damping ratio, ζmin, and the baseline for the angular frequency, ωmin.

Originally, the parameters had values of ζmin = 0.025 at a baseline frequency of 25

kHz and were increased in damping away from that frequency (Figure 4.11).

Figure 4.11: The damping ratio was dependent on frequency due to the use
of Rayleigh damping. The minimum damping ratio of ζmin = 0.025 is found
at a frequency of 25 kHz.

Both of these parameters were adjusted independently to observe differences in

the SVTF by factors of 1
4
, 1

2
, 2, and 4 beginning with modifying ζmin (Figure 4.12).

Figure 4.12: SVTF of bone conduction and pressure loading (UP), with the
minimum damping ratio scaled by factors of 1

4
, 1

2
, 2, and 4.
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Changing ζmin from its base value of 0.025 caused modification to the intensity

of peaks on the SVTF. Raising the damping ratio smoothed the curve, whereas

decreasing the ratio caused peaks and troughs to grow. The lower frequencies were

not as affected in the SVTF as those from 2− 100 kHz because the damping ration

increases the further the frequency gets from its baseline of 25 kHz. The modified

SVTFs were highly correlated, with the smallest correlation being r = 0.956. The

further away from the baseline the larger relative difference was observed. The case

of increasing the parameter by a factor of 4 had ∆ = 0.648, and the factor of 2 was

smaller, ∆ = 0.334. Cases of isolated loading were considered next (Figure 4.13).

(a) (b)

Figure 4.13: SVTF with varying the minimum damping ratio, ζmin, for (a)
bone conduction and (b) pressure loading cases. This parameter was scaled
by factors of 1

4
(green), 1

2
(orange), 2 (blue), and 4 (purple).

The minimum damping ratio had an effect on how the transfer function

oscillated. The response had sharper peaks as this parameter decreased. Again, the

lower frequencies were not affected with the exception of a bump at 300 Hz. By

isolating the bone conduction mechanism, the SVTF responded more to changes of

the parameter by having the lowest correlation and largest relative difference from

the original case (U). Reducing ζmin by 1/4 caused ∆ = 0.707 with r = 0.900, and

the lowest correlation coefficient was found by increasing the parameter by a factor
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of 4, r = 0.850. The case of pressure loading only had stronger correlation to the

original SVTF (P), but the differences were larger than the case with mixed loading.

The least correlated SVTF was modified by a factor of 1/4, r = 0.972, and the largest

difference was from the case multiplied by 4 with ∆ = 0.638. The minimum damping

ratio offered variation to smoothness of the SVTF.

The angular frequency at the minimum damping, ωmin, was varied from its

baseline of 25 kHz by factors of 1
4
, 1

2
, 2, and 4. The frequency dependent damping

ratio curve translated left with reduction of the parameter and to shift right as the

baseline frequency increased (Figure 4.14).

Figure 4.14: SVTF of bone conduction and pressure loading (UP), with the
minimum angular frequency scaled by factors of 1

4
, 1

2
, 2, and 4.

The lower frequencies were not as affected by changing ωmin as the higher

frequencies. At the baseline frequency, the effect of damping is minimal exhibiting

the sharpest response. Damping increases the further away from the baseline the

curve gets causing the SVTF to smooth out at frequencies far away from the baseline.

As the parameter increased, the SVTF pivoted downwards slightly, and the opposite
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behavior was found true until frequencies larger than 25 kHz. At high frequencies, the

SVTF response was more sensitive as ωmin increased. By modifying this parameter

the relative difference did not increase with larger variation from the original SVTF.

As the frequency reached a lower order of magnitude, the SVTF produced varied the

most from the original, ∆ = 0.540 and r = 0.939 when the angular frequency was

reduced by 1/4. The closest curve was from increasing the parameter by a factor of 2

with ∆ = 0.126 and r = 0.989. The last study was run on the cases using isolated

mechanisms (U) and (P) (Figure 4.15).

(a) (b)

Figure 4.15: SVTF with varying the minimum frequency, ωmin, for (a) bone
conduction and (b) pressure loading cases. This parameter was scaled by
factors of 1

4
(green), 1

2
(orange), 2 (blue), and 4 (purple).

In the range of lower frequencies, the hearing response was reduced as the

minimum angular frequency grew, once reaching about 25 kHz an opposite relationship

was observed. The SVTF increased at a slightly faster rate and decreased at a faster

rate after reaching the global maximum with a shrinking value of ωmin. This happened

because of the relationship between minimum damping and the central frequency. It

was observed that both isolated cases contained the largest variation in the case of

reducing the baseline angular frequency by an order of magnitude (reduction by a

factor of 1/4). The difference was ∆ = 0.327 for the case of bone conduction only (U)
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and ∆ = 0.546 for pressure loading only (P). When isolating bone conduction, the

most correlated case was the one that was increased by 2 which remained in the same

order of magnitude, r = 0.998, but the smallest difference came by increasing the

order of magnitude of the baseline angular frequency, ∆ = 0.094. This was different

from the other cases that had the smallest difference when the parameter remained in

the same order of magnitude from the original frequency.

From Chapter 2, we see that a minimum occurs at ωmin and changing that

parameter translates the entire Rayleigh proportional damping curve to have its

minimum to the left or right of its original position. This caused the part of the curve

with the least amount of viscous damping to shift. The SVTF was sharper around

the shifted frequency and smooth outwards from this point.

Overall, varying Rayleigh system damping parameters caused fine modifications

from the original SVTF with the worst case coming from reducing the order of

magnitude of the baseline angular frequency. The minimum damping ratio, ωmin,

affected the prominence of oscillations occurring at the mid to high frequency range,

and the angular frequency at the minimum condition, ωmin, changed the rate of ascent

and descent around the central frequency.

Audiogram

To visualize hearing ability of the Ziphius, a synthetic audiogram was created

using the SVTF with calibration to the minimal audible pressure. An audiogram is

a graph used to visualize audible sound for a range of frequencies. Due to lack of

behavioral data of Cuvier’s beaked whales [13], the hearing sensitivities were assumed

to be similar to toothed Blainville’s beaked whale at 50 decibels at a reference pressure
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of 1 µPa (50 dB re 1 µPa) [12] which was determined using behavioral techniques of

[14]. The minimum pressure over the frequency range of 10− 100, 000 Hz was found as

pmin = 1050/20pref = 3.162 e− 4 Pa. (4.4)

The audiogram was constructed with the sound pressure levels (SPL) as the

threshold pressure normalized with the reference pressure, SPL = 20 log pth/pref, where

pth is a function of the angular frequency

pth =
max[SVTF(ω)]

SVTF(ω)
pmin. (4.5)

SPL were interpreted as the intensity or volume, and the audiogram predicted

audible sound for the Ziphius in a range of frequency from 10 Hz to 100 kHz (Figure

4.16).

Figure 4.16: Audiogram of all three loading cases applied on Mesh 1. The
lines represent an audible threshold of hearing sensitivity, where the best
response occurs at 50 dB between 40− 60 kHz.
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The point of best hearing for the Ziphius occurs at the minimum value of the

audiogram at 48 kHz. Mid-frequency sonar has known ranges of 3− 10 kHz [3], and

bone conduction alone (U) has a greater sensitivity when compared to the pressure

loading (P) and combined cases (UP). Only looking at bone conduction for sound

responses would lead to a larger range of optimal hearing from about 40 − 60 kHz

(UP and P) to 10− 80 kHz (U). The Ziphius has an estimated hearing range of 40

dB beginning from the most sensitive hearing at 50 dB, similar to previous whale

simulations [5]. The range of frequencies considered audible to the Cuvier’s beaked

whale was from 2 to 100 kHz. This created overlap between the approximation of

sound reception and the known range of mid-frequency sonar (Figure 4.17).

Figure 4.17: Audiogram of all three loading cases applied on Mesh 1. Known
mid-frequency sonar emitted sound between 3− 10 kHz. The Ziphius has an
estimated hearing range of 40 dB.

The fully loaded model involved effects of bone conduction and pressure loading

acting in conjunction with each other. At the mid-frequency range it was observed

that bone conduction led the response, and at higher frequencies the pressure loading

mechanism led the overall hearing response. Based on this audiogram, the Cuvier’s
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beaked whale has the potential ability to receive sound at the levels coincident with

mid-frequency sonar that are known.



Chapter 5

Conclusion

An attempt to understand sound reception of a Cuvier’s beaked whale using

an assumed-strain finite element method was developed from high fidelity CT scans of

a beached adult male. The organ of transduction, referred to as the tympanoperiotic

complex (TPC), contains the middle and inner ear. Displacement of the piston-like

stapes bone lying within the TPC was modeled with a forced harmonic vibration

framework for a range of frequencies from 10 Hz to 100 kHz, where the body acted as

a vibrating solid.

Two driving mechanisms enabled reception of sound, bone conduction created

from shaking of the TPC by the skull and pressure loading from elastic waves generated

by the incident sound pressure. The most realistic case was first investigated (UP), and

then each of the loading mechanisms was isolated (U and P) for further investigation

of the individual contributions to the problem. ’Piston-like’ motion of the stapes

found relative to the oval window around the footplate was recorded to create the

Stapes Velocity Transfer Function (SVTF). The SVTF was determined, and then each

loading case was considered alone. From these results, a series of parametric studies
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were executed using a mesh discretization that was coarser than the finest case, but

exhibited close enough behavior to proceed.

Phase shifts of the driving mechanisms were varied by toggling each shift on

and off individually, then together in a series of cases. The phase shifts overall did

not affect the case with both mechanisms with the exception of a few locations where

hearing sensitivity was falsely present. Bone conduction alone was more strongly

affected, and pressure loading only was not varied when removing the phase shift.

Displacement and pressure amplitudes were scaled up and down demonstrating

a band around the original SVTF with a complete correlation. This band increased

upwards as the amplitude grew and decreased downwards as the amplitude shrunk.

Coverage of the SVTF was determined as a range of uncertainty with the change in

amplitudes of all cases.

The last parameter set studied was the minimum damping ratio and the

baseline angular frequency associated with the Rayleigh proportional damping due

to the material itself. By modifying the minimum damping, all cases experienced

smoothing of oscillations in the SVTF as the ratio increased and sharper peaks and

troughs as the ratio decreased. This parameter was the most sensitive displaying the

largest relative difference when modified. The baseline frequency caused the little

variation to the SVTF when maintained within the same order of magnitude. The

correlation and relative difference began to grow when the baseline was reduced by

an order of magnitude. When increased by an order of magnitude, ωmin created a

stronger correlation to the original SVTF than any other variation.

Hearing ability of the Ziphius was visualized as an audiogram using the SVTF

calibrated to the minimal audible pressure. The optimal hearing for the Ziphius
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occurred at the minimum value of the audiogram, 48 kHz. By isolating each loading

mechanism, it became apparent that bone conduction dominated sound reception in

the range of 1− 11 kHz and pressure loading led sound reception a higher frequencies

between 30 and 70 kHz. Sound reception due to bone conduction alone was the most

sensitive response.

Although the Ziphius did not exhibit optimal hearing within the range of

mid-frequency sonar, based on the estimated range of 40 dB the Ziphius simulated an

potential to hear from 2− 100 kHz. Based on this audiogram, the Cuvier’s beaked

whale has the potential ability to receive sound at levels coincident with mid-frequency

sonar that are known.

Future Work

This work was all run considering the TPC of only one side of the whale head.

In humans, it is observed via behavioral responses that hearing is dominant one side

over another. It would be beneficial to understand if the response in the Cuvier’s

beaked whale studied is different depending on what ear we are simulating responses

in.

Another application of study could look into refining the mesh without mod-

ifying the volume and surface with Laplacian smoothing. Formal mesh refinement,

without changing the volume, could be accomplished by beginning with the coarsest

available meshed volume and refining from there. With this information, convergence

studies could help determine efficiency of the specific modeling problem. Also, applying

curve and volume smoothing techniques, such as Taubin smoothing, where volume

shrinking doesn’t occur could result in a different response for the coarser mesh.
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With the intention of populating the parameter space for this problem, modify-

ing the application of loading would allow for further insight on what sound direction

is more sensitive for this mammal. This study only looked at a planar wave arriving

to the skull from directly ahead, and used amplitudes and phase shifts gathered for

that particular case. Varying the angle of the wave and direction could allow for a

deeper understanding of the type of sound this whale is most sensitive to.

Ideally, studies such as this one could be applied to as many marine animals

as data allows. Cuvier’s beaked whales are historically the species most linked to

strandings due to sonar activity, but there are other species that have yet to be analyzed

via simulation. Since this process involves scanning a skull, these opportunities will

become available indefinitely.



Appendix A

Final Notes

A.1 Finite Element Matrix Operators

The stress divergence, B,

B =



∂/∂x 0 0

0 ∂/∂y 0

0 0 ∂/∂z

∂/∂y ∂/∂x 0

∂/∂z 0 ∂/∂x

0 ∂/∂z ∂/∂y


.

The ’vector-stress vector dot product’, Pn,

45
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Pn =



nx 0 0

0 ny 0

0 0 nz

ny nx 0

nz 0 nx

0 nz ny


.

A.2 VATk Model Information

The VATk model ran a wave at varying frequencies head on towards the

Ziphius cavoristis skull to record the amplitudes and phase shifts due to displacement

or pressure at given points.

The frequencies used to record amplitudes and phase shifts along the bony

connections due to bone conduction were

[78, 156, 312, 625, 1, 250, 2, 500, 5, 000, 10, 000, 20, 000, 40, 000, 60, 000].

This led to the following values determined by the Periotic Displacement Transfer

Function (PDTF),
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Figure A.1: The Periotic Displacement Transfer Function (PDTF) used to
find the amplitudes and phase shifts determined by vibration of the ossicular
chain.

The frequencies used to record amplitudes and phase shifts along the connection

between the tympanic bone and the mandibular fat bodies and a pressure load were

[78, 625 2, 500, 5, 000, 10, 000, 20, 000, 25, 000, 30, 000, 35, 000, 40, 000, 60, 000].

This led to the following values determined by the TPC Pressure Transfer

Function (TPTF),

Figure A.2: The TPC Pressure Transfer Function (TPTF) used to find
the amplitudes and phase shifts from sound pressure applied through the
mandibular fat body branches.
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A.3 Boundary Conditions

The case closest to reality uses both loading mechanisms of bone conduction

and pressure loading. All conditions mentioned in Chapter 3, the domain looks to

have all loadings active as shown in Figure A.3.

Figure A.3: Domain with all applied loading shown in multiple views. These
conditions are active along with a body load, not pictured, applied on all
elements.

The fixed nodes are defined as the essential boundary condition of the problem

in Equation 2.1. Nodes are fixed at the connection of the periotic bone to the rest of

the skull. Bone conduction was described as a body load applied to all elements

in the volume, and was not colored in Figure A.3. Traction was applied on specified

surface elements where the mandibular fat bodies connected with the tympanic bone

for pressure loading. Soft tissue surrounding the tympanic bone dissipated energy

as ramped damping, 0 Hz to 2, 000 Hz and held constant after, on the prescribed

surface. The stapes footplate in contact with cochlear fluid was modeled as damping
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along the footplate surface.

A.4 Frequencies Used

Here is the list of frequencies used to calculate the SVTF and audiograms.

.

1.0e05*

[0.0001,

0.0008,

0.0010,

0.0011,

0.0013,

0.0014,

0.0016,

0.0018,

0.0021,

0.0023,

0.0026,

0.0030,

0.0034,

0.0038,

0.0043,

0.0048,

0.0055,

0.0062,

0.0063,

0.0070,

0.0078,

0.0089,

0.0100,

0.0106,

0.0113,

0.0119,

0.0127,

0.0134,

0.0143,

0.0151,

0.0160,

0.0170,

0.0180,

0.0191,

0.0203,

0.0215,

0.0229,

0.0242,

0.0257,

0.0273,

0.0289,

0.0307,

0.0326,

0.0346,

0.0367,

0.0389,

0.0412,

0.0438,

0.0464,

0.0492,

0.0506,

0.0522,

0.0554,

0.0588,

0.0624,

0.0661,

0.0702,

0.0744,

0.0790,

0.0838,

0.0889,

0.0943,

0.1000,

0.1030,

0.1060,

0.1091,

0.1124,

0.1157,

0.1191,

0.1226,

0.1263,

0.1300,

0.1338,

0.1378,

0.1419,

0.1461,

0.1504,

0.1548,

0.1594,

0.1641,

0.1690,

0.1740,

0.1791,

0.1844,

0.1899,

0.1955,

0.2013,

0.2072,

0.2134,

0.2197,

0.2262,

0.2329,

0.2397,

0.2468,

0.2541,

0.2617,

0.2694,

0.2774,

0.2856,

0.2940,

0.3027,

0.3117,

0.3209,

0.3304,

0.3401,

0.3502,

0.3605,

0.3712,

0.3822,

0.3935,

0.4029,

0.4051,

0.4171,

0.4294,

0.4421,

0.4552,

0.4687,

0.4826,

0.4968,

0.5115,

0.5266,

0.5422,

0.5583,

0.5748,

0.5918,

0.6093,

0.6273,

0.6458,

0.6649,

0.6846,

0.7049,

0.7257,

0.7472,

0.7693,

0.7920,

0.8154,

0.8396,

0.8644,

0.8900,

0.9163,

0.9434,

0.9713,

1.0000]
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The natural frequencies of the problem were solved for using modal analysis

up to a frequency of 100 kHz.

.

1.0e05*

[0.0074,

0.0136,

0.0239,

0.0249,

0.0282,

0.0283,

0.0293,

0.0295,

0.0302,

0.0303,

0.0307,

0.0310,

0.0312,

0.0313,

0.0315,

0.0316,

0.0318,

0.0319,

0.0324,

0.0324,

0.0327,

0.0331,

0.0332,

0.0337,

0.0344,

0.0346,

0.0348,

0.0351,

0.0355,

0.0358,

0.0358,

0.0360,

0.0361,

0.0362,

0.0366,

0.0369,

0.0371,

0.0372,

0.0374,

0.0376,

0.0379,

0.0379,

0.0381,

0.0383,

0.0387,

0.0388,

0.0390,

0.0391,

0.0393,

0.0393,

0.0397,

0.0399,

0.0400,

0.0401,

0.0404,

0.0406,

0.0410,

0.0411,

0.0412,

0.0413,

0.0414,

0.0415,

0.0417,

0.0420,

0.0423,

0.0426,

0.0426,

0.0429,

0.0434,

0.0436,

0.0436,

0.0437,

0.0441,

0.0441,

0.0443,

0.0443,

0.0446,

0.0446,

0.0450,

0.0450,

0.0452,

0.0453,

0.0455,

0.0458,

0.0461,

0.0462,

0.0463,

0.0468,

0.0470,

0.0473,

0.0473,

0.0474,

0.0476,

0.0476,

0.0478,

0.0479,

0.0480,

0.0482,

0.0482,

0.0486,

0.0488,

0.0489,

0.0491,

0.0493,

0.0493,

0.0493,

0.0496,

0.0498,

0.0499,

0.0501,

0.0501,

0.0504,

0.0506,

0.0508,

0.0509,

0.0511,

0.0512,

0.0513,

0.0517,

0.0518,

0.0520,

0.0522,

0.0523,

0.0523,

0.0525,

0.0527,

0.0528,

0.0530,

0.0532,

0.0534,

0.0536,

0.0539,

0.0540,

0.0542,

0.0543,

0.0546,

0.0547,

0.0548,

0.0548,

0.0549,

0.0550,

0.0554,

0.0555,

0.0558,

0.0558,

0.0559,

0.0560,

0.0566,

0.0567,

0.0570,

0.0573,

0.0573,

0.0574,

0.0582,

0.0589,

0.0590,

0.0591,

0.0592,

0.0595,

0.0597,

0.0598,

0.0601,

0.0602,

0.0603,

0.0607,

0.0608,

0.0612,

0.0613,

0.0617,

0.0618,

0.0619,

0.0620,

0.0624,

0.0624,

0.0629,

0.0630,

0.0631,

0.0633,

0.0636,

0.0641,

0.0642,

0.0643,

0.0644,

0.0648,

0.0649,

0.0650,

0.0650,

0.0654,

0.0657,

0.0658,

0.0662,

0.0663,

0.0666,

0.0667,

0.0673,

0.0676,

0.0679,

0.0679,

0.0689,

0.0689,

0.0696,

0.0701,

0.0701,

0.0707,

0.0709,

0.0713,

0.0722,

0.0724,

0.0724,

0.0734,

0.0738,

0.0740,

0.0747,

0.0755,

0.0761,

0.0769,

0.0770,

0.0771,
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0.0783,

0.0783,

0.0800,

0.0804,

0.0813,

0.0817,

0.0830,

0.0835,

0.0848,

0.0871,

0.0876,

0.0888,

0.0897,

0.0903,

0.0911,

0.0918,

0.0925,

0.0928,

0.0931,

0.0935,

0.0954,

0.0962,

0.0964,

0.0971,

0.0990,

0.0991,

0.0992,

0.0994,

0.0995,

0.0999,

0.1005,

0.1007,

0.1019,

0.1025,

0.1030,

0.1033,

0.1042,

0.1043,

0.1045,

0.1046,

0.1046,

0.1049,

0.1053,

0.1053,

0.1054,

0.1059,

0.1064,

0.1066,

0.1077,

0.1080,

0.1095,

0.1108,

0.1111,

0.1113,

0.1114,

0.1127,

0.1138,

0.1140,

0.1144,

0.1154,

0.1192,

0.1201,

0.1223,

0.1237,

0.1251,

0.1268,

0.1272,

0.1309,

0.1310,

0.1328,

0.1344,

0.1349,

0.1354,

0.1355,

0.1358,

0.1367,

0.1408,

0.1446,

0.1448,

0.1455,

0.1455,

0.1465,

0.1467,

0.1467,

0.1476,

0.1477,

0.1493,

0.1557,

0.1567,

0.1569,

0.1579,

0.1581,

0.1618,

0.1621,

0.1647,

0.1677,

0.1690,

0.1726,

0.1726,

0.1786,

0.1788,

0.1809,

0.1830,

0.1833,

0.1917,

0.1919,

0.1931,

0.2032,

0.2034,

0.2090,

0.2105,

0.2107,

0.2138,

0.2162,

0.2188,

0.2188,

0.2209,

0.2239,

0.2297,

0.2297,

0.2311,

0.2323,

0.2346,

0.2358,

0.2382,

0.2420,

0.2479,

0.2565,

0.2605,

0.2640,

0.2756,

0.2758,

0.2771,

0.2817,

0.2863,

0.2866,

0.2909,

0.2923,

0.3003,

0.3007,

0.3087,

0.3119,

0.3210,

0.3255,

0.3384,

0.3423,

0.3483,

0.3560,

0.3682,

0.3699,

0.3738,

0.3862,

0.3891,

0.3990,

0.3994,

0.4120,

0.4169,

0.4213,

0.4304,

0.4323,

0.4365,

0.4385,

0.4414,

0.4415,

0.4513,

0.4637,

0.4684,

0.4742,

0.4756,

0.4766,

0.4821,

0.4917,

0.4976,

0.4999,

0.5099,

0.5129,

0.5156,

0.5202,

0.5211,

0.5304,

0.5371,

0.5427,

0.5533,

0.5587,

0.5627,

0.5709,

0.5715,

0.5716,

0.5782,

0.5830,

0.5920,

0.6000,

0.6010,

0.6101,

0.6147,

0.6225,

0.6259,

0.6324,

0.6350,

0.6390,

0.6452,

0.6524,

0.6611,

0.6665,

0.6730,

0.6742,

0.6759,

0.6802,

0.6831,

0.6900,

0.6976,

0.6987,

0.7020,

0.7054,

0.7135,

0.7152,

0.7191,

0.7239,

0.7267,

0.7292,

0.7294,

0.7351,

0.7375,

0.7441,

0.7508,

0.7518,

0.7576,

0.7616,

0.7700,

0.7729,

0.7753,

0.7795,

0.7825,

0.7885,

0.7974,

0.8013,

0.8024,

0.8060,

0.8077,

0.8141,
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0.8195,

0.8224,

0.8250,

0.8316,

0.8349,

0.8385,

0.8439,

0.8464,

0.8501,

0.8536,

0.8578,

0.8637,

0.8653,

0.8676,

0.8729,

0.8756,

0.8813,

0.8838,

0.8863,

0.8923,

0.8985,

0.9006,

0.9047,

0.9100,

0.9117,

0.9179,

0.9193,

0.9256,

0.9289,

0.9301,

0.9309,

0.9388,

0.9415,

0.9442,

0.9454,

0.9498,

0.9533,

0.9586,

0.9596,

0.9637,

0.9644,

0.9675,

0.9742,

0.9768,

0.9802,

0.9838,

0.9860,

0.9869,

0.9898,

0.9917,

1.0002]

A.5 Quantitative Differences in Parametric Stud-

ies

Mesh Refinement

Table A.1: A table of relative differences, ∆, and correlation coefficients, r,
when compared to the finest mesh. All refinements of the mesh were compared
for a full case (UP), and by isolating the mechanisms (U and P).

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6 Mesh 7
(UP)

∆ 0.0000 0.1126 0.1934 0.2884 0.3752 0.4421 0.4966
r 1.0000 0.9935 0.9822 0.9653 0.9502 0.9456 0.9293

(U)
∆ 0.0000 0.1020 0.1688 0.2411 0.3101 0.3815 0.4479
r 1.0000 0.9897 0.9713 0.9413 0.9038 0.8591 0.8181

(P)
∆ 0.0000 0.1109 0.1957 0.2906 0.3845 0.4477 0.5329
r 1.0000 0.9950 0.9864 0.9731 0.9634 0.9689 0.9661
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Phase Shifts

Table A.2: A table of relative differences, ∆, and correlation coefficients, r,
when compared by toggling phase shifts on and off.

φy φz φy, φz φp all φ
(U) (UP) (U) (UP) (U) (UP) (P) (UP) (UP)

∆ 0.2959 0.0828 0.3102 0.1409 0.5201 0.1683 0.0000 0.1944 0.1938
r 0.9378 0.9960 0.9025 0.9868 0.8269 0.9800 1.0000 0.9796 0.9787

Amplification Factor

Table A.3: A table of relative differences, ∆, and correlation coefficients, r,
when compared by varying the amplification factor by 1/4, 1/2, 2, and 4.

1/4 1/2 2 4
(UP)

∆ 3.0000 0.7500 1.0000 0.5000
r 1.0000 1.0000 1.0000 1.0000

(U)
∆ 3.0000 0.7500 1.0000 0.5000
r 1.0000 1.0000 1.0000 1.0000

(P)
∆ 3.0000 0.7500 1.0000 0.5000
r 1.0000 1.0000 1.0000 1.0000
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Minimum Damping Ratio

Table A.4: A table of relative differences, ∆, and correlation coefficients, r,
when compared by varying the minimum damping ration, ζmin, by 1/4, 1/2,
2, and 4.

1/4 1/2 2 4
(UP)

∆ 0.6117 0.3254 0.3344 0.6477
r 0.9593 0.9877 0.9893 0.9558

(U)
∆ 0.7069 0.3286 0.2912 0.5361
r 0.9001 0.9742 0.9659 0.8492

(P)
∆ 0.5456 0.2991 0.3231 0.6375
r 0.9718 0.9910 0.9917 0.9728

Minimum Baseline Frequency

Table A.5: A table of relative differences, ∆, and correlation coefficients, r,
when compared by varying the baseline frequency, ωmin, by 1/4, 1/2, 2, and
4.

1/4 1/2 2 4
(UP)

∆ 3.0000 0.7500 1.0000 0.5000
r 0.9389 0.9885 0.9938 0.9829

(U)
∆ 0.5402 0.2451 0.1255 0.1605
r 0.9160 0.9756 0.9670 0.8763

(P)
∆ 0.5457 0.2438 0.1067 0.0942
r 0.9782 0.9947 0.9980 0.9944
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