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ABSTRACT OF THE DISSERTATION 

 

 

Filtering by Aliasing and its application to  
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by 
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Doctor of Philosophy in Electrical Engineering 
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Professor Babak Daneshrad, Chair 

 

 

 

The communication systems community has been working towards integrated 

Software-Defined Radios (SDRs) and Cognitive Radios (CRs) that can reduce cost and 

enhance connectivity. In light of the technology bottleneck at the analog-to-digital 

convertor (ADC) and the inapplicability of off-chip filters, the integrated analog front-

end is entrusted with the task of sharp, linear, and programmable signal selection required 

for SDRs and CRs. Traditional analog filtering techniques, however, incur a high penalty 

in power consumption, area, and linearity to provide the required sharpness and 

programmability. Similarly, recent efforts that use compressive sensing to acquire 

wideband spectra have also faced a bottleneck in the complexity and re-configurability of 

the analog measurement frontend.  
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Towards enabling SDRs and CRs, this dissertation proposes a new perspective on 

the design of anti-alias filters that defies the traditional tradeoff between cost, linearity, 

and programmability. The technique, termed Filtering by Aliasing (FA), anticipates the 

aliasing operation at the sampler instead of avoiding it. The pre-sampling circuitry is 

modulated, using the high-speed switching techniques popular in state-of-the-art 

receivers, to provide significantly enhanced filtering responses at the sampling instances. 

The dissertation describes how the FA technique, by varying the resistor of a single-pole 

passive RC filter for example, provides programmable anti-alias filtering comparable to a 

7
th

-order Butterworth filter. 

On the compressive sensing front, this dissertation proposes a new approach to 

the acquisition of sparse spectra using Random Filtering by Aliasing (RFA). RFA 

acknowledges the existence of noise in realistic spectra and accordingly simplifies the 

analog measurement stage, moving most of the complexity to the low-cost, highly 

reconfigurable digital domain. RFA achieves significantly better resolution, lower cost, 

and better programmability than existing schemes. 
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I. INTRODUCTION 

This dissertation proposes a novel technique, termed Filtering by Aliasing (FA), 

for the design and implementation of anti-alias filtering. The dissertation also proposes, 

based on FA, a novel technique to perform compressive signal acquisition termed 

Random Filtering by Aliasing (RFA). The Filtering by Aliasing technique evolved from a 

reconsideration of the traditional standalone design of the continuous-time front-end of a 

communications receiver. This chapter describes said evolution of the FA concept and 

introduces the material in this dissertation. The applications to which the proposed FA 

and RFA are well suited will be motivated in the following chapters as appropriate.  

In simple words, a modern communications receiver is intended to extract digital 

discrete-time (DT) data about the signal of interest (SOI) from some analog continuous-

time (CT) input waveform, as illustrated in Fig. I-1. The analog front-end is thus 

entrusted with suppressing unwanted signals (in addition to down-conversion and 

amplification) such that the sampling rate and resolution of the analog-to-digital 

converter (ADC) are minimized. We have been traditionally taught that unwanted signals 

need to be suppressed before sampling to avoid spectral aliasing. Aliasing, however, is a 

 

 

ADC
Analog 

Front-End

analog 

continuous-time (CT)

waveform 

digital 

discrete-time (DT)

signal-of-interest (SOI) data
 

Fig. I-1 An illustration of the role of a communications receiver. Traditionally, the analog 

front-end is designed to suppress unwanted interferers prior to sampling, the proposed 

Filtering by Aliasing reconsidered this approach. 
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known deterministic transformation. We need only be concerned with the suppression of 

unwanted signals at the output of the sampler. Can we then incorporate the aliasing 

operation into the anti-aliasing task itself?  

 

I.1 EXPLICIT FILTERING BY ALIASING 

The system in Fig. I-2 explicitly involves the aliasing operation in the anti-

aliasing task. The system, which will hereafter be referred to as the variable-gain FA 

system, performs spreading of the input x(t) with a TS-periodic d(t), filtering with some 

filter h(τ), and sampling at rate FS = 1/TS. The spreading with d(t) creates shifted and 

weighted images of the input spectrum X ( )f  as shown in Fig. I-3b for a hypothetical 

X ( )f  in Fig. I-3a. The spread spectrum is then filtered with the physical filter H ( )f and 

folded by aliasing as illustrated in Fig. I-3d,e. As shown in Fig. I-3e, we hope to design 

the FA system such that the unwanted signals appear successfully suppressed after 

aliasing.  

 y n

@ St nT

 y t
 x t  h 

   Sd t d t T 
 

Fig. I-2  The variable-gain FA system: the mixer and sampler operate at the same periodicity 

rate allowing for aliasing to be explicitly involved in the signal processing.  
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The Concept of the Apparent Filter 

Since the spreading and aliasing operations both cause frequency translations over 

intervals of size FS, the sampled output y[n] in Fig. I-2 cannot differentiate the operations. 

We can thus talk about an apparent filter g(τ) that the input x(t) appears to be subjected to 

0 f

X f

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

0

Y

 
(e) 

 

Fig. I-3  An illustration of the frequency-domain operations of the variable-gain FA system. 

(a) Input spectrum, (b) spread spectrum, (c) showing filter H( f ), (d) after filtering, (e) aliased. 
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before sampling. As illustrated in Fig. I-4, the apparent filter g(τ) is equivalent to the 

Filtering by Aliasing system from the perspective of the sampled output.   

As will be described in chapter II of this dissertation, the apparent filter g(τ) can 

be designed to be significantly sharper than the physical filter h(τ). For example, Fig. I-5 

0 f

X f
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Fig. I-4  (top) the variable-gain FA system transforms a CT input spectrum to a DT output 

spectrum using periodically-time varying operations. (bottom) As far the DT output is 

concerned, the CT input appears subjected to an apparent LTI filter g(τ) prior to sampling. 
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Fig. I-5  An example scenario where the variable-gain FA system employs a single-pole filter 

H( f ) and a spreader d(t) whose frequency content is Dm. The input appears filtered by the 

strong anti-aliasing response G( f ). 
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shows a single-pole H ( )f , optimally chosen spectral tones Dm of d(t), and the resulting 

apparent filter G ( )f  seen by the output of the sampler.  

As shown in Fig. I-6, the apparent filter G ( )f  is also reconfigurable in terms of 

type, bandwidth, and roll-off using the periodic spreading signal d(t). As will be 

discussed in chapter II, the ability to provide sharp digitally-programmable filtering from 

simple analog structures is highly desirable for future communication systems such as 

Software-defined Radios (SDRs) and Cognitive Radios (CRs). 
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Fig. I-6  Four examples of the different anti-aliasing responses g(τ) obtained using a variable-

gain FA system with a single-pole filter h(τ).  
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I.2 GENERAL FILTERING BY ALIASING  

Taking a closer look at the FA operation in the time domain, we realize that the 

FA system essentially focuses on the system’s behavior between the continuous-time 

(CT) x(t) and the discrete-time (DT) y[n]. In other words, involving the aliasing operation 

in the anti-aliasing task is equivalent, in the time-domain, to ignoring the system’s 

behavior at all instances but the sampling instance. This leads us to consider a more 

general Filtering by Aliasing system where, instead of explicitly performing spreading 

and filtering prior to sampling, we can perform arbitrary linear periodically time-varying 

(LPTV) operations of period TS. Similarly then, as illustrated in Fig. I-7, we can talk 

about an apparent linear time invariant (LTI) filter g(τ) that appears to operate on the 

input x(t) from the perspective of the sampled output y[n].  
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Fig. I-7  General Filtering by Aliasing. (top) A LPTV system hd(t,τ) of the same period as the 

sampler appears to behave like an apparent LTI system g(τ) followed by a sampler (bottom).   
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We can thus state the general Filtering by Aliasing (FA) concept as: 

To periodically vary one or more components of a physical filter h(τ) prior 

to a sampler, at the sampling rate, such that a desired LTI filter response 

is apparent at the sampling instances. 

As an example, chapter II will describe how the resistor in a simple single-pole 

passive RC filter, such as that in Fig. I-8 (top), can be periodically modulated to obtain 

very sharp apparent filters such as shown on the bottom of Fig. I-8. In such a Filtering by 

Aliasing system, the resistance value r(t) represents the digital control signal d(t) from 

Fig. I-7. Unlike the variable-gain FA system then, the generalized FA concept allows us 
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Fig. I-8  (top) An example of a general FA system where the pole of a single-pole passive 

filter is periodically varied by adjusting the resistance. (bottom) Two example resistance 

waveforms and the associated apparent filtering responses. 
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to obtain drastic improvement in filter sharpness and reconfigurability without the need 

for active stages in the signal path. This result is unintuitive and potentially game-

changing because of its potential use at the radio frequency (RF) front-end of a 

communications receiver, the details of which are left to chapter II.  

I.3 RANDOM FILTERING BY ALIASING 

Given that Filtering by Aliasing can provide reconfigurable anti-alias filtering 

profiles by manipulating some control sequence d(t), the FA technique can be readily 

applied towards random filtering by using, for example, a random ±1 sequence d(t). 

Random filtering is desirable in compressive sensing (CS) [1], [2] or compressive 

sampling applications where a signal that is sparse in some domain can be recorded at a 

lower rate than its Nyquist rate. To make a compressive measurement, multiple 

measurement paths record the input signal at a sub-sampling rate after applying different, 

preferably random, transformations on the high-rate signal.  

Chapter III will describe the existing techniques for the compressive sensing of 

spectrally-sparse continuous-time (SSCT) signals, a particularly tough CS problem, and 

how the use of a proposed Random Filtering by Aliasing (RFA) approach can address the 

drawbacks of existing schemes. RFA is a system-wide approach –built around FA analog 

measurements –that exhibits lower cost, higher spectral resolution, and better 

reconfigurability than existing schemes. 
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II. SELECTIVE FILTERING BY ALIASING  

II.1 INTRODUCTION 

It is well known that sampling a continuous-time signal at some rate FS causes the 

aliasing of the spectral content lying at frequencies equal to or higher than FS/2. 

Accordingly, to acquire a signal of interest with sufficient signal integrity, anti-alias 

filtering of unwanted spectral content should be performed. Traditionally, anti-alias 

filtering is performed using explicit filtering prior to sampling. In communications 

receivers in particular, anti-aliasing is traditionally jointly achieved using strong fixed 

off-chip filters as well as one or more filtering stages in the on-chip analog receive path, 

prior to the analog-to-digital converter (ADC). This solution becomes impractical as 

radio technology migrates towards wideband software-defined [3], [4], multi-standard 

[5], and cognitive [6] radios. 

A software-defined radio (SDR), as the name suggests, is one that can 

communicate multiple types of signals of interest on demand and at runtime. Such a radio 

can potentially reduce the cost of realizing multiple communication standards on mobile 

devices and provide forward compatibility with changing protocols and spectrum 

allocation. A cognitive radio (CR) is another hypothetical radio that can detect signals of 

interest in a wideband spectrum, such as that of Fig. II-1, for the purpose of decoding 

such signals or identifying unused spectrum and utilizing it for secondary-user 

communication. The feasibility of a wideband CR will depend on the realization of 

efficient SDRs, which in turn requires efficient reconfigurable radio receivers. 
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A. The Need for Reconfigurable Integrated Filtering 

Reconfigurable radio receivers for SDRs and CRs are expected to dynamically 

acquire or monitor one or more signals of interest whose frequency locations and 

bandwidths are not known apriori. Moreover, the interference and blocker profiles around 

these signals of interest are also dynamic and unknown at the time of manufacturing. The 

ideal reconfigurable radio places a wideband ADC at the antenna [3], [7], as shown in 

Fig. II-2a, and performs all the required reconfigurable operations in the digital domain. 

ADC technology, however, will not be able to simultaneously support the wide 

bandwidths and high dynamic range of interest in the near future [4], [7]-[9]. As such, the 

analog front-end is expected to stay as a signal conditioning stage prior to a practical 

ADC. Traditionally, as shown in Fig. II-2b, fixed off-chip filters are used to take care of 

strong out-of-band interference and simplify the task of the on-chip analog circuitry. Off-

chip filters, however, are costly and inflexible, making them unsuitable for an integrated 

reconfigurable radio [4], [7], [8], [10]. Accordingly, for SDRs and CRs to become a 

reality, (a) sharp, (b) programmable, and (c) high dynamic range analog filtering is 

required from the integrated analog front-end, as illustrated in Fig. II-2c. 

2

NYQF

f

( )V f

 

Fig. II-1 An illustration of a spectral scenario suitable for cognitive radio where multiple 

signals with different spectral location, bandwidth, power, and interference environment 

might exist. CR could be interested in decoding such signals or finding unoccupied spectrum. 
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B. Existing Baseband Filtering Solutions 

A traditional CT anti-alias filter, or a cascade of them, with a sharp-enough roll-

off is costly to integrate on chip. Such a filter also incurs further area and power 

consumption cost only to provide limited bandwidth reconfigurability [7]-[9], [11]-[13]. 

The work in [14] describes a list of recent analog filters in the literature showing strong 

trade-offs between filter order and reconfigurabilty. 

Digital 
FrontEndADC

 

(a) 

Digital 
BackEnd

Analog 
FrontEnd ADCOff-chip 

Filter

 

(b) 

Digital 
BackEnd

Sharp 
Programmable

& High-DR 
Analog FrontEnd

ADC

Digital control

f

 

(c) 

Fig. II-2  An illustration of why reconfigurable on-chip analog filtering is required for SDRs 

and CRs. (a) High speed high resolution ADCs are not practical. (b) off-chip channel selection 

filters are not suited for reconfigurable integrated radios. (c) the on-chip circuitry has to 

handle challenging filtering requirements.  
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Responding to the need for reconfigurable anti-alias filters, some works in the 

literature considered anti-aliasing techniques that rely on a particular type of sampling, 

termed integration (or charge) sampling (IS) [15]. IS realizes an implicit sinc-response 

filter by integrating the signal over a time window prior to the sampling operation. 

Systems based on IS were proposed in [4], [11]-[13], [16]-[18] as possible candidates for 

reconfigurable filtering owing to their programmable bandwidth. As they stand in the 

literature, however, IS-based anti-aliasing filters suffer from a prohibitively slow roll-off 

requiring a high oversampling rate and several additional stages for proper operation, e.g. 

[4], [18]. As a result, IS-based anti-aliasing similarly incurs high power consumption and 

non-linearity penalties. Fig. II-3 plots on the left the linearity, in terms of the input 

referred intercept point (IIP3), of several recent CT and IS-based baseband filters in the 

literature against their power consumption normalized to the number of poles or zeros. 
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Fig. II-3 (left) The linearity of recent baseband filtering examples in the literature plotted in 

black as the IIP3 vs. normalized power consumption. Assumed knee frequency of 10MHz. 

(right) The bandwidth tuning range of the same pool of baseband filters. The red stars signify 

where one would like to operate for a reconfigurable filtering solution to be of value. 
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Fig. II-3 also plots, on the right, the reported or expected bandwidth tuning range of the 

same filters against the normalized power consumption. As the figures show, there is an 

apparent trade-off between the power consumption and performance (linearity and/or 

bandwidth tuning range) of existing filtering techniques. Of course, there also exists 

similar trade-offs between power consumption and filter sharpness, as well as between 

chip area and performance. For reconfigurable radio receivers to have a significant 

advantage over dedicated receivers, a novel solution that breaks away from the traditional 

trade-offs is required.  

C. Existing Radio Frequency Solutions 

As was mentioned earlier, an off-chip RF band-selection filter is traditionally used 

to suppress out-of-band interference. In an integrated wideband receiver, however, the 

on-chip active circuitry is exposed to unwanted blockers that desensitize the front-end. 
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Fig. II-4  (right) An example from [20] of a 4-path differential N-path filter that translates the 

low-pass RC response to a bandpass filter at the switching frequency. (left) The ideal N-path 

filter with infinite N behaves like an RLC filter, suitable for faraway blockers only. 
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Recent RF techniques for integrated receivers combat such blockers using current-mode 

passive mixing followed by single-pole filtering, e.g. [10], [19]-[20], or single-pole 

impedance translation at the output of a low-noise amplifier (LNA), e.g. [20]. Impedance 

translation is the creation of an inductor-less “high-Q” bandpass filter at a tunable carrier 

frequency by employing an N-path [21] structure such as shown in Fig. II-4 on the right 

[20]. The achievable selectivity using such techniques is dictated by the impedance 

placed at the “baseband” end of the mixer and is thus limited to the single-pole behavior 

of an RC filter in typical implementations (e.g. Fig. II-4 on the left).  

D. Filtering by Aliasing – A Potential Solution 

This chapter will dive into the details of the proposed Filtering by Aliasing 

concept, particularly for the sharp reconfigurable filtering application.  

We will show that, using a simple single-pole physical filter h(τ), programmable 

low-pass or band-pass anti-alias filters with more than 65dB of stop-band suppression can 

be achieved by periodically modulating the gain or the pole of the filter. When 

considering transition-band size, such anti-alias filters are comparable to 4
th

 order and 7
th

 

order Elliptical and Butterworth filters respectively. We will also show that the FA 

approach can yield sharper anti-alias filtering by increasing the number of FA sampling 

channels or employing a higher-order (sharper) h(τ).  

To demonstrate the practical realization of the proposed solution, we will also 

address the relevant hardware sensitivities and show that the variable-gain FA system 

(Fig. I-2) can be realized using similar components as in IS-based filters [4], [11] and 

other proven techniques in the literature, e.g. [22] while breaking off from the power 
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consumption vs. performance trade-off. More importantly, we will also show how the 

variable-pole FA system (Fig. I-8) can be realized using similar passive components as 

state-of-the-art N-path filters employed at RF frequencies. Despite the structural 

similarities, when compared to N-path filters, the FA solution exhibits significantly better 

selectivity and programmability, potentially bringing the sampler and ADC ever so close 

to the antenna. 

Section II.2 will deal with the variable-gain FA system. The derivation of the 

apparent filter, its design, and its performance will be described and analyzed. Most of 

the qualitative analysis and the optimization technique details apply similarly to the 

variable-pole FA system and are thus omitted from section II.3 where the latter is 

discussed. Section II.4 examines the proposed FA technique within the context of prior 

art in terms of fundamentals and results. 
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II.2 VARIABLE-GAIN FILTERING BY ALIASING 

Consider the proposed analog acquisition hardware of Fig. II-5a. The input x(t) is 

mixed with a periodic signal d(t) of period TS and filtered by a filter having the impulse 

response h(τ). The output y(t) of the filter, as well as its frequency response Y ( )f ,  are 

given by (2.1) and (2.2) respectively. In (2.2), we made use of the periodicity of d(t) to 

reduce D ( )f  to tone values Dm at locations mFS = m/TS.  
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Fig. II-5  (a) The variable-gain FA analog acquisition system. (b) The apparent filter as seen 

by the sampled output. 
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After sampling at t = nTS, the output y[n] of the sampler, and its frequency 

response Y(ω) are given by (2.3) and (2.4) respectively. Note that FS = 1/TS. 
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Notice from (2.2) that the output Y ( )f  of the filter, prior to sampling, already 

contains aliases of the spectrum X ( )f . This is intentional because all spectral slices of 

Y ( )f , i.e. the spectral content of bandwidth FS centered at multiples of FS, are anticipated 

to alias at the sampler, as given by (2.4). The FA system thus attempts to take advantage 

of the anticipated aliasing to improve the apparent filter seen by the sampler output. 

 

A. On the Apparent Anti-Aliasing Filter 

As far as the output samples y[n] are concerned, the input x(t) appears to be 

filtered with a time-invariant impulse response g(τ) given by (2.5) and shown in Fig. 

II-5b. To arrive at g(τ), we replace d(t) in (2.3) by a circularly shifted version d(t-nTS), 

identical to d(t). The frequency response G ( )f  is the Fourier transform of g(τ) given by 

(2.6). The apparent filter G ( )f  is thus a linear combination of copies of the original filter 

response H ( )f  shifted by mFS and weighted by Dm. 
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It is informative to also derive G ( )f  from (2.4) in order to highlight the effect of 

the aliasing operation and intuitively understand the apparent filter. Performing a change 

of variables l = k – m in (2.4) yields (2.7).  
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It is clear from (2.7) that the apparent filter G ( )f  is correctly given by (2.6). 

Equation (2.7) also shows that the variable-gain FA system subjects each spectral slice 

X(f +lFS), f ϵ [-FS/2,+FS/2], of the input signal to a complex-weighted linear combination 

of the filter slices H(f +kFS), f ϵ [-FS/2,+FS/2], of the filter. As such, the FA system can 

modify, and enhance, the selectivity in H ( )f  to approach desired filtering profiles. 

The sum of filters H(f +mFS) in (2.6) suggests that, to create a filter G ( )f  that 

exhibits a low-pass or a low frequency band-pass response, all tones Dm that place copies 

of the pass-band(s) of H ( )f  in the stop-band of the desired filter G ( )f  should be 

suppressed. Accordingly, if the pass-band(s) of H ( )f  lie(s) at relatively low-frequencies, 

the significant tones Dm would be similarly limited to low-frequencies. We can then 
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describe a more compact formulation of G ( )f  where the frequency content of d(t) is 

limited to [–MFS, +MFS] as in (2.8).  
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G f D H f mF




 
 

 ,f   
     (2.8) 

 

As we will show in the examples of section II.2.D, for a simple low-pass H ( )f , 

the frequency content of d(t) can be limited to the bandwidth of G ( )f . A band-limited 

d(t) has very important implications: 

1- The FA solution does not impose additional bandwidth requirements on the analog 

circuitry such as the mixer and sampler beyond the anti-aliasing filter bandwidth.  

2- The value of G ( )f  at a given frequency f can be numerically evaluated (finite sum 

in (2.8)) allowing us to design the anti-aliasing filter in the frequency domain. 

3- The FA system can be approximated by a discrete-time counterpart during the filter 

design and/or hardware realization stages (see section II.2.B below). 

B. On the Discrete-Time (DT) Approximation 

Since we can describe the FA response for a band-limited d(t) in (2.8), we can 

also describe it for a discrete-time variant. Fig. II-6a shows the block-diagram for a 

discrete-time FA system. To generate the discrete-time analog signal x[η] at the input to 

the FA system in Fig. II-6a, pre-sampling at rate NFS should be performed. We use 

sample index η to correspond to signals at rate NFS as compared to index n corresponding 
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to the final sampling rate FS. Similar to the continuous-time case in (2.6), the apparent 

discrete-time filter G(ω) or g[η] seen by the output y[n] of the decimator in Fig. II-6b can 

be described by (2.9).  
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Because of the initial pre-sampling, the total apparent anti-aliasing filter Ĝ ( )f , 

illustrated in Fig. II-6c, would exhibit copies of the response G(ω) at multiples of NFS. 

When the discrete-time FA variant is used to approximate the continuous-time FA 

 h 

     g h d   

   d d N  

 x
 y n

(a)

(b)

 y

 y nN

N

@ ST
t

N


 x

 x t

 ˆTotal Apparent Filter  G f

(c)

 y n

@ St nT

@ ST
t

N


 x t

 x t

 

Fig. II-6  (a) The discrete-time variant of the FA system under pre-sampling with rate NFS. (b) 

and (c) show the effective anti-alias filtering as seen by y[n]. N will in practice be bounded by 

the desired location NFS of the first image pass-band of the effective filter. 
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system, such as for the filter design in section II.2.C, N is made very large and NFS would 

lie well above the frequency range of interest. For a discrete-time hardware 

implementation, however, a very large N is not desirable. The choice of N will be 

attended to along with other implementation concerns in section II.2.E. For the time-

being, when referring to a discrete-time FA implementation, we will assume that all 

frequency content beyond NFS/2 is sufficiently suppressed. 

C. Designing the FA apparent Filter 

We will describe in this section the design of the apparent filter G ( )f  to meet a general 

target filtering profile. We describe the design problem in the frequency domain and over 

the frequency range of interest, independent of the choice of a continuous or discrete-time 

implementation. 

The Filter Design Problem 

For brevity, we will only go through the design scenario where the signal of interest, 

and accordingly the filter pass-band is centered at baseband. In a direct-conversion 

receiver [23], the signal of interest would have probably gone through proper down-

conversion by the radio-frequency front-end. A band-pass version of the designed low-

pass filters, centered at cFS, can simply be created by multiplying d(t) by cos(j2πctFS) and 

sin(j2πctFS) for the in-phase and quadrature demodulation paths respectively. The mixer 

of the variable-gain FA system in such a configuration would also serve as a tuner for a 

multichannel system [24] or software-defined radio, or as the second down-conversion 

stage of a super-heterodyne receiver [23].  
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To describe a general desired filtering response with a low-frequency pass-band we can 

use the set of conditions given by (2.10). The top row describes the pass-band while other 

rows describe the stop-bands. 
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(2.10) 

 

The design problem can then be written as a minimization (2.11) of the stop-band 

magnitude under pass-band ripple constraints. G ( )f  is described in (2.11) in terms of 

H ( )f  and d(t). 
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Note that, as in typical filter design problems, we would solve the continuous-

frequency problem (2.11) on a discretized frequency axis with sufficient resolution. Also, 

using the same reasoning as in (2.8), if H ( )f  is not high-pass and d(t) is band-limited, 
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the response of G ( )f  will decrease at higher frequencies and (2.11) need only be solved 

on a finite set of frequencies. The filter design problem in this general form is non-

convex due to the lower-bound on the pass-band. A non-linear programming solver, e.g. 

the Newton Method [25], is required to solve it. As we show next, however, when H ( )f  

is a simple filter the optimization (2.11) can be re-written as a convex problem and solved 

optimally. 

Simple H ( )f  and the Convex Problem Formulation  

We recall from section II.1 that strong on-chip filters incur high power and area costs 

and exhibit limited reconfigurability. It thus behooves us to use a simple physical filter 

H ( )f  and embed the FA programmability into the spreading signal d(t). The simplest 

choice for H ( )f  is a low-pass single-pole filter, well known to be the simplest 

continuous-time analog filter. Single-pole filtering requires a single memory element and 

is usually embedded in the frequency response of general analog circuit components. 

Discrete-time analog single-pole filters, as described in [12], are also very simple to 

implement.  

This section will take a closer look at the design problem (2.11) tailored to simple 

filters H ( )f  such as the single-pole filter. To describe the design problem in convex form 

we will use some sufficiently oversampled H(ω) and G(ω), as discussed in section II.2.B, 

to represent the low frequency behavior of H ( )f  and G ( )f  respectively.  

Let H(ω) be the single-pole filter 1/(1-α exp(-jω)). Equation (2.12) shows the resultant 

G(ω) from (2.9).   
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(2.12) 

 

As can be seen from (2.12), the denominator of G(ω) is completely determined by the 

variable α of H(ω). Also, the number of coefficients bk in the numerator of G(ω) is equal 

to the number of spreader variables Dm. The apparent filter G(ω), for a single-pole H(ω), 

can thus be mapped using a one-to-one function to the variables Dm and α. In fact, Table 

II-1 shows the explicit formulation of G(ω), for several simple filters H(ω), in terms of 

the 2M+1 time domain samples d[k] of the spreader.  

The design of G(ω) can now be solved as a convex programming [26]-[27] problem 

Table II-1 

Examples of simple H(ω) resulting in a simple closed form G(ω). 
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*This particular double-pole filter applies only to discrete-time FA because H(ω) is not 

strictly low-pass or band-pass. 
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(2.13) in terms of R(ω), the squared magnitude of G(ω), R(ω) = |G(ω)|
2
. After solving 

(2.13), spectral factorization [28] can be used to find the minimum phase G(ω) that 

satisfies the optimal R(ω). The optimal d[k] and α, if set as a variable, would be derived 

from the closed form of G(ω). Dm is then the Discrete Fourier Transform (DFT) of d[k] 

and d(t) the continuous-time interpolation of d[k]. 
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 (2.13) 

 

In the following section we will present several examples of achievable anti-

aliasing filters that underscore the versatility of the FA technique.  

D. Variable-gain Filtering by Aliasing Responses 

For brevity, and in line with using a simple filter H ( )f , we limit our discussion to FA 

responses based on a single-pole H ( )f . We will also discuss an enhanced interleaved 

variant of the FA system. The results for this scenario apply similarly to an FA system 

implemented in the discrete-time or continuous-time domains –provided that pre-

sampling is performed at a sufficiently high rate for the discrete-time case. For 

uniformity, all frequency axes are normalized to FS/2. 
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Standard Achievable Anti-Aliasing Responses 

Fig. II-7 shows possible achievable G ( )f  for a filter having a -3dB frequency of FS/2. 

The responses show that the FA system can be programmed to suppress adjacent 
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Fig. II-7  Sample effective filtering responses G(f) achievable using a single-pole h(t) or h[η]. 
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Fig. II-8  Combined plot of the original filter H(f), the spreading tone values Dm and the 

resulting variable-gain FA response G(f). 
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narrowband interference as well as very wideband interference at varying offsets from the 

desired signal. 

On one hand, the low-pass filters with 40dB and 65dB suppression illustrate how the 

stop frequency and stop-band suppression can be traded-off. On the other hand, the notch 

filter trades-off stop-band size and location exhibiting -30dB suppression between FS and 

2FS. It is important to note that the notch filter takes advantage of the higher frequency 

poles of G ( )f .  

Following our discussion on the bandwidth of d(t) in section II.2.A, we show in Fig. 

II-8 an apparent low-pass filter G ( )f , the original single-pole filter H ( )f , and the 

associated spreading tone values Dm. As can be seen from the figure, the bandwidth of the 

spreading signal is comparable to the desired filter bandwidth.  

Beyond the examples in Fig. II-7, a wide range of responses can be achieved by 

tailoring the stop-band requirements according to the optimization problem (2.13). In 

addition to designing multiple stop-bands with different suppression requirements, the 

problem (2.13) could be modified to allow a rolling-off stop-band such that suppression 

increases with frequency. Furthermore, as one would expect, improved roll-off can be 

achieved by using a higher order H ( )f  filter. Appendix A, for example, describes the 

achievable apparent anti-aliasing filter responses using a double-pole discrete-time filter 

realization. Appendix B on the other hand shows apparent variable-gain FA responses for 

arbitrary interference profiles. For the bulk of this dissertation, however, we will continue 

to focus on a single-pole H ( )f  and explore sharper filtering by the interleaved FA 

structure presented in subsection below. 
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Interleaved Filtering by Aliasing 

Consider the FA structure in Fig. II-10a where q parallel FA channels operate 

simultaneously on the input x(t). The k
th

 channel employs a Tp-periodic sequence d(t-

kTp/q), a cyclical shift of d(t) by kTp/q, and samples at time instances t = nTp+kTp/q with 

rate Fp =1/Tp. The de-interleaved output y[n], at rate FS = qFp, appears filtered by the 

same time-invariant filter g(t) at all instances, as shown in Fig. II-10b.  

Such an interleaved FA structure allows us to increase the period Tp of d(t) (decrease 

the tone separation Fp) by q times while maintaining a constant total sampling rate FS. A 

 1y qn 
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Fig. II-9  (a) An illustration of sampling with multiple phases of the FA system. Increasing the 

number of channels, q, is equivalent to increasing the period of d(t) (referred to here as Tp) 

with respect to the total sampling period TS and thus creating sharper FA responses. (b) The 

time-invariant effective filter. 
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larger q = FS/Fp increases the number of degrees of freedom available to the filter design 

described in (2.13). The result is sharper filter transitions for the same desired pass-band.  

Fig. II-10 shows sample FA low-pass responses with interleaved channels using the 

single-pole H ( )f . As the figure shows, increasing q allows for sharper filtering. We 

recall here that the frequency axes are normalized to FS/2 for better illustration. In 

practice, we would increase q such that, for a constant pass-band size, the required 

sampling rate FS is reduced. The legend on Fig. II-10 displays the ratio of the stop-

frequency fstop to the pass-frequency fpass for each filter as well as the required sampling 
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Fig. II-10  Sample apparent responses achievable using a single-pole h(t) and a transition band 

of size 2Fp. The figure shows how increasing the number of channels q allows for a sharper 

filter or equivalently a larger pass-band for the same sampling rate. The labeled q values alias 

the transition-band over itself. 
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rate FS with respect to the minimum Nyquist rate FNYQ of the signal of interest. FNYQ is 

calculated as 2fpass while FS is chosen as (fstop+fpass)/2 allowing the transition band to alias 

over itself in the sampled output. 

Equation (2.14) describes the trend in the required sampling rate FS versus the desired 

signal Nyquist rate FNYQ as q changes. The relationship (2.14) applies only to FA low-

pass responses whose transition band is of size 2Fp. Such filters, as shown in Fig. II-10, 

exhibit 65dB of stop-band suppression or more. If only 40dB of stop-band suppression is 

desired, the transition band can be of size Fp (refer back to Fig. II-7) and (2.14) would 

change accordingly.   
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Fig. II-11  The sampling efficiency (FS/FNYQ) for different values of q plotted against the left 

vertical axis. Also shown, on the right vertical axis, are the Butterworth and Elliptical filter 

orders required for comparable performance. The results apply to filters such as in Fig. II-10 

with >65dB suppression and a transition-band of size 2Fp. 
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Fig. II-11 plots the sampling efficiency FS/FNYQ given by (2.14) on the left vertical axis 

versus q. It can be seen that increasing the number of channels q achieves diminishing 

returns in the sampling efficiency. In particular, the diminishing reduction in the 

sampling rate FS with respect to FNYQ might not justify the cost of extra FA channels in 

the analog domain. The optimal choice of q will depend on the existence of strong 

interferers very close to the signal of interest and the relative cost of ADC resolution and 

FA channel hardware. 

Note that Fig. II-11 also plots, on the right vertical axis, the equivalent order of a 

Butterworth or Elliptical filter exhibiting the same sampling efficiency and stop-band 

suppression as the FA response for a given q. For example, for q = 5, the FA filter is 

comparable to a 6
th

-order Elliptical filter or a 12
th

-order Butterworth filter. We will return 

to the performance evaluation of the FA approach and comparison with other analog 

filtering techniques in section II.4. 

E. Practical Considerations 

Before presenting simulation results of a possible implementation of the variable-gain 

FA system, we will attend to possible high-level concerns regarding the practical 

realization. In particular, we will discuss the effects the amplitude resolution and 

switching rate of the spreading signal d(t) on the apparent filter G ( )f . In-depth concerns 

such as timing jitter and noise are beyond the scope of this work and will be attended to 

in future research. It is important to note that the discussions on resolution and switching 

rate apply similarly to the variable-pole FA system described in section II.3. 
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Effect of Spreader Resolution 

Independent of the details of the circuit implementation, we look to analyze the effect 

of a non-ideal mixing signal d(t) on the apparent filter G ( )f . In line with digital 

programmability of the mixing signals we assume an Nb-bit uniform quantization dQ(t) of 

d(t). 

Because d(t) is Tp-periodic, its quantization creates a periodic quantization error e(t) = 

e(t+Tp). The associated non-ideal apparent filter GQ ( )f  is given by (2.15) where Em are 

the frequency tones associated with e(t). The quantization error tones Em disrupt the 

frequency response by placing unwanted copies of H ( )f  in the stop-band of GQ ( )f . 
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Fig. II-12  The effect of quantizing as well as dithering d(t) on the stop-band of the apparent 

filter GQ(f).   
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Fig. II-12 shows, for example, the apparent filter for a 5-bit quantized dQ(t) showing 

about 30dB stop-band suppression, as compared to an original 70dB suppression. The 

figure also shows the improved apparent filter for a 5-bit quantized dQ(t) after dithering, 

showing 40dB of suppression. Dithering [29] is the process of intentionally adding noise 

prior to quantization to randomize the quantization error. In our FA application, dithering 

helps remove the periodicity of e(t) thus flattening the stop-band gain variations caused 

by quantization. Fig. II-12 shows that, with dithering, a 9-bit quantized dQ(t) is sufficient 

to achieve more than 65dB of stop-band suppression. The achievable stop-band 

suppression shown in Fig. II-12, for a given quantization depth, can be directly extended 

to any filter G ( )f  if the quantization error is randomized by dithering.  

We remind the reader that if, in certain applications, weak stop-band suppression (low 

resolution) can be tolerated then the FA response can be redesigned, as shown in Fig. 

II-7, to exhibit sharper roll-offs.  

Effect of Spreading Rate (NFS) 

In addition to finite resolution in the amplitude of d(t), a practical spreading operation 

is typically realized as a digitally-switched gain stage, as in digital-to-analog converters 

[30], [31], that exhibits finite bandwidth or switching rate.  

Fig. II-13 illustrates the digitally controlled gain stage within the continuous-time 
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variable-gain FA system (a) or the discrete-time variable-gain FA system (b). Notice the 

spreading sequence d[η], a rate-NFS discretization of d(t). 

As demonstrated throughout this manuscript, the spreading signal d(t) is actually band-

limited and does not impose high switching rate requirements on the variant d[η]. In 

particular, if the spreader switching rate NFS is higher than the Nyquist rate of d(t), it will 

not interfere with the low-frequency filtering response. Fig. II-14a shows two examples 

of a step-wise switched d(t). It can be seen that the low-frequency content of d(t) is 

maintained and accordingly the low-frequency spreading tones Dm and frequency 

response G( f ) would not be modified.  

In a similar fashion to the discrete-time pre-sampling rate in section II.2.B, the 

switching rate of d(t) determines only the locations of image pass-bands in the apparent 
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Fig. II-13  (a) The continuous-time FA system with rate-NFS spreading sequence. (b) The 

discrete-time FA system with rate-NFS input and spreading sequence. Note that in (a) the 

sequence d[η] controls a continuous-time gain stage, the actual continuous-time gain value 

would practically be some shaping of the discrete-time d[n]. 
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filter. In practice, for a reasonably high N, the image pass-bands at multiples of NFS lie 

far from the band of interest and are significantly suppressed by the inherent low-pass 

nature of preceding analog circuitry as well as the low-pass shaping of the pre-sampler or 

DAC itself, such as when using integration sampling [15] in [4], [11], [22]. Fig. II-14b 

shows an example G( f ) with a step-wise d(t) running at 8FS. For completing we note that 
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Fig. II-14  (a) Examples of a step-wise realization of the spreading signal d(t). (b) A sample 

low-pass apparent filter G( f ) obtained using an N = 8 times switched d(t) and a variable gain 

FA system with q = 5. Notice how the step-wise realization of d(t) does not affect the low 

frequency response of G( f ) and creates suppressed pass-band images at multiples of NFS. 
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the filter response corresponds to an interleaved FA realization with q = 5. 

To put the FA spreader requirements in context, we note that digital-to-analog 

resolution and switching rates well beyond the described requirements are widely 

demonstrated in the literature, e.g. [22], [30]-[31], allowing for -40dB to -70dB FA 

suppression at NFS of 3.2GS/s to 600MS/s.  

F. Active-RC Example Implementation 

As a straightforward realization of the variable-gain FA system, the circuit in Fig. 

II-15a was built and simulated in Cadence using true CMOS circuit models. The circuit is 

essentially a single-pole active-RC filter whose input resistance is controlled by binary 

control signals {b0, bN-1}. 

High speed switching of the resistors of an active-RC filter is used in the 

literature, e.g. [32], according to the technique in [33], to control the average value of such 

resistors for gain and bandwidth control. In the circuit of Fig. II-15a then, we employ 

similar switching circuitry as already investiaged in the literature but we control the low-

frequency variation of the resistor instead of its average value, thus achieving 

significantly sharper filtering responses than the single-pole performance obtained by a 

switched-resistor or a traditional active-RC filter. 

In particular, using 7 binary-weighted resistors at the input, and switching them at 

20FS for a sampling rate FS = 20MHz, we obtain the filtering responses shown in Fig. 

II-15b. The latter figure, showing both the expected Matlab results and the non-ideal 

Cadence simulation results, demonstrates around 50dB of stop-band suppression and a 

slightly suppressed image pass-band at 400MHz. 
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We note here that, using a standard 1GHz GBW Op-amp, the simulated IIP3 was 

around 30dBm for 3mW of power consumption.  

Even though such active-RC FA results are very appealing, the variable-pole FA 

system described next in section II.3 can be applied to a fully-passive RC filter, thus 

exhibiting even lower power consumption and higher linearity. 
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Fig. II-15  (a) An active-RC realization of the variable-gain FA system with a single-pole h(t). 

the spreading sequence d(t) is given by the inverse of R(t), the input resistance. (b) Matlab 

design results and cadence simulation results using true CMOS Op-amp and switches. 
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II.3 VARIABLE-POLE FILTERING BY ALIASING 

As introduced in chapter I, the Filtering by Aliasing concept can be extended to 

general systems where the physical filter prior to a sampler can be periodically modified, 

not necessarily in terms of its gain, to obtain enhanced programmable responses at the 

sampling  instances. This section discusses the application of the FA techniqe to the 

simplest filtering element, the passive RC filter, by periodically varying the pole. We 

omit the Filtering by Aliasing introduction and the details of the DT approximation and 

optimization problem. We  instead focus on the strengths of the variable-pole FA system 

as a powerful filtering solution for SDR. 

We propose that sharp, passive, and programmable anti-alias filters, highly 

suitable for SDR, can be created by periodically varying the resistor of a simple RC filter. 

The modulated resistor shapes the impulse response of the single-pole filter, otherwise 

monotonically decreasing, creating enhanced frequency selectivity at periodic instances. 

The concept can be similarly applied to RL, RLC or other filters.  

Because of its passive nature, the proposed RC filter can be used to capture 
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Fig. II-16  The enhanced RC anti-aliasing filter. The resistor is periodically modulated with 

the same period as the sampler. We refer to this system as variable-pole Filtering by Aliasing. 
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desired signals among large blockers. To that end, we will demonstrate how the variable 

resistor can also emulate harmonic-rejection mixing at band-pass frequencies without 

active gain stages. To our knowledge, no similar technique exists in the literature. 

A. The Enhanced RC Filter 

  Consider the linear time-varying RC filter shown in Fig. II-16. If the resistance 

is varied periodically at the same rate FS = 1/TS as the sampler, the CT filter exhibits a 

linear periodically time varying response. At the sampling instances, however, the 

complete system appears to exhibit a linear and time invariant (LTI) response which we 

refer to as the apparent filter. We are interested in analyzing and designing such apparent 

LTI response at the sampling instances such that it is sharp and programmable. 

From the perspective of the sampled output, the voltage y(t) across the capacitor 

at any time t = nTS + τ is then given by (2.16).  

 

     
 

-


  
S

S S

dy nT t
y nT t x nT t r t C

dt
 (2.16) 

 

As we did for the variable-gain FA scenario, we resort to a DT approximation to 

design the apparent filter. In this non-intuitive variable-pole scenario however, it behoves 

us to use DT approximation to also formulate the apparent filter. Assuming that r(t) is 

band-limited, the CT filter and sampler in Fig. II-16 can be approximated by the highly 

oversampled DT filter and decimator in Fig. II-17. The sample index η corresponds to the 
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approximation rate KFS >> FS while sample index n corresponds to the final sampling 

rate FS. Equation (2.16) can thus be approximated by (2.17), where α is given by (2.18).  
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By expanding (2.17), we derive the LTI impulse response g[η] seen at the 

decimation instances, its frequency domain G(ω) is given by (2.19). 
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From (2.19) we can see that the apparent filter exhibits replicated poles at 

multiples of the sampling rate FS, creating a uniform pass-band, and a multitude of zeros 
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Fig. II-17  The DT approximation of the RC filter and sampler from Fig. II-16. 
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that will shape the filter stop-band. It is apparent that G(ω) is significantly more selective 

than the original single-pole filter response.  

By designing the DT filter (2.19) for a desired frequency response we can 

compute the corresponding r(η∆t) using (2.18). Similar to the variable gain case 

described in section II.2.C, we use convex optimization [27] and spectral factorization 

[28] to find the optimal squared magnitude |G(ω)|
2
 and the corresponding minimum 

phase G(ω) respectively. The numerator of G(ω)  is scaled such that all α[η] belong to 

[0,1). r(η∆t) is then computed and interpolated.   

Fig. II-18 shows two examples of optimal r(t) (over one period) on the left and the 

corresponding anti-aliasing frequency responses of the enhanced RC filter on the right. 

The plotted values of r(t) are scaled by the sampling rate FS and the capacitance C such 

that they can be extended to any desired application. Notice the very sharp achievable 
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Fig. II-18  (left) Optimally chosen r(t). (right) The corresponding frequency responses. 
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filtering compared to the reference unmodified RC response as well as the trade-off 

between stop-band suppression and filter roll-off. Note that frequency response 1, 

showing > 60dB of suppression very close to the sampling rate FS, exhibits < 1.5dB of 

loss at FS/2.   

B. Practical Realization: Switched Binary-Weighted Resistors 

Within the clock-programmable environment of SDRs, the variable r(t) can be 

practically realized as a parallel network of binary-weighted resistors as shown in Fig. 

II-19. It is important to differentiate this setup from switched-resistor active-RC filters 

[32] that try to emulate a constant low-frequency resistance for tuning/variability rather 

than a variable r(t) for filter shaping.  

Also as discussed for the variable-gain scenario in sections II.2.E and II.2.F, if the 

binary control voltages bi are switched at some rate LFS, the resistance r(t) appears 

sampled and held during intervals t ϵ [lTS/L, (l+1)TS/L]. The filter impulse response, 
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Fig. II-19  Binary-weighted switched realization of the system from Fig. II-16. 
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however, exhibits single-pole decay for constant r(t) and as such appears sampled and 

shaped by a low-pass filter. Accordingly, even though rate-LFS switching creates images 

of the filter pass-band at multiples of LFS, such images are suppressed at a 20dB/decade 

roll-off.  

For example, Fig. II-20 shows, on the left, an ideal r(t) as well as a non-ideal 

version sampled at 20FS and quantized to 8-bits. The corresponding frequency responses 

are shown on the right. Notice that an 8-bit resolution in r(t) is sufficient to provide 

>50dB of stop-band suppression. Stop-band suppression can be further improved by 

dithering prior to quantization as shown for the variable-gain scenario in section II.2.E. 
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Fig. II-20  (left) Non-ideal r(t): 20FS switching rate and 8-bit quantization (255 levels), (right) 

the corresponding frequency responses. 
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C. Band-pass Filtering  

   If G(ω) in (2.19) is designed as a band-pass filter, one would expect the filter 

impulse response to essentially comprise a low-pass filter impulse response that is 

modulated by the carrier frequency. A passive ±1 mixer can then be used, as shown in 

Fig. II-21, to provide the sign alternation of the band-pass impulse response while r(η∆t), 

computed from |α[η]|, can be designed to provide both the filter low-pass impulse 

response as well as the envelope of the carrier sinusoid. Accordingly, if r(t) is switched at 

M times faster than the carrier frequency, M-phase harmonic rejection would be 

inherently provided by the RC bandpass filter without any active gain components. 

Harmonic rejection is the ability to suppress the harmonics of a carrier frequency by 

emulating the true sinusoidal time-domain waveform.  

As a numerical example, Fig. II-22 shows an 8-bit quantized and 8-phase 

switched r(t) designed for a 20MHz-bandwidth filter at a center frequency of 500MHz. 
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Fig. II-21  Band-pass enhanced RC filter. ΦLO is a square-wave mixer clock. 
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Given a 10pF capacitor, r(t) ϵ [500Ω, 100kΩ]. On the right, Fig. II-22 plots the 

corresponding frequency response showing sharp band-pass filtering with 60dB 

suppression up to ~3.5GHz, the 7
th

 harmonic of the carrier signal. 

Of course, we have limited our discussion here to the use of the enhanced RC 

filter prior to a rate-FS sampler. It is important to note, however, that multiple enhanced 

RC filters can be used in an interleaved fashion to provide multi-phase outputs, similar to 

the manner explained in section II.2.D for variable-gain FA. The filter sharpness can be 

further enhanced in such an interleaved setup.  
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Fig. II-22  (left) r(t) modulated for bandpass filtering, quantized and switched (right) the 

frequency response with and without quantization. 
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II.4 IN THE CONTEXT OF PROIR ART 

A. FA in the context of Reconfigurable Base-band Anti-alias Filtering 

Referring back to Fig. II-11, the right vertical axis shows the equivalent order of a 

Butterworth or Elliptical filter that achieves similar performance to some FA responses of 

choice. We note here that similar results can be achieved using the variable-pole FA 

system as with the variable-gain FA system. We can see from the Fig. II-11 that the FA 

technique can easily match or exceed the filtering capabilities of traditional on-chip 

continuous-time (CT) analog filters, such as those listed in [13], using q = 5 for example. 

It is interesting to note here that, unlike traditional CT filters, the FA response can be 

enhanced by replicating the number of FA channels incurring only linear implementation 

cost in terms of q.  

Beyond traditional continuous-time filters, we address in this section the relative 

performance of the proposed Filtering by Aliasing technique as compared to other anti-

aliasing methods in the context of re-configurable anti-alias filtering for future 

communication systems. When compared against analog finite-impulse-response (AFIR) 

filters, e.g. [34], [35], or other DT analog filtering techniques [7], [8], [36] the FA might 

appear similar in the sense that the impulse response of the filter is clock-programmable 

and shaped by the switching circuitry. Existing DT analog filtering techniques attempt to 

mimic digital filters in the analog domain by using complex switched circuits that 

sample, share, accumulate, and amplify charges, resulting in insufficient dynamic range, 

high power consumption, high area, and limited band-pass capabilities. The FA technique 
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however, does not try to build “digital-style” filters in the analog domain but instead can 

be applied to simple passive analog components as demonstrated by the variable-poleFA 

in section II.3. 

Table II-2 

A comparison of anti-aliasing approaches under 65dB stop-band suppression low-pass filtering. 

 Order q  
Resol. 

(bits) 
FS/FNYQ 

min 

qFS/FNYQ 
Further Notes 

Butterworth 

(for 

reference) 

7, 9   3, 2  

Continuous-time IIR filters, e.g. 

[13], exhibit only limited 

bandwidth programmability. 

Successive 

Analog 

Decimation 

[4],[11] 

- 

3 

serial 

stages 

- 

2 

(30dB)* 

90 

(90dB) 

 

 

 Programmable bandwidth.   

 Strong adjacent interference a 

bottleneck [11].  

 Slow filter roll-off or high in-

band droop. 

 High power/linearity cost. 

 

MSHAWI 

† 

[13], 

[17],[18] 

- 
7, 9, 

11 

12 (9) 

‡ 
15, 8, 6 66 

 

 Prog. bandwidth and 

suppression FIR filter. 

 Provides similar band-pass 

performance 

 Strong adjacent interference is 

a bottleneck.  

 High power/linearity cost. 

 

FA  

single-pole 
- 

3, 4, 

5 
9 3, 2, 1.7 8.5 

 Prog. bandwidth and 

suppression IIR filter. 

 Provides similar band-pass 

performance. 

 Passive implementation => low 

power, better linearity 

FA  

double-pole  
- 

2, 3, 

4 
9 

2, 1.3, 

1.2 
4.8  

*[4] and [11]targeted specific standards. Different results might apply for 65dB suppression.  

†Multi-channel Sample-and-Hold Amplifier with Weighted Integration.   

‡ Resolution reported in [13] in steps of 4-bits, should be reducible to 9 bits with dithering. 
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Table II-2 provides some insight into the relative complexities of various approaches 

for a candidate low-pass anti-alias filter with 65dB stop-band suppression or more. The 

order of a Butterworth filter with comparable stop-band suppression and transition-band 

size is maintained for reference. In the table, the minimum number of paths q multiplied 

by the corresponding sampling efficiency FS/FNYQ is calculated as a comparison metric. 

As listed in the table, we are interested in the performance of two existing and recent 

techniques, both of which rely on integration sampling (IS) [15]: 

1- As part of a software-defined radio solution, the works in [4], [11] proposed and 

built an anti-alias filter based on successive windowed-integration and decimation 

with intermediate discrete-time filtering. The filter is clock programmable for 

bandwidth and includes some control knobs for integration orders. Because of its 

reliance on successive sinc-type filtering, the filter suffers from slow roll-off or 

high in-band droop to provide strong suppression, unless more stages are added.  

2- To take advantage of the FIR filtering provided by an integration sampler [15], 

the works in [13], [17]-[18] proposed preceding it with a mixer that shapes the 

original rectangular window impulse response. The result is a programmable FIR 

filter. To increase the order of the FIR, the authors proposed the multi-channel 

sample-and-hold amplifier with weighted integration (MSHAWI). As Table II-2  

shows, the MSHAWI requires more paths while sampling at a higher rate than the 

proposed FA technique with a minimum qFS/FNYQ 7.7x higher than the single-

pole FA system. As the order of the FA filter h(t) increases, the gap also 

increases. It is important to note that the hardware cost associated with a higher 



 

49 

interleaved sampling rate, as well as the ADC resolution cost associated with 

large transition bands, do not scale linearly. It is also important to note that, when 

implemented in the variable-pole fashion from section II.3, the FA system 

exhibits significantly less hardware cost per path then the MISHAWI solution 

which requires high-cost integration stages. 

Interestingly, the MSHAWI system based on preceding an integration sampler 

with a mixer is a special case of the variable-gain FA technique where the impulse 

response of the filter h(t) is a rectangular time window. The derivation, design, and 

results of the two systems are however different.  

In addition to the performance advantages, we should recall here that, unlike IS-based 

solutions, the FA technique does not depend on an accurate realization of h(t). The 

resolution of the mixing sequence, discussed in section II.2.E and II.3.B, is the primary 

hardware requirement for FA. Given sufficient resolution, the sequence d(t) or d[η] can 

potentially be re-designed for variations in h(t). 

B. FA in the Context of Filtering at RF Frequencies 

Section II.3.C proposed the use of the variable-pole FA solution as a band-pass 

anti-aliasing filter at RF frequencies. One might also find similarities between the 

variable-pole FA circuitry and commutation based filtering techniques, such as N-path 

filters [20]-[21], due to their use of periodic switching and their applicability to passive 

components. The similarities, however, are only superficial. The passive N-path filter, 

such as in Fig. II-4, relies on periodic switching between identical RC filters to tune the 

center frequency of the band-pass RLC-type filter. The proposed FA technique on the 
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other hand, while also providing such center frequency tuning, enhances the filter 

sharpness and provides filter response reconfigurability. The FA system from Fig. II-21 

achieves this by essentially modifying the pole (feedback gain) of the filter while sharing 

the accumulated charge on the same capacitor.  

To compare the achievable filtering responses of the FA and N-path approaches, 

the passive RC FA circuit in Fig. II-21 is simulated for an 8-bit resolution resistor and a 

4-phase LO clock (8-phase plotted in Fig. II-22). The periodically varying resistance is 

optimized for a low-pass filter mixed with the envelope of the carrier, thus inherently 

providing 4-phase harmonic cancellation without gain stages as previously explained. 
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Fig. II-23  Comparison of the performance of the variable-pole FA response (red) against the 

popular N-path approach (blue) for band-pass filtering at RF frequencies. Both techniques 

rely on similary passive components and high speed switches. The 4-phase FA response (thus 

image pass-bands at harmonic frequencies) is plotted against the ideal infinite-phase N-path 

response (equivalent to an RLC filter) to show the drastic improvement in filtering 

performance.  
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Fig. II-23 plots the achievable FA band-pass filter response, for a center frequency at 

50FS, against the ideal RLC response for the same signal bandwidth. An ideal differential 

N-path filter with identical capacitance to the FA response can theoretically achieve such 

an RLC response using an infinite number of clock phases. We choose to plot the best 

achievable N-path filter to avoid the lengthy discussion of the trade-off between 

harmonic suppression and folding in N-path filters for finite N [20]. It is apparent from 

the figure that the selectivity of the FA solution far exceeds that of the best possible N-

path solution, especially when considering near-band blockers.  
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III. RANDOM FILTERING BY ALIASING 

III.1 INTRODUCTION 

Recent works on Compressive Sensing (CS) [1]-[2], [37] theory described 

methods and conditions for the successful reconstruction of a sparse signal from 

compressive measurements. The compressive measurements can be described in matrix-

vector format, where the sparse signal is a vector s with mostly zeros and the 

measurement operator is a matrix Θ with more columns than rows. The measurement 

result is a short vector y = Θs that can potentially hold sufficient information about the 

sparse s.  

If the sensing matrix Θ satisfies the “restricted isometry property” (RIP) [37] with 

respect to the sparsity of s, several reconstruction algorithms [38]-[39] can be used to 

obtain the sparse s, or any non-sparse projection v of s, from y. The key aspect of CS 

theory is that a sensing matrix Θ drawn at random, from a Gaussian or Bernoulli 

distribution for example [40], can satisfy the RIP and be used for compressive 

measurements. This aspect drew the attention of researchers from various fields hoping to 

save acquisition, storage, or processing costs in their respective applications by making 

random measurements of large, but sparse, signals of interest. 

Continuous-time spectrally sparse signals are one important class of signals 

whose acquisition can benefit from compressive sensing. In cognitive radio (CR) [41] for 

example, a large wideband chunk of spectrum, such as that of Fig. III-1, might contain a 

few narrowband signals of interest whose locations are unknown. CR might be interested 
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in the detection, acquisition, and/or decoding of such signals without sampling at the 

Nyquist rate of the wideband spectrum.  

To enable reconstruction, however, CS theory requires that signals be sparse in a 

finite-dimensional space. If a signal is sparse in a continuous space, the sensing matrix Θ 

would be infinitely wide, prohibiting practical reconstruction, which relies on solving the 

underdetermined linear set of equations given by Θ. A signal that is sparse in a 

continuous space will thus have to be sufficiently represented, and similarly sparse, on a 

discretized version of the continuous space. 

So far, two main techniques have been proposed for the application of CS to the 

acquisition of spectrally sparse continuous-time (SSCT) signals:  

The Random Demodulator (RD) [42]-[44] is only suitable for detecting 

synchronized multi-tone signals with known and uniformly allocated tone locations. Fig. 

III-2 (top) illustrates such a suitable spectral scenario. To differentiate the basis functions 

of different tones, the RD employs a windowed integrator in the analog domain, shown 

on the bottom of Fig. III-2, and thus requires high timing accuracy in the analog circuitry 
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Fig. III-1  A general example of a sparse spectrum associated with a continuous-time band-

limited signal v(t). Note that v(t) in this example is real-valued. 
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[45], [48]. Multi-path versions of the RD have been discussed [46] and fabricated [47] for 

use in CR. Such structures inherit the disadvantages of the RD. 

The Modulated Wideband Converter (MWC) [48]-[50] can acquire a more 

general signal that is “multi-band” in the frequency domain. The MWC divides the 
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Fig. III-2  (top) An illustration of the uniform multi-tone spectral scenario suitable for the RD 

acquisition technique. (bottom) The RD employs a random mixer and windowed integrator to 

obtain compressive measurements. 
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Fig. III-3  (top) An example of the MWC-type discretization of the spectrum into N = 7 slices of 

size FB ≥ B. (bottom) The MWC employs a random periodic spreader followed by a brick-wall 

filter (or a practical approximation) to obtain a compressive measurement. 
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spectrum into slices of bandwidth comparable to that of the largest expected signal band, 

as illustrated on the top of Fig. III-3, thus measuring the number of signal bands instead 

of the true spectral sparsity. To perform the rectangular slicing of the spectrum, the MWC 

requires brick-wall type selectivity and thus employs high-order analog filters [50], [51], 

incurring impractical cost in the analog hardware and limiting reconfigurability. Fig. III-3 

(bottom) shows an individual measurement path of the MWC. In addition to the high 

analog hardware cost and constrained spectral scenarios, both the RD and MWC incur 

high CS reconstruction costs because they collapse the full spectrum into a single CS 

problem, which becomes impractical at high resolutions. 

In this dissertation, we propose a novel compressive acquisition technique for 

SSCT signals termed Random Filtering-by-Aliasing (RFA)
1
. The RFA simultaneously 

addresses the analog measurement complexity, the CS problem size, and the inflexible 

sparsity models of existing schemes. 

A high-level block diagram of the RFA is shown in Fig. III-4. The RFA performs 

arbitrary random filtering and aliasing in the analog domain according to our proposed 

Filtering by Aliasing (FA) concept. As illustrated in Fig. III-5, the RFA uses a variable-

gain FA system with periodic spreader dm(t) followed by an arbitrary filter  h(t) to create 

an apparent filter gm(t) from the perspective of the sampler output of the m
th

 

measurement. For the purposes of the proposed RFA, the periodic dm(t) can be drawn 

from a Bernoulli ±1 distribution, as in other CS schemes. Unlike the RD and MWC 

                                                 

 

 
1
 Not to be confused with Random Filters [52], the DT predecessor of the RD. 
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however, the filter h(t) can be any type of simple filter, such as a single-pole filter, 

avoiding the complexity and/or accuracy requirements of the existing CS-for-SSCT 

techniques.  

To enable such simple, and general, analog circuitry, the RFA (a) moves all 

spectral resolution and sparsity-model decisions to the low-cost, easily reconfigurable 

digital domain and (b) exploits the fact that measureFment accuracy can be relaxed when 

acquiring realistic noisy spectra. Moreover, as the digital RFA backend discretizes the 

spectrum according to a desired resolution, the wideband spectrum sensing problem is 

inherently partitioned into several small CS measurements. This significantly reduces the 

reconstruction complexity and enhances the partial detection probability.  
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Fig. III-4  A block diagram of the proposed Random Filtering by Aliasing (RFA) system. The 

analog front-end performs coarse measurements by random filtering according to Filtering by 

Aliasing (Error! Reference source not found.).  The digital back-end performs reconfigurable 

spectral discretization at a desired resolution and solves a set of small CS problems to reconstruct 

the signal or its support. 
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We will start with the matrix-vector CS formulation in section III.2. In section 

II.3, we will provide a unified description of how CS has been applied to SSCT signals 

and motivate the RFA. Section II.4 will describe the RFA concept and system. Section 

III.5 will dive into particular design trade-offs of the RFA. Section III.6 will provide 

simulation results while Section III.7 discusses the RFA complexity and programmability 

and compares it to the state-of-the-art.  

III.2 COMPRESSIVE SENSING RECAP 

Consider a signal vector v of length N. We say that v is k-sparse on some basis if 

there is a vector s with k << N non-zero entries and an NxN matrix Ψ such that v = Ψ s.  

Given that v is sufficiently represented by a sparse s, we can potentially make a 

measurement vector y of v that holds all information about v such that the length of y is 

M < N. The associated matrix-vector operation is given by (3.1), where y is expressed as 

       1 ,   m m m Sd t d t d t T   

 my n

@ St nT

 v t

 my n

@ St nT

 v t

 h 

     m mg h d   

 

 

Fig. III-5  Each apparent random filter gm(t) of the RFA is achieved using a ±1 random periodic 

spreader dm(t) and an arbitrary filter h(t). For the results in this manuscript, h(t) is a single-pole 

filter, the simplest analog filter. 
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a transform Θ of s. The reconstruction of the signal v from y follows from reconstructing 

the sparse s.  

 

1 1 1       M M N N N N N M Ny Φ v ΦΨ s Θ s  (3.1) 

 

Compressive Sensing (CS) theory [1]-[2], [37] tells us that the reconstruction of s 

from y is possible with high probability if the sensing matrix Θ satisfies the Restricted 

Isometry Property (RIP) [37] with order k, where k is the number of nonzero elements in 

s. The RIP is given by (3.2) and can be intuitively seen as a requirement that the matrix Θ 

preserve any k-sparse vector s, i.e. that any k columns of Θ be sufficiently orthogonal. 

 

   
2 2 2

1 1 ,        1      k k ks Θs s  (3.2) 

 

It turns out that if Θ is drawn from independent and identically distributed (i.i.d.) 

Gaussian or Bernoulli random variables [40], Θ would satisfy the RIP with small δk for a 

number of measurements M in the order of O(k log(N/k)). Similarly, if measurement 

matrix Φ is drawn from such random variables and Ψ is a unitary transformation then the 

sensing matrix Θ would satisfy the same RIP conditions. Reconstruction of s from y can 

then be performed using several approaches. The optimal solution finds the sparsest s s.t. 

y = Θ s. The notion of “sparsest” or min||s||0 is practically approximated by min||s||1 and 

solved using linear programming [38]. With a slight penalty in the number of 

measurements, lower-complexity greedy pursuit algorithms [39] can be used.   
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We are not concerned, in this manuscript, with the particular CS reconstruction 

algorithms but instead with the CS measurement or acquisition method.  

III.3 CS FOR SSCT SIGNALS: THE NEED FOR A NEW APPROACH 

The class of band-limited continuous-time signals can be generally described by 

v(t) in (3). The spectrum V(ƒ) of v(t) contains envelopes Xi(ƒ) of arbitrary signals xi(t) 

centered at positions fi on the frequency axis.  

 

     exp 2  i i

i

v t x t j f  (3.3) 

 

Fig. III-1 shows an example spectrum V(ƒ) for a real-valued v(t). One can 

qualitatively describe the spectrum V(ƒ) as sparse by noticing that the spectral occupancy 

in Fig. III-1, the ratio of occupied spectrum to total available spectrum, is low. It is 

beneficial under such low spectral occupancy to take advantage of compressive 

techniques to avoid the cost of the sampling, analog-to-digital conversion, and digital 

processing of V(ƒ) at the Nyquist rate.  

To apply CS theory to the measurement of SSCT signals, the spectral sparsity 

should be described on a discrete space such that v(t) and/or its spectral support can be 

recovered from compressive measurements.  

Multi-tone Signals: If the type and center frequencies of the signals xi(t) that can 

potentially exist in the spectrum were known, the spectral discretization can be tailored to 

such knowledge. For example, the RD [42]-[44] assumes that the signal V(ƒ) is “time-
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frequency” sparse, i.e. is made of time-synchronized tones at multiples of some fc, as in 

(3.4).  

 

   
 

 1 /2

1 /2


 

 

 
N

i c

i N

V f s f if  (3.4) 

 

The sparsity is then described by the vector of tone values si for a total of N 

possible tones. The RD compressive measurements are obtained using a random ±1 

spreader followed by a windowed integrator and sub-sampler. The RD is only suitable for 

detecting synchronized multi-tone signals with known and uniformly allocated tone 

locations, such as OFDM
2
. Any spectral content that lies outside the specific tone 

locations assumed by the RD disrupts the sparsity model and the associated recovery 

[45]. It also follows that the RD is sensitive to timing accuracies in the analog hardware, 

which describe the tone locations. Such sensitivity is theoretically discussed in [53] and 

[54] and numerically evaluated in [45]. 

Multi-carrier Signals: One can also envision a multi-carrier case where we know 

that the spectral envelope of Xi(ƒ) at f = ifc is given by a pulse-shaping filter B(ƒ). Over 

one symbol period of the multi-carrier signal, V(ƒ) can be expressed as (3.5). The sparsity 

is similarly described by the vector of symbols si.  

 

                                                 

 

 
2
 In OFDM, each tone carries one value over one OFDM symbol period. The signal thus appears band-

limited multi-tone to a synchronized receiver. 
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i N

V f s B f if  (3.5) 

 

Multi-band Signals: If the possible carrier locations are unknown or belong to 

different systems, spectral discretization can be performed by re-slicing the spectrum as 

is done by the MWC [48]-[50]. The MWC assumes that V(ƒ) is made up of k signal bands 

Xi(ƒ), each with a maximum bandwidth B. V(ƒ) can thus be referred to as “block-sparse” 

[45] since the non-zero frequency components are grouped together. The MWC 

discretizes the Nyquist spectrum into N slices of size FB ≥ B as given by (3.6), resulting 

in at most 2k non-zero bands Si(ƒ) out of N. Fig. III-3 (top) illustrates the discretization of 

the MWC for a hypothetical 2k = 4, N = 7 scenario.  
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At any time instant, the sparsity is thus described by the vector of time samples 

from each band as in (3.7).   
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i N
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Each MWC compressive measurement is obtained using a random periodic ±1 

spreader followed by a brick-wall filter and a sub-sampler. Because brick-wall filters are 



 

62 

not realistic, the board demonstration of the MWC [50] uses high-order analog filters 

followed by oversampling. The required digital equalization for such non-ideal MWC 

filters was discussed in [51]. Realizing high-order analog filters in integrated receivers is 

very difficult and incurs high power, area, and nonlinearity costs [7], [14]. Fixed high-

order filters also prohibit system re-configurability by enforcing a certain sampling rate. 

This renders the MWC sensitive to the number of occupied bands [45] even under low 

spectral occupancy. 

In addition to the hardware cost and limited re-configurability, the MWC and RD 

are also limited in terms of achievable spectral resolution because they collapse the full 

spectrum of interest into a single CS problem, which becomes impractical to solve when 

high spectral-resolution is desired. 

The Need for a Better Approach: We find that, for a CS measurement to be of use 

in CR, higher spectral resolution, lower measurement cost, and better programmability 

than existing solutions are simultaneously required: 

1-  Lower measurement cost: Simply put, CS is intended to lower the cost of sampling 

and data processing. It accordingly is undesirable to incur high analog hardware 

cost prior to sampling, especially in a world where digital processing is 

significantly cheaper. It is also undesirable to solve large CS problems in the digital 

domain. 

2- Higher Spectral Resolution: Realistic signal bands exhibit a wide range of 

bandwidths. For example [7], a GSM signal has a bandwidth of 200 kHz while an 

802.11 signal has a bandwidth of 20-40 MHz. For a software-defined or cognitive 
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acquisition system to replace traditional dedicated radios, it has to correctly and 

efficiently handle such a large range of bandwidth. If we were to perform spectrum 

slicing according to the largest expected signal bandwidth, as in the MWC, we 

would (a) fail to measure the true spectral occupancy for cognitive access, (b) 

jeopardize the success of the CS measurement scheme by misrepresenting the true 

sparsity, and (c) possibly bury narrowband signals in the noise of large spectral 

slices. Consider, for example, the illustration in Fig. III-3 where the MWC-type 

spectral slicing for a maximum bandwidth B shows 100% (7 out of 7) occupied 

bands whereas an increased resolution slicing in Fig. III-6 shows ~52% (18 out of 

35) occupied bands.   

3-  Programmability: A reliable CS measurement technique should be able to support 

(a) a varying spectral sparsity by adjusting its sampling rate and (b) a variable 

spectral content distribution by varying its sensing resolution. 

2

NYQF

2

NYQF 2 SF0

8( )S f

 
 

Fig. III-6  Higher resolution discretization allows for a better measure of sparsity and better 

acquisition of narrowband signals. Compare with Fig. III-3 (top). 
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As we describe the Random Filtering by Aliasing concept, design, performance, 

and complexity, it will become apparent how the RFA approaches the seemingly 

contradictory cost, resolution, and programmability targets. 

III.4 RANDOM FILTERING BY ALIASING 

In agreement with the motivation presented in section III.3, the RFA makes low-

complexity analog measurements, performs programmable high-resolution digital 

spectral discretization, and solves the large CS problem in small partitions. As we 

describe the various RFA aspects, we will refer to the unified set of parameters 

summarized in Table 1. 

A. Analog-domain measurements 

Consider the RFA block diagram in Fig. III-4. The m
th

 analog measurement 

branch of the RFA performs mixing with a random ±1 signal dm(t), filtering with a weak 

low-pass filter h(t), and sampling at rate FS. According to Filtering by Aliasing from 

chapter II, if the mixing sequence dm(t) is periodic of period TS = 1/FS, i.e. dm(t) = dm(t + 

TS), the system exhibits a time-invariant filter gm(t) at the sampling instances nTS. The 

random filter gm(t) is given by (3.8) and its frequency response is given by (3.9). Because 

dm(t) is periodic of period TS, the frequency response Dm(ƒ) is completely given by the 

tone values Dm,μ = Dm(μFS) that appear in (3.9).  

 

      m mg t h t d t  (3.8) 
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   ,







 m m SG f D H f F  (3.9) 

 

To give an example, if h(t) is a windowed integrator, gm(t) is a random 

continuous-time FIR filter given by d(-t), t ϵ [0, TS] . If h(t) is a simple single-pole filter, 

g(t) is a random FIR filter followed by a deterministic IIR filter. Until we address the 

Table III-1 

LIST OF RFA PARAMETERS 

 Significance Relationship 

NYQF  Nyquist bandwidth of V(ƒ)  

SF  Sampling rate of each measurement ym[n]  

N  Ratio of FNYQ to FS.  

The number of aliasing spectral slices 

/ NYQ SN F F  

  Index of an aliasing slice 
  

   1 / 2, 1 / 2    N N  

M  Number of measurements   

m  Index of a measurement  0, 1 m M  

resF  Resolution of the RFA  

L  Ratio of FS to Fres.  

The number of bins per spectral slice 

/ S resL F F  

l  Index of a bin in a spectral slice 
   

   1 / 2, 1 / 2    l L L  

k  The sparsity in the spectrum.  

The number of non-zero elements for a given 

discretization. 

k LN  
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design parameters of the RFA in section III.5, we will assume that dm(t) and H(ƒ) are 

properly chosen such that Gm(ƒ) is an arbitrary random filter.  

After sampling, the output ym[n] exhibits a frequency response Ym(ω) that is, 

effectively, a filtered and aliased version of V(ƒ) accordingly to (3.10).  
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2 2
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Y V F G F
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 (3.10) 

 

The summation in (3.10) is limited to the Nyquist bandwidth FNYQ of V(ƒ), where 

FNYQ = NFS. It is important to note here that even though Gm(ƒ) extends over the whole 

Nyquist band of interest, the sampler need not have such a wide bandwidth because the 

down-conversion of the high frequency signals occurs at the ±1 mixer prior to filtering 

and sampling (see section II.2.A). 

Given Gm(ƒ) from (3.8) or (3.9), we can see that the value of Ym(ω) in (3.10) is a 

weighted sum of the values of V(ƒ) at offsets ωFS/2π from the center of every aliasing 

slice. Using the M available measurements, we can write the CS problem (3.11) for any ω 

ϵ {-π, π}, where y, G, and v are given by (3.12)-(3.14). 
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For a graphical interpretation, Fig. III-7 sketches two random filters G0(ƒ) and 

G1(ƒ) associated with M = 2 measurements Y0(ω) and Y1(ω). In this example, N = 5 

spectral slices. The figure annotates the measurements y(ωo)2x1 = G(ωo)v(ωo) as well as 

Random 

Filter

 0g t @ /S NYQF F N
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Fig. III-7  An illustration of how the analog acquisition stage (top) provides CS measurements. 

(bottom left) The magnitude plot of the M = 2 random filters across N = 5 spectral slices. (bottom 

right) The corresponding measurement results: for each frequency ωo, 2 measurements of 5 

original spectral locations are available.  
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the filter gains G(ωo)2x5 of the 5 measured frequency locations at offsets ωo in each 

spectral slice. By extrapolating this example to any number L of CS problems for L 

locations ωo, one can visualize how an arbitrarily high resolution measurement of the 

spectrum can be obtained from a single set of coarse analog measurements y(ω), 

provided that the sensing matrix G(ω) satisfies the RIP (3.2) for those ωo. 

For non-periodic signals, it is not meaningful to talk about a frequency “point” 

ωo. Instead, we refer to a frequency “bin” of nonzero bandwidth centered at ωo, which we 

discuss next. 

B. Digital Spectral-Discretization: 

As illustrated in Fig. III-7, the analog measurement stage of the RFA is intended 

to provide coarse slicing of a randomly weighted spectrum. The high, and reconfigurable, 

spectral resolution of the RFA is then achieved by a digital filtering stage that operates on 

the measurements ym[n] or Ym(ω). 

We will refer to Um,l(ω) as the l
th

 bin of the m
th

 measurement band Ym(ω). Um,l(ω) 

is obtained from Ym(ω) through a filter B(ω) centered at 2π/L, as in (3.15).  

 

   ,

2
  

 
  

 
m l m

l
U Y B

L
 (3.15) 

 

Fig. III-8 sketches the ideal B(ω) for L = 11 on the left and a practical alternative 

on the right. By performing slicing in the digital domain, we can accurately design a 

practical filter B(ω) to preserve all information about Ym(ω) using, for example, a Nyquist 
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filter-bank [55]. Without loss of generality, we assume throughout this manuscript that L 

is odd and that the bin centers are separated by 2π/L. We accordingly refer to Fres = FS/L 

= FNYQ/LN as the resolution of the RFA.  

To connect the measurement bins Um,l(ω) to the signal spectrum V(ƒ), we define 

Sη,l(ƒ), the l
th

  bin of the η
th

 spectral slice of V(ƒ), in (3.16). The reader might find it useful 

to look ahead to Fig. III-10 for a graphical interpretation of Sη,l(ƒ). Using (3.10), Um,l(ω) 

can then be written in terms of Sη,l(ƒ) in (3.17).  
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For a highly selective filter B(ω), such as those in Fig. III-8, the meaningful 

content in the measurement bin Um,l(ω) is limited to a bandwidth of ~2π/L centered 

0 0

( )B( )B

 

Fig. III-8  (left) Ideal filter that slices that DT spectrum into L = 11 bins. (right) A practical 

alternative that can be designed to provide full reconstruction. 
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around 2πl/L of the measurement band Ym(ω). The meaningful content of the signal bin 

Sη,l(ƒ), as given by (3.16), is thus similarly limited to a bandwidth of ~Fres centered 

around ηFS + lFres.  

Assuming that, by design, the random analog filter Gm(ƒ) exhibits small variation 

within one bin width, i.e. within a bandwidth of ~Fres, we approximate it by its value at 

the center of the bin. We denote the value of (1/TS)Gm(ƒ) at the center of the l
th

 bin in the 

η
th

 slice by θm,n,l, as given by (3.18). We can then re-write (3.17) as the approximation in 

(3.19), which approaches equality as L increases (Fres decreases). We will attend to 

implications of this approximation in the section III.5.C. 
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The frequency-domain relationship (3.19) can be similarly written in (3.20) for 

the time-domain samples um,l[n] of measurement bins Um,l(ω).  
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By combining all M measurements for bin l, we obtain the matrix-vector 

formulation (3.21), where ul[n], Θl and sl(nTS) are given by (3.22)-(3.24) respectively.  
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The relationship (3.21) is a CS measurement with a sensing matrix Θl and sparse 

vector sl(nTS). The sparsity of sl and the RIP of Θl will be discussed in section III.5. 
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Fig. III-9  The RFA low-cost high-resolution discretization: Random non-selective analog filters 

and low-bandwidth samplers provide coarse slicing. Decimated digital filter banks provide 

accurate programmable discretization.  
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Fig. III-9 illustrates the complete path from the wideband signal v(t) to the bin 

measurements um,l[n] highlighting the creation of the L vectors ul[n]. In a practical 

realization, the outputs um,l[n] would be decimated and, along with the digital filters B(ω), 

would run at an appropriate low-rate comparable to Fres. We attend to such complexity 

matters in section III.7. 

C. On solving the Partitioned CS Problems: 

After the digital discretization stage, a total of L CS problems of the form (3.21) 

are available. Each CS problem is particular to the set of signal bins that lie at center 

frequencies lFres + ηFS for all η, as given by (3.24). To help visualize this partitioning, 

Fig. III-10 re-labels the spectral discretization example from Fig. III-6 according to the 

RFA indexing with N = 5 and L = 9.  Note that, for ease of illustration, the bins Sη,l(ƒ) in 

the figure are sketched as rectangular, implying the use of the ideal B(ω) from Fig. III-8, 

which is not necessary. 
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Fig. III-10  The RFA discretization with N = 5, L = 9 applied to the hypothetical spectrum of Fig. 

III-3 and Fig. III-6. The bins Sη,l(ƒ) for l = 2 are labeled for illustration. 
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Assuming valid sparsity and RIP conditions, solving (3.21) would identify the 

indices ̂  and the corresponding waveforms  ˆ , Sls nT  that contain signal information.  

Although we are not concerned in this work with the particular CS reconstruction 

approaches, we note that performing costly CS reconstruction at each time sample nTS is 

inefficient because realistic spectral supports do not change at a sample by sample basis. 

Instead, as proposed by the authors of the MWC in an earlier work [55], it behooves us to 

perform CS reconstruction only frequently enough to track the spectral support, i.e. the 

indices ̂  for the RFA. Doing so using accumulated information also helps combat noise 

[61]. Knowing the spectral support, matrix multiplication (3.25) is sufficient to 

reconstruct ˆ , ls from ul[n] at a desired rate. †

ˆ , lΘ is the pseudo-inverse of ˆ , lΘ , the matrix 

of columns ̂ of Θl.  

 

   †

ˆ ˆ, , S ll lnT ns Θ u  (3.25) 

 

We note again that the rate of ul[n], and accordingly the rate of reconstruction 

of ˆ , ls , would in practice be much lower than FS since the bandwidth of  ˆ, lS f  is ~Fres. 

Using the solutions for all L CS problems, the RFA can reconstruct signals that span one 

or more of the signal bins in V(ƒ).  

It is important to recall here that, despite using existing methods to solve each CS 

problem, the RFA partitions the spectrum sensing problem of resolution Fres = FS/LN into 

L CS problems with a sparse vectors sl of length N instead of LN. We will discuss the 
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complexity implications of such reduction in the CS problem size combined with the 

decimated processing rate and the simple analog hardware in section III.7. 

III.5 RFA DESIGN CONSIDERATIONS  

As discussed so far, the RFA moves the spectral discretization task to the digital 

domain to simultaneously simplify the analog measurement and partition the CS problem. 

The analog measurement in particular is simplified because spectral bins that belong to 

the same CS problem, as shown in Fig. III-10, are not adjacent in the frequency domain. 

As a result, the analog random filtering, prior to sampling, does not need to provide 

brick-wall selectivity. Gm(ƒ) can be made to vary slowly across f such that it is incoherent 

over a bandwidth of FS but highly coherent over a bandwidth of Fres. This idea is 

qualitatively illustrated in Fig. III-11 for L = 11. The incoherence in Gm(ƒ) over FS allows 

us to obtain sufficient randomness in the sensing matrices Θl while the high coherence 

over Fres allows us to apply the approximation in (3.19) to describe the matrix-vector CS 

problem.  

In this section we will investigate the coherence of Gm(ƒ) and its consequences. 

We will also investigate the effect of the partitioned CS problem on the number of CS 

measurements. 

A. The coherence of Gm(ƒ) and the choice of h(t) or H(ƒ) 

From the treatment of multi-path channels in wireless communications theory 

[57], we know that the frequency-domain coherence of an impulse response is inversely 

proportional to its delay spread, a measure of the concentration of power in the impulse 
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response. Recall from (3.2) and Fig. III-5 that the apparent filter impulse response gm(t), 

according to Filtering by Aliasing, is given by h(t)dm(-t). We refer to h(t) as the 

“physical” filter as compared to the “apparent” filter gm(t). Given that dm(t) is a random 

±1 sequence, the delay spread of gm(t) is given by the impulse response h(t). 

In the spirit of compressive sensing, we are only interested in very simple filters 

h(t) that keep the analog measurement cost to a minimum. The single-pole filter, inherent 

in most any analog circuit, is the simplest and most natural candidate. The impulse 

response of a single-pole h(t) with time constant τp is given by (3.26). Fig. III-12a plots 

such exponentially decaying impulse response for τp = TS as well as a sample resulting 

gm(t). We will assume a single-pole h(t) for the remainder of the manuscript. 

 

1
( ) exp



   
 p

p

th t   (3.26) 

 

B. The incoherence of Gm(ƒ) and the RIP of Θl 

The sensing matrix for CS problem l is given by Θl in (3.23). Using (3.18) and 

(3.9), the elements of the sensing matrix can be expanded as in (3.27) in terms of H(ƒ) 

and Dm,μ. Because H(ƒ) is a low-pass filter, we can assume that |H(ƒ)| is negligible 

beyond some RFS and the summation in (3.27) is practically dominated by  2R+1 terms 

as  shown. Θl can thus be described as the matrix multiplication of D and Hl in (3.28). 
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Fig. III-11  An illustration of how the RFA allows a slowly varying Gm(ƒ) to provide incoherence 

across different bins Sη,l(ƒ) belonging to a CS problem l while providing coherent gain over the 

bandwidth Fres of an individual bin. 
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Fig. III-12  (a) The impulse response of a single-pole h(t) with time constant τp = TS and a sample 

resulting gm(t). (b) The magnitude plot of Gm(ƒ) for different τp = TS/α, showing the effect of τp on 

the frequency coherence of Gm(ƒ). 
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The m
th

 row of D corresponds to the Fourier transform of the periodic signal dm(t) 

at frequencies μFS, μ ϵ [-R-(N-1)/2, R+(N-1)/2]. Because of the unitary nature of the 

Fourier transformation, D inherits the RIP characteristics of the M random ±1 signals 

dm(t). By allowing dm(t) to switch at least at a rate FNYQ, D would match the RIP 

characteristics of a Bernoulli matrix of size MxN, which is what we desire. 

The RIP of the sensing matrix Θl is accordingly determined by the coherence of 

the matrix Hl. The coherence of Hl [58] is defined as (3.29) where hl,η is the η
th

 column of 

Hl,  given by H(lFres +ηFS +μFS), μ ϵ [-R-(N-1)/2, R+(N-1)/2]. 
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The only parameter of the filter H(ƒ) is the time constant τp. The columns of Hl, 

for any FS, are thus a function of the ratio α = TS/ τp. Fig. III-13 plots, on the left, the 

coherence of Hl as a function of α for different bin indices l. As one would expect, as α 

decreases, the coherence of the matrix H0 decreases towards zero because H(ƒ) 

approaches a frequency domain impulse. The coherence of Hl for l ≠ 0, however, exhibits 

a minimum beyond which decreasing α is futile.   
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Fig. III-13 also plots, on the right, the norm of the columns hl,η of Hl as a function 

of α for different bin indices l. As expected again, the norm of columns h0,η converges to 

unity as α decreases while the norm of columns hl,η for l ≠ 0 continues to decrease. This is 

an undesired effect because the signal bins belonging to CS problem l ≠ 0 would exhibit 

lower gain.  

To illustrate the effects of α on the gain and coherence of the apparent filter 

Gm(ƒ), Fig. III-12b plots three apparent filters Gm(ƒ) obtained using the same random 

sequence dm(t) but different time constants for h(t). Notice how α = 100 causes undesired 

frequency coherence while α = 0.01 causes diminished gain away from the multiples of 

FS.   

Because all L CS problems use the same number of measurement M, the results in 

Fig. III-13 tell us that the performance of the RFA is limited by the RIP of Θl for  
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Fig. III-13   The coherence of Hl (left) and the norm of the columns of Hl (right) plotted against 

the inverse of the single-pole time-constant normalized to TS. Plots show that reducing τp below TS 

negatively affects Hl for l ≠ 0.  
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|l| = (L-1)/2 which exhibits a floor below α = 1. Accordingly, α < 1 is not desired due to 

the loss in the relative gain of different bins (Fig. III-13 right) as well as the associated 

loss in measurement accuracy, which we discuss next. 

C. The coherence of Gm(ƒ) and the measurement accuracy 

To understand the effect of the approximation in (3.19) on the operation of the 

RFA, we look at the error caused by this approximation. From the perspective of the 

reconstruction stage, the approximate measurement (3.19) or (3.20) is treated as the ideal 

CS measurement. We rename the measurement from (3.20) as üm,l[n] and write it as 

(3.30) by replacing θm,n,l with the time-domain integral of gm(t). 
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The actual RFA measurement, however, as given by (3.17), translates to the time-

domain relationship (3.31). 
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We can then write ul[n] in terms of the ideal measurement vector ül[n] and some 

measurement error in (3.32). An estimate of the elements of el[n] is given in (3.33) and 

derived in Appendix C for a gm(t) with short delay spread. 



 

80 

 

      l l ln n nu u e   (3.32) 

     
 

 1 /2

, ,

1 /22







 

 

  
N

m l l S m res S
S N

j
e n s nT G lF F

T
  (3.33) 

  

 It is interesting to note here that instead of treating el[n] as a measurement error, 

we can potentially include it in the reconstruction process since it is given by a random 

measurement of the derivative of sl(nTS), which has the same support as sl(nTS). This, 

however, is not necessary. 

As will be demonstrated in section II.6.D, a reasonably low measurement error 

will have negligible effect on a realistic noisy sparse spectrum. In fact, for a CS problem 

with M measurements and k nonzero elements out of N, the work in [57] showed that the 

in-band signal-to-noise ratio (in-band SNR) of the original signal v(t) will appear N/M 

times worse in the final reconstructed-SNR (RSNR) of an oracle CS solver. In contrast, 

the measurement-SNR (MSNR), defined similar to (3.34), appears enhanced by M/k in 

the RSNR.  
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Eq. (3.35) gives an estimate of the MSNR, derived in Appendix D, for a gm(t) 

generated using a single-pole h(t) with a small time-constant τp and a random ±1 dm(t). 

For a general analysis we use the variable α = TS/τp to describe τp.  
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2 2

2 2
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  (3.35) 

 

 The square dependence of the MSNR on L is intuitive and encouraging. The 

MSNR can be made increasingly better by moving more of the spectral discretization into 

the digital domain, using the same gm(t) and for the same desired Fres. The dependence 

on α is also intuitive since increasing α enhances the frequency-coherence of Gm(ƒ), 

which can be seen in  Fig. III-12b. As is demonstrated in section III.6.C, the MSNR 

estimate (3.35) is accurate for large L, where (3.33) is valid. 

D. The partitioned CS problem & the minimum required M 

Assuming that a total k out of the LN bins in the spectrum are occupied, the 

partitioning of the high resolution problem distributes the k occupied bins across L CS 

problems. It is important then to address the effect of such re-distribution on the required 

number of measurements M.  

We can describe the combined L CS measurements (3.21) as one large 

measurement given by (3.36), where the sensing matrix is LMxLN block-diagonal with 

diagonal entries Θl. 
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It is evident that if (3.36) can be solved, for any k occupied bins, with LM 

measurements, then the RFA would require M measurements. We are interested, 

however, in how M compares to the number of measurements Mfull required for solving 

(36) using a dense sensing matrix. We know that a sensing matrix drawn from a random 

distribution would require Mfull in the order of O(k log(LN/k)).  

For our partitioned approach, if we are interested in successful reconstruction 

across all L CS problems and for arbitrary located signal bins, we have to ensure that M 

satisfies the scenario where all the occupied signal bins occur in a single CS problem. If 

Θl were to exhibit similar RIP characteristics as the random matrix, M would be on the 

order of O(k log(N/k)), similar to Mfull, indicating that our partitioning reduces the 

MfullxLN problem to L problems of size ~MfullxN.  

In realistic sparse spectra, however, the k occupied signal bins of bandwidth ~Fres 

would be grouped together to form signal bands of bandwidths ≥ Fres. The number of 

occupied bins appearing in a single CS problem would thus be practically much lower 

than k and M would be much smaller than Mfull. Furthermore, an intelligent use of the 

RFA would adaptively alter the choice of FS and L to redistribute the occupied bins more 

uniformly over the CS problems if necessary.  
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III.6 SIMULATION RESULTS 

We remind the reader that the RFA is not associated with a particular CS 

reconstruction algorithm or support recovery schedule. To demonstrate the performance 

of the RFA as a method of acquiring CS measurements, however, we provide spectral 

support detection results as well as signal reconstruction results from Monte Carlo 

simulations. 

A. The Simulation Setup 

The results are generated using time-domain MATLAB simulations of the RFA. 

We generate an oversampled input signal with a pre-designed spectral occupancy and 

contaminate it with noise. As illustrated in Fig. III-9, the noisy signal v(t) is mixed with 

M signals dm(t) (switching at 2FNYQ), filtered with h(t), sampled (decimated), and passed 

through a Nyquist filter bank that provides the L bin signals ul[n] corresponding to L CS 

problems. All rates are normalized to FS such that the results can be scaled to any 

frequency. The time constant of h(t), unless noted, is τ = TS. 

As motivated in section III.4.C, we solve each of the L CS problems using the 

CTF approach from [55] to accumulate signal information followed by Orthogonal 

Matching Pursuit (OMP) [59] to identify the strongest signal locations. The identified 

signals from all L CS problems are then sorted by their energy to find the strongest k 

signal bins S(ƒ) where k is the number of occupied bins S(ƒ) out of the total LN available 

bins. We accordingly call k the sparsity and k/LN the spectral occupancy. Were 

applicable, individual signal bins are reconstructed using (25) and combined for SNR 

calculation. 
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It is important to clarify that, in line with the convention in CS, the reported input 

SNR is the total SNR of the sparse spectrum, which approaches in-band input SNR at 

high k/LN. 

B. Spectral Support Reconstruction 

To emulate a general scenario we plot results for sparse spectra with variable 

signal bandwidths. Each spectrum realization includes signals of bandwidths in the range 

(2Fres, FS) such that the total spectral occupancy is k bins out of LN. The signals are 
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Fig. III-14   (top) An example input spectrum containing variable-bandwidth, variable-amplitude 

signals with a total spectral occupancy of 30% and SNR of 25dB. (bottom) The reconstructed 

spectrum by the RFA using L = 11, N = 101, M = 50 effectively sampling at ~50% of the Nyquist 

rate. 
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placed at random carrier locations with random phase shifts and a random gain within a 

10dB range.  

An example input spectrum with ~30% occupancy (k/LN ~ 0.3) and 25dB of SNR 

is plotted in Fig. III-14 along with the reconstructed spectrum using ~ 50% sampling rate 

(MFS/FNYQ = M/N ~ 0.5). Naturally, when sampling at lower than the Nyquist rate, the 

original noise in the sparse spectrum is folded and appears distributed over the 

reconstructed bands [57].  

Fig. III-15 provides support reconstruction and signal detection rates versus the 

ratio of total sampling rate (MFS) to the wideband Nyquist rate FNYQ. Across the different 
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Fig. III-15  (top row) The rate of full support detection PS for an input SNR of 25 and 10dB and 

different spectral occupancies. (bottom row) The average probability of detection Pd of a signal 

bin for the same scenarios. Across the plots, L = 11 and N = 101, with a total LN = 1111 bins in 

the spectrum. 
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input SNR and spectral occupancy scenarios, N = 101 and L = 11 are maintained constant 

for a resolution Fres = FNYQ/1111. The top row plots PS, the average rate at which the full 

support is correctly detected, i.e. the k detected bins are those which contain signal. The 

bottom row plots Pd, the average number of occupied signal bins among the k detected 

bins. Pd can be thought of as the true probability of detection and is a more useful 

parameter in noisy, high dynamic-range spectra.  

Fig. III-16 provides two other perspectives on the support reconstruction 

performance by fixing the measurement sampling rate and plotting PS and Pd against the 

spectral occupancy and input SNR.   

C. Signal Reconstruction Performance 

Fig. III-17a plots the average reconstructed SNR (RSNR) across different values 

of L. To investigate the effect of L, the input v(t) is made virtually noiseless and N = 101 

is maintained constant as L is increased, emulating a higher-resolution sensing of the 

0 10 20 30
0

20

40

60

80

100

k/LN (%)

(%
)

N = 101, L = 11, M = 25
SNR = 25dB

 

 

0 10 20 30
0

20

40

60

80

100

input SNR (dB)

(%
)

N = 101, L = 11, M = 30
k/LN~ 10%

 

 

P
S

P
d

P
S

P
d

 

Fig. III-16  The full support and bin detection rates plotted against spectral sparsity (left) and 

input SNR (right). Sampling rate is M/N of FNYQ. 
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spectrum. The spectral sparsity k/LN is ~10.2% and the total sampling rate MFS is ~ 

0.5FNYQ. Recall that we described in section III.5.C how the number of bins L can affect 

the measurement SNR (MSNR) and provided an estimate of the MSNR for high L in 

(35).  Fig. III-17a demonstrates the quadratic growth in RSNR as a function of L and the 

accurate fit at high L. Note that because we employ sub-optimal sensing matrices and use 

pseudo-inversion to reconstruct the signal bins, the RSNR/MSNR gain, as shown in Fig. 

III-17a, is less than that described in [57] for an oracle CS solver with ideal sensing 

matrices.  

The discussion in section III.5.C also made the claim that the measurement 

accuracy need not be perfect in realistic noisy scenarios. Fig. III-17b demonstrates this by 

plotting the RSNR as a function of the SNR of the input signal v(t). As shown by the 
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Fig. III-17  (a) A plot of the simulated RSNR and the calculated MSNR across different values of 

L and a constant N = 101, M = 50, and high input SNR. The figure shows the quadratic growth of 

the MSNR and RSNR with L. (b) A plot of the RSNR versus input SNR showing the negligible 

effect of the measurement accuracy at low input SNR. For this plot, L = 11. 
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figure, the effect of the MSNR (dotted line) is negligible at low input SNR. In a realistic 

noisy sparse spectrum then, the RSNR would be dominated by the input SNR.  

III.7 COMPLEXITY AND PROGRAMMABILITY 

To complete our discussion of the proposed RFA, we evaluate the complexity and 

programmability improvements we set out to achieve. The resolution enhancement is 

inherent in the complexity and programmability. 

A. Hardware Complexity Reduction: 

Since the RD cannot capture general signals outside the multi-tone model, we 

evaluate the complexity reduction provided by the RFA by comparing its hardware 

requirements to those of the MWC. 

As we noted in section III.5.A, the single-pole filter H(f) employed by the RFA is 

implicitly provided at the output of typical analog circuit blocks, including mixers. The 

RFA thus completely avoids the M dedicated high-order analog filters required by the 

MWC, reducing the analog hardware cost by M*CF, where CF is the cost of a high-order 

analog filter. On the digital end, as is the case in typical multi-band receivers, an L-band 

decimated filter bank [62] can be utilized to implement the L filters B(ω) for spectral 

discretization, incurring approximately the cost of an equivalent single filter B(ω) at rate 

FS per measurement. Assuming that the cost of a digital operation is Cop and the filter 
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B(ω) has WB taps, the RFA incurs an additional
3
 digital filtering cost of ~M*WB*2*Cop. 

Comparing state-of-the-art digital chips and analog filters, one finds that digital circuitry 

is significantly more power and area efficient than the analog alternative. In terms of 

power consumption for example, digital circuit cost Cop in measured in nW whereas 

analog filter cost CF is measured in mW, making the cost of the digital B(ω) filters 

negligible compared to the discarded analog filters. Understanding the implementation 

tradeoffs then, we have designed the RFA to achieve drastic savings in hardware cost by 

moving spectral discretization to the digital domain. 

Furthermore, as discussed so far, the RFA reduces the single MfullxLN CS problem 

to L decimated MxN CS problems, where M < Mfull.  The cost of performing OMP, using 

                                                 

 

 
3
 We have also ignored the M*WEq*2*Cop cost of digital equalization (WEq taps) required by the MWC 

[51] as well as the increased sampling rate per each channel of the MWC to account for finite-order analog 

filters.  
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Fig. III-18  Plotting Pd for different values of α shows that the performance is not sensitive to the 

accuracy in h(t). Figure also shows that α < 1 achieves little gain in sensing capabilities, as 

illustrated by the coherence plot in Fig. III-13. 

 

 



 

90 

most efficient QR-decomposition approach, can be estimated as Nk + Mk + k
2
 operations 

and N
2
 + NM + Mk + k

2
 memory elements [59]. Assuming that M and k are 

approximately L times smaller than Mfull and kfull respectively, the RFA thus reduces both 

the number of operations and memory elements for CS reconstruction by L times. 

Assuming additionally that the L CS problems are solved at the appropriate L-times 

decimated rate per problem, the digital circuit cost would accordingly be reduced by L
2
. 

It is also important to note, within the context of hardware complexity, that the 

time constant of h(t) need not be accurately designed for α = 1. Fig. III-18 plots Pd for 

different α ϵ {0.5, 2}, ~10.2% spectral occupancy and 25dB input SNR. The figure, while 

demonstrating that α has no destructive effects on the performance, also supports the 

theoretical results based on the coherence of Hl in section III.5.B. The figure shows that 

increasing α beyond unity results in detection degradation while reducing α even as low 

as 0.5 achieves negligible detection improvement.  

B. Programmability and Insensitivity to Spectral Occupancy  

Because the RFA performs fine spectral discretization in the digital domain, its 

resolution and measurement accuracy are digitally controlled. We will also demonstrate 

that the RFA is able to adapt to an increase in spectral occupancy by varying the total 

sampling rate while using the same number of measurements. This is possible because, 

by design, the RFA relies on random analog filters Gm(ƒ) that enforce no constraints on 

the sampling rate.  

As Fig. III-19 (top) shows, adjusting FS for the same number of measurements 

and the same desired spectral resolution can provide enhanced support detection 
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performance. Increasing FS translates to increasing the number of bins L while reducing 

the width of the sensing matrix N. It is interesting to note that, as the curves show, 

increasing FS (or L) achieves diminishing returns in performance since M scales 

logarithmically with a decreasing N. For reference, Fig. III-19 (bottom) plots the 

performance curves for the same scenarios against the total percent sampling rate. To 

give an example, although M = 20 measurements are insufficient to achieve high PS or Pd 
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Fig. III-19  (top) Spectral support reconstruction rate PS and probability of detection Pd versus the 

number of measurements M for a constant LN ~ 1111 and different L. The curves show that the 

RFA can vary the sampling rate FS per channel (or equivalently the number of bins) for the same 

resolution Fres and Nyquist bandwidth FNYQ, thus tracking a varying sparsity. (bottom) The same 

curves plotted against sampling rate for a different perspective. All plots correspond to a spectral 

occupancy of ~10.22% and SNR of 25dB. 
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using (L,N) = (11,101), the total sampling rate can be increased from ~20% to ~40% 

using the same M = 20 measurements to achieve near 100% PS and Pd at (L,N) = (21,53).  

The results in Fig. III-19 also demonstrate that, for a realistic spectrum with 

variable signal bandwidths such as in Fig. III-14, M does not correspond to the number of 

measurements Mfull required to solve (36) using a dense sensing matrix. If the latter were 

the case, then increasing L would not be able to provide the enhanced performance seen 

in the figure. Instead, as L is varied, the k occupied bins in the spectrum are re-distributed 

rather uniformly across the different CS problems allowing MFS to dictate the 

performance. 
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IV. CONCLUSION 

This dissertation took a fundamentally novel look at the design of anti-alias 

filters. We showed that the proposed approach of involving aliasing in the filtering task 

allows for drastic improvements in the performance and programmability when compared 

with existing schemes of comparable complexity. We showed how the FA systems can be 

realized using proven digitally-controlled circuitry and discussed some of the associated 

implementation sensitivities. The proposed scheme is very well suited for the needs of 

future software-defined and cognitive communication systems. Beyond the scope of this 

dissertation, particular applications and implementation techniques that exploit the 

programmability, scalability, and low-sensitivity of the FA technique should be 

investigated. 

This dissertation also proposed the novel Random Filtering by Aliasing technique 

for the CS acquisition of spectrally sparse continuous-time signals. By understanding the 

implementation trade-offs and the requirements on measurement accuracy, we designed 

the RFA to perform spectral discretization in the programmable digital domain while 

significantly reducing analog hardware cost and CS problem size. As a result, the RFA 

achieves better resolution, complexity and programmability than the state-of-the-art 

approaches without enforcing particular spectral sparsity models.  
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APPENDIX 

A.  FA: Double-pole Physical Filter 

As discussed in section II.2.D, the FA technique can be applied to higher order 

filters h(τ) such that the resulting apparent filter is sharper. We provide here an interesting 

scenario where a 2
nd

 order double-pole IIR DT filter is used in a DT FA implementation 

from Fig. II-6. The double-pole DT filter H(ω) and the resulting apparent filter G(ω) are 

given in Table 1. The physical filter is straightforward to implement and requires similar 

hardware as the single-pole DT filter but places two poles at the opposite ends of the unit 

circle in the z-plane.  

By using the FA technique, one can visualize how, according to (2.9), the 
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Fig. A-1  Notch anti-alias filtering using the FA DT double-pole technique with traded-off 

notch width, depth and proximity to the signal of interest. 
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apparent filter can exhibit low-pass or band pass behavior by moving the double poles 

around. The FA behavior can also be visualized in the time domain where the length K 

sequence d[n] corresponds to a length 2K modulation of the impulse response due to the 

double delay, thus creating sharper filters. 

Fig. A-1 and Fig. A-2 show some possible apparent filters created using the FA 

DT double-pole system. Note that such filters exhibit image pass-bands at half the 

switching rate, unlike single-pole implementation that exhibits images at the switching 

rate. To obtain the same sharper responses with a farther image pass-band, a 2-path single 

pole FA solution can be employed in the manner described in section II.2.D. 
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Fig. A-2  Effective Low- and Band-pass filtering using the proposed techniq. A 6
th
 order 

elliptical filter is shown for reference.  
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B. FA: Arbitrary Interference Profiles 

This section shows a few examples of how an FA system can be used to provide 

reconfigurable filtering responses according to a given interference scenario.  

The results in Fig. A-3 show apparent filters obtained using the double-pole DT 

FA implementation from Appendix A. The black curves show the optimal responses 

(given some constraints) for a given spectral content in grey. The optimal responses are 

chosen so as to maximize the signal to interference ratio (SINR) by describing the stop-

band constraints of the filter design problem (2.10). In these results, the problem is solved 

directly using non-linear Newton Methods [25]. The signal of interest is assumed to be 

the grey region at frequencies below B = FS/2.  

C. 

 

Fig. A-3  Examples showing the design of the FA apparent filter to maximinze the SINR given an 

interference profile. (a), (b), and (c) are arbitrary, (d) is a notch filter, (e) and (f) are low-pass 

filters that trade-off suppression with transition width. 
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C.  RFA: Deriving the Measurement Error  

We show here the derivation of em,l[n], the error in measurement m for bin l, as 

given by (3.33). We start with subtracting üm,l[n] from um,l[n] in (A1).  
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For a useful Gm(ƒ) that is designed to vary slowly within a bandwidth of Fres, the 

length of significant content in gm(t), it’s power-delay profile [57] should be much 

smaller than Tres. Given that sη,l(t) is limited to a bandwidth of Fres, the difference in (A1) 

can then be simplified as the negative of the derivative of sη,l(t) at nTS multiplied by τ, as 

in (A2).  
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The integration is now given by the negative of the derivative of Gm(ƒ) at lFres + 

ηFS, resulting in (A3) or (3.33). 
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D. RFA: Deriving the MSNRm,l  

We show here the derivation of MSNR in (3.32). We assume that α is high 

enough such that Gm(ƒ) exhibits similar coherence over different indices l as discussed in 

section II.5.B. Since all measurements are obtained in identical manners from 

uncorrelated measurement filters, the MSNR is then given by MSNRm,l of measurement 

m for bin l, shown in (A4). 
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It is fair to assume that sη,l(nTS) and Gm(lFres + ηFS) are uncorrelated with each 

other, sη,l(nTS) is uncorrelated over different η, and Gm(ƒ), by design, is incoherent over 

FS. We can accordingly write the MSNRm,l as shown in (A5).  
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Assuming that the energy in Sη,l(ƒ) is uniformly distributed over [-Fres/2, Fres/2] 

with PSD So, and that the power-delay profile of gm(t) exhibits single-pole decay with 

time constant τp (as for a single-pole h(t) and a ±1 dm(t)), we obtain (A6).   
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Note that (A6) is accurate for high L and α, where the assumptions on correlation 

and coherence hold. 
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