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Abstract of the Dissertation

Hamiltonian Systems and Gibbs Measures

by

Samantha Xu

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2014

Professor Rowan Killip, Chair

Consider the radial nonlinear wave equation −∂2
t u + ∆u = u3, u : Rt × R3

x → R,

u(t, x) = u(t, |x|). In this thesis, we construct a Gibbs measure for this system

and prove its invariance under the flow of the NLW. In particular, we are in the

infinite volume setting.

For the finite volume analogue, specifically on the unit ball with zero boundary

values, an invariant Gibbs measure was constructed by Burq, Tvetkov, and de

Suzzoni [9, 12] as a Borel measure on super-critical Sobolev spaces.

We first show that this finite volume Gibbs measure is supported on a space

of weighted Hölder continuous functions. Next, we show that the NLW is locally

well-posed there, a counter-point to the Sobolev super-criticality noted by Burq

and Tzvetkov. Furthermore, the flow of the NLW leaves this measure invariant.

We use a multi-time Feynman–Kac formula to construct the infinite volume

limit measure by computing the asymptotics of the fundamental solution of an

appropriate parabolic PDE. We use finite speed of propagation and results from

descriptive set theory to establish invariance of the infinite volume measure.
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CHAPTER 1

Introduction

In this thesis, we consider the 3D radial, defocusing, cubic, nonlinear wave equa-

tion (NLW) 
−∂2

t u+ ∆u = u3,

u : Rt × R3
x → R,

u(t, x) = u(t, |x|) = u(t, r)

with Hamiltonian H(u) =
∫
R3

1
4
|u|4 + 1

2
|∇u|2 + 1

2
|ut|2. We wish to construct the

Gibbs measure, which we informally write as

1

Z
e−H(u)d“(u, ut)”

“ := ”
1

Z1

exp

(
−
∫
R3

|u|4

4
+
|∇u|2

2
dx

)
“du”⊗ 1

Z2

exp

(
−
∫
R3

|ut|2

2
dx

)
“dut”

and show that the flow of the NLW is defined for all time on the support of the

Gibbs measure, and leaves this measure invariant.

This problem is a specific case of the investigation of invariant Gibbs mea-

sures on the phase space of various differential equations. This area has seen an

increasing focus of research in recent years, partially due to the fact that Gibbs

measure allow for global existence results at regularities which are not available

in the deterministic setting.

We introduce this area via a sequence of examples, beginning with the classical

case of Liouville’s theorem.
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1.1 The Finite Dimensional Case

Theorem 1.1 (Liouville). Let H = H(p1, . . . , pd, q1, . . . , qd) ∈ C2(R2d). Then the

flow of
dpk
dt

=
∂H

∂qk
and

dqk
dt

= −∂H
∂pk

, for k = 1, . . . , d (1.1)

preserves the Lebesgue measure
∏d

k=1 dpkdqk on R2d.

Furthermore, the partially normalized Gibbs measure exp(−H)
∏d

k=1 dpkdqk is

invariant under the flow given by (1.1).

Remark. If Z :=
∫
R2d exp(−H)

∏d
k=1 dpkdqk <∞, then the Gibbs measure

1

Z
exp(−H)

d∏
k=1

dpkdqk

is also preserved by (1.1).

Proof. We write ~x ∈ R2d in coordinates as ~x = (p1, . . . , pd, q1, . . . , qd). Then,

equality of mixed partials shows that the vector field

~V (p1, . . . , pd, q1, . . . , qd) :=

(
∂H

∂q1

, . . . ,
∂H

∂qd
,−∂H

∂p1

, . . . ,−∂H
∂pd

)

on R2d is divergence free.

Let B ⊆ R2d be a bounded, open set with smooth boundary. For t ∈ R, denote

by Bt the flow of B under (1.1) at time t. Writing |Bt| for Lebesgue measure of

Bt, then the divergence theorem gives

d|Bt|
dt

=

∫
· · ·
∫
∂Bt

~V · ~n dS =

∫
· · ·
∫
Bt

∇ · ~V
d∏
j=1

dpjdqj = 0,

where ~n denotes the unit normal vector, ∂Bt denotes the boundary of Bt, and dS

denotes the induced surface measure on ∂Bt. Namely, the flow with respect to a

2



divergence free vector preserves Lebesgue measure. It follows that
∏d

k=1 dpkdqk is

invariant under (1.1).

Furthermore, applying the chain rule and (1.1) shows

dH

dt
=

d∑
k=1

(
∂H

∂pk

dpk
dt

+
∂H

∂qk

dqk
dt

)
=

d∑
k=1

(
∂H

∂pk

∂H

∂qk
− ∂H

∂qk

∂H

∂pk

)
= 0.

This proves the second assertion, as the Radon–Nikodym derivative exp(−H) is

also invariant under (1.1).

We illustrate Liouville’s theorem with some simple examples.

The most trivial example of a Hamiltonian ODE is H ≡ 0. In this case,

the flow of (1.1) leaves each point fixed. Clearly, every Borel measure on R2d is

preserved by this flow.

Another example is the Hamiltonian H : R2 → R given by

H(p, q) = 1
2

(
p2 + q2

)
.

By Liouville’s theorem, the flow of the ODE

dp

dt
=
∂H

∂q
= q,

dq

dt
= −∂H

∂p
= −p

preserves Lebesgue measure on R2. Indeed, another way to recognize this result

is as follows: the flow defined above is a rotation in R2 about the origin. In

particular, for fixed t ∈ R, the flow is a linear, orthogonal transformation on R2

and thus preserves Lebesgue measure. Furthermore, the Gibbs measure for this

system is

1

Z
exp(−H(p, q))dpdq =

1

2π
exp

(
−1

2

(
p2 + q2

))
dpdq,

3



which is also the standard Gaussian measure on R2. In the following section, we

observe an infinite dimensional version of this system.

1.2 A Simple Infinite Dimensional Case

Let L > 0 and let B(0, L) ⊆ R3 denote the ball in R3 of radius L and with center

at 0. Let ∆L = ∆L,Dir denote the Laplacian on B(0, L) with Dirichlet boundary

conditions.

In this section, we consider the linear wave equation



−∂2
t u+ ∆Lu = 0,

u : Rt ×B(0, L)→ R,

u(t, x) = u(t, |x|) = u(t, r),

u|Rt×∂B(0,L) ≡ 0

(1.2)

and its associatied Hamiltonian,

H = H(u, ut) =

∫
B(0,L)

1

2
|∇u|2 +

1

2
|ut|2. (1.3)

We would like to make sense of the Gibbs measure

dML(u, ut) :=
1

Z
exp(−H)“d(u, ut)”

=
1

Z
exp

(
−
∫
B(0,L)

1

2
|∇u|2

)
“du”⊗ 1

Z ′
exp

(
−
∫
B(0,L)

1

2
|ut|2

)
“dut” (1.4)

in a manner similar to the previous section. An initial obstacle is the fact that

Lebesgue measure does not exist in infinite dimensions, which is why we write du

and dut in quotes. Specifically, we observe the following result.

Proposition 1.2. Let X be a separable, infinite dimensional Banach space and

let µ be a translation-invariant, positive, Borel measure on X. If µ(B) < ∞ for

4



any ball B ⊆ X of finite radii, then µ is the trivial measure.

Proof. Let B ⊆ X be a ball of radius R such that µ(B) < ∞. Let us denote by

B/2 the ball with the same center as B, but with radius R/2. Since X is infinite

dimensional, there exists a sequence {pj}j≥1 ⊆ B/2 such that

‖pj − pk‖ ≥ R/4

for all j 6= k, by Riesz’s lemma (cf., [35, pg. 47]). The infinite sequence of balls

{B(pj, R/100)}j≥1 are pair-wise disjoint and

∞⋃
j=1

B(pj, R/100) ⊆ B. (1.5)

By translation invariance of µ, we have

µ(B(p1, R/100)) = µ(B(p2, R/100)) = · · · .

Given this equality, as well as the assumption µ(B) < ∞, the hypothesis that µ

is a positive measure, and (1.5), we have

0 = µ(B(p1, R/100)) = µ(B(p2, R/100)) = · · · . (1.6)

Let {xn}∞n=1 be a countable dense subset of X. By (1.6) and translation

invariance of µ, we have

0 = µ(B(x1, R/100)) = µ(B(x2, R/100)) = · · · .

Since X =
⋃∞
n=1B(xn, R/100) and µ is a positive measure, we have

µ(X) = 0

5



and that µ is the trivial measure.

The second obstacle is that, even if we have a “Lebesgue measure” on an

infinite dimensional space, the Radon–Nikodym derivative exp(−H) would be

almost surely 0 (which in turn forces the normalization constants to be infinite).

However, we may make sense of the aggregate expression in (1.4) as a Gaussian

measure. The key observation is that we can diagonalize ∆L in this setting.

1.2.1 A Free Gibbs Measure as a Gaussian Measure

Recall that the radial Laplacian can also be written as ∆ = ∂2
r + 2

r
∂r and that the

normalized Lebesgue measure on B(0, L) is given by 1
4π
r2drdσS2 . Consider the

following orthonormal basis for L2
rad(B(0, L)) consisting of eigenfunctions of ∆L:

fn,L(r) :=

√
2/L sin(nπr/L)

r
, n = 1, 2, . . . (1.7)

with eigenvalues (nπ/L)2, n = 1, 2, . . . , respectively.

Let us express radial functions on B(0, L) via their Fourier expansion: for

example, u ∈ L2
rad(B(0, L)) is written u =

∑∞
n=1 xnfn,L with {xn} ∈ `2. The

expression in (1.4) can then be formally interpreted as

1

Z
exp

(
−
∫
B(0,L)

1

2
|∇u|2

)
“du” ≈ 1

Z
exp

(
−1

2

∞∑
n=1

(nπ/L)2|xn|2
)
∞∏
n=1

dxn

and

1

Z ′
exp

(
−
∫
B(0,L)

1

2
|ut|2

)
“dut” ≈

1

Z ′
exp

(
−1

2

∞∑
n=1

|xn|2
)
∞∏
n=1

dxn

The latter expression can be simply read as the standard Gaussian measure on an

infinite dimensional Hilbert space, while the former include the Fourier multipliers

arising from taking a derivative. It follows that a natural setting to make a rigorous

6



definition of (1.4) is as a measure on Sobolev spaces.

Definition 1.3. For each s ∈ R, consider the radial, homogeneous Sobolev space

Ḣs
rad,0(B(0, L)→ C) :={
g =

∞∑
n=1

cnfn,L

∣∣∣∣∣ cn ∈ C, ‖g‖2
Ḣs
rad,0

:=
∞∑
n=1

|nπ/L|2s|cn|2 <∞

}
,

and Ḣs
rad,0(B(0, L) → R), the sub-space with real coefficients. We equip these

spaces with the usual Borel σ-algebra.

Letting s < 1
2
, we define the measure ML in (1.4) to be the image measure on

Ḣs
rad,0(B(0, L)→ R)× Ḣs−1

rad,0(B(0, L)→ R)

under the map

ω 7→

(
∞∑
n=1

an(ω)

nπ/L
fn,L(r),

∞∑
n=1

bn(ω)fn,L(r)

)
an(ω), bn(ω) ∼ NR(0, 1) i.i.d.

(1.8)

where ω is an element of some suitable probability space (Ω,F , P ) and an, bn are

i.i.d. standard Gaussian random variables.

Indeed, the restriction s < 1
2

is due to the fact that

Eω
[∥∥∥ ∞∑

n=1

an(ω)

nπ/L
fn,L(r)

∥∥∥2

Ḣs
rad,0

+
∥∥∥ ∞∑
n=1

bn(ω)fn,L(r)
∥∥∥2

Ḣs−1
rad,0

]
<∞

if and only if s < 1
2

and so ML is actually supported on such Sobolev spaces.

In the next two sections, we discuss changes of variables that will reappear

throughout this thesis, as well as how change of variables aid in proving invariance

of measures on infinite dimensional spaces of functions. In particular, we prove

invariance of the measure above in Proposition 1.6.

7



1.2.2 Reduction to One Dimensions and Complexification

At this point, we make several remarks to motivate our changes of variables.

First, since we are restricting our attention to radially symmetric functions, the

phenomena that we observe is essentially one dimensional.

Also, we observe that ML is not quite supported on a space of functions.

Indeed, Ḣs for s < −1
2

is only defined as a space of distributions. Ultimately,

we wish to work on a space of (equivalence classes of) functions, and possibly

even on a space where we may evaluate the functions at a point. To this end, we

complexify the wave equation, and apply the corresponding change of variables to

ML as well.

First, let us recall our 3D linear wave equation



−∂2
t u+ ∆Lu = 0,

u : Rt ×B(0, L)→ R,

u(t, x) = u(t, r), r = |x|

u|Rt×∂B(0,L) ≡ 0

The change of variables v = ru is bijective correspondence to solutions of the the

1D linear wave equation


−∂2

t v + ∂2
rv = 0,

v : Rt × [0, L]→ R,

v(t, 0) = v(t, L) = 0

Observe that the boundary condition v(t, 0) = 0 arises from the fact that we

are multiplying by r. The changes of variables w = v + i|∂r|−1∂tv is a bijective

8



correspondence to solutions of the complexified 1D linear wave equation


−i∂tw + |∂r|w = 0,

w : Rt × [0, L]→ C,

w(t, 0) = w(t, L) = 0

(1.9)

Here, |∂r| =
√
−∂2

r can be understood in terms of the Fourier expansion, cf.,

(1.11) below. The composition of these changes of variables is

u 7−→ ru+ i|∂r|−1∂t(ru) or (u, ut) 7−→ ru+ i|∂r|−1rut (1.10)

Let us observe how this change of variables affects the corresponding the function

spaces, the Gibbs measure, and the Hamiltonian structure.

Regarding function spaces, consider the following orthonormal basis of L2
r([0, L])

consisting of Dirichlet eigenfunctions of ∂2
r :

en,L(r) :=
√

2/L sin(nπr/L), n = 1, 2, . . . ,

with eigenvalues (nπ/L)2, n = 1, 2, . . ., respectively. For each s ∈ R, we define

the operators |∂r|s =
√
−∂r

s
via

|∂r|s sin(nπr/L) = |nπ/L|s sin(nπr/L) (1.11)

for each integer n ≥ 1.

Definition 1.4. For each s ∈ R, consider the homogeneous Sobolev space

Ḣs
0([0, L]→ C) :=

{
g =

∞∑
n=1

cnen,L | cn ∈ R, ‖g‖2
Hs

0
:=

∞∑
n=1

|nπ/L|2s|cn|2 <∞

}
.

and Ḣs
0([0, L] → R), the sub-space with real coefficients. We equip these spaces

with the usual Borel σ-algebra.

9



Recalling (1.7), observe that en,L = rfn,L. In general, f(r) 7→ rf(r) is (up to

a constant multiple) an isometry from L2
rad(B(0, L))→ L2

r([0, L]), because

∫
S2

∫ L

0

|f(r)|2 r2dr
dS

4π
=

∫ L

0

|rf(r)|2 dr.

Furthermore, multiplication by r is an isometry Ḣs
rad,0(B(0, L)→ Λ)→ Ḣs

0([0, L]→

Λ), where Λ = R or C. It follows that the map

(f1, f2) 7−→ rf1 + i|∂r|rf2 (1.12)

motivated by (1.10), is a homeomorphism

Ḣs
rad,0 × Ḣs−1

rad,0(B(0, L)→ R) −→ Ḣs
0([0, L]→ C).

Regarding the Gibbs measure, The analogue of the randomization in (1.8)

under the change of variables (1.12) is

ω 7→
∞∑
n=1

an(ω) + ibn(ω)

nπ/L
en,L(r), an(ω), bn(ω) ∼ NR(0, 1), i.i.d. (1.13)

where, again, ω is an element of some suitable probability space (Ω,F , P ).

Definition 1.5. Fixing s < 1
2
, let us denote by µL the image measure on Ḣs

0([0, L]→

C) under the map in (1.13). To separate the randomizations, let µL,1 and µL,2

denote the image measure on Ḣs
0([0, L]→ R) under the maps

ω 7→
∞∑
n=1

an(ω)

nπ/L
en,L(r) and ω 7→

∞∑
n=1

bn(ω)

nπ/L
en,L(r), (1.14)

respectively.

The connection between µL, µL,1, and µL,2 is as follows: for Borel sets A1, A2 ⊆

10



Ḣs
0([0, L]→ R),

µL
(
{g | Re(g) ∈ A1, Im(g) ∈ A2}

)
= µL,1(A1)µL,2(A2). (1.15)

Note that (1.12) is a measure preserving isomorphism

(
Ḣs
rad,0 × Ḣs−1

rad,0(B(0, L)→ R),ML

)
−→

(
Ḣs

0([0, L]→ C), µL

)
essentially by construction.

Regarding the Hamiltonian structure, we apply (1.10) to (1.3) to see that the

Hamiltonian corresponding to (1.9) is

H(w) =

∫ L

0

1

2

(
|∂r|w

)2
dr. (1.16)

Furthermore, let w0(r) ∈ Ḣs
0([0, L]→ C) with Fourier expansion

w0(r) =
∞∑
n=1

(pn(0) + iqn(0))en,L(r).

The w(t, r) solution of (1.9) with initial datum w(0, r) = w0(r) is given by

w(t, r) = e−it|∂r|w(0, r) =
∞∑
n=1

(pn(t) + iqn(t))en,L(r)

where

pn(t) + iqn(t) = e−it(nπ/L)(pn(0) + iqn(0)).

Observe that

H(w) =
∞∑
n=1

1

2
(nπ/L)2(p2

n + q2
n). (1.17)
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Differentiating pn and qn with respect to time and applying (1.17) gives, formally,

dpn
dt

= (nπ/L)−1∂H

∂qn
,

dqn
dt

= −(nπ/L)−1 ∂H

∂pn
, n ≥ 1. (1.18)

1.2.3 Invariance of the Gibbs Measure for the Linear Wave Equation

We use Liouville’s theorem, (1.18), as well as some considerations from descriptive

set theory to prove invariance of µL under the free propagator e−it|∂r|.

Proposition 1.6. Fix s < 1
2
. The flow e−it|∂r| leaves (Ḣs

0([0, L]→ C), µL) invari-

ant. Namely, for each t ∈ R and for each Borel subset A ∈ Ḣs
0([0, L] → C), the

set

e−it|∂r|A = {e−it|∂r|g : g ∈ A}

is a measurable subset of Ḣs
0([0, L]→ C) and

µL(e−it|∂r|A) = µL(A).

Proof. First, we observe that e−it|∂r| is defined for all t and is an isometry from

Ḣs
0([0, L]→ C) to itself. It follows that e−it|∂r| preserves measurability.

Since e−it|∂r| is a bijection, we may reduce our analysis of invariance from all

Borel sets A ∈ Ḣs
0([0, L]→ C) to those of the form

A =

{
g =

∞∑
n=1

cnen,L : cj ∈ Bj, j = 1, . . . , N

}
(1.19)

where N ≥ 1 is a natural number and B1, . . . , BN ⊆ C are Borel sets. Sets of

the form (1.19) are known as cylinder sets and generate the Borel σ-algebra (cf.,

Proposition A.4). So let us fix such an A of the form (1.19).

12



Let DN denote the usual Dirichlet projection, defined by

DN

∞∑
n=1

cnen,L =
N∑
n=1

cNen,L.

By (1.18) and Liouville’s theorem, we have

[D∗NµL](e−it|∇r|DNA) = [D∗NµL](DNA),

where [D∗NµL](B) := µL(D−1
N B) denotes the push-forward (or image) measure on

spanC(e1,L, . . . , eN,L). Since A is a cylinder set, we have

A = D−1
N DNA

e−it|∂r|A = D−1
N e−it|∂r|DNA.

The result follows.

Observe that invariance of the Gibbs measure for the original linear wave

equations follows from undoing the change of variables outlined in Section 1.2.2.

1.3 The Burq–Tzvetkov–de Suzzoni example

In this section, we consider a non-linear version of previous system. Let L > 0

and consider the cubic non-linear wave equation1



−∂2
t u+ ∆Lu = u3,

u : Rt ×B(0, L)→ R,

u(t, x) = u(t, |x|) = u(t, r),

u|Rt×∂B(0,L) ≡ 0

(1.20)

1Burq and Tzvetkov actually considered the Gibbs measure for NLW −∂2t u + ∆Lu = |u|pu
when p < 3, though invariance of the Gibbs measure was only shown in the case p = 2 by de
Suzzoni.
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As before, we make a change of variables to reduce down to one dimension, and

to complexify. Namely, the changes of variables

v := ru

and, respectively,

w := v + i|∂r|−1∂tv = ru+ i|∂r|−1r∂tu

is a bijective correspondence to solutions of


−∂2

t v + ∂2
rv = v3

r2
,

v : Rt × [0, L]→ R,

v(t, 0) = v(t, L) = 0

(1.21)

and, respectively,


−i∂tw + |∂r|w = −|∂r|−1

(
(Rew)3

r2

)
,

w : Rt × [0, L]→ C,

w(t, 0) = w(t, L) = 0.

(1.22)

We clarify what we mean by a solution.

Definition 1.7 (Strong Solution for (1.22)). Let B be a Banach space of complex-

valued functions on [0, L]. We say that w(t, r) : [−T, T ] × [0, L] → C is a strong

solution of (1.22) on [−T, T ] with initial datum g ∈ B if

1. w ∈ C0
tB([−T, T ] × [0, L] → C), which is to say: for fixed t ∈ [−T, T ] we

have w(t, r) ∈ B and that the B-norm of w varies continuously in time.

2. w(0, r) = g(r), and

14



3. w(t, r) obeys, as a distribution, the corresponding Duhamel formula

w(t, r) =
[
e−it|∂r|g

]
(r)− i

∫ t

0

[
e−i(t−τ)|∂r|

|∂r|
Re

(
w(τ, ·)3

(·)2

)]
(r)dτ,

for each t ∈ [−T, T ].

Furthermore, if w is the unique strong solution on [−T, T ] with initial datum

g ∈ B, then we write

FlowL(t, g)(r) := w(t, r), |t| ≤ T.

In this section, we shall consider the case that

B = Ḣs
0([0, L]→ C),

for some fixed s < 1
2
. In later sections, we consider the space of Hölder continuous

functions.

1.3.1 The Gibbs Measure

Fix 0 ≤ s < 1
2

and L > 0. Recall that µL denote the Borel measure on Ḣs
0([0, L]→

C) from Definition 1.5. We wish to make a suitable definition (and construction)

for the Gibbs measure for (1.22).

Now, the Hamiltonian for (1.22) is

H(w) =

∫ L

0

1

2
(|∂r|w)2 +

1

4
(Re(w))4 r−2dr.

So, we wish to make sense of the expression

1

Z
exp(−H(w)) “dw′′ =

1

Z
exp

(
−
∫ L

0

1

2
(|∂r|w)2 +

1

4
(Re(w))4 r−2dr

)
“dw′′.

15



Recall, the expression

1

Z ′
exp

(
−1

2

∫ L

0

(|∂r|w)2dr

)
“dw′′

is simply µL. Thus, we define the Gibbs measure for (1.22) as a Borel measure on

Ḣs
0([0, L]→ C) given by

1

ZL
exp

(
−1

4

∫ L

0

(Re g(r))4r−2 dr

)
dµL(g). (1.23)

First, let us show that the measure in (1.23) is actually well-defined. In par-

ticular,

1. Is the Radon–Nikodym derivative actually a measurable function?

2. Is the Radon–Nikodym derivative not µL-almost surely zero?

For the first question, let

KN(g) :=

∫ L

0

(Re g(r))4 ∧N4

r2 ∨ (1/N)
dr.

Here a ∧ b = min(a, b) and a ∨ b = max(a, b). Observe that

|KN(g)−KN(h)| ≤ N

∫ L

0

∣∣∣(Re g)4 ∧N4 − (Reh)4 ∧N4
∣∣∣ dr

. N

∫ L

0

(
|Re(g − h)| ∧N

)
·
(
|Re(g)|3 ∧N3 + |Re(h)|3 ∧N3

)
dr

. N4

∫ L

0

|g − h| dr

.L N
4‖g − h‖Ḣs

0
,

and so KN is actually a continuous function on Ḣs
0([0, L]→ C). Indeed, it is even
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Lipschitz. It follows that

exp

(
−1

4

∫ L

0

(Re g(r))4r−2 dr

)
= lim

N→∞
exp

(
−1

4
KN(g)

)

is a point-wise limit of continuous functions, and is hence measurable.

To answer the second question, we employ the following result.

Lemma 1.8 (Khinchin). Let an(ω) ∼ NR(0, 1) i.i.d., and {cn}n ∈ `2. There is

C > 0, such that for q ≥ 2, Eω
[∣∣∑∞

n=1 an(ω)cn
∣∣q] ≤ Cqq

q
2

(∑∞
n=1 |cn|2

)q/2
.

We use Tonelli’s theorem, Khinchin’s inequality, and Minkowski’s theorem for

integrals to obtain

Eω
[∫ L

0

∣∣∣∣∣
∞∑
n=1

an(ω) + ibn(ω)

nπ/L
en,L(r)

∣∣∣∣∣
4

r−2dr

]

.L

∫ L

0

( ∞∑
n=1

∣∣∣en,L(r)

nπ/L

∣∣∣2)2

r−2dr

.L

( ∞∑
n=1

n−2

[ ∫ L

0

|en,L(r)|4r−2dr

]1/2)2

Using the inequality | sin(x)| . |x|1/3, we obtain

∫ L

0

|en,L(r)|4r−2dr . (nπ/L)
4
3

∫ L

0

r−
2
3 dr .L n

4
3 .

It follows that

Eω
[∫ L

0

∣∣∣∣∣
∞∑
n=1

an(ω) + ibn(ω)

nπ/L
en,L(r)

∣∣∣∣∣
4

r−2dr

]
.L

( ∞∑
n=1

n−
4
3

)2

<∞

and so exp
(
−1

4

∫ L
0

(Re g(r))4r−2 dr
)

is µL-almost surely positive. We have proven

the following result.
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Proposition 1.9. The measure νL given by

dνL(g) :=
1

ZL
exp

(
−1

4

∫ L

0

(Re g(r))4r−2 dr

)
dµL(g)

is a well-defined Borel measure on Ḣs
0([0, L] → C) for 0 ≤ s < 1

2
. It is mutually

absolutely continuous with respect to µL.

1.3.2 Connection with 3D Gibbs Measure

Let us recall the 3D non-linear wave equation



−∂2
t u+ ∆Lu = u3,

u : Rt ×B(0, L)→ R,

u(t, x) = u(t, |x|) = u(t, r),

u|Rt×∂B(0,L) ≡ 0

and its (formally defined) Gibbs measure

dmL(u, ut) := dmL,1(u)⊗ dmL,2(ut) (1.24)

where

dmL,1(u) =
1

Z1

exp

(
−
∫
B(0,L)

1

4
|u|4 +

1

2
|∇u|2

)
“du”

dmL,2(ut) =
1

Z2

exp

(
−
∫
B(0,L)

1

2
|ut|2

)
“dut”

Observe that, formally speaking,

dmL(u, ut) =
1

Z
exp

(
−
∫
B(0,L)

1

4
|u|4
)
dML(u, ut), (1.25)
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where ML is as in Definition 1.3. In [9], it was noted that

∥∥∥∥∥
∞∑
n=1

an(ω)

nπ/L
fn,L(r)

∥∥∥∥∥
4

L4(B(0,L))

<∞, ω a.s. (1.26)

In particular, the Radon–Nikodym derivative

(u, ut) 7→ exp

(
−1

4

∫
B(0,L)

|u|4
)

(1.27)

is positive ML almost surely, and so the expression in (1.25) is indeed well-defined.

In particular, mL is mutually absolutely continuous with respect to the free mea-

sure ML.

Now, we apply the change of variables

(f1, f2) 7→ rf1 + i|∂r|−1(rf2). (1.28)

The image of the ML under this map is µL. Recall that the Radon–Nikodym

derivative in (1.27) only depends on the first component and that, for Borel mea-

surable functions Ψ : Ḣs
0([0, L]→ R)→ R, we have

∫
Ḣs

0([0,L])

Ψ(f) dµL,1(f) =

∫
Ḣs
rad,0(B(0,L))

Ψ(rf) dm̃L,1(f).

In other words, letting

Ψ(f) = exp

(
−1

4

∫ L

0

|f(r)|4r−2 dr

)

then Ψ(rf) = exp
(
−1

4

∫ L
0
|f(r)|4r2 dr

)
= exp

(
−1

4

∫
B(0,L)

|f(r)|4
)

, which recov-

ers (1.27). Thus, under the change of variables (1.28), the corresponding Gibbs

19



measure for (1.22) is indeed

dνL(g) :=
1

ZL
exp

(
−1

4

∫ L

0

(Re g(r))4r−2 dr

)
dµL(g),

with ZL being a normalization constant.

1.3.3 Invariance of the 1D Gibbs Measure, νL

In a similar spirit as the linear, we first express the formal Hamiltonian structure

of (1.22). Let

w0(r) =
∞∑
n=1

[pn(0) + iqn(0)]en,L(r)

admit a unique, global, strong solution w(t, r), and write

w(t, r) =
∞∑
n=1

[pn(t) + iqn(t)]en,L(r).

Writing the Hamiltonian in Fourier series,

H(w) =
1

2

∞∑
n=1

(nπ/L)2[p2
n + q2

n] +
1

4

∫ L

0

[
∞∑
n=1

pnen,L

]4

r−2dr.

If we apply (1.22) and equate coefficients, we formally obtain

dpn
dt

= (nπ/L)−1∂H

∂qn
,

dqn
dt

= −(nπ/L)−1 ∂H

∂pn
, n ≥ 1.

Given this (formal) Hamiltonian structure and the definition of νL, we expect

FlowL(t, ·) to preserve νL. Indeed, the following was proven by Burq, Tzvetkov,

and de Suzzoni.

Theorem 1.10 (Burq–Tvetkov–de Suzzoni2, [9, 12]). Let s < 1
2
, let L > 0, and

2Strictly speaking, the results in [9,12] were stated in the 3-dimensional, complexified setting.
Theorem 1.10 is the restatement of their result after multiplication by r.
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let νL be as in (1.23). There exists a measurable set ΠL ⊆ Ḣs
0([0, L] → C) with

the following properties

1. νL(ΠL) = 1.

2. Each g ∈ ΠL admits a unique, global, strong solution in Ḣs
0 . Namely,

FlowL(t, g) is defined for all t ∈ R, and, for each T ∈ [0,∞), we have

FlowL(t, g) ∈ C0
t Ḣ

s
0([−T, T ]× [0, L]→ C).

3. For each measurable set A ⊆ ΠL and for each t ∈ R, the set FlowL(t, A) =

{FlowL(t, g) | g ∈ A} is a measurable subset of Ḣs
0([0, L]→ C) and

νL(FlowL(t, A)) = νL(A).

Though there are many similarities with the linear case, the proof of this result

is significantly more difficult. We outline the proof of this result, and refer the

reader to [9,12] for the details. Also, we note that Burq, Tzvetkov, and de Suzzoni

proved their results in the 3 dimensional, complexified setting, whereas we state

the results in the analogous results in the one dimensional, complexified setting.

Let χ ∈ C∞C (R→ R) such that χ ≡ 1 on (−1/2, 1/2) and is zero on R\(−1, 1).

Rather than using the sharp Fourier cut-offs DN as in the linear case, Burq and

Tzvetkov used the operator SN given by

SN

(
∞∑
n=1

cne

)
:=

∞∑
n=1

χ(n2/N2)cnen,L

Similarly to the linear case, we first examine a closely related finite dimensional

system, establish invariance of the corresponding Gibbs measure, and pass to an

21



infinite dimensional limit. To begin, consider the system


i∂tw − |∂r|w = SN

(
|∂r|−1 (SN Rew)3

r2

)
w : R× [0, L]→ C

w(t, 0) = w(t, L) = 0

with initial data

w(0, r) = w0(r) ∈ EN := span(e1,L, . . . , eN,L)

and Hamiltonian

H(w) =

∫ L

0

1

2
(|∂r|w)2 dr +

∫ L

0

1

4
(SN Rew)4r−2 dr.

Since this is a finite dimensional system and all of the terms in the Hamiltonian are

positive, we may use conservation of the Hamiltonian to repeatedly apply Picard

iteration to obtain global existence. Let us denote the initial data to solution map

w0(r) 7→ w(t, r) by

FlowN,L(t, w) := w(t, r).

We record the result below.

Lemma 1.11. FlowN,L is globally defined on EN .

Define µN,L as the image measure on EN given by the randomization

ω 7−→
N∑
n=1

an(ω) + ibn(ω)

nπ/L
en,L,

where ω is an element of some suitable probability space (Ω,P). Define νN,L via

dνN,L(g) :=
1

Z
exp

(
−1

4

∫ L

0

([SN(g)](r))4r−2 dr

)
dµN,L(g).
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These are the finite dimensional analogues of µL and νL, respectively. Again,

since we are working with a finite dimensional system, we may apply Liouville’s

theorem to prove the following result.

Lemma 1.12. νN,L is invariant under FlowN,L.

To pass to the infinite dimensional limit and obtain almost sure global existence

of solutions, we wish to estimate the measure of the sets on which we apply

contraction mapping. To this end, Burq and Tzvetkov proved the following result.

Lemma 1.13 (Burq–Tzvetkov, [9]). Let 2 ≤ p < 6 and s < 1
2
. There exists some

cp, cs, C > 0 such that

µL

({
g ∈ Ḣs

0

∣∣∣∣ ∥∥∥r 2−p
p e−it|∂r|g(r)

∥∥∥
LptL

p
r([0,2]×[0,L])

> λ

})
≤ Ce−cpλ

2

and

µL

({
g ∈ Ḣs

0

∣∣∣ ‖g‖Ḣs
0
> λ

})
≤ Ce−csλ

2

for every λ > 0.

As a sketch of the proof, we apply Markov’s inequality: for X a random

variable and for q > 0,

P(|X| > λ) ≤ E[|X|q]
λq

.

In our case, the random variable amounts a random Gaussian series, to which we

may apply Khinchin’s inequality 1.8. To close the argument, we then specialize

to an optimal choice of q, which, in this case, happens to be q = λ2/2.

In particular, we note that similar estimates hold for µN,L, where we may

choose the constants cp, cs, C to be independent of N . Using invariance of µN,L

under FlowN,L and the large deviation estimates, Burq and Tzvetkov iterated the

flow map to obtain long term growth estimates.
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Lemma 1.14. For every integer N ≥ 1, there exists a µN,L measurable set σiN ⊆

EN such that

1. µN,L(EN \ σiN) ≤ 2−i

2. For every i, N ∈ N, every w0 ∈ Σi
N ,

∥∥∥r 2−p
p e−it|∂r|w0(r)

∥∥∥
LptL

p
r([0,2]×[0,L])

+‖FlowN,L(t, w0)‖Ḣs
0([0,L]) .

√
i+ log(1 + |t|)

for all t ∈ R, where the implicit constant does not depend on i, N, nor w0.

Using the long term estimates on FlowN,L and the fact we may close a con-

traction mapping argument whenever

∥∥∥r 2−p
p e−it|∂r|w0(r)

∥∥∥
LptL

p
r([0,2]×[0,L])

+ ‖w0‖Ḣs
0
<∞,

Burq and Tzvetkov were able to establish assertions (1) and (2) in Theorem 1.10.

To establish invariance, we wish to show that FlowN,L converge uniformly, in

some sense, to FlowL on the sets in which we run the contraction mappings, which

is the content of the following result by de Suzzoni.

Lemma 1.15. Fix 0 < s < 1
2
, 4 < p < 6. Fix λ > 0 and let

A(λ) = {w0 ∈ Ḣs
0([0, L]→ C) :

∥∥∥r 2−p
p e−it|∂r|w0(r)

∥∥∥
LptL

p
r([0,2]×[0,L])

≤ λ, ‖w0‖Ḣs
0
≤ λ}.

Let σ := 3
2
− 4

p
. There exists a time T = T (D,L) such that for all ε > 0, there

exists N0 > 0 so that

‖FlowL(t, w0)− FlowN,L(t, w0)‖C0
t Ḣ

σ([−T,T ]×[0,L]) < ε

‖r−
2
p (FlowL(t, w0)− FlowN,L(t, w0))‖

LptL
2p
p−2
t ([−T,T ]×[0,L])

< ε

for all N ≥ N0 and for all w0 ∈ A(λ).
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Note that σ > 1
2
> s and so Ḣσ

0 ↪→ Ḣs
0 . Using this local uniform convergence

and measure theoretic considerations, de Suzzoni was able to prove assertion (3)

of Theorem 1.10.

1.4 Further Examples

Invariant measures for Hamiltonian PDEs were first considered by Lebowitz, Rose,

and Speer in [21], and refined by Bourgain in [1]. In these papers, they considered

a focusing, non-linear Schrödinger (NLS) equation on the circle and constructed

an L2-truncated Gibbs measure.

Indeed, the method used by Burq, Tzvetkov, and de Suzzoni was first pio-

neered by Bourgain: applying a frequency truncation (to obtain a finite dimen-

sional system), invoking Liouville’s theorem for Hamiltonian ODEs, and using

uniform probabilistic estimates to remove the truncations, Bourgain proved global

existence of solutions on a set of full measure and the invariance of the Gibbs mea-

sure under the NLS. Prior to Bourgain’s result, only local well-posedness results

were available in that setting.

One benefit of randomization is that one may work in systems with super-

critical scaling. Data with ill-behaved solutions generally lie in null sets of these

measures, and the invariance of the Gibbs measure can be used as a conservation

law to upgrade local in time existence to global existence. Indeed, the scaling that

preserves solutions of (1.20) also preserves the Ḣ
1
2 norm, and so µL is supported

on super-critical Sobolev spaces.

Furthermore, we may construct the Gibbs measure for −∂2
t u+∆Lu = |u|pu for

all p < 4. In [9], Burq and Tzvetkov show almost surely global existence on a set

of full Gibbs measure in the case p < 3. The analogous result in the case 3 ≤ p < 4

was proven by Bourgain and Bulut in [7] by working in the context of Xs,b spaces.

In the case p = 2, de Suzzoni established invariance of the Gibbs measure under
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the flow of the corresponding NLW. Bourgain and Bulut also analyzed the case of

the power type non-linear Schrödinger equation on the unit ball in two dimensions,

[5], and three dimensions, [6].

Another example is [26], where Nahmod, Pavlović, and Staffilani considered

the 2D and 3D Navier–Stokes equations with randomized initial data in super-

critical spaces. This is not in a Hamiltonian setting, and hence one cannot expect

invariant measures via Liouville’s theorem on the Fourier truncations. Neverthe-

less, they randomized about a fixed initial datum, and applied large deviation

estimates, to obtain almost sure global existence of weak solutions, with unique-

ness in the 2D case.

Another recent work is [28], where Nahmod and Staffilani proved almost sure

local well-posedness for a 3D quintic NLS on T3 with data below H1(T3), also in

a supercritical regime. Other works on finite volume spatial domains include [4],

where Bourgain used Wick ordering to construct an invariant Gibbs measure for a

2D NLS on the torus; [29], where Oh proved invariance of mean 0 white noise for

the 1D KdV equation on the circle; [11], where Colliander and Oh showed almost

sure global existence of solutions of 1D cubic NLS with initial datum in Hs(T),

− 1
12
< s < 0.

This approach was also applied to the Gross–Pitaevskii hierarchy on T3 and

closely related systems. In [37], Sohinger and Staffilani used randomization on the

collision (or contraction) operator to extend the space-time evolution estimates to

a lower regularity setting than in the deterministic case (cf., [17]).

Further works in the finite volume setting include [2,5,6,8,25,27,30,33,36,40,

42,43], etc, and references therein.

A case in which an infinite volume invariant measure is constructed is in [24],

where Mckean and Vaninsky constructed a Gibbs measure for a 1D NLW on the

half-line. Using techniques from stochastic analysis, they reduced the construction
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of such a measure to computing the asymptotics of the fundamental solution of

a parabolic PDE with time-independent coefficients. Indeed, the measure was

realized as a stationary diffusion on the half-line. They also constructed invariant

measures for analogous finite volume NLW and used finite speed of propagation

to upgrade to invariance of the infinite volume measure.

In contrast to [24], our measure does not correspond to a stationary diffusion.

The fact that we are not in a strictly one dimensional setting means that our

parabolic PDE has time dependent coefficients with singularities as we approach

the space-time origin (cf., (4.8)).

The fact that our finite volume systems are posed with zero boundary values

also makes the measure theory more delicate: generic paths in the support of the

finite volume measures are ignored by the infinite volume measure. This is in

contrast to [24], where the finite volume systems were considered with periodic

boundary values.

Further results for invariant measure in the infinite volume setting include the

works of de Suzzoni in [14], Cacciafesta and de Suzzoni in [10], and Rider in [34].

Other work in infinite volume settings include: [3], where Bourgain analyzed

a 1D periodic NLS with uniform estimates on arbitrarily large intervals; [39],

where Thomann randomized coefficients of eigenfunctions of a Schrödinger opera-

tor with a confining potential, and showed almost sure global existence of solutions

of power-type NLS on Rd; [23], where Lührmann and Mendelson fixed an initial

datum and randomized with respect to its Littlewood–Paley pieces; [13], where

de Suzzoni obtains almost sure global existence of NLW on R3 via the Penrose

transform. Note that these works do not consider (infinite volume) Gibbs mea-

sures.
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CHAPTER 2

Setup of the Infinite Volume Problem

Consider the 3D radial, defocusing, cubic, nonlinear wave equation (NLW)


−∂2

t u+ ∆u = u3,

u : Rt × R3
x → R,

u(t, x) = u(t, |x|) = u(t, r)

(2.1)

with Hamiltonian

H(u) =

∫
R3

1

4
|u|4 +

1

2
|∇u|2 +

1

2
|ut|2.

We wish to construct the Gibbs measure m∞ = m∞,1 ⊗ m∞,2 for this system,

which we informally write as

dm∞(u, ut) =
1

Z
exp (−H(u)) “d(u, ut)”

dm∞,1(u) =
1

Z1

exp

(
−
∫
R3

1
4
|u|4 + 1

2
|∇u|2

)
“du”

dm∞,2(ut) =
1

Z2

exp

(
−
∫
R3

1
2
|ut|2

)
“dut”

and show that the flow of (2.1) is defined for all time on the support of m∞, and

leaves m∞ invariant.

To prove this theorem, we again change variables to reduce down to a one

dimensional, complexified wave equation. As before,

v(t, r) := ru(t, r)
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and, respectively,

w(t, r) := v(t, r) + i|∂r|−1∂tv(t, r) = ru(t, r) + i|∂r|−1r∂tu(t, r)

is a bijective correspondence to solutions of


−∂2

t v + ∂2
rv = v3

r2
,

v : Rt × [0,∞)→ R,

v(t, 0) = 0

and, respectively,


−i∂tw + |∂r|w = −|∂r|−1

[
(Rew)3

r2

]
,

w : Rt × [0,∞)→ C,

w(t, 0) = 0

(2.2)

We shall construct the Gibbs measure for the latter system as a suitable infinite

volume limit of νL. To this end, we shall employ techniques from the theory of

stochastic processes. In particular, we seek to work in a space where evaluation

at a point is a well-defined linear functional. In particular, we first modify the

result of Burq, Tvetkov, and de Suzzoni to suit our purposes.

Ultimately, we shall state our main result in three parts:

• Theorem 2.1, which modifies the finite volume Gibbs measure

• Theorem 2.3, which constructs the infinite volume limit measure (note: we

shall actually prove a slightly expanded version, which is given in Theorem

4.6)

• Theorem 2.5, which proves the invariance of the infintie volume measure

under the flow of (2.2).
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We motivate these results in the subsequent sections, and we shall prove the

theorems in Chapters 3, 4, and 5, respectively. The construction and invariance

of the Gibbs measure for (2.1) can be recovered by applying the reverse change of

variables

w 7−→
(
r−1 Re(w), r−1|∂r| Im(w)

)
.

2.1 Revisiting the Burq–Tzvektov–de Suzzoni Example

Let us recall Definition 1.5. Then µL,1 and µL,2 both have the law of the random

series

fω(r) =
∞∑
n=1

an(ω)

nπ/L

√
2

L
sin(nπr/L), an(ω) ∼ NR(0, 1) i.i.d. (2.3)

By Mercer’s theorem (cf., [18] or [22]), the series almost surely converges uniformly

and has law of the standard Brownian bridge from (0, 0) to (L, 0) . Namely, fω(r)

is a Gaussian process in r of mean zero with

E[fω(r)fω(r′)] = r

(
1− r′

L

)
, 0 ≤ r ≤ r′ ≤ L. (2.4)

In particular, fω(r) is almost surely s-Hölder continuous for every s ∈ [0, 1
2
). It

follows that µL,1 and µL,2 are supported on

Cs
0([0, L]→ R) := {f : [0, L]→ R | f is s-Hölder continuous and 0 = f(0) = f(L)},

equipped with the usual Hölder norm

‖f‖Cs([0,L]) := sup
r∈[0,L]

|f(r)|+ sup
r,r′∈[0,L]
r 6=r′

|f(r)− f(r′)|
|r − r′|s

.

In particular, µL is supported on Cs
0([0, L]→ C). By mutual absolute continuity,

νL is also supported on Cs
0([0, L]→ C).
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We will show that (1.22) is locally well-posed in Cs
0([0, L]→ C), thus making

it an excellent space for the analysis of this random initial data problem.

Also, we slightly extend the measure theory in the following sense: we complete

the Borel σ-algebra on Cs
0([0, L] → C) with respect to the measure νL, and we

call a set νL-measurable if it is an element of this larger σ-algebra. By abuse of

notation, we also denote the extension of the measure to this larger σ-algebra by

νL. As we shall see in Chapter 5, this setting is convenient because for every Borel

set A ⊆ Cs
0([0, L]→ C) and for every 0 < R < L, the set

Ã =
{
f : [0, L]→ C | ∃g ∈ A such that g|[0,R] ≡ f |[0,R]

}
is not necessarily Borel, but is still νL-measurable. Indeed, we shall see that Ã is

analytic (i.e., a continuous image of a Borel set). Sets of this form arise naturally

when we seek to apply finite speed of propagation arguments.

The proof of the following modified result, as well as the discussion of the proof

method, is the content of Chapter 3.

Theorem 2.1. Let 1
3
< s < 1

2
, let L > 0. Then (1.22) is locally well-posed in

Cs
0([0, L]→ C). Let νL be as in (1.23). Then, there exists a Borel measurable set

ΩL ⊆ Cs
0([0, L]→ C) such that

1. νL(ΩL) = 1.

2. Each g ∈ ΩL admits a unique global, strong solution in Cs
0. Namely,

FlowL(t, g) is defined for all t ∈ R, and, for each T ∈ (0,∞), we have

FlowL(t, g) ∈ C0
t C

s
r ([−T, T ]× [0, L]→ C).

3. For each νL-measurable set A ⊆ ΩL and for each t ∈ R, the set

FlowL(t, A) := {FlowL(t, g) | g ∈ A}
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is also νL-measurable subset of Cs
0([0, L]→ C) and

νL(FlowL(t, A)) = νL(A).

Moreover, if A is Borel, then so is FlowL(t, A).

Remark. Observe that the scaling w 7→ wλ(t, r) := w(λt, λr) preserves solutions

of (1.22). Thus, scaling-invariant space is C0
r . It follows that Cs

r , with 1
3
< s < 1

2
,

are sub-critical spaces with respect to this scaling.

2.2 Defining the Infinite Volume Limit Measure

We turn to the infinite volume setting. Given that the finite volume measures

νL are supported on Cs
0([0, L] → C), we shall construct the infinite volume limit

measure as a Borel measure on the space

Cs
loc([0,∞)→ C) := {f : [0,∞)→ C | ‖f‖Cs([0,L]) <∞ for all L > 0},

where we equip this space with the metric

d(g1, g2) =
∞∑
n=1

2−n
‖g1 − g2‖Cs([0,n])

1 + ‖g1 − g2‖Cs([0,n])

(2.5)

as well as the induced metric topology and Borel structure. Recall,

Definition 2.2. Fix 0 < R <∞ and let Cs([0, R]→ C) be the space of s-Hölder

continuous functions on [0, R], equipped with the Hölder norm, the corresponding

norm topology, and the induced Borel σ-algebra. For 0 < R < L ≤ ∞, we define

the restriction map ρLR : Cs
0([0, L])→ Cs([0, R]) in usual manner:

ρLRf := f |[0,R].
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Define the (image) Borel measure νL|[0,R] on Cs([0, R]→ C) by

νL|[0,R](A) := νL((ρLR)−1(A))

for Borel measurable subsets A ⊆ Cs([0, R]→ C).

We say that a Borel measure ν∞ on Cs
loc([0,∞) → C) is an infinite volume

limit of {νL}L>0 if

lim
L→∞

νL|[0,R](A) = ν∞|[0,R](A),

for all A ⊆ Cs([0, R]→ C) Borel.

The proof of the following result, as well as the discussion of the proof method,

is the content of Section 4.

Theorem 2.3. Fix 0 ≤ s < 1
2
. There exists a unique Borel probablity measure

ν∞ on Cs
loc([0,∞) → C) such that for each R > 0 and for each Borel measurable

A ⊆ Cs([0, R]→ C),

lim
L→∞

νL|[0,R](A) = ν∞|[0,R](A). (2.6)

As before, νL|[0,R] and ν∞|[0,R] denote the (Borel, probability) image measures on

C0([0, R] → C) given by the image, under the restriction map g 7→ g|[0,R], of νL

and ν∞, respectively.

Moreover, for each L > 0, the measures νL|[0,R] and ν∞|[0,R] are mutually

absolutely continuous. Let FR denote the completion of the Borel σ-algebra on

Cs([0, R]) with respect to any of these measures. Then (2.6) holds for every A ∈

FR.

Remark. As mentioned before, we shall prove a slightly expanded version of this

result, which is expressed by Theorem 4.6.
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2.2.1 Comparison With the Linear System

Before we proceed, we illustrate why it was not possible to construct the Gibbs

measure for our non-linear system by appending a suitable Radon–Nikodym deriva-

tive to the Gibbs measure corresponding to the linear system.

Namely, consider the first order linear wave equation


−i∂tw + |∂r|w = 0,

w : Rt × [0,∞)→ C,

w(t, 0) = 0

(2.7)

Recall, the Gibbs measure µL for the linear wave equations on the interval [0, L] for

L <∞ were constructed by an appropriately randomizing the Fourier coefficients.

To do this, we needed an L2([0, L])-orthonormal basis of eigenfunctions of the

Laplacian. On the half-line [0,∞), there are no such L2 eigenfunctions of the

Laplacian. So, we require an alternate approach.

Recall (2.4), which is the covariance structure for the law of µL,1 and µL,2. If

we formally take L ↑ ∞, then we obtain the covariance structure

E[fω(r)fω(r′)] = min(r, r′),

which is precisely that of Brownian motion. We can rigorously establish this fact.

Fix 0 ≤ s < 1
2
. Let W1,W2 denote independent copies of Wiener measure on

Cs
loc([0,∞)→ R). In Section 4.6, we will show that, for every R > 0 and for every

Borel set A ⊆ Cs([0, R]→ R),

lim
L→∞

µL,j|[0,R](A) = Wj|[0,R](A)
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for j = 1, 2. In particular, define the Borel measure µ∞ on Cs
loc([0,∞)→ C) by

µ∞({g ∈ Cs
loc([0,∞)→ C) : Re(g) ∈ A1, Im(g) ∈ A2}) = W1(A1)W2(A2)

for Borel sets A1, A2 ⊆ Cs
loc([0,∞)→ R). Then we have

lim
L→∞

µL|[0,R](A) = µ∞|[0,R](A)

for every Borel set A ⊆ Cs([0, R]→ C).

Now, suppose we wish to construct the Gibbs measure for the non-linear wave

equation by the expression

1

Z
exp

(
−1

4

∫ ∞
0

(Re(g)(r))4r−2 dr

)
dµ∞(g). (2.8)

Note that [Re(g)](r) has the law of Brownian motion, which we denote by B(r).

Fix 0 < a < 1. The change of variables r 7→ a2r gives

∫ ∞
0

(B(r))4r−2 dr = a2

∫ ∞
0

(a−1B(a2r))4r−2 dr

By scaling invariance, a−1B(a2r) also has the law of Brownian motion and so

E
[
exp

(
−1

4

∫ ∞
0

(B(r))4r−2 dr

)]
= E

[
exp

(
−a

2

4

∫ ∞
0

(a−1B(a2r))4r−2 dr

)]
= E

[
exp

(
−a

2

4

∫ ∞
0

(B(r))4r−2 dr

)]
= E

[(
exp

(
−1

4

∫ ∞
0

(B(r))4r−2 dr

))a2]

Observe that exp
(
−1

4

∫∞
0

(B(r))4r−2 dr
)

is a random variable taking values in
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[0, 1]. Given 0 < a < 1, we have

exp

(
−1

4

∫ ∞
0

(B(r))4r−2 dr

)
≤
(

exp

(
−1

4

∫ ∞
0

(B(r))4r−2 dr

))a2
(2.9)

Since the expected values of these random variables is the same, it follows that we

must have almost sure equality in (2.9). In particular, both sides of (2.9) must be

almost surely zero or one. Since Brownian motion is almost surely not identically

zero, it follows that both sides of (2.9) must actually be zero. It follows that the

Radon–Nikodym derivative

exp

(
−1

4

∫ ∞
0

(Re(g)(r))4r−2 dr

)

is µ∞ almost surely 0, and thus the expression in (2.8) is ill-defined.

In particular, this proves that the measure ν∞ for the non-linear wave equation

is singular with respect to µ∞.

2.2.2 Setup of the Invariance Result

Recall, the one dimensional, complexified wave equation


−i∂tw + |∂r|w = −|∂r|−1

(
(Rew)3

r2

)
w(t, r) : Rt × [0,∞)→ C

w(t, 0) = 0

(2.10)

which we obtained from (2.1) via the change of variables u 7→ w(t, r) := ru(t, r) +

ir (|∂r|−1∂tu) (t, r). We make a precise definition of a strong solution of (2.10).

Definition 2.4 (Strong Solution for (2.10)). Let T ∈ [0,∞) and let g ∈ Cs
loc([0,∞)→

C). We say that w(t, r) : [−T, T ] × [0,∞) → C is a strong solution of (2.10) on

[−T, T ] with initial datum g if
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1. For each R > 0, we have w ∈ C0
t C

s
r ([−T, T ]× [0, R]→ C),

2. w(0, r) = g(r), and

3. w(t, r) obeys the corresponding Duhamel formula

w(t, r) =
[
e−it|∂r|g

]
(r)− i

∫ t

0

[
e−i(t−τ)|∂r|

|∂r|
Re

(
w(τ, ·)3

(·)2

)]
(r)dτ,

for each t ∈ [−T, T ].

Furthermore, if w is the unique strong solution on [−T, T ] with initial datum g,

then we write

Flow∞(t, g)(r) := w(t, r), |t| ≤ T. (2.11)

As with Theorem 2.1, we complete the Borel σ-algebra on Cs
loc([0,∞) → C)

with respect to the measure ν∞, and we call a set ν∞-measurable if it is an element

of this larger σ-algebra. By abuse of notation, we also denote the extension of the

measure to this larger σ-algebra by ν∞.

The proof of the following result, as well as the discussion of the proof method,

is the content of Section 5.

Theorem 2.5. Fix 1
3
< s < 1

2
. There exists a Borel measurable set Ω∞ ⊆

Cs
loc([0,∞)→ C) such that

1. ν∞(Ω∞) = 1;

2. Each g ∈ Ω∞ admits a unique global, strong solution: Flow∞(t, g) is defined

for all t ∈ R and, for each T > 0 and R > 0, we have

Flow∞(t, g)|[0,R] ∈ C0
t C

s
r ([−T, T ]× [0, R]→ C).
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3. For each ν∞-measurable subset A ⊆ Ω∞ and for each t ∈ R, the set

Flow∞(t, A) := {Flow∞(t, g) | g ∈ A}

is also a ν∞-measurable subset of Cs
loc([0,∞)→ C) and

ν∞(Flow∞(t, A)) = ν∞(A).

Moreover, if A is Borel, then so is Flow∞(t, A).
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CHAPTER 3

Finite Volume Invariant Measures

In this chapter, we prove Theorem 2.1. The main new ingredients are a local

well-posedness theory on Cs
0([0, L] → C), as well as some measure theoretic con-

siderations from Appendix A.

3.1 Local Well-Posedness in Cs, 1
3 < s < 1

2

We first establish the local well-posedness of (1.21) in Cs
0([0, L]→ R), as the free

propagator in this setting can be written down explicitly. Afterwards, we show

that the complexified wave equation (1.22) is locally well-posed in Cs
0([0, L]→ C).

To obtain explicit formulas for the linear evolution on [0, L] with Dirichlet

boundary values, we apply the usual odd reflections, and use d’Alembert’s formula.

For L ≥ 2, for 0 ≤ t ≤ 1, and for 0 < r < L, we have

[cos(t|∂r|)f ] (r) =



1
2
(f(r + t)− f(t− r)) r − t < 0,

1
2
(f(r + t) + f(r − t)) 0 ≤ r − t ≤ r + t ≤ L,

1
2

(f(r − t)− f(2L− r − t)) L < r + t

(3.1)
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and

[
sin(t|∂r|)
|∂r|

g

]
(r) =



1

2

∫ t+r

t−r
g(ρ) dρ r − t < 0,

1

2

∫ r+t

r−t
g(ρ) dρ 0 ≤ r − t ≤ r + t < L,

1

2

∫ 2L−r−t

r−t
g(ρ) dρ L ≤ r + t

(3.2)

with similar formulas when −1 ≤ t ≤ 0.

First, we establish some estimates on the linear propagator itself.

Lemma 3.1. Fix s ∈ [0, 1). Let f ∈ Cs
0([0, L]→ R). For 0 < T <∞, we have

[cos(t|∂r|)f ](r), [sin(t|∂r|)f ](r) ∈ C0
t C

s
r ([−T, T ]× [0, L]→ R).

Furthermore, there exists C = C(s) > 0 such that

‖[cos(t|∂r|)f ](r)‖C0
t C

s
r ([−T,T ]×[0,L]) ≤ C‖f‖Cs0 (3.3)

‖[sin(t|∂r|)f ](r)‖C0
t C

s
r ([−T,T ]×[0,L]) ≤ C‖f‖Cs0 . (3.4)

Also, for every t ∈ [−T, T ], we have

0 = [sin(t|∂r|)f ] (0) = [sin(t|∂r|)f ] (L) = [cos(t|∂r|)f ] (0) = [cos(t|∂r|)f ] (L)

Proof. The assertions for cos(t|∂r|) follow immediately from (3.1).

Observe that, by (3.1) and (3.2), we have

∂r

[
sin(t|∂r|)
|∂r|

f

]
(r) = [cos(t|∂r|)f ](r),
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and so ∥∥∥∥∂r [sin(t|∂r|)
|∂r|

f

]
(r)

∥∥∥∥
C0
t C

s
r ([−T,T ]×[0,L])

. ‖f‖Cs0

Now, the operator |∂r|(∂r)−1 is the finite volume Hilbert transform and, by Pri-

valov’s theorem (cf., [45]), is a bounded linear map from Cs([0, L]) to itself. Thus,

(3.4) follows.

Finally, recall that the Fourier series of Hölder continuous functions converge

uniformly to the original function. For fixed t, the function sin(t|∂r|)f is s-Hölder

continuous, and the Fourier series of sin(t|∂x|)f is still a sine series. Thus,

0 = [sin(t|∂x|)f ] (0) = [sin(t|∂x|)f ] (L).

We use Lemma 3.1 to establish a local well-posedness for the second order

equation (1.21). Similarly to Definition 1.7, we say that v(t, r) : [−T, T ]× [0, L]→

R is a strong solution of (1.21) on [−T, T ] with initial data (f1, f2) if

1. v(t, r) ∈ C0
t C

s
r ([−T, T ]× [0, L]→ R),

2. (v, vt)|t=0 = (f1, f2),

3. v(t, r) obeys the Duhamel formula

v(t, r) = [cos(t|∂r|)f1] (r) +

[
sin(t|∂r|)
|∂r|

f2

]
(r)− [K(v)](t, r),

where

[K(v)](t, r) :=

∫ t

0

(
sin(t− τ)|∂r|

|∂r|
[v(τ, ·)]3

(·)2

)
(r)dτ.

Proposition 3.2. Fix 1
3
< s < 1

2
and fix L > 2. Let f1 ∈ Cs

0([0, L]→ R) and let

f2 be a distribution supported on [0, L] such that |∂r|−1f2 ∈ Cs
0([0, L]→ R). There

exists T ∈ (0, 1), whose value depends on L, ‖f1‖Cs, ‖|∂r|−1f2‖Cs, and a unique

strong solution v(t, r) of (1.21) on [−T, T ] with initial data (f1, f2).
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Moreover,

‖v‖C0
t C

s
r ([−T,T ]×[0,L]→R) .s ‖f1‖Cs0 +

∥∥|∂r|−1f2

∥∥
Cs0

(3.5)

and for every σ ∈ [0, 1),

v(t, r)− [cos(t|∂r|)f1] (r)−
[

sin(t|∂r|)
|∂r|

f2

]
(r) ∈ C0

t C
σ
r ([−T, T ]× [0, L]→ R). (3.6)

Proof. We use the abbreviation C0
t C

s
r in place of C0

t C
s
r ([−T, T ] × [0, L] → R),

where T is a constant to be specified later. We want to show that the mapping

v(t, r) 7→ [cos(t|∂r|)f1] (r) +

[
sin(t|∂r|)
|∂r|

f2

]
(r)− [K(v)](t, r), (3.7)

admits a unique fixed point in C0
t C

s
r with zero boundary values by showing that

it is a contraction for sufficiently small T .

For (t, r) ∈ [−T, T ], we denote D(t, r) to be the domain of dependence from

(t, r). For example, if r − t < 0, then

D(t, r) = {(τ, ρ) | t− r ≤ τ ≤ t and r′ − t+ τ ≤ ρ ≤ t+ r′ − τ} ∪

{(τ, ρ) | 0 ≤ τ ≤ t− r and t− r′ − τ ≤ ρ ≤ t+ r′ − τ}.

We use two key estimates. Recalling u(t, 0) = 0, the first estimate is

|v(t, r)| ≤ rs‖v‖C0
t C

s
r
, (3.8)

which shall give us integrability in the Duhamel terms. Recalling 3s > 1, the

second estimate is

b3s − a3s .L b− a, 0 ≤ a ≤ b ≤ L (3.9)
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since the function f(x) = x3s is Lipschitz on bounded domains.

For the remainder of this proof, let us assume 0 ≤ r′ < r ≤ L. We treat only

the case t ≥ 0; the negative time case is similar.

Case 1, t ≤ r−r′
2

. In this case, D(t, r) ∩D(t, r′) = ∅. So, we simply use

|[K(v)](t, r)− [K(v)](t, r′)| ≤ |[K(v)](t, r)|+ |[K(v)](t, r′)| (3.10)

and estimate each term separately. We seek a bound of the form

|[K(v)](t, r)− [K(v)](t, r′)| .L ‖v‖3
C0
t C

s
r
t,

as we may then use the estimate t . t1−σ(r − r′)σ for every σ ∈ [0, 1). In

particular, specializing to σ = s and taking t sufficiently small will lead us

to the desired fixed point of (3.7). We only estimate [K(v)](t, r); the case

[K(v)](t, r′) is similar.

Subcase 1.1, r − t < 0. In particular, 0 < r < t. Then (3.2), (3.8), and (3.9) gives

|[K(v)](t, r)| .

[∫ t−r

0

∫ r+(t−τ)

(t−τ)−r
+

∫ t

t−r

∫ r+(t−τ)

r−(t−τ)

]
|v(τ, ρ)|3

ρ2
dρ dτ

. ‖v‖3
C0
t C

s
r

[∫ t−r

0

∫ r+(t−τ)

(t−τ)−r
+

∫ t

t−r

∫ r+(t−τ)

r−(t−τ)

]
ρ3s−2 dρ dτ

.s ‖v‖3
C0
t C

s
r

[
(t+ r)3s − (t− r)3s−2(r)3s︸ ︷︷ ︸

≤0

]
.s,L ‖v‖3

C0
t C

s
r
r

.s,L ‖v‖3
C0
t C

s
r
t
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Subcase 1.2, 0 ≤ r − t ≤ r + t ≤ L. Then (3.2), (3.8), and (3.9) gives

|[K(v)](t, r)| . ‖v‖3
C0
t C

s
r

∫ t

0

∫ r+(t−τ)

r−(t−τ)

ρ3s−2 dρ dτ

.s ‖v‖3
C0
t C

s
r

[
(r + t)3s − r3s + (r − t)3s − r3s︸ ︷︷ ︸

≤0

]
.s,L ‖v‖3

C0
t C

s
r
t

Subcase 1.3, L < r + t. In particular, L − r < t and r − t < L − t < 2L − r − t.

Then (3.2), (3.8), and (3.9) gives

|[K(v)](t, r)| . ‖v‖3
C0
t C

s
r

[∫ t−(L−r)

0

∫ 2L−r−(t−τ)

r−(t−τ)

+

∫ t

t−(L−r)

∫ r+(t−τ)

r−(t−τ)

]
ρ3s−2 dρ dτ

.s ‖v‖3
C0
t C

s
r

(
2(L3s − r3s) + (r − t)3s − (2L− r − t)3s︸ ︷︷ ︸

≤0

)
.s,L ‖v‖3

C0
t C

s
r
(L− r)

.s,L ‖v‖3
C0
t C

s
r
t.

Case 2, r−r′
2

< t. In this case, D(t, r) ∩D(t, r′) 6= ∅. Using (3.8), we have

∣∣[K(v)](t, r′)− [K(v)](t, r)
∣∣ ≤ ‖v‖3

C0
t C

s
r

∫∫
D(t,r)4D(t,r′)

ρ3s−2 dρ dτ, (3.11)

where A4B := (A\B)∪(B \A) denotes the symmetric difference set. Here,

we seek an estimate of the form

∫∫
D(t,r)4D(t,r′)

ρ3s−2 dρ dτ .s,L r − r′

as we may then use the estimate r − r′ . t1−σ(r − r′)σ for every σ ∈ (0, 1).

Subcase 2.1, 0 ≤ r′ − t and r + t ≤ L. The domain of dependence is sketched in
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(r′, t) (r, t)

τ

ρ

Figure 3.1: Subcase 2.1: shaded region is D(t, r)4D(t, r′).

Figure 3.1. In this case, D(t, r′)4D(t, r) ⊂ R1 ∪R2, where

R1 = {(τ, ρ) | 0 ≤ τ ≤ t and r′ + t− τ ≤ ρ ≤ r + t− τ},

R2 = {(τ, ρ) | 0 ≤ τ ≤ t and r′ − t+ τ ≤ ρ ≤ r − t+ τ}.

Using (3.9), we have

∫∫
R1

ρ3s−2 dρ dτ =

∫ t

0

∫ r+t−τ

r′+t−τ
ρ3s−2 dρ dτ

. −(r)3s + (r + t)3s + (r)3s − (r′ + t)3s

.L r − r′.

and

∫∫
R2

ρ3s−2 dρ dτ =

∫ t

0

∫ r−t+τ

r′−t+τ
ρ3s−2 dρ dτ

.s (r)3s − (r′)3s + (r′ − t)3s − (r − t)3s︸ ︷︷ ︸
≤0

.s,L r − r′.

Subcase 2.2, r′ − t < 0 ≤ r′+r
2
− t and r + t ≤ L. The domain of dependence is

sketched in Figure 3.2. In this case, D(t, r′)4D(t, r) ⊂ R1 ∪ R2 ∪ R3,
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t− r′

(r′, t) (r, t)
τ

ρ

Figure 3.2: Subcase 2.2: shaded region is D(t, r)4D(t, r′).

where

R1 = {(τ, ρ) | 0 ≤ τ ≤ t and r′ + t− τ ≤ ρ ≤ r + t− τ},

R2 = {(τ, ρ) | t− r′ ≤ τ ≤ t and r′ − t+ τ ≤ ρ ≤ r − t+ τ},

R3 = {(τ, ρ) | 0 ≤ τ ≤ t− r′ and t− r′ − τ ≤ ρ ≤ t+ r′ − τ}.

Similarly to Subcase 2.1, we have
∫∫

R1∪R2
ρ3s−2 dρ dτ .L r− r′. Using

(3.9) and that t ≤ r′+r
2

, we have

∫∫
R3

ρ3s−2 dρ dτ .
∫ t−r′

0

∫ t+r′−τ

t−r′−τ
ρ3s−2 dρ dτ

.s −(2r′)3s + (t+ r′)3s−(t− r′)3s︸ ︷︷ ︸
≤0

.s,L t− r′

.s,L r − r′.

Subcase 2.3, r′+r
2
− t < 0 ≤ r − t and r + t ≤ L. The domain of dependence is
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P

(r′, t) (r, t)

t− r′

τ

ρ

Figure 3.3: Subcase 2.3: shaded region isD(t, r)4D(t, r′), and P =
(
t− r+r′

2
, r−r

′

2

)
.

sketched in Figure 3.3. In this case, D(t, r′)4D(t, r) ⊂
⋃4
j=1Rj, where

R1 = {(τ, ρ) | 0 ≤ τ ≤ t and r′ + t− τ ≤ ρ ≤ r + t− τ},

R2 = {(τ, ρ) | t− r′ ≤ τ ≤ t and r′ − t+ τ ≤ ρ ≤ r − t+ τ},

R3 = {(τ, ρ) | t− r′+r
2
≤ τ ≤ t− r′ and 0 ≤ ρ ≤ r − r′},

R4 = {(τ, ρ) | 0 ≤ τ ≤ t− r′+r
2

and r − t+ τ ≤ ρ ≤ t− r′ − τ}.

Similarly to Subcase 2.1, we have
∫∫

R1∪R2
ρ3s−2 dρ dτ .L r− r′. Using

(3.9), we have

∫∫
R3

ρ3s−2 dρ dτ .
∫ t−r′

t− r′+r
2

∫ r−r′

0

ρ3s−2 dρdτ

.s,L r − r′.

Also, we have

∫∫
R4

ρ3s−2 dρ dτ .
∫ t− r

′+r
2

0

∫ t−r′−τ

r−t+τ
ρ3s−2 dρ dτ

.s −
(
r − r′

2

)3s

+ (t− r′)3s −
(
r − r′

2

)3s

+ (r − t)3s.

47



t− r′

t− r

(r′, t) (r, t)
τ

ρ

Figure 3.4: Subcase 2.4: shaded region is D(t, r)4D(t, r′).

Using (3.9) and the fact that t ≤ r means t− r
2
≤ r

2
, we have

−
(
r − r′

2

)3s

+ (t− r′)3s .L t−
r

2
− r′

2
.L r − r′.

Using (3.9) and the fact that −t < − r+r′

2
, we have

−
(
r − r′

2

)3s

+ (r − t)3s .L r − t−
r − r′

2
.L r − r′.

Subcase 2.4, r − t < 0 and r + t ≤ L. The domain of dependence is sketched in

Figure 3.4. In this case, D(t, r′)4D(t, r) ⊆
⋃4
j=1Rj, where

R1 = {(τ, ρ) | 0 ≤ τ ≤ t and r′ + t− τ ≤ ρ ≤ r + t− τ},

R2 = {(τ, ρ) | t− r′ ≤ τ ≤ t and r′ − t+ τ ≤ ρ ≤ r − t+ τ},

R3 = {(τ, ρ) | t− r ≤ τ ≤ t− r′ and 0 ≤ ρ ≤ r − r′},

R4 = {(τ, ρ) | 0 ≤ τ ≤ t− r and t− r′ − τ ≤ ρ ≤ t− r − τ}.

Similarly to Subcase 2.1, we have
∫∫

R1∪R2
ρ3s−2 dρ dτ .L r − r′. Sim-

ilarly to Subcase 2.3, we also have
∫∫

R3 ρ
3s−2 dρ dτ .L r − r′. Using
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(3.9), we have

∫∫
R4

ρ3s−2 dρ dτ .
∫ t−r

0

∫ t−r−τ

t−r′−τ
ρ3s−2 dρ dτ

.s −(r − r′)3s + (t− r′)3s − (t− r)3s

.s,L r − r′.

Subcase 2.5, 0 ≤ r′ − t and r+r′

2
+ t ≤ L < r + t. This case follows from reflecting

the domains in Subcase 2.2 across the line ρ = L/2 and noting that

ρ3s−2 is a decreasing function for ρ ≥ 0.

Subcase 2.6, 0 ≤ r′ − t and r′ + t ≤ L < r+r′

2
+ t, which follows from reflecting the

domains in Subcase 2.3 across the line ρ = L/2.

Subcase 2.7, r′ + t > L, which follows from reflecting the domains in Subcase 2.4

across the line ρ = L/2.

Combining all the results from these cases, we have

|K(v)(t, r)−K(v)(t, r′)| .L ‖v‖3
C0
t C

s
r
(r − r′)σt1−σ

for every σ ∈ (0, 1), which is to say,

∥∥[K(v)](t, r)
∥∥
C0
t C

σ
r ([−T,T ]×[0,L])

.L T
1−σ‖v‖3

C0
t C

s
r
. (3.12)

Using the fact that |a3 − b3| . |a − b|(|a|2 + |b|2), a similar computation shows

that

∥∥[K(v)](t, r)− [K(ṽ)](t, r)
∥∥
C0
t C

σ
r
.L T

1−σ‖v − ṽ‖C0
t C

s
r

(
‖v‖2

C0
t C

s
r

+ ‖ṽ‖2
C0
t C

s
r

)
.

(3.13)

Let us specialize to σ = s. Then, for T sufficiently small, the map in (3.7) is
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a self-mapping of the closed ball

{
v ∈ C0

t C
s
r | ‖v‖C0

t C
s
r
≤ (C + 1)

(
‖f1‖Cs0 +

∥∥|∂r|−1f2

∥∥
Cs0

)}
as well as a contraction. Here, C is the constant from Lemma 3.1. By contraction

mapping, (3.7) admits a unique fixed point v, which is also the desired strong

solution.

Proposition 3.3. Fix 1
3
< s < 1

2
and fix L > 2. For each Λ > 0, there exists

T ∈ (0, 1), whose value depends on s, L, and Λ, with the following properties:

1. Let g ∈ Cs
0([0, L] → C) such that ‖g‖Cs([0,L]) ≤ Λ. Then FlowL(t, g) is

defined for all t ∈ [−T, T ]. Furthermore,

‖FlowL(t, g)‖C0
t C

s
r ([−T,T ]×[0,L]) .s,L ‖g‖3

Cs([0,L]) + ‖g‖Cs([0,L]), (3.14)

and for each σ ∈ [0, 1),

FlowL(t, g)− e−it|∂r|g ∈ C0
t C

σ
r ([−T, T ]× [0, L]→ C). (3.15)

2. Let g be as above. If g̃ ∈ Cs
0([0, L]) is such that ‖g− g̃‖Cs([0,L]) is sufficiently

small, depending on Λ, s, L, then FlowL(t, g̃) also exists for all t ∈ [−T, T ]

and

‖FlowL(t, g)− FlowL(t, g̃)‖C0
t C

s
r ([−T,T ]×[0,L]) .s,L ‖g − g̃‖Cs(‖g‖2

Cs + ‖g̃‖2
Cs).

(3.16)

Proof. Let g ∈ Cs
0([0, L] → C) such that ‖g‖Cs([0,L]) ≤ Λ. Observe that the

pair (Re(g), |∂r| Im(g)) obeys the hypotheses of Proposition 3.2. Hence there

is a time interval [−T, T ], depending on Λ, s, L, and a unique strong solution

v(t, r) : [−T, T ] × [0, L] → R of (1.21) with initial data (Re(g), |∂r| Im(g)). By
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(3.5),

‖v‖C0
t C

s
r ([−T,T ]×[0,L]) .s,L ‖g‖Cs([0,L]). (3.17)

Observe that

|∂r|−1∂tv = − sin(t|∂r|) Re(g) + cos(t|∂r|) Im(g)−
∫ t

0

cos((t− τ)|∂r|)
|∂r|

(v(τ, ·))3

(·)2
dτ.

We claim that

(
|∂r|−1∂tv

)
(t, r) ∈ C0

t C
s
r ([−T, T ]× [0, L]→ C)

and

0 =
(
|∂r|−1∂tv

)
(t, 0) =

(
|∂r|−1∂tv

)
(t, L).

Assuming this claim, then

w := v + i|∂r|−1∂tv (3.18)

would be the unique1 strong solution of (1.22).

We write ‖F‖C0
t C

s
r

:= ‖F‖C0
t C

s
r ([−T,T ]×[0,L]→C). By Lemma 3.1, we have

‖− sin(t|∂r|) Re(g) + cos(t|∂r|) Im(g)‖C0
t C

s
r
. ‖g‖Cs([0,L]→C). (3.19)

Letting

[K̃(v)](t, r) :=

∫ t

0

[
cos((t− τ)|∂r|)

|∂r|
(v(τ, ·))3

(·)2

]
(r) dτ,

we shall prove [K̃(v)](t, r) ∈ C0
tW

1,p
r ([−T, T ]× [0, L]→ C) for large, but finite, p

and apply Sobolev embedding.

First, we realize |∂r|−1 as a convolution operator: for f ∈ Lp([0, L]→ C) with

p ∈ (1,∞], we extend it to [−L,L] via f(−r) = −f(r) for r ∈ [0, L], and then

1Uniqueness follows from (v, vt) = (Re(w), |∂r| Im(w)) and the uniqueness aspect of Propo-
sition 3.2.
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extend to R via 2L periodicity. Having this extension, then

[
|∂r|−1f

]
(r) = (f ∗ h)(r) =

∫ L

−L
f(r − ρ)h(ρ) dρ, (3.20)

where

h(r) =
∞∑
n=1

(nπ/L)−1 cos(nπr/L) = Re
(
log(1− eiπr/L)

)
.

Note that h(r) ∈ Lq([−L,L]→ C) for every q ∈ [1,∞).

Next, we check boundary conditions. By (3.8), we have

‖(v(t, r))3r−2‖C0
t L

p
r([−T,T ]×[0,L]) .p ‖v‖3

C0
t C

s
r
. (3.21)

for every p ∈ [1, 1
2−3s

). Given (3.20), (3.21), and the fact that both cos(nπ(−ρ)/L)

and cos(nπ(L− ρ)/L) = (−1)n cos(nπρ/L) are even in ρ, we have

[
|∂r|−1 (v(t, ·))3

(·)2

]
(0) = 0 =

[
|∂r|−1 (v(t, ·))3

(·)2

]
(L)

for all t. Given (3.1), it follows that 0 = [K̃(v)](t, 0) = [K̃(v)](t, L), as well.

In view of (3.1), we also have

∥∥∥∥[cos((t− τ)|∂r|)
(v(τ, ·))3

(·)2

]
(r)

∥∥∥∥
C0
τL

p
r([0,t]×[0,L])

. ‖v‖3
C0
t C

s
r
.

for every t. By Hölder’s inequality,

∫ t

0

∫ L

−L
|h(r − ρ)|

∣∣∣∣[cos((t− τ)|∂r|)
(v(τ, ·))3

(·)2

]
(ρ)

∣∣∣∣ dρ dτ .L ‖v‖3
C0
t C

s
r
, (3.22)

where we extend the integrands from [0, L] to R in the manner above. Hence,

∥∥∥[K̃(v)](t, r)
∥∥∥
C0
t C

0
r ([−T,T ]×[0,L])

. ‖v‖3
C0
t C

s
r
. (3.23)
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Furthermore, by Fubini’s Theorem, we may also write

[K̃(v)](t, r) =
[
|∂r|−1F (t, ·)

]
(r) (3.24)

where

F (t, r) :=

∫ t

0

[
cos((t− τ)|∂r|)

(v(τ, ·))3

(·)2

]
(r) dτ.

If 0 ≤ r − t < r + t ≤ L, then (3.1) and (3.8) gives

|F (t, r)| .
∫ t

0

∣∣∣∣(v(τ, r + (t− τ))3

(r + (t− τ))2

∣∣∣∣+

∣∣∣∣(v(τ, r − (t− τ))3

(r − (t− τ))2

∣∣∣∣ dτ
. ‖v‖3

C0
t C

s
r

∫ t

0

(r + (t− τ))3s−2 + (r − (t− τ))3s−2 dτ

.s,L ‖v‖3
C0
t C

s
r
.

When r − t < 0 or when r + t > L, we may similarly show |F (t, r)| .s,L ‖v‖3
C0
t C

s
r
,

and thus

‖F (t, r)‖C0
t C

0
r
.s,L ‖v‖3

C0
t C

s
r
. (3.25)

Finally, the operator ∂r|∂r|−1 (i.e., finite volume Hilbert transform) is a bounded

linear operator from Lpr([0, L]) to itself for every p ∈ [1,∞). Thus, (3.23), (3.24),

and (3.25) gives

∥∥∥[K̃(v)](t, r)
∥∥∥
C0
tW

1,p
r ([−T,T ]×[0,L])

.p,L ‖v‖3
C0
t C

s
r

(3.26)

for every p ∈ [1,∞). By Sobolev embedding, we have

K̃(v) ∈ C0
t C

σ
r ([−T, T ]× [0, L]→ C) (3.27)

for every σ ∈ [0, 1) and

∥∥∥[K̃(v)](t, r)
∥∥∥
C0
t C

σ
r ([−T,T ]×[0,L])

.σ,L ‖v‖3
C0
t C

s
r
. (3.28)
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Specializing to σ = s and combining (3.17), (3.19), (3.28), this proves

‖w‖C0
t C

s
r
. ‖g‖3

Cs + ‖g‖Cs .

In particular, we have established (3.14) and that w is the unique strong solution

of (1.22) with initial data g. (3.15) follows from (3.6) and (3.27).

The second part of the proposition follows from the fact that

|a3 − b3| . |a− b|(|a|2 + |b|2)

and arguing as above (and replacing T by T/2, if necessary).

An immediate corollary is the following continuity result.

Corollary 3.4. Let L > 2 and let 0 ≤ R ≤ L − 2. Let gk ∈ Cs
0([0, L] → C),

1 ≤ k ≤ ∞, such that each gk admits a unique strong solution of (1.22) for |t| ≤ 1.

If

lim
k→∞
‖gk − g∞‖Cs([0,R+1]) = 0,

then

lim
k→∞
‖FlowL(t, gk)− FlowL(t, g∞)‖C0

t C
s
r ([−1,1]×[0,R]) = 0. (3.29)

Furthermore, if

lim
k→∞
‖gk − g∞‖Cs([0,L]) = 0,

then

lim
k→∞
‖FlowL(t, gk)− FlowL(t, g∞)‖C0

t C
s
r ([−1,1]×[0,L]) = 0. (3.30)

Proof. For each λ ∈ [0, L − 1], we define the “linear cut-off” operator ΨR :
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Cs
0([0, L])→ Cs

0([0, L]) via

[Ψλg](r) =


g(r) 0 ≤ r ≤ λ,

g(λ)(λ+ 1− x) λ ≤ r ≤ λ+ 1,

0 λ+ 1 ≤ r ≤ L.

Indeed,

‖Ψλg‖Cs0([0,L]) .s,L ‖g‖Cs0([0,L]) (3.31)

where the implicit constant is independent of the choice of λ. Also, we clearly

have

lim
k→∞
‖ΨR+1gk −ΨR+1g∞‖Cs([0,L]) = 0. (3.32)

Letting

Λ := ‖FlowL(t, g∞)‖C0
t C

s
r ([−1,1]×[0,L]),

then (3.31) gives

‖ΨR+1g∞‖Cs([0,L]) .s,L ‖g∞‖Cs([0,L]) ≤ Λ.

By Proposition 3.3, there exists a time T , depending upon s, L, and Λ, such that

FlowL(t,ΨR+1g∞) ∈ C0
t C

r
s ([−T, T ]× [0, L]→ C). Proposition 3.3 also gives

lim
k→∞
‖FlowL(t,ΨR+1gk)− FlowL(t,ΨR+1g∞)‖C0

t C
r
s ([−T,T ]×[0,L]) = 0.

By finite speed of propagation,

lim
k→∞
‖FlowL(t, gk)− FlowL(t, g∞)‖C0

t C
r
s ([−T,T ]×[0,R+1−T ]) = 0.

We now seek to iterate the argument.
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As above, we have

‖ΨR+1−T FlowL(T, g∞)‖Cs([0,L]) .s,L ‖FlowL(T, g∞)‖Cs([0,L]) ≤ Λ

and

lim
k→∞
‖ΨR+1−T FlowL(T, gk)−ΨR+1−T FlowL(T, g∞)‖Crs ([0,L]) = 0.

Thus, we may argue as above, using Proposition 3.3, to conclude that

lim
k→∞
‖FlowL(t, gk)− FlowL(t, g∞)‖C0

t C
r
s ([0,2T ]×[0,R+1−2T ]) = 0.

We may iterate this argument approximately 2b1/T c times, using the value Λ as

a persistent bound, to establish (3.29). To prove (3.30), we argue as above, again

using Λ as a persistent bound, but without using the operator ΨR.

3.2 Proof of Theorem 2.1

By Theorem A.3, the set Cs
0([0, L] → C) is a Borel subset of Ḣs

0([0, L] → C)

and the Borel σ-algebras on Cs
0([0, L]→ C) generated by the s-Hölder norm and

by the Sobolev norm must agree. Recall from the discussion in Section 2.1 that

νL(Cs
0([0, L])) = 1.

Let ΠL be as in Theorem 1.10, then ΠL∩C0,s
0 ([0, L]→ C) has full νL measure.

By Theorem 1.10, the set

ΩL :=
⋂
t∈Q

FlowL (t,ΠL ∩ Cs
0)

is a well-defined Borel subset of Cs
0([0, L]→ C) with νL measure 1. This gives the

first assertion of Theorem 2.1.

For the second assertion, let T ∈ (0,∞) and let g ∈ ΩL. By Theorem 1.10,
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FlowL(t, g) is defined globally in time and we have FlowL(t, g) ∈ C0
t Ḣ

s
0([−T, T ]×

[0, L]→ C). The fact that FlowL(t, g) ∈ C0
t C

s
r ([−T, T ]× [0, L]→ C) follows from

Proposition 3.3 and the definition of ΩL.

The fact that FlowL preserves Borel measurability follows from Theorem 1.10

and Theorem A.3. Moreover, by Theorem 1.10, FlowL preserves the measure of

all Borel sets.

Finally, let A ⊆ Cs
0([0, L] → C) be νL-measurable with νL(A) = 0. Recalling

Proposition A.7, for every n > 0, there exists an open set Un ⊃ A such that

νL(Un) < 1
n
. By the previous paragraph, FlowL(t, Un) is Borel measurable with

νL(FlowL(t, Un)) < 1
n
. It follows that

⋂∞
n=1 FlowL(t, Un) is a Borel set of measure

0 which contains νL(FlowL(t, A)). Thus νL(FlowL(t, A)) is νL-measurable with

measure 0. As every νL-measurable set is the union of a Borel set and a νL-null

set, Theorem 2.1 follows.
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CHAPTER 4

Construction of the Infinite Volume Measure

In this chapter, we prove a lengthier version Theorem 2.3, which we express in

Theorem 4.6.

Recall the definition of the (finite volume) measures µL, µL,1, and µL,2 from

Definition 1.5 and recall the definition of νL from Proposition 1.9. Also recall the

definition of the infinite volume limit measure from Defintion 2.2.

To construct ν∞, we shall separate νL into its “real” and “imaginary” com-

ponents and compute the corresponding infinite volume limit of each. Namely,

let

dνL,1(f) :=
1

ZL
exp

(
−1

4

∫ L

0

|f(r)|4r−2 dr

)
dµL,1(f) (4.1)

and let

νL,2 = µL,2. (4.2)

Then the connection between νL, νL,1, νL,2 is as follows: for Borel measurable

A1, A2 ⊆ Ḣs
0([0, L]→ R),

νL({g | Re(g) ∈ A1, Im(g) ∈ A2}) = νL,1(A1)νL,2(A2). (4.3)

After constructing the infinite volume limits of νL,1 and νL,2 separately, we shall

piece these limit measures back together in a way similar to (4.3).

Ultimately, this construction will follow from an analysis of the long-time

asymptotics of the fundamental solution of a particular parabolic PDE (cf., Def-
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inition 4.5 and (4.8) below). We reduce the measure theoretic problem to the

parabolic PDE computation in the following manner: first observing the equiv-

alence of the Borel and the cylinder σ-algebras (see Definition 4.1 below) on

Cs
0([0, L] → C) and on Cs

loc([0,∞) → C), and then seeking to utilize the Kol-

mogorov consistency and continuity theorem.

Definition 4.1. Let Λ = C or R. Let I ⊆ R be an interval and let X be a subset

of ΛI := {f : I → Λ}. The cylinder set σ-algebra on X is the σ-algebra generated

by sets of the form

{f ∈ X | f(r) ∈ B}

where r ∈ I and B ⊆ Λ is Borel. We say that a cylinder set probability measure

µ on X is supported on a cylinder measurable subset A ⊆ X if µ(A) = 1.

Proposition 4.2. Let Λ = C or R. The Borel and cylinder σ-algebras on

Cs
0([0, L]→ Λ) coincide. Also, endow Cs

loc([0,∞)→ Λ) with the metric

d(f, g) =
∞∑
n=1

2−n
‖f − g‖Cs([0,n])

1 + ‖f − g‖Cs([0,n])

(4.4)

and the induced metric topology. Then Cs
loc([0,∞) → Λ) is a Polish space (i.e.,

separable, completely metrizable). Furthermore, the Borel σ-algebra generated by

(4.4) and the cylinder σ-algebra on Cs
loc([0,∞)→ Λ) coincide.

Remark. The full strength of the fact that Cs
loc([0,∞)→ C) is Polish will not be

used until Section 5. We record the result for convenience in the following proof.

Proof. Note that convergence in the Cs
0([0, L] → C) norm implies uniform con-

vergence, and hence point-wise convergence. It follows that evaluation at a point

is continuous with respect to this norm, which then implies that the cylinder

σ-algebra is contained in the Borel σ-algebra on Cs
0([0, L]→ C).
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For the reverse containment, let us fix f0 ∈ Cs
0([0, L]→ C) and λ > 0. Then

BL(f0, λ) := {f ∈ Cs
0([0, L]→ C) | ‖f − f0‖Cs([0,L]) ≤ λ}

=
⋂

r,r′∈Q∩[0,L],
r′≤r

{f |
∣∣[f(r)− f0(r)]− [f(r′)− f0(r′)]

∣∣ ≤ λ(r − r′)s}

=
⋂

r,r′∈Q∩[0,L],
r′≤r

{
f | f(r′) ∈ C, f(r) ∈ BC

(
f(r′) + f0(r′)− f0(r), λ(r − r′)s

)}
,

which is a countable intersection of cylinder sets. Therefore,

BL(f0, λ) := {f | ‖f − f0‖Cs([0,L]) < λ} =
∞⋃
k=1

BL(f0, λ(1− 2−k)),

from which it follows that every Borel subset of Cs
0([0, L] → C) is cylinder mea-

surable.

Fix n ∈ N and recall that Cs([0, n] → C) is Polish. Let {fn,m | m ∈ N} be a

countable dense subset of Cs([0, n]→ C). We define

f̃n,m(r) =

 fn,m(r) if r ∈ [0, n]

fn,m(n) if r ∈ (n,∞)

Then {f̃n,m | n,m ∈ N} is a countable dense subset of Cs
loc([0,∞)→ C).

Also, a Cauchy sequence in Cs
loc([0,∞)→ C) must also be Cauchy with respect

to each semi-norm ‖ · ‖Cs([0,n]). Completeness of Cs
loc([0,∞) → C) then follows

from the completeness of Cs([0, n]→ C).

Note that convergence in the metric d implies local uniform convergence, and

hence point-wise convergence. Similarly to above, the cylinder σ-algebra is hence

contained in the Borel σ-algebra induced by d.

Arguing as above shows that, for n ≥ 1, for f0 ∈ Cs
loc([0,∞) → C) and for
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λ > 0,

Bn(f0, λ) := {f ∈ Cs
loc([0,∞)→ C) | ‖f − f0‖Cs([0,n]) < λ} (4.5)

is also cylinder measurable. As open sets of the form (4.5) constitute a sub-

basis for the topology on Cs
loc([0,∞) → C) and this space is separable, it follows

that every open ball (and hence every Borel set) is cylinder measurable. Finally,

observe that all of the arguments also hold if we replace C by R.

To express the Kolmogorov theorem, we first recall a definition.

Definition 4.3. Let Λ = C or R. Let I be an infinite index set, and for each

finite sub-index A ⊆ I, let PA be some Borel probability measure on Λ|A|. We

say that the collection {PA}A⊆I,|A|<∞ is a consistent family of finite dimensional

distributions indexed on I if, for every finite A ⊆ I and every r ∈ I \ A, we have

PA(B) = PA∪{r}(B × Λ)

for every Borel set B ⊆ Λ|A|.

The proof of the Kolmogorov theorem be found in [32] and in [38].

Theorem 4.4 (Kolmogorov Continuity and Consistency). Let Λ = C or R. Let

{Pr1,...,rn} be some consistent family of finite dimensional distributions indexed on

some interval I ⊆ R. Then there exists a unique (cylinder) probability measure P

on ΛI = {f : I → Λ} such that for Borel sets B1, . . . , Bn ⊆ Λ and for r1, . . . , rn ∈

I,

P (f(rj) ∈ Bj, j = 1, . . . , n) = Pr1,...,rn(B1 × · · · ×Bn).

Let β, γ > 0. If, for each compact sub-interval K ⊆ I, there exists a CK < ∞

such that for all r, s ∈ K,

EP
[
|f(r)− f(s)|β

]
≤ CK |r − s|1+γ,
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then P is supported on C0
loc(I → Λ). Furthermore, for every 0 ≤ s < γ/β, P is

also supported on Cs
loc(I → Λ).

In order to apply Kolmogorov’s theorem to construct the infinite volume Gibbs

measure, denoted ν∞, we shall reduce the problem to computing the asymptotics

of the fundamental solution of a certain parabolic PDE. The main tool used in

this reduction is a multi-time Feynman–Kac formula (cf., Theorem B.3).

Definition 4.5. Let C1(r, x), C2(r, x), and C3(r, x) be functions from [0,∞)×R

to R and consider the equation

Lφ := −∂rφ+ C1(r, x)∂2
xφ+ C2(r, x)∂xφ+ C3(r, x)φ = 0.

Let φ(r, x; s, y) be a function on the following domain: x, y ∈ R, s ≥ 0, and r > s.

We say that φ is the fundamental solution of Lφ = 0 at (s, y) if it obeys both of

the following conditions:

1. φ is continuously differentiable once in r and twice in x and satisfies, as a

function of r and x, the equation Lφ = 0 (in the classical sense).

2. limr↓s φ(r, x; s, y) = δx−y as linear functionals on C0(R): for f ∈ C0(R),

lim
r↓s

∫
R
φ(r, x; s, y)f(x) dx = f(y). (4.6)

If φ(r, x; s, y) is the fundamental solution of Lφ = 0 at every (s, y) ∈ R≥0 × R,

then we simply say that φ is the fundamental solution of Lφ = 0.

For example, the heat kernel

φ0(r, x; s, y) :=
1√

2π(r − s)
exp

(
−(x− y)2

2(r − s)

)
(4.7)

is the fundamental solution of the heat equation −∂rφ0 = 1
2
∂2
xφ0.
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Recalling the definitions of νL, νL,1, and νL,2 in (1.23), (4.1), and (4.2). We

now state the main result of this chapter.

Theorem 4.6. 1. There exists a (strictly positive) function φ(r, x; s, y) which

is the fundamental solution of

−∂rφ+
1

2
∂2
xφ−

1

4

x4

r2
φ = 0 (4.8)

at each (s, y) ∈ (0,∞)× R and at (s, y) = (0, 0).

2. For each L > 1, the measure νL,1 obeys the following law: let 0 < r1 < · · · <

rN < L and let B1, . . . , BN ⊆ R be Borel sets, then, with φ as above,

PνL,1(f(rj) ∈ Bj, j = 1, . . . , N)

=

∫
B1

· · ·
∫
BN

φ(L, 0; rN , xN)

φ(L, 0; 0, 0)

N∏
j=2

φ(rj, xj; rj−1, xj−1)φ(r1, x1; 0, 0) dxn · · · dx1.

3. There is a positive, bounded, continuous function F (s, y) : (0,∞)× R→ R

such that, for fixed s,

lim
L→∞

∥∥∥∥φ(L, 0; s, y)

φ(L, 0; 0, 0)
− F (s, y)

∥∥∥∥
C0
y

= 0.

4. There exists a unique cylinder probability measure ν∞,1 on C0
loc([0,∞)→ R)

such that for 0 < r1 < · · · < rN and for Borel sets B1, . . . , BN ⊆ R,

Pν∞,1(f(rj) ∈ Bj, j = 1, . . . , N)

=

∫
B1

· · ·
∫
BN

F (rN , xN)
N∏
j=2

φ(rj, xj; rj−1, xj−1)φ(r1, x1; 0, 0) dxN · · · dx1.

Furthermore, for every s ∈ [0, 1
2
), ν∞,1 is supported on Cs

loc([0,∞)→ R).

5. Fix s ∈ [0, 1
2
). Let 1 < R < L and let ν∞,1|[0,R] and νL,1|[0,R] denote the image
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measure (or push-froward measure) of ν∞,1 and νL,1, resp., on Cs([0, R] →

R) under the restriction map f 7→ f |[0,R]. Then ν∞,1|[0,R] and νL,1|[0,R] are

mutually absolutely continuous, with Radon–Nikodym derivative

dνL,1|[0,R]

dν∞,1|[0,R]

(f) =
φ(L, 0;R, f(R))

F (R, f(R))φ(L, 0; 0, 0)
.

For every Borel subset A ⊆ C0([0, R]→ R), we have

lim
L→∞

νL,1|[0,R](A) = ν∞,1|[0,R](A). (4.9)

6. Let W denote the Wiener measure on Cs
loc([0,∞)→ R). Let ν∞ be the Borel

probability measure on Cs
loc([0,∞)→ C) given by

ν∞({g | Re(g) ∈ A1, Im(g) ∈ A2}) := ν∞,1(A1)W (A2) (4.10)

for Borel measurable sets A1, A2 ⊆ Cs
loc([0,∞)→ R).

Let 1 < R < L. Then ν∞|[0,R] and νL|[0,R] are mutually absolutely continuous

measures on Cs([0, R] → C). For every Borel subset A ⊆ Cs([0, R] → C),

we have

lim
L→∞

νL|[0,R](A) = ν∞|[0,R](A). (4.11)

Furthermore, ν∞ is the unique probability measure which obeys (4.11).

Let FR denote the completion of the Borel σ-algebra on Cs([0, R]) with re-

spect to any of these measures. Then (4.11) holds for every A ∈ FR.

We will break up the proof of Theorem 4.6 into several sections.
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4.1 Theorem 4.6, Part 1: The Parabolic PDE

The main difficulty in constructing a fundamental solution of (4.8) lies with the

coefficient −1
4
x4

r2
. It is neither bounded in x nor is it uniformly Hölder continuous.

For x 6= 0, this coefficient also goes to −∞ point-wise as r goes to 0.

To handle these issues, we apply suitable cut-offs. For real numbers a, b ∈ R,

let

a ∨ b := max(a, b) and a ∧ b := min(a, b).

Let us consider the cut-off equations

Lnφ := −∂rφ+
1

2
∂2
xu−

1

4

x4 ∧ n
r2 ∨ 1

n

φ = 0, n = 1, 2, . . . (4.12)

For each n ∈ N, it is not hard to see that the coefficient −1
4
x4∧n
r2∨1/n

is bounded and

uniformly Hölder continuous in x (indeed, Lipschitz). By the parametrix method

(cf., [16, pg. 14–20] or [20]) there exists a there exists a unique fundamental

solution φn(r, x; s, y) of the cut-off PDE Lnφ = 0 at all (s, y) ∈ [0,∞) × R and

obeys the Duhamel formula

φn(r, x; s, y) (4.13)

= φ0(r, x; s, y)− 1

4

∫ r

s

∫
R
φ0(r, x; ρ, w)

w4 ∧ n
ρ2 ∨ 1

n

φn(ρ, w; s, y) dw dρ.

Furthermore, φn > 0 for each n ∈ N. Note that φ0 denotes the standard heat

kernel (cf., (4.7)), which is consistent with (4.12).

Lemma 4.7. Let φn be as above. Then

φ0 ≥ φ1 ≥ φ2 ≥ · · · ≥ 0. (4.14)
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Furthermore, the function

φ(r, x; s, y) := lim
n→∞

φn(r, x; s, y) (4.15)

is well defined and obeys the estimate

0 ≤ φ(r, x; s, y) ≤ φ0(r, x; s, y) (4.16)

as well as the Duhamel formula

φ(r, x; s, y) = φ0(r, x; s, y)− 1

4

∫ r

s

∫
R
φ0(r, x; ρ, w)

w4

ρ2
φ(ρ, w; s, y) dw dρ (4.17)

for (s, y) = (0, 0) or (s, y) ∈ (0,∞)×R. Moreover, φ is the fundamental solution

of (4.8) at (s, y) = (0, 0) and all (s, y) ∈ (0,∞)× R. Finally, we have φ > 0.

Proof. Observe that r2 ∨ 1
n
≥ r2 ∨ 1

n+1
and x4 ∧ n ≤ x4 ∧ (n+ 1). It follows that,

for n ∈ N,

−x
4 ∧ (n+ 1)

r2 ∨ 1
n+1

≤ −x
4 ∧ n
r2 ∨ 1

n

.

By the comparison principle (cf., [16, p. 45-46]), we have (4.14). As decreasing

sequences that are bounded below must tend to a limit, the function φ given by

(4.15) is well-defined and clearly obeys (4.16).

To establish the Duhamel formula, we first recall a heat semi-group-like iden-

tity. Let B(x, y) = Γ(x)Γ(y)
Γ(x+y)

be the beta function, and let λ > 0. For −∞ < α, β <

3
2
, we recall that

∫ r

s

∫
R
(r − ρ)−α exp

(
−λ|x− w|

2

2(r − ρ)

)
(ρ− s)−β exp

(
−λ|w − y|

2

2(ρ− s)

)
dw dρ (4.18)

=

(
2π

λ

)1/2

B(3
2
− α, 3

2
− β) · (r − s)

3
2
−α−β exp

(
−λ|x− y|

2

2(r − s)

)
.

Indeed, the proof of this identity can be found in [16, pg. 15].

66



We first consider the case (s, y) = (0, 0). For each n, (4.14) gives

w4 ∧ n
ρ2 ∨ 1

n

φn(ρ, w; 0, 0) .
1

ρ1/2

[
w4

ρ2
exp

(
−w

2

2ρ

)]
(4.19)

.
1

ρ1/2
exp

(
−w

2

8ρ

)
.

Thus, (4.18) gives

∣∣∣∣ ∫ r

0

∫
R
φ0(r, x; ρ, w)

w4 ∧ n
ρ2 ∨ 1

n

φn(ρ, w; 0, 0) dwdρ

∣∣∣∣ (4.20)

.
∫ r

0

∫
R

exp
(
− (x−w)2

8(r−ρ)

)
(r − ρ)1/2

exp
(
−w2

8ρ

)
ρ1/2

dwdρ

.
√
r exp

(
−x

2

8r

)
,

where the implicit constants are independent of n. Thanks to (4.19), dominated

convergence implies that the first integral in (4.20) converges as n goes to +∞.

Using (4.13) and (4.15), we have

φ(r, x; 0, 0) = lim
n→∞

φn(r, x; 0, 0)

= φ0(r, x; 0, 0)− 1

4

∫ r

0

∫
R
φ0(r, x; ρ, w)

w4

ρ2
φ(ρ, w; 0, 0) dw dρ,

which establishes (4.17) in the case (s, y) = (0, 0).

We consider the case (s, y) ∈ (0,∞) × R. For each n ∈ N and ρ > s, (4.14)

gives

w4 ∧ n
ρ2 ∨ 1

n

φn(ρ, w; s, y) ≤ w4

ρ2

1

(ρ− s)1/2
exp

(
−(w − y)2

2(ρ− s)

)
(4.21)

.
1 + y4

(ρ− s)1/2

(
1

ρ2
+

(w − y)4

(ρ− s)2

)
exp

(
−(w − y)2

2(ρ− s)

)
.s,y

1

(ρ− s)1/2
exp

(
−(w − y)2

8(ρ− s)

)
.
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Thus, applying (4.18) gives

∣∣∣∣ ∫ r

s

∫
R
φ0(r, x; ρ, w)

w4 ∧ n
ρ2 ∨ 1

n

φn(ρ, w; s, y) dw dρ

∣∣∣∣ .y,s e
− (x−y)2

8(r−s)
√
r − s. (4.22)

Again, the estimate (4.22) is uniform in n. Using (4.13), (4.14), and (4.15),

dominated convergence gives

φ(r, x; s, y) = lim
n→∞

φn(r, x; s, y)

= φ0(r, x; s, y)− 1

4

∫ r

0

∫
R
φ0(r, x; ρ, w)

w4

ρ2
φ(ρ, w; s, y) dw dρ,

which establishes (4.17) in the case (s, y) ∈ (0,∞)× R.

An immediate corollary of the proof of (4.17) is the delta function property

(4.6) of fundamental solutions. Indeed, (4.17), (4.20), and (4.22) imply

lim
r↓s

φ(r, x; s, y) = lim
r↓s

φ0(r, x; s, y) = δx−y.

Next, we use (4.17) to prove that φ is continuously differentiable twice in x

and once in r. Clearly, φ0(r, x; s, y) = 1√
2π(r−s)

e−
(x−y)2
2(r−s) is infinitely differentiable

in every variable. Letting

D(r, x; s, y) :=
1

4

∫ r

s

∫
R
φ0(t, x; ρ, w)

w4

ρ2
φ(ρ, w; s, y) dw dρ

we claim that D is continuously differentiable twice in x and once in r, and

∂xD(r, x; s, y) =
1

4

∫ r

s

∫
R
∂xφ0(r, x; ρ, w)

w4

ρ2
φ(ρ, w; s, y) dw dρ (4.23)

∂2
xD(r, x; s, y) =

1

4

∫ r

s

∫
R
∂2
xφ0(r, x; ρ, w)

w4

ρ2
φ(ρ, w; s, y) dw dρ (4.24)

∂rD(r, x; s, y) =
1

4

x4

r2
φ(r, x; s, y) +

1

2
∂2
xD(r, x; s, y). (4.25)

68



If we accept this claim for now, then the relation φ = φ0 −D gives

∂rφ = ∂rφ0 − ∂rD =
1

2
∂2
xφ0 −

1

4

x4

r2
φ− 1

2
∂2
xD =

1

2
∂2
xφ−

1

4

x4

r2
φ,

which shows that φ is indeed the fundamental solution of (4.8), and hence finishes

the proof of Theorem 2.1, part 1.

We first establish (4.23). The mean-value theorem gives

D(r, x+ h; s, y)−D(r, x; s, y)

h
(4.26)

=
1

4

∫ r

s

∫
R
∂xφ0(r, x+ θhh; ρ, w)

w4

ρ2
φ(ρ, w; s, y) dw dρ

for some θh ∈ [0, 1]. From (4.19) and (4.21), we have

w4

ρ2
φ(ρ, w; s, y) .s,y

1

(ρ− s)1/2
exp

(
−(w − y)2

8(ρ− s)

)
. (4.27)

Also, we have

|∂xφ0(r, x+ θhh; ρ, w)| . 1

r − ρ
exp

(
−(x+ θhh− w)2

8(r − ρ)

)
. (4.28)

Combining (4.26), (4.27), (4.28) together, and applying (4.18),

∣∣∣∣D(r, x+ h; s, y)−D(r, x; s, y)

h

∣∣∣∣ (4.29)

.s,y

∫ r

s

∫
R

exp
(
− (x+θhh−w)2

8(r−ρ)

)
r − ρ

exp
(
− (w−y)2

8(ρ−s)

)
(ρ− s)1/2

dwdρ

.s,y exp

(
−(x+ θhh− y)2

8(r − s)

)
.

Since the right hand side of (4.29) converges as h→ 0, the generalized dominated

convergence theorem implies that D is differentiable once in x and satisfies (4.23).

The same proof also shows that D is continuously differentiable in x. Furthermore,
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(4.28) and (4.29) imply that, for each R > 0,

|∂xφ(r, x; s, y)| .R,s,y

exp
(
− (x−y)2

8(r−s)

)
r − s

, (4.30)

for s < r ≤ s+R.

We now establish (4.24). We again apply the mean-value theorem to obtain

∂xD(r, x+ h; s, y)− ∂xD(r, x; s, y)

h
(4.31)

=
1

4

∫ r

s

∫
R
∂2
xφ0(r, x+ θhh; ρ, w)

w4

ρ2
φ(ρ, w; s, y) dw dρ

for some θh ∈ [0, 1]. Unfortunately, the estimate

|∂2
xφ0(r, x+ θhh; ρ, w)| (4.32)

. (r − ρ)−( 3
2
−β)|x+ θhh− w|−2β exp

(
−(x+ θhh− w)2

8(r − ρ)

)
,

for β ≥ 0, cannot be easily used with (4.18), as the resulting singularity in ρ

turns out to not be integrable. Instead, we use integration by parts to move the

singularity in ρ to other factors: first recall that

∂xφ0(r, x+ θhh; ρ, w) = −∂wφ0(r, x+ θhh; ρ, w) (4.33)

∂2
xφ0(r, x+ θhh; ρ, w) = ∂2

wφ0(r, x+ θhh; ρ, w) (4.34)

Using (4.34), integrating by parts once in w, and then using (4.33) gives

∫ r

s

∫
R
∂2
xφ0(r, x+ θhh; ρ, w)

w4

ρ2
φ(ρ, w; s, y) dw dρ = (4.35)∫ r

s

∫
R
∂xφ0(r, x+ θhh; ρ, w)

4w3

ρ2
φ(ρ, w; s, y) dw dρ

+

∫ r

s

∫
R
∂xφ0(r, x+ θhh; ρ, w)

w4

ρ2
∂wφ(ρ, w; s, y) dw dρ
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Using (4.16), (4.30), and arguing as in (4.21), we have, for s < ρ,

∣∣∣∣4w3

ρ2
φ(ρ, w; s, y)

∣∣∣∣+

∣∣∣∣w4

ρ2
∂wφ(ρ, w; s, y)

∣∣∣∣ .s,y

exp
(
− (w−y)2

16(ρ−s)

)
ρ− s

. (4.36)

Combining (4.28), (4.31), (4.35), (4.36) together, and then applying (4.18),

∣∣∣∣∂xD(r, x+ h; s, y)− ∂xD(r, x; s, y)

h

∣∣∣∣ (4.37)

.s,y

∫ r

s

∫
R

exp
(
− (x+θhh−w)2

16(r−ρ)

)
r − ρ

exp
(
− (w−y)2

16(ρ−s)

)
ρ− s

dwdρ

.s,y
1

(r − s)1/2
exp

(
−(x+ θhh− y)2

16(r − s)

)
.

Applying a similar generalized dominated convergence as above establishes (4.24)

and shows that D is continuously differentiable twice in x. Furthermore, (4.32)

and (4.37) imply that, for each R > 0,

∣∣∂2
xφ(r, x; s, y)

∣∣ .R,s,y

exp
(
− (x−y)2

16(r−s)

)
(r − s)3/2

, (4.38)

for s < r ≤ s+R.

Now, we establish (4.25). For h > 0, the mean value theorem gives,

D(r + h, x; s, y)−D(r, x; s, y)

h

=
1

4

∫
R
φ0(r + h, x; r + θhh,w)

w4φ(r + θhh,w; s, y)

(r + θhh)2
dw

+
1

4

∫ r

s

∫
R
∂ru0(r + θhh, x; ρ, w)

w4

ρ2
φ(ρ, w; s, y) dw dρ

for some θh ∈ [0, 1). As h ↓ 0, the first term converges to 1
4
x4

r2
φ(r, x; s, y) by the

delta function property of φ0. For second term, observe that ∂rφ0(r, x; s, y) =

1
2
∂2
xφ0(r, x; s, y), and therefore the second term converges to 1

2
∂2
xD(r, x; s, y) as

h ↓ 0. A similar argument can be made for h < 0. Also, (4.25), (4.27), and (4.37)
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imply that, for each R > 0,

|∂rφ(r, x; s, y)| .R,s,y

exp
(
− (x−y)2

16(r−s)

)
(r − s)3/2

, (4.39)

for s < r ≤ s+R.

Finally, φ > 0 follows immediately from the maximum principle (c.f., [16,

p. 39]). This finishes the final claim.

Remark. Observe that, in the proof of the Duhamel formula (4.17), the Gaus-

sian bounds are ineffective when s = 0 and y 6= 0; in particular, the expression

−1
4
x4

r2
φ(r, x; 0, y) admits suitable bounds only when y = 0.

4.2 Theorem 4.6, Part 2: Applying Feynman–Kac

We revisit µL,1 and νL,1. As noted above, µL,1 is the measure corresponding to

the standard Brownian bridge from r = 0 to r = L and

dνL,1(f) =
1

ZL
exp

(
−1

4

∫ L

0

|f(r)|4r−2 dr

)
dµL,1(f).

Recall that φn(r, x; s, y) is the fundamental solution of

−∂rφ+
1

2
∂2
xφ−

1

4

x4 ∧ n
r2 ∨ (1/n)

φ = 0.

Let

dPn(f) := exp

(
−1

4

∫ L

0

(f(r))4 ∧ n
r2 ∨ (1/n)

dr

)
dµL,1(f)

be a Borel measure on C0([0, L] → R), not necessarily a probability measure.

By the multi-time Feynman–Kac formula with respect to Brownian bridges (cf.,

Theorem B.3), Pn obeys the following law: for Borel sets B1, . . . , BN ⊆ R and for
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0 < r1 < r2 < · · · < rN < L, we have

Pn(f(rj) ∈ Bj, j = 1, . . . , N) (4.40)

=

∫
B1

· · ·
∫
Bn

φn(L, 0; rN , xN)

φ0(L, 0; 0, 0)

N∏
j=1

φn(rj, xj; rj−1, xj−1) dxN · · · dx1,

with (x0, r0) := (0, 0). Using (4.14) and (4.15) and applying dominated conver-

gence,

lim
n→∞

RHS(4.40)

=

∫
B1

· · ·
∫
Bn

φ(L, 0; rN , xN)

φ0(L, 0; 0, 0)

N∏
j=1

φ(rj, xj; rj−1, xj−1) dxN · · · dx1.

Another application of dominated convergence gives

lim
n→∞

LHS(4.40) = P (f(rj) ∈ Bj, j = 1, . . . , N)

where

dP (f) := exp

(
−1

4

∫ L

0

(f(r))4

r2
dr

)
dµL,1(f).

Let ZL := φ(L,0;0,0)
φ0(L,0;0,0)

be a normalization constant, which is non-zero because of

Theorem 4.6, Part 1 and because φ0(L, 0; 0, 0) = (2πL)−
1
2 . Then we have

1

ZL
dP (f) = dνL,1(f),

which obeys the desired multi-time law.

4.3 Theorem 4.6, Part 3: The Asymptotics

To compute limL→∞
φ(L,0;s,y)
φ(L,0;0,0)

, we seek to compute the asymptotics of each fac-

tor separately. The main obstruction is that the coefficient −1
4
x4

r2
gives a quartic
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restoring force that decays with time, and contributes significantly to the asymp-

totics: it turns out that φ is neither of polynomial decay in r (cf., heat kernel)

nor exponential decay (cf., Mehler kernel).

To handle these issues, we change variables to remove r-dependence from the

significant terms: the function

Φ(r, x; s, y) := s
3
φ
(
r3

27
, xr

3
; s

3

27
, ys

3

)
(4.41)

is the fundamental solution of

−∂rΦ +
1

2
∂2
xΦ−

1

4
x4Φ +

x

r
∂xΦ = 0 (4.42)

at each (s, y) ∈ (0,∞)× R.

At this point, we set up the separation of variables. Let

H := −1
2
∂2
x + 1

4
x4,

This is an essentially self–adjoint operator with a discrete spectrum (cf., [41,

Section 5.14]). By Sturm–Liouville theory, H has simple eigenvalues, which we

list as

λ0 < λ1 < · · · < λk < · · ·

Furthermore, each ψk (eigenfunction of H corresponding to λk) is Schwartz and

ψ0 is sign-definite. Without loss of generality, ψ0 is positive.

Recall that the eigenvalues of the harmonic oscillator H0 = −1
2
∂2
x + 1

2
x2 are

k + 1
2
, k ≥ 0. By the min-max principle (cf., [31, Ch. XIII]) and the fact that

1
4
x4 ≥ 1

2
x2 − 1

4
, we have

λk ≥ k + 1
4
. (4.43)
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As usual, the function

e−(r−s)H(x, y) :=
∞∑
k=0

e−(r−s)λkψk(x)ψk(y)

is the fundamental solution of

−∂rf + 1
2
∂2
xf − 1

4
x4f = 0.

It turns out that the first-order term x
r
∂xΦ still gives a large contribution to

the asymptotics. To handle this term, first observe that

x∂x = −1
2

+
(
x∂x + 1

2

)
is the decomposition of x∂x into its self-adjoint and anti-self-adjoint parts. Rewrite

(4.42) as

0 = −∂rΦ +
1

2
∂2
xΦ−

1

4
x4Φ +

x

r
∂xΦ

= −∂rΦ +

(
1

2
∂2
x −

1

4
x4 − 1

2r

)
Φ +

(
x

r
∂x +

1

2r

)
Φ

Note that (s/r)
1
2 e−(r−s)H(x, y) is the fundamental solution of

−∂rf +

(
1

2
∂2
x −

1

4
x4 − 1

2r

)
f = 0.

With this in mind, the corresponding Duhamel formula is

Φ(r, x; s, y) =
(s
r

) 1
2
e−(r−s)H(x, y) (4.44)

+

∫ r

s

∫
R

(ρ
r

) 1
2
e−(r−ρ)H(x,w)

[
w

ρ
∂w +

1

2ρ

]
Φ(ρ, w; s, y) dwdρ.

This turns out to the correct setting to compute the asymptotics of Φ. The main
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result of this section is the following proposition.

Proposition 4.8. For every (s, y) ∈ (0,∞)× R,

lim
r→∞

(r
s

) 1
2
e(r−s)λ0Φ(r, 0; s, y) = G(s, y)ψ0(0), (4.45)

where

G(s, y) = ψ0(y) +

∫ ∞
s

∫
R

(ρ
s

) 1
2
e−(s−ρ)λ0ψ0(w)

[
1

2ρ
+
w

ρ
∂w

]
Φ(ρ, w; s, y) dw dρ

and obeys 0 ≤ G(s, y) . ψ0(y) + s−
1
2 . There exists an M such that for all s ≥M ,

G(s, y) is strictly positive when |y| < 1. For fixed s, the convergence is uniform

in y; in particular, G is continuous in y.

Assuming Proposition 4.8 is valid, let us finish the proof of Theorem 4.6, part 3.

Let M be as above, and, for s ≥ 0, let

N := max(s+ 1, M
3

27
).

For L > N , inverting the change of variables in (4.41) gives

φ(L, 0;N, y) = N−
1
3 Φ
(

3L
1
3 , 0; 3N

1
3 , yN−

1
3

)
.

Also, recall the identity

φ(L, 0; s, y) =

∫
R
φ(L, 0;N,w)φ(N,w; s, y) dw.

Because 0 < φ(N,w; s, y) ≤ 1√
2π(N−s)

e−
(w−y)2
2(N−s) , the following estimate is indepen-

dent of s and y:

∫
R
φ(N,w; s, y) dw = ‖φ(N,w; s, y)‖L1

w
≤ 1, (4.46)
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and so Proposition 4.8 and Hölder’s inequality gives

lim
L→∞

L
1
6 e3λ0L1/3

φ(L, 0; s, y) = lim
L→∞

∫
R
L

1
6 e3λ0L1/3

φ(L, 0;N,w)φ(N,w; s, y) dw

≈N
∫
R
G
(

3N
1
3 , wN−

1
3

)
φ(N,w; s, y) dw. (4.47)

For fixed s, the convergence is uniform in y, by Proposition 4.8 and by (4.46).

The limit is finite because, by (4.46) and the fact that ψ0 is Schwartz,

RHS(4.47) .
∫
R

[
ψ0

(
wN−

1
3

)
+ 1
]
φ(N,w; s, y) dw . 1,

Furthermore,

RHS(4.47) ≥
∫
|w|<N1/3

G
(

3N
1
3 , wN−

1
3

)
φ(N,w; s, y) dw,

hence, by the positivity aspect of Proposition 4.8 and the fact that φ > 0 (cf.,

Theorem 4.6, Part 1), the limit is also strictly positive. In particular,

lim
L→∞

L
1
6 e3λ0L1/3

φ(L, 0; 0, 0) = C > 0.

It follows that

F (s, y) := lim
L→∞

φ(L, 0; s, y)

φ(L, 0; 0, 0)
= C−1s

1
6 eλ0s

1/3

ψ0(0)G
(
3s

1
3 , ys−

1
3

)
is a well-defined, strictly positive function that is bounded in s and y. For fixed

s, the convergence is also uniform in y and so F is continuous in y. This finishes

the proof of Theorem 4.6, part 3.

We now focus on the proof of Proposition 4.8. We will compute the asymptotics

of the two terms in (4.44) separately.
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Lemma 4.9. For every x, y ∈ R and s > 0,

lim
r→∞

(r
s

) 1
2
e(r−s)λ0

[(s
r

) 1
2
e−(r−s)H(x, y)

]
= ψ0(x)ψ0(y).

For fixed s, the convergence is uniform in x and y.

Proof. The identity (−1
2
∂2
x + 1

4
x4)ψk = λkψk gives

∫
R

1
2
|∂xψk|2 + 1

4
|x2ψk|2 = λk,

and so ‖∂xψk‖2 .
√
λk. Observe that

‖ψ2
k‖∞ ≤ ‖∂x(ψ2

k)‖1 ≤ ‖ψk‖2‖∂xψk‖2 = ‖∂xψk‖2,

and so

‖ψk‖∞ . (λk)
1
2 . (4.48)

Thus, for all x, y ∈ R and for all r ≥ s+ 1, the fact that λk ≥ k (cf., (4.43)) gives

∣∣∣∣∣
∞∑
k=1

e−(r−s)λkφk(x)φk(y)

∣∣∣∣∣ . e−(r−s)λ1
∞∑
k=1

λke
−(r−s)(λk−λ1) . e−(r−s)λ1 .

For fixed s, it follows that

lim
r→∞

e(r−s)λ0
∞∑
k=1

e−(r−s)λkψk(x)ψk(y) = 0,

uniformly in x and y, which in turn gives the result.

The asymptotics for the other term in (4.44) is significantly more delicate and

requires several sets of additional, a priori, estimates, which we call short term

and long term estimates.
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4.3.1 Short Term Estimates

We use Gaussian bounds to obtain rational function bounds in r, s. The goal is

to obtain bounds so that integrating various expressions in r from s to s + 1 is

finite. For example, (4.16) and changing variables give

Φ(r, x; s, y) .
s√

r3 − s3
exp

(
−3(xr − ys)2

2(r3 − s3)

)
,

which gives

‖Φ(r, x; s, y)‖L2
x
.

s

r
1
2 (r3 − s3)

1
4

. (4.49)

Another application the comparison principle gives the bound

e−(r−s)H(x, y) . (r − s)−
1
2 exp

(
−(x− y)2

2(r − s)

)
, (4.50)

which implies

‖e−(r−s)H(x, y)‖L2
x
.

1

(r − s) 1
4

and ‖e−(r−s)H(x, y)‖L2
y
.

1

(r − s) 1
4

. (4.51)

To handle the terms with derivatives, we have the following result.

Lemma 4.10. Let 0 < s < r ≤ s+ 1. Then, for all x, y ∈ R,

‖x∂xe−(r−s)H(x, y)‖L2
x
.

1 + |y|5

(r − s) 3
4

and ‖y∂ye−(r−s)H(x, y)‖L2
y
.

1 + |x|5

(r − s) 3
4

Proof. Note that e−(r−s)H(x, y) =
∑∞

k=0 e
−(r−s)λkψk(x)ψk(y) is symmetric in x and

y, so it suffices to establish the result for ‖x∂xe−(r−s)H(x, y)‖L2
x
.

Using the Duhamel formula

e−(r−s)H(x, y) = φ0(r, x; s, y)− 1

4

∫ r

s

∫
R
φ0(r, x; s, w)w4e−(ρ−s)H(w, y) dw dρ,
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then, a similar computation to (4.23) gives

∂xe
−(r−s)H(x, y) = ∂xφ0(r, x; s, y)

− 1

4

∫ r

s

∫
R
∂xφ0(r, x; s, w)w4e−(ρ−s)H(w, y) dw dρ

=: (A) + (B).

It is not hard to see that

|(A)| . x− y
(r − s) 3

2

e−
(x−y)2
2(r−s) .

1

r − s
e−

(x−y)2
4(r−s) .

By Lemma 4.18, (4.50), and the hypothesis s ≤ ρ ≤ r ≤ s + 1 (in particular,

1 ≤ 1√
ρ−s), we have

|(B)| .
∫ r

s

∫
R

x− w
(r − s) 3

2

e−
(x−w)2

2(r−ρ)
w4

√
ρ− s

e−
(w−y)2
2(ρ−s) dw dρ

.
∫ r

s

∫
R

x− y − w
(r − s) 3

2

e−
(x−y−w)2

2(r−ρ)
(1 + y4)(1 + w4)√

ρ− s
e−

w2

2(ρ−s) dw dρ

. (1 + y4)

∫ r

s

∫
R

x− y − w
(r − s) 3

2

e−
(x−y−w)2

2(r−ρ)
1√
ρ− s

e−
w2

2(ρ−s) dw dρ

+ (1 + y4)

∫ r

s

∫
R

x− y − w
(r − s) 3

2

e−
(x−y−w)2

2(r−ρ)
1√
ρ− s

[
w4

(ρ− s)2
e−

w2

2(ρ−s)

]
dw dρ

. (1 + y4)

∫ r

s

∫
R

1

r − s
e−

(x−y−w)2

4(r−ρ)
1√
ρ− s

e−
w2

4(ρ−s) dw dρ

. (1 + y4)e−
(x−y)2
4(r−s) .

Combining both estimates gives

|∂xe−(r−s)H(x, y)| . 1 + y4

r − s
e−

(x−y)2
4(r−s) ,
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and so

∥∥x∂xe−(r−s)H(x, y)
∥∥2

L2
x
.

1 + y8

(r − s)2

∫
R
x2 exp

(
−(x− y)2

2(r − s)

)
dx

.
1 + y10

(r − s)2

∫
R
(1 + x2) exp

(
− x2

2(r − s)

)
dx

.
1 + y10

(r − s) 3
2

.

4.3.2 Long Term Estimates

Here, we seek exponential decay estimates in r − s whenever r ≥ s+ 1.

Lemma 4.11. Let (s, y) ∈ [1,∞)× R be fixed. For all r ≥ s+ 1,

‖Φ(r, x; s, y)‖L2
x
.
(s
r

) 1
2
e−λ0(r−s).

Furthermore, let P⊥0 denote orthogonal projection onto (Span(ψ0))⊥. For all r ≥

s+ 1,

‖[P⊥0 Φ](r, x; s, y)‖L2
x
.
(s
r

) 1
2
e−λ1(r−s).

Proof. Observe that

∂xΦ(r, x; s, y) = rs
3
φx

(
r3

27
, xr

3
; s

3

27
, ys

3

)
∂2
xΦ(r, x; s, y) = r2s

9
φxx

(
r3

27
, xr

3
; s

3

27
, ys

3

)
∂rΦ(r, x; s, y) = r2s

9
φr

(
r3

27
, xr

3
; s

3

27
, ys

3

)
+ xs

3
φx

(
r3

27
, xr

3
; s

3

27
, ys

3

)
By (4.16), (4.30), (4.38), and (4.39), each of the functions

∂rΦ, ∂2
xΦ, x∂xΦ, and x4Φ,

obey Gaussian bounds in x (with coefficients depending on r, s, y). In particular,

each of the functions are in L2
x.
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Writing 〈·, ·〉 for the L2
x inner product, then

∂r〈Φ,Φ〉 = 2〈∂rΦ,Φ〉 = 2〈1
2
∂2
xΦ− 1

4
x4Φ,Φ〉+ 2

〈x
r
∂xΦ,Φ

〉
Observe that, for fixed r,

〈
(1

2
∂2
x − 1

4
x4)Φ,Φ

〉
= −

〈 ∞∑
k=0

〈Φ, ψk〉λkψk,
∞∑
k=0

〈Φ, ψk〉ψk
〉

(4.52)

= −
∞∑
k=0

λk〈Φ, ψk〉2

≤ −
∞∑
k=0

λ0〈Φ, ψk〉2 = −λ0〈Φ,Φ〉

and that

2
〈x
r
∂xΦ,Φ

〉
=
〈x
r
∂xΦ,Φ

〉
− 1

r
〈Φ, (1 + x∂x)Φ〉 = −1

r
〈Φ,Φ〉. (4.53)

Combining (4.52) and (4.53), we see that, as a function of r, 〈Φ,Φ〉 is a subsolution

of the ODE ∂rf = −
(
2λ0 + 1

r

)
f . At r = s + 1, we have the initial condition

‖Φ(s+ 1, x; s, y)‖2
L2
x
, which is uniformly bounded in s and y by (4.49). Therefore,

〈Φ,Φ〉 ≤ ‖Φ(s+ 1, x; s, y)‖2
L2
x

(
s+ 1

r
e−2λ0(r−(s+1))

)
.
s

r
e−2λ0(r−s),

where we used the bound s ≥ 1 to conclude s+ 1 . s. The result for P⊥0 Φ follows

from the fact that we may write all the sums beginning at k = 1, and then use λ1

in place of λ0.

Lemma 4.12. Let s, y be fixed. For all r ≥ s+ 1,

‖e−(r−s)H(x, y)‖L2
x
. e−λ0(r−s) and ‖x∂xe−(r−s)H(x, y)‖L2

x
. e−λ0(r−s)
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Proof. Indeed, for r ≥ s+ 1, (4.48) gives

‖e−(r−s)H(x, y)‖L2
x

=
∞∑
k=0

e−(r−s)λk |ψk(y)| · ‖ψk(x)‖L2
x

. e−λ0(r−s)
∞∑
k=0

e−(r−s)(λk−λ0)(λk)
1
2

. e−λ0(r−s).

The identity −1
2
∂2
xψk + 1

2
x4ψk = λkψk implies the inequality

−1
2
x2ψk∂

2
xψk ≤ λkx

2ψ2
k

Integrating both sides by parts gives

‖x∂xψk‖2
2 . λk

∫
x2ψ2

k −
∫

(∂xψk)(xψk) . λk‖xψk‖2
2 + ‖∂xψk‖2‖xψk‖2.

Furthermore ‖∂xψk‖2 . (λk)
1
2 and ‖xψk‖2 ≤ ‖ψk‖2 + ‖x2ψk‖2 . (λk)

1
2 . It follows

that

‖x∂xψk‖2 . λk (4.54)

A similar computation as above gives the second result.

At this point, we have all the necessary short term and long term estimates.

Proof of Proposition 4.8. Recall the Duhamel formula,

Φ(r, 0; s, y) =
(s
r

) 1
2
e−(r−s)H(0, y) +

∫ r

s

∫
R

(ρ
r

) 1
2

∞∑
k=0

Jk(ρ, w; s, y) dw dρ,

with

Jk(ρ, w; s, y) := e−(r−ρ)λkψk(0)ψk(w)

[
1

2ρ
+
w

ρ
∂w

]
Φ(ρ, w; s, y).
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In view of Lemma 4.9, we first seek to show that

lim
r→∞

(r
s

) 1
2
e(r−s)λ0

∫ r

s

∫
R

(ρ
r

) 1
2

∞∑
k=1

Jk(ρ, w; s, y) dw dρ = 0,

which is to say, that the higher eigenvalues do not contribute to the asymptotic.

Note that (ρ/r)1/2
∑∞

k=1 e
−(r−ρ)λkψk(x)ψk(w) develops a singularity as ρ goes

to r, and that
[

1
2ρ

+ w
ρ
∂w

]
Φ(ρ, w; s, y) also develops a singularity as ρ goes to s.

We split the integral

∫ r

s

∫
R

(ρ
r

) 1
2

∞∑
k=1

Jk(ρ, w; s, y) dw dρ = I1(r; s, y) + I2(r; s, y) + I3(r; s, y)

into three parts, with

I1(r; s, y) :=

∫ s+1

s

∫
R

(ρ
r

) 1
2

∞∑
k=1

Jk(ρ, w; s, y) dw dρ

I2(r; s, y) :=

∫ r−1

s+1

∫
R

(ρ
r

) 1
2

∞∑
k=1

Jk(ρ, w; s, y) dw dρ

I3(r; s, y) :=

∫ r

r−1

∫
R

(ρ
r

) 1
2

∞∑
k=1

Jk(ρ, w; s, y) dw dρ

and consider the asymptotics of each part separately.

Before analyzing these integrals, we first record a useful estimate on
∫ ∑

k Jkdw.

Since 1
2

+ w∂w is anti-self-adjoint, we obtain

∫
R
ψk(w)

(
1
2

+ w∂w
)

Φ(ρ, w; s, y) dw =

∫
R

[
−
(

1
2

+ w∂w
)
ψk(w)

]
Φ(ρ, w; s, y) dw

Applying Cauchy–Schwarz, (4.43), and (4.54),

∣∣∣∣∫
R
ψk(w)

(
1
2

+ w∂w
)

Φ(ρ, w; s, y) dw

∣∣∣∣ . λk‖Φ(ρ, w; s, y)‖L2
w
,
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Using the previous estimate and the definition of Jk(ρ, w),

∣∣∣∣∣
∫
R

∞∑
k=1

Jk(ρ, w; s, y) dw

∣∣∣∣∣ .
∞∑
k=1

e−(r−ρ)λk(λk)
3
2

1

ρ
‖Φ(ρ, w; s, y)‖L2

w

.
1

ρ
e−(r−ρ)λ1‖Φ‖L2

w

∞∑
k=1

e−(r−ρ)(λk−λ1)(λk)
3
2 .

Thus, whenever s ≤ ρ ≤ r − 1,∣∣∣∣∣
∫
R

∞∑
k=1

Jk(ρ, w; s, y) dw

∣∣∣∣∣ . 1

ρ
e−(r−ρ)λ1‖Φ(ρ, w; s, y)‖L2

w
. (4.55)

The asymptotics for I1 and I2 follow quickly from (4.55).

Indeed, first applying (4.55) and then applying (4.49),

|I1(r; s, y)| .
∫ s+1

s

(ρ
r

) 1
2 1

ρ
e−(r−ρ)λ1

s

ρ
1
2 (ρ3 − s3)

1
4

dρ .
1

(rs)
1
2

e−(r−s)λ1 .

For fixed s, it follows that

lim
r→∞

(r
s

) 1
2
e(r−s)λ0I1(r; s, y) = 0,

with uniform convergence in y (recall, λ1 > λ0). Applying (4.55) and Lemma

4.11,

|I2(r; s, y)| .
∫ r−1

s+1

(ρ
r

) 1
2 1

ρ
e−(r−ρ)λ1

(
s

ρ

) 1
2

e−(ρ−s)λ0 dρ

.
(s
r

) 1
2
e−λ0(r−s)

[∫ r
2

s+1

e−(r−ρ)(λ1−λ0)dρ

ρ
+

∫ r−1

r
2

e−(r−ρ)(λ1−λ0)dρ

ρ

]

.
(s
r

) 1
2
e−(r−s)λ0

[
e−

r
2

(λ1−λ0)

s+ 1
+

2

r

]
.
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Again, for fixed s > 0,

lim
r→∞

(r
s

) 1
2
e(r−s)λ0I2(r; s, y) = 0

with uniform convergence in y.

Using the fact that 1
2

+w∂w is anti-self-adjoint and applying Cauchy–Schwarz,

|I3(r; s, y)|

≤
∫ r

r−1

(ρ
r

) 1
2 1

ρ

∥∥∥∥ (1
2

+ w∂w
) ∞∑
k=1

e−(r−ρ)λkψk(0)ψk(w)

∥∥∥∥
L2
w

‖Φ(ρ, w; s, y)‖L2
w
dρ

For r − 1 ≤ ρ < r, applying (4.51) and Lemma 4.10 gives

∥∥∥∥ [ 1
2ρ

+ w∂w

] ∞∑
k=1

e−(r−ρ)λkψk(0)ψk(w)

∥∥∥∥
L2
w

(4.56)

.
∥∥ [1

2
+ w∂w

]
e−(r−ρ)H(0, w)

∥∥
L2
w

+
∥∥ [1

2
+ w∂w

]
e−(r−ρ)λ0ψ0(0)ψ0(w)

∥∥
L2
w

. (r − ρ)−
3
4

Combining (4.56) and Lemma 4.11,

|I3(r; s, y)| .
∫ r

r−1

(ρ
r

) 1
2 1

(r − ρ)
3
4

1

ρ

(
s

ρ

) 1
2

e−(ρ−s)λ0 dρ

.
1

r

(s
r

) 1
2
e−(r−s)λ0 .

It follows that, for fixed s,

lim
r→∞

(r
s

) 1
2
e(r−s)λ0I3(r; s, y) = 0

with uniform convergence in y.

At this point, we have established (4.45), with uniform convergence in y. Our

next goal is to establish the positivity results. In particular, we shall show that
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the integral term in

G(s, y) := ψ0(y) +

∫ ∞
s

(ρ
s

) 1
2
e−(s−ρ)λ0ψ0(w)

[
1

2ρ
+
w

ρ
∂w

]
Φ(ρ, w; s, y) dw dτ

converges, uniformly in y, to 0 as s goes to ∞ (recall that ψ0(y) > 0).

Applying Cauchy–Schwarz and (4.49),

∣∣∣∣∫ s+1

s

∫
R

(ρ
s

) 1
2
e−(s−ρ)λ0ψ0(w)

[
1

2ρ
+
w

ρ
∂w

]
Φ(ρ, w; s, y) dw dρ

∣∣∣∣ (4.57)

.
‖(1

2
+ w∂w)ψ0(w)‖2

s

∫ s+1

s

‖Φ(ρ, w; s, y)‖L2
w
dρ

.
1

s

∫ s+1

s

s

ρ
1
2 (ρ3 − s3)

1
4

dρ

.
1

s
.

For the integral over (s + 1,∞), first recall that
[(

1
2

+ w∂w
)
ψ0

]
(w) is perpen-

dicular to ψ0(w). Integrating by parts, applying Cauchy–Schwarz, and applying

Lemma 4.11,

∣∣∣∣∫ ∞
s+1

∫
R

(ρ
s

) 1
2
e−(s−ρ)λ0ψ0(w)

[
1

2ρ
+
w

ρ
∂w

]
Φ(ρ, w; s, y) dw dρ

∣∣∣∣ (4.58)

=

∣∣∣∣∣
∫ ∞
s+1

∫
R

(
1

sρ

) 1
2

e−(s−ρ)λ0
[

1
2

+ w∂w
]
ψ0(w)Φ(ρ, w; s, y) dwdρ

∣∣∣∣∣
.
∫ ∞
s+1

∫
R

(
1

sρ

) 1
2

e−(s−ρ)λ0‖[P⊥0 Φ](ρ, w; s, y)‖L2
w
dρ

.
∫ ∞
s+1

∫
R

(
1

sρ

) 1
2

eλ0(ρ−s)
(
s

ρ

) 1
2

e−λ1(ρ−s) dρ

.
1

s

∫ ∞
s+1

e−(λ1−λ0)(ρ−s)dρ

.
1

s
.

Since ψ0 is strictly positive and continuous, we have inf |y|<1 ψ0(y) > 0. In view

of (4.57) and (4.58), there exists some M such that G(s, y) > 0 for all (s, y) ∈
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[M,∞) × (−1, 1). The same estimates also show that |G(s, y)| . ψ0(y) + s−
1
2 ,

which finishes the proof of Proposition 4.8.

4.4 Theorem 4.6, Part 4: Support is on Hölder Spaces

Our main tool will be the Kolmogorov Continuity and Consistency theorem (cf.,

Theorem 4.4), which allows us to upgrade a consistent family of finite dimensional

distributions to a (cylinder) measure on path space.

We construct our consistent family of measures. For 0 < r1 < r2 < · · · < rN

and for Borel sets B0, B1, . . . , BN ⊆ R, let

Pr1,...,rN (B1 × · · · ×BN) :=∫
B1

· · ·
∫
BN

F (rN , xN)
N∏
j=2

φ(rj, xj; rj−1, xj−1)φ(r1, x1; 0, 0) dxN · · · dx1.

and let

P0,r1,...,rN (B0 ×B1 × · · · ×BN) := δ0(B0)Pr1,...,rN (B1 × · · · ×BN)

where δ0(B) = 1 if 0 ∈ B and δ0(B) = 0 otherwise.

The consistency of this family follows from the semi-group property of φ, given

in (4.59) below. First, recall that φn is the fundamental solution of the cut-off

parabolic PDEs in (4.12). Fix ρ > s. For r > ρ, both
∫
R φn(r, x; ρ, w)φn(ρ, w; s, y) dx

and φn(r, x; s, y) solve the Cauchy problem Lnu(r, x) = 0 with initial data u(ρ, w) =

φn(ρ, w; s, y). By uniqueness of bounded solutions of such parabolic PDEs (cf.,

[16, Section 1.9]), we must have

∫
R
φn(r, x; ρ, w)φn(ρ, w; s, y) dx = φn(r, x; s, y).
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Applying (4.15), (4.16), and dominated convergence gives

∫
R
φ(r, x; ρ, w)φ(ρ, w; s, y) dx = φ(r, x; s, y). (4.59)

Having this semi-group property, then, for all r > rN ,

∫
R
F (r, x)φ(r, x; rN , xN) dx = lim

L→∞

∫
R

φ(L, 0; r, x)

φ(L, 0; 0, 0)
φ(r, x; rN , xN) dx

= lim
L→∞

φ(L, 0; rN , xN)

φ(L, 0; 0, 0)

= F (rN , xN).

By Theorem 4.4, there exists a unique cylinder measure, which we denote ν∞,1,

on R[0,∞) with the desired finite dimensional distributions.

We now show that νL,1 is supported on the space of continuous functions and,

in particular, on locally s-Hölder continuous functions, with s < 1
2
. Fix R > 1

and let p > 2. For 0 < s < r < R,

Pν∞,1(|f(r)− f(s)| > λ)

=

∫
R

∫
|x−y|>λ

F (r, x)φ(r, x; s, y)φ(s, y; 0, 0) dx dy

=

∫
R

∫
|x−y|>λ

∫
R
F (R,w)φ(R,w; r, x)φ(r, x; s, y)φ(s, y; 0, 0) dw dx dy

Because F (R,w) .R 1 and φ(R,w; r, x) . 1√
R−r exp

(
− (w−x)2

2(R−r)

)
, therefore

∫
R
F (R,w)φ(R,w; r, x) dw .R

∫
R

1√
R− r

exp

(
− (w − x)2

2(R− r)

)
dw .R 1.

and, by (4.16),

∫
|x−y|>λ

φ(r, x; s, y) dx .
∫ ∞
λ

1√
r − s

exp

(
− x2

2(r − s)

)
dx . exp

(
− λ2

2(r − s)

)
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and, again by (4.16), ∫
R
φ(s, y; 0, 0) dy ≤ 1.

Putting this all together,

Pν∞,1(|f(r)− f(s)| > λ) .R exp

(
− λ2

2(r − s)

)

It follows that

Eν∞,1 [|f(r)− f(s)|p] =

∫ ∞
0

λp−1Pν∞,1(|f(r)− f(s)| > λ) dλ

.R

∫ ∞
0

λp−1 exp

(
− λ2

2(r − s)

)
dλ .p,R (r − s)

p
2 .

Thus, for all s ∈
[
0, p−2

2p

)
, Theorem 4.4 shows that the measure νL,1 gives measure

one to Cs
loc([0,∞) → R). Finally, note that as p → ∞, we have p−2

2p
↑ 1

2
, and so

we may choose any s < 1
2

as our Hölder exponent.

4.5 Theorem 4.6, Part 5: Restriction to Bounded Intervals

By definition, the measures ν∞,1|[0,R] and νL,1|[0,R] are Borel measures on Cs([0, R]→

R) that obey the following laws: for 0 < r1 < r2 < · · · < rN := R and Borel sets

B1, . . . , BN ⊆ R,

PνL,1|[0,R]
(f(rj) ∈ Bj, j = 1, . . . , N)

=

∫
B1

· · ·
∫
BN

φ(L, 0;R, xN)

φ(L, 0; 0, 0)

N∏
j=2

φ(rj, xj; rj−1, xj−1)φ(r1, x1; 0, 0) dxN · · · dx1.
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and

Pν∞,1|[0,R]
(f(rj) ∈ Bj, j = 1, . . . , N)

=

∫
B1

· · ·
∫
BN

F (R, xN)
N∏
j=2

φ(rj, xj; rj−1, xj−1)φ(r1, x1; 0, 0) dxN · · · dx1.

Let P be the Borel measure on Cs([0, R]) given by

dP (f) :=
F (R, f(R))φ(L, 0; 0, 0)

φ(L, 0;R, f(R))
dνL,1|[0,R](f) (4.60)

Recall that, by Theorem 4.6, part 1, we have φ > 0. Furthermore, as L > R,

division by φ(L, 0;R, f(R)) is well-defined. It is not hard to see that

P (f(rj) ∈ Bj, j = 1, . . . , N) = Pν∞,1|[0,R]
(f(rj) ∈ Bj, j = 1, . . . , N).

It follows that the finite dimensional distributions of P and ν∞,1|[0,R] are identical,

and by the uniqueness aspect of Theorem 4.4, we have

ν∞,1|[0,R] = P.

As the Radon–Nikodym derivative in (4.60) is strictly positive everywhere, a simi-

lar argument shows that νL,1|[0,R] is absolutely continuous with respect to ν∞,1|[0,R],

with Radon–Nikodym derivative φ(L,0;R,f(R))
F (R,f(R))φ(L,0;0,0)

.

Let A ⊆ Cs([0, R] → R) be a Borel set. Note that, for each f ∈ Cs([0, R] →

R), ∣∣∣∣χA(f)
φ(L, 0;R, f(R))

F (R, f(R))φ(L, 0; 0, 0)

∣∣∣∣ ≤ φ(L, 0;R, f(R))

F (R, f(R))φ(L, 0; 0, 0)

and

lim
L→∞

φ(L, 0;R, f(R))

F (R, f(R))φ(L, 0; 0, 0)
= 1
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Also, for each L > R,

∫
Cs([0,R])

φ(L, 0;R, f(R))

F (R, f(R))φ(L, 0; 0, 0)
dν∞,1|[0,R](f) =

∫
C([0,R])

dνL,1|[0,R](f) = 1

and so the generalized dominated convergence theorem (cf., [15, Exer. 2.20]) gives

lim
L→∞

νL,1|[0,R](A) = lim
L→∞

∫
Cs([0,R])

χA(f)
φ(L, 0;R, f(R))

F (R, f(R))φ(L, 0; 0, 0)
dν∞,1|[0,R](f)

=

∫
Cs([0,R])

χA(f) dν∞,1|[0,R](f)

= ν∞,1|[0,R](A),

as desired.

4.6 Theorem 4.6, Part 6: Construction of ν∞

Recall the heat kernel φ0(r, x; s, y) = 1√
2π(t−s)

exp
(
− (x−y)2

2(t−s)

)
and recall that W ,

the standard Wiener measure, obeys the following law: for 0 < r1 < r2 < · · · < rN

and for Borel sets B1, B2, . . . , BN ⊆ R,

PW (f(rj) ∈ Bj, j = 1, . . . , N) =∫
B1

· · ·
∫
BN

N∏
j=2

φ0(rj, xj; rj−1, xj−1)φ0(r1, x1; 0, 0) dxn · · · dx1.

Also, recall that νL,2 = µL,2 obeys the same finite dimensional distributions as the

Brownian bridge from 0 to L, i.e.,

PνL,2(f(rj) ∈ Bj, j = 1, . . . , N) =∫
B1

· · ·
∫
BN

φ0(L, 0; rN , xN)

φ0(L, 0; 0, 0)

N∏
j=2

φ0(rj, xj; rj−1, xj−1)φ0(r1, x1; 0, 0) dxn · · · dx1.
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We denote by W |[0,R] the image measure of W on Cs([0, R] → R), with the

Borel σ-algebra, under the restriction map f 7→ f |[0,R] and similarly for νL,2|[0,R].

By an argument similar to Section 4.4, the measures W |[0,R] and νL,2|[0,R] are

mutually absolutely continuous, with the Radon–Nikodym derivative

dνL,2|[0,R]

dW |[0,R]

(f) =
φ0(L, 0;R, f(R))

φ0(L, 0; 0, 0)
.

Mutual absolute continuity of ν∞|[0,R] and νL|[0,R] follow from the tensor product

structure of ν∞ and the mutual absolute continuity of each of its components.

As limL→∞
φ0(L,0;R,f(R))
φ0(L,0;0,0)

= 1 for every f ∈ Cs([0, R]→∞), a similar argument

as in Section 4.5 shows that for every Borel set A ⊆ Cs([0, R]→ R), we have

lim
L→∞

νL,2|[0,R](A) = W |[0,R](A). (4.61)

Furthermore, (4.11) follows from (4.9), (4.61), and the fact that ν∞ is essentially

a tensor product of ν∞,1 and W .

Finally, as the measures νL|[0,R] and ν∞|[0,R] are mutually absolutely continuous

on Cs([0, R]→ C), the completion of the Borel σ-algebra with respect to each of

these measures must coincide. Let us denote this σ-algebra by FR. Also, each set

A ∈ FR is the union of a Borel set and a null set (cf., Proposition A.7). Thus,

(4.11) also holds for each A ∈ FR.
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CHAPTER 5

Almost sure global existence and invariance

In this chapter, we prove Theorem 2.5. Let us recall the first order NLW in

(2.10) and the definition of Flow∞ from (2.11). Furthermore, by Proposition 4.2,

Cs
0([0,∞) → C) is a Polish space, and hence we may utilize results from Ap-

pendix A. As before, let ρLR : Cs
0([0, L]) → Cs([0, R]) and ρ∞R : Cs

loc([0,∞)) →

Cs([0, R]) denote the restriction maps g 7→ g|[0,R].

The first two assertions of Theorem 2.5 are quite immediate.

Proposition 5.1. There exists a Borel subset Ω∞ ⊆ Cs
loc([0,∞)→ C) such that

1. ν∞(Ω∞) = 1;

2. For every g ∈ Ω∞, Flow∞(t, g) is defined globally in time. For each T > 0

and R > 0, we have Flow∞(t, g)|[0,R] ∈ C0
t C

s
r ([−T, T ]× [0, R]→ R).

Proof. Let ΩL as in Theorem 2.1 and let

Ω̃∞ :=
∞⋂
L=2

(ρ∞bL/2c)
−1 ◦ ρLbL/2c(ΩL)

= {g ∈ Cs
loc([0,∞)) | ∀L ≥ 2,∃gL ∈ ΩL s.t. gL|[0,bL/2c] ≡ g|[0,bL/2c]}.

Here, bL/2c denotes the largest integer less than or equal to L/2. As restriction

is a continuous map, therefore ρLbL/2c(ΩL) is an analytic set. By Proposition A.6,

it follows that (ρ∞bL/2c)
−1 ◦ ρLbL/2c(ΩL) is analytic and, hence, Ω̃∞ is also analytic.

By Proposition A.6, the set Ω̃∞ is ν∞-measurable.
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By Theorem 2.1, we have νL(ΩL) = 1. As ΩL ⊆ (ρLbL/2c)
−1 ◦ ρLbL/2c(ΩL), it fol-

lows that νL|[0,bL/2c](ρLbL/2c(ΩL)) = 1. By mutual absolute continuity of νL|[0,bL/2c]

and ν∞|[0,bL/2c (cf, Theorem 2.3), we have ν∞|[0,bL/2c](ρLbL/2c(ΩL)) = 1. In other

words,

ν∞
(
(ρ∞bL/2c)

−1 ◦ ρLbL/2c(ΩL)
)

= 1.

Thus, ν∞(Ω̃∞) = 1. In particular, Cs
loc([0,∞)) \ Ω̃∞ is measure 0, and so there is

some Borel set A of measure 0 that contains Cs
loc([0,∞)) \ Ω̃∞. We define

Ω∞ = Cs
loc([0,∞)) \ A.

Observe that Ω∞ ⊆ Ω̃∞ and ν∞(Ω∞) = 1.

We now prove the second assertion. Fix g ∈ Ω∞ and fix T > 0. For each L ≥ 2,

let gL ∈ ΩL such that g|[0,bL/2c] ≡ gL|[0,bL/2c]. By finite speed of propagation, we

have

FlowL(t, gL)|[0,bL/2c−t] = FlowL+k(t, gL+k)|[0,bL/2c−t]

for all L > 2T , all t ∈ [−T, T ], and all k ≥ 0. We define Flow∞(t, g) to be the

unique function such that for each R > 0,

Flow∞(t, g)|[0,R] ≡ FlowL(t, gL)|[0,R] for all L > 2(R + T ), |t| ≤ T (5.1)

and note that it obeys the regularity conditions asserted above.

We next turn to the invariance assertions of Theorem 2.5. To do this, we first

show invariance on the fixed time interval [−1, 1], and then iterate the flow map

to achieve global invariance.

Lemma 5.2. For each t ∈ [−1, 1], the map

Flow(t, ·) : Ω∞ → Cs
loc([0,∞)→ C)
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is continuous with respect to (4.4). Furthermore, for each Borel subset A ⊆ Ω∞,

the set Flow∞(t, A) = {Flow∞(t, g) | g ∈ A} is a Borel subset of Cs
loc([0,∞)).

Proof. For 1 ≤ k ≤ ∞, let gk ∈ Ω∞ such that d(gk, g∞) → 0. Observe that

convergence in this metric is equivalent to convergence in each semi-norm.

Fix n ∈ N. For each 1 ≤ k ≤ ∞, choose g̃k ∈ Ω2n+2 such that

g̃k|[0,n+1] ≡ gk|[0,n+1].

In particular, limn→∞ ‖g̃k − g̃∞‖Cs([0,n+1]) = 0. By Corollary 3.4, we have

lim
k→∞
‖Flow2n+2(t, g̃k)− Flow2n+2(t, g̃∞)‖C0

t C
s
r ([−1,1]×[0,n]) = 0.

By finite speed of propagation,

lim
k→∞
‖Flow∞(t, gk)− Flow∞(t, g∞)‖C0

t C
s
r ([−1,1]×[0,n]) = 0. (5.2)

As (5.2) holds for each n, it follows by the above observation that

lim
k→∞

d(Flow∞(t, gk),Flow∞(t, g∞)) = 0

for each t ∈ [−1, 1], proving the continuity assertion.

For fixed t ∈ [−1, 1], we extend Flow∞(t, ·) to Cs
loc([0,∞)→ C) by

Flow∞(t, g) := 0

for g ∈ Cs
loc([0,∞) → C) \ Ω∞. This defines a Borel measurable map from

Cs
loc([0,∞) → C) to itself. Furthermore, the restriction of Flow∞(t, ·) to Ω∞

is an injective map, as the flow is reversible. By the Lusin–Souslin Theorem

(cf., Theorem A.2), Flow∞(t, ·) maps Borel subsets of Ω∞ to Borel subsets of

96



Cs
loc([0,∞)→ C).

Lemma 5.3. Let K ⊆ Cs
loc([0,∞) → C) be a closed set such that K ⊆ Ω∞. For

every t ∈ [−1, 1], we have

ν∞(K) ≤ ν∞(Flow∞(t,K)).

Proof. Let 0 < R � L, and recall that (ρLR+1)−1 ◦ ρ∞R+1(K) is an analytic subset

of Cs([0, L]→ C). By Theorem 2.1, we have

νL((ρLR+1)−1 ◦ ρ∞R+1(K)) = νL
(
ΩL ∩

(
(ρLR+1)−1 ◦ ρ∞R+1(K)

))
(5.3)

= νL
(
FlowL

[
t,ΩL ∩ (ρLR+1)−1 ◦ ρ∞R+1(K)

])
for each t ∈ R.

Next, we claim that, for t ∈ [−1, 1],

ρLR
(
FlowL

[
t,ΩL ∩

(
(ρLR+1)−1 ◦ ρ∞R+1(K)

)])
⊆ ρ∞R (Flow∞(t,K)) (5.4)

Indeed, let g ∈ FlowL

[
t,ΩL ∩ (ρLR+1)−1 ◦ ρ∞R+1(K)

]
. Then there exists some f ∈

(ρLR+1)−1 ◦ ρ∞R+1(K) ∩ ΩL such that FlowL(t, f) = g. Furthermore, there exists

f̃ ∈ K such that f̃ |[0,R+1] ≡ f |[0,R+1] and thus, by finite speed of propagation,

Flow∞(t, f̃)|[0,R] ≡ FlowL(t, f)|[0,R] ≡ g|[0,R].

The claim follows.

Given (5.4), we also have

FlowL

[
t,ΩL ∩

(
(ρLR+1)−1 ◦ ρ∞R+1(K)

)]
(5.5)

⊆ (ρLR)−1 ◦ ρLR
(
FlowL

[
t,ΩL ∩

(
(ρLR+1)−1 ◦ ρ∞R+1(K)

)])
⊆ (ρLR)−1 ◦ ρ∞R (Flow∞(t,K))
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Furthermore, Flow∞(t,K) is a Borel subset of Cs
loc([0,∞) → C) by Lemma 5.2,

and thus (ρLR)−1 ◦ ρ∞R (Flow∞(t,K)) is analytic (and νL-measurable) by Proposi-

tion A.6.

Putting (5.5) into (5.3), then

νL((ρLR+1)−1 ◦ ρ∞R+1(K)) ≤ νL
(
(ρLR)−1 ◦ ρ∞R (Flow∞(t,K))

)
,

which is to say,

νL|[0,R+1]

(
ρ∞R+1(K)

)
≤ νL|[0,R] (ρ∞R (Flow∞(t,K))) .

Sending L→∞, Theorem 2.3 gives

ν∞|[0,R+1]

(
ρ∞R+1(K)

)
≤ ν∞|[0,R] (ρ∞R (Flow∞(t,K))) ,

or

ν∞
(
(ρ∞R+1)−1 ◦ ρ∞R+1(K)

)
≤ ν∞

(
(ρ∞R )−1 ◦ ρ∞R (Flow∞(t,K))

)
. (5.6)

Similar to above, (ρ∞R )−1 ◦ ρ∞R (Flow∞(t,K)) is an analytic subset of Cs
loc([0,∞))

and thus it is indeed ν∞-measurable.

Note that (5.6) holds for arbitrary R > 0. Furthermore, we have

(ρ∞R )−1 ◦ ρ∞R (Flow∞(t,K)) ⊇ (ρ∞R+1)−1 ◦ ρ∞R+1(Flow∞(t,K))

and similarly for K. By dominated convergence,

ν∞

(
∞⋂
R=2

(ρ∞R )−1 ◦ ρ∞R (K)

)
≤ ν∞

(
∞⋂
R=1

(ρ∞R )−1 ◦ ρ∞R (Flow∞(t,K))

)
. (5.7)
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We claim that

Flow∞(t,K) =
∞⋂
R=1

(ρ∞R )−1 ◦ ρ∞R (Flow∞(t,K)). (5.8)

The containment ⊆ is obvious. Now, let g ∈
⋂∞
R=1(ρ∞R )−1 ◦ ρ∞R (Flow∞(t,K)). For

each integer R ≥ 1, there exists fR ∈ K such that

Flow∞(t, fR)|[0,R] ≡ g|[0,R] (5.9)

By finite speed of propagation, it follows that for each n ≥ 0 and for each R ≥ 1,

fR|[0,R−1] ≡ fR+n|[0,R−1].

Thus, the sequence {fR}∞R=1 converges to some f ∈ Cs
loc([0,∞)→ C), with

f |[0,R−1] ≡ fR|[0,R−1]

for each R ≥ 1. Indeed, as K is closed, we also have f ∈ K. Given (5.9) and

finite speed of propagation, we have

Flow∞(t, f)|[0,R−2] ≡ g|[0,R−2]

for each R ≥ 2, and thus Flow∞(t, f) = g. This proves the reverse containment.

As K is closed, a similar converging sequence argument as above shows

K =
∞⋂
R=2

(ρ∞R )−1 ◦ ρ∞R (K). (5.10)

Putting (5.8) and (5.10) into (5.7) finishes the proof.

The above proof actually shows that Flow∞ preserves closed subsets K of
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Cs
loc([0,∞)→ C) which are contained1 in Ω∞, though we will not use this fact for

later results. Finally, we prove the invariance assertion of Theorem 2.5.

Proposition 5.4. For each ν∞-measurable subset A ⊆ Ω∞ and for each t ∈ R,

the set Flow∞(t, A) is also νL-measurable and ν∞(Flow∞(t, A)) = ν∞(A).

Proof. We first consider the case when t ∈ [−1, 1] and when A is Borel. In view

of Theorem A.7, let

K1 ⊆ K2 ⊆ K3 ⊆ · · · ⊆ A

be compact sets such that ν∞(A \Kn) ≤ 1
n

for each n. By Lemma 5.3, we have

ν∞(Kn) ≤ ν∞(Flow∞(t,Kn)) and so

ν∞(A) = ν∞

( ∞⋃
n=1

Kn

)
≤ ν∞

(
Flow∞

[
t,
∞⋃
n=1

Kn

])
≤ ν∞(Flow∞(t, A)). (5.11)

A similar argument also shows

ν∞(Ω∞ \ A) ≤ ν∞(Flow∞(t,Ω∞ \ A)). (5.12)

Since

1 = ν∞(A) + ν∞(Ω∞ \ A) ≤ ν∞(Flow∞(t, A)) + ν∞(Flow∞(t,Ω∞ \ A)) ≤ 1,

all of the inequalities in (5.11) and (5.12) must actually be equalities.

The case for all t ∈ R follows from iterating the flow, and intersecting with Ω∞

if necessary. The case for all ν∞-measurable A follows from a similar argument as

in Section 3.2.

1Inner regularity of ν∞ guarantees existence of such closed sets. Indeed, we may find compact
sets K ⊆ Cs

loc([0,∞)→ C) contained in Ω∞ with measure arbitrarily close to 1.
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APPENDIX A

Some Descriptive Set Theory

In this appendix, we recall some defintions and facts from descriptive set theory

that will be useful for our paper. In particular, we use these results in Section 3.2

and Section 5. We refer to [19] for proofs.

Definition A.1. A topological space is said to be a Polish space if it is completely

metrizable, and separable with respect to this metric.

One of the more useful results in this setting is a theorem by Lusin and Souslin,

which states that injective Borel maps (in particular, continuous embeddings)

between Polish spaces are Borel isomorphisms onto their image.

Theorem A.2 (Lusin–Souslin). Let X, Y be Polish spaces, and let f : X → Y

be Borel measurable. If A ⊆ X is Borel and f |A is injective, then f(A) ⊆ Y is

Borel.

Indeed, let us deduce the following result as a corollary:

Proposition A.3. Fix L ∈ (0,∞) and s ∈ [0,∞). For each of the Banach spaces

X = Lp([0, L]), with 1 ≤ p <∞, or

X = Ḣs
0([0, L]), or

X = C0([0, L]),

the following statement holds:
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Endow X with its usual norm topology, as well as the corresponding

Borel σ-algebra, BX . Then Cs
0([0, L]) ∈ BX . Furthermore, the restric-

tion of BX to Cs
0([0, L]) coincides with the standard Borel σ-algebra

induced by the s-Hölder norm.

Proof. Recall that all of the Banach spaces mentioned above are separable, and

hence are Polish spaces. Furthermore, Cs
0([0, L]) embeds continuously into each

Banach space X above. By Theorem A.2, it follows that Cs
0([0, L]) ∈ BX for each

X above, and that the σ-algebras mentioned above must coincide.

Proposition A.4. Fix s ∈ R, and fix L > 0. Let Λ = R or C and let Ḣs
0([0, L]→

Λ) be as in Definition 1.3. We define the Fourier cylinder σ-algebra to be the

σ-algebra generated by sets of the form

AN = {g =
∞∑
n=1

cnen,L ∈ Ḣs
0([0, L]→ Λ) : cN ∈ B}

where B ⊆ Λ is Borel. Then the Fourier cylinder σ-algebra coincides with the

usual Borel σ-algebra on Ḣs
0([0, L]→ Λ).

Proof. Let

ΛN = {~c = (c1, c2, . . .) : cn ∈ Λ}

denote the the space of sequences in Λ. We equip this space with the metric

d(~c, ~d) :=
∞∑
n=1

2−n
|cn − dn|

1 + |cn − dn|

as well as the corresponding topology and Borel σ-algebra. Observe that open

cylinder sets, i.e. sets of the form

{~c = (c1, c2, . . .) : cN ∈ O},
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where O ⊆ Λ is open, form a sub-basis for this topology, and so they also gen-

erate the Borel σ-algebra. It follows that the standard cylinder σ-algebra on ΛN

coincides with the Borel σ-algebra.

We consider the map

Ḣs
0([0, L]→ Λ) −→ ΛN

sending each Sobolev “function” to its corresponding sequence of Fourier coeffi-

cients. Clearly the map is injective. Furthermore, the map is continuous since

convergence in Ḣs implies convergence in each Fourier coefficient, which then im-

plies convergence in the metric above. The result follows from Theorem A.2.

In this paper, we also consider general continuous images of Borel sets, such as

restriction maps. These sets are not necessarily Borel, but still obey nice measure

theoretic properties.

Definition A.5. Let X be a Polish space.

1. A set A ⊆ X is called analytic if there is a Polish space Y , a Borel subset

B ⊆ Y , and a continuous function f : Y → X such that f(B) = A.

2. Let µ be a σ-finite Borel measure on X, and let F be the completion of the

Borel σ-algebra with respect to µ. A set A ⊆ X is called µ-measurable if

A ∈ F .

3. Finally, a set A ⊆ X is called universally measurable if A is µ-measurable

for every σ-finite Borel measure µ on X.

Proposition A.6 (Properties of analytic sets). Let X be a Polish space.

1. If An ⊆ X is analytic for n ∈ N, then
⋂
n∈NAn and

⋃
n∈NAn are also

analytic.
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2. Let Y be another Polish space and let f : X → Y be Borel measurable. If

A ⊆ X is analytic, then f(A) ⊆ Y is analytic. If B ⊆ Y is analytic, then

f−1(B) ⊆ X is analytic.

3. (Lusin) Analytic sets are universally measurable.

Finally, we recall a generalization of regularity results for Lebesgue measure

to the Polish space setting.

Proposition A.7 (Regularity of Borel Measures). Let X be a Polish space and

let µ be a finite Borel measure on X. Then µ is regular: for any µ-measurable set

A ⊆ X,

µ(A) = sup{µ(K) | K ⊆ A,K compact}

= inf{µ(U) | U ⊇ A,U open}.

In particular, a set A ⊆ X is µ-measurable if and only if there exists an Fσ set

F ⊆ A (resp., Gδ set G ⊇ A) such that µ(A \ F ) = 0 (resp., µ(G \ A) = 0).
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APPENDIX B

A Multi-time Feynman–Kac formula

In this appendix, we make various modifications to the classical Feynman–Kac

formula. To this end, we make use of the fact that fundamental solutions of

parabolic PDEs (cf., Definition 4.5) also have nice properties in their secondary

variables. We list the relevant results below, and refer to [16] for proofs.

Lemma B.1. Let V (r, x) : R≥0 × R → R be bounded and continuous, and let

φ(r, x; s, y) be the fundamental solution of

∂rφ =
1

2
∂2
xφ+ V (r, x)φ

Then, as a function of (s, y), we also have −∂sφ = 1
2
∂2
yφ+V (s, y)φ. Furthermore,

for g ∈ C0(R) and for fixed r > 0, the unique solution of

 −∂sψ = 1
2
∂2
yψ + V (s, y)ψ, (s, y) ∈ [0, r)× R

ψ(r, ·) = g(·)

of sub-exponential growth in y is given by

ψ(s, y) =

∫
R
g(x)φ(r, x; s, y) dx.

Let Ws,y denote the Wiener measure for Brownian motion starting from time

s and at point y. We use B to denote a generic function in the support of Ws,y.
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As before,

φ0(r, x; s, y) :=
1√

2π(r − s)
exp

(
−(x− y)2

2(r − s)

)
is the heat kernel.

Theorem B.2 (Multi-time Feynman–Kac, Brownian Motion). Let V (r, x) : R≥0×

R→ R be bounded and continuous, and let φ(r, x; s, y) be the fundamental solution

of

∂rφ =
1

2
∂2
xφ+ V (r, x)φ.

Let L ∈ (0,∞), s ∈ [0, L), and y ∈ R. Let s < r1 < · · · < rN < L and let

f1, . . . , fN , g : R → R be bounded, measurable functions. With (r0, x0) := (s, y),

we then have

EWs,y

[
exp

(∫ L

s

V (ρ,B(ρ)) dρ

)
g(B(L))

N∏
j=1

f(B(rj))

]
(B.1)

=

∫
R
· · ·
∫
R
g(x)φ(L, x; rN , xN)

N∏
k=1

f(xj)φ(rj, xj; rj−1, xj−1) dxdxN · · · dx1

Proof. The case N = 0 is the usual Feynman–Kac formula, which we shall assume

as a base case (see [44] for a proof). For the inductive step, we shall mimic the

technique of this proof.

Let us write the left hand side of (B.1) as

EWs,y

[(
∞∑
n=0

An

)
exp

(∫ L

r1

V (ρ,B(ρ)) dρ

)
g(B(L))

N∏
j=1

f(B(rj))

]
,

where

An :=
1

n!

∫ r1

s

· · ·
∫ r1

s

V (ρ1, B(ρ1)) · · ·V (ρn, B(ρn)) dρn · · · dρ1
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for n ≥ 1 and A0 = 1. Observe that, if we let

Rn := {(ρ1, . . . , ρn) ∈ Rn : s < ρ1 < · · · < ρn < r1}

and let d~ρ := dρn · · · dρ1, then, for n ≥ 1,

An =

∫
Rn

n∏
j=1

V (ρj, B(ρj)) d~ρ.

By hypothesis and by Fubini’s theorem, one may interchange expectations, sums,

and integrals as desired. In particular,

LHS(B.1) =
∞∑
n=0

Js,y(n)

where

Js,y(0) := EWs,y

[
exp

(∫ L

r1

V (ρ,B(ρ)) dρ

)
g(B(L))

N∏
j=1

f(B(rj))

]

and, for n ≥ 1,

Js,y(n) :=

∫
Rn

EWs,y

[
n∏
j=1

V (ρj, B(ρj)) exp

(∫ L

r1

V (ρ,B(ρ)) dρ

)
g(B(L))×

N∏
j=1

f(B(rj))

]
d~ρ.

Now, let

h(r1, x1) := EWr1,x1

[
exp

(∫ L

r1

V (ρ,B(ρ)) dρ

)
g(B(L))

N∏
j=2

f(B(rj))

]
,
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which, by induction, is equal to

∫
R
· · ·
∫
R
g(x)φ(L, x; rN , xN)

N∏
k=2

f(xk)φ(rk, xk; rk−1, xk−1) dxdxN · · · dx2. (B.2)

Applying the Markov property of Brownian motion and (B.2),

Js,y(0) =

∫
R
h(r1, x1)f(x1)φ0(r1, x1; s, y) dx1.

and, for n ≥ 1,

Js,y(n) =

∫
Rn

∫
Rn

∫
R
h(r1, x1)f(x1)φ0(r1, x1; ρn, wn)

n∏
j=2

V (ρj, wj)φ0(ρj, wj; ρj−1, wj−1)V (ρ1, w1)φ0(ρ1, w1; s, y)dx1d~wd~ρ

For the next step, observe that

−∂sφ0(r, x; s, y) =
1

2
∂2
yφ0(r, x; s, y)

and so

−∂sJs,y(0) =
1

2
∂2
yJs,y(0)

For n ≥ 1, differentiating Js,y(n) in s produces two terms: one from the bounds

in Rn and one from differentiating φ0(ρ1, w1; s, y); namely, for n ≥ 1,

−∂sJs,y(n) = V (s, y)Js,y(n− 1) +
1

2
∂2
yJs,y(n)

In particular,
∑∞

n=0 Js,y(n) obeys1 the backwards Kolmogorov equation

−∂sψ =
1

2
∂2
yψ + V (s, y)ψ

1Indeed,
∑

n Js,y(n) represents the iterated Duhamel expansion for the solution of this PDE.
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with terminal condition ψ(r1, ·) = h(r1, ·)f(·). Given Lemma B.1, we have

LHS(B.1) =
∞∑
n=0

Js,y(n) =

∫
R
h(r1, x1)f(x1)φ(r1, x1; s, y) dx1.

In view of (B.2), we are done.

Let BBL,x;s,y denote the measure for the Brownian bridge that starts at time

s and at point y, with ending at time L and at point x. We use BB to denote a

generic element in the support of BBL,x;s,y. The proof of the above theorem also

applies, mutatis mutandis, to the following setting.

Theorem B.3 (Multi-time Feynman–Kac, Brownian Bridge). Let V (r, x) : R≥0×

R→ R be bounded and continuous, and let φ(r, x; s, y) be the fundamental solution

of

∂rφ =
1

2
∂2
xφ+ V (r, x)φ.

Let L ∈ (0,∞), s ∈ [0, L), and y ∈ R. Let s < r1 < · · · < rN < L and let

f1, . . . , fN : R → R be bounded, measurable functions. With (r0, x0) := (s, y), we

then have

EBBL,x;s,y
[
exp

(∫ L

s

V (ρ,BB(ρ)) dρ

)
f1(BB(r1)) · · · fN(BB(rN))

]
=

∫
R
· · ·
∫
R

φ(L, x; rN , xN)

φ0(L, x; s, y)

N∏
j=1

f(xj)φ(rj, xj; rj−1, xj−1) dxN · · · dx1.
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[40] Laurent Thomann and Nikolay Tzvetkov, Gibbs measure for the periodic derivative nonlin-

ear Schrödinger equation, Nonlinearity 23 (2010), no. 11, 2771–2791.

112



[41] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equa-

tions. Part I, Second Edition, Clarendon Press, Oxford, 1962.

[42] N. Tzvetkov, Construction of a Gibbs measure associated to the periodic Benjamin-Ono

equation, Probab. Theory Related Fields 146 (2010), no. 3-4, 481–514.

[43] Nikolay Tzvetkov, Invariant measures for the defocusing nonlinear Schrödinger equation,

Ann. Inst. Fourier (Grenoble) 58 (2008), no. 7, 2543–2604.

[44] S. R. S. Varadhan, Stochastic processes, Courant Lecture Notes in Mathematics, vol. 16,

Courant Institute of Mathematical Sciences, New York; American Mathematical Society,

Providence, RI, 2007.

[45] A. Zygmund, Trigonometric series. Vol. I, II, Third, Cambridge Mathematical Library,

Cambridge University Press, Cambridge, 2002.

113




