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Abstract

Fixing Gauge Redundancies in Quantum Gravity

By

Sean Jason Weinberg

Doctor of Philosophy in Physics

University of California, Berkeley

Yasunori Nomura, Chair

Evidence has accumulated that descriptions of systems in quantum gravity depend strongly on

various choices of gauge-fixing including a choice of “reference frame.” We discuss several explicit

examples of this reference frame dependence and, in doing so, clarify a number of general features

of quantum gravity including the thermodynamics of spacetime, the holographic principle, and

black hole complementarity.

Our discussion focuses on two superficially independent subjects. The first of these is that of

holographic screens. These are codimension-one surfaces that are preferred from the perspective

of the holographic principle. They are generated by a choice of null foliation and, in particular,

can be fixed by the light cones of a worldline. We will study a class of holographic screens called

past and future holographic screens and strengthen a recently proven area law for these surfaces.

We then introduce a definition of holographic entanglement entropy associated with past and

future holographic screens and, in doing so, provide new evidence for the importance of screens

in quantum gravity. Our second major emphasis is on the black hole information paradox and

the firewall paradox. We give a set of hypotheses for the microscopic structure of black holes that

appears to be self-consistent and admit a smooth horizon despite the AMPS arguments. Our model

relies on the principle that the quantum information associated with spacetime is both delocalized

and reference frame dependent.
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Chapter 1

Introduction

The research discussed in this thesis is primarily focused on quantum gravity. The study of the

quantum mechanics of spacetime has been a persistent challenge for theoretical physicists for half

of a century. Fortunately, the past few decades have been been cause for real optimism. String

theory offers a productive framework that may correctly describe all of physics. From string theory,

the AdS/CFT correspondence [1, 2] emerged as an explicit example of a quantum theory of gravity.

Despite all of these developments, major conceptual gaps in our knowledge of quantum gravity

remain, and these gaps become apparent when one considers black holes.

The vital idea that black hole physics has suggested is that näıve descriptions of systems in

quantum gravity arise only after fixing significant gauge redundancy. This is a familiar development

in physics. Before relativity, it was believed that the time interval between two events was a

physical invariant. General relativity tells a different story: to evolve a spacetime in a Hamiltonian

formalism, the (coordinate) gauge freedom must first be fixed. The particular surface that defines

a particular coordinate time depends strongly on the choice of gauge.

Now consider the question “is the subsystem A inside or outside of a black hole?” Black

hole complementarity [3] declares that the answer is not gauge invariant, despite the fact that it

certainly is an invariant according to quantum field theory on a classical spacetime background.

The correct answer to this question appears to be that “it depends on the reference frame.” The

requirement that A is not tethered to a point on a spacetime manifold, but instead has a gauge-

dependent location and description, is one of the most significant departures from quantum field

theory and general relativity that appears necessary in a theory of quantum gravity.

Consider a state corresponding to a black hole viewed from a reference frame outside the

horizon. If the black hole has area A� l2P, there are many states that roughly look like the same

black hole. This degeneracy is counted by the Bekenstein-Hawking entropy: if the quantum state

of the black hole is denoted by |ψk〉, the index k takes value in {1, . . . , eS} where S = A
4l2P

. My

collaborators and I have investigated the nature of this degeneracy. One point that has guided us

is that it has two distinct interpretations. First, it is often assumed that the stretched horizon of
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a black hole has “intrinsically stringy” degrees of freedom. In this case, |ψk〉 is the state of the

stretched horizon. The second interpretation is related to the observation that every black hole

has uncertainty in its macroscopic parameters. The mass M , for instance, is only specified to a

precision ∆M (this is O(1/Ml2P) for a Schwarzschild black hole). Uncertainty in a black hole’s

macrostate means that the spacetime background is not fixed, and k is then the index that lists

states that are interpreted as black holes viewed from a distant frame that have M,J, and Q

consistent with the uncertainties.

Unfortunately, the first of these interpretations leads to great difficulty. A unitarily evolving

black hole that stores information on its stretched horizon, which in turn interacts with a local

quantum field theory in the exterior of the black hole, succumbs to the AMPS arguments [4]: a

smooth horizon is impossible in such a framework. However my collaborators and I suggested

[5, 6, 7] that the degrees of freedom associated with the black hole (referred to as vacuum degrees

of freedom) are thermally distributed both on and outside the stretched horizon of a black hole. By

delocalizing black hole information, Hawking emission need not involve modes close to the horizon.

Our proposal drops an assumption of complementarity: we demote field theory outside the horizon

to something that only arises after coarse-graining the index k. This proposal is discussed in detail

in chapter 6.

Before laying out the black hole proposal described above, we will focus a somewhat different

line of work which may, fundamentally, be closely related to the idea of gauge fixing in quantum

gravity. In [10], Bousso integrated the ideas of [11, 12] with his covariant entropy conjecture

[9] and proposed a covariant holographic principle. The critical idea of the holographic principle

is that a quantum states describing a spacetime should be defined on a a surface with one less

dimension (as is the case in the AdS/CFT correspondence). Bousso suggested that the boundary

of AdS spacetimes can be reasonably extended to general spacetimes by considering a special class

of codimension one surfaces called holographic screens which are preferred from the perspective of

the covariant entropy bound.

Recently [13, 14], a relation has been found between screens and surfaces studied by others

[15, 16, 17, 18] in an attempt to develop a quasilocal definition of a black hole. This insight led to

a refinement of the concept of holographic screens to that of past and future holographic screens

and proved that these objects have monotonic area. This area law, analogous to the second law

of black hole mechanics, is highly attractive from the perspective of quantum gravity. Unlike

globally defined event horizons, holographic screens are highly non-unique objects, and can even

be associated to observers in a very specific way (such a construction was discussed in [8]). They

are thus well in-line with the ideas of gauge fixing. Moreover, holographic screens arise in a vast

array of spacetimes including cosmological spacetimes where no asymptotic region exists.

In this thesis, we will discuss two critical developments in the theory of holographic screens:
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• Past holographic screens are foliated by marginally anti-trapped surfaces called leaves. It

was shown in [13, 14] that leaves have monotonic area. In chapter 2, we prove a stronger

area law that shows that subregions of leaves also have monotonic area. This means suggests

the validity of a “local second law of thermodynamics” that is valid in arbitrary spacetimes.

• Given that holographic screens are a natural extension of the AdS boundary to arbitrary

spacetimes, in chapter 3, we present a generalization of holographic entanglement entropy

proposals beyond the scope of AdS/CFT by anchoring extremal surfaces to past holographic

screens. We will show that the properties of holographic screens are sufficient to prove that

the areas of anchored extremal surfaces satisfy, for nontrivial reasons, expected properties of

entanglement entropy like strong subadditivity.

The results and ideas we will discuss below are not intended to form an entirely precise theory.

They must be treated as pieces of “data” that may eventually put physicists on the path to a

coherent understanding of quantum gravity. A picture of spacetime that involves the concepts of

holography and thermodynamics has been emerging ever since Bekenstein’s work [20]. With such

data constantly accumulating, we can perhaps begin to feel optimism that this picture will be

completed soon.
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Chapter 2

Refinement of the Holographic Screen
Area Law

Black hole thermodynamics [19, 20, 22, 23, 21, 24, 25] is a critical principle that has guided

the development of quantum gravity over the past few decades. In particular, Hawking’s area

theorem displayed parallels between the area of the event horizon of a black hole and entropy.

This identification of entropy with area is the heart of the holographic behavior [11, 12] exhibited

by gravity.

As discussed above, Bousso and Engelhardt [13, 14] recently proved an area law for surfaces

called past and future holographic screens that arise in a more general setting than the spacetimes

of black holes. These objects are not defined by the global notion of an event horizon and thus

provide an example of “quasi-locally” defined surfaces with thermodynamic behavior.

Holographic screens are well-motivated from considerations in quantum gravity. The covariant

entropy bound suggests [9, 10] that holographic screens play a role in general spacetimes that

is analogous to the AdS boundary1 in the context of the AdS/CFT correspondence [1, 2]. This

hypothesis is supported by the recent demonstration that holographic entanglement entropy [26,

27, 28] can be defined for regions on past and future holographic screens in a way that is consistent

with many known properties of entanglement entropy [29] (this idea will be presented in detail in

chapter 3).

Holographic screens are generated by null foliations. Because null foliations are highly non-

unique, holographic screens are also non-unique. For example, a past holographic screen can often

be obtained by considering the surfaces of maximal area on the past light-cones of an observer’s

worldline. This procedure is only valid if the maximal area surfaces are anti-trapped (see equation

2.1 below) and compact which we assume. In this case, performing a modification to the worldline

will modify the holographic screen.2 From this point of view, holographic screens appear to be

1Ref. [8] studies a related construction.
2Note that the non-uniqueness of holographic screens for a given spacetime fits well with the ideas of [8, 6, 7] where
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“pro-complementarity” objects.

Below we show that the Bousso-Engelhardt area law can be refined into a more local form.

The original area law of [13, 14] states that preferred codimension-2 surfaces called leaves have

monotonic area. We show that arbitrary subregions of leaves also have monotonic area. From

the point of view of the holographic principle, this provides evidence that degrees of freedom of a

holographic description for arbitrary spacetimes are locally distributed and satisfy a local version

of the second law of thermodynamics.

Geometrical Preliminaries

Fix a globally hyperbolic spacetime M of dimension D satisfying the null curvature condition and

the genericity conditions stated in [14].

Suppose that σ is a compact orientable codimension 2 spacelike submanifold of M . At any

point on σ, up to normalization by positive real numbers, there exist exactly 4 null directions that

are orthogonal to σ. These are often referred to as the future and past ingoing and outgoing light

rays. Two of these four are future-directed. It is thus possible to find a pair of vector fields on σ,

l and k, that are are null, orthogonal to σ, and future-directed. These vector fields are unique up

to normalization by positive functions on σ.

Associated with these vector fields is a pair of scalar functions on σ called the expansion scalars,

denoted by θl and θk. These scalars can be defined as functional derivatives of an area functional

as follows. For any p ∈ σ, let γp : R→ M be the null geodesic intersecting p with tangent vector

l. Let L denote the null surface generated by the collection of all such geodesics. Given a function

λ : σ → R, we can obtain a corresponding codimension 2 surface Γ(λ) called a cross section of L:

Γ(λ) = {γp(λ(p)) | p ∈ σ}.

If {x} is a coordinate system on σ, it naturally generates coordinates on Γ(λ) by following geodesics.

We can compute the area of Γ(λ), denoted by ‖Γ(λ)‖, as

‖Γ(λ)‖ =

∫
dD−2x

√
gλ

where gλ is the determinant of the induced metric on the cross-section in these coordinates. Now,

under an infinitesimal deformation λ(x) → λ(x) + δλ(x), there exists a function θl such that the

area of the cross-section changes by

δ‖Γ(λ)‖ =

∫
dD−2x

√
gλ θl(x, λ(x)) δλ(x)

a strong emphasis is placed on the importance of “fixing the gauge” in quantum gravity. This is clearly discussed
in [8] and in chapter 4 in which the role of a gauge-fixed apparent horizon (essentially a holographic screen though
not a past or future screen) was discussed. In this chapter we do not commit to the pictures described in these
papers.
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which determines θl(x, λ) uniquely. The expansion scalar θl(x) on σ is defined by setting λ(x) = 0.

θk is defined analogously. Intuitively, the expansion considers an infinitesimal patch of a spacelike

surface and measures the rate of change of its area per unit area as it is deformed in a null direction.

We now introduce some terminology.

Definition 1. Suppose that σ is a compact spacelike orientable codimension 2 submanifold of a

spacetime. σ is said to be marginally anti-trapped if one of its two future-directed null expansion

scalars is zero and the other is strictly positive. σ is said to be marginally trapped if one of its two

future-directed null expansion scalars is zero and the other is strictly negative.

Without loss of generality, when dealing with marginal surfaces we will usually take l to be the

“marginal direction” i.e. the direction with θl = 0. In this case, the above definition is

Marginally Anti-Trapped

θl = 0

θk > 0

Marginally Trapped

θl = 0

θk < 0

(2.1)

The condition that θl = 0 means that σ is the area-maximizing surface on the geodesic congruence

generated by l and −l.

Holographic Screens and Area Laws

We now move to the most important definition in this chapter.

Definition 2. A past holographic screen is a codimension-1 submanifold of the spacetime that is

foliated by marginally anti-trapped surfaces called leaves. A future holographic screen is instead

foliated by marginally trapped surfaces, also called leaves.

For both past and future holographic screens, the foliation into leaves is unique: other splittings

of a screen cannot satisfy the marginally anti-trapped or trapped condition.

The area law of [13, 14] is a statement about the evolution of leaves comprising a past or future

holographic screen H. We denote the leaves of H by σr where r is a smooth parameter. In our

notation, we can express the Bousso-Engelhardt area law as the statement that ‖σr‖ is monotonic

where ‖·‖ denotes the area functional. By convention, we will always choose the parameter r so

that ‖σr‖ is increasing. As before, on a particular leaf σ, let l and k denote the two future-directed

null vector fields orthogonal to σ.

We define a vector field h on H by requiring that h is orthogonal to every leaf and by the

normalization condition dr(h) = 1. The integral curves of h are called the fibration3 of H. If we

3Note that h need not have definite signature. This is the key distinguishing feature between past (and future)
holographic screens and related objects including future outer trapping horizons and dynamical horizons [15, 16,
17, 18]. Past and future holographic screens can be regarded as a synthesis such ideas with those of [9].
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extend the definition of k and l to all of H, then h = αk+ βl where α and β are smooth functions

on H. The Bousso-Engelhardt area law was proven by showing that α never changes sign from

which equation 2.1 implies that leaves have increasing area.

Our area law extends this result as follows. Suppose that A0 is a region in σ0. We can translate

A0 to a region Ar in σr by following the fibration from points in A0 to σr. We will prove that the

area of Ar is increasing. This conclusion relies on the fact that the area increase associated with

zig-zagging along k and l is a first order effect in r, while the failure of such a zig-zag procedure

to follow the fibration is at most a second-order effect.

Relation to the Screen Entanglement Conjecture

Holographic entanglement entropy proposals [26, 28] have recently been conjecturally generalized

beyond the context of AdS/CFT by employing past or future holographic screens in arbitrary

spacetimes (see chapter 3 and [29]). The proposed construction is to anchor extremal surfaces

to the boundaries of subregions of leaves. The properties of past and future holographic screens

are sufficient to ensure that the areas of these extremal surfaces satisfy expected properties of

entanglement entropy like strong subadditivity. The statement that one fourth of the area of

such extremal surfaces is in fact the entanglement entropy of a subsystem in a quantum theory

holographically defining the spacetime in which the screen lies is called the “screen entanglement

conjecture.”

The area law proven here applies to subregions of leaves, the same objects to which an entangle-

ment entropy-like quantity was assigned in [29]. Suppose that A0 is a region in the leaf σ0 and Ar is

the result of translating A0 along the fibration to σr. Let S(Ar) denote the screen entanglement en-

tropy of Ar as defined above via the extremal surface anchored to ∂Ar. With the exception of cases

that are topologically nontrivial, S(Ar) satisfies a “Page bound”: S(Ar) ≤ min(‖Ar‖, ‖σr \ Ar‖).
Our area law applies to the evolution of the subregions Ar and ACr and thus causes the Page

bound to become less restrictive whenever r is increased. This does not prove that S(Ar) increases

monotonically.

2.1 Proof of the Area Law for Subregions

From here on we will assume that H is a past holographic screen. Our argument can be modified

to the case of a future holographic screen in an obvious way. Because H is a past screen,

θl = 0

θk > 0.
(2.2)

Moreover, we now have α > 0 on all of H.
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To carefully study the evolution of areas of regions in leaves, it is convenient to consider the

null surfaces passing through a leaf σr. First, extend l and k to a tubular neighborhood of H by

following along the geodesics generated by l and k. Now let Nr denote the null surface obtained by

starting from points on σr and following the integral curves of l in both the +l and −l directions.

Let L+
r denote the null surface obtained by starting at σr and following the integral curves of k

only in the +k direction.

We now fix an (arbitrarily chosen) reference leaf σ0. There exists an r0 > 0 such that if

0 < r < r0, it is possible to define a “zig-zag” map fr : σ0 → σr as follows. If p ∈ σ0, follow L+
0

from p along a generator of L+
0 (i.e. along the integral curve of k that p lies on) until L+

0 intersects

a generator of Nr. Then, follow the Nr generator to σr. Bousso and Engelhardt established that

fr is well-defined for sufficiently small r (this is why we restrict to r < r0). fr is, in fact, a

diffeomorphism between σ0 and σr.

Considering equation 2.2 and the fact that α > 0, the zig-zag construction of fr implies that if

A0 is a D − 2 dimensional submanifold of σ0,

d

dr

∣∣∣
r=0
‖fr(A0)‖ =

∫
A0

√
gσ0 α θk > 0. (2.3)

The area law of Bousso and Engelhardt is obtained in the case where A0 = σ0 because fr is

surjective.

Aside from the case where A0 = σ0, the fact that ‖fr(A0)‖ is an increasing function of r is an

unattractive area law. One issue is that the definition of the function fr involves the choice of the

reference leaf (i.e. the choice of r = 0). Moreover, the family of regions {fr(A0) |r ∈ [0, r0)} cannot

necessarily be extended to all r.

Fortunately, as described above, there is a simpler way to carry subregions from one leaf to the

next. Let Ar1 be a D−2 dimensional submanifold of the leaf σr1 . Define Ar2 ⊂ σr2 by starting from

points in Ar1 and following along the fibration of H (i.e. the integral curves of h) by parameter

r2 − r1. Note that this procedure gives a well-defined region Ar ⊂ σr for the entire range of r. We

now prove that ‖Ar‖ is an increasing function.

First, the following Lemma shows that fr behaves similarly to h-translation for small r:

Lemma 1. If p0 ∈ σ0, let γ : [0, r0) → H be the curve on H defined by γ(r) = fr(p0). Then, the

tangent vector of γ at r = 0 is h(p0).

Proof. We will begin by introducing a set of convenient coordinates. Fix a coordinate chart on σ0

for a neighborhood of p0. We denote these coordinates by xi, i ∈ {1, . . . D− 2} and require that p0

corresponds to the origin of RD−2. Extend to coordinates {(xi, r)} on H by following the integral

curves of h from xi by parameter r to reach the point labeled by (xi, r). Note that this point will

lie in σr. Finally, extend to coordinates {(xi, r, z)} by starting from the point (xi, r) and following

the integral curves of l by affine parameter z. Note that H is the z = 0 hypersurface.

8



H

σr

σ0

A0

Ar

h
fr(A0 )

Figure 2.1: We show that Ar has monotonic area by comparing Ar with the region fr(A0). As depicted
here, Ar and fr(A0) are identical at linear order in r.

Because α 6= 0, we can put k
∣∣
H

= 1
α
h − β

α
l. Thus, in the coordinates (xi, r, z) constructed

above, we have

h = (0, 1, 0)

k
∣∣
z=0

= (0,
1

α
,−β

α
)

l
∣∣
z=0

= (0, 0, 1)

(2.4)

where 0 denotes D− 2 zeros. The curve γ(r) also takes a simple form in our coordinates: because

fr maps points in σ0 to points in σr, we have

γ(r) = (xi(r), r, 0) (2.5)

where xi(r) is a curve in RD−2. Our Lemma will be proven by showing that ẋi(0) = 0.

Let ξ0(λ) and ζr(λ) denote, respectively, the geodesics generated by k and l from the points

γ(0) = (0, 0, 0) and γ(r) = (xi(r), r, 0). The zig-zag definition of fr implies that ξ0 and ζr have an

intersection: there exist functions λ1(r) and λ2(r) such that

ξ0(λ1(r)) = ζr(λ2(r)). (2.6)

Meanwhile, equation 2.4 implies that

ξ0(λ1(r)) =
(
0,

1

α0

λ1(r),−β0

α0

λ1(r)
)

+O
(
λ1(r)2

)
ζr(λ2(r)) =

(
xi(r), r, λ2(r)

)
+O

(
λ2(r)2

) (2.7)

where α0 = α(r = 0) and β0 = β(r = 0). Comparing the r and z components of equation 2.7 now

gives

λ1(r) = α0 r +O
(
λ1(r)2, λ2(r)2

)
λ2(r) = −β0 r +O

(
λ1(r)2, λ2(r)2

) (2.8)
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which then implies that

xi(r) = O
(
λ1(r)2, λ2(r)2

)
= O

(
r2). (2.9)

We conclude that ẋi(r = 0) = 0.

Theorem 1. Let H be a past holographic screen in a D dimensional spacetime satisfying the

genericity conditions of [14]. Let {σr} be the foliation of H into marginally anti-trapped surfaces

(i.e. leaves). Let h be the leaf orthogonal vector field in H normalized so that dr(h) = 1. Suppose

that A0 ⊂ σ0 is a D − 2 dimensional submanifold of σ0 and define Ar as the result of translating

A0 along the integral curves of h by parameter r. Then, Ar has strictly increasing area.

Proof. Take r ∈ [0, r0). We have∣∣∣‖fr(A0)‖ − ‖Ar‖
∣∣∣ ≤ ‖fr(A0) ∆ Ar‖ (2.10)

where ∆ denotes the symmetric difference of sets: A∆B = (A \B) ∪ (B \A). Now Lemma 1 and

the compactness of σr implies that

d

dr

∣∣∣
r=0

(
‖fr(A0) ∆ Ar‖

)
= 0.

Noting that both sides of equation 2.10 are nonnegative for all r and are zero at r = 0, we conclude

that
d

dr

∣∣∣
r=0

(∣∣∣‖fr(A0)‖ − ‖Ar‖
∣∣∣) = 0. (2.11)

But equation 2.3 implies that ‖fr(A0)‖ is increasing at r = 0 so we must have that ‖Ar‖ is also

increasing at r = 0.

While we have only proven that Ar has increasing area at r = 0, we can define a zig-zag

function analogous to f from any reference leaf and repeat all arguments above for any r. Thus,

we conclude that Ar has strictly increasing area. In fact, equations 2.3 and 2.11 show that

d

dr
‖Ar‖ =

∫
Ar

√
gσr α θk > 0.
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Chapter 3

The Screen Entanglement Conjecture

We now turn to a major recent development in the study of past and future holographic screens.

Holographic entanglement entropy, proposed by Ryu and Takayanagi (RT) [26], proved by Lewkowycz

and Maldacena [27], and made covariant by Hubeny, Rangamani, and Takayanagi (HRT) [28], is

a beautiful property (or, in the covariant case, conjecture) of AdS/CFT. In this chapter we will

introduce a way to promote holographic entanglement entropy beyond the scope of AdS/CFT

that applies just as well to cosmological spacetimes as it does to asymptotically AdS spacetimes.

In the case of the latter, it reduces to the HRT proposal. Moreover, the promoted holographic

entanglement entropy satisfies, for nontrivial reasons, expected properties of entanglement entropy

like strong subadditivity.

The HRT prescription provides a way to compute entanglement entropy of a spatial region A

in a quantum state dual to an AlAdS spacetime. The procedure is to consider ∂A, the boundary

of the spatial region, and to find the area of a codimension 2 extremal surface that is anchored

to ∂A. A näıve extension of this idea to general spacetimes would be to take A to be a region in

the conformal boundary of an arbitrary spacetime. This approach fails: what is the boundary of

a closed FRW universe with past and future singularities?

In our proposal, we anchor extremal surfaces to a past or future holographic screen. The

definition of these codimension surfaces was given above in chapter 2. Note that holographic

screens, in a less refined form, were proposed by Bousso [10] in an attempt to find the analogue of

the AdS boundary when extending holography to general spacetimes. If one believes the covariant

entropy bound [9], then there is essentially no other reasonable class of surfaces for this purpose.

3.1 Holographic Screen Entanglement Entropy

Throughout this chapter, we will work in a spacetime M that is globally hyperbolic (or, in the

AlAdS case, satisfies a generalization of global hyperbolicity) and that satisfies the null energy

condition. Put d = dimM . Let H denote a past holographic screen. Everything below can be
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modified to the case of a future holographic screen without subtlety.

We will now assume some genericity conditions.

• Strict Focusing. If B is a codimension 2 spacelike surface, the four surface-orthogonal null

congruences have strictly decreasing expansion as they move away from B.

• Strict Second Law of Holographic Screens. If leaves of H are smoothly parameterized as σ(r)

with ha = ∂ar nonzero, then area(σ(r)) has a nonzero derivative for all r.

The sense in which the second condition is generic was reviewed in chapter 2. If our spacetime fails

to satisfy these conditions, it can be made to do so by sprinkling a very small amount of classical

matter everywhere.

As discussed in the previous chapter, there is a unique foliation of H into anti-trapped leaves.

Let σ be a particular leaf in this foliation and let k and l denote the vector fields on σ that satisfy

equation 2.2. Because M is globally hyperbolic, there exists a Cauchy surface S0 containing σ

such that S0 \ σ consists of a disconnected interior and exterior. The interior of S0 is defined so

that a vector on σ pointing toward the interior takes the form −c1k + c2l with c1, c2 > 0. Let S

denote the union of the interior of S0 with σ. We will assume that S is compact and that it has

the topology of a solid ball. Now let Dσ be the domain of dependence of S, Dσ = D(S), with the

convention that Dσ includes orthogonal null surfaces generated by l and −k.

Suppose that A is a d − 2 dimensional submanifold of σ with a boundary. Consider the set

of extremal codimension 2 surfaces that are anchored to and terminating at ∂A, and contained

entirely in Dσ (see figure 3.1). In section 3.2 we will give conditions on Dσ that ensure that this

set is not empty. Taking the existence of such a surface for granted, let the one of minimal area be

denoted by ext(A) and define the holographic screen entanglement entropy (or screen entanglement

entropy for brevity) of A as

S(A) =
area(ext (A))

4
. (3.1)

The quantity S(A) is the most natural generalization of the HRT proposal to general spacetimes.

We emphasize that we have defined screen entanglement entropy geometrically without reference

to a quantum theory. The term “entanglement entropy” is only meant suggestively. Nonetheless,

below we state a screen entanglement conjecture: that S(A) is in fact the von Neumann entropy

of a subsystem of a holographic quantum state for general spacetimes. Regardless of the validity

of this conjecture, we are free to study S(A) as we have defined it. As we will see, the properties

of holographic screens ensure that screen entanglement entropy possesses numerous properties

reminiscent of von Neumann entropy which we now discuss.

12



Figure 3.1: This figure depicts our construction of holographic entanglement entropy in general spacetimes.
The horn-shaped surface is a past holographic screenH. The black and red codimension 2 regions together
form a single leaf σ. The black segment represents a region A and the extremal surface ext (A) (orange)
is anchored to its boundary. The causal region Dσ is shown in green. Note that extA ⊂ Dσ.

Properties of Holographic Screen
Entanglement Entropy and Extremal Surfaces

• Existence and Containment. In section 3.2 we provide conditions for ext (A) to exist. This

is a nontrivial issue because of the “containment condition” that ext A ⊂ Dσ. Arguments

that Dσ contains an extremal surface rely critically on the assumption that A is in a leaf of

a holographic screen. Moreover, the condition that ext (A) ⊂ Dσ gives rise to properties of

holographic screen entanglement entropy like strong subadditivity (see below) and will allow

us to reasonably define an entanglement wedge for A. For an example of the importance of

the containment condition, see equation 3.3 below and the paragraphs around it.

• (Strong) Subadditivity. Suppose that A and B are regions in σ. Then,

S(A) + S(B) ≥ S(A ∪B) + S(A ∩B)

where S is the function defined in 3.1. This result holds regardless of whether or not A and

B intersect as long as we take the convention that S(∅) = 0. As we will see in section 3.2,

the proof of this is a modified version of Wall’s [30] “maximim” proof for the HRT case. This

does not mean that strong subadditivity is an obvious result: most of the work in section
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3.2 is to show that the properties of leaves of holographic screens are sufficient to generalize

Wall’s arguments to our context.

• Page Bounded. Define the extensive entropy of A as Sextensive(A) = area(A)/4. Then, the

holographic screen entanglement entropy satisfies the following Page bound :1

S(A) ≤ min{Sextensive(A), Sextensive(σ \ A)}. (3.2)

This is a simple consequence of the maximin construction we give in section 3.2. Note that

the strict second law for holographic screens implies that this inequality becomes a weaker

constraint if we transport A along the fibration vector field defined in chapter 2. In certain

cases, the inequality saturates and S(A) approaches a “random entanglement limit.” (See

section 3.3 for examples of this in cosmology.)

• Reduction to the HRT Proposal. As explained in detail in [10], the AdS boundary can be

regarded as a holographic screen. In this case, surfaces of constant time in the dual field

theory correspond to leaves, and our proposal becomes identical to the covariant holographic

entanglement entropy conjecture of [28].

The Screen Entanglement Conjecture

The content of this work does not rely on any unverified statement. Nonetheless, for the purposes

of better motivating the definition of holographic screen entanglement entropy, we allow ourselves

to make a speculative conjecture about the role of S(A) in quantum gravity.

Our proposal can be regarded as an extension of a covariant holographic principle due to Bousso

which we now review. In [10], Bousso integrated the ideas of [11, 12] with his covariant entropy

conjecture [9] and proposed that each marginal surface B foliating a holographic screen is associated

with a Hilbert space HB of dimension exp(area(B)/4) and that states in HB holographically define

the state on a null surface N passing through B in the marginal direction. For our purposes, this

holographic principle takes the following form. To each leaf σ of a holographic screen we assign a

density matrix ρσ. The density matrix acts on a Hilbert space of dimension exp(area(σ)/4) which

may be a subspace of a “complete” Hilbert space.2 The covariant entropy bound suggests that ρσ

encodes the quantum information on the null slice generated by l and −l in the notation of chapter

2.

1The term “Page bound” is motivated by Page’s considerations of the entanglement entropies of subsystems [31].
2The concept that the states corresponding to any particular approximately fixed geometry form a subspace of a

complete Hilbert space is due to Nomura [32, 33]. In his formulation, a larger Hilbert space for arbitrary geometries
is a direct sum over subspaces for each geometry. This direct sum itself is only a subspace of the complete Hilbert
space which may include an “intrinsically stringy” subspace with no geometrical interpretation. This construction
may provide insight into how quantum mechanics can be unitary despite the fact that screens have non-constant
area.
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We now assume Bousso’s holographic principle and state our new conjecture. We propose that

every region A of σ (up to string scale resolution) corresponds to a subsystem of the Hilbert space

that ρσ acts on. We conjecture that the von Neumann entropy of that subsystem in the density

matrix ρσ is given, at leading order, by S(A) as we have defined it in equation 3.1.

We refer to this statement as the screen entanglement conjecture. Because a holographic quan-

tum theory dual to arbitrary spacetimes is not known, the screen entanglement conjecture is not a

mathematical statement about the relation between two known theories (as in the case of HRT).

Instead, our conjecture suggests a way to compute properties of quantum states in an unknown

theory. It is our hope that this will, in fact, be a step toward developing a quantum theory for

arbitrary spacetimes.

3.2 Proofs of Strong Subadditivity and Other Relations

In this section we prove key technical results about holographic screen entanglement entropy in-

cluding many of the properties advertised above. The notation and conventions we will use are

the same as those given in chapter 2 and section 3.1. In particular, H is a past holographic screen

in a globally hyperbolic spacetime of dimension d that satisfies the genericity conditions of section

3.1. σ is a compact leaf of H which we assume to have the topology of Sd−2. k and l are null

orthogonal vector fields on σ satisfying equation 2.2. S0 is a Cauchy slice containing σ and S is

the portion of S0 that is enclosed by σ including σ itself (the enclosed side is defined in section

3.1). S is assumed to have the topology of a compact d− 1 ball. Dσ is the domain of dependence

of S.

As always, the case of a future holographic screen is omitted because it presents no additional

subtlety.

Existence and Containment of Extremal Surfaces

As discussed in section 3.1, it is nontrivial and critical to show the existence of an extremal surface

anchored to ∂A that lies entirely in Dσ. We now prove that such a surface exists under very

generic conditions. Our first step is to show that ext (A) exists in the case that Dσ is compact.

This is a common situation3 although it is not the case if the ingoing light sheets of σ encounter

a singularity.

3Suppose that the future and past ingoing light-sheets of σ terminate at caustics rather than singularities. Let
C+ and C− denote the set of the first caustics encountered (local or nonlocal) by null geodesics in the future
and past light sheets respectively. Then, if Dσ = J−(C+) ∩ J+(C−), we can conclude that Dσ is compact. This
follows from the fact that C± inherits the compactness of σ and from the fact that global hyperbolicity implies that
J−(K1) ∩ J+(K2) is compact if K1 and K2 are compact.
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Figure 3.2: The proof of lemma 2 involves a continuous family of surfaces As along with their extremal
surfaces (dotted curves).

Lemma 2. If Dσ is compact, then there exists a codimenson 2 extremal surface anchored and

terminating at ∂A that lies entirely in Dσ and that intersects ∂Dσ only at ∂A.

Proof. Let Σ+ and Σ− denote the future and past ingoing light-sheets of σ. We now extend Σ−

to a slightly larger light-sheet, Σ̃−, by following the future directed null congruence of k. Because

θk > 0 on σ, we can make this extension so that Σ̃− has θk > 0 everywhere and so that there exists

an open set in Σ̃− containing σ.

In the language of [34], both Σ+ \ σ and Σ̃− are extremal surface barriers because they have

negative expansion in the l and −k directions respectively. Moreover, ∂Dσ ⊂ (Σ+ \ σ) ∪ Σ̃−. It

follows that ∂Dσ is itself an extremal surface barrier for extremal surfaces in the interior4 of Dσ.

Now consider the region A. The spherical topology5 of σ ensures that it is possible to introduce

a continuous one-parameter family of submanifolds of Dσ, As, such that

• A0 consists of a single point in the interior of Dσ

• A1 = A

• for 0 < s < 1, As is a codimension 2 submanifold of the interior of Dσ that is diffeomorphic

to A.

4In [34], extremal surfaces are confined to regions referred to as the “exterior” of an extremal surface barrier.
The interior of Dσ, i.e. Dσ \ ∂Dσ, is analogous to exterior regions studied by Wall and Engelhardt.

5We remind the reader that our conventions are those laid out in the first paragraph of section 3.1. In particular,
we are making simplifying topological assumptions about σ and S. We will leave it to future work to investigate
the consequences of relaxing these assumptions.
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Figure 3.3: The idea of a compact restriction is shown here. The restriction R is the shaded region along
with its boundary, the blue and orange lines. ∂R consists of two parts: an extremal surface barrier B
(blue) and a portion of ∂Dσ (orange). In this figure, the barrier B protects extremal surfaces in R from
a singularity. Not shown are extremal surfaces in R, none of which contact ∂R except at their anchor on
the leaf σ.

This is shown in figure 3.2. Note, in particular, that if s < 1, As ∩ ∂Dσ = ∅.
If ε > 0 is sufficiently small, then the extremal surface of minimal area that is anchored to ∂Aε

lies entirely in the interior of Dσ. Denote this extremal surface by Γ(ε). Consider increasing the

value of the parameter s from ε to 1. For each value of s, construct an extremal surface Γ(s) (not

necessarily the one of minimal area) anchored to ∂As. The compactness of Dσ (which ensures that

it is bounded and has no singularities) together with the fact that, as discussed above, ∂Dσ is an

extremal surface barrier, allows us to take Γ(s) to not jump discontinuously and to be contained

in the interior of Dσ for all s < 1. When we take the limit sending s to 1, the extremal surface

anchored to ∂A must intersect ∂Dσ at ∂A and nowhere else: if it did intersect ∂Dσ outside of ∂A,

the extremal surface would be locally tangent to an extremal surface barrier with strictly nonzero

null extrinsic curvature.

The unwanted assumption that Dσ is compact (which fails in the event that Σ+ or Σ− encounter

a singularity) can be dropped if there exists a codimension 0 submanifold (with boundary) of Dσ,

R, which “restricts” extremal surfaces (see figure 3.3). By this we mean that

1. R is compact,

2. There exists an open set U containing S with Dσ ∩ U = R ∩ U , and
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3. ∂R = (∂Dσ ∩R) ∪ B where B is an extremal surface barrier for codimension 2 extremal

surfaces inside in R.

These conditions for R are designed to ensure that R can be used in lemma 2 in place of Dσ

without difficulty. The existence of such regions R relies on the existence of the barrier B. The

arguments in theorem 11 of [30] show that Kasner singularities are always protected by such bar-

riers. Hartman and Maldacena [35] encountered a barrier protecting black hole singularities from

codimension 2 extremal surfaces. Constant time slices in FRW spacetimes are another example of

suitable barriers.6

Any region R ⊂ Dσ satisfying the conditions will be called a compact restriction of Dσ. Note

that, in particular, if Dσ is compact then Dσ is a compact restriction of itself. Our findings can

now be summarized by the following improvement upon lemma 2:

Theorem 2. If Dσ possesses a compact restriction, then there exists a codimenson 2 extremal

surface anchored and terminating at ∂A that lies entirely in Dσ and that intersects ∂Dσ only at

∂A.

To better appreciate this theorem, it is helpful show that the statement is false if σ is not a

leaf of a holographic screen. Consider 2 + 1 dimensional Minkowski space with inertial coordinates

(t, x, y) and let C denote the large cylinder satisfying x2 + y2 = R2 with R� 1. Consider the two

line segments on C that are approximately given by

A = {(t =
1

2
|x|,−1 > x ≥ 0, y = R)}

B = {(t =
1

2
|x|, 0 ≤ x < 1, y = R)}

(3.3)

and construct any spacelike “time slice” on C, σ, that includes AB. It is easy to see that the

extremal surface anchored to ∂ (AB) is a straight line that is timelike related to AB and thus

fails to lie within the domain of dependence Dσ. To see how severe this problem is, note that the

segments A and B fail to satisfy subadditivity of entanglement entropy. That is, the inequality

SA + SB ≥ SAB is false. Note that in this example σ fails to satisfy equation 2.2 because of the

kink at A ∩B.

A Maximin Construction for Holographic Screens

Theorem 2 ensures that holographic screen entanglement entropy is a well-defined quantity in a

broad set of cases. We will now demonstrate that this quantity satisfies expected properties of

6Many extremal surfaces are anchored at singularities and thus pass through barriers. This is irrelevant because
the barriers we are discussing here play the of ∂Dσ in the proof of lemma 2. As a region As is deformed from a
point inside R into A ⊂ σ, extremal surfaces anchored to ∂As cannot smoothly pass B or ∂Dσ.
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entanglement entropy. To do this, it is very useful to closely follow [30] and introduce a maximin

construction of extA. Our construction will be slightly modified from that used for HRT surfaces

anchored to the AdS boundary. Wall’s maximin prescription involves considering a collection of

Cauchy slices that are anchored only to ∂A. Because we already know that ext A lies inside of

Dσ, we will introduce a stronger constraint requiring that we only consider achronal slices that are

anchored to all of σ.

Definition and Existence of Mm(A)

Our setup remains unchanged. Fix a past (or future) holographic screen H in a globally hyperbolic

spacetime and let σ be a leaf. We take a Cauchy surface S0 containing σ and define S as the closure

of the portion of S0 inside of σ. As before, we require that S is compact and that it has the topology

of a solid d − 1 ball. Let Dσ = D(S). We also fix a region A in σ with a boundary. Now define

Cσ as the collection of codimension 1 compact achronal surfaces that are anchored to σ and that

have domain of dependence Dσ. Note, in particular, that S ∈ Cσ. Moreover, note that the global

hyperbolicity of Dσ ensures that every element of Cσ has the same topology as S: that of a compact

d− 1 ball.

Take any Σ ∈ Cσ. Let min(∂A,Σ) denote the codimension 2 surface of minimal area7 on Σ

that is anchored to ∂A. The existence of min(∂A,Σ) is guaranteed by the compactness of Σ and

theorem 9 of [30]. Define a function F : Cσ → [0, area(A)] by F (Σ) = area(min(∂A,Σ)). Now

assume that there exists a Σ0 in Cσ that maximizes F (globally). We now define min(∂A,Σ0) as

the maximin surface of A, and we will denote it by Mm(A). If there are several maximin surfaces,

Mm(A) can refer to any of them.

The existence of Mm(A) can be proven in many cases by appropriately importing the arguments

of theorems 10 and 11 in [30] which we only briefly describe here. Consider the Cauchy surface S0

which can be identified as a slice in a foliation of Cauchy surfaces {St}. Using this definition of

time, we can identify a surface Σ ∈ Cσ with a function tΣ : S0 → R in a natural way: if Ix denotes

the integral curve of ∂t that passes through a point x ∈ S, then Σ = {Ix∩StΣ(x)|x ∈ S}. From this

viewpoint, F can be regarded as a real-valued functional on {tΣ}. Now if Dσ is compact, we can

find the maximum and minimum values of t for the set Dσ to obtain an upper and lower bound

on tΣ that applies for all Σ. Moreover, the condition that Σ be compact and achronal ensures that

{tΣ} is equicontinuous. These facts imply that Cσ is compact (with the uniform topology) and

that the extreme value theorem applies to the function F .

In the case where Dσ is not compact (for instance, due to a singularity terminating a light sheet

of σ), we can still argue that F has a maximum as long as Dσ satisfies a condition similar to but

7 Wall [30] added the condition that min(∂A,Σ) be homologous to A. While this condition ought to be included
in our discussion as well, the assumption that S (and thus every element of Cσ) has the topology of a compact d−1
ball makes a homology condition trivial. We leave the task of investigating more general topologies to future work.
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slightly stronger than the “compact restriction” idea discussed above. Suppose that B+ is a surface

in Cσ which is identical to Σ+ in some neighborhood of S. For any Σ ∈ Cσ, define another surface

Σ̄ by tΣ̄ = min{tΣ, tB+}. If B+ has the property that for any Σ we have F (Σ) ≤ F (Σ̄), then we

will say that B+ is a future maximin barrier. A past maximin barrier is defined analogously as a

surface B− ∈ Cσ, identical to Σ− in a neighborhood of S, such that for any Σ we have F (Σ) ≤ F (Σ̄)

where Σ̄ is defined by tΣ̄ = max{tΣ, tB−}.
Now if Dσ possesses both a past and future maximin barrier, then we can restrict our attention

to the subset of surfaces in Cσ that satisfy tB− ≤ tΣ ≤ tB+ . Let Cσ(B−, B+) denote this restricted

set. Because B− and B+ are compact, J+(B−) ∩ J−(B+) is compact and so the set Cσ(B−, B+) is

compact in the uniform topology and F has a maximum Σ0 ∈ Cσ(B−, B+). The definition of past

and future maximin barriers ensures us that if Σ ∈ Cσ, then F (Σ0) ≥ F (Σ). Thus, Σ0 is a global

maximum for F and we can safely define min(∂A,Σ0) as the maximin surface of A, Mm(A).

As in the case of the compact restriction of Dσ used in theorem 2, it is difficult to find examples

where Dσ does not possess a past and future barrier. Wall [30] argued that such barriers protect

maximin surfaces from a wide range of singularities: approximately Kasner singularities, BKL

singularities, and FRW big bangs all lead to past or future maximin barriers. If Σ± simply

terminate at caustics rather than singularities, then B± = Σ± are barriers. In any event, if B±

exist, then the region J+(B−) ∩ J−(B+) provides a compact restriction of Dσ in the sense of

theorem 2. Thus, the existence of B± ensures both the existence of Mm(A) as well as the existence

of ext (A). From here on, we will simply take for granted that a past and future maximin barrier

exist.

Equivalence of Mm(A) and ext (A)

Below we will argue that Mm(A) = ext (A). However, it is first very useful to introduce two

additional definitions first.

1. Take Σ ∈ Cσ and let Γ be a codimension 2 surface anchored to ∂A that lies in Dσ. Consider

the intersection between Σ and the future and past-directed orthogonal null surfaces of Γ

that are directed toward A. This intersection is called the representative of Γ on Σ and will

be denoted by rep(Γ,Σ).

2. The domain of dependence of codimension 1 achronal surfaces anchored to A ∪ ext A lying

in Dσ will be called the entanglement wedge of A.

Note that rep(Γ,Σ) is itself a codimension 2 surface anchored to ∂A that lies on Σ. Moreover,

if Γ is extremal then, by the focusing theorem, area(rep(Γ,Σ)) ≤ area(Γ).

We now demonstrate that our maximin procedure always finds ext A, the extremal surface of

minimal area that is anchored to ∂A and which lies in Dσ. While much of the proof is similar to
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Figure 3.4: This figure depicts the argument of case 1 of the proof of theorem 3. Note that the surface
S is shown here for reference and that it does not play a critical role in the proof. The shaded region is
Dσ = D(S) and the green dot is (a cross-section of) the leaf σ.

the arguments in [30], we will have to pay special attention to the possibility that the maximin

surface could run into the boundary of Dσ.

Theorem 3. Mm(A) = ext (A).

Proof. The argument of theorem 15 in [30] immediately shows that if a point p ∈ Mm(A) is also in

the interior of Dσ (i.e. Dσ \ ∂Dσ), then Mm(A) is extremal at p. In particular, if Mm(A)∩ ∂Dσ =

∂A, then Mm(A) is an extremal surface everywhere. We now argue that Mm(A) in fact cannot

ever intersect ∂Dσ outside of ∂A.

Suppose there exists p ∈ Mm(A) ∩ (∂Dσ \ ∂A). There must be an open neighborhood of p in

Mm(A) (open in the d-2 dimensional manifold Mm(A)) that is entirely contained in ∂Dσ. If this

were not the case, Mm(A) would be extremal at points arbitrarily close to p and would thus be

extremal at p. Moreover, Mm(A) would be tangent to ∂Dσ at p. However, ∂Dσ is an extremal

surface barrier (see lemma 2) so this is not possible. There are now two cases to consider.

• Case 1 : p ∈ ∂Dσ \ σ.

Figure 3.4 illustrates a construction that we will use for this case. Take p ∈ Σ+ (the case of

p ∈ Σ− is no different). By construction, Mm(A) is minimal on a surface Σ0. There exists a

(dimension d-1) open subset U of Σ0 containing p such that U ∩Mm(A) ⊂ Σ+. Moreover,

we can require that U is “split” by Mm(A) into two disconnected sets, N and V , such that

N is the side of U closer to σ. Since Σ0 is anchored to σ, we must have that N ⊂ Σ+ and, in
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particular, N is null. On the other hand, V cannot be a subset of Σ+. If it were, then Mm(A)

could decrease its area by being deformed up Σ+ (by the focusing theorem). In particular,

we can take U small enough to ensure that V is nowhere null in the direction of la.

We now consider the process of slightly sliding Σ0 down Σ+. More precisely, take a small

parameter ε > 0 and a corresponding one-parameter family of slices {Σε} that are slightly

deformed from Σ0 in a way we now describe (an example of Σε is depicted in figure 3.4 by

an orange dashed line). The surface Mm(A) ∩ U is described by a function λ0(x) giving the

affine distance from σ up to Mm(A) at a point x ∈ σ. Now put λε(x) = λ0(x) − εf(x).

Here, f : σ → [0, 1] is a smooth weighting function which equals 1 at the null generator xp

that p lies on. We take f to go to zero smoothly as x moves away from xp, equaling zero

exactly when x corresponds to a point outside of U ∩Mm(A). For λ < λε(x), we require that

the surface Σε is identical to Σ+. We extend Σε beyond λε by parallel transporting tangent

vectors on Mm(A) directed toward V down to λε. This prescription does not uniquely fix

Σε, but it is sufficient for our purposes.

Consider the one-parameter family of codimension 2 curves min(∂A,Σε). For any ε > 0, let

Lε denote the future-directed null congruence of min(∂A,Σε) that points toward the interior

of Dσ (see figure 3.4). The continuity of min(∂A,Σε) as ε varies and the fact that Σ+ is a

light sheet ensures that there exists and ε0 > 0 such that for ε < ε0,

– Lε intersects Σ0 to form a codimension 2 surface on Σ0 anchored to ∂A and

– Lε has negative future-directed expansion in the region between min(∂A,Σε) and its

intersection with Σ0.

Denote this intersection by Cε and observe that C0 = Mm(A). But Mm(A) is minimal on

Σ0 so for sufficiently small ε,

area(Mm(A)) < area(Cε) ≤ area(min(∂A,Σε))

which contradicts the assumption that Mm(A) has area greater than or equal to the minimal

area surface on any slice. Note that the last inequality above follows from the focusing

theorem applied to Lε.

• case 2 : p ∈ σ.

Assume that there exists a (dimension d-2) open subset of Mm(A) that is contained in σ.

(If not, there must be such an open set in ∂Dσ \ σ which just leads to case 1 above.) Now

consider the null vector field la on σ and the geodesics generated by it. Follow these geodesics

from σ up along Σ+ by a short affine distance ε > 0 to generate a new codimension 2 surface,
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σε, which limits to σ when ε→ 0. The focusing theorem now gives rise to a modified version

of equation 2.2 at σε:

θkε > 0

θlε < 0.
(3.4)

Along with moving σ up the light-sheet, we also translate A up the sheet to a one-parameter

family of surfaces Aε that limit to A. Consider the maximin construction applied to codi-

mension 2 surfaces anchored to ∂Aε that lie on codimension 1 surfaces anchored to σε. We

denote the result by Mm(Aε). We also define Dσε in the obvious way. Now this maximin pro-

cedure leads to the same two cases that we are now studying. The first case, where Mm(Aε)

intersects ∂Dσε \ σε proceeds exactly as it did with ε = 0. Now suppose that Mm(Aε) has

an open set contained in σε. Mm(Aε) must be minimal on some slice Σε. However, equation

3.4 implies that σε has negative (inward) extrinsic curvature on Σε. It is thus impossible for

Mm(Aε) to be minimal on Σε since its area could be decreased by “cutting corners.”

We can thus conclude that Mm(Aε) ∩ ∂Dσε = ∂Aε. This implies that Mm(Aε) is extremal.

Taking the limit as ε→ 0, we conclude that Mm(A) is extremal. But, given our assumption

that part of Mm(A) lies on σ, equation 2.2 shows that Mm(A) cannot be extremal since

extremal surfaces have zero null expansion in all directions.

At this point it is proven that Mm(A) is extremal. All that is left is to show that, of all the

extremal surfaces in Dσ that are anchored to ∂A, Mm(A) is the smallest. Let Σ0 ∈ Cσ be a slice

on which Mm(A) is minimal. If Γ is another extremal surface anchored to ∂A then, as a result of

the focusing theorem, we find that

area(Mm(A)) ≤ area(rep(Γ,Σ0)) ≤ area(Γ).

We are now in a position to prove a variety of properties of screen entanglement entropy. We

begin with the “Page bound” advertised in section 3.1.

Corollary 1. If A is a region in the leaf σ, then

S(A) ≤ min{Sextensive(A), Sextensive(σ \ A)}

where S deonotes the holographic screen entanglement entropy of A and Sextensive(X) denotes the

area of a region X ⊂ σ divided by 4.
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Proof. S(A) = area(Mm(A))/4 but Mm(A) = min(∂A,Σ0) for some Σ0 ∈ Cσ. Both A and σ \ A
are codimension d − 2 dimensional surfaces on Σ0 anchored to ∂A so the area of Mm(A) is less

than or equal to the areas of both A and σ \ A.

Next we turn to the proof of strong subadditivity for holographic screen entanglement entropy

(other properties of entanglement entropy that admit covariant geometrical bulk proofs can be

imported here as well). Unlike the case of theorems 2 and 3, the arguments below are essentially

identical to those of [30] with little additional subtlety. We start with our version of theorem 17

in [30] which states that if B ⊂ A, then ext A lies “outside” of extB.

Theorem 4. Suppose that A and B are regions in the leaf σ with B ⊂ A. Then,

1. the entanglement wedge of A contains the entanglement wedge of B,

2. there exists a surface in Cσ on which both ext A and ext B are minimal.

Sketch of Proof: The proof is the same as that of theorem 17 of [30] so we only sketch it here. For

any surface in Σ ∈ Cσ, consider a pair of codimension 2 surfaces constrained to lie on Σ, ΓA and

ΓB, such that ΓA is anchored to ∂A and ΓB is anchored to ∂B. Then let Z = area(ΓA) + area(ΓB).

We now minimize the value of Z by varying over all possible choices of ΓA and ΓB. After that, we

maximize the minimal values of Z by varying over all possible Σ.

This new maximin procedure gives a well-defined answer for the maximinimal value of Z.

Moreover, a slice Σ0 results on which both ΓA and ΓB are minimal. On this slice, it is impossible

for ΓA to cross ΓB as this would necessarily give rise to a surface on Σ0 anchored to ∂A with

smaller area than ΓA. A further observation is that if a connected component of A is distinct

from a component of B, the corresponding connected components of ΓA and ΓB cannot come into

contact even tangentially. The argument for this is that the component of ΓB would necessarily

have a different trace of its spatial extrinsic curvature than ΓA at points close to the contact point.

This would mean that either ΓA or ΓB is not minimal on Σ0.

At this point it is known that components of ΓA or ΓB that are distinct have neighborhoods in

Σ0 that do not intersect the other surface. Within such neighborhoods, small deviations Σ0 and

the minimal surfaces can be made that prove that such surfaces are extremal.

The only remaining step is to show that, in fact, ΓA and ΓB are the extremal surfaces in Dσ

of minimal area. If Γ′A is an extremal surface in Dσ anchored to ∂A, then its representation on

Σ0 must have larger area than that of ΓA but smaller area than that of Γ′A. Thus, ΓA = ext A.

Similarly, ΓB = extB. By construction, both are minimal on the same surface Σ0 ∈ Cσ. Moreover,

because Σ0 is achronal, we must have that the entanglement wedge of A contains that of B.

Corollary 2. Suppose that A, B, and C are nonintersecting regions in σ. Then,

S(AB) + S(BC) ≥ S(ABC) + S(B)
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where XY denotes X ∪ Y and where the function S is defined in equation 3.1.

Proof. By theorem 4, we can find a surface Σ0 ∈ Cσ such that extB and extABC are both minimal

on Σ0. Let S̃(AB) and S̃(BC) denote the areas of the representations of ext AB and ext BC on

Σ0. Then,

S(AB) + S(BC) ≥ S̃(AB) + S̃(BC) ≥ S(ABC) + S(B)

where the first inequality follows from the focusing theorem and the second inequality follows from

the standard geometric proof of strong subadditivity [36].

Note that the inequality S(A) + S(B) ≥ S(AB) follows as a special case of this result.

3.3 Extremal Surfaces in FRW Cosmology

The conventional holographic entanglement entropy prescription, with its limitation to asymp-

totically locally AdS spacetimes, provides very little information about entanglement structure

in cosmology. One of the most intriguing applications of our proposal, therefore, is to calculate

holographic screen entanglement entropy in FRW universes. Assuming the screen entanglement

conjecture, the calculations below give the entanglement entropy of subsystems in quantum states

that are dual to cosmological spacetimes.

Holographic Screens in FRW Cosmology

First we review the holographic screen structure of FRW spacetimes. Consider a homogeneous

and isotropic spacetime with the metric

ds2 = −dτ 2 + a(τ)2
(
dχ2 + f(χ)2dΩ2

2

)
(3.5)

where f(χ) = sinh(χ), χ, or sin(χ) in the open, flat, and closed cases respectively. Before

computing extremal surfaces we must decide upon a null foliation for the spacetime and then

identify the corresponding holographic screen. Null foliations (and thus holographic screens) are

highly nonunique. The foliation we will consider here is that of past light cones from a worldline

at χ = 0.

To find the holographic screen for this foliation, it is convenient to introduce a conformal time

coordinate η such that dτ/dη = a. Then, the past light cone of the point (η = η0, χ = 0) satisfies

χ = η0− η. Spheres along the past light cone can be parameterized by the coordinate η, and their

area is given by

A(η) = 4π a
(
τ(η0 − η)

)2

f(η0 − η)2 (3.6)
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Assuming that a = 0 is not merely a coordinate singularity, the condition that A is maximized is

equivalent to the condition that dA/dη = 0. Thus, equation 3.6 gives the condition that fixes the

holographic screen:
f(χ)

f ′(χ)
− 1

ȧ(τ)
= 0. (3.7)

The codimension 1 surface defined by this constraint may be timelike, spacelike, or null, depending

on the particular choice of FRW spacetime. The foliating leaves of this holographic screen are

spheres of constant τ and comoving radius χ satisfying equation 3.7. The covariant entropy bound

implies that each leaf has sufficient area to holographically encode the information on one past

light cone from the worldline at χ = 0 [9, 10].

Let σ(τ) be the leaf of the holographic screen at time τ and let ρ(τ) denote the energy density in

the universe (measured by comoving observers) at time τ . Then, one can write a simple expression

for the area of a leaf of the holographic screen at time τ , valid for any f :

area(σ(τ)) =
3

2ρ(τ)
. (3.8)

In particular, this expression shows that holographic screens grow in area as the universe expands.

Extremal Surfaces in de Sitter Space

Consider 3+1 dimensional de Sitter space of radius α. This spacetime is S3 ×R with the metric

ds2 = −dT 2 + α2 cosh2

(
T

α

)
dΩ2

3

where dΩ2
3 is the metric on a unit 3-sphere. Despite the fact that this spacetime has the form of

equation 3.5 (with f(χ) = sinχ), it is an awkward setting for the consideration of holographic

screens: the null expansion on the past or future light cones of any point in de Sitter space goes to

zero only at infinite affine parameter. This suggests that the appropriate “boundary” of de Sitter

space is past or future infinity. Even if we do attempt to anchor extremal surfaces to spheres at

infinity, the analysis in section 3.2 fails to apply because of the assumption made there that leaves

are compact.

Fortunately these difficulties can be averted completely by considering an FRW spacetime that

asymptotically approaches de Sitter space at late times. Specifically, we will consider a spacetime

of the form of equation 3.5 with vacuum energy density ρΛ and, in addition, some matter content

ρmatter(τ) with the property the matter content gives rise to a big bang at τ = 0 and dilutes

completely8 as τ →∞.

8In particular, we are not considering spacetimes with a big crunch in this section.
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Equation 3.8 immediately implies that

lim
τ→∞

area(σ(τ)) =
3

2ρΛ

= 4πα2 (3.9)

where α =
√

3/8πρΛ. Because of the big bang singularity, we must have that area(στ=0) = 0.

Thus, by the area law for holographic screens [13, 14], we can conclude that the leaves of our

screen are spheres that monotonically increase in area, starting with 0 area at the big bang, and

expanding to approach the de Sitter horizon of area 4πα2 at late τ .

Now focus on a late time leaf σ(τ). As discussed in section 3.2, given a region A ⊂ σ(τ)

with a boundary, we can determine the holographic screen entanglement entropy of A, S(A), by

considering an extremal surface anchored to and terminating at ∂A. In the notation of section

3.2, Dσ(τ) is compact so theorem 2 implies that an extremal surface anchored to ∂A exists and lies

inside of Dσ(τ).

For any time τ , define

SτPage(A) =

{
1
4
area(A) area(A) ≤ 1

2
area(σ(τ))

1
4

(area(σ(τ))− area(A)) area(A) > 1
2
area(σ(τ)).

(3.10)

We allow this definition to extend to a function S∞Page(A) where A is a region on a 2-sphere of

radius α. This τ =∞ case is defined exactly as in equation 3.10 if we take area(σ(∞)) = 4πα2.

Below we will present an argument that if A ⊂ σ(τ), then

lim
τ→∞

S(A) = S∞Page(A). (3.11)

(Note that in this limit, it is implied that A is transported to later and later leaves.) Thus, we will

find that as τ →∞, S(A) approaches the random entanglement limit discussed in section 3.1.

Any interpretation of this result is necessarily speculative. Nevertheless, if one assumes the

screen entanglement conjecture, then equation 3.11 implies that the the quantum state of an FRW

universe asymptotically approaching de Sitter space has the property that its O(α2) degrees of

freedom are almost randomly entangled with one-another. At earlier times, the degrees of freedom

are not randomly entangled because S(A) < S∞Page(A).

Random Entanglement and the Static Sphere Approximation

We now present a combination of rigorous arguments, numerical data, and analytic approximations

suggesting that the approximate de Sitter cosmological spacetimes discussed above saturate the

random entanglement bound in the τ → ∞ limit. As before, σ(τ) denotes a leaf at time τ in an

FRW universe with vacuum energy as well as matter energy that dilutes at late time.

The entire region Dσ(τ) has a metric that can be made arbitrarily similar to that of a patch

of empty de Sitter space by making τ large. To see this, first note that points in Dσ(τ) have
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Figure 3.5: The domain of dependence Dσ(τ) for a late time leaf in the flat FRW universe (the small green
triangle in the upper diagram) can be approximately mapped to a domain of dependence Dσ̃(τ) in empty
de Sitter space (lower diagram). The mapping becomes increasingly accurate as τ becomes larger. The
effect of increasing τ is to move the green triangle in the upper diagram into the top-left corner (along the
blue curve), while the green triangle in the lower diagram moves to the right and approaches the entire
left static wedge.

χ < χscreen(τ) and χscreen(τ) can be made arbitrarily small by making τ large. (This follows from

equation 3.9 and the fact that limτ→∞ a(τ) = ∞.) Meanwhile, the conformal diagram for our

spacetime immediately shows that the minimal value of τ in Dσ(τ) can be made arbitrarily large

by making τ large. Thus Dσ(τ) can be made to only cover arbitrarily large τ and arbitrarily small

χ, in which case our metric of equation 3.5 takes the form

ds2 ≈ −dτ 2 + c e2τ/α(dχ2 + χ2dΩ2
2) (3.12)

where c is a constant and α is the same constant as before. Here we have made use of the Friedmann

equations. The right-hand side of this equation is precisely the metric of de Sitter space in flat

slicing. De Sitter space can also be described in static coordinates that make a time-translation

Killing vector field manifest:

ds2 ≈ −
(

1− r2

α2

)
dt2 +

(
1− r2

α2

)−1

dr2 + r2dΩ2
2. (3.13)

Fortunately, Dσ(τ) lies in a region that is well-described by either the flat or static slicing of

equations 3.12 and 3.13 respectively.

We can now identify Dσ(τ) with a region Dσ̃(τ) where Dσ̃(τ) denotes a corresponding region in

exact de Sitter space obtained by finding a sphere σ̃(τ) in the static patch with area matching that

of σ(τ). While it may seem natural to put σ̃(τ) at large static time, we can use the t translational
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symmetry of de Sitter space to place σ̃(τ) at t = 0 for all τ . The effect of increasing τ is simply to

bring σ̃(τ) closer to the bifurcation sphere on the de Sitter horizon. This identification is illustrated

in figure 3.5. Note that as τ →∞, the geometry of Dσ(τ) and Dσ̃(τ) become arbitrarily similar.

Consider the region A ⊂ σ(τ) which can be identified with a region Ã ⊂ σ̃(τ). At large τ ,

σ̃(τ) approaches the equator of a 3-sphere of radius α. The equator itself is an extremal surface so

with τ < ∞ but still large, there must be an extremal surface that is close to Ã but not exactly

on it. Its area will be slightly less than that of Ã. Note, moreover, that if the area of Ã exceeds

half the area of the equator, then a smaller extremal surface can be obtained by considering the

complement of A.

This suggests but does not yet prove that at large τ , the holographic screen entanglement

entropy of A is almost equal to a fourth of its own area in Planck units if A has less area than half

of the de Sitter horizon. What we have proven so far is that an extremal surface exists with area

almost equal to that of A (or 4πα2 − area(A)).

What if there is another extremal surface with smaller area than the one we have found? It

is easy to see that this is impossible. Following the notation in section 3.2, consider the spacelike

surface Σ0 that, after mapping to Dσ̃(τ), lies at static time t = 0, and that and terminates at σ̃. (Σ0

is most of a hemisphere of the 3-sphere.) The Riemannian geometry of S3 shows that the surface

of minimal area anchored to ∂A is the one we have already found. If Γ is another extremal surface

(not necessarily lying on Σ0), then its representation on Σ0, rep(Γ,Σ0), necessarily has larger area

than the extremal surface close to the horizon. But area(Γ) ≥ area(rep(Γ,Σ0)) so we conclude

that Γ does not have minimal area.

The arguments above show that the random entanglement limit is saturated at large τ . Taking

0 � τ < ∞ and A ⊂ σ(τ), we now explain a way to obtain a more accurate estimate for S(A)

than SτPage(A). Calculating S(A) without taking the large τ limit is more involved than what was

done above. Nonetheless, it is worthwhile to investigate this case to better understand how the

Page bound limit is approached. In particular, it is of interest to understand how the discontinuity

of the derivative of S∞Page arises.

We begin by further discussing the role of the 3-sphere in de Sitter space. Figure 3.6 depicts a

hemisphere of an S3 of radius α which is precisely half of a static slice of de Sitter space (which

we can freely take to be t = 0). Define a parameter z as z =
√
α2 − r2 where r is the static radius

appearing in equation 3.13. Note that a surface of constant z (and static time) is an S2 of area

4π(α2 − z2). This suggests a way to obtain an approximation for S(A) if A is a region in the leaf

σ(τ). Rather than taking A to be a region in σ(τ), we take figure 3.5 seriously and map A to a

region in the S2 of constant

z =

√
4πα2 − area(σ(τ))

4π
(3.14)

which ensures that this S2 has the same area as σ(τ). After this mapping is made, one computes
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Figure 3.6: The upper hemisphere of a 3-sphere of radius α is half of a static slice in empty de Sitter
space and serves as a good approximation for Dσ(τ) at large τ . The blue 2-sphere (appearing as a circle
here) lies at constant z (equivalently, constant r where r is the radial coordinate in equation 3.13). This
2-sphere is an approximation for the leaf σ(τ). Green surfaces depict extremal spherical caps on S3 that
approximate ext Aψ for various values of ψ. The many samples of extremal surfaces shown here have
evenly spaced values of ψ. Figure 3.7 provides evidence that this static sphere approximation is accurate
at late τ .

S(A) by finding the extremal surface on the S3 that is anchored to ∂A (which we take to lie at

constant z). Below we will refer to this procedure as the “static sphere approximation.”

Consider regions in σ(τ) that are spherical caps. Such a cap can be fixed (up to SO(3) rotation)

by a zenith opening angle angle ψ, so we will denote our region of σ(τ) by Aψ. (With this notation,

Aπ/2 is a hemisphere and Aπ is the entire leaf.) The static sphere approximation makes it is clear

that for 0 < ψ � π/2, ext Aψ is close to Aψ itself and that for π/2 � ψ < π, ext Aψ approaches

σ(τ) \Aψ. As ψ passes the transition angle π/2, extAψ quickly passes over the top of the 3-sphere

of radius α. The closer area(σ(τ)) is to 4πα2, the faster ext Aψ passes over the top of the sphere.

This explains how the discontinuity in the derivative of S∞Page(A) arises in the large τ limit.9

Because the geometry of S3 is simple, it is not difficult to obtain an explicit (if cumbersome)

expression for S(Aψ) in the static sphere approximation:

S(Aψ) ≈ π sin2

(
1

4
cos−1

[
z2

α2
+

(
1− z2

α2

)
cos 2ψ

])
(3.15)

9For finite τ , there is always another extremal surface on the 3-sphere which goes around the sphere the wrong
way. This surface always has area greater than extAψ and, in any case, fails to lie in Dσ(τ). However, if we consider
the τ = ∞ limit, then ext Aψ does not smoothly pass over the hemisphere of the 3-sphere, and in this case, the
discontinuity in the derivative of S∞Page(A) is explained by the fact that the surface that wraps around the sphere
the “wrong way” is now precisely the complement of Aψ in the equator. If ψ exceeds π/2 in this case, then the
complement of Aψ has smaller area than Aψ. We see that a phase transition occurs only in the exact τ =∞ limit.

30



(a) z/α ≈ .05 (b) z/α ≈ .02

Figure 3.7: Plots of S(Aψ) and other quantities for two leaves at different times in a universe with dust and
vacuum energy. In both plots, the red curve is the numerically computed holographic screen entanglement
entropy of Aψ. The dashed green curve is the static sphere approximation for S(Aψ) which becomes more
accurate at later τ (smaller z). The orange curve with a sharp peak is SPage(Aψ) as defined by equation
3.10 and the black curve is Sextensive(Aψ). The horizontal line, provided for scale, marks the value of
πα2/2 which is precisely one fourth of the extensive entropy of the de Sitter horizon.

where z is given by equation 3.14 and, as before, α =
√

3/8πρΛ. This expression can be thought

of as giving a correction to the “zeroth order” expression S(Aψ) ≈ S∞Page(Aψ). Taking τ < ∞
will lead to corrections in 1/τ that are not described by the static sphere method. It is an open

question as to whether or not such corrections can, in principle, be of the same (or greater) order

in 1/τ as the one we have studied here. However, numerical data that suggests that the static

sphere approximation is accurate at large τ as we will now see.

As explained above, the cosmological spacetimes we have been discussing have vacuum energy

ρΛ as well as some matter content that dilutes at late time. The simplest case of this is when the

universe is flat (f(χ) = χ) and when the additional matter content consists of only one species

with density ρmatter and pressure pm = wρm. The scale factor for this case is

a(τ) = C sinh

[
3(1 + w)τ

2α

] 2
3(1+w)

(3.16)

where the normalization factor C is independent of τ .

This setting is very useful to test the theoretical apparatus developed in this section. In the

case of w = 0, figure 3.7 shows a variety of quantities we have discussed. Figure 3.7 (a) and (b)

depict the case of an earlier and later time leaf with z/α ≈ .05 and z/α ≈ .02 respectively. The

solid red curves show S(Aψ) (computed numerically) while the green curves give the static sphere

approximation of equation 3.15. The dotted horizontal line marks half of the de Sitter entropy:

S1/2 = πα2/2. As expected, S(Aψ) < S1/2. The orange curve with a discontinuity in its derivative
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Figure 3.8: Both Penrose diagrams here are for the same spacetime: a closed FRW universe with dust.
The red lines denote a null foliation and the black diagonals are the past and future holographic screens
corresponding to the foliation. The two figures demonstrate that different foliations give rise to different
screens. In both figures, the lower half of the diagonal is a past holographic screen and the upper half is
a future holographic screen. Arrows show the direction of increasing area.

is S∞Page(Aψ). Comparing figures 3.7 (a) and (b), one can see that S(Aψ) is approaching S∞Page(Aψ)

as τ → ∞. Finally, the black curves shows extensive entropy: Sextensive(Aψ) = (1/4)area(Aψ).

Note that S(Aψ) < Sextensive(Aψ) for all ψ as required by corollary 1.

Closed Universe with a Big Crunch

The holographic screen entanglement entropy structure of a closed universe with a past and future

singularity is similar to that of approximate de Sitter space. The spacetimes we consider have the

metric of equation 3.5 with f(χ) = sin(χ). In this case the coordinate χ takes values from 0 to π.

We put one species of matter content in the spacetime that satisfies p = wρ which gives rise to a

big bang at τ = 0 as well as a big crunch. As before, we introduce a conformal time coordinate η

in terms of which the scale factor is

a(η) = c

(
sin

η

q

)q
where q = 2/(1 + 3w) and c is constant. This shows that the Penrose diagram for this spacetime

is a rectangle with a time-to-space aspect ratio of q.

Figure 3.8 shows the holographic screen structure of this spacetime for two examples of null

foliations. We focus on the diagram to the left in which case the null foliation (partially) consists of
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past light cones of a comoving worldline at the χ = 0. As suggested by the figure, the holographic

screen is given by

χscreen =
1

q
η.

However, a subtlety arises because the screen is a past holographic screen for η < qπ/2 and a

future screen for η > qπ/2. The sphere that connects the past and future screen is extremal (this

was called an “optimal” surface in [10]) and has area 4πc2. Let σ(η) denote the leaf at conformal

time η. We put σ0 = σ(η = qπ/2).

Just as in the de Sitter case, this example leads to a saturation of the Page bound of equation

3.2 as leaves are maximized in area. More precisely, if A ⊂ σ(η), then limη→qπ/2 S(A) = S∞Page(A)

where in this case

S∞Page(A) =

{
1
4
area(A) area(A) ≤ 1

2
πc2

1
4

(4πc2 − area(A)) area(A) > 1
2
πc2.

It appears that S(A) saturates the Page bound in a great variety of cases where the areas of

leaves are bounded above.

3.4 Discussion

The proposal we have given above may open the door to a new research program: the study of the

entanglement structure of general spacetimes. In light of this, and for the sake of clarity, we now

summarize the recipe for computing von Neumann entropy under the assumption of the screen

entanglement conjecture discussed in section 3.1:

1. Select a particular null foliation {Nr} of a spacetime with dimension d.

2. Find the codimension 2 surfaces {σr} with σr ⊂ Nr that have maximal area on each Nr.

3. Take a d− 2 dimensional subregion A ⊂ σr with a boundary ∂A.

4. Of all extremal surfaces anchored to ∂A and lying in the causal region Dσ (see section 3.1),

select the one of minimal area. The conjectured entropy S(A) is then one fourth the area of

the minimal extremal surface in Planck units.

Potential applications of our conjecture are numerous. One example not considered above is

case of a spacetime with a black hole. Black holes formed through the collapse of matter possess

future holographic screens in their interiors that approach their horizons at late times. It is of

potential significance to investigate the entanglement structure of such spacetimes. Perhaps such

an analysis will shed light on the firewall paradox [4].
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If the screen entanglement conjecture is correct, it should still only be regarded as a leading

order prescription for the computation of von Neumann entropies. A version of the analysis of [37]

may be extendible to the context of holographic screens. It is not completely obvious how this

should be done. If A is a region in a leaf σ lying on a Cauchy slice S0, one may consider the region

on S0 bounded by A and its extremal surface ext (A) and compute the entanglement entropy of

this region in a quantum field theory on the spacetime background. On the other hand, it may be

necessary to modify the spacetime position of the holographic screen itself as was done in [38].
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Chapter 4

Fixing the Reference Frame in Quantum
Gravity

Counterintuitively, holographic screens are appealing because of their non-uniqueness. That de-

scriptions in quantum gravity should depend strongly on the choice of reference frame is perhaps

the most important concept in modern quantum gravity. In this chapter, we will turn our attention

away from holographic screens and attempt to address such redundancies by “fixing the gauge” in

an observer-dependent fashion.

As discussed in chapter 1, the standard local formulation of quantum general relativity leads

to inconsistency when describing a process in which an object falls into a black hole that even-

tually evaporates, since it may employ a class of equal time hypersurfaces (called nice slices)

on which quantum information is duplicated [60]. In the early 90’s, a remarkable suggestion to

avoid this difficulty—called the complementarity picture—has been made [3, 41]: the apparent

cloning of the information occurring in black hole physics implies that the internal spacetime and

horizon/Hawking radiation degrees of freedom appearing in different, i.e. infalling and distant,

descriptions are not independent. This clearly signals a breakdown of the naive global spacetime

picture of general relativity, and forces us to develop a new low energy theory of quantum gravity

in which locality is preserved (if there exists such a formulation).

In this chapter, building on earlier suggestions in Refs. [33, 32], we propose an explicit framework

in which low energy dynamics of quantum gravity is described preserving locality, and yet taking

into account the effects that are not captured by the naive global spacetime picture. We introduce

an explicit coordinate system associated with a freely falling reference frame, which we call the

observer-centric coordinate system, that allows for a “special relativistic” description of gravity,

i.e. treating gravity as a force measured by the observer tied to this coordinate system. This allows

us to identify, in simple cases, boundaries of spacetime where the local description of the system

breaks down, which we call the observer horizon. We work with a specific Hilbert space, which

we refer to as the covariant Hilbert space for quantum gravity, in which the proposed scheme is
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realized in a simple manner.

4.1 Covariant Hilbert Space for Quantum Gravity

Our construction is based on a series of hypotheses which we list here without much elaboration.

We postulate that

(i) A Hamiltonian formalism exists that describes a quantum mechanical system with gravity.

Since a system with gravity in general has constraints, we consider the constrained Hamil-

tonian formalism developed by Dirac [42].

(ii) There is a way to restrict Hilbert space (e.g. fix intrinsically stringy gauge redundancies)

in such a way that dynamics defined on it is local in spacetime at length scales larger than

l∗. In other words, there is a way to formulate a theory such that “intrinsically quantum

gravitational” (stringy) effects decouple at distances larger than l∗ (the string scale).

(iii) The desired local description is obtained by restricting the Hilbert space such that an element

represents either an appropriately restricted region of a spacetime hypersurface (when it

allows for a spacetime interpretation) or an intrinsically quantum gravitational state (when

it does not). In particular, the former can be taken to represent a state of physical degrees

of freedom on a portion of the past light cone of a fixed reference point p0.

A main motivation for the last hypothesis is that it seems to constitute the minimal deviation

from the standard general relativistic view of spacetime, needed to address the issue of information

cloning in the existence of a horizon. The use of a light cone is also motivated to make the causal

structure manifest; the hypersurface represented by a state corresponds to the spacetime region

from which a hypothetical observer at p0 can obtain light ray signals. (The possibility of using a

spacelike hypersurface will be mentioned later.)

We argue that the desired description is obtained by suitably dropping some of the constraints

needed to reduce the Hilbert space to that of the physical states:

Pµ(x)|Ψ〉 = 0, (4.1)

where µ = 0, · · · , 3, and x are the coordinates parameterizing a hypersurface on which the states

are defined. Note that |Ψ〉 represents a quantum state for the entire system, including possible

degrees of freedom associated with the boundaries of space, which may be located at infinity.

Now, a natural way to define locality is through the structure of the Hamiltonian. However, if

we define the Hamiltonian operator (which is a linear combination of Pµ(x)’s) on Hilbert space

Hphys spanned by the independent physical states |Ψ〉, then it is simply zero. Furthermore, it is
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in general not possible to take a basis in Hphys such that all of its elements represent well-defined

semi-classical spacetimes as they are generically in superposition states.1 This precludes us from

labeling the elements of Hphys according to physical configurations in spacetime, since they do not

even have well-defined spacetimes. In particular, in the Hilbert space Hphys spanned by physical

(gauge invariant) states |Ψ〉, local operators—or the concept of locality itself—cannot be defined

in general.

These issues can be addressed if we consider a Hilbert space larger than Hphys by appropriately

dropping some of the constraints (which then must be imposed later as the “dynamics” of the

system). Specifically, consider a (hypothetical) reference point p0 at some x and a local Lorentz

frame elected there. We may then change the basis of constraint operators Pµ(x) (by taking their

linear combinations) so that it minimizes the number of constraints corresponding to transforma-

tions affecting the local Lorentz frame. This leads to 10 constraint operators, H, Pi, J[ij], and

Ki (i = 1, 2, 3), associated with the change of the local Lorentz frame. These operators obey the

standard Poincaré algebra. (The set of operators determined in this way is not unique, and each

choice corresponds to adopting different, e.g. null or spacelike, quantization.)

We now postulate

(iv) By dropping the constraints related to the changes of the local Lorentz frame

H|Ψ〉 = Pi|Ψ〉 = J[ij]|Ψ〉 = Ki|Ψ〉 = 0, (4.2)

we obtain a Hilbert space HQG larger than Hphys. The elements of H—the subspace of

HQG allowing for a spacetime interpretation—can then be labeled by physical configurations

in spacetime hypersurfaces (together with possible other labels such as spins of particles);

in other words, we can take a basis of H such that all the basis states have well-defined

semi-classical spacetimes. Physics defined on this space is local in the bulk of spacetime.

In particular, we assume that we can take specific linear combinations of the constraint operators

Pµ(x) such that the appropriate basis states of H represent the configurations of physical degrees

of freedom on (portions of) the past light cone of p0. We then call the corresponding enlarged

Hilbert space HQG the covariant Hilbert space for quantum gravity.2

The Hamiltonian defined on HQG represents local physics on the past light cone of p0 within

a boundary, which we will explicitly determine in simple cases below. (Here we are considering

1Because the quantum state we consider here, |Ψ〉, is the state representing the entire system including clock
degrees of freedom (as opposed to relative states |ψi〉 which may evolve in time), it satisfies all the constraints in
Eq. (1), including the Hamiltonian constraint. This makes |Ψ〉 a superposition of terms representing semi-classical
spacetimes because it takes the form of |Ψ〉 =

∑
i |i〉|ψi〉, where |i〉 and |ψi〉 represent the clock degrees of freedom

and the rest of the system, respectively.
2The physical Hilbert space, Hphys, is a subspace of HQG. As such, any gauge-invariant (constrained) state, i.e.

an element of Hphys, can be expanded as a superposition of elements in HQG in the “locality basis” that can be
determined by the structure of the Hamiltonian defined in this enlarged Hilbert space.
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each component state, i.e. a basis state in H in the basis given in (iv). The full quantum state

is in general a superposition of these and other states.) This Hamiltonian is not manifestly local,

since the constraints associated with the coordinate transformations on the past light cone of

p0 are still imposed on H ⊂ HQG. In other words, the elements of H represent physical states

obtained after solving Einstein’s equation on the light cone. To recover a manifest locality of the

Hamiltonian, we need to introduce appropriate metric degrees of freedom on the light cone and

drop the corresponding constraints from the definition of the Hilbert space. We assert that the

resulting Hamiltonian is then manifestly local in the bulk of spacetime (but not at the boundary).

In the rest of the letter, we do not bother with this last step and focus our attention on HQG,

which is enough to make physics local in the bulk (in the sense that there exists an equivalent,

though more redundant, description in which the Hamiltonian takes a manifestly local form).3

The Hilbert space HQG is the relevant Hilbert space when we discuss “evolution” of a system

with gravity. It is true that a physical state of the entire system must obey all the constraints,

including those in Eq. (4.2), and thus satisfies

d

dt
|Ψ〉 = 0, (4.3)

i.e. |Ψ〉 is static. However, in |Ψ〉 we can identify a (small) subsystem as the “clock” degrees of

freedom, and rewrite the entanglement of these degrees of freedom—represented e.g. by a set of

states |i〉—with the rest of the degrees of freedom—represented e.g. by a set of states |ψi〉—in the

standard form of Schrödinger time evolution of a state |ψi〉, where i plays the role of time [43].

(In the Minkowski space, we are doing this operation implicitly by identifying boundary degrees of

freedom at infinity as the clock degrees of freedom; this is why we can consider time evolution, or

S matrix, in Minkowski space without explicitly being bothered by the clock degrees of freedom.)

We may then view HQG as the Hilbert space in which |ψ(t)〉 ≡ |ψi〉 evolves unitarily according

to the “derived” Hamiltonian, which in general depends on the choice of the clock degrees of

freedom.4 (Note that |ψi〉 are no longer zero eigenvalue eigenstates of H, Pi, J[ij], or Ki, in

general.) Furthermore, complementarity can be viewed as a relation between different low energy

descriptions corresponding to different choices of clocks separated beyond each other’s horizon,

which are obtained after a suitable action of H, Pi, J[ij], or Ki to put the clock in the bulk of

spacetime in each description. From this perspective, |Ψ〉 serves the role of a generating function

from which physical predictions can be derived by identifying the clock degrees of freedom and

extracting their entanglement with the rest.

3The commutation relations among field operators may contain apparent non-local terms associated with null
quantization, which arise from the fact that massless particles can propagate along the light cone.

4In order for this operation to give well-defined time evolution of |ψi〉 by an ordered Hamiltonian at a macroscopic
level, the state |Ψ〉 must be in a special low coarse-grained entropy state, at least in branches relevant for the clock
degrees of freedom. In a real cosmological situation, when |Ψ〉 represents the entire “multiverse state,” this leads
to a set of conditions which the Hamiltonian H defined on HQG must satisfy [44].
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We note that while our framework allows for formally writing down the Hamiltonian applicable

at length scales larger than l∗, this is not directly useful in calculating the effect of dynamical

spacetime or the result of a reference frame change, since they depend on unknown dynamics of

degrees of freedom at the boundaries of space. This problem may be largely bypassed if we are

interested only in a coarse-grained description of the system, by employing a certain correspondence

principle which we may call the complementarity hypothesis [45]—we can then use a combination

of quantum theory and classical general relativity to obtain a coarse-grained description of the

evolution of the system. An advantage of our framework in doing this is that it clearly separates

between the “low-energy” local physics and “trans-Planckian” intrinsically quantum gravitational

(stringy) physics, so it allows for developing clear physical pictures of the origins of various effects.

To obtain a complete dynamical theory, however, we would need to formulate the theory applicable

above M∗—presumably string theory—along the lines described here. This is beyond the scope of

the present work.

The structure of the covariant Hilbert space takes the form

HQG = H⊕Hsing. (4.4)

Here,H is spanned by all the possible physical configurations realized on (portions of) the past light

cone of p0 as viewed from a local Lorentz frame at p0, while Hsing contains intrinsically quantum

mechanical states that do not allow for a spacetime interpretation (the states relevant when p0

hits a spacetime singularity), where dimHsing =∞ [33]. How do we define physical configurations

“as viewed from a local Lorentz frame at p0”? Where is the boundary of space that determines

the relevant portion of the light cone for each element of H? In the next section, we address

these questions and provide an explicit prescription to specify elements of H which is applicable

in simple cases. We also discuss a global structure of H, based on a certain classification scheme

for the elements.

4.2 Defining Boundaries and Classifying the States

We now focus on H and identify a spacetime region (in particular, a region on an “equal-time”

hypersurface) represented by its element. We discuss how independent quantum states comprising

H are specified, and classify them into elements of H∂M’s, the subsets of H labeled by “horizons”

possessed by the states.

4.2.1 Observer-centric coordinates

We first introduce a useful coordinate system to describe our construction. Let us choose a fixed

spacetime point p0 in a fixed spacetime background. We consider that an element of H represents
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physical configurations of dynamical degrees of freedom and their conjugate momenta on the past

light cone of p0, which we call Lp0 . In general, the elements of H are labeled by a set of quantum

numbers (i.e. the response to a set of quantum operators), and in Section 4.2.5 we will discuss

how many independent such quantum states exist in full quantum gravity. For now, however, it

is sufficient to keep in mind that the state is specified by the response to the operators defined on

Lp0 .

Now, consider a timelike geodesic p(τ) which passes through p0 at τ = 0: p(0) = p0. We take τ

to be the proper time measured at p. A set of local Lorentz frames elected along p(τ) corresponding

to a freely falling frame can then be uniquely determined by specifying spacetime location qµ and

proper velocity vi of p at τ = 0

xµp(0) = qµ,
dxip(τ)

dτ

∣∣∣∣
τ=0

= vi, (4.5)

as well as 3 Euler angles α[ij] that determine the orientation of the coordinate axes, where i = 1, 2, 3.

This is because all the axes of the local Lorentz frames along p(τ) can be obtained by parallel

transporting the axes at p(0).

We now introduce angular coordinates (θ, φ) at each τ which coincide with the angular variables

of the spherical coordinate system of the local Lorentz frame in an infinitesimally small neighbor-

hood of p(τ). We then define the “radial” coordinate λ for fixed τ, θ, φ as the affine parameter

associated with the light ray emitted toward the past from p(τ) in the direction of (θ, φ). The

origin and normalization of λ are taken so that the values of λ agree with those of the radial co-

ordinate of the local Lorentz frame in an infinitesimally small neighborhood of p(τ). We perform

this procedure in an inextendible spacetime; for example, we do not terminate the light ray at a

coordinate singularity. This process allows us to introduce the coordinate system, which we call the

observer-centric coordinate system. It has 4 coordinates τ , λ, θ, and φ, depicted schematically in

Fig. 4.1, and provides a reference frame from which physics is described. Note that a hypersurface

with constant τ corresponds to the past light cone of p(τ), which is a null, rather than spacelike,

hypersurface. To describe a state, we need this coordinate system only in an infinitesimally small

neighborhood of the τ = 0 hypersurface. The reason why we need the neighborhood is that some

phase space variables involve the τ derivative of quantum fields at τ = 0.

We describe a quantum state, e.g. the configuration of matter on the “equal time” (null)

hypersurface, using the observer-centric coordinate system throughout the evolution of the system.

The introduction of this “absolute coordinate system” allows us to view gravity as a force measured

in these coordinates—the motion of a particle of mass m under the influence of gravity can be

expressed as mχ̈ = F , where χ = (λ, θ, φ) and the dot represents a τ derivative.

For a given spacetime, we may convert a coordinate system xµ to the observer-centric one once

a local Lorentz frame is elected. For this purpose, we regard xµ to be functions of the observer-
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Figure 4.1: A schematic depiction of the observer-centric coordinate system.

centric coordinates, xµ(τ, λ, θ, φ), and derive equations that allow us to solve these functions. Note

that the form of these functions depends on the choice of the local Lorentz frame, (qµ, vi, α[ij]).

4.2.2 Gravitational observer horizon

In general, an element of H represents only a portion of Lp0 . Specifically, a past-directed light ray

emitted from p0 will hit a point beyond which the semi-classical description of spacetime is not

applicable. The collection of these points forms a two-dimensional surface

λ = λobs(θ, φ), (4.6)

which we call the gravitational observer horizon, or the observer horizon for short. In general,

we expect that this surface is determined by some condition which indicates that the intrinsically

quantum gravitational physics becomes important there. In some simple cases, however, we may

be able to state the condition more explicitly.

Consider a spacetime trajectory of a point with constant (λ, θ, φ) in the infinitesimal vicinity

of Lp0 . Its proper velocity is given by

uµ =
∂xµ

∂τ√
−gµν ∂x

µ

∂τ
∂xν

∂τ

, (4.7)
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while the local proper acceleration by

aµ = uν∇νu
µ. (4.8)

Here, xµ is an arbitrary coordinate system. aµ(τ, λ = 0, θ, φ) = 0 since p(τ) is a geodesic, but if

λ > 0, a trajectory of constant (λ, θ, φ) need not be a geodesic so we may have aµ(τ, λ, θ, φ) 6= 0.

aµ has dimensions of energy in natural units ~ = c = 1. Note that uµ is timelike while aµ is

spacelike (or zero) within a (coordinate) horizon gττ = gµν(∂x
µ/∂τ)(∂xν/∂τ) = 0, where these

vectors diverge.

In general, special behaviors of these quantities, e.g. gττ → 0 and aµ →∞, may be merely coor-

dinate artifacts. We claim, however, that when the system under consideration is static, i.e. when

the spacetime admits a timelike Killing vector kµ and when the geodesic, p(τ), is approximately

along this vector (dpµ(τ)/dτ ∝∼ kµ), then the surface on which the magnitude of the local proper

acceleration vector aµ becomes the cutoff scale M∗ signals the breakdown of the semi-classical de-

scription, giving the surface λ = λobs(θ, φ). Namely, in a static situation, the semi-classical picture

is applicable only on a portion of Lp0 in which

A ≡
√
aµaµ <∼M∗. (4.9)

This is a natural criterion given that aµ measures acceleration relative to a free-fall. It can be inter-

preted as the condition that the gravitational acceleration measured from the reference frame—i.e.

using the observer-centric coordinates—must be smaller than M∗.

In simple spacetimes, we can explicitly see that the local Hawking temperatures on surfaces

λ = λobs determined by the condition in Eq. (4.9) actually become of order M∗, so the semi-classical

picture is indeed expected to break down there. In these spacetimes, the observer horizons are

reduced to the stretched horizons defined in Ref. [3]. In de Sitter space, for example, the observer

horizon is located at r = 1/H − O(H/M2
∗ ) in the static coordinates when calculated from p(τ)

staying at the origin, where H is the Hubble constant. An important point, however, is that

unlike the stretched horizon, the definition of the observer horizon does not require knowledge of

spacetime outside of Lp0 . This is a desirable feature, as it allows us to construct a state without

relying on the information in the spacetime region outside the one represented by the state. We

also note that the spacetime location of the observer horizon, as well as the functional form of

λobs(θ, φ), depends in general on the choice of the reference frame (vi, α[ij]). This is another,

important difference of the observer horizon from the stretched horizon defined in a conventional

manner.

We consider that each region of the observer horizon holdsA/4l2Pl quantum degrees of freedom at

the leading order in l2Pl/A, whereA is the area of the region.5 This comes from the requirement that

5The number of degrees of freedom is defined as the natural logarithm of the dimension of the corresponding
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the spacetime region “outside” the observer horizon in the global spacetime picture is reproduced

by an appropriate reference frame change (complementarity). (See Ref. [46] for recent discussions

on how this may actually work.) Our picture is such that the degrees of freedom associated with

the “outside spacetime” are entirely in the boundary degrees of freedom on the observer horizon.

In fact, the number of the boundary degrees of freedom postulated here is sufficient for this purpose

because of the holographic principle [11, 12, 9]. (In the case of a back hole viewed from a distant

frame, these degrees of freedom are the stretched horizon degrees of freedom.) An element of H,

therefore, may be said to represent a physical state of the degrees of freedom in and on the observer

horizon:

0 ≤ λ ≤ λobs(θ, φ). (4.10)

Note that the bulk and boundary degrees of freedom will in general be entangled since the horizon

forms by a dynamical process. Entanglement between the two will also be necessary to reconstruct

the outside region when a relevant reference frame change is made [47].

4.2.3 Other “ends” of spacetime on Lp0

We now discuss other ways in which semi-classical spacetime ceases to exist on Lp0 along a light

ray generating it. For this purpose, we assume that the observer horizon is located sufficiently far

away, λobs(θ, φ) → ∞. We argue that there are two ways that the light ray may encounter the

“end” of spacetime on Lp0 even in this case.

The first possibility is for a light ray to hit a spacetime singularity. Consider a null geodesic

representing a light ray emitted from p0 toward the past in the direction of (θ, φ). Suppose that the

geodesic encounters a spacetime singularity in the sense that it is inextendible beyond some finite

value of the affine parameter λsing(θ, φ) in an inextendible spacetime. In this case, semi-classical

spacetime exists only in the region λ < λsing(θ, φ), and we consider that an element of H represents

the physical state of the degrees of freedom only in that region.

The other possibility has to do with the behavior of the congruence of past-directed light rays

emitted from p0. Assuming the null energy condition, Tµνv
µvν ≥ 0 for all null vectors vµ, the

expansion of the light rays Θ satisfies [48]

∂Θ

∂λ
+

1

2
Θ2 ≤ 0. (4.11)

This implies that the light rays emitted from p0 converge toward the past, starting from Θ = +∞
at λ = 0+.

Suppose that a light ray reaches a point where Θ = −∞ at some finite value of the affine

parameter λconj(θ, φ) (before it hits a spacetime singularity). Such a point is said to be conjugate to

Hilbert space factor. By the leading order, we mean that the number of degrees of freedom is (A/4l2Pl){1 +
O(l2nPl /An)} with n > 1.
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p0, and signals the failure of the light ray being on the boundary of the past of p0 [48]. Specifically,

there exists a family of timelike causal curves connecting p0 and a point q on Lp0 with λ >

λconj(θ, φ). Now, suppose semi-classical spacetime exits beyond λconj(θ, φ) in our framework. This

would contradict the validity of null quantization, which we are assuming throughout. In particular,

it would mean that a massive particle sent from q—which, being on Lp0 , is at an “equal time” as

p0—can travel backward in time and reach p0 from the past (as there exits a timelike causal curve

connecting q and p0). We therefore consider that Θ = −∞ signals the end of spacetime, and that

an element of H only represents the region λ < λconj(θ, φ).

Combining with the possibility of hitting a spacetime singularity discussed above, we conclude

that an element of H represents a physical state of the degrees of freedom in the region

0 ≤ λ < λend(θ, φ) ≡ min {λsing(θ, φ), λconj(θ, φ)} , (4.12)

where we have assumed that λobs(θ, φ) > λend(θ, φ). If a light ray hits the observer horizon before

it reaches a singularity or a conjugate point, i.e. λobs(θ, φ) < λend(θ, φ), then spacetime must

be terminated there and the boundary degrees of freedom must be attached, according to the

discussion in the previous subsection.

We assume that, unlike the observer horizon, the two-dimensional surface determined by λ =

λend(θ, φ) does not hold boundary degrees of freedom. This corresponds to the hypothesis that the

evolution of a state can be determined without any information from the singularity or the region

beyond λconj(θ, φ), in addition to what is already in the Hamiltonian. For example, the evolution

of a big-bang universe is not affected by the “details” of the big-bang singularity that must be

specified beyond the Einstein equation.

4.2.4 Apparent horizon “pull-back”

We have seen that spacetime on the past light cone of p0 is extended only until λ reaches λobs of

Section 4.2.2 or λend of Section 4.2.3. (Here and below, until Eq. (4.15), we omit the arguments

from the boundary locations, but it should be remembered that they are functions of θ and φ.) In

the former case, the boundary degrees of freedom are attached with the number A/4l2Pl per area A,

while in the latter case, none are attached. Here we discuss a description in which this asymmetry

of boundary degrees of freedom is dissolved and all the boundaries are treated on equal footing for

the purpose of counting degrees of freedom. This description is available if the following condition

is satisfied:

λobs ≤ λsing or λconj ≤ λsing, (4.13)

i.e. a singularity is screened either by the observer horizon or conjugate point. Indeed, in example

spacetimes we have investigated, this condition is always satisfied, although we do not have a proof

of it. Below, we assume that Eq. (4.13) is valid, and disregard a singularity surface.
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Let us define the apparent horizon as a surface on which the expansion of the past-directed

light rays emitted from p0 first crosses zero:6

Θ = 0 at λ = λapp. (4.14)

This implies that λapp < λconj, since Θ is a monotonically decreasing function of λ. Now, if

λobs < λapp for a range of (θ, φ), then in these directions spacetime ceases to exist at λ = λobs,

where a boundary degree of freedom is located per area 4l2Pl. On the other hand, if λapp < λobs for

a range of (θ, φ), then there are two cases to consider:

1. λapp < λconj < λobs — In this case, spacetime exists only for λ < λconj. The covariant entropy

bound then implies that the number of physical degrees of freedom in the region λ > λapp is

bounded by A/4l2Pl, where A is the area of the relevant portion of the apparent horizon [9, 49].

This suggests that these degrees of freedom may be replaced by A/4l2Pl boundary degrees of

freedom located on the apparent horizon.

2. λapp < λobs < λconj — In this case, physical degrees of freedom outside the apparent horizon

consist of the bulk degrees of freedom in λapp < λ < λobs and the boundary degrees of

freedom at λ = λobs. If the strengthened covariant entropy bound of Ref. [50] applies,

then the number of the former is bounded by (A − Aobs)/4l
2
Pl, while that of the latter is

Aobs/4l
2
Pl, where A and Aobs are the areas of the relevant portions of the apparent and

observer horizons, respectively. This suggests that physical degrees of freedom in the region

λ > λapp may be replaced by A/4l2Pl boundary degrees of freedom on the apparent horizon.

While the strengthened covariant entropy bound is known to be violated in some extreme

cases, we assume that this replacement can always be done in our context.

We thus find that both cases allow for replacing physical degrees of freedom in the region λ > λapp

by a quantum degree of freedom per area 4l2Pl on the apparent horizon. We call this replacement

procedure apparent horizon pull-back.

With the apparent horizon pull-back, the structure of the physical region represented by an

element of H can be stated in the following simple way. Spacetime on Lp0 exists only for

0 ≤ λ ≤ λB(θ, φ) ≡ min {λobs(θ, φ), λapp(θ, φ)} . (4.15)

In addition to the degrees of freedom in the bulk of spacetime, the boundary at λ = λB(θ, φ) also

holds A/4l2Pl quantum degrees of freedom (at the leading order in l2Pl/A), where A is the area of

the boundary.

6This definition is different from that in Ref. [49], where the apparent horizon is defined as a surface on which at
least one pair among four orthogonal null congruences have zero expansion. Here we only consider two directions
along Lp0 .
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4.2.5 Horizon decomposition of H

So far, we have been discussing the structure of spacetime represented by an element of H. The

full Hilbert space H consists of the elements representing “all possible” physical configurations in

“all possible” spacetimes, as viewed from the reference frame. What do we really mean by that?

In other words, what is the structure of H concretely?

To address this question, let us adopt the apparent-horizon pulled-back description, discussed

in the previous subsection. We now group the elements that have the same boundary ∂M, and

denote the Hilbert space spanned by these elements by H∂M.7 The general definition of the

boundary being the same is not obvious to give explicitly. One possible definition, which seems

to work if the boundary is within the coordinate horizon gττ = 0, is given as follows. Consider

the induced metric on the boundary λ = λB(θ, φ) with the arguments being the observer-centric

angular variables:

hXY (θ, φ) =
∂λB
∂X

∂λB
∂Y

gλλ +
∂λB
∂X

gλY +
∂λB
∂Y

gλX + gXY , (4.16)

where X, Y = θ, φ, and gλλ, gλX , and gXY are spacetime metric components in the observer-centric

coordinate system, evaluated at τ = 0 and λ = λB(θ, φ). We regard two boundaries as the same

if the induced metrics on them are explicitly identical, i.e. all the hXY ’s (X, Y = θ, φ) take the

identical functional forms with respect to θ, φ.8

This definition reflects the fact that our description of physics is “special relativistic” or “as

viewed from the reference frame.” For example, a spacetime 2-surface is regarded as different

boundaries when described from two different reference frames which are rotated with respect

to with each other (unless the surface is spherically symmetric around p0). This implies that

depending on the choice of the reference frame, the identical physical configuration in spacetime

can belong to different Hilbert subspacesH∂M. An operator corresponding to rotating the reference

frame then transforms an element of a subspace into that of another. Note that here we are talking

about a state |ψi〉 in H ⊂ HQG, which may be viewed as representing a physical state relative

to clock degrees of freedom. The “full” quantum state (i.e. the multiverse state) |Ψ〉 ⊂ Hphys

obtained after imposing the constraints in Eq. (4.2) is, of course, invariant under such a rotation

(guaranteeing that there is no absolute frame in the universe).

Now, the elements of H∂M represent all possible physical configurations in all possible space-

times (or null slices of spacetimes) that share the same boundary ∂M as defined above. Let

us denote the Hilbert space factors of H∂M corresponding to the bulk and boundary degrees of

7The H∂M here is the same as what is denoted by HM in earlier work Refs. [33, 44, 45].
8It is not entirely clear if there is no additional condition for the boundaries being the same; for example, we

might have to require λB(θ, φ) to be the same in addition to hXY (θ, φ). Here we postulate that the identity of
hXY (θ, φ) is sufficient, and proceed with it.
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freedom by H∂M, bulk and H∂M, B, respectively:

H∂M = H∂M, bulk ⊗H∂M, B, (4.17)

where the direct product structure arises from the locality hypothesis in our framework. According

to the covariant entropy bound [9], the dimension of the Hilbert space factor H∂M, bulk is bounded

by the area of the boundary A∂M as dimH∂M, bulk ≤ exp(A∂M/4l2Pl). On the other hand, by

construction the dimension of the boundary factor is dimH∂M, B = exp(A∂M/4l2Pl). Therefore, we

find

dimH∂M = dimH∂M,bulk × dimH∂M, B ≤ exp

(
A∂M
2l2Pl

)
. (4.18)

Note that this includes arbitrary fluctuations of spacetimes as well as arbitrary configurations of

matter (which are related by Einstein’s equation with each other) that keep the boundary fixed,

namely with hXY (θ, φ) held fixed.9

The complete spacetime part of the Hilbert space H is then given by the direct sum of the

Hilbert subspaces H∂M for different ∂M’s:

H =
⊕
∂M

H∂M, (4.19)

where the direct sum runs over ∂M = {hXY (θ, φ)}. We call the expression of this form the horizon

decomposition of H. In general, what ∂M’s are included in the decomposition of the complete

Hilbert space H cannot be determined by the low energy consideration alone. For instance, some

spacetimes such as stable (not cosmological) de Sitter space may be unrealistic mathematical

idealizations and may not appear in the underlying full quantum theory of gravity. In practice,

however, we may include only ∂M’s that are relevant to the problem under consideration (the

ones relevant for the clock degrees of freedom), and that is sufficient. For discussions of this issue

in cosmology, especially in the eternally inflating multiverse, see Ref. [44].

4.2.6 Spacelike quantization

Finally, we discuss briefly if there is a way to use spacelike hypersurfaces, rather than null hyper-

surfaces, to quantize the system. Such a spacelike quantization would avoid technical subtleties

9Recently, the analysis above has been significantly refined in Ref. [46], which claims that for physical states the
relevant space is given by H∂M with dimH∂M = exp(A∂M/4l2Pl) (at least at leading order in an l2Pl/A∂M expansion
in the exponent), which is much smaller than exp(A∂M/2l2Pl) appearing in the last expression in Eq. (4.18). This
is possible because the contribution from the bulk region is in general tiny ≈ O(An/l2nPl ) (n < 1) [11] for physically
realizable states, and hence can be neglected at the leading order. In fact, when ∂M is the observer horizon, we find
that ln dimH∂M for physical states is saturated (at the leading order in l2Pl/A∂M) by the entropy of a vacuum—the
logarithm of the number of possible independent ways in which quantum field theory on a fixed classical spacetime
background can emerge in a full quantum theory of gravity [46].
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associated with null quantization, for example, non-commutativity of field operators at different

points in a same angular direction (see footnote 3).

One possibility is simply to “round” the light cone Lp0 slightly to make an equal-time hyper-

surface spacelike. We can do this while keeping the boundary ∂M fixed. An advantage of this

procedure is that the structure of the Hilbert space is unchanged from that in Eqs. (4.17 – 4.19).

This is because the future-directed ingoing light sheet of ∂M (a portion of Lp0 bounded by ∂M) is

complete (ending at the caustic at p0), so that the spacelike projection theorem of Ref. [9] applies.

In a sense, our null quantization may be viewed as a limit of the spacelike quantization discussed

here (although the limit is not completely smooth).

Another possibility is to adopt an “intrinsically spacelike” construction. Specifically, we may

follow a similar construction to our covariant Hilbert space using spacelike geodesics attached

to the local Lorentz frame at p0 (e.g. with the affine parameters taken to agree with the radial

coordinate in the infinitesimal vicinity of p0), instead of null geodesics (light rays). In particular,

we may define acceleration parameter A and the observer horizon similarly in a static situation.

This construction corresponds to taking different linear combinations of the constraint operators

Pµ(x) as H, Pi, J[ij], and Ki (see discussion in Section 4.1). The validity of this approach or its

relation to the null quantization presented here is not clear.
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Chapter 5

Macroscopic Superpositions of
Spacetimes

The last chapter emphasized the importance of fixing the reference frame in a quantum description

of spacetime. In this chapter, we will begin to focus our attention on the case of a reference frame

outside of or inside of a black hole. In the following chapter we will address detailed microscopic

aspects of black holes which will include a discussion of firewalls [4]. However, it will first be

necessary to consider quantum processes that lead to physics occurring at very large distance

scales.

5.1 Black Holes and Unitarity—A Distant View

In this section we discuss the process in which a black hole unitarily forms and evaporates, as

viewed from a distant reference frame. We clarify the meaning of the information in this context,

and argue that it (partly) lies in relative coefficients—especially phases—of terms representing

macroscopically distinct configurations in a full quantum state. We also elucidate the fact that a

physical observer can never extract complete (quantum) information of the initial state forming

the black hole; i.e., observing final-state Hawking radiation does not allow for him/her to infer the

initial state, despite the fact that the evolution of the entire quantum state is fully unitary.

5.1.1 Black Hole Information

In his famous 1976 paper, Hawking argued, based on semi-classical considerations, that a black

hole loses information [55]. Consider two objects having the same energy-momentum, represented

by pure quantum states |A〉 and |B〉, which later collapse into black holes with the same mass

M(0). According to the semi-classical picture, the evolutions of the two states after forming the

black holes are identical, leading to the same mixed state ρH , obtained by integrating the thermal
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Hawking radiation states:
|A〉 → ρH ,
|B〉 → ρH .

(5.1)

This phenomenon is referred to as the information loss in black holes.

What is the problem of this picture? The problem is that since the final states are identical, we

cannot recover the initial state of the evolution just by knowing the final state, even in principle.

This contradicts unitarity of quantum mechanical evolution, which says that time evolution of a

state is reversible, i.e. we can always recover the initial state if we know the final state exactly by

applying the inverse time evolution operator e+iHt.

Based on various circumstantial evidence, especially AdS/CFT duality [1], we now do not think

the above picture is correct. We think that the final states obtained from different initial states

differ, and a state obtained by evolving any pure state is always pure even if the evolution involves

formation and evaporation of a black hole. Namely, instead of Eq. (5.1), we have

|A〉 → |ψA〉,
|B〉 → |ψB〉,

(5.2)

where |ψA〉 6= |ψB〉 iff |A〉 6= |B〉. In this picture, quantum states representing black holes formed

by different initial states are different, even if they have the same mass. (The dimension of the

Hilbert space corresponding to a classical black hole of a fixed mass M is exp(ABH/4) according

to the Bekenstein-Hawking entropy, where ABH = 16πM2 is the area of the black hole horizon.)

These states then evolve into different final states |ψA〉 and |ψB〉, representing states for emitted

Hawking radiation quanta.

A question is in what form the information is encoded in the final state. On one hand, possible

final states of evaporation of a black hole must have a sufficient variety to encode complete informa-

tion about the initial state forming the black hole. This requires that the dimension of the Hilbert

space corresponding to these states must be of order exp(ABH(0)/4), where ABH(0) = 16πM(0)2

is the area of the black hole horizon right after the formation. On the other hand, Hawking ra-

diation quanta emitted from the black hole must have the thermal spectrum (with temperature

TH = 1/8πM when the black hole mass is M) in the regime where the semi-classical analysis is

valid, M � 1. It is not clear how the state actually realizes these two features [66], although the

generalized second law of thermodynamics guarantees that it can be done. Below, we argue that a

part of the information that is necessary to recover the initial state is contained in relative coeffi-

cients of terms representing different macroscopic worlds, even if the initial state has a well-defined

classical configuration.

Our analysis does not prove unitarity of the black hole formation/evaporation process, or ad-

dress the question of how the complete information of the initial state is encoded in the emitted

Hawking quanta at the microscopic level. Rather, we assume that unitarity is preserved at the
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microscopic level, and study manifestations of this assumption when we describe the process at a

semi-classical level. This will provide implications on how such a description must be constructed.

For example, in order to preserve all the information in the initial state, the description must

not be given on a fixed black hole background in an intermediate stage of the evaporation, since

it would correspond to ignoring a part of the information contained in the full quantum state

manifested as macroscopic properties of the remaining black hole. Note that we do not claim

that these macroscopic properties contain independent information beyond what is in the emitted

Hawking quanta—the two are certainly correlated by energy-momentum conservation. The anal-

ysis presented here also has implications on the complementarity picture, which will be discussed

in Section 5.2.

5.1.2 Where is the information in the black hole state?

Let us consider a process in which a black hole is formed from a pure state |A〉 and then evaporates.

For simplicity, we assume that the black hole formed does not have a spin or charge. We describe

this process in a distant reference frame, i.e. a freely falling (local Lorentz) frame whose origin p

is outside the black hole horizon all the time; see the left panel of Fig. 5.1. In its minimal imple-

mentation, the framework of Ref. [33] says that quantum states represent physical configurations

on the past light cone of p in and on the stretched/apparent horizon.1 This description, therefore,

represents evolution of the system in the shaded spacetime region in the left panel of Fig. 5.1.

An important point is that this provides a complete description of the entire system [62, 3]—it

is not that we describe only a part of the system corresponding to the shaded region; physics is

complete in that spacetime region. The picture describing the infalling matter inside the horizon

can be obtained only after performing a unitary transformation on the state corresponding to a

change of the reference frame to an infalling one [33] (which in general leads to a superposition of

infalling and distant views, as will be explained in Section 5.2). In this sense, the entire spacetime is

better represented by a Penrose diagram in the right panel of Fig. 5.1 when the system is described

in a distant reference frame. As is clear from the figure, this allows for an S-matrix description of

the process in Hilbert space representing Minkowski space HMinkowski, which is a subspace of the

whole covariant Hilbert space for quantum gravity: HMinkowski ⊂ HQG. This is the case despite

the fact that in general quantum mechanics requires only that the evolution of a state is unitary

in the whole Hilbert space HQG; see Section 5.2 for more discussions on this point.

What does the evolution of a quantum state look like in this description? Let us denote the

black hole state right after the collapse of the matter by |BH0
A〉. Since the subsequent evolution

1The stretched horizon is defined as a time-like hypersurface on which the local Hawking temperature becomes
of order the Planck scale and thus short-distance quantum gravity effects become important (where we have not
discriminated between the string and Planck scales). In the Schwarzschild coordinates, it is located at r−2M ≈ 1/M .
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singularity

Figure 5.1: The Penrose diagram representing a black hole formed from a collapsing shell of matter
(represented by the thick solid curve) which then evaporates. The left panel shows the standard “global
spacetime” picture, in which Hawking radiation (denoted by wavy arrows) comes from the stretched
horizon. To obtain a consistent quantum mechanical description, we must fix a reference frame (freely
falling frame) and then describe the system from that viewpoint [33]. Quantum states then corresponds
to physical configurations in the past light cone of the origin p of that reference frame. Here we choose a
“distant” reference frame; the trajectory of its origin p is depicted by a thin solid curve. With this choice,
a complete description of the evolution of the system is obtained in the shaded region in the panel. In
other words, the conformal structure of the entire spacetime is as in the right panel, when the system is
described in this reference frame.

is unitary, the state can be written in the form
∑

i a
t
i|BHt

i〉 ⊗ |ψti〉. Here, |BHt
i〉 represent states

of the black hole (i.e. the horizon degrees of freedom) when time t is passed since the formation,

while |ψti〉 those of the rest of the world at the same time, where t is the proper time measured

at the origin of the reference frame p. (The dimension of the Hilbert space for |BHt
i〉, Ht

BH, is

exp(ABH(t)/4) with ABH(t) = 16πM(t)2, where M(t) is the mass of the black hole at time t; the

state |BH0
A〉 is an element of H0

BH.) The entire state then evolves into a state representing the final

Hawking radiation quanta, which can be written as
∑

i a
∞
i |ψ∞i 〉. Summarizing, the evolution of

the system is described as

|A〉 −→ |BH0
A〉 −→

∑
i

ati|BHt
i〉 ⊗ |ψti〉 −→

∑
i

a∞i |ψ∞i 〉. (5.3)

The complete information about the initial state is contained in the state at any time t in the set

of complex coefficients when the state is expanded in fixed basis states. In particular, after the

evaporation it is contained in {a∞i } showing how the radiation states are superposed.
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5.1.3 Black hole drifting: a macroscopic uncertainty of the black hole
location after a long time

What actually are the states |ψti〉? Namely, what does the intermediate stage of the evaporation

look like when it is described from a distant reference frame? Here we argue that |ψti〉 for different

i span macroscopically different worlds. In particular, the state of the black hole becomes a

superposition of macroscopically different geometries (in the sense that they represent different

spacetimes as viewed from the reference frame) throughout the course of the evaporation. The

analysis here builds upon an earlier suggestion by Page, who noted a large backreaction of Hawking

emissions to the location of an evaporating black hole [52].

To analyze the issue, let us take a semi-classical picture of the evaporation but in which the

backreaction of the Hawking emission to the black hole energy-momentum is explicitly taken into

account. Specifically, we model it by a process in which the black hole emits a massless quantum

with energy ∼ 1/M in a random direction in each time interval ∼ M , in the rest frame of the

black hole. Here, M is the mass of the black hole at the time of the emission. Suppose that the

velocity of the black hole is v before an emission; then the emission of a Hawking quantum will

change the four-momentum of the black hole as

pµBH =

(
Mγ
Mγv

)
−→

(
Mγ − γ

M
(1− n · v)

Mγv + 1
M

n− 1−γ
M

n·v
|v|2 v − γ

M
v

)
, (5.4)

where γ ≡ 1/
√

1− |v|2 and n is a unit vector pointing to a random direction. The mass and the

velocity of the black hole, therefore, change by

∆M =
√
M2 − 2−M ≈ − 1

M
, (5.5)

∆v =
1

γ{M2 − (1− n · v)}

{
n−

(
1− 1

γ

)
n · v
|v|2

v

}
≈ 1

M2
n− n · v

2M2
v, (5.6)

in each time interval

∆t = Mγ ≈ M, (5.7)

where we have taken the approximation that M � 1 and |v| � 1 in the rightmost expressions. In

general, the emission of a Hawking quantum can also change the black hole angular momentum J.

We consider this effect in section 5.1.4, where we find that the black hole accumulates macroscopic

angular momentum, |J| � 1, after long time. This, however, does not affect the essential part of

the discussion below, so we will suppress it in most part.

Now, suppose that a (non-spinning) black hole is formed at t = 0 with the initial mass M0 ≡
M(0). Then, in timescales of order M3

0 or shorter, the black hole mass is still of order M0 until

the very last moment of the evaporation. (For example, at the Page time tPage ∼ M3
0 , at which

the black hole loses a half of its initial entropy, the black hole mass is still M ≈ M0/
√

2.) The
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above process, therefore, can be well approximated by a process in which the black hole receives

a velocity kick of |∆v| ≈ 1/M2
0 in each time interval ∆t ≈ M0, which after time t leads to black

hole velocity

|vBH| ≈ |∆v|
√

t

∆t
∼ 1

M
5/2
0

√
t, (5.8)

whose direction does not change appreciably in each kick (and so is almost constant throughout

the process). This implies that after time t (M0 � t <∼ M3
0 ), the location of the black hole drifts

in a random direction by an amount

|xBH| ≈ |vBH|t ∼
1

M
5/2
0

t3/2. (5.9)

For t ∼M3
0 , this gives |vBH|t∼M3

0
∼ 1/M0 and

|xBH|t∼M3
0
∼M2

0 , (5.10)

which is much larger than the Schwarzschild radius of the initial black hole, RS = 2M0. By the time

of the final evaporation, the velocity is further accelerated to |vBH| ∼ 1, but the final displacement

is still of the order of Eq. (5.10).

To appreciate how large the value of Eq. (5.10) is, consider a black hole whose lifetime is of the

order of the current age of the universe, tevap ∼ 1010 years. It has the initial mass of M0 ∼ 1012 kg,

implying the initial Schwarzschild radius of RS ∼ 1 fm. The result in Eq. (5.10) says that the

displacement of such a black hole is |xBH| ∼ 100 km at the time of evaporation! The origin of

this surprisingly large effect is the longevity of the black hole lifetime, tevap ∼ M3
0 . For example,

for a black hole of the solar mass M = M� ∼ 1030 kg (i.e. RS ∼ 1 km), the evaporation time is

tevap ∼ 1062 years—52 orders of magnitude longer than the age of the universe.

In Fig. 5.2, we show the result of our simulations of the random process described above. In

the left panel, we show the average value of |xBH| when the black hole mass is reduced to M0/
√

2,

i.e. at the Page time, as a function of M0. We see the expected behavior of 〈|xBH|〉 ∼ M2
0 . In the

right panel, we show the distribution of |xBH| for a fixed M0, which we take M0 = 5000, with a

large number of simulations, Ntotal = 10000. We find that the probability distribution of |xBH| has

the form

dP (|xBH|) ∝ |xBH|2 exp

(
−c |xBH|2

M4
0

)
d|xBH|, (5.11)

where c is a constant of O(1), as implied by the central limit theorem, i.e. each component of xBH

having the Gaussian distribution centered at zero with a width ∼ M2
0 . We emphasize that the

precise value of c obtained by the plot does not have a physical significance, since it reflects our

particular modeling of evaporation and omission of various numerical coefficients such as 8π in the

expression of Hawking temperature TH = 1/8πM . Our point here is to show that the displacement
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Figure 5.2: In the left panel, we show the result of simulating the black hole displacement |xBH| at the
Page time, tPage ∼ M3

0 , as a function of the initial black hole mass, M0. We find the behavior expected
from the general argument, |xBH| ∼ M2

0 . In the right panel, we show the probability distribution of
the displacement |xBH| for a fixed M0 = 5000, obtained by performing a larger number of simulations,
Ntotal = 10000. The distribution takes the form expected from the central limit theorem; see Eq. (5.11).

of the black hole is indeed of O(M2
0 ) and its distribution follows what is expected from the theory

of statistics. Note also that the reason why the left plot appears to have smaller distributions in

|xBH| is because it has a smaller sample size; Ntotal for each point is of O(10) in that plot. In

Fig. 5.3, we show typical paths of the black hole drift in three spatial dimensions. We see that the

direction of the velocity stays nearly constant along a path, as suggested by the general analysis.

Quantum mechanically, the result described above implies that the state of the black hole be-

comes a superposition of terms in which the black hole exists in macroscopically different locations,

even if the initial state forming the black hole is a classical object having a well-defined macroscopic

configuration. At time t ∼ M
7/3
0 after the formation (where t is the proper time measured at p),

the uncertainty of the black hole location becomes of order M0, comparable to the Schwarzschild

radius of the original black hole. At the timescale of evaporation, t ∼ M3
0 , the uncertainty is of

order M2
0 , much larger than the initial Schwarzschild radius. This is illustrated schematically in

Fig. 5.4. Note that each term in the figure still represents a superposition of terms having different

phase space configurations of emitted Hawking quanta. Also, as shown in the section 5.1.4, each

black hole at a fixed location is a superposition of black holes having macroscopically different

angular momenta.

The evolution of the state depicted in Fig. 5.4 is obviously physical if we consider, for example,

a super-Planckian scattering experiment. In this case, we will find that Hawking quanta emitted at

the last stage of the evaporation will come from ∼M2
0 away from the interaction point, according
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Figure 5.3: Typical paths of the black hole drifting in the three dimensional space xBH = (xBH, yBH, zBH),
normalized by M2

0 .

BH
BH

BH
BH

Figure 5.4: A schematic depiction of the evolution of a black hole state formed by a collapse of matter.
After long time, the state will evolve into a superposition of terms representing the black hole to be in
macroscopically different locations, even if the initial collapsing matter has a well-defined macroscopic
configuration. The variation of the final locations in the evaporation timescale, t ∼ M3

0 , is of order M2
0 ,

which is much larger than the Schwarzschild radius of the initial black hole, RS = 2M0.

to the distribution in Eq. (5.11); and we can certainly measure this because the wavelengths of

these quanta are much smaller than M2
0 , and the interaction point is defined clearly with respect

to, e.g., the beam pipe. An important point here, however, is that the superposition nature of

the black hole state is physical even if there is no physical object other than the black hole, e.g.,

the beam pipe. This is because the location of an object with respect to the origin p of the

reference frame is a physically meaningful quantity in the framework of Ref. [33]. In other words,

the superposition nature discussed here is an intrinsic property of the black hole state, not one

arising only in relation to other physical objects.

While relative values of the moduli of coefficients in front of terms representing different black

hole locations, e.g. |c1/c2| in Fig. 5.4, are determined by the statistical analysis leading to Eq. (5.11),

their relative phases are unconstrained by the analysis. Moreover, it is possible that there are higher
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order corrections to the moduli that are not determined by any semi-classical analysis. These

quantities, therefore, can contain the information about the initial state; i.e., they can reflect the

details of the initial configuration of matter that has collapsed into the black hole. (This actually

should be the case because a particular initial state leads to particular values for the relative phases

because the Schrödinger equation is deterministic.) Together with the relative coefficients of terms

representing different phase space configurations of emitted Hawking quanta for each black hole

location (more precisely, their parts that are not fixed by semi-classical analyses, e.g. the relative

phases), these quantities must be able to reproduce the initial state of the evolution by solving the

appropriate Schrödinger equation backward in time.

5.1.4 Spontaneous Spin-up of a Schwarzschild Black Hole

Just as a black hole accumulates momentum over its lifetime through randomly recoiling from

Hawking emissions, we can ask if a black hole also accumulates angular momentum due to the spin

and orbital angular momentum of emitted particles. In this section, we argue that the answer is

yes: non-rotating black holes with initial mass M0 spontaneously spin up to angular momentum

J ≡ |J| ∼ M0 at a time of order M3
0 . This implies that a Schwarzschild black hole evolves into a

superposition of Kerr black holes with different values of J, although the resulting angular momenta

will be small enough, J/M2 � 1, that the geometry of each term is still well approximated by the

Schwarzschild one.

To begin with, let us consider how many Hawking quanta are emitted by the time at which an

initial black hole loses some fixed fraction of its mass, e.g. the Page time at which the black hole

mass becomes M = M0/
√

2. The number of emitted quanta is

N ∼ M0

TH
∼M2

0 , (5.12)

where TH ∼ 1/M0 is the Hawking temperature. If the emitted quanta consist of a particle with

spin s > 0, then each emission changes the angular momentum of the black hole by ∆J ∼ s,

depending on the direction of the spin. Assuming that the emission is unbiased in the direction of

angular momentum (see below), we find that the black hole accumulates the angular momentum

J ∼ s
√
N ∼M0, (5.13)

at a time of order M3
0 , where we have taken s ∼ O(1) in the last expression.

If the Hawking quanta consist of a scalar (s = 0), then most of the emissions do not affect the

black hole angular momentum since the emissions are dominated by s-wave. However, there is a

small probability that a quantum is emitted in a higher angular momentum mode. The probability

is dominated by p-wave (l = 1), which can be calculated for small J/M2 as p ' 0.002 +O(J/M2),
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independent of M [71, 72]. Therefore, the number of Hawking quanta that affect the black hole

angular momentum is pN , and the accumulated angular momentum of the black hole is

J ∼
√
pN ∼M0, (5.14)

which is parametrically the same as in the case of a particle with spin.

One might think that once the accumulated angular momentum becomes macroscopic, J � 1,

the black hole becomes a Kerr black hole, so that there is a bias in the Hawking spectrum that

preferentially selects emissions that reduce J [25], preventing a further accumulation of J . We

now argue, however, that until the time t ∼M3
0 when the mass of the black hole starts decreasing

significantly, the evolution of J is well approximated by a random walk process as described above.

To see this, at a given time t, let us call the direction of J the z-axis. Suppose an emission of a

particle with spin s changes J = Jz, which occurs with O(p) and O(1) probabilities for s = 0 and

s > 0, respectively. For small J/M2, the probability ρ+ (ρ−) that the emission increases (reduces)

J is [72]:

ρ± =
1

2
∓ c J

M2
, (5.15)

where J and M are the magnitude of angular momentum and the mass before the emission takes

place, and c is an O(1) coefficient which depends on the type of a particle emitted and is indepen-

dent of J and M to first order in J/M2. Numerical simulations of this process indicate that this

bias is not strong enough to prevent a black hole from spinning up to J ∼ M0 by the Page time,

tPage. Results of these simulations are shown in Fig. 5.5, where we have assumed a change of J

according to Eq. (5.15) in each time interval M0. The results indicate that

J ∼ f(c)M0 ∼M0 (5.16)

at t ∼ tPage, where f is a monotonically decreasing function of c; in fact, our simulations suggest

that f(c) ∝ 1/
√
c for c >∼ 1.

The results obtained above can be understood by the following simple argument. Imagine that

at some late time t >∼M3
0 , the probability distribution of the black hole angular momentum reaches

some “equilibrium” distribution P (J), in which the random walk effect increasing J is balanced

with the bias of the emission reducing J . According to Eq. (5.15), this implies

ρ+P (J) = ρ−P (J + 1), (5.17)

leading to
P (J + 1)

P (J)
=

1− 2c J
M2

1 + 2cJ+1
M2

≈ 1− 4c
J

M2
. (5.18)

Here, we have used 1� J �M2 in the last expression. This has the solution

P (J) ∼ e−2c J
2

M2 . (5.19)
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Figure 5.5: Plot of σJ , the square root of the variance of J at the Page time, as a function of the initial
mass M0. Each data point represents σJ obtained by 100 simulations. The different colors correspond
to different values of coefficient c in Eq. (5.15), which measures the strength of the angular momentum
emission bias from a Kerr black.

Namely, the black hole angular momentum has a characteristic size

J ∼ 1√
c
M, (5.20)

consistent with the result obtained in Eq. (5.16).

In summary, we conclude that a Schwarzschild black hole with initial mass M0 will sponta-

neously spin up to J ∼M0 by a timescale of order M3
0 . When the black hole mass starts decreasing

significantly, its angular momentum will also start decreasing, following Eq. (5.20). The combina-

tion J/M2 keeps increasing as 1/M but is still (much) smaller than 1, as long as M � 1 where

our analysis is valid. What happens at the real end of the evaporation is unclear, but we can say

that while the evolution of a Schwarzschild black hole leads to a superposition of Kerr black holes

with distinct angular momenta, the probability of it becoming a macroscopic extremal black hole

(J = M2 � 1) is, most likely, exponentially suppressed.

5.1.5 Evolution in the covariant Hilbert space for quantum gravity

Let us now formulate more precisely how the black hole state, formed by a collapse of matter,

evolves in the covariant Hilbert space for quantum gravity, Eq. (4.4). Recall that a Hilbert subspace

HM in Eq. (4.4) corresponds to the states realized on a fixed semi-classical three-geometryM (more

precisely, a set of three-geometries M = {Mi} having the same boundary ∂M). In our context,

the relevant M’s for spacetime with the black hole are specified by the location of the black hole
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xBH (which can be parameterized, e.g., by the direction {θ, φ} and the affine length λ of the past-

directed light ray connecting reference point p to the closest point on the stretched horizon) and

the size of the black hole (which can be parameterized, e.g., by its mass M or area A = 16πM2).

Here and below, we ignore the angular momentum of the black hole, for simplicity. We also need

to consider the Hilbert subspace corresponding spacetime without the black hole, H0.

The part of HQG relevant to our problem here is then

H =

( ⊕
xBH,M

HxBH,M

)
⊕H0, (5.21)

where 0 < M ≤ M0, and we have used the notation in which xBH and M are discretized. The

Hilbert subspace HxBH,M consists of the factor associated with the black hole horizon Hhorizon
xBH,M

and

that with the rest Hbulk
xBH,M

(which represents the region outside the horizon):

HxBH,M = Hhorizon
xBH,M

⊗Hbulk
xBH,M

. (5.22)

According to the Bekenstein-Hawking entropy, the size of the horizon factor is given by

dimHhorizon
xBH,M

= e
ABH

4 = e4πM2

, (5.23)

regardless of xBH. Because of this, Hilbert space factorsHhorizon
xBH,M

for different xBH are all isomorphic

with each other, which allows us to view Hhorizon
xBH,M

for any fixed xBH as the intrinsic structure of the

black hole.

Now, right after the formation of the black hole, which we assume to have happened at xBH,0

at t = 0, the system is in a state that is an element of HxBH,0,M0 . In the case of Eq. (6.21)

|Ψ(0)〉 ≡ |BH0
A〉 ∈ HxBH,0,M0 . (5.24)

This state then evolves into a superposition of states in different HM’s.2 At time t, the state of

the system can be written as

|Ψ(t)〉 =
∑
xBH

αtxBH
|φtxBH

〉, (5.25)

where |φtxBH
〉 ∈ HxBH,M(t), and we have ignored possible fluctuations of the black hole mass at a

fixed time t, for simplicity. (Including this effect is straightforward; we simply have to add terms

corresponding toHxBH,M with M 6= M(t).) The state |φtxBH
〉 contains the horizon and other degrees

of freedom, according to Eq. (5.22). We can expand it in some basis in Hhorizon
xBH,M(t) (e.g. the one

spanned by states having well-defined numbers of Hawking quanta emitted afterward) or in some

2This is precisely analogous to the case of e+e− scattering, in which the initial state |e+e−〉 ∈ H2 evolves into
a superposition of states in different Hn’s, e.g. |e+e−〉 → ce|e+e−〉 + · · · + cee|e+e−e+e−〉 + · · · , where Hn is the
n-particle subspace of the entire Fock space: H =

⊕
nHn.
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basis in Hbulk
xBH,M(t) (e.g. the one spanned by states having well-defined phase space configurations

of already emitted Hawking quanta). In either case, it takes the form

|φtxBH
〉 =

∑
n

βtn|BHt
xBH,n

〉 ⊗ |ψtxBH,n
〉, (5.26)

where |BHt
xBH,n

〉 ∈ Hhorizon
xBH,M(t) and |ψtxBH,n

〉 ∈ Hbulk
xBH,M(t). Plugging this into Eq. (5.25) and defining

ati ≡ αtxBH
βtn, (5.27)

where i ≡ {xBH, n}, we reproduce the third expression in Eq. (6.21). In this formulation, the

statement that the black hole state is a superposition of macroscopically different geometries refers

to the fact that coefficients |αtxBH
| have a significant support in a wide range of xBH extending

beyond the original Schwarzschild radius M0.

5.1.6 What does a physical observer actually see?

We have found that a late black hole state is far from a semi-classical state in which the spacetime

has a fixed geometry; rather, it involves a superposition of macroscopically different geometries.

Does this mean that a physical observer sees something very different from what the usual picture

based on general relativity predicts?

The answer is no. To understand this, let us consider a physical observer watching the evap-

oration process from a distance by measuring (all or parts of) the emitted Hawking quanta. For

simplicity, we consider that he/she does that using usual measuring devices, e.g. by locating pho-

tomultipliers around the black hole from which he/she collects the data. This leads to an entangle-

ment between the system and the observer (or his/her brain states). And because the interactions

leading to it are local, the observer is entangled with the basis in Hbulk
xBH,M

spanned by the states

that have well-defined phase space configurations of emitted Hawking quanta (within the errors

dictated by the uncertainty principle) and well-defined locations for the black hole (since the black

hole location can be inferred from the momenta of the Hawking quanta) [33]. Namely, the combined

state of the black hole and the observer evolves as

|BH0
A〉 ⊗

∣∣ · 〉 −→ ∑
xBH, n

atxBH,n
|BHt

xBH,n
〉 ⊗ |ψtxBH,n

〉 ⊗
∣∣ · xBH

n

〉
, (5.28)

where |ψtxBH,n
〉 represents the state in which the black hole is in a well-defined location xBH and

Hawking quanta have a well-defined phase space configuration n. The last factor in the right-hand

side implies that the observer recognized that the black hole is at xBH and the configuration of

emitted Hawking quanta is n.

Since terms in the right-hand side of Eq. (5.28) have macroscopically different configurations,

e.g. the brain state of the observer differs, their mutual overlaps are exponentially suppressed
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(e.g. by ∼
∏N

i=1 εi, where εi < 1 is the overlap of each atom and N the total number of atoms).

The observer in each term (or branch), therefore, sees his/her own universe; i.e., the interferences

between different terms are negligible. For any of these observers, the behavior of the black hole is

controlled by semi-classical physics (but with the backreaction of the emission taken into account).

For instance, they all see that the black hole keeps emitting Hawking quanta consistent with the

thermal spectrum with temperature TH(t) = 1/8πM(t), and that it drifts in a fixed direction as a

result of backreactions, eventually evaporating at a location ∼M2
0 away from that of the formation.

A single observer cannot predict the direction to which the black hole will drift, reflecting the fact

that the entire state is a superposition of terms having different (xBH − xBH,0)/|(xBH − xBH,0)|,
but all these observers find a set of common properties for the black hole, including the relation

between TH and M .3

It is these “intrinsic properties” of the black hole that the semi-classical gravity on a fixed

Schwarzschild geometry (in which the black hole is located at the “center”) really describes. A

physical observer watching the evolution does not see anything contradicting what is implied by

the semi-classical analysis about these intrinsic properties. This is true despite the fact that

the full quantum state obtained by evolving collapsing matter that initially had a well-defined

configuration takes the form in Eqs. (5.25, 5.26), which involves a superposition of macroscopically

different geometries and is very different at late times from a “semi-classical state” having a fixed

geometry.

5.1.7 Can a physical observer recover the information?

The black hole evaporation process is often compared with burning a book in classical physics: if

we measure all the details of the emitted Hawking quanta, we can recover the initial state from

these data by solving the Schrödinger equation backward in time. Is this correct?

It is true that if we know the coefficients of all the terms in a state when it is expanded in a

fixed basis, e.g. {a∞i } in Eq. (6.21), then unitarity must allow us to recover the initial state unam-

biguously. However, a physical observer measuring Hawking radiation from black hole evaporation

can never obtain the complete information about these coefficients, even if he/she measures all the

radiation quanta. In the state in Eq. (5.28), for example, a physical observer “lives” in one of the

terms in the right-hand side and, therefore, cannot have the information about the coefficients of

the other terms. The other terms are already decohered—or “decoupled”—so that they are other

worlds/universes for the observer.

In fact, the situation is exactly the same in usual scattering experiments. Consider two initial

3More precisely, there are rare observers who find deviations from these relations, but the probability for that
to happen is exponentially suppressed.
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states |e+e−〉 and |µ+µ−〉 with the same
√
s (> 2mτ ) and angular momentum. They evolve as

|e+e−〉 −→ a1|e+e−〉+ a2|µ+µ−〉+ a3|τ+τ−〉+ · · · , (5.29)

|µ+µ−〉 −→ b1|e+e−〉+ b2|µ+µ−〉+ b3|τ+τ−〉+ · · · , (5.30)

where we have ignored the momenta and spins of the final particles. The information about an

initial state is in the complete set of coefficients in the final superposition state; i.e., if we know

the entire {ai} (or {bi}), then we can recover the initial state by solving the evolution equation

backward. However, if a physical observer measures a final state, e.g., as τ+τ−, how can he/she

know that it has arisen from e+e− or µ+µ− scattering? In general, if an observer measures the

final outcome of a process, he/she will be entangled with one of the terms in the final state (in the

above case, |τ+τ−〉), so there is no way that he/she can learn all the coefficients in the final state.

The situation does not change even if the observer uses a carefully-crafted quantum device

which, upon interacting with the radiation, is entangled not with a well-defined phase space con-

figuration of the radiation quanta but with a macroscopic superposition of those configurations.

In this case, the basis of the final state to which the observer is entangled may be changed, but it

still cannot change the fact that he/she will be entangled with one of the terms in the final state,

i.e., he/she will measure a possible outcome among all the possibilities.

Therefore, in quantum mechanics, an observer can never recover the initial state by observing

the final state. The statement that the final state of an evolution contains all the information

about the initial state is not the same as the statement that a physical observer measuring the

final state can recover the initial state if he/she measures a system with high enough (or even

infinite) precision. The only way that an observer can test the relation between the initial and

final states is to create the same initial state many times and perform multiple (including quantum)

measurements on the final states. (Note that creating many initial states in this context differs

from producing a copy of a generic unknown state, which is prohibited by the quantum no-cloning

theorem [67].) A single system does not allow for doing this, no matter how high the precision of

the measurement is, and no matter how clever the measurement device is.

5.2 Complementarity as a Reference Frame Change

So far, we have been describing the formation and evaporation of a black hole from a distant

reference frame. In this reference frame, the complete description of the process is obtained in

the spacetime region outside and on the (time-like) stretched horizon, where intrinsically quantum

gravitational—presumably stringy (such as fuzzball [63])—effects become important. What then

is the significance of the interior of the black hole horizon, where we expect to have regular low-

curvature spacetime according to general relativity?
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As discussed in Ref. [33], and implied by the original complementarity picture [3], a description

of the internal spacetime is obtained (only) after changing the reference frame. An important point

is that the reference frame change is represented as a unitary transformation acting on a quantum

state, so if we want to discuss the precise mapping between the pictures based on different reference

frames, then we need to keep all the terms in the state. In this section, we carefully study issues

associated with the reference frame changes, especially in describing an old black hole.

5.2.1 Describing the black hole interior

Suppose collapsing matter, which initially had a well-defined classical configuration, forms a black

hole, which then eventually evaporates. In a distant reference frame, this process is described as

in Eq. (6.21), which we denote by |Ψ(t)〉. How does the process look from a different reference

frame?

Since a reference frame can be any freely falling (locally Lorentz) frame, the new description

can be obtained by performing a translation, rotation, or boost on a quantum state at fixed t [33].

In general, the state on which these transformations act, however, contains the horizon degrees of

freedom as well as the bulk ones. How do they transform under the transformations?

We do not know the microscopic description of the horizon degrees of freedom or their explicit

transformations under the reference frame changes. Nevertheless, we can know which spacetime

regions are transformed to which horizon degrees of freedom, and vice versa, by assuming that

the global spacetime picture in semi-classical gravity is consistent with the one obtained by a

succession of these reference frame changes. Here we phrase this in the form of a hypothesis:

Complementarity Hypothesis: The transformation laws of a quantum state under the

reference frame changes are consistent with those obtained in the global spacetime picture

based on general relativity. In particular, the transformation laws between the horizon and

bulk degrees of freedom are constrained by this requirement.

As discussed in Refs. [33, 32], this hypothesis is fully consistent with the holographic principle

formulated in the form of the covariant entropy conjecture [9]. Specifically, the dimension of the

Hilbert space representing horizon degrees of freedom and that representing the corresponding

spacetime region before (or after) a transformation are the same for general spacetimes, including

the cosmological ones, as it should be. Alternatively, we can take a view that if we require that the

above hypothesis is true in the covariant Hilbert space HQG, then the covariant entropy conjecture

is obtained as a consequence.

Let us now consider a reference frame change induced by a boost performed at some early time

tboost < 0 (before the black hole forms at t = 0) in such a way that the origin p of the reference

frame enters the black hole horizon at some late time tenter > 0. In this subsection, we focus on
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singularity

Figure 5.6: The left panel shows the standard global spacetime picture for the formation and evaporation
of a black hole, with the shaded region representing the spacetime region described by an infalling reference
frame. (The trajectory of the origin, p, of the reference frame is also depicted.) As discussed in the text,
this is the entire spacetime when the system is described in this reference frame, so its conformal structure
is in fact as in the right panel. Here, the wavy line with a solid core represents singularity states.

the case

tenter �M
7/3
0 , (5.31)

so that the uncertainty of the black hole location at the time when p enters the horizon is negligible,

and we ignore the (exponentially) small probability that p misses the horizon. (The possibility

of p missing the horizon becomes important when we discuss the description of the interior of an

older black hole.)

Recall that quantum states in the present framework represent physical configurations on the

past light cone of p (in and on the apparent horizon) when they allow for spacetime interpretation,

i.e. when the curvature at p is smaller than the Planck scale. Therefore, the spacetime region

represented by the state of the system after the reference frame change

|Ψ′(t)〉 = e−iH(t−tboost)Ubooste
iH(t−tboost)|Ψ(t)〉, (5.32)

where Uboost is the boost operator represented in HQG, corresponds to the shaded region in the

left panel of Fig. 5.6. Specifically, |Ψ′(t)〉 at

t < tenter + tfall (5.33)

describes this region, with tfall ≈ O(M0) being the time needed for p to reach the singularity

after it passes the horizon. After t = tenter + tfall, the state evolves in the Hilbert subspace Hsing,

which consists of states that are associated with spacetime singularities and thus do not allow for

65



spacetime interpretation. The detailed properties of these “intrinsically quantum gravitational”

states are unknown, except that dimHsing = ∞, implying that generic singularity states do not

evolve back to the usual spacetime states [33].

In the right panel of Fig. 5.6, we depict the causal structure of the spacetime as viewed from

the new reference frame. Because of the lack of the spherical symmetry, we have depicted the

region swept by two past-directed light rays emitted from p in the opposite directions (while in the

left panel we have depicted only the region with fixed angular variables with respect to the center

of mass of the system). The singularity states are represented by the wavy line with a solid core

at the top. Note that, as in the case of the description in the distant reference frame (depicted in

Fig. 5.1), this is the entire spacetime region when the system is described in this infalling reference

frame—the non-shaded region in the left panel simply does not exist. (Including the non-shaded

region, indeed, is overcounting as indicated by the standard argument of information cloning in

black hole physics.) A part of the non-shaded region appears if we change the reference frame,

but only at the cost of losing some of the shaded region. The global spacetime picture in the left

panel appears only if we “patch” the views from different reference frames, which, however, grossly

overcounts the correct quantum degrees of freedom.

There are two comments. First, the reference frame change considered here is (obviously)

only a reference frame change among possible (continuously many) reference frame changes, all of

which lead to different descriptions of the same physical process. Second, a unitary transformation

representing this reference frame change,

U(t) = e−iH(t−tboost)Ubooste
iH(t−tboost), (5.34)

does not close in the Hilbert space H in Eq. (5.21), although it closes in the whole covariant Hilbert

space HQG. Before the reference frame change, the evolution of the state is given by a trajectory

in H = (⊕xBH,MHxBH,M)⊕H0. The action of U(t) maps this into a trajectory in

H′ = H0 ⊕Hsing, (5.35)

with |Ψ′(−∞)〉 ∈ H0 and |Ψ′(+∞)〉 ∈ Hsing.4 As a result, in this new reference frame, the evolution

of the system does not allow for an S-matrix description in H0 (or HMinkowski), although it still

allows for an “S-matrix” description in the whole HQG (or in HMinkowski ⊕Hsing), which contains

the singularity states in Hsing.

5.2.2 Complementarity for an old black hole

Let us now try to describe the interior of an older black hole, specifically the spacetime inside

the black hole horizon after a time > O(M
7/3
0 ) is passed since the formation. To do this, we can

4Note that H0 contains a set of states that represent three-geometries whose boundary (at an infinity) is that of
the flat space, i.e. a two-dimensional section of J−.

66



consider performing a boost at time tboost < 0 on |Ψ(t)〉 in such a way that p enters the black hole

horizon at time tenter �M
7/3
0 . What does the resultant state |Ψ′(t)〉 look like?

As discussed in the previous subsection, this can be done by applying an operator of the form

of Eq. (5.34) on |Ψ(t)〉, where Uboost now represents a different amount of boost than the one

considered before. In general, the relation between the states before and after a reference frame

change is highly nontrivial. For example, time t is measured by the proper time at p, but relations

between the proper times of the two frames depend on the geometries as well as the paths of p

therein. Therefore, various terms in |Ψ′(t)〉 for a fixed t may correspond to terms in |Ψ(t)〉 of

different t’s. Without knowing the explicit form of H and Uboost represented in the whole HQG,

which includes the horizon degrees of freedom, how can we know the form of the state after the

transformation?

According to our complementarity hypothesis, the probability of finding a certain history for

the evolution of geometry must agree in the two pictures before and after the reference frame

change if the geometries are appropriately transformed, i.e. according to the global spacetime

picture in general relativity. To elucidate this, let us consider the black hole evolution described in

Eqs. (5.25, 5.26) in a distant reference frame, and ask what is the probability that the black hole

follows a particular path r(t) in a time interval between tI and tF within the error |∆r| < ε(t). For

simplicity, we do this by requiring that the black hole satisfies the above conditions at discretized

times ti; i = 0, · · · , N (� 1), with t0 ≡ tI and tN ≡ tF . The probability is then given by

P =
N∏
i=0

 ∑
|∆r|<εi

|αtiri+∆r|
2

 , (5.36)

where ri ≡ r(ti) and εi ≡ ε(ti). This provides the probability of a particular semi-classical history

to appear, given the state |Ψ(t)〉. We can now ask a similar question for the state |Ψ′(t)〉: what is

the probability of having the black hole to follow the trajectory r′(t) between t′I and t′F within the

error ε′(t)? The resulting probability is

P ′ =
N∏
i=0

 ∑
|∆r′|<ε′i

|αtir′i+∆r′|
2

 , (5.37)

where t0 = t′I and tN = t′F . The complementarity hypothesis in the previous subsection asserts

that the two probabilities are the same

P = P ′, (5.38)

if the relation between {r(t), ε(t), tI , tF} and {r′(t), ε′(t), t′I , t′F} is the one obtained by performing

the corresponding transformation in general relativity on the semi-classical background selected

by Eq. (5.36).
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Figure 5.7: A schematic picture of a relation between the two descriptions based on two different refer-
ence frames of an old black hole formed by collapsing matter that initially had a well-defined classical
configuration. In one reference frame, the black hole is viewed from outside, and the state becomes a
superposition of black holes in different locations at late times (depicted schematically in the left-hand
side). In the other reference frame, obtained by acting Uboost on the state at tboost, the reference point p

enters the black hole horizon at late time tenter � M
7/3
0 , allowing for a description of internal spacetime

(in the right-hand side). This, however, happens only for some of the terms, depicted in the second line,
since p misses the horizon in most of the terms because of the large uncertainty of the black hole location,
i.e.

∑
i |d′i|2 �

∑
i |c′i|2.

The above analysis implies that when we perform a boost on |Ψ(t)〉 at an early time tboost < 0,

trying to describe the interior of an old black hole with tenter � M
7/3
0 , then the resultant state

can only be a superposition of infalling and distant descriptions of the process, since in most of

the semi-classical histories represented by |Ψ(t)〉, the trajectory of p obtained by the boost will

miss the black hole horizon because of the large uncertainty of the black hole location. Namely,

complementarity obtained by this reference frame change is the one between the distant description

and the superposition of the infalling and distant descriptions specified by the state |Ψ′(t)〉. This

is illustrated schematically in Fig. 5.7.

Is it possible to obtain a direct correspondence between the interior and exterior of an old black

hole, without involving a superposition? This can be done if we focus only on a term in |Ψ(t)〉 in

which p just misses the black hole horizon, with the smallest distance between p and the horizon

achieved at some time tmin � M
7/3
0 . We can then evolve this term slightly backward in time,

to tboost = tmin − ε (ε � M
7/3
0 ), and perform a boost there so that p enters into the horizon at

some time after tboost. In this way, the correspondence between the terms representing the interior
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Figure 5.8: A complementarity relation between the internal and external descriptions of an old black hole
can be obtained if we consider a state in which the black hole has a well-defined semi-classical configuration
at late time tenter. Such a state, however, can arise through evolution only if we consider a special initial
state in which coefficients ai of the terms representing well-defined configurations of collapsing matter are
finely-adjusted so that the state represents a black hole in a well-defined location at late time ∼ tenter.
(The regions with wavy white lines indicate superpositions of classical geometries.)

and exterior can be obtained. An important point, however, is that neither of these terms can be

obtained by evolving initial collapsing matter that had a well-defined classical configuration (which

would lead to a superposition of the black hole in vastly different locations). Rather, by evolving

the state further back beyond tboost, we would obtain a superposition of states each of which

represents collapsing matter with a well-defined classical configuration. (This state would have

finely-adjusted coefficients so that after evolving to tboost ∼ tmin, the black hole is in a well-defined

location with respect to p.) This situation is illustrated in Fig. 5.8.

The discussion above implies that there is no well-defined complementarity map between the

interior and exterior of an old black hole throughout the course of the black hole evolution within the

purely semi-classical picture. Such a map must involve a superposition of semi-classical geometries

at some point in the evolution. We note that while the state in the intermediate stage of the

evolution can be a superposition of elements in H0, HxBH,M , and Hsing, it becomes a superposition

of elements in H0 and Hsing at t → ∞. Therefore, the “S-matrix” description discussed in the

previous subsection is still available in this case in the Hilbert space of HMinkowski ⊕Hsing.
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Chapter 6

A Frame-Dependent Model for
Microscopic Black Hole Evolution

We now turn to the hardest problem discussed in this thesis: the black hole information puzzle.

As emphasized in previous chapters, it has become increasingly apparent that the concept of

spacetime must receive substantial revisions when it is treated in a fully quantum mechanical

manner. Consider describing a process in which an object falls into a black hole, which eventually

evaporates, from the viewpoint of a distant observer. Unitarity of quantum mechanics suggests that

the information content of the object will first be stored in the black hole system, and then emitted

back to distant space in the form of Hawking radiation [62]. On the other hand, the equivalence

principle implies that the object should not find anything special at the horizon, when the process

is described by an observer falling with the object. These two pictures lead to inconsistency if we

adopt the standard formulation of quantum field theory on curved spacetime, since it allows us to

employ a class of equal time hypersurfaces (called nice slices) that pass through both the fallen

object and late Hawking radiation, leading to violation of the no-cloning theorem of quantum

mechanics [67].

Black hole complementarity [3] was a suggested to avoid this difficulty: the apparent cloning

of the information occurring in black hole physics implies that the internal spacetime and hori-

zon/Hawking radiation degrees of freedom appearing in different, i.e. infalling and distant, de-

scriptions are not independent. This signals a breakdown of the naive global spacetime picture

of general relativity at the quantum level, and it forces us to develop a new view of how classical

spacetime arises in the full theory of quantum gravity. One of the main purposes of this thesis is

to present a coherent picture of this issue. We discuss how a series of well-motivated hypotheses

leads to an apparently consistent view of the effective emergence of global spacetime from a funda-

mental theory of quantum gravity. In particular, we elucidate how this picture avoids the recently

raised firewall paradox [4, 73, 74], which can be viewed as a refined version of the old information

paradox [55]. Our analysis provides a concrete answer to how the information can be preserved at
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the quantum level in the black hole formation and evaporation processes.

A key element in developing our picture is to identify the origin and nature of the “entropy of

spacetime,” first discovered by Bekenstein and Hawking in studying black hole physics [21, 25]. In a

previous work [5], it was argued that this entropy—the Bekenstein-Hawking entropy—is associated

with the degrees of freedom that are coarse-grained to obtain the semiclassical description of the

system: quantum theory of matter and radiation on a fixed spacetime background. This picture is

consonant with the fact that in quantum mechanics, having a well-defined geometry of spacetime,

e.g. a black hole in a well-defined spacetime location, requires taking a superposition of an enormous

number of energy-momentum eigenstates, so we expect that there are many different ways to arrive

at the same background for the semiclassical theory within the precision allowed by quantum

mechanics. This implies that, when a system with a black hole is described in a distant reference

frame, the information about the microstate of the black hole is delocalized over a large spatial

region, since it is encoded globally in the way of taking the energy-momentum superposition to

arrive at the geometry under consideration. In particular, we may naturally identify the spatial

distribution of this information as that of the gravitational thermal entropy calculated using the

semiclassical theory. This leads to a fascinating picture: the degrees of freedom represented by

the Bekenstein-Hawking entropy play dual roles of spacetime and matter—they represent how the

semiclassical geometry is obtained at the microscopic level and at the same time can be viewed as

the origin of the thermal entropy, which is traditionally associated with thermal radiation in the

semiclassical theory.

The delocalization of the microscopic information described above plays an important role in

addressing the firewall/information paradox. As described in a distant reference frame, a general

black hole state is specified by the following three classes of indices at the microscopic level:

• Indices labeling the (field or string theoretic) degrees of freedom in the exterior spacetime

region, excited over the vacuum of the semiclassical theory;1

• Indices labeling the excitations of the stretched horizon;2

• Indices representing the degrees of freedom that are coarse-grained to obtain the semiclassical

description, which we will collectively denote by k. The information in k represents how

the black hole geometry is obtained at the microscopic level, and cannot be resolved by

semiclassical operators. It is regarded as being delocalized following the spatial distribution

of the gravitational thermal entropy, calculated using the semiclassical theory.

1Note that the concepts of the breakdown of a semiclassical description and that of semiclassical field theory
are not the same—there can be phase space regions in which an object can be well described as a string (or brane)
propagating in spacetime, but not as a particle.

2The stretched horizon is located at a microscopic distance outside of the mathematical horizon, and is regarded
as a physical (timelike) membrane which may be physically excited [3].

71



In a distant reference frame, an object falling into the black hole is initially described by the first

class of indices, and then by the second when it hits the stretched horizon. The information about

the fallen object will then reside there for, at least, time of order Ml2P ln(MlP) (the scrambling

time [75]), after which it will be transmitted to the index k. Here, M and lP are the mass of the

black hole and the Planck length, respectively. Finally, the information in k, which is delocalized

in the whole zone region, will leave the black hole system through the Hawking emission, or black

hole mining, process.

Since the microscopic information about the black hole is considered to be delocalized from the

semiclassical standpoint, the Hawking emission, or black hole mining, process can be viewed as

occurring at a macroscopic distance away from the stretched horizon without contradicting infor-

mation conservation. In this region, degrees of freedom represented by the index k are converted

into modes that have clear identities as semiclassical excitations, i.e. matter or radiation, above

the spacetime background. This conversion process, i.e. the emission of Hawking quanta or the

excitation of a mining apparatus, is accompanied by the appearance of negative energy excitations,

which have negative entropies and propagate inward to the stretched horizon. As we will see, the

microscopic dynamics of quantum gravity allows these processes to occur unitarily without vio-

lating causality among events described in low energy quantum field theory. This picture avoids

firewalls as well as information cloning.

In the description based on a distant reference frame, a falling object can be described by

the semiclassical theory only until it hits the stretched horizon, after which it goes outside the

applicability domain of the theory. We may, however, describe the fate of the object using the

semiclassical language somewhat longer by performing a reference frame change, specifically until

the object hits a singularity, after which there is no reference frame that admits a semiclassical de-

scription of the object. This reference frame change is the heart of complementarity: the emergence

of global spacetime in the classical limit. We argue that while descriptions in different reference

frames (the descriptions before and after a complementarity transformation) apparently look very

different, e.g. in locations of the degrees of freedom representing the microscopic information of the

black hole, their predictions about the same physical question are consistent with each other. This

consistency is ensured by an intricate interplay between the properties of microscopic information

and the causal structure of spacetime.

It is striking that the concept of spacetime, e.g. the region in which a semiclassical description

is applicable, depends on a reference frame. This extreme “relativeness” of the description is a

result of nonzero Newton’s constant GN. The situation is analogous to what happened when the

speed of light, c, was realized to be finite [33]: in Galilean physics (c =∞) a change of the reference

frame leads only to a constant shift of all the velocities, while in special relativity (c = finite) it also

alters temporal and spatial lengths (time dilation and Lorentz contraction) and makes the concept
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of simultaneity relative. With gravity (GN 6= 0), even the concept of spacetime becomes relative.

The trend is consistent—as we “turn on” fundamental constants in nature (c = ∞ → finite and

GN = 0 → 6= 0), physical descriptions become more and more relative: descriptions of the same

physical system in different reference frames appear to differ more and more.

The organization of this chapter is the following. In Section 6.1, we discuss some basic aspects

of the breakdown of global spacetime, setting up the stage for later discussions. In Sections 6.2 and

6.3, we describe how our picture addresses the problem of black hole formation and evaporation.

We discuss the quantum structure of black hole microstates and the unitary flow of information as

viewed from a distant reference frame (in Section 6.2), and how it can be consistent with the exis-

tence of interior spacetime (in Section 6.3). In particular, we elucidate how this picture addresses

the arguments for firewalls and provides a consistent resolution to the black hole information

paradox. In Section 6.4, we give our summary by presenting a grand picture of the structure of

quantum gravity implied by our analysis of a system with a black hole.

Throughout the chapter, we adopt the Schrödinger picture for quantum evolution, and use

natural units in which ~ = c = 1 unless otherwise stated. We limit our discussions to 4-dimensional

spacetime, although we do not expect difficulty in extending to other dimensions. The value of

the Planck length in our universe is lP = G
1/2
N ' 1.62 × 10−35 m. A concise summary of the

implications of our framework for black hole physics can be found in Ref. [7].

6.1 Failure of Global Spacetime

As described in the introduction, semiclassical theory applied to an entire global spacetime leads

to overcounting of the true degrees of freedom at the quantum level. This implies that in the

full theory of quantum gravity, a semiclassical description of physics emerges only in some limited

sense. Here we discuss basic aspects of this limitation, setting up the stage for later discussions.

The idea of complementarity [3] is that the overcounting inherent in the global spacetime

picture may be avoided if we limit our description to what a single “observer”—represented by a

single worldline in spacetime—can causally access. Depending on which observer we choose, we

obtain different descriptions of the system, which are supposed to be equivalent. Since the events

an observer can see lie within the causal patch associated with the worldline representing the

observer, we may assume that this causal patch is the spacetime region a single such description

may represent. In particular, one may postulate the following [33, 32]:

• For a single description allowing a semiclassical interpretation of the system, the spacetime

region represented is restricted to the causal patch associated with a single worldline. With

this restriction, the description can be local in the sense that any physical correlations be-

tween low energy field theoretic degrees of freedom respect causality in spacetime (beyond
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some microscopic quantum gravitational distance l∗, meaning that possible nonlocal correc-

tions are exponentially suppressed ∼ e−r/l∗).

Depending on the worldline we take, we may obtain different descriptions of the same system, which

are all local in appropriate spacetime regions. A transformation between different descriptions is

nothing but the complementarity transformation.

To implement Hamiltonian quantum mechanics, we must introduce a time variable. This cor-

responds to foliating the causal patch by equal-time hypersurfaces, with a state vector |Ψ(t)〉
representing the state of the system on each hypersurface.3 Let x be spatial coordinates parame-

terizing each equal-time hypersurface. Physical quantities associated with field theoretic degrees

of freedom can then be obtained using field theoretic operators φ(x) and the state |Ψ(t)〉. (Ex-

cited string degrees of freedom will require the corresponding operators.) In general, the procedure

of electing coordinates (t,x), which we need to define states and operators, must be given inde-

pendently of the background spacetime, since we do not know it a priori (and states may even

represent superpositions of very different semiclassical geometries); an example of such procedures

is described in Ref. [8]. In our discussions in this chapter, however, we mostly consider issues

addressed on a fixed background spacetime (at least approximately), so we need not be concerned

with this problem too much—we may simply use any coordinate system adapted to a particular

spacetime we consider, e.g. Schwarzschild-like coordinates for a black hole.

In the next two sections, we discuss how the complementarity picture described above works

for a dynamical black hole. We discuss the semiclassical descriptions of the system in various

reference frames, as well as their mutual consistency. In these discussions, we focus on a black hole

that is well approximated by a Schwarzschild black hole in asymptotically flat spacetime. We do

not expect difficulty in extending it to more general cases.

6.2 Black Hole—A Distant Description

Suppose we describe the formation and evaporation of a black hole in a distant reference frame.

Following Ref. [62], we postulate that there exists a unitary description which involves only the

degrees of freedom that can be viewed as being on and outside the (stretched) horizon. To describe

quantum states with a black hole, we adopt Schwarzschild-like time slicings to define equal-time

3In general, the “time variable” of (constrained) Hamiltonian quantum mechanics may not be related directly
with time we observe in nature [43]. Indeed, the whole “multiverse” may be represented by a state that does not
depend on the time variable and is normalizable in an appropriate sense [44]. Even if this is the case, however, when
we describe only a branch of the whole state, e.g. when we describe a system seen by a particular observer, the state
of the system may depend on time. Here we discuss systems with black holes, which are parts of the multiverse so
their states may depend on time.
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hypersurfaces.4 We argue that the origin of the Bekenstein-Hawking entropy may be viewed as

a coarse-graining performed to obtain a semiclassical description of the evolving black hole. We

then discuss implications of such a coarse-graining, in particular how it reconciles unitarity of the

Hawking emission and black hole mining processes in the fundamental theory with the non-unitary

(thermal) view in the semiclassical description.

6.2.1 Microscopic structure of a dynamical black hole

Consider a quantum state which represents a black hole of mass M located at some place at rest,

where the position and velocity are measured with respect to some distant reference frame, e.g. an

inertial frame elected at asymptotic infinity. Because of the uncertainty principle, such a state must

involve a superposition of energy and momentum eigenstates. Let us first estimate the required

size of the spread of energy ∆E, with E measured in the asymptotic region. According to the

standard Hawking calculation, a state of a black hole of mass M will evolve after Schwarzschild

time ∆t ≈ O(Ml2P) into a state representing a Hawking quantum of energy ≈ O(1/Ml2P) and a

black hole with the correspondingly smaller mass. The fact that these two states—before and after

the emission—are nearly orthogonal implies that the original state must involve a superposition of

energy eigenstates with

∆E ≈ 1

∆t
≈ O

(
1

Ml2P

)
. (6.1)

Of course, this is nothing but the standard time-energy uncertainty relation, and here we have

assumed that a state after time t � Ml2P is not clearly distinguishable from the original one, so

that the uncertainty relation is almost saturated.

Next, we consider the spread of momentum ∆p, where p is again measured in the asymptotic

region. Suppose we want to identify the spatial location of the black hole with precision comparable

to the quantum stretching of the horizon ∆r ≈ O(1/M), i.e. ∆d ≈ O(lP), where r and d are

the Schwarzschild radial coordinate and the proper length, respectively. This implies that the

superposition must involve momenta with spread ∆p ≈ (1/MlP)(1/∆d) ≈ O(1/Ml2P), where the

factor 1/MlP in the middle expression is the redshift factor. This value of ∆p corresponds to an

4Strictly speaking, to describe a general gravitating system we need a procedure to foliate the relevant spacetime
region in a background independent manner, as discussed in the previous section. For our present purposes,
however, it suffices to employ any foliation that reduces to Schwarzschild-like time slicings when the black hole
exists. Note that macroscopic uncertainties in the black hole mass, location, and spin caused by the stochastic
nature of Hawking radiation [52, 45] require us to focus on appropriate branches in the full quantum state in which
the black hole in a given time has well-defined values for these quantities at the classical level. The relation between
the Schwarzschild-like foliation and a general background independent foliation is then given by the standard
coordinate transformation, which does not introduce subtleties beyond those discussed in this chapter. The effect
on unitarity by focusing on particular branches in this way is also minor, so we ignore it. The full unitarity,
however, can be recovered by keeping all the branches in which the black hole has different classical properties at
late times [45].
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uncertainty of the kinetic energy ∆Ekin ≈ p∆p/M ≈ O(1/M3l4P), which is much smaller than ∆E

in Eq. (6.1). The spread of energy thus comes mostly from a superposition of different rest masses:

∆E ≈ ∆M .

How many different independent ways are there to superpose the energy eigenstates to arrive

at the same black hole geometry, at a fixed position within the precision specified by ∆r and of

mass M within an uncertainty of ∆M? We assume that the Bekenstein-Hawking entropy, A/4l2P,

gives the logarithm of this number (at the leading order in expansion in inverse powers of A/l2P),

where A = 16πM2l4P is the area of the horizon. While the definition of the Bekenstein-Hawking

entropy does not depend on the precise values of ∆M or ∆p, a natural choice for these quantities

is

∆M ≈ ∆p ≈ O

(
1

Ml2P

)
, (6.2)

which we will adopt. The nonzero Bekenstein-Hawking entropy thus implies that there are expo-

nentially many independent states in a small energy interval of ∆E ≈ O(1/Ml2P). We stress that

it is not appropriate to interpret this to mean that quantum mechanics introduces exponentially

large degeneracies that do not exist in classical black holes. In classical general relativity, a set of

Schwarzschild black holes located at some place at rest are parameterized by a continuous mass

parameter M ; i.e., there are a continuously infinite number of black hole states in the energy

interval between M and M +∆M for any M and small ∆M . Quantum mechanics reduces this to

a finite number ≈ eS0∆M/M , with S0 given by5

S0 =
A
4l2P

+O

(
Aq

l2qP

; q < 1

)
. (6.3)

This can also be seen from the fact that S0 is written as Ac3/4l2P~ when ~ and c are restored,

which becomes infinite for ~→ 0.

As is clear from the argument above, there are exponentially many independent microstates,

corresponding to Eq. (6.3), which are all black hole vacuum states: the states that do not have a field

or string theoretic excitation on the semiclassical black hole background and in which the stretched

horizon, located at rs = 2Ml2P +O(1/M), is not excited.6 Denoting the indices representing these

exponentially many states collectively by k, which we call the vacuum index, basis states for the

general microstates of a black hole of mass M (within the uncertainty of ∆M) can be given by

|Ψā a afar;k(M)〉. (6.4)

5Of course, quantum mechanics allows for a superposition of these finite number of independent states, so the
number of possible (not necessarily independent) states is continuously infinite. The statement here applies to the
number of independent states, regarding classical black holes with different M as independent states.

6These states can be defined, for example, as the states obtained by first forming a black hole of mass M and
then waiting sufficiently long time after (artificially) switching off Hawking emission. Note that at the level of full
quantum gravity, all the black hole states are obtained as excited states. Any semiclassical description, however,
treats some of them as vacuum states on the black hole background.
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Here, ā, a, and afar represent the indices labeling the excitations of the stretched horizon, in the

near exterior zone region (i.e. the region within the gravitational potential barrier defined, e.g., as

r ≤ RZ ≡ 3Ml2P), and outside the zone (r > RZ), respectively.7 As we have argued, the index

k runs over 1, · · · , eS0 for the vacuum states ā = a = afar = 0. In general, the range for k may

depend on ā and a, but its dependence is higher order in l2P/A; i.e., for fixed ā and a

k = 1, · · · , eSāa ; Sāa − S0 ≈ O

(
Aq

l2qP

; q < 1

)
. (6.5)

We thus mostly ignore this small dependence of the range of k on (ā, a), i.e. the non-factorizable

nature of the Hilbert space factors spanned by these indices, except when we discuss negative

energy excitations associated with Hawking emission later, where this aspect plays a relevant role

in addressing one of the firewall arguments.

Since we are mostly interested in physics associated with the black hole region, we also introduce

the notation in which the excitations in the far exterior region are separated. As we will see later,

the degrees of freedom represented by k can be regarded as being mostly in the region r ≤ RZ, so

we may write the states of the entire system in Eq. (6.4) as

|Ψā a afar;k(M)〉 ≈ |ψāa;k(M)〉|φafar
(M)〉, (6.6)

and call |ψāa;k(M)〉 and |φafar
(M)〉 as the black hole and exterior states, respectively. Note that

by labeling the states in terms of localized excitations, we need not write explicitly the trivial

vacuum entanglement between the black hole and exterior states that does not depend on k, which

typically exist when they are specified in terms of the occupation numbers of modes spanning the

entire space.

How many independent quantum states can the black hole region support? Let us label appro-

priately coarse-grained excitations in the region rs ≤ r ≤ RZ by i = 1, 2, · · · , each of which carries

entropy Si. Suppose there are ni excitations of type i at some fixed locations. The entropy of

such a configuration is given by the sum of the “entropy of vacuum” in Eq. (6.3) and the entropies

associated with the excitations:

SI = S0 +
∑
i

niSi. (6.7)

The energy of the system in the region r ≤ RZ is given by the sum of the mass M of the black

hole, which we define as the energy the system would have in the absence of an excitation outside

7Strictly speaking, the states may also have the vacuum index associated with the ambient space in which the
black hole exists. The information in this index, however, is not extracted in the Hawking evaporation or black
hole mining process, so we ignore it here. (For more discussions, see, e.g., Section 5 of Ref. [5].) We will also treat
excitations spreading both in the r ≤ RZ and r > RZ regions only approximately by including them either in a
or afar. The precise description of these excitations will require more elaborate expressions, e.g. than the one in
Eq. (6.6), which we believe is an inessential technical subtlety in addressing our problem.
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the stretched horizon, and the energies associated with the excitations in the zone. Note that

excitations here are defined as fluctuations with respect to a fixed background, so their energies

Ei as well as entropies Si can be either positive or negative, although the signs of the energy and

entropy must be the same: EiSi > 0. The meaning of negative entropies will be discussed in detail

in Sections 6.2.4 and 6.2.5.

Since excitations in the zone affect geometry, spacetime outside the stretched horizon, when

they exist, is not exactly that of a Schwarzschild black hole. We require that these excitations do

not form a black hole by themselves or become a part of the black hole at the center; otherwise,

the state must be viewed as being built on a different semiclassical vacuum.8 The total entropy

S of the region r ≤ RZ, i.e. the number of independent microscopic quantum states representing

this region, is then given by

S = ln
(∑

I

eSI
)
, (6.8)

where I represents possible configurations of excitations, specified by the set of numbers {ni} and

the locations of excitations of each type i, that do not modify the semiclassical vacuum in the sense

described above. As suggested by a representative estimate [11], and particularly emphasized in

Ref. [46], the contribution of such excitations to the total entropy is subdominant in the expansion

in inverse powers of A/l2P: S = S0 + O(Aq/l2qP ; q < 1). The total entropy in the near black hole

region, r ≤ RZ, is thus given by

S =
A
4l2P

, (6.9)

at the leading order in l2P/A.

6.2.2 Emergence of the semiclassical picture and coarse-graining

The fact that all the independent microstates with different values of k lead to the same geometry

suggests that the semiclassical picture is obtained after coarse-graining the degrees of freedom

represented by this index; namely, any result in semiclassical theory is a statement about the

maximally mixed ensemble of microscopic quantum states consistent with the specified background

within the precision allowed by quantum mechanics [5]. According to this picture, the black hole

vacuum state in the semiclassical description is given by the density matrix

ρ0(M) =
1

eS0

eS0∑
k=1

|Ψā=a=afar=0;k(M)〉〈Ψā=a=afar=0;k(M)|. (6.10)

8More precisely, we regard two geometries as being built on different classes of semiclassical vacua when they
have different horizon configurations as viewed from a fixed reference frame. On the other hand, if two geometries
have the same horizon, they belong to the same “vacuum equivalence class” in the sense that one can be converted
into the other with “excitations.” For more discussions on this point, see Ref. [8] and Section 6.2.2.
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Because of the coarse-graining of an enormous number of degrees of freedom, this density matrix

has statistical characteristics.

In order to obtain the response of this state to the operators in the semiclassical theory, we may

trace out the subsystem on which they do not act. As we will discuss more later, the operators in

the semiclassical theory in general act on a part, but not all, of the degrees of freedom represented

by the k index. Let us denote the subsystem on which semiclassical operators act nontrivially

by C, and its complement by C̄. The index k may then be viewed as labeling the states in the

combined CC̄ system which satisfy certain constraints, e.g. the total energy being M within ∆M .

The density matrix representing the semiclassical vacuum state in the Hilbert space in which the

semiclassical operators act nontrivially, C, is given by

ρ̃0(M) = TrC̄ ρ0(M). (6.11)

Consistently with our identification of the origin of the Bekenstein-Hawking entropy, we assume

that this density matrix represents the thermal density matrix with temperature TH = 1/8πMl2P
in the zone region (as measured at asymptotic infinity):

ρ̃0(M) ≈ 1

Tr e−βHsc(M)
e−βHsc(M); β =

{
1
TH

for r ≤ RZ,

+∞ for r > RZ,
(6.12)

where Hsc(M) is the Hamiltonian of the semiclassical theory in the distant reference frame, which

is defined in the region r ≥ rs on the black hole background of mass M .9 (The meaning of position-

dependent β is that the expression βHsc(M) should be interpreted as β times the Hamiltonian

density integrated over space.) Note that this procedure of obtaining Eq. (6.12) from Eq. (6.10)

can be viewed as an example of the standard procedure of obtaining the canonical ensemble of a

system from the microcanonical ensemble of a larger (isolated) system that contains the system

of interest. In fact, if the system traced out is larger than the system of interest, dim C̄ & dimC,

we expect to obtain the canonical ensemble in this manner (see Ref. [31] for a related discussion).

Below, we drop the tilde from the density matrix in Eq. (6.12), as it represents the same state as

the one in Eq. (6.10)—ρ0(M) must be interpreted to mean either the right-hand side of Eq. (6.10)

or of Eq. (6.12), depending on the Hilbert space under consideration.

In semiclassical field theory, the density matrix of Eq. (6.12) is obtained as a reduced density

matrix by tracing out the region within the horizon in the unique global black hole vacuum state.

Our view is that this density matrix, in fact, is obtained from a mixed state of exponentially

many pure states, arising from a coarse-graining performed in Eq. (6.10); the prescription in the

9The Hilbert space of the semiclassical theory for states which have a single black hole at a fixed location at rest
may be decomposed as H = ⊕MHM , where HM is the space spanned by the states in which there is a black hole of
(appropriately coarse-grained) mass M . In this language, Hsc(M) is a part of the semiclassical Hamiltonian acting
on the subspace HM .
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semiclassical theory provides (merely) a useful way of obtaining the same density matrix, in a

similar sense in which the thermofield double state was originally introduced [76]. We emphasize

that the information in k is invisible in the semiclassical theory (despite the fact that it involves

subsystem C) as it is already coarse-grained to obtain the theory; in particular, the dynamics of the

degrees of freedom represented by k cannot be described in terms of the semiclassical Hamiltonian

Hsc(M).10 As we will see explicitly later, it is this inaccessibility of k that leads to the apparent

violation of unitarity in the semiclassical calculation of the Hawking emission process [55]. Note

that because ρ0(M) takes the form of the maximally mixed state in k, results in the semiclassical

theory do not depend on the basis of the microscopic states chosen in this space.

A comment is in order. In connecting the expression in Eq. (6.10) to Eq. (6.12), we have

(implicitly) assumed that |Ψā=a=afar=0;k(M)〉 represent the black hole vacuum states in the limit

that the effect from evaporation is (artificially) shut off.11 With this definition of vacuum states,

the evolution effect necessarily “excites” the states, making a 6= 0, as we will see more explicitly in

Section 6.2.4. As a consequence, the density matrix for the semiclassical operators representing the

evolving black hole deviates from Eq. (6.12) even without matter or radiation. (In the semiclassical

picture, this is due to the fact that the effective gravitational potential is not truly confining, so

that the state of the black hole is not completely stationary.) If one wants, one can redefine vacuum

states to be these states: the states that do not have any matter or radiation excitation on the

evolving black hole background—the original vacuum states are then obtained as excited states

on the new vacuum states.12 This redefinition is possible because the two semiclassical “vacua”

represented by the two classes of microstates belong to the same “vacuum equivalence class” in the

sense described in the last paragraph of Section 6.2.1; specifically, they possess the same horizon

for the same black hole mass, as defined for the evaporating case in Ref. [79].

As was mentioned above, semiclassical operators, in particular those for modes in the zone, act

nontrivially on both a and k indices of microstates |Ψā a afar;k(M)〉. This can be seen as follows. If

the operators acted only on the a index, the maximal mixture in k space with a = 0, Eq. (6.10),

would look like a pure state from the point of view of these operators, contradicting the thermal

10This does not mean that a device made out of semiclassical degrees of freedom cannot probe information in
k. Since there are processes in the fundamental theory (i.e. Hawking evaporation and mining processes) in which
information in k is transferred to that in semiclassical excitations (i.e. degrees of freedom represented by the a and
afar indices), information in k can be probed by degrees of freedom appearing in the semiclassical theory. It is
simply that these information extraction processes cannot be described within the semiclassical theory, since it can
make statements only about the ensemble in Eq. (6.10) and excitations built on it.

11This is analogous to the treatment of a meta-stable vacuum in usual quantum field theory. At the most
fundamental level (or on a very long timescale), such a state must be viewed as a scattering state built on the true
ground state of the system. In practice (or on a sufficiently short timescale), however, we regard it as a vacuum
state, which is approximately the ground state of a theory in which the tunneling out of this state is artificially
switched off, e.g. by making the relevant potential barriers infinitely high.

12In the standard language in semiclassical theory, the original vacuum states correspond essentially to the Hartle-
Hawking vacuum [77], while the new ones (very roughly) to the Unruh vacuum [78].
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nature in Eq. (6.12). On the other hand, if the operators acted only on the k index, they would

commute with the maximally mixed state in k space, again contradicting the thermal state. Since

the thermal nature of Eq. (6.12) is prominent only for modes whose energies as measured in the

asymptotic region are of order the Hawking temperature or smaller

ω . TH, (6.13)

i.e. whose energies as measured by local (approximately) static observers are of order or smaller

than the blueshifted Hawking temperature TH/
√

1− 2Ml2P/r, this feature is significant only for

such infrared modes—operators representing modes with ω � TH act essentially only on the a

index. For operators representing the modes with Eq. (6.13), their actions on microstates can be

very complicated, although they act on the coarse-grained vacuum state of Eq. (6.10) as if it is the

thermal state in Eq. (6.12), up to corrections suppressed by the exponential of the vacuum entropy

S0. The commutation relations of these operators defined on the coarse-grained states take the

form as in the semiclassical theory, again up to exponentially suppressed corrections.

There is a simple physical picture for this phenomenon of “non-decoupling” of the a and k

indices for the infrared modes. As viewed from a distant reference frame, these modes are “too

soft” to be resolved clearly above the background—since the derivation of the semiclassical theory

involves coarse-graining over microstates in which the energy stored in the region r . RZ has

spreads of order ∆E ≈ 1/Ml2P, infrared modes with ω . TH ≈ O(1/Ml2P) are not necessarily

distinguished from “spacetime fluctuations” of order ∆E. One might think that if a mode has

nonzero angular momentum or charge, one can discriminate it from spacetime fluctuations. In this

case, however, it cannot be clearly distinguished from vacuum fluctuations of a Kerr or Reissner-

Nordström black hole having the corresponding (minuscule) angular momentum or charge. In fact,

we may reverse the logic and view that this lack of a clear identity of the soft modes is the physical

origin of the thermality of black holes (and thus of Hawking radiation).

Once the state for the vacuum of the semiclassical theory is obtained as in Eq. (6.10) (or

Eq. (6.12) after partial tracing) and appropriate coarse-grained operators acting on it are identified,

it is straightforward to construct the rest of the states in the theory—we simply have to act these

operators (either field theoretic or of excited string states) on ρ0(M) to obtain the excited states.

For example, to obtain a state which has a field theoretic excitation in the zone, one can apply

the appropriate linear combination of creation and/or annihilation operators in the semiclassical

theory, a†ω`m and/or aω`m:

ρā=0 a afar=0(M) =

(∑
`,m

∫
(caω`maω`m + c′aω`ma

†
ω`m)dω

)
ρ0(M)

(∑
`,m

∫
(caω`maω`m + c′aω`ma

†
ω`m)dω

)†
,

(6.14)
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where caω`m and c′aω`m are coefficients. In the case that the applied operator is that for an infrared

mode, this represents a state in which the thermal distribution for the infrared modes is “modu-

lated” by an excitation over it. A construction similar to Eq. (6.14) also works for excitations in

the far region. To obtain excitations of the stretched horizon, i.e. ā 6= 0, operators dedicated to

describing them must be introduced. The detailed dynamics of these degrees of freedom, i.e. the

r = rs part of Hsc(M), is not yet fully known, however.

6.2.3 “Constituents of spacetime” and their distribution

While not visible in semiclassical theory, the black hole formation and evaporation (or mining)

processes do involve the degrees of freedom represented by k, which we call fine-grained vacuum

degrees of freedom, or vacuum degrees of freedom for short. The dynamics of these degrees of

freedom as well as their interactions with the excitations in the semiclassical theory are determined

by the fundamental theory of quantum gravity, which is not yet well known. We may, however,

anticipate their basic properties based on some general considerations. In particular, motivated

by the general idea of complementarity, we assume the following:

• Interactions with vacuum degrees of freedom do not introduce violation of causality among

field theory degrees of freedom (except possibly for exponentially suppressed corrections,

∼ e−r/l∗ with l∗ a short-distance quantum gravitational scale).

• Interactions between vacuum degrees of freedom and excitations in the semiclassical theory

are such that unitarity is preserved at the microscopic level.

The first assumption is a special case of the postulate discussed in Section 6.1, applied to the

distant reference frame description of a black hole. This implies that we cannot send superluminal

signals among field theory degrees of freedom using interactions with vacuum degrees of freedom.

The second assumption has an implication for how the vacuum degrees of freedom may appear

from the semiclassical standpoint, which we now discuss.

In quantum mechanics, the information about a state is generally delocalized in space—locality

is a property of dynamics, not that of states. In the case of black hole states, the information

about k, which roughly represents slightly different “values” (superpositions) of M , is generally

delocalized in a large spatial region, so that it can be accessed physically in a region away from the

stretched horizon (e.g. around the edge of the zone r ∼ RZ). This, however, does not mean that

the complete information about the state can be recovered by a physical process occurring in a

limited region in spacetime. For example, if we consider the set of eS0 different black hole vacuum

states, a physical detector occupying a finite spatial region can only partially discriminate these

states in a given finite time.
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To see how much information a physical detector in spatial region i can resolve, we can consider

the reduced density matrix obtained after tracing out the subsystems that cannot be accessed by

the semiclassical degrees of freedom associated with this region. In particular, we may consider

the set of all field theory (and excited string state) operators that have support in i, and trace out

the subsystems that do not respond to any of these operators (which we denote by C̄i):

ρ
(i)
0 = TrC̄i ρ0(M), (6.15)

where ρ0(M) is given by Eq. (6.10), and we have omitted the argument M for ρ
(i)
0 . The von Neu-

mann entropy of this density matrix, S
(i)
0 = −Tr ρ

(i)
0 ln ρ

(i)
0 , then indicates the discriminatory power

the region i possesses—a physical process occurring in region i can, at most, discriminate the eS0

states into eS
(i)
0 (� eS0) types in a characteristic timescale of the system, 1/∆E ≈ O(Ml2P). Ac-

cording to the assumption in Eq. (6.12), this entropy is the gravitational thermal entropy contained

in region i, calculated using the semiclassical theory.

We therefore arrive at the following picture. Let us divide the region r ≥ rs into N (arbitrary)

subregions, each of which is assumed to have a sufficiently large number of degrees of freedom so

that the thermodynamic limit can be applied. A basis state in the semiclassical theory can be

written as

ρā a afar
(M) = ρ(1)

a1
⊗ ρ(2)

a2
⊗ · · · ⊗ ρ(N)

aN
, (6.16)

where ρ
(i)
ai are states defined in the i-th subregion, with ai representing excitations contained in that

region. (Following the convention in Section 6.2.2, we regard the vacuum states, ā = a = afar = 0,

to be defined in the limit that the effect from evaporation is ignored.) Now, in the full Hilbert

space of quantum gravity, there are eS0 independent states that all reduce to the same ρā a afar
(M)

at the semiclassical level. These states can be written as

|Ψā a afar;k={ki}(M)〉 = |ψ(1)
a1;k1
〉 |ψ(2)

a2;k2
〉 · · · |ψ(N)

aN ;kN
〉, (6.17)

where ki = 1, · · · , eS
(i)
0 with

S
(i)
0 ≈ gravitational thermal entropy contained in subregion i, (6.18)

calculated using the semiclassical theory for subregions that do not contain the stretched horizon.

The S
(i)
0 ’s for the subregions involving the stretched horizon are determined by the condition

N∑
i=1

S
(i)
0 = S0 ≈

A
4l2P

, (6.19)

which is valid in the thermodynamic limit. Assuming that the entropy on the stretched horizon is

distributed uniformly on the surface, this condition determines the entropies contained in all the

subregions.
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The association of ki’s to each subregion, as in Eq. (6.17), corresponds to taking a specific basis

in the space spanned by k. While the expressions above are strictly valid only in the thermodynamic

limit, the corrections caused by deviating from it (e.g. due to correlations among subregions) do

not affect our later discussions. In particular, it does not change the fact that the region around

the edge of the zone, r ≤ RZ and r − 2Ml2P /�Ml2P, contains O(1) bits of information about k (as

it contains O(1) bits of gravitational thermal entropy), which becomes important when we discuss

the Hawking emission process in Section 6.2.4. Incidentally, the picture described here leads to

the natural interpretation that the subsystem that is traced out when going from Eq. (6.10) to

Eq. (6.12) corresponds to the stretched horizon; i.e. C̄ lives on the stretched horizon, while C in

the zone.13

We stress that by the gravitational thermal entropy in Eq. (6.18), we mean that associated with

the equilibrium vacuum state. It counts the thermal entropy within the zone, since this region

is regarded as being in equilibrium because of its boundedness due to the stretched horizon and

the potential barrier; on the other hand, Eq. (6.18) does not count the thermal entropy associated

with Hawking radiation emitted from the zone, which is (artificially) switched off in defining our

vacuum microstates. In other words, when calculating S
(i)
0 ’s using Eq. (6.18) we should use the

vacuum state in Eq. (6.12), implying that we should use the local temperature, i.e. the temperature

as measured by local static observers, of

T (r) '


TH√

1−
2Ml2

P
r

for r ≤ RZ,

0 for r > RZ.
(6.20)

When the evolution effect is turned on, which we will analyze in Section 6.2.4, the state of the

zone is modified (a 6= 0) due to an ingoing negative energy flux, while the state outside the zone is

excited (afar 6= 0) by Hawking quanta, which are emitted from the edge of the zone and propagate

freely in the ambient space. The contribution of the negative energy flux to the entropy within

the zone is small, as we will see in Section 6.2.4.

The distribution of vacuum degrees of freedom in Eqs. (6.17, 6.18) is exactly the one needed

for the interactions between these degrees of freedom and semiclassical excitations to preserve

unitarity [5]. Imagine we put a physical detector at constant r in the zone. The detector then sees

the thermal bath for all the modes with blueshifted Hawking temperature, Eq. (6.20), including

higher angular momentum modes. This allows for the detector(s) to extract energy from the black

13This in turn gives us a natural prescription to determine the location of the stretched horizon precisely. Since the
semiclassical expression in Eq. (6.12) is expected to break down for ln dimC > ln dim C̄, a natural place to locate the
stretched horizon, i.e. the cutoff of the semiclassical spacetime, is where the gravitational thermal entropy outside
the stretched horizon becomes S0/2 = A/8l2P. For n low energy species, this yields rs − 2Ml2P ∼ n/M ∼ l2∗/Ml2P,
where l∗ is the string (cutoff) scale and we have used the relation l2∗ ∼ nl2P, which is expected to apply in any
consistent theory of quantum gravity (see, e.g., Ref. [80]). This scaling is indeed consistent, giving the local
Hawking temperature at the stretched horizon T (rs) ∼ 1/l∗, where T (r) is given in Eq. (6.20).
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hole at an accelerated rate compared with spontaneous Hawking emission: the mining process [81,

82]. In order for this process to preserve unitarity, the detector must also extract information at

the correspondingly accelerated rate. This is possible if the information about the microstate of the

black hole, specified by the index k, is distributed according to the gravitational thermal entropy,

as in Eqs. (6.17, 6.18). A similar argument also applies to the spontaneous Hawking emission

process, which is viewed as occurring around the edge of the zone, r ∼ RZ, where the gravitational

thermal entropy is small but not negligible. The microscopic and semiclassical descriptions of these

processes will be discussed in detail in Sections 6.2.4 and 6.2.5.

It is natural to interpret the expression in Eq. (6.17) to mean that ki labels possible configu-

rations of “physical soft quanta”—or the “constituents of spacetime”—that comprise the region i.

In a certain sense, this interpretation is correct. The dimension of the relevant Hilbert space, eS
(i)
0 ,

controls possible interactions of the vacuum degrees of freedom with the excitations in the semi-

classical theory in region i, e.g. how much information a detector located in region i can extract

from the vacuum degrees of freedom. This simple picture, however, breaks down when we describe

the same system from a different reference frame. As we will discuss in Section 6.3, the distribu-

tion of the vacuum degrees of freedom depends on the reference frame—they are not “anchored”

to spacetime. Nevertheless, in a fixed reference frame, the concept of the spatial distribution of

the degrees of freedom represented by the index k does make sense. In particular, in a distant

reference frame the distribution is given by the gravitational thermal entropy calculated in the

semiclassical theory, as we discussed here.

6.2.4 Hawking emission—“microscopic” and semiclassical descriptions

The formation and evaporation of a black hole involve processes in which the information about

the initial collapsing matter is transferred into the vacuum index k, which will later be trans-

ferred back to the excitations in the semiclassical theory, i.e. the state of final Hawking radiation.

Schematically, we may write these processes as

|minit〉 →
eS0(M(t))∑
k=1

∑
l

ckl(t) |ψk(M(t))〉 |rl(t)〉 → |rfin〉, (6.21)

where |minit〉, |ψk(M(t))〉, |rl(t)〉, and |rfin〉 represent the states for the initial collapsing matter,

the black hole of mass M(t) (which includes the near exterior zone region; see Eq. (6.6)), the

subsystem complement to the black hole at time t, and the final Hawking quanta after the black

hole is completely evaporated, respectively. Here, we have suppressed the indices representing

excitations for the black hole states. For generic initial states and microscopic emission dynamics,

this evolution satisfies the behavior outlined in Ref. [53] on general grounds.
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In this subsection, we discuss how the black hole evaporating process in Eq. (6.21) proceeds

in details, elucidating how the arguments for firewalls in Refs. [4, 73, 74] are avoided. We also

discuss how the semiclassical theory describes the same process, elucidating how the thermality of

Hawking radiation arises despite the unitarity of the process at the fundamental level.

“Microscopic” (unitary) description

Let us first consider how the “elementary” Hawking emission process is described at the micro-

scopic level,14 i.e. how a “single” Hawking emission occurs in the absence of any excitations other

than those directly associated with the emission. (As we will see later, this is not a very good

approximation in general, but the treatment here is sufficient to illustrate the basic mechanism by

which the information is transferred from the black hole to the ambient space.)

Suppose a black hole of mass M is in microstate k:

|Ψk(M)〉 = |ψk(M)〉|φI〉, (6.22)

where |ψk(M)〉 is the black hole state, in which we have omitted indices representing excitations,

while |φI〉 is the exterior state, from which we have suppressed small M dependence (which, e.g.,

causes a small gravitational redshift of a factor of about 1.5 for the emitted Hawking quanta to

reach the asymptotic region). As discussed in Sections 6.2.2 and 6.2.3, we consider |Ψk(M)〉 to be

one of the black hole vacuum microstates in the limit that the evolution effect is shut off; see, e.g.,

Eqs. (6.12, 6.20). The effect of the evolution, which consists of successive elementary Hawking

emission processes, will be discussed later.

After a timescale of t ≈ O(Ml2P), the state in Eq. (6.22) evolves due to Hawking emission as

|ψk(M)〉|φI〉 →
∑
i,a,k′

ckiak′ |ψa;k′(M)〉|φI+i〉, (6.23)

where |φI+i〉 is the state in which newly emitted Hawking quanta, labeled by i and having total

energy Ei, are added to the appropriately time evolved |φI〉. The index a represents the fact that

the black hole state has negative energy excitations of total energy −Ea (Ea > 0) around the

edge of the zone, created in connection with the emitted Hawking quanta; the coefficients ckiak′ are

nonzero only if Ei ≈ Ea (within the uncertainty).15 The negative energy excitations then propagate

14By the “microscopic” description, we mean a description in which the vacuum index k is kept (i.e. not coarse-
grained as in the semiclassical description) so that the process is manifestly unitary at each stage of the evolution.
A complete description of the microscopic dynamics of the vacuum degrees of freedom requires the fundamental
theory of quantum gravity, which is beyond the scope of this work.

15To be precise, the sum in the right-hand side of Eq. (6.23) contains the “i = 0 terms” representing the branches
in which no quantum is emitted: |φI+0〉 = |φI〉. In these terms, there is no negative energy excitation: ck0ak′ 6= 0
only for a = 0. The following expressions are valid including these terms with the definition Ei=0 = Ea=0 = 0.
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inward, and after a time of order Ml2P ln(MlP) collide with the stretched horizon, making the black

hole states relax as

|ψa;k′(M)〉 →
∑
ka

dak
′

ka |ψka(M − Ea)〉. (6.24)

The combination of Eqs. (6.23, 6.24) yields

|ψk(M)〉|φI〉 →
∑
i,ki

αkiki |ψki(M − Ei)〉|φI+i〉, (6.25)

where αkiki =
∑

a,k′ c
k
iak′d

ak′

ki
, and we have used Ei = Ea; here, M −Ei for different i may belong to

the same mass within the precision ∆M , i.e. M − Ei = M − Ei′ for i 6= i′. This expression shows

that information in the black hole can be transferred to the radiation state i.

It is important that the negative energy excitations generated in Eq. (6.23) come with negative

entropies, so that each of the processes in Eqs. (6.23, 6.24) (as well as the propagation of the

negative energy excitations in the zone) is separately unitary. This means that as k and i run

over all the possible values with a being fixed, the index k′ runs only over 1, · · · , eS0(M−Ea), the

dimension of the space spanned by ka. In fact, this is an example of the non-factorizable nature

of the Hilbert space factors spanned by k and a discussed in Eq. (6.5), which we assume to arise

from the fundamental theory. This structure of the Hilbert space allows for avoiding the argument

for firewalls in Ref. [73]—unlike what is imagined there, elements of the naive Fock space built

on each k in a way isomorphic to that of quantum field theory are not all physical; the physical

Hilbert space is smaller than such a (hypothetical) Fock space. This implies, in particular, that

the Fock space structure of a semiclassical theory does not factor from the space spanned by the

vacuum index k, as is also implied by the analysis in Section 6.2.2.

To further elucidate the point made above, we can consider the following simplified version of the

relevant processes. Suppose a black hole in a superposition state of |ψk(M)〉’s (k = 1, · · · , eS0(M))

releases 1 bit of information through Hawking emission of the form:

|ψk(M)〉|φ0〉 →

{
|ψa; k+1

2
(M)〉|φ1〉 if k is odd,

|ψa; k
2
(M)〉|φ2〉 if k is even,

(6.26)

where we have assumed E1 = E2 = (ln 2)/8πMl2P ' TH, so that the entropy of the black hole after

the emission is reduced by 1 bit: S0(M −E1) = S0(M)− ln 2. Note that the index representing the

negative energy excitation (of energy −E1) takes the same value a in the first and second lines.

Namely, while the entire process in Eq. (6.26) is unitary, the initial states with k = 2n − 1 and

2n lead to the same black hole state. After the negative energy excitation reaches the stretched

horizon, the black hole states relax into vacuum states for a smaller black hole:

|ψa;k′(M)〉 → |ψk1=k′(M − E1)〉. (6.27)
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While the resulting black hole has a smaller entropy than the original black hole, this relaxation

process is unitary because k′ in the left-hand side runs only over 1, · · · , eS0(M)/2 = eS0(M−E1). We

note that the creation of a positive energy Hawking quantum and a negative energy excitation

in Eq. (6.26) (and in Eq. (6.23)) takes a form very different from the standard “pair creation” of

particles, which is often invoked to visualize the Hawking emission process. In the pair creation

picture, the positive and negative energy excitations are maximally entangled with each other,

which is not the case here. In fact, it is this lack of entanglement that allows the emission process

to transfer the information from the black hole to radiation.

We emphasize that from the semiclassical spacetime viewpoint, the emission of Eq. (6.23) is

viewed as occurring locally around the edge of the zone, which is possible because the information

about the black hole microstate extends into the whole zone region according to Eqs. (6.17, 6.18).

To elucidate this point, we may consider the tortoise coordinate

r∗ = r + 2Ml2P ln
r − 2Ml2P

2Ml2P
, (6.28)

in which the region outside the Schwarzschild horizon r ∈ (2Ml2P,∞) is mapped into r∗ ∈ (−∞,∞).

This coordinate is useful in that the kinetic term of an appropriately redefined field takes the

canonical form, so that its propagation can be analyzed as in flat space. In this coordinate, the

stretched horizon, located at r = 2Ml2P +O(l2∗/Ml2P) (see footnote 13), is at

r∗s ' −4Ml2P ln
Ml2P
l∗
' −4Ml2P ln(MlP), (6.29)

where l∗ is the string (or gravitational cutoff) scale, which we take to be within a couple of orders of

magnitude of lP. This implies that there is a large distance between the stretched horizon and the

potential barrier region when measured in r∗: ∆r∗ ≈ 4Ml2P ln(MlP) � O(Ml2P) for ln(MlP) � 1.

On the other hand, a localized Hawking quantum is represented by a wavepacket with width of

O(Ml2P) in r∗, since it has an energy of order TH = 1/8πMl2P defined in the asymptotic region.

The point is that, given the state |Ψk(M)〉 = |ψk(M)〉|φI〉, the process in Eq. (6.23) occurs

in the region |r∗| ≈ O(Ml2P) (i.e. the region in which the effective gravitational potential starts

shutting off toward large r∗) without involving deep interior of the zone −r∗ �Ml2P. In this region,

information stored in the vacuum state is converted into that of a particle state outside the zone.

More specifically, the information in the vacuum represented by the k index (which may also be

viewed as a thermal bath of infrared modes, Eq. (6.13), though only in certain senses) is transferred

into that in modes afar 6= 0, i.e. Hawking quanta, which have clear independent identities over the

background spacetime. Due to energy conservation, this process is accompanied by the creation of

ingoing negative energy excitations; however, they are not maximally entangled with the emitted

Hawking quanta.
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Figure 6.1: A schematic picture of the elementary Hawking emission process; time flows from the top
to the bottom. The edge of the zone, i.e. the barrier region of the effective gravitational potential, is
shown by a portion of a dashed circle at each moment in time. The emitted Hawking quanta as well
as negative energy excitations are depicted by arrows (solid and dotted, respectively) although they are
mostly s-waves.

In Fig. 6.1, we depict schematically the elementary Hawking emission process described here.

In the figure, we have denoted the emitted Hawking quanta as well as negative energy excitations

by arrows, although they are mostly s-waves [72]. The discussion here makes it clear that the

purifiers of the emitted Hawking quanta in the Hawking emission process are microstates which

semiclassical theory describes as a vacuum. In particular, the emission process does not involve

any excitation which, in the near horizon Rindler approximation, appears as a mode breaking

entanglement between the two Rindler wedges necessary to keep the horizon smooth. Outgoing

Hawking quanta emerge at the edge of the zone, living outside the applicability of the Rindler

approximation. Ingoing negative energy excitations appear, in the Rindler approximation, as

modes smooth in Minkowski space, which involve necessary entanglements between Rindler modes

in the two wedges and have frequencies of order 1/Ml2P in the Minkowski frame. Unlike what was

considered in Ref. [4], and unlike what a “naive” interpretation of semiclassical theory might seem

to suggest, Hawking quanta are not modes associated solely with one of the Rindler wedges (b
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modes in the notation of Ref. [4]) nor outgoing Minkowski modes (a modes), which would appear

to have high energies for observers who are freely falling into the black hole. This allows for

avoiding the entropy argument for firewalls given in Ref. [4] as well as the typicality argument in

Ref. [74].

In the discussion of the Hawking emission so far, we have assumed that a single emission of

Hawking quanta as well as the associated creation of ingoing negative energy excitations occur

in a black hole vacuum state consisting of |Ψk(M)〉’s, which are defined in the limit that the

evolution effect is ignored. In reality, however, there are always of order ln(MlP) much of negative

energy excitations in the zone, since the emission process occurs in every time interval of order

Ml2P and the time it takes for a negative energy excitation to reach the stretched horizon is of

order Ml2P ln(MlP) (both measured in the asymptotic region)—an evaporating black hole has an

ingoing flux of negative energy excitations of entropy ≈ O(− ln(MlP)) at all times. This flux of

excitations modifies spacetime geometry from that of a Schwarzschild black hole; in particular,

the geometry near the horizon is well described by the advanced/ingoing Vaidya metric [79]. Note

that as discussed in Section 6.2.2, we may redefine our vacuum states to include these negative

energy excitations, although we do not do it here.

Finally, it is instructive to consider the time reversal of the Hawking emission process. In

this case, radiation coming from the far exterior region and outgoing negative energy excitations

emitted from the stretched horizon meet around the edge of the zone; see Fig. 6.2(a). This results

in a black hole state of mass given by the sum of the mass M of the original black hole (before

emitting the negative energy excitations) and the energy δM of the incoming radiation. It is a

“vacuum” state in the sense that there is no excitation in the zone except for those associated

with a steady flux of outgoing negative energy excitations. We emphasize that this process is very

different from what happens when generic incoming radiation of energy δM ≈ O(1/Ml2P) is sent

to a usual (i.e. evaporating, not anti-evaporating) black hole. In this case, the radiation enters

into the zone without being “annihilated” by a negative energy excitation, which after hitting the

stretched horizon will lead to a black hole state of mass M + δM ; see Fig. 6.2(b). In fact, the

process in Fig. 6.2(a) is a process which leads to a decrease of coarse-grained (or thermal) entropy,

as implied by the fact that the coarse-grained entropy increases in the standard Hawking emission

process [83]. In order for this to happen, therefore, the initial radiation and black hole state must

be exponentially fine-tuned; otherwise, the radiation would simply propagate inward in the zone

as depicted in Fig. 6.2(b) (although it can be subject to significant scattering by the effective

gravitational potential at the time of the entrance). The origin of the conversion from radiation to

vacuum degrees of freedom for such a fine-tuned initial state can be traced to the non-decoupling

of the a and k indices discussed in Section 6.2.2.16

16If the black hole vacuum states are redefined as discussed in Section 6.2.2, the outgoing negative energy flux
cannot be seen as excitations. The physics described here, however, will not change; in particular, only exponentially
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Figure 6.2: Time reversal of the Hawking emission process (a) as opposed to the process in which generic
incoming radiation enters into the zone of a usual black hole (b). The former is an entropy decreasing
process requiring an exponentially fine-tuned initial state, while the latter is a standard process respecting
the (generalized) second law of thermodynamics.

Semiclassical (thermal) description

The expression in Eq. (6.21) implies that at an intermediate stage of the evolution, the information

about the initial collapsing matter is encoded in the black hole microstates labeled by k and

their entanglement with the rest of the system (which will later be transformed into the state of

final-state Hawking radiation). Since semiclassical theory is incapable of describing the dynamics

associated with the index k, it leads to apparent violation of unitarity at all stages of the black hole

formation and evaporation processes. In particular, the state of the emitted Hawking quanta in each

time interval of order M(t)l2P is given by the incoherent thermal superposition with temperature

1/8πM(t)l2P, making the final Hawking radiation state a mixed thermal state—this is an intrinsic

limitation of the semiclassical description, which involves a coarse-graining.

To see in detail how thermal Hawking radiation in the semiclassical picture results from unitary

fine-tuned initial states allow for converting radiation to vacuum degrees of freedom around the edge of the zone.
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evolution at the fundamental level, let us analyze the elementary Hawking emission process given

in Eq. (6.25). Following Eq. (6.10), we consider the “semiclassical vacuum state” with a black hole

of mass M , obtained after taking the maximally mixed ensemble of microstates:

ρ(M) =
1

eS0(M)

eS0(M)∑
k=1

|ψk(M)〉|φI〉〈ψk(M)|〈φI |. (6.30)

The evolution of this state under Eq. (6.25) is then given by

ρ(M)→ 1

eS0(M)

eS0(M)∑
k=1

∑
i,i′

eS0(M−Ei)∑
ki=1

eS0(M−Ei′ )∑
k′
i′=1

αkikiα
k∗
i′k′

i′
|ψki(M − Ei)〉|φI+i〉〈ψk′i′ (M − Ei′)|〈φI+i′ |.

(6.31)

Now, assuming that the microscopic dynamics of the vacuum degrees of freedom are generic, we

expect using S0(M) = 4πM2l2P that tracing out the black hole states leads to

Tr

[
1

eS0(M)

eS0(M)∑
k=1

eS0(M−Ei)∑
ki=1

eS0(M−Ei′ )∑
k′
i′=1

αkikiα
k∗
i′k′

i′
|ψki(M − Ei)〉〈ψk′i′ (M − Ei′)|

]
≈ 1

Z
gie
− Ei
TH δii′ , (6.32)

where TH = 1/8πMl2P, Z =
∑

i gie
−Ei/TH , and gi is a factor that depends on i. This allows us to

write the reduced density matrix representing the exterior state after the evolution in Eq. (6.31)

as

ρext ≈
1

Z

∑
i

gie
− Ei
TH |φI+i〉〈φI+i|, (6.33)

which is the result obtained in Hawking’s original calculation, with gi representing the gray-body

factor calculable in the semiclassical theory [72].

The analysis given above elucidates why the semiclassical calculation sees apparent violation

of unitarity in the Hawking emission process, i.e. why the final expression in Eq. (6.33) does not

depend on microstates of the black hole, despite the fact that the elementary process in Eq. (6.25)

is unitary, so that the coefficients αkiki depend on k. It is because the semiclassical calculation

(secretly) deals with the mixed state, Eq. (6.30), from the beginning—states in semiclassical theory

are maximal mixtures of black hole microstates labeled by vacuum indices, i.e. k’s. By construction,

the semiclassical theory cannot capture unitarity of detailed microscopic processes involving these

indices, including the black hole formation and evaporation processes.

We finally discuss how the unitarity and thermal nature of the black hole evaporation process

may appear in (thought) experiments, illuminating physical implications of the picture described

here. Suppose we prepare an ensemble of a large number of black holes of mass M all of which are

in an identical microstate k, and collect the Hawking quanta emitted from these black holes in a

time interval of order Ml2P. The quanta emitted from each black hole are then in the same quantum

92



state throughout the ensemble, so that a measurement of the spectrum of all the emitted quanta

does not reveal the thermal property predicted by the semiclassical theory. On the other hand, if

the members of the ensemble are in different microstates distributed randomly in k space, then the

collection of the Hawking quanta emitted from all the black holes do exhibit the thermal nature

consistent with the prediction of the semiclassical theory within the Hilbert space describing the

quanta emitted from each black hole (which has dimension only of order unity).

What is the significance of the thermal nature for a single black hole, rather than an ensemble

of a large number of black holes? If we form a black hole of mass M in a particular microstate k and

collect all the Hawking quanta emitted throughout the evaporation process without measuring them

along the way, then the state of the quanta contains the complete information about k, reflecting

unitarity of the process at the fundamental level—the concept of thermality does not apply to this

particular state as a whole. On the other hand, if an observer measures Hawking quanta emitted

in each time interval of order M(t)l2P, then the (incoherent) ensemble of measurement outcomes

does exhibit the thermal nature as predicted by the semiclassical theory.17 Since this is the kind

of measurement that a realistic observer typically makes, the semiclassical theory can be said to

provide a good prediction even for the outcome of (a series of) measurements a single observer

performs on a single black hole.

6.2.5 Black hole mining—“microscopic” and semiclassical descriptions

It is known that one can accelerate the energy loss rate of a black hole faster than that of spon-

taneous Hawking emission by extracting its energy from the thermal atmosphere using a physical

apparatus: the mining process. This acceleration occurs largely because the number of “channels”

one can access increases by going into the zone—unlike the case of spontaneous Hawking emission,

which is dominated by s-wave radiation, higher angular momentum modes can also contribute to

the energy loss in this process [82]. Note that the rate of energy loss associated with each channel,

however, is still the same order as that in the spontaneous Hawking emission process: energy of

order E ≈ O(1/Ml2P) is lost in each time interval of t ≈ O(Ml2P), with E and t both defined in

the asymptotic region. This fact will become important in Section 6.3 when we discuss the mining

process as viewed from an infalling reference frame.

The information transfer associated with the mining process occurs in a similar way to that in

the spontaneous Hawking emission process. An essential difference is that since the process involves

17In the more fundamental, many-world picture, this implies that the record of a physical observer who has
“measured,” or interacted with, emitted quanta in multiple moments shows a result consistent with the thermality
predicted by the semiclassical theory. Note that a single branch in which such an observer lives does not in general
contain the whole information about the initial black hole state k. The complete information about k (as well as
that of the initial state of the observer) is contained only in a state given by a superposition of all possible branches
resulting from interactions (and non-interactions) between the observer and quanta, representing all the possible
“outcomes” the observer could have had (the probability distribution of which is consistent with thermality).
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higher angular momentum modes, the negative energy excitations arising from backreactions can

now be localized in angular directions. Specifically, consider a physical detector (or a system of

detectors) located at a fixed Schwarzschild radial coordinate r = rd within the zone, rs < rd <

RZ. The detector then responds as if it is immersed in the thermal bath of blueshifted Hawking

temperature T (rd), with T (r) given by Eq. (6.20). Suppose the detector has the ground state

|d0〉 and excited states |di〉 (i = 1, 2, . . . ) playing the role of the “ready” state and pointer states,

respectively, and that the proper energies needed to excite |d0〉 to |di〉 are given by Ed,i. The

mining process can then be written such that after a timescale of t ≈ O(Ml2P) (as measured in the

asymptotic region), the state of the combined black hole and detector system evolves as

|ψk(M)〉|d0〉 →
∑
i,a,k′

ckiak′|ψa;k′(M)〉|di〉, (6.34)

where we have assumed, as in the discussion of “elementary” Hawking emission, that there are no

excitations other than those directly associated with the process. The state |ψa;k′(M)〉 arises as

a result of backreaction of the detector response; it contains a negative energy excitation a with

energy −Ea, which is generally localized in angular directions. The coefficients ckiak′ are nonzero

only if Ea ≈ Ed,i

√
1− 2Ml2P/rd within the uncertainty.

Once created, the negative energy excitations propagate inward, and after time of t ≈ r∗d − r∗s
collide with the stretched horizon, where r∗ is the tortoise coordinate in Eq. (6.28). This will make

the black hole states relax as

|ψa;k′(M)〉 →
∑
ka

dak
′

ka |ψka(M − Ea)〉, (6.35)

in the scrambling time of t ≈ O(Ml2P ln(MlP)). As in the case of spontaneous Hawking emission,

this relaxation process is unitary because the negative energy excitations carry negative entropies;

i.e. for a fixed a, the index k′ runs only over 1, · · · , eS0(M−Ea) � eS0(M). The combination of

Eqs. (6.34, 6.35) then yields

|ψk(M)〉|d0〉 →
∑
i,ki

αkiki |ψki(M − Ei)〉|di〉, (6.36)

where αkiki =
∑

a,k′ c
k
iak′d

ak′

ki
and Ei = Ed,i

√
1− 2Ml2P/rd. This represents a microscopic, unitary

description of the elementary mining process.

In the description given above, we have separated the detector state from the state of the black

hole, but in a treatment fully consistent with the notation in earlier sections, the detector itself

must be viewed as excitations over |ψk(M)〉. After the detector response process in Eq. (6.34),

these excitations can be entangled with Hawking quanta emitted earlier, reflecting the fact that the

detector can extract information from the black hole. Since the detector can now be put deep in
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the zone, in which the Rindler approximation is applicable, this implies that excitations localized

within the Rindler wedge corresponding to the region r > rs are entangled with early Hawking

radiation. Does this lead to firewalls as discussed in Ref. [4]? The answer is no. The excitations

describing the detector are, in the near horizon Rindler approximation, those of modes that are

smooth in Minkowski space (a modes in the notation of Ref. [4]). Likewise, modes representing

negative energy excitations arising from the backreactions are also ones smooth in Minkowski

space. Excitations of these modes, of course, do perturb the black hole system, which can indeed

be significant if the detector is held very close to the horizon. This effect, however, is caused by

physical interactions between the detector and vacuum degrees of freedom, and is confined in the

causal future of the interaction event. This is not the firewall phenomenon.

The semiclassical description of the mining process in Eq. (6.36) is obtained by taking maximal

mixture for the vacuum indices. Specifically, the semiclassical state before the process starts is

given by

ρ(M) =
1

eS0(M)

eS0(M)∑
k=1

|ψk(M)〉|d0〉〈ψk(M)|〈d0|. (6.37)

The evolution of this state under Eq. (6.36) is then

ρ(M)→ 1

eS0(M)

eS0(M)∑
k=1

∑
i,i′

eS0(M−Ei)∑
ki=1

eS0(M−Ei′ )∑
k′
i′=1

αkikiα
k∗
i′k′

i′
|ψki(M − Ei)〉|di〉〈ψk′i′ (M − Ei′)|〈di′|. (6.38)

This leads to the density matrix describing the detector state after the process

ρd =
∑
i,i′

γii′ |di〉〈di′ |, (6.39)

where

γii′ = Tr

[
1

eS0(M)

eS0(M)∑
k=1

eS0(M−Ei)∑
ki=1

eS0(M−Ei′ )∑
k′
i′=1

αkikiα
k∗
i′k′

i′
|ψki(M − Ei)〉〈ψk′i′ (M − Ei′)|

]
. (6.40)

Assuming that the microscopic dynamics of the vacuum degrees of freedom are generic, γii′ is

expected to take the form

γii′ ≈
1

Z
fie
−

Ed,i
T (rd) δii′ , (6.41)

where Z =
∑

i fie
−Ed,i/T (rd), and fi is the detector response function reflecting intrinsic properties

of the detector under consideration. This implies that in the semiclassical approximation, the final

detector state does not have any information about the original black hole microstate, despite the

fact that the fundamental process in Eq. (6.36) is, in fact, unitary.
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6.2.6 The fate of an infalling object

We now discuss how an object falling into a black hole is described in a distant reference frame. As

we have seen, having a well-defined black hole geometry requires a superposition of an enormous

number of energy-momentum eigenstates. While the necessary spreads in energy and momentum

are small when measured in the asymptotic region, the spreads of local energy and momentum

(i.e. those measured by local approximately static observers) are large in the region close to the

horizon, because of large gravitational blueshifts. This makes the local temperature T (r) associated

with the vacuum degrees of freedom, Eq. (6.20), very high near the horizon. We expect that the

semiclassical description becomes invalid when this temperature exceeds the string (cutoff) scale,

T (r) & 1/l∗. Namely, semiclassical spacetime exists only in the region

r > rs = 2Ml2P +O

(
l2∗
Ml2P

)
, (6.42)

where rs is identified as the location of the stretched horizon. The same conclusion can also be

obtained by demanding that the gravitational thermal entropy stored in the region where the

semiclassical spacetime picture is applicable is a half of the Bekenstein-Hawking entropy, A/8l2P,

as discussed in footnote 13.

Let us consider that an object is dropped from r = r0 with vanishing initial velocity, where

r0− 2Ml2P ≈ O(Ml2P) > 0. It then freely falls toward the black hole and hits the stretched horizon

at r = rs in Schwarzschild time of about 4Ml2P ln(Ml2P/l∗). Before it hits the stretched horizon, the

object is described by a and afar, the indices labeling field and string theoretic excitations over the

semiclassical background spacetime. After hitting the stretched horizon, the information about

the object will move to the index ā, labeling excitations of the stretched horizon. The information

about the fallen object will then stay there, at least, for the thermalization (or scrambling) time of

the stretched horizon, of order Ml2P ln(MlP). This allows for avoiding the inconsistency of quantum

cloning in black hole physics [75]. Finally, the information in ā will further move to k, which can

(later) be extracted by an observer in the asymptotic region via the Hawking emission or mining

process, as described in the previous two subsections.

We note that the statement that an object is in the semiclassical regime (i.e. represented by

indices a and afar) does not necessarily mean that it is well described by semiclassical field theory.

Specifically, it is possible that stringy effects become important before the object hits the stretched

horizon. As an example, consider dropping an elementary particle of mass m (� 1/l∗) from r = r0

with zero initial velocity. (Here, by elementary we mean that there is no composite structure at

lengthscale larger than l∗.) The local energy and local radial momentum of the object will then
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vary, as it falls, as:

Eloc = m

√√√√1− 2Ml2P
r0

1− 2Ml2P
r

, ploc = −m

√√√√ 2Ml2P
r
− 2Ml2P

r0

1− 2Ml2P
r

. (6.43)

The values of Eloc ≈ −ploc get larger as r gets smaller, and for m � 1/Ml2P (which we assume

here) become of order 1/l∗ before the object hits the stretched horizon, i.e. at

r − 2Ml2P ' 2Ml2P(ml∗)
2

(
1− 2Ml2P

r0

)
. (6.44)

The Schwarzschild time it takes for the object to reach this point is only about −4Ml2P ln(ml∗),

much smaller than the time needed to reach the stretched horizon, 4Ml2P ln(Ml2P/l∗). After the

object reaches this point, i.e. when Eloc ≈ −ploc & 1/l∗, stringy effects might become important;

specifically, its Lorentz contraction saturates and transverse size grows with Eloc [84]. Note that

this dependence of the description on the boost of a particle does not necessarily mean violation

of Lorentz invariance—physics can still be fully Lorentz invariant.18

A schematic picture for the fate of an infalling object described above is given in Fig. 6.3. In

a distant reference frame, the semiclassical description of the object is applicable only until it hits

the stretched horizon, after which it is represented as excitations of the stretched horizon. On the

other hand, according to general relativity (or the equivalence principle), the falling object does

not experience anything other than smooth empty spacetime when it crosses the horizon, except

for effects associated with curvature, which are very small for a black hole of mass M � 1/lP. If

this picture is correct, then we expect there is a way to reorganize the dynamics of the stretched

horizon such that the general relativistic smooth interior of the black hole becomes manifest. In

the complementarity picture, this is achieved by performing an appropriate reference frame change.

We now move on to discuss this issue.

6.3 Black Hole—An Infalling Description

In order to describe the fate of an infalling object using low energy language after it crosses the

Schwarzschild horizon, we need to perform a change of the reference frame from a distant one,

which we have been considering so far, to an infalling one which falls into the black hole with

the object. In general, studying this issue is complicated by the fact that the general and precise

18It is illuminating to consider how these stringy effects appear in a two-particle scattering process in Minkowski
space. For

√
s . 1/l∗, where s is the Mandelstam variable, there is a reference frame in which energies/momenta of

both particles are smaller than 1/l∗, guaranteeing that these effects are not important in the process. For
√
s > 1/l∗,

on the other hand, at least one particle has an energy/momentum larger than 1/l∗ in any reference frame, suggesting
that stringy effects become important in scattering with such high

√
s.
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Figure 6.3: A schematic depiction of the fate of an elementary particle of mass m (1/Ml2P � m� 1/l∗)
dropped into a black hole, viewed in a distant reference frame. As the particle falls, its local energy
blueshifts and exceeds the string/cutoff scale 1/l∗ before it hits the stretched horizon. After this point,
stringy effects could become important, although the semiclassical description of the object may still be
applicable. The object hits the stretched horizon at a Schwarzschild time of about 4Ml2P ln(Ml2P/l∗) after
the drop. After this time, the semiclassical description of the object is no longer applicable, and the
information about the object will be encoded in the index ā, representing excitations of the stretched
horizon. (This information will further move to the vacuum index k later, so that it can be extracted by
an observer in the asymptotic region via the Hawking emission or mining process.)

formulation of complementarity is not yet known, but we may still explore the expected physical

picture based on some general considerations.

The aim of this section is to argue that the existence of interior spacetime, as suggested by

general relativity, does not contradict the unitarity of the Hawking emission and black hole mining

processes, as described in the previous section in a distant reference frame. We do this by first

arguing that there exists a reference frame—an infalling reference frame—in which the spacetime

around a point on the Schwarzschild horizon appears as a large nearly flat region, with the curvature

lengthscale of order Ml2P. This is a reference frame whose origin falls freely from rest from a point

sufficiently far from the black hole. We discuss how the description based on this reference frame

is consistent with that in the distant reference frame, despite the fact that they apparently look

very different, for example in spacetime locations of the vacuum degrees of freedom.

We then discuss how the system is described in more general reference frames, in particular a

reference frame whose origin falls from rest from a point close to the Schwarzschild horizon. We
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will also discuss (non-)relations of black hole mining by a near-horizon static detector and the—

seemingly similar—Unruh effect in Minkowski space. The discussion in this section illuminates

how general coordinate transformations may work at the level of full quantum gravity, beyond the

approximation of quantum field theory in curved spacetime.

6.3.1 Emergence of interior spacetime—free fall from a distance

What does a reference frame really mean? According to the general complementarity picture

described in Section 6.1, it corresponds to a foliation of a portion of spacetime which a single

(hypothetical) observer can access. As discussed there, the procedure to erect such a reference

frame should not depend on the background geometry in order for the framework to be applicable

generally, and there is currently no precise, established formulation to do that (although there are

some partially successful attempts; see, e.g., Ref. [8]). Here we focus only on classes of reference

frames describing the same system with a fixed black hole background. This limitation allows

us to bypass many of the issues arising when we consider the most general application of the

complementarity picture.

In this subsection, we consider a class of reference frames which we call infalling reference

frames. We argue that a reference frame in this class makes it manifest that the spacetime near

the origin of the reference frame appears as a large approximately flat region when it crosses

the Schwarzschild horizon, up to corrections from curvature of lengthscale Ml2P. We discuss how

the interior spacetime of the black hole can emerge through the complementarity transformation

representing a change of reference frame from the distant to infalling ones. Consistency of the

infalling picture described here with the distant frame description in Section 6.2 will be discussed

in more detail in the next subsection.

We consider a reference frame associated with a freely falling (local Lorentz) frame, with its

spatial origin p0 following the worldline representing a hypothetical observer [33, 8]. In particular,

we let the origin of the reference frame, p0, follow the trajectory of a timelike geodesic, representing

the observer who is released from rest at r = r0, with r0 sufficiently far from the Schwarzschild

horizon, r0−2Ml2P &Ml2P. According to the complementarity hypothesis, the system described in

this reference frame does not have a (hot) stretched horizon at the location of the Schwarzschild

horizon when p0 crosses it. (The stretched horizon must have existed around the Schwarzschild

horizon when p0 was far away, rp0 − 2Ml2P & O(Ml2P), because the description in those earlier

times must be approximately that of a distant reference frame, i.e. that discussed in the previous

section.) In particular, the region around p0 must appear approximately flat, i.e. up to small effects

from curvature of order 1/M2l4P, until p0 approaches the singularity.

In this infalling description, we expect that a “horizon” signaling the breakdown of the semi-

classical description lies in the directions associated with “past-directed and inward” light rays
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Figure 6.4: A sketch of an infalling reference frame in an Eddington-Finkelstein diagram: the horizontal
and vertical axes are r and t∗ = t + r∗ − r, respectively, where r∗ is the tortoise coordinate. The thick
(blue) line denotes the spacetime trajectory of the origin, p0, of the reference frame, while the thin (red)
lines represent past-directed light rays emitted from p0. The shaded area is the causal patch associated
with the reference frame, and the dotted (green) line represents the stretched “horizon” as viewed from
this reference frame.

(the directions with increasing r and decreasing t after p0 crosses r = 2Ml2P) as viewed from p0; see

Fig. 6.4.19 As in the stretched horizon in a distant reference frame, this “horizon” emerges because

of the “squeezing” of equal-time hypersurfaces; in particular, an observer following the trajectory

of p0 may probe only a tiny region near the Schwarzschild horizon for signals arising from this

surface. (Note that −r plays a role of time inside the Schwarzschild horizon.) Considering angular

directions, this “horizon” has an area of order M2l4P, and can be regarded as being located at

distances of order Ml2P away from p0 (with an appropriately defined distance measure on generic

equal-time hypersurfaces in the infalling reference frame; see Section 6.3.2).

In analogy with the case of a distant frame description, we denote basis states for the general

microstates in an infalling reference frame (before p0 reaches the singularity) as

|Ψᾱ ααfar;κ(M)〉, (6.45)

where ᾱ labels the excitations of the “horizon,” and α, and αfar are the indices labeling the

19This “horizon,” as viewed from an infalling reference frame, should not be confused with the stretched, or
Schwarzschild, horizon as viewed from a distant reference frame.
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semiclassical excitations near and far from the black hole, conveniently defined; κ is the vacuum

index in an infalling reference frame, representing degrees of freedom that cannot be resolved by

semiclassical operators.20 The complementarity transformation provides a map from the basis

states in a distant description, Eq. (6.4), to those in an infalling description, Eq. (6.45), and vice

versa. The general form of this transformation can be quite complicated, depending, e.g., on

equal-time hypersurfaces taken in the two descriptions (which are in turn related with the general

procedure of erecting reference frames by standard coordinate transformations within each causal

patch). Here we consider how various indices are related under the transformation, focusing on

the near black hole region.

Imagine that equal-time hypersurfaces in the two—distant and infalling—reference frames agree

at some time t = t0 in the spacetime region near but outside the surface where the stretched horizon

exists if viewed from the distant reference frame. (Note that the stretched horizon has physical

substance only in a distant reference frame.) We are interested in how basis states in the two

descriptions transform between each other in the timescale of the fall of the infalling reference

frame. The time here can be taken as the proper time at p0 in each reference frame [33, 8], which

is approximately the Schwarzschild time for the distant reference frame. In this case, the relevant

timescale is t− t0 . O(Ml2P ln(MlP)) in the distant reference frame, while t− t0 . O(Ml2P) in the

infalling reference frame.

As discussed in Section 6.2.6, in the distant reference frame, an object dropped from some r0

with r0−2Ml2P ≈ O(Ml2P) is first represented by a and then by ā after it hits the stretched horizon.

On the other hand, in the infalling frame, the object is represented by the index α throughout,

first as a semiclassical excitation outside the Schwarzschild horizon and then as a semiclassical

excitation inside the Schwarzschild horizon, implying that the object does not find anything special

at the horizon. Here, we have assumed that p0 follows (approximately) the trajectory of the falling

object. This suggests that a portion of the α index representing excitations in the interior of the

black hole is transformed into the ā index in the distant description (and vice versa) under the

complementarity transformation; i.e., the interior of the black hole accessible from the infalling

reference frame is encoded in the excitations of the stretched horizon in the distant reference frame.

Note that the amount of information needed to reconstruct the interior (in the semiclassical sense)

is much smaller than the Bekenstein-Hawking entropy [11, 46]—the logarithm of the dimension of

the relevant Hilbert space is of order (A/l2P)q with q < 1.

In the exterior spacetime region, the portion of the α index representing excitations there, as

well as the αfar index, are mapped to the corresponding a and afar indices, and vice versa (after

matching the equal-time hypersurface in the two descriptions through appropriate time evolu-

tions). Because equal-time hypersurfaces foliate the causal patch, excitations in the far exterior

20After p0 hits the singularity, the system as viewed from the infalling reference frame can only be represented by
“singularity states”: intrinsically quantum gravitational states that do not allow for a spacetime interpretation [33].
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region naturally have trans-Planckian energies in the infalling description. However, as discussed

in Section 6.2.6, this does not mean that the semiclassical description is invalid—objects may still

be described as excitations in the semiclassical spacetime, although stringy effects may become im-

portant. Indeed, we expect that the semiclassical description is applicable in the far exterior region

even in the infalling reference frame, because of the absence of the “squeezing” effect described

above which leads to the breakdown of the semiclassical picture.

We emphasize that the construction of the interior spacetime described here does not suffer from

the paradoxes discussed in Refs. [4, 73, 74]. By labeling states in terms of excitations, we are in a

sense representing the interior spacetime already in the distant description. (The interpretation,

however, is different. In the distant description, the relevant excitations must be regarded as

those of the stretched horizon.) In fact, we do not find any inconsistency in postulating that the

dynamics of an infalling object is described by the corresponding Hamiltonian in the semiclassical

theory in a sufficiently small region around p0, to the extent that microscopic details of interactions

with κ degrees of freedom are neglected. Namely, we do not find any inconsistency in postulating

that physics at the classical level is well described by general relativity.

Finally, we discuss where the fine-grained vacuum degrees of freedom represented by κ must

be viewed as being located in the infalling description. Because of the lack of an obvious static

limit, it is not straightforward to answer to this question. Nevertheless, it seems natural to expect,

in analogy with the case of a distant description, that most of the degrees of freedom are located

close to the “horizon” (in terms of a natural distance measure in which the distance between the

“horizon” and p0 is of order Ml2P). In fact, we expect that the number of κ degrees of freedom

existing around p0 within a distance scale sufficiently smaller than Ml2P is of O(1) or smaller, since

the time and length scales of the system characterizing local deviations from Minkowski space (as

viewed from the infalling reference frame) are both of order Ml2P. As in the case of the distant

description, we expect that the κ degrees of freedom do not extend significantly to the far exterior

region, since the existence of the black hole does not affect the spacetime there much.21

6.3.2 Consistency between the distant and infalling descriptions

In analyzing a black hole system in a distant reference frame, we argued that the microscopic

information about the black hole, represented by the k index, is distributed according to the

gravitational thermal entropy calculated using semiclassical field theory. In particular, on the

21Note that the descriptions in the two reference frames are already different at the semiclassical level. For
example, the backreaction of a detector click in a distant reference frame is described as an absorption of a particle
in the thermal bath, while in an infalling reference frame it is described as an emission of a particle, with the difference
arising from different definitions of energy in the two reference frames [85]. The reference frame dependence discussed
here is much more drastic, however—the spacetime locations of physical degrees of freedom are different in the two
reference frames.
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Schwarzschild (or stretched) horizon, this information has a Planckian density: one qubit per area

of order l2P on the horizon (or per volume of order l3P if we take into account the “thickness” of the

stretched horizon, ∼ lP). On the other hand, we have just argued that in an infalling reference

frame, the spacetime distribution of the microscopic information (now represented by the κ index)

is different. In particular, the spatial density of the information around the Schwarzschild horizon,

when the origin of the reference frame passes through it, is very small: one qubit per volume of

order (Ml2P)3. How can we reconcile these two seemingly very different perspectives?

In this subsection, we consider this problem and argue that despite the fact that the spacetime

distribution of the microscopic information depends on the reference frame one chooses to describe

the system, the answers to any operationally well-defined question one obtains in different reference

frames are consistent with each other. As an example most relevant to our discussion, we consider

a physical detector hovering at a constant Schwarzschild radius r = rd (> 2Ml2P). In a distant

description, the spatial density of the microscopic information, represented by k, is large at the

location of the detector when rd − 2Ml2P � Ml2P. Such a detector (or a system of detectors) can

thus be used for black hole mining: accelerated extraction of energy and information from the

black hole. In an infalling reference frame, however, the density of the microscopic information,

represented by κ, is very small at the detector location, at least when the origin of the reference

frame, p0, passes nearby. This implies that the rate of extracting information from spacetime

cannot be much faster than 1/Ml2P around p0 in the infalling description, reflecting the fact that

the spacetime appears approximately flat there. How are these two descriptions consistent?

In the distant description, the rate of extracting microscopic information about the black hole

is at most of order one qubit per Schwarzschild time 1/TH = 8πMl2P per channel, regardless of

the location of the detector [82]—the acceleration of information extraction occurs not because

of a higher speed of information extraction in each channel but because of an increased number

of channels available by immersing the detector deep into the zone. This implies that each single

detector, which we define to act on a single channel, “clicks” once (i.e. extracts of O(1) qubits)

per a Schwarzschild time of order 8πMl2P.

Now, consider describing such a detector in an infalling reference frame whose origin p0 is

released at r = 2Ml2P + O(Ml2P) from rest, at an angular location close to the detector. To

understand the relevant kinematics, we adopt the near-horizon Rindler approximation: for r >

2Ml2P

ρ ≈ 2
√

2Ml2P(r − 2Ml2P), ω ≈ t

4Ml2P
, (6.46)

in terms of which the metric is given by

ds2 ≈ −ρ2dω2 + dρ2 + r(ρ)2dΩ. (6.47)
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As is well-known, this metric can be written in the Minkowski form

ds2 ≈ −dT 2 + dZ2 + r(T, Z)2dΩ, (6.48)

by introducing the coordinates

T = ρ sinhω, Z = ρ coshω, (6.49)

which can be extended into the r < 2Ml2P region. Our setup corresponds to the situation in which

the detector follows a trajectory of a constant ρ:

ρ = ρd �Ml2P, (6.50)

while the origin of the reference frame p0—or the (fictitious) observer—is at a constant Z:

Z = Zo ≈ O(Ml2P). (6.51)

Note that while we approximate the geometry by flat space, given by Eq. (6.47) or (6.48), the

actual system has small nonzero curvature with lengthscale of order Ml2P.

As discussed above, the detector extracts an O(1) amount of information in each time interval

of

∆ω ≈ O

(
1

4Ml2PTH

)
≈ O(1), (6.52)

while the “observer,” p0, and the detector meet (or pass by each other) at(
ω
ρ

)
=

(
arccoshZo

ρd

ρd

)
≡
(
ω∗
ρ∗

)
. (6.53)

This implies that in the Minkowski coordinates—i.e. as viewed from the infalling observer p0—the

detector clicks only once in each time/space interval of

∆T ≈ ∆ω
∂T

∂ω

∣∣∣∣
ω=ω∗,ρ=ρ∗

≈ Zo ≈ O(Ml2P), (6.54)

∆Z ≈ ∆ω
∂Z

∂ω

∣∣∣∣
ω=ω∗,ρ=ρ∗

≈ Zo ≈ O(Ml2P), (6.55)

around p0. This is precisely what we expect from the equivalence principle: the spacetime appears

approximately flat when viewed from an infalling observer, up to curvature effects with lengthscale

of Ml2P. While the detector clicks of order ln(MlP) times within the causal patch of the infalling

reference frame, all these clicks occur at distances of order Ml2P away from p0, where we expect a

higher density of κ degrees of freedom. The two descriptions—distant and infalling—are therefore
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consistent, despite the fact that the spacetime distributions of the microscopic information about

the black hole—represented by k and κ, respectively—are different in the two reference frames.

While we have so far discussed the case in which a physical detector is located close to the

Schwarzschild horizon, the conclusion is the same in the case of spontaneous Hawking emission.

In this case, since Hawking particles appear as semiclassical excitations only at r − 2Ml2P & Ml2P
with local energies of order 1/Ml2P, the consistency of the two descriptions is in a sense obvious.

Alternatively, one can regard this case as the ρd ≈ Ml2P limit of the previous analysis. While the

Rindler approximation is strictly valid only for ρ sufficiently smaller than Ml2P, qualitative results

are still valid for ρd ≈ Ml2P; in particular, the estimates in Eqs. (6.54, 6.55) are valid at an order

of magnitude level.

6.3.3 Other reference frames—free fall from a nearby point

In this subsection, we consider how the black hole is described in a class of reference frames whose

origin follows a timelike geodesic released from rest at r = r0, where r0 is close to the Schwarzschild

horizon, r0 − 2Ml2P � Ml2P.22 We argue that the description in these reference frames does not

look similar to either the distant or infalling description discussed before, and yet it is consistent

with both of them.23

To understand how the black hole appears in such a reference frame, let us consider a setup

similar to that in Section 6.3.2—a physical detector hovering at a constant Schwarzschild radius

r = rd—and see how this system is described in the reference frame. As in Section 6.3.2, we may

adopt the Rindler approximation, in which Eq. (6.51) is now replaced by

Z = Zo �Ml2P. (6.56)

This implies that as viewed from this reference frame, the detector clicks once in each time/space

interval of

∆T ≈ ∆Z ≈ Zo �Ml2P. (6.57)

Here, we have assumed that ρd < Zo. Since each detector click extracts an O(1) amount of

information from spacetime, which we expect not to occur in Minkowski space, this implies that

the spacetime cannot be viewed as approximately Minkowski space over a region beyond lengthscale

Zo. In particular, in contrast with the case in an infalling reference frame (with Zo & O(Ml2P)),

22In a full geometry in which the black hole is formed by collapsing matter, the trajectory of the origin, p0, of
such a reference frame corresponds to a fine-tuned one in which p0 stays near outside of the Schwarzschild horizon
for long time due to large outward velocities at early times. (Here, we have focused only on the relevant branch in
the full quantum state; see, e.g., footnote 4.)

23Note that we use the term “infalling reference frame” exclusively for reference frames discussed in Sections 6.3.1
and 6.3.2, i.e. the ones in which p0 starts from rest at r0 with r0 − 2Ml2P & O(Ml2P).
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the spacetime region around p0 in this reference frame does not appear nearly flat over lengthscale

of Ml2P when p0 crosses the Schwarzschild horizon.

At a technical level, this difference arises from the fact that the relative boost of p0 with respect

to the distant reference frame when p0 approaches the detector

γ =
1√

1− v2
rel

=

√√√√1− 2Ml2P
r0

1− 2Ml2P
rd

, (6.58)

is very different in the two reference frames. In an infalling reference frame γ is huge, ≈ O(Ml2P/ρd),

while in the reference frame considered here γ ≈ O(Zo/ρd), which is not as large as that in the

infalling case. In the infalling reference frame of Sections 6.3.1 and 6.3.2, the huge boost of

γ ≈ O(Ml2P/ρd) “stretched” the interval between detector clicks to time/length scales of order

Ml2P. Here, this “stretching” makes only a small region around p0, with lengthscale of order Zo

(�Ml2P), look nearly flat at any given time.

We may interpret this result to mean that in the reference frame under consideration, the

“horizon” (as viewed from this reference frame) is located at a distance of order Zo away from p0,

so that detector clicks occur near or “on” this surface. (In the latter case, the detector click events

must be viewed as occurring in the regime outside the applicability of the semiclassical description;

in particular, they can only be described as complicated quantum gravitational processes occurring

on the “horizon.”) Since we expect that microscopic information about the black hole (analogous

to k and κ in the distant and infalling reference frames, respectively) is located near and on the

“horizon,” there is no inconsistency that detector clicks extract microscopic information from the

black hole.

One might be bothered by the fact that in this reference frame spacetime near the Schwarzschild

horizon does not appear large, ≈ O(Ml2P), nearly flat space, and consider that this implies the

non-existence of a large black hole interior as suggested by general relativity. This is, however, not

correct. The existence of a reference frame in which spacetime around the Schwarzschild horizon

appears as a large nearly flat region—in particular, the existence of an infalling reference frame dis-

cussed in Sections 6.3.1 and 6.3.2—already ensures that an infalling physical object/observer does

not experience anything special, e.g. firewalls, when it/he/she crosses the Schwarzschild horizon.

The analysis given here simply says that the spacetime around the Schwarzschild horizon does not

always appear as a large nearly flat region, even in a reference frame whose origin falls freely into

the black hole. This extreme relativeness of descriptions is what we expect from complementarity.

6.3.4 (Non-)relations with the Unruh effect in Minkowski space

It is often thought that the system described above is similar to an accelerating detector existing

in Minkowski space, based on a similarity of geometries between the two setups. If this were true
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at the full quantum level, it would mean that the description in an inertial reference frame in

Minkowski space must possess a “horizon,” at which the semiclassical description of the system

breaks down. Does this make sense?

Here we argue that physics of a detector held near the Schwarzschild horizon, given above in

Section 6.3.3, is, in fact, different from that of an accelerating detector in Minkowski space. The

intuition that the two must be similar comes from the (wrong) perception that the detector located

near the Schwarzschild horizon feels a high blueshifted Hawking temperature, ≈ 1/ρd � 1/Ml2P,

which makes the detector click at a high rate, while the spacetime curvature there is very small,

with lengthscale ≈Ml2P, so that such a tiny curvature must not affect the system. This intuition,

however, is flawed by mixing up two different pictures—the system as viewed at the location of

the detector and as viewed in the asymptotic region.

Suppose we represent all quantities as defined in the asymptotic region. The temperature a

detector feels is then of order 1/Ml2P and the timescale for detector clicks is T ≈ O(Ml2P) for any

rd > 2Ml2P. On the other hand, the energy density of the black hole region is of order M/(Ml2P)3,

so that the curvature lengthscale L is estimated as

1

L2
∼ GN

M

(Ml2P)3
∼ 1

(Ml2P)2
. (6.59)

This implies that

T ∼ L ∼ O(Ml2P); (6.60)

namely, curvature is expected to give an O(1) effect on the dynamics of the detector response.

The same conclusion can also be reached when we represent all the quantities in the static

frame at the detector location. In this case, the temperature the detector feels is of order 1/Ml2Pχ,

where χ =
√

1− 2Ml2P/rd is the redshift factor, so that T ≈ O(Ml2Pχ). On the other hand, the

energy density of the black hole region is given by ∼ (M/χ)/(Ml2P)3χ, so that the “blueshifted

curvature length” L is given by

1

L2
∼ GN

M/χ

(Ml2P)3χ
∼ 1

(Ml2Pχ)2
. (6.61)

This yields

T ∼ L ∼ O(Ml2Pχ), (6.62)

again implying that curvature provides an O(1) effect on the dynamics.

It is, therefore, no surprise that the physics of a near-horizon detector in Section 6.3.3 differs

significantly from that of an accelerating detector in Minkowski space experiencing the Unruh

effect [78]. In fact, we consider, as we naturally expect, that an inertial frame description in

Minkowski space does not have a horizon, implying that no information about spacetime is ex-

tracted by an accelerating detector, despite the fact that it clicks at a rate controlled by the
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acceleration a, T ≈ O(1/a), in the detector’s own frame. This is indeed consistent with the idea

that any information must be accompanied by energy. In the black hole case, the detector mines

the black hole, i.e. its click extracts energy from the black hole spacetime, while in the Minkowski

case the energy needed to excite the detector comes entirely from the force responsible for the ac-

celeration of the detector—the detector does not mine energy from Minkowski space. We conclude

that blueshifted Hawking radiation and Unruh radiation in Minkowski space are very different as

far as the information flow is concerned.

Does this imply a violation of the equivalence principle? The equivalence principle states that

gravity is the same as acceleration, and the above statement might seem to contradict this principle.

This is, however, not true. The principle demands the equivalence of the two only at a point in

space in a given coordinate system, and the descriptions of the two systems discussed above—a

black hole and Minkowski space—are indeed the same in an infinitesimally small (or lengthscale of

order l∗) neighborhood of p0. The principle does not require that the descriptions must be similar

in regions away from p0, and indeed they are very different: there is a “horizon” at a distance of

order Zo from p0 in the black hole case while there is no such thing in the Minkowski case. And it

is precisely in these regions that the detector clicks to extract (or non-extract) information from

the black hole (Minkowski) spacetime. In quantum mechanics, a system is specified by a quantum

state which generally encodes global information on the equal-time hypersurface. It is, therefore,

natural that the equivalence principle, which makes a statement only about a point, does not

enforce the equivalence between physics of blueshifted Hawking radiation and of the Unruh effect

in Minkowski space at the fully quantum level.

6.3.5 Complementarity: general covariance in quantum gravity

We have argued that unitary information transfer described in Section 6.2, associated with Hawking

emission and black hole mining, is consistent with the existence of the interior spacetime suggested

by general relativity. We can summarize important lessons we have learned about quantum gravity

through this study in the following three points:

• In a fixed reference frame, the microscopic information about spacetime, in this case about a

black hole, may be viewed as being associated with specific spacetime locations. In particular,

for a (quasi-)static description of a system, these degrees of freedom are distributed according

to the gravitational thermal entropy calculated using semiclassical field theory. The distri-

bution of these degrees of freedom—which we may call “constituents of spacetime”—controls

how they can interact with the degrees of freedom in semiclassical theory, e.g. matter and

radiation in semiclassical field theory.

• The spacetime distribution of the microscopic information, however, changes if we adopt a
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different reference frame to describe the system. In this sense, the “constituents of spacetime”

are not anchored to spacetime; they are associated with specific spacetime locations only after

the reference frame is fixed. In particular, no reference frame independent statement can be

made about where these degrees of freedom are located in spacetime. We may view this as

a manifestation of the holographic principle [11, 12]—gauge invariant degrees of freedom in

a quantum theory of gravity live in some “holographic space.”

• Despite the strong reference frame dependence of the location of the microscopic degrees of

freedom, the answers to any physical question are consistent with each other when asked in

different reference frames. In particular, when we change the reference frame, the distribution

of the microscopic degrees of freedom (as well as some of the semiclassical degrees of freedom)

is rearranged such that this consistency is maintained.

These items are basic features of general coordinate transformations at the level of full quantum

gravity, beyond the approximation of semiclassical theory in curved spacetime. In particular, they

provide important clues about how complementarity as envisioned in Refs. [33, 8] may be realized

at the microscopic level.

6.4 Summary—A Grand Picture

The relation between the quantum mechanical view of the world and the spacetime picture of

general relativity has never been clear. The issue becomes particularly prominent in a system with

a black hole. Quantum mechanics suggests that the black hole formation and evaporation processes

are unitary—a black hole appears simply as an intermediate (gigantic) resonance between the

initial collapsing matter and final Hawking radiation states. On the other hand, general relativity

suggests that a classical observer falling into a large black hole does not feel anything special at the

horizon. These two, seemingly unrelated, assertions are surprisingly hard to reconcile. With naive

applications of standard quantum field theory on curved spacetime, one is led to the conclusion

that unitarity of quantum mechanics is violated [55] or that an infalling observer finds something

dramatic (firewalls) at the location of the horizon [4, 73, 74, 68].

We have argued that a potential resolution to this puzzle lies in how a semiclassical description

of the system—quantum theory of matter and radiation on a fixed spacetime background—arises

from the microscopic theory of quantum gravity. While a semiclassical description employs an exact

spacetime background, the quantum uncertainty principle implies that there is no such thing—

there is an intrinsic uncertainty for background spacetime for any finite energy and momentum.

This implies, in particular, that at the microscopic level there are many different ways to arrive

at the same background for the semiclassical theory, within the precision allowed by quantum

mechanics. This is the origin of the Bekenstein-Hawking (and related, e.g. Gibbons-Hawking [86])
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entropy. The semiclassical picture is obtained after coarse-graining these degrees of freedom rep-

resenting the microscopic structure of spacetime, which we called the vacuum degrees of freedom.

More specifically, any result in semiclassical theory is a statement about the maximally mixed en-

semble of microscopic quantum states consistent with the specified background within the required

uncertainty [5].

This picture elucidates why the purely semiclassical calculation of Ref. [55] finds a violation

of unitarity. At the microscopic level, formation and evaporation of a black hole are processes in

which information in the initial collapsing matter is converted into that in the vacuum degrees of

freedom, which is later transferred back to semiclassical degrees of freedom, i.e. Hawking radiation.

Since semiclassical theory is incapable of describing microscopic details of the vacuum degrees of

freedom (because it describes them as already coarse-grained, Bekenstein-Hawking entropy), the

description of the black hole formation and evaporation processes in semiclassical theory violates

unitarity at all stages throughout these processes. This, of course, does not mean that the processes

are non-unitary at the fundamental level.

In order to address the unitary evolution and explore its relation with the existence or non-

existence of the interior spacetime, we therefore need to discuss the properties of the vacuum

degrees of freedom. While the theory governing the detailed microscopic dynamics of these degrees

of freedom is not yet fully known, we may include them in our description in the form of a new

index—vacuum index—carried by the microscopic quantum states (which we denoted by k and

κ) in addition to the indices representing excitations in semiclassical theory and of the stretched

horizon. We have argued that these degrees of freedom show peculiar features, which play key

roles in addressing the paradoxes discussed in Refs. [4, 73, 74]:

Extreme relativeness:

In a fixed reference frame, vacuum degrees of freedom may be viewed as distributed (nonlo-

cally) over space. The spacetime distribution of these degrees of freedom, however, changes

if we adopt a different reference frame—they are not anchored to spacetime, and rather live

in some “holographic space.” This dependence on the reference frame occurs in a way that

the answers to any physical question are consistent with each other when asked in different

reference frames. Together with the reference frame dependence of (some of the) semiclassi-

cal degrees of freedom, discussed in the earlier literature [3, 40], this comprises basic features

of how general coordinate transformations work in the full theory of quantum gravity.

Spacetime-matter duality:

The vacuum degrees of freedom exhibit dual properties of spacetime and matter (even in

a description in a single reference frame): while these degrees of freedom are interpreted as
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representing the way the semiclassical spacetime is realized at the microscopic level, their

interactions with semiclassical degrees of freedom make them look like thermal radiation. (At

a technical level, the Hilbert space labeled by the vacuum index and that by semiclassical

excitations do not factor.) In a sense, these degrees of freedom are neither spacetime nor

matter/radiation, as can be seen from the fact that their spacetime distribution changes

as we change the reference frame, and that their detailed dynamics cannot be treated in

semiclassical theory (as was done in Refs. [4, 73, 74]). This situation reminds us of wave-

particle duality, which played an important role in early days in the development of quantum

mechanics—a quantum object exhibited dual properties of waves and particles, while the

“true” (quantum) description did not fundamentally rely on either of these classical concepts.

These features make the existence of the black hole interior consistent with unitary evolution,

in the sense of complementarity [3] as envisioned in Refs. [33, 8]. In particular, a large nearly

flat spacetime region near the Schwarzschild horizon becomes manifest in a reference frame whose

origin follows a free-fall trajectory starting from rest from a point sufficiently far from the black

hole.

It is often assumed that two systems related by the equivalence principle, e.g. a static detector

held near the Schwarzschild horizon and an accelerating detector in Minkowski space, must reveal

similar physics. This is, however, not true. Since the equivalence principle can make a statement

only about a point at a given moment in a given reference frame, while a system in quantum

mechanics is specified by a state which generally encodes global information on the equal-time

hypersurface, there is no reason that physics of the two systems must be similar beyond a point in

space. In particular, a detector reacts very differently to blueshifted Hawking radiation and Unruh

radiation in Minkowski space at the microscopic level—it extracts microscopic information about

spacetime in the former case, while it does not in the latter.

While our study has focused on a system with a black hole, we do not see any reason why

the basic picture we arrived at does not apply to more general cases. We find it enlightening that

our results indicate specific properties for the microscopic degrees of freedom that play a crucial

role in the emergence of spacetime at the fundamental level. Unraveling the detailed dynamics of

these degrees of freedom would be a major step toward obtaining a complete theory of quantum

gravity. As a first step, it seems interesting to study implications of our picture for the case that

spacetime approaches anti-de Sitter space in the asymptotic region, in which we seem to know a

little more [1]. It would also be interesting to explore implications of our picture for cosmology,

e.g. along the lines of Refs. [33, 32, 44].
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[50] É. É. Flanagan, D. Marolf and R. M. Wald, Phys. Rev. D 62, 084035 (2000) [hep-th/9908070].

[51] H. Ollivier, D. Poulin and W. H. Zurek, Phys. Rev. Lett. 93, 220401 (2004) [arXiv:quant-

ph/0307229]; R. Blume-Kohout and W. H. Zurek, Phys. Rev. A 73, 062310 (2006)

[arXiv:quant-ph/0505031].

[52] D. N. Page, Phys. Rev. Lett. 44, 301 (1980).

[53] D. N. Page, Phys. Rev. Lett. 71, 3743 (1993) [hep-th/9306083].

[54] Y. Nomura, J. Varela and S. J. Weinberg, arXiv:1207.6626 [hep-th].

[55] S. W. Hawking, Phys. Rev. D 14, 2460 (1976).

[56] R. M. Wald, Phys. Rev. D 21, 2742 (1980).

[57] Y. Aharonov, A. Casher and S. Nussinov, Phys. Lett. B 191, 51 (1987); T. Banks, A. Dab-

holkar, M. R. Douglas and M. O’Loughlin, Phys. Rev. D 45, 3607 (1992) [hep-th/9201061].

[58] S. B. Giddings, Phys. Rev. D 46, 1347 (1992) [hep-th/9203059].

[59] F. Dyson, Institute for Advanced Study report (1976), unpublished.

[60] J. Preskill, in Blackholes, Membranes, Wormholes and Superstrings, ed. S. Kalara and

D. V. Nanopoulos (World Scientific, Singapore, 1993) p. 22 [hep-th/9209058]; S. B. Gid-

dings, in Particles, Strings and Cosmology, ed. J. Bagger et al. (World Scientific, Singapore,

1996) p. 415 [hep-th/9508151].

[61] S. D. Mathur, Class. Quant. Grav. 26, 224001 (2009) [arXiv:0909.1038 [hep-th]].

[62] See, e.g., G. ’t Hooft, Nucl. Phys. B 335, 138 (1990), and references therein.

115



[63] O. Lunin and S. D. Mathur, Nucl. Phys. B 623, 342 (2002) [hep-th/0109154].

[64] S. B. Giddings, Class. Quant. Grav. 28, 025002 (2011) [arXiv:0911.3395 [hep-th]]; Phys. Rev.

D 85, 124063 (2012) [arXiv:1201.1037 [hep-th]].

[65] R. Brustein, arXiv:1209.2686 [hep-th].

[66] See, e.g., D. N. Page, hep-th/9305040, and references therein.

[67] W. K. Wootters and W. H. Zurek, Nature 299, 802 (1982).

[68] See also S. L. Braunstein, arXiv:0907.1190v1 [quant-ph].

[69] Y. Nomura and J. Varela, arXiv:1211.7033 [hep-th].

[70] For reviews, see e.g. A. H. Guth, Phys. Rept. 333, 555 (2000) [arXiv:astro-ph/0002156];

A. Vilenkin, J. Phys. A 40, 6777 (2007) [arXiv:hep-th/0609193]; S. Winitzki, Lect. Notes

Phys. 738, 157 (2008) [arXiv:gr-qc/0612164]; A. Linde, Lect. Notes Phys. 738, 1 (2008)

[arXiv:0705.0164 [hep-th]].
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