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Abstract

This paper considers spatial data z(s1), z(s2), · · · , z(sn) collected at n loca-

tions, with the objective of predicting z(s0) at another location. The usual

method of analysis for this problem is kriging, but here we introduce a new

signal-plus-noise model whose essential feature is the identification of hot spots.

The signal decays in relation to distance from hot spots. We show that hot

spots can be located with high accuracy and that the decay parameter can be

estimated accurately. This new model compares well to kriging in simulations.
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1 Introduction

In this paper we deal with spatial data obtained at a single time. The data may be

point process data, or areal data (spatial aggregations). In this paper we studied

point process data, and areal data that can be reasonably approximated by point

process data. In the simulations we generated data that occur at points in space,

while in our real data application we used areal data but we treated them as point

process data (spatial aggregations). Such data occurs in mining, agriculture, atmo-

spheric science, ecology, epidemiology, hydrology, meteorology, waste disposal, and

so on. Often the goal of such a study is a prediction at an unsampled location.

Let Z = (z(s1), z(s2), · · · , z(sn))′ be the vector of the observed values at locations

s1, s2, · · · , sn. The objective is to predict the unobserved value z(s0) at location s0

which is not one of s1, s2, · · · , sn. These data may involve spatial correlation, which

cannot be ignored.

Kriging, a term introduced by Matheron (1963), is a very popular method to

solve the problem of spatial prediction. It was first used in mining data. It as-

sumes a random field expressed through a variogram or covariance function, and

correct estimation of the variogram (or covariance function) is very crucial. The

model assumption (see Cressie (1991)) is Z(s) = µ + δ(s), where δ(s) is a zero

mean stochastic term with variogram 2γ(·). If we assume intrinsic stationarity, then

E(Z(s+h)−Z(s)) = 0 and the variogram is defined as Var(Z(s+h)−Z(s)) = 2γ(h).

This can be written as Var(Z(s + h)−Z(s)) = E(Z(s + h)−Z(s))2, and thus the
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method of moments estimator for the variogram can be used (also called the classical

estimator, Cressie (1991))

2γ̂(h) =
1

N(h)

∑

N(h)

(Z(si)− Z(sj))
2 (1)

where the sum is over N(h) such that si − sj = h. Kriging minimizes the mean

squared error of prediction E[z(s0) − ẑ(s0)]2, where ẑ(s0) =
∑n

i=1 wiz(si); that is,

the predictor assumption is a weighted average of the sample values, and
∑n

i=1 wi = 1

to ensure unbiasedness.

In this paper we assume that spatial data come from a signal plus independent

noise. Data of the signal-plus-noise kind may exist because of hot spots.

For example, a location of a nuclear accident is a hot spot if we found that in

fact it is the cause of some disease, like thyroid cancer, that was diagnosed at a high

rate within a certain radius of the site. The use of identifying hot spots can be seen

quite extensively in the field of epidemiology where we can find lists of hot spots

located for many diseases like Lyme disease, thyroid goiter disease, or tuberculosis

- where location greatly affects the chance of acquiring the disease. For instance,

proximity to rivers will increase the chance of Lyme disease. In a study about Lyme

disease by Magnarelli et al. (1993) and Magnarelli (1995) it was found that most

of the patients were from central and southeastern Connecticut. This is because in

those areas foci (hot spots) for Lyme borreliosis (Lyme disease) exist. Ticks and

blood specimens were collected from white-tailed deer (odocoileus virginianus) and

analyzed for Borrelia burgdorferi, the etiologic agent of Lyme disease. The further
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a person is away from the sea (lack of iodine) proposes a greater risk to thyroid

goiter disease and, poor economic condition of a neighborhood increase the risk of

tuberculosis. Another example of a hot spot can be found in the cases of scrub typhus

in Queensland, Australia reported by McBride et al (1999) where all reported cases

were from soldiers who had visited a training area in northern Queensland. As a

result, this location would be defined as a hot spot due to high activity of scrub

typhus in the area.

This new method of identifying hot spots has a number of very useful advantages.

It exploits a non-random structure for the expected value, while leaving the noise

component as statistically independent errors. It identifies hot spots among the

data points and allows the estimation of useful parameters, such as the number and

locations of hot spots and the decay parameter.

2 Proposed Model - Estimation Technique

A hot spot is a location or region with high activity. By high activity, it is meant

that at or near the hot spot high values of a variable of interest are observed. As we

move away from the hot spot the rate decays, in relation to the distance from the

hot spot. We propose a model that uses exponential decay, and the decay rate is a

parameter to be estimated.
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2.1 The Model

Let s1, s2, · · · , sn be the spatial locations. For the proposed spatial regression model,

the response at location si has the following form

z(si) = β0 + β1e
−B1diH1 + · · · + βke

−BkdiHk + εi (2)

where

• β0, β1, · · · βk regression coefficients

• B1, · · · , Bk decay parameters

• diHj distance from data point i to hot spot j

• εi independent error term with standard deviation σ.

Of course β0, β1, · · · , βk, B1, · · · , Bk and σ are parameters to be estimated, as is k,

the number of hot spots. It is reasonable to assume that the decay parameters

B1, · · · , Bk are different for each hot spot. For instance, in the case of the H5N1

avian influenza occurred in the recent years, the decay parameters may be different

based on the number of poultry farms located in the area. Or, in the case of the

spinach and E-coli outbreak in the U.S. (fall 2006), the decay parameters may be

different due to the amount of spinach shipped to a certain location. We assume

that the hot spots are among the points s1, s2, · · · , sn. What we observe are the

z(s1), · · · , z(sn) values. Given those values, and assuming the existence of hot spots,

we are proposing the estimation technique described next.
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2.2 Estimation Technique

To estimate and fit a model to the observed z(si) values, we want to create variables

that are also functions of the distance between the data points. If indeed the data

are generated by a number of hot spots, then the variables that are most related to

the z(s1), · · · , z(sn) are the ones which are essentially indicators for the hot spots.

More specifically, let dij be the Euclidean distance between spatial locations si and

sj. We define the n× 1 vector X i as having jth entry

(X i)j = e−Bdij i = 1, · · · , n and j = 1, · · · , n (3)

where n is the number of spatial locations. For example, the vector X13 will have

the following form X13 = (e−Bd13,1 , · · · , 1, · · · , e−Bd13,n)′. Therefore we can construct

n of these vectors. Next we regress the response vector Z on the predictors X and

other covariates that may be relevant. This model is overspecified in that there

are too many predictors; therefore we use a variable selection technique such as

stepwise regression. The carriers entering into the model will also be identifiers of

possible hot spots. If there exist hot spots, then the predictors matching the hot

spots will be the ones selected. If we deal with many hot spots and include other

covariates multicollinearity may be a potential problem. In this paper however, we

only examine the one-hot spot model and do not include other covariates.
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2.2.1 Estimation of Parameters

We consider here the case where one hot spot exists, and that the location of this hot

spot is known. Given this information, we employ the following procedure based on

maximum likelihood estimation. Later we will present the more realistic case where

the location of the hot spot is not known. We will show subsequently that we can,

with very high probability, determine the correct number of hot spot and identify

its location. The model for the one hot spot case is z(si) = β0 + β1e−BdiH + εi,

with normal εi. This has four unknown parameters, β0, β1, B, and σ2. We estimate

these parameters by maximum likelihood. If B were known, we would need only the

ordinary slope and intercept estimates for a simple regression. We make an initial

guess at B and then find ordinary least squares estimates β̂0 and β̂1. The guess at

B is updated through Newton-Raphson, and the process is iterated to convergence.

The above technique is used to estimate B when the location of the hot spot is

known. In general, we do not know this location. One way to locate the hot spot is

to go from data point to data point and repeat the above procedure as if that data

point were the hot spot. Finally we should pick as the hot spot the one that gives

the highest R2. This process is not as painful as it sounds, as most of the data points

are hopelessly unrealistic as choices for a hot spot.

Now, one can ask the following question: Among n data points what is the

probability that the ith data point is correctly selected as the hot spot? Next we will

give an answer to this question, at least for a simple geometry.
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2.3 Probability of Selecting the Correct Hot Spot

Let us consider here a five-point layout (one point in the center with the other four

points forming a square around it as in Figure 1).
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Figure 1: Five-point layout.

Suppose that the true hot spot is at data point 1 (northwest corner). We generate

a data vector Z= (z(s1), · · · , z(s5))′=U 1+ε, where U 1= (1, e−Bd21 , e−Bd31 , e−Bd41 , e−Bd51)′.

Here, we set β0 = 0, and β1 = 1, so that the model is z(si) = e−Bdi1 + εi.

The vector U 1 is non-random and it is created just for notational convenience.

Now, we create five potential carrier vectors (as in (3)) X1 through X5, where

(X i)j = e−Bdij , i, j = 1, · · · , 5. These potential carriers will all be based on a guess

at B. For the moment we will postpone the question as to whether we correctly

estimated B, and we will assume that B is known. Our results utilize the value of

B. Trying a different B would only slightly alter the findings. We would like to make
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a first calculation to determine whether we correctly identify data point 1 as the hot

spot. Using stepwise regression we will select data point 1 as the true hot spot if the

correlation of Z with X1 is the largest. We use the following relationship

P [best correlation is not with X1] =

P [{Corr2(Z, X1) < Corr2(Z, X2) } ∪ {Corr2(Z, X1) < Corr2(Z, X3) } ∪

{Corr2(Z, X1) < Corr2(Z, X4) } ∪ {Corr2(Z, X1) < Corr2(Z, X5) }]

In the right hand side of the previous equation the four events may not be disjoint;

so this expression becomes

P [best correlation is not with X1] ≤

P [Corr2(Z, X1) < Corr2(Z, X2) ] + P [Corr2(Z, X1) < Corr2(Z, X3) ] +

P [Corr2(Z, X1) < Corr2(Z, X4) ] + P [Corr2(Z, X1) < Corr2(Z, X5) ]

Therefore a lower bound for the desired probability is

P [best correlation is with X1] = P[select point 1 as hot spot] ≥

1− {P [Corr2(Z, X1) < Corr2(Z, X2) ] + P [Corr2(Z, X1) < Corr2(Z, X3) ] +

P [Corr2(Z, X1) < Corr2(Z, X4 )] + P [Corr2(Z, X1) < Corr2(Z, X5) ]} (4)

Therefore we can compute a lower probability bound of correctly identifying data

point 1 as the true hot spot. Of course we need to compute also the probability of

falsely identifying hot spots. The previous result, as given by equation (4), gives

us only lower bound probabilities of identifying the true hot spot. For the points

that are not the true hot spots, we desire upper bound probabilities, since again we

cannot find exact probabilities. For example, one can ask the question: What is the
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upper bound of the probability of falsely identifying data point 2 as the true hot

spot, given that the true hot spot is at data point 1? The following computation

procedure will give us these probability upper bounds. The probability that data

point 2 is falsely selected as the true hot spot is

P [data point 2 is selected] =

P [{Corr2(Z, X2) ≥ Corr2(Z, X1) } ∩ {Corr2(Z, X2) ≥ Corr2(Z, X3) } ∩

{Corr2(Z, X2) ≥ Corr2(Z, X4) } ∩ {Corr2(Z, X2) ≥ Corr2(Z, X5) }]

We know that because if the true hot spot is at data point 1, then the most difficult

event in the right side of the previous equation is Corr2(Z, X2) ≥ Corr2(Z, X1).

Therefore the probability of selecting data point 2 as the true hot spot, is less than

or equal to the probability that the correlation of Z with X2 will be greater than

the correlation of Z with X1.

P [data point 2 is selected] ≤ P [Corr2(Z, X2) ≥ Corr2(Z, X1) ]

The computation of these probabilities will be based on the following lemma by

examining just the first of these probability calculations in (4). This should establish

a pattern that will let us solve for the others.

Lemma:

Let U = C/
√

V1 +D/
√

V2 and V = C/
√

V1−D/
√

V2, where U,D are jointly normal

and V1, V2 are non-random quantities. The probability that the squared correlation

of Z with X1 is less than the squared correlation of Z with X2 is given by the
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following expression:

P (uv < 0) = Φ
(

µu

σu

) [
1− Φ

(
µv

σv

)]
+

[
1− Φ

(
µu

σu

)]
Φ

(
µv

σv

)

where

C2

V1
=

[
5∑

i=1

(Ui1 + εi)(xi1 − x̄1)

]2

5∑

i=1

(xi1 − x̄1)
2

D2

V2
=

[
5∑

i=1

(Ui1 + εi)(xi2 − x̄2)

]2

5∑

i=1

(xi2 − x̄2)
2

The complete proof is given in the appendix.

We can calculate these probabilities for each pair (Z, X i) and thus establish a

lower bound for the probability of correctly selecting the true hot spot and an upper

bound for the probability of falsely identifying spurious hot spots. These probability

bounds, along with a simulation study, will be shown next.

2.3.1 Simulations

To examine the performance of the lower and upper bounds, as described above,

we run simulations for the five-point layout. The true hot spot is at data point 1

(north-west corner).

We computed the probability bounds for various values of the true R2 and B.

We vary the true R2 from 95% down to 50% and the decay parameter from 0.005

up to 0.040. The variance of the error term is then determined from the equation
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below (5). The so-called true R2 is the squared correlation between the population

versions of Z and X, where X has entries e−Bd1h , · · · , e−Bd5H and is given by

TrueR2 =
σ2
signal

σ2
signal + σ2

error
(5)

The model for the data generation is z(si) = β0+β1e−Bdi1+εi. Setting β0 = 0, β1 = 1,

we get z(si) = e−Bdi1 + εi. The variance of the signal is the variance of the values

e−Bd11 , · · · , e−Bd51 . The probability bounds from these simulations are shown in

Table 1. We observe that the lower and upper bound probabilities generally reassure

us about the probability of finding the correct hot spot. Also in Figure 2 and in

Figure 3 the lower and upper bounds are plotted against R2 for each value of the

decay parameter B. We observe that when B is large it is easier to identify the true

hotspot because the values decay rapidly as we move away from the hot spot. It is

interesting to note that because of the layout of the five points, the upper bounds

for the probability of falsely identifying points 2 or 4 are the same, while point 3 has

the highest probability upper bounds among points 2, 3, 4, 5 because its location is

on the opposite site of the true hot spot at point 1.

2.4 Test for a Hot Spot

Suppose that we tentatively identify a hot spot at location H. In the model z(si) =

β0 + β1e−BdiH + εi, we would hope to reject the hypothesis H0 : B = 0, versus the

alternative Ha : B > 0. The power of the test will be

Prob[reject B = 0] =

12



Lower Bound Probability Upper Bounds
R2 B σ2 Point 1 Point 2 Point 3 Point 4 Point 5

0.95 0.005 0.040 0.99983 0.00000 0.00017 0.00000 0.00000
0.90 0.005 0.057 0.99321 0.00000 0.00678 0.00000 0.00000
0.80 0.005 0.086 0.94450 0.00197 0.04992 0.00197 0.00165
0.70 0.005 0.113 0.84492 0.01710 0.10497 0.01710 0.01592
0.60 0.005 0.141 0.68009 0.05375 0.16050 0.05375 0.05191
0.50 0.005 0.172 0.45579 0.10996 0.21637 0.10996 0.10792
0.95 0.010 0.061 0.99999 0.00000 0.00001 0.00000 0.00000
0.90 0.010 0.088 0.99795 0.00001 0.00203 0.00001 0.00000
0.80 0.010 0.132 0.96585 0.00242 0.02774 0.00242 0.00156
0.70 0.010 0.173 0.87437 0.01871 0.07260 0.01871 0.01560
0.60 0.010 0.216 0.71065 0.05624 0.12546 0.05624 0.05141
0.50 0.010 0.265 0.48379 0.11271 0.18343 0.11271 0.10737
0.95 0.015 0.073 1.00000 0.00000 0.00000 0.00000 0.00000
0.90 0.015 0.106 0.99931 0.00001 0.00066 0.00001 0.00000
0.80 0.015 0.158 0.97639 0.00288 0.01620 0.00288 0.00164
0.70 0.015 0.208 0.89131 0.02026 0.05227 0.02026 0.01589
0.60 0.015 0.259 0.72943 0.05858 0.10153 0.05858 0.05187
0.50 0.015 0.317 0.50155 0.11528 0.16001 0.11528 0.10788
0.95 0.020 0.080 1.00000 0.00000 0.00000 0.00000 0.00000
0.90 0.020 0.116 0.99970 0.00002 0.00026 0.00002 0.00000
0.80 0.020 0.174 0.98131 0.00323 0.01040 0.00323 0.00182
0.70 0.020 0.228 0.90045 0.02140 0.04020 0.02140 0.01655
0.60 0.020 0.284 0.74023 0.06028 0.08631 0.06028 0.05290
0.50 0.020 0.348 0.51210 0.11713 0.14461 0.11713 0.10903
0.95 0.025 0.084 1.00000 0.00000 0.00000 0.00000 0.00000
0.90 0.025 0.122 0.99982 0.00002 0.00013 0.00002 0.00001
0.80 0.025 0.183 0.98368 0.00344 0.00740 0.00344 0.00204
0.70 0.025 0.240 0.90543 0.02205 0.03309 0.02205 0.01737
0.60 0.025 0.299 0.74646 0.06125 0.07687 0.06125 0.05417
0.50 0.025 0.366 0.51837 0.11819 0.13483 0.11819 0.11043
0.95 0.030 0.087 1.00000 0.00000 0.00000 0.00000 0.00000
0.90 0.030 0.126 0.99987 0.00002 0.00007 0.00002 0.00001
0.80 0.030 0.189 0.98490 0.00353 0.00577 0.00353 0.00227
0.70 0.030 0.248 0.90829 0.02234 0.02884 0.02234 0.01819
0.60 0.030 0.309 0.75022 0.06167 0.07101 0.06167 0.05543
0.50 0.030 0.378 0.52223 0.11864 0.12866 0.11864 0.11182
0.95 0.035 0.088 1.00000 0.00000 0.00000 0.00000 0.00000
0.90 0.035 0.129 0.99989 0.00002 0.00005 0.00002 0.00001
0.80 0.035 0.193 0.98558 0.00355 0.00484 0.00355 0.00249
0.70 0.035 0.252 0.91004 0.02239 0.02625 0.02239 0.01893
0.60 0.035 0.315 0.75261 0.06175 0.06734 0.06175 0.05657
0.50 0.035 0.386 0.52473 0.11873 0.12475 0.11873 0.11307
0.95 0.040 0.090 1.00000 0.00000 0.00000 0.00000 0.00000
0.90 0.040 0.130 0.99990 0.00002 0.00004 0.00002 0.00001
0.80 0.040 0.195 0.98600 0.00352 0.00428 0.00352 0.00267
0.70 0.040 0.256 0.91118 0.02232 0.02462 0.02232 0.01956
0.60 0.040 0.319 0.75419 0.06165 0.06501 0.06165 0.05752
0.50 0.040 0.391 0.52640 0.11862 0.12225 0.11862 0.11412

Table 1: Probability lower bound for data point 1 being identified as the hot spot,
and probability upper bounds for data points 2,3,4,5 being falsely identified as the
hot spots for five-point layout. The true hot spot is at the north-west data point 1.
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Prob[hot spot correctly identified]×

Prob[reject B = 0 | correctly identified] +

∑

i

Prob[hot spot falsely identified at point i]×

Prob[reject B = 0 | falsely identified] ≥

Prob[hot spot correctly identified]×

Prob[reject B = 0 | correctly identified] (6)

As the second term is likely to be small, we expect that (6) gives a very good lower

bound. The test uses the estimate B̂, which was found earlier, and the limiting

variance, which can be obtained from Fisher’s information matrix.

2.4.1 Simulations to Obtain Asymptotic Variances

Simulations are run for data in the layout of the state of North Carolina (see Fig-

ure 4), with one point for each of the 100 counties (shown in Cressie (1991)). A hot

spot is assumed at location s25. The simulation model used for the data generation

is the following

z(si) = β0 + β1e
−Bdi,25 + εi (7)

We set β0 = 0, β1 = 4, and we use various combinations of the true R2 and B. The

results of these simulations are shown on Table 2, with each line representing one

run. All t-statistics are significant at the 1% level. In every case, the null hypothesis

H0 : B = 0 is rejected, given that the hot spot is correctly identified.
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R2 B B̂ seB̂ t R2 B B̂ seB̂ t

0.95 0.025 0.0252 0.000000780 28.49 0.95 0.035 0.0356 0.000001321 30.94
0.90 0.025 0.0252 0.000001637 19.72 0.90 0.035 0.0358 0.000002792 21.44
0.80 0.025 0.0254 0.000003654 13.27 0.80 0.035 0.0363 0.000006300 14.45
0.70 0.025 0.0255 0.000006221 10.22 0.70 0.035 0.0367 0.000010836 11.15
0.60 0.025 0.0256 0.000009612 8.27 0.60 0.035 0.0371 0.000016926 9.03
0.50 0.025 0.0258 0.000014318 6.82 0.50 0.035 0.0377 0.000025530 7.46
0.95 0.030 0.0304 0.000001028 29.96 0.95 0.040 0.0407 0.000001667 31.54
0.90 0.030 0.0305 0.000002168 20.75 0.90 0.040 0.0411 0.000003531 21.85
0.80 0.030 0.0308 0.000004870 13.98 0.80 0.040 0.0416 0.000007989 14.73
0.70 0.030 0.0311 0.000008345 10.78 0.70 0.040 0.0422 0.000013777 11.36
0.60 0.030 0.0315 0.000012984 8.73 0.60 0.040 0.0427 0.000021577 9.20
0.50 0.030 0.0318 0.000019498 7.21 0.50 0.040 0.0434 0.000032644 7.60

Table 2: t-statistics for testing B = 0, for North Carolina layout. All are significant
at the 1% level.

3 Kriging Vs. Proposed Method

We want to be fair in comparing kriging with the proposed method. We first generate

simulated data assuming that one hot spot exists and then data by the random field

model friendly to kriging. The first type of simulated data favors the proposed

method while the second type favors kriging. For all data, the geography of the

state of North Carolina is used (Figure 4) where there are 100 data points, one

for each county. Here, the data are the result of a point process and not spatial

aggregation.

3.1 One Hot Spot Model

For this simulation, we assume that there is one hot spot, selected at the southeast

corner of the state (data point 25). For simulations assuming existence of one hot

spot at location 25, the response at data point i is given by (7) above. We also need
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to choose the decay parameter B and the variance of the independent error terms

(ε’s). We vary B from 0.025 up to 0.040 in steps of 0.005. The variance of the error

term σ2 is related to the true R2 of the model (see equation (5)). The true R2 goes

from 95% down to 90% and then down to 50% in steps of 10%. All the parameters

used in the data generation are shown on Table 3.

Parameters for data generation

Proposed method Kriging (estimates)

β0 = 0 range (α̂ = 40− 200)
β1 = 4 nugget (ĉ0 = 0.05− 0.50)
True R2 = 0.50, 0.60, 0.70, 0.80, 0.90, 0.95 sill (ĉ0 + ĉ1 = 0.40− 1.00)
B = 0.25, 0.30, 0.35, 0.40

Table 3: Parameters for data generation. Note that the kriging parameters shown
here are estimates, while the parameters for the proposed method are the true ones.

Given these values, what method can best fit these data, kriging or the proposed

method? To answer this question, we need to estimate the variogram for the kriging

system and construct the carriers for the proposed method.

3.1.1 Kriging Estimates, Data Generated by Hot Spot Model

For the kriging system, the exponential variogram is used

2γ(h; θ) =






0, h = 0

c0 + c1(1− exp(−‖h‖
α )), h (= 0

(8)

θ = (c0, c1, α)′, where c0 ≥ 0, c1 ≥ 0, and α ≥ 0.
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The above variogram parameters are assessed from the sample variogram, by mini-

mizing the weighted sum of squares proposed by Cressie (1985)

K∑

i=1

{
2γ̂(h(k))

2γ(h(k); θ)
− 1

}2

|N(h(k)| (9)

3.1.2 Proposed Method

The proposed method calls for the construction of the independent variables xi,

i = 1, 2, ..., n, as in (3). We need to estimate the B in (3) using the Newton-Raphson

iterative process. We choose a starting value for B. We then regress the vector Z

on the 100 predictors (one at a time), and we select the one with the highest R2.

After the variable selection, we proceed with the Newton-Raphson estimation of B

and the other parameters of the model, β0, β1, and σ2.

3.1.3 Comparison

The two methods are compared using the Predicted Sum of Squares (PRESS) crite-

rion PRESS =
∑n

i=1(z(si)− ẑ(si))2, where ẑ(si) is the predicted value at locaton si

using the other n− 1 values. As we mentioned earlier, we generate 100 data points.

We omit one data point at a time, and we estimate it using the remaining 99 data

points. This is followed for both kriging and the proposed method. For example,

after the omission of data point 1, we use data points at locations s2, · · · , s100 to es-

timate the variogram. After the estimation of the variogram, we predict z(s1) using

a weighted average of the values z(s2), · · · , z(s100).
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Similarly, for the proposed method, we use the 99 data values to first locate the

hot spot, to estimate B, β0, β1, and σ2 and then to predict z(s1). This procedure is

followed for each data point. At the end, we have available the actual (observed)

data and the predicted data under kriging and the proposed method.

For each method and for every random sample generated, we compute the pre-

dicted sum of squares. Then the ratio PRESSkriging/PRESSproposed is com-

puted.

In Table 4 we present the simulation results and the comparison between the two

methods when the true hot spot is located at the edge of the state of North Carolina

(data point 25). We generate 100 samples, each of size 100 (number of counties). The

ratio represents the average predicted sum of squares of kriging (for the 100 random

samples) divided by the average predicted sum of squares of the proposed method

(for the same 100 samples). A ratio of the two predicted sum of squares greater

than one indicates that the proposed method outperforms kriging, while a ratio of

less than one is in favor of kriging. The proposed method outperforms kriging in the

vast majority of the random samples (these results are not shown because we would

need dozens of pages to present them!). Instead we present the average of these

results. In all of them we observe that the proposed method outperforms kriging for

all the values of the true R2. For example, when the true R2 is 95%, B = 0.025, the

variance of the signal is 0.4379, and the variance of the error terms (using equation

(7)) is σ2
error = 0.0230. We observe that the ratio of the two PRESS’s is 1.3797. For
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this combination, the proposed method is a big winner. As the true R2 becomes

smaller, the ratio of the two methods gets closer to one, which means that kriging

improves over the proposed method, but never outperforms the proposed method.

This is true for all the values of B. The improvement of kriging relative to the

proposed method as the signal gets weaker occurs because the sample mean is a

better predictor than any regression predictor. It is known that an increase of the

nugget effect leads kriging to become more like a simple average (see Isaaks and

Srivastava (1989)). Therefore, when the error terms are very strong (which means

weak signal), kriging can challenge the proposed method. We also ran simulations

with low R2 (20%− 30%) but the ratio of the two PRESS’s is never below 1.

Decay Parameter B

0.025 0.030 0.035 0.040

95 % 1.3797 1.3787 1.3850 1.3096
90 % 1.2670 1.2780 1.2844 1.2372

True R2 80 % 1.1755 1.1774 1.1863 1.1606
70 % 1.1397 1.1400 1.1374 1.1422
60 % 1.1166 1.1179 1.1192 1.1270
50 % 1.0801 1.0921 1.0957 1.0962

σ2
signal 0.4379 0.3677 0.3174 0.2808

Table 4: Ratio of kriging over proposed method predicted sum of squares for the one
hot spot case at the edge of the state, location 25.
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Figure 4: Map showing the 100 counties of North Carolina, numbered in alphabetical
order. County names and distances are given in Cressie (1991).

3.2 Simulated Data-Covariance Function Known

In the previous section, we assumed that the data are generated by a hot spot and

that they come from a signal plus independent error term. This assumption favors

the proposed method. As a matter of fairness, we generate simulated data assuming

a random field with specified covariance function. One would expect that kriging

will perform much better.

The 100 county seats of the state of North Carolina are used again as our spatial

locations. The spatial variables z(s1), z(s2), · · · , z(sn) have covariance matrix Σ,

based on the exponential covariance function

Cov(h; c0, c1, α) =






c0 + c1, h = 0

c1exp(−‖h‖
α ), h (= 0

(10)
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The Cholesky decomposition discussed by Cressie (1991) can be used to write Σ =

LL′, where L is a lower triangular matrix. This facilitates the creation of data with

this covariance structure. In simulations, we used α = 50 miles and α = 100 miles;

nugget c0 = 0.5, 1.0, 1.5, 2.0; sill c0 + c1 = 1, 2, 3, 4. After the data are generated as

described above, the estimation of the variogram is needed. In order to be fair, to

both methods we fit both the exponential and the spherical variogram models for

the kriging calculation. Since the data are generated using an exponential covariance

function, fitting only with the exponential variogram would favor kriging. We should

not assume that, in reality, kriging knows the true covariance function. Therefore it

is very reasonable to fit both the exponential and the spherical variogram models.

For each combination of the parameters, we generate 100 random samples to compare

kriging with the proposed method, using again the predicted sum of squares criterion.

The results are shown on Table 5. When the average (100 samples) predicted sum of

squares of kriging over the average of the predicted sum of squares of the proposed

method is less than one, kriging outperforms the proposed method, and when the

ratio is above one, the proposed method is a winner.

Although the covariance function is known, the proposed method performs better

than kriging in some cases. Of course kriging on average outperforms the proposed

method, and this is not a big surprise. However the performances of kriging and the

proposed method are close, as the entries in Table 5 are close to one. Especially when

kriging fits the spherical variogram incorrectly, the ratios of the two predicted sum
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α = 50 miles

kriging fits (correct) kriging fits (incorrect)
exponential variogram spherical variogram

c0 = 0.5 c0 = 1.0 c0 = 1.5 c0 = 2.0 c0 = 0.5 c0 = 1.0 c0 = 1.5 c0 = 2.0

0.5 0.9503 0.9079 0.9293 0.9385 0.9824 0.9828 0.9764 0.9499
c1 1.0 0.9020 0.9238 0.9355 0.9143 1.0183 0.9843 0.9868 0.9860

1.5 0.9127 0.9299 0.9351 0.9485 1.0097 1.0085 0.9754 0.9924
2.0 0.9166 0.9045 0.9354 0.9344 0.9571 1.0173 0.9759 0.9875

α = 100 miles

kriging fits (correct) kriging fits (incorrect)
exponential variogram spherical variogram

c0 = 0.5 c0 = 1.0 c0 = 1.5 c0 = 2.0 c0 = 0.5 c0 = 1.0 c0 = 1.5 c0 = 2.0

0.5 0.9444 0.9541 0.9586 0.9447 0.9448 0.9546 0.9634 0.9513
c1 1.0 0.9264 0.9372 0.9554 0.9540 0.9399 0.9379 0.9760 0.9549

1.5 0.9079 0.9306 0.9548 0.9485 0.9012 0.9235 0.9416 0.9447
2.0 0.9019 0.9224 0.9348 0.9539 0.9096 0.9416 0.9126 0.9608

Table 5: Ratio of kriging over proposed method predicted sum of squares when the
covariance structure is known.

of squares are closer to one. Even in some cases, the proposed method outperforms

kriging. On the other hand, when data are generated by a hot spot model, we observe

ratios of the two predicted sum of squares to be around 1.35 − 1.40, an indication

that the proposed method is a clear winner in those simulations.

4 An Example

We compare the proposed method with kriging using the southwest of England un-

employment data. For this data set the percentage of the total workforce unemployed

in January, 1967, (see Cliff and Ord (1973)) in the 37 employment areas in the south-

west of England is used (see Figure 9 and Table 6 in Appendix B). We first transform

the unemployment rate using logarithms (Figure 5).
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Figure 5: Distribution of unemployment data.

4.1 Kriging - Proposed Method

For the kriging calculation we first construct the sample variogram (Figure 6). Based

on the appearance of this sample variogram we fit the linear variogram with esti-

mated parameters ĉ0 = 7.5 and b̂ = 0.1:

2γ̂(h) =






0, h = 0

7.5 + 0.1‖h‖, h (= 0

(11)

For the proposed method we estimate the decay parameter B̂ = 0.007 to construct

the predictors. The best correlation of the logarithm of the unemployment rate (y)

is with predictor 13 (Figure 7), and the fitted line is

ŷ = 2.44− 2.13x13
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Figure 6: The variogram estimator 2γ̂ for the southwest of England unemployment
data. Horizontal axis in miles.

with R2 = 52.2%, and t = −6.2 (p−value< 0.001). The plot of the residuals against

the fitted values shows no major departures from the regression assumptions (Fig-

ure 8).

Kriging and the proposed method are compared through the predicted sum of

squares PRESS. One observed point was omitted and it was estimated by the

other n − 1 = 36 points. We found that the proposed method outperforms kriging

as its PRESS is 6.102. With the linear variogram fitted to the sample variogram

the kriging system gives a PRESS of 6.447. Other variograms were also used; the

spherical (with nugget 0.076, sill 0.672, range 264.72) gives a PRESS of 6.568, and

the exponential (with nugget 0.010, sill 668, range 264.72) gives a PRESS of 7.033.
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Figure 7: Scatter plot of log unemployment rate on x13.

4.2 Conclusion

Figure 9 shows the hot spot predictor which enters the model at the 5% level of

significance. We observe that only one predictor entered the model (number 13).

Data point 13 is near the city of Bristol and near the data points that have low

unemployment rates compared to the other ones. We can claim that there is a hot

27



●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0.5 1.0 1.5 2.0

−1
.0

−0
.5

0.0
0.5

1.0
 

Fitted

Re
sid
ua
ls

Figure 8: Residuals plot from regression of log unemployment rate on x13.

spot in the neighborhood of the data point 13. The hot spot is probably Bristol,

where one expects to find low unemployment (more jobs near a big city). This result

is consistent with that of Cliff and Ord (1973). They regressed the unemployment

rate on the cartesian coordinates (x, y) and they found that the linear surface falls

from the southwest to the northeast parts of the map and reflects the higher levels of

unemployment in the extreme southwest, where the economy is heavily reliant upon
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tourism and mining, compared with the Bristol region in the northeast. Our method

has the advantage of identifying the hot spot.

Figure 9: Possible hot spot, data point 13, for the southwest of England unemploy-
ment data. The triangle represents the hot spot.

5 Final Remarks

In solving the spatial prediction problem, different approaches can be taken. Popular

methods are kriging and trend-surface analysis (not discussed in this paper). The

proposed new method assumes the existence of hot spots. In this paper, we have

examined the one-hot spot model and we have shown that this hot spot can be

reliably located. However, the multiple-hot spot model case has not been explored.

29



The problems that may arise from the multiple-hot spot model are the low probability

of correctly identifying the true hot spots, high probability of identifying spurious hot

spots, and perhaps multicollinearity. These are topcis that can be further examined

in future work. The proposed method can be applied when the data are observations

at points in space (as are the simulated data in this paper), or areal data that can be

reasonably approximated by point process data (spatial aggregations, as are the real

data analyzed in this paper). Perhaps extension of our method to other types of data

can be studied in the future. As of which method is better in predicting spatial data,

the debate can be endless. The decomposition of the process z(si) into large-scale

variation plus smaller-scale variation cannot be specified uniquely. Trend-surface

prediction decomposes z(si) into large-scale variation plus white noise. Ordinary

kriging prediction relies on a random field that decomposes z(si) into constant mean

plus spatially correlated error term with variogram 2γ(·). The new model is similar

to trend-surface analysis, but with simple and easily-interpreted structure.
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Appendix A

A lower bound for the desired probability that point 1 of Figure 1 is selected as the

hot spot is equivalent to

P [best correlation is with X1] = P[select point 1 as hot spot] ≥

1− {P [Corr2(Z, X1) < Corr2(Z, X2) ] + P [Corr2(Z, X1) < Corr2(Z, X3) ] +

P [Corr2(Z, X1) < Corr2(Z, X4 )] + P [Corr2(Z, X1) < Corr2(Z, X5) ]}

Examine just the first of these probability calculations. This should establish a

pattern that will let us solve for the others. Observe that:

Corr2(Z, X1) =

[
5∑

i=1

(zi − z̄)(xi1 − x̄1)
]2

{
5∑

i=1

(zi − z̄)2
} {

5∑

i=1

(xi1 − x̄1)2
}

Similarly,

Corr2(Z, X2) =

[
5∑

i=1

(zi − z̄)(xi2 − x̄2)
]2

{
5∑

i=1

(zi − z̄)2
} {

5∑

i=1

(xi2 − x̄2)2
}

The condition Corr2(Z,X1) < Corr2(Z,X2) is equivalent to

[
5∑

i=1

(zi − z̄)(xi1 − x̄1)
]2

{
5∑

i=1

(zi − z̄)2
} {

5∑

i=1

(xi1 − x̄1)2
} <

[
5∑

i=1

(zi − z̄)(xi2 − x̄2)
]2

{
5∑

i=1

(zi − z̄)2
} {

5∑

i=1

(xi2 − x̄2)2
}

Because
∑5

i=1 z̄(xi1 − x̄1) = 0, the above inequality can be written as

[
5∑

i=1

zi(xi1 − x̄1)
]2

5∑

i=1

(xi1 − x̄1)2
<

[
5∑

i=1

zi(xi2 − x̄2)
]2

5∑

i=1

(xi2 − x̄2)2
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Finally, we can substitute zi = Ui1 + εi to get this:

[
5∑

i=1

(Ui1 + εi)(xi1 − x̄1)
]2

5∑

i=1

(xi1 − x̄1)2
<

[
5∑

i=1

(Ui1 + εi)(xi2 − x̄2)
]2

5∑

i=1

(xi2 − x̄2)2

In simplest notation we want P [C2/V1 < D2/V2] = P [C2/V1 − D2/V2 < 0], where

C, D are jointly normal, or P ([C/
√

V1 −D/
√

V2][C/
√

V1 + D/
√

V2] < 0). If we use

the transformation u = C/
√

V1 + D/
√

V2, and v = C/
√

V1 −D/
√

V2, we can write

this probability as P (uv < 0), which can be expanded as

P (uv < 0) = P (u > 0 ∩ v < 0) + P (u < 0 ∩ v > 0)

The quantities C/
√

V1 ± D/
√

V2 have means

5∑

i=1

Ui1(xi1 − x̄1)
√√√√

5∑

i=1

(xi1 − x̄1)2

±

5∑

i=1

Ui1(xi2 − x̄2)
√√√√

5∑

i=1

(xi2 − x̄2)2

and variances

2σ2 ± 2σ2

√
V1V2

5∑

i=1

(xi1 − x̄1)(xi2 − x̄2)

It can be shown easily that the covariance between u and v is zero. As u and v are

normal, they are therefore independent. Now

P (uv < 0) = P (u > 0 ∩ v < 0) + P (u < 0 ∩ v > 0) =

P (u > 0)P (v < 0) + P (u < 0)P (v > 0). Finally we have

P (uv < 0) = Φ
(

µu

σu

) [
1− Φ

(
µv

σv

)]
+

[
1− Φ

(
µu

σu

)]
Φ

(
µv

σv

)
.
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Appendix B

Workforce
Coordinates unemployment (%)

i x y January 1967
1 382 216 2.4
2 402 202 1.9
3 384 205 1.4
4 372 181 2.0
5 365 168 1.6
6 332 160 5.1
7 385 165 2.1
8 390 165 2.1
9 415 185 5.4

10 363 143 2.4
11 349 137 1.4
12 323 124 2.5
13 388 145 2.5
14 388 106 3.4
15 355 115 1.5
16 369 90 0.9
17 414 130 1.6
18 182 61 9.1
19 147 30 8.7
20 167 42 6.3
21 181 34 7.4
22 207 68 4.1
23 222 106 8.2
24 251 146 12.0
25 232 85 3.1
26 296 146 3.4
27 259 96 4.4
28 277 75 5.8
29 295 113 3.3
30 330 100 3.4
31 292 55 4.1
32 287 51 7.1
33 301 81 6.9
34 225 65 8.6
35 257 55 2.9
36 248 75 5.4
37 404 79 3.4

Table 6: Southwest of England unemployment data and cartesian coordinates of
exchanges. Source: Cliff, A.D. and Ord, J.K. (1973) Spatial autocorrelation, pp.
123.
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