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ABSTRACT OF THE DISSERTATION

Machine Learning in Physics

By

Julian Collado Umana

Doctor of Philosophy in Computer Science

University of California, Irvine, 2021

Distinguished Professor Pierre Baldi, Chair

What is the universe made of? This is the core question particle physics aims to answer

by studying the fundamental blocks of the universe. To study these blocks we require

colliding particles at approximately the speed of light which produces high dimensional data

in the order of peta-bytes per second, presenting considerable challenges in data processing

and analysis. In order to validate or refute physical theories, it is necessary to distinguish

the particles created in the collisions from the background noise. The data is processed

through a complex pipeline with multiple non-interpretable data representations like images,

sequences and graphs, at each level of processing. At the end of the pipeline there is a set

of interpretable high-level features created using physics-motivated heuristics, which are

analyzed using conventional statistical methods to make a classification. The multiple levels

of data processing and representations opens the possibility of using techniques like deep

learning to obtain improvements which in time will enable new discoveries in particle physics.

In this thesis, we show it is possible to bypass the dimensionality reduction step of tradi-

tional methods by using deep learning directly in the low-level detector data. This approach

outperforms the-state-of-the-art methods in particle physics problems such as jet flavor classi-

fication, electron classification, and muon classification by 1.6%, 3.0% and 8.7% respectively.

In addition, we show it is possible to achieve this performance using neural networks while

xii



maintaining the interpretability of high-level features, by using a recently developed tech-

nique to map the deep network into a space of physically interpretable high-level features

that reproduce the performance of the deep network.
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Chapter 1

Introduction

Particle identification at high-energy collisions provides an essential evidence for precision

studies of the Standard Model [5, 12] as well as for searches for new physics [3, 32]. Being

able to identify particles of interest and separate them from their background is a critical

element of the data analysis toolkit for particle physics. This separation allows more precise

measurements particle properties, which in turn can help refute or validate physical theories.

However, high-energy collision experiments produce gargantuan amounts of data with high

dimensionality, making particle classification very difficult.

Traditional methods aim to reduce the dimensionality of the problem by using physics-

motivated heuristics in order to simplify the representation of the data, and afterwards use

machine learning techniques to classify the particles. Advances in machine learning such

as the development of deep learning methods have shown promising pathways to improve

classification performance in areas like computer vision [78, 57]. Some data in high-energy

physics can be represented as an image or a sequence, which opens the possibility of using

deep learning methods in these datasets [23, 66]. Since deep learning methods can take

advantage of large amounts of data and in many cases are able to surpass the performance
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of human-designed features, they are a promising option to complement or surpass the

performance of traditional methods in high-energy physics.

In this thesis, I work with an interdisciplinary team of computer scientists, statisticians and

physicists to apply and develop new deep learning models for high-energy physics. The

common methodology throughout this work will be going directly to the low-level detector

representation of the data and using custom deep learning models to improve the state-of-

the-art results and afterwards try to understand what the network is learning.

However, deep neural networks work as a black box, which means the improvement in clas-

sification performance comes at the cost of interpretability compared to the physics-inspired

heuristics of traditional methods. To be able to understand the nature of the information

being used by the network, we analyze the performance of several models at different levels

of data processing and from different sensors. In addition, we use energy flow polynomials

(EFPs) [67] to create an infinite set of physically interpretable high-level variables from low-

level detector information. We then use another recent method which uses neural networks

to reduce this infinite set to a tractable number of variables which capture the performance

of the black box network trained on low-level information [46]. Our results provide evidence

that there is no need to sacrifice interpretability in order to achieve high performance with

neural networks in high-energy physics. Specifically, we found that in some cases it is possi-

ble to completely match the performance of the network using interpretable features, while

in others we achieve a boost in performance but are not able to match the black box model.

This suggests the need of more complex variables beyond energy flow polynomials.

In the following chapters, we will show evidence of the strong potential of deep neural

networks for high-energy physics applications. We will also show how in some cases it is

possible to use these models to recover interpretable variables useful for physical theories.

In chapter 2, we do a jet flavor classification study in which we show it is possible to surpass

2



the performance of traditional classification methods by using deep learning models directly

in lower-level detector information. This suggests the dimensionality reduction performed

by the traditional methods is sacrificing or distorting crucial information in the data. Fur-

thermore, by doing an analysis at different levels of complexity, we are able to quantify the

amount of information lost at each level of data processing. Finally, our results show the best

performance is obtained when we combine the deep learning model using low-level detector

information with the high level physics-inspired heuristics. While in principle all of the infor-

mation exists in the lowest-level features and it should be possible to train a network which

matches or exceeds this performance without expert knowledge, this is neither necessary nor

desirable. Expert knowledge exists and is well-established, and there is no reason to discard

it.

In chapter 3, in a study to distinguish electrons from jet background, we show traditional

methods are overlooking important information that can be exploited by deep learning meth-

ods used directly in electromagnetic and hadronic calorimeter deposits. We then use a re-

cently developed technique to map the deep network into a space of physically interpretable

variables [67][46]. We show that by using a small number of these new variables in addition

to the ones used by the traditional method we are able to close most of the gap between the

traditional method and the neural network. This provides evidence that it is not strictly

necessary to sacrifice interpretability to gain performance while using neural networks.

In chapter 4, we perform a study to distinguish prompt muons produced in heavy boson

decay and muons produced in association with heavy-flavor jet production. Similarly to

chapter 3, we want to study if there is additional information in the calorimeter deposits

that is currently not captured by traditional methods. We trained four types of deep learning

models; dense neural networks on traditional interpretable high-level variables, convolutional

neural networks on calorimeter images, energy flow networks and particle flow networks on

unordered sets of calorimeter deposits. All deep learning models surpass the performance

3



of traditional methods providing critical improvements to muon classification techniques. In

addition we use the same method as in chapter 3 to create new interpretable variables and

map the network performance to this space. We found that while the new variables were

not able to fully close the gap, an analysis of the new variables and the networks provides

crucial insights on what type of information needs to be added to the traditional method

and where the current method for creating new variables could be expanded.
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Chapter 2

Jet Flavor Classification in

High-Energy Physics with Deep

Neural Networks

2.1 Abstract

Classification of jets as originating from light-flavor or heavy-flavor quarks is an important

task for inferring the nature of particles produced in high-energy collisions. The large and

variable dimensionality of the data provided by the tracking detectors makes this task diffi-

cult. The current state-of-the-art tools require expert data-reduction to convert the data into

a fixed low-dimensional form that can be effectively managed by shallow classifiers. We study

the application of deep networks to this task, attempting classification at several levels of

data, starting from a raw list of tracks. We find that the highest-level lowest-dimensionality

expert information sacrifices information needed for classification, that the performance of

current state-of-the-art taggers can be matched or slightly exceeded by deep-network-based
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taggers using only track and vertex information, that classification using only lowest-level

highest-dimensionality tracking information remains a difficult task for deep networks, and

that adding lower-level track and vertex information to the classifiers provides a significant

boost in performance compared to the state-of-the-art.

2.2 Introduction

The search for new particles and interactions at the energy frontier is a rich program with

enormous discovery potential. The power to discover this hypothetical new physics relies

crucially on the ability to infer the nature of the interaction and the particles produced from

the data provided by the detectors which surround the point of collision. One critical element

is jet flavor classification, the distinction between hadronic jets produced from light-flavor

and heavy-flavor quarks. Such classification plays a central role in identifying heavy-flavor

signals and reducing the enormous backgrounds from light-flavor processes [4, 8].

Jets originating from heavy-flavor quarks tend to produce longer-lived particles than those

found in jets from light-flavor quarks; these long-lived particles have decays which are dis-

placed from the primary vertex. To identify such vertices, the central tracking chamber

measures the trajectories of charged particles which allows for the reconstruction of vertex

locations. The large and varying number of particles in a jet leads to a difficult classification

problem with large and variable dimensionality without a natural ordering. The first step in

typical approaches involves vertex-finding algorithms [85], which transform the task into one

of reduced, but still variable, dimensionality. Finally, most state-of-the-art jet flavor classi-

fication tools used by experiments [7, 31] rely heavily on expert-designed features which fix

and further reduce the dimensionality before applying shallow machine-learning techniques.

Such techniques have excellent performance, but are primarily motivated by historical limi-

tations in the ability of shallow learning methods to handle high- and variable-dimensionality
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datasets.

Recent applications of deep learning to similar problems in high-energy physics [23, 24, 75,

18], combined with the lack of a clear analytical theory to provide dimensional reduction

without loss of information, suggests that deep learning techniques applied to the lower-level

higher-dimensional data could yield improvements in the performance of jet-flavor classi-

fication algorithms. General methods for designing and applying recurrent and recursive

neural networks to problems with data of variable size or structure have been developed in

Refs. [20, 52, 47, 48, 21], and applied systematically to a variety of problems ranging from

natural language processing [80], to protein structure prediction [19, 83, 44, 72] to prediction

of molecular properties [71, 45] and to the game of go [86]; previous studies have discussed

the extension of such strategies to tasks involving tracks in high energy physics [40, 15].

In this paper, we apply several deep learning techniques to this problem using a structured

dataset with features at three levels of processing (tracks, vertices, expert), each of which

is a strict function of the previous level(s). The data at the highest level of processing,

with smallest dimensionality, is intended to mirror the typical approach used currently by

experimental collaborations. The multi-layered structure of the dataset allows us to draw

conclusions about the information loss at each stage of processing, and to gauge the ability

of machine learning tools to find solutions in the lower- and higher-dimensional levels. These

lessons can guide the design of flavor-tagging algorithms used by experiments.

2.3 Classification and Dimensionality

The task of the machine learning (ML) algorithm is to identify a function f(x̄) : IRN → IR1

whose domain is the observed data at some level of processing (with potentially very large

dimensionality N) and which evaluates to a single real value that contains the information
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necessary to perform the classification. Perfect classification is not expected; instead, the

upper bound is performance which matches classification provided by the true likelihood

ratio between heavy-flavor (b) and light-flavor quarks (q): P (x̄|b)/P (x̄|q) evaluated in the

high-dimensional domain.

Though we lack knowledge of an analytical expression for the likelihood, in principle one

could recover such a function from labeled datasets with trivial algorithms, by estimating

the likelihood directly in the original high-dimensional space. In practice, this requires an

enormous amount of data, making it impractical for problems with anything but the smallest

dimensionality in their feature space.

Machine learning plays a critical role in approximating the function f(x̄) which reduces the

dimensionality of the space to unity by finding the critical information needed to perform

the classification task. Such a function may disregard some of the information from the

higher-dimensional space if it is not pertinent to the task at hand. However, for very high

dimensional spaces (greater than ≈ 50), the task remains very difficult, and until the recent

advent of deep learning it appeared to be overwhelming, though it can still require the

generation of large samples of training data.

It would be very powerful to compare the performance of a given solution to the theoret-

ical upper limit on performance, provided by the true likelihood. Unfortunately, without

knowledge of the true likelihood, it is difficult to assess how well the ML algorithm has cap-

tured the necessary information. For this reason, in the studies presented here and in earlier

work [23, 24, 18], we built structured datasets with at least two levels of dimensionality: an

initial sample with lower-level data at high dimensionality and a reduced sample with expert

features at lower dimensionality. Importantly, the expert features are a strict function of

the lower-level features, so that they contain a subset of the information. The expertise

lies solely in the design of the dimensionality-reducing function, without providing any new

information.
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This structure allows us to draw revealing conclusions about the information content of the

intermediate and expert-level information and the power of classifiers to extract it. Since the

higher-level data contains a subset of the information and benefits from expert knowledge,

it can provide the basis for a performance benchmark for the tools using lower-level data

in place of the unknown true likelihood. Therefore, if the performance of tools using lower-

level data fails to match that of tools using the higher-level data (or a combination of both

kinds of data), then we may conclude that the tools using the lower-level data have failed

to extract the complete information. On the other hand, if the performance of tools using

lower-level data exceeds that of tools using the higher-level data, then we may conclude that

the higher-level data does not contain all of the information relevant to the classification task,

or that it has transformed the problem into a more difficult learning task for the algorithms

considered. Regardless of the reason, in this case the transformation to the higher-level

lower-dimensional data has failed in its goal.

2.4 Data

Training samples were produced with realistic simulation tools widely used in particle physics.

Samples were generated for three classes of jet:

• light-flavor: jets from u, d, s quarks or gluons;

• charm: jets from c quarks;

• heavy-flavor: jets from b quarks.

Collisions and immediate decays were generated with madgraph5 [13] v2.2.3, showering and

hadronization simulated with pythia [79] v6.428, and response of the detectors simulated

with delphes [39] v3.2.0. Studies with additional pp interactions (pileup) are reserved for
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future work; here we assume that pileup effects will not alter the relative performance of the

different methods, and is not likely to have a large impact at luminosities recorded to date,

given effective techniques to isolate pileup tracks and vertices from the vertices of interest

to this study.

The detector simulation was augmented with a simple tracking model that smears truth

particles to yield tracks similar to those expected at ATLAS [2]. Tracks follow helical paths

in a perfectly homogeneous 2 T magnetic field. No attempt was made to account for ma-

terial interactions or remove strange hadrons. As a result the tracking model lacks the

sophistication of models developed by LHC collaborations while retaining enough realism to

run vertex reconstruction and compare the relative performance of various machine learning

approaches.

Jets are reconstructed from calorimeter energy deposits with the anti-kT clustering algo-

rithm [28] as implemented in FastJet [29], with a distance parameter of R = 0.4. Tracks are

assigned to jets by requiring that they be within a cone of ∆R ≡ (∆η2 + ∆φ2)1/2 < 0.4 of

the jet axis. Jets are labeled by matching to partons within a cone of ∆R < 0.5. If a b or c

quark is found within this cone the jet is labeled heavy or charm flavor respectively, with b

taking precedence if both are found. Otherwise the jet is labeled light-flavor.

To reconstruct secondary vertices, we use the adaptive vertex reconstruction algorithm im-

plemented in RAVE v6.24 [85, 84]. The algorithm begins by fitting a primary vertex to the

event and removing all compatible tracks. For each jet, secondary vertices are then recon-

structed iteratively: a vertex is fit to a point that minimizes χ2 with respect to all tracks in

the jet, less compatible tracks are down-weighted, and the vertex fit is repeated until the fit

stabilizes.

Since a b-hadron decay typically cascades through a c-hadron, jets may include multiple

secondary vertices. To account for this, tracks with large weights in the secondary vertex fit
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are removed and the fit is repeated with the remaining tracks. The process repeats until all

tracks are assigned to a secondary vertex.

As described earlier, we organize the information in three levels of decreasing dimensionality

and increasing pre-processing using expert knowledge where each level is a strict function of

the lower-level information. The classification is done per-jet rather than per-event, and at

every level the transverse momentum and pseudorapidity of the jet is included.

The lowest-level information considered is the list of reconstructed tracks. Each helical track

has five parameters in addition to a 5× 5 symmetric covariance matrix with 15 independent

entries. The number of tracks varies from 1 to 33 in these samples, with a mean of 4.

The intermediate-level information comes from the output of the vertexing algorithm. The

features are the vertex mass, number of tracks associated to the vertex, the fraction of the

total energy in jet tracks which is associated to those tracks, vertex displacement, vertex

displacement significance, and angular separation in ∆η and ∆φ with respect to the jet axis

for each vertex. In cases where both low and intermediate level features are used the track

to vertex association weight is also included. The number of vertices varies from 1 to 13 in

these samples, with a mean of 1.5.

The highest-level information is designed to model the typical features used in current exper-

imental applications; see Fig. 2.1 for distributions of these features for each jet class. There

are fourteen such features:

• The d0 and z0 significance of the 2nd and 3rd tracks attached to a vertex, ordered by

d0 significance.

• The number of tracks with d0 significance greater than 1.8σ.

• The JetProb [35] light jet probability, calculated as the product over all tracks in the

jet of the probability for a given track to have come from a light-quark jet.
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• The width of the jet in η and φ, calculated for η as

(∑
i pTi∆η

2
i∑

i pT

)1/2

and analogously for φ.

• The combined vertex significance,

∑
i di/σ

2
i√∑

i 1/σ
2
i

where d is the vertex displacement and σ is the uncertainty in vertex position along

the displacement axis.

• The number of secondary vertices.

• The number of secondary-vertex tracks.

• The angular distance ∆R between the jet and vertex.

• The decay chain mass, calculated as the sum of the invariant masses of all reconstructed

vertices, where particles are assigned the pion mass.

• The fraction of the total track energy in the jet associated to secondary vertices 1

The dataset consists of 10 million labeled simulated jets. The corresponding target labels

are “light-flavor”, “charm”, and “heavy-flavor”. The data contains 44, 11, 45 percent of each

class respectively. This data is available from the UCI Machine Learning in Physics Web

portal at http://mlphysics.ics.uci.edu/.

1The vertex energy fraction is not a strict fraction; it can be greater than unity if tracks are assigned to
multiple vertices.
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Figure 2.1: Distributions in simulated samples of high-level jet flavor variables widely used
to discriminate between jets from light-flavor and heavy-flavor quarks.
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2.5 Methods

In the experiments, we typically use 8 million samples for training, one million for validation,

and one million for testing. Since there are three labels but we are interested in the study

of signal vs background and classification, the labels are converted to binary by mapping

bottom quark to one, and both charm and light quark to zero. We study the light-quark

and charm-quark rejection separately.

2.5.1 Machine Learning Approaches

To each simulated collision is attached a set of tracks and a set of vertices. This poses

challenges for a machine learning approach in that the size of these sets is variable as seen

in Fig. 2.2 and the sets are unordered, although as usual an arbitrary order is often used

to list their elements. To address and explore these challenges we use three different deep

learning approaches: feedforward neural networks, recurrent neural networks with LSTM

(Long Short Term Memory) units, and outer recursive neural networks.

Feedforward Neural Networks

The track feature set and the vertex feature set have variable size for a given collision. How-

ever, the structure of feedforward networks requires a fixed-size input to make predictions.

Thus the use of feedforward neural networks requires first an arbitrary ordering and then

a capping of the size of the input set, with zero padding for sets that are smaller than the

capped size. To resolve the arbitrary ordering the tracks were sorted by decreasing absolute

d0 significance. This ordering also ensures that tracks from a secondary vertex, which typ-

ically have large d0, are unlikely to be removed by the capping. Random ordering before

adding the padding was also tested but the performance was lower than using the absolute

14



0 5 10 15 20 25 30 35

Number of tracks

100

101

102

103

104

105

106

107

N
u
m

b
e
r 

o
f 

sa
m

p
le

s

Tracks in the dataset before cutting to 15 tracks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of vertices

100

101

102

103

104

105

106

107

N
u
m

b
e
r 

o
f 

sa
m

p
le

s

Vertices before and after cutting to 15 tracks

Before cut
After cut

Figure 2.2: Top: Distribution of the number of tracks associated to a jet in simulated
samples. Bottom: Distribution of the number of vertices associated to a jet in simulated
samples, before and after removing tracks which exceed the maximum allowed value of 15.
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d0 significance ordering.

To create a fixed size input, the number of tracks was limited to 15, from a maximum of 33.

Using 15 as the cutoff value ensures that 99.97% of the samples preserve all their original

tracks; see Fig. 2.2. Tracks are associated to vertices by concatenating the track parameters

with those from the associated vertex. Before training, the samples are preprocessed by

shifting and scaling such that each feature has a mean of zero and a standard deviation of

one. Jets with fewer than 15 tracks are zero-padded after preprocessing. After the cut on

the number of tracks, the maximum number of vertices is 12 with an average of 1.5; see

Fig. 2.2.

The feedforward neural networks were trained on 8 million training samples with one million

more for validation using stochastic gradient descent with mini-batches of 100 samples. They

were trained for 100 epochs and the best model was chosen based on the validation error.

Momentum for the weights updated was used and linearly increased from zero to a final

value over a specified number of epochs. Learning rate decayed linearly from 0.01 to a final

value starting and finishing at a specified number of epochs. Dropout (in which nodes are

removed during training) with values of p from 0.0 to 0.5 were used at several combinations

of layers to add regularization [60, 22]. These networks had 9 fully connected hidden layers

with rectified linear units [50, 62].

Shared weights for each track object were used at the first layer to preserve information about

the structure of the data; see Fig 2.3. When adding the vertex and high level variables to the

tracks, these were also included within the set of variables with shared weights. The weights

for all but the last layer were initialized from a uniform distribution between [−
√

6/C,
√

6/C]

where C is the total number of incoming and outgoing connections [49]. The weights for

the last layer were initialized from a uniform distribution between -0.05 and 0.05. A manual

optimization was performed over all the hyperparameters to find the best model.
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Figure 2.3: Feedforward neural network architecture. In the first layer, connections of the
same color represent the same value of the shared weight. The others layers are fully con-
nected without shared weights.

LSTM Networks

A natural approach to handling variable-sized input is to use recursive neural networks.

Broadly speaking, there are two classes of approaches for designing such architectures, the

inner approach and the outer approach [16]. In the inner approach, neural networks are used

inside the data graphs to crawl the corresponding edges and compute the final output. This

process requires the data graphs to be directed and acyclic. Since here the data consists of a

set of vertices and tracks, we first convert the data into a sequence by ordering the vertices

and tracks as described previously and then use recursive neural networks for sequences,

in combination with Long Short Term Memory units [48, 54] to better capture long range

dependencies. In the underlying acyclic graph, the variables associated with each node

are a function of the variables associated with the parent nodes. Each such function can

be parameterized by a neural network. Because the directed acyclic graph has a regular

structure, the same network can be applied at different locations of the graph, ultimately
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producing the LSTM grid network in Figure 2.4.

We follow the standard implementation of LSTMs with three gates (input, forget, output)

and initialize the connections to random orthonormal matrices. The input data consists of

a sequence of concatenated track, vertex, and expert features (or different sub-combinations

thereof) which are sorted by their absolute d0 significance, as was the case with the fully

connected models. The main difference is that we do not need zero-padding as the LSTM

networks can handle sequences of arbitrary length, though we retain the same maximum of

15 tracks for comparability. The final model consists of one LSTM layer comprising between

50 and 500 neurons, and a feedforward neural network with one to four hidden layers that

receives its input from the LSTM network and produces the final predictions (where each

layer has between 50 and 500 units). We add dropout layers in between the LSTM and each

hidden fully connected layer. For hyperparameter-optimization we performed a random

search over these parameters as well as the individual dropout rates that are part of the

model. We trained the LSTM networks for 100 epochs using SGD with a momentum of 0.9

and decay the step-size parameter from initially 2 · 10−3 down to 10−4 over the course of

training.

Outer Recursive Networks

Alternatively, to handle inputs of variable size, we can use an outer recursive approach,

where neural networks are built in a direction perpendicular to the original data graph, with

horizontal weight sharing. The outer approach can be used to build more symmetric deep

architectures; see Fig. 2.5. For instance, in our case the input consists of up to 15 tracks,

from which we can sample all possible pairs of tracks and use a shared neural network that

processes these in the first layer of the outer approach. In this case, there are at most(
15
2

)
= 105 unordered pairs, or 210 ordered pairs, which is manageable especially considering

that there is a single network shared by all pairs. Using ordered pairs would yield the most
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Figure 2.4: Architecture of the Long Short Term Memory networks as described in the text.

symmetric overall network. At the next level of the architecture, one can for instance use

a network for each track ti that combines the outputs of all the networks from the first

layer associated with pairs containing ti, and so forth. In the second level of the outer

architecture, for simplicity here we use a fully connected feedforward network that computes

the final output using the outputs of all the pair networks. More specifically, for each data

sample we compute the list of stacked track features for all 210 pairs and process each pair

with a shared nonlinear hidden layer (with 5 to 20 neurons). The resulting outputs for all

pairs are then concatenated and fed into a multilayer perceptron as was the case for the

LSTM models, with one to four hidden layers containing between 100 and 600 hidden units.

We again use dropout layers in between the hidden layers and optimize the dropout rates

and network depth and size using random search.
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Figure 2.5: Architecture of the outer recursive networks as described in the text.
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2.5.2 Hardware and Software Implementations

All computations were performed using machines with 16 Intel Xeon cores, NVIDIA Titan

graphics processors, and 64 GB memory. All neural networks were trained using the GPU-

accelerated Theano software library [82] and, for the feed forward neural networks, also the

Keras software library [33].

2.6 Results

The best feedforward neural networks have 9 fully connected hidden layers with 400 rectified

linear units and a single sigmoid unit at the end. On the first layer the networks have shared

weights. The first five tracks have one set of shared weights per track, tracks 6 to 10 have

a second set of shared weights per track and the last five tracks have a third set of shared

weights per track. They have a momentum term of 0 which starts to linearly increase at the

first epoch and reaches its final value of 0.5 at epoch 100. Initially, the learning rate is set

at 0.01 and, starting at epoch 80, it is linearly decreased to a final value of 0.001 at epoch

100. Dropout was used in the first two layers with a value of p=0.3. The same architecture

was used across all the combinations of features except in the case of using only high level

features, in which case the first layer is fully connected without any shared weights.

We found that the main characteristic of the best LSTM models is a relatively small size

of the hidden state representation of the LSTM module (about 70 units), while the size of

the MLP, which is sitting on top of it, is of secondary importance for overall performance

of the model. The best models using the outer recursive approach contain between two and

three hidden layers on top of the shared-weight layer (which operates on all paired tracks)

and those contain 17 or more neurons.

Final results are shown in Table 2.1. The metric used is the Area Under the Curve (AUC),
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calculated in signal efficiency versus background efficiency, where a larger AUC indicates

better performance. In Fig. 2.6, the signal efficiency is shown versus background rejection,

the inverse of background efficiency. Figures 2.7 and 2.8 show the efficiency versus jet pT

and pseudorapidity for fixed values of background rejection. Figures 2.9 and 2.10 show the

rejection versus jet pT and pseudorapidity for fixed values of signal efficiency.

The results can be analyzed to draw conclusions regarding the power of the learning algo-

rithms to extract information at different levels of preprocessing, and to compare the three

learning approaches.

The state-of-the-art performance is represented by the networks which use only the expert-

level features. Networks using only tracking or vertexing features do not match this perfor-

mance, though networks using both tracking and vertexing do slightly exceed it. In addition,

networks which combine expert-level information with track and/or vertex information out-

perform the expert-only benchmark, in some cases by a significant margin.

For any given set of features, the feedforward deep networks most often give the best per-

formance, though in some cases by a small margin over the LSTM approach. This may be

somewhat unexpected since LSTMs were created to handle variable sized input data as is

the case here. We must note, however, that unlike truly sequential data like speech or text

there is no natural order in the data that we are working on. The tracks have been ordered

by absolute d0 significance, which tends to cluster tracks belonging to the same vertex, but

a sequential model with this ordering may not be superior to processing tracks in parallel,

as in the connected DNN with tied weights.

While one cannot probe the strategy of the ML algorithm, it is possible to compare distribu-

tions of events categorized as signal-like by the different algorithms in order to understand

how the classification is being accomplished. To compare distributions between different

algorithms, we study simulated events with equivalent background rejection, see Fig. 2.11
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Table 2.1: Performance results for networks using track-level, vertex-level or expert-level
information. In each case the jet pT and pseudorapidity are also used. Shown for each
method is the Area Under the Curve (AUC), the integral of the background efficiency versus
signal efficiency, which have a statistical uncertainty of 0.001 or less. Signal efficiency and
background rejections are shown in Figs. 2.6-2.10.

Inputs Technique AUC
Tracks Vertices Expert
X Feedforward 0.916
X LSTM 0.917
X Outer 0.915

X Feedforward 0.912
X LSTM 0.911
X Outer 0.911

X X Feedforward 0.929
X X LSTM 0.929
X X Outer 0.928

X Feedforward 0.924
X LSTM 0.925
X Outer 0.924

X X Feedforward 0.937
X X LSTM 0.937
X X Outer 0.936

X X Feedforward 0.931
X X LSTM 0.930
X X Outer 0.929

X X X Feedforward 0.939
X X X LSTM 0.939
X X X Outer 0.937
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Figure 2.8: Signal efficiency versus minimum jet pseudo-rapidity relative to light quarks (top)
or charm quarks (bottom). In each case, efficiency is shown for fixed values of background
rejection for networks trained with only expert features or networks trained with all features
(tracks, vertices and expert features).
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Figure 2.9: Rejection of light quarks (top) or charm quarks (bottom) versus minimum jet
pT. In each case, rejection is shown for fixed values of signal efficiency for networks trained
with only expert features or networks trained with all features (tracks, vertices and expert
features).
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Figure 2.10: Rejection of light quarks (top) or charm quarks (bottom) versus minimum
jet pseudo-rapidity. In each case, rejection is shown for fixed values of signal efficiency for
networks trained with only expert features or networks trained with all features (tracks,
vertices and expert features).
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Figure 2.11: Distributions of expert-level features for heavy-flavor and light-flavor classes.
Also shown are distributions of light-flavor and charm jets surviving network threshold se-
lections chosen to given rejection of 10 and 50, for networks using only expert information
and networks using expert information in addition to lower-level information.

for a comparison of the selected regions in the expert features for classifiers with and without

the lower-level information.

2.7 Discussion

Our experiments support four conclusions.
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The existing expert strategies for dimensional reduction sacrifice or distort useful

information. Networks which include lower-level information outperform networks using

exclusively higher-level information. For example, if the vertex-level information contained

all of the classification power of the track-level information but with lower dimensionality,

one would expect the vertex-only network to match the performance of the tracks-and-vertex

network, as the lower-dimensional problem should be simpler to learn. Instead, networks

using tracks and vertices outperform those which use only vertices. Similarly, networks using

tracks and expert features outperform those with only expert features. We note that these

conclusions apply to the expert strategies considered here, and in the case of the simulated

environment we have studied; however, we feel that both are representative of the current

state-of-the-art.

The task remains a challenge for deep networks. Networks which use only the lower-

level information do not match the performance of networks which use the higher-level

information. Since the higher-level features are strict functions of the lower-level features,

the lower-level features are a superset of the information contained in the high-level features.

The performance of the networks which use the high-level features then provides a baseline

against which to measure the ability of the network to extract the relevant information in

the more difficult higher-dimensional space of lower-level features. Networks using only track

information do not match the performance of those which use only the high-level features

(but note that track-only networks outperform vertex-only networks, giving a clue as to the

area of difficulty).

Networks using track and vertex information outperform those with expert fea-

tures. Networks trained with track and vertex information but without the benefit of

expert-level guidance and dimensional reduction manage to achieve better performance than

those which use only expert-level features. This is remarkable, as the dimensionality of the

tracks+vertices features is very large and expert-only networks represent the current state-
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of-the-art. Note, however, that for high signal efficiency (> 75%) the expert-only networks

outperform the networks using tracks+vertices.

Networks which combine expert features with low-level information have the

best performance. Combining the lowest-level information for completeness with the low-

dimensional hints from expert features significantly outperforms the state-of-the-art net-

works which use only expert features. While in principle all of the information exists in the

lowest-level features and it should be possible to train a network which matches or exceeds

this performance without expert knowledge, this is neither necessary nor desirable. Expert

knowledge exists and is well-established, and there is no reason to discard it.

In addition, this expert guidance encourages the network to identify discrimination strategies

based on well-understood properties of the jet flavor problem and decreases the likelihood

of relying on learning strategies based on spurious or poorly-modeled corners of the space.

We note that the use of high-dimensional lower-level data will require careful validation of

the simulation models; reasonable strategies exist, such as a combination of the validation

of individual features in one-dimensional projections with validation of the network output

in control samples, which probes the use of information in multi-feature correlations.

These improvements in the performance of the tagger can give important boosts to physics

studies which rely on the identification of jet flavor.
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Chapter 3

Learning to Identify Electrons

3.1 Abstract

We investigate whether state-of-the-art classification features commonly used to distinguish

electrons from jet backgrounds in collider experiments are overlooking valuable information.

A deep convolutional neural network analysis of electromagnetic and hadronic calorimeter

deposits is compared to the performance of typical features, revealing a ≈ 5% gap which

indicates that these lower-level data do contain untapped classification power. To reveal

the nature of this unused information, we use a recently developed technique to map the

deep network into a space of physically interpretable observables. We identify two simple

calorimeter observables which are not typically used for electron identification, but which

mimic the decisions of the convolutional network and nearly close the performance gap.
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3.2 Introduction

Production of electrons in high-energy collisions provides an essential handle on precision

studies of the Standard Model [5, 12] as well as for searches for new physics [3, 32]. The

identification of electrons, and their separation from backgrounds which mimic their signa-

ture, is therefore a critical element in the data analysis toolkit, especially at lower transverse

momentum, where the backgrounds rise rapidly [61].

In collider experiments, electrons are identified by an isolated track which aligns with a

localized energy deposition, primarily in the electromagnetic calorimeter. The primary source

of backgrounds is the production of hadronic jets, which typically feature multiple tracks

and extended energy deposition in both electromagnetic and hadronic calorimeters, but

can fluctuate to mimic electrons. The tracker and calorimeters, however, are very finely

segmented, producing high-dimensional data which is difficult to analyze directly. A mature

literature [63, 36] contains higher-level features designed by physicists to highlight the distinct

signature of the electron and suppress the backgrounds. The higher-level features define a

lower-dimensional feature space.

Recent strides in machine learning for physics, particularly the advent of deep learning [23,

55, 17] and image-processing techniques [34, 18, 41, 42], have demonstrated that high-level

features designed by domain experts may not always fully capture the information available

in the lower-level high-dimensional data. Specifically, the rich but subtle structure of the

deposition of energy by jets provides a powerful potential handle for discrimination. Given

their role as the dominant background, this suggests that additional classification power may

be gained by applying image-based deep learning techniques to electrons.

In this study, we apply deep convolutional neural networks (CNNs) to the task of distin-

guishing between electrons and jets, using separate images from the electromagnetic and

hadronic calorimeters. Due to the black-box nature of their operation, we do not propose
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to use CNNs in place of the high-level features. Instead, we apply CNNs as probe the in-

formation content of the low-level data in comparison to the high-level features. We show

that the classification performance of the image-based CNNs exceeds the performance of

the high-level features in common use by Large Hadron Collider (LHC) experiments, by a

small, but significant, margin. We then identify the source of the untapped information and

construct novel high-level features that capture it.

This paper is organized as follows. In Section 2, we outline our approach. In Section 3, we

discuss the details of our image generation process and the corresponding dataset used for

CNN experiments. In Section 4, we review the existing state-of-the-art ATLAS and CMS

high-level features, which we combine to derive our benchmark performance. In Section 5,

we provide details of neural network architectures and training. In Section 6, we discuss the

performance of these networks. In Section 7, we search for new high-level features to bridge

the gap between CNNs and standard features. In Section 8, we summarize and discuss the

results, providing an intuitive understanding of the underlying landscape.

3.3 Overview

This study explores whether low-level, high-dimensional, O(103), calorimeter data contains

information useful for distinguishing electrons from a major background not captured by the

standard suite of high-level features designed by physicists. Similar studies in jets or flavor

tags have revealed such gaps [55, 18].

We probe this issue using a simulated dataset created with publicly available fast simulations

tools [38]; while such samples do not typically match the fidelity of those generated with full

simulations [11], we refine the calorimeter description for this study and find the modeling

sufficiently realistic for a proof-of-principle analysis. Our focus is on comparing physically
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motivated, high-level features to low-level image techniques on equal footing. While we

anticipate that the numerical results will be different when evaluated in a fully realistic

scenario, the broad picture will likely remain the same. The technique described here is fairly

general and applicable to more realistic experimental scenarios, so that valuable lessons can

be learned in the present context.

We reproduce the standard suite of electron identification features, as described in Refs. [63,

36], in the context of our simulated description. We then compare their combined per-

formance to that of deep convolutional neural networks (CNNs) which have been trained

to analyze the lower-level calorimeter cells using image recognition techniques [34, 41, 18].

We do not advocate for the use of CNNs to replace high-level features whose designs are

grounded in physics; CNNs are difficult to interpret and the low level and large dimension-

ality of the input makes validation of the features and definition of systematic uncertainties

nearly impossible. Instead, here we use the power of CNNs as a probe, to test whether

further information is present in the low-level data. Having identified a gap, we then ex-

plore a complete space of novel high-level features, Energy Flow Polynomials (EFPs) [67] to

interpret and bridge the gap.

3.4 Dataset Generation

In this section, we describe the process of generating simulated signal and background

datasets, reproducing the standard suite of high-level features, and forming pixelated images

from the electromagnetic and hadronic calorimeter deposits.
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3.4.1 Processes and Simulation

Simulated samples of isolated electrons are generated from the production and electronic

decay of a Z ′ boson in hadronic collisions, pp → Z ′ → e+e− at
√
s = 13 TeV. We set mZ′

to 20 GeV in order to efficiently produce electrons in the range pT = [10, 30] GeV, where

hadronic backgrounds are significant. Simulated samples of background jets are generated

via generic dijet production. Events were generated with MadGraph v2.6.5 [13], decayed

and showered with pythia v8.235 [79], with detector response described by delphes v3.4.1

[38] using root version 6.0800 [26].

Our configuration of delphes approximates the ATLAS detector. For this initial study,

we model only the central layer of the calorimeters where most energy is deposited; future

work will explore more detailed and realistic detector simulation. However, we maintain

the critical separation between the electromagnetic and hadronic calorimeters and their

distinct segmentation. Our simulated electromagnetic calorimeter (ECal) has segmention

of (∆φ,∆η) = ( π
126
, 0.025) while our simulated hadronic calorimeter (HCal) is coarser,

(∆φ,∆η) = ( π
31
, 0.1). This approach allows us to investigate whether information about the

structure of the many-particle jet is useful for suppressing their contribution. See Ref [42]

for an analysis of the information contained in the shape of shower for individual particles.

No pile-up simulation was included in the generated data, as pileup subtraction techniques

have been shown to be effective [25]. In total, we generated 107k signal and 107k background

objects.

3.4.2 Electron Candidate Selection

We use delphes’ standard electron identification procedures where loose electron candidates

are selected from charged particle tracks which align with energy deposits in the ECal. We
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required object to have track pT > 10 GeV and |η| < 2.125, to avoid edge effects when

forming calorimeter images, see Fig. 3.1. For later training, the background objects are

reweighted to match the pT distribution of the signal.

Figure 3.1: Distribution of generated electron candidate pT and η for simulated signal and
background samples, before reweighting to match spectra.

3.4.3 Image Formation

The cells of the calorimeter can be naturally organized as pixels of an image, allowing for

use of powerful image-processing techniques. Each pixel contains the energy deposited in

one cell. Alternatively, one may form images in which each cell represents ET = E/ cosh η,

which folds in the location of the object relative to the collision point. For completeness

we initially consider images in which pixels represent E and images where pixels represent

ET. Additionally, we create separate images for the ECal and HCal, in order to preserve

the separate and powerful information they offer. In total, four images are created for each

electron candidate: ECal E, ECal ET, HCal E, HCal ET.

The center of a calorimeter image is chosen to be the ECal cell with largest transverse

energy deposit in the 9 × 9 cell region surrounding the track of the highest pT electron in

that event. This accounts for the curvature in the path of the electron as it propagates

between the tracker and the calorimeter. The ECal image extends fifteen pixels in either

direction, forming a 31 × 31 image. The HCal granularity is four times as course, and an
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8 × 8 image covers the same physical region. Figures 3.2 and 3.3 show example and mean

images for the ECal and HCal, respectively.

Electromagnetic Calorimeter Images

(a) Example Electron (b) Mean Electron

(c) Example Jet (d) Mean Jet

Figure 3.2: Images in the electromagnetic calorimeter for signal electrons (top) and back-
ground jets (bottom). On the left are individual examples, on the right are mean images.
See Fig. 3.3 for corresponding hadronic calorimeter images.

3.5 Standard Classification Features

To assess the performance of the high-level classifications features typically used by AT-

LAS [36] and CMS [63] which identify electrons and reject jet backgrounds, we reproduce

their form here, where relevant.

Since electron candidates are confined to the longitudinal range |η| < 2.125, we only consider

variables that are well-defined in this range. Additionally, we only consider variables which

are based on information included in our simulation, to ensure the comparison uses informa-

tion on equal footing. In addition, we do not perform clustering; where a feature calls for the

cluster energy, we replace it with the total energy of the candidate image, a reasonable proxy

for the cluster in our less-finely segmented simulation. All high-level features are calculated
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Hadronic Calorimeter Images

(a) Example Electron (b) Mean Electron

(c) Example Jet (d) Mean Jet

Figure 3.3: Images in the hadronic calorimeter for signal electrons (top) and background jets
(bottom). On the left are individual examples, on the right are mean images. See Fig. 3.2
for corresponding electromagnetic calorimeter images.

from the ECal and HCal images, using E or ET images where appropriate.

We reproduce seven features: Rhad, ωη2, Rφ, Rη, σηη, and two isolation quantities. Together,

these capture the typical strategies of suppressing objects with significant hadronic energy or

extended energy deposits. Definitions of each feature are below, and distributions for signal

and background samples are shown in Fig. 3.4.

Ratio of HCal and ECal Energy: Rhad

The feature Rhad relates the transverse energy (ET) in the electromagnetic calorimeter to

that in the hadronic calorimeter. Specifically,

Rhad =
ΣiE

HCal
T,i

ΣjEECal
T,j

(3.1)
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where i and j run over the pixels in the HCal and ECal images, respectively.

Lateral Width of the ECal Energy Shower: wη2

The lateral width of the shower in the ECal, wη2, is calculated as

wη2 =

√
ΣiEi(ηi)2

ΣiEi
− (

ΣiEiηi
ΣiEi

)2 (3.2)

where Ei is the energy of the ith pixel in the ECal image and ηi is the pseudorapidity of the

ith pixel in the ECal image measured relative to the image’s center. The sum is calculated

within an (η × φ) = (3× 5) cell window centered on the image’s center.

Azimuthal and Longitudinal Energy Distributions: Rφ and Rη

To probe the distribution of energy in azimuthal (φ) and longitudinal (η) directions, we

calculate two features Rφ and Rη. Qualitatively, these relate the total ECal energy in a

subset of cells to the energy in a larger subset of cells extended in either φ or η, respectively.

Specifically,

Rφ =
E3×3

E3×7
, Rη =

E3×7

E7×7
(3.3)

where the subscript indicates the number of cells included in the sum in η and φ respectively.

For example, (η × φ) = (3 × 7) is a subset of cells which extends 3 cells in η and 7 in φ

relative to the center of the image.
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3.5.1 Lateral Shower Extension: σηη

An alternative probe of the distribution of energy in η is σηη. Specifically,

σηη =

√
Σiwi(ηi − η̄)

Σiwi
(3.4)

Where wi is the weighting factor | ln(Ei)| with Ei being the ECal energy of the ith pixel.

The sum runs over the non-zero cells in the (η× φ) = (5× 5) subset of cells centered on the

highest energy cell in the ECal. Here, ηi is measured in units of cells away from center, η̄,

as ηi ∈ 0, ±1, or ±2 if we choose η̄ = 0.

3.5.2 Isolation

Jets typically deposit significant energy surrounding the energetic core, where electrons are

typically isolated in the calorimeter. To assess the degree of isolation, we sum the ECal

energy in cells within the angular range ∆R =
√

∆η2 + ∆φ2 < 0.3 or 0.4, where ∆η and ∆φ

are measured from a given cell’s center and the center of the image.

3.6 Neural Network Architectures and Training

We construct multi-layer neural networks that accept low-level images, or high-level features,

or both, with a sigmoidal logistic unit as their output unit to classify between signal and

background.

Each image input is passed through a number of convolutional blocks, with each block

consisting of two convolutional layers with 3 × 3 kernels, rectified linear units [51] as the

activation function, and a final 2×2 maxpooling layer. Finally, the outputs of the maxpooling
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Figure 3.4: Distribution of signal electron (red) and background jets (blue) for seven existing
typically-used high-level features, as well as for mass.

layer are flattened and concatenated with the high-level inputs to form a high-dimensional

vector. This high-dimensional vector is then processed by a sequence of fully connected

layers with rectified linear units, using dropout[59, 22]. The final output is produced by a

single logistic unit and it can be interpreted as the probability of the input belonging to the

signal class. The entire architecture is trained by stochastic gradient descent to minimize

the relative entropy between the targets and the outputs, across all training examples.

For each combination of high-level variables, we also train and tune multi-layer, fully con-

nected, neural networks with a similar sigmoidal logistic unit at the top,

All models were implemented using Keras [33] with Tensorflow [10] as the backend and

trained with a batch size of 128 with the Adam optimizer [65]. The weights for all the models

were initialized using orthogonal weights and each network was tuned using 150 iterations of

bayesian optimizaton with the Sherpa hyperparameter optimization library [58]. Additional

details about the hyperparameters and their optimization are given in Tables 3.3, 3.4 and 3.5.
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3.7 Performance

Initial studies indicated that having images that reflect both E and ET provided no per-

formance boost, so only results with ET-based images are shown here and used for further

studies. A comparison of the performance of the image networks and the seven standard high-

level features (Rhad, ωη2, Rφ, Rη, σηη, Iso(∆R < 0.3), Iso(∆R < 0.4)) is shown in Fig. 3.5

and described in Table 3.1.

Networks combining the standard high-level features (AUC of 0.945) do not match the per-

formance of a network which analyzes the lower-level data expressed as images (0.972),

indicating that the images contain additional, untapped information relevant to the iden-

tification of electrons. This is not unexpected, and is in line with similar results for jet

substructure or flavor tagging [55, 18]. Networks which see only one of the ECal or HCal

images but not both do not match this performance, supporting the intuition that both

calorimeters contribute valuable information. Adding the HL features to the CNN, however,

gives an almost negligible boost in performance, suggesting that the CNN has succeeded in

capturing the power of the HL features.
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Figure 3.5: Comparison of the performance in electron identification for networks with vary-
ing sets of input features. Shown is the signal efficiency versus background rejection, and
the AUC, for networks which use the existing set of expert high-level features (see text for
details), networks which use HCal or ECal images, or both.
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Table 3.1: Electron classification power (AUC) for networks with various feature sets. Images
refer to low-level pixel data. Standard features are the high-level (HL) features typically used
(Rhad, ωη2, Rφ, Rη, σηη, Iso(∆R < 0.3), Iso(∆R < 0.4)), as described in the text. All AUC
values have an uncertainty of ± 0.001 unless otherwise specified.

Network Features AUC
Images 7 Standard

ECal HCal HL Features Mjet

X 0.82 ± 0.02
X 0.918
X X 0.972
X X X 0.973

X 0.945
X X 0.956

3.8 Bridging the gap

The performance of the deep CNN reveals that there is information in the low-level image

that is not captured by the suite of existing high-level features. The goal, however, is not

to replace the suite of features with an image-based network whose decisions are opaque

to us and may not align with real physical principles. Instead, our aim is to identify new

high-level features which bridge the gap between the existing performance and the superior

performance of the CNN.

We note that the design of the high-level features focuses on highlighting the characteristics

of the signal electrons, localized energy depositions primarily in the ECal without significant

structure. The background, however, is due to jets, which potentially can exhibit a rich

structure and comprise a mixture of jets from gluons, light quarks, and heavy quarks. Each

parton may produce jets with a distinct structure and varying probability to mimic electrons.

We hypothesize that features which are sensitive to the structure of the jet, or subclasses of

jets, may provide additional discrimination power.

We first consider the powerful feature of jet mass, Mjet, which is not often applied to electron

identification, but has a distinct marginal distribution for electrons and jets, see Fig. 3.4.
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Including it in a network of HL features provides a small but distinct boost in performance,

see Table 3.1, indicating that it contains useful information for this classification task not

duplicated by the standard seven HL features. This encourages us to explore further the

space of jet observables as a way to understand the source of additional classification power

of the CNN.

3.8.1 Set of Observables

One could in principle consider an infinite number of jet observables. To organize our search,

we use the Energy Flow Polynomials (EFPs) [67], a large (formally infinite) set of parame-

terized engineered functions, inspired by previous work on energy correlation functions [70],

which sum over the contents of the cells scaled by relative angular distances.

These parametric sums are described as the set of all isomorphic multigraphs where:

each node⇒
N∑
i=1

zi, (3.5)

each k-fold edge⇒ (θij)
k . (3.6)

The observable corresponding to each graph can be modified with parameters (κ, β), where

(zi)
κ =

(
pTi∑
j pTj

)κ

, (3.7)

θβij =
(
∆η2ij + ∆φ2

ij

)β/2
. (3.8)

Here, pTi is the transverse momentum of cell i, and ηij (φij) is pseudorapidity (azimuth)

difference between cells i and j. The original IRC-safe EFPs require κ = 1, however we

consider examples with κ 6= 1 to explore a broader space of observables. Also, note that
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κ > 0 generically corresponds to IR-safe but C-unsafe observables.1

In principle, the space is complete, such that any jet observable can be described by one

or more EFPs of some degree; in practice, the space is infinite and only a finite subset can

be explored. We consider EFPs up to degree d = 7 and with β values of
[
1
2
, 1, 2

]
and κ

values of [−1, 0, 1, 2]. We consider each graph as applied to the ECal or the HCal separately,

effectively doubling the number of graphs2.

3.8.2 Searching for Observables

Rather than conduct a brute-force search of this large space, we aim to leverage the success

of the CNN and find observables which mimic its decisions. We follow the black-box guided

algorithm of Ref. [46], which isolates the portion of the input space where the CNN and

existing HL features disagree and searches for a new observable that matches the decisions

of the CNN algorithm in that subspace.

The subspace is defined as input pairs (x, x′) that have a different relative ordering between

the CNN and the network of n HL features (HLNn). Mathematically, we express this using

the decision ordering (DO)

DO[f, g](x, x′) = Θ
((
f(x)− f(x′)

)(
g(x)− g(x′)

))
, (3.9)

where f(x) and g(x) are classification functions such as the CNN or the HLNn, such that

DO= 0 corresponds to inverted ordering and DO= 1 corresponds to the same ordering. The

1For κ < 0, empty cells are omitted from the sum.
2We also explored a version where ECal and HCal information were used simultaneously by each graph,

but found no improvement.
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focus of our investigation are the set of pairs Xn where the two classifiers disagree, defined

as

Xn =
{

(x, x′)
∣∣∣DO

[
CNN,HLn

]
(x, x′) = 0

}
. (3.10)

As prescribed in Ref. [46], we scan the space of EFPs to find the observable that has the

highest average decision ordering (ADO) with the CNN when averaged over the disordered

pairs Xn. The selected EFP is then incorporated into the new network of HL features,

HLNn+1, and the process is repeated until the ADO or AUC plateaus.

For all HLNn used in this search, models were trained with Keras [33] using Tensor-

flow [10] as the backend. Each model was built as a fully connected neural network of

simple one dimensional input features and a single logistic unit output. These networks con-

sisted of 3 hidden layers, each with 50 rectified linear units, separated by 2 dropout layers

using a dropout value of 0.25 and trained with a batch size of 128. The Adam optimizer [65]

was used with learning rate of 0.001 and initialized with glorot normal weights.

3.8.3 IRC safe observables

We begin our search by considering only the observables which are IRC safe, with κ = 1.

Beginning with the seven HL features, the first graph selected is:

=
N∑

a,b=1

zazbθ
1
2
ab

47



with β = 1
2
. This graph has an ADO of 0.802 with the CNN over the input subspace where

the CNN disagrees with the seven HL, suggesting that it is well aligned with the CNN’s

strategy. Adding it to the seven HL features achieves an AUC of 0.970± 0.001, very nearly

closing the gap with the CNN performance of 0.972. This graph is very closely related to jet

mass, a pairwise sum over cells which folds in angular separation, but more closely resembles

the Les Houches Angularity variable [53], which similarly is sensitive to the distribution

of energy away from the center, though with a smaller power of the angularity than jet

mass, which suggests that it enhances small angles. Additional scans do not identify EFP

observables with a useful ADO and do not contribute to the AUC.

If instead, we begin with the seven HL features as well as the jet mass, the procedure selects

two graphs:

=
N∑

a···h=1

zazbzczdzezfzgzhθabθacθadθaeθafθagθah

and

=
N∑

a,b,c=1

zazbzcθ
1
2
abθ

1
2
bcθ

1
2
ac

When combined with the seven HL features and Mjet, this set of ten observables achieves

an AUC of 0.971 ± 0.001, almost matching the CNN performance. Distributions of these

observables for signal and background samples are shown in Fig. 3.6.
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Figure 3.6: log10 distributions of the selected IRC-safe EFPs as chosen by the black-box
guided strategy, for signal electrons and background jets.

3.8.4 Broader Scan

In this Section, we present a scan of a larger set of EFPs, including values of κ which lead

to IRC unsafe observables, κ = [−1, 0, 1, 2].

Beginning from the seven standard HL features, the first pass selects a simple observable:

=
N∑
a=1

z2a

with no angular terms at all, but κ = 2. This is known in the jet substructure literature as

pDT [74, 30] and was originally developed to help distinguish between quark and gluon jets.

When combined with the other seven HL features, this observable also reaches a performance

of 0.970±0.001. Further scans do not lead to statistically significant improvements in AUC.

If instead, we begin from the seven standard HL features and Mjet, we find , this time with

κ = 2 as well as the simpler pDT . Distributions of these two IRC unsafe EFP observables for

signal and background are shown in Fig. 3.7. Together with the seven HL and Mjet, these 10

observables reach a performance of 0.971± 0.001. Further scans do not lead to statistically

significant improvements in AUC.
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Table 3.2: Summary of the performance of various networks considered. Uncertainty in the
AUC value is ±0.001, estimated using bootstrapping.

Base Additions (κ, β) (AUC)
7HL 0.945
7HL +Mjet 0.956
7HL (1, 1

2
) 0.970

7HL +Mjet (1, 1) (1, 1
2
) 0.971

7HL (2,−) 0.970

7HL +Mjet (2, 1) (2,−) 0.971

CNN 0.972

See Table 3.2 for a summary of the additional observables needed to reach the performance

of ≈ 0.97 in each case.
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Figure 3.7: log10 distributions of the selected EFPs as chosen by the black-box guided
strategy, regardless of IRC safety, for signal electrons and background jets.

3.9 Discussion

Our deep neural networks indicate that low-level calorimeter data represented as images

contains information useful for the task of electron identification that is not captured by the

standard set of high-level features as implemented here.

A guided search [46] through the EFP space identified two EFP observables calculated on

the ECal cells which mimic the CNN strategy and bridge the gap. Observables on the HCal

information were not helpful to the classification task. The first,
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=
N∑

a,b=1

zazbθ
1
4
ab

is closely related to the Les Houches Angularity [53], and confirms our suspicion that the

non-trivial structure of the background object provides a useful handle for classification. The

second observable, pDT [74, 30],

=
N∑
a=1

z2a

with κ = 2 is not IRC safe, and was originally developed to help distinguish between quark

and gluon jets. It effectively counts the number of hard particles, which is sensitive to the

amount of color charge, where electrons and jets are clearly distinct.

Both Les Houches Angularity and pDT display power to separate electrons from the jet back-

grounds, by exploiting the structure and nature of the jet energy deposits. While the precise

performance obtained here may depend at some level on the fidelity of the simulation used

and the resulting limitations on the implementation of state-of-the-art high-level features,

these results strongly suggest that these observables be directly studied in experimental con-

texts where more realistic simulation tools are available, or directly in data samples, using

weakly supervised learning [43].

More broadly, the existence of a gap between the performance of state-of-the-art high-level

features and CNN represents an opportunity to gather additional power in the battle to

suppress lepton backgrounds. Rather than employing black-box CNNs directly, we have

demonstrated the power of using them to identify the relevant observables from a large list
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of physically interpretable options. This allows the physicist to understand the nature of the

information being used and to assess its systematic uncertainty.

Any boost in electron identification performance is extremely valuable to searches at the

LHC, especially those with multiple leptons, where event-level efficiencies depend sensitively

on object-level efficiencies.

All code and data used in this project is available at: https://github.com/TDHTTTT/EID,

as well as through the UCI Machine Learning in Physics web portal at: http://mlphysics.ics.uci.edu/.
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3.10 Neural Network Hyperparameters and Architec-

ture

Table 3.3: Hyperparameter ranges for bayesian optimization of convolutional networks

Parameter Range
Num. of conv. blocks [1, 4]

Num. of filters [8, 128]
Num. of dense layers [1, 3]
Num. of hidden units [1, 200]

Learning rate [0.0001, 0.01]
Dropout [0.0, 0.5]

Table 3.4: Hyperparameter ranges for bayesian optimization of fully connected networks

Parameter Range
Num. of dense layers [1, 8]
Num. of hidden units [1, 200]

Learning rate [0.0001, 0.01]
Dropout [0.0, 0.5]

Table 3.5: Best hyperparameters found per model.

features conv. filters dense hidden LR DP
ECal 3 117 2 160 0.0001 0.0
Hcal 2 27 2 84 0.01 0.5

Ecal+HCal 3 47 2 146 0.0001 0.0
HL - - 5 149 0.001 0.0019
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Figure 3.8: Diagram of the architecture of the convolutional neural network.

Figure 3.9: Diagram of convolutional block appearing in network architecture, see Fig 3.8.
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Chapter 4

Learning to Isolate Muons

4.1 Abstract

Distinguishing between prompt muons produced in heavy boson decay and muons produced

in association with heavy-flavor jet production is an important task in analysis of collider

physics data. We explore whether there is information available in calorimeter deposits that

is not captured by the standard approach of isolation cones. We find that convolutional

networks and particle-flow networks accessing the calorimeter cells surpass the performance

of isolation cones, suggesting that the radial energy distribution and the angular structure

of the calorimeter deposits surrounding the muon contain unused discrimination power. We

assemble a small set of high-level observables which summarize the calorimeter informa-

tion and partially close the performance gap with networks which analyze the calorimeter

cells directly. These observables are theoretically well-defined and can be applied to stud-

ies of collider data. The remaining performance gap suggests the need for a new class of

calorimeter-based observables.
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4.2 Introduction

Searches for new physics and precision tests of the Standard Model at hadron colliders

have long relied on leptonic decays of heavy bosons, due to the relatively low background

rates and excellent momentum resolution compared to hadronic final states. In the case

of muons, the primary source of background to prompt muons (those from W,Z or other

bosons) is production within a heavy-flavor jet. This non-prompt background is largest at

lower values of muon transverse momentum, which has become important in searches for

supersymmetry [1, 77, 64] as well as low-mass resonances [61].

The current state of the art strategy for distinguishing prompt and non-prompt muons in

experimental searches is the robust and simple approach of measuring the isolation of the

muon in the calorimeter, as

Iµ(R0) =
∑

i,R<R0

pcell iT

pmuon
T

within a cone R =
√

∆φ2 + ∆η2 < R0 surrounding the muon [6], where typically a single

cone is used, and values of R0 range from 0.1-0.4. This approach focuses on identifying a

typical characteristic of the signal, low calorimeter activity in the vicinity of the muon.

This traditional strategy, however, focuses on the simple nature of the signal and may over-

look the rich set of characteristics offered by the background object, which can provide

handles for additional rejection power. Related work, which approaches similar object clas-

sification tasks as a background jet rejection problem, has shown significant improvement

in background discrimination when applied to photons [9, 56], pions [14] or electrons [37].

Other studies have shown that muons which fail the traditional isolation requirement can
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contain significant power to reveal new physics [27].

At the same time, there have been significant advances in machine learning techniques and

their applications in physics [23, 17], specifically in the context of jet classification tasks,

which take a fuller view of the object by directly analyzing the low-level calorimeter energy

deposits, representing them either as a type of image [34, 18] or as an unordered list [68].

It seems likely, therefore, that these machine learning strategies may identify the presence

of significant additional calorimetric rejection power in the context of prompt muon iden-

tification. In this paper, we apply machine learning tools similar to those developed for

jet calorimeter analysis to the task of distinguishing muons due to heavy boson decay from

those produced within a heavy-flavor jet, analyze the nature of the information being used,

and develop a set of simple, interpretable calorimeter features which capture a good fraction

of that additional classification power. We suggest a new class of calorimeter observables

which may capture the remaining unused information.

4.3 Approach and Dataset

The observable Iµ(R0) is a powerful discriminator which reduces a large amount of informa-

tion to a single high-level scalar. However, it is possible that it fails to capture the fullness

of the calorimeter information available to distinguish prompt muons from those which are

produced within a jet. To probe whether information has been lost, we compare the per-

formance of deep neural networks which access the full calorimeter information to shallow

networks which use one or more isolation cones.

Neural network decisions are notoriously difficult to reverse-engineer, especially when the

dimensionality of the data is large and the training is done with simulated samples, as is the

case for networks which directly use the calorimeter cells. This leads to valid concerns about
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the application of such complex strategies to collider data.

In this study, our goal is not to develop deep networks for use in collider data. Instead,

we apply these deep networks as a probe, to measure a loose upper bound on the possible

classification performance, and provide insight into whether information has been lost in the

reduction of the calorimeter cells to isolation cones.

Where information has been lost, we attempt to capture it, not by applying the deep network,

but by assembling a small set of new high-level (HL) observables that bridge the performance

gap and reproduce the classification decisions of the calorimeter cell networks [46]. These

high-level observables are more compact, physically interpretable, can be validated in data,

and allow the straightforward assessment and propagation of systematic uncertainties.

4.3.1 Data generation

Samples of simulated prompt muons were generated via the process pp→ Z ′ → µ+µ− with

a Z ′ mass of 20 GeV. Non-prompt muons were generated via the process pp → bb̄. Both

samples are generated at a center of mass energy
√
s = 13 TeV. Collisions and heavy boson

decays are simulated with Madgraph5 [13], showered and hadronized with Pythia [79],

and the detector response simulated with Delphes [39] using the standard ATLAS card.

The classification of these objects is sensitive to the presence of additional proton inter-

actions, referred to as pile-up events. We overlay such interactions within the simulation

with an average number of interactions per event of µ = 50, as an estimate of future LHC

experimental data.

Muons in the range pT ∈ [10, 15] GeV were considered, and the signal samples are weighted

such that the transverse muon momentum distributions match that of the background. Only

events where a muon is identified as a track in the muon spectrometer are used. In total
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there were 91,592 events used, where 47,616 were signal and 43,976 were background.

Calorimeter deposits can be represented as images where each pixel value represents the ET

deposited by a particle [34]. Images are formed by considering cells in the calorimeter within

a cone of radius up to ∆R = 0.45 surrounding the muon location after propogating to the

radius of the calorimeter.

We choose a 32x32 grid, which approximately corresponds with the calorimeter granularity

of ATLAS and CMS. Heat maps of the calorimeter energy deposits in η − φ space for both

signal prompt muons and background non-prompt muons are shown in Fig. 4.1. The signal

calorimeter deposits are uniform and can be attributed to pileup whereas the background

deposits appear largely radially symmetric with a dense core from the jet.

We calculate the standard muon isolation observable Iµ(R0) for a set of cones with 0.025 ≤

R0 ≤ 0.45 in 18 equally spaced steps.

Crucially, these isolation observables and all other calorimeter observables are calculated

directly from the pixels of the muon images, ensuring that they contain a strict subset of the

information available. This allows for direct and revealing comparisons of the performance

between networks trained with the images and those trained with Iµ. Note that pixelization

of the detector may incur some loss of information relative to the underlying segmentation

of the calorimeter, but our studies examines the relative powers of the techniques, rather

absolute comparisons with more realistic scenarios.

4.4 Networks and Performance

We apply several strategies to the task of classifying prompt and non-prompt muons, using

both low-level calorimeter information and higher-level isolation quantities. Accessing the
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(a) Mean Prompt Muon

(b) Mean Non-prompt Muon

Figure 4.1: Mean calorimeter images for signal prompt muons (top) and muons produced
within heavy-flavor jets (bottom), in the vicinity of reconstructed muons within a cone of
R = 0.4. The color of each cell represents the sum of the ET of the calorimeter deposits
within the cell.
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calorimeter information at the lowest-level and highest-dimensionality, particle-flow networks

(PFN) [68] operate on unordered lists of calorimeter cells, while convolutional networks

(CNN) are applied to the muon images [34, 18]. Smaller feed-forward dense networks are

trained to use the information in one or more isolation cones (see the Appendix for details

on network architectures and training). We evaluate the performance of each approach by

comparing the integral of the ROC (Receiver Operating Characteristic) curve, known as the

AUC (Area Under the Curve).

The standard approach of using a single isolation cone yields an AUC of 0.780 for the

optimal cone size, R0 = 0.4251. The muon image network achieves a significantly higher

performance, with an AUC of 0.842, and the particle flow network reaches 0.848. This

immediately suggests that there is significant additional information available to distinguish

between the prompt and non-prompt muons beyond what is summarized in the isolation

cones. A more restricted version of the PFN, an Energy-Flow Network [68] (EFN), which

enforces infra-red and collinear (IRC) safety, achieves nearly the same performance, 0.843.

This suggests that most of the additional information beyond the isolation cones is IRC-safe.

We hypothesized that additional cones would provide useful information about the radial

energy distribution. Including a second cone with a distinct R0 value as input to a small

neural network (see Appendix A) slightly improves performance, with an AUC of 0.785. To

estimate the full information available in the cones, we perform a greedy search through

all 18 cones; we find that a set of 8 cones, [0.15, 0.175, 0.2, 0.225, 0.25, 0.3, 0.35, 0.4], yields

another small boost in classification power up to an AUC of 0.794, as shown in Fig. 4.2.

Performance was fairly insensitive to the specific choices of cone sizes, and does not grow

significantly beyond eight cones. However, a gap remains between performance of isolation

cones and the calorimeter cell networks as seen Fig. 4.3 and Table 4.1.

These results support the conventional wisdom that a significant fraction of the information

1Similar performance was seen for other cone sizes.
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Figure 4.2: Comparison of classification performance using the performance metric AUC
between Particle-Flow networks trained on unordered lists of calorimeter deposits (orange,
solid), convolutional networks trained on muon images (blue, dashed) and networks which
use increasing numbers of isolation cones (green, solid). For each number of cones, the
optimal set is chosen.
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Figure 4.3: Background rejection versus signal efficiency for Particle-Flow networks trained
on unordered lists of calorimeter deposits (orange, solid), convolutional networks trained on
muon images (blue, dashed), networks trained on a set of isolation cones (purple, dotted)
and the benchmark approach, a single isolation cone approach (green, dashed).
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relevant for classification is captured by a single, simple cone. However, they also indicate

that there is additional information in the radial distribution of energy, which can be captured

by using multiple cones. Most intriguingly, even many cones fail to match the performance

of the networks which use the calorimeter cell information directly, suggesting that there is

additional non-radial information relevant to the classification task not captured by isolation

cones.

4.5 Analysis

The networks which use the calorimeter cells directly have the most powerful performance,

but our aim is not simply to optimize classification performance in this particular simulated

sample. Instead, we seek to understand the nature of the learned strategy in order to validate

it and translate it into simpler, more easily interpretable high-level features which can be

studied in other datasets, real or simulated. In addition, this understanding can reveal how

well the strategy is likely to generalize to other kinds of jets that are not represented by this

background sample, such as charm jets.

The CNN and PFN results indicate that the radially symmetric isolation cones are failing

to utilize some information which is relevant to the classification task. In this section, we

search for additional high-level observables which capture this information.

4.5.1 Search Strategy

Interpreting the decisions of a deep network with a high-dimensional input vector is no-

toriously difficult. Instead, we attempt to translate its performance into a smaller set of

interpretable observables [46]. This allows us to understand the nature of the information

being used as well as to represent it more compactly.
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As the background non-prompt muons are due to jet production, we search within a set of

observables originally intended for analysis of jets: the Energy Flow Polynomials (EFPs) [67],

a formally infinite set of parameterized engineered functions, inspired by previous work on

energy correlation functions [70], which sum over the contents of the cells scaled by relative

angular distances.

These parametric sums are described as the set of all isomorphic multigraphs where:

each node⇒
N∑
i=1

zi, (4.1)

each k-fold edge⇒ (θij)
k . (4.2)

The observable corresponding to each graph can be modified with parameters (κ, β), where

(zi)
κ =

(
pTi∑
j pTj

)κ

, (4.3)

θβij =
(
∆η2ij + ∆φ2

ij

)β/2
. (4.4)

Here, pTi is the transverse momentum of cell i, and ∆ηij (∆φij) is pseudorapidity (azimuth)

difference between cells i and j. As the EFPs are normalized, they capture only the relative

information about the energy deposition. For this reason, in each network that includes EFP

observables, we include as an additional input the sum of pT over all cells, to indicate the

overall scale of the energy deposition.

The original IRC-safe EFPs require κ = 1. To more broadly explore the space, we consider

examples with κ 6= 1 to explore a broader space of observables2.

In principle, the space spanned by the EFPs is complete, such that any jet observable can

2Also, note that κ > 0 generically corresponds to IR-safe but C-unsafe observables. For κ < 0, empty
cells are omitted from the sum.
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be described by one or more EFPs of some degree. One might consider simply searching this

space for all possible combinations of EFPs for a set which maximizes performance for this

task. Such a search is computationally prohibitive; instead, we follow the black-box guided

algorithm of Ref. [46], which iteratively assembles a set of EFPs that mimic the decisions of

another guiding network (the CNN or PFN in our case) by isolating the portion of the input

space where the guiding network disagrees with the isolation network, and finding EFPs

which mimic the guiding network’s decisions in that subspace.

Here, the agreement between networks f(x) and g(x) is evaluated over pairs of (x, x′) by

comparing their relative classification decisions, expressed mathematically as:

DO[f, g](x, x′) = Θ
((
f(x)− f(x′)

)(
g(x)− g(x′)

))
, (4.5)

and referred to as decision ordering (DO). A DO= 0 corresponds to inverted decisions over

all input pairs and DO= 1 corresponds to the same decision ordering. As prescribed in

Ref. [46], we scan the space of EFPs to find the observable that has the highest average

decision ordering (ADO) with the guiding network when averaged over disordered pairs.

The selected EFP is then incorporated into the new network of HL features, HLNn+1, and

the process is repeated until the ADO plateaus.

4.5.2 IRC Safe Observables

We begin our search by considering only a small set of simple observables, those which are

IRC safe (κ = 1), have a simple angular weighting (β ∈ [1, 2]), and are limited to a small

number of nodes n ≤ 3 with at most three edges between nodes. We also include
∑
pT,

where the summation is over all calorimeter cells in the image, to set the scale accompanying
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the normalized EFPs. The first EFP observable identified is a simple three-point correlator:

=
N∑

a,b,c=1

zazbzcθabθbcθca

which, when combined with the isolation cones and
∑
pT, yields an AUC of 0.813 and an

ADO with the CNN of 0.897, a significant boost relative to just using the radial information

of the isolation cones. The subsequent scans produce variants of this observable :

=
N∑

a,b,c=1

zazbzcθ
2
abθ

3
bc

=
N∑

a,b,c=1

zazbzcθ
2
abθ

2
bcθ

3
ca

=
N∑

a,b=1

zazbθab

with additional edges corresponding to higher powers of the angular information. Their

power may come from their sensitivity to the collimated radiation pattern of the jet. Together

with the isolation cones, these observables reach an AUC of 0.821 and an ADO with the

CNN of 0.908, see Table 4.1.

This set of observables partially closes the performance gap with the calorimeter cell net-
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works, indicating that angular information is relevant to the muon isolation classification

task, but fails to fully match its performance. Further scans in this limited space do not

yield significant boost in AUC or ADO values. Distributions of these EFPs for signal and

background are shown in Fig. 4.4.

A scan guided by the CNN rather than the PFN yields very similar results, with identical

choices for the first three EFPs.
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Figure 4.4: Distributions of the log10 of the selected IRC-safe EFPs as chosen by the black-
box guided strategy, for prompt (signal) muons and non-prompt (background) muons.

4.5.3 IRC-unsafe Observables

To understand the nature of the remaining information used by the PFN but not captured

by the isolation cones and the IRC-safe observables, we expand the search space to include

observables which are not IRC safe ( κ ∈ [−1, 0, 1
4
, 1
2
, 1, 2]), with alternative angular powers

(β ∈ [1
4
, 1
2
, 1, 2, 3, 4]) and with up to n = 7 nodes and d = 7 edges.

A scan of these observables finds a set of 10 which, when combined with the isolation cones

and
∑
pT reach an AUC of 0.827. Due to the overlapping nature of the large space of EFPs,
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Table 4.1: Summary of performance (AUC) in the prompt muon classification task for various
network architectures and input features. Statistical uncertainty in each case is ±0.001 with
95% confidence, measured using bootstrapping over 200 models. Uncertainty due to the
initial conditions of the network is found to be negligible.

Method AUC ADO[PFN]
Single Iso Cone 0.780 0.865
8 Iso 0.794 0.885
8 Iso +

∑
pT + 1 IRC-safe EFPs 0.813 0.897

8 Iso +
∑
pT + 4 IRC-safe EFPs 0.821 0.908

8 Iso +
∑
pT + 10 IRC-unsafe EFPs 0.827 0.923

Calo image CNN 0.842 0.949
Calo cell Energy-Flow Net 0.843 0.947
Calo cell Particle-Flow Net 0.848 1

there are many sets which achieve similar performance. Rather than focusing on the specific

EFPs selected, we take the value of this plateau as a measure of the power contained in our

finite subset of the formally infinite space of EFPs. Again, a similar scan guided by the CNN

rather than the PFN yields very similar results.

4.6 Discussion

The performance of the networks which use the low-level calorimeter cells indicates that

information exists in these cells which is not captured by the isolation cones, see Table 4.1.

A guided search through the space of EFPs closes approximately half of the gap between

these networks, giving us some insight as to the nature of the information. However, given

that the set of EFPs are formally complete, the remaining gap presents an interesting puzzle.

Why is there no EFP which can capture the information used by the calorimter-cell networks?

One clue lies in the assumptions that underly the claim that EFPs are a complete basis

for IRC safe observables. Specifically, it is assumed that the calorimeter cell inputs are

rotationally and translationally invariant, such that a transformation does not affect the value

of the observable. In this case, however, an important element of the learning task violates
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that assumption: the location of the muon at the center of the image. As a consequence,

the EFPs do not have access to the information about the relative angle between a cell and

the muon location, which is clearly important for this task3. Instead, they can only access

angular information between cells. The particle-flow network, in contrast, does not assume

this invariance, and can learn that the angle relative to the center of the image is important.

An extension of the EFP sets which includes an additional node of another class, to indicate

the location of the muon, would likely close the performance gap, but is beyond the scope

of this work.

4.7 Conclusions

We have applied deep networks to low-level calorimeter deposits surrounding prompt and

non-prompt muons in order to estimate the amount of classification power available and to

probe whether the standard methods are fully capturing the relevant information.

The performance of the calorimeter cell networks significantly exceeds the benchmark ap-

proach, a single isolation cone. The use of several isolation cones provides some improvement,

suggesting that there is additional useful information in the full radial energy distribution.

However, a substantial gap remains, hinting the there is non-radial structure in the calorime-

ter cells which provides useful information for classification. We map the strategy of the

calorimeter cell networks into a set of energy flow polynomials, finding four IRC-safe, simple

three-point correlators which capture a significant amount of the missing information. As

they are simple functions of the energy deposition, they can be physically interpreted, and

the fidelity of their modeling can be reliably extrapolated from control regions in collider

data. Any boost in muon identification performance is extremely valuable to searches at the

LHC, especially those with multiple leptons, where event-level efficiencies depend sensitively

3We thank Jesse Thaler for discussions on this point.
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on object-level efficiencies.

Additional, non-IRC safe EFPs provide a further modest boost in performance, but does

not close the gap with the PFN and CNN, suggesting that additional information remains

to be extracted. It is possible that the remaining information could be captured by more

complex observables we have not included in our EFP subset, or require an extension of

the EFP observables to include information such as the location of the muon. The strong

performance of the IRC-safe EFN suggests that most of the additional information beyond

the isolation cones is IRC-safe.

More broadly, the existence of a gap between the performance of state-of-the-art high-level

features and networks using lower-level calorimeter information represents an opportunity to

gather additional power in the battle to suppress lepton backgrounds. Rather than employing

black-box deep networks directly, we have demonstrated the power of using them to identify

the relevant observables from a large list of physically interpretable options. This allows the

physicist to understand the nature of the information being used and to assess its systematic

uncertainty. While these studies were performed with simulated samples, similar studies can

be performed using unsupervised methods [43, 73] on samples of collider data, which we

leave to future studies.
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Chapter 5

Conclusion

The rapid development of deep learning methods in recent years has opened new possibili-

ties to improve classification performance in areas such as computer vision, natural language

processing, medicine, and others. In this thesis, we show it is possible to use deep learn-

ing methods to improve the performance of particle identification and reconstruction in

high-energy physics experiments. This is possible by using neural networks directly in high

dimensional low-level detector information, instead of following the approach of traditional

methods by using physics-based heuristics to reduce the dimensionality of the data before-

hand. Our results suggest traditional methods are losing or distorting information when

performing the dimensionality reduction.

We have shown that neural networks are able to improve performance, at the cost of inter-

pretability. However, it is also possible to recover some or all of this performance by using

the same network to create new interpretable variables which imitate the decisions of the

network. In the case where is was not possible to close the gap between the new inter-

pretable variables and the network, the results suggest the need and a roadmap for more

complex interpretable variables. Therefore, it is possible to use neural networks to improve
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performance while maintaining interpretability, which is of paramount importance for using

machine learning models for physics.

My thesis is one of the first steps in showing the effectiveness of deep learning in high-energy

physics. The improvements I have shown by applying deep learning methods are of critical

importance to high-energy physics experiments such as the Large Hadron Collider (LHC)

since the improvements of classification performance provide evidence to refute or validate

physical theories. The complexity of the detectors, the experiments and data representations

in high-energy physics and physical sciences offers great opportunities for future specialized

developments of deep learning models and I have no doubt this field will continue to grow

in the future.
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Appendix A

Learning to Identify Muons Appendix

A.1 Neural Network Architectures

All networks were trained in Tensorflow[10] and Keras[33]. The networks were optimized

with Adam [65] for up to 100 epochs with early stopping. For all networks except the PFNs,

the weights were initialized using orthogonal weights[76]. Hyperparameters were optimized

using bayesian optimization with the Sherpa hyperparameter optimization library [58]. The

variables and ranges for the hyperparameters are shown in tables A.1 and A.2.

Below are further details regarding the networks which use images and those which use

isolation and EFP observables.

A.1.1 Muon Image Networks

The pixelated images were preprocessed to have zero mean and unit standard deviation.

The best muon image network structure begins with three convolutional blocks. Each block

contains two convolutional layers with 56 filters with rectified linear units [51], followed by
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a 2x2 pooling layer. Afterwards there are four fully connected layers with 178 rectified

linear units and a final layer with a sigmoidal logistic activation function to classify signal

vs background. The model had dropout [81, 22] with value 0.2062 on the fully connected

layers and an initial learning rate of 0.0002 and batch size of 128.

Table A.1: Hyperparameter ranges for bayesian optimization of convolutional networks

Parameter Range Value
Num. of convolutional blocks [1, 3] 3

Num. of filters [16, 128] 56
Num. of fully connected layers [2, 5] 4

Number of hidden units [25, 200] 178
Learning rate [0.0001, 0.01] 0.0002

Dropout [0.0, 0.5] 0.2062

A.1.2 Particle-Flow Networks

The Particle Flow Network (PFN) is trained using the energyflow package[69]. Input

features are taken from the muon image pixels and preprocessed by subtracting the mean

and dividing by the variance. The PFN uses 3 dense layers in the per-particle frontend

module and 3 dense layers in the backend module. Each layer uses 100 nodes, relu activation

and glorot_normal initializer. The final output layer uses a sigmoidal logistic activation

function to predict the probability of signal or background. The Adam optimizer is used with

a learning rate of 0.0001 and trained with a batch size of 128.

A.1.3 Isolation Cone Networks

The isolation inputs are preprocessed by subracting the mean and dividing by the variance.

We trained neural networks with two to eight fully connected hidden layers depending on

the hyperparameter value and a final layer with a sigmoidal logistic activation function to

predict the probability of signal or background.
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For the minimal set of isolation inputs the best model we found had 4 fully connected layers

with 179 rectified linear hidden units[51] and a learning rate of 0.0002 and dropout rate of

0.0160.

Table A.2: Hyperparameter ranges for Bayesian optimization of fully connected networks

Parameter Range ISO Value
Num. of layers [2, 8] 4

Num. of hidden units [1, 200] 179
Learning rate [0.0001, 0.01] 0.0002

Dropout [0.0, 0.5] 0.0160

A.1.4 Isolation Cone and EFP Networks

For all trained models using a combination of isolation cone and EFP features, a single

architecture was chosen. The isolation and EFP inputs are preprocessed by subtracting the

mean and dividing by the variance. Each trained neural network uses four fully connected

hidden layers with 150 rectified linear hidden units[51] and a learning rate of 0.0001. Finally,

an output layer with sigmoidal logistic activation function is used to predict the probability

of signal or background.
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