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AN AVERAGE-CASE ANALYSIS OF BIN PACKING

WITH UNIFORMLY DISTRIBUTED ITEM SIZES

George S. Lueker

Abstract

We analyze the one-dimensional bin-packing problem nnder the

assnmption that bins have nnit capacity, and that items to be packed

are drawn from a uniform distribution on [0,1]. Building on some

recent work by Frederickson, we give an algorithm which uses

n/2+0(n^'^) bins on the average to pack n items. (KnBdel has

achieyed a similar result.) The analysis involves the use of a

certain 1—dimensional random walk. We then show that even an
1/2

optimum packing under this distribution uses n/2+0(n ) bins oh the

average, so our algorithm is asymptotically optimal, up to constant

factors on the amount of wasted space. Finally, following

Frederickson, we show that two well-known greedy bin-packing

algorithms use no more bins than our algorithm! thus their behavior

is also in asymptotically optimal in this sense.

Ij. Introduction

We consider the following problem. Given n numbers " '^n'

represent weights, pack them into a minimum number of bins so that no bin has

a total weight exceeding 1.

The worst-case behavior of algorithms for this problem has been the

subject of considerable investigation. For a long time, the best-known

worst-case asymptotic error bound was 11/9 [Jo73, JDUGG74]. This was improved

very slightly by Yao [TaSO], and then improved to 71/60 by Johnson [GJ80].

Recently an algorithm with an asymptotic bound of l+s, for any 8>0, has been
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obtained IVL81]. Unfortunately, all of these results have drawbacks from a

practical standpoint. The algorithm in [VL81], while theoretically linear,

has a huge constant for small values of e.' The earlier algorithms have error

bounds which might be larger than we would desire.

A number of the early papers [Jo74, JDUGG74] suggested that an

average'case analysis of the problem would be interesting. As observed in

[CSHT80], analyses of algorithms for this problem can quickly become very

complicated; there a next-fit strategy is analyzed under a rather general

distribution of the item sizes For the case in which the sizes are

uniformly drawn from [0,1], this strategy tends to leave the bins about 1/4

empty. Frederickson has shown that a different algorithm tends to waste much

less space. Assuming that the z^ are drawn from a uniform distribution on
2/3

[0,1], he gives an algorithm which uses an average of n/2+0(n ) bins, and

thus tends asymptotically to fill the bins almost completely. One easily sees

that an average of at least n/2 bins will be required, since this is the

expected total of the Xj^. Thus Frederickson has established that the expected

number of bins required is as3nnptotic to n/2. It is interesting, however, to

look at the number of extra bins required beyond the sum of the x^^; as

observed in [Sh77], this is equivalent to looking at the expected amount of

wasted space in the packing. Frederickson's algorithm has an expected wasted

Space of 0(n^'^). Here we present an algorithm with an expected wasted space

of 8(n^^^)j a similar result was achieved by KnSdel [En81]. Moreover, we
1/2

show that even an optimum packing wastes 0(n ) space on the average. Thus

in some sense out algorithm can not be improved, except for constant factors.

Our analysis of this algorithm will use some facts about sums of random

variables, which are well-known or easily established.
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Fact 1. Let Vj, .... Vj^ each have an exponential distribution with

mean ones i.e., each has the density function e for x>0. Then, for any

p<l, the probability that the sum of the is less than or equal to pk is

exponentially small in k. (This is a special case of Theorem 1 in [Ch52]s

such theorems are referred to as theorems about large deviations.)

The next fact is more interesting. The random variables considered will

have distributions which are symmetric about the origins instead of bounding

only the sum of all the random variables^ we wish to bound all of the partial

sums. Thus we wish to bound the probability that a k-step random walk about

the origin ever passes some point x.

Fact 2. Let Wj^, Wj, .... each have a bilateral exponential

distribution; i.e., the density function for each is je Let

F*^(x) be the cumulative probability distribution for the sum of k such

variables; i.e.,

F*'̂ (x) = P{Wj^ +Wj + ... +Wj. <x}.

Then the probability that of partial sums .. .+^lli<k, exceed

X is less than or equal to 2(1 —F (x)). (This is a special case of the

Lfivy inequalities [CT78, Section 3.3, Lemma S, page 711.)

The next two facts have to do with expected values of quantities related

to sums of random variables.

Fact Let f(x) be any density function which satisfies the conditions

for [Fo66, Chapter 5VI.2, Theorem 2, page 508], with r=4. Lot f have mean

zero and variance . and let f**^ denote the pdf for the sum of n independent

draws with pdf f. Then for any fixed a>0.



f Xf °(x) dx = o + o(n''''^).
Jq 2jt

n

Fact 4. J 2"'' (") (i-ii/2) = +o(n '̂̂ ) .
i=ri^/21

Verifications of Facts 3 and 4 axe sketched in the Appendix.
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2j. The algorithm and its analysis

We begin by reviewing Frederickson's algorithm [FrSO], which forms the

basis for our work; a is a parameter which is chosen in advance, and is just

under 1. Frederickson had an important insight which turns out to be central

to an understanding of the bin-packing problem—good solutions can be obtained

by pairing large elements with small elements.

lure BINPACK; comment from [FrSO];

place each element which is greater than a in a bin by itself;
let X. ,x.,,...,x be the remaining elements, in increasing order;

X z n

for i := 1 step 1 until Lm/2J do
Ln

if X +x > 1
~~ i m-i+1

then put Xj^ and x^ ^ in separate new bins
else put X. and x together in a new bin;rwfXrAjna ^

end

^ m is odd then place Xp i>i b bin;

By a careful choice of a, he is able to cause only a few items to exceed a,

and yet guarantee that most of the sums considered in the for-loop are less

than 1.

Our algorithm is a slight modification of Frederickson's, which

eliminates the need to decide a priori on a value for a. (A similar algorithm

has been presented by EnSdel [KnSl].) For convenience in our later analysis,

we will allow the bin capacity to be variable.
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BINPACKl;

ks&ia
place the into increasing order;

lo := 1; hi := n;
while lo < hi do

begin
if X, + X. , is less than the bin capacity
~~ xo hi

then

put X. and x. . together in a new bin;
lo hi

lo := lo + 1; hi := hi - 1;
end

else

begin

put x^^ in a new bin by itself;
hi := hi - 1;

end;
end;

if lo = hi then put x. i in a new bin by itself;~~ ^ hi '

ssd$

A common problem that arises during the analysis of algorithms with

random input is that once the algorithm has run for even a short time, the

distribution of the input has been conditioned in a complicated way;

fortunately, we can get around this problem for the current analysis by a

simple trick. We will let z^, i=l,2,...,n+l be independent draws from a unit

exponential distribution, and set

^0 = 0

*i+l *i ^i+1*

Then it will be the case that all the differences between the successive x.
1

are independent. We will also make a slight change in the statement of the

problem: will be the bin capacity. We will later show how to relate the

results obtained under these assumptions to the original distribution with bin

capacity 1.

We may now write a revised version of BINPACKl which gives more insight

into the processes involved. SUM will be a variable containing the difference
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between tbe bin capacity • BINSl (reap. BINS2) will tell

the nnmber of bins containing 1 (resp. 2) items. EXP will denote a procedure

which returns, at each call, a random variable with an exponential

distribution with mean 1. Note that by our definition of the input

distribution, decreasing hi by 1 will subtract EXP from SUM, and increasing lo

by 1 will add EXP to SUM.

BINPACK2;

SUM := EXP - EXPi BINSl := BINS2 := 0|

least 2 items remain 49

i£ SUM > 0

^ag-in
SUM := SUM - EXP;

BINSl := BINSl + 1;
end

else

be^in
~~ SUM := SUM + EXP - EXP;

BINS2 := BINS2 + 1;

SSA?
end;

if one item remains then BINSl := BINSl + 1;

end;

Be sure to recall that EXP generates an independent drawing at each call;

thus EXP-EXP is not identically zero. In fact, a simple calculation

establishes the well-known fact that EXP-EXP has the bilateral exponential

distribution mentioned in Fact 2.

Now since in the packing produced by this algorithm each bin contains one

or two items, it is clear that

BINS =S_±_|INS1^ (1)

where BINS is the total number of bins used. We now turn to the analysis of

BINSl. Note that as currently written the algorithm is a bit vague, since the

while-loop involves the condition "at least 2 items remain", and this
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condition is not explicitly set in the xemainder of the algorithm. We conld

make this explicit by maintaining a count of all EXP values generated during

the algorithm! when this count exceeds n, we would know that the variables hi

and lo must have met. There is a simpler approach which is sufficient to

enable us to obtain a good bound on BINSl. Note that at most n/2 executions

of the clause dan occur before all of the items are used up. Moreover,

the variable BINSl is nondecreasing as the algorithm proceeds, so the

following algorithm produces a variable B' such that the expectation of B'+l

is an upper bound on that of BINSl.

procedure BINPACE3;

begin
~ SUM := EXP - EXP! B' := Oi

£S£ i := 2 AtfiE 2 BfiUi » &Z

comment the following loop corresponds to the
operation of decrementing hi until the
current Xj^^ and Xj^^ fit into a bin;

mis. SUM > 0 io

PACKl: SUM := SUM - EXPj

if B'<n then B' := B' +1;

comment now we may place x, and x. .* I Q TU^

into a bin together;
PACK2; SUM := SUM + EXP - EXP;

end;

end;

Let p be some real in the range [0,1]. Note that if B' exceeds some number b,

then at least one of the following events must have occurred:

i) At some point, the total of all the quantities added thus far to SUM

in statement PACK2 must have exceeded pb, or

ii) the first b executions of PACEl must have subtracted less than pb from

SUM.

The probability of (ii) is exponentially small in b by Fact 1. Now let be

defined as in Fact 2; then the probability of (i), by that Fact, is at most
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2 - 2F*°'''̂ (pb), where mis the nimber of executions of the main loop, namely

Ln/2J. Adding the probability of (i) and (ii),

P{B' >bl <. 2 - 2F'*®^^(pb) + (exponentially small terms in b) .

Using this inequality. Fact 3, and the fact that Fhas variance 2, one readily
establishes that

E[BINS1] < E[B' +11

^ [(2 - 2F*°^^(pb) + (exponentially small terms in b)] db + 1
~ 0

= (2/p) + o(ii '̂̂ )

-1 ,2s,1/2
7t

Since this holds for p arbitrarily close to 1, we may conclude that

E[BINS1]

Thus in view of (1) we obtain

Theorem 1. Under the distribution of input derived above from the

exponential distribution, the expected number of bins used by BINPACKl is at
most n/2+(^)^^ +o(n ).

Corollary If assume each x^ is drawn uniformly and independently
from [0,11, and that the bin capacity is 1, the expected number of bins used

by algorithm BINPA(X1 is at most

1/2 + +o(a'")

(SimlU, rp.ult. ..t. obt.l«.d by ICnSd.l H£«811, »»in8 KoLogoro,',

inequality. His result states that the expected number of bins is
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n/2+0(n^^^).)

Proof. Note that the behavior of BINPACKl is completely unaffected if we

scale lliin, and the bin capacity by the same factor. Recall that under

the model assumed in Theorem 1, was used as the bin capacity. Suppose we

scale all of the x^, including by dividing by Then the bin
capacity becomes 1, and by [Fe66, Section III.3, Examples (d) and (e). pp.

74-751 the distribution of x^,...,x^ becomes exactly that of the order

statistics of n uniform independent draws from [0,1]. Thus the behavior of

the random variable B' is exactly the same under these two models.

3 . A lower bound

Here we establish that the result of the previous section is optimal, up

to constant factors on the amount of wasted space. In this section, we will

again assume that the bin capacity is 1 and that the x^^ are n uniform

independent draws from [0,11. Let BINS be a random variable telling the

optimum number of bins for a problem instance.

Theorem 2. E[BINS] 2 n/2 + - 1) +o{n '̂̂ ).

Proof. Let Nbe a random variable telling the niuaber of items whose

weight exceeds l/2i clearly no two of these can lie in the same bucket, so

BINS2N. Let T be a random variable telling the total of the weights of the

items) since each bin has capacity 1, BINS>T. Now for any two random

variables Y and Z, not necessarily independent,

P{max(Y,Z) C x] <min(P{Y<x}, P{Z<x}).

Thus
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P{BINS <. x} <. min(P{N 1 x} , P{T 1 x}).

Now let W be a random variable with the PDF

!P{T <. x} for X1n/2
P{N < x} for X > n/2

(One easily checks that this is an increasing function.) Then, letting u (x)

denote the density function for the sum of n uniform draws from [0,11. we have

E[BINS] >. E[W] = n/2 + E[W - n/2]

n

>. n/2 + [ (x-n/2) u*^(x) dx + ^ (i-n/2) (^) 2
® i=rn/21

Applying Fact 3 to the integral, and Fact 4 to the sum, we obtain

n / n \l/2 /n \1/2
2 - <24^^ ^

I . (3 '̂̂ - 1)

4^ ABound on the Behavior of Two CgmmQa Greedy Algorithms

Two common approximation algorithms for bin packing are

best-fit-decreasing (BFD) and first-fit-decreasing (FFD). Each of these

algorithms first sorts the items to be packed into order of decreasing size,

and then packs them in that order, allocating a new bin only when the item

being packed fits in none of the bins currently allocated. If any of the

partially allocated bins can hold the item, FFD uses the one which was

allocated the earliest, while BFD uses the one which can hold the item with
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the least leftover space. The following theorem and its proof are quite

similar to a corresponding result for the algorithm in [Fr80]. In the

theorem, XFD denotes either FFD or BFD.

Theorem The number of bins used by XFD does not exceed the number

used by BINPACKl.

Proof. Let A denote the set of bins used in algorithm BINPACKl which

contain an element greater than 1/2. Let B denote the set of bins used by

BINPACKl which contain no element greater than 1/2. Now suppose we run XFD.

Note that the elements greater than 1/2 are packed first, and each appears in

a separate bin. Thus we may identify these bins with the set A of bins

mentioned above for algorithm BINPACKl. Imagine we also give XFD a set B of

initially empty bins to use during the packing, of cardinality equal to the

set B mentioned above.

Suppose we have partially completed a run of algorithm XFD, and have

packed the elements •••»*£+! thus far. Assume that Xj^l/2. Let

R^={xj.,Xj^_j^,...,Xj^} and let denote a multiset of capacities constructed as

follows:

a) for each bin b in A which contains only one item, include the

remaining capacity of A.

b) for each bin in B which currently contains one element, include the

capacity 1/2.

c) for each bin in B which currently is empty, include two copies of the

capacity 1/2.

Let M. denote a pairing of maximum cardinality between items in and

capacities in such that no element of R^ or is used more than once, and
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in eacli pair the item size is less than or equal to the capacity. TVe

establish the following three facts about the size of these M^,

A) = h. To see this, note that the packing used by BINPACEl packs

at most two items to each bin in B, and does not exceed the capacity

of any bin in A, so it gives us a matching of cardinality h between

the item sizes in and the capacities in S^.

B) For i»h, h-1, 1, if lM |̂=i, then when XFD is packing it can do

so without using any bins beyond those provided by the sets A and B.

To see this, note that describes a way of packing all of the

remaining items into the bins in A and B, so surely there is a way to

pack

C) For i=h, h-1, ..., 2, |-1. Intuitively, the potential

problem is that since packing x^ requires us to remove one item from

R^, and can require us to remove one capacity from the size of the

maximum pairing between R^^ and could conceivably decrease by 2.

Now if x^ is packed into a bin which already had two items, will

be the same as so this problem does not arise. Suppose that x^^ is

packed into a bin which contained fewer than two items; let b be the

minimum of 1/2 and the remaining capacity of the bin into which x^ is

packed by XFD. Then the only case in which the size of the maximum

pairing could decrease by more than one is the case in which both x^^

and b are used in the pairing M^, but x^^ is not paired with b; assume

that this case holds. Let b' be the value paired with x^, and let x'

be the item paired with b. Now since x^^ is paired with b', if XFD is

BFD we know that b is less than b', for BFD always uses the bin of

least possible remaining capacity. If XFD is FFD, we again know that

b is less than b', since FFD uses the first feasible bin and the bins
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coxresponding to yalues in are in order of increasing values.

Therefore, whether XFD is BFD or FFD, x' could be paired with b', so

removing x, from R. and b from S. decreases the cardinality of the
X X i

maximum pairing by at most 1. Thus 1 I—1.

From (A), (B), and (C), it follows that 3tFD will complete the packing

without using any bins beyond those provided in sets Aand B. I

' By this theorem and the results of the previous sections, we obtain the

following theorem.

Theorem £. If we assiune each x^ is drawn uniformly and independently

from [0,1], and that the bin capacity is 1, the expected number of bins used
1/2

by BFD or FH) is n/2+e(n ' ).

5. Other distributions

It would be interesting to investigate the behavior of this problem under

other distributions! it appears that the behavior is quite sensitive to

changes in the distribution. For example, if the x^^ are drawn from a

distribution on [0,1] which has mean 1/2 but has a probability of more than

1/2 of being greater than 1/2, it is easy to establish that the expected

wasted space in the optimum solution is 6(n).
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Appendix I.

In this Appendix we sketch proofs of some of the technical facts used

during the proofs.

Fact Let f(x) be any density function which satisfies the conditions

for [Fe66, Chapter XVI.2, Theorem 2, page 508], with r=4. Let f have mean

zero and variance o , and let f denote the pdf for the sum of n independent

draws with pdf f. Then for any fixed a>0,

j ,n.l/2 ^ , 1/2.I X f (x) dx = o {r—) + o(n ). V2;
Jq

Proof. Define § by x=n^^^o5, where is the variance of f (in this case

2). Following [Fe66, Chapter XVI, Section 1, page 505], we define f^ as

, 1/2 .♦n, 1/2f^(5) = n or f (n a %).

Making a change of variable in the integral of (2) yields

f°n 1/2
n ' a% f (?) d?,

Jq n

which can be written as

1/2. „«l/2/„an lo < 1/2
f n^^^o? z(5) d? + f n '̂̂ o? (f (?) - z(?)) d?, (3)
•'o •'o

where z(?) denotes the density function for the normal distribution with zero

mean and unit variance. Now

1/2,-an /o ^
J no? z(?) d? = c (^) + o(l),

by direct calculation. Next, by [Fe66, section XVI.2, Theorem 2, page 508],
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ve have

fj^(V - z(V = [n P3U) + ^4(5)] z(4) +o(n ^)»

where and P^ are polynomials whose coefficients do not depend on n. Thus

the second integral in (3) can be rewritten as

J ° n^^V KrT '̂̂ PgCU +n"^ P^C^) z(U +o(n~^)] d?
1/2,

»an 10 —1/9 1/2
=J 05 iPgCS) +n ^•

Now for any polynomial p.

00

j |p(IJ)| z(|) =0(1)

1/2
so (4) is o(n ), completing the proof.

Fact 4., Y 2" (J) (i-n/2) = +o(n '̂̂ ) .
i=rn/21

Proof sketch. Rewrite the sum as

n+l

J 2 ^ (LxJ-n/2) dx.
x=rn/2"] *

Change the lower limit of the integral to n/2; clearly this introduces only

3/5an 0(1) error. Now let be the interval [n/2,n/2+n ], and Ij be the
3/5

interval [n/2+n fn+1]. Using [Fe68, VII.3< Theorem 1, page 1841# we may

rewrite the part of the integral in (5) over I^ as

3/5
-n/2+n ...

(1 + o(l)) (4/n)^'^ z((4/n)- ''(LxJ-n/2)) (LxJ-n/2) di
"'n/2

(4)

(5)
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1/2 1/2(1 + o(l)) (4/n)^''' [z((4/ii)-^'^(x-n/2)) U-n/2) + 0(1)] dx,
n/2

where z(x) is again the normal density function with zero mean and unit

variance, and the equality follows from the fact that the derivative of

1/2s z((4/n) x) is uniformly bounded. Now by direct computation,

1/2 1/2(4/n) I z((4/n) (x-n/2)) (x-n/2) dx
n/2

• o'l'-

so the integral of (5) over is

(1 +0(1)) [(^)^^^ +0(1) +

(^)^^^ +o(n^^^)

The integral over may be seen to be o(l), using the above-cited theorem and

L^j) overthe monotonicity of 2 ''^(i^i) over I.. Thus the fact follows.
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