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ABSTRACT OF THE DISSERTATION 

 

Relations in Human Cognition 

 

by 

 

Nicholas Thomas Ichien 

Doctor of Philosophy in Psychology 

University of California, Los Angeles, 2023 

Professor Hongjing Lu, Chair 

 

Abstract: Human thinking relies on the ability to process relations between individuals, kinds, 

properties, and other relations. Explicit relation processing has been invoked to explain our ability 

to grasp ‘cross-domain’ analogies between situations whose similarity is driven by a shared 

relational structure, rather than any similarities among the relata populating each analog (e.g., 

between the solar system and an atom) and ‘cross-modal’ analogies between relata spanning 

different sensory modalities (e.g., sound and vision); generalize relational schemas, categories 

whose members share some canonical structure (e.g., things consisting of elements converging on 

a central location); or abstract rule-like sequences (e.g., an A-B-A sequence of syllables). At the 

same time, explicit relation processing requires that a reasoner simultaneously represent a set of 

individual relata and then bind them to a relational structure. This ability is slow to develop in 

childhood, and even among adults, it places high demands on working memory. Relations thus 
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raise a tension between the expressive advantage they confer and the cognitive cost they impose, 

and this tension suggests that the human ability for relation processing does not imply its inevitable 

use, especially when less-demanding alternatives are available. 

The present dissertation confronts this tension and attempts to specify the computational 

mechanisms by which human reasoners process relations in the face of their cognitive demands. It 

presents novel research that clarifies how humans make use of explicitly relational thought instead 

of nonrelational alternatives. In Chapter 1, I start by examining the role of relations in comparison. 

Cognitive scientists researching analogy have generalized the processes governing analogical 

comparison, and the representations of relational structure that it operates on, to all comparison. A 

consequence of this view is that human reasoners make use of relations whenever they make any 

comparison. I test this claim and show that whereas relations do tend to underlie comparisons 

aimed at assessing similarity, they tend not to underlie assessments of difference. This asymmetry 

is consistent with recent accounts of a representational asymmetry between the relations same and 

different, in which different is represented as a negation of the relation same (i.e., different is 

represented as not-same). When judging difference, human reasoners are more likely to shift to 

simpler non-relational representations to ease working memory capacity. 

Having lent support to the claim that explicit similarity judgments do tend to incorporate 

relational information, I extend this claim to implicit similarity comparisons made during 

recognition in Chapter 2. When an agent attempts to assess whether they recognize a given 

stimulus, they make an implicit comparison between the perceptually available stimulus to a 

representation in memory. I show that when agents make this comparison, they tend to incorporate 

relational information; indeed, relations are available to serve as cues in human recognition 

memory. 
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Finally, in Chapter 3, I examine a cognitive process, generative analogical inference, that 

integrates human reasoning and memory, investigated relatively independently in Chapters 1 and 

2 respectively. I introduce a computational model of this process, in which a reasoner uses their 

prior knowledge of some familiar source domain to elaborate on some less-familiar target domain. 

This new model can reproduce human-like inference whether the relational structure that 

constrains inference is prespecified in the model input, as required by existing inference models, 

or are unspecified, unlike existing models. Across three simulations, I use comparisons between 

this model and a non-relational control model to clarify what relations contribute to the inference 

process. Specifically, relations promote far generalization across semantically distance analogs. 

My dissertation instantiates a framework for studying human relation processing that 

acknowledges both the expressive advantages that relations provide and the cognitive costs 

imposed by processing them. 

 

Keywords: relations, concepts, analogy, representation, reasoning, memory  
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Introduction 

Human intelligence relies on the ability to flexibly represent various forms of structured 

information. An agent’s navigation and adaptive manipulation of their physical environment 

benefits not only from representations of the objects that populate it, but also from representations 

of the spatial and functional organization among those objects, of the constituent parts of those 

objects and their internal organization, and of the hierarchical organization relating object parts, 

whole objects, and groups of objects (Bapst et al., 2019; P. Battaglia et al., 2016; Biederman, 1987; 

Kubricht et al., 2017). Similarly, the ability to comprehend and productively generate meaningful 

linguistic, logical, and algebraic expressions is made much more efficient by the representation of 

those expressions as constructed from constituent concepts serving particular roles in those 

expressions, which in turn may be recursively embedded in more complex expressions (Fodor & 

Pylyshyn, 1988; Marcus, 2003). Finally, useful generalizations that humans exploit in everyday 

reasoning and problem solving, as well as those leading to technological innovation and scientific 

discovery, abstract across instances defined at least in part by similar conceptual or visual 

structures (Gick & Holyoak, 1980; Holyoak & Thagard, 1994a; Kittur et al., 2019). 

At the core of the ability to represent structured information is the ability to represent 

relations between individuals, kinds, properties, and other relations. Psychological descriptions of 

relations have been guided by formal analyses that represent them by a predicate-argument 

structure (Doumas & Hummel, 2005; Gentner, 1983; Halford et al., 1998; Hummel & Holyoak, 

1997, 2003). Under these analyses, explicit relation processing necessitates holding a relation in 

mind (e.g., X is taller than Y) and dynamically (i.e., temporarily) binding that relation to some set 

of discrete relata (e.g., Jane and Jack) that each fill a role (e.g., X, the taller filler, and Y, the shorter 

filler) in the relation to form some evaluable (i.e., true or false) expression integrating the two (e.g., 
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Jane is taller than Jack). (Hummel, 2010, 2011). This dynamic binding enables the same relation 

to be bound to multiple sets of relata, which permits representation of other evaluable expressions 

involving the same relation but novel combinations of relata (e.g., Jack is taller than Judy and 

Jane is taller than Judy). Relations constitute one kind of mental representation that instantiates a 

language of thought (LOT; Fodor, 1979; Quilty-Dunn et al., 2022), and so evidence for explicit 

relation representation in human cognition lends support for the hypothesis that the mind 

implements a language-like representational system that operates across semantic domains and 

sensory modalities and whose constituents are able to represent abstract content (e.g., X is the same 

as Y), serve as arguments to logical operations (e.g., negation), and have a predicate-argument 

structure (as described above). 

The proposal that human reasoners actually possess this ability to process relations 

explicitly seems necessary to explain their facility relative to other animal species in reasoning 

with relations (Halford et al., 1998; Penn et al., 2008), as well as their ability to grasp cross-domain 

analogies between situations for which similarity is driven by a shared relational structure, rather 

than any similarities among the relata populating each analog (e.g., between the solar system and 

an atom; Gentner, 1983). Explicit relations also underpin cross-modal analogies between sets of 

relata spanning different sensory modalities (e.g., sound and vision;  Hafri et al., 2023; Weinberger 

et al., 2022). They also allow generalization to form relational schemas— categories whose 

members share some canonical structure (e.g., things consisting of elements converging on a 

central location; Gick & Holyoak, 1983)—as well as abstract rule-like sequences (e.g., an A-B-A 

sequence of syllables; Marcus et al., 1999). Moreover, people readily dissociate featural similarity 

among individual relata from relational similarity among sets of relata (Bassok & Medin, 1997; 

Medin et al., 1990). Relations prime each other such that processing one set of relata (e.g., 
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bear:cave) facilitates subsequent processing of other sequentially presented sets of relata if they 

instantiate the same relation (e.g., bird:nest vs. bird:desert; Estes & Jones, 2006; Popov & 

Hristova, 2015; Spellman et al., 2001). Furthermore, human reasoning is sensitive to variations in 

a relation’s arity—the number of relata that relation connects—suggesting that people continue to 

process individual relata as discrete fillers when bound to a given relation (Andrews & Halford, 

2002; Armstrong, 1978; Halford et al., 1998; Kroger et al., 2004). 

The need to simultaneously represent a set of individual relata and then bind them to a 

relational structure is cognitively demanding, which explains in part why relation processing is 

relatively slow to develop in childhood (Cowan, 2001; Hummel & Holyoak, 2003; Morrison et al., 

2011). Even among adults, explicitly relational thought continues to place high demands on 

working memory (Bunge et al., 2005; Green et al., 2010; Halford et al., 1998; Kroger et al., 2002, 

2004; Waltz et al., 2000), and relation processing takes longer than processing the individual relata 

to which relations are bound (Goldstone & Medin, 1994). 

Relations thus raise a tension between the expressive advantages they confer and the 

cognitive costs they impose. This tension suggests that the human ability for relation processing 

does not imply its inevitable use, especially when cognitively cheaper alternatives are available. 

Lurking behind invocations of relational (and, more generally, symbolic) thought is a cacophony 

of voices affirming the empirical adequacy of non-relational, association-based approaches to 

human cognition (Leech et al., 2008; Mikolov, Sutskever, et al., 2013; Rescorla & Wagner, 1972; 

Rumelhart & Abrahamson, 1973; Shanks & Dickinson, 1988). The present dissertation confronts 

this tension, attempting to clarify the conditions under which human reasoners actually process 

relations in despite its cognitive demands, and presents novel research that clarifies how humans 

make use of explicitly relational thought instead of its nonrelational alternatives. 
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Overview 

In Chapter 1, I assess the usage of relations in comparison judgments. A longstanding 

proposal made by cognitive scientists attempting to clarify how humans make analogical 

comparisons is that this ability necessitates relation processing, and the most successful 

computational models incorporate explicit relation representations (Gentner & Forbus, 2011; 

Holyoak, 2012). Analogy pervades human cognition, including concept and category learning 

(Carey, 2011; Gentner & Kurtz, 2005; Goldwater & Schalk, 2016), language processing 

(Ambridge, 2020; Goldwater, 2017; Martin & Doumas, 2020), social reasoning (Hoyos et al., 

2020; Kalkstein et al., 2020), explanation (Edwards et al., 2019; Hoyos & Gentner, 2017), and 

problem solving (Gick & Holyoak, 1980, 1983). It therefore seems possible that all comparison is 

analogical comparison (Gentner & Markman, 1994; Markman & Gentner, 1993a, 1993b; Sagi et 

al., 2012). I test this claim in light of recent research suggesting that comparison is not the relational 

monolith that an analogical imperialist would suggest it is. Instead, I provide evidence for an 

alternative hypothesis that comparisons assessing difference are distinct from those assessing 

similarity; and that the former involve negation and are thus more complex than the latter (i.e., 

different is implemented as not-same; Hochmann, 2021; Hochmann et al., 2016, 2018). 

Specifically, I show that assessments of difference are often too demanding to additionally 

incorporate relational information, whereas the relative simplicity of assessing similarity makes 

relational processing more prevalent. 

In Chapter 2, I move on to test the presence of relation processing during recognition, 

which involves an implicit comparison between a representation of a given stimulus and a memory 

representation. Having shown in Chapter 1 that human reasoners tend to incorporate relational 

information when explicitly assessing similarity, I examine whether humans use relations as cues 
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when assessing the similarity between what is perceptually available and what is encoded in 

episodic memory. Popov et al. (2017) argued for the existence of such relation processing, 

demonstrating an effect that they called relational luring in which people sometimes falsely 

recognize novel word-pair stimuli (e.g., pipe : water) when they are analogous to a studied word 

pair (e.g., artery : blood), extending evidence for language-of-thought-style representations to 

episodic memory (Mahr & Schacter, 2023). In their demonstration of relational luring, Popov et 

al. did not directly test whether relation processing is, in fact, necessary for explaining this effect. 

I show that a well-established computational model of old/new recognition, Robert Nosofsky’s 

Generalized Context Model (GCM; Nosofsky, 1986), can weakly reproduce this effect when it 

operates over non-relational lexical representations, but requires explicit relation representations 

to reproduce the effect strongly and robustly. These simulations encourage caution when 

attributing relation processing on the basis of a given behavioral phenomenon, especially when 

demonstrated using verbal materials in which non-relational representations may contain 

unexpectedly “relational” content. However, they ultimately do support Popov et al.’s original 

claim that relational luring constitutes evidence that relations are encoded and retrieved in episodic 

memory. 

Finally, in Chapter 3, I introduce a computational model that incorporates relations as 

constraints on generative analogical inference (i.e., the process of generating a response to a 

problem such as the analogy up:down :: fast:?). The process of analogical generation requires 

cognitive process that integrate reasoning and memory, which were investigated separately in 

Chapters 1 and 2, respectively. This model goes beyond existing models of analogical inference, 

which all rely on explicit relations to be pre-specified in their input (Burstein, 1983; Carbonell, 

1983, 1993; Falkenhainer et al., 1989; Halford et al., 1994; Hofstadter & Mitchell, 1994; Holyoak 
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et al., 1994; Holyoak & Thagard, 1989; Hummel & Holyoak, 2003; Keane & Brayshaw, 1988; 

Kokinov, 1994). In contrast, the proposed model can simulate inference with or without relations 

being pre-specified in its input. In assuming that relations governing analogical inference are pre-

specified, existing models of analogical inference make the logically prior assumption that 

humanlike inference requires explicit representations of relations. But in principle, analogical 

inference could be performed without explicit relation representations, and this proposal has been 

explored to a small extent with limited success (Leech et al., 2008; Mikolov, Sutskever, et al., 

2013; Peterson et al., 2020; Rumelhart & Abrahamson, 1973). In this chapter, I compare the 

proposed model, which operates on explicit relation representations, with control models lacking 

such representations. In a series of simulations, I systematically show that relations contribute to 

inference by enabling generalization across semantic domains; allowing analogies across a source 

and target that are robust to variations in the similarity or degree of association between the source 

and target (Doumas & Hummel, 2005; Gentner, 1983; Holyoak, 2012). 

Overall, my dissertation tests the usage of explicit relations during cognitive processes 

emphasizing reasoning (Chapter 1), memory (Chapter 2), and an integration of the two (Chapter 

3). Ultimately, I find evidence for the usage of relations in explicit comparisons assessing 

similarity but not difference, in implicit comparisons involved in recognition, and in analogical 

inference. More importantly, my dissertation instantiates a perspective on relation processing that 

takes seriously the tension between its expressive value and its cognitive demands. 
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Chapter 1: Relations and comparison 

Introduction 

A naïve construal of similarity and difference is that one is the inverse of the other: As 

things become more similar, they become less different. Cognitive scientists, however, have 

demonstrated that human reasoners process the two relations in a way that violates this inverse 

relation. Specifically, people tend to use different information when judging what makes things 

similar than when judging what makes things different (Bassok & Medin, 1997; Medin et al., 1990; 

Simmons & Estes, 2008; Tversky, 1977).  For example, Medin et al. (1990) asked participants to 

select which of two options was more visually similar to or more different from a standard. Across 

trials, one option was relationally more similar to the standard and the other was more featurally 

similar. Participants tended to select the relationally similar option as both more similar and more 

different from the standard. Bassok and Medin (1997) found the same asymmetry using verbal 

stimuli. Broadly, these findings indicate that people tend to consider relations more heavily when 

judging similarity than when judging difference. However, the reason for this asymmetry remains 

unclear. 

One attempt to explain this phenomenon invokes structure mapping theory (Gentner, 

1983). Under this hypothesis, assessments of similarity and difference both consist in analogical 

comparison and involve the same comparison process of structural alignment, in which 

representations of entity features and their structural relations are placed into one-to-one 

correspondence (Gentner & Markman, 1994; Markman, 1996; Markman & Gentner, 1993a; Sagi 

et al., 2012). The asymmetry observed by Medin et al. (1990) is hypothesized to arise from an 

asymmetry in the relevant output of this comparison process. Whereas all commonalities 

contribute to similarity judgments, differences are split into alignable differences (i.e., those filling 
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corresponding roles within a shared relational structure) and nonalignable differences (i.e., those 

not based on corresponding roles). For example, in a comparison between a car and a bicycle, 

wheel number would be an alignable difference (i.e., 4 vs. 2), whereas window number would be 

a nonalignable difference because this feature is only applicable to cars and not bicycles. 

Proponents of this explanation noted that the featurally-similar option in the study by 

Medin et al. (1990) did not involve a salient relation, so that any relational difference between it 

and the standard did not constitute an alignable difference, and was therefore ignored in difference 

comparisons. However, later work found that both alignable and nonalignable differences 

contribute to judgments of difference, and that the latter actually exerted a greater influence than 

the former (Estes & Hasson, 2004). This results casts strong doubt on the core assumption that 

allowed structural alignment theory to potentially account for asymmetries in similarity and 

difference judgments. 

As an alternative explanation, I propose this asymmetry emerges from a representational 

asymmetry between the relations same and different. Whereas assessing similarity involves a 

relatively straightforward comparison of degree of sameness, assessing difference involves a more 

complex comparison of not-sameness. As a result, assessments of difference involve greater 

processing demands than do assessments of similarity. This analysis has been used to explain the 

well-established developmental lag between children’s understanding of the concepts same vs. 

different  (Hochmann, 2021; Hochmann et al., 2016, 2018). 

In general, processing of negation tends to place additional cognitive load on human 

reasoning. For example, determining the truth of a proposition including a negated expression 

(e.g., “star isn’t above the plus”) takes longer than a matched positive expression (e.g., “star is 

below the plus”) (P. A. Carpenter & Just, 1975; Clark & Chase, 1972). Introducing more negation 
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into sentences makes them more difficult to interpret (e.g., “Because he often worked for hours at 

a time, no one believed that he was not capable of sustained effort”) (Sherman, 1976). Previous 

research has shown that processing negation often involves multiple steps, including processing 

the affirmative components of negated phrases before processing the entire phrase (Hasson & 

Glucksberg, 2006). Although the complexity of negation is most pronounced when an explicit 

negative such as not is used, processing difficulty is also increased for expressions that incorporate 

implicit negation (e.g., words such as few, little, or deny) (Clark, 1976). 

When human reasoners compare entities, they tend to do so on the basis of both features 

of individual entities, and also relations between entities and their component parts. Importantly, 

processing and comparing relational information is more cognitively demanding than processing 

featural information (Bunge et al., 2005; Green et al., 2010; Halford et al., 1998; Kroger et al., 

2002, 2004; Waltz et al., 2000). It follows that incorporating relational information will be 

particularly demanding when the task also involves negation. As a consequence, difference 

judgments—which involve implicit negation—are less likely to take account of relational 

information. 

In the following experiment, I tested this processing-demand hypothesis for both verbal 

comparisons between word pairs and visual comparisons between sets of geometric shapes. For 

both types of stimuli, I measured participants’ sensitivity to featural and relational information in 

a 2-alternative forced-choice task, in which participants selected which of two options was more 

similar to or more different from a standard. In order to directly examine the relative difficulty of 

similarity and difference judgments, I included unambiguous comparisons, in which one option 

was unambiguously more similar to a standard than the other based either on features or on 

relations I predicted that even for unambiguous trials, participants would have greater difficulty in 
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detecting relational difference compared to relational similarity. I also included ambiguous 

comparisons, for which either of the options might be selected depending on whether features or 

relations are emphasized (Bassok & Medin, 1997; Medin et al., 1990).  I predicted that when 

judging difference as compared to similarity, participants would tend to base their choices on 

features rather than relations. 

Experiment 1 

Method 

Participants. Participants were 184 undergraduates (Mage = 20.70, SDage = 3.73, range = 

[18, 51]) at UCLA. This sample consisted of 3 nonbinary, 128 female, and 51 male participants; 2 

participants did not report their gender. All participants completed experimental tasks online to 

obtain partial course credit in a psychology class. The study was approved by the Institutional 

Review Board at UCLA. 

 

 

Figure 1: Example trials of the verbal and visual comparison tasks. 

In both examples, the left bottom option is more featurally similar to but more relationally different from the standard 

at the top, whereas the right option is more featurally different from but more relationally similar to the standard. 

 

Comparison tasks. All participants completed two comparison tasks, a verbal task 

featuring word-pair stimuli and a visual task featuring geometric shape stimuli. On each trial, 

participants were presented with a standard at the top of the screen and two options on either side 

at the bottom of the screen. Figure 1 shows an example trial of the verbal task on the left and the 
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visual task on the right. Some participants were instructed to select which option was more similar 

to the standard across both tasks, whereas other participants were asked to select which was more 

different from the standard across both tasks. 

Each comparison task consisted of 24 trials, presented in a random order. Of these, 6 

unambiguous trials included one option that was unambiguously more similar to the standard than 

the other. On half of the unambiguous trials, the similar option was more featurally similar to the 

standard than the other option, whereas both options were equally relationally similar to the 

standard. I refer to these as featural trials, The other 3 unambiguous trials were relational trials. 

On these, the similar option was more relationally similar to the standard, whereas both options 

were equally featurally similar to the standard. 

Unambiguous trials enabled us to compare the difficulty of incorporating featural and 

relational information in similarity and difference judgments. Failure to select the similar option 

on featural trials would reflect a difficulty with incorporating featural similarity, whereas failure 

to select the similar option on relational trials would reflect a difficulty with incorporating 

relational similarity. I expected that relational trials would be more cognitively demanding, and 

hence prove more difficult for participants judging difference as compared to similarity. On the 

other hand, since featural trials could be successfully completed without any relation processing, 

performance for difference versus similarity judgments was expected to be more equal. 

The remaining 18 trials consisted of one option that was more featurally similar to but 

relationally different from the standard (FS/RD; e.g., the left option of both trials depicted in Figure 

1) than the other option, which was more featurally different from but relationally similar to the 

standard (FD/RS; e.g., the right options of both trials in Figure 1). I refer to these trials as 

ambiguous trials because they were constructed so that selecting either option was valid, 
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depending on a participant’s criteria for judging similarity or difference. I used these trials to 

compare participants’ preferential weighting of featural or relational information in their similarity 

and difference judgments. Selecting the FS/RD option as more similar indicates a preferential 

weighting of featural information, whereas selecting it as more different indicates a preferential 

weighting of relational information, and vice versa for selecting the FD/RS option. I hypothesized 

that since difference judgments require more complex comparisons than similarity judgments, 

participants would weight featural similarity more heavily for difference judgments in order to 

ease the cognitive demands of the comparison. I therefore predicted that participants would select 

the FD/RS option with greater frequency than the FS/RD option when judging both similarity and 

difference: Similarity participants would select the former option on the basis of relational 

similarity, whereas difference participants would do so on the basis of featural difference.  

For the verbal task, featural similarity was determined by the semantic similarity among 

the individual words in each word pair. The left panel of Figure 1 shows an example of an 

ambiguous trial of the verbal task. The individual words composing the standard (thorn and rose) 

and those composing the right option (shrub and bush) all refer to concepts related to garden plants, 

and thus are more semantically similar than the words composing the left option (finger and hand), 

which are generally less semantically similar to those in the standard. 

Relational similarity was determined by the semantic relation instantiated by each word 

pair. Returning to the left panel of Figure 1, the standard (thorn:rose) and the left option 

(finger:hand) both instantiate the semantic relation part-of, and are thus more relationally similar 

to each other than the standard is to the right option (shrub:bush), which most saliently instantiates 

an instance-of relation (which does not match the standard’s relation). In addition to part-of and 
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instance-of relations, verbal comparison trials featured antonym (e.g., love:hate), synonym (e.g., 

big:large), category coordinate (e.g., broom:mop), and  located-in (e.g., grill:patio) relations. 

Importantly, all FS/RD options in the verbal comparison task saliently instantiated one of 

the relations listed above. For instance, on one trial, participants were given the standard 

hoof:horse and asked to choose between the FS/RD option goat:cow and the FS/RS option 

wheel:bicycle. All three word pairs instantiate some binary semantic relation (either part-of or 

category coordinate). Accordingly, the relations constitute an alignable difference. Structure 

mapping theory therefore predicts that  mismatching relations (e.g., between hoof:horse and 

goat:cow) will contribute to difference judgments just as much as do mismatching features 

(Gentner & Markman, 1994; Markman, 1996). Structure mapping theory thus predicts symmetric 

responding for similarity and difference judgments on ambiguous trials: Participants should select 

all options with the same frequency, regardless of whether they are judging similarity or difference. 

For the visual comparison task, featural similarity was determined by a shared salient visual 

feature among individual objects, either shape (as with the left option in the right panel of Figure 

1) or shading. Relational similarity was determined by the visual relation instantiated by each set 

of shapes. Most of the visual comparison trials were comparable to the one presented in the right 

panel of Figure 1, where the standard and the FD/RS option (right) instantiated the same relation 

and each consisted of repetitions of different shapes, while the FS/RD option (left) violated the 

standard’s same relation but instantiated a same-shading relation and shared one object of the same 

shape as the standard. Other visual relations featured in this task included symmetry, consisting of 

two identical objects reflected about a vertical axis; ABA sequences consisting of three objects, of 

which the first and last were identical to each other; ABC sequences consisting of three unique 

objects; and AABB sequences consisting of two repetitions of different objects. I acknowledge that 
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some FS/RD options in the visual comparison task may not have been interpreted as instantiating 

a relation, so performance on this test does not constitute as strong a test of the structure mapping 

theory as does the verbal comparison task. 

Ravens Progressive Matrices. Following the verbal comparison task, all participants 

completed an abridged, 12-problem version of the Ravens Advanced Progressive Matrices (RPM) 

(Arthur et al., 1999). On each problem in this task, participants are presented with a 3x3 array of 

simple geometric objects, with the object in the bottom-right corner of the array missing, and they 

are asked to select which one of 8 options best completes the pattern instantiated by the incomplete 

array. Carpenter et al. (1990) showed that individual differences in performance on these visual 

reasoning problems predict differences in the ability to induce abstract relations between objects 

and to maintain a hierarchy of problem goals and subgoals in working memory. I used this test as 

a measure of individual differences in general reasoning ability. Since my key manipulation of 

comparison type (similarity vs. difference) was between-subjects, I included RPM score as a 

covariate in analyses, in order to compare performance on similarity versus difference judgments 

after controlling for any individual differences in general reasoning ability. 

Procedure. All participants completed a verbal comparison task and a visual comparison 

task in a counterbalanced order, and then completed the Ravens Progressive Matrices. 
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Figure 2: Human accuracy on unambiguous trials of verbal and visual  comparison tasks. 

Accuracy is broken down according to trial type (featural vs. relational) and comparison type (difference vs. 

similarity). Error bars reflect ± standard error of the mean, and horizontal line reflects chance performance. 

 

Results 

Performance on unambiguous trials. Performance on unambiguous trials across 

conditions is depicted in Figure 2. Overall, participants performed well on unambiguous trials. 

Those making similarity judgments (n = 98) frequently selected the more similar option for both 

the verbal task (Msim = .80, SDsim = .17) and the visual task (Msim = .86, SDsim = .14). Those making 

difference judgments (n = 86) frequently selected the more different option across both tasks 

(verbal: Mdiff = .77, SDdiff = .21; visual: Mdiff = .77, SDdiff = .22). Hereafter, I refer to the responses 

described above as ‘accurate’ responses. Of particular interest was the relative accuracy with 

which similarity and difference participants completed relational trials. I hypothesized that 

assessing relational difference is more overtly cognitively demanding than assessing relational 

similarity, and so I predicted that participants making difference judgments would perform less 

accurately on relational trials than those making similarity judgments. On the other hand, I did not 

anticipate a corresponding performance difference for featural trials. 

I used the glmer function from version 1.1.26 of the LME4 R package (Bates et al., 2015) 

in R version 4.1.1 (R. Core Team, 2021) to fit a logistic mixed-effects model to performance on 

unambiguous trials. I defined a full model including participant and comparison problem as 
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random intercept effects; comparison task (verbal vs. visual), comparison type (similarity vs. 

difference) and trial type (featural vs. relational), as well as an interaction between the last two as 

fixed effects. As discussed previously, I included RPM score as a covariate, along with task order 

(verbal first vs. visual first) and trial number. The latter two variables respectively account for any 

impact of task order and any potential improvement in performance across trials within each task. 

I used likelihood-ratio tests to compare this full model to reduced models that omitted a 

term of interest but that was otherwise equivalent to the full model. First, I tested whether 

performance generally differed across verbal and visual tasks. To do so, I fit a reduced model to 

the data that lacked the comparison task term but that was otherwise equivalent to the full model. 

I used a likelihood ratio test to compare the full model to the reduced model and found that 

removing the comparison task term did not increase model prediction error, ∆AIC = -1.40, χ2 (1) 

= .65, p = .420. This result indicates that verbal and visual tasks did not differ in their overall 

difficulty. 

Next, I tested the processing-demand hypothesis’s prediction that relational trials would be 

more difficult for participants judging difference than for those judging similarity. In order to do 

to so I compared the full model to a reduced model that lacked the judgment type x trial type 

interaction term (but that retained the individual terms for judgment type and trial type). Dropping 

the interaction term did increase model prediction error, ∆AIC = 10.7, χ2 (2) = 14.66, p < .001, 

indicating that performance differences between participants making similarity judgments and 

difference judgments varied across featural and relational trials. To examine this interaction 

further, I used the emmeans and pairs functions from version 1.8.4 of the emmeans R package 

(Lenth, 2023) to compare the relevant estimated marginal means of the full model. Across verbal 

and visual tasks, similarity participants (M = .81, SD = .18) outperformed difference participants 
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(M = .69, SE = .22) on relational trials, z = 4.81, p < .001, but not on featural trials, z = .04, p = 

.966 (similarity: M = .84, SD = .14; difference: M = .84, SD = .20). This result supports the 

processing-demand hypothesis’s prediction that difference judgments involve more complex 

comparisons than similarity judgments, which particularly impact relational trials. Notably this 

difference in performance persisted even after I accounted for individual differences in reasoning 

ability by including RPM score as a covariate in the full model. Indeed, a likelihood ratio test 

comparing the full model and a reduced model that lacked the RPM score term showed that 

removing that term increased model prediction error, ∆AIC = 13.5, χ2 (1) = 15.56, p < .001. Thus, 

even though general reasoning ability influenced performance on unambiguous trials, comparison 

type impacted performance specifically on relational trials, over and above individual differences 

in this ability. 

 

 

Figure 3: Relational response rate on ambiguous trials in verbal and visual comparison tasks. 

Response rates are broken down according to comparison type (difference vs. similarity). Unfilled circles each reflect 

an individual participant’s response rates, dark lines reflect mean response rates, box boundaries reflect ± standard 

error of the mean, and horizontal line corresponds to indiscriminate selection of relational versus featural options. 
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Relational responding on ambiguous trials. Having confirmed that detecting relational 

difference was more difficult on unambiguous trials than was detecting relational similarity, I went 

on to examine participants’ preferential weighting of featural and relational information in 

ambiguous comparisons for which the two kinds of information are pitted against each other. 

Overall, participants selected the FD/RS option more often regardless of whether they were 

judging similarity (M = .61, SD = .29) or difference (M = .62, SD = .26). Notably, selecting this 

option implies different criteria based on comparison type: Selecting FD/RS as more similar 

implies an emphasis on relational similarity, whereas selecting that option as more different 

implies an emphasis on featural difference. In order to assess participant responses across 

comparison types (similarity vs. difference), I grouped responses according to whether they 

indicated an emphasis on relational information. I thus compared responses in which similarity 

participants selected the FD/RS option and in which difference participants selected the FS/RD 

option, and refer to these as relational responses. 

As with unambiguous trials, I fit logistic mixed-effects models to predict relational 

responses on ambiguous trials. I defined a full model including participant and comparison 

problem as random intercept effects; comparison task (verbal vs. visual), comparison type 

(similarity vs. difference) as fixed effects; and RPM score, task order (verbal first vs. visual first), 

and trial number as covariates. 

As was done for unambiguous trials, I used likelihood-ratio tests to compare this full model 

to reduced models that omitted a term of interest but that was otherwise equivalent to the full 

model. First, I compared the full model to a reduced model omitting the comparison task term. I 

found that dropping this term did not reduce model prediction error, ∆AIC = -2.0, χ2 (1) = .01, p = 
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.930. This result indicates that relational responding did not differ across verbal and visual 

comparison tasks. 

Next, I compared relational response rates for similarity judgments and difference 

judgments, to test my main prediction that participants will preferentially weight relational 

information more when judging similarity than when judging difference. Indeed, dropping the 

comparison type term from the full model did increase prediction error, ∆AIC = 33.3, χ2 (1) = 

35.31, p < .001, which confirms the prediction that relational response rates were affected by 

comparison type on ambiguous trials. As on unambiguous trials, this effect on ambiguous trials 

held even after I accounted for individual differences in reasoning ability by including RPM score 

as a covariate in the full model. Omitting RPM score from the full model also increased model 

prediction error, ∆AIC = 2.6, χ2 (1) = 4.60, p = .032. Thus even though individual differences in 

reasoning ability predicted relational responding on ambiguous trials, my manipulation of 

comparison type impacted responses over and above these individual differences. 

This result disconfirms structure mapping theory’s hypothesis that both similarity and 

difference judgments are based on the same inputs to a structural alignment process (Gentner, 

1983; Gentner & Markman, 1994; Markman & Gentner, 1993a; Sagi et al., 2012). According to 

that theory, similarity judgments are based on all commonalities, whereas differences are sensitive 

to alignable but not nonalignable differences. In the present study, however, all relational 

differences on the verbal task (and possibly the visual task) were alignable, so structure mapping 

theory erroneously predicts symmetric responding across similarity and difference judgments. 

Computational modeling 

In order to formally characterize the human comparison process on ambiguous trials, I 

attempted to predict responses of individual participants on the verbal comparison task using a 
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computational model. This model includes a weighting mechanism that controls the relative 

contribution of relational and featural information to a comparison judgment. I predicted that this 

weighting mechanism would create the observed asymmetry by altering the emphasis on relational 

information between similarity and difference judgments. Moreover, the computational model 

operates entirely on semantic representations of words and relations generated by machine 

learning, avoiding any hand-coding or reliance on experimenters’ intuitions. The same framework 

could be applied to visual judgments, given an appropriate front-end to generate representations 

of visual stimuli. 

Model specification and approach 

Recall that the comparison task dissociated featural and relational information, and that the 

verbal task involved comparisons between word pairs (e.g., love:hate and spouse:partner). I 

operationalized featural information as individual word meanings (e.g., love, hate, wide, and 

narrow) and relational information as semantic relations holding between paired words (e.g., 

antonym-of, synonym-of). I present a computational model that incorporates semantic 

representations of both individual words and relations between them. 

In order to represent individual word meanings, I used pre-trained Word2vec word 

embeddings (Mikolov, Chen, et al., 2013), which represent word meanings as high-dimensional 

vectors of length 300. These vectors constitute the hidden layer of activation within a neural 

network trained to predict patterns of text in sequence as they appear in a large corpus consisting 

of Google News articles (100 billion words). Despite their sole reliance on the statistical 

distribution of text in their training corpora, these word embeddings and others constitute 

psychological models of semantic memory in that they preserve the similarity structure of 

individual word meanings in a psychologically realistic way. These embeddings have been used 
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to successfully model a number of cognitive processes beyond similarity judgments, including 

human memory search, categorization, and decision making (Bhatia & Aka, 2022; Günther et al., 

2019). To compute lexical similarity, the meaning of a word pair is represented by a simple 

aggregate of the semantic vectors of the two individual words. I use A to denote the first word in 

a word pair and B to represent the second word in a word pair. I compute the featural similarity 

between two word pairs 𝑖 and 𝑗 as the cosine similarity between concatenated word vectors 

constituting i, [𝑓𝐴𝑖
𝑓𝐵𝑖

], and those constituting j, [𝑓𝐴𝑗
𝑓𝐵𝑗

]: 

𝑠𝑖𝑚𝑓𝑒𝑎𝑡𝑖𝑗
= 1 − 𝑐𝑜𝑠 ([𝑓𝐴𝑖

𝑓𝐵𝑖
], [𝑓𝐴𝑗

𝑓𝐵𝑗
]).  (1) 

To compute relational similarity, I used representations generated by Bayesian Analogy 

with Relational Transformations (BART), a learning model that has been used to predict human 

analogy performance and graded judgments of relational similarity (Ichien et al., 2022; Lu et al., 

2012, 2019). BART assumes that specific semantic relations between words are coded as 

distributed representations over a set of abstract relations. The BART model takes concatenated 

pairs of Word2vec vectors as input, and then uses supervised learning with both positive and 

negative examples to acquire representations of individual semantic relations. I use a version of 

BART that was trained on two datasets consisting of human-generated word pair examples in order 

to learn a total of 270 semantic relations (Jurgens et al., 2012; Popov et al., 2017). 

After learning, BART calculates a relation vector consisting of the posterior probability 

that a word pair instantiates each of the learned relations. BART uses its pool of learned relations 

to create a distributed representation of the relation(s) between any two paired words 𝐴 and 𝐵. The 

posterior probabilities calculated for all learned relations form a 270-dimensional relation vector 

𝑅𝐴𝐵, in which each dimension codes how likely a word pair instantiates a particular relation. The 
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relational similarity between word pairs 𝑖 and 𝑗 is computed as the cosine similarity of the 

corresponding relation vectors 𝑅𝑖 and 𝑅j. 

Having characterized both featural and relational similarity, I now combine these 

components simply as a weighted sum in a computational model of comparison, 

𝑠𝑖𝑚𝑖𝑗 = 𝛼(𝑠𝑖𝑚𝑓𝑒𝑎𝑡𝑖𝑗
) + (1 − 𝛼)𝑠𝑖𝑚𝑟𝑒𝑙𝑖𝑗

  (2) 

𝑑𝑖𝑓𝑓𝑖𝑗 = −𝛼(𝑠𝑖𝑚𝑓𝑒𝑎𝑡𝑖𝑗
) − (1 − 𝛼)𝑠𝑖𝑚𝑟𝑒𝑙𝑖𝑗

,  (3) 

where α is a free parameter that reflects the degree to which a comparison weights relational 

information. I refer to this as the relation-weight parameter. Note that both similarity and difference 

judgments are based on a computation of similarity: difference judgments simply negate the output 

of that computation. 

Modeling results 

I used the model to generate trial-level predictions for each participant. I fit the relation-

weight parameter to each participant’s data by maximizing the accuracy with which the model 

predicted each response. If multiple values of the relation-weight parameter predicted a 

participant’s data equally well, I took the mean of those parameter values. Overall, the fit model 

predicted participant responses just as well across similarity judgments (MAcc = .64; SDAcc = .09) 

and difference judgments (MAcc = .64; SDAcc = .08). The value of the fit relation-weight parameter 

predicted the rate with which similarity participants selected FD/RS options (Spearman’s ρ = .82, 

p < .002), and the rate with which difference participants selected FS/RD options (Spearman’s ρ 

= .73, p < .001). 

I predicted that the value of the relation-weight parameter would be greater when fit to 

participants making similarity judgments than when fit to those making difference judgments. 

Figure 4 shows the distribution of the parameter, broken-down according to comparison type. A 
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Mann-Whitney U test confirmed what is clear from visual inspection: Fit relation-weight 

parameters were reliably greater for similarity participants than for difference participants, W = 

2540.5, p < .001. This result further supports my main claim: similarity judgments prompt greater 

reliance on relational information than do difference judgments. Moreover, these simulations 

support the validity of my manipulation of featural and relational similarity. 

 

 

Figure 4: Relation-weight parameter values fit to individual participant data, broken down according to comparison 

type. 

 

Discussion 

For both visual and verbal comparisons, I showed that (1) human reasoners have greater 

difficulty processing relational difference than they do relational similarity, and (2) they tend to 

weight relational information more heavily when judging similarity than when judging difference. 

Moreover, this asymmetry could be accounted for by a computational model of comparison based 

on machine-generated vector representations for both words and their semantic relations. When fit 
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to human data at the level of individual participants, this model tends to weight relational 

information more heavily when fit to similarity judgments than when fit to difference judgments.  

Contrary to the prediction derived from structure-mapping theory, the asymmetry between 

similarity and difference judgments was obtained even though all relational differences in my 

verbal stimulus set were alignable. Notably, this explanation diverges from an alternative account 

based on structure-mapping theory (Gentner, 1983; Gentner & Markman, 1994; Markman, 1996; 

Markman & Gentner, 1993a; Sagi et al., 2012), a prominent theory of comparison. Instead of 

emphasizing the respective cognitive demands of similarity and difference judgments as I do, 

structure-mapping theory emphasizes a dissociation in the output of a unified comparison process: 

Whereas the similarity between two entities is based on all commonalities shared among those 

entities, the difference between two entities privileges alignable differences (i.e., those filling 

corresponding roles within a shared relational structure; e.g., the number of wheels in a car and 

bicycle) and ignores nonalignable differences (i.e., those not based on corresponding roles; e.g., 

that a car has windows but a bicycle does not). Putative demonstrations that similarity judgments 

incorporate more relational information than do difference judgments (e.g., Bassok & Medin, 

1997; Medin et al., 1990), are instead attributed to relational information’s contingent status as a 

nonalignable difference. However, contrary to the prediction derived from structure-mapping 

theory, the present study demonstrated an asymmetry between similarity and difference judgments, 

even though all relational differences in the verbal stimulus set were alignable. I acknowledge that 

in the present study, I did not directly test whether nonalignable differences contribute to difference 

judgments.  However, when Estes and Hasson (2004) did precisely this, comparing the influence 

of alignable and nonalignable differences on comparison judgments, they showed not only that 

nonalignable differences impacted both similarity and difference judgments but also that they 
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actually had greater, not lesser impact than did alignable differences. Overall, this set of findings 

provides convergent evidence for the claim that assessments of difference are more cognitively 

demanding than assessments of sameness (Hochmann, 2021; Hochmann et al., 2016, 2018). 

Beyond the relative emphasis on alignable and nonalignable differences in structure 

mapping theory and the processing-demand hypothesis defended here, a more general way to 

express the difference between these two accounts of comparison is where they locate the 

dissociation between similarity and difference comparisons. Structure-mapping theory proposes 

that judgments of both similarity and difference involve in a unified comparison process, structural 

alignment, that consistently operates over the same representations (i.e., representations of 

relational structure) (Gentner, 1983; Gentner & Markman, 1994). Any divergence between 

similarity and difference judgments is then attributed to asymmetries in the usage of the output of 

the comparison process (i.e., all commonalities vs. alignable differences). On the other hand, the 

processing-demand hypothesis proposes that comparisons of similarity and difference operate on 

distinct representations; comparisons of similarity tend to operate on representations that 

incorporate more relational information than do comparisons of difference. And so, the present 

explanation locates the dissociation between similarity and difference judgments observed in 

Experiment 1 both in the comparison process (i.e., same(X,Y) versus not-same(X,Y)) and the 

representations it operates over. Structure-mapping theory and my processing-demand hypothesis 

thus make distinct predictions about the extent that any asymmetry in similarity and difference 

judgments reflects the representations compared in order to arrive at those judgments: Whereas 

the processing-demand hypothesis proposes a direct link between this response asymmetry and the 

representations compared, structure-mapping theory proposes no such link. I test these competing 

hypotheses in the next experiment. 
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Experiment 2 

In Experiment 2, I manipulate whether or not participants are prompted to process 

experimental stimuli before comparing them. This manipulation is intended to vary the extent to 

which the processes involved in generating stimulus representations occurs separately from or 

simultaneously with comparison, with these processes being more separated in participants given 

a pre-comparison processing step and more simultaneous in participants lacking that step. 

Under the processing-demand hypothesis, any distinctions among representations 

subserving similarity and difference judgments should be diluted in participants who are prompted 

to generate representations of stimuli prior to making a comparison, relative to those not prompted 

to do so. Put differently, a pre-comparison processing step should yield fairly crystallized stimulus 

representations to then be compared, and these representations are expected to be more insulated 

from the constraints involved in actually comparing them. Specifically with respect to difference 

judgments, a reasoner is less constrained to represent stimuli non-relationally when they are 

processed prior to comparing them, relative to when they are first processed during comparison. 

This hypothesis thus predicts the asymmetry in similarity and difference judgments observed in 

Experiment 1 only for participants lacking a pre-processing step and who are therefore more likely 

to generate stimulus representations while also comparing them. In contrast, structure-mapping 

theory hypothesizes that asymmetries in similarity and difference judgments do not directly reflect 

the representations that comparison operates over, and it thus predicts that the manipulation 

described above will have no effect on response patterns. 

In order for the proposed manipulation to produce the desired effect strongly enough to 

clearly test the predictions mentioned above, experimental stimuli must be complex enough such 

that generating a stable representation of them requires somewhat extensive processing. Using the 
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highly simplified stimuli used in Experiment 1 would likely render any representational difference 

across presentation conditions (i.e., with pre-comparison processing versus without it) too subtle 

to detect from overt behavior. Instead, I use story stimuli originally used in Gentner et al. (1993) 

to dissociate the impact of relational similarity on analogical retrieval from that on analogical 

inference. Generating a stable representation of story content necessitates fairly extensive 

processing, and these stimuli are much more likely than those used in Experiment 1 to reflect any 

effect of the presentation manipulation discussed above. Moreover, results supporting the 

processing-demand hypothesis would extend the asymmetry demonstrated in Experiment 1 to 

more complex and naturalistic stimuli. These stimuli consist of story sets, each including one story 

that is analogous to a standard story and another story that is disanalogous but superficially similar 

to the standard, and so I use these sets to respectively emphasize relational and featural similarity 

in the two response options constituting the same triad task used in Experiment 1. 

Method 

Participants. Participants were 129 undergraduates (Mage = 20.61, SDage = 3.03, range = 

[18, 37]) at UCLA. The sample consisted of 3 nonbinary, 107 female, and 17 male participants; 2 

participants did not report their gender. All participants completed experimental tasks online to 

obtain partial course credit in a psychology class. The study was approved by the Institutional 

Review Board at UCLA. 

Comparison task. Participants completed a story comparison task, in which they were 

asked to compare sets of three story stimuli drawn from Gentner et al. (1993). As in Experiment 

1, participants were asked to compare a standard to a relational option and a featural option in 

order to select either which was more similar or which was more different. The relational option 

(labeled “analogy match” in the original materials) consisted of characters (e.g., a bird and a hunter 
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versus a pair of nations) and individual events (e.g., gift giving of feathers versus gift giving of 

supercomputers) that were superficially dissimilar to those in the standard but that played roles in 

an overall plot structure that matched the standard (e.g., an act of kindness leads to a reciprocal act 

of kindness). In contrast, the featural option (labeled “mere-appearance match” in the original 

materials) consisted of characters and individual events that were superficially similar to those in 

the standard but that played roles in different plots structures from the standard (e.g., an act of 

kindness fails to elicit a reciprocal response versus the plot structure mentioned above). On each 

trial, the standard was always presented first at the top of the screen, and the two options were 

presented next on either side of the bottom of the screen. Which side the relational and featural 

option appeared was randomized across trials. Once presented, each story remained on the screen 

for the rest of the trial. 

Table 1: Example set of story stimuli drawn from Gentner et al. (1993) 

Story conditions Story examples 

Standard 

 

Karla, an old hawk, lived at the top of a tall oak tree. One afternoon, she 

saw a hunter on the ground with a bow and some crude arrows that had 

no feathers.  The hunter took aim and shot at the hawk but missed. Karla 

knew the hunter wanted her feathers so she glided down to the hunter 

and offered to give him a few. The hunter was so grateful that he pledged 

never to shoot at a hawk again. He went off and shot deer instead. 

 

Relational 

 

Once there was a small country called Zerdia that learned to make the 

world's smartest computer. One day Zerdia was attacked by its warlike 

neighbor, Gagrach. But the missiles were badly aimed and the attack 

failed. The Zerdian government realized that Gagrach wanted Zerdian 

computers so it offered to sell some of its computers to the country. The 

government of Gagrach was very pleased. It promised never to attack 

Zerdia again. 

 

Featural 

 

Once there was an eagle named Zerdia who donated a few of her 

tailfeathers to a sportsman so he would promise never to attack eagles. 

One day Zerdia was nesting high on a rocky cliff when she saw the 

sportsman coming with a crossbow. Zerdia flew down to meet the man, 

but he attacked and felled her with a single bolt. As she fluttered to the 

ground Zerdia realized that the bolt had her own tailfeathers on it. 
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On each trial, participants were presented with the standard at the top of the screen and 

were instructed to read the story carefully. They were given 10 seconds before they could proceed 

to see the two options. Participants were assigned to one of two presentation conditions, a 

comparison condition and a control condition, which differed in the way that the two options were 

presented. In the comparison condition, the two options were presented at the same time, directly 

after participants had proceeded from reading the standard. Once the two options were revealed, 

participants were instructed to compare and judge which option was more similar or more different 

from the standard. 

In the control condition, each option was revealed one at a time: After being given at least 

10 seconds to read the standard, participants were given at least 10 more seconds to read one option 

on the left side of the screen, before they could proceed to read the option of the right side of the 

screen for at least another 10 seconds. After having read all three stories, participants were finally 

asked to enter their responses as to which option was more similar to or different from the standard. 

The control condition gave participants an opportunity to process each option in isolation before 

comparing them to the standard. In contrast, the comparison condition required participants to 

process each option while comparing them to the standard. For both conditions, whether the 

relational or featural option appeared on the right or left side of the screen was randomized across 

trials. Crossing presentation condition (comparison versus control) with decision type (similarity 

versus difference) yielded four conditions, and both factors were manipulated between subjects. 
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Figure 5: Relational response rate on story comparison task in comparison and control conditions. 

Response rates are broken down according to comparison type (difference vs. similarity). Unfilled circles each 

represent an individual participant’s response rates, dark lines reflect mean response rates, box boundaries reflect ± 

standard error of the mean, and horizontal line corresponds to indiscriminate selection of relational versus featural 

options. 

 

Results and Discussion 

As in Experiment 1, I used the glmer function from version 1.1.26 of the LME4 R package 

(Bates et al., 2015) in R version 4.1.1 (R. Core Team, 2021) to fit a logistic mixed-effects model 

to performance on this comparison task. I defined a full model including participant and 

comparison problem as random intercept effects; with a group (comparison vs. control) x 

comparison type (similarity vs. difference) interaction term, as well as individual group and 

comparison type terms as fixed effects, as well as trial number as a covariate, which accounts for 

any systematic change in strategy across trials within a task. 

I used a likelihood-ratio test to compare this full model to reduced models that omitted the 

group x comparison task interaction term but that was otherwise equivalent to the full model. As 

predicted by the processing-demand hypothesis, removing the interaction term increased model 

prediction error, ∆AIC = 2.80, χ2 (1) = 4.82, p = .03. Contrary to structure-mapping theory, this 

result confirms that whether or not participants processed story stimuli in a pre-comparison step 

had an impact on the response pattern among similarity and difference judgments. Therefore, 
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responses on the triad task reflect differences in stimulus processing, and do not merely reflect 

differences in the usage of comparison output. 

I used the emmeans and pairs functions from version 1.8.4 of the emmeans R package 

(Lenth, 2023) to compare the relevant estimated marginal means of the full model and test the 

difference compare relational responding in similarity and difference judgments for each group in 

relational. Similarity participants (M = .61, SD = .18) had higher rates of relational responding 

than difference participants (M = .51, SE = .23) when asked to simultaneously read and compare 

stories to the standard (z = 2.11, p = .035) in the comparison condition, but this difference did not 

hold for participants asked to read and then compare stories to the standard (similarity: M = .55, 

SD = .19; difference: M = .60, SD = .23; z = 1.02, p = .307) in the control condition. This result 

confirms the prediction of the processing-demand hypothesis that processing story stimuli during 

comparison elicited asymmetric responding. This difference was eliminated when participants 

were given an opportunity to read and process each story prior to comparing them. 

General Discussion 

Overall, the set of findings from Experiments 1 and 2 using a range of stimulus types 

(visual images, verbal words, and stories) provide convergent evidence for the claim that 

assessments of difference are more cognitively demanding than assessments of sameness 

(Hochmann, 2021; Hochmann et al., 2016, 2018), which in turn affects the way that human 

reasoners actually represent the items they compare. Because of the greater demand imposed by 

difference judgments, human reasoners represent the items about which they make this type of 

judgment in a more shallow or non-relational way, but the effects of this heightened demand can 

be mitigated by processing a given stimulus before comparing it. At any rate, this dissociation may 



32 

 

ultimately be rooted in a representational asymmetry in the relations same and different, such that 

people process different as a negation of same.  

I acknowledge that previous demonstrations of asymmetries between similarity and 

difference judgments that are not obviously explained by the representational asymmetry between 

same and different defended here (Simmons & Estes, 2008; Tversky, 1977). In addition to 

considering features and internal structural relations of stimuli (as studied here), human reasoners 

also tend to incorporate external relations or thematic relatedness between stimuli (i.e., association 

based on co-occurrence in some context; e.g., between dog and leash) in similarity judgments 

(Bassok & Medin, 1997),  but they tend to do so less in difference judgments (Golonka & Estes, 

2009; Simmons & Estes, 2008). Galonka and Estes (2009) argued this this asymmetry arises 

because thematic relatedness introduces commonalities between thematic associates without 

reducing the relevant differences between them. However, asking participants to complete a larger 

number of comparison trials (~60), and reminding participants of task instructions throughout the 

experimental session, has been shown to eliminate the effect of thematic relatedness on similarity 

judgments (Honke & Kurtz, 2019). Future work might clarify the impact of thematic relatedness 

on similarity and difference judgments, and whether any persisting asymmetry between the two 

might be explained in terms of the representational asymmetry discussed here. 

Having shown in the present chapter that human reasoners tend to incorporate relational 

information when explicitly assessing similarity, I move on to examine the presence of relation 

processing in implicit comparisons made during recognition. Specifically, I examine whether 

humans use relations as cues when assessing the similarity between what is perceptually available 

and what is encoded in episodic memory. 
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Chapter 2: Relations and recognition 

Introduction 

If explicit relation representations impact human reasoning, then it may be possible to 

detect their influence in other cognitive tasks that do not directly involve reasoning. It has been 

reported that relation similarity can impact episodic memory in recognition tasks, giving rise to a 

phenomenon termed relational luring (Popov et al., 2017). In a typical experiment, participants 

were shown a sequence of word pairs to commit to memory, and at test were asked to indicate that 

a given word pair was ‘old’ if they had seen that exact word pair previously in the sequence, 

‘recombined’ if it was a novel combination of individual words that they had seen before, or ‘new’ 

if they had not previously seen either the full word pair or its constituent words. Popov et al. 

showed that participants were more likely to misclassify ‘recombined’ word pairs as ‘old’, and 

took longer to correctly identify ‘recombined’ word pairs, when the pair instantiated a relation 

made familiar by previously presented pairs, as compared to word pairs that did not instantiate the 

same relation as a prior word pair. Moreover, the degree to which ‘recombined’ word pairs were 

misclassified, and correct responses were delayed, increased linearly with the number of instances 

of that relation a participant had seen previously. If a given relation is encoded explicitly as an 

item in memory, then relational luring is consistent with prior work showing that repeated 

presentations of a given item increase the likelihood of recognizing that item on a subsequent 

presentation (Challis & Sidhu, 1993; Reder et al., 2000). 

Relational luring constitutes an example of false memory based on semantic similarity, 

extending massive evidence for semantic effects on false memory for individual words (e.g., 

Roediger & McDermott, 1995). However, relational luring has the distinctive property that it 

appears to arise from specific pairings of words, rather than the individual words in the pair. On 
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the face of it, relational luring is naturally explained by assuming that an explicit representation of 

a semantic relation becomes increasingly familiar as it is activated by exposure to specific 

instances. The accrued familiarity of the relation then serves as a cue that tends to lead to false 

recognition of recombined word pairs instantiating the same relation. Thus, relational luring has 

been interpreted as providing evidence for the role of explicit relations in guiding recognition 

memory (Popov et al., 2017). However, this assumption has never been formally tested in a 

computational model of recognition memory, nor compared against alternative possibilities based 

on non-relational semantic analyses. The present paper fills this gap. 

Word Embeddings as Predictors of Analogical Reasoning and Word Recognition 

Advances in natural language processing (NLP) have generated representations of 

individual word meanings (e.g., Devlin et al., 2019; Mikolov, Chen, et al., 2013; Pennington et al., 

2014), referred to as word embeddings. These representations are high-dimensional vectors that 

constitute hidden layers of activation within neural network models trained to predict patterns of 

text in sequence as they appear in large corpora. Word embeddings have been used to predict 

human judgments of lexical similarity and probability (for a review see Bhatia & Aka (2022); for 

a discussion of and response to critiques of embeddings as psychological models, see Günther et 

al. (2019)). 

Crucially, word embeddings may capture rich aspects of conceptual meaning that go 

beyond surface features and direct category relations. For example, Utsumi (2020) was able to 

extract information from embeddings sufficient to predict the values of about 500 words on most 

of 65 semantic features (e.g., the extent to which something is social) for which neurobiological 

correlates have been identified. Such successes raise the possibility that relational luring might be 

explicable in terms of lexical overlap based solely on embeddings for word pairs, without 
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necessarily involving explicit relation representations. In particular, embeddings might capture 

information about characteristic relational roles that concepts play (Goldwater et al., 2011; Jones 

& Love, 2007; Markman & Stilwell, 2001). For example, concatenated embeddings for the word 

pair nurse:hospital might include features that implicitly encode the facts that nurse is a human 

occupation and that hospital is a work location, perhaps creating a basis for relational luring. 

In the present study I build on recent theoretical developments in which embeddings have 

been used to learn relation representations that can provide a basis for analogical reasoning. A 

number of alternative methods can be used to define similarity between word pairs. In the present 

study, I examine alternative methods that take the same embeddings as inputs, extracted using 

Word2vec (Mikolov et al., 2013). All these methods compute word-pair similarity based on cosine 

similarity (a measure well-suited for high-dimensional spaces). Critically, relation representations 

can either be based on explicit re-representations within a new relational space (i.e., a 

representational space in which the dimensions code abstract semantic relations such as hypernym, 

antonym, and cause; Ichien et al., 2022; Lu et al., 2012, 2022), or can be implicit in the raw word 

embeddings (Mikolov et al., 2013; Pennington et al., 2014). 

Experiment 1 

I first report an experiment designed to elicit relational luring. Rather than studying word 

pairs in the context solely of a memory task (Popov et al., 2017), participants were exposed to 

word pairs while making specific judgments about them (so that the encoding of these word pairs 

for a subsequent memory task was more incidental in nature). The first encoding task, involving 

relatedness judgments, required participants to decide whether the two words in a pair were related. 

Because relatedness judgments do not require identification of any specific relation, they can 

potentially be made using an implicit relation representation. The second encoding task, verbal 
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analogical reasoning, required participants to decide whether or not an analogy in A:B :: C:D 

format was valid. Evaluating analogies requires attention to the similarity of the specific relations 

linking the A:B and the C:D word pairs, and hence is likely to depend on explicit relation 

representations (consistent with previous computational modeling; Lu et al., 2019). Each task was 

followed by a test of recognition memory, which included conditions designed to potentially elicit 

relational luring. By comparing memory performance following the relatedness and verbal analogy 

tasks, I sought to test whether relational luring depends on determining the particular semantic 

relations holding between word pairs (as evoked by the verbal analogy task), or whether a more 

generic assessment of whether a discernible relation exists between word pairs (as evoked by the 

relatedness task) is sufficient.   

Critically, both the analogy task and the subsequent recognition memory task can be 

modeled using the same alternative measures of word-pair similarity. Specifically, I compare a 

measure of relational similarity between explicit relation representations with a measure of lexical 

similarity between individual word meanings. Based on previous findings, I predicted that the 

measure based on relational similarity would prove most effective for the analogy task. The key 

question is whether recognition memory will be best predicted by the same relational measure of 

word-pair similarity, or whether a dissociation will be observed between the analogical reasoning 

and recognition memory tasks. Procedures and analyses for all experiments were pre-registered on 

AsPredicted (#66576). All materials and analysis scripts are available on OSF 

(https://osf.io/vmn4z/?view_only=02dbe0d6beba4d2f8b0fd5002b693019).  

Method 

Participants. Participants were 111 undergraduates (Mage = 20.12, SDage = 1.94) at either 

the University of California, Los Angeles (UCLA) (n = 93) or at Dartmouth College (n = 18). 



37 

 

Across the entire sample, participants were 81 female, 20 male, 1 nonbinary, and 9 gender not 

reported. All participants completed experimental tasks online to obtain partial course credit in a 

psychology class. The study was approved by the Institutional Review Boards at UCLA and at 

Dartmouth College. Participants were self-assessed proficient English speakers, and 82% were 

native English speakers. All analyses excluded data from 18 participants whose median correct 

response time, number of omitted responses, and/or d’ were 2.5 standard deviations away from the 

sample mean on any task (final sample size: 93). 

Procedure. All participants completed two blocks, each of which included three tasks. The 

first task in each block was an incidental encoding task involving either relatedness judgments 

(first block) or analogical reasoning (second block). The second task in each block was a 

demanding task involving visuospatial reasoning (a short form of Raven’s Progressive Matrices); 

for my current purposes, this served as a distractor task. The third task in each block was a 

recognition memory task. The assignment of word pairs to each block was counterbalanced across 

participants. Participants were first shown a list of all the tasks they would be completing during 

the experimental session and thus made aware before starting the experiment that they would be 

completing memory tasks. Importantly, participants were not directly told that the relatedness and 

verbal analogy tasks were at all related to the memory tasks. The entire test session lasted 

approximately one hour. Figure 6 presents the sequence of tasks that each participant completed 

during an experimental session. 

Prior to beginning the relatedness task, participants were shown examples of related and 

unrelated word pairs and then completed seven practice trials. Prior to beginning the verbal 

analogy task, participants were shown examples of valid (e.g., carpenter:hammer and 

nurse:syringe) and invalid analogies (loop:ice and bowl:cereal), and then completed four practice 
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trials. Neither the individual words in the practice trials, nor the relations instantiated by them, 

overlapped with the word pairs used in the actual encoding tasks.  

 

Figure 6: Task structure. 

Participants completed six tasks, divided into two blocks (columns) of three tasks each. Task order was fixed. The two 

blocks of tasks were the same except for the encoding task, with assignment of specific word pairs counterbalanced 

across the two sets. 

 

Materials and Encoding Tasks.  In the relatedness task, participants were presented with 

a sequence of word pairs and asked to judge whether each pair was comprised of words that were 

semantically related (e.g., footwear:boot) or not (e.g., mascara:spoon). Word pairs were 

semantically related 90% of the time. In the verbal analogy task, participants were sequentially 

presented with two word pairs on each trial, and were asked to judge whether each set constituted 

a valid analogy (e.g., fin:shark and wing:butterfly) or not (e.g. device:calculator and thorn:rose). 

Valid analogies were shown on 54% of trials. 

Both encoding tasks involved word pairs that instantiated one of three abstract semantic 

relations: category:exemplar (e.g., bird:robin), part:whole (e.g., toe:foot), and place:thing (e.g., 

store:groceries), or else were not semantically related (e.g., mascara:spoon). To create stimuli for 

these tasks, a total of 200 word pairs were constructed out of 400 unique words. Words were 

selected based on three sets of norms, for concreteness, prevalence, frequency, and also on length. 

Word concreteness is the extent that a given word refers to something that exists in reality and of 

which one can have immediate sensory (visual, auditory, gustatory, tactile, or olfactory) 

experience. I used concreteness norms presented by Brysbaert et al. (2014), which were collected 
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as ratings on a 5-point scale from 1 (abstract) to 5 (concrete). Word pair stimuli were eliminated 

from this study if either of its two words had a mean concreteness rating lower than 4. Word 

prevalence is the proportion of people who know that word. I used prevalence ratings presented 

by Brysbaert et al. (2019), which consisted of z-scores such that words received negative 

prevalence ratings if fewer than 50% of people said they knew those words. Word-pair stimuli 

were eliminated from this study if either of the two words in a pair had a prevalence rating lower 

than 2. 

The word pairs were evenly distributed across two 100 word-pair lists, one used for the 

relatedness task and the other used for the analogy task; which of the two lists was used for which 

encoding task was counterbalanced across participants. Within each list of 100 word pairs, 10 

unrelated pairs consisted of words with no discernible semantic relation between them. The 

remaining 90 pairs were evenly distributed across the three abstract semantic relations (i.e., 30 

word pairs per relation). Participants saw one list during the relatedness task and the other list 

during the verbal analogy task; which list was presented during each task was counterbalanced 

across participants. The analogy task appears to require explicit comparison of relations; hence 

this task was always placed in the second block (i.e., after the relatedness task), so as to avoid 

priming an explicit strategy of identifying abstract relations in the relatedness task (which 

potentially could be performed using a more implicit strategy of simply assessing the presence 

versus absence of any relation).  

Each encoding task consisted of two blocks with a self-paced break between them.  Each 

word pair within a given list was presented once during each block, and in each block word pairs 

were presented in a different order. Thus, each block of the relatedness task consisted of 100 trials 

(with one word pair shown per trial), yielding 200 trials in total. Each block of the verbal analogy 
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task consisted of 50 trials (with two word pairs shown per trial), yielding 100 trials in total. In each 

encoding task, participants saw each word pair twice across the two blocks. 

Memory Tasks. Following each encoding task and the intervening distractor task, 

participants completed an old/new recognition task in which they were presented with a sequence 

of 54 word pairs. Each word pair was constructed from individual words that participants had seen 

during their prior encoding task. Thus, each individual word was familiar to participants; however, 

they were recombined into new word pairs on 2/3 of the trials (i.e., 36 trials). Participants were 

asked to identify whether or not they had seen that exact combination of words in the previous 

encoding task, as well as to rate how confident they were in their judgment using a four-point 

scale: "Definitely New", "Maybe New", "Maybe Old", and "Definitely Old". The specific word 

pairs differed across the memory tasks in the two blocks. Participants were given a brief tutorial 

on the memory task prior to beginning each such task. None of the individual words or relations 

instantiated in this tutorial overlapped with those used in the actual task. 

Table 2: Properties of each stimulus type used during recognition memory task. 

Type of test 

word pairs 

Previously studied 

individual words? 

Previously studied 

word pairs? 

Previously studied 

abstract relations? 

Valid relation? 

intact     
familiar     
unfamiliar     
unrelated     

 

A total of 108 word pairs were used for the memory tasks, with each word pair drawn from 

one of four types (see Table 2). The first type, intact, consisted of “old” word pairs that were shown 

during the encoding task (relation identification or analogy). The other three types of word pairs 

were “new” pairs. All of these were constructed by recombining words that had appeared in the 

immediately prior encoding task, so that individual words were now paired differently, generating 

novel word pairs distinct from those used in the encoding task. More specifically, relationally 
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familiar word pairs consisted of recombined word pairs instantiating the same relations as the word 

pairs presented during the encoding tasks (i.e., part:whole, category:exemplar, and place:thing). 

Relationally unfamiliar word pairs consisted of recombined word pairs instantiating a relation type 

(A is similar to B) to which participants had not been exposed in the encoding phase. These word 

pairs were formed using concepts with overlapping salient attributes (e.g., bartender:cashier), and 

hence were relationally similar to one another, but not with respect to any of the three relations 

included in the encoding tasks. Finally, unrelated word pairs consisted of recombined word pairs 

that were not semantically related in any discernible way (e.g., cookbook:remote). For intact pairs, 

responses of either “Maybe Old” or "Definitely Old" were scored as correct. The other three types 

of trials consisted of word pairs that were not used in either encoding task; either “Maybe New” 

or "Definitely New" were scored as correct responses. Among the 54 word pairs tested in the 

recognition memory task, 18 pairs were intact, 18 pairs were relationally familiar, 9 pairs were 

relationally unfamiliar, and 9 pairs were unrelated.  

To generate “new” pairs by recombining words in the encoding tasks, another relevant 

factor (in addition to controlling relations instantiated by word pairs) that varied among the 

recognition stimuli was consistency of word position between the encoding tasks and the memory 

task (i.e., assignment of a given word to first versus second position in a pair for study versus test 

pairs). Popov et al. (2017) constructed their stimulus set using a large number of different relations 

with a few exemplar word pairs of each, enabling them to keep the position of any word in the test 

pairs the same as its position in the encoding tasks. In contrast, because my study used a small 

number of relations (three) in the encoding tasks and a large number of exemplar word pairs per 

relation (30 pairs per relation), it was impossible to maintain the same position for all words 

between the encoding tasks and the memory test. 
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In Experiment 1, for test pairs used in the memory task, the position of at least one word 

was preserved from its position in a study pair most often for intact pairs (100%), followed by 

familiar (95%), unfamiliar (84%), and unrelated pairs (66%). These differences in word positions 

across test pair types reflect the fact that word position naturally correlates with the role that a 

word plays in a relation (e.g., in a category:exemplar pair such as food:spaghetti, food fills the 

category role and spaghetti fills the exemplar role). For the three relations included in the encoding 

tasks (part:whole, category:exemplar, and place:thing), the terms occupying the first position in 

study pairs, and thus assigned to the first role in the corresponding relations (i.e., part, category, 

and place roles) often had to be assigned to the same role in familiar test pairs. Moreover, when 

words assigned to the second role of familiar test pairs (e.g., butterfly assigned to the exemplar 

role in the category:exemplar test pair insect:butterfly) was assigned to a different role from its 

study pair (e.g., wing:butterfly), that word usually still occupied the second position in its relation 

(e.g., the whole role in the part:whole relation). Thus, word position tended to be preserved for 

both words in familiar test pairs. On the other hand, in creating unfamiliar test word pairs that 

instantiated the similar relation, I were often forced to combine words that each filled the same 

role in different study pairs. For example, the unfamiliar test pair tail:fin was generated using 

words each assigned to the part role in part:whole study pairs (tail:skunk and fin:shark). This role-

matching constraint tended to yield a position change of one word from study pairs to unfamiliar 

test pairs, whereas the position of the other word was usually consistent between study and test. In 

general, playing the same role within a relational structure tends to increase the similarity between 

distinct entities (Jones & Love, 2007). 
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Results 

Encoding Tasks. Overall, participants performed well on both of the encoding tasks: 

relatedness task, MAcc= .94, SDAcc=.03; verbal analogy task, MAcc = .76, SDAcc = .12. Figure7 shows 

human accuracy in identifying valid and invalid analogy in the encoding task. Note that the false 

alarm rate for unrelated word pairs on the relatedness task was low (𝑀𝐹𝐴 =  .18, 𝑆𝐷𝐹𝐴 = .16), 

yielding a high d-prime (MD’ = 2.80; SDD’ = .66). Thus, even though 90% of the trials involved 

semantically related word pairs, participants completed the task as instructed, and did not achieve 

their high accuracy by simply classifying all word pairs as related. 

 

Figure 7: Human and model-predicted (i.e., relational and lexical) 'valid' responses on the verbal analogy task in 

Experiment 1. 

Darker bars represent hits on valid analogies, and lighter bars represent false alarms on invalid analogies. Error bars 

reflect ± 1 standard error of the mean for human responses. 

 

Recognition Memory. Participants showed good overall performance in recognizing 

studied word pairs following both encoding tasks (relatedness: MAcc = .81, SDAcc = .12; verbal 
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analogy: MAcc = .80, SDAcc = .13). They correctly recognized old word pairs with responses of 

either “Maybe Old” or “Definitely Old”, exhibiting a high hit rate (relatedness: MHit = .90, SDHit = 

.12; verbal analogy: MHit = .86, SDHit = .14). However, they also sometimes misrecognized 

recombined word pairs (familiar, unfamiliar, or unrelated), exhibiting a substantial false alarm rate 

(relatedness: MFA = .24, SDFA = .16; verbal analogy: MFA = .24, SDFA = .17). Figure 8 shows that 

across encoding tasks, false alarms (i.e., mistakenly judging recombined new word pairs as studied 

old pairs) were more frequent for relationally familiar word pairs (relatedness: MFA = .33, SDFA = 

.19; verbal analogy: MFA = .30, SDFA = .19) than relationally unfamiliar word pairs (relatedness: 

MFA =.21, SDFA = .20; verbal analogy: MFA = .22, SDFA = .22), and for unfamiliar than unrelated 

pairs (relatedness: MFA =.09, SDFA = 16; verbal analogy: MFA = .11, SDFA = .19). The higher false 

alarm rate for familiar than unfamiliar pairs is consistent with the relational luring phenomenon 

reported by Popov et al. (2017).  

 

Figure 8: Human false-alarm rates on the recognition memory task in Experiment 1. 

False alarm rates are broken down by relatedness and verbal analogy encoding task and by familiar, unfamiliar, and 

unrelated stimulus types. Error bars reflect ± 1 SEM. 
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To statistically test whether Experiment 1 replicated the relational luring effect, while 

controlling for other potential covariates, I analyzed false alarm data using logistic mixed-effects 

models. I used the glmer function from version 1.1.26 of the LME4 package (Bates et al., 2015), 

using R version 4.1.1 (R Core Team, 2021) to define logistic mixed-effects models of the data. 

Normed values on concreteness, prevalence, frequency, and length were treated as covariates. 

Since each of these metrics characterize individual words, I took the mean of a given metric for 

the two words constituting each word pair. For example, the word pair food:salad would have a 

concreteness of 4.89 because food has a concreteness rating of 4.80 and salad 4.97. 

I defined a full model including participant and word pair as random effects and the 

following fixed effects: stimulus type (familiar vs. unfamiliar vs. unrelated) and prior encoding 

task (relation detection vs. verbal analogy), with the following covariates: within-block trial 

number, concreteness, prevalence, frequency, and word pair length. I first examined the effect of 

prior encoding task on false alarms by defining a reduced model that lacked the prior encoding 

task term but that was otherwise identical to the full model. Removing this term did not increase 

model prediction error, ∆𝐴𝐼𝐶 = 2.0, 𝜒2(1) = 0.04, 𝑝 =  .85. This finding reveals that participants 

did not differ reliably in their false alarm rates across the two encoding tasks (relation detection or 

verbal analogy). Contrary to my expectation, the relation detection task (which might be performed 

using more implicit processing of relations) was just as effective as the analogy task in producing 

false alarms on the recognition task. 

Consistent with previous work (Popov et al., 2017), I hypothesized that participants would 

make false alarms more often to relationally familiar than relationally unfamiliar word pairs (i.e., 

showing a relational luring effect). In order to test this hypothesis, I fit a reduced model that 

removed the stimulus type fixed-effect term but that was otherwise identical to the full model, and 
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then compared the prediction error between this reduced model and the full model. Indeed, I found 

that removing the stimulus type term from the full model increased prediction error, ∆𝐴𝐼𝐶 = 33.6, 

𝜒2(2) = 37.68, 𝑝 <  .001. Inspecting the fit parameters of the full model, I also found that model 

predictions of false alarm rates for familiar word pairs were reliably higher than those for 

unfamiliar word pairs, 𝛽 = 0.86, 𝑧 = 3.31, 𝑝 <  .001, indicating that participants were more 

likely to false alarm on relationally familiar than relationally unfamiliar word pairs. I also found 

that predictions of false alarm rates for unfamiliar word pairs were reliably higher than those for 

unrelated word pairs, 𝛽 = 1.06, 𝑧 = 3.31, 𝑝 <  .001, indicating that the mere presence of a 

semantic relation induced participants to make false alarms more often. Moreover, the fact that 

this effect held across both prior encoding tasks indicates that detecting relations within the 

relatedness task was sufficient to elicit relational luring. 

Experiment 1 thus yielded a higher false alarm rate for relationally familiar than unfamiliar 

pairs, consistent with the relational luring phenomenon reported by Popov et al. (2017). Their 

study maintained the same word positions between study and test pairs, whereas my study varied 

word positions between the encoding tasks and the memory test task. In this study, differences in 

false alarm rates between the familiar and unfamiliar types could potentially be due to the 

correlated differences in word position consistency. In a further analysis, I fit a linear mixed-effect 

model of false alarm data using the full model described above, but with the added covariate of 

the number of words in the same position from study to test for each word pair (0 vs. 1 vs. 2). I 

found that omitting both the stimulus type term, ∆𝐴𝐼𝐶 = 15.9, 𝜒2(2) = 19.96, 𝑝 <  .001, and the 

word position term, ∆𝐴𝐼𝐶 = 5.8, 𝜒2(1) = 19.96, 𝑝 =  .005, increased model prediction error. 

Inspecting fit parameters, I found that familiar word pairs did not reliably induce higher false alarm 

rates than unfamiliar word pairs after accounting for word position, 𝛽 = 0.52, 𝑧 = 1.93, 𝑝 =
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 .054 , but that unfamiliar word pairs still induced higher false alarm rates than unrelated word 

pairs, 𝛽 = 0.95, 𝑧 = 3.09, 𝑝 = .002. 

Experiment 2 

Although Experiment 1 demonstrated relational luring, I was unable to rule out the 

possibility that the observed false alarm differences might be attributable to variations in 

consistency of word positions. Moreover, the previous experiment consistently used 

category:exemplar, part:whole, and place:thing as the familiar relations during the memory tasks 

and similar as the unfamiliar relation, and so I were unable to show that the observed luring effect 

generalized beyond this particular comparison of relations. In order to address these issues with 

Experiment 1, I carried out a follow-up experiment using materials adapted from Popov et al. 

(2017). These materials perfectly preserved word position for all stimuli between study and test 

phases, and they enabled us to counterbalance the particular relations that served as familiar and 

unfamiliar relations across participants. 

 

Figure 9: Task structure for Experiment 2. 

Participants completed three tasks in a fixed order. 

 

Method 

Participants. Participants were 106 UCLA undergraduates (Mage = 20.92, SDage = 4.24). 

Across the entire sample, participants included 92 female, 12 male, 1 nonbinary, and 1 gender not 

reported. All participants completed experimental tasks online to obtain partial course credit in a 

psychology class. The study was approved by the Institutional Review Boards at UCLA. All 
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analyses excluded data from 8 participants whose median correct response time, number of omitted 

responses, and/or d’ were 2.5 standard deviations away from the sample mean on any task (final 

sample size: 98). 

Procedure. Because relatedness judgments and solving verbal analogies both proved 

sufficient to induce relational luring in Experiment 1, I employed relatedness judgments as the sole 

encoding task for Experiment 2. Thus, in contrast to Experiment 1, all participants in Experiment 

2 completed a single block of three tasks: Relatedness judgments served as the encoding task, 

RPM problems served as the distractor task, and old/new recognition served as the memory task. 

As in Experiment 1, participants were first shown a list of all the tasks they would be completing 

during the experimental session (and thus made aware before starting the experiment that they 

would be completing a memory task but were not directly told that the relatedness task would be 

related to the memory task). The entire test session lasted approximately half an hour. Figure 9 

presents the sequence of tasks that each participant completed during an experimental session.  

Prior to beginning the relatedness task, participants were shown six examples of related 

and unrelated word pairs and then completed six practice trials. As with Experiment 1, neither the 

individual words in the practice trials, nor the relations instantiated by them, overlapped with the 

word pairs used in the actual encoding task. 

Materials and Tasks. Word pair stimuli were adapted from English translations of 

Bulgarian stimuli used in Experiment 1 of Popov et al. (2017), and originally generated by 

participants in a study by Popov and Hristova (2015). All stimuli were based on a pool of 84 

semantically-related word pairs. To create the present stimulus set, I edited Popov et al.’s translated 

stimuli in a few ways. I reversed word pairs that formed a common English bigram (e.g., eye:sight 

became sight:eye), replaced low-frequency words with more commonly-used associates (e.g., 
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schnitzel:calf became steak:cow), replaced English words that were translated from multiple 

distinct Bulgarian words (e.g., teacher:student and professor:student became teacher:student and 

parent:child), and replaced words yielding an unclear semantic relation with more obvious relata 

(e.g., soup:plate became soup:bowl, which was then reversed to avoid a common bigram, 

ultimately yielding bowl:soup). 

Table 3: Example of a stimulus set used in Experiment 2, adapted from Popov et al. (2017). 

ID Word pair Relation 

A atom:nucleus 
object:center 

B planet:core 

X bottle:cork 
object:closure 

Y jar:lid 

 

Each of the 84 word pairs had an analogous word pair (e.g., atom:nucleus and  planet:core), 

and each of these 42 pairs of analogous word pairs was grouped with another pair of analogous 

word pairs (e.g., atom:nucleus and  planet:core were matched with bottle:cork and jar:lid), 

yielding 21 stimulus sets (see Table 3 for an example). These stimulus sets were used to 

counterbalance across participants which stimuli were assigned to the encoding task and memory 

task. For a given participant, one word pair from each stimulus set was omitted (e.g., jar:lid), and 

individual words were swapped between two remaining disanalogous word pairs within each set 

(e.g., planet:core and bottle:cork), yielding two unrelated word pairs (e.g., planet:cork and 

bottle:core) for the encoding task. The final remaining word pair in that set was left intact, and 

served as a related word pair (e.g., atom:nucleus) for the encoding task. For that same participant, 

individual words in disanalogous word pairs were swapped back, yielding two “new” word pairs 

for the memory task (e.g., planet:core and bottle:cork), and the third word pair was again left intact 

and served as an “old” word pair (e.g., atom:nucleus) for the memory task. Of the two “new” word 

pairs generated from each stimulus set, one was analogous to the “old” word pair (e.g., plant:core) 
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and thus served as a relationally familiar stimulus, while the other was not (e.g., bottle:cork) and 

thus served as a relationally unfamiliar stimulus. Table 4 shows the encoding-task and memory-

task stimuli generated from a single stimulus set for two distinct participants. 

Table 4: Stimuli in Experiment 2 generated from the set presented in Table 2, adapted from Popov et al. (2017) 

Participant I Encoded pair Encoded condition Memory pair Memory condition 

1 

 

A atom:nucleus related atom:nucleus intact 

B planet:cork not related planet:core familiar 

X bottle:core not related bottle:cork unfamiliar 

2 

 

Y jar:lid related jar:lid intact 

X atom:cork not related bottle:cork familiar 

A bottle:nucleus not related atom:nucleus unfamiliar 

 

This scheme yielded 8 distinct lists of 63 word pairs for each of the encoding and memory 

tasks; which participants saw which lists was randomized. For the encoding task, 21 word pairs 

were semantically related (33%), and the remaining 42 were not semantically related (66%) 

(yielding a better balance between related and unrelated words than did the relatedness task in 

Experiment 1). For the memory task, 21 word pairs were intact (“old” word pairs seen during the 

relatedness task) and the remaining 42 were “new”, of which 21 were relationally familiar and the 

other 21 were relationally unfamiliar. Trial order for the encoding tasks was also counterbalanced 

such that participants assigned to a given trial list were presented either with one randomized 

sequence of word pairs or its reverse. 

Trial order for the memory tasks was more constrained. Note that each ‘new’ but 

relationally familiar word pair (e.g., planet:core) had an analogous ‘old’ counterpart (e.g., 

atom:nucleus). In contrast to Experiment 1, each ‘old’ word pair exemplified a unique semantic 

relation (e.g., object:center) during the encoding task. Accordingly, between the old word pair and 

its relationally familiar counterpart, whichever appeared first during the memory task constituted 

participants’ first exposure to that semantic relation during the task. Popov et al. (2017) found that 
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correct response times were reliably higher (and false alarms were numerically higher) for 

relationally familiar word pairs than relationally unfamiliar word pairs only when relationally 

familiar word pairs served as the first instance of their semantic relation during the memory task—

that is, when they appeared before their ‘old’ analogs but not when they appeared after. (I 

replicated this finding in a pilot study.) It seems likely that participants would notice (at least 

implicitly) that a given relation was “used up” once it had occurred once, and hence would avoid 

making false alarms to further instantiations of the same relation. In order to avoid this 

complication due to stimulus ordering, I generated a single trial order for each memory task list 

with the constraint that relationally familiar and the relationally unfamiliar word pairs drawn from 

the same stimulus set both appeared before their corresponding ‘old’ word pair. I counterbalanced 

whether the relationally familiar word pair appeared before or after its corresponding relationally 

unfamiliar word pair within each list. Otherwise, the trial order for each list was randomized. 

 

Figure 10: Human false-alarm rates and model predictions on the recognition memory task in Experiment 2 

False alarms rates are broken down according to stimulus type (relationally familiar and relationally unfamiliar word 

pairs). Error bars reflect ±1 SEM. 
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Results 

Encoding Task. Overall, participants performed well on the encoding task: MAcc= .90, 

SDAcc= .06, with a low rate of false positive judgments (MFA = .09, SDFA = .06). 

Memory Task. Overall, participants performed well on the memory task: MAcc= .76, 

SDAcc= .113, with a moderately high false-alarm rate (MFA = .16, SDFA = .14). I also found that 

false alarms were more frequent for relationally familiar word pairs (MFA = .17, SDFA = .16) than 

relationally unfamiliar word pairs (MFA =.14, SDFA = .13). As in Experiment 1, I fit logistic mixed-

effects models to the human false-alarm data. I defined a full model including participant and 

word pair as random effects, stimulus type (familiar vs. unfamiliar) as a fixed effect, with the 

following covariates: trial number, concreteness, prevalence, frequency, and word pair length. I 

found that omitting the stimulus type term reliably increased model prediction error, ∆𝐴𝐼𝐶 = 8, 

𝜒2(1) = 9.97, 𝑝 =  .002, indicating that participants were more likely to false alarm on 

relationally familiar than relationally unfamiliar word pairs (see Figure 10). Hence, despite various 

methodological differences between the present study and the experiment reported by Popov et al. 

(2017), I obtained the same basic finding: higher false alarm rate for familiar than unfamiliar pairs. 

Experiment 2 also demonstrated relational luring using materials in which word position was held 

constant across study and test stimuli. Notably, the magnitude of this luring effect (.03) is smaller 

than that demonstrated in Experiment 1 (.11). While there are a number of important differences 

between the two experiments (e.g., the number of relations, the number of word pair examples of 

each relation, the particular relations used for each condition), I suspect that the word position 

confound that is present in Experiment 1 but controlled for in Experiment 2 is primarily responsible 

for the difference in effect magnitude. 
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Tests of Computational Models 

Measures of Word-Pair Similarity 

To predict performance on both the analogy task and the recognition memory task, I 

compared two measures of similarity between word pairs: (1) relational: similarity of word pairs 

based on the similarity of the explicit relation between the two words in each individual pair; (2) 

lexical: similarity of word pairs computed directly from the similarities of the individual words in 

each pair. I implemented specific versions of both possibilities, all rooted in 300-dimensional word 

embeddings created by Word2vec. 

 

Figure 11: An illustration of relation similarity model (left top panel) and lexical similarity model (left bottom panel), 

and the resulting 2-D plot of similarity space derived using each (right panel). 

The scatter plots of similarity spaces are derived from 216 word-pair stimuli instantiating category:exemplar (blue 

circles), part:whole (magenta squares), and place:thing (green diamonds) relations. Plotted stimuli on the right consist 

of related word pairs used for encoding tasks (180 total) and relationally familiar recombinations used for memory 

tasks (36 total). 

  



54 

 

As shown in Figure 6 top panel, to compute relational similarity I used relation vectors 

generated by Bayesian Analogy with Relational Transformations (BART; Lu et al., 2012, 2019).  

BART assumes that specific semantic relations between words are coded as distributed 

representations over a set of abstract relations. The BART model takes concatenated pairs of 

Word2vec vectors as input, and then uses supervised learning with both positive and negative 

examples to acquire representations of individual semantic relations. 

After learning, the BART-based relational model calculates a relation vector consisting of 

the posterior probability that a word pair instantiates each of the learned relations (for details of 

the training procedure, see Ichien et al., 2022), as shown in Figure 11 left top panel. The relational 

model uses its pool of 270 learned relations to create a distributed representation of the specific 

relation between any two paired words A:B and C:D. The posterior probabilities calculated for all 

learned relations form a 270-dimensional relation vector 𝑅𝑖 for the A:B word pair and relation 

vector 𝑅𝑗 for the C:D word pair, where each dimension codes how likely a word pair instantiates 

a particular learned relation. The distance between word pairs 𝑖 and 𝑗 is computed as the cosine 

distance between corresponding relation vectors 𝑅𝑖 and 𝑅j : 

𝑑𝑅𝑒𝑙𝑖𝑗
= cos (𝑅𝑖,, 𝑅𝑗).             (4) 

As shown in Figure 11 left bottom panel, to compute lexical similarity the meaning of a 

word pair is represented by the two individual semantic vectors respectively representing each 

word. I use 𝑓𝐴 , 𝑓𝐵  to denote the semantic vector for the two words in a word pair A:B, and 𝑓𝐶 , 𝑓𝐷 to 

denote the semantic vector for the words in pair C:D. I compute the distance between word pairs 

𝑖 and 𝑗 as the mean of the distances between 𝑓𝐴𝑖
 and 𝑓𝐶𝑗

 and between 𝑓𝐵𝑖
  and 𝑓𝐷𝑗

: 
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𝑑𝐿𝑒𝑥𝑖𝑗
=

𝑐𝑜𝑠 (𝑓𝐴𝑖
,𝑓𝐶𝑗

)+𝑐𝑜𝑠 (𝑓𝐵𝑖
,𝑓𝐷𝑗

)

2
.  (5) 

This representation is nonrelational, coding word pairs solely in terms of the meanings of 

the individual words (as determined by their Word2vec embeddings). 

To provide a preliminary sense of how well the two basic measures of word-pair similarity 

(relational and lexical) capture the categorical distinctions among the three relation types used in 

the encoding tasks for Experiment 1 (category:exemplar, part:whole, and place:thing), Figure 11 

in the right panels plots 216 word pairs (180 related word pairs used for the encoding tasks and 36 

relationally familiar recombinations used for the memory tasks) on a 2-dimensional projection of 

the similarity space derived using each of the two measures. From visual inspection, it is clear that 

the relational measure (top) separates the three types of pairs into clusters corresponding to 

semantic categories more clearly than does the lexical measure (bottom); however, the lexical 

measure also predicts relation type to some extent, as the three clusters are somewhat separated 

(despite overlaps across relation categories). 

Modeling Verbal Analogical Reasoning 

Performance on the verbal analogy task in Experiment 1 was modeled directly by the 

BART-based relational model, which in addition to learning relations (as described above), can 

also be used to predict behavioral (Lu et al., 2019) and neural (Chiang et al., 2021) responses to 

analogy problems. In order to predict yes/no decisions about analogy problems, I computed cosine 

distances between representations of the A:B and C:D word pairs, and then searched for a decision 

threshold that generate the best model performance, such that word pairs with distances below the 

threshold indicate a valid analogy and those above indicate an invalid analogy. In calculating 

distance for the purpose of solving analogy problems, I used relational and lexical similarity 

metrics. Based on prior modeling of verbal analogical reasoning (Lu et al., 2019; Chiang et al., 
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2021) and of explicit judgments of relation similarity (Ichien et al., 2022), I predicted that the 

model based on relational similarity would best predict human judgments on the explicit analogy 

task. 

Figure 7 (see above) presents the proportion of 'valid’ responses for models as well as 

humans, broken down by valid analogies (darker bars) and invalid analogies (lighter bars). Overall, 

the BART-based relational model achieved higher accuracy (.75), nearly matching human 

proportion correct (.76). The alternative model based on lexical (non-relational) similarity 

performed poorly (.59 correct). 

 

Figure 12: Human item-level ‘valid’ response rates on verbal analogy problems in Experiment 1, plotted against z-

scored distance (dissimilarity) metrics predicted by the relational model (left) and by the lexical model (right). 

Each point represents a single analogy problem, and point shade reflects whether a problem features a valid analogy 

(dark grey) or an invalid analogy (light grey). The scatter plots were overlaid with a fitted regression line.  

 

An item-level analysis corroborated these results. I used the cocor package in R to test the 

difference between the extent that each similarity measure correlated with the frequency with 

which human reasoners judged each analogy as valid (Diedenhofen & Musch, 2015).  A Dunn and 

Clark's (1969) z-test showed that relational similarity was more highly correlated with human 
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responses (r = .47) than was lexical similarity (r = .21; z = 3.68, p < .001). Figure 12 presents 

scatter plots of human item-level responses and z-scored model predictions based on each 

dissimilarity metric. Because this item-level analysis is based purely on dissimilarity predictions 

generated using each model, its results are independent of the decision threshold that was fit to 

maximize model accuracy in the analogy task. These simulation results thus confirm previous 

findings showing that the relational model based on explicit representations of semantic relations 

outperforms the alternative model based on lexical similarity in tasks involving verbal analogy, as 

well as explicit judgments of relation similarity (Chiang et al., 2021; Ichien et al., 2022; Lu et al., 

2019). 

Modeling Recognition Memory 

To provide a formal account of relational luring, I adapted an established model of 

recognition memory, the Generalized Context Model (GCM;  Nosofsky, 1988, 1991; Nosofsky & 

Zaki, 2003).  GCM predicts old/new recognition judgments, and is closely related to several other 

successful models of episodic memory and categorization (e.g., Anderson, 1991; Kruschke, 1992; 

Love et al., 2004). If a version of GCM is able to account for relation-based false alarms, I will 

have demonstrated that this phenomenon is one of many that can be explained within a unified 

theoretical framework for exemplar-based recognition and categorization. 

In the version of GCM implemented here, I assume that recognition of a given word pair 

on a memory task is based on a comparison of similarities between that word pair and all word 

pairs presented during the prior encoding task (as described below). The probability with which a 

participant will classify a word pair 𝑖 as one they had seen during the encoding task is given by 
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𝑃(𝑜𝑙𝑑|𝑖) =
𝐹𝑖

𝐹𝑖+𝑘
,   (6) 

where 𝑘 is a parameter representing a criterion for recognition, and 𝐹𝑖 is the familiarity of 

word pair 𝑖, defined as: 

𝐹𝑖 = ∑ 𝑠𝑖𝑗𝑗 ∈𝐽 .    (7) 

Here, 𝐽 is the set of word pairs shown during the encoding task, and 𝑠𝑖𝑗 is the similarity 

between word pair 𝑖 in the memory task and each word pair 𝑗 from the encoding task. This 

similarity follows an exponential decay function (Shepard, 1987) of the psychological distance 𝑑𝑖𝑗 

between word pairs 𝑖 and 𝑗,  

𝑠𝑖𝑗 = 𝑒−𝑐𝑑𝑖𝑗 ,   (8) 

where 𝑐 is a scaling parameter representing the rate of decline in similarity with 

psychological distance between word pairs. When GCM is fit to data from individual participants, 

𝑐 is typically interpreted as a measure of a participant’s memory sensitivity (i.e., the extent to 

which they can discriminate between word pairs in memory, with higher values of c indicating 

greater sensitivity; Nosofsky, 1988). This interpretation of 𝑐 is appropriate when comparing among 

parameter values within a fixed representational space. In contrast, the present simulations fit the 

model to group-level data, varying the representations for word pairs over which the model 

operates (details below). Therefore in my simulations, 𝑐 (because it varies across different types 

of representations) is naturally interpreted as the discriminability between word-pair items within 

a given representational space. Because representational spaces can vary according to arbitrary 

scaling properties, I scaled all model-generated distance values between 0 and 1. As these 

representations are high-dimensional, I adopt cosine distance to compute 𝑑𝑖𝑗, rather than the 
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Minkowski power formula typically used in previous work (e.g., Nosofsky, 1988, 1991; Nosofsky 

& Zaki, 2003). 

As the above equations make clear, GCM must be grounded on some measure of similarity 

between word pairs. I compared the two measures described above (relational and lexical) within 

the basic GCM framework. 

Table 5: GCM parameters fit to human data and fit-model performance for relational similarity (rel) and lexical 

similarity (lex) 

 

c k 

log-

likelihood RMSD spearman 

 rel lex rel lex rel lex rel lex rel lex 

Exp. 1 15.5 10.0 .20 .20 -5013 -5063 .163 .169 .794 .764 

Exp. 2 15.5 10.5 .30 .20 -2836 -2768 .159 .149 .658 .665 

Popov et 

al. Exp. 1 

11.5 8.0 .40 .40 -1288 -1271 .199 .192 .669 .644 

 

Simulation results for Experiment 1. First, I modeled human recognition memory 

performance for Experiment 1. Because I found no reliable differences in either false alarm rates 

or overall accuracy across the two encoding tasks, I simulated the data obtained by averaging 

responses across them. For this simulation, model predictions were 𝑃(𝑜𝑙𝑑|𝑖) for each word pair 

item; human judgments were the response proportions with which human participants judged a 

word pair item to be either "Maybe old" or "Definitely old". I first ran the GCM using each of the 

two variants of similarity (relational vs. lexical) to fit item-level human data for all 54 word pairs 

tested in the recognition memory task. I used a binomial distribution as the likelihood function to 

fit the scaling parameter c and criterion parameter k that maximized the log-likelihood. Table 5 

summarizes fit model parameters, maximum log-likelihood, and RMSD and spearman correlations 

between fit model predictions and item-level human data. Figure 8 presents false-alarm rates for 

model-generated 𝑃(𝑜𝑙𝑑|𝑖) predictions using the fitted parameters, as well as human data, broken 

down by type of recombined word pairs. Crucially, using either of the alternative similarity 
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calculations, GCM predicts the relational luring effect observed in the human data: higher false 

alarm rates for relationally familiar than for relationally unfamiliar word pairs. While Figure 13 

only shows false alarm rates to clearly highlight that human and model-predicted luring effects, 

both models also clearly discriminate between intact word pairs and recombined lures, predicting 

much higher hit rates for intact word pairs than false alarm rates for recombined lures, as observed 

in the human data (human: MHit = .88, SDHit = .10, MFA = 24,  SDFA = .15; relational: MHit = .79, 

MFA = .26; lexical: MHit = .79, MFA = .28). 

 

Figure 13: Human false-alarm rates and model predictions on the recognition memory task in Experiment 1, broken 

down according to familiar, unfamiliar and unrelated stimulus types. 

Error bars reflect ±1 SEM. 

 

Next, I assessed the robustness of the relational and lexical models to variations in the two 

model parameters: GCM's scaling parameter 𝑐 and its criterion parameter 𝑘. Specifically, I 

examined the space of parameters and item-level deviation between model predictions and human 
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responses using all 54 test word pairs. To provide a quantitative comparison of the model’s 

robustness to predicting human data with each similarity metric, I computed the log model 

evidence (Friel & Wyse, 2012; Hoeting et al., 1999) by averaging the log likelihood that each 

model predicts the proportion of human participants who judged each word pair as old, over a 

range of the model parameter space (𝑐 = [0,50] with a stepsize of 0.5; 𝑘 = [.1,1] with a stepsize of 

0.1). I selected this range of parameters to capture both the maximum log-likelihood model 

predictions of overall human data, as well as the maximum model-predicted luring effect for the 

current simulation, as well as simulations of Experiment 2 and Popov et al. Experiment 1 discussed 

below. 

The computation of log model evidence assumes a uniform prior for parameters. The log 

model evidence calculation uses the same binomial likelihood function that I used for model 

fitting. As shown in Table 6, I found that the log model evidence for the relational similarity metric 

was Elog = -1.324 x 104, substantially greater than that for lexical similarity, Elog = -1.569 x 104. 

This analysis provides converging evidence that the relational model provides a more robust 

account of the human data than does the lexical model. 

Table 6: Log and luring-specific model evidence for GCM using relational similarity (rel) and lexical similarity (lex) 

averaged over a wide range of the model parameter space (c = [0,50], k = [.1,1]) 

 Elog Eluring 

 rel lex rel lex 

Exp. 1 -1.324 x 104 -1.569 x 104 2.533 2.355 

Exp. 2 -6.738 x 103 -8.131 x 103 3.310 3.291 

Popov et al. Exp. 1 -2.961 x 103 -3.614 x 103 3.643 3.631 

 

I also examined the range of parameters in models that generate the effect of relational 

luring. In this analysis I focused on model judgments for two types of test pairs, relationally 

familiar and relationally unfamiliar word pairs. I identified the parameter combinations for which 

each model (relational or lexical) predicts more false alarms for relationally familiar than 
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relationally unfamiliar word pairs. The results of this analysis are depicted in Figure 13, where 

reddish cells indicate paired values of 𝑐 and 𝑘 with which models predict a false-alarm difference 

(i.e., mean 𝑃(𝑜𝑙𝑑|𝑖) for relationally familiar word pairs is greater than mean 𝑃(𝑜𝑙𝑑|𝑖) for 

relationally unfamiliar word pairs). Examination of the parameter range displayed in Figure 14 

clearly reveals that within the GCM framework, relational similarity is a more robust predictor of 

the relational luring effect than is lexical similarity. That is, relational similarity yields the 

predicted difference (i.e., luring effect) across a larger set of parameter values than does lexical 

similarity (hence there are many more dark cells in the left panel than in the right panel). 

 

Figure 14: Simulation of model-predicted relational luring effect in Experiment 1 as a function of model parameters. 

Each cell represents a combination of values for GCM’s scaling parameter 𝑐 (y-axis) and its criterion parameter 𝑘 (x-

axis), respectively. Given the pair of parameter values for each cell, cell color represents the model-predicted 

difference of false alarm rates between familiar word pairs and unfamiliar word pairs (i.e., relational luring effect). 

Redder cells indicate a greater magnitude of model-predicted luring effect. The highest intensity of red corresponds 

to the magnitude of the luring effect observed in human data. 

 

To provide a quantitative comparison of the robustness with which model predicts 

relational luring using each similarity metric, I computed the luring-specific model evidence as the 
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marginal likelihood that each model predicts the mean luring effect (i.e., greater false alarms to 

familiar than unfamiliar test items) observed in human data, averaged across the same range of the 

parameter space that I used to compute log model evidence (𝑐 = [0,50] with a stepsize of 0.5; 𝑘 = 

[.1,1] with a stepsize of 0.1). The luring-specific model evidence computation assumes a uniform 

prior for parameters. For each combination of parameters, likelihood of observing mean human 

luring effect was calculated using a Gaussian distribution centered at the model-predicted luring 

effect with the standard deviation SDluring = .1240, which was observed derivation of luring effect 

among human participants. Model evidence was computed as the marginal likelihood by averaging 

the likelihood probabilities across the parameter space. As shown in Table 6, I found that the 

luring-specific model evidence for the relational similarity metric (Eluring = 2.533) was greater than 

that for lexical similarity (Eluring = 2.354). The greater robustness for the relational model in 

predicting the luring effect is consistent with the finding that relational similarity yields clearer 

separation of word pairs based on the three semantic relations than does lexical similarity (see 

Figure 11, right panels). 

Even though the relational model was able to generate the luring effect more robustly than 

the lexical model, it is somewhat surprising that the lexical model was able to generate the 

relational luring effect at all. Since the lexical model only has access to similarities among 

individual word meanings, how was it able to reproduce this putatively relational effect? The 

intuitive explanation is that some lexical properties are shared by words that serve the same 

semantic role in word pairs instantiating a relation. For examples, the category words in 

category:exemplar relations (e.g., reptile, food, or clothing) tend to be superordinate categories 

and abstract words, the part words in a part:whole relations (e.g., fang, wall, lobe) tend to be 
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objects that do not commonly exist on their own but as parts of a larger structure, and the place 

words in place:thing relations (e.g., pond, bakery, chapel) are necessarily locations. 

Figure 15 shows a multidimensional scaling result derived from lexical similarity between 

individual Word2vec embeddings for the first words in related word pairs used in the memory task 

from Experiment 1. This plot illustrates that words filling the first roles in category:exemplar, 

part:whole, and place:thing relations tend to form discernible clusters, reflecting their tendency to 

have constraining lexical features. Thus, the lexical model’s ability to capture the relational luring 

effect (shown in the bottom-right panel of Figure 11) is largely based on high similarity among 

first words in relationally familiar and intact word pairs. The second words in the pairs did not 

form clusters corresponding to the three relations. 

 

Figure 15: Multidimensional scaling based on for lexical similarity among individual first words in pairs used in the 

memory task for Experiment 1. Colors indicate word-pair relations (category:exemplar, part:whole, and place:thing). 

  

Simulation results for Experiment 2. Using the same model-fitting procedure as for 

Experiment 1, I optimized GCM parameters with the maximum log-likelihood fit to the item-level 

human data for each similarity metric, using a binomial likelihood function. Figure 10 (above) 
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presents false-alarm rates for model-generated 𝑃(𝑜𝑙𝑑|𝑖) predictions using the fitted parameters, as 

well as human data, for familiar and unfamiliar word pairs, and the figure shows that, as in 

Experiment 1, both relational and lexical similarity predict a higher false alarm rate for familiar 

than unfamiliar word pairs. Moreover, both predict much higher hit rates for intact word pairs than 

false alarm rates for recombined lures, in line with the human data (human: MHit = .82, SDHit = .22, 

MFA = .16, SDFA = .14; relational: MHit = .78, MFA = .17; lexical: MHit = .84, MFA = .17). 

Experiment 2 used more tightly controlled stimuli than Experiment 1, holding constant 

word position across study and test pairs and counterbalancing which relations contributed to 

relational familiarity during the memory task across participants. Likely as a result, the difference 

in the human false-alarm rates between relationally familiar and unfamiliar word pairs was much 

smaller in Experiment 2 than in Experiment 1, and both models were able to capture this because 

both lexical and relational similarity are sensitive to word position: Lexical similarity between 

word pairs is based on similarity computed between words in the same position only, and the 

relation representation entering into relational similarity is sensitive to word position such that the 

relation representation for dog:animal is different from that for animal:dog, and the former is more 

similar to car:vehicle than is the latter. 

Although both models predicted the luring effect in Experiment 2, as well as a smaller 

effect in Experiment 2 than in Experiment 1, the luring effect generated within the relational 

similarity metric was much more similar in magnitude to the human effect than that generated 

within the lexical similarity metric. Moreover, as shown in Figure 11, this was the case across a 

wide range of parameters: the relational metric robustly produced a human-like luring effect, as 

shown by the strip of red cells in the left panel, while the lexical metric failed to produce luring 

effects of comparable magnitude at all, as shown by the lack of any bright red cells in the right 
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panel. Importantly, because Experiment 2 eliminated the word-position confound in Experiment 

1, the increased false alarm rate to relationally familiar word pairs compared to relationally 

unfamiliar word pairs in Experiment 2 more unambiguously reflects relational luring than does 

the comparable data from Experiment 1. Thus, the relational model’s unique success in 

reproducing a luring effect of similar magnitude to humans in Experiment 2 provides particularly 

strong evidence for the importance of relation representations in recognition memory.  

In order to quantitatively examine differences between the two models, I used the same 

analysis of log model evidence as in Experiment 1 to account for human data from all 63 test word 

pairs in Experiment 2. As shown in Table 6, I found greater model evidence for the relational 

model (Elog = -6.738 x 103) than for the lexical model (Elog = -8.131 x 103). As for Experiment 1, 

I went also computed influence of parameter variations on model-predicted relational luring effect. 

Even more than was the case for Experiment 1, the relational similarity metric predicted relational 

luring across a greater range of parameter variations than did the lexical metric. Using the same 

analysis for luring-specific model evidence as in Experiment 1, as Table 6 shows, I found that the 

model evidence for the luring effect observed in the human data (Mluring = .0306, SDluring = .1174) 

was greater for the relational model (Eluring = 3.310) than for the lexical model (Eluring = 3.291). I 

acknowledge that while the luring-specific model evidence for the relational model is greater than 

that for the lexical model, the magnitude of this difference is much smaller than that observed in 

Experiment 1. Still, given the large difference in log model evidence between the two models, I 

maintain that relational similarity more robustly accounts for human data across a wide range of 

parameter values. 
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Figure 16: Simulation of model-predicted relational luring effect in Experiment 2 as a function of model parameters  

Red color of cells indicates magnitude of model-predicted luring effect. The highest intensity of red corresponds to 

the magnitude of the luring effect in human data. 

 

Given that the materials used in Experiment 2 involved more relation types and were more 

well-controlled than those used in Experiment 1, it may seem even more puzzling that the lexical 

model could reproduce the luring effect at all. In order to clarify this issue, I compared relational 

and lexical similarity between word pair items within this dataset. Recall that all test pairs within 

each participant’s 63-item stimulus list belonged to one of 21 stimulus sets. For each set there was 

a triplet consisting of an intact “old” word pair that was shown during the encoding task (e.g., 

atom:nucleus), and two “new” word pairs not shown during the encoding task. One was a 

relationally familiar word pair that was analogous to the intact word pair (e.g., planet:core) and 
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the other was a relationally unfamiliar word pair that was disanalogous to the intact word pair 

(e.g., bottle:cork). (See Memory Pair column of Table 4 for two examples of intact, relationally 

familiar, and relationally unfamiliar triplets generated from the same stimulus set.) I computed 

the relational and lexical distances between each relationally familiar and each relationally 

unfamiliar word pair and its corresponding intact word pair. Figure 16 shows the average cosine 

distances across all such unique triplets used in Experiment 2. While it would be expected that the 

relational distance between familiar and intact word pairs should be much smaller than that 

between unfamiliar and intact word pairs, it is striking that lexical distances yield the same pattern. 

The explanation for the lexical model’s ability to predict relational luring in Experiment 2 

is broadly consistent with the explanation for Experiment 1. Words serving the same role in 

analogous word pairs (e.g., atom and planet; nucleus and core) are more similar to each other in 

Word2vec space than words in disanalogous word pairs (e.g., atom and bottle; nucleus and cork). 

Indeed, this analysis shows that lexical similarity and relational similarity overlap more than might 

be expected, and that this overlap enabled the lexical model to reproduce the seemingly relational 

phenomenon of relational luring. These findings thus confirm that embeddings produced by 

Word2vec capture important aspects of word meaning related to typical relational roles. 
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Figure 17: Mean lexical and relational cosine distances (scaled between 0 and 1) between familiar and unfamiliar 

word pairs and intact word pairs within each stimulus set used in Experiment 2. 

 

Simulation results for Popov et al. (2017), Experiment 1. In order to provide a conceptual 

replication of the assessment of computational models I applied to my own experiments (as 

reported above), I used the same models to simulate human data reported by Popov et al. (2017) 

in their original demonstration of relational luring. Popov et al. reported human data collected for 

two different recognition memory tasks. The first task involved separate study and test phases and 

required participants to make binary ‘old’/‘new’ judgments. The second task consisted of a more 

elaborate, continuous memory task, in which participants were presented with a long sequence of 

word pairs (> 500) and were asked to classify each stimulus into three categories based on its 

relation to word pairs already presented on previous trials in that sequence. Because my 

implementation of GCM (based on Nosofsky, 1988, 1991; Nosofsky & Zaki, 2003) produces 

binary responses and more naturally fits a design with separate study and test phases, I simulated 

the data for the first task reported by Popov et al. (2017), which was very similar to the present 

Experiment 2. 
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Popov et al.’s (2017) task consisted of three blocked study phases. In each phase, 

participants were instructed to commit 21 word pairs to memory. Following each study phase, 

participants completed a test phase in which they were presented with a different list of 21 word 

pairs, and were asked to provide binary responses indicating whether or not a given word pair was 

one of those that they had studied previously. On each test list, participants were presented with 7 

old word pairs that had been shown during the prior study phase, and 14 new word pairs each 

consisting of individual words shown during the study phase, but that were novel in that they 

involved a combination of words different from any presented during the study phase. Of the 14 

new word pairs, 7 were relationally familiar in that they were relationally similar to one of the 

studied word pairs (e.g., floor:carpet and table:cloth are relationally similar in that they both 

prominently instantiate the relation is covered by), and 7 were relationally unfamiliar in that they 

were not relationally similar to any of the studied word pairs. As in the present Experiment 2, the 

stimuli used by Popov et al. were constructed so that words were always placed in the same 

position in study and test pairs. Popov et al. demonstrated reliable relational luring on this task 

based on participant response times: Participants took longer to correctly classify new relationally 

familiar than new relational unfamiliar word pairs. The frequency with which participants 

misrecognized new pairs was numerically greater for relationally familiar than relationally 

unfamiliar recombinations, although this difference was not statistically reliable. (Importantly, the 

comparable pattern was reliable in the present Experiment 2.) I aimed to reproduce this trend based 

on models in the GCM framework, using the two similarity metrics, relational and lexical. 

Using the same model-fitting procedure as Experiments 1 and 2, I found the maximum log-

likelihood fit of the best parameters for each model, using item-level human data. Just as in 

Experiment 2, since individual word pairs were used in each condition, I treated word pair-
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condition combinations as unique items. Figure 18 presents false-alarm rates for model-generated 

𝑃(𝑜𝑙𝑑|𝑖) predictions using the best-fitting model parameters, and human data for familiar and 

unfamiliar word pairs. Again, using each similarity metric, GCM predicts the relational luring 

effect observed in the human data, as well as the higher hit rates for intact word pairs than false-

alarm rates for recombined lures (human: MHit = .75, SDHit = .18, MFA = .18, SDFA = .13; relational: 

MHit = .72, MFA = .17; lexical: MHit = .72, MFA = .19). Similar to Experiment 2, but to a lesser 

extent, the luring effect generated using the relational similarity metric was closer in magnitude to 

the human effect than that generated using the lexical similarity metric. As was the case for 

Experiment 2, Popov et al. (2017) used materials that afforded more experimental control over the 

key manipulation of relational familiarity than those used in Experiment 1. The relational model’s 

advantage in producing a more human-like luring effect in the present simulations thus strongly 

supports the importance of relation representations in accounting for human recognition memory. 

An analysis of Popov et al.’s stimulus triplets (i.e., intact, relationally familiar, and 

relationally unfamiliar word pairs drawn from the same stimulus set) produced the same pattern 

of results as the corresponding analysis of Experiment 2’s materials: Both the lexical and relational 

models yielded greater distances between intact and unfamiliar word pairs than between intact and 

familiar word pairs. The lexical model’s ability to reproduce relational luring again stemmed from 

its partial success in capturing aspects of word meaning that track relational roles.  
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Figure 18: Human false-alarm rates from Popov et al. (2017), Experiment 1, and model predictions on the recognition 

memory task, broken down according to stimulus type. 

Error bars reflect ±1 SEM. 

 

In the same manner as described for the robustness analyses applied to data from my own 

experiments, I computed log model evidence for all 63 test items. Log model evidence was greater 

using relational similarity (Elog = -2.961 x 103) than lexical similarity (Elog = -3.614 x 103). I then 

examined the space of parameters for which relational and lexical similarity yielded relational 

luring within GCM for the data from Popov et al. (2017). Replicating the pattern of luring-specific 

model evidence for my own data in Experiments 1 and 2, I found that for the relational luring 

effect observed in Popov et al.’s (2017) data (Mluring = .0225, SDluring = .1078), relational similarity 

yielded greater model evidence (Eluring = 3.643) than did lexical similarity (Eluring = 3.631) across 

a wide range of the parameter space. Figure 19 depicts the luring effects produced by each 

similarity metric. As with Experiment 2, while the relational model showed only a slight advantage 
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over the lexical model in luring-specific model evidence, it showed a substantial advantage over 

the lexical model in log model evidence. Thus for three datasets, relational similarity consistently 

produced a better account of the human data than lexical similarity across a wide range of model 

parameters. 

Note the magnitudes of the fitted parameter values varied (even between Experiment 2 and 

the study by Popov et al., despite their use of very similar materials). These variations presumably 

are due to methodological differences, such as different encoding tasks (relatedness judgments in 

Experiment 2 vs. deliberate study in Popov et al.), number of task blocks (1 in Experiment 2 vs. 3 

in Popov et al.), and task language (English in Experiment 2 vs. Bulgarian in Popov et al.).  

 

Figure 19: Simulation of model-predicted relational luring effect as a function of model parameters for Popov et al. 

(2017), Experiment 1. 

Red color of cells indicates magnitude of model-predicted luring effect. The highest intensity of red corresponds to 

the magnitude of the luring effect in human data. 
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General Discussion 

Summary 

I report two experiments and simulations designed to compare alternative representations 

of word-pair similarity as predictors of both human analogical reasoning and recognition memory. 

I compared two computational models (both grounded in semantic vectors for individual words 

created by Word2vec; Mikolov et al., 2013) for defining the similarity between word pairs. One 

model was based on explicit relations between words, the other on lexical overlap between word 

meanings. The model based on explicit relations (BART; Lu et al., 2019) clearly provided the best 

account of human performance on an analogy task, in accord with previous work (e.g., Chiang et 

al., 2021; Ichien et al., 2021). 

In my test of recognition memory, I replicated the phenomenon of relational luring reported 

by Popov et al. (2017): greater false recognition of word pairs formed by recombining studied 

words to form a novel instantiation of a familiar relation, as compared to recombinations that form 

an unfamiliar (i.e., unstudied) relation. I obtained the same basic pattern of false alarms using two 

different encoding tasks: judging whether a discernible semantic relation holds between two words 

in the relatedness task (Experiments 1 and 2), or judging whether two word pairs constitute a valid 

analogy in a verbal analogy task (Experiment 1). The fact that relation recognition yielded as much 

luring as an explicit analogy task is a surprising finding, as it seemed plausible that the former task 

would require less detailed processing of the relation. It is possible that participants paid close 

attention to the relation during both tasks because they expected a later memory test (as was also 

the case in the study by Popov et al., 2017). Alternatively, it may be that even relatively superficial 

relation processing is sufficient to produce the luring phenomenon. Future work will be needed to 
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clearly disentangle the relative contributions of different encoding tasks to false recognition 

memory based on relations. 

To assess the basis for relational luring using computational modeling, I tested the two 

similarity measures within a common theoretical framework provided by the Generalized Context 

Model (GCM; Nosofsky, 1988, 1991; Nosofsky & Zaki, 2003), a well-established instance-based 

model of item recognition. These computational analyses, which were applied to both experiments 

reported here as well as an experiment from Popov et al. (2017), yielded a nuanced interpretation. 

Relational similarity proved to be more accurate than lexical similarity in clustering word pairs 

instantiating different categories of semantic relations, but lexical similarity also was somewhat 

predictive (Figure 11). For all three datasets, when each model variant was fit using the optimal 

choice of values for the two parameters specified in GCM, the human pattern of relational luring 

could be predicted equally accurately using either relational or lexical similarity. Strikingly, my 

modeling results indicate that explicitly representing relations is not necessary for explaining 

relational luring.  

However, I also performed additional analyses to assess the robustness of each similarity 

measure to variations in GCM’s two model parameters: scaling parameter 𝑐 and criterion 

parameter 𝑘. I first examined the space of parameters in the GCM model that predict item-level 

deviation between model predictions and human responses (using all data); and also the parameter 

space that specifically predicts the human luring effect. I computed the log model evidence to 

provide a quantitative comparison of the robustness to predicting all human data with each 

similarity metric. In addition, I computed luring-specific model evidence to quantitatively compare 

each similarity metric’s ability to predict the human-generated luring effect. Both types of analyses 

were performed for data from Experiments 1-2 in the present paper and for Experiment 1 reported 
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by Popov et al. (2017). For both analyses, across all three datasets, model evidence was greater for 

the relational similarity metric than for the lexical metric. In particular, the relational measure 

predicted the pattern of human data across a range of higher values of the GCM parameter c, which 

is typically interpreted as an index of sensitivity to differences among the instances stored in 

memory. Given the substantial procedural differences among the datasets that I modeled, the 

comparable findings from these analyses are particularly striking. 

The greater robustness of the relational measure is consistent with the fact that this measure 

differentiated the abstract relation categories more accurately than did the lexical measure. In an 

explicit verbal analogy task in the A:B::C:D format, validity depends on the precise similarity of 

the A:B and C:D relations. Only relational similarity provides adequate precision to reliably 

compute validity. But in the recognition memory task, the instance-based GCM effectively 

computes similarity of any test pair to the entire pool of studied pairs. The GCM framework 

implies that the probability of incorrectly accepting a relational lure depends on its perceived 

similarity to an aggregate of all studied instances of that relation. If an agent is generally insensitive 

to subtle distinctions among individual word pairs, a coarse measure based on lexical similarity 

will suffice to yield greater false alarms to familiar than unfamiliar test pairs. But if the agent is 

instead highly sensitive to semantic distinctions among word pairs, only the more precise measure 

provided by relational similarity will predict a difference. 

Conclusion 

I conclude that by the preponderance of evidence (in particular, the greater robustness of 

the GCM model based on relational similarity), it is more probable that recognition memory for 

word pairs (like analogical reasoning) is based on explicit representations of relations between 

words, rather than on direct lexical similarity of individual words that form pairs. However, even 
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if this (tentative) conclusion proves to be correct, it would not imply that lexical similarity is 

irrelevant to recognition. In fact, a basic requirement for obtaining relation-based false alarms is 

that the lure must be composed of words that were in fact shown in the study phase (in different 

combinations). That is, few false alarms would be expected if a test pair instantiated a familiar 

relation, but was composed of unstudied words. Moreover, even complex analogical reasoning by 

humans appears to be guided by lexical similarity of words in addition to similarity of explicit 

relations between words (Lu et al., 2022). It appears that a complete account of both reasoning and 

episodic memory will require integration of multiple types of similarity. 

Having examined that the extent that relation processing impacts explicit comparison in 

Chapter 1, a process emphasizing human reasoning, and recognition in Chapter 2, a process 

emphasizing human memory, I move on in Chapter 3 to examine a process that integrates 

reasoning and memory: generative analogical inference. 
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Chapter 3: Relations and inference 

Introduction 

Human reasoners are remarkably sensitive to structural similarities. For example, despite 

the superficial differences between generational wealth accumulation and blood clotting, a brief 

elaboration of each reveals a clear analogy. In the first case, initial financial success allows a family 

to pass on wealth to the subsequent generation, which then grants that new generation access to 

social resources enabling its own financial success, affording further wealth to pass onto future 

generations. In the second case, an initial injury attracts blood platelets to cling to the injured site. 

Upon recognizing even this hint of a shared relational structure across these two processes, a 

reasoner can more easily map entities playing corresponding roles, such as wealth and blood 

platelets. Crucially, the reasoner could also infer that the presence of blood platelets would then 

attract yet more blood platelets to the injured site. 

Computational models reproducing this ability to reason by analogy have been developed 

both in cognitive science (Falkenhainer et al., 1989; Hummel & Holyoak, 1997, 2003; Lu et al., 

2022) and in artificial intelligence (P. W. Battaglia et al., 2018; Santoro et al., 2017; Shanahan et 

al., 2019). Models of analogical reasoning within cognitive science typically include explicit 

representations of relations, such that a relation is distinct from, but bound to the entities it relates. 

This property supports the recognition of structural similarity by enabling a direct comparison of 

the relations constituting each analog. Crucially, explicit relation representations can also constrain 

the generation of predictions about a target analog based on the source. Indeed, the generative 

capacity afforded by relation representations is the core of analogical inference, which human 

reasoners can exploit in everyday problem solving (Gick & Holyoak, 1980, 1983), technological 
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innovation (Kittur et al., 2019), and scientific discovery (Gentner, 2002; Holyoak & Thagard, 

1994b; Nersessian, 1992). 

Here I introduce a new computational model of analogical inference. Like existing 

inference models (Burstein, 1983; Carbonell, 1983, 1993; Falkenhainer et al., 1989; Halford et al., 

1994; Hofstadter & Mitchell, 1994; Holyoak & Thagard, 1989; Hummel & Holyoak, 2003; Keane 

& Brayshaw, 1988; Kokinov, 1994), the present model can reproduce inferences from pre-

specified relations (as demonstrated in Simulations 1a and 1b). Unlike existing models, this model 

can also reproduce inferences from analogs for which relational structure is unspecified in the 

input (as demonstrated in Simulations 2-4). This model, BART-Gen, operates on explicit relation 

representations generated by BART (Bayesian Analogy with Relational Transformations) (D. 

Chen et al., 2017; Lu et al., 2012, 2019), a model of relation learning that acquires representations 

of relations from unstructured vector representations of individual word meanings. Many previous 

analogy models have relied on representations that are hand-coded by the modeler, and thus bypass 

the problem of relation acquisition altogether (Chalmers et al., 1992). In contrast, BART deals 

directly with the problem of learning relations from non-relational inputs, taking as inputs 

embeddings for individual words produced by machine-learning algorithms. 

BART’s relation representations have been used to predict human judgments of relational 

similarity among word pairs (Ichien et al., 2022), to support human-like analogical reasoning on 

simple four-term verbal problems (e.g., artificial : natural :: friend : enemy) (Lu et al., 2019), and 

to predict patterns of similarity in neural responses to relations during analogical reasoning 

(Chiang et al., 2021). When used as input to a mapping model, BART also can support analogical 

mapping in problems requiring finding correspondences between multiple entities across complex 

relational systems (e.g., mapping the solar system to atomic structure) (Lu et al., 2022). 
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Analogical inference 

Analogical inference enables a reasoner to elaborate on their understanding of some target 

domain by exploiting an analogy between it and a better-understood source analog. In the case of 

analogical problem solving, source analogs may permit elaboration of a target problem that reveals 

its solution (Gick & Holyoak, 1980, 1983). Cognitive scientists have studied this ability as a 

component process of the capacity for analogical reasoning, which also involves in retrieving of 

one or more relevant source analogs given a target, mapping systematic correspondences between 

components of the source and target, and schema induction to form a more abstract representation 

capturing commonalities shared by the source and target (Holyoak et al., 1994). 

Schema-governed categorization (SGC). One mechanism for generative inference relies 

on schema-governed categorization (SGC), recognizing some situation as a candidate instance of 

some schema-governed or relational category the members of which all instantiate some common 

relational structure (e.g., positive-feedback loop or convergence; Gick & Holyoak, 1983; Markman 

& Stilwell, 2001). In cases where the target situation lacks some properties or relations that are 

present in the schema that it’s hypothesized to exemplify, a reasoner can use their schema to fill 

in those missing  properties, roles, or relations to extend their knowledge of the target.  

Ultimately, SGC depends both on a reasoner having a schema that potentially applies to 

the target and some understanding of the structure governing the target that can constrain their 

retrieval of that schema. By highlighting the common structure across instances, comparison plays 

an important role both in the acquisition of schemas or relational concepts and in the recognition 

of exemplars of such concepts (Christie & Gentner, 2010; Doumas et al., 2008; Gick & Holyoak, 

1983; Hummel & Holyoak, 2003; K. J. Kurtz et al., 2013; Markman & Gentner, 1993b; Namy & 

Gentner, 2002). 
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Gick and Holyoak (1983) asked participants to solve Duncker’s radiation problem, in 

which a doctor is tasked with using radiation to kill a patient’s malignant stomach tumor despite 

the harm radiation poses to the patient’s healthy tissue (Duncker, 1945). But before doing so, the 

researchers prompted an initial act of comparison by having participants first describe the 

similarities between a pair of apparently dissimilar stories but that were both analogous to each 

other and to the scenario described in the radiation problem. Importantly, both stories instantiated 

a basic convergence structure, in which some pool of resources (e.g., fire-retardant foam) was 

divided into smaller pools that converged on some central location (e.g., small firehoses 

converging to spray foam on a central fire) in order avoid some obstacle (e.g., lack of firehoses 

large enough to put out the fire individually). This act of comparison increased participants’ 

solution rates on the radiation problem, suggesting that it provided participants a clue for solving 

the radiation problem (i.e., dividing the radiation into smaller rays, which could be fired separately 

to converge on the stomach tumor), and they could have only used this clue if they grasped the 

relational structure common to the problem and the two stories that they had previously compared. 

Moreover, independently-rated success in articulating that convergence structure in their similarity 

descriptions further predicted participant solution rates. This latter result suggests that the extent 

to which participants induced and applied a convergence schema predicted their problem solving 

success via SGC: Specifically, to consider dividing the radiation into smaller rays and to fire them 

so that they converge on the stomach tumor.  

Copy-with-substitution-and-generation (CWSG). Notably, inference via SGC 

necessitates that a participant has some crystallized schema to exploit, but not all analogical 

inference relies on such complex representations. In the following, I describe an alternative that 

relies on a direct comparison between analogs without positing some mediating abstract schema. 
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Most existing models of analogical inference implement a simple pattern-completion 

mechanism, “copy with substitution and generation” (CWSG) (Burstein, 1983; Carbonell, 1983, 

1993; Falkenhainer et al., 1989; Halford et al., 1994; Hofstadter & Mitchell, 1994; Holyoak et al., 

1994; Holyoak & Thagard, 1989; Hummel & Holyoak, 2003; Keane & Brayshaw, 1988; Kokinov, 

1994). Whereas SGC, discussed above, relies on a top-down categorization process, CWSG 

provides a bottom-up route to analogical inference that depends on a partial mapping between 

source and target analogs. The shared relational structure revealed in previously-recognized 

correspondences between the source and target, together with unmapped elements in the source, 

jointly constrain the generation of novel elements in the target. The main distinction between 

CWSG and SCG, then, resides in the origin of the particular constraints that each place on 

inference. Whereas with SGC these constraints consist of properties or relations from an abstract 

schema (perhaps retrieved from semantic memory) that are unattributed to the target prior to 

inference, with CWSG they consist of relations governing a source analog (perhaps retrieved from 

episodic memory) that are unmapped to the target prior to inference. 

Consider Gick and Holyoak's (1980) analogy between a source story of a general 

attempting to overthrow an authoritarian dictator with an army of troops despite land mines 

preventing access to the dictator, and a target, Duncker’s radiation problem mentioned above 

(Duncker, 1945). A reasoner might readily map correspondences from the general to the doctor, 

the dictator to the tumor, and both the troops and land mines to the radiation. Notably, the ray 

problem omits mention of any event that directly corresponds to the general’s solution of dividing 

his army into small groups that are each light enough to avoid setting off the land mines and that 

are thus able to converge on the castle from different directions. While this solution is as yet 

unmapped to the target, it can serve to constrain an analogous solution in the target, in which the 
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doctor divides his radiation into less-intense rays that are each weak enough to pass through the 

patient’s healthy tissue without damaging it and are thus able to converge on the patient’s tumor 

from different directions. Specifically, a reasoner integrates the unmapped elements of the source 

into the relational structure revealed during mapping, identifying relations between the unmapped 

elements and those with direct correspondences in the target (e.g., divide and converge) and 

thereby producing an elaborated relational structure governing the source (e.g., the general’s 

solution). Under CWSG, these newly-identified relations are then copied over from the source as 

partially-filled relations in the target: Mapped elements in the source serving as relata in these 

newly-identified relations are substituted with their direct correspondences in the target (e.g., the 

doctor’s potential solution to divide his radiation into multiple weak rays that converge on the 

patient’s tumor). Finally, novel elements in the target are proposed to complete these partially-

filled relations (e.g., multiple weak radiation rays that are jointly powerful enough to kill the 

tumor). While CWSG and SGC constitute distinct routes to generative inference (Gick & Holyoak, 

1983; Minervino et al., 2023), the present study focuses on CWSG, and particularly the status of 

relations in analogical inference. 

Relations in CWSG. Because relations provide such an important constraint on CWSG, 

the success of models of analogical inference depends heavily on the nature of their relation 

representations. Since most existing models of this process operate on relation representations that 

have been hand-coded by the modeler, it is difficult to determine whether any explanatory success 

of these models to their inference process, or to their highly tailored relation representations that 

may reflect modelers’ idiosyncratic and potentially erroneous assumptions about the nature of 

human relation representation (Forbus et al., 2017). 
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Moreover, these models require that the specific relations constituting the relational 

structures governing source and target analogs must be pre-specified in the input to their 

hypothesized instantiation of analogical inference. This requirement places practical limits on 

these models, restricting their applicability to large-scale inference over arbitrary domains, where 

direct coding may be prohibitively labor-intensive. More importantly, this requirement also limits 

their theoretical scope, rendering them unable to explain situations in which a human reasoner 

infers, for example, that the rind of a watermelon is analogous to a cigarette butt without first 

providing some discrete relation concept that is instantiated both by rind and watermelon and by 

butt and cigarette (something like disposable-part-of). 

One source of this requirement for pre-specified relation concepts is the use of symbol-

argument-argument (SAA) notation to model relations as multi-place predicates, often expressed 

as verbs (e.g., chase(X,Y)) or prepositions (e.g., above(X,Y)) in natural language (Burstein, 1983; 

Carbonell, 1983, 1993; Falkenhainer et al., 1989; Halford et al., 1994; Hofstadter & Mitchell, 

1994; Holyoak et al., 1994; Holyoak & Thagard, 1989; Keane & Brayshaw, 1988; Kokinov, 1994). 

While this approach to relation representation captures the sense in which relations are explicitly 

structured (i.e., dynamically bound to their relata), it cannot capture the semantic richness of 

relation concepts (Doumas & Hummel, 2004). Specifically, SAA notation cannot capture graded 

similarity among relation concepts; within SAA, relations are either identical to each other or not; 

e.g.,  love is no more similar to like than is kill (but see Forbus et al., 2017; Silliman & Kurtz, 2019, 

for an alternative perspective). 

An alternative to SAA notation is to represent the semantic content of relations either as 

distributions over the lexical features that characterize their relata (Doumas et al., 2008; Hummel 

& Holyoak, 2003), or within a separate representational space constituted by distinctively 
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relational features (Chaffin & Herrmann, 1987; Lu et al., 2019). The latter approach to relation 

representation potentially captures gradations in relational similarity that characterize human 

relational knowledge (Chaffin & Herrmann, 1984; Ichien et al., 2022; Perfetti, 1967; Popov et al., 

2020; Winston et al., 1987). More pertinently, representing relations within a multi-dimensional 

feature spaces enables representation of relations that have no prior lexical entry. However, this 

approach does not directly explain how an inference model is able to handle the lack of relations 

pre-specified in the input. 

Eduction of relations 

In the present paper I introduce a computational model capable of analogical inference 

regardless of whether the relations it operates over are pre-specified in its input (as required by 

existing models) or are unspecified (unlike existing models). Like its predecessors, the present 

model implements CWSG, but it differs from previous proposals in the way that relation 

representation is treated. The present model departs from SAA notation, representing relations as 

distributed vectors within a representational space, where abstract relations constitute individual 

dimensions (Lu et al., 2019, 2022). This model emphasizes Charles Spearman’s observation that 

analogical reasoning often depends on what he termed the eduction of relations (Spearman, 1923): 

mentally “filling in the blanks” in the problem as posed, by retrieving or computing relations 

between constituent elements. 

For verbal problems, Spearman’s concept of “relation” refers to the semantic relation 

between lexical concepts. Semantic relations are more than mere associations; e.g., hot : cold :: 

love : adore consists of two word pairs that are each strongly associated via a salient relation, but 

the problem does not form a valid analogy because the A:B and C:D relations mismatch. At the 

same time, semantic relations are not necessarily represented as “predicates” as typically 
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incorporated into analogy models as verbs or prepositions (e.g., chase(X,Y)) or prepositions (e.g., 

above(X,Y)). In contrast, one can represent the proposition dogs chase cats by identifying semantic 

relations for three pairs of content words: e.g., dogs : chase, chase : cats, dogs : cats. Rather than 

denoting relations themselves, verbs, like nouns, denote concepts that enter into pairwise semantic 

relations. 

That the present model can operate on input in which relations are not directly stated raises 

an important question about analogical inference: What do relations contribute? In assuming that 

relations governing analogical inference are pre-specified, existing models of analogical inference 

make the logically prior assumption that humanlike inference requires explicit representations of 

relations. In principle, analogical inference could be performed without explicit relation 

representations, and this proposal has been explored to a small extent with limited success (Leech 

et al., 2008; Mikolov, Sutskever, et al., 2013; Peterson et al., 2020; Rumelhart & Abrahamson, 

1973). In the present chapter, I compare our model, which operates on explicit relation 

representations, with control models lacking such representations. In a series of simulations, I 

systematically show that relations contribute to analogical inference by enabling generalization 

across semantic domains: leveraging analogies across a source and target is robust to variations in 

the similarity or degree of association between the source and target (Doumas & Hummel, 2005; 

Gentner, 1983; Holyoak, 2012). 

Overview of the chapter 

In this chapter, I introduce a new model of analogical inference that operates on relation 

representations acquired by an existing model of relation acquisition and representation, Bayesian 

Analogy with Relational Transformation (BART) (Lu et al., 2012, 2019). I describe relation 

representation in BART before detailing inference in our new model, BART-Gen. I move on to 
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detail four simulations that demonstrate BART-Gen’s ability to perform inference with pre-

specified relations in simple phrases (e.g., A robin is a kind of ?; Simulation 1) and with unspecified 

relations in four-term analogies (e.g., blindness : sight :: poverty : ?; Simulation 2), six-term 

analogies (e.g.,  weapon : gun : rifle :: clothing : sweater : ?; Simulation 3), and extended analogies 

akin to those used in early studies of analogical problem solving (Gick & Holyoak, 1980, 1983) 

(e.g.,  solar system : planet : mass : gravity : sun :: atom : electron : charge : electromagnetism : 

?; Simulation 4). 

Across four simulations I compare this inference model, which operates on explicit relation 

representations, with control models that lack such representations. In order to evaluate models 

within these simulations, I collected human-generated responses in open-ended naturalistic 

experiments and compare models in their ability to produce frequently-generated human 

responses. The contribution of this work is twofold: 1) I introduce a novel model of analogical 

inference capable of operating on input both when relations are pre-specified and when they are 

unspecified, and 2) I systematically compare our inference model with control models lacking 

relation representations to clarify what relations contribute to the inference process. 

Computational modeling 

Relation representation in BART 

BART1 learns explicit representations of the semantic relations between word pairs from 

unstructured vector representations of individual word meanings (Lu et al., 2012, 2019). In the 

present simulations, BART’s input consists of concatenated pairs of word vectors from Word2vec2 

(Mikolov, Sutskever, et al., 2013) and uses supervised learning with positive and negative 

 
1https://cvl.psych.ucla.edu/wp-content/uploads/sites/162/2021/04/BART2code.zip 
2 https://code.google.com/archive/p/word2vec/ 
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examples to acquire each relation representation individually. For example, a vector formed by 

concatenating the individual vectors for old and young would constitute a positive example for the 

relation X is the opposite of Y, and might also serve as a negative example of the relation X is a 

synonym of Y. After learning, BART computes a relation vector consisting of the posterior 

probability that a word pair instantiates each of the learned relations. 

As shown in Figure 1, the BART model uses a three-stage process to learn a broad range 

of semantic relations.  In its first stage, BART uses difference-ranking operations to partially align 

relationally important features. The model generates a ranked feature vector based on the 

difference values between the raw feature vectors of two entities, but ordering those values 

according to their magnitude. Augmenting the raw semantic features with ranked features 

addresses the issue that across instances different semantic dimensions may be relevant to a 

relation. This first stage culminates in the generation of a 1200-dimension augmented feature 

vector for each word pair, consisting of the concatenation of raw and ranked feature vectors for 

each word in the pair. 

In the second stage, BART uses logistic regression with elastic net regularization to select 

a subset of important feature dimensions across word pairs 𝑓𝑠. In the third stage, BART uses 

Bayesian logistic regression with 𝑓𝑠 to estimate weight distributions 𝑤 for representing a particular 

relation 𝑅 by applying Bayes rule as:  

𝑃(𝑤|𝑓𝑠, 𝑅) ∝  𝑃(𝑅|𝑓𝑠, 𝑤)𝑃(𝑤).                               (9) 

The first term is the likelihood defined by a logistic function on 𝑤 and 𝑓𝑠 (selected in the 

second stage), 
1

1+𝑒−𝒘𝑇fs
. The second term is the prior distribution of 𝑤, defined as a multivariate 

normal distribution, 𝑁(𝜇0, 𝛴0), with a mean vector 𝜇0 = (𝛽, – 𝛽), consisting of the 𝛽 values of 

weights estimated in the second stage of logistic regression. 
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BART was trained by combining two datasets of human-generated word pairs, each chosen 

as an example of a specific semantic relation. The first dataset (Jurgens et al., 2012) consists of at 

least 20 word pairs (e.g., bird:robin) instantiating each of 79 semantic relations (e.g., X is a type 

of Y) taken from a taxonomy proposed by Bejar et al. (1991), which includes 10 major relation 

categories (e.g., class inclusion). The second dataset consists of at least 10 word pairs instantiating 

each of 56 additional semantic relations (Popov et al., 2017). Across both datasets, BART acquired 

135 semantic relations via supervised learning. Since BART’s learned weights 𝑤 can be expressed 

as two separate halves (i.e., those associated with the first relational role, 𝑤1, and those associated 

with the second relational role, 𝑤2), BART can automatically generate representations of the 

converse of each learned relation by swapping the relation weights associated with each individual 

relational role. Thus, upon learning a representation of X is a type of Y, BART can also learn a 

representation of its converse, Y is a superordinate of X—the same relation but with the roles 

flipped. This operation effectively doubles BART’s pool of learned relations from 135 to 270 in 

total.  

 

Figure 20: An illustration of three-stage model of BART for learning a relation from word pairs. 
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After learning weight distributions associated with selected features across word pairs in 

its training set 𝑓𝐿,𝑅𝐿, BART can estimate how likely any novel pair of words A and B instantiates 

a learned relation 𝑅𝑖, 𝑃(𝑅𝑖|𝑓𝐴, 𝑓𝐵) by marginalizing the weight distribution for that relation: 

𝑃(𝑅𝑖|𝑓𝐴, 𝑓𝐵) = ∫ 𝑃(𝑅𝑖|𝑓𝐴, 𝑓𝐵 , 𝑤)𝑃(𝑤|𝑓𝐿 , 𝑅𝐿)𝑑𝑤.                       (10) 

Hence, given any pair of words 𝐴: 𝐵, BART can perform this operation for each of its 

learned relations and then generate a relation vector 𝑅𝐴𝐵, in which the value of each element is a 

posterior probability reflecting how good an example 𝐴 and 𝐵 are of that particular relation, as 

shown in Figure 21. For example, given that old and young constitute a good example of the 

relation X is the opposite of Y but a poor example of the relation X causes Y, 𝑅𝑜𝑙𝑑:𝑦𝑜𝑢𝑛𝑔 would 

have a high value for the dimension corresponding to the first relation, but a low value for the 

dimension corresponding to the second dimension. Ichien et al. (2021) added a power 

transformation to these relation vectors, raising each relation dimension to a power of 5, and found 

that adding this transformation (“winners take most”) improves the model’s ability to capture 

human judgments of relational similarity. Accordingly, I incorporated the same power 

transformation in the present simulations. 

 

Figure 21: An illustration of using relation vector to capture distributed representations of semantic relations in BART. 
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Generative inference in BART-Gen 

BART-Gen uses the relation representations acquired by BART to perform analogical 

inference of generating individual entities using relation information. I first detail its algorithm for 

inference using pre-specified relations, and then describe the extended algorithm for inference 

using unspecified relations. 

Inference with a specified relation. Recall that the second stage of BART’s learning 

algorithm uses logistic regression with elastic net regularization to select a subset of informative 

feature dimensions of a word pair, 𝑓𝑠. Given the individual words combined within that word pair, 

these selected feature dimensions can be separated into those corresponding to a query word, 𝑓𝑠1
, 

and those corresponding to the other word, 𝑓𝑠2
. Given a first word and a relation, and the hypothesis 

that a relation 𝑅 holds between this word and the other word, BART-Gen generates a probability 

distribution of the second word 𝑓𝑠2
, using the following inference: 

𝑃(𝑓𝑠2
|𝑅 = 1, 𝑓𝑠1

) ∝ 𝑃(𝑅 = 1|𝑓𝑠1
, 𝑓𝑠2

)𝑃(𝑓𝑠2
|𝑓𝑠1

).                    (11) 

The likelihood term, 𝑃(𝑅 = 1|𝑓𝑠1
, 𝑓𝑠2

), is the probability that 𝑅 holds for the generated word with 

the feature vector of 𝑓𝑠2
 and the query word with the feature vector of 𝑓𝑠1

. As with Equation 9, the 

likelihood term 𝑃(𝑅 = 1|𝑓𝑠1
, 𝑓𝑠2

) is defined using a logistic function: 

𝑃(𝑅 = 1|𝑓𝑠1
, 𝑓𝑠2

, 𝑤1, 𝑤2) =  
1

1+𝑒−𝑤1
𝑇𝑓𝑠1−𝑤2

𝑇𝑓𝑠2
.                                (12) 

In Equation 12, the mean vectors of weight distribution, 𝑤 learned in BART, are written as two 

separate components: those associated with the first word’s relational role, 𝑤1, and those 

associated with the second word’s relational role, 𝑤2. Note that I only used the mean values of the 

weights, and did not include the variability in the distribution. Correspondingly, the selected 



92 

 

feature dimensions of a given word pair 𝑓𝑠  are rewritten as those corresponding to the first word, 

𝑓𝑠1
, and the second word, 𝑓𝑠2

. 

The prior term, 𝑃(𝑓𝑠2
|𝑓𝑠1

), follows a multivariate normal distribution with the mean as the 

feature vector of the first word 𝑓𝑠1
, which is defined as: 

𝑃(𝑓𝑠2
|𝑓𝑠1

) = 𝑁(𝑓𝑠1
, 𝜎2𝐼).                                       (13) 

BART-Gen uses the semantic embedding of the first word as a prior for generating 𝐷, in that the 

means of the prior 𝑃(𝑓𝑠2
|𝑓𝑠1

)  are the feature values of the first word, reflecting the assumption 

that the two words are semantically associated. The prior term also assumes equal variance 𝜎2 for 

semantic features of the second word. 𝜎2 is a parameter that controls the degree to which the 

generated word is semantically associated with the query word in the prior. Larger values of 𝜎2 

correspond to a weaker degree of prior semantic association in the inference.  

To compute the inference in Equation 12, I adopted a variational method for Bayesian 

parameter estimation (Jaakkola & Jordan, 2000), and used the following updating rules for the 

mean μ and covariance matrix V of the feature distribution for the generated target word, as well 

as the variational parameter ξ:  

 

𝑽−1 =
𝑰

𝜎2 + 2𝜆(𝜉)𝒘2𝒘2
𝑻,

𝝁 = 𝑽 (
𝑰

𝜎2 𝑓𝑠2
+

𝒘2

2
− 2𝑘𝜆(𝜉)𝒘2)

𝜉2 = 𝒘2
𝑻(𝑽 + 𝝁𝝁𝑻)𝒘2,

, (14) 

where 𝜆(𝜉) =
𝑡𝑎𝑛ℎ(

1

2
(𝜉+𝑘))

4(𝜉+𝑘)
  and  𝑘 = 𝒘1

𝑻𝑓𝑠1
.  

Implementational details. To determine the value of 𝜎2 in the prior term, I rely on an 

assessment of the sparsity of the query word’s semantic neighborhood (i.e., representational space 

populated by its nearest neighbors), where larger values of 𝜎2 are used for problems where the 
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space around the query word is sparsely populated with other words (i.e., where there are relatively 

few words around the query word), and smaller values of 𝜎2 are used for problems where the query 

word is densely populated. Ceteris paribus, this computation increases the degree of semantic 

association between the query word and a to-be-generated target word if the query word has several 

close associates and decreases that semantic association if the query word does not have many 

close associates. I compute this sparsity value (i.e., the variance of the query word’s semantic 

neighborhood) as the average of squared Euclidean distance between C and its 100 nearest 

neighbor words, normalized by the dimensionality 𝑑𝑖𝑚𝑓of the semantic space to capture the 

variability for each dimension (e.g., 𝑑𝑖𝑚𝑓 = 300 for the word2vec vectors I use in the present 

simulations): 

𝜎2 =
∑ 𝑑(𝐶,𝑘)2100

𝑘=1

100𝑑𝑖𝑚𝑓
2 .                                                        (15) 

The BART-Gen inference balances the likelihood guided by relation representation and the prior 

guided by semantic similarity to the query word, so as to generate maximum a posteriori (MAP) 

estimates of feature values for the generated target words on selected dimensions, 𝑓𝑠2
.  

Note that 𝑓𝑠2
 is only a subset of all feature dimensions along which the generated target 

word is represented, 𝑓2. In order to generate semantic embedding for the generated target word 

along the feature dimensions that were not selected by BART’s learning algorithm, BART-Gen 

simply copies over the corresponding feature values from the query word, 𝑓𝑛𝑠1
. Hence, by 

combining the generated feature values for selected dimensions and copying feature values for 

unselected feature dimensions, BART-Gen specifies a complete prediction for 𝑓2 for a specific 

query word and a relation: 

𝑓2 = 〈𝑓𝑛𝑠1
, 𝑓𝑠2

〉.                                      (16) 
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We evaluate this algorithm for inference with pre-specified relations in Simulation 1. 

Inference with unspecified relations. Solving a generative analogy problem, A:B :: C:?, 

requires generating a D word such that the word pair formed by C and generated D instantiate the 

same relations as the source word pair consisting of A and B. BART-Gen generates the target D 

word using a maximum posterior estimate given the embeddings of words A, B and C, 

�̂�𝐷 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝑓𝐷| 𝑓𝐶, 𝑓𝐴, 𝑓𝐵).                                            (17) 

To solve this task, BART-Gen first needs to represent the relation holding between A and 

B. To do this, BART-Gen applies Equation 10 to word pair AB to infer relations instantiated by 

this word pair by estimating a relation vector 𝑅𝐴𝐵. The model then uses a delta function to transfer 

the relations from AB and the query word C to generate the D word, as shown in the equation 

below: 

𝑃(𝑓𝐷| 𝑓𝐶 , 𝑓𝐴, 𝑓𝐵) = ∫ 𝑃(𝑓𝐷|𝑟, 𝑓𝐶)𝛿(𝑟 − 𝑅𝐴𝐵)𝑃(𝑅𝐴𝐵|𝑓𝐴, 𝑓𝐵)d𝑟.                              (18) 

The first term in Equation 18 𝑃(𝑓𝐷|𝑟, 𝑓𝐶) can be computed using Equation 3 for inference with a 

specific relation; the second term is  𝛿(𝑟 − 𝑅𝐴𝐵), a delta function showing the same relation used 

in word pair AB and word pair CD; the third term 𝑃(𝑅𝐴𝐵|𝑓𝐴, 𝑓𝐵) can be calculated using Equation 

10 to infer the relation vector for the AB word pair.  

BART-Gen relies on a distributed vector representation of the relation holding between a 

pair of concepts 𝐴 and 𝐵, 𝑅𝐴𝐵, populated by posterior probabilities corresponding to a distinct 

relation learned by BART (see Equation 10). BART-Gen then forms a transient, explicit 

representation of that relation and then applies it to generate a prediction of D, given the constraint 

that C and D instantiate the same relation. 

Implementational details. BART-Gen applies a simple filtering mechanism to 𝑅𝐴𝐵, which 

sets relation probability in the bottom 25th quantile to be 0. This mechanism helps reduce noise in 
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BART-Gen’s relation representation 𝑅𝐴𝐵 by enabling it to ignore any relation dimensions that are 

not highly expressed in word pair AB.  

For four-term A:B :: C:D problems, the inference is a combined result from two constituent 

analogies respectively based on the relations shared between the AB pair and CD pair, and between 

the AC pair and BD pair. To infer the target word D, I repeat this process twice by applying the 

relation holding between A and B that is partially filled by C to generate an embedding for the 

missing D, and the relation holding between A and C that is partially filled by B to generate another 

embedding for the missing D. These two embeddings are then combined in a weighted sum,                                      

�̂�𝐷 = 𝛼 ∗ �̂�𝐷|𝑅𝐴𝐵
+ (1 − 𝛼) ∗ �̂�𝐷|𝑅𝐴𝐶

, (18) 

The weight 𝛼 is determined by their degree of semantic association, as computed by the relative 

ratio of cosine similarity: 

𝛼 =
𝑠𝑖𝑚(𝑓𝐴,𝑓𝐵)

𝑠𝑖𝑚(𝑓𝐴,𝑓𝐵)+𝑠𝑖𝑚(𝑓𝐴,𝑓𝐶)
.                                   (19) 

This approach, which I evaluate in Simulation 2, enables BART-Gen to exploit any relations 

holding across analogs, especially in semantically near analogies, where A and C are highly 

associated, and thus some meaningful relation between source and target analogs is more likely to 

exist. For example, in the near analogy blindness:sight :: deafness:?, there is a fairly clear lack-of 

relation holding between blindness and sight, and there also some meaningful relation between 

blindness and deafness that can also contribute to the generation of hearing. 

For analogies of greater complexity (e.g., six-term analogies A:B:C :: D:E:?), I repeat the 

process instantiated in Equations 16 and 17 for each four-term analogy that includes the to-be-

generated term (e.g., A:C :: D:? and B:C :: E:?). This process results in multiple unique 

embeddings (i.e., one embedding for each four-term analogy); similar to Equation 18, I combine 

these embeddings in a weighted sum,  
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�̂�𝐺𝑒𝑛 = ∑ 𝛼𝑖�̂�𝐺𝑒𝑛|𝑅𝐴𝐵𝑖𝑘

𝑛
𝑖=1 ,                    (20) 

where 𝑓𝐺𝑒𝑛 is the embedding representing the to-be-generated term, k is the term that is directly 

analogous to the to-be-generated term (e.g., C in A:B:C :: D:E:?), and n is the number of four-

term analogies that include this to-be-generated term (e.g., 2 for six-term analogies). This weighted 

sum is scaled according to the degree of semantic association between the source terms in each 

analogy, using a variant of Equation 19: 

𝛼𝑖 =
𝑠𝑖𝑚(𝑓𝑖,𝑓𝑘)

∑ 𝑠𝑖𝑚(𝑓𝑗,𝑓𝑘)𝑛
𝑗=1

.                                         (21) 

This approach, which I evaluate in Simulation 3, enables BART-Gen to incorporate the entire 

source analog in its proposal for the to-be-generated term. 

Control Model 1: Bidirectional Encoder Representations from Transformers 

(BERT). For comparison with BART-Gen for Simulations 1 and 2, we derived generative 

inferences from a major natural language processing (NLP) model, Bidirectional Encoder 

Representations from Transformers (BERT; Devlin et al., 2019). BERT (no relation to BART!) is 

a prominent example of a transformer architecture. Like other similar NLP models, BERT is 

trained on a masked-language modeling task, in which it predicts masked words in sentences 

drawn from huge text corpora. Given an incomplete sentence such as “A [MASK] is a type of 

bird.”, BERT is trained to predict words that would complete that sentence with the highest 

probability. Importantly, BERT and similar models routinely solve generation tasks without any 

explicit relation representations, instead relying solely on the statistics of word usage in their 

training corpora.  

Control model 2: Word2vec parallelogram model of analogy. As another control model 

in Simulations 2 and 3, I implement Rumelhart and Abrahamson's (1973) parallelogram model of 
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analogy. I  implement this model using Word2vec word embeddings, which has shown some 

success in solving simple verbal analogy problems (Mikolov et al., 2013; but see Peterson et al., 

2020, for simulations and extended discussion of its limitations). This model operates over lexical 

representations only, and does not represent relations explicitly in the sense that they constitute 

representations that are separable from their relata. Instead, relations are treated as the generic 

difference vector between distributed representations of lexical items.  

The clearest way to characterize this model is to instantiate it in a four-term A:B :: C:? 

generative analogy, which requires generating a D word such that the difference vector between 

𝑓𝐶 and generated �̂�𝐷 instantiate matches that between 𝑓𝐴 and 𝑓
𝐵
: 

�̂�𝐷 = 𝑓𝐶 − 𝑓𝐴 + 𝑓𝐵.                (22) 

We compare this model to BART-Gen as a non-relational control for four-term analogy problems 

in Simulation 2. 

For analogies of greater complexity, I implement a Equation 13 and variant of Equation 

20, following the same basic scheme as BART-Gen. Similar to what I describe above, I repeat the 

process instantiated in Equation 22 for each of n unique four-term analogies that include the to-

be-generated term (e.g., A:C :: D:? and B:C :: E:?), and this process results in multiple unique 

embeddings (i.e., one embedding for each four-term analogy), 

�̂�𝐺𝑒𝑛 = ∑ 𝛼𝑖�̂�𝐺𝑒𝑛|𝑓𝑖−𝑓𝑘

𝑛
𝑖=1 .                     (23) 

Here, 𝑓𝐺𝑒𝑛 is the embedding representing the to-be-generated term, k is the term that is directly 

analogous to the to-be-generated term (e.g., C in A:B:C :: D:E:?), and n is the number of four-

term analogies that include this to-be-generated term (e.g., 2 for six-term analogies). This weighted 

sum is scaled according to the degree of semantic association between the source terms in each 
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analogy, using Equation 21. I compare this extension of the parallelogram model to BART-Gen in 

Simulation 3. 

Simulation 1: Inference using pre-specified relations 

In the first simulations, I test BART-Gen’s ability to reason from pre-specified relations. I 

operationalize this capacity as generating a word D (e.g., bird) that best instantiates a known 

relation R (e.g., is a type of) with a query word C (e.g., robin). I restrict my analyses to those 

relations for which BART has learned an explicit representation, comparing the performance of 

BART-Gen with that of BERT. 

Simulation 1a: Jurgens et al. (2012) 

I evaluated model performance in their ability to produce human-like responses to 

partially-filled relations, formatted as sentence-completion problems (e.g., "A robin is a type of 

____.”). In order to construct these problems, I used the dataset of human-generated word pairs 

used to train BART (Jurgens et al., 2012), thus ensuring that BART-Gen had an explicit 

representation of each relation mentioned in these problems. Each of these word pairs were 

generated as an example of some semantic relation (e.g., robin:bird exemplifies the relation X is 

a type of Y), and I combined each word pair with its semantic relation to produce sentence-long 

statements (e.g., “A robin is a type of bird.” ). Each statement was then used to generate two 

problems, one omitting the first word of its word pair (e.g., “A ____ is a type of bird.”) and the 

other omitting the second word (e.g., “A robin is a type of ____.”). I refer to the remaining word 

of each word pair in a given problem as the “query word” (e.g., “bird” for the first problem above 

and “robin” for the second problem above). 

I collected human responses to sentence-completion problems generated from a selection 

of 16 statements, each consisting of a different relation and a word pair that was highly typical of 
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the relation. These relations were evenly divided among four relation categories from Bejar et al. 

(1991): class inclusion, part-whole, case relation, and cause-purpose. Since each statement was 

used to generate two problems (differing in which word was omitted), I acquired responses to 32 

problems in total.  I separated these problems into two 16-problem lists, counterbalanced and 

presented in randomized orders across participants. Each list consisted of a single problem 

generated from each statement. Study procedure and analyses were pre-registered on AsPredicted 

(#84748). 

Participants. Participants were 100 MTurk workers (Mage = 39.06, SDage = 9.19; 45 

female, 55 male) who completed our tasks online for payment of $2. The study was approved by 

the Institutional Review Board at UCLA. Participants had a minimum education level of a U.S. 

high school graduate, and were sampled from the following English-speaking countries: Australia, 

Canada, Ireland, New Zealand, South Africa, the United Kingdom, and the United States. We 

excluded data from 2 participants who reported having trouble paying attention while completing 

the study, as well as 2 other participants who provided nonsensical responses. Since each 

participant completed 16 out of the total 32 problems, roughly 50 participants provided responses 

for each problem. 
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Figure 22: Proportion of human-generated responses to two sentence completion problems, constructed from the same 

statement. These statements are based on the word pair bread:flour and the relation X is made out of Y. 

Results and discussion. Across problems, participants generated a variety of responses, 

which were largely sensible. Figure 22 shows the proportions of human-generated responses for 

two sentence completion problems constructed out of the same statement. The most frequent 

human responses matched the ‘correct’ response included in the Jurgens et al. (2012) norms for 24 

out of the 32 problems. In the following, I will detail how I evaluated BART-Gen and BERT’s 

performance on these problems. 

For each problem, BART-Gen generated a Word2vec word embedding, given a query word 

and a relation (e.g., robin, X is a kind of Y). In order to assess the model, I generated a ranking of 

words, ordered according to the extent to which each word was semantically associated (i.e., from 

smaller cosine distance to larger cosine distance) with BART-Gen’s generated embedding. This 

ranking ordered a pool of ~1,500 words constructed out of all words that more than one person 

generated in response to analogy problems in the present dataset, as well as in the dataset used in 

Simulations 2a and 2b. Requiring that more than one person generated a given completion is a 

standard approach to pre-processing generation data, which helps control the quality of responses 

(Nelson et al., 2004; Peterson et al., 2020). I adopted a similar approach to evaluate BERT, but 
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instead of ranking responses according to their semantic association with some model-generated 

embedding, I plugged each word of the ~1,500-word response pool in as a completion for each 

problem and ranked responses according to the model-generated logistic probabilities associated 

with each response. These values reflect the probability that the language model would generate it 

as a completion in the masked-language modeling task on which it was trained.  

 
Figure 23: Results from Simulation 1a with generative relation problems (e.g., robin is a type of ?), showing  median 

ranks for the most frequent human-generated response, among all human-generated responses across the task (lower 

ranks indicate better performance). 

 

Given a ranking for each problem across BART-Gen and BERT, I computed the proportion 

of problems for which at least one of the most frequent human-generated responses (i.e., those 

generated by at least 10% of human participants for a given problem) was ranked lower than k 

among all human-generated responses, for k = [1,100]. I used these proportions to generate the 

recall accuracy curve depicted in Figure 24, which plots the proportions mentioned above, as a 

function of k. I quantify model performance as the area under the recall accuracy curve (AUC), 

where higher values indicate better performance. As shown in Figure 23, BART-Gen (Class 

Inclusion AUC = 82.43%; Part Whole AUC = 94.50%; Case Relation AUC = 90.00%; and Cause 

AUC = 90.00 %) outperformed BERT (Class Inclusion AUC = 74.94%; Part Whole AUC = 
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70.63%; Case Relation AUC = 76.50%; and Cause AUC = 82.13%) across all relation categories. 

That BART-Gen outperforms BERT, a non-relational large language model, on the masked-

language modeling task on which BERT was trained, indicates that BART-Gen has considerable 

promise as a model of human generative inference. This result also speaks in favor of BART-

Gen’s usage of explicit relation representations over BERT’s non-relational, associative approach 

to generative inference. In the following simulation, I expanded the test dataset by useing the entire 

Jurgens norms dataset to further probe the contribution of relation representations in BART-Gen 

to its success at reproducing humanlike generative inference. 

Simulation 1b: Contribution of relations in Jurgens et al. (2012) 

The Jurgens norms dataset consists of over 3,000 word pairs instantiating one of 79 

semantic relations, organized in to 10 relation types, according to taxonomy developed by Bejar 

et al. (1991). I used the same procedure for generating problems in Simulation 1A to produce the 

input to BART-Gen. I took the 20 most typical word pairs for each of those 79 semantic relations, 

yielding 1,580 statements in total. Each statement yielded two relation completion problems, 

which omitted either the first word in its word pair (e.g., bird) or the second word (e.g., robin), 

yielding 3,160 of these problems with which to evaluate BART-Gen. As mentioned above, solving 

each of these problems involved generating the omitted word based on the given, query word and 

the pre-specified relation.  

For all problems, BART-Gen produced an embedding to complete the partially-filled 

relation it was provided in its input. In order to characterize BART-Gen’s contribution to accurate 

inference (as defined in Jurgens et al. (2012)), I computed the semantic distance between the 

nearest word to the model-generated embedding and the word embedding for the correct answer 

(e.g., robin), and I compared that to the semantic distance between the word embedding for the 
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query word (e.g., bird) and that for the correct answer. Unsurprisingly, the model-generated word 

was much closer to the correct answer than was the query word, and Figure 22 shows this 

difference (i.e., BART-Gen’s contribution index) for all 79 semantic relations, broken down 

according to 10 relation types given by Bejar et al. (1991). 

 

Figure 24: BART-Gen’s contribution index to accurate inference in Jurgens et al. (2012). 

This contribution was computed as the difference between the semantic distance between the nearest word to the 

model-generated embedding and the word embedding for the correct answer (e.g., robin), and the semantic distance 

between the word embedding for the query word (e.g., bird) and that for the correct answer. Results are broken down 

according to relation (X-axis) and relation type (each panel), as defined in Bejar et al. (1991). Red bars reflect 

generation of X within each relation description, and blue bars reflect generation Y. 

 

Notably, BART-Gen’s contribution was more modest for relations between relata that are 

already highly associated (i.e., class inclusion, contrast, and similar). For these relations, semantic 
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association already provides a reasoner with a good basis for inference, and there is less of an 

opportunity for explicit relations to improve inference. This apparent trend is consistent with the 

conjecture that inference over explicit relations promotes generalization beyond semantic 

association. If this conjecture is true, BART-Gen’s contribution to inference should be more 

pronounced for relations linking relata that are not already highly associated with one another. 

This first set of simulations provides an initial test of BART-Gen’s ability to perform 

generative inference. Specifically, I showed that BART-Gen was much more successful at 

reproducing human-like completions of relation-based sentences than was a large-language model 

BERT that was trained on that very task. Next, I compared the BART-Gen to a baseline rooted 

simply in semantic association with the query word, as opposed to the explicit relation 

representations used by BART-Gen. Overall, BART-Gen generated completions that were much 

closer than the baseline to human-generated completions from Jurgens et al. (2012) dataset, and as 

the degree to which BART-Gen improved performance over the baseline model was particularly 

pronounced when the query word was semantically distant from the word to be generated. These 

simulations thus suggest not only that BART-Gen shows considerable promise as a model of 

generative inference, but it also supports the broader theoretical claim that explicit relation 

representations contribute to inference by enabling a reasoner to go beyond the restrictions of 

imposed by mere association. 

In the next set of simulations, I test BART-Gen’s ability to perform generative inference 

with unspecified relations. In contrast to existing models of analogical inference, BART-Gen is 

unique in the ability to first educe the relations holding within a source analog, in order to constrain 

inference. I begin with simulations of four-term analogy problems in Simulations 2a and 2b and 

then move on to more complex analogy problems in Simulation 3.  
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Stimulation 2: Inference with unspecified relations in four-term analogies 

In the next pair of simulations, I shift focus from inference based on pre-specified relations 

to solving analogy problems based on unspecified relations. I operationalize this inference as the 

ability to generate a word D (e.g., bird) that, when linked to a given word C (e.g., robin), is most 

analogous to another pair of words A (e.g., sedan) and B (e.g., car). 

Table 7: Examples of Jurgens analogy problems. A:B pairs are listed in the leftmost column, and C-terms are listed in 

the middle column. Most frequent human responses, along with the percentage of participants generating that response 

are in the rightmost column. 

A:B C Most frequent response 

famine:plentitude novice expert (55.17%) 

joke:laughter exercise sweat (40.62%) 

pardon:sin brush hair (36.00%) 

simmer:boil giggle laugh (64.52%) 

 

Simulation 2a: Jurgens et al. (2012) analogies 

In Simulation 2a, I compare BART-Gen and BERT, as well as the Word2vec parallelogram 

model on analogy problems generated from the same Jurgens et al. (2012) dataset that I used to 

evaluate the model in Simulation 1. Recall that this dataset consists of over 3,000 word pairs 

instantiating one of 79 semantic relations. I use a dataset of 588 four-term analogy problems and 

human responses to these problems reported in Peterson et al. (2020), and examples of these 

problems are shown in Table 7. Each problem (e.g., famine:plentitude :: exercise:?) was 

constructed by combining two word-pairs that were each generated as examples of the same 

semantic relation in Jurgens et al. (2012) (e.g., famine:plentitude and exercise:fitness both 

exemplify X causes Y) and then dropping the second term from the second word pair (e.g., fitness). 

These problems only use a subset of the word pairs constituting the Jurgens et al. (2012) dataset. 

Both BART-Gen and the Word2vec parallelogram model generate an embedding that 

constitutes their response to a given completion problem, whereas BERT generates a logistic 

probability associated with a given completion. I adopt the same approach to model evaluation in 
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Simulation 2a and 2b as I did in Simulation 1a. I ranked model-generated responses, using 

semantic association between model-generated embeddings for BART-Gen and the Word2vec 

parallelogram model, and using logistic probabilities for BERT. Importantly, for BERT, I used 

two different text input styles. The first input style instantiated analogy problems in a natural 

language sentence, much like the input using in Simulation 1a and in its masked-language 

modeling training task (e.g., “Famine is related to plentitude, just as novice is related to 

[MASK].”). The second input style adopted traditional four-term analogy notation (e.g. “famine : 

plentitude :: novice : [MASK]”). I refer to BERT performance from these input styles as “BERT 

sentence” and “BERT analogy”, respectively. 

 

Figure 25: Recall rate as a function of top-k ranked model responses including the most frequent human responses. 

Recall rate is defined as the proportion of problems where the most frequent human responses were among top-k 

ranked responses for BART-Gen (red), Word2vec parallelogram model (solid blue), BERT sentence (dashed blue), 

and BERT analogy (dotted blue) for k = [1,100]. Area under the curve (AUC) quantifies model performance. 

 

Using these rankings, I constructed a recall accuracy curve for each model, which are 

depicted in Figure 26. These curves plot the proportion of at least one of the frequent human 

responses (i.e., those generated by at least 10% of human participants) ranked among the top-k 
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responses, as a function of k. While BART-Gen (AUC = 82.43%) did outperform the non-

relational Word2vec parallelogram model (AUC = 78.78%), it did so only slightly. On the other 

hand, BART-Gen far outperformed both versions of the non-relational language model BERT 

(BERT sentence AUC = 53.52% and BERT analogy AUC = 40.10%). These results demonstrate 

the strength of BART-Gen’s approach to generative inference, even in the absence of pre-specified 

relations. However, that it only slightly outperformed the non-relational Word2vec parallelogram 

model motivates further examination of the advantages that BART-Gen’s explicitly relational 

inference present over non-relational approaches. In the following, I test the hypothesis that 

relations promote effective inference by enabling generalization beyond what is already permitted 

by mere association. In order to do so, I examine whether semantic distance between analogs 

contributed to the extent to which BART-Gen outperformed control models.  

Table 8: Examples of Green analogy problems. 

Each A:B pair listed in the leftmost column was used in both a near and a far analogy problems. Whereas near 

analogies had a C-term (second column from the left) that was highly associated with the A-term, far analogies had a 

C-term (fourth column) that was less associated with the A-term. Most frequent responses, along with the percentage 

of participants generating that response are in the third and fifth columns for near and far analogies respectively. 

A:B 

Near analogy Far analogy 

C Most frequent response C Most frequent response 

answer:riddle solution problem (73.33%) key lock (56.84%) 

blindness:sight deafness hearing (90.32%) poverty wealth (48.28%) 

eraser:pencil whiteout pen (56.67%) amnesia memory (58.06%) 

nose:scent tongue taste (87.88%) antenna signal (50.00%) 

 

Simulation 2b: Green et al. (2012) analogies 

In Simulation 2b, I compare model performance on another four-term analogy problem 

dataset that explicitly manipulates semantic distance between source and target analogs (Green et 

al., 2010, 2012). This dataset consists of 80 four-term analogy problems developed by Green et al. 

(2010) and was adapted for generative analogical inference by Green et al. (2012). Half of these 

problems consist of near analogies, in which the A-terms are semantically associated with the C 
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terms (e.g., answer:riddle :: solution:?). The other half consists of far analogies in which the 

corresponding terms are semantically distant (e.g., answer:riddle :: key:?), see examples in Table 

8. Because this dataset holds constant source analogs across near and far analogies, it provides a 

clean test of the effect of semantic distance on model performance, while controlling for any 

variability due to idiosyncrasies in source analogs. In general, human reasoners have greater 

difficulty solving far than near problems (Green et al., 2010, 2012). Importantly, this set of 

problems is based on very specific relations that BART had not acquired during training; hence 

this dataset constitutes a strong test of generalization for BART’s relation representations, as well 

as a natural basis for evaluating BART-Gen’s algorithm for generating relational inferences from 

any analog. To assess model performance for generative inference, I used human responses to 

these problems reported in (Peterson et al., 2020), i.e., those generated by at least 10% of human 

participants for a given problem. The measure is the recall accuracy, as the proportion of problems 

for which at least one of the most frequent human-generated responses (i.e., those generated by at 

least 10% of human participants for a given problem) was ranked lower than k among, for k = 

[1,100]. 

Results and discussion. As in Simulation 2a, I evaluated model performance by 

computing the AUC for the recall accuracy curves constructed out of the proportion of problems 

for which top-k ranked model responses contained one of the most frequent human responses. I 

assessed the recall accuracy curves for near problems and far problems separately, and these are 

shown in Figure 27. BART-Gen did not outperform all non-relational models on near analogy 

problems (BART-Gen AUC = 87.64%; Word2vec parallelogram AUC = 83.43; BERT sentence 

AUC = 92.91%; BERT analogy AUC = 54.18%). Notably, BERT sentence was more successful 

than BART-Gen on these problems, and this result highlights the efficacy of a non-relational 
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approach to inference involving the generalization between semantically associated analogs. In 

contrast, BART-Gen outperformed all non-relational models on far analogy problems (BART-Gen 

AUC = 74.05%; Word2vec parallelogram AUC = 65.07%; BERT sentence AUC = 49.15%; BERT 

analogy AUC = 38.86%). This latter result highlights that relation processing, as instantiated in 

BART-Gen, promotes generalization across analogs that are not already highly associated with 

one another. 

 

Figure 26: Recall accuracy plotting the proportion of problems where the most frequent human responses were among 

top-k ranked responses for BART-Gen (red), Word2vec parallelogram model (solid blue), BERT sentence (dashed 

blue), and BERT analogy (dotted blue) for k = [1,100]. 

Area under the curve quantifies model performance. Curves are plotted separately for near analogy problems (left 

panel) and far analogy problems (right panel). 

 

Together, the results of Simulations 2a and 2b for four-term analogy problems provide an 

initial test of BART-Gen’s ability to perform generative inference without specific relations being 

specified in its input, thus necessitating the eduction of relations constituting the source analog. I 

showed that BART-Gen was much more successful at reproducing human-like completions of 

four-term analogy problem than non-relational control models, and more specifically, I showed 

that BART-Gen’s advantage over non-relational models consists in its ability to perform inference 
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across semantically distant analogs. These simulations support BART-Gen’s promise as a model 

of generative inference with unspecified relations. Moreover, with Simulation 1b, Simulation 2b 

supports the broader theoretical claim that explicit relation representations contribute to inference 

by enabling a reasoner to go beyond the restrictions imposed by mere association. In a final 

simulation, Simulation 3, I generalize BART-Gen’s ability to perform generative inference with 

unspecified relations to more naturalistic and complex analogy problems.  

Simulation 3: Inference with unspecified relations in extended analogies 

Thus far, my test of BART-Gen has used highly-simplified verbal problems. However, 

empirical demonstrations and computational models of analogical inference typically use 

experimental materials involving much more elaborate problems than four-term analogies 

(Burstein, 1983; Carbonell, 1983, 1993; Falkenhainer et al., 1989; Gick & Holyoak, 1980, 1983; 

Halford et al., 1994; Hofstadter & Mitchell, 1994; Holyoak et al., 1994; Holyoak & Thagard, 1989; 

Hummel & Holyoak, 2003; Keane & Brayshaw, 1988; Kokinov, 1994; Minervino et al., 2023). In 

the next set of simulations, I evaluate BART-Gen and examine the impact of its explicit relation 

representations on similarly elaborate problems, consisting of semantically distant analogies 

between systems of concepts (Turney, 2008). 

In a final set of simulations, I compare BART-Gen and the Word2vec parallelogram model 

in their ability to generate completions of more elaborate analogies between systems of concepts, 

which are more akin to the complex experimental materials used by cognitive scientists studying 

analogical reasoning. Simulation 3 uses stimuli from Turney (2008), which consist of twenty long-

form analogies, originally used to compare a model of analogical mapping with human reasoners. 

Each of these analogies consists of two sets of 5-8 analogous terms, respectively constituting 

source and target analogs. Ten problems were drawn from scientific analogies described in 
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Holyoak and Thagard (1994), and the other ten were drawn from metaphors described in Lakoff 

and Johnson (2003), and examples of each problem type are shown in Table 9. 

 

 

Table 9: Examples of Turney extended analogies.  

Type 

Source Target 

Domain Terms Domain Terms 

Science 

Solar system 

solar system 

Rutherford-Bohr model 

of the Atom 

atom 

sun nucleus 

planet electron 

mass charge 

gravity electromagnetism 

Mind 

mind 

Computer 

computer 

thinking processing 

forgetting erasing 

memorize write 

remember read 

memory memory 

muscles outputs 

senses inputs 

mistake bug 

Metaphor 

Seeds 

seeds 

Ideas 

ideas 

planted inspired 

fruitful productive 

fruit product 

grow develop 

wither fail 

blossom succeed 

Grounds for a 

building 

foundations 

Reason for a theory 

reasons 

buildings theories 

supporting confirming 

solid rational 

weak dubious 

crack flaw 

 

 

To construct generative analogy problems from these analogies, I iteratively omitted each 

term from the target and had each model generate an embedding to fill in that omitted term. Thus, 

an analogy consisting of five terms constituting each of the source and target yielded five unique 
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problems, one omitting each of the terms and for which each model generated an embedding for 

the omitted term. 

In order to compare model performance, I adopted a similar approach as in Simulation 1b, 

where I computed the distance between each model’s generated embedding and the correct answer 

as stipulated in Turney’s (2008) materials. Across all problems, a Wilcoxon rank-sum test showed 

that BART-Gen’s model-generated embedding was closer to the correct answer than that generated 

by the Word2vec parallelogram model (W = 26186; p > .001). Figure 28 shows the cosine distance 

between each model-generated embedding and the correct answer, for each individual problem. 
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Figure 27: Distance between model-generated embeddings and the correct answer for each analogy problem, as 

stipulated in Turney’s (2008) materials for BART-Gen (red) and Word2vec parallelogram (blue). Top panel shows 

performance on scientific analogies from Holyoak and Thagard (1994) and bottom panel on metaphorical analogies 

from Lakoff and Johnson (2003). Lower distance indicates better performance. 

 

Next, I tested the hypothesis that relation processing benefits inference by increasing a 

model’s ability to generalize across semantically distant analogs. Recall that the results from 

Simulation 1b and 2b lent support to this hypothesis in sentence-completion problems and four-

term analogy problems, respectively. In order to assess this claim for complex analogy problems, 

I computed the difference in the distance from BART-Gen’s generated embedding to the correct 

answer and that from the Word2vec parallelogram model’s generated embedding to the correct 

answer. Positive values thus reflect the extent to which BART-Gen approximated the correct 

answer better than the Word2vec parallelogram model. I then computed the spearman rank 

correlation between this difference value and the semantic distance between the correct answer 

and its corresponding term in the source (e.g., for the generative analogy problem in which the 
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task was to generate the term charge, given the source domain solar system and the target domain 

atom, I computed the distance between charge and its corresponding term in the source mass). 

As shown in Figure 29, BART-Gen outperformed the parallelogram model on most 

problems (as indicated by the positive difference of cosine distances for most data points), and the 

extent to which it did correlated well with the semantic distance between the source terms and 

correct answers (ρ = .38, p < .001). This result provides further evidence that BART-Gen’s explicit 

relation representations promote far generalization across analogs.  

 

Figure 28: Difference in the semantic distance between BART-Gen’s generated embedding and the correct answer 

and the distance between the parallelogram model’s generated embedding and the correct answer, as a function of the 

semantic distance between source and terms. 

 

General Discussion and Conclusion 

In the present chapter, I introduced BART-Gen, a new model capable of two related forms 

of generative inference: reasoning from pre-specified relations, and reasoning from unspecified 

relations. In the first form, a reasoner completes a partially-specified instance of a stated relation 

(e.g., robin is a type of ____), and in the second, a reasoner first educes the relation holding among 



115 

 

some source analog, copies that over to corresponding elements in a target analog, and generates 

a completion of the unfilled relation (e.g., sedan:car :: robin:____).  

Taken together, the results from all simulations support the explanatory power of BART-

Gen as a model of human generative inference. Notably, the model can operate with relations pre-

specified in its input (Simulations 1a and 1b), as existing models can, but it can also operate even 

in the absence of such pre-specified input (Simulations 2a, 2b, and 3), unlike existing models. 

Finally, by comparing BART-Gen’s performance with non-relational models, BERT (Simulations 

1a, 2a, and 2b) and the Word2vec parallelogram model (Simulations 2a, 2b, and 3), I showed that 

BART-Gen’s advantage over these models tended to be most prominent when relata within 

(Simulation 1b) and across analogs (Simulation 2b and 3) were semantically distant. These results 

support the hypothesis that relations promote generalization beyond the restrictions posed by mere 

association. Across three simulations comparing BART-Gen, which operates on explicit 

representations of relations learned from non-relational inputs (word embeddings produced by 

Word2vec), with non-relational baseline models, we showed that BART-Gen’s relation 

representations helped the model to generalize across semantically distance analogs. 
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General Discussion 

In this dissertation, I adopted an approach to examining the presence of relation 

representation that takes into consideration the cognitive demands of relation processing and the 

availability of cognitively cheaper non-relational alternatives. In my first chapter I showed that, in 

contrast to previous claims that relations subserve all comparison judgments (Gentner & Markman, 

1994; Markman, 1996; Markman & Gentner, 1993b, 1993a), the processing demand involved in 

making comparisons assessing difference discourage the use of relations, whereas relation 

processing is preserved in comparisons assessing similarity. In my second chapter, I went on to 

show that while non-relational lexical representations could, in principle, explain a phenomenon, 

previously attributed to the usage of relation representations in recognition memory (Popov et al., 

2017), such representations are more likely to generate such a phenomenon than are lexical 

representations. Finally, in my third chapter, I introduced a computational model of generative 

inference, a cognitive process that integrates human reasoning and memory (respectively 

emphasized separated in Chapters 1 and 2), and showed with a series of simulations that the 

explicit representation of relations promoted inference across semantically distant analogs. 

Open issues 

While human relation processing has been extensively studied, it is a broad area of research 

spanning many subdisciplines of cognitive science. The findings from each of my chapters open 

new issues and raise further questions about human relation processing. In Chapter 1, I argued for 

a representational asymmetry between the relations same and different, that same is represented 

accordingly but different is represented as not-same making the latter more relationally complex 

and thus more demanding to process (Andrews & Halford, 2002; Halford et al., 1998).  This 

hypothesis explains two phenomena that I demonstrated in Chapter 1: That people have more 
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difficulty assessing relational difference than relational similarity, and that people tend to 

incorporate more relational information when judging similarity than when judging difference. If 

same and different maintain this asymmetric relation, how might other, oppositely-defined 

relations that often participate in everyday human thinking, like, for instance, truth and falsity. 

Such an asymmetric relation between truth and falsity (i.e., that true is represented accordingly but 

that false is represented as not-true) might predict, perhaps, that sentence verification judgments 

might tend to be more accurate or faster than sentence falsification judgments. The existence of 

more such asymmetries in relation processing further lend credence to the impact of one property 

of a language of thought (Fodor, 1979; Quilty-Dunn et al., 2022): the usage of representations in 

human cognition that are sensitive to logical operators (e.g., not, which instantiates negation). 

Moving from the realm of reasoning to that of memory, although Chapter 2 ultimately lent 

credence to the claim that relation representations impact episodic memory, it also raised an 

important methodological point. That a model operating only on non-relational lexical 

representations could reproduce a phenomenon that was assumed to necessitate relation processing 

raises the possibility that other putatively relational phenomena may also be reproduced in a 

computational model operating over non-relational representations. For instance, one source of 

evidence for the usage of relation representations in human cognition is the phenomenon known 

as ‘relational priming’ (Estes & Jones, 2006; Popov & Hristova, 2015; Spellman et al., 2001). If 

some conceptual content is represented, then processing instances of that content should prime 

subsequent events in which that same or similar content is processed. Spellman and colleagues 

(2001) were the first to show that processing an instance of some relation (e.g., bear:cave) do 

indeed prime subsequent events in which that same or similar relations (e.g., bird:nest) are 

processed. However, to my knowledge, this relational priming effect has not be reproduced in a 
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computational model. It thus remains to be seen if this effect could, in principle, be reproduced 

without positing relation representations through, perhaps, lexical representations that encode 

typical relational roles (e.g., the superordinate category in the X is a kind of Y relation) among 

their semantic features. 

The simulations in Chapter 3 are similar to the results in Chapter 2 in that although they 

ultimately provided further evidence for relation processing, the strong performance of non-

relational models reveals the surprisingly large expressive capacity of purely associative 

representations that lack any explicit relational structure. For example, analogy problems between 

semantically associated analogs might well be solvable without any explicit relation processing. 

This would explain why generating solutions to analogy problems featuring semantically distant 

but not semantically associated analogs induces relation processing in subsequent tasks (Vendetti 

et al., 2014). Generating completions only of semantically distant but not proximal analogies is 

likely to induce relation processing, since the latter could be solved using computationally cheaper 

approaches involving non-relational representations. Moreover, Chapter 1 showed that people 

modulate their relation processing based on the complexity of the reasoning task: Since difference 

judgments are more complex than similarity judgments, they elicit less relation processing. How 

do people actively do this? Given that some tasks are solvable through processes that do not 

incorporate relation processing (e.g., comparisons, semantically near analogy problems), what 

explains whether a human reasoner come to adopt either kind of approach in a given situation? 

Beyond these questions raised by each individual chapter of my dissertation, they 

collectively prompt further questions: With the exception of the visual comparison task in Chapter 

1, the studies performed in this dissertation make exclusive use of verbal materials and 

operationalize relation processing as processing semantic relations holding between lexical 
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concepts. Do some of the same phenomena continue to hold when relation processing is instead 

instantiated with visuospatial relations? For instance, do representations of visually-presented 

relational structures also impact episodic memory such that human reasoners might feel false 

familiarity of a novel instance of a previously processed relation?  

Another issue, raised only indirectly throughout my dissertation concerns relation learning. 

All of the modeling work in this dissertation centered around BART, a model of relation learning 

and acquisition (Lu et al., 2012, 2019). The field of relation learning is divided on the mechanisms 

that constitute relation learning. An earlier view instantiated in another computational model of 

relation learning, Discovery of Relations by Analogy (DORA; Doumas et al., 2008; see also Chen 

et al., 2019 for another such model), proposes that relation learning presupposes the ability to 

recognize analogies between exemplars of a given relation. According to this view, relation 

learning consists in a process of structural alignment and intersection discovery in which 

relationally similar analogs are compared, and an abstract representation learned from the 

comparison consists in the shared relational structure across analogs (Forbus et al., 2017; Gentner, 

1983; Hummel & Holyoak, 2003). This view correctly predicts that learning probabilistic 

relational categories is very difficult (Kittur et al., 2004, 2006) and only possible if the relational 

structure is somehow re-represented so as to make the category deterministic at that re-represented 

level of abstraction (Jung & Hummel, 2015b, 2015a). 

However, this view also predicts that supervised learning of relational concepts should 

always benefit from comparing exemplars of the same relational category rather than those of 

different relational categories, since only within-category comparisons enable this intersection 

discovery learning process in a clear way. However, Corral and colleagues (2018) showed that 

human learners were more effective and quicker to learn a number of relational categories 
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governed by semantic relations, visuospatial relations, even functional causal models from 

between-category comparisons, which violates the prediction made by an intersection discovery 

learning process. This observation led Corral et al. (2018) to propose an alternative approach to 

human relation induction that relies on feature-based processing. 

Past work on the effects of exemplar sequencing during supervised learning has clarified 

the benefits of between-category comparisons on feature-based category learning. Kornell and 

Bjork (2008) asked participants to learn individual artists’ painting styles from labeled exemplars 

and showed that participants learned much more effectively when exemplar sequencing was 

‘interleaved’, with consecutively-presented exemplars belonging to different categories, than 

when they were ‘massed’, with consecutively-presented exemplars belonging to the same 

category. Whereas the interleaved sequencing encourages between-category comparisons, the 

massed sequencing encourages within-category comparisons (Goldstone, 1996). Interestingly, the 

literature on exemplar sequencing has produced mixed results, with interleaved sequencing 

working better some times and with massed sequencing working better at other times (e.g., 

Carpenter & Mueller, 2013; Kornell & Bjork, 2008; K. H. Kurtz & Hovland, 1956; Vlach et al., 

2008), and category similarity structure appears to be a major determinant of the relative efficacy 

of one sequencing type over the other (Brunmair & Richter, 2019): Interleaved sequencing is more 

likely to benefit learning when exemplars belonging to different categories are highly similar to 

each other because the between-category comparisons that it emphasizes provide more 

opportunities to discriminate between categories. On the other hand, massed sequencing is more 

effective for learning categories whose exemplars are fairly dissimilar because the within-category 

comparisons that it encourages provide more opportunities to learn what unifies to-be-learned 

categories (Carvalho & Goldstone, 2015, 2017). Does the feature-based route to relational category 
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learning follow-suit? Does relational similarity interact with comparison type in the same way that 

featural similarity does for feature-based category learning? 

BART, as well as a number of other computational models of relation induction, 

instantiates and adds precision to Corral and colleagues’ (2018) proposal for a feature-based  

approach relational category learning (Davidson & Lake, 2021; Geiger et al., 2023; Lu et al., 2012, 

2019; Shanahan et al., 2019; Thibodeau et al., 2013). Instead of relying on analogical comparison, 

this approach consists of simpler statistical learning mechanisms performed over feature-based 

representations of relata (e.g., an unstructured feature vector) rather than analogical mapping 

performed on structured representations. For example, instead of representing a relation as a 

structured binding between two roles X and Y, as in X is larger than Y, one could represent the 

same content as a global feature of a set of relata, represented as a unified entity Z, as in Z is 

lopsided. Here, representations of relations are recoverable either as a unitary feature or as a 

distribution of features, and relations are (or are reducible) to features that are formally equivalent 

to other stimulus properties like size, shape, or color. If human learners adopt both of these 

approaches, what are their relative merits in the representations they produce? When do human 

reasoners use one over the other? There are certainly more unresolved issues in human relation 

processing and representation than those outlined above. As this is an active area of research 

featuring continual development of computational models and behavioral and neural experiments 

that test the assumptions of these models, future research will likely shed light on these issues, 

while also revealing further issues to investigate. 

Across all three chapters, the conclusion of my dissertation favors relation representations 

as a core resource in human cognition. However, the contribution of my dissertation is not 

restricted to this conclusion, but extends to an instantiation of an approach to studying human 
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cognition that emphasizes not only the expressive advantages of sophisticated cognitive processing 

(Fodor, 1979; Quilty-Dunn et al., 2022), but also the limitations of human cognition (Griffiths, 

2020). 
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