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Abstract

Floating-point Network Node for Multi-University Research Network

by

Pranav Kumar Natesh

Floating-point operations are complex, they are both power and area intensive. The perfor-

mance of floating-point operations can have a significant impact on the overall performance of

a processor. This thesis explores the design, verification and testing of a synchronous pipelined

out-of-order IEEE-754 compliant floating-point unit (FPU) for the Santa Cruz Out of Order

RISC Engine (SCOORE).

SCOORE is a superscalar out-of-order SparcV8 processor and is currently under de-

velopment in the micro-architecture Santa Cruz (MASC) Laboratory. The processor is planned

to be taped out in the 28nm GLOBALFOUNDRIES process as a part of the Multi University

Research Network. Our FPU provides hardware support for floating-point addition, subtraction,

multiplication, division, square-root arithmetic operations for single as well as double precision.

The design is modeled using the Verilog-2001 HDL and implemented using the STM 90nm pro-

cess.

The three major design units described in this work are a traditional Flop-based

pipelined FPU; a latch-based pipelined FPU utilizing the retry mechanism; and the FPU ring

network node consisting of the FPU, the programmable built-in self test (BIST) and the de-

multiplexer (DMUX). The design meets the target operating frequency goal of 1.4 GHz on the

TSMC 90nm process.
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Chapter 1

Introduction

1.1 Motivation

Fixed-point numbers are used extensively in computers, but their limited range make

them inadequate for many scientific and engineering applications.

Floating-point numbers are of great importance, because they give us the ability to

represent a large range of numbers using very few bits. Floating-point numbers are especially

useful to the scientific community. Extremely large quantities such as the inter-planetary dis-

tances or very tiny quantities such as the size of an electron are impractical to represent in

a fixed-point format, but are feasible in the floating-point format. To put it in more realistic

terms, 50 bits can represent inter-planetary distances with an error of a few microns [1].

Floating-point arithmetic is being used for 3-D graphics and automotive control,

among other applications. Modern mobile processors are also fitted with FPUs for their per-

formance benefits.

1.2 SCOORE

SCOORE, the Santa Cruz Out-Of-Order RISC Engine, is a high-performance out-of-

order SPARCV8 processor currently under implementation by the MASC research lab at UCSC.

SCOORE has several novel aspects; it is an implementation of the SPARCV8 Instruction set

Architecture (ISA). It is 4-issue superscalar and has a 12-stage pipeline. In comparison with

current Intel and AMD processors, SCOORE has a larger issue logic, re-order buffer (ROB),
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and register file size.

The computational heavy-lifting is done by the compute engine. The compute engine

consists of four architectural pieces, which perform different tasks. The A-unit is responsible

for the arithmetic operations. The B-unit takes care of the branching operations. The C-unit

also called the complex unit, handles the floating-point instructions, and lastly the M-unit deals

with load/store operations. The FPU, the focus of this thesis, lies in the C-unit.

SCOORE supports two types of ISAs, namely the SPARCV8 [2] and ARM, and in-

ternally these instructions are converted to SCOORE micro-operations (µOPS). Thus the in-

structions are decoded to SCOORE µOPs before the FPU operates on them.

ASIC TARGET

SCOORE utilizes a shadow process technology during the design process, namely

the 90nm STM and the 45nm TSMC. The 28nm GLOBALFOUNDARIES (GF) process being

our final tapeout technology. The 90nm ASIC target clock speed is 1.4 GHz and the estimated

45nm ASIC target clock speed is 3.0 GHz with Synopsys Design Compiler using a 20% clock

uncertainty and typical libraries. Our final 28nm tapeout target frequency is estimated between

2.5 GHz and 3.0 GHz. The tool flow is shown in figure 1.1. The tools DC shell and RC

Cadence are used for design synthesis, SOC Cadence is used for all back-end activities such as

floorplanning, place and route, power and clock distribution. Lastly DRC mentor is being used

for design rule checking.

Figure 1.1: ASIC Design Flow
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1.3 MURN

Multi-University Research Network (MURN) is an academic project lead by MASC

group at University of California, Santa Cruz. MURN is a collaborative effort between GF,

UCSC and UCSD. The goal of the project is to tapeout a heterogeneous chiplet on the GF 28nm

Super Low-Power (SLP) process.

There are two tapeouts planned for the project. An early tapeout with certain blocks

on a ring-network and a final tapeout of the finished design. The rationale behind the early

tapeout is to work out all the issues in the backend flow of the design. Early tapeouts are also

known to have a positive impact on the overall design time of a project [3]. The high-level view

of the first tapeout is shown in figure 1.2.

Figure 1.2: Architectural view of the ring network.

Each design block is self-contained within a network node. All the nodes in the chip

are inter-connected in a ring topology. This ring also contains a communication network node,

which provides a high-speed interface to the ring-network to the mother-board on which the chip

is sitting. The protocol used is XAUI, which is an extension of the XGMII (10 Gigabit Ethernet

protocol). Alongside the MURN chiplet, a daughter FPGA is also present on the mother board.
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The daughter FPGA is used for chip bring-up as well as running experiments on the chip.

Among various blocks, the FPU is going to be a part of the first tapeout. The FPU

along with a programmable testing unit is given the name floating point network node or FPN-

ode.

1.4 Floating-point Numbers

Many applications including scientific and DSP require inputs that are rational in

nature i.e. numbers that have fractional components. One method is to reserve certain bits for

the whole part of the number and other bits for the fractional part. The disadvantage of this

method is that we have a limited range of the numbers that can be represented. Based on how

the bits are reserved, we sacrifice either the precision of the integer part or the fractional part.

In real-world applications, the requirement on the precision of the fractional component also

varies, for example, in miles we do not care about the fourth decimal value when representing

distance between cities, but this value becomes important to us when we talk about the share

price of a stock.

The answer to this problem is the use of floating-point numbers, where a large range

of numbers can be represented with varying amounts of precision. Higher precision for smaller

number which is usually the desired behaviour.

The FPU presented in this work is compliant with the IEEE 754-1985 standard [4],

which is the most widely used standard for all floating-point computations. The last major

update to the standard was in 2008.

1.5 IEEE 754-1985 standard

The standard defines a method to represent numbers in the floating-point format,

which includes special values like zeros, denormalized numbers, infinities and NaNs (Not a

Number), and it defines operations to be performed on floating point operands. Lastly, it also

sets rules on how to handle special scenarios such as divide-by-zero conditions or dealing with

irrational numbers. The goal of a unified standard is to give programmers the power to create

more robust and predictable systems [5].

4



Representation

Figure 1.3: IEEE floating-point bit field representation.

As shown in figure 1.3, a floating-point number conforming with the IEEE standard

is made up of a sign bit S, an exponent field E and a mantissa field M. The value of the floating-

point number is given by the

(−1)S ∗M ∗ 2E−Bias (1.1)

The number of bits assigned for the exponent and mantissa fields are based on the

precision level. There are four formats defined by IEEE 754-1985 namely single precision,

double precision, single-extended precision and double-extended precision. Our FPU supports

both single and double precision floating-point operations as shown in figure 1.4.

Figure 1.4: IEEE Floating-point Formats.
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The sign bit S represents whether the number is positive or negative, a value of 0

represents a positive number. The exponent value E is stored in a biased format, this implies

that the value stored is offset from the actual value by a constant known as the bias. The value

of the bias is dependent on the number of bits in the exponent field. The mantissa field is used

to represent the fractional component of the number. If the exponent field is neither zero nor the

largest representable exponent the value is considered to be normalized. A normalized number

puts the radix point after the first non-zero digit. In a base 2 representation the only possible

non-zero digit is 1. Thus we can assume a leading digit of 1 and not store it explicitly. There

are cases when the numbers are extremely small and where the most significant bit is 0. This is

a denormalized representation.

IEEE-754 also allows the representation of certain special values. Not-a-Number is

used for a result of an illegal operation, for example imaginary numbers like
√
−1. The values

+∞ and -∞ are used to represent values that are out-of-range. In both of these scenarios the

exponent field is set to all one’s. The mantissa is set to zero for infinite values and to non-zero

for NaNs.
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Chapter 2

FPU Design and Implementation

This chapter describes the design and implementation of the FPU of the SCOORE

processor. The initial section of this chapter provides an overall architectural view as well as

various performance metrics. Sections 2.2 2.3 2.4 2.5 include explanations of the individual

floating-point operation pipelines, providing design details as well as their implemented algo-

rithms. Finally, we present the implementation details of the design.

2.1 Overview

The FPU is completely pipelined with each operation having its own pipeline and

operating on double-precision floating-point numbers. All the operations share some common

stages like the denormalization, normalization, rounding and result queueing. All operation

pipelines can take in one instruction every cycle with the exception of the divide and of the

square root units that have a multi-cycle iterative operation.

Figure 2.1 shows a top-level architectural view of the FPU. It depicts internal struc-

tures as well as the unit’s interface with the Complex Unit. The design has three major phases

starting with the de-normalization phase followed by the execute phase, and finally the post-

normalize and rounding phase. Most of the operations have different pipelines due to the differ-

ence in their operation algorithms, but they still share certain stages such as the de-normalization

stage and the rounding stage. Table 2.1 describes the input and output interfaces of the design.

We now describe the major stages in the floating-point unit.
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Figure 2.1: FPU top level architectural view

2.1.1 De-normalization Phase

The de-normalization phase is responsible for unpacking the input operands. Certain

hardware logic required prior to the execute phase is also performed in the de-normalization

phase such as mantissa swapping for the addition/subtraction operation. It has a latency of one

clock cycle. Only one operation is issued in-order for execution each cycle. Another block

which operates in parallel with the denorm phase is the Operation Pre-decode block that pre-

decodes the opcode of the current instruction and converts it to a one-hot bit vector. This bit

vector is used by the following stages, thus optimizing on the decoding logic in the pipeline.
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Port Type Width Description
clk, reset I, I 1,1

start I 1 This is to indicates a valid instruction at the FPU input.

round I 2 Rounding mode of the current instruction.
0 - Round to nearest even;
1 - Round to zero;
2 - Round to positive infinity;
3 - Round to negative infinity.

op I 6 Used for the OPCODE of the instruction.

state, fpu state I, O 10, 10 Every FPU instruction has an associated 10-bit destination
address. This address is passed along the data-path as is.

src1, src2 I, I 64, 64 These are used to provide two double precision sources for the
instruction. The lower 32-bit word is used for single precision
numbers. Only SRC2 is used for single input operations.

fpu result O 64 Data result of the operation.

fpu ready O 1 Indicates the validity of the result data.

fpu icc O 3 Integer or Floating-point Condition Codes depending on the
OPCODE of the result.

busy O 1 Indicates that the FPU is not ready to accept any new
instructions. Only applicable in the flop-based FPU.

Table 2.1: FPU Interface

2.1.2 Execute Phase

The execute phase performs the out-of-order execution of the various floating-point

operations. The addition and multiply operations are designed in a pipelined fashion and have

a latency of 3 clock cycles each. Divide and square root utilize iterative algorithms for their ex-

ecution, and use a multi-cycle data-path; they have a latency of 64 clock cycles. The completed

instructions pass through a Result Queue to avoid contention and to ensure only one instruction
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is finished per cycle.

2.1.3 Post-Normalization

The result generated by the execution phase may or may not be normalized. The

post-normalization block ensures the result is normalized by shifting the mantissa and adjusting

exponent appropriately. This functionality is provided prior to being sent to the result queue.

2.1.4 Rounding

The FPU supports four rounding modes, i.e. round to nearest, round to 0, round to

+∞ and round to -∞. The value of the RD field of the floating-point state register (FSR) for

each instruction is sent to the FPU [2].

2.2 Floating-point Addition

Figure 2.2: Floating-point addition pipeline
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Floating point addition is a simple algorithmic process that needs to be completed

in sequential order [1]. The steps involved in this process are illustrated in figure 2.2. The

subtraction operation also utilizes the same hardware except that the sign bit is inverted at the

denormalize phase.

Denormalization

The operands are initially unpacked to get the mantissa, exponent and sign bits. The

operation may be an addition or a subtraction based on the value of the sign bit as well as the

opcode of the instruction.

Mantissa Swapper

The addition algorithm works by shifting the smaller mantissa by the difference of

the two exponent values. Thus, the operands may need to be swapped before sending them to

the shifter depending on their magnitudes.

Shifter

The exponent value of the smaller operand is adjusted to match the value of the larger

operand, this is done by shifting the mantissa bits appropriately.

Mantissa Adder

This is a simple process where the mantissa values are added together to generate the

mantissa of the result.

Normalizer and Rounding

Since both operands are aligned to the larger operand’s exponent value, the result

needs to be normalized back to have the largest mantissa bit as 1. This is done by detecting the

number of zeros starting from the msb and left-shifting the operand and adjusting the exponent

value. The result also needs to be rounded based on the rounding mode set for that instruction.

The SCOORE addition implementation is a five-stage pipeline i.e. has a latency of

5 cycles, where the first stage is utilized for operand unpacking, exponent comparison and
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mantissa swapping. The next two stages are used for mantissa shifting as well as detecting

which mantissa is greater, and essentially determines how the sign bit S is set. The next stage is

used for the addition operation. The last stage is used for normalization and rounding.

2.3 Floating-point Multiplication

Figure 2.3: Floating-point Multiplication Pipeline

The mantissa multiplier is the most complex component of the multiply pipeline.

Since mantissa multiplier functions similarly to an integer multiplier, it is used in the FPU of

SCOORE to perform signed and unsigned integer multiplications. The first step in the multiply

pipeline is similar to that of addition, we unpack the operands into exponent, mantissa and

sign fields. Much like all FP pipelines, FP multiplication consists of two major data paths,
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the exponent and the mantissa fields. To generate the resultant exponent, we need to perform

addition on the biased exponents, ensuring that the bias is subtracted from the result. The

sign bit of the result is obtained by an XOR of the two sign fields of the input operands. The

remaining and the most logic intensive step is to perform the mantissa multiplication. The

multiplication of two 52-bit operands yields a result of 104 bits. Internally, both single and

double precision are treated the same, for single precision number we truncate appropriately

after obtaining the result.

The basic steps involved in the mantissa multiplication are partial product generation

and partial product addition [6]. The floating-point multiplier of SCOORE has a latency of three

cycles for execution and normalization of the result. In the first stage, the partial products are

generated and in the next two stages, the partial products are added.

After obtaining the result, it might be necessary to normalize the result by shifting

the mantissa and adjusting the exponent accordingly. The NaN detection and propagation logic

is similar to that of the division unit, thus we have common logic that is being used by both

the blocks. We observe that NaN detection and propagation can be completed in one cycle but

extra flops are added to maintain synchronization with the mantissa multiplier pipeline. All the

multiplication operations are completed in-order.

2.4 Floating-point Division

To perform a floating-point divide operation, a logical XOR operation is performed

on the sign fields; the exponent fields are subtracted and similar to the floating-point multiply,

the complexity remains in the division of the mantissa fields, which is done in a similar fashion

to an integer division.

There are two major classes of division algorithms, Digit Recurrence which applies a

subtractive recursive approach and Functional Iteration which applies a multiplicative approxi-

mation method [7]. The subtractive method selected for SCOORE FPU, provides for a simpler

implementation and produces a constant number of bits per iteration [8].

There are four identical dividers used within the FPU, each taking 64 cycles to per-

form a divide operation. This gives us the ability to handle four in-flight division operations. A

divider selector unit selects, which divider to use, and selects each divider in a sequential order.

The FPU will generate a busy signal if all the dividers are busy. Each divider has a multi-cycle
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data path used to evaluate the mantissa values. A ready signal will be generated when the com-

putation is finished. In the regular flop-based implementation, a FIFO was used to buffer the

results. As multiple units can finish at the same cycle a result selector is used to make sure there

are no losses due to contention.

Parallel to the four mantissa dividers, we also have combination logic to detect the

propagates NaNs in the design. The NaN detection logic evaluates in one cycle, but contrary to

the multiply pipeline, instructions can retire out-of-order.

Figure 2.4: Floating-point division unit

2.5 Floating-point Square Root

There are two major classes of algorithms for mantissa square root calculation, Digit

Recurrence and Multiplicative, depending on the basic step-by-step method used [8]. In the digit
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recurrence method, the convergence is linear and one cycle is needed to terminate the step. On

the other hand, in the multiplicative, the convergence is quadratic and each iteration requires

floating-point multiplications, and the rounding process is more complex. The multiplicative

method requires changes to the multiplier which can make it a slower process [1].

In our design we have implemented the recurrence method which takes 64 cycles to

perform the operation for double precision numbers and 32 cycles for single precision. Square

root being a unary operation only the SRC2 is needed.

Figure 2.5: Floating-point Square Root Architecture

2.6 Non-arithmetic Operations

The floating-point unit also supports compare operations. These operations are treated

internally as floating-point subtract operations and relevant condition-codes are generated based

on the result. As per IEEE-754, the four condition codes generated are zero, less than, greater

than and unordered (when one or more of the operands is a NaN).

2.7 Rounding

Arithmetic operations on floating-point numbers lead to results that cannot be repre-

sented in the given amount of precision, thus the results needs to be rounded.
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2.7.1 Round Toward Zero

This mode of rounding is achieved by truncating the result to the required amount of

precision, this has an effect of getting the value closer to zero. For example, the number 0.6677

is truncated to 0.667, if three decimal places are available; and 0.66, if two decimal places are

available.

2.7.2 Round Towards +∞

The result is rounded to +∞ regardless of the value to the right of the number of

available digits. For example, the result 1.345 is rounded to 1.35 and similarly -1.345 is rounded

to -1.34 for three digits of precision.

2.7.3 Round Towards -∞

This method of rounding is similar to the round to +∞ except that now we round to

-∞. For example, the result 1.345 is rounded to 1.34 and similarly -1.345 is rounded to -1.35

for three digits of precision.

2.7.4 Round To Nearest Even

This is the mostly commonly used rounding mode, this specifies that for scenarios

where the number can be rounded in two legitimate ways, pick the closest even number. For

example 1.5 rounds to 2.0 but 4.5 rounds to 4.0 for two digits of precision.

2.8 Latch Based Design

In this implementation of the FPU all the flip-flops in the design were replaced by

specialized latch-based structures. These structures called stages are currently under research

in the MASC laboratory. Even though they do have a bigger area impact they provide the means

to ask a sequential element to hold state. Stages work on a retry protocol and can be thought

of as a FIFO of size 1. The underlying hand-shaking mechanism is shown in figure 2.6. Each

data input has a corresponding valid signal. When an output data is issued with an invalid

signal, the data is discarded and it is neither processed nor stored. Each module has two retries
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associated, one retry signal is received from next stage in the pipeline and retry which is an

output to the previous stage. The retry from the next stage implies that current stage needs to

hold its state until the retry is de-asserted. A retry output to the previous stage implies that the

current stage cannot accept any new data and requests that the data be sent again. The retry stage

contains a handshaking system based on the valid signal that simply controls the contention in

the communication line.

The following figure 2.7 shows the basic interface of the retry stages. The internal

structure of this unit is beyond the scope of this thesis. The timing diagram 2.8 shows the

operation of the stage unit. In the first scenario 2.8(a) there are no retries applied to the stage,

therefore it acts like a regular flip-flop, and we see the data being propagated to the output as

expected. In the next scenario 2.8(b) the retry in input to the stage is asserted for two cycles,

concurrently there is also a data input to the stage, this data is buffered since the next stage is

not ready to accept the data. The stage asserts retry out during the next cycle, at this point the

input to the stage must be held until the retry out is de-asserted. After the retry in is removed

we see the buffered data on the stage output.

Figure 2.6: Retry handshaking

The replacement of the flip-flops leads to a simpler architecture as well as reduction

in certain buffer logic like FIFOs, because an entire pipeline can be put in ”retry” state without

the worry of losing data. The retry protocol also simplifies parallel paths we can now have

parallel pipelines of different lengths without the need to balance them. Certain control logic
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Figure 2.7: Stage interface

also needed to be re-vamped since all the data-paths in the design did not have a standardized

valid signal, which is needed by the stages. The process of conversion of the design was found

to be non-trivial, and the method adopted was to convert the design one operation at a time.

Special points of interests were the de-normalize and result-queue phases. In the denormalize

phase, a large flop was used to feed data to the different operation pipelines, in this new scheme

this flop was replaced by individual retry stages. All the operation pipelines feed the result-

queue, there can be a scenario where more than one operation pipeline is ready with the result

on the same cycle, to avoid contention a priority scheme was added to the retry logic. The

highest priority given to the FP addition pipeline, followed by the multiplication, FP square

root, and lastly division.

2.9 Performance Evaluation

The table 2.2 reports the IPC results of multi-cycle FP operations. Fully pipelined op-

erations such as floating-point addition (F ADD), floating-point subtraction (F SUB), floating-

point multiplication (F MUL), and integer multiplication (I MUL) achieve an IPC of 1 as ex-

pected.

To gauge the performance of the FPU under realistic application scenarios, we wanted

to study the performance of the FPU under different SPECfp [9] benchmarks. The SESC [10]

simulator was used to study four benchmarks to profile the floating-point operations performed.

18



(a) Stage Operation Without Retries

(b) Stage Operation With Retries

Figure 2.8: Stage Timing Diagram

The benchmarks swim, applu, wupwise and mgrid were used. Using these numbers we gener-

ate instruction mixes for the FPU and supply them as stimuli to the FPU. The operands and the

sequence of operations used for these evaluations were randomized and about 1 million instruc-

tions per test-suite was used to gather results. All the evaluations assume that the test-bench

does not assert any retries. The performance results are shown in table 2.2.

2.10 Implementation Results

The floating-point unit was synthesized using the Synopsys DC compiler using the

CORE90GPLVT library under normal operating conditions. Table 2.3 details the synthesis

results of the FPU. The design was constrained for a frequency of 1.4 Ghz.
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Operation / Benchmark IPC Achieved
FP64 DIV 0.076
FP32 DIV 0.066
FP64 SQRT 0.032
FP32 SQRT 0.016
I32 DIV 0.062
SWIM Benchmark 0.913
APPLU Benchmark 0.905
WUPWISE Benchmark 0.976
MGRID Benchmark 0.999

Table 2.2: Performance evaluation

Parameter Synthesis Results
Time period (ns) 0.71
Maximum Frequency(GHz) 1.41
Non-combinational Area (µm2) 31.75
Combinational Area (µm2) 36057.57
Total Area (µm2) 36089.32

Table 2.3: Synthesis results

Using the 90nm TSMC libraries the leakage power of the FPU was estimated at 2.33

mW and average dynamic power consumption was estimated at 7.37 µW. The major critical

paths in the design were found to be the partial product generation in the multiplication unit

and square-root unit. The multiplier was brought out of the critical path by adding another

pipeline stage to the unit. The timing of the square root unit was improved by moving some

the computation out of the multi-cycle data-path. The design will finally be synthesized using

the 28nm GLOBALFOUDRIES libraries. The exact timing, area and power numbers will be

obtained at that time.

20



Chapter 3

FPU Ring Node

3.1 Testing Unit

The floating-point unit is going to be a part of the first MURN tapeout. Functional

testing of the unit could not have been achieved via the network interface. This is due to the

fact that the target frequency of the final SCOORE design is going to be close to 1.4 Ghz, going

off-chip for every test vector would be far too slow to ensure the design is functional at-speed.

To overcome this issue a testing unit was designed which runs functional tests independent of

the network interface. The purpose of this unit is to buffer the test vectors as programmed by

the off-chip device and run the FPU test autonomously.

The main elements of this unit are a DMUX which decodes packets from the ring

network, and a unit which can store and drive the test independently called the programmable

testing unit or PBIST.

3.1.1 DMUX

This unit directly talks to the network switch. All data exchanged between the net-

work node and network ring is done via the DMUX. Each packet received at the DMUX inter-

face contains an opcode field as well as a data field (see figure 3.1). These opcodes are decoded

and passed to the PBIST unit as control signals. Once the test results are ready, the DMUX will

ship the packets on the network.
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Figure 3.1: Network Packet Description

3.1.2 PBIST

The PBIST buffers the test vectors and once instructed by the operation network

packet, performs the test sequence while maintaining all the control signals as expected by

the design under test (DUT), for example when the FPU asserts a busy signal, the testing unit

must hold its inputs to the FPU. The test sequence can contain any of the operations supported

by the FPU. The unit acts like the transactor and the scoreboard for the test being performed.

The PBIST in essence resembles a memory built-in self test or BIST, which performs march al-

gorithms to detect manufacturing defects in memories and can be programmed externally. The

difference lies in the fact that this testing unit is used to check for functional correctness. The

figure 3.2 shows the inputs and outputs of the block.

Figure 3.2: Programmable BIST

The PBIST uses SRAMs to buffer the input test vectors as well as the outputs gener-
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ated by the DUT. The testing unit consists of seven banks of 32 x 128 single port SRAMs used

as test and result memory, all the memories have a one cycle read/write latency. Five of the

banks are used to store the input tests and the two banks are used to buffer the results generated

by the FPU.

The PBIST has an internal state machine used drive the test. If the network nOde is

not busy and the test data has been consumed by the FPU, the memory pointers will be updated

to the next instruction, thus all the instructions are driven sequentially until all the test vectors

have been passed to FPU. At any point the FPU can assert a retry signal to the testing unit at

which point the state machine waits until the de-assertion of the retry signal and only then will

the next instruction be passed to the FPU. The retry protocol requires the testing unit to hold

the input valid signal until the data is consumed. The FPU asserts a ready signal once it has

the result of an operation ready. Since the testing unit is always ready to accept these results

it never asserts a retry to the FPU output stage. Only one instruction is retired by the FPU per

cycle, but results can finish out-of-order. To store the result in-order, the state information of the

FPU result is used to generate the index for the memory write operation. Therefore the result

memory is kept in the order instruction issue.

Currently the SRAM depth has been limited to 128, thus as many instructions are

given to the FPU, if a smaller test is needed, NOPs will need to be added at the end of the in-

struction sequence. A configuration register is set by the network which determines the number

of iterations to be performed. The configured number in this register instructs the testing unit to

repeat the testing sequence for n iterations. After the first iteration every consecutive iteration

results is compared against the first iteration and an error signal will be raised if there is any

inconsistency.

One interesting testing feature that can be implemented is to randomly assert retries

at the FPU output to check for possible retry related issues in the design. The high-level design

of the testing is reusable. In order to adapt the testing unit, the DMUX logic can be used as is,

but the PBIST logic and the memories used within the design will need to be modified based

on the requirements of the DUT block, for example the A-unit of the SCOORE design can be

tested in a similar manner.
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3.2 RNode

Every design node of the MURN ring network is called an RNode (as seen in fig-

ure 1.2). The designer of the RNode instantiates a ring switch which is shared by all RNode

blocks. This switch provides an interface to the ring. Every network packet has an address bit

field, which dictates which ring switch is the destination of the packet. The floating-point ring

node consists of the switch, DMUX, PBIST and the FPU.

Figure 1.2 details how various RNode connect to the MURN network. Table 3.1

describes the various operations available on the testing unit. The following section walks

through the step-by-step data-flow in the testing unit.

Opcode Payload Description
FILL Discarded This opcode is sent before the test vectors

are given to the programmable BIST.
STOP FILL Discarded This opcode is sent after all the test vectors

are sent.
TEST RAM index + data This opcode tells the testing unit that the payload

contains a test vector
ITER Iteration count This is used to set the iteration count for the test,

the default is 2
(2-1023)

GO Discarded Once all the SRAMS are programmed, this command
indicates to the testing unit that the test can
start. The results are automatically sent
out once the test is finished.

Table 3.1: FP RNode Opcodes

3.2.1 Testing Unit Flow

The steps involved in programming the testing unit and performing the tests on the

floating-point is detailed in the following section.

• Send a network packet with the FILL opcode.

• 32-bit test vectors are sent in sequential order with the opcode TEST.

– Payload[31-0] Represents actual test data
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– Payload[41-32] Provides the row number for the buffer memory.

– Payload[47-31] Provides the bank number for the buffer memory.

∗ Bank0→ SRC1 lo

∗ Bank1→ SRC1 hi

∗ Bank2→ SRC2 lo

∗ Bank3→ SRC2 hi

∗ Bank4[5:0]→ fp op

∗ Bank4[7:6]→ rounding

• Once all the test vectors are completely initialized, a network packet with the STOP FILL

opcode is given.

• A network packet with a GO opcode instructs the testing unit to initiate the test.

• Once the testing is complete, the unit will automatically send out the test results sequen-

tially.

• The testing unit is designed to send out 32 bits of data in the payload of the network packet

at a time. Each FPU instruction generates a 64-bit result, thus each output is broken down

to two network packets.

• The first packet received refers to the lower 32-bits of the first FPU instruction.

• The second packet received refers to the upper 32 bits of the first FP instruction and

similarly for the rest of the instructions. Thus for a 128-bit test set, there will be 256

network packets seen at the network node output.

3.2.2 BIST Network Fields

The network node talks to ring network on two occasions, firstly when the test vectors

are being programmed and secondly when the test is complete and the packetized result data is

being sent out. The Figure 3.3 illustrates the two packets types. In the first scenario, starting

from the highest order field, the network opcode field is programmed with the FILL opcode.

The next two bit fields are programmed with the bank and instruction number respectively, the

bank number can be thought of as the index of the packets that make up one FPU instruction.
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The bank number ranges from zero to four, for the FPU network node. The lowest order word

is meant for the actual test data.

In the second scenario, the lower 32-bit field is used to hold the result data. Each FPU

instruction result is packetized into two network packets of 32-bits. The last representation in

figure 3.3 shows the construction of one FPU instruction using five network packets.

Figure 3.3: FPU Network Node Packet Bit Fields.
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Chapter 4

Pre-Silicon Verification

Figure 4.1: Testing Harness for the Floating-point Unit.
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4.1 Verificaton of the Floating-point Unit

The validation of floating-point units is known to be a complex process. The infamous

floating-point divide bug cost Intel millions of dollars as it was detected only after it had been

released to the customers [11]. Intel currently conducts formal methods to verify its FPUs [12].

All SCOORE design blocks use a uniform testing scheme. All the test scenarios are

written in C/C++ and the interface with the RTL code with a programming language interface

(PLI) function. At every clock cycle we assert the DUT inputs using a set function and the DUT

outputs are monitored using a check function.

The SoftFloat [13] test suite provided by John Hauser is used as the stimulus for the

FPU. TestFloat, also part of the SoftFloat suite, provides a range of randomized inputs vectors,

giving special attention to the corner cases used to check for IEEE compliance. A test scenario

is built using these vectors and randomized operations. The test vectors are used drive the DUT

as well as the C model, which computes the expected results. These expected results are stored

in data structures in the testbench with the state ID used as a index. As we observe the outputs

generated by the FPU, the state ID of the results is used to fetch the pre-computed results, which

are then compared. A testbench error is generated if they are not equal.

The testing mechanism is shown in figure 4.1. The major challenges in testing of the

floating-point is to ensure the algorithms were well defined in verilog as well the design RTL

compliance with the IEE-754 standard. Table 4.1 lists all the tests that have been implemented

for the FPU.

In our testbench we have included checks to ensure all the instructions have been been

retired only once and within an allowable range of delay based on the operation and the retries

applied on the design. Even though the default test performs randomized operations, certain

switches can be provided to test for certain operations. We also have the ability to instrument

operation mixes which is used for our performance evaluation. Our scheme has been successful

in catching much of the design implementation and compliance.

The second implementation of the design uses latch-based stages instead of flip-flops.

The only change in the testing infrastructure was to introduce a retry stage like interface to

the DUT inputs and outputs. The legacy busy signal is replaced by out retry. To ensure the

DUT is tested under all retry conditions. The output or normalize stage of the FPU is stressed

to a maximum of eleven continuous and randomized retires. The floating-point design is also
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Test Name Description
float64 add Double Precision Floating-point Addition Test
float64 sub Double Precision Floating-point Subtraction Test
float64 mul Double Precision Floating-point Multiplication Test
float64 div Double Precision Floating-point Division Test
float64 sqrt Double Precision Floating-point Square Root Test
float32 add Single Precision Floating-point Addition Test
float32 sub Single Precision Floating-point Subtraction Test
float32 mul Single Precision Floating-point Multiplication Test
float32 div Single Precision Floating-point Division Test
float32 sqrt Single Precision Floating-point Square Root Test
umul 32-bit Unsigned Integer Multiplication Test
smul 32-bit Signed Integer Multiplication Test
udiv 32-bit Unsigned Integer Divide Test
sdiv 32-bit Signed Integer Divide Test
random The default test, random mix of all floating-point and integer

operations that can be performed on the FPU

Table 4.1: List of implemented tests

stressed by forcing all the pipeline stages using retry to assert the retry to the previous stage

randomly via the stage cell. This helped uncovering a lot of bugs in the retry logic and is found

to be a very effective method to test designs using retry as an interface.

4.2 Verification of the Floating-point Network Node

The block-level testing of the FPU network node is done at the network switch in-

terface. The testing is done in a step-wise fashion as described in the section 3.2.1. Firstly,

the FPU network node is programmed with test vectors and then instructed to conduct the test

independently using the GO opcode given to the DMUX. Once the GO opcode is given the test-

ing unit does not communicate with the network interface. The test cannot be halted until the

test has finished. After the test completes the result vectors are received at the network switch

interface in the form of network packets, which will then be compared against pre-computed

values.
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Chapter 5

Conclusions

A floating-point network node is designed for the first tapeout of the MURN project.

The design is synthesized using the TSMC90 process and achieves an operating frequency of

1.4 GHz. Using the 28nm GLOBALFOUNDRIES flow, we expect the frequency to be around

the 2.3 GHz mark. The floating-point unit was verified for functional and IEEE [4] compliance

using the software model made available by John Hauser [13].

The floating-point unit standalone has an area estimate of 36057.57 µm2. The testing

unit adds an area overhead of 4865.09 µm2, which does not affect the operating frequency of

the design unit.
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Appendix A

Running Tests

The SCOORE project uses a unified Ruby Make infrastructure for running all tests.

The following are examples of running tests on the command line for the SCOORE FPU.

rake test:fpu_tb
rake test:fpu_tb args="+test=float64_add"
rake test:fpu_tb args="+test=float32_mul +debug=on"

Figure A.1: FPU testing

The following command line executes the test for the FPU RNode.

rake test:rnode_fpu_tb

Figure A.2: FPU RNode testing
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