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Multi-tissue Multi-omics Systems Biology to Dissect Complex 
Diseases

Xia Yang*

Department of Integrative Biology and Physiology, University of California, Los Angeles

Abstract

Most complex diseases involve genetic and environmental risk factors, engage multiple cells and 

tissues, and follow a polygenic or omnigenic model depicting numerous genes contributing to 

pathophysiology. These multidimensional complexities pose challenges to traditional approaches 

that examine individual factors. In turn, multi-tissue multi-omics systems biology has emerged to 

comprehensively elucidate within- and cross-tissue molecular networks underlying gene-by-

environment interactions and contributing to complex diseases. The power of systems biology in 

retrieving novel insights and formulating new hypotheses has been well-documented. However, 

the field faces various challenges that call for debate and actions. In this opinion, I discuss the 

concepts, benefits, current state, and challenges of the field, and point to the next steps towards 

network-based systems medicine.
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Why multi-tissue multi-omics systems biology?

Eradicating human diseases is the ultimate mission of biomedicine. However, despite 

decades of extensive research, the majority of common human diseases of high morbidity 

and mortality, such as cardiovascular disease (CVD) and its associated metabolic risk factor 

type 2 diabetes (T2D), still face growing prevalence and lack of effective therapeutic 

strategies to eliminate disease burden.

So, what prevents us from making the next biomedical breakthroughs at a time when 

biotechnology has seen its peak innovation and when cutting-edge research tools are readily 

available? One of the key hurdles is the extreme complexity of human diseases (Figure 1). 

First, besides the revelation of tens to hundreds or even more genetic risk loci identified 
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through genome-wide association studies (GWAS; see Glossary) [1], diverse environmental 

factors such as diets, physical activity, pollutants, toxins, and pathogens also have profound 

impact on disease development [2]. Environmental factors also interact with the genome, 

termed gene-by-environment interactions, to further confer inter-individual differences in 

disease risks [3]. Secondly, each complex disease is the result of systems level perturbations 

involving multiple tissues, diverse cell types, and numerous molecular pathways. For 

example, CVD is promoted by dyslipidemia, inflammation, coagulation and vascular 

dysfunctions governed by the liver, adipose, immune system, and the vasculature [4]; as a 

major risk factor for CVD, T2D involves pancreatic beta cells, liver, adipose tissue, intestine, 

and skeletal muscle [5], as well as various molecular pathways ranging from insulin 

secretion and insulin signaling to cell cycle and immune pathways [6]. Lastly, the molecular 

model for complex diseases has been revised from a polygenic (multiple genes) to a 

debatable omnigenic model [7, 8]. The omnigenic model states that essentially all genes 

interact in molecular networks (an example for CVD in Figure 1B), and perturbations of 

any of the interacting genes can propagate into overall network perturbations resulting in 

disease development. In this model, the scale of contribution of individual genes to disease 

development differs in accordance with their importance and position in the networks, with 

central hub genes (e.g., CAV1 for CVD; Figure 1B) that have more interacting partners 

playing a more significant role, whereas peripheral genes with few connections (e.g., genes 

surrounding CAV1; Figure 1B) exhibiting subtle to moderate impact. These complexities, 

ranging from diverse risk factors to a multitude of tissue, cellular, and molecular systems, 

call for a holistic view of the multidimensional interactions to prioritize key tissues, cell 

types, and central molecular regulators to guide more effective therapy.

Complex diseases have been mainly investigated using classic reductionist approaches [9, 

10], which examine one factor at a time and have been successful in elucidating the 

functions of individual genes, proteins, or other types of molecules. Reductionism requires 

specific hypotheses, such as the belief that a particular gene is involved in a biological 

process that affects a particular function or disease. However, such approaches become less 

efficient in addressing the polygenic/omnigenic disease model and the complex interactions 

across molecules within and between tissues in different contexts. Specifically, the functions 

of biomolecules are not only determined by their own properties but by their micro- and 

macro-environments, such as the specific cell and tissue types where different functional 

partners are present, as well as the larger genetic, environmental, and physiological contexts 

of individuals. Examining the functions of a molecule in limited settings (such as in a 

particular cell line or a specific mouse model) will only offer fragmented biological 

understanding that does not apply to other conditions. This is particularly significant given 

the observations that knocking out a gene in different mouse strains has dramatic differential 

phenotypic consequences between mice with distinct genetic background [11], and the same 

environmental exposure can lead to a broad spectrum of physiological and disease variations 

between individuals in both human and rodent populations [12–16]. Yet the majority of 

existing studies employing reductionist approaches make conclusions based on experiments 

conducted under a limited number of conditions, if not one. On the other hand, exhaustively 

testing the functions of individual molecules across all variable conditions is not feasible for 

reductionist approaches, thereby limiting its power to fully dissect disease complexities.
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As a complementary approach, multi-tissue multi-omics systems biology has gained 

momentum in recent years to meet the challenges. The rise of this discipline is the natural 

result of the recent conceptual and technical breakthroughs that have enabled global 

examination of the near-complete sets of genes, proteins, metabolites, or bacterial species in 

health and disease through multi-omics technologies.

In this article, I will first introduce the basic concepts and approaches involved in multit-

issue multi-omics systems biology. Subsequently, I will briefly review the current state of 

the field through recent application studies dissecting the molecular interactions across 

multiple tissues affected by genetic or environmental risks or by gene-byenvironment 

interactions. Although multi-tissue multi-omics approaches have been applied to numerous 

diseases, I will focus on select applications investigating multiple tissues and multiple layers 
of omics in CVD and its interconnected risk factor T2D as examples to elucidate the main 

directions and advances. Lastly, I will point out the challenges facing the field and outline 

the potential strategies to further the path towards comprehensive mechanistic understanding 

and more effective treatment for complex diseases.

Basic concepts and approaches for multi-tissue multi-omics systems 

biology

Systems biology aims to understand the holistic complex interactions in biological systems 

[17]. Multi-tissue multi-omics systems biology is a subdiscipline that relies on diverse types 

of high throughput omics data (genome, epigenome, transcriptome, metabolome, proteome, 

and microbiome; Figure 1A) from disease-relevant tissues, to derive the molecular 

interactions in the form of molecular networks across organ systems using mathematical, 

statistical, and computational analyses [6, 18–21]. As reviewed previously [22, 23], there are 

many types of molecular networks, such as protein-protein interaction networks, gene 

regulatory networks, metabolic networks, and hybrid networks (Figure 2), which can be 

derived based on correlation, regression, ordinary differential equation, mutual information, 

Gaussian graphical models, and Bayesian approaches. Despite some recent debate [24, 25], 

the organization of biological networks has long been viewed to follow a “scale-free” pattern 

[26, 27] where a small number of nodes have many more connections than average (“hub” in 

Figure 1) whereas the majority of the nodes have few connections (“peripheral node” in 

Figure 1).

Genetic and environmental risk factors influence multiple parts of the networks 

(“subnetworks”; Figure 1A), disruptions of which perturb specific biological pathways or 

functions which in turn promote disease development. As many genes and their associated 

subnetworks could contribute to a complex disease, it is critical to pinpoint the hubs that are 

central in the disease network as well as their cell and tissue of origin (e.g., adipose CAV1 in 

CVD network; Figure 1B) to prioritize target cells/tissues, pathways, and genes.

In contrast to hypothesis-driven reductionist approaches that focus on individual molecules 

and pathways in a given cell or tissue, systems biology is data-driven and attend to 

interactions across biomolecules, biological pathways, and networks within and between cell 

types and tissues to detect key features. These two approaches are complementary, rather 
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than conflicting, and both are important tools to tackle complex biological questions. A 

logical order is to use systems biology to provide the global maps and point to important 

features, followed by reductionist approaches to investigate the detailed events.

Where does the field stand?

Over the past decade, major progress has been made to dissect cross-tissue mechanisms 

underlying genetic risks, environmental risks, and gene by environment interactions by 

simultaneously investigating multiple tissues and diverse omics domains (select examples 

for diverse diseases in Table 1). In the main discussion I use examples in the cardiometabolic 

field, CVD and its associated risk factor T2D, as a case-study.

Multi-tissue multi-omics systems biology to understand genetically perturbed gene 
networks.

Despite the enormous success of human GWAS in unraveling tens to hundreds of common 

genetic variants that are associated with human diseases [1], the target genes and pathways 

as well as the tissue/cell context of the disease-associated variants are largely unclear. In one 

of the early applications of multi-tissue multi-omics systems biology [28], 16 human GWAS 

of CVD were integrated with independent tissue-specific transcriptome data and the 

corresponding expression quantitative trait loci (eQTLs) from liver, adipose, blood, and 

vascular endothelial cells, to link genetic variants with potential downstream target genes 

and pathways in individual tissues based on tissue-specific gene regulation. In doing so, this 

single study not only recapitulated essentially all previously known pathways involved in 

CVD pathogenesis such as cholesterol and lipid metabolism, vascular dysfunction, and 

inflammation, but revealed novel pathways such as erythropoietin-mediated neuroprotection 

through NF-κB, cell cycle, cell stress, and spliceosome. Additionally, through the use of 

tissue-specific gene regulation information, the study determined the tissue context of the 

genes and pathways, highlighting the adipose tissue as the most informative among the four 

relevant tissues examined. Moreover, the study used tissue-specific gene regulatory networks 

to pinpoint hub genes that regulate individual disease processes and their interactions, such 

as SQLE and PLG for lipid pathways and PTPRC for immune processes. The integration of 

multi-omics data across tissues helped piece together the genetic puzzle of CVD and 

highlighted key perturbation points governing interacting pathways that could serve as novel 

therapeutic targets. As a step forward, a recent study generated genetic and transcriptomic 

datasets from seven vascular and metabolic tissues across 600 CVD patients, offering the 

scientific community a much richer resource to understand CVD and revealing additional 

tissue-specific CVD targets [29] (details in Box 1).

As T2D is a significant risk factor for CVD, multi-tissue multi-omics systems biology has 

also been applied to investigate the genetically perturbed networks connecting these two 

prevalent cardiometabolic diseases [30]. Here, integration of five multi-ethnic GWAS with 

transcriptome and eQTL data from ~20 tissues identified converging pathways in numerous 

tissues between CVD and T2D across African American, Caucasian, and Hispanic 

populations. The converging pathways included lipid, glucose, and branched-chain amino 

acid metabolism, oxidative phosphorylation, extracellular matrix, immune response, and 
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neuronal processes. Network analysis further prioritized tissue-specific key regulators of 

these shared processes such as CAV1 (adipose) for inflammation, lipid metabolism, and 

vascular functions, and PCOLCE (hypothalamus) for extracellular matrix and energy 

homeostasis (Figure 1B). This unique study comparing two interconnected cardiometabolic 

diseases across multi-ethnic populations highlights shared pathways and regulators that 

could be targeted to treat both diseases in the general population.

The above studies demonstrate the power of utilizing genetic associations in conjunction 

with tissue-specific gene regulation to obtain global views of the genetically perturbed 

networks and pathways in a tissue-specific manner.

Multi-tissue multi-omics systems biology to predict response to environmental exposure 
and to understand the environmentally perturbed gene networks.

Environmental exposures are particularly difficult to dissect in human populations, owing to 

the challenges in accurately quantifying and controlling exposure levels and difficulties in 

obtaining internal human tissues (see Clinician’s Corner). Nevertheless, peripheral samples 

such as blood, urine, and stool samples are readily available and multi-omics studies can be 

pursued to identify peripheral biomarkers predictive of environmental exposures for 

prognostic and diagnostic purposes. Artificial intelligence and machine learning approaches 

are uniquely positioned for efficient biomarker identification. For example, in a landmark 

precision nutrition study, physiological measurements, blood parameters, and gut microbiota 

profiling were used to build a machine learning model of biomarkers that can predict 

glycemic responses (indicative of T2D risks) to various diets more accurately than 

experienced dieticians can achieve [15], thus paving the path for omics-driven personal 

nutrition. Similar efforts from the Integrative Personal Omics Profiles (iPOP) and the 

Pioneer 100 Wellness Project (P100) have also yielded highly predictive dynamic peripheral 

multi-omics biomarkers of CVD, prediabetes, and diabetes, as well as biomarkers reflective 

of environmental influences of viral infection, immunization, and weight gain/loss [31–34]. 

These laudable studies revealed not only concordant dynamic molecular and phenotypic 

responses across study participants, but, more importantly, great inter-individual variability, 

pointing to the need for personalized biomarkers for translational precision medicine.

Compared to human studies, animal models offer unique advantages, such as better control 

of environmental exposure and genetic variables as well as easy access to internal tissues, 

which can go beyond peripheral biomarkers to tackle mechanistic causal insights into the 

tissue-specific network perturbations across organ systems induced by specific 

environmental exposures (Table 1). For instance, a recent multi-tissue multi-omics study was 

carried out to understand whether and how prenatal exposure to Bisphenol A (BPA), a 

prevalent environmental chemical, poses risks to cardiometabolic disorders [35]. Through 

comprehensive examination of both the transcriptome and epigenome of the hypothalamus, 

liver, and adipose tissues in a mouse model, this systems biology investigation revealed 

extensive molecular perturbations in metabolic pathways across tissues as well as tissue-

specific processes such as extracellular matrix in the hypothalamus and histone subunits in 

the adipose tissue. Compared to previous hypothesis-driven research which focused on the 

effects of BPA on specific pathways such as estrogen and PPAR signaling, this multi-tissue 
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multi-omics study uncovered numerous less-studied targets of BPA, such as Cyp51 and long 

noncoding RNAs across tissues, Fasn in both liver and adipose, Hnf4a in liver, Fa2h in 

hypothalamus, and Nfya in adipose tissue. Further integration of the tissue-specific 

molecular alterations with GWAS of >60 human diseases revealed strong enrichment of the 

BPA target genes for association with CVD and T2D. These findings significantly expand 

our knowledge about the selective tissue and molecular sensitivity to BPA and offer 

molecular insights into the mechanisms connecting BPA exposure to cardiometabolic 

diseases. Such animal model investigations can complement human biomarker studies to 

illuminate predictive models that inform on mechanisms, which offer both therapeutic 

targets and prognostic/diagnostic tools to counteract environmental risks of human diseases.

Use of multi-tissue multi-omics systems biology to explore gene-by-environment 
interactions.

Rodent populations with diverse genetic background serve as a powerful model to examine 

how specific genetic makeup interacts with a given environmental exposure to determine 

inter-individual differences in disease risks. As an example, the interactions between a high 

fat high sucrose diet and the host genome have been investigated using >100 inbred and 

recombinant mouse strains, revealing vast differences in cardiometabolic phenotypes across 

mouse strains fed the same diet [12, 13]. By integrating the genomic sequence variants with 

the liver and adipose transcriptome, plasma metabolome, and gut microbiome, these studies 

uncovered numerous genes such as Npc1, Gpl2r, and Klf14 as well as microbial species 

such as Akkermansia and Lactococus as potential determinants of differential susceptibility 

to cardiometabolic dysfunctions in response to high fat high sucrose diet among genetically 

distinct individuals.

The studies outlined above are only a few examples among numerous multi-tissue multi-

omics studies to reveal completely new insights that were not possible by purely hypothesis-

driven approaches (see additional studies in Table 1 and detailed examples in Box 1 and Box 

2). Importantly, subsequent molecular perturbation experiments were carried out in many of 

the studies and novel predictions were substantiated by experimental evidence. The 

prioritized regulators, biomarkers, networks, and tissues that are affected by genetic and 

environmental factors serve as guidance for future development of preventative and 

therapeutic strategies that can be tailored to the specific types of causal risks and pathways. 

In particular, agents that have the capacity to target the central subnetworks and regulators 

are likely to be more effective in counteracting disease pathogenesis in the general 

population, whereas individual-specific molecular alterations may inform on personalized 

strategies for prevention and treatment. The diverse pathways connected in the networks can 

also guide the selection of combinatorial treatment strategies that engage drugs targeting 

different pathways and subnetworks. Once a holistic understanding of disease networks is 

achieved, this type network-based medicine is the critical next step for multi-tissue multi-

omics systems biology [36].
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Current debate and challenges over multi-tissue multi-omics systems 

biology

Despite the accumulating evidence supporting the value and enormous discovery potential of 

multi-tissue multi-omics systems biology and the growing interest in such approaches by the 

scientific community, the field has been under intense debate. Proponents supporting the 

field recognize the importance of global comprehensive views of interactions among 

biomolecules, cells, tissues, and organs, and value its objective and data-driven nature as 

well as the great potential for novel discoveries that do not rely on prior hypotheses. Such 

recognition and acceptance can be reflected in the rising numbers of multi-tissue multi-

omics systems biology publications in high impact journals. The same strengths, however, 

are perceived by critics as “fishing expedition”, exploratory, lack of hypothesis, descriptive, 

overwhelming, and open-ended. Some view the field as a technology-driven hypothesis-

generating tool, rather than an independent research discipline. In turn, data scientists are 

often perceived as supporting analysts or even “research parasites” [37, 38] but not 

independent investigators driving biological discoveries. Other common critiques of multi-

omics systems biology include the perceived lack of mechanistic insights, correlative nature 

of the findings, and an unclear translational path because of the large numbers of new targets 

and hypotheses it usually generates. The harshest criticism among all, is perhaps that “this 

approach is bound to fail” [39].

Given the strong skepticism and criticism, it is not surprising that omics-driven systems 

biology has been facing numerous challenges. To address the common critiques and to 

convince skeptics, robust demonstrations of the values added by systems biology research in 

terms of mechanistic follow-ups and translational successes are required. This is a high bar 

for a relatively new field, however, since it is costly and time-consuming to generate 

multidimensional data, develop tools for data integration, carry out extensive data modeling 

or “the $1000 genome, $100000 analysis” [40], and then conduct validation and functional 

studies. This is in stark contrast with traditional research fields where one starts with a prior 

hypothesis focusing on a gene or protein or a molecular pathway and directly tests the 

hypothesis experimentally, which constitutes only one of the many steps in systems biology 

studies. Additionally, high throughput omics data can also be viewed as less accurate than 

traditional low throughput measures such as qPCR and Western blotting, and hence technical 

validations are often demanded, despite the fact that technical comparison studies support 

that high throughput methods are not any less accurate than traditional methods [41, 42]. 

Overall, peers, collaborators, and reviewers from non-systems biology disciplines tend to 

under-value of the multidimensional datasets and findings that can form watersheds for 

future research, the innovation involved in the design and implementation of 

multidimensional studies and analytical strategies, the higher cost, longer time and effort 

commitment, and the higher standards for systems biologists to complete and publish a 

study. From the translational perspective, multi-tissue multi-omics systems biology studies 

can be difficult to implement in human studies and clinical settings due to the explicit need 

for diverse types of biospecimen (see Clinician’s Corner).
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To further the challenge, funding mechanisms and balanced peer-review systems are lagging 

behind for the type of discovery studies promoted by multi-omics systems biology. Most of 

the regular NIH study sections are in favor of hypothesis-driven research that is considered 

more “mechanistic” and hence more valuable than “exploratory” discovery studies. 

Although systems biology in fact has specific hypotheses, these do not fit the traditional 

definition. Even the very definition of being “mechanistic” is debatable, since different fields 

may have different standards for what qualifies as a mechanistic study. For a biochemist it 

could mean where the exact binding site is for a protein; for a molecular biologist, it could 

mean the linear signaling cascade from biomolecule A to B to C; for systems biologists it 

means which molecules and pathways are interacting in which cells or tissues to perform a 

function and, when perturbed, lead to disease. These are different levels of mechanistic 

insights that are all biologically meaningful and should be broadly recognized and 

appreciated. In my opinion, penalizing holistic data-driven research for not fitting the 

narrow-sense mechanistic definition is harmful to the very mission of science to make 

discoveries and to explore uncharted domains.

Concluding remarks

Despite the numerous challenges outlined above, I see a bright future for multi-tissue multi-

omics systems biology to help accelerate our understanding of complex diseases. We have 

entered a golden age to conduct such research, with numerous cutting-edge high-throughput 

omics technologies and maturing analytical methodologies under our belt. Most 

encouragingly, accumulating evidence substantiates the enormous discovery potential as 

well as the validity and accuracy of the findings from a systems approach. The growing 

acceptance and adaptation of the discipline in basic and clinical research further facilitate the 

maturation of the field, although broader appreciation and support are needed to ensure the 

healthy growth of the field to maximize its impact. In terms of future directions, in addition 

to broadening the applications of multi-tissue multi-omics systems biology to diverse types 

of complex diseases, the field needs to embrace new opportunities to make conceptual and 

technical leaps. There are numerous exciting new directions that the field is uniquely 

positioned to address, particularly with regards to how systems biology can help formulate 

new data-driven hypotheses on novel targets and biomarkers that are tailored to 

individualized disease risks to fill in the gaps towards network-based medicine (see 

Outstanding Questions). With a mission towards unbiased and objective research and with 

an utter respect for data and discovery, I see no boundaries for this field that is in my view 

not bound to fail.
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Glossary

Expression quantitative trait loci (eQTL)
Genetic loci that are associated with the expression levels of a gene transcript. eQTLs are 

indentified by examining the correlation between the genotype at each genetic locus with the 
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copy numbers of an expressed transcript. eQTLs are usually tissue-specific because gene 

expression is regulated in a tissue-specific manner

Genome-wide association studies (GWAS)
A popular and common type of genetic study in human populations to identify genetic 

variants that are associated with increased or decreased risk of a disease

Molecular networks
Comprised of nodes which are indicative of the molecular entities such as genes, proteins, or 

metabolites, and edges that illustrate the connections or links between nodes. Edges can be 

regulatory relations, correlations, physical interactions, or enzymatic and biochemical 

reactions (Figure 2)

Multi-omics
Concerted analyses of various “omics”, or all biological entities participating in the 

functions of a cell, tissue, or organism. Examples of omics domains include the genome (the 

DNA sequence and its variations across individuals), epigenome (chemical modifications 

and structural conformations of the DNA sequence; noncoding RNA molecules), 

transcriptome (the expressed mRNA transcripts from a genome), proteome (all proteins 

translated from gene transcripts as well as various chemical modifications of proteins), 

metabolome (complete set of small molecules and chemicals), and microbiome (microbial 

species inhabiting human body along with their genome information)

Multi-tissue multi-omics systems biology
A research discipline that utilizies modern high throughput multi-omic technologies to 

examine diverse types of biomolecules in multiple tissues simultaneously to generate 

comprehensive global views of molecular interactions within and between tissues

Omnigenic disease model
The model hypothesizes that all genes likely play a role in disease development because of 

their interconnections with other genes. The further away a gene is from an important 

disease gene, the weaker effect it likely has on a disease. However, even weak genes can 

accumulate disease risks over the life span

Polygenic disease model
The model states that more than one gene contribute to disease development

Reductionist approach
The type of research that investigate the effect of individual biological factors, such as genes 

or proteins, one at a time. Typically it involves activating or inhibiting the molecule to 

observe downstream molecular or functional changes
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Box 1.

An additional example of studying genetically perturbed CVD networks.

One of the main challenges in dissecting genetically perturbed disease networks in 

human populations is the difficulty to obtain genetic information (accessible from blood 

or buccal cells) along with molecular profiles of internal tissues (requiring biopsies) 

relevant to a given disease in the same study population. In a breakthrough study, genetic 

and transcriptomic datasets from seven vascular and metabolic tissues (liver, 

subcutaneous adipose, visceral abdominal adipose, skeletal muscle, blood, 

atherosclerotic-lesion-free internal mammary artery, atherosclerotic aortic artery) were 

collected from 600 CVD patients in the Stockholm-Tartu Atherosclerosis Reverse 

Networks Engineering Task (STARNET) study [29]. Compared to other studies that 

utilized omics data from tissue samples lacking specific disease information [28, 30], the 

STARNET study pointed to the important of examining tissues from disease populations, 

as many of the gene regulatory relations were unique in these disease tissues and proven 

more informative for inferring candidate genes for CVD GWAS loci. For instance, 

PCSK9, a known cholesterol regulator important in the liver tissue under physiological 
conditions, was found to be a key network regulator in the adipose tissue in CVD 
patients, thus supporting context-specific gene functions and disease mechanisms. Before 

this study, the role of PCSK9 in CVD was considered to be primarily through the liver 

tissue, and the results from STARNET added adipose tissue as an important action site 

for PCSK9 in CVD pathogenesis. The importance of the adipose tissue as a central 

regulator of CVD risks in STARNET is in agreement with the conclusions from other 

independent studies utilizing non-disease tissues discussed in the main text [28, 30]. 

However, the unique insights revealed through tissues from a disease population that 

cannot be retrieved from non-disease-specific individuals emphasize the need for tissue 

biopsies in clinical studies.
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Box 2.

Additional examples of multi-tissue multi-omics systems biology studies of 
environmental factors.

High fructose consumption has emerged as a significant risk for cardiometabolic 

diseases, while DHA, an omega-3 fatty acid, has been associated with beneficial effects. 

To understand the molecular mechanisms underlying these contrasting dietary effects, a 

recent study interrogated the global transcriptome and epigenome of two brain regions of 

a rat model – hypothalamus which is the control center of appetite and metabolism, and 

hippocampus which is important for cognitive and feeding behavior [43]. This multi-

tissue multi-omics study uncovered broad impact of long-term high fructose consumption 

on numerous tissue-specific and cross-tissue processes ranging from metabolic and 

immune pathways to neuronal processes and extracellular matrix organization, and 

predicted extracellular matrix genes such as Bgn and Fmod as key mediators of the 

fructose effects on brain gene networks. Further integration of the rat multi-omics data 

with human GWAS studies of a broad spectrum of diseases supports that the genes and 

pathways affected by fructose are significantly enriched for genes involved in human 

cardiometabolic disorders. Interestingly, dietary supplement with DHA, an omega-3 fatty 

acid, was found to reverse fructose-perturbed pathways and networks in both brain 

tissues. This study examining two diets, two brain regions, and both the transcriptome 

and epigenome provides unique insights into the converging CNS networks involved in 

cardiometabolic diseases that are modulated by two opposing diets, suggesting the 

promise of using diets to modify disease networks.

Although not a multi-tissue study, another carefully designed multi-omics systems study 

serves as an excellent example to uncover novel insights of gene-by-diet interactions for 

cardiometabolic disorders that could not be retrieved by any individual layer of omics 

data [44]. This study examined the genome as well as the liver transcriptome, 

metabolome, and proteome from 80 mouse strains with different genetic composition 

under a chow diet or a high fat diet condition. Their key finding regarding the gene-by-

environmental impact on mitochondria function in cardiometabolic diseases was revealed 

by signals across different omics domains, such as the link between protein D2HGDH 

and metabolite D-2-hydroxyglutarate, the BCKDHA protein connecting to the gene 

Bckdhb, and the association between protein COX7A2L and the mitochondrial 

supercomplex assembly. Therefore, broadening the coverage of multi-omics domains can 

better piece together the cascades of molecular events that execute key metabolic 

functions that determine gene-by-environment interactions.
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Clinician’s Corner

• Complex diseases manifest as subtypes determined by unique genetic makup 

and environmental exposures, making the one-size-fit-all approaches to 

diagnosis and therapy less optimal for individual patients.

• Comprehensive maps of tissues and molecular entities influenced by different 

risk factors offer insights into the determinants or markers of health or disease 

to guide more accurate and individualized diagnosis and treatment strategies.

• Multi-tissue multi-omics systems biology has emerged as a powerful research 

discipline that fully leverages modern technologies and big data analytics to 

deconvolute the molecular interactions across tissues to dissect disease 

complexity.

• Implementation of multi-tissue multi-omics systems biology in clinical 

settings remains challenging due to the need for collection of diverse types of 

biospecimen. However, it is essential to push for such efforts to gradually 

close the gap in translational medicine.
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Outstanding Questions

• What is the systems impact of the exposome? Given the limited advances in 

our understanding of environmental exposures and gene-by-environment 

interactions in disease pathogenesis, coordinated efforts to construct multi-

tissue multi-omics data repositories and knowledgebases for nutrients/diets, 

environmental pollutants, toxins, drugs, pathogens, and physical activities are 

warranted to better control these modifiable health factors.

• Do genetically and environmentally perturbed networks converge or diverge? 

Detailed partitioning and comparison of networks affected by genetic risks 

and environmental risks are required to guide disease subtyping and 

personalized medicine.

• Do complex diseases interconnect through multi-tissue networks? Growing 

epidemiological evidence points to comorbidity of multiple disease conditions 

(e.g., metabolic and immune influences on brain functions). Multi-tissue 

multi-omics systems biology has the unique power to offer deeper insights 

into interdisease connections to guide strategies that normalize networks 

linking to multiple diseases.

• What are the vulnerable cell types and cell-cell interactions in complex 

diseases? With the advent and maturation of single cell multi-omics 

technologies, a shift from tissue-based studies to higher resolution cellular 

studies is needed and attainable.

• How can we use molecular networks to guide drug discovery and network 

medicine? The field should fully utilize the comprehensive cross-tissue 

molecular network models to prioritize targets and formulate novel 

hypotheses to guide preclinical and clinical studies.

• What are the similarities and differences in disease networks between human 

and model organisms? The lack of cross-species comparative studies has been 

a limiting factor for translational successes in drug discovery. Multi-species 

studies are warranted to improve our understanding of between-species 

disparities to guide translational studies.
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Highlights

• Recent advances in omics technologies have enpowered multi-tissue multi-

omics systems biology, a descipline that aims to dissect the multidimensional 

complexities of human diseases.

• Studies integrating large-scale genetic associations with other omics have 

resolved tissue-specific molecular networks and pathways perturbed by 

genetic risks of diseases.

• Systematic investigation of multi-omic domains across tissues in response to 

environmental exposure such as diet, chemicals, and pathoges has revealed 

fresh insights into the target tissues, genes, and molecular networks 

underlying environmental risks of diseases.

• The holistic within- and between-tissue networks of diseases unraveled by 

systems biology offer comprehensive mechanistic insights and help formulate 

data-driven hypotheses to guide network-based medicine targeting specific 

tissues, genes, and pathways tailored to specific risks.

Yang Page 17

Trends Mol Med. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. The concept, framework, and an example of multi-tissue multi-omics systems biology 
of complex diseases.
A) Complex diseases are the result of causal risks that affect tissue functions by perturbing 

multi-omics molecular entities which interact in tissue-specific gene networks. Multi-tissue 

multi-omics systems biology aims to identify the gene subnetworks in multiple tissues 

(depicted in dotted circles) relevant to a particular complex disease that are influenced by 

genetic and/or environmental risks. A molecular network is comprised of nodes representing 

molecular entities such as genes or proteins and edges that connect the nodes. Network hubs 

(red nodes) have more connections than peripheral nodes (white nodes) and likely play more 
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important roles in disease etiology. B) Cross-tissue gene networks shared by CVD and T2D. 

GWAS candidate genes of various cardiometabolic diseases are network nodes indicated 

with different colors. Key driver or hub genes are large nodes. Edge color denotes tissue 

origin of the network connections between nodes. Figure is obtained from Shu et al. [30] 

under open access agreement and author permission.
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Figure 2. Main types of molecular networks.
A) Protein-protein interaction networks. B) Gene regulatory networks. C) Gene 

coexpression networks. D) Metabolic networks. E) Hybrid networks based on various 

interaction types. F) Hybrid networks based on correlations.
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Table 1.

Examples of multi-tissue multiomics studies of molecular networks affected by genetic, environment, and 

gene-by-environment interactions for complex diseases.

Category Complex disease/trait Species Tissue/cell types Omics layers References

Genetic centric CVD Human Vascular endothelial cells, 
liver, adipose, blood

GWAS, transcriptome, eQTLs [28]

CVD, cardiometabolic 
disease

Human 6 vascular and metabolic 
tissues, blood

GWAS, transcriptome, eQTLs [29]

CVD Human 6 vascular and metablic GWAS, transcriptome, eQTLs [45]

CVD, T2D Human ~20 tissues GWAS, transcriptome, eQTLs [30]

Nonalcoholic fatty liver 
disease (NAFLD)

Mouse Liver, adipose GWAS, transcriptome, eQTLs [46]

NAFLD (sexual 
dimorphism)

Mouse Liver, adipose GWAS, transcriptome, eQTLs [47]

Psoriasis Human Blood, skin GWAS, EWAS, TWAS, 
eQTLs

[48]

Alzheimer’s disease Human Prefrontal cortex, visual 
cortex, cerebellum

GWAS, transcriptome, eQTL [49]

Lipid metabolism Mouse Plasma, liver Genetics, proteomics, 
lipidomics

[50]

Hypertension Human >40 tissues GWAS, transcriptome, eQTL [51]

Psychiatric diseases Human Prefrontal cortex, temporal 
cortex, cerebellum

Bulk and single cell 
transcriptome Epigenome (Hi-
C, ATAC-seq) Transcription 
factor binding (ChIP-seq)

[52]

Environment-centric Cardiometabolic 
(Bisphenol A)

Mouse Hypothalamus, liver, 
adipose

Transcriptome, DNA 
methylome, human GWAS

[35]

Cardiometabolic 
(Fructose)

Rat Hypothalamus, 
hippocampus

Transcriptome, DNA 
methylome, human GWAS

[43]

Prediabetes (viral 
infection, immunization, 
antibiotic)

Human Plasma, serum, PBMC, 
stool, nares

Transcriptome, proteome, 
cytokines, metabolome, 
microbiome

[33]

Cardiometabolic (weight 
gain, weight loss)

Human Plasma, serum, PBMC, 
stool

Transcriptome, proteome, 
cytokines, metabolome, 
microbiome

[34]

Traumatic brain injury Mouse Hippocampus, blood Transcriptome, DNA 
methylome, human GWAS

[53]

Gene by 
environment 
interactions

Obesity (high fat high 
sucrose diet)

Mouse Adipose, plasma GWAS, transcriptome, 
metabolome, microbiome

[12]

Insulin resistance (high fat 
high sucrose diet)

Mouse Liver, adipose GWAS, transcriptome [13]

Cardiometabolic (high 
fructose diet)

Mouse Liver, adipose, 
hypothalamus, fecal/cecal 
samples

Transcriptome, gut 
microbiome

[16, 54]

Other Multiple Human Saliva, stool, urine Genome, metabolomes, 
proteomes, microbiomes

[31]

Diabetes, CVD Human Plasma, PBMC, stool Genome, transcriptome, 
proteome, immunome, 
metabolome, microbiome

[32]

Insulin resistance Human Hepatocytes, myocytes, 
adipocytes, liver, adipose

DNAase-seq, ChIP-seq, 
Transcriptome

[55]
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Category Complex disease/trait Species Tissue/cell types Omics layers References

NAFLD, hepatocellular 
carcinoma

Human 46 tissues, with a focus on 
liver, adipose, and muscle

Transcriptome, Transcription 
factor biding, protein-protein 
interactions, metabolic 
reactions

[56]

Trends Mol Med. Author manuscript; available in PMC 2021 August 01.


	Abstract
	Why multi-tissue multi-omics systems biology?
	Basic concepts and approaches for multi-tissue multi-omics systems biology
	Where does the field stand?
	Multi-tissue multi-omics systems biology to understand genetically perturbed gene networks.
	Multi-tissue multi-omics systems biology to predict response to environmental exposure and to understand the environmentally perturbed gene networks.
	Use of multi-tissue multi-omics systems biology to explore gene-by-environment interactions.

	Current debate and challenges over multi-tissue multi-omics systems biology
	Concluding remarks
	References
	Figure 1.
	Figure 2.
	Table 1.



