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ABSTRACT OF THE DISSERTATION

Channel Estimation Methods by Using Prebeamforming Technique in Massive MIMO

By

Sadjad Sedighi

Master of Science in Electrical Engineering

University of California, Irvine, 2017

Professor Ender Ayanoglu, Chair

The number of connected wireless devices is anticipated to increase heavily in the next few

years. Thus, there is a need for a new system which is able to handle billions of wireless

devices. The category of massive multiple input multiple output (MIMO) systems is a great

candidate for this purpose. Because of the large number of antennas in massive MIMO there

is a need to reduce the dimension of the MIMO channel effectively to decrease the complexity.

This could be achieved by using a particular prebeamforming technique that is introduced

recently. An important aspect of wireless communication systems is the channel state infor-

mation (CSI). In order to send and receive data through the channel, the transmitter and

the receiver must know the CSI or at least have an estimation for it. In this thesis, different

algorithms for estimating the channel vector coefficient and their performance are studied.

Different approaches are used in order to find the best algorithm based on the performance

of the estimating channel and the complexity of the algorithm. Also, algorithms are used to

estimate the channel vector coefficient for different channel models.

xii



Chapter 1

Introduction

1.1 Why 5G?

In the past few years there has been a lot of discussion and interest about the next generation

of mobile systems (5G) and what it should be. The new generation should not just be a

better version of 4G, but it should have new features which 4G does not possess. Indeed,

5G will need to be a paradigm shift that includes very high carrier frequencies with massive

bandwidths, extreme base station and user device densities, and unprecedented numbers of

antennas [1]. According to the annual Visual Network Index (VNI) reports released by Cisco

Systems, Inc, there is quantitative evidence that the wireless data explosion is real and will

continue. Driven largely by smartphones, tablets, and video streaming, the most recent (Jun.

2016) VNI report and traffic forecast [2] makes the projection that the annual global IP traffic

will surpass the zettabyte (ZB) threshold in 2016, and will reach 2.3 ZB by 2020. Currently

video is the main part of this data deluge (and it is anticipated that 82% of all IP traffic

will be video by 2020), but new applications are expected to use a higher amount of data in

the near future. Also, the number of users and devices will potentially grow exponentially

1



in the coming years which could reach more than tens of billions by 2020. In addition to

highly visible demand for ever more network capacity, there are a number of other factors

that make 5G more interesting, including the potentially disruptive move to millimeter wave

(mm wave) spectrum, new market driven ways of allocating and re-allocating bandwidth,

a major ongoing virtualization on the core network that might progressively spread to the

edges, and the possibility of an “Internet of Things” comprised of billions of miscellaneous

devices. We can comment that there will be “big three” 5G technologies: ultra-densification,

mm wave, and massive MIMO. The first two are out of scope of this work and we will

concentrate on only the massive MIMO part.

1.2 Massive MIMO

Stemming from research that blossomed in the late 1990s [3], [4], MIMO communication was

introduced into Wi-Fi systems around 2006 and into 3G cellular shortly thereafter. Well-

established by the time 4G standard LTE was developed, MIMO was quickly incorporated

with two-to-four antennas per mobile device and as many as eight per base station (BS)

sector, and it appeared that, because of form factors and other apparent limitations, this

was expected to be the extent to which MIMO could be leveraged. Marzetta was instrumental

in articulating a vision in which the number of antennas increased by more than an order

of magnitude, first in a 2007 presentation [5] with the details formalized in a landmark

paper [6]. The proposal was to equip BSs with a number of antennas much larger than the

number of active users per time-frequency signaling resource. Given that under reasonable

time-frequency selectivities, accurate channel estimation can be conducted for at most some

tens of users per resource, the fact that this condition puts the number of antennas per BS

into hundreds is somewhat surprising. This bold idea was initially termed “massive antenna

systems” but now more popularly known as “massive MIMO.”
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Since the number of antennas at a BS is typically assumed to be significantly larger than

the number of users, a large number of degrees of freedom are available and can be used to

shape the transmitted signals in a hardware-friendly way or to null interference [7]. In order

to make such a system practical, algorithms for massive MIMO systems are required to keep

the complexity low.

Another advantage of massive MIMO lies in its potential energy efficiency compared to a

corresponding single antenna system. Is is shown in [8] that each single-antenna user in a

massive MIMO system can scale down its transmit power proportionally to the number of

antennas at the BS with perfect CSI or to the square root of the number of BS antennas with

imperfect CSI, to get the same performances as a corresponding single-input single output

(SISO) system.

Commercial use for the massive MIMO systems is anticipated to be available in the coming

years to respond to a huge increase in the number of devices connected to the Internet

[9, 10]. There is a need to increase the capacity and data rate (e.g., 1000 times faster) to

meet the desired system [1, 9]. One of the massive MIMO advantages is its energy efficiency.

The power consumption at the BS can be scaled down by the proportion of the number

of antennas in the BS (with perfect CSI). As we can see, CSI have an important role in

the energy efficiency. Also, to emphasize the benefits with large gains in spectral efficiency

instantaneous CSI is inevitable [11].

As mentioned in [11], CSI could be obtained by periodically inserted pilot signals. So the pilot

overhead which is used by the training data is proportional to the number of BS antennas

for downlink training and to the number of active users in the system for uplink training[12].

We assume instantaneous CSI at the BS can be acquired by means of uplink training in time

division duplex (TDD) mode, where the uplink pilots provide the BS with downlink as well

as uplink channel estimates simultaneously via leveraging channel reciprocity [11, 12, 18].

Some of limiting factors for the accurate channel acquisition especially in high mobility are
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the working with the high dimensional signals, the pilot interference and the pilot over-

head. Also, in the case when signal-to-noise ration (SNR) before prebeamforming is very

small, the pilot overhead will be large. So for supporting longer outdoor links directional

precoding/beamforming is inevitable [13, 14].

1.3 Aim and Outline

The main contributions of the thesis are summarized as follows. First a model for channel

state update is proposed based on a general framework on reduced dimensional channel state

information (CSI) [18]. According to the new model for channel coefficient vector update

three different methods are introduced for estimating the channel. Then by simulating

the channel for different cases, the minimum square error (MSE) and capacity for each

method is computed. Comparing these methods from different aspects such as complexity

and performance is the next step of the thesis. Also, three different algorithms are studied in

two new channel models. Then by comparing the results, the best performance is identified

by means of simulations.
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Chapter 2

System Model

2.1 Model

We consider a massive MIMO system in which an N -antennas BS communicates with K

single-antenna UTs, operating at mm wave bands in the TDD mode employing SC modula-

tion. User are categorized into G different groups, where Kg is the number of users in group

g. These users have statistically independent but identically distributed (i.i.d.) channel

[15, 16, 18], and transmit training sequence with length T at the beginning of every coherent

interval.

We assume a linear modulation (e.g., QAM or PSK) and transmission over a frequency

selective channel for all UTs with a slow evolution in time relative to the signaling inter-

val (symbol duration). Assuming these conditions, the baseband equivalent received signal

samples, taken at symbol rate (W) after pulse matched filtering, are expressed as [18]

yn =

Kg∑
{k=1,gk∈Ωg}

Lg−1∑
l=0

h
(gk)
l x

(gk)
n−l︸ ︷︷ ︸

Intra-Group Signal

+
∑

{∀g′k∈Ωg′ |g′ 6=g}

( Kg′∑
k=1

Lg′−1∑
l=0

h
(g′k)

l x
(g′k)

n−l

)
+ nn︸ ︷︷ ︸

η
(g)
n :Inter-Group Interference + AWGN

(2.1)
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for n = 0, ..., T − 1, where {x(gk)
n : −Lg + 1 ≤ n ≤ T − 1} are the training symbols for the kth

user in group g and h
(gk)
l is the N × 1 multi-path channel vector, namely, the array impulse

response of the serving BS stemming from the lth multi-path component (MPC) of kth user

in group g.

Also Ωg is the set of all UTs belonging to group g with cardinality |Ωg| = Kg, Lg is the

channel memory of group g multi-path channels, and {gk}Kgk=1 are UT indices which form Ωg.

We select the training symbols from a signal constellation S ∈ C and E{|x(gk)
n |2} is set to Es

for all gk [18].

In (2.1), nn are the additive white Gaussian noise (AWGN) vectors during uplink pilot

segment with spatially i.i.d. as CN (0, N0IN), and N0 is the noise power.

The first term of (2.1) is the transmitted signal of the intended group g, which is labeled as

the intra-group signal of group g users. The second term, η(g)
n , is labeled as the inter-group

interference, includes of all the interfering signals, which stem from all inner or outer cell

users belonging to different groups other than g.

Finally, the average received SNR can be defined as SNR , Es
N0

. We assume users come

in groups, either by nature or by the application of the proper user grouping algorithms in

[16, 22], which are out of scope of this work.

In [18], the training matrix (or the convolution matrix), comprising of the transmitted pilots

with the precursors for kth user in group g is defined as X
(g)
k = [x

(gk)
i−j ] and the complete

training matrix that consists of the training data of all users in group g during the signaling

interval T is given by

X(g) , [X
(g)
1 X

(g)
2 ... X

(g)
Kg

]. (2.2)

At the the pre-beamforming stage, a DT -dimensional space-time vector y(g) can be formed

based on (2.1) for all intra-cell groups by a linear transformation through a matrix
(
Υ

(g)
S

)H
,
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(
IT ⊗ [S

(g)
D ]H

)
as

y(g) =
(
Υ

(g)
S

)H
y = (X(g) ⊗ [S

(g)
D ]H)h(g) +

(
Υ

(g)
S

)H
ξ =

(
Ψ(g)

)H
h(g) + η (2.3)

where S
(g)
D is an N ×D statistical prebeamforming matrix that projects the N -dimensional

received signal D samples {yn}T−1
n=0 in (2.1) onto a suitable D-dimensional subspace in spatial

domain and η is the intergroup interference after beamforming. The details can be found in

[18].

We assume that the channel is block-fading and that the channel remains constant during the

l-th block. The channel temporal variation across the blocks is modeled using a state-space

framework as a first-order stationary Gauss-Markov process [25] with

hn =
√
αhn−1 +

√
1− αbn (2.4)

where α ∈ (0, 1] is the temporal fading coefficient and bn ∼ CN (0,Rh) is the process noise.

The channel spatial correlation is given by

Rh = E{hlhHl } = αRh + (1− α)Rb (2.5)

where Rb is easily calculated as Rb = E[bnb
H
n ] = Rh

Based on these assumptions we develop algorithms to estimate the channel with the pre-

beamforming technique and then by simulating the algorithms, we can find the optimum

D, which can be different for different methods. In the remaining chapters, the emphasis is

on deriving efficient ways to estimate the channel and then by using different tools, we will

provide the minimum beamspace dimension (D) required for the dimension reduction. This

dimension could be small.
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Chapter 3

A Kalman Filter Implementation of the

Reduced-Rank MMSE Estimator

We will begin with a description of the standard Kalman filter which is also known as linear

quadratic estimation (LQE), specified with respect to the model described in (2.4). This

algorithm uses observed data and measurements over time containing noise and based on

these data it tries to produce estimates of unknown variables. The Kalman filter is a recursive

estimator which means that only the estimated state from the previous time step and the

current measurement are needed to compute the estimate for the current state. This is a

good property of the algorithm but the main drawback of this algorithm is its complexity

which is caused by matrix inversion. We also assume that the beamforming block is to input

our signal. For simplicity we will neglect the subscript g in the following. The assumption

which users are in group g is still present. Our goal is to find a dimension reduction of

the estimator. The dimension for a MIMO system with N antennas is N , where N can be

very large (∼ 100). We want to reduce this dimensionality to D where D is small enough

to decrease the computational cost of calculations. In some cases D could be very small

(D = 1, 2).
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3.1 Algorithm

By using (2.4) one can write the Kalman filter model, using the standard derivation as

follows.

Initialization

ĥ0|−1 = 0 and P0|−1 = Rh (3.1)

Prediction

A priori State Estimate: ĥn|n−1 =
√
αĥn−1|n−1 (3.2)

A priori Estimate Covariance: Pn|n−1 = αPn−1|n−1 + (1− α)Rη (3.3)

Update

Innovation: zn = yn − (XH
n ⊗ SHD)ĥn−1|n−1 (3.4)

= yn −ΨH
n ĥn−1|n−1

Innovation Covariance: Sn = ΨH
n Pn|n−1Ψn + SHDRηSD (3.5)

Kalman Gain: Kn = Pn|n−1ΨnS
−1
n (3.6)

A Posteriori State Estimate: ĥn|n = ĥn|n−1 + Knzn (3.7)

A Posteriori Estimate Covariance: Pn|n = (I−KnΨn)Pn|n−1 (3.8)

where Xn is the nth row of the training matrix X

9



3.2 Simulation Results

Based on the proposed system model and algorithm in chapter 2 and this chapter, we provide

numerical results to evaluate the performance of the Kalman filtering. In the preparation of

the results reported below, the following parameter setting were used. We consider a massive

MIMO system in TDD mode with one BS and K users where each user has a single receive

antenna. By using the uplink training, we try to estimate the channel coefficient vector.

Also, the BS is equipped with a uniform linear array (ULA) of N = 100 antenna elements

along y-axis. For grouping the users, they were clustered into eight different groups (G = 8).

The location of each UT is at a specific azimuth angle θ along the ring centered at the origin

in the x − y plane. For grouping users one can use the proper user grouping algorithms in

[16, 22]. In this work, we assume that users come in groups.

In the simulations, we assume that each of the 8 groups has 3 MPCs, i.e., Lgi = 3. We only

focus on the group g, which have two users serve simultaneously, i.e. Kg = 2. Other 7 groups

consists of 3 users, i.e., Kg′ = 3, g′ 6= g where these users have interference with the intended

group g. Also the first two MPCs of the group g stem from an azimuth angular sector [−1◦, 1◦]

for delays at l = 0, 1. For the last MPC at l = 2 in group g, the angular sector is [5◦, 7◦]

in azimuth. The angular sector for other 7 groups are given by [−29◦,−26◦], [−21◦,−19◦],

[−12◦,−9◦], [−5.5◦,−3.5◦], [9.5◦, 12.5◦], [15◦, 17◦], [24◦, 27◦] in azimuth respectively [18]. Also

the noise power is set as N0 = 1 so that all dB power values are relative to 1. The channel

covariance matrix of each group can be calculated via same ways used in [15, 17].

For calculating the minimum square error (MSE), we used the 2-norm definition for each

dimension

en = ||hn − ĥn||2 n = 1, 2, ..., T (3.9)
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In the following figures the result of the simulations are presented. First set of figures (3.1-

3.5) are generated for SNRin = 30 dB. SNRin = 3 dB is used in the second set (3.6-3.10).

And for the last set of figures (3.11-3.15), SNRin = 0 dB is used. As can be seen through

Figure 3.1-3.4, 3.6-3.9 and 3.11-3.14 the MSE increases when we increase the dimension, but

at some point, usually when n > 50 for SNRin = 30 dB, n > 300 for SNRin = 3 and n > 400

for SNRin = 3, the MSE value saturates. It is obvious that Increasing the input SNR leads

to shorter saturation time. In these figures, the input SNR and the beamspace dimension is

constant (D = 8) and in each figure, the temporal fading coefficient (α) changes. There is

gap between the curves for beamspace dimension of one and other dimensions. The gap is

increasing by increasing the value of α in both set of figures for different input SNRs. The

important figures here are Figure 3.5, 3.10 and 3.15, which represent the MSE with respect

to beamspace dimension. It is obvious that by increasing the channel coefficient from totally

random (α = 0) to a static channel which does not change with time (α = 1) the performance

of the Kalman filter should change. In the random case, as expected the performance is bad.

The static channel has the best performance of estimating the channel. In these figures the

final value of MSE is the mean of last 50 elements of error vector.
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Figure 3.1: MSE for different values of beamspace dimension (Dim) with Kalman filtering
(α = 0.99 and SNRin = 30 dB)
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Figure 3.2: MSE for different values of beamspace dimension (Dim) with Kalman filtering
(α = 0.999 and SNRin = 30 dB)
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Figure 3.3: MSE for different values of beamspace dimension (Dim) with Kalman filtering
(α = 0.9999 and SNRin = 30 dB)
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Figure 3.4: MSE for different values of fading correlation coefficient α with Kalman filtering
(Dim = 8 and SNRin = 30 dB)
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Figure 3.5: MSE for different values of fading correlation coefficient α with Kalman filtering
(SNRin = 30 dB)
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Figure 3.6: MSE for different values of beamspace dimension (Dim) with Kalman filtering
(α = 0.99 and SNRin = 3 dB)
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Figure 3.7: MSE for different values of beamspace dimension (Dim) with Kalman filtering
(α = 0.999 and SNRin = 3 dB)
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Figure 3.8: MSE for different values of beamspace dimension (Dim) with Kalman filtering
(α = 0.9999 and SNRin = 3 dB)
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Figure 3.9: MSE for different values of fading correlation coefficient α with Kalman filtering
(Dim = 8 and SNRin = 3 dB)
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Figure 3.10: MSE for different values of fading correlation coefficient α with Kalman filtering
(SNRin = 3 dB)
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Figure 3.11: MSE for different values of beamspace dimension (Dim) with Kalman filtering
(α = 0.99 and SNRin = 0 dB)
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Figure 3.12: MSE for different values of beamspace dimension (Dim) with Kalman filtering
(α = 0.999 and SNRin = 0 dB)
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Figure 3.13: MSE for different values of beamspace dimension (Dim) with Kalman filtering
(α = 0.9999 and SNRin = 0 dB)
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Figure 3.14: MSE for different values of fading correlation coefficient α with Kalman filtering
(Dim = 8 and SNRin = 0 dB)
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Figure 3.15: MSE for different values of fading correlation coefficient α with Kalman filtering
(SNRin = 0 dB)
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Chapter 4

LMS Algorithm for Channel Estimation

We have another tool for estimating the channel. We can use the well-known Least Mean

Square (LMS) algorithm. LMS is an adaptive filter which is used to find a desired filter by

computing the filter coefficients that relate to producing the least mean square of the error

signal (difference between the desired and the actual signal).

4.1 Deriving the Algorithm

However, the conventional LMS algorithm needs to be altered considering the subspace

reduction, we define Jn as the cost function which we want to minimize over hn:

arg min
hn

Jn = E{||en||2} = E{||yn −ΨH
n hn||2} (4.1)

By using the general form of LMS algorithm which is

ĥn = ĥn−1 − µ∇hHn
Jn (4.2)
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one can easily calculate the minimum of cost function by using two above equations. In the

calculation, we assume that ĥn ≈ ĥn−1

ĥn = ĥn−1 − µ∇hHn
Jn = ĥn−1 − µ∇hHn

[(yHn − hHn Ψn)(yn −ΨH
n hn)]

= ĥn−1 − µ(−Ψn)(yn −ΨH
n ĥn−1) = ĥn−1 + µΨn(yn −ΨH

n ĥn−1)

= ĥn−1 + µΨnen (4.3)

where en = yn −ΨH
n ĥn−1.

Note that in this derivation we removed the expectation operator. This is because of em-

ploying the “stochastic gradient” in deriving the LMS algorithm.

The main difference between the LMS algorithm and Kalman filter is that in Kalman filter

there is matrix inversion. But in the LMS algorithm there is no need for this procedure and

because of this, the LMS algorithm performs much faster than the Kalman filter.

4.2 Simulation Results

By using the setting in section 3.2, we simulated channel estimation via the LMS Algorithm

and plotted the MSE with respect to time and beamspace dimension. Also, the channel

fading correlation coefficient α was altered to figure out how the LMS behavior changes

when it changes.

In Figure 4.1-4.3, the MSE for different values of beamspace dimension is plotted for SNRin =

30 dB. Figure 4.7-4.9 and 4.13-4.15 show the MSE for LMS algorithm for SNRin = 3dB and

SNRin = 3dB, respectively. The best performance is for when the beamspace dimension is

one and by increasing the dimension, the performance gets worse. Furthermore, after about

40 iterations, the algorithm converges to its final value in case SNRin = 30dB. On the other
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hand, the convergence time is around 250 iterations in Figure 4.7-4.9 and 4.13-4.15. In these

figures, the time window increased, because of late convergence time of the LMS algorithm.

The optimum value for the µ varies when the input SNR changes. Figure 4.6 shows the

different values for MSE with respect to µ. In Figure 4.4, 4.10 and 4.16 the performance
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Figure 4.1: MSE for different values of beamspace dimension (Dim) with the LMS algorithm
(α = 0.99, µ = 0.1 and SNRin = 30 dB)

of the LMS algorithm gets better when the channel fading correlation coefficient α increases

which is obvious because by increasing α the channel is more robust and so the algorithm

can estimate the channel coefficient better.

Figure 4.5, 4.11 and 4.17 shows that the best performance for the LMS algorithm is when

the channel is static which means α = 1. In this case the channel state does not change with

time and because of this, the noise coefficient in (2.4) becomes zero. This leads to the best

performance of the LMS algorithm. Also, as can be seen in this figure, after some beamspace

dimension, the MSE converges. This means that there is no need to increase the beamspace

dimension after some point. However the best performance is when Dim=1. In this figure

the final value of MSE is the mean of last 50 elements of error vector.
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Figure 4.2: MSE for different values of beamspace dimension (Dim) with the LMS algorithm
(α = 0.999, µ = 0.1 and SNRin = 30 dB)
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Figure 4.3: MSE for different values of beamspace dimension (Dim) with the LMS algorithm
(α = 0.9999, µ = 0.1 and SNRin = 30 dB)
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Figure 4.4: MSE for different values of fading correlation coefficient α with the LMS algo-
rithm (µ = 0.1, Dim= 8 and SNRin = 30 dB)
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Figure 4.5: MSE for different values of fading correlation coefficient α with the LMS algo-
rithm (µ = 0.1 and SNRin = 30 dB)
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Figure 4.6: MSE for different values of µ with the LMS algorithm (α = 0.9999 and SNRin = 3
dB)
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Figure 4.7: MSE for different values of beamspace dimension (Dim) with the LMS algorithm
(α = 0.99, µ = 0.01 and SNRin = 3 dB)
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Figure 4.8: MSE for different values of beamspace dimension (Dim) with the LMS algorithm
(α = 0.999, µ = 0.01 and SNRin = 3 dB)

0 100 200 300 400 500 600 700 800 900 1000

Time

10
-2

10
-1

10
0

10
1

M
S

E

Dim=1

Dim=8

Dim=20

Dim=50

Dim=100

Figure 4.9: MSE for different values of beamspace dimension (Dim) with the LMS algorithm
(α = 0.9999, µ = 0.01 and SNRin = 3 dB)
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Figure 4.10: MSE for different values of fading correlation coefficient α with the LMS algo-
rithm (µ = 0.01, Dim= 8 and SNRin = 3 dB)
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Figure 4.11: MSE for different values of fading correlation coefficient α with the LMS algo-
rithm (µ = 0.1 and SNRin = 3 dB)

27



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

µ

10
0

M
S

E

Figure 4.12: MSE for different values of µ with the LMS algorithm (α = 0.9999, SNRin = 0
dB and Dim=8)
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Figure 4.13: MSE for different values of beamspace dimension (Dim) with the LMS algorithm
(α = 0.99, µ = 0.01 and SNRin = 0 dB )
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Figure 4.14: MSE for different values of beamspace dimension (Dim) with the LMS algorithm
(α = 0.999, µ = 0.01 and SNRin = 0 dB)
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Figure 4.15: MSE for different values of beamspace dimension (Dim) with the LMS algorithm
(α = 0.9999, µ = 0.01 and SNRin = 0 dB)
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Figure 4.16: MSE for different values of fading correlation coefficient α with the LMS algo-
rithm (µ = 0.01, Dim= 8 and SNRin = 0 dB)
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Figure 4.17: MSE for different values of fading correlation coefficient α with the LMS algo-
rithm (µ = 0.1 and SNRin = 0 dB)
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Chapter 5

RLS Algorithm for Channel Estimation

We will now consider channel estimation techniques for multiuser massive MIMO systems

and employ the signal models of Chapter 2. In this section, the RLS estimator is presented.

RLS algorithm recursively finds the coefficients that minimize a weighted linear least squares

cost function relating to the input signals. This is in contrast to other algorithms the LMS

that aim to reduce the mean square error where the mean calculation is in a statistical sense.

Whereas, RLS employs time averages. The channel estimates are updated recursively upon

receiving new training symbols. The channel estimation problem corresponds to solving the

following least-squares (LS) optimization problem:

ĥn,eff = arg min
hn,eff

(
n∑
i=0

λn−i‖yi −BH
i ĥn,eff‖2) (5.1)

where ĥn,eff is the 1 × KgLgD effective channel vector coefficients at time n, or it is the

reduced rank channel vector and is calculated by

ĥn,eff = (IKgLg ⊗ SHD)ĥn. (5.2)
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The parameter λ is a forgetting factor chosen between 0 and 1 and gives exponentially less

weight to older error samples.

By using the training matrix in (2.2), BH
n is defined

BH
n = (XH

n ⊗ ID) (5.3)

where Xn is the nth row of training matrix X in (2.2) and its size is KgLg× 1. This problem

can be solved by computing the gradient terms of (5.1), equating them to a zero matrix and

manipulating the terms which yields our solution.

5.1 Formulation

We rewrite (5.1) as

Jn =
n∑
i=0

λn−i‖ei‖2

where

yi = (XH
i ⊗ SHD)hi + ηi = ΨH

i hi + ηi

ei = yi −BH
i ĥn

By computing the gradient we have

∇ĥHn
Jn = ∇ĥHn

(
n∑
i=0

λn−i‖ei‖2) = ∇ĥHn
(
n∑
i=0

λn−i‖yi −BH
i ĥn‖2)

= ∇ĥHn
(
n∑
i=0

λn−i(yHi − ĥHn Bi)(yi −BH
i ĥn)) =

n∑
i=0

λn−i(−Bi)(yi −BH
i ĥn) = 0
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If we rearrange the above equation

n∑
i=0

λn−iBiB
H
i ĥn =

n∑
i=0

λn−iBiyi (5.4)

Rnĥn = rn (5.5)

where Rn =
∑n

i=0 λ
n−iBiB

H
i is the weighted covariance matrix for Bi and rn =

∑n
i=0 λ

n−iBiyi

is the equivalent estimate for the cross-covariance between Bi and yi.

Based on this expression we find the coefficients which minimize the cost function as

ĥn = R−1
n rn. (5.6)

This is a form of the well-known Wiener-Hopf equation with employing time averages.

5.2 Recursive Algorithm

The discussion resulted in a single equation to determine a coefficient vector which minimizes

the cost function. In this section we want to derive a recursive solution of the form

ĥn = ĥn−1 + ∆ĥn−1 (5.7)

where ∆ĥn−1 is a correction factor at time n− 1. We start the derivation of the recursive

algorithm by expressing the cross covariance rn in terms of rn−1

rn =
n∑
i=0

λn−iBiyi =
n−1∑
i=0

λn−iBiyi + λ0Bnyn

= λrn−1 + Bnyn (5.8)
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Similarly we express Rn in terms of Rn−1 by

Rn =
n∑
i=0

λn−iBiB
H
i =

n−1∑
i=0

λn−iBiB
H
i + BiB

H
i

= λRn−1 + BnB
H
n (5.9)

In order to calculate the channel coefficients vector we are interested in the inverse of auto-

covariance matrix. The matrix inversion lemma comes in handy for this task [26]

R−1
n = λ−1R−1

n−1 − λ−1R−1
n−1Bn(ID + BH

n λ
−1R−1

n−1Bn)−1BH
n λ
−1R−1

n−1.

To come in line with the standard literature, we define

Pn , R−1
n

= λ−1Pn−1 −KnB
H
n λ
−1Pn−1 (5.10)

where the gain matrix Kn is

Kn = λ−1Pn−1Bn(ID + BH
n λ
−1Pn−1Bn)−1

= Pn−1Bn(λID + BH
n Pn−1Bn)−1. (5.11)

Before we move on, it is necessary to bring Kn into another form

Kn(ID + λ−1BH
n Pn−1Bn) = λ−1Pn−1Bn

Kn + λ−1KnB
H
n Pn−1Bn = λ−1Pn−1Bn

Subtracting the second term on the left hand side yields

Kn = λ−1(Pn−1 −KnB
H
n Pn−1)Bn. (5.12)
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With the recursive definition of Pn the desired form follows

Kn = PnBn (5.13)

Now we are ready to complete the recursion. As discussed

ĥn = Pnrn = Pn(λrn−1 + Bnyn) = λPnrn−1 + PnBnyn (5.14)

The second step follows from the recursive definition of rn in (5.8). Next we incorporate the

recursive definition of Pn in (5.10) together with the alternate form of Kn and get

ĥn = λ(λ−1Pn−1 − λ−1KnB
H
n Pn−1)rn−1 + Knyn = Pn−1rn−1 −KnB

H
n Pn−1rn−1 + Knyn

= Pn−1rn−1 + Kn(yn −BH
n Pn−1rn−1).

With (5.12), we arrive at the update equation

ĥn = ĥn−1 + Kn(yn −BH
n ĥn−1) = ĥn−1 + Knαn (5.15)

where αn = yn −BH
n ĥn−1 is the a priori error. That means we found the correction factor

∆ĥn−1 = Knαn (5.16)

This intuitively satisfying result indicates that the correction factor is directly proportional

to both the error and the gain vector, which controls how much sensitivity is desired, through

the forgetting factor λ. When the channel is static over the transmission duration, it is logical

to set the forgetting factor λ to one. On the other hand, when the channel is time-varying,

in order to track the channel variations one needs to set λ to a value that corresponds to the

coherence time of the channel.
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5.3 RLS Algorithm

By using the above equations the recursive algorithm for this application can be summarized

as

Initialization

ĥ0 = 0

P0 = δ−1ID where I is the identity matrix of rank D

where δ is a small positive number.

Computation

For n = 0, 1, 2, ...

yn = ΨH
n hn + ηn

Bn = (xHn ⊗ ID)

αn = yn −BH
n ĥn−1

Sn = λID + BH
n Pn−1Bn

Qn = Pn−1Bn

Kn = QnS
−1
n

Pn = λ−1Pn−1 − λ−1KnQ
H
n

ĥn = ĥn−1 + Knαn

By comparing the RLS algorithm and the Kalman filter, there are some similarities. Both

have the same procedure and matrix inversion. But the important part is in the RLS

algorithm the convergence is much faster than the Kalman filter. The reason is in the

Kalman filter the size of the matrix which needs to be inverted is KgLgD × KgLgD. But

the dimension for the matrix inversion in RLS algorithm is D ×D where D stands for the
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beamspace dimension.

5.4 Simulation Results

By using the same setting as previous sections, the channel is simulated. The RLS algorithm

is used to estimate the channel and plot the MSE for different values of channel fading

coefficient α.

As can be seen in Figure 5.1, the RLS algorithm performance with different αs depends on

the forgetting factor λ. There is a different optimum value of forgetting factor for each α.

When α < 1, the optimum forgetting factor λopt is decreasing by decreasing the α. This

means, to get the best performance of RLS algorithm, changing the forgetting factor to λopt

is necessary and as we will see in the next chapter, when the λ is not the optimum value,

the performance of the RLS algorithm is worse than the the LMS algorithm.

From Figure 5.2-5.5, 5.7-5.10 and 5.12-5.15, the results are along the same line as the previous

chapters. By increasing the beamspace dimension, the performance gets worse. Again, after

some point (usually n > 300 for SNRin = 0 dB, n > 100 for SNRin = 3 dB and n > 50

for SNRin = 30 dB) the MSE for different setups saturates. In Figure 5.6, 5.11 and 5.16,

the results for different values of the channel fading coefficient α and the forgetting factor

λ are plotted. The performance gets better by increasing α which is expected. Also, for

getting the best result, for different values of the channel fading coefficient α, the optimum

forgetting factor λopt is used. By comparing Figure these three figures, It can be seen that in

case of SNRin = 30dB, the performance is about 20− 30 dB better than the SNRin = 3 dB

and 0 dB.

In practice, the convergence of the RLS algorithm is much faster than the Kalman filter

which was expected based on the size of the matrix inversions.
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Figure 5.1: MSE for different values of λ in the RLS algorithm (Dim= 8, δ = 0.01 and
SNRin = 30 dB)
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Figure 5.2: MSE for different values of beamspace dimension (Dim) with the RLS algorithm
(α = 0.99, λ = 0.95, δ = 0.01 and SNRin = 30 dB)
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Figure 5.3: MSE for different values of beamspace dimension (Dim) with the RLS algorithm
(α = 0.999, λ = 0.95, δ = 0.01 and SNRin = 30 dB)
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Figure 5.4: MSE for different values of beamspace dimension (Dim) with the RLS algorithm
(α = 0.9999, λ = 0.95, δ = 0.01 and SNRin = 30 dB)
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Figure 5.5: MSE for different values of fading correlation coefficient α with the RLS algorithm
(λ = 0.95, δ = 0.01, Dim= 8 and SNRin = 30 dB)

0 10 20 30 40 50 60 70 80 90 100

Beamspace Dimension

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

M
S

E

RLS Algorithm(λ=0.95, α=0)

RLS Algortihm(λ=0.85, α=0.99)

RLS Algorithm(λ=0.90, α=0.999)

RLS Algorithm(λ=0.95, α=0.9999)

RLS Algorithm(λ=0.9999, α=1)

Figure 5.6: MSE for different values of fading correlation coefficient α with the RLS algorithm
(SNRin = 30 dB and δ = 0.01)
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Figure 5.7: MSE for different values of beamspace dimension (Dim) with the RLS algorithm
(α = 0.99, λ = 0.95, δ = 0.01 and SNRin = 3 dB)
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Figure 5.8: MSE for different values of beamspace dimension (Dim) with the RLS algorithm
(α = 0.999, λ = 0.95, δ = 0.01 and SNRin = 3 dB)
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Figure 5.9: MSE for different values of beamspace dimension (Dim) with the RLS algorithm
(α = 0.9999, λ = 0.95, δ = 0.01 and SNRin = 3 dB)
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Figure 5.10: MSE for different values of fading correlation coefficient α with the RLS algo-
rithm (λ = 0.95, δ = 0.01, Dim= 8 and SNRin = 3 dB)

42



0 10 20 30 40 50 60 70 80 90 100

Beamspace Dimension

10
-3

10
-2

10
-1

10
0

10
1

M
S

E

α=0

α=0.99

α=0.999

α=0.9999

α=1

Figure 5.11: MSE for different values of fading correlation coefficient α with the RLS algo-
rithm (SNRin = 3 dB and δ = 0.01)
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Figure 5.12: MSE for different values of beamspace dimension (Dim) with the RLS algorithm
(α = 0.99, λ = 0.95, δ = 0.01 and SNRin = 0 dB)
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Figure 5.13: MSE for different values of beamspace dimension (Dim) with the RLS algorithm
(α = 0.999, λ = 0.95, δ = 0.01 and SNRin = 0 dB)
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Figure 5.14: MSE for different values of beamspace dimension (Dim) with the RLS algorithm
(α = 0.9999, λ = 0.95, δ = 0.01 and SNRin = 3 dB)
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Figure 5.15: MSE for different values of fading correlation coefficient α with the RLS algo-
rithm (λ = 0.95, δ = 0.01, Dim= 8 and SNRin = 0 dB)
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Figure 5.16: MSE for different values of fading correlation coefficient α with the RLS algo-
rithm (SNRin = 0 dB and δ = 0.01)
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Chapter 6

Comparison and Optimum Answer

6.1 Capacity as a Measure for the Optimum Dimension

So far we have used tools to estimate the channel coefficient vector ĥn. We want to reduce

the full rank channel into the efficient channel for simple calculation. For the optimum

dimension, we need to define a measure. Here we are using a capacity measure which uses

only the first D elements of the reduced dimension estimated channel vector to estimate the

channel capacity. In other words, instead of using the whole vector hn which has a large size

of KgLgN × 1, we are using a reduced dimension version of it which is the vector

Hn =
(
IKgLg ⊗ SHD

)
hn = Qhn. (6.1)

Now, for simplicity in the definition of the capacity, instead of using the whole vector Hn,

just the first D elements of the vector is used where D stands for the beamspace dimension.

We call this new vector [h′n]D×1
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yn = h′nxn + ηn

= (h′n + ĥ′n − ĥ′n)xn + ηn

= ĥ′nxn + enxn + ηn (6.2)

where ĥ′n is the first D elements of the channel estimation vector which is computed via

the RLS or LMS algorithm. In the case of the Kalman filter, first we need to multiply the

channel estimation vector via the dimension reducing matrix Q then use the first D elements

of the computed vector. Also xn is our training data.

One can write:

zn = ĥ′Hn yn = |ĥ′n|2xn + ĥ′Hn (enxn + ηn)︸ ︷︷ ︸
σ2
ζ

(6.3)

By calculating the expected value of σ2
ζ we will have:

σ2
ζ = E{ĥ′Hn (enxn + ηn)(eHn x

∗
n + ηHn )ĥ′n}

= ĥ′Hn E{(enxn + ηn)(eHn x
∗
n + ηHn )}ĥ′n

= ĥ′Hn (Re + Rη)ĥ′n (6.4)

where Re = E{eneHn } and Rη = E{ηnηHn }.

One can use the above equations to write the capacity formula

C(D) = Eĥ′
n
{log2(1 +

||ĥ′n||2

σ2
ζ

)} = Eĥ{log2(1 +
||ĥ′n||2

ĥ′Hn (Re + Rη)ĥ′n
)} (6.5)

47



In the sequel, we will use this formulation in our simulations. However, before them, we

wish to introduce two other channel models.

6.2 Two-state Markov Chain Temporal Fading Coefficient

In the previous sections, we assumed that the temporal fading coefficient (α) in (2.4) is

constant with respect to time. In this section, we assume that α varies with time and we try

to figure out if the methods still track the channel coefficient vector. The new model for α

is a two state Markov chain model where the initial state is α0 with the probability matrix

transition Pα where

Pα =

p00 p01

p10 p11

 (6.6)

We assume that our initial state is α0 and with probability p00, the current state remains

the same and with probability p01 the state varies. The state transition diagram is in Figure

6.1.

α0 α1

p01

p00

p10

p11

Figure 6.1: State transition diagram of the temporal fading channel which varies with Pα

transition probability matrix.
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6.3 New Gauss-Markov Channel State

The channel temporal variation was defined as (2.4) in chapter 2. In this section we are

going to use another definition for the channel state update. This model takes into account

h0 = R
1
2 b0 (6.7)

hi =
√
αhi−1 +

√
1− αR

1
2 bi, i ≥ 1 (6.8)

R is the spatial correlation matrix defined by

R =



1 q . . . qKg×Lg×N−1

q 1

... . . .

qKg×Lg×N−1 1


(6.9)

where 0 < q < 1.

The purpose of using this model is to consider the effect of spatial correlation in the channel.

This will be in addition to the temporal correlation modeled in (2.4)

6.4 Simulation Results

Different channel states in the previous sections are simulated by using the same settings in

the simulations in the previous chapters. Also, by evaluating (6.5), and we also compared

the results of previous chapters to each other to see which method is the better one. In this

section these results are discussed.
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6.4.1 Simulation Results for Capacity

For a better comparison, one can define a capacity for the actual channel

Cactual(D) = Eh′
n
{log2(1 +

||h′n||2

h′Hn (Rns)h′n
)} (6.10)

where Rns = SHDRnSD and Rn is the interference correlation matrix. Also the h′n is the

first D elements of the channel vector coefficient initialized randomly in the beginning of

simulation. The channel vector coefficient is updated in each step with (2.4).

In Figure 6.2 - 6.4, the results of simulation based on the previous assumptions and (6.5) is

plotted. As we can see from the figures, the Kalman filter has the maximum capacity among

the algorithms which was expected. The Kalman filter has also the smallest MSE compared

with the other methods. Also, by increasing the channel fading coefficient α, the capacity

for the different algorithms approaches the actual channel capacity.
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Figure 6.2: Capacity of different methods of estimating the channel, RLS algorithm, LMS
algorithm and Kalman filtering with respect to beamspace dimension and for the actual
channel (α = 0.001, λ = 0.95, δ = 0.01, µ = 0.1 and SNRin = 30 dB)
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Figure 6.3: Capacity of different methods of estimating the channel, RLS algorithm, LMS
algorithm and Kalman filtering with respect to beamspace dimension and for the actual
channel (α = 0.995, λ = 0.95, δ = 0.01, µ = 0.1 and SNRin = 30 dB)

6.4.2 Simulation Results for Two-State Markov Chain Temporal

Fading Coefficient

In this section, by using the model in the Section 6.2, different algorithms are used to estimate

the channel under a new channel model. In Figure 6.5-6.9 the results of the simulation can

be seen. The interesting thing here is that for different setups for α0, α1, and the transition

matrix, the algorithms still can estimate the channel after some iterations. The final value

of MSE in these cases is not as good as the simple channel with only one α. For example in

Figure 6.7, the value for the channel fading coefficient is α = [α0, α1] = [0.9999, 0.1] and the

transition matrix is Pα =

0.9 0.1

0.1 0.9

. As can be seen through this figure, the three different

methods are still able to estimate the channel, even when the channel fading coefficient α

varies when time. The performance is worse than the constant value of α which is expected.

51



0 10 20 30 40 50 60 70 80 90 100

Beamspace Dimension

5

5.5

6

6.5

7

7.5

8

8.5

C
a

p
a

c
it
y
 (

b
it
s
/s

e
c
)

Actual

Kalman Filtering

LMS  ALgorithm(µ=0.1)

RLS ALgorithm(λ  =0.95 and δ 0.01)

Figure 6.4: Capacity of different methods of estimating the channel, RLS algorithm, LMS
algorithm and Kalman filtering with respect to beamspace dimension and for the actual
channel (α = 0.9999, λ = 0.95, δ = 0.01, µ = 0.1 and SNRin = 30 dB)

6.4.3 Simulation Results for New Gauss-Markov Channel State

In Figure 6.10-6.18, we can see the results of the simulation based on Section 6.3 for different

values of spatial correlation matrices R. In the cases where q = 0, the results are the same as

previous sections (in this case R is the identity matrix). And the results in the case (q = 0)

are smoother. Also, by increasing the value of q, the performance of the Kalman filter gets

worse. For example in the case of q = 0.9999, the Kalman filter has the worst performance

among the algorithms.
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Figure 6.5: MSE for different Algorithms with Dim=8, correlation factors [α0 = 0.9999, α1 =
0.1] and p00 = 0.99, p11 = 0.1

6.4.4 Comparing Simulation of Different Methods

In Figure 6.19, MSE vs λ is plotted for the RLS algorithm and as we can see, for different

values of the channel coefficient factor α, the optimum value of λ for minimizing MSE is

different. So based on this results, for different channel coefficient factor α we used the

optimum λ, λopt. In Figures 6.20-6.35 the results of different methods are compared, and

it is noticeable that in all simulations for different parameters, the Kalman filter performs

better in estimating the channel. After the Kalman filter, RLS algorithm with λopt estimates

the channel better than the LMS algorithm. As can be seen in Figure 6.23 and 6.25, the

RLS algorithm performance gets better by changing the λ to the λopt, which was expected

based on Figure 6.19. In figure 6.27, the performance of RLS algorithm is worse than the

LMS algorithm, because of the value of λ is not the λopt. The interesting point in the Figure

6.20-6.35 is that for each algorithm, the value of MSE for the beamspace dimension one

(D = 1) has the minimum value among all the beamspace dimension.

53



0 50 100 150 200 250 300

Time

10
-4

10
-3

10
-2

10
-1

10
0

10
1

M
S

E

RLS Algorithm(δ=0.9, δ=0.01)

LMS Algorithm(µ=0.1)
Kalman Filter

Figure 6.6: MSE for different Algorithms with Dim=8, correlation factors α = [α0 =
0.9999, α1 = 0.9] and p00 = 0.99, p11 = 0.1
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Figure 6.7: MSE for different Algorithms with Dim=8, correlation factors α = [α0 =
0.9999, α1 = 0.1] and p00 = 0.9, p11 = 0.1
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Figure 6.8: MSE for different Algorithms with Dim=8, correlation factors α = [α0 =
0.9999, α1 = 0.1] and p00 = 0.9, p11 = 0.2
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Figure 6.9: MSE for different Algorithms with Dim=8, correlation factors α = [α0 =
0.9999, α1 = 0.9] and p00 = 0.9, p11 = 0.2
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Figure 6.10: MSE for different algorithms with Dim=8, correlation factor α = 0.9 and
correlation matrix factor q = 0
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Figure 6.11: MSE for different Algorithms with Dim=8, correlation factor α = 0.9 and
correlation matrix factor q = 0.9
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Figure 6.12: MSE for different Algorithms with Dim=8, correlation factor α = 0.9 and
correlation matrix factor q = 0.9999
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Figure 6.13: MSE for different Algorithms with Dim=8, correlation factor α = 0.99 and
correlation matrix factor q = 0
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Figure 6.14: MSE for different Algorithms with Dim=8, correlation factor α = 0.99 and
correlation matrix factor q = 0.9
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Figure 6.15: MSE for different Algorithms with Dim=8, correlation factor α = 0.99 and
correlation matrix factor q = 0.9999
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Figure 6.16: MSE for different Algorithms with Dim=8, correlation factor α = 0.9999 and
correlation matrix factor q = 0
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Figure 6.17: MSE for different Algorithms with Dim=8, correlation factor α = 0.9999 and
correlation matrix factor q = 0.9
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Figure 6.18: MSE for different Algorithms with Dim=8, correlation factor α = 0.9999 and
correlation matrix factor q = 0.9999
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Figure 6.19: MSE for different values of λ in RLS Algorithm (Dim= 8, δ = 0.01 and SNRin =
30 dB)
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Figure 6.20: MSE of different methods of estimating the channel, RLS algorithm, LMS
algorithm and Kalman filtering with respect to beamspace dimension (α = 0, λ = 0.95, δ =
0.01, µ = 0.1 and SNRin = 30 dB)
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Figure 6.21: MSE of different methods of estimating the channel, RLS algorithm, LMS
algorithm and Kalman filtering with respect to beamspace dimension (α = 0.9, λ = 0.95, δ =
0.01, µ = 0.1 and SNRin = 30 dB)
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Figure 6.22: MSE of different methods of estimating the channel, RLS algorithm, LMS algo-
rithm and Kalman filtering with respect to beamspace dimension ( α = 0.99, λ = 0.95, δ =
0.01, µ = 0.1 and SNRin = 30 dB)
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Figure 6.23: MSE of different methods of estimating the channel, RLS algorithm, LMS algo-
rithm and Kalman filtering with respect to beamspace dimension (α = 0.999, λ = 0.95, δ =
0.01, µ = 0.1 and SNRin = 30 dB)
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Figure 6.24: MSE of different methods of estimating the channel, RLS Algorithm, LMS
Algorithm and Kalman Filtering wrt beamspace dimension (α = 0.9999, λ = 0.95, δ =
0.01, µ = 0.1 and SNRin = 30 dB)
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Figure 6.25: MSE of different methods of estimating the channel, RLS Algorithm, LMS
Algorithm and Kalman Filtering wrt beamspace dimension (α = 1, λ = 0.95, δ = 0.01, µ =
0.1 and SNRin = 30 dB)
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Figure 6.26: MSE of different methods of estimating the channel, RLS Algorithm, LMS
Algorithm and Kalman Filtering wrt beamspace dimension (α = 0, λ = 0.95, δ = 0.01, µ =
0.1 and SNRin = 3 dB)
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Figure 6.27: MSE of different methods of estimating the channel, RLS Algorithm, LMS
Algorithm and Kalman Filtering wrt beamspace dimension (α = 0.99, λ = 0.95, δ = 0.01, µ =
0.1 and SNRin = 3 dB)
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Figure 6.28: MSE of different methods of estimating the channel, RLS Algorithm, LMS Algo-
rithm and Kalman Filtering wrt beamspace dimension (α = 0.999, λ = 0.95, δ = 0.01, µ = 0.1
and SNRin = 3 dB)
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Figure 6.29: MSE of different methods of estimating the channel, RLS Algorithm, LMS
Algorithm and Kalman Filtering wrt beamspace dimension (α = 0.9999, λ = 0.95, δ =
0.01, µ = 0.1 and SNRin = 3 dB)
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Figure 6.30: MSE of different methods of estimating the channel, RLS Algorithm, LMS
Algorithm and Kalman Filtering wrt beamspace dimension (α = 1, λ = 0.95, δ = 0.01, µ =
0.1 and SNRin = 3 dB)
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Figure 6.31: MSE of different methods of estimating the channel, RLS Algorithm, LMS
Algorithm and Kalman Filtering wrt beamspace dimension (α = 0, λ = 0.95, δ = 0.01, µ =
0.1 and SNRin = 0 dB)
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Figure 6.32: MSE of different methods of estimating the channel, RLS Algorithm, LMS
Algorithm and Kalman Filtering wrt beamspace dimension (α = 0.99, λ = 0.95, δ = 0.01, µ =
0.1 and SNRin = 0 dB)
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Figure 6.33: MSE of different methods of estimating the channel, RLS Algorithm, LMS Algo-
rithm and Kalman Filtering wrt beamspace dimension (α = 0.999, λ = 0.95, δ = 0.01, µ = 0.1
and SNRin = 0 dB)
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Figure 6.34: MSE of different methods of estimating the channel, RLS Algorithm, LMS
Algorithm and Kalman Filtering wrt beamspace dimension (α = 0.9999, λ = 0.95, δ =
0.01, µ = 0.1 and SNRin = 0 dB)
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Figure 6.35: MSE of different methods of estimating the channel, RLS Algorithm, LMS
Algorithm and Kalman Filtering wrt beamspace dimension (α = 1, λ = 0.95, δ = 0.01, µ =
0.1 and SNRin = 0 dB)
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Chapter 7

Conclusion

In this thesis, estimating the channel vector coefficient with different methods by using

prebeamforming technique were investigated in massive MIMO systems. This work is based

on the idea of dividing users in different groups. There is a model for the system. Based

on the model we came up with different algorithms to estimate the channel coefficients.

The first algorithm was Kalman filter. Kalman filter is commonly used in different areas

such as guidance navigation, control and signal processing. By formulating the filter and

using it on our model, the channel vector is estimated. The Kalman filter employs the

inversion of a large matrix. Consequently, it is computationally the most demanding of

three techniques. On the other hand, its performance in terms of MSE and capacity is the

best. The next algorithm is the LMS algorithm which avoids matrix inversion. The trade-off

for computational simplicity is in convergence time and performance. The last algorithm

which was studied is the RLS algorithm. The algorithm is a recursive method to estimate

the channel. The results in this case were dependent on a forgetting factor. By deriving

the optimum value for the forgetting factor we could have better performance than LMS

Algorithm but worse than Kalman filter was achieved. The complexity of this algorithm is

also between those of the Kalman filter and the LMS algorithm.
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Also, in chapter 6 we have shown that the Kalman filtering has the maximum capacity values

among the algorithms. Comparing these three methods based on MSE and capacity leads

to the best performance among them which is Kalman filter. Kalman filter behavior was

pretty good comparing the other algorithms.

Besides these works, we have also studied the effect of changing the channel coefficient factor

in each time and our model was able to estimate the channel very well, whether the channel

coefficient factor is constant or time dependent(in a Markov chain model). This shows that

the algorithms are able to estimate the channel in a fast way. Also, the results of simulations

for a new Gauss-Markov channel state were studied. In this case, when the channel is more

uncorrelated (correlation factor goes to zero), the performance of the algorithms increases.

On the other hand, when the correlation factor is near one, the performance of algorithms

decreases. Even the performance of the Kalman filter becomes the worst one.
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