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ABSTRACT OF THE THESIS

Neural Methods for High-Fidelity Reconstruction and Editing

by

Vishal Vinod

Master of Science in Computer Science

University of California San Diego, 2023

Professor Manmohan Krishna Chandraker, Chair

High fidelity reconstruction and editing of objects is a challenging task in the graphics

and vision community. Recent work in 3D reconstruction are unable to preserve high-frequency

details in addition to enabling tasks such as texture transfer, primarily because they do not

disentangle appearance from geometry. Further, reconstruction and editing methods for relighting

applications learn a simplified reflectance model and are unable to account for long-range light

transport effects such as subsurface scattering. This thesis presents two main directions of

research for high fidelity reconstruction and object editing: First, we propose TEGLO (Textured

EG3D-GLO) for learning textured 3D representations from single-view image collections. We

train a conditional Neural Radiance Field (NeRF) without explicit 3D supervision and creating a

xiv



dense correspondence mapping to a 2D canonical coordinate space to equip our method with

texture transfer and editing with near perfect reconstruction (>74 db PSNR) even at megapixel

resolution. Second, we find that recent work in high fidelity relighting explore subsurface

scattering with objects where scattering is the primary light transport effect. These methods are

unable to model specular highlights which occur when relighting human faces. Toward this,

we render a synthetic OLAT dataset of human face images in a virtual light stage with suitable

ground truth for reconstruction and relighting. We explore a hybrid physical-neural approach to

surface relighting by effectively combining insights from a physically based prior and a neural

renderer to improve the fidelity in modeling specular highlights and subsurface scattering effects

in relighting human faces.
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Chapter 1

Introduction

High fidelity reconstruction and editing of objects is a challenging task with critical

applications in virtual reality, content creation and telepresence systems. Recent work in Neural

Radiance Fields (NeRFs) [12, 28, 11, 61, 77, 88] explore learning 3D representations from

single-view in-the-wild image collections by leveraging the inductive bias across a dataset of

class-specific objects. However, these methods face several issues: they fail to preserve high

frequency details, have constraints in their rendering resolution and some methods require 3D

supervision. Further, previous work do not disentangle appearance from geometry and are hence

not suitable for tasks such as texture editing and texture transfer. Toward this, we propose

TEGLO (Textured EG3D-GLO) for learning textured 3D representations from single view in-the-

wild image collections for a given class of objects. We accomplish this by training a conditional

Neural Radiance Field (NeRF) without any explicit 3D supervision. We equip our method with

editing capabilities by creating a dense correspondence mapping to a 2D canonical space. We

demonstrate that such mapping enables texture transfer and texture editing without requiring

meshes with shared topology. Our key insight is that by mapping the input image pixels onto the

texture space we can achieve near perfect reconstruction (≥74 dB PSNR at 10242 resolution).

Our formulation allows for high quality 3D consistent novel view synthesis with high-frequency

details at arbitrary resolution (even at megapixel image resolutions).

High fidelity relighting of complex objects such as human faces include modeling
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direct lighting effects such as specular highlights and long-range light transport effects such as

subsurface scattering. However, prior work model reflectance as diffuse reflectance or as a simple

BRDF which are unable to model subsurface scattering effects. Further, Recent work such as OSF

[94], an implicit neural rendering model based on NeRFs that learns to approximate cumulative

radiance transfer, and [100], a neural implicit rendering model that learns to approximate the

radiance transfer gradient, are unable to model specular highlights and are primarily trained and

evaluated on objects where subsurface scattering effects are the primary light transport effects. In

our experiments with OSF, we augment a pre-trained model with a trainable light-weight neural

renderer and observe that the residual specular effects can be learned effectively. We observe

that OLAT datasets for human faces are more often than not inaccessible to the general research

community primarily due to the privacy and licensing issues involved. While NVPR [97] make

available an OLAT light stage dataset for human faces, the dataset does not include camera poses

necessary to train a NeRF-based model. Our experiments with a self-supervised physics-based

reconstruction method on the NVPR dataset demonstrated the under-constrained nature of the

problem and motivates the need for obtaining ground truth for different components of light

transport. To address this, we render an OLAT dataset of human faces with ground truth for

surface normals, direct lighting, specular map, albedo and subsurface scattering. This motivates

our investigation on a hybrid physical-neural rendering based surface relighting method that

draws on insights from a physics-based prior for the direct lighting estimate and a neural renderer

for the subsurface scattering component.

In Chapter 2, we discuss TEGLO (Textured EG3D-GLO) for textured 3D reconstruction

of objects from single-view image collections. Our key insight is that by disentangling texture

from geometry by using the 3D surface points (of objects) to learn a dense correspondence

mapping via a 2D canonical coordinate space, we can extract a texture for each object. Then, by

using the learned correspondences to map the pixels from the input image of the object onto the

texture, we enable preserving high-frequency details even at megapixel resolution. As expected,

copying the input image pixels onto the texture accurately, allows near perfect reconstruction

2



while preserving high frequency details with multi-view consistent representations. We show

that TEGLO enables several tasks with high fidelity such as texture transfer, texture editing and

single view 3D reconstruction.

In Chapter 3, we consider the problem of reconstructing and relighting surfaces modeling

complex light transport effects such as soft shadows and subsurface scattering effects. Traditional

methods suffer from two drawbacks: First, they consider relighting to be a purely physically-

based approach using reconstruction followed by physically-based rendering, or with a purely

data-driven approach. We propose a hybrid physical-neural approach to potentially benefit from

PBR and neural rendering. Second, current methods model the reflectance as diffuse Lambertian

or as a simplified BRDF to account for specular properties. They fail to consider subsurface

scattering of skin. In this work, we aim to perform high-quality surface relighting modeling

long-range light interactions such as subsurface scattering effects. We also present current

progress on 3D-aware photorealistic re-lighting and novel view synthesis. Since a self-supervised

formulation by reconstructing the input OLAT images is unconstrained, we render a synthetic

dataset of OLAT images of faces with suitable ground truth for supervising our method. We

include further details in the synthetic OLAT light stage dataset rendering in Chapter 3.

3



Chapter 2

Conditional NeRF for High-Fidelity Tex-
tured 3D Reconstruction

2.1 Introduction

Reconstructing high-resolution and high-fidelity 3D consistent representations from

single-view in-the-wild image collections is critical for applications in virtual reality, 3D content

creation and telepresence systems. Recent work in Neural Radiance Fields (NeRFs) [12, 28, 11,

61] aim to address this by leveraging the inductive bias across a dataset of single-view images

of class-specific objects for 3D consistent rendering. However, they are unable to preserve

high frequency details while reconstructing the input data despite the use of SIREN [70] or

positional encoding [50], in part due to the properties of MLPs they use [15]. For arbitrary

resolution 3D reconstruction from single-view images, these methods face several challenges.

These include image-space approximations that break multi-view consistency constraining

the rendering resolution [11], requiring Pivotal Tuning Inversion (PTI) [63] or fine-tuning for

reconstruction [28, 11, 71] and the inability to preserve high-frequency details [28, 11, 71, 61]. To

address this, we propose TEGLO (Textured EG3D-GLO) that uses a tri-plane representation [11]

and Generative Latent Optimization (GLO) [9] based training to enable efficient and high-fidelity

3D reconstruction and novel view synthesis at arbitrary image resolutions from single-view

image collections of objects.

Recent works disentangle texture from geometry [15, 90] and enable challenging tasks

4



Target Image Reconstruction 3D Consistent Novel Views with Texture Edits

Figure 2.1. Teaser - Demonstrating TEGLO for high fidelity 3D reconstruction and multi-
view consistent texture representation and texture editing from single-view image collections of
objects.
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TEGLO

Single view image + Approx. Camera

Conditional NeRF + 
Volume Rendering

3D Surface 
points

Dense 
Correspondence 
Learning Network

Render Pose

Texture 
Mapper

Canonical
2D points

Optional: 
texture-edit, 

texture transfer

Figure 2.2. Overview - TEGLO enables 3D reconstruction and texture representation from
single-view image collections of objects.

such as texture editing and texture transfer. However, they depend on large-scale textured

mesh data for high-fidelity 3D reconstruction which is laborious, expensive and time intensive

to capture. Further, the use of a capture environment may cause a dataset-shift leading to

generalization issues in downstream tasks, and the data use may require custom licensing. All

of these factors limit access from the broader research community. This motivates the need for

a method to learn textured 3D representations from single-view in-the-wild images of objects.

However, the task of disentangling texture and 3D geometry from in-the-wild image collections

is a formidable challenge due to the presence of wide variations in poses, partial views, complex

details in appearance, geometry, noise in the given image collection. Inspired by surface fields

[27], TEGLO leverages the 3D surface points of objects extracted from a NeRF to learn dense

correspondences via a canonical coordinate space to enable texture transfer, texture editing and

high-fidelity single-view 3D reconstruction.

Our key insight is that by disentangling texture and geometry using the 3D surface points
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of objects to learn a dense correspondence mapping via a 2D canonical coordinate space, we can

extract a texture for each object. Then, by using the learned correspondences to map the pixels

from the input image of the object onto the texture, we enable preserving high-frequency details.

As expected, copying the input image pixels onto the texture accurately, allows near perfect

reconstruction while preserving high frequency details with multi-view consistent representations.

In this work, we present TEGLO, a tri-plane and GLO-based conditional NeRF, and a method

to learn dense correspondences to enable challenging tasks such as texture transfer, texture

editing and high-fidelity 3D reconstruction even at large megapixel resolutions. We also show

that TEGLO enables single-view 3D reconstruction with no constraints on resolution by simply

inverting the image into the latent table without any PTI [63] or fine-tuning. We present an

overview of TEGLO in Fig.(2.2): TEGLO takes a single-view image and its approximate camera

pose to map the pixels onto a texture. Then, to render the object from a different view, we extract

the 3D surface points from the trained NeRF and use the dense correspondences to obtain the

color for each pixel from the texture. Optionally, TEGLO allows texture edits and texture transfer

across objects. In summary, our contributions are:

1. A novel 3D dataset rendering method leveraging the advantages of generative latent

optimization and hybrid implicit-explicit representations for textured 3D reconstruction

from 2D image collections of objects.

2. A conditional NeRF with a tri-plane representation and GLO auto-decoder based training

that enables efficient 3D consistent rendering at arbitrary resolutions.

3. A framework for effectively mapping the pixels from an in-the-wild single-view image onto

a texture to enable high-fidelity 3D consistent representations preserving high-frequency

details.

4. A method for extracting canonical textures from single-view images enabling tasks such

as texture editing and texture transfer for NeRFs.

5. Demonstrating effective mapping of single-view image pixels to a canonical texture space

7



while preserving 3D consistency and achieving near perfect reconstruction (≥ 74 dB PSNR

at 10242 resolution).

2.2 Related Work

3D-aware generative models. Learning 3D representations from multi-view images

with camera poses have been extensively studied since the explosion of Neural Radiance Fields

(NeRFs) [50, 72, 96, 7, 98, 28]. However, these methods require several views and learn

a radiance field for a single scene. RegNeRF [53] reduces the need from several views to

only a handful, however, the results have several artifacts. Recently, several works learn 3D

representations from single-view images [12, 11, 43, 71, 61, 99]. Further, [74, 73, 76, 37] enable

multi-view consistent editing, however, they are limited by the rendering resolution. Recent

work propose single image 3D consistent novel view synthesis [93, 44, 29, 84], however they

are not yet suitable for texture representation. While point cloud based diffusion models [95, 52]

enable learning 3D representations, they have limited applicability in textured 3D generation

and high fidelity novel view synthesis. In this work, we show that TEGLO learns textured 3D

representations from class-specific single-view image collections.

Texture representation. Template based methods [58, 8, 16, 31] deform a template

mesh prior for 3D representations and are hence restricted in the topology they can represent.

Texture Fields [54] enable predicting textured 3D models given an image and a 3D shape, but are

unable to represent high-frequency details. While NeuTex [86] enables texture representation, it

does not allow multi-view consistent texture editing at the desired locations due to a contorted

UV mapping [90]. NeuMesh [90] learns mesh representations to enable texture transfer and

texture editing using textured meshes. However, it performs mesh-guided texture transfer and

requires spatial-aware fine-tuning for mesh-guided texture edits. While GET3D [25] learns

textured 3D shapes by leveraging tri-plane based geometry and texture generators, it requires

2D silhouette supervision and is limited to synthetic data. AUVNet [15] represents textures

from textured meshes by learning an aligned UV mapping and demonstrates texture transfer.
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However, it depends on textured mesh data and requires multiple networks to enable single-view

3D reconstruction. In contrast, TEGLO learns textured 3D consistent representations from

single-view images by inverting the image into the latent table.

Dense correspondences. Previous work in dense correspondence learning involve

supervised [18, 41] or unsupervised [89, 87] learning methods. CoordGAN [51] learns dense

correspondences by extracting each image as warped coordinate frames transformed from

correspondence maps which is effective for 2D images. However, CoordGAN is unable to learn

3D correspondences. AUVNet [15] establishes dense correspondences across 3D meshes via a

canonical UV mapping and asserts that methods that do not utilize color for dense correspondence

learning [24, 45] may have sub-par performance in texture representation.

2.3 TEGLO

Given a collection of single-view in-the-wild images of objects and their approximate

camera poses, TEGLO aims to learn a textured 3D representation of the data. TEGLO consists

of two stages: 3D representation learning and dense correspondence learning. TEGLO Stage-1

consists of a conditional NeRF leveraging a Tri-Plane representation and an auto-decoder training

regime based on generative latent optimization (GLO) [9] for 3D reconstruction of the image

collection. To train TEGLO Stage-2, we use TEGLO Stage-1 to render a dataset of an object’s

geometry from five views using the optimized latent code. TEGLO Stage-2 uses the 3D surface

points from the rendered dataset to learn dense pixel-level correspondences via a 2D canonical

coordinate space. Then, the inference stage uses the learned dense correspondences to map the

image pixels from the single-view input image onto a texture extracted from TEGLO-Stage 2.

As a result, TEGLO effectively preserves high frequency details at an unprecedented level of

accuracy even at large megapixel resolutions. TEGLO disentangles texture and geometry en-

abling texture transfer (Fig.(2.14)), texture editing (Fig.(2.12)) and single view 3D reconstruction

without requiring fine-tuning or PTI (Fig.(2.11)).
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Figure 2.3. TEGLO Stage-1 Architecture - Uses a tri-plane and GLO based conditional NeRF
to learn a per-object table of latents to reconstruct the single-view image collection.

2.3.1 Stage-1: Conditional NeRF for 3D Reconstruction

Formulation. We denote the single-view image collection (I ) with class specific

objects as {o0,o1, ...,on} ∈ I . To learn 3D representations, TEGLO uses a generative latent

optimization (GLO) based auto-decoder framework, where the NeRF is conditioned on an image

specific latent vector {w0,w1, ...,wn} ∈RD to effectively reconstruct the image without requiring

a discriminator.

Network architecture. The NeRF model N is represented by TEGLO Stage-1 in

Fig.(2.3). The model N passes the input conditioning latent wi to a set of CNN-based synthesis

layers [36] whose output feature maps are used to construct a k-channel tri-plane. The sam-

pled points on each ray are used to extract the tri-plane features and aggregate the k-channel

features. Then the tri-plane decoder MLP outputs the scalar density σ and color which are

alpha-composited by volume rendering to obtain the RGB image. Volume rendering along

10



camera ray r(t) = O+ td is:

CNeRF(r,w) =
∫ b f

bn

T (t,w)σ(r(t),w)c(r(t),d,w)dt (2.1)

where T (t,w) = exp
(
−
∫ b f

bn

σ(r(s),w)
)

ds

Here, the radiance values can be replaced with the depth d(x) or pixel opacity to obtain the

surface depth. During inference, the surface depth map and 2D pixel coordinates are used to

obtain the 3D surface points via back-projection. The surface normals can be computed as the

first derivative of the density σ with respect to the input as follows:

n̂(r,w) =−
∫ b f

bn

T (t,w) σ(r(t),w) ∇r(t)(σ(r(t),w))dt

n(r,w) =
n̂(r,w)

|| n̂(r,w) ||2
(2.2)

Thus from an inference step, an RGB image, surface depth map, 3D surface points and the surface

normals of the object instance can be obtained. In Fig.(2.4), we show the sample reconstruction

results for N on the CelebA-HQ, AFHQv2 and ShapeNet-Cars datasets. In Fig.(2.5) we show

qualitative results for novel view synthesis with N trained on SRN-Cars and evaluated on a

held-out set of views. Since SRN-Cars is a multi-view dataset, we compare the rendered novel

views with their corresponding ground-truth views.

Losses. N is trained by reconstructing the image and simultaneously optimizing a latent

(wi). As noted in [61], this allows the training loss to be enforced on individual pixels enabling

training and inference at arbitrary image resolutions. For TEGLO Stage-1 (Fig.(2.3)), three

losses are minimized to train N : LRGB, is an L1 reconstruction loss between the rendered

image and the ground truth image for oi. The LPerceptual loss is a LPIPS (Learned Perceptual

Image Patch Similarity) loss between rendered image and the ground truth image. The LCamera

is the camera prediction L1 loss between the output of the camera encoder and the ground-truth
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Figure 2.4. Rendering the dataset for TEGLO Stage-2 - Rendering multiple views of images,
surface normals, depth maps and 3D surface points from CelebA-HQ, AFHQv2-Cats and
ShapeNet-Cars for training TEGLO Stage-2.

camera parameters for the camera pose to learn 3D consistent representations of the object

(oi ∈ I ).

LN = LRGB +LPerceptual +LCamera (2.3)

To train N , we use the single-view image dataset and the approximate pose for each oi ∈ I

(Sec.(2.4)). We train the model for 500K steps using the Adam optimizer [38] on 8 NVIDIA

V100 (16 GB) taking 36 hours to complete.

Design choices. As noted in Sec.(1), EG3D [11] shows medium resolution (5122) capac-

ity while using image-space approximations in the super-resolution module which negatively

affects the geometric fidelity [71]. While EpiGRAF [71] uses a patch-based discriminator for

pure 3D generation, it is still prone to issues in scaling and training with multi-resolution data.

Moreover, adversarial training using discriminators leads to training instability. Different from

EG3D and EpiGRAF that use an adversarial training paradigm, N uses a GLO-based auto-
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Figure 2.5. Novel View Synthesis - TEGLO Stage-1 results for ShapeNet-Cars data.

decoder training paradigm which jointly optimizes a latent representation and reconstructs the

image enabling arbitrary resolution synthesis - even at large megapixel resolutions - without the

constraints of a discriminator. Hence, N enables 3D representations with geometric fidelity

while also benefiting from an efficient tri-plane based representation.

EG3D [11] requires camera pose conditioning for the generator and discriminator to

establish multi-view consistency. The limitation of a pose-conditioned generator is that it does

not completely disentangle the pose from appearance which leads to artifacts such as degenerate

solutions (2D billboards), or expressions such as the eye or smile following the camera. Since N

optimizes a latent representation of an object and reconstructs it, we observe that the generator

does not require camera pose conditioning and simply using a light-weight camera predictor

network and training with a camera prediction loss (LCamera) is sufficient to learn 3D consistent

representations.

2.3.2 Stage-2: Learning Dense Correspondences

Formulation. We render a multi-view dataset (D) using N trained on single-view image

collections for the task of texture representation. We denote each object ei ∈ D comprising

of five views: ei = {v f ,vl,vr,vt ,vb} where v denotes the view, and the sub-scripts ( j for all v j)

denote frontal, left, right, top and bottom poses respectively (refer Fig.(2.4)). In D , each view

v j ∈ ei includes the depth map (d̂ j), RGB image (r̂ j), surface normals (ŝ j), 3D surface points
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Shape Code

Figure 2.6. TEGLO Stage-2 Architecture - TEGLO Stage-2 learns dense correspondences via
a 2D canonical coordinate space mapping.

(p̂ j), and the optimized latent, wi, which is identical for views of ei as it is independent of camera

pose (Fig.(2.4)). For TEGLO Stage 2, we use {{r̂ j, ŝ j, p̂ j} ∈ v j,wi} ∈ ei}.

Learning dense pixel-level correspondences across multiple views of an object is the task

of locating the same 3D coordinate point in a canonical coordinate space. Inspired by surface

fields [27], we aim to learn dense correspondences using the 3D surface points extracted from

N by back-projecting the depth (d̂ j) and pixel coordinates. Inspired by CoordGAN [51] and

AUVNet [15], we propose a dense correspondence learning network in TEGLO Stage-2 trained

in an unsupervised manner learning an aligned canonical coordinate space to locate the same 3D

surface point across different views (v j) of the same object (ei).

Network architecture. TEGLO Stage-2 (Fig.(2.6)) consists of a latent mapping network

(L ), a dense correspondence network (M ) and a basis network (C ) - all of which are MLP

networks. The 3D surface points (p̂ j) from v j ∈ ei) are mapped to a 2D canonical coordinate

space conditioned on a shape code mapped from the optimized latent wi for ei. We use a Lipschitz
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regularization [46] for each MLP layer in the dense correspondence network (M ). The latent

mapping network (L ) is a set of MLP layers that takes the wi-latent for ei as input and predicts a

shape-code for conditioning M , and coefficients for the deformed basis. Previous work [78, 15]

show that if the input is allowed to be represented as a weighted sum of basis images, to obtain a

deformed basis before decomposition, then the 2D canonical coordinate space will be aligned.

The basis network (C ) is similar to [15] and uses the predicted coefficients to decompose the

deformed coordinate points. Thus, M maps the 3D surface points to an aligned 2D canonical

coordinate space, enabling the network to learn dense correspondences using p j ∈ S extracted

from N . Next, the basis network takes the 2D canonical coordinates as input to predict the

deformed basis B. Then, B is weighted with the predicted coefficients to decompose the basis

into the 3D surface points (p j), surface normals (s j) and color (r j).

Losses. TEGLO Stage-2 is trained using three L2 reconstruction losses: the LRGB loss

between the rendered RGB image r̂ j and the predicted RGB image r j; the LNormals loss between

the rendered surface normals ŝ j and the predicted surface normals s j; LCoord loss between the

extracted 3D surface points p̂ j and the predicted 3D surface points p j.

LStage2 = LRGB +LNormals +LCoord (2.4)

To train TEGLO Stage-2, we use the rendered dataset D consisting of 1000 objects with five

views per object and the optimized latent for each identity. The networks are trained using

LStage2 loss for 1000 epochs using the Adam [38] optimizer to learn dense correspondences

across ei ∈ D .

Design choices. We use the optimized w-latent from N for learning the shape code

and coefficients for TEGLO Stage-2 because it represents the 3D geometry and appearance

information for object (ei) independent of camera pose. We observe that using a Lipschitz

regularization for every MLP layer in M suitably regularizes the network to deform the input

surface points ŝ j. Interestingly, our experiments show that simply reconstructing the 3D surface
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Figure 2.7. Inference - TEGLO texture extraction for texture transfer and editing. Red arrows
indicate the use of a K-d tree to store the texture. Blue arrows indicate the use of GT pixels.

points instead of the color, surface points and surface normals also leads to learning reasonable

dense pixel-level correspondences. We show qualitative results for TEGLO Stage-2 trained using

only LCoord loss in Fig.(2.8) as TEGLO-3DP.

2.3.3 Textured 3D Reconstruction

Extracting the texture. We use the learned dense correspondences from TEGLO Stage-2

to extract a texture map for each object oi ∈ I . We use the pose of the target image oi to extract

the 3D surface points from N and use it to map the image pixels to the 2D canonical coordinate

space. We denote this as texture tGT . Similarly, we use M to map the respective RGB values

from {v f ,vl,vr,vt ,vb} ∈ ei using the corresponding 3D surface points (s j) from five views to

the 2D canonical space and denote it as tviews. Thus, textures tGT and tviews store a mapping the

canonical coordinate point and the corresponding RGB values. The procedure is represented

in Fig.(2.7) and textures are depicted in Fig.(2.12) and Fig.(2.10). In Fig.(2.7) tO represents
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(c) EG3D-Fit (PTI)(b) LoLNeRF(a) CelebA-HQ Target (f) TEGLO(e) TEGLO-3DP(d) TEGLO Stage 1

Figure 2.8. Qualitative results - Comparison with relevant 3D-aware generative baseline
methods at 2562 resolution for CelebA-HQ.

the texture obtained by combining tGT and tviews. We store this mapping in a K-d tree which

enables us to index into the textures using accurate floating point indices to obtain the RGB

values. The K-d tree allows querying with canonical coordinates to extract multiple neighbors

making TEGLO robust to sparse “holes” in the texture. Refer Fig.(2.9).

Novel view synthesis. For rendering novel views of oi, we extract the 3D surface points

for the pose from N and obtain the canonical coordinates from M . For each 2D canonical

coordinate point ck, we query the K-d tree for three natural neighbors and obtain indices for

the neighbors which are used to obtain the RGB values. Natural Neighbor Interpolation (NNI)

[69] enables fast and robust reconstruction of a surface based on a Dirichlet tesselation - unique

for every set of query points - to provide an unambiguous interpolation result. We simplify

the natural neighbor interpolation (NNI) based only on the distances of the points ck in the 2D

canonical coordinate space to obtain the RGB values from the stored texture. The robust and

unambiguous interpolation enables TEGLO to effectively map the ground-truth image pixels

from the input dataset I onto the geometry for novel view synthesis. To extract the Surface

Field S , we render ei from five camera poses which may potentially cause camera pose biases
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Figure 2.9. Interpolating textures with sparse “holes” - Depicting the KD-Tree and Natural
Neighbor Interpolation (NNI) to interpolate any “holes” in the texture for novel view synthesis.

leading to sparse “holes” in the texture. Our formulation uses the K-d tree and NNI to interpolate

and index into the textures with sparse “holes” (Refer Fig.(S6)). In Fig.(2.9), each cell in the

5x6 grid represents a discrete pixel in the texture space and the red dot represents a canonical

coordinate point. There are three issues that may arise:

1. The canonical coordinate points may not be aligned to the pixel centers and storing them

in the discretized texture space may lead to imprecision.

2. There may be multiple canonical coordinates mapped to a discrete integral pixel wherein

some coordinates may need to be dropped for an unambiguous texture indexing - leading

to loss of information.

3. Some pixels may not be mapped to by any canonical coordinates, creating a “hole” in

discretized space. This is represented by “X” in the grid in Fig.(2.9).

K-d tree allows extracting multiple neighbors by querying with canonical coordinate points and

also enables indexing the texture using floating point values. Hence, using a K-d tree to store

the texture helps address (1) and (2). Further, using a K-d tree in conjunction with Natural

Neighbor Interpolation (NNI) effectively addresses (3). Natural Neighbor Interpolation (NNI) is

formulated as follows:

NNI(x) =
n

∑
i=0

wi(x)× f (xi) (2.5)
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wi(x) =
1

di(x)
n
∑
j=0

1
d j(x)

(2.6)

Where x is the query point, wi(x) is the simplified Laplace weight based on inverse

distances to n neighbors corresponding to the polygon potentially encroached by the query

point in the Voronoi tessellation plot, and f (xi) represents the extracted texture pixels. Storing

the texture in the K-d tree and using Natural Neighbor Interpolation enables accurate and

unambiguous (property of NNI using tessellation plot) floating point indexing into the texture to

obtain the RGB color.

Texture editing. Texture with edits are represented as tEdit in Fig.(2.7). We create the

edits on a blank image the same size as tO and denote it as redit. The edit image redit is considered

to be in the canonical space and is directly indexed into the K-d tree to be overlay on tO. Note

that we do not constrain the texture space and it may be visually aligned to a canonical pose as

in Fig.(2.12) and Fig.(2.10). The texture with an edit (tEdit) is created by overlaying redit on tO.

Qualitative results are in Fig.(2.1) and Fig.(2.12).

2.4 Experiments and Results

2.4.1 Datasets

We train TEGLO with single-view image datasets such as FFHQ [36], CelebA-HQ

[47, 34] and AFHQv2-Cats [35, 17]. To obtain the approximate camera pose, we follow [61] by

first using an off-the-shelf face landmark predictor MediaPipe Face Mesh [3] to extract landmarks

appearing at consistent locations. Then, we use a shape-matching least-squares optimization to

align the landmarks with 3D canonical landmarks to obtain the approximate pose. We also use a

multi-view image dataset - ShapeNet-Cars [14, 13] with results in Fig.(2.1) and Table.(2.4).

19



Table 2.1. Reconstruction of train images - Quantitative comparison on training data recon-
struction at 1282 resolution.

Method PSNR (↑) LPIPS (↓)
π-GAN [12] (CelebA) 23.5 0.226
LoLNeRF [61] (FFHQ) 29.0 0.199
LoLNeRF [61] (CelebA-HQ) 29.1 0.197
ABC [62] (CelebA-HQ) 26.3 -
TEGLO Stage 1 (FFHQ) 29.0 0.294
TEGLO Stage 1 (CelebA-HQ) 28.9 0.317
TEGLO (CelebA-HQ) 89.5 2.3e-7

Table 2.2. Reconstruction of test images - Quantitative comparison on test data reconstruction
at various rendering resolutions.

Method Res. PSNR (↑) LPIPS (↓)
π-GAN [12] (CelebA) 2562 21.8 0.412
LoLNeRF [61] (FFHQ) 5122 25.3 0.491
LoLNeRF [61] (CelebA-HQ) 2562 26.2 0.363
TEGLO Stage 1 (FFHQ) 2562 27.3 0.334
TEGLO Stage 1 (CelebA-HQ) 2562 27.5 0.260
TEGLO (FFHQ) 2562 84.9 2.1e-6
TEGLO (CelebA-HQ) 2562 86.2 7.4e-7
TEGLO (CelebA-HQ) 5122 82.6 4.4e-6
TEGLO (CelebA-HQ) 10242 74.7 6.9e-5

2.4.2 3D Reconstruction

We evaluate TEGLO on the task of reconstructing the input image in the same pose and

compare with baseline methods. We report quantitative results for train data reconstruction in

Table.(2.1) measuring the PSNR (Peak Signal to Noise Ratio) and LPIPS (Learned Perceptual

Image Patch Similarity) metrics for CelebA-HQ and FFHQ. We observe similar results for

LoLNeRF and TEGLO Stage-1 at 1282 resolution. However, as expected, TEGLO attains

89.5 dB PSNR and 7.4e-7 for LPIPS. We report quantitative results for test data reconstruction

from a held-out set at 2562 resolution for CelebA-HQ and FFHQ data in Table.(2.2) and for

AFHQv2-Cats data in Table.(2.3).

We depict qualitative results for CelebA-HQ in Fig.(2.8) where the red arrows indicate

missing details. For EG3D-Fit, we invert the image into the EG3D [11] latent space and perform
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Table 2.3. Comparing with GLO baselines - Quantitative results for test set reconstruction in
PSNR at 2562 resolution.

Dataset
PSNR (↑)

LoLNeRF [61] TEGLO Stage-1 TEGLO
AFHQv2-Cats [35, 17] 24.94 29.26 87.38
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Figure 2.10. Results for complex texture and geometry - Qualitative results for texture
representation and novel view synthesis with complex image samples. Compare the results with
with Fig.(24) in [10].

Pivotal Tuning Inversion (PTI) [63] for the single-view image. We observe missing details in

the results from LoLNeRF [61], EG3D-Fit [11] and TEGLO stage-1 in terms of jewelry, skin

wrinkles, eyeglass opacity, eyeglass frame, hair strand etc. As expected, results from TEGLO and

TEGLO-3DP (where TEGLO Stage-2 is trained with only surface point supervision) preserve

high frequency details missed by baselines methods, demonstrating near perfect reconstruction.

In Fig.(2.10), we show qualitative results with the texture (tO) for complex appearance and

geometry such as 3D consistent eyeglasses and make-up. Qualitative results for Cars are depicted

in Fig.(2.19) and for AFHQ-Cats in Fig.(2.18).

2.4.3 3D Consistent Novel View Synthesis

To evaluate multi-view consistent synthesis, we report quantitative results for novel view

reconstruction on the multi-view SRN-Cars data in Table.(2.4). We observe that TEGLO attains

near-perfect reconstruction of test data with 67.5 dB PSNR whereas baselines achieve 30.4 dB
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Table 2.4. Novel view reconstruction - Quantitative results for novel view reconstruction on
the SRN-Cars dataset [13] at 2562 resolution to evaluate 3D consistent novel view synthesis.
(LoLNeRF result is from the “Concatenation” baseline in ABC [62]).

Dataset
PSNR (↑)

LoLNeRF ABC TEGLO Stage-1 TEGLO
SRN-Cars [14, 13] 25.80 29.10 30.48 67.52

Table 2.5. Comparing with 3D generative baselines - Test data reconstruction with previous
state-of-the-art methods.

Method PSNR (↑) LPIPS (↓) SSIM (↑) ID (↑) 3D Consistency (↑)

EG3D-PTI 26.64 0.323 0.879 0.465 21.20
RealTime-RF [77] 22.29∗ 0.269 0.665 0.542 -

IDE-3D [73] 26.45 0.273 0.878 0.671 20.69
HFGI3D [88] 29.43 0.172 0.918 0.744 21.69

TEGLO 84.90 2.1e-6 0.999 0.883 33.47
∗From the Supplementary Material of [77].

PSNR. We evaluate the identity consistency across multiple synthesised views using the ID score

metric by computing the mean of the MagFace [49] cosine similarity scores from a sampled

camera pose. We compare the ID score for TEGLO with other recent 3D GANs and observe that

TEGLO outperforms the baselines with a score of 0.883. We also use the 3D consistency metric

from [28] to compare the multi-view consistent synthesis of TEGLO with 3D GAN baselines. In

brief, we synthesize five novel views near an input camera pose and use IBRNet [82] to predict

the input image and then compute the reconstruction PSNR. We report the 3D consistency metric

in Table.(2.5) and observe that TEGLO outperforms the 3D GAN methods. [88] notes that

“quantitative evaluation of 3D consistency is still an open question” and since 3D consistency in

novel view synthesis is better viewed as videos, we urge the reader to refer to the Supplemental

Material for this thesis. Overall, we observe that TEGLO attains near-perfect reconstruction of

test data attaining ≥ 67.5 dB PSNR, ≤ 6.9e-5 for LPIPS, ≥ 0.999 for SSIM and 33.4 for 3D

consistency.
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Figure 2.11. Single view 3D reconstruction - 3D reconstruction of test image from CelebA-HQ.
Compare with Fig.(25) in [39]).

2.4.4 Single-view 3D Reconstruction

It is the task of representing an in-the-wild or out-of-distribution image using a trained

network. Qualitative results for a held-out sample from the CelebA-HQ dataset for pre-trained

TEGLO is in Fig.(2.11). Previous work such as AUVNet [15] require additional training of a

ResNet-18 [30] for the image encoder and IM-Net [16] for the shape decoder followed by ray

marching to obtain the mesh to represent the image while methods such as EG3D [11] require

PTI (Pivotal Tuning Inversion [63]) fine-tuning to represent the image. For single-view textured

3D representation in TEGLO, we simply invert the image into the latent with no fine-tuning.

For single view 3D reconstruction and inference, we randomly sample 1K images from

the training set and render five views to train TEGLO Stage-2. To evaluate on the test data, we

invert the image by optimizing its latent for 200 steps while keeping the network parameters

frozen. Then, we render five camera views and back-project to obtain the surface points. We

then map the surface points to the canonical coordinate space to register the predicted pixels for

those surface points. Similarly, we also map the 3D surface points from the GT camera pose to

the canonical space and register GT pixels for those surface points.
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Figure 2.12. Texture editing - Qualitative results for texture edits.

Reconstructing single-view images at arbitrary resolutions while preserving 3D consis-

tency is highly desirable for several applications. However, EG3D [11] is limited by its camera

conditioned generator to possess a “baked-in” training resolution. TEGLO does not include any

camera conditioning, and as a result, it allows single-view 3D reconstruction and novel view

synthesis at arbitrary resolutions without any re-training for different resolutions.

2.4.5 Texture Editing

In Sec.(2.3.3), we describe the procedure to edit textures. Qualitative results with texture

editing for CelebA-HQ is in Fig.(2.12) and for AFHQv2-Cats and ShapeNet-Cars in Fig.(2.1).

Our edits are class-specific and target image agnostic because edits are performed in the canonical

space. Previous work, NeuMesh [90] requires spatial-aware fine-tuning and mesh guided texture

editing for precise transfer. However, TEGLO simply maps a texture edit image of the same

size as the texture into the K-d tree with an overlay of the pixels (obtaining tEdit) - precisely

transferring the edit without requiring any optimization strategies.
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Target Reconstruction Novel View Synthesis

Figure 2.13. Ablation - Results for TEGLO Stage-2 trained with one arbitrary camera pose.

2.4.6 Texture Transfer

As discussed in Sec.(2.3.3), the extracted textures are aligned in a canonical coordi-

nate space allowing texture transfer across geometries. We demonstrate texture transfer in

Fig.(2.14(a)). Here, row-1 represents the target image from CelebA-HQ for the geometry learned

by TEGLO Stage-1, and column-1 represents the textures (stored in a K-d tree) extracted after

TEGLO Stage-2. We observe realistic texture transfer despite arbitrary camera biases in ren-

dering D which are mitigated by using the K-d tree and NNI. To test if TEGLO is restricted to

the range of the five arbitrary views chosen for Stage-2, we show large angle view results for

Stage-2 trained with just a single view instead of five in Fig.(2.13) to validate our hypothesis.

Fig.(2.14(b)), shows the keypoint correspondences mapped to the canonical coordinate space

across different face identities. Since the keypoints from different identities map to the same

location in the canonical space, the effectiveness of the correspondences for texture transfer is

demonstrated.

2.4.7 Efficient Rendering at High Resolutions

For 3D high-fidelity data rendering from single-view image collections of objects,

TEGLO enables arbitrary resolution synthesis. Since the dense correspondences are learned

point-wise (using p j), there is no spatial constraint in querying M for the canonical coordinate

point. Hence, we render images of any size by first dividing the image pixels into 4 tiles,

then obtain the surface points from TEGLO Stage-1, map the surface points to the canonical

coordinate space using M and then index into the texture to obtain the RGB color value. Then,
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Figure 2.14. Texture transfer (a) Qualitative results for texture transfer with CelebA-HQ. (Top
row shows CelebA-HQ image targets). (b) Keypoint correspondences in the canonical space.

after all the tiles are computed, we can combine the divided computations into a single image of

high-resolution. The orbit video files in the thesis Supplemental Material and the high-resolution

frames at 10242 resolution in Fig.(2.17) have been rendered using this approach.

2.4.8 Ablation Experiments

Using LCamera loss. EG3D [11] conditions the generator and discriminator with the

camera pose to enable 3D consistent novel view synthesis. As noted in the main paper, the

pose-conditioned generator does not completely disentangle the camera pose from appearance

leading to artifacts such as facial expressions/eyes following the camera. In TEGLO Stage-1, we

use the LCamera,LRGB and LPerceptual losses to train N . An ablation experiment without the

camera prediction loss led to 2D banner artifacts. This is qualitatively represented in Fig.(2.15)

for “Views without LCamera” with flat and inconsistent geometries for different camera angles.

However, the results for training N using LCamera show multi-view consistent representations

demonstrating the effectiveness of using the simple camera prediction loss. Furthermore, we
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Target Views without LCamera Views with LCamera

Figure 2.15. Ablation - LCamera for TEGLO Stage-1 training.

show that the rendered orbits do not have expressions/eyes following the camera in Supplemental

video for this thesis.

TEGLO Stage-2 with LCoord loss only. Previous work AUV-Net [15] states that

methods [24, 45] that do not use color for learning dense correspondences may learn sub-par

texture representations. To verify, we train TEGLO Stage-2 with only LCoord reconstruction

loss instead of LStage2 =LCoord+LCoord+LCoord reconstruction losses. The qualitative results

are presented in Fig.(2.8) comparing TEGLO-3DP with TEGLO and other baseline results. Of

particular interest is Fig.(2.16) with qualitative results for TEGLO and TEGLO-3DP including

the texture image. We note that the reconstruction and novel view synthesis results are nearly

identical. However, we also observe TEGLO-3DP including a wayward texture representation

near the hair region. While the dense correspondences map the surface points to the appropriate

RGB image pixels, there is a scope for null pixel artifacts around the hair region when using

NNI. While the 3D reconstruction and novel view synthesis for TEGLO-3DP and TEGLO do

not differ, we note the potential for black pixels to be obtained in novel view synthesis leading to

lowered qualitative and quantitative results.
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Figure 2.16. Ablation - Qualitative comparison with TEGLO-3DP (TEGLO Stage-2 with 3D
surface point reconstruction only)

2.5 Discussion and Limitations

While TEGLO enables near perfect 3D reconstruction of objects from single-view image

collections, it requires multi-stage training. We hope that future work can simplify the framework

with an elegant end-to-end formulation. A potential next step would be to use StyleGANv2

[36] to generate high quality textures for texture transfer and editing. TEGLO could enable 3D

full-body avatars from single views with high frequency details extending methods such as PIFu

[66]. Future work could explore representing light stage data across different camera angles

in an illumination invariant manner using 3D surface points. One limitation of our method is

that the texture does not include ground truth pixels from the obstructed parts of the object. We

hope future work can address this limitation. Further, TEGLO is only able to map target image

pixels spanning the target image and hence there may be artifacts for camera views with minimal

mapped target image pixels. For example, the novel view in row-2, column-3 in Fig.(2.10), the

novel view shows a slight twist in the nose geometry partially due to the thin veil on the face

which could not be accounted for in Stage-1.

2.6 Conclusion and Broader Impact

In this work, we present TEGLO for high-fidelity canonical texture mapping from

single-view images enabling textured 3D representations from class-specific single-view image
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CelebA Target Novel Views

Figure 2.17. High resolution rendered views - Qualitative results for novel views in high-
resolution with high-frequency details such as freckles, jewelry, make-up, hair, fine details and
wrinkles.
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Novel ViewsTarget Image Reconstruction

Figure 2.18. Textured synthesis - Target view reconstruction and novel view synthesis for
AFHQv2-Cats.

Novel ViewsTarget Image Reconstruction

Figure 2.19. Textured synthesis - Target view reconstruction and novel view synthesis for
SRN-Cars.
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collections. TEGLO consists of a conditional NeRF and a dense correspondence learning

network that enable texture editing and texture transfer. We show that by effectively mapping the

input image pixels onto the texture, we can achieve near perfect reconstruction (≥ 74 dB PSNR

at 10242 resolution). TEGLO also allows single-view 3D reconstruction by simply inverting the

single-view image into the latent table without requiring any PTI or fine-tuning.

Broader impact. One of the motivating goals for TEGLO stems from the need for

photorealistic 3D reconstruction of objects from single-view image collections. As an example,

[15] use Tripleganger heads [4] - a dataset containing 515 3D meshes faces at a high cost-per-

scan requiring a custom commercial license for use. Similarly, [91] is a dataset of 938 textured

meshes of heads made available at no cost. However, the authors allude to the demographic

bias in compiling the data, the 68 DSLR camera setup, and the six month effort involved in

dataset capture - all of which do not scale and has a high potential for bias and privacy issues.

TEGLO enables high-fidelity 3D reconstruction and novel view synthesis from single-view

image collections which alleviates these issues and also improves access to high quality data to

the broader research community. Hence, TEGLO enables rendering a dataset of diverse objects

(improving fairness and mitigating bias) and also reduces the need for large scale data collection

(alleviating privacy issues).

Chapter 2, in full, has been submitted for publication of the material as it may appear

in a conference, 2024, Vishal Vinod, Tanmay Shah, Dmitry Lagun. The thesis author was the

co-primary investigator and author of this paper.
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Chapter 3

Hybrid Physical-Neural Approach to Sur-
face Relighting

3.1 Introduction

Relighting objects with complex materials is a challenging task. Learning a relightable

implicit neural rendering model for human faces, modeling both direct illumination effects

such as specular highlights and indirect illumination effects such as subsurface scattering have

limitations based on a radiance transfer formulation. OSFs [94] approximate the cumulative

radiance transfer for an object based on the assumption of an unobstructed distant light source.

An OSF formulation abstracts the subsurface scattering process as cumulative radiance transfer,

eliminating the dual integral required by a BSSRDF formulation, making it feasible for real-time

volume rendering. However, OSFs have limitations that make it infeasible to model complex

objects such as human faces: the requirement of OLAT (one-light-at-a-time) light stage data with

camera poses, assumption of unobstructed distant lighting which is impractical for large objects,

and the inability to model specular effects. Similarly, [100] propose an implicit neural rendering

model based on approximating the radiance transfer gradient to model subsurface scattering

effects, however, the formulation has the same limitations as OSFs: requiring light stage data

capture and the inability to model specular highlights. As expected, a simple experiment where a

pre-trained OSF is kept frozen and augmented with a light-weight neural renderer shows that the

residual specular highlights missed by the OSF can be accounted for. We include the augmented
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Figure 3.1. OSF + Neural Renderer - Architecture of a simple extension to a trained OSF
model with a light-weight neural renderer to model the residual specular highlights unable to be
modeled by the OSF.

OSF in Fig.(3.1) and results for the OSF + NR in Fig.(3.2) for reference on the Reading image

collection from the DILIGENT-MV [40] dataset where the statue involves significant specular

highlight effects.

The process of capturing OLAT (one-light-at-a-time) light stage data with camera poses

for human faces is laborious, expensive to set up and is time intensive. Acquiring a large dataset

of high resolution face scans is prohibitively expensive and requires a custom licensing for use -

all of these factors limit access to the research community. Toward this, we explore a growing

trend in computer vision and computer graphics research: the generation of synthetic data

for human faces. Furthermore, the Illinois Biometric Information Privacy Act (BIPA) [55] act

protects an individual’s biometric information, including retina or iris scan, fingerprint, voiceprint,

or scan of hand or face geometry, by requiring corporations to make the user aware in writing

about the purpose of collecting the data and the intended period of retention [20, 21, 80, 81, 19].

With recent advancements in computer vision, particularly Physically Based Rendering (PBR)

and Generative AI, photo-realistic rendering of human faces is possible with ground truth for

each components of light transport including the specular maps, subsurface scattering and

other indirect illumination effects. In this work, we explore synthetic data rendering for high

fidelity face relighting. Using synthetic data for human faces enables privacy preserving training
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Figure 3.2. Qualitative Results for OSF + NR - Comparing the results from OSF and OSF +
NR with the ground truth.

of face recognition and face relighting methods and does not violate BIPA or related policies.

Further, high fidelity and photo-realistic generation capabilities in current physics based rendering

methods enables generation of large scale data that can be used for photorealistic relighting

[92]. Some advantages include: rendering a dataset with multiple objects useful for telepresence

applications, developing and using a virtual light stage for data collection (Refer fig.(3.3))

and the ability to obtain ground truth data for physics-based light transport. While there are

disadvantages related to scale, obtaining sufficient number of face meshes with displacement

maps and the photorealism of the rendered data and the potential domain shift, we seek to attempt

this problem by rendering a photo-realistic dataset and train a hybrid physical-neural surface

relighting method for high fidelity relighting. If the method demonstrates significant domain

shift with respect to real world light stage data (without suitable ground truth) such as [97] or

the Imperial Light-Stage Head (ILSH) Dataset [1], we will augment our method with a domain

adaptation [75, 79] based training pipeline.

In this work, we consider the problem of reconstructing and relighting human faces from

a single input image. Current methods either consider relighting to be a purely physically-based
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(a) All lights (b) Top Row (c) OLAT (one-light-at-a-time)

Figure 3.3. Virtual Light Stage - A light stage setup in Arnold Maya with 166 light sources.
We use the face mesh of Emily [5]. (a) all 166 light sources turned on; (b) ring lighting sequence.
(c) OLAT setup.

approach using reconstruction followed by physically-based rendering [22], or with a purely

data-driven approach [57, 48]. We propose a hybrid physical-neural approach to utilize the

rich dependencies from a physics-based prior from physically based rendering and from neural

rendering. Current methods model the reflectance as diffuse Lambertian or as a simplified BRDF

to account for specular properties. However, they fail to consider subsurface scattering of skin

or the inter-reflections and volumetric scattering in indoor scenes. This work aims to perform

high-quality human face relighting by modeling long-range light interactions such as subsurface

scattering. We aim to achieve consistency among the different factors of image formation -

geometry, material and lighting. Hence, a neural differentiable renderer that effectively utilizes

the learned priors can enable photorealistic relighting with challenging light transport effects

such as subsurface scattering and soft shadows.

3.2 Synthetic Dataset Rendering

3.2.1 Related Work

Synthetic 3D faces. Microsoft’s ”Fake it till you make it” [85] discusses the use of

synthetic data for face recognition and other related computer vision tasks. The authors describe

a method for rendering 3D face models with high levels of realism and diversity, which can
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be used to train machine learning systems. However, there is a clear dataset shift between the

synthetic rendering to real world data. The authors argue that synthetic data can match real

data and demonstrate the power of domain randomization and careful design choices such as

meso-displacement and photo-realistic add-on edits. The authors note that while it requires

considerable expertise and investment to develop a synthetic face data generation framework with

minimal domain gap, it becomes possible to generate a wide variety of training data with minimal

incremental effort. A follow-up work DigiFace-1M [6] presents a large-scale synthetic dataset for

face recognition consisting of one million digital face images rendered using a computer graphics

pipeline. The authors demonstrate that aggressive data augmentation aka domain randomization

can significantly reduce the synthetic-to-real domain gap and show how each attribute affects

accuracy. By fine-tuning the network on a smaller number of real face images obtained with user

consent (which is a reasonable assumption given that it is necessary for testing and test time

adaptation techniques), they achieve accuracy comparable to methods trained on millions of real

face images. The authors rightly argue that large-scale web-crawled face recognition datasets

including a common benchmark dataset FFHQ [36] raise ethical concerns including privacy and

bias issues. An interesting recent method Rodin [83] presents a 3D generative model that uses

roll-out diffusion to automatically generate high-fidelity 3D digital avatars represented as NeRFs.

Rodin represents a NeRF as multiple 2D feature maps and rolls out these maps into a single 2D

feature plane within which 3D-aware diffusion is performed. Rodin is computationally efficient

and enables high-fidelity 3D diffusion.Rodin’s use of latent conditioning for feature generation

for global coherence enables high-fidelity avatars and with semantic editing based from text

prompts. Stable Diffusion v5, based on latent diffusion models [64] enables photo-realistic 2D

face image generation which was not possible in previous iterations paving way for realistic 2D

image generation. While these methods enable rendering realistic human faces with controllable

geometry, they do not allow controllable OLAT light stage rendering especially with ground truth

for individual components of light transport necessary to train a high-fidelity relighting model.

3D from single views. EG3D [11] discusses a new approach to generating high-quality
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multi-view consistent images using unsupervised learning from single-view 2D image collections.

The authors introduce a hybrid explicit-implicit network architecture that synthesizes high-

resolution, multi-view-consistent images in real-time while producing high-quality 3D geometry.

They achieve this by decoupling feature generation and neural rendering, which allows them to

leverage state-of-the-art 2D CNN generators for efficiency and expressiveness. However EG3D

includes image space approximations that breaks multi-view consistency and is constrained

by the tri-plane capacity and is prone to camera-pose biases (such as the eye following the

camera) due to the use of camera pose to condition the generator. EpiGRAF [71] aims to

address the shortcomings in EG3D by proposing a location-and scale-aware discriminator to

work on patches of different sizes and spatial positions. EpiGRAF uses a patch sampling strategy

based on an annealed beta distribution to stabilize training and accelerate the convergence and

hence enables high resolution synthesis with high fidelity geometry. Further, it includes a novel

hypernetwork-modulated discriminator architecture to operate on patches with continuously

varying scales - resulting in an efficient, high-resolution, pure 3D generator. While EG3D and

EpiGRAF enable 3D from single view, they are not suitable for reconstructing the identities

from the input 2D image data collections as they require fine-tuning for each image or Pivotal

Tuning Inversion (PTI) [63]. A recent work, LoLNeRF [61] aims to alleviate this issue and

enables arbitrary resolution image synthesis by using a Generative Latent Optimization (GLO)

[9] based auto-decoder training regime. LoLNeRF enables future work to draw on insights from

adversarial approaches to further improve high fidelity 3D reconstruction from single view image

collections. Recent work in single view 3D face reconstruction with relighting applications

such such as ShadeGAN [56], NeRFFaceLighting [33], LumiGAN [23] and FaceLit [60] enable

multi-view consistent relighting - however they approximate a Phong BRDF based lighting

model with specular highlights being the primary lighting effect of interest. OSFs [94] and [100]

are NeRF-based methods that model subsurface scattering with relighting effects, however they

are limited when modeling specular highlights and indirect illumination such as soft shadows.

RelightableHands [32] allows relighting hands with visibility information for soft shadows.
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Displacement Map Micro Displacement Map Rendered RGB

Figure 3.4. Displacement Maps for the Face Mesh - We use a coarse (left) and a micro (middle)
displacement map to modify the face mesh in a realistic manner. The rendered RGB (right) uses
the aiStandardSurface shader from Arnold and includes pore level details in the rendered RGB.

Illuminated Virtual Light Stage Rendering OLAT data on a Virtual Light Stage

Figure 3.5. Rendering Synthetic Data in the Light Stage - (Left) we show a fully illuminated
virtual light stage in Arnold Maya. (Right) we show an OLAT setup and a render from one
camera viewing angle. The light stage rig structure and lighting sequence have been adapted
from [2].

While the above methods and their variations including allow multi-view consistent generation

with ground truth for geometry and albedo, they are not able to provide the necessary lighting

components for relighting with a specific focus on subsurface scattering effects. All of these

factors motivate the need for a synthetic OLAT light stage dataset with suitable ground truth for

the direct and indirect components of light transport.

3.2.2 Dataset Rendering

In this work, our dataset rendering pipeline includes the use of a face mesh and a virtual

light stage dataset capture system in Arnold [26] Maya. Arnold is a physics-based production
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RGBA Albedo Surface Normals Direct Indirect Specular

Coat SSS Albedo SSS SSS Direct SSS Indirect

Figure 3.6. Example from the Rendered Dataset - Our rendering consists of a face under 166
different lights in an OLAT setting with multiple camera viewpoints. We aim to scale the virtual
light stage to include 150 cameras for large scale experiments with multiple face meshes.

path tracer that simulates physics-based light transport with photorealistic results. We use Arnold

to render our training dataset. As depicted in Fig.(3.3), we use the OLAT lighting sequence in the

virtual light stage and use Arnold Maya’s aiStandardSurface1 to model the light transport based

on the displacement maps for the face mesh (depicted in Fig.(3.4)). An interesting note in [100]

is that existing datasets for modeling indirect illumination effects such as subsurface scattering

include capture of translucent objects at low resolutions which affect the reconstruction fidelity

as micro geometry details are not fully captured. Hence, we seek to include a micro displacement

map for the face mesh to capture these details to model the subsurface scattering effects.

In Fig.(3.5), we demonstrate the rendering of the dataset in the virtual light stage with

a row of lights and a perspective camera to show the full light stage rig illuminated by a ring

of lights (left) and in an OLAT sequence on the right. Based on our analysis in Chapter 3 and

the limitations of modeling the radiance transfer for relighting human faces, we obtain several

AOVs2 (Arbitrary Output Variables) which allows us to render arbitrary shading components

into individual images which can be used as ground truth in our training pipeline. Arnold’s

AOVs allow us to obtain the direct and indirect lighting contributions which is essential for the

1https://help.autodesk.com/view/ARNOL/ENU/?guid=arnold for maya am Arnold for Maya User Guide
html

2https://help.autodesk.com/view/ARNOL/ENU/?guid=arnold for maya render settings aovs html
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high-fidelity reconstruction and relighting framework we propose. Depicted in Fig.(3.6), we

obtain the albedo, surface normals, direct lighting contribution, indirect contribution (notice

the subsurface scattering and indirect specular contributions), specular, coat, SSS, SSS Direct

(direct SSS contribution) and SSS Indirect (scattering within the skin traveling upto a certain

mean free path distance). We also obtain the z-depth information that we use in training our

proposed inverse rendering framework. For the experiments in this thesis, we work with the

Emily face mesh and 166 light sources from multiple camera angles. The next step involves

procuring a set of face meshes comprising diverse skin tones and textures to make our dataset

more representative for real-world use cases.

3.3 PB-NSR

Given an OLAT dataset of human faces consisting of the RGBA images under varying

lighting and camera viewing angles, albedo, surface normals, depth map, direct lighting compo-

nent and the subsurface scattering component, we aim to reconstruct the geometry, material and

lighting and relight the face from a different lighting direction. Our proposed method consists of

two stages: In Stage-1 (Fig.(3.7), we perform joint neural reconstruction and relighting with a

single decoder multi-decoder framework. The encoder takes in the input image and maps it to

a lower dimensionality to be used by the inverse decoder and the relight decoder. The inverse

decoder takes the encoder output and provides the albedo, surface normals and depth map as

output (in experiments we also work with coat and specular maps). The relight decoder takes the

output from the encoder, a new lighting direction and skip connections from the inverse decoder

to predict the direct lighting component for the new lighting direction. In Stage-2 (Fig.(3.8)), we

aim to use the direct estimate from a physically based renderer as our direct lighting estimate.

Note: in this thesis, we use the direct estimate from Stage-1 as a proxy inductive bias with physi-

cal cues based on the bidirectional connections used during training. The direct lighting estimate

and the geometry and material output from Stage-1 are used as input to the IndirectLightingNet
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Figure 3.7. Stage-1: Joint Neural Reconstruction and Relighting - Overview of the proposed
method with joint reconstruction and relighting. (Right) Comparison between traditional BRDF
based light transport with complex subsurface scattering effects modeled by BSSRDF.

to predict the subsurface scattering component. Then, a neural renderer takes the direct lighting

component and the indirect lighting as input to predict the final relit output.

3.3.1 Joint Neural Reconstruction and Relighting

Formulation. We denote the OLAT image dataset (I ) with several components of

shape, material and light transport: RGBA rendered image (ri), depth map (di), surface normal

map (si), albedo map (ai), direct lighting estimate (di), the subsurface scattering component (sssi)

and the lighting vector li. Hence, we have ∀i = 0...n, {r0,di,si,ai,di,sssi, li} ∈ I .

Network architecture. We derive inspiration from indoor inverse rendering [42] to

develop a single encoder multi-decoder framework with the aim to predict the relit direct estimate

that is physically meaningful while preserving input image detail. The encoder takes in the input

image ri based on lighting vector li and predicts an intermediate latent representation to be used

by the decoders. The first decoder is the inverse decoder that predicts the albedo (ai), surface

normal (si), depth map (di) and the lighting vector li. The relight decoder takes the intermediate
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representation from the encoder, a new lighting vector (l j) and the features of the inverse decoder

at each decoder upsampling level as input to predict the direct lighting component for the new

lighting vector l j. Jointly training the inverse and relighting decoders with the bidirectional

connection incorporates the inductive bias of appearance variations under varying lighting

directions which can help improve the accuracy and the generalization when dealing with complex

light transport effects such as subsurface scattering in human faces. We use skip connections

between the inverse decoder and the relight decoder to mimic physics-based rendering through

the interaction of shape and material parameters with incident illumination. This enables the

encoder latent space to model appearance variations for shape and materials under different

illumination conditions. Compared to methods that use in-network rendering layers without

trainable parameters, our network with bidirectional connections provides inductive biases for

shape and material estimation as well as physics based cues for relighting.

In this work, we use the output of Stage-1 as the physically-based direct lighting estimate.

For further investigation, we seek to gain further insights from physically-based rendering [59]

to compute the Monte Carlo estimate for the direct shading at point p as:

E j(p) =
area(j)

N j
∑
q

L j(p → q) max(cosθpcosθq,0)
∥q−p∥2

2
(3.1)

where p → q is the unit vector from p to q on the light source. Toward this, we model

the light sources from our virtual light stage as a lamp with a bounding box each predicted by

our inverse decoder. To ensure computational tractability, we use the physics-based renderer

to predict the direct lighting estimate. We upgrade the direct lighting prediction to include

subsurface scattering effects by using a neural renderer to approximate the indirect lighting

component. This is a valid next step since our rendered dataset includes ground truth for indirect

illumination - specifically the subsurface scattering component. While physically based rendering

using OptiX is the proposed approach to include further insights from PBR, we also require a

large scale dataset with ground truth for invisible lamp polygons to train the PBR layer. This
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Figure 3.8. Stage-2: Neural Rendering for Indirect Lighting - Overview of the proposed
hybrid physical and neural rendering method to consider various components of image formation
to relight human faces.

process is in the works and the thesis includes results for the PB-NSR Stage-1 predictions for the

direct lighting component.

3.3.2 Neural Rendering for Indirect Lighting

Network architecture. To train PB-NSR Stage-2, we use an IndirectLightingNet based

on a standard U-Net [65] architecture to predict the subsurface scattering component (ŝssi).

The light weights neural renderer is also based on a U-Net but with just 4 blocks and with c/2

channels at each layer compared to the original U-Net. The neural renderer takes in the predicted

direct lighting estimate (d̂i) and the subsurface scattering component (ŝssi) to predict the final

lighting estimate. The formulation for the neural renderer have been used by related work such

as TotalRelighting [57] and Lumos [92].

Losses. To train Stage-2, we use the direct lighting estimate (d̂ j) and the geometry

and material (di,ai,si) as input to the IndirectLightingNet to predict the subsurface scattering

component. From our experiments, we note that predicting the subsurface scattering component

(inclusive of both direct and indirect subsurface scattering) and then including a light-weight

neural renderer to learn to combine the direct estimate and the subsurface scattering component

provided better results than using the IndirectLightingNet to predict the indirect lighting compo-
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nent (from Fig.(3.6)) and combining it with the direct estimate. This is primarily due to the minor

contributions of the sss indirect component leading to several images (∼ 35 of 166 lighting

directions) with very minor or nearly imperceptible contribution from sss indirect. We postulate

that using the sss indirect component as the output from IndirectLightingNet will be possible

when training with a large scale rendered dataset. As depicted in Fig.(3.8), the light-weight

neural renderer takes the direct lighting estimate (d̂ j) and the sss prediction (sssi) as input and

predicts the final relit output.

3.3.3 Experiments and Results

We train PB-NSR Stage-1 for 2500 epochs on our dataset of synthetically rendered

dataset of Emily’s face mesh. We use the Adam [38] optimizer with a learning rate of 1e−4 and

a StepLR schedule reducing the learning rate every 2000 steps. We use the L1 reconstruction loss

with the depth (Ld), the albedo (La), the surface normals (Ls) and the direct lighting estimate (Ld)

to supervise the training. We also use the LPIPS loss for the direct lighting estimate to improve

photo-realism of the prediction (LLPIPS). Our combined loss to train PB-NSR Stage-1 is:

LStage-1 = Ld +La +Ls +Ld+LLPIPS (3.2)

Our Stage-1 training attains an average PSNR of 26.7 dB for the direct lighting estimate.

We train PB-NSR Stage-2 for 3000 epochs on our dataset of synthetically rendered OLAT

light stage data. To train the IndirectLightingNet in Stage-2, we use the L1 reconstruction loss

and the LPIPS loss to supervise the subsurface scattering prediction. Similarly, the light-weight

neural renderer is trained using the L1 loss and LPIPS loss for the final relit prediction of PB-NSR

Stage-2. The losses used to train PB-NSR Stage-2 are as follows:

LIndirectLighting = Lsss +LLPIPS sss (3.3)

LNR = Lrelit +LLPIPS relit (3.4)
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Figure 3.9. Qualitative Results - Qualitative results for train set reconstruction and relighting.

LStage-2 = LIndirectLighting +LNR (3.5)

The final prediction from PB-NSR Stage-2 attains an average reconstruction PSNR of

32.69 dB. We depict qualitative results for the train set reconstruction with sufficient OLAT

lighting wherein the specular highlights are prominent in Fig.(3.9). We observe the direct

estimate predictions include some grainy artifacts and hence includes scope for improvement by

using a PBR renderer as discussed in the following section. As expected, the grainy artifacts in

Stage-1 propagate to the subsurface scattering prediction in Stage-2. We also depict qualitative

results for lighting vectors where subsurface scattering is more readily observable in Fig.(3.10).

We observe the predictions of PB-NSR to be quite close to the ground truth with minimal

graininess. By including further physics based prior from a differentiable PBR layer to Stage-2,

we expect our results to improve.

3.4 Discussion and Next Steps

Our initial experiments were primarily related to a NeRF-based reconstruction modeling

the radiance transfer and including a neural rendering network to model complex indirect

illumination including soft shadows and the residual specular highlights missed by the OSF
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Figure 3.10. Qualitative Results - Qualitative results for direct lighting prediction from Stage-1
(row-1), subsurface scattering prediction from Stage-2 (row-2) and the final relighting prediction
(row-3).

and neural radiance transfer gradient formulation. However, we were unable to access OLAT

light stage data with camera poses. While some datasets such as ILSH [1] from the ICCV

2023 workshop include light stage data with camera poses useful for novel view synthesis,

they lack OLAT data required to model subsurface scattering. Further, the NVPR dataset [97]

dataset we accessed included only 4 identities with approval for external use and did not include

camera poses. Using multi-view stereo methods such as Colmap [68, 67] fails in cases where

the background lacks texture. As a result, we attempted to obtain the surface normals and

depth from multi-view data. Our hypothesis was to evaluate the strength of a self-supervised

(reconstruction based) method with a physically based differentiable renderer (OptiX) and a

neural renderer since only a decomposition that is physically meaningful can be recombined by

a physics based renderer to produce appearances that match the input and the relit ground truth

image. However, our experiments were unsuccessful primarily due to the lack of a large scale

light stage dataset. Initial implementation of the self-supervised hybrid neural physically based

rendering without any ground truth except for light stage data diverged early - demonstrating
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the need for intermediate supervision to model long range light transport effects especially in

a sparse data regime. Another consideration to render our own dataset stemmed from the face

that there were no other datasets with densely sampled camera views for objects demonstrating

subsurface scattering effects. While [100] claim to release a dataset of 8 scenes with objects

where subsurface scattering is the primary light transport effect, the dataset is not relevant to our

use case of high fidelity face relighting.

Our next steps include rendering a large scale OLAT dataset of human faces with micro

displacement details. This will allow us to train PB-NSR Stage-2 with the OptiX physically-

based renderer to predict the direct lighting component. We postulate that further insights from

PBR in addition to the physically based prior learned in Stage-1 will improve our results. Further,

this will enable us to use only the sss indirect component for Stage-2 instead of using sss along

with the light-weight neural renderer. We also seek to evaluate the effectiveness of our method

using the large scale synthetic dataset recently made available by [92].

3.5 Conclusion

In this work, we aim to perform high fidelity relighting of human faces with a focus on

subsurface scattering effects. Initially, we explored OSF, a NeRF-based method to approximate

the cumulative radiance transfer after all the light transport effects have occurred. However, we

soon realized that getting access to OLAT light stage dataset of human faces with camera poses

is a challenge. We worked with the NVPR dataset to obtain the shape and geometry ground

truth suitable for our reconstruction based formulation. However, the size of the dataset and

the lack of ground truth for several important aspects of light transport prompted us to explore

realistic synthetic dataset rendering. Hence, we setup a virtual light stage in Arnold for Maya

and render an OLAT dataset using Emily’s face mesh with all necessary AOVs required for

training our hybrid physical-neural rendering formulation. We then propose a two stage training

regime that benefits from a physically based prior and from using a neural renderer to estimate
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the direct and indirect components of light transport. We show that our proposed method can

suitably approximate the subsurface scattering components and enables high fidelity relighting

with complex light transport effects.
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