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ABSTRACT OF THE DISSERTATION

Computational Methods for Modeling and Mapping Cellular Decision Networks

By

Margaret Jing Yi Tse

Doctor of Philosophy in Chemical Engineering

University of California, Irvine, 2017

Assistant Professor Elizabeth L. Read, Chair

Cell phenotypes are controlled by complex interactions between genes, proteins, and other

molecules within a cell, along with extracellular signals. Gene regulatory networks (GRNs),

which describe these interactions mathematically, are multi-stable dynamical systems, in

which attractor states represent cell phenotypes. Transitions between these states are thought

to underlie critical cellular processes, including cell fate-decisions, phenotypic plasticity, and

carcinogenesis. In principle, a GRN model can produce a map of possible cell phenotypes

and phenotype-transitions, potentially informing experimental strategies for controlling cell

phenotypes. Such a map could have a profound impact on many medical fields, ranging from

stem cell therapies to wound healing. As such, there is increasing interest in the development

of theoretical and computational approaches that can shed light on the dynamics of these

state-transitions in multi-stable gene networks. In this work, we approach the problem of

understanding cellular decision-making on two fronts. First, we develop and extend rare-event

stochastic simulation methods, toward efficient characterization of the global dynamics of

multi-stable stochastic systems, such as GRNs. When applied to a mutual inhibition network

motif and a model of pluripotency in stem cells, our sampling methods demonstrate that

spontaneous cell phenotype transitions involve collective behavior of both regulatory proteins

and DNA, and that transition dynamics are sensitive to parameters governing transcription

factor-DNA binding kinetics. Our approach significantly expands the capability of stochastic

xi



simulation to investigate gene regulatory network dynamics. In the second portion of this

work, we model the dynamic response of macrophages to complex stimuli by inferring cell-

decision networks from data, in the absence of detailed molecular information. Macrophage

activation has been described as a continuum, and different stimuli lead to M1, M2, or

mixed phenotypes. Flow cytometry experiments performed in the Liu lab at UCI found

discovered that macrophages acquire a mixed activation state when exposed to a combination

of LPS, IFN-γ, IL-4, and IL-13. Additionally, mathematical modeling of candidate regulatory

networks indicates that a complex inter-dependence of M1- and M2-associated pathways

underlies macrophage activation. Together these results corroborate a continuum model of

macrophage activation and demonstrate that phenotypic markers evolve with time and with

exposure to complex signals.
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Chapter 1

Introduction

1.1 Gene Regulatory Networks

Many multicellular organisms are comprised of multiple cell types, most of which have the

same genome. The vast difference in cellular function between, for example, a cell in a hair

follicle and a cardiomyocyte is determined by differential expression across the genome. A

gene regulatory network (GRN) is the complex network of biochemical interactions between

genes, proteins, transcription factors, and other signaling molecules that determines the

expression level of genes within a cell and, thereby, its phenotype. Nonlinear interactions

in GRNs give rise to multiple high-probability states (metastability) which correspond to

specific gene expression profiles that are unchanging in time or resistant to slight perturbations

[124, 92], i.e. observable cell phenotypes [159]. Transitions between cell phenotypes underlie

critical cellular processes such as differentiation [62], reprogramming [15], and carcinogenesis

[136]. Understanding the molecular level interactions that control these transitions could

potentially inform strategies for controlling cell phenotype. As such, there is considerable

interest in generating a comprehensive map of phenotype states accessible to a model gene
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regulatory network, the relative probabilities of these states, and the likely transition paths

connecting them.

1.2 Stochasticity in Gene Regulatory Networks

Over the past twenty years, the inherent noisiness of gene expression has been amply

demonstrated. Stochastic biomolecular fluctuations can significantly impact dynamics of

expression due to small-number effects[19, 125, 104]. Positive feedback, which is common

in regulatory networks, can amplify these fluctuations, giving rise to large-scale changes

in gene expression programs. As such, intrinsic biomolecular noise is thought to underlie

phenotypic variability in cell populations[13, 162, 71, 29]. Stochastic processes can also allow

for spontaneous noise-induced transitions between metastable gene expression states. This

stochastic state-switching can be advantageous by priming cells to diversify according to

alternative developmental programs[27, 37], or by promoting survival of microorganisms or

cancer cells in fluctuating environments[17, 5, 136]. These findings highlight the need to

understand how cellular networks achieve—or remain resistant to—noise-induced switching.

1.3 Modeling of Gene Regulatory Networks

Due to the size and complexity of GRNs, there are many methodological frameworks for

modeling and analyzing them at different levels of abstraction, trading biological accuracy for

ease of computation and ability to incorporate a larger number of biochemical species (Figure

1.1). Among the simplest and most abstracted models are logical models, such as Boolean

networks [74]. In Boolean networks, all chemical entities are abstracted as being in an activated

or highly expressing state (1) or an inactive state (0). This abstraction greatly reduces the

amount of biological data necessary to construct the network model while also simplifying

2



any methods to calculate dynamics of interest. More biological accuracy can be captured in

continuous models, such as ordinary differential equations (ODEs) or stochastic differential

equations (SDEs) [73]. However, continuous models often assume that gene expression

levels depend directly and deterministically on concentrations of regulatory proteins (via

“Hill”-type functions) [85], whereas increasingly it is understood that genes can stochastically

transition between active and inactive states. These stochastic transitions have functional

consequences, for exampling in priming cells to develop along alternative differentiation paths

in developmental networks [3, 13] and in contributing to bistable expression patterns of

cytokines in immune cells [126]. Likewise, SDEs suffer from ignoring molecular discreteness,

especially due to the single-molecule nature of genes. The most complete models of GRNs are

single-molecule models, such as the chemical master equation (CME) which describes the time

evolution of the probability density vector of all possible cell state configurations. However,

full analytical solutions of the CME are impossible due to the “curse-of-dimensionality” [118]

where each additional chemical species exponentially increases the size of the system. To

bypass this limit, single time trajectories of the CME can be simulated using the stochastic

simulation algorithm [51]. A graphical outline of how the epigenetic landscape of all accessible

phenotypes in a GRN can be mapped through the CME is presented in Fig. 1.2.

3



Figure 1.1: Comparison of Gene Regulatory Network Models. Models are listed along
a scale of increasing molecular detail on the x-axis and increasing scalability and ease of
simulation on the y-axis. The most abstracted and simplified models are logical networks,
which can be used to analyze extremely large biochemical networks with a minimal amount
of measured data. On the other side of the spectrum are single-molecule models of GRNs,
where every change in gene state or copy number is simulated in a Monte Carlo step. While
these networks have significantly more molecular detail, specialized computational methods
are required to make their solution tractable for larger biochemical systems.

4



Figure 1.2: Gene Regulatory Networks (A) Can be Expressed as a Chemical
Reaction Network (B), Which Describes the State Space of All Possible Gene
Expression Profiles (C). (A) The epigenetic configurations of a two gene mutual repression
genetic regulatory network. The binding and unbinding of transcription factors to the genes
can then be described as a chemical reaction network of m genes (B), where G, K, and W
describe the probabilities of protein production, protein degradation, and change in epigenetic
configuration for each gene. Solving the reaction network gives the probability distribution of
all possible gene expression profiles (all protein copy numbers and epigenetic configurations).
The negative log of the probability distribution can be projected onto the levels of protein
copy numbers alone to show the gradient of the system (C). Using an order parameter,
a variable that describes progress along a transition, the system can be converted into a
1-dimensional potential, where trajectories (single solutions of the chemical reaction network)
shown in red can spontaneously jump between wells.
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1.4 Rare-event Sampling

While stochastic single molecule networks provide the most molecular detail and are most

faithful to biological processes, mapping out the global dynamics of these networks is

extremely computationally intensive, except for the smallest of systems. Furthermore, GRNs

are metastable, and transitions between multiple metastable states can be infrequent on the

time-scale of the long-lived states of the network. Conventional SSA of GRNs can spend long

waiting times before capturing a single transition of interest. Specialized computationally

methods called rare-event sampling methods help redistribute computational effort from

high-probability regions of state space to low-probability regions without modifying the

underlying dynamics. Rare-event sampling methods typically involve discretizing the state-

space of the system in order to access long-timescale kinetics on the basis of short-timescale

trajectories in each region [8]. The state-space is naturally defined in terms of copy numbers

and conformational/binding configurations of all biomolecular species, but even the smallest

2-gene network (i.e., the toggle switch [48]) has >2 species (including DNA promoter or

regulatory binding sites, mRNA transcripts, protein products with multiple configurations,

and so on, depending on the level of detail of the model). This challenge can be addressed

by sampling along a single, relevant order parameter, such as a progress coordinate for the

transition of interest, as pioneered by Allen and Ten Wolde with the Forward Flux Sampling

(FFS) [7] method. Alternatively weighted ensemble methods can use adaptive partitioning

to re-frame high-dimensional state space into a set of quasi-1-dimensional sampling regions

[70, 38, 33]. This approach enables sampling collective dynamics involving multiple system

variables, without prior knowledge of an order parameter or the nature of dynamics in the

transition region. In chapter 2 and 3 of this work, we present two methods to expand

stochastic simulation methods to GRNs with rare-events.
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1.5 Macrophage Polarization

In chapter 4 of this work, we explore methods for inferring GRNs from a limited set of

biological data, specifically in macrophage polarization. Macrophages are key effector cells

of the immune system. They have important roles in phagocytosing and clearing foreign

material and dead cells, and they are responsible for many signals in the immune system.

They are many (at least four) sub-phenotypes of macrophages, but there are two macrophage

activation states that are most prominent in the immune response [109]. Classically activated,

or M1 macrophages are typically induced by LPS (foreign antigens) or Th1 cytokines, and

are the first responders to foreign material and pathogens in the body, engulfing them and

attacking with an oxidative onslaught. Alternatively activated M2 macrophages, which are

induced by Th2 cytokines or by parasitic infection, are responsible for anti-inflammatory

signaling and enhanced matrix production [43]. Because of the vastly different duties of

these macrophage phenotypes, controlling the dominant macrophage response can lead to

drastically improved medical outcomes for a variety of diseases [121].

Previously, macrophages found to have both M1 and M2 characteristics were thought to be

unstable states either in transit to either the M1 or M2 phenotype, or artificially held in

place by continuous mixed polarizing signals [109]. However, there is experimental evidence

that M1+M2 cells are stable phenotypes, and the macrophage effector response exists on a

spectrum of M1 and M2 responses [138]. Tumor-associated macrophages (TAMs) in human

cutaneous squamous cell carcinoma appear to represent a mixed population of M1, M2, and

bi-activated M1+M2 cells [120]. Similarly, CD4+ T cells display a continuously tunable mixed

state under mixed input conditions of polarizing signals [12]. A quantitative understanding

of the prevalence of these mixed populations or their dynamics in GRNs is missing. By

combining experimental data with stochastic simulations, we will characterize the response of

macrophages to defined inputs and understand macrophage cross-activation at a population

level.
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Chapter 2

DNA-Binding Kinetics Determines

Mechanism of Noise-Induced

Switching in Gene Networks

2.1 Introduction

Multi-stable dynamics in gene regulatory networks has been proposed as the basis for

the existence of diverse cell types[74, 68, 66]. In this view, the biochemical interactions

encoding gene networks give rise to complex, nonlinear expression dynamics. Distinct

gene expression states—cellular phenotypes—are self-stabilizing attractors of the dynamical

system. Transitions between attractors correspond to critical cellular processes, including

developmental fate decisions[167, 158], cellular reprogramming[66], phenotype switching[61],

and carcinogenesis[69]. As such, there is interest in characterizing the global dynamics of

complex multi-stable gene networks to gain insight into the relative stability of cell states

and the processes by which transitions between states can occur.
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Common approaches to modeling gene networks formulate system dynamics as a set of

stochastic biochemical reactions encompassing, for example, transcription factor binding

and unbinding to regulatory sites on DNA, gene transcription and translation, and degra-

dation/dilution of mRNA and protein molecules. The associated Master Equations are

amenable to Monte Carlo simulation (e.g., by the Gillespie algorithm[51]), which can exactly

account for intrinsic stochastic fluctuations and molecular discreteness. Many studies of

gene regulatory networks employ continuum approximations and dimensionality-reduction

to aid in the analysis of complex dynamics. For example, occupancies of binding sites on

DNA are often assumed to be in quasi-equilibrium with gene expression levels (i.e., concen-

trations of expressed proteins), which leads to nonlinear Hill function expressions for gene

interactions[75, 56, 48]. This assumption stems from a separation of timescales, when rates

of binding and unbinding of regulatory proteins to DNA sites are fast relative to the rates

of protein synthesis and degradation. This kinetic regime has been termed the “adiabatic”

limit, in analogy to electron transfer reactions[135, 131].

Recent studies have focused on gene network dynamics in cases where this separation of

timescales does not apply[167, 130, 83, 45, 49]. In eukaryotic regulation, highly complex

regulatory processes such as chromatin remodeling (in contrast to simple protein binding)

drive fluctuations in gene expression. Such processes occur on relatively slow timescales;

slow fluctuations in chromatin structure have been identified as a major source of gene

expression noise in eukaryotes[125, 104]. While knowledge of the detailed biochemical

reactions underlying such higher-order regulation is generally lacking, theoretical studies

have explored how different kinetic regimes contribute to the stability of gene expression

states. Notably, cell-states have been found to be most stable (most resistant to noise-induced

switching) in the adiabatic limit, where fast kinetics at DNA regulatory sites allows rapid

response of gene expression states to local concentrations of regulatory proteins[45, 157].

This has led to the hypothesis that a “weakly-adiabatic” kinetic regime allows for relatively

frequent stochastic state-switching, and thus developmental plasticity, in pluripotent stem
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cells[167, 130, 46].

In addition to exploring the principles governing the stability of gene expression states, recent

theoretical studies have predicted transition paths (or reaction coordinates) of stochastic state-

switching in regulatory networks. These paths describe the most probable step-wise changes

over multiple species in the network (e.g., the time-dependent changes in gene expression

patterns) that occur as the system moves from one metastable state to another. Approaches

for calculating transition paths have largely adopted analytical or numerical methods based

on large deviation theory from chemical physics [92, 127, 16, 170, 160], related path integral

approaches[167, 158, 83, 168], or Monte Carlo simulations[46, 108, 145]. Valuable insights

into the dynamics of noise-induced switching in gene networks have emerged from these

studies, including the significance of nonequilibrium phenomena (e.g., the irreversibility of

switching paths) in gene network dynamics.

Gaining quantitative insight to stochastic state-switching in gene networks is mathematically

and computationally challenging. Stochastic fluctuations, overlapping temporal scales, and

large numbers of interacting species can preclude the use of analytical approaches. Ap-

proximation methods may not accurately predict switching mechanisms driven by intrinsic

biochemical fluctuations. For example, mean-field approximations have been found to distort

multi-stable landscapes in some biochemical networks[133, 86, 95, 14]. On the other hand,

brute force Monte Carlo simulations can be plagued by inefficiency because state-switching

may be a rare event: long waiting times between transitions mean that simulations capture

few, if any, switching events.

Numerical rare event sampling algorithms provide an alternative approach, by preferentially

simulating events of interest without modifying the underlying system dynamics[7, 35, 38].

Moreover, these algorithms aid interpretation of large amounts of noisy simulation data

by providing automated means of extracting essential dynamical properties[134]. These

types of approaches have been adopted for the study of biochemical networks, including
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circadian rhythms[36], enzymatic cycles[38], and genetic switches[108]. So-called “string”-

based sampling algorithms[35, 152, 6] are especially well-suited to discovery of transition

paths for rare events in complex dynamical systems.

In this study, we employed a recently developed weighted-ensemble string (WE-string)

simulation method[6] to study noise-induced switching in a set of genetic toggle switch

networks. By efficiently predicting transition paths involving collective changes over all

species in the biochemical network, the approach uncovered new insights into how spontaneous

switching depends on fluctuations of both protein number and DNA-binding occupancies. In

particular, we found that the kinetics of protein binding and unbinding to DNA regulatory

sites controls the mechanism of switching by determining whether the switching event is

driven by these binding/unbinding events, or is instead driven by fluctuations in protein copy

numbers. Our results potentially inform strategies to perturb gene network dynamics in order

to stabilize or destabilize particular cellular states, or drive a desired cellular transition.

2.2 Modeling and Simulation Approach

2.2.1 Toggle switch models.

To explore the capability of the WE-string simulation method to predict transition paths in

gene networks, we applied it to a set of related chemical network models for the genetic toggle

switch. In this ubiquitous motif, two genes mutually repress one another through the action

of their protein products, giving rise to a bistable gene expression pattern. Described in

detail for the lysis/lysogeny decision of bacteriophage λ [123], the mutual repression motif is

recognized as underlying a wide variety of cellular decisions, from embryonic development[113]

to haematopoiesis[169] to specialization of T cell subsets[63]. The discovery of this motif

paved the way for theory-based approaches to the design of synthetic gene circuits[48].
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Figure 2.1: The Weighted Ensemble String Method Identifies the Most Probable
Transition Path in Many Sub-Spaces (A) (Top) The quasi-potential surface φ = − ln(PS)
for a bistable gene network. States with lower potential (bluer colors) are more stable (color
scale is same for all panels). (Bottom) A single stochastic simulation trajectory that switches
from the SA attractor basin (high expression of protein a encoded by gene A) to the SB basin
(high expression of protein b by gene B). φ is projected onto sub-spaces representing a and b
protein copy numbers.
(B) The simulation method predicts the most-probable transition path by utilizing a “string”
connecting two states of interest to adaptively partition the state space and sample short
stochastic trajectories initialized in each partition. (Top) The simulation is initialized with
a string representing a guess path for the SA → SB transition (corresponding Voronoi
partitions plotted underneath). (Bottom) After the simulation has converged, the string (and
corresponding partitions) indicates the most probable transition path.
(C) The predicted transition path contains information on all network species: for the toggle
switch network, it contains information on protein copy numbers and gene activities (DNA
occupancies). (Top) Transition path for the SA → SB switch, projected onto a, b, and Aon

sub-spaces, where Aon is the probability that the regulatory site for Gene A is unbound,
rendering it “on” (active). (Bottom) Same transition path projected onto a,b, and Bon

sub-spaces, where Bon is the probability that the regulatory site for Gene B is unbound.
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2.2.2 Quasi-potential landscape.

The stability of cell states can be expressed by a potential landscape over the gene network

state-space[158, 155, 67]. We use a definition for a quasi-potential function based on the

stationary probability distribution: the quasi-potential φ is taken to be φ = − ln(PS), where

PS is the stationary (steady-state) probability over the state-space (Fig. 2.1A). Defined in

this way, areas of state-space with low potential are most probable, and therefore most stable.

However, this quasi-potential does not completely describe dynamics in non-equilibrium,

open systems such as biochemical networks[158, 170, 35]. Additionally, characterizing the

quasi-potential landscape of a GRN by through brute force Monte Carlo simulation is

computationally intractable due to rare events in GRNs.

2.2.3 Transition path sampling algorithm.

Predicting the most probable switching path by brute-force simulations is inefficient, because

switching events are infrequent, and individual trajectories may be highly variable (Fig. 2.1A,

6.1, and 6.2). To predict the most probable path between two states of interest, the WE-string

algorithm preferentially samples dynamics in the transition region (a low-probability area of

state-space), statistically merging information from many short trajectories. The algorithm

achieves this by combining Weighted Ensemble rare event sampling [70] with a string-based

adaptive discretization method for partitioning the state-space[41]. Adelman and Grabe

recently introduced the method[6], and showed that it compares favorably to other path

sampling methods in terms of efficiency, and could successfully sample dynamics in the space

of many collective variables in an application to protein conformational change.

Rare-event sampling methods typically involve discretizing the state-space of the system in

order to access long-timescale kinetics on the basis of short-timescale trajectories in each

region[174]. The computational expense of discretizing a system evenly over N dimensions
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scales exponentially with N, which quickly becomes intractable for gene networks. The state-

space is naturally defined in terms of copy numbers and conformational/binding configurations

of all biomolecular species, but even the smallest 2-gene network (i.e., the toggle switch)

has >2 species (including DNA promoter or regulatory binding sites, mRNA transcripts,

protein products with multiple configurations, and so on, depending on the level of detail

of the model). This challenge can be addressed by sampling along a single, relevant order

parameter, such as a progress coordinate for the transition of interest, as pioneered by Allen

and Ten Wolde with the Forward Flux Sampling (FFS) method[8]. Alternatively, string-based

methods adaptively partition space along a “string”: a 1-dimensional path winding through

a high-dimensional space, which connects two states of interest. This approach enables

sampling collective dynamics involving multiple system variables, without prior knowledge of

an order parameter or the nature of dynamics in the transition region[34].

The string is defined by a set of Nstr evenly-spaced “nodes”, or points in the full state-space;

these nodes define the centers of Nstr regions. All points in the space lie in a region which is

defined by the nearest string node. Thus, the string nodes are the generating points of Voronoi

polyhedra. The string is initialized as a “guess”-path connecting two states (Fig. 2.1B). For

each iteration of the simulation, multiple weighted stochastic trajectories (“replicas”) in each

region are simulated for a time τ . After each iteration, the WE method statistically combines

and duplicates weighted replicas as needed to ensure unbiased sampling of the partitioned

space. After Tmove iterations of τ , the string position is updated by moving the string nodes

towards the average position of replicas in each region collected from the last Tavg iterations

of τ , using a procedure of moving, smoothing, and reparameterization. Details of simulation

parameters and algorithm implementation are in Methods. A more detailed description of

the general algorithm is in reference [6].

Because the string is defined as a list of points in the system state-space, the converged string

contains information about the probable step-wise changes along all network dimensions over
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the course of the transition. For our model toggle switch network (Fig. 2.2), this means that

the predicted transition path includes information both about gene expression levels (copy

numbers of protein products, a and b) and gene activity states (i.e., likelihood of gene states

Aon and Bon), which reflect the occupancy states of the DNA binding sites (Fig. 2.1C).

2.3 Methods

2.3.1 Toggle Switch Reaction Network

We considered two previously-studied variants of the toggle switch, which we term the

“base network”[133] and the “network with explicit dimerization” (Fig. 2.2 and Equations

2.1,2.2,2.3)[108]. In both variants, protein dimers act as repressors of the other competitor

gene. The switch is symmetric with respect to the rate parameters governing the behavior of

each of the two genes, A and B. Translation and transcription are subsumed into a single

biochemical reaction for synthesis of the two encoded proteins, a and b. The two genes exist

in one of two occupancy states, giving rise to binary regulation (Aon/off, Bon/off), where only

the “on” states contribute to protein synthesis. We furthermore studied the “general” and

“exclusive” versions of the switch; the exclusive switch assumes that the a2 and b2 repressors

competitively bind to a single regulatory site that controls both genes; therefore, both genes

cannot simultaneously be in the “off” state (i.e., the doubly repressed state is disallowed

(equations in SI 6.1)).

Protein synthesis and degradation reactions are given by:

Aon
g−−→ Aon + a Bon

g−−→ Bon + g

a
k−−→ ∅ b

k−−→ ∅
(2.1)
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In the base network, dimerization is neglected, and gene repression is represented by:

Aon + 2 b
h−−⇀↽−−
f

Aoff Bon + 2 a
h−−⇀↽−−
f

Boff (2.2)

These reactions give rise to an overall rate of gene inactivation of hx(x− 1)/2, where x is the

repressor protein encoded by the competing gene. In the network with explicit dimerization,

the above reactions are replaced by:

Aon + b2
h−−⇀↽−−
f

Aoff Bon + a2
h−−⇀↽−−
f

Boff

2 a
d−−⇀↽−−
u

a2 2 b
d−−⇀↽−−
u

b2

(2.3)

Rate parameters for the reaction network are given in Table 2.1. The effect of DNA-binding

kinetics was studied by varying the rates h and f (binding and unbinding of transcription

factors to DNA, respectively). The binding equilibrium constant Xeq = f/h was maintained

at a constant value, such that the locations of the two stable states are preserved.

2.3.2 Calculation of quasi-potential

We calculated PS and φ by expressing the Chemical Master Equation (CME) for the network

in matrix form: dP
dt

= AP , where A is the transition rate matrix over a truncated state-space

(0 ≤ a, b ≤ 120), and solving for the eigenvector associated with the zero-eigenvalue[73] using

MATLAB[1]. For parameter regimes giving relatively short waiting times between switching

events (i.e., Parameter Sets II and III), we also obtained PS from a single long Gillespie
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Figure 2.2: Schematic diagram of biochemical reactions in the genetic toggle switch network
(inset: basic network motif of two mutually repressing genes). Gene A codes for repressor
protein a (blue), and gene B codes for protein b (red). Each gene is controlled by a regulatory
element (e.g., the promoter). When the regulatory element is unbound, the gene is on (active),
or free to express protein. When it is bound by a homodimer of the opposing repressor, the
gene is off (inactive).
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simulation trajectory, using BioNetGen(ver. 2.2.2)[44]. The quasi-potential landscapes

obtained from each method were indistinguishable.

2.3.3 Transition path simulation

The WE-string sampling method was adapted from Adelman et al.[6]. The procedure

for string-smoothing, parameterization, and separate sampling of forward and backward

paths (by separating replicas according to their most recently-visited basin) was adapted

from Dickson, et al.[36]. String ends were fixed in the two stable attractor basins, SA and

SB, corresponding to states with high Gene A expression and high Gene B expression,

respectively. SA and SB were defined as hyper-spheres with unit radius in N-dimensional

state-space (base network: N=4 a, b, Aon/off , Bon/off , explicit dimerization network: N=6

a, b, a2, b2, Aon/off , Bon/off). The basin centers were found by identifying the minima of

the quasi-potential for each parameter set. The number of string nodes, Nstr, was 20, and

the number of replicas in each region (Nrep) was 150. Definitions and values of additional

simulation parameters are given in Table 6.1. “Switch Progress” is defined as the normalized

distance along the converged string. That is, for the forward path, the progress at the ith

string node is defined by Di/DAB, where Di is the Euclidean distance to the ith node from the

center of SA, and DAB is the total distance along the string. The simulation was determined to

have converged after the position of the string remained stable over > 1000 string-movements.

Convergence was determined from the root mean-squared difference between the current node

positions and the running average of the previous 100 positions (Figs. 6.3). Sampling code

was written in MATLAB and Gillespie trajectories were simulated using BioNetGen[44].
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2.3.4 Calculation of switching rates

Switching rate constants kAB were estimated from brute force Gillespie simulations when

possible (faster switching regime: parameter sets II and III) or WE sampling, in cases

where capturing switching events from brute force simulations was intractable (rare-switching

regime: parameter set I). The network parameters are symmetric, such that kAB = kBA.

For the brute force simulations, kAB was estimated by inverting the mean first passage time

of (SA → SB) transitions from 1000 trajectories. The WE rate estimation followed [173],

using a linear partitioning of state space along the progress coordinate λ with bins of unit

length. λ is given by λ = na− nb, where na = a + 2Boff , nb = b + 2Aoff (general switch)

or na = a+ 2a2 + 2Boff , nb = b+ 2b2 + 2Aoff (exclusive switch); this is the same progress

coordinate as used previously[108, 8]. The simulation timestep was chosen to be the same

as that of the WE-string simulation for the corresponding parameter set; 150 replicas were

simulated in each bin.
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Network h [k−1] f [k−1] g [k−1] k [k−1] kAB [t−1] kAB [t−1]

Parameters (general) (exclusive)

Baseline Mean Std. Mean Std.

I 102 104 80 1 1.1× 10−6 5× 10−7 5.9× 10−10 6× 10−11

II 10−1 10 80 1 2× 10−4 9× 10−5 3× 10−4 2× 10−4

III 10−2 1 80 1 6× 10−3 2× 10−3 2× 10−3 8× 10−4

Explicit- kAB [t−1]

Dimerization (exclusive)

h [k−1] f [k−1] g [k−1] k [k−1] d [k−1] u [k−1] Mean Std.

I 8.89× 103 105 80 8.944 1 1 3.3× 10−10 7× 10−11

Table 2.1: Rate parameters and calculated SA → SB switching rates kAB, for all studied genetic toggle
switch variants (base and explicit-dimerization networks, general and exclusive). Rate parameters
correspond to the schematic in Fig. 2 and Methods. h and f : binding and unbinding rates (respectively)
of proteins to DNA. g: protein synthesis, k: protein degradation, d and u: binding and unbinding
rates of monomer proteins to form homodimers. All network parameters are reported in units of [k−1]
(inverse degradation rate) in the base network and [u−1] (inverse dimer unbinding rate) in the explicit-
dimerization network. Parameter set I corresponds to the adiabatic regime, where the propensities of
proteins binding and unbinding to DNA (hx(x− 1)/2 and f , respectively) are large relative to g and k.

2.3.5 Validation of transition path simulation

Validation of switching mechanisms predicted by the transition path simulations was done

by comparison to brute-force switching trajectories (where possible), and by committor

analysis[94]. Successful switching trajectories harvested from brute force simulations were

binned according to the progress coordinate λ. Additional simulations assessed committor

probabilities along the converged strings: these reflect the probability that simulation replicas

in a given region will next “commit” to the final target state, rather than returning to their

most recently-visited basin.
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2.4 Results

2.4.1 Stability of phenotypes depends on DNA-binding kinetics

We calculated the quasi-potential landscape for the genetic switch, and varied the parameters

governing DNA-binding/unbinding kinetics between the adiabatic (fast kinetics, Figs. 2.3

and 2.4, parameter set I) and non-adiabatic (slow kinetics, Figs. 2.3 and 2.4, parameter

set III) regimes. By varying rates of unbinding (f) and binding (h) while maintaining

their constant ratio Xeq = f/h the bistability and locations of the attractor basin centers

are preserved, but the barrier height separating the two states changes (Figs. 6.4 and

6.5). Our results show that the barrier height decreases with decreasing adiabaticity, in

agreement with previous results([133]). This difference is also reflected in the calculated

rate constants kAB for spontaneous switching from the attractor state SA to SB (2.1). The

rate constant for spontaneous switching between metastable states has been identified as

a measure of stability or robustness of gene expression states to noise. In agreement with

previous studies[167, 130, 45, 157, 133], we find that the rate of switching slows with increasing

adiabaticity, indicating that gene expression states are more stable with faster DNA-binding

kinetics. This trend was preserved for all variants of the switch (2.1). For parameter set I,

kAB is much lower for the exclusive switch than for the general, while the switching rates

for the two variants are of the same order of magnitude for sets II and III. Interestingly, the

switching rates are nearly identical for parameter set II.

21



Figure 2.3: Quasi-potential surfaces and predicted transition paths for the base general toggle
switch network. Left to right: network rate parameters with decreasing adiabaticity (slower
DNA-binding kinetics) (see Table 2.1 for parameters) (Top). Transition paths superimposed
on the 2D projection of the quasi-potential surface. The black and white paths illustrate the
forward (SA → SB ) and backward (SB → SA ) transitions, respectively. (Middle) Transition
paths plotted as protein copy numbers vs. switch progress (protein a (blue), protein b (red),
and total protein number (a+ b, black). Switch progress is defined as the normalized distance
along the transition path (see Methods). Forward switching (SA → SB) is displayed as solid
lines, backwards (SB → SA ) as dotted lines. (Bottom) Transition paths plotted as gene
activities vs. switch progress. The activity of gene A (Aon, blue curve), is the probability of
the regulatory site of gene A being unbound, which renders it active. (Similar for Bon, red
curve).

22



Figure 2.4: Quasi-potential surfaces and predicted transition paths for the exclusive toggle
switch network, with competitive binding of repressors to regulatory sites. All definitions
same as Fig. 2.3 Left to right: network rate parameters with decreasing adiabaticity (slower
DNA-binding kinetics) (see 2.1 for parameters) (Top). Transition paths superimposed on the
2D projection of the quasi-potential surface. (Middle) Transition paths plotted as protein
copy numbers vs. switch progress (Bottom) Transition paths plotted as gene activities vs.
switch progress.
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2.5 Sampling algorithm finds transition path for the

toggle switch

Transition paths of noise-induced switching between gene expression states were predicted by

performing WE-string sampling of stochastic simulations. Transition paths were predicted for

both forward (SA → SB) and backward (SB → SA) switching events, and were compared to

the numerically calculated quasi-potential landscapes for the three parameter sets. Although

the WE-string simulations require no foreknowledge of the underlying potential in the

transition region, the paths converge to the relatively low-potential (i.e., high probability

density) transition tube connecting the two states (Figs. 2.3 and 2.4). In addition to mapping

out the region of state-space traversed by successful transitions, committor analysis (Fig.

6.9 and 6.10, and Methods) indicates that, for most studied parameter sets, the string also

accurately reflects the true reaction coordinate for the transition. Progress along the string

corresponds to the most probable step-by-step changes undergone as the system progresses

from one basin to another. However, slight discrepancies exist for the general switch in the

non-adiabatic regime, likely due to a known limitation of string-based sampling methods in

cases of wide transition tubes[41]. Predicted transition paths were robust to differences in

simulation initial conditions (guess paths) (Fig. 6.6).

2.6 Transition paths reveal additional dynamic features

and non-equilibrium phenomena

The predicted transition paths also reveal that the system dynamics is not governed solely

by the topography of the potential surface. The paths reveal additional features, including

pathway oscillations and non-overlapping forward and reverse paths, in agreement with
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previous studies[158, 108]. These features can be seen by comparison to calculated Minimum

Energy Paths (Figs. 6.7 and 6.8), which reflect only gradient dynamics over the projected

quasi-potential surface. The degree to which the forward and reverse paths diverge depends

both on the parameters and on the choice of sub-space on which the system dynamics is

projected. For example, when projected onto the protein copy number sub-space, the paths

show more divergence in the non-adiabatic regime than in the adiabatic regime for the general

switch (Fig. 2.3) while the opposite is true for the exclusive switch (Fig. 2.4). For the exclusive

switch in the non-adiabatic regime (Fig 2.4, parameter set III), there is clear divergence of

the forward and reverse transition paths in the sub-space of DNA-occupancy states (“gene

states”), yet the transition paths are nearly superimposed in the protein sub-space (Fig 2.4.).

Protein number oscillations are observed in the adiabatic regime for the exclusive switch

(Fig. 2.4, parameter set I). This motion is not echoed in the DNA binding occupancies,

suggesting that it results solely from the birth-death reactions for protein expression. In the

non-adiabatic regime for the general switch (Fig. 2.3, parameter set III), oscillatory motion

in the proteins is echoed in the DNA-binding occupancies (“gene activities”), suggesting

that it could result from previously described “eddy currents” in gene networks, where slow

transcription factor binding/unbinding events drive cyclic dynamics of protein expression

in the non-adiabatic limit[130, 157, 168]. However, as discussed above, the detailed features

of the string for the non-adiabatic general switch may not reflect dynamics along the true

reaction coordinate.

2.6.1 Influence of DNA-binding kinetics on switching mechanism

The predicted transition paths for the toggle switch reveal that the switching mechanism is

altered by the DNA-binding kinetic parameters. This is seen by considering the switch progress

separately in terms of either protein copy numbers or gene activities: the switch progress
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in these sub-spaces is not synchronized, and the degree to which they are asynchronous

depends on the DNA-binding kinetics. In this symmetric system, when the system reaches

the separatrix at (a = b), the transition can be considered to be half-complete. This crossing

corresponds closely to the half-distance point along the transition path (Switch Progress = 0.5)

(Figs. 2.3,2.4). Under a quasi-equilibrium assumption, the gene activities depend directly on

the levels of protein expression, according to Aon = 1/(1 + b2/Xeq) and Bon = 1/(1 + a2/Xeq).

As such, when protein expression from the two competing genes reaches equivalence, the

genes would then also have equal probabilities of being in the active (unbound) states, giving

(Aon = Bon). However, the transition paths reveal that this crossing is not necessarily reached

simultaneously in both sub-spaces. Similar trends are seen in the parameter dependence for

the different switch variants: in the adiabatic regime, the gene activities reach (Aon = Bon)

after the protein numbers reach (a = b) (Figs. 2.3 and 2.4, left column), while in the

non-adiabatic regime, the gene activities equalize before the proteins (Figs. 2.3 and 2.4,

right column). In other words, when DNA-binding kinetics is slow, stochastic binding and

unbinding events play a larger role in driving the switch towards completion, and protein

expression follows. Conversely, when DNA-binding kinetics is fast, birth-death fluctuations in

protein numbers drive the switch. This trend was preserved for additional studied parameter

sets (Figs. 6.11 and 6.12), and also appeared in averaging of switching trajectories harvested

from brute-force simulations (Figs. 6.1 and 6.2).

The simulations predict that the exclusive and general switch variants (see Methods) progress

through different transition states. Our results are in agreement with the previous finding[108]

that the general switch transitions through a state in which both genes are repressed, which

is also reflected in the decrease in overall expression of proteins (Fig. 2.3, “total” expression

curves). For the exclusive switch variant, the transition progresses through a region where

each gene has a nearly equal probability of being “on” or “off”. Additionally, the total protein

number when the switch is half-complete (Switch Progress = 0.5) remains high after an

initial decrease (Fig. 2.4, “total”). These transition states clearly reflect the difference in
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the DNA occupancy states available to each toggle switch variant. In the general switch, all

combinations of bound/unbound states at the regulatory sites of the two genes regulatory sites

are allowed (i.e., Aon/Bon, Aon/Bon, Aoff/Bon, Aoff/Boff), while in the exclusive switch,

the Aoff/Boff state is not accessible due to competitive binding in the case of overlapping

regulatory sequences. This scenario is the limiting case of a reduced binding rate of a repressor

if the competing repressor is already bound to the DNA.

2.6.2 Advantage of transition path simulation method for multi-

dimensional networks with rare switching

We applied the sampling algorithm to the extended network with explicit dimerization

(Methods). The parameters of the extended network were chosen such that the base and

extended networks give identical total protein expression at steady-state, in terms of the

variables na and nb (Methods and SI). The predicted transition paths showed qualitatively

similar switching mechanisms for the base and extended networks. In particular, the trend

of asynchronous switching in protein numbers and gene activities was preserved in the

network with explicit dimerization, with gene activities lagging behind protein numbers in

the adiabatic regime (Fig. 2.5). For this parameter set, it was not possible to access the

full quasi-potential surface: because the size of the state-space increases exponentially with

dimensionality (i.e., number of species), the addition of two more molecular species (the

dimers a2 and b2) renders the transition rate matrix too large for straightforward numerical

calculations (see Methods). This curse-of-dimensionality does not limit Gillespie simulations;

however, brute-force simulation of 109 timesteps failed to capture a single switching event

(Fig. 2.5A) due to the low probability of switching (kAB = 3.3 × 10−10, Table 2.1). Our

results thus demonstrate that the WE-string sampling method is particularly advantageous

for studying transition paths for networks with several or more molecular species and long

waiting times between events of interest.
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Figure 2.5: Transition paths predicted for the exclusive switch with explicit dimerization,
parameter set I (see Table 2.1), and incomplete quasi-potential surface. A) Predicted transition
paths for the SA → SB (black) and SB → SA (white) transitions. The 2D projection shows
the quasi-potential surface obtained from a brute force Gillespie simulation of 109 timesteps
initialized in SA. The long simulation fails to produce a single switching event, giving rise
to a one-sided, incomplete quasi-potential surface. Despite the rarity of switching for this
network (kAB = 3.3× 10−10, Table 2.1), the simulation method remains capable of predicting
the most probable transition path. B) Transition paths plotted as protein copy numbers vs.
switch progress C) Transition paths plotted as gene activities vs. switch progress.

2.7 Discussion

In this work, we applied recently-developed stochastic simulation methods to the study

of gene-regulation dynamics, in order to predict switching mechanisms in a ubiquitous

bistable gene network. Our simulations recapitulate several general aspects of gene network

switching, including the increased stability of cell states to noise-induced switching with fast

DNA-binding/unbinding kinetics, and evidence of non-equilibrium phenomena in switching

dynamics, in agreement with previous studies[167, 158, 45, 157, 108, 133]. Our simulations

also uncovered new insights into stochastic phenotype switching. In particular, we found

that switching progresses asynchronously in the separate sub-spaces of protein copy numbers

or DNA-occupancies (i.e., gene activities). We observed a trend whereby the gene activities

lagged behind the protein numbers during the switching transition in the fast-DNA-binding

(adiabatic) kinetic regime, and switched ahead of the proteins in the slow-DNA-binding

(non-adiabatic) regime. Thus, our results reveal that the detailed mechanisms (and overall
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rates, kAB) of spontaneous switching depend on the network parameters. Our findings suggest

that protein copy-number fluctuations play a more significant role than DNA-site-occupancy

fluctuations in driving the switch toward completion in the adiabatic regime, whereas the

converse is true in the non-adiabatic regime. Our study also demonstrates that rare-event

sampling algorithms, in particular string-based methods[152], are well-suited to the discovery

of transition paths that link metastable states in gene networks.

Stochastic state-switching in gene networks is thought to be a mechanism driving phenotypic

heterogeneity in genetically-identical cell populations. This type of non-genetic heterogeneity

induced by transient switching events appears to play a role in diverse biological contexts,

including development and disease. In stem cell networks, probabilistic differentiation has

been linked to stochastic switching of pluripotent cells between sub-states, distinguished

by different levels of expression of key transcription factors[164, 141, 26, 72]. Stochastic

state-switching is also thought to allow bacteria to switch into and out of antibiotic-resistant

states[17], virus-infected cells to switch into and out of latency[162], and cancer cells to switch

into and out of chemotherapy-resistant states[136]. Identification of the mechanisms by which

these switching events occur can provide a route to discovery of novel strategies for cellular

engineering (e.g., stem cell reprogramming) and drug treatment. However, mechanistic

studies of switching can be experimentally challenging, particularly when only a fraction of

cells in a population is poised to transition between states[23]. As such, quantitative models

coupled with the computational approaches presented here could provide important insight

into underlying mechanisms, e.g., by predicting patterns of gene expression associated with

cells that are in transit between phenotypic states.

Chromatin remodeling contributes to gene expression noise by stochastically transitioning

individual genes between on (active) and off (inactive) states[125, 104]. These transitions

can occur on timescales that are of the same order or longer than mRNA and protein

lifetimes[98]. Though the toggle switch model studied here is highly simplified, the slow-DNA-
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binding (weakly- or non-adiabatic) kinetic regime broadly captures this complex epigenetic

regulation. The relative instability of phenotypic states in this regime has been hypothesized

to underlie developmental plasticity of pluripotent stem cells[167, 130]. Our results suggest

that stochastic fluctuations at the level of the individual promoter sites, rather than changes

in local regulatory protein concentration, play a critical role in driving the spontaneous, global

switching events that poise pluripotent cells to choose probabilistically between alternative

lineages.

The simulation method employed in this study simultaneously tackles two challenges encoun-

tered in modeling gene network dynamics: the rare-event problem (switching between gene

states may occur rarely, giving rise to impossibly long simulation convergence times), and the

curse of dimensionality (switching requires coordinated changes involving many species in the

network). By applying the WE-string method to different toggle switch variants in multiple

kinetic regimes, we demonstrate its potential flexibility for capturing stochastic dynamics in

different gene network systems. We found that a major advantage of the method is its ability

to simultaneously track dynamics of both protein products and DNA occupancy states (i.e.

promoter states), which together control global gene network dynamics.

Previous studies of transition paths in gene networks treating DNA occupancies as being in

quasi-equilibrium with protein numbers implicitly assumed that dynamics in the two network

subspaces is identical[92, 127, 16, 170, 160].Our results show that, even in the adiabatic

regime, where a separation-of-timescales assumption is justified, the switching dynamics of

the gene activities and protein numbers have distinct features. Theoretical methods have

been developed recently for studying noise-induced transitions in gene networks, which can

account for non-adiabaticity (slow DNA-binding) by path integral approaches based on

approximations to the CME[167, 168]. In this study, we explore an alternative approach in

direct sampling, which circumvents the need for approximations to the CME, can be used in

conjunction with available stochastic simulation software packages[44], and potentially scales
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more easily to other types of biochemical networks with many species.

The application of rare-event sampling techniques to study switching dynamics in gene

networks was pioneered previously with the FFS method[8]. Morelli, et al.[108] carried

out a detailed study of the toggle switch by FFS; our network model is largely based on

theirs, although we studied parameter regimes commensurate with those of Sasai, et al.[131],

producing larger average protein numbers. The transition states we found for the general

versus exclusive switch variants are in qualitative agreement with their study, although direct

quantitative comparison of our results to theirs is not possible, because of the different

parameter regimes, and because their study did not focus explicitly on the mechanistic

dependence on adiabaticity.

In principle, FFS and string-based sampling methods can access the same information; the

advantages and disadvantages of each method, making them potentially complementary, have

been discussed previously[34]. FFS samples dynamics along a single order parameter, which

must be defined a priori, and which tracks progress between initial and final states. Choice of

this parameter is non-trivial, and a poor choice can lead to computational inefficiency, though

statistical methods to optimize the order parameter have been developed[22]. Use of a single

order parameter necessarily results in loss of information about dynamics along separate

system coordinates; the progress coordinate λ is much more sensitive to protein copy numbers

than to DNA-occupancy states. Adaptive string-based methods were developed to circumvent

this problem and access collective dynamics in spaces of many order parameters[35]. Because

progress through a transition is measured by successive string nodes, each of which represents

a configuration in the full state-space, this approach offers a more intuitive description of

dynamics in gene networks with many species. Moreover, the approach enabled us to directly

isolate separate contributions of protein numbers and DNA-occupancy states to the switching

mechanism, which in turn revealed the mechanistic dependence on adiabaticity.

However, string-methods also have potential limitations. Convergence of the string to the
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most probable transition path may not occur in systems with highly complex quasi-potential

landscapes with several or more local minima, so extension of the method to more complex

gene networks remains to be explored. The transition path predicted by the converged string

may not correspond exactly to the true chemical reaction coordinate for some networks

(as defined by committor probabilities[94]), due to the difficulty of accurately partitioning

wide transition tubes[41]. Our results show that, despite these potential limitations, the

WE-string method was able to resolve switching dynamics over a wide range of parameters.

Even in the non-adiabatic limit, the major mechanistic predictions (regarding the nature of

the transition state and the asynchronous switch progression in the protein vs. gene-activity

subspaces) were found to be robust by comparison to brute force trajectories. Our findings

suggest that the method may be particularly useful for exploring dynamics of gene networks

where little information (such as a suitable progress coordinate) is available a priori, and may

prove particularly powerful in combination with other, complementary rare-event sampling

approaches.
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Chapter 3

Rare-Event Sampling of Epigenetic

Landscapes and Phenotype

Transitions

3.1 Introduction

In multicellular organisms, differentiation of pluripotent stem cells into tissue-specific cells

was traditionally considered to be an irreversible process. The discovery of cell reprogramming

revealed that a the identity of a cell is not irreversibly stable, but rather plastic and amenable to

control by perturbation of gene regulatory interactions—for example, through over-expression

of key transcription factors [148]. Cellular plasticity has also been observed in other contexts,

where cells appear to spontaneously transition among phenotypically distinct states. For

example, in embryonic stem cells, expression levels of key transcription factors show dynamic

heterogeneity, which is thought to enable diversification of the population prior to lineage

commitment [3, 37, 72, 141, 117]. This heterogeneity may result at least in part from stochastic
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state-transitions between functionally distinct, metastable subpopulations [72, 140, 47, 64].

Stochastic state-transitions have also been proposed to play a role in cancer, by enabling

cancer stem cells to arise de novo from non-stem subpopulations [54], or by enabling cells

to reversibly transition to a drug-tolerant phenotype [136]. In microbial systems, stochastic

phenotype switching has been identified as a survival mechanism for populations subjected

to fluctuating environments [5, 17].

Mathematical modeling has provided a basis for understanding how gene regulatory mecha-

nisms and network interactions control cellular identity, stability, and phenotype-transitions.

These approaches yield a quantitative means of reinterpreting the long-standing conceptual

framework known as Waddington’s epigenetic landscape [155, 20, 158, 67]. In a mathematical

framework, the “valleys” in the landscape that stabilize cell identities within distinct lineages

correspond to attractor basins of a high-dimensional nonlinear dynamical system [68]. The

nonlinearity results from positive feedback in transcriptional regulation and epigenetic barriers

to chromatin remodeling, for example. These feedback mechanisms give rise to multiple,

stable (or metastable) phenotype-states accessible to a given genome. Given the “bursty”

nature of gene expression and ever-present molecular fluctuations in the cell [42, 78], an

active area of research is in modeling the effects of so-called intrinsic noise on gene regulatory

network (GRN) dynamics. These mathematical models support the idea that intrinsic noise

can drive stochastic phenotype-transitions [16, 131, 46, 150, 49], which, though likely to

be exceedingly rare in general cellular contexts, may explain the heterogeneity observed in

embryonic stem cells where epigenetic barriers appear to be lowered [27].

Mathematical models of GRN dynamics that treat stochastic molecular processes are often

formulated as probabilistic Master Equations, in which the system evolves probabilistically

over a discrete state-space of molecular species and configurations according to a defined

set of biochemical reaction rules. Another common framework is that of a coupled system

of ODEs describing the expression levels of genes in the network, with the inclusion of
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additive noise terms. The Master Equation framework is well-suited to studying how “local”

stochastic molecular events (e.g., transcription factors interacting with DNA or chromatin

state-transitions near promoters) impact “global” dynamics of phenotype stability and state-

switching [130, 46, 167, 150, 49]. These molecular fluctuations affecting promoter activity

have been shown to significantly impact the structure of epigenetic landscapes, motivating the

use of Master Equation-based approaches. That is, the number and stability of phenotype-

states accessible to a given GRN varies depending on the kinetic parameters governing these

fluctuations [46, 150, 30]. Furthermore, ODE or “mean-field” models that average over these

fluctuations can show qualitatively different landscape features [86, 133, 95].

Master Equation approaches face the well-known challenge of the “Curse-of-Dimensionality”,

as solving them requires enumeration of a state-space that grows exponentially with the

number of molecular species in the network. For this reason, discrete stochastic models of

GRNs are often studied by stochastic Monte Carlo simulation, via the Gillespie algorithm [51].

However, stochastic simulation can also be problematic: in systems with metastability, such

as GRNs, stochastic simulation becomes highly inefficient. Transitions between metastable

states are rare events (i.e., rare relative to the timescale of fluctuations within a metastable

attractor basin), and thus difficult or impossible to observe. Often, these rare events are

precisely the events of interest, such as in GRNs where infrequent state-transitions represent

critical cell-fate transitions.

Rare-event sampling algorithms are designed to overcome these challenges, by redirecting

computational resources towards events of interest, while maintaining statistical accuracy to

global system dynamics [7, 172]. In this work, we present a rare-event simulation-based method

for computing and analyzing epigenetic landscapes of stochastic GRN models. We combine

rare-event methods with coarse-graining and analysis by Transition Path Theory–adopted

from the field of Molecular Dynamics of protein folding [114]–and show that this unified

framework provides an automated approach to map epigenetic landscapes and transition
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dynamics in complex GRNs. The method quantifies the number of metastable phenotype-

states accessible to a GRN, calculates the rates of transitioning among phenotypes, and

computes the likely paths by which transitions among phenotypes occur. We apply the

method to a model of pluripotency in mouse Embryonic Stem Cells. Our results reveal rare

sub-populations and transitions in the network, demonstrate how global landscape structure

depends on kinetic parameters, and reveal irreversibility in paths of differentiation and

reprogramming. Our approach is not limited to gene regulatory networks; it is generalizable

to other stochastic dynamics frameworks and is thus a potentially powerful tool for computing

global dynamic landscapes in areas such as signal-transduction, population dynamics, and

evolutionary dynamics.

3.2 Methods

A graphical overview of the computational pipeline presented in this paper can be found in

Fig 3.1.
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Figure 3.1: Computational Pipeline for Rare-Event Sampling of Epigenetic Land-
scapes and Phenotype Transitions. The input to the computational pipeline is a reaction
network model of gene regulatory network dynamics. Stochastic simulations are performed
using SSA [51] and Weighted Ensemble rare-event sampling [70]. The WE method can be run
in two modes: Rate Mode computes the rate of transitioning between two user-defined regions
of interest with high accuracy. Transition-Matrix Mode computes the pairwise transition
probabilities among Nbins adaptively defined sampling bins that span the system state-space.
Further visualization and analysis of the transition-matrix can be performed, including
automatic designation of metastable phenotypes via the coarse-graining framework [122] and
identification of likely transition paths [114].
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3.2.1 Gene Regulatory Network Models

We demonstrate the rare-event sampling method for two representative GRN models. A

small, two-gene network serves as a model system to validate the simulations. We then

apply the method to a more complex model of pluripotency in mouse Embryonic Stem Cells

(mESCs).

Exclusive Mutual Inhibition, Self-Activation Model

The Exclusive Mutual Inhibition, Self-Activation (ExMISA) model is a two-gene network

representing an archetypal motif at cell-fate branch points [66, 53]. Each gene, denoted

generically as A or B, encodes a transcription factor that activates its own transcription and

represses transcription of the other gene. We adopt previous conventions [75, 131, 46] for

stochastic GRN dynamic models. The full list of biochemical reactions and parameters can

be found in the Supplement, Chapter 6.3 and Chapter 6.2. The model encompasses stochastic

birth/death processes for transcription factor production and degradation, and stochastic

binding and unbinding of transcription factors to DNA regulatory/promoter regions; the

binding-states of these regions governs the production rate. Each transcription factor is

assumed to bind to DNA as a homodimer, giving cooperative regulation. In the “exclusive”

network variant, transcription factors compete for binding sites on DNA (only one transcription

factor dimer can be bound to a gene’s promoter at a time). The discrete state-vector, which

completely describes the state of the system, is given by x = [Aij, Bij, na, nb]. Aij and Bij

represent the three possible promoter binding-states for each gene (i.e., A/B00, A/B10, A/B01

denote unbound, activator-bound, or repressor-bound states). The copy-numbers of expressed

protein transcription factors are denoted by na and nb for products of gene A and B,

respectively, and may in principle take any nonnegative integer value. All processes related

to transcription, translation, and assembly are subsumed into a single protein birth reaction.
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For genes in state A/Bij, this production occurs with rate constant gij. The production rate

is high when the promoter is bound only by the activator (its own product). Otherwise, if

unbound or repressor-bound, a low “basal” rate of expression is assumed, i.e. g00 = g01 < g10.

Degradation of protein products occurs with rate k, and stochastic binding/unbinding of

transcription factors to DNA occur with h and f , respectively. The model is symmetric, with

equivalent parameters for the two genes.

Pluripotency Network Model

The pluripotency network model of mESCs was developed by Zhang and Wolynes [167] on

the basis of experimental literature and previous models. The 8-gene network shares the same

stochastic reaction framework as the ExMISA model. The genes (NANOG, OCT4, SOX2,

GCNF, KLF4, PBX1, GATA6, and CDX2) suppress and activate each other through homo-

and heterodimers of their encoded transcription factors (OCT4 and SOX2 form a heterodimer;

all other regulatory interactions occur via homodimers). Binding of transcription factors

to promoters is not exclusive. The model has five kinetic parameters: gon, goff , h, f , and k,

corresponding to the rate of gene expression in the activated state, the rate of gene expression

in the un-activated state, binding of transcription factors to DNA, unbinding of transcription

factors from DNA, and transcription factor degradation (or exit from the nucleus). Genes are

expressed at the basal rate goff except when bound by at least one activator and no repressor,

in which case they are expressed with rate gon. The exception to this logic rule is NANOG,

which must be bound by the the KLF4 and PBX1 transcription factor homodimers and

the heterodimer OCT4-SOX2 to be activated. Overall, these interactions lead to a total of

396 biochemical reactions, with a total of 88 “species” (counting 80 distinct gene promoter

configurations and 8 protein species). The complete logic rules and list of reaction rate

parameters can be found in the Supplement (Chapter 6.3, Tab. 6.3, and Tab. 6.4).
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3.2.2 Theoretical Background: the Chemical Master Equation

and Stochastic Transition-Matrix

The mathematical framework of the network models is the discrete Chemical Master Equation

(CME) [51], which gives the time-evolution of the probability to observe the system in a given

state. In vector-matrix form, the CME can be written

dp(x, t)

dt
= Kp(x, t) (3.1)

where p(x, t) is the probability over the system state-space (x) at time t, and K is the reaction

rate-matrix containing stochastic reaction propensities (diagonal elements kjj = −
∑

i kij,

i.e., columns sum to 0). Equation 3.1 assumes a well-mixed system of reacting species, and

assumes that the technically infinite state-space described by x (containing molecular species

numbers/configurations) may be limited to some finite number of “reachable” states, (i.e.,

with non-negligible probability) for an enumeration of N states of the system, K ∈ RN×N .

The steady-state probability π(x) ≡ p(x, t→∞) over N states satisfies

Kπ(x) = 0. (3.2)

Thus, π(x) can be obtained from K as the normalized right-eigenvector corresponding to the

zero-eigenvalue.

It is sometimes desirable to work with the time-dependent stochastic transition-matrix T(τ)

rather than the time-independent stochastic rate matrix K [122]. For example, T(τ) may be

more amenable to estimation by sampling (as we demonstrate in this work for the pluripotency

40



network, for which K is impractical to enumerate). For a CME with rate matrix K, T(τ) is

given by

T(τ) = exp(τKT) (3.3)

where exp denotes the matrix exponential. T(τ) ∈ RN×N
0≤x≤1 then gives the conditional

probability for the system to transition between each pair of states within a lagtime τ . That

is, the elements tij give the probability that the system, if found in state i, will then be found

in state j at a time τ later, and rows sum to 1. Using T(τ), the evolution of probability over

discrete intervals of the lagtime τ is given by the Chapman-Kolmogorov equation:

pT (x, t+ kτ) = pT(x, t)Tk(τ). (3.4)

Eigenvectors corresponding to dominant eigenvalues of the stochastic transition-matrix are

associated with slow system processes. By Perron-Frobenius, for an irreducible stochastic

matrix T(τ) with eigenvalues λi, there exists λ1 = 1, and all other eigenvalues satisfy |λi| < 1.

Analogous to Equation (3.2) for K, the steady-state probability can be obtained directly from

T(τ) according to πT (x) = πT (x)T(τ), i.e., as the normalized left-eigenvector corresponding

to λ1. Eigenvalues λi are related to global system timescales ti by

ti = − τ

ln|λi(τ)|
, (3.5)

(with t1 giving the infinite-time, stationary result) [122]. Additionally, the Mean First Passage

Time (MFPTX,Y ) where X and Y are individual states can be computed using the matrix
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elements Ti,j by [132, 60]:

MFPTX,Y = τ ×

{ 0 X = Y

1 +
∑
z

TX,ZMFPTZ,Y X 6= Y
. (3.6)

3.2.3 Weighted Ensemble Stochastic Simulation

Stochastic reaction kinetics can be simulated by the Stochastic Simulation Algorithm (SSA)

[51], which produces numerically exact realizations of the CME (Eq 3.1). Simulation

circumvents the need for enumerating the exceedingly large system state-spaces typical

of gene network models, but suffers from inefficiency due to rare events. The Weighted

Ensemble (WE) rare-event sampling algorithm [70] redistributes computational resources

from high-probability regions of state-space to low-probability regions, which tend to be

under-sampled in conventional simulation. The method thereby reduces computational effort

in sampling rare transitions and improves accuracy of estimating probability density in,

e.g., barrier-regions or tails of distributions. The method can be applied to any stochastic

dynamics framework; in recent years, it has been widely applied to atom-scale Molecular

Dynamics. Details of the methodology are discussed in a recent review [172] and references

therein.

Briefly, the algorithm works as follows: state-space is divided up into bins that span transitions

of interest. The number of bins, Nbins, is typically O(100), and a variety of binning procedures

can be used (we use an adaptive procedure described below). Initially, a single simulation

trajectory, or “replica”, is assigned a weight of 1 and allowed to freely move within and

between bins for a user-defined lagtime τWE. After each iteration of τWE, a splitting and

culling procedure divides and/or combines replicas and their associated weights in such
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a way as to reach and maintain an equal target number of weighted replicas, Mtarg, in

each bin. Over the course of the simulation, the combined weights of the replicas in a bin

(averaged over successive iterations) will evolve toward the probability of the system to reside

in that bin. By maintaining the same number of replicas in each bin (Mtarg), with weights

proportional to probability, the algorithm devotes comparable computational time to low-

and high-probability regions. Effectively, the algorithm computes long-time processes on the

basis of many short-time simulated trajectories.

Adaptive Binning Procedure

As with other enhanced sampling methods, the WE algorithm requires dividing of state-space

into defined sampling regions or “bins”. For high-dimensional systems, discretization poses a

challenge because, for an N -dimensional, evenly spaced grid, the number of required sampling

bins increases exponentially with the number of degrees of freedom. To address this challenge,

a variety of Voronoi-polyhedra-based procedures have been developed [35, 33, 166]. These

methods balance the need to focus simulation toward regions with non-negligible probability,

while still enabling capture of rare transitions of interest. In addition to efficiently discretizing

high-dimensional spaces, the methods have the benefit of requiring little to no a priori

knowledge of system dynamics (e.g., of the locations of regions of interest, or of appropriate

progress coordinates for transitions). We utilize an adaptive binning procedure from ref. [166].

Each bin (of user-defined number Nbins) is a Voronoi polyhedron with a generating node; the

bin is defined as the region of state-space encompassing all points closer to the generating

node than to nodes of any other region. After each lagtime τWE, new Voronoi regions are

generated by successively selecting Nbins node-positions from the current replica positions in

a way that maximizes the Euclidean distance between them. By this procedure, over the

course of the simulation, bins spread to encompass all areas of state-space reached by any

simulated trajectory. After sufficient iterations, the bin positions stop spreading to new areas
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but continue to fluctuate. The procedure is shown by representative simulations in Fig. 6.13.

Computation of Transition Rates

One important output of WE sampling is the quantitative rate of transitions between regions

of interest, which may be difficult or impossible to estimate from conventional simulation. WE

sampling may be run in different modes, depending on whether the sought-after information

concerns a specific transition of interest, or a more global picture of system dynamics, i.e.,

encompassing approximate rates of transitions among many system states. We term the

two modes “rate” mode and “global transition-matrix” mode. The former can deliver a

more accurate estimate for a particular state-transition, while the latter can yield a more

comprehensive, but approximate, measure of global system dynamics.

In rate mode, the user specifies two regions of interest, X and Y , The flux of probability

into/out of regions of interest can be estimated by recording the amount of weight transferred

at the end of each simulation iteration. The mean first passage time of transitions from X to

Y (MFPTX,Y ) is given in general by the inverse of probability flux from X to Y . In practice,

we apply a“labeling” scheme [146, 36], where each replica is labeled as belonging to either

set SX or SY according to its history, i.e., whether it most recently visited region X or Y ,

respectively. The summed weight of all replicas in SX is given by PSX , and PSX + PSY = 1

satisfies probability conservation. Then,

MFPTX,Y =
P

SS

SX

Φ
SS

(Y |SX)
(3.7)

where Φ
SS

(Y |SX) is the average probability flux from SX into Y at steady-state, which

is measured by the weight of SX-labeled replicas entering Y during the simulation after
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convergence to steady-state. The labeling scheme enables accurate estimates, including for

non-Markovian transitions. For Markovian transitions well-described by a single rate-constant,

kX,Y = 1/MFPTX,Y .

Computation of Network Transition-Matrix

Running WE in transition-matrix mode enables visualization and analysis of global system

dynamics on the basis of a single simulation, and requires no designation of regions of interest.

In this mode, the previously-converged Voronoi bins are fixed, and simulations are used to

estimate a coarse-grained stochastic transition-matrix T̃(τ) of size Nbins ×Nbins. The coarse-

grained T̃(τ) approximates the true dynamics over the full state-space, as given by T(τ). Thus,

the procedure enables estimation of the global transition-matrix (and subsequent analysis) in

systems where enumeration of states is not feasible. To estimate T̃(τ), the weight transferred

between bins is recorded at each iteration, and the elements of the transition-matrix are

estimated according to [146]:

T̃i,j =
〈wi,j〉2
〈wi〉

(3.8)

where 〈wi,j〉2 is the average weight transferred from bin i to bin j over the iteration time τWE

(counting only after at least 2 transitions, and averaging over multiple iterations) and 〈wi〉 is

the average population (summed weight) in bin i. By construction, this is a row-stochastic

transition-matrix with state-space “resolution” determined by Nbins (each state in the full

state-space sampled by the simulation is assigned to its nearest neighboring Voronoi node).

The lagtime τ of the transition-matrix corresponds to the sampled WE-time τWE. However,

use of T̃(τ) to compute system dynamics imposes a Markovian approximation, by which

equilibration of replicas within bins is assumed to be rapid on the timescale of τ , and hops
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between states (i.e. bins) are memoryless. As such, while this mode of simulation has the

advantage of acquiring a holistic view of global system dynamics, it has the disadvantage of

introducing a Markovian approximation.

3.2.4 Coarse-Graining Procedure to Classify Phenotype-States

While the sampled Nbins × Nbins transition-matrix provides a global approximation of the

epigenetic landscape and state-transitions, we apply a method to further coarse-grain dynam-

ics, known as the Markov State Model framework [122, 114, 30]. This automated procedure

produces a highly simplified representation of global dynamics in terms of a few (generally

< 10) clustered sets and the transitions among them. Such highly-reduced models can be

beneficial in terms of human intuition of system dynamics, comparison to experiments, and–in

this application–automated designation of dynamic phenotype-states. The method utilizes the

concept of metastability, i.e., system states that experience relatively fast transitions among

them are clustered together into the same coarse-grained set. Collectively, the coarse sets

experience relatively rare inter-cluster transitions and frequent intra-cluster transitions. We

employ the metastability concept as a definition of cell phenotype, reasoning that a phenotype

should be a relatively stable attribute of a cell, and stochastic inter-phenotype transitions

should be relatively rare. In practice, we employ the Markov State Model framework to

further reduce the sampled row-stochastic transition-matrix T̃(τ) from size Nbins × Nbins

down to C × C, where C is the number of coarse-grained clusters. As the Markov State

Model (MSM) is itself a stochastic transition-matrix on a coarse-grained space, it implies a

more severe Markovian approximation. It provides a way to describe global system dynamics

in a highly simplified way while maintaining high accuracy to the slowest system dynamics as

sampled by T̃(τ). In previous work, we demonstrated the application of this coarse-graining

approach to automatically designate phenotypes in small gene networks [30]; here, we extend

the applicability of the coarse-graining to large, complex networks by combining it with
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rare-event sampling.

The coarse-graining procedure is a spectral clustering method based on the Perron Cluster

Cluster Analysis (PCCA+) algorithm [128], which optimizes the (nearly)-block-diagonal

structure of T̃(τ) for systems with metastability. The signature of such metastability is a

separation-of-timescales for intra- and inter-basin dynamics, which may be seen as gaps in

the eigenvalue spectrum [122]. As noted above, T(τ) (or its sampled counterpart, T̃(τ)) has

λ1 = 1, corresponding to the infinite time-limit. If a set of m dominant eigenvalues exists,

such that for decreasing eigenvalues λi / 1, i ∈ {2, ...,m}, and a gap is present, λj << λm for

j > m, this indicates the presence of m slow-timescale processes in the system, and further

indicates that T̃(τ) may be re-ordered to give m nearly-uncoupled blocks. In practice, the

algorithm attempts to find a coarse-graining onto C clusters, where C may be user-defined,

or may be determined algorithmically, e.g., according to the spectral gap [128]. Here, we

choose C clusters, where the last significant gap in the spectrum is seen between λC and

λC+1. For the GRNs studied here, this corresponds to choosing C such that λC/λC+1 > 10.

Transition Path Analysis

The coarse-grained model of system dynamics given by the MSM enables estimation of

the ensemble of dominant transition paths among phenotypes, along with their relative

probabilities. We adopt methods from Transition Path Theory according to Noe, et al. [114]

(details therein). Briefly, T̃(τ) can be used to compute the effective flux of trajectories, along

any edge in the coarse-grained network, contributing to transitions between states X and Y

(where these designated states correspond to one or more coarse-grained phenotype-states

produced by the MSM). A pathway decomposition algorithm on the matrix of effective fluxes

for X → Y transitions then yields a set of dominant pathways and the relative contribution

of each to the overall flux. Each state in the MSM is analogous to a cell phenotype, and

transition path analysis is used to identify parallel phenotype transition paths and the relative
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rates of transitioning between phenotypes.

3.2.5 Visualization of Epigenetic Landscapes

Both the sampled transition-matrix T̃(τ) and the coarse-grained MSM encode stationary and

dynamic information about global dynamics–that is, they quantify the epigenetic landscape.

For visualization, we use Gephi graph visualization software [18] using the Force Atlas

algorithm. Every circle (or node) in the graph corresponds to a sampling bin or to a

coarse-grained phenotype, and the area of a circle is proportional to its relative steady state

probability according to ln(γPSS), where PSS is the steady state probability of the node and

γ is a constant chosen to improve visibility of low probability regions of the landscape. Lines

between circles (edges) correspond to transitions between sampling regions or coarse-grained

phenotype. Their thickness and coloring correspond to their relative transition probability

and source state, respectively.

3.2.6 Validation: Numerical Solution of the Chemical Master Equa-

tion

To validate the simulation method, we compare the simulated dynamics to the numerical

solution to the CME. We choose the parameters of the ExMISA model in such a way as

to restrict the effective state-space, so that a numerical solution of the CME is tractable.

Building the reaction rate matrix K ∈ RN×N requires enumeration of N system states. In

general, if a system of S molecular species has a maximum copy number per species of nmax,

then N ≈ nS
max. In the ExMISA model, the state-vector is given by x = [Aij, Bij, na, nb].

For enumeration, we neglect states with protein copy-numbers larger than a cutoff value

which exceeds g10/k (corresponding to the average number of transcription factors maintained
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in the system from a gene while in its active state). For example, with model parameters

g10 = 18 and k = 1, we truncate at na,max = nb,max = 41 and assume that probability flux

between states with na, nb ≤ 41 and states with na, nb > 41 is assumed to be 0 (i.e., the

boundaries of the state-space are reflective). Including the gene-binding states, this gives

N = 3× 3× 42× 42 = 15876 states. This size is tractable for complete solution of the CME

using matrix methods in MATLAB [1]. This truncation of the state-space introduces a small

approximation error (see Fig. 6.14).

The pluripotency network has 8 genes with copy numbers of O(103) (determined by the

parameters gon/k = 3900). The number of distinct binding-promoter states for each gene

are 16, 32, 8, 8, 2, 8, 4, and 2 for GATA6, NANOG, CDX2, OCT4, SOX2, KLF4, GCNF,

PBX1, respectively (see Tab. 6.3). Together these combinations enumerate a state-space of

N > 1030 ≈ 10008× 16× 32× 8× 8× 2× 8× 4× 2. This size precludes solution of the CME,

and we instead estimate the dynamics by WE sampling. Where possible, we validate the

WE-sampling results by “conventional”, i.e., by direct simulation using SSA.

Validation of Coarse-Grained Models

To check the validity of the coarse-grained MSM as a representation of the global dynamics,

we use the Chapman-Kolmogorov test to compare the relaxation curves of the coarse-grained

system to those found through direct SSA following Equation 3.4 [122]. If the coarse-graining

is appropriate, the relaxation curves of the MSM probabilities will match the relaxation

profile of long conventional (direct SSA) simulations initiated within each coarse-grained

phenotype. Transition paths through the coarse-grained phenotype network are validated,

where possible, against conventional SSA simulation.
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3.2.7 Implementation and Software

Stochastic Gillespie (SSA) simulations were carried out using BioNetGen [44]. WE sampling

was implemented with in-house software code written in MATLAB. Simulations were run

on the high performance computing cluster (HPC) at the University of California, Irvine,

and parallelization of BioNetGen SSA simulations was performed using the Sun Grid Engine

scheduler. The coarse-graining procedure and transition path analysis was implemented in

python scripts, adapted from MSMBuilder [55] and Pyemma [132], respectively. Transition-

matrix and MSM visualization was carried out using Gephi software and the Force Atlas

layout[18]. All simulation parameters can be found in the supplement Tab. 6.5. Pseudo-code

for the adaptive binning procedure can be found in Chapter 6.5 and software can be found in

https://github.com/read-lab-uci/adaptive_we.

3.3 Results

3.3.1 Rare States and Transitions in Gene Regulatory Networks

are Accessible by Rare-Event Sampling

We first apply the computational pipeline to a small two-gene model (the exclusive Mutual

Inhibition, Self-Activation model, ExMISA, see Methods), exhibiting an archetypal motif for

cell fate-decisions[53, 66]. The model is tractable for computation of full, discrete stochastic

dynamics to within a small approximation error using matrix methods. Thus, the model

provides a numerical benchmark for assessing the accuracy of the simulation method, before

extension to larger systems where solution of the Chemical Master Equation (CME) is

intractable. For the chosen parameters, the ExMISA model shows four peaks in the steady-

state probability distribution (projected onto protein copy numbers, na and nb). Peaks
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in probability correspond to basins in the so-called quasipotential landscape, defined by

U = −ln(π(x)) (Fig 3.2). The four peaks/basins corresponds to four possible combinations

of binarized A/B gene expression: hi/hi, hi/lo, lo/hi, and lo/lo. These four phenotype-states

arise due to the combination of balanced repression and self-activation in the network, and

the slow kinetic parameters (Supplementary Tab. 6.2) for transcription factor binding and

unbinding to promoters that effect changes in individual gene-activity states between low

and high expression rates [160, 30].
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Figure 3.2: Simulation Results Show Good Agreement with a Theoretical Bench-
mark for the 2-gene ExMISA (Mutual Inhibition, Self-Activation) Cell-Decision
Circuit The Chemical Master Equation for the 2-gene model, ExMISA, was solved numeri-
cally (see Methods) (top) and compared to simulation results from the computational pipeline
presented in this paper (bottom). Shown for each are the Quasipotential Landscape (A),
Eigenvalue Spectrum (B), and Markov State Model (C). (A) Quasipotential landscapes of
the ExMISA network projected onto the two protein coordinates. Deep blue regions denote
low potential (high probability) and yellow denote high potential (low probability). The four
visible basins in both correspond to combinations of lo/hi expression for the two genes A and
B. (For both rows, quasipotential surfaces estimated over discrete states/bins are smoothed
for visualization). WE sampling captured both the basin structure and low probability edge
and barrier regions. (B) Eigenvalue spectra and corresponding computed global transition
timescales. Gaps in the eigenvalue spectrum indicate separation of timescales, i.e., the
presence of metastability. C) Four-phenotype coarse-grained models automatically generated
from the clustering algorithm (see Methods). Each colored circle represents a cell phenotype,
sized proportionally to its probability. Edges are inter-phenotype transitions (colored by
source-state, with width proportional to probability). The full CME and simulation pipeline
identify similar metastable phenotype networks (see Fig. 6.23 for details).

The WE-based simulation method enabled estimation of global dynamics of the ExMISA
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model. By redistributing computational resources from relatively high-probability to low-

probability regions (see Methods), the WE method enabled uniform sampling of the quasipo-

tential landscape, i.e., mapping basins (high-probability regions) along with high barriers

(low probability regions) (Fig 3.2a). The simulation estimated individual steady-state bin-

probabilities as low as 1.3 × 10−6 and showed good global agreement with the numerical

CME benchmark (see Fig 3.2 and Supplement, Fig. 6.15).

In addition to sampling global dynamics, the WE method can be used to estimate rate

constants for individual, rare transitions of interest. The Mean First Passage Time of the

global network switch from the center of one polarized phenotype-state to another, i.e.,

MFPTX→Y from protein a/b expression level hi/lo to lo/hi was estimated from WE to be

1.82× 105 (see Tab. 6.7), in agreement with the CME result.

3.3.2 Phenotype Transitions can be Approximated by Markovian

Jumps, Enabling Construction of Coarse-Grained Models

A network transition-matrix T̃(τ) over sampled bins (Nbins = 300) was constructed from

WE sampling for ExMISA and used for subsequent analysis of global system dynamics. By

comparison, a full network transition-matrix T(τ) over the enumerated system state-space

was constructed from the CME (N = 15876, see Methods). The full, computed (T(τ))

and simulated (T̃(τ)) transition-matrices showed qualitatively similar eigenvalue spectra

with four dominant eigenvalues, indicating the presence of metastability (separation-of-

timescales between intra-basin and inter-basin transitions) (Fig 3.2b). The slow system-

timescales predicted by the full CME model corresponding to eigenvalues λ2, λ3, λ4 were

t2, t3, t4 = 6.8 × 104, 4.2 × 104, 1.0 × 104 respectively, in units of k−1 where k is the

protein degradation rate (the Perron eigenvalue λ1 = 1 is associated with the infinite-time

(stationary) distribution). The corresponding values given by the WE-simulated T̃(τ) were
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6.1×104, 3.5×104, 9.4×103, respectively. These numbers demonstrate how the sampled T̃(τ)

enables global approximation of slow system timescales to < 20% relative error. Quantitative

error in these values depends on both “spectral” (lagtime) and discretization error [122] (see

Fig. 5.2). In contrast, WE sampling in “rate mode” (see Methods) enabled highly accurate

estimation of MFPTX→Y to within 2% error (Tab. 6.7).

According to the Markov State Model framework, the presence of timescale separation

indicates that a simplified model, retaining a few coarse-grained metastable states with

Markovian transitions among them, can reasonably approximate the full system dynamics.

Using this approach, we label the metastable sets as phenotypes accessible to the network,

reasoning that a useful classification of cell phenotypes should be one that gives relatively

stable, rather than transient, cell types. We apply the Markov State Model coarse-graining

procedure to both the full T(τ) and simulated T̃(τ), yielding similar results. The coarse

sets (or metastable phenotype-states) in the reduced models for both cases are generated

automatically, and map directly onto the four basins seen in the quasipotential landscape

(i.e., the gene A/B expression hi/hi, hi/lo, lo/hi, and lo/lo cell phenotypes). The reduced

models are visualized by network graphs, in which node sizes are proportional to steady-state

probability, and the thicknesses and lengths of edges are proportional to the transition

probability between them (on lagtime τ) (Fig 3.2c). Numerical values for the reduced

models can be found in Tab. 6.6. The network graph can be considered to be an alternative

representation of the global epigenetic landscape, which contains both stationary and dynamic

information. (In contrast, the epigenetic landscape plotted as a quasipotential function does

not explicitly contain dynamic information, due to non-gradient dynamics [158]).

Validation of the coarse-grained model can be carried out according to the Chapman-

Kolmogorov test [122], which tests how well the relaxation dynamics initialized in the

metastable phenotypes approximate the dynamics that are predicted either by the full model

(CME) or simulated trajectories. According to this test, relaxation dynamics out of metastable
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phenotypes from WE sampling was predicted with error values between 0.02 and 0.12 for

all phenotypes (Fig. 6.16). Together, these results indicate (i) that a Markovian model of

phenotype transitions is a good approximation of the full system dynamics for the ExMISA

model, and (ii) that the WE-simulation based computational pipeline predicts a quantitatively

similar coarse-grained phenotype-network to the full CME model.

3.3.3 The Method Maps the Epigenetic Landscape and Identifies

Dominant Phenotypes in a Pluripotency Network Model

We apply the computational pipeline to a pluripotent fate-decision network from mouse

Embryonic Stem Cells (mESCs) introduced by Zhang et al. [167] (Fig 3.3A). The network

comprises eight interacting genes: NANOG, GATA6, CDX2, SOX2, OCT4, GCNF, and

PBX1. Three of these genes, NANOG, SOX2, and OCT4 have been suggested to maintain

pluripotency[26], and NANOG inhibits the expression of differentiation markers [139]. The

GATA6 and CDX2 genes have been used in experiments as markers of differentiation, with

the GATA6 transcription factor being a marker of the primitive endoderm cell lineage, and

the CDX2 transcription factor being a marker of the trophectoderm lineage [57].
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Figure 3.3: Pluripotency Network Model and Simulation Results A)Wiring diagram
for the eight-gene pluripotency network model, adapted from [167]. Arrowheads represent
positive interactions, while flat lines denote repression. B) Simulation results: state-transition
graph of sampled network states. Circles represent aggregate gene-expression states sampled
during the Weighted Ensemble simulation. Circle areas are proportional to the steady-state
probability πi in each state according to ln(γπi) with scaling factor γ = 3.4. States are colored
according to the gene expression levels of three of the genes; red, green, and blue correspond
to high NANOG, GATA6, and CDX2 expression respectively, while black corresponds to
low or no gene expression. Edges connecting the states indicate possible state-transitions,
colored according to the originating state. The graph is produced using Gephi [18] using
a force-directed layout algorithm (Force Atlas), therefore short inter-state distances reflect
higher probability of transitioning. C) Full protein compositions of two representative states,
with either high CDX2 expression (blue) or high NANOG expression (red). States in (C)
correspond to yellow circles in (B).

Using the WE-based computational pipeline, we estimate T̃(τ) with a resolution of Nbins = 250.

To visualize the global landscape as a graph network at this resolution, we plot the converged

T̃(τ) using a force-directed automated graph layout [18] (Fig 3.3B). The barbell shape of the

network reflects the broad antagonism between pluripotency and differentiation genes, which

is a general feature of the overall network topology. At the same time, each “pole” comprises
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multiple distinct patterns of gene expression (seen in the graph as different colors with full

compositions in Fig 3.3C), hinting at the existence of multiple phenotypes associated with

both pluripotency and lineage-specification. Moreover, the network representation reveals

numerous links between pluripotent and differentiated states, pointing to both direct and

indirect transitions, through a network of relatively transient intermediate states.

To further analyze the global dynamics of the pluripotency network, we apply the Markov State

Model coarse-graining framework. The simulated T̃(τ) shows gaps in the eigenvalue spectrum

after four and after six eigenvalues (Fig 3.4a). The corresponding approximate timescales are

given by t2, t3, t4, t5, t6 = 1.1×105, 95, 51, 12, 12 (k−1), respectively. These values, though

only approximate, indicate the presence of a single long timescale process (t2) corresponding

to transfer between differentiated and pluripotent states, while transitions within those basins

(t3, etc.) occur at least four orders of magnitude more quickly. Applying the coarse-graining

algorithm to achieve six clusters results in a reduced model (Fig 3.4b), with the clusters

representing metastable phenotypes. The phenotypes can largely be distinguished in the

subspace of NANOG, GATA6, and CDX2 expression levels; the differentiated phenotypes

show expression of either GATA6 (primitive endoderm, PE), CDX2 (trophectoderm, TE), or

both (denoted an intermediate cell type, IM). Phenotypes associated with pluripotency do not

express high levels of GATA6 or CDX2, and may express high levels of NANOG (stem cell,

SC). The coarse-grained model reveals two separate pluripotent phenotypes that are low in

NANOG expression: one which expresses other pluripotent factors OCT4, SOX2, and KLF4

(“Low NANOG 1” LN1), and one which has low expression of all factors (“Low NANOG

2” LN2) (Fig 3.4c). Overall, these phenotypes broadly match experimentally-determined

categories, coincide with steady-states of the stochastic model computed previously by a

CME-approximation method[167], and coincide with phenotype-states identified in related

pluripotency GRN models[83]. The steady-state probabilities associated with the phenotypes

are highly nonuniform, with 95% of the population divided nearly evenly between the IM

and LN1 phenotypes, which are associated with differentiation and pluripotency, respectively.
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The LN2 state is rarest, comprising only 8 × 10−4% of the population. Together, these

results indicate that the clustering method identifies both common and exceedingly rare

phenotypes in the in silico cell population modeled by simulation trajectories. Furthermore,

the automated method identifies both expected and novel phenotypes.
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Figure 3.4: Simulation Results for the Pluripotency Network (Parameter Set
I). The Computational Pipeline Uncovers Six Metastable Phenotypes and Irre-
versible Phenotype Transitions. A) Computed eigenvalue spectrum and global timescales
indicating the presence of metastability in the network. The gap in the eigenvalue spectrum
after the sixth eigenvalue suggests that a partitioning can be found into six metastable
phenotypes. B) The coarse-grained network showing six algorithmically-identified phenotypes
designated as Low NANOG 1 (LN1), Low NANOG 2 (LN2), Stem Cell (SC), Primitive
Endoderm (PE), Trophectoderm (TE), and the Intermediate Cell (IM) state. C) The averaged
gene expression levels (copy numbers) of each transcription factor for each phenotype and
their respective steady-state probabilities. D) The four most probable transition pathways
from the SC state to the TE state (differentiation) and from the TE state to the SC state
(dedifferentiation). E) The highest probability transition paths projected onto three pro-
tein coordinates, NANOG, GATA6, and CDX2. Differentiation from SC to TE is visibly
irreversible.
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3.3.4 The Method Reveals Multiple, Irreversible Pathways for

Phenotype Transitions in the Pluripotency Network

Previously, Markov State Models constructed on the basis of Molecular Dynamics simulations

were used to analyze the ensemble of distinct pathways of protein-folding [114]. Here, we

utilize the coarse-grained model of phenotype transitions in the pluripotency GRN in a similar

manner, to analyze pathways of cell differentiation and dedifferentiation. Using Transition

Path Theory, the method identifies the pathways that carry the greatest fraction of net

probability flux, among sequences associated with successful SC→TE transitions (and reverse)

(Fig 3.4d,e). Transition paths between the stem cell (SC) and PE phenotypes can be found in

Fig. 6.17. For Parameter Set I, the method identifies three pathways encompassing > 98% of

the probability flux for both forward and reverse transitions. While the SC→ TE transition

is most likely to occur directly through the LN1 state (i.e., NANOG expression will shut off,

followed by turning on CDX2), the reverse transition shows a different route through the IM

and PE states (i.e., GATA6 expression turns on, then CDX2 turns off, then GATA6 turns off,

and finally NANOG turns on).

Dynamic analysis of the coarse-grained model, including analysis of transition paths, relies on

the Markovian approximation for inter-phenotype transitions. In the pluripotency network,

stochastic transitions between pluripotency (SC, LN1, LN2) and differentiation (TE, IM, PE)

basins are infrequent relative to transitions within those basins, justifying the Markovian

assumption, since the system equilibrates within those basins much more rapidly than

inter-basin transitions occur. However, the Markovian assumption may be less accurate for

describing intra-basin transitions between phenotypes, which occur much more frequently.

Despite the coarse-grained model encompassing transitions on highly disparate timescales,

the qualitative results of transition path analysis were validated by collected conventional

simulation trajectories (not subject to any Markovian assumption), which identified the

same dominant transition paths (Fig. 6.18). Overall, these results indicate that a stochastic
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excursion of a cell from the SC to TE phenotypes and back maps a cycle in gene-expression

space, echoing previous studies indicating nonequilibrium dynamics in GRNs [158, 46].

The results further indicate that the Markov State Model, while a highly coarse-grained

approximation, can provide an accurate estimation of inter-phenotype transition dynamics.

3.3.5 Cell Phenotype Landscape and Transition Dynamics are Sen-

sitive to Kinetic Parameters

We applied the computational pipeline to the pluripotency network using two different rate

parameters sets (see Chapter 6.3), which differ in rates of transcription factor binding and

unbinding to DNA. In line with previous studies[46, 150, 30], we found that increasing

the so-called adiabaticity (i.e., increasing h and f , or the rates of TF-binding relative to

protein production and degradation, Parameter Set II) led generally to rarer inter-phenotype

transitions (see Table 3.1). For example, in Parameter Set I, the Mean First Passage Time

(MFPT) for transitions from SC → TE was calculated to be 1.36× 105 in units of k−1, as

compared to 8.13× 108 for Parameter Set II. The MFPTs of the reverse transition TE →

SC for each set were 2.70× 105 and 5.82× 109, respectively (see Table 3.1 and S. Table 6.8).

These differences in magnitude broadly reflect that moving toward the adiabatic regime leads

to increased epigenetic barriers between phenotypes.
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Transition SC → LN(1) LN(1) → SC SC → TE TE → SC

Parameter Set I (f = 10) 1.71× 101 1.94× 102 1.36× 105 2.70× 105

Parameter Set II (f = 50) 7.71× 104 1.28× 104 8.13× 108 5.82× 109

Table 3.1: Computed Mean First Passage Times (MFPTs) of Phenotype Tran-
sitions in the Pluripotency Network. MFPTs are shown for transitions between the
pluripotency (high NANOG) state (SC) and low NANOG expression states (LN(1)) (left
columns) and for transitioning between the pluripotency state (SC) and the trophectoderm
state (TE) (right columns), in units of the inverse transcription factor decay rate, k−1. Transi-
tions for Parameter Set I were computed using the WE method in rate mode while transitions
for Parameter Set II were estimated from the sampled transition matrix. The definitions of SC
and LN(1) are analogous to the high NANOG production (Nhi) and low NANOG production
(N lo) transitions measured in experiments [47, 64]. Increasing the adiabaticity (i.e., the rates
of DNA-(un)binding, h, f), leads to rarer inter-phenotype transitions. The simulations also
show that, within the same gene network for a given parameter set, inter-phenotype transition
times span four orders of magnitude.

In addition to generally slowing transitions, the increased adiabaticity of Parameter Set II

gives rise to an epigenetic landscape structure that is distinct from that of Parameter Set

I, with altered steady-state phenotype probabilities (Fig 3.5a). The eigenvalue spectrum

shows qualitatively distinct features as well, with a gap after five values (Fig 3.6a). As

such, the Markov State Model framework identifies five dominant phenotypes in the network,

which correspond broadly to those of Parameter Set I, except that only a single Low-

NANOG (LN) phenotype is identified (Fig 3.6b). Most of the steady-state probability is

contained in the IM state (Fig 3.6c). In addition to altering the transition rates and relative

phenotype probabilities, the kinetic parameters altered the dynamics of differentiation and

dedifferentiation. The two likeliest pathways of forward (and reverse) SC → TE transitions

follow the same route through LN and IM phenotypes (Fig 3.6d,e). Alternative differentiation

pathways of forwards (and reverse) SC → PE transitions can be found in Fig. 6.20. These

results indicate that, while the same GRN model with different kinetic parameters may give

rise to qualitatively similar phenotypes, they differ in quantitative stationary and dynamic

features, including relative steady-state probabilities, transition times, and likeliest transition
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pathways.

Figure 3.5: The Rare-Event Sampling Pipeline Makes Rare States and Transitions
Accessible to Simulation. A) The global state-transition graph computed with the
computational pipeline for the Pluripotency Network with rare transitions (Parameter Set II).
The states are colored according to the coarse-grained (algorithmically-identified) phenotypes.
In this parameter regime (f = 50) the differentiated (TE, PE, IM) and pluripotent phenotypes
are cleanly separated, reflecting exceedingly rare transitions between the two phenotypes
(O(109), see Table 3.1). (B) States visited in conventional SSA simulation (using the same
initialization, definitions, and placement as in (A)). In the conventional simulation, a transition
out of the IM phenotype was never observed.
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Figure 3.6: Simulation Results for the Pluripotency Network (Parameter Set II).
Changing DNA-Binding Kinetics Alters the Epigenetic Landscape. A) Computed
eigenvalue spectrum and global timescales. B) The coarse-grained Markov State Model
showing five phenotypes corresponding to the LN1, SC, PPE, TE, and IM phenotypes of
Parameter Set I. The majority of the steady state probability is in the IM phenotype (0.98). C)
The gene expression levels for each phenotype and their respective steady-state probabilities.
D) The four most probable differentiation pathways between SC and TE phenotypes. E)The
dominant pathways of (de)differentiation projected onto the GATA6, CDX2, and NANOG
coordinates. The change in DNA-binding kinetics shows different transition dynamics from
Parameter Set I. Here, the forward and reverse paths are the same.
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3.3.6 Efficiency of Rare-Event Sampling Compared to Conven-

tional SSA

Phenotype transitions that are relatively rare can be difficult to observe with conventional

SSA simulation. We compared simulated landscapes (based on estimated T̃(τ)) from the

computational pipeline to those obtained from an equivalent (large) number of SSA simu-

lation steps (Fig 3.5a,b). Additional comparisons of synthetic cell populations using tSNE

visualization reflect the rarity of phenotypes and phenotype transitions (Fig 3.7, Fig. 6.21).

This comparison revealed that the WE-based method uncovers multiple phenotypes and

associated transitions that are invisible to conventional simulation due to the rarity of exiting

metastable basins. Quantitative estimates of efficiency gains for WE have often been based

on comparing the number of simulation steps required to estimate a desired quantity (such as

a rate constant) using WE versus conventional simulation [38]. Treating T̃(τ) as the desired

output (as it contains holistic dynamic information for the system), we estimate the efficiency

gain of our pipeline by computing:

E =
Sim. steps to estimate T̃(τ), Conv.

Sim. steps to estimate T̃(τ), WE
. (3.9)

However, it is often difficult to acquire the required number of steps for conventional simulation,

so an approximate lower bound for the denominator can be estimated according to:

[
Sim. steps to estimate T̃(τ), Conv.

]
'

∑
i,j

MFPTi,j, (3.10)

where simulation steps and transition times are measured using the same time-unit (here,

k−1). That is, the denominator is the sum over the MFPTs of transitions between each pair
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of states (bins), i, j, where i, j = 1...Nbins. This approximation is based on the rationale that

one requires simulation time O(MFPT) to observe at least one transition between a given

pair of states. From the WE-estimated transition-matrix T̃(τ), estimates of the MFPT for

transitions between any pair of states (bins) can be obtained using Eq 3.6. According to Eq

3.9, we estimate that our pipeline provided efficiency gains of 3000 for ExMISA (Fig. 3.2), 200

for Pluripotency Parameter Set I (Fig. 3.3), and 4×107 for Parameter Set II (Fig. 3.6). These

numbers show that the pipeline affords a significant speedup over conventional simulation in

providing global dynamic information. The numbers further show that the efficiency gain

is most pronounced for the Pluripotency network with exceedingly rare inter-phenotype

transitions.

Figure 3.7: “Synthetic” Cell Population Data Computed by the Rare-Event Sam-
pling Pipeline, Visualized with a Single Cell Visualization Method (tSNE). A)
tSNE visualization of 15000 simulated ’cells’ (replicas) drawn from WE sampling for Param-
eter Set I. Each cell is colored according to its phenotype after the coarse-graining. The
population is heavily dominated by the IM and LN phenotypes, though all other phenotypes
are sampled with the exception of the rare LN2 phenotype. b) tSNE visualization of Parame-
ter Set II simulation data. Only the LN and IM phenotype-states are sampled in a synthetic
population of size 15000.
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3.4 Discussion

In this work, we present a method for efficient, automated computation of epigenetic land-

scapes, metastable phenotypes, and phenotype-transition dynamics of stochastic GRN models.

Our computational pipeline was inspired by studies of metastability and barrier-crossing in

Molecular Dynamics, and our application of the pipeline to cell-scale networks addresses a

number of current challenges for stochastic GRN dynamics. First, it overcomes the curse-

of-dimensionality of complex models, by leveraging available rule-based modeling tools for

stochastic biochemical networks [44]. Second, it overcomes the challenge of efficiently simu-

lating stochastic systems with rare events, by using enhanced Weighted Ensemble rare-event

sampling [70]. Third, it addresses the challenge of extracting and interpreting essential dynam-

ics of complex systems on the basis of simulated trajectories, by using the Markov State Model

framework [114] to automatically generate a compact, approximate representation of global

system dynamics. Combining these tools into a unified pipeline provides an automated means

of computing and visualizing essential stationary and dynamic properties of stochastic GRNs,

including the number and identities (i.e. state-space mapping) of metastable phenotypes,

their steady-state probabilities, and most-likely pathways of inter-phenotype transitions and

their transition rates. By advancing the capability to compute and interpret hypothesized or

experimentally-derived stochastic GRN models, the method can yield insight into how “local”

stochastic, molecular processes involved in epigenetic regulation affect “global” dynamics

such as phenotypic stability and fate-transitions in cells. Moreover, it can help close the

gap between dynamic, molecular-detailed models of gene regulation and cell-population level

experimental data, to inform rational cell reprogramming strategies.
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3.4.1 Insights from the Pluripotency Network Simulations

We used the pluripotency network as a model system to develop and demonstrate the

simulation approach, but the results also yielded biological insights. For example, the

simulations revealed a hierarchical structure of the epigenetic landscape. The network–

exhibiting 5-6 metastable phenotypes–occupies a limited subspace from the vast possible

gene combinations (e.g., 28 = 256 possible distinct on/off combinations of gene expression

states). The dominant feature of the global landscape is a high barrier/slow timescale between

pluripotent and differentiated phenotypes. Within each of these categories, further sub-states

were identified. The model revealed multi-timescale dynamics of phenotype transitions;

the pluripotency network showed relatively rapid transitions between phenotype-states that

differed in the expression-level (high vs. low) of a single gene, e.g. the high NANOG to low

NANOG transition, whereas phenotype transitions involving a change in expression level of

seven genes, e.g. the SC macrostate to the TE macrostate, occurred five orders of magnitude

more slowly on average.

While the accessible phenotypes appear broadly similar across parameter sets, the relative

stability and transition dynamics among phenotypes were sensitive to kinetic parameters

governing transcription factor binding/unbinding. A global change in these parameters

(affecting all individual transcription factor-DNA interactions equally) changed the shape

of the landscape, altering the relative steady-state probabilities of different phenotypes

and the likely transition pathways linking them. The DNA binding parameters capture

the local epigenetic mechanisms that enable/disable transcription factors from accessing

regulatory elements. A global rate change nevertheless has a varying influence on different

genes because the number of regulators differs, as does the molecular logic by which activators

and repressors exert combinatorial control on different genes. These results echo findings

that global modification of chromatin regulators often have lineage-specific effects [31]. These

results highlight both the need for, and the challenge, of informing cell reprogramming
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strategies with quantitative network models, as they suggest that the dynamic response of

cellular networks to perturbations is governed by the detailed kinetics of molecular regulatory

mechanisms, which are generally difficult to parameterize.

3.4.2 Dynamic Definition of Cell Phenotype

The Markov State Model framework implicitly imposes a dynamic definition of cell phenotypes;

the number of phenotypes was determined using spectral gap-analysis, and the coarse-graining

algorithm automatically identified metastable aggregates (i.e., grouped sampled network

states into larger clusters). This is different from the classifications of phenotypes that are

generally used in analyzing experimental data, where gene expression or marker levels are

often used to categorize cells. However, experiments have also revealed the potential need for

a dynamic definition of cell phenotype, based not only on single-timepoint measurements

of gene expression or phenotype-markers, but also on information from past or future

timepoints[72, 47]. For example, Filipczyk et al. [47] identified distinct subpopulations within

a compartment of NANOG-negative cells in mESCS, which differed in their propensity to

re-express NANOG. At the same time, fluctuations between low- and high-NANOG expressing

cells were not necessarily associated with any functional state change. The Markov State

Model approach, based on kinetic/dynamic coarse-graining, thus provides a quantitative

approach for classifying phenotype-states that is both completely generalizable rather than

ad hoc (it requires no a priori knowledge or designation of markers/genes) and is in line with

these recent experiments revealing the need for a dynamic definition of phenotype.

3.4.3 Timescales of Stochastic Phenotype Transitions

Markovian transitions (i.e., memoryless “hops”) among cell phenotypes have been observed

experimentally: examples include transitions among phenotypes in cancer cells, as measured
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by flow cytometry [54], and among pluripotency-states in mESCs, as measured by time-lapse

microscopy of fluctuating gene expression [140, 47, 64]. The compact nature of these data-

inferred networks–showing hops among a limited set of broad phenotypes–suggests that the

computed MSM framework advanced in this study provides an appropriate level of resolution

at which to analyze GRN dynamics and may serve as a useful tool for comparing models to

experimental data.

Experimental studies have quantified the timescales of Markovian transitions between

NANOG-high and NANOG-low states in mESCs [47, 64]. From Hormoz et al., the probability

of transitioning from NANOG-high to NANOG-low in mESCs is 0.02 per cell cycle, while

that of the reverse transition is 0.08. These values represent a relatively rapid transition rate,

since NANOG expression is known to be particularly dynamic [139]. Similarly, plasticity

has been observed in cancer cells where quantitative estimates of stochastic cell transitions

between a stem cell cancer cell phenotype to a basal cancer cell phenotype were observed to

be roughly on the order of 0.01 to 0.1 per cell cycle [54]. We can translate our model results

to approximate biological timescales: the degradation rate, which sets the timeunit for model

results (i.e., k is taken to be 1) was experimentally determined to be on the order of a few

hours (in the E14 mouse embryonic stem cell line, the half-lives of NANOG, OCT4, and SOX2

are approximately 4.7, > 6, and 1.6 hours, respectively [2]). Assuming that degradation is

unimolecular, k = ln(2)/t[NANOG]1/2, and the half-life of NANOG, t[NANOG]1/2 = 5 hours, the

degradation rate is k = 0.1. Using a mESC cell cycle time of 12 hours [156], the simulations

for Parameter Set I then predict NANOG-high to NANOG-low transitions occurring with

a rate of 0.03 per cell cycle, and of 3 × 10−3 for the reverse. For Parameter Set II, the

computed rates were 8 × 10−6 and 5 × 10−5, respectively. Comparison of these computed

and experimental rates of NANOG transitions indicates that Parameter Set I (f = 10) is

more in line with experimental observations, while Parameter Set II (f = 50) gives transition

rates that are three orders of magnitude too slow. These results are in agreement with

previous findings from theoretical studies that GRNs in pluripotency networks operate in a
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so-called “weakly-adiabatic” regime [130, 167, 150], in which the timescale of DNA-binding

by transcription factors is on the order of transcription factor production and degradation.

3.4.4 Comparison to Other Models and Computational Approaches

A number of theoretical studies have elucidated dynamics of stochastic molecular-detailed

GRN models (i.e., models that include molecular fluctuations and regulatory mechanisms, in

contrast to Boolean models[28]). These studies have largely focused on small 1- or 2-gene

motifs[[16, 75, 131, 46, 95, 150, 49]], but recent years have seen extension of stochastic methods

to studies of more complex, experimentally derived GRN models encompassing O(10) genes.

For example, determination of global dynamic properties of such networks has been achieved

by combining information from long stochastic simulations of discrete models [130, 83], or

of continuum SDE models, in combination with path integral approaches [160, 84]. The

pluripotency network studied herein was developed by Zhang and Wolynes [167]; in their

work, the authors developed a continuum approximation to the Chemical Master Equation

that enabled quantitative construction of the epigenetic landscape. Here, we present an

alternative approach that is unique in two major aspects: (1) the use of stochastic simulations

(i.e., SSA [51]), which is enabled by use of the WE rare-event sampling algorithm, and (2) the

automated Markov State Model framework for designating phenotypes and constructing a

coarse-grained view of the epigenetic landscape. While we utilize a different framework (that

of coarse-grained, discrete stochastic models) from Zhang and Wolynes to approximate and

interpret dynamics, our results are broadly consistent with theirs. For example, the dominant

identified phenotypes we found are the same as in their work (the only exception being the

exceedingly rare LN2 phenotype identified by the coarse-graining algorithm for Parameter

Set I).
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3.4.5 Current Challenges

Several challenges and potential weaknesses with the pipeline exist, both with regard to

sampling rare events, and in determining an appropriate coarse-grained model. Potential

challenges with the WE algorithm have been described elsewhere[39, 172], and include the

difficulty of determining a binning that captures slow degrees of freedom and the existence of

time-correlations between sampled iterations of the simulation, which can impede unbiased

sampling. The Voronoi-based binning procedure we employ here is related to a number

of similar approaches [35, 166, 33, 150], and has the advantage of effectively tiling a high-

dimensional space without the need for a priori knowledge. However, in practice, according

to others and our own studies, the method is effective up to about 10 degrees of freedom.

These challenges are the subject of continued study.
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Chapter 4

Regulation of Macrophage

Polarization and Plasticity by

Complex Activation Signals

4.1 Introduction

Macrophages are functionally complex cells of the immune system, and participate in both

innate and acquired immunity. In addition to their roles as professional phagocytes and

antigen-presenting cells, macrophages are sensitive integrators and transducers of biochemical

signals with a wide repertoire of responses. A recent study of the macrophage transcriptomic

response to a range of stimulatory molecules identified dozens of distinct mRNA coexpression

modules [163]. Two particular macrophage response patterns which have been widely

recognized are the M1 and M2 programs, named because they are respectively elicited by

products of Th1 and Th2 cells [21, 105]. The M1 response, also described as classical activation,

is typically evoked in vitro by treating cells with interferon-γ (IFN-γ) and lipopolysaccharide
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(LPS), a bacterial cell wall component and TLR4 agonist. The M1 phenotype includes

production of inflammatory cytokines including TNF-α and IL-1β[11]. M1 macrophages

also undergo a metabolic transition towards glycolysis and secrete free radicals. The M2

response, also known as alternative activation, is evoked by IL-4 and IL-13 treatment and is

characterized by increased expression of CD206, scavenger receptors, and—in mice—arginase

1. The M2 response has been further classified as the M2a response after other forms

of alternative activation were identified. These stereotyped responses are likely only fully

recognized in vitro but M1-like and M2-like phenotypes are readily identified in physiological

contexts.

M1- and M2-activated macrophages exhibit characteristic transcriptional and secretory

profiles. M1 activation is associated with STAT1 and IRF activation, and M2 activation

is associated with STAT6 activity [99]. These pathways suppress each other; IL-4-induced

STAT6 activation suppresses STAT1-dependent transcription in mouse macrophages [115], and

STAT1 activation suppresses STAT6-dependent transcription [154]. Further, costimulation

with IL-4 reduces the IFN-γ-dependent surface expression of FcγR on human monocytes[149].

Yet, despite the evidence of mutual repression, markers associated with both M1 and M2

phenotypes have been observed simultaneously on individual cells in vivo [144]. This co-

expression may reflect simultaneous co-activation of M1 and M2 programs. A similar process

is observed in T cells, where differentiation of CD4+ T cells to IFN-γ-secreting Th1 cells

or IL-4-secreting Th2 cells in mixed culture conditions yields a tunable continuum of cell

fates [12]. Modeling revealed that this outcome was consistent with gene regulation governed

by a mutual inhibition, self-activation (MISA) network, a common motif thought to govern

alternative fate-decisions in many cell types [171], including macrophages[138, 80].

M1 and M2 marker coexpression may also indicate that cells are shifting from one phenotype

to another as the microenvironment changes. Indeed, macrophages have been shown to exhibit

phenotypic plasticity in vitro. M1-activated macrophages induced by exposure to bacteria

74



[32] or IFN-γ, alone [121] or in combination with LPS [76], can be re-polarized to express

markers associated with an anti-inflammatory phenotype upon subsequent treatment with IL-

4, alone or in combination with IL-13. Similarly, macrophages treated with IL-4 will express

inflammatory markers upon subsequent treatment with LPS or IFN-γ [32]. The plasticity of

these influential cells has made them an attractive target for immunomodulation; scaffolds

and materials that achieve controlled delivery of macrophage-activating agents is an active

area of research for treatment of diseases involving macrophage dysregulation (reviewed in Ref.

[10]). In atherosclerosis, sustained inflammation exacerbates oxidative stress in the plaque

[107]. Plaque shoulders, which are prone to rupture, are typically dominated by macrophages

expressing markers associated with M1 activation [144]. Reprogramming macrophages toward

a M2 phenotype may prevent plaque rupture and promote plaque resolution by encouraging

matrix deposition [102, 151]. In the case of cancer, tumor-associated macrophages (TAMs)

are thought to induce anti-inflammatory signaling that helps protect the tumor from immune

assault [142]. Recent evidence suggests presenting M1-activating factors to TAMs can help

engage the immune system to attack the tumor [89]. An improved understanding of how

macrophages respond to stimuli that redirect their phenotype should help develop better

therapeutic approaches for these important pathologies.

In this study, we investigated how treatment with mixed M1 and M2 stimuli, either simulta-

neously or sequentially, regulates macrophage phenotype. We were motivated to understand

whether a mixed phenotype represents a superposition of the M1 and M2 phenotypes, a

transition between states, or, as some findings have suggested [119], a unique mixed pro-

gram. To consider the expression state of individual cells, we used flow cytometry to assay

surface expression of M1 marker CD86 and M2 marker CD206. Mouse bone marrow derived

macrophages were stimulated with LPS/IFN-γ and/or IL-4/IL-13 at various concentrations

over durations of 24-96 hours. Our findings suggest that macrophages adopt a mixed pheno-

type dependent on the relative strength of stimuli present, and that cells progress towards a M2

phenotype over time. These temporal changes in expression were found to be consistent with
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a mathematical model comprising a modified MISA network. In addition, reprogramming of

macrophages to the opposing phenotype is dependent on the extent of pre-polarization. More

specifically, expression of CD206 in response to IL-4/IL-13 is enhanced by pre-polarization

towards an M1 phenotype with LPS/IFN-γ. In contrast, expression of CD86 in response

to LPS/IFN-γ, particularly at low concentrations, is inhibited by pre-polarization towards

an M2 phenotype with IL-4/IL-13. Together, these data provide evidence of a macrophage

phenotypic continuum by analysis of phenotypic markers at the single cell level, and suggest

that macrophage reprogramming by combined activation signals is dependent on initial

polarization state and dosage of stimulation.

4.2 Results

4.2.1 Co-stimulated macrophages express markers of both M1 and

M2 activation

We first sought to establish a concentration range that would yield a submaximal response to

facilitate detection of enhancement and repression effects. We exposed mouse bone marrow

derived macrophages (BMDM) to varying concentrations of stereotypical M1 (LPS/IFN-γ) or

M2 stimuli (IL-4/IL-13). To maximize the sensitivity of our assays, we selected concentrations

from 0 to 0.3 ng/ml for LPS/IFN-γ and 0 to 1 ng/ml for IL-4/IL-13 since these ranges did

not completely saturate expression of CD86 and CD206. Cells were exposed to stimulus for

48 hours and assayed for expression of M1 marker CD86, a T-cell costimulatory molecule,

and M2 marker CD206, a mannose receptor, by flow cytometry. We found that median

CD86 labeling intensity increased tenfold as the concentration of LPS/IFN-γ was increased

from 0 to 0.3 ng/ml (Fig. S6.24a and b). Labeling intensity of CD206 increased threefold

as IL-4/IL-13 was increased from 0 to 1 ng/ml (Fig. S6.24c and d). At these concentration
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ranges, the expression of phenotypic markers was not saturating, so that the expression of

markers generally increased with stimulation concentration.

To explore the effect of co-stimulation with M1 and M2 activation signals on macrophages,

BMDM were exposed simultaneously to combinations of LPS/IFN-γ and IL-4/IL-13 at

concentrations in the determined range for 48 hours. Expression of CD86 and CD206 was

analyzed by flow cytometry (Fig. 4.1a and b). Notably, the population remained single-peaked

in plots of CD86 expression vs CD206 expression, and did not show separation into distinct

subpopulations. Cells generally did not individually commit to exclusive CD86 or CD206

expression. Indeed, CD86 and CD206 expression were only partially inhibited by exposure to

their opposing polarization signal. Analysis of CD86 expression in LPS/IFN-γ-stimulated

cells (0.3 ng/ml) showed that moderate amounts of co-added IL-4/IL-13 (0.1 ng/ml) in fact

increased the median expression of CD86 40% (± 22% SEM, n = 3; Fig. 4.1c). Further

increasing the IL-4/IL-13 concentration to 1 ng/ml abrogated this enhancement. Meanwhile,

the expression of CD206 in IL-4/IL-13 stimulated cells was not affected by the co-addition of

LPS/IFN-γ stimuli at any concentration (Fig. 4.1d). In sum, these data demonstrate that

macrophages exposed to combinations of the activation signals LPS/IFN-γ and IL-4/IL-13

express both CD86 and CD206 at 48 h of stimulation, and repression of the contrasting

pathway was only partially observed with these phenotypic markers.
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Figure 4.1: Co-stimulation with LPS/IFN-γ and IL-4/IL-13 leads to expression of
both CD86 and CD206. (a) Schematic illustrating experimental conditions. Macrophages
were exposed to LPS/IFN-γ and/or IL-4/IL-13 for 48 hours before analysis. (b) Density plots
of normalized CD206 versus CD86 staining intensity of macrophages subjected to different
concentrations of LPS/IFN-γ and/or IL-4/IL-13 (ng/ml) for 48 hours, assessed by flow
cytometry. CD86 is normalized to the LPS/IFN-γ-only condition and CD206 is normalized
to the IL-4/IL-13-only condition. Representative plots from a single experiment. Median
position is indicated by a red dot. (c) Average median normalized CD86 intensity ± SEM (n
= 3) of LPS/IFN-γ treated cells vs. co-added IL-4/IL-13 stimulus, grouped by LPS-IFNγ
concentration, normalized per experiment as in B. (d) Average median CD206 intensity ±
SEM (n = 3) of IL-4/IL-13 treated cells vs. co-added LPS/IFN-γ stimulus, grouped by
IL-4/IL-13 concentration, normalized per experiment as in B. Asterisk indicates significant
difference by two-sided t test, p < 0.05.
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Figure 4.2: Co-stimulated macrophages exhibit decreased CD86 expression and
increased CD206 expression over time. (a) Schematic illustrating experimental condi-
tions. Macrophages were exposed simultaneously to LPS/IFN-γ and/or IL-4/IL-13 for 24, 48,
72, or 96 hours. Each experiment used BMDM isolated from a single mouse. (b) Expression
of CD206 versus CD86 of different stimulation conditions over time. Average of median
population location ± SEM (n = 5) is shown. (c) Expression of CD86 staining intensity
over time for different stimulation conditions, normalized to the intensity of LPS/IFN-γ
condition at 24 hours. Average of median population location ± SEM (n = 5) is shown.
Asterisk indicates difference vs 24 hours by two-sided t test, p < 0.05. (d) Expression of
CD206 staining intensity over time for different stimulation conditions, normalized to the
intensity of IL-4/IL-13 condition at 24 hours. Average of median population location ± SEM
(n = 5) is shown. Asterisk indicates difference vs 24 hours by two-sided t test, p < 0.05.

4.2.2 Modeling proposes a complex interdependence of M1- and

M2-associated pathways

In order to gain further insight into the logic of macrophage activation, we performed mathe-

matical modeling of CD86 and CD206 expression in response to the different costimulatory

conditions. Our modeling strategy was designed to identify the key features of the regulatory

logic linking CD86 and CD206 expression (“outputs”) to stimulation by LPS/IFN-γ and/or
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IL-4/IL-13 (“input”). To this end, we analyzed a suite of candidate models and performed

model selection based on fitting to the experimental 96-hour timecourse data (Fig. 4.3).

Mathematical descriptions of the models are provided as Supplementary Equations 6.6; the

parameters are described in Supplementary Table S6.25 and the best-fit values are given in

Supplementary Table S6.26. Rather than treating signaling and gene regulatory networks

in detail (as quantitative parameters remain unknown), the network models comprise a

small number of interacting nodes representing inputs, outputs, and M1- and M2-associated

pathways. Models of T cell specialization [12, 97, 62] and fate-decisions in diverse cell types

[171] commonly employ a core Mutual Inhibition, Self-Activation (MISA) network motif.

We found that the basic MISA motif was insufficient to reproduce the observed temporal

expression patterns, including the decrease of CD86 expression after 24 hours and the sharp

increase of CD206 after 24 hours under costimulatory conditions.
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Model 1 2 3 4 5 6

RSS 0.58 0.53 0.15 0.54 0.11 0.10
AIC -210.61 -209.11 -244.96 -203.30 -246.78 -248.25
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Figure 4.3: Mathematical modeling of macrophage regulatory logic. (a) A represen-
tative set of minimal models for activation of M1 and M2 pathways under costimulation,
comprised of a modified MISA (Mutual Inhibition/Self-Activation) network. Y: an unspecified
regulator. Dashed line indicates that positive regulation of M2 by Y occurs cooperatively
with M2. Models are shown in order of increasing number of parameters. RSS score indicates
goodness of fit, and AIC score measures model quality, while penalizing presence of additional
parameters. ∆ AICc is reported relative to best (lowest) value, corresponding to Model
6. In general, successful models (3,5, and 6) incorporated both an incoherent feed-forward
loop on M1 and positive regulation of M2, mediated by Y. (b) Simulated expression of
CD86 and CD206 stimulated with LPS/IFN-γ and/or IL-4/IL-13 for 24, 48, 72, or 96 hours.
Simulated data are from the model with both the best AICc and RSS score, Model 6, fit to
the normalized timecourse data.

We explored a number of additional small-network topologies, consistent with current knowl-

edge of macrophage activation pathways. In the MISA paradigm, costimulus results in a

mixed response, in which both markers are expressed simultaneously, albeit at a somewhat

reduced level as compared to the strongly polarized case. While the temporal expression

of CD86 shows this behavior (dampened, but qualitatively similar kinetics, with addition

of IL-4/IL-13), the CD206 kinetics suggests a more complex response to costimulation. We

found that successful models (as assessed by either the error or the AICc information criterion)

required at least two features extending the core MISA: an incoherent feed-forward loop on

the M1 pathway, and a mixed (both inhibiting and activating) character of M2 regulation by
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the M1-axis (Fig. 4.3, Supplementary Fig. S6.26). In the network models, these interactions

are mediated by a single additional intracellular regulator (labelled Y). The predictions of

the candidate model are presented alongside experimental results in (Fig. 4.3b). Details of

the mathematical modeling can be found in the Supplementary Information 6.6.

4.2.3 Multiparametric characterization of macrophage phenotype

To assess whether the expression of CD86 and CD206 are representative of macrophage

function, we performed a multiplexed cytokine assay. We found that macrophages stimulated

with LPS/IFN-γ alone for 24 hours exhibited the highest secretion of inflammatory cytokines

including IL-6, IP-10, MIG, MIP-1a, MIP-2, MIP-1B, RANTES, and TNF-α, which were

found at much lower levels in the supernatants of unstimulated cells or cells exposed only to

IL-4/IL-13 (Fig. 4.4a). Cells that were stimulated with mixed LPS/IFN-γ and IL-4/IL-13

secreted somewhat lower levels of inflammatory cytokines, with the greatest proportional

decrease observed in G-CSF, IL-6, IL-12, IL-15, and TNF-α. Cytokines that were expressed

in greater quantity by M1-stimulated cells compared to näıve cells were also expressed by cells

exposed to mixed stimuli. This was consistent with a moderate but significant (17% ± 3.5%

SEM, n = 6) decrease in CD86 expression in cells treated with mixed cytokines compared

to the LPS/IFN-γ only condition at 24 hours (Fig. 4.4C). Examining cytokines typically

associated with M2 macrophages, we found that IL-10 was elevated, though not significantly,

in the LPS/IFN-γ-only and mixed conditions. TGF-β 1 and 2 expression was similar among

all conditions examined. VEGF was strongly suppressed in conditions containing IL-4/IL-13.

Indeed, none of the analytes in the ELISA panel were preferentially produced by IL-4/IL-13

treated cells.
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Figure 4.4: Multiparametric characterization of macrophage phenotype. (a) Den-
drogram and heat map of cytokine release from macrophage cultures exposed to LPS/IFN-γ
and/or IL-4/IL-13 for 24 hours. All conditions are normalized to inflammatory stimulus. ∗
indicates difference from LPS/IFN-γ-only condition by two-sided t test with Holm correction,
p <0.05. Average of 3 experiments. (b) Mean log2 transformed fold difference mRNA
expression vs. (B) IL-4/IL-13 only or (C) LPS/IFN-γ-only stimulation condition at 24 hours.
Missing values indicate amplification below limit of detection. n = 3.

Over the course of 96 hours, we observed that most cytokines were either relatively stable
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or exhibited decay (Supplementary Fig. S6.25). MCP-1 substantially increased in mixed

conditions over this time period, which was not observed in any other condition (Supplemen-

tary Fig. S6.25). In addition, TGF-β increased in IL-4/IL-13-only and, to a lesser extent,

mixed conditions, but not in LPS/IFN-γ-only or unstimulated conditions. Together, these

data suggest that the time scale of M1 activation is shorter than that of M2 activation,

and that cells stimulated with mixed cytokines progress towards a M2-like state. Moreover,

expression of some M2 proteins and genes is enhanced under mixed conditions when compared

to IL-4/IL-13-only stimulation conditions.

We also examined expression of genes associated with M2 (Fig. 4.4b) and M1 (Fig. 4.4c)

activation by RT-qPCR at 24 h after stimulation. Transcript expression of Cd206 as well as

Arg1 showed an increase in expression in mixed cytokine conditions compared to IL-4/IL-

13-only conditions (Fig. 4.4b). However, expression of Retnla (Relmα/Fizz1) and Chi3l3

(Ym1) was highest in the IL-4/IL-13-only condition, and co-addition of LPS/IFN-γ inhibited

expression of these genes, suggesting that M2 markers may be heterogeneously expressed.

Expression of Nos2 was highest in the LPS/IFN-γ only condition. Tnfa levels were lower in

the LPS/IFN-γ condition compared to the unstimulated and mixed stimulus conditions at the

examined timepoint (Fig. 4.4c), perhaps due to refractory downregulation after stimulation:

Tnfa is coinduced with genes that degrade Tnfa transcripts, leading to a short transcript

half-life [25], and activity at the Tnfa promoter stops by 18 hours after stimulation with LPS

[88].

4.2.4 Macrophage state impacts reprogramming by a second acti-

vation signal

It is thought that macrophages in wound environments are plastic and can transition from

M1-like to M2-like states as signals in their environment change [93] or are presented by
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therapeutic materials [10]. To investigate this transition in vitro, we examined how pre-

exposure of macrophages to an inflammatory stimulus influences their response to IL-4 and

IL-13. Macrophages were treated with LPS/IFN-γ for 24 hours before IL-4/IL-13 were added

for an additional 24 hours. Cells were assayed for CD86 and CD206 expression (Fig. 4.5a).

We found that expression of CD86 in LPS/IFN-γ pre-treated macrophages showed a modest

and non-statistically significant increase in response to subsequent addition of IL-4/IL-13

(Fig. 4.5b). In addition, pre-treatment of cells with LPS/IFN-γ did not block expression of

CD206 upon IL-4/IL-13 stimulation, and thus cells pre-polarized to a M1 phenotype were

still capable of acquiring characteristics of a M2 phenotype (Fig. 4.5c). Interestingly, at high

concentrations of subsequent IL-4/IL-13 cytokine addition, the extent of CD206 expression

was 30% (± 9% SEM, n = 5) higher in LPS/IFN-γ pretreated cells when compared to

unpretreated cells. These data demonstrate that pre-polarization towards an M1 phenotype

with LPS/IFN-γ does not prevent subsequent M2 response to IL-4/IL-13, and in fact can

enhance the expression of the M2 marker CD206.
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Figure 4.5: Macrophage polarization state influences their plastic response to op-
posing activation signals(a) Schematic illustrating experimental conditions. Macrophages
were stimulated for 24 hours with inflammatory stimuli alone before anti-inflammatory stimuli
were added for an additional 24 hours, and then assayed. (b) Expression of CD86 in cells
in cells either pre-treated with 1 ng/ml LPS/IFN-γ or untreated for 24 hours and then
subsequently treated with IL-4/IL-13 at the indicated dosages. Data are normalized to CD86
expression in 0.3 ng/ml LPS/IFN-γ-only condition, mean ± SEM (n = 4). (c) Expression of
CD206 in the same conditions as B. Data are normalized to CD206 expression in 1 ng/ml
IL-4/IL-13-only condition, mean ± SEM (n = 4). (d) Schematic illustrating experimental
conditions. Macrophages were stimulated for 24 hours with anti-inflammatory stimuli alone
before inflammatory stimuli were added for an additional 24 hours, and then assayed. (e)
Expression of CD86 in cells either pre-treated with 1 ng/ml IL-4 and IL-13 or untreated
for 24 hours and then subsequently treated with LPS and IFN-γ at the indicated dosages.
Data are normalized to CD86 expression in 0.3 ng/ml LPS/IFN-γ-only condition, mean ±
SEM (n = 3). (f) Expression of CD206 in the same conditions as E. Data are normalized to
CD206 expression in 1 ng/ml IL-4/IL-13-only condition, mean ± SEM (n = 3). Asterisks
indicate significant differences compared to unstimulated cells by two-sided t test, p < 0.05.
Dagger indicates differences between groups with and without pre-treatment by two-sided t
test, p < 0.05.

Conversely, perturbing M2-like macrophages towards a M1-like phenotype could be therapeuti-
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cally useful in diseases including cancer, where reprogramming tumor-associated macrophages

may help to inhibit tumor growth. To test M2-to-M1 plasticity in vitro, we pre-treated

macrophages with IL-4/IL-13 for 24 hours, added LPS/IFN-γ for a subsequent 24 hours, and

assayed cells for CD86 and CD206 expression (Fig. 4.5d). We found that at high concen-

trations of LPS/IFN-γ, pre-treatment with IL-4/IL-13 did not affect CD86 expression when

compared to näıve cells, suggesting that M2 pre-polarization does not impact reprogramming

towards an M1 phenotype. However, pre-treatment with IL-4/IL-13 inhibited the expression

of CD86 upon exposure to low concentrations of LPS/IFN-γ (Fig. 4.5e). CD206 expression

was modestly decreased in response to subsequent addition of LPS/IFN-γ in both the IL-

4/IL-13 pre-treated and näıve conditions, although these differences were not statistically

different (Fig. 4.5f). These data suggest that the ability of macrophages to acquire M1-like

behavior after entering a M2-like state is dependent on the concentration of subsequent M1

stimulation, and that high concentrations may be necessary for reprogramming than for

initial activation of näıve cells.

4.3 Discussion

We demonstrate that simultaneous exposure of macrophages to mixed cytokines leads to

expression of both CD86 and CD206 in individual cells, which are established respective

markers of M1 and M2 activation [80, 109, 100]. With 48 hours of stimulation, small

quantities of co-added IL-4/IL-13 stimuli enhanced CD86 expression in LPS/IFN-γ-stimulated

cells, whereas greater IL-4/IL-13 concentrations inhibited this enhancement. However, high

concentrations of stimulus in the mixed condition induced expression of CD86 equivalent

to expression in the LPS/IFN-γ-only condition, and expression of CD206 equivalent to

expression in the IL-4/IL-13-only condition. These findings are likely dependent on the time

point of observation and the concentrations of simuli, although an increase in M1 markers
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in response to M2 stimuli has been previously described [96]. Individual cell expressions

of CD86 and CD206 expression formed single-peaked, broad distributions, suggesting that

individuals do not strongly polarize in mixed cytokine environments. Consistent with this,

analysis of the secretome of these populations showed that the presence of IL-4/IL-13 along

with LPS/IFN-γ only moderately dampens the level of inflammatory cytokine secretion when

compared to LPS/IFN-γ only stimulated cells.

Although both M1 and M2 markers are present upon co-stimulation, their evolution over time

is different. In cells stimulated in mixed conditions, the M1 marker CD86 decreases after the

first 24 hours and returns almost to basal levels after 96 hours, whereas the M2 marker CD206

continues to increase peaking at 48-72 hours, and remained sustained relative to unstimulated

macrophages even after 96 hours. This difference may be indicative of the natural progression

of macrophages from inflammatory to anti-inflammatory phenotype during a host response

to a wound or infection with pathogen [93]. Unexpectedly, macrophages exposed to mixed

conditions had higher levels of CD206 when compared to cells treated with IL-4/IL-13 alone at

the longer timepoints, suggesting that presence of an inflammatory stimulus may enhance the

long term wound healing response. M2 marker Arg1 transcripts measured by qRT-PCR were

also elevated at each time point in the mixed stimulation condition compared to IL-4/IL-13

only (Supplementary Figure S6.27).

Our results suggest that macrophage reprogramming to a contrasting phenotype is dependent

on initial polarization state and the strength of the second signal. For cells polarized

towards an inflammatory phenotype with LPS/IFN-γ, CD206 expression with IL-4/IL-13

was enhanced compared to näıve cells. In contrast, cells polarized to an anti-inflammatory

state with IL-4/IL-13 were more resistant to reprogramming with LPS/IFN-γ towards CD86

expression. This effect was observed specifically at the lower LPS/IFN-γ concentrations;

expression of CD86 with high LPS-IFNγ concentrations was not significantly different between

pre-polarized and näıve cells. These data suggest the anti-inflammatory phenotype is enhanced
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by an initial inflammatory signal, and that macrophage progression from M1-like to M2-like

phenotypes is favored.

While exploring signaling network topologies that could model macrophage responses, we

discovered that the basic MISA motif was insufficient to account for the complex temporal

expression patterns of CD86 and CD206, despite suggestions that elements of mutual inhibition

and self activation may play a role in macrophage polarization [138, 80]. The mathematical

models shed light on regulatory interactions which enable macrophages to achieve a spectrum

of polarization states, depending quantitatively on microenvironmental cues. The models also

suggest a regulatory logic by which individual cells co-stimulated by M1 and M2 signals can

achieve transient M1 character followed by progression to a M2 phenotype. Although each node

in the small-network models represents the combined action of many species, ‘M1’ and ‘M2’

likely reflect (at least in part) regulation by STAT1 and STAT6, respectively, consistent with

their mutual antagonism induced by LPS/IFN-γ and IL-4/IL-13 [115, 154, 149, 116, 77, 147].

For construction of a parsimonious model in order to avoid overfitting, a single additional

node (‘Y’) was introduced to mediate both the transient nature of CD86 expression, and

the mixed inhibiting/activating effect of LPS-IFNγ on CD206. As such, ‘Y’ likely comprises

feedback inhibition mechanisms, including those mediated by SOCS and STAT3 (reviewed

in [65]). Furthermore, ‘Y’ may reflect regulation by NFκB, which is activated by LPS[91]

and inhibited by IL-4 [171]. Several studies have suggested a cooperative interaction between

NFκB and STAT6 to promote genes downstream of IL-4 [103, 4, 137, 52]. Incorporating

these interactions into the mathematical model enabled us to construct small networks that

captured the temporal response to both mixed and polarizing stimuli. A limitation of this

approach is that the model is trained on two markers, which captures only some of the

changes associated with macrophage activation. A more comprehensive dataset could lead to

a more predictive model at the cost of increasing the complexity of the model.

These findings may have implications for therapeutic strategies involving macrophage repro-

89



gramming. For modulating the host response to biomaterial implants, delivery of IL-4 and

IL-13 has been shown to increase expression of CD206 in surrounding macrophages [106].

Our results suggest that additional delivery of inflammatory cytokines, either concurrently or

beforehand, may enhance anti-inflammatory activation and potentially improve the wound

healing response. Along these lines, Spiller et. al. recently demonstrated that delivery

of IFN-γ increases angiogenesis in response to a decellularized bone implant [143]. For

cancer treatment, reprogramming tumor associated macrophages, which are thought to be

anti-inflammatory, towards an inflammatory phenotype may require high concentrations of

inflammatory stimuli, since low concentrations were not sufficient to induce this transition.

In summary, we find that macrophages exposed to both M1 and M2 activation signals

express markers of both phenotypes, but the M1 markers decay over time while the M2

markers remain elevated. The distribution of markers suggest that macrophages do not exist

in discrete polarized states. In addition, acquisition of the M2 phenotype appears to be

enhanced by additional exposure to inflammatory stimulus, suggesting that inflammatory

insult potentiates the wound healing response. Together, these results provide a better

understanding of macrophage behavior in response to opposing activation signals, which is

likely to be involved in the dynamic immune response to pathogens or injury. This improved

understanding of macrophage activation will likely help design strategies for treatment of

disease in which macrophages are involved.

4.4 Method

4.4.1 Cell Isolation and Culture

All protocols involving animals were approved by University of California Irvine’s Institutional

Animal Care and Use Committee, which is accredited by the Association for the Assessment
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and Accreditation of Laboratory Animal Care International (AAALACi). Primary bone

marrow derived macrophages were obtained by harvesting marrow from femurs of 6-12 week

old female C57BL/6 mice, lysing red blood cells with ACK buffer, and then culturing cells for

seven days on bacteriological polystyrene plates in DMEM supplemented with 10% FBS, 2%

penicillin/streptomycin, 2 mM L-glutamine, and 10% conditioned media from CMG 12-14

cells expressing recombinant mouse M-CSF. Macrophages were treated with the indicated

concentrations of LPS (Sigma), IFN-γ, IL-4, or IL-13 (all from Biolegend) for the indicated

time. Macrophages were seeded at 3e5 cells/ml, allowed to adhere overnight, and treated

with indicated concentrations of IL-4, IL-13, TNF-α, and IFN-γ, and then assayed for flow

cytometry or cytokines as described below.

4.4.2 Flow Cytometry

Cells were fixed in 4% formaldehyde and stored at 4 ◦C until staining with anti-CD86

(clone GL-1, APC conjugate; Tonbo Biosciences) and anti-CD206 (clone C068C2, Alexa 488

conjugate; Biolegend) antibodies or isotype controls. Cells were analyzed on a BD LSR

flow cytometer with post-processing in FlowJo (Tree Star). Cell populations were gated on

forward and side scatter to select intact single cells. Events were acquired until 10,000 events

were collected in a preliminary analysis gate or the sample was exhausted.

4.4.3 Cytokine Analysis

Supernatants were collected at 24, 48, 72, and 96 hours after stimulation and analyzed with

a Luminex 31-plex mouse cytokine array (Eve Technologies). Hierarchical clustering was

performed in R using a complete linkage method and presented with the gplots package [161].
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4.4.4 RT-PCR

For gene expression analysis, cells were lifted from culture plates 24 hours after stimulation,

pelleted by centrifugation, and frozen at −80 ◦C. Cells were lysed and RNA was extracted

with the Qiagen RNeasy Mini kit. Reverse transcription was performed with the Qiagen

Quantitect Reverse Transcription kit, which uses random priming and includes a DNase

treatment. Resulting cDNA was observed to be free of contaminating gDNA by testing

with the mVPA1 primer set [79]. qPCR was performed with BioRad SsoFast EvaGreen

master mix on a BioRad CFX96 thermocycler using recommended cycling parameters (hot-

start activation at 95 ◦C for 30 s, followed by 40 cycles of 5 s denaturation at 95 ◦C and

5 s annealing/extension at 55 ◦C, followed by melt curve collection from 65-95 ◦C in 0.5

◦C increments at 5 s/step). Inhibition was cleared by diluting samples 1:100 in ddH2O

before analysis. Amplification was confirmed to be target-specific with Primer-BLAST [165]

and by observing that melt curves had a single peak consistent with predicted amplicon

melting temperature. Primer sequences and target and amplicon details are presented in

Supplementary Table S6.9. Gene-of-interest expression was determined relative to an ensemble

of Hprt, Gapdh, and Ldha expression using the GeNorm method [153] implemented by the

package eleven (https://github.com/tdsmith/eleven).

4.4.5 Construction of Macrophage Models

We constructed mathematical models comprising minimal nonlinear Ordinary Differential

Equation (ODE) networks. Our models were developed from previously described models

of T cell subset specialization [97, 63, 12], adding additional connectivities and species to

account for the complex kinetics of CD86 and CD206 after stimulation. We constructed

70 models with different topologies. A representative set of the studied topologies, models

1-6, are illustrated in Figure 4.2 and Fig. 4.6. A model described by the mutual-inhibition
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self-activation (MISA) motif (Model 2) fits the data better than one in which the M1- and

M2-associated pathways are activated independently (Model 1). However, the MISA is

nevertheless insufficient to capture the complex kinetics of CD86 and CD206 expression after

co-stimulation.

Model 1 Model 2 Model 3

Model 4 Model 5

Timepoint
24h 48h 72h 96hC

D
86

 in
te

ns
ity

 re
la

tiv
e 

to
 0

.3
x0

0.00

0.25

0.50

0.75

1.00

Timepoint
24h 48h 72h 96hC

D
20

6 
in

te
ns

ity
 re

la
tiv

e 
to

 0
x1

0.00

0.50

1.00

1.50

2.00

Timepoint
24h 48h 72h 96hC

D
86

 in
te

ns
ity

 re
la

tiv
e 

to
 0

.3
x0

0.00

0.25

0.50

0.75

1.00

Timepoint
24h 48h 72h 96hC

D
20

6 
in

te
ns

ity
 re

la
tiv

e 
to

 0
x1

0.00

0.50

1.00

1.50

2.00

Timepoint
24h 48h 72h 96hC

D
86

 in
te

ns
ity

 re
la

tiv
e 

to
 0

.3
x0

0.00

0.25

0.50

0.75

1.00

Timepoint
24h 48h 72h 96hC

D
20

6 
in

te
ns

ity
 re

la
tiv

e 
to

 0
x1

0.00

0.50

1.00

1.50

2.00

Timepoint
24h 48h 72h 96hC

D
86

 in
te

ns
ity

 re
la

tiv
e 

to
 0

.3
x0

0.00

0.25

0.50

0.75

1.00

Timepoint
24h 48h 72h 96hC

D
20

6 
in

te
ns

ity
 re

la
tiv

e 
to

 0
x1

0.00

0.50

1.00

1.50

2.00

Timepoint
24h 48h 72h 96hC

D
86

 in
te

ns
ity

 re
la

tiv
e 

to
 0

.3
x0

0.00

0.25

0.50

0.75

1.00

Timepoint
24h 48h 72h 96hC

D
20

6 
in

te
ns

ity
 re

la
tiv

e 
to

 0
x1

0.00

0.50

1.00

1.50

2.00

Model 6

Timepoint
24h 48h 72h 96hC

D
86

 in
te

ns
ity

 re
la

tiv
e 

to
 0

.3
x0

0.00

0.25

0.50

0.75

1.00

Timepoint
24h 48h 72h 96hC

D
20

6 
in

te
ns

ity
 re

la
tiv

e 
to

 0
x1

0.00

0.50

1.00

1.50

2.00

0.3x0
0.3x1
0x0
0x1

IL-4/IL-13 x 
LPS/IFN
(ng/ml)

Figure 4.6: Simulated timecourse experiment from each model shown in Fig. 4.4.
Points mark experimental data, as shown in Fig. 4.4B.

Models that extend the MISA topology by introducing a new species Y that interacts with
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the M1- and M2-associated pathways, and representing unknown processes downstream of

LPS/IFN and/or IL-4/IL-13 signaling events improve the model score (see Akaike Information

Criterion (AICc) below) (Models 3, 5, 6). Specifically, we found that an incoherent feedforward

loop on M1, mediated by an additional species Y, was necessary to capture the decay of

CD86 expression in costimulated cells at 96 hours [9]. An activating link between Y and

M2 was also consistent with the increased expression of CD206 of costimulated cells at later

times. In particular, cooperative activation of M2 from Y and M2 improved the overall fit.

To discover extended topologies, we were guided by the features of the temporal data and

the literature on macrophage activation, as discussed in the main text.

Model quality was assessed based on optimization of parameters by fitting to the 96-hour

time course data (Fig. 4.2) of four timepoints (24, 48, 72, 96 h) for four different stimulation

conditions ({0.3,0}, {0.3,1}, {0,0}, {0,1} ng/ml) {LPS/IFN-γ, IL-4/IL-13}. The number

of replicates was between three and five for each timepoint, giving 72 experimental data

points. The error metric used was the sum of squared residuals (RSS) with normalized

mean weighting. Parameter estimation was performed by minimizing the RSS of the model

predicted CD86 and CD206 values to the normalized mean-weighted experimental values. The

Matlab Optimization Toolbox and the trust-region-reflective algorithm were used to perform

1,000 individual fits. Parameters were initialized from a lognormal distribution with a mean

and variance of 2, and were constrained to be positive. Parameters were optimized to the

normalized timecourse data, and thus are expressed in arbitrary concentration and time units.

Initial fits were performed using 400 trust-region-reflective iterations, or until convergence,

using normalized unweighted experimental values. A second fit was then performed to the

normalized mean-weighted experimental values. All models were assessed using the AICc, a

scoring metric for model selection that includes penalties for increasing the number of fitted

parameters [111]. Model parameters can be found in Tables S6.10 and S6.11.

To replicate the cell-to-cell variability in the flow cytometry data, individual cells were given

94



static parameters drawn from a distribution. Cell populations with between 3000 and 10000

cells were simulated, and model parameters for each cell were drawn from a lognormal

distribution centered on the optimized parameters and with a variance of one percent of the

mean. The resulting CD86 and CD206 expression levels for all models in Figure 4.2 and fitted

parameters (Fig. 4.6 showed single-peaked distributions shifting with dosage, in qualitative

agreement with the experimental density plots.
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Chapter 5

Future Directions and Weighted

Ensemble Sampling Methodology

5.1 Generalizability to Other Biochemical Frameworks

The WE-based computational pipeline presented in this work (Chapter 3) is uniquely suited

to extracting global dynamics information for stochastic systems with metastability, using

simulations. An advantage of this approach is that both the WE and coarse-graining

algorithms are “dynamics-agnostic” [38], meaning that they can be applied to any type of

stochastic dynamics framework. In the context of computational biology, our pipeline could

be extended to other types of stochastic biochemical systems, such as systems with hybrid

discrete-continuum dynamics [58], systems with spatial heterogeneity [39], or multi-level

models [101]. In addition to this flexibility, simulation-based methods have the advantage of

being able to leverage existing, widely-used open-source packages, which in turn facilitate

model specification and model sharing. For example, BioNetGen [44] can interpret models

specified in the Systems Biology Markup Language.
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In ongoing work, we are studying models of cardiomyocyte differentiation [59], bacterial

competence [110], DNA methylation maintenance [50], and receptor-ligand binding in a

crowded environment [112] using WE-based sampling. While the WE-based computational

pipeline and string method appear to work well in systems with well-defined attractor basins,

even in systems with dynamical oscillations (pluripotency network, SC to LN(1/2) transitions),

the coarse-graining method, PCCA+ [132], was ostensibly designed for systems that obey

detailed balance, where, at equilibrium, each process is equilibrated with its reverse process.

Bacterial competence and methylation maintenance involve cyclical oscillations, which can

be observed and sampled using the WE framework, but these cycles explicitly do not satisfy

detailed balance, potentially precluding the use of clustering based on separation of timescales.

However, it is possible to construct a Markov model for a cyclic process [81], though further

study is necessary to determine if such a model has biological relevance.

5.1.1 Alternatives to stochastic simulation algorithm

While the WE methods presented in this document use BioNetGen [44], other software to

simulate trajectories of the SSA have been used, including StochKit [129] and the Stochastic

Simulation Compiler (SSC) [87]. Development of methods to improve the computational

efficiency and speed of SSA, e.g. tau-leaping [24], is still ongoing. Using a speed-up to the

SSA could extend the WE sampling method to larger (> 10 genes) systems since, thanks to

parallelization, the bottleneck of WE sampling is simulating the system dynamics. However,

these methods are, by necessity, approximate, potentially leading to errors in small number

regimes, such as transitions in gene state or changes in copy numbers close to zero.
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5.2 Modification to Weighted Ensemble Binning Meth-

ods

Although the Weighted Ensemble method itself is generally efficient for studying systems with

rare events [38], the method of adaptively binning is currently computationally inefficient.

With every iteration, Nbins calculations of distance to Mtarg replicas are necessary to fully

repopulate the sampling region centers. Alternative adaptive binning methods, such as

WExplore [33] can reducing the computational effort in exploring a large state space with a

limited number of sampling regions by redistributing the distance calculations across multiple

hierarchies of sampling regions. Alternative distance metrics, such as those covered in [90]

might also provide alternative clustering methods for the identification of metastable states,

and better sampling region coverage of phenotypes that are dynamically distinct, but close

to each other in Euclidean distance, e.g. gene states.

5.3 Quantifying Parameter Dependence in Weighted

Ensemble

To use the weighted ensemble method, we assume that the replicas in each sampling region

are well-mixed and at equilibrium within that sampling region. The choice of sampling time

τWE can have drastic effects on the efficiency and accuracy of WE sampling. We demonstrate

the τWE dependence on an autocatalytic, trimolecular toy network, the Schlögl network with

two attractor basins (Fig. 5.1):

2 X
k1−−⇀↽−−
k2

3 X

0
k3−−⇀↽−−
k4

X
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where k1 = 3× 10−2, k2 = 3.33× 10−5, k3 = 200, and k4 = 3.5. The mean first passage time

calculated from a truncated enumeration of the CME was MFPTAB = 5.03 × 104, where

the basins A and B are unit circles centered around X = 82 and X = 583, respectively.

We find percent error of the flux calculated from the WE computational pipeline to that

calculated through a long conventional simulation, using the same sampling time τ . Of the

three simulations, τWE = 10, 50, and100, the simulation with τWE = 50 has the smallest

% error. However, the total amount of sampling time is different for all three simulations.

Overall, it appears that the amount of fluctuation in the estimated flux decreases for τWE = 50

and 100, and the simulations with longer τ appear to require fewer iterations to estimate

a flux within 50% of the conventional simulation value. Unfortunately, the sensitivity of

the simulation results to the WE parameters Nbins and τWE change with each network. A

general ‘rule-of-thumb’ for choosing the sampling time τWE is that a replica should have an

equal probability of leaving a sampling region and staying within it during the sampling

time, meaning that the effect of Nbins and τWE on sampling accuracy and speed are highly

correlated.

When we use weighted ensemble sampling for the transition matrix, we have another consid-

eration with the sampling time τ . Estimation of timescales in the transition matrix is also

dependent on sampling time τtrans. matrix and the number of sampling regions, demonstrated

on the ExMISA network (Fig. 5.2). In this case the weighted ensemble sampling time is the

same as the lagtime used to estimate the transition matrix (τWE = τtrans. matrix), and the

Markovian assumption of the transition matrix is subject to the timescale of τtrans. matrix.
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Figure 5.1: Dependence of Weighted Ensemble Sampling Accuracy with Sampling
Time τ , Demonstrated on the Schlögl Network Forwards transition from basin A,
defined as a unit circle centered around X = 82 to basin B, defined as a unit circle centered
around X = 583. The A→ B transition is shown in blue, with the mean of a long conventional
simulation shown in light blue. The B → A transition is shown in orange. The percent error
of the flux found through the computational pipeline using rate mode (averaged over the last
300 iterations) vs. flux found from a long conventional simulation (calculated with the same
τ) is displayed for each sampling time.
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Figure 5.2: Convergence of the slowest implied timescale t2 with increasing number
of sampling regions (bins) and increasing lagtime τ for the ExMISA network. The
lagtime calculated using the truncated CME is shown in gray. The accuracy of the WE
approximation increases monotonically with increasing bin number and lagtime.

5.4 Model Inference in Macrophage Polarization

Previously, we used the normalized average expression level of CD86 and CD206 markers

to select six candidate models for macrophage polarization. While our previous methods

identified the necessary network topology to capture the mixed activation response (an

incoherent feed-forward loop), we could not capture the memory effects of pre-polarization

(Fig. 5.3), nor could we properly fit the distribution of the sixteen induction conditions

with additive noise. We previously attempted to fit the distribution of the sixteen induction

conditions with an SDE model with additive noise including cooperative mutual repression

(Fig. 5.4, right). However, the model primarily fit the mean expression of CD86 and CD206
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for each condition and had difficulty fitting the distribution for conditions with high M1

induction. We did not attempt to fit the larger models with incoherent feed-forward loops or

with the additional species ’Y’ due to the computational inefficiency of simulating ‘synthetic’

cell populations (approximately 10,000 cells) for all sixteen polarizing conditions. Attempts

at fitting discrete models using Rule-Based simulation (BioNetGen) were largely unsuccessful

for similar reasons.

Figure 5.3: Behavior of the model six to pre-polarization signals. Although the
model fits the time response data well according to the AICc goodness-of-fit measurement, it
does not show the increased response in CD86 with M2 pre-polarization at higher doses of
LPS/IFN-γ.

102



Figure 5.4: Fit of Candidate Models to Sixteen Conditions of Macrophage In-
duction. (Left) One representative replicate of the experimental flow cytometry results,
normalized to the mean expression level of CD86 in the {0.3,0} condition and to the mean
expression level of CD206 in the {0,1} condition. (Right) Mutual repression motif with
cooperativity fit to the distribution of the sixteen experimental conditions. This model was
fit to minimize the sum of the Kolmogorov-Smirnov test for all sixteen conditions, which fits
the standard deviation of the distributions, but fails to capture the tails.

Instead of attempting to directly compare two noisy cell populations on largely varying

scales (arbitrary units of fluorescence vs. discrete cell marker copy number), comparison

of the probability distribution of CD86 and CD206 via Kullback–Leibler divergence or the

Kolmogorov–Smirnov test could provide an easier value to minimize. Previously, to compress

the two-dimensional response in CD86 and CD206 to a one-dimensional distribution, we

converted the distribution of CD86 and CD206 expression to a single α distribution used

to describe polarization in T-cells [12]. This metric measured how close the response of a

cell population was to either polarized signal (e.g. where M1 induction would be associated

with α = 0 and M2 induction would be associaed with α = π/2). Unfortunately, there was

expression of CD86 under pure M2 induction, which precluded the use of the metric. However,
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there are metrics that can measure distance from two-dimensional distributions, such as the

Mahalanobis distance. A two-dimensional distribution of CD86 and CD206 expression can

be estimated through the WE-based computational pipeline, which can be directly compared

to the probability distribution of fluorescence data (for each triplicate). Introducing fully

discrete chemical reaction network models to the candidate model set could lead to the

inference of a network model that fully captures macrophage polarization dynamics, from

the time-dependent dose-response, to the pre-polarization memory effects. Alternatively, to

fit the general macrophage polarization response, iterative fitting procedures that first fit a

model to the timecourse data, then to the sixteen induction conditions or the pre-polarization

signals might improve the current model selection protocol.
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in the feedback regulation of the mammalian signalling network. Molecular systems
biology, 4(1):190, 2008.

[83] C. Li and J. Wang. Quantifying Waddington landscapes and paths of non-adiabatic
cell fate decisions for differentiation, reprogramming and transdifferentiation. Journal
of The Royal Society Interface, 10(89):20130787, Dec. 2013.

[84] C. Li and J. Wang. Quantifying the Landscape for Development and Cancer from a
Core Cancer Stem Cell Circuit. Cancer Research, 75(13):2607–2618, July 2015.

[85] V. Likhoshvai and A. Ratushny. Generalized hill function method for modeling molecular
processes. Journal of bioinformatics and computational biology, 5(02b):521–531, 2007.

[86] A. Lipshtat, A. Loinger, N. Q. Balaban, and O. Biham. Genetic Toggle Switch without
Cooperative Binding. Physical Review Letters, 96(18):188101, May 2006.

[87] M. Lis, M. N. Artyomov, S. Devadas, and A. K. Chakraborty. Efficient stochastic
simulation of reaction–diffusion processes via direct compilation. Bioinformatics,
25(17):2289–2291, 2009.

[88] H. Liu, P. Sidiropoulos, G. Song, L. J. Pagliari, M. J. Birrer, B. Stein, J. Anrather, and
R. M. Pope. Tnf-α gene expression in macrophages: regulation by nf-κb is independent
of c-jun or c/ebpβ. The Journal of Immunology, 164(8):4277–4285, 2000.

[89] M. Liu, F. Luo, C. Ding, S. Albeituni, X. Hu, Y. Ma, Y. Cai, L. McNally, M. A.
Sanders, D. Jain, et al. Dectin-1 activation by a natural product β-glucan converts im-
munosuppressive macrophages into an m1-like phenotype. The Journal of Immunology,
195(10):5055–5065, 2015.

[90] J. A. Long and T. A. Nelson. A review of quantitative methods for movement data.
International Journal of Geographical Information Science, 27(2):292–318, 2013.

[91] C. J. Lowenstein and E. Padalko. inos (nos2) at a glance. Journal of cell science,
117(14):2865–2867, 2004.

111



[92] M. Lu, J. Onuchic, and E. Ben-Jacob. Construction of A Self-consistent Landscape for
Multistable Gene Regulatory Circuits. Mar. 2014.

[93] T. Lucas, A. Waisman, R. Ranjan, J. Roes, T. Krieg, W. Müller, A. Roers, and S. A.
Eming. Differential roles of macrophages in diverse phases of skin repair. The Journal
of Immunology, 184(7):3964–3977, 2010.

[94] A. Ma and A. R. Dinner. Automatic Method for Identifying Reaction Coordinates
in Complex Systems. The Journal of Physical Chemistry B, 109(14):6769–6779, Apr.
2005.

[95] R. Ma, J. Wang, Z. Hou, and H. Liu. Small-Number Effects: A Third Stable State in a
Genetic Bistable Toggle Switch. Physical Review Letters, 109(24):248107, Dec. 2012.

[96] I. Malyshev and Y. Malyshev. Current concept and update of the macrophage plasticity
concept: intracellular mechanisms of reprogramming and m3 macrophage “switch”
phenotype. BioMed research international, 2015, 2015.
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S. Lettieri, D. W. Wang, M. Grabe, D. M. Zuckerman, and L. T. Chong. WESTPA:
An Interoperable, Highly Scalable Software Package for Weighted Ensemble Simulation
and Analysis. Journal of Chemical Theory and Computation, 11(2):800–809, Feb. 2015.

[174] M. C. Zwier and L. T. Chong. Reaching biological timescales with all-atom molecular
dynamics simulations. Current Opinion in Pharmacology, 10(6):745–752, Dec. 2010.

118



Chapter 6

Supporting Info

6.1 Stable states of the base network and the network

with dimerization

Parameters for the base network were taken to be consistent with Schultz et al.[133]. Each

parameter set has the same stable state in the protein sub-spaces (a = 0, b = g/k and a = g/k,

b = 0) and the same dissociation constant of the binding proteins to DNA (Xeq = f/h).

We use an order parameter in terms of DNA-operator occupancy (gene state) and protein

copy number, λ = na − nb, where na = a + 2a2 + 2Boff and nb = b + 2b2 + 2Aoff . For

the network with dimerization, we use a parameter Xad = gd/kd, where gd and kd are the

monomer production and degradation rates for the network, respectively. The stable states

in the protein sub-spaces of the network with dimerization are located where a = 0, a2 = 0,

b = Xad, b2 = d(2u)−1(X2
ad − Xad) and a = Xad, a2 = d(2u)−1(X2

ad − Xad), b = 0, b2 = 0.

The rate parameters for the network with dimerization were chosen to keep the stable states

in term of the order parameter λ of both networks equivalent. To maintain the equivalency,

the DNA unbinding rate and the monomer production rate are kept the same between both
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networks (g = gd; f = fd) while the parameter Xad is scaled in the dimerization network to

Xad = (1− u/d)/2 + (1/2)[(1− u/d)2 + 4gu/dk]1/2 and the DNA binding rate is scaled to

hd = hu (g/k)2−g/k
d(X2

ad−Xad)
.

6.2 Exclusive switch chemical reaction network

In the general switch, four distinct gene states are present due to the binary regulation of each

gene (i.e., Aon/Bon, Aon/Bon, Aoff/Bon, Aoff/Boff). In the exclusive switch, competitive

binding means that the Aoff/Boff gene state is disallowed. This is encoded in the reaction

network by transforming the reactions to the operator notation used by Morelli et al.[108]:

O(unbound operator) = Aon/Bon

OA2 = Aon/Boff

OB2 = Aoff/Bon

OA2B2 = Aoff/Boff (not present in exclusive switch reaction)

The reactions for the exclusive switch are thus transformed to:

O
g−−→ a O

g−−→ b

OA2
g−−→ a OB2

g−−→ b

a
k−−→ 0 b

k−−→ 0

O + 2 b
h−−⇀↽−−
f

OB2 O + 2 a
h−−⇀↽−−
f

OA2

The parameters used in these equations are the same as those for the general toggle switch.

In this formulation, a single operator (O) has a single binding site for either two a proteins

or two b proteins. Binding by one repressor prevents the other from binding. The unbound
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operator can produce either a protein or b protein, but a bound operator can only express one

protein. The probabilities that the operator is in any of its three states (P (O), P (OA2), and

P (OB2)) can be converted into the probabilities that gene A is on (P (Aon)) or the probability

that gene B is on (P (Bon)) to be consistent with the notation of the general toggle switch is

shown below:

P (Aon) = P (O) + P (OA2)

P (Bon) = P (O) + P (OB2)

P (Aoff ) = 1− P (Aon)

P (Boff ) = 1− P (Bon)

6.3 ExMISA Network

Two-gene network with Mutual Inhibition, Self-Activation, and exclusive transcription factor

binding.

A00 + 2 a
ha−−⇀↽−−
fa

A10 B00 + 2 b
ha−−⇀↽−−
fa

B10

A00 + 2 b
hr−−⇀↽−−
fr

A01 B00 + 2 a
hr−−⇀↽−−
fr

B01

A00
g0−−→ A00 + a B00

g0−−→ B00 + b

A01
g0−−→ A01 + a B01

g0−−→ B01 + b

A10
g1−−→ A10 + a B10

g1−−→ B10 + b

a
k−−→ 0 b

k−−→ 0
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6.4 Pluripotency network

There are eight genes (encoding transcription factors) in the pluripotency network. Tran-

scription factors bind as homodimers with the exception of the OCT4-SOX2 heterodimer.

Only three transcription factors interact with their own gene, CDX2, NANOG, and GATA6.

Transcription factors bind as dimers with the rate h and unbind with the rate f . When a

gene is bound by any activator and no repressors, it expresses at a rate gon, otherwise, it

expresses at a rate goff . The only exception is NANOG, which must be bound by all three of

its activators and no repressors to be activated.

6.5 Pseudo-code for the Weighted-Ensemble Based Com-

putational Pipeline

6.5.1 Weighted Ensemble Exploration Mode

1. Format the reaction network into a BioNetGen file.

2. Choose Mtarg, the target number of replicas per sampling region, and Nbins, the target

number of sampling regions or bins.

3. Initialize Mtarg replicas in a single starting location.

4. Simulate replicas for a simulation time τWE. Replicas are simulated in parallel.

5. Chose Nbins new bin positions.

(a) Chose one random replica as the first new bin position.

(b) Chose the replica furthest from the set of bin positions to be the next new bin

position.
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(c) Repeat (b) until Nbins new positions have been chosen.

6. Perform the WE step.

(a) For a given bin, if the number of replicas in the bin is less than Mtarg, split the

replica with the largest weight into n equally weighted replicas until there are

Mtarg replicas.

(b) For a given bin, if the number of replicas in the bin is greater than Mtarg, combine

the weight of n replicas and randomly chose one to receive the combined weight

such that there are Mtarg replicas in the bin.

(c) Repeat (a) or (b) for each sampling bin

7. Repeat steps 4-6 for a chosen number of simulation steps.

6.5.2 Transition-Matrix Mode

1. Start from the end of exploration mode.

2. Simulate replicas for a time τWE.

3. Collect weights transferred from bin i to bin j over the simulation period τ into a

transition matrix.

4. Perform the WE step.

5. Repeat steps 2-4 for a chosen number of simulation steps.

6.5.3 Rate-Estimation Mode

1. Start from the end of exploration mode.
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2. Label replicas as having most recently visited region of interest X or visited region of

interest Y .

3. Simulate replicas for a time τWE.

4. Collect weights transferred from X to Y over the simulation period τ and change the

replica label as necessary.

5. (Optional) Chose Nbins new sampling regions.

6. Perform the WE step.

7. Repeat steps 3-6 for a chosen number of simulation steps.

6.5.4 Coarse-Graining Procedure

1. Find the left-eigenvalues and eigenvectors of the row-stochastic transition matrix

calculated from transition-matrix estimation mode.

(a) The probability distribution of the system is estimated by the left-eigenvector

associated with the eigenvalue λ = 1

2. Perform the PCCA+ algorithm using MSMBuilder software to cluster the Nbins sampling

regions into macrostates. MSMBuilder software outputs a Markov State Model of the

reaction network.

3. Use transition path analysis (using PyEMMA software) on the resulting MSM to obtain

parallel transition paths or estimate the rate of transitioning between any two states.

4. Gephi 0.7 is used to visualize the row-stochastic transition matrix and the MSM.
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6.6 Models of Macrophage Polarization

The parameters of these equations are described in Supplementary Table S2 and fitted

numeric values are given in Supplementary Table S3.

Equation S1. Model 1: Self-activation

d[M1]

dt
= k1

S1

S1 +Kind1

+ k3
[M1]

[M1] +Kact

+ k5 − d1[M1]

d[M2]

dt
= k2

S2

S2 +Kind2

+ k4
[M2]

[M2] +Kact

+ k6 − d2[M2]

d[CD86]

dt
= g1[M1]− d4[CD86]

d[CD206]

dt
= g2[M2]− d5[CD206]

Equation S2. Model 2: MISA

d[M1]

dt
=
k1

S1
S1+Kind1

+ k3
[M1]

[M1]+Kact

1 + ([M2] /Krep2)n
+ k5 − d1[M1]

d[M2]

dt
=
k2

S2
S2+Kind2

+ k4
[M2]

[M2]+Kact

1 + ([M1] /Krep1)n
+ k6 − d2[M2]

d[CD86]

dt
= g1[M1]− d4[CD86]
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d[CD206]

dt
= g2[M2]− d5[CD206]

Equation S3. Model 3: MISA with IFFL and inhibition between Y and M1

d[M1]

dt
=

k1
S1

S1+Kind1
+ k3

[M1]
[M1]+Kact

(1 + ([M2] /Krep2)n) (1 + ([Y ] /KY )n)
+ k5 − d1[M1]

d[M2]

dt
=
k2

S2
S2+Kind2

+ k4
[M2]

[M2]+Kact

(1 + ([M1]/Krep1)n)
+ k6 + k7

[Y ]

[Y ] +KCY

− d2[M2]

d[Y ]

dt
= k8

S1

S1 +Kind1

− d3[Y 1]

d[CD86]

dt
= g1[M1]− d4[CD86]

d[CD206]

dt
= g2[M2]− d5[CD206]

Equation S4. Model 4: MISA with cooperative IFFL

d[M1]

dt
=
k1

S1
S1+Kind1

+ k3
[M1]

[M1]+Kact

(1 + ([M2] /Krep2)n)
+ k5 − d1[M1]

d[M2]

dt
=
k2

S2
S2+Kind2

+ k4
[M2]

[M2]+Kact
+ k7

[M2][Y ]
(KCM2+[M2])(KCY+[Y ])

(1 + ([M1]/Krep1)n)
+ k6 − d2[M2]
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d[Y ]

dt
= k8

S1

S1 +Kind1

− d3[Y 1]

d[CD86]

dt
= g1[M1]− d4[CD86]

d[CD206]

dt
= g2[M2]− d5[CD206]

Equation S5. Model 5: MISA with cooperative IFFL and inhibition between Y

and M1

d[M1]

dt
=

k1
S1

S1+Kind1
+ k3

[M1]
[M1]+Kact

(1 + ([M2] /Krep2)n) (1 + ([Y ] /KY )n)
+ k5 − d1[M1]

d[M2]

dt
=
k2

S2
S2+Kind2

+ k4
[M2]

[M2]+Kact
+ k7

[M2][Y ]
(KCM2+[M2])(KCY+[Y ])

(1 + ([M1]/Krep1)n)
+ k6 − d2[M2]

d[Y ]

dt
= k8

S1

S1 +Kind1

− d3[Y 1]

d[CD86]

dt
= g1[M1]− d4[CD86]

d[CD206]

dt
= g2[M2]− d5[CD206]

Equation S6. Model 6: MISA with cooperative IFFL, inhibition between Y and
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M1, and inhibition on Y

d[M1]

dt
=

k1
S1

S1+Kind1
+ k3

[M1]
[M1]+Kact

(1 + ([M2] /Krep2)n) (1 + ([Y ] /KY )n)
+ k5 − d1[M1]

d[M2]

dt
=
k2

S2
S2+Kind2

+ k4
[M2]

[M2]+Kact
+ k7

[M2][Y ]
(KCM2+[M2])(KCY+[Y ])

(1 + ([M1]/Krep1)n)
+ k6 − d2[M2]

d[Y ]

dt
=

k8
S1

S1+Kind1

1 + (S2/Kind2)n
− d3[Y 1]

d[CD86]

dt
= g1[M1]− d4[CD86]

d[CD206]

dt
= g2[M2]− d5[CD206]
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6.7 Supporting Figures

Figure 6.1: General switch: Transition paths predicted from brute force simula-
tions. The mean and standard deviation of the SA → SB transition is shown for the general
toggle switch as averaged from 300 successful brute force switching-trajectories for parameters
II and III. Stochastic switching trajectories are averaged by binning according to the progress
coordinate λ (see Methods) (Top) The transition path projected onto the protein numbers
vs. λ. (Bottom) The transition path projected onto the probabilities of gene activity vs. λ.
With decreasing adiabaticity, the switch occurs earlier in the gene activity subspace relative
to the proteins. In the protein numbers, a = b near λ = 0 in all cases, whereas Aon = Bon at
increasingly negative values of lambda with decreasing adiabaticity. (It was not possible to
obtain transition paths from brute force simulation for Parameter Set I: Simulating for 106

timesteps failed to produce any successful switching trajectories.)
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Figure 6.2: Exclusive switch: Transition paths predicted from brute force simu-
lations. The mean and standard deviation of the SA → SB transition is shown for the
exclusive toggle switch as averaged from 300 successful brute force switching-trajectories for
parameters II and III. All definitions are the same as Fig. 6.1.

Figure 6.3: Convergence is defined as the root mean squared distance (RMSD)
between a moving average of the last 100 string movements and the current
string position. The convergence of the baseline general toggle switch for parameter set I
is illustrative of the trend in convergence for the other parameter sets and chemical network
variants.
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Figure 6.4: General switch: The barrier height in the quasi-potential between the
two attractor states decreases with decreasing adiabaticity. (Top) Quasi-potential
projected onto the total number of proteins na in the x-axis and nb in the y-axis. (Bottom)
1-D quasi-potential of the order parameter na− nb.

Figure 6.5: Exclusive switch: The barrier height in the quasi-potential between
the two attractor states decreases with decreasing adiabaticity. All definitions are
the same as Fig. 6.4
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Figure 6.6: Results of transition path prediction are robust to large differences in
initial guess path. Shown here are the predicted transition paths and quasi-potential
surfaces of the exclusive switch initialized in three different regions of state space for the most
adiabatic parameter set (I). Despite the difference in initial guess paths, all three calculations
return transitions with similar features and separation of forwards and backwards transitions.
Panels A) and B) contain the initial transition guess path and final predicted transition
for a string initialized in low probability areas of state space. Panel C) displays the initial
transition guess path and final predicted transition for a typical string initialization.

Figure 6.7: Predicted minimum energy paths for the baseline general toggle switch
network determined only from the gradient dynamics of the quasi-potential sur-
face (φ). Since the quasi-potential surface is symmetric, the resulting strings are also
symmetric along the ascent out of a basin of attraction and the descent into a basin. The
string method (following E. et al. ([40])) was used to calculate the minimum energy path by
iteratively moving 20 string nodes according to the gradient dynamics of the quasi-potential
and reparameterizing the nodes.
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Figure 6.8: Predicted minimum energy paths for the baseline exclusive tog-
gle switch network determined only from the gradient dynamics of the quasi-
potential surface (φ). All definitions are the same as Fig. 6.7.

Figure 6.9: Committor probabilities for the transition from SA → SB in the baseline
general toggle switch network for each region of state space defined by the string
nodes. For each Voronoi region, one hundred trajectories are initialized for each replica in
the region. The committor for one such replica is the number of trajectories that successfully
reach SB before they reach SA. The committors in each region are averaged to find the
committor probability of the corresponding string node. The standard deviation is plotted
for each string node.
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Figure 6.10: Committor probabilities for the transition from SA → SB in the
baseline exclusive toggle switch network for each region of state space defined
by the string nodes. All definitions are the same as Fig. 6.9

Figure 6.11: General switch: when adiabaticity decreases, the transition changes
from being initiated by fluctuations in DNA-binding occupancy (changes in gene
activity) to fluctuations in protein copy number. The distance to the switch in the
gene states minus the distance to the switch in the protein sub-spaces is plotted vs. decreasing
adiabaticity. This difference in distance is defined in terms of the switch progress (Methods):
(DAon−Bon −Da=b)/DAB. The switch occurs in the gene sub-spaces when the activity of the
two genes is equivalent (Aon = Bon), and the switch occurs in the protein sub-spaces when
the two proteins have equal copy number (a = b).
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Figure 6.12: Exclusive switch: when adiabaticity decreases, the transition changes
from being initiated by fluctuations in DNA-binding occupancy (changes in gene
activity) to fluctuations in protein copy number. All definitions are the same as Fig.
6.11

Figure 6.13: Movement of Voronoi Centers during weighted ensemble sampling.
Starting from the left are shown three successive iterations of the adaptive WE simulation
for a representative network.
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Figure 6.14: Error in computed steady-state probability as a function of N , the
number of protein states retained in the state-space truncation. N corresponds to
the maximum allowed copy-number of transcription factors a and b in the ExMISA network.
For a truncation to N , probability flux between states with na, nb ≤ N and states with
na, nb > N is assumed to be 0 (i.e., the boundaries of the state-space are reflective). The
error εSS[N ] is defined by

∑
i |π[N + 1]− π[N ]|, where i runs over all enumerated states of

the state-space with truncation to N + 1 (all states outside the boundary have probability
0). That is, the error is computed as the sum of the absolute difference between steady-
state probabilities for each state, comparing π[N ] (steady-state probability computed with
truncation to N) to π[N + 1] (truncated to N + 1).
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Figure 6.15: Convergence of the flux of the transition between the polarized
phenotype-states in the ExMISA network. The 5% and 95% confidence intervals
for the long conventional simulation are shown in dotted blue lines. The flux between the
a/b hi/lo and lo/hi phenotypes was calculated using WE sampling with parameters: τ = 200,
300 bins, and 50 replicas per bin. The system was sampled for 1100 iterations of τ .
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Figure 6.16: The Chapman-Kolmogorov test on the four Markov State Model
phenotypes of the sampled ExMISA network. The relaxation curves and variance
of a 1000τ trajectory are shown in red. The relaxation curve predictions from the MSM
transition matrix is shown in black. The total error σ is measured as the 2-norm containing
the differences between the two estimates of the relaxation curve.
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Figure 6.17: Pathway decomposition for the SC → PE transition for f = 10

Figure 6.18: Validation of the SC → TE transition pathway calculated through
weighted ensemble sampling. The parallel transition pathways are compared against
those calculated from a single long conventional simulation.
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Figure 6.19: Reproducibility of the weighted ensemble sampling of the pluripo-
tency network. The second WE sampling of f = 10 parameter set was initialized in
the same manner as the first. A) Eigenvalues and timescales. B) MSM C) Macrostate
compositions

140



Figure 6.20: Pathway decomposition for the SC → PE transition for f = 50

Figure 6.21: tSNE plot of replica populations with rescaled weight (ln(Ps) + 30)
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Figure 6.22: Convergence of the flux of the TE→ SC transition in the pluripotency
network with f = 10. The 5% and 95% confidence intervals for the long conventional
simulation are shown in dotted blue lines. The flux was calculated using WE sampling with
parameters: τ = 50, 250 bins, and 100 replicas per bin. The system was sampled for 1400
iterations of τ .
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Figure 6.23: Difference in Coarse-Grained clustering for the 2-gene ExMISA cell
decision network studied through the numerical benchmark (top) and the WE
sampling pipeline (bottom). The color of each coarse-grained phenotype cluster corre-
sponds to the expression level of protein a/b: lo/lo (black), hi/lo (red), lo/hi (blue), hi/hi
(magenta). All enumerated state phenotypes are sized proportionally to their probability for
each of the nine gene configurations for the numerical benchmark, while only the centers of
each sampling region are shown for the WE sampling computational pipeline. While the
centers of the sampling regions are mostly well separated according to their gene configu-
ration, the phenotype states assigned to the sampling region extend across multiple gene
configurations due to the choice of euclidean distance metric in assigning phenotype states to
sampling regions.
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Figure 6.24: Expression of phenotypic markers CD86 and CD206 in response
to LPS/IFN-γ and IL-4/IL-13 stimuli is dose-dependent. (A) Representative flow
cytometry histograms of CD86 intensity after 48 hours of treatment with indicated dose
of LPS/IFN-γ. (B) Average median normalized CD86 expression ± SEM as a function of
increasing LPS/IFN-γ dose. Data are normalized to 0.3 ng/ml treatment condition. Asterisk
indicates difference vs. untreated, p < 0.05; n = 3. (C) Representative flow cytometry
histograms of CD206 intensity after 48 hours of treatment with indicated dose of IL-4/IL-13.
(D) Average median normalized CD206 intensity ± SEM as a function of increasing IL-4/IL-13
dose. Data are normalized to 1 ng/ml treatment condition. Asterisk indicates difference vs.
untreated by two-sided t test, p < 0.05; n = 3.
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Figure 6.25: Cytokines present in culture media of macrophages exposed to
LPS/IFN-γ ± IL-4/IL-13 for the indicated time in hours, assessed by multiplex
ELISA. Data presented as mean ± SEM, n=3.
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Figure 6.26: Pulse-chase experiment. Cells were treated with LPS/IFN-γ or IL-4/IL-13
at t=0. Media was replaced with untreated media at t=24 hours. Cells were collected at
t=24, 48, 72, and 96 hours for analysis of CD86 and CD206 expression by flow cytometry
to observe how marker expression evolved over time in the absence of continued stimulus.
Median normalized fluorescence intensity from each experiment (n=2) is plotted in gray and
the mean is plotted in black.
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Figure 6.27: qRT-PCR timecourse data for Arg1 expression, relative to the IL-
4/IL-13-only condition at 24 hours. Gray points are individual observations and gray
lines connect points from the same experiment; the black points and line represent the average.
Missing points indicate missing data due to signals below limit of quantitation. Headings
describe stimulation condition as ng/ml concentration of LPS/IFN-γ x IL-4/IL-13. Timepoint
is in hours.
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6.8 Supporting Tables

Table 6.1: String parameters for each WE string simulation

String Parameters String Nodes (Nstr) ξ κ Nrep Tmove Tavg τ [t−1]

Baseline

I 20 0.0025 0.005 150 10 5 0.003

II 20 0.0025 0.005 150 10 5 0.05

Explicit Dimerization 20 0.0025 0.01 150 10 5 0.5

The number of string nodes (Nstr), the string movement parameter (ξ), the number of

replicas (Nrep), the number of simulations steps between string movements (Tmove), and the

simulations steps used to move the string (Tavg), are kept the same for all simulations.

Definitions of the parameters are the same as in Adelman and Grabe ([6]).The string

smoothing parameter κ is modified between the base and the explicit dimerization networks.

The simulation length τ is maintained for the base parameters II-III, but reduced for

parameter I.

Table 6.2: ExMISA Network Parameters

ExMISA Parameters Value in [1/k] Description

g0 4.0 basal/ repressed expression rate

g1 18.0 activated expression rate

ha 1× 10−5 binding rate of activator

hr 1× 10−1 binding rate of repressor

fa 1× 10−5 unbinding rate of activator

fr 1 unbinding rate of repressor

k 1 transcription factor degradation rate

Parameters of the ExMISA network
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Table 6.3: Pluripotency Network

Gene Activators Repressors

PBX1 NANOG —

CDX2 CDX2 NANOG, OCT4

NANOG PBX1, OCT4-SOX2,KLF4 NANOG, GATA6

GATA6 GATA6, OCT4-SOX2 NANOG, OCT4

GCNF CDX2, GATA6 —

KLF4 NANOG, OCT4, SOX2 —

OCT4 OCT4-SOX2 GCNF, CDX2

SOX2 OCT4-SOX2 —

Interaction rules for genes in the pluripotency network.

Table 6.4: Pluripotency Network Parameters

Parameter Set I Set II Description

goff 100 100 basal/ repressed expression rate

gon 3900 3900 activated expression rate

h 1× 10−5 5× 10−5 binding rate of transcription factor

f 10 50 unbinding rate of transcription factor

k 1 1 transcription factor degradation rate

Parameters of the pluripotency network in units of k−1.
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Table 6.5: Weighted Ensemble Simulation Parameters

WE Parameters ExMISA ExMISA Pluripotency Pluripotency

(Voronoi (Transition f = 10 and f = 50 f = 10 and f = 50

Movement) Matrix Mode) (Voronoi Movement) (Transition Matrix Mode)

τ 10000 10000 10 10

Simulation regions 300 300 250 250

Replicas per region 100 100 500 500

Iterations 60 600 60 600

WE parameters for all networks.
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Table 6.6: Transition Matrices of Metastable Phenotype Clusters (MSMs)

ExMISA Network

State 1 (lo/lo) State 2 (hi/hi) State3 (lo/hi) State 4 (hi/lo)

State 1 (lo/lo) 8.96× 10−1 5.63× 10−4 5.29× 10−2 5.05× 10−2

State 2 (hi/hi) 1.24× 10−4 9.53× 10−1 2.22× 10−2 2.45× 10−2

State 3 (lo/hi) 1.16× 10−2 1.99× 10−2 9.68× 10−1 5.52× 10−4

State 4 (hi/lo) 1.05× 10−2 2.15× 10−2 6.78× 10−4 9.67× 10−1

Pluripotency Network Parameter Set I

State 1 (LN2) State 2 (PE) State3 (TE) State 4 (SC) State 5 (LN1) State 6 (IM)

State 1 (LN2) 2.97× 10−1 2.50× 10−1 6.04× 10−2 3.47× 10−3 2.68× 10−1 2.07× 10−2

State 2 (PE) 1.42× 10−3 8.90× 10−1 3.06× 10−4 1.83× 10−4 1.11× 10−2 9.66× 10−2

State 3 (TE) 1.91× 10−4 2.11× 10−4 8.03× 10−1 3.03× 10−7 1.00× 10−4 1.96× 10−1

State 4 (SC) 5.09× 10−12 4.30× 10−6 9.34× 10−6 4.30× 10−1 5.70× 10−1 1.39× 10−7

State 5 (LN1) 2.06× 10−6 5.16× 10−6 3.53× 10−5 5.16× 10−2 9.48× 10−1 8.20× 10−6

State 6 (IM) 2.72× 10−7 4.14× 10−4 1.64× 10−3 1.01× 10−9 1.36× 10−6 9.98× 10−1

Pluripotency Network Parameter Set II

State 1 (TE) State 2 (PE) State3 (SC) State 4 (LN) State 5 (IM)

State 1 (TE) 8.05× 10−1 2.66× 10−6 1.31× 10−6 2.92× 10−3 1.92× 10−1

State 2 (PE) 3.09× 10−7 9.20× 10−1 3.13× 10−7 1.65× 10−4 7.98× 10−2

State 3 (SC) 4.70× 10−8 2.21× 10−7 8.23× 10−1 1.77× 10−7 2.38× 10−6

State 4 (LN) 5.25× 10−9 4.92× 10−8 6.86× 10−3 9.93× 10−1 5.02× 10−7

State 5 (IM) 1.60× 10−9 8.22× 10−9 2.22× 10−9 1.01× 10−8 9.99× 10−1

Markov State Models of metastable phenotype-cluster transitions found through the computational
pipeline for all three simulated networks. There are four different combinations of a/b protein
expression levels in the coarse-grained phenotype network of the ExMISA network: lo/lo, hi/hi, lo/hi,
and hi/lo. The steady-state probabilities of the lo/lo, hi/hi, lo/hi, and hi/lo cell phenotypes are
predicted by the computational pipeline to be 1.71× 10−2, 7.67× 10−2, 3.71× 10−1, 3.80× 10−1,
respectively. The steady state probabilities of the six and five coarse-grained phenotype networks in the
pluripotency network Parameter Set I and Parameter Set II can be found in figures 3.4 and 3.6,
respectively.
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Table 6.7: Computed Mean First Passage Times in the ExMISA Network–
Comparison of Different Methods

Method Start/End State MFPT 5% Confidence 95% Confidence

CME - numeric bench-

mark

Basin centers 1.84× 105 — —

Conventional SSA

simulation

Basin centers 1.82× 105 1.67× 105 1.98× 105

WE - rate mode Basin centers 1.82× 105 1.78× 105 1.85× 105

WE - transition matrix

mode

Coarse-grained polar-

ized phenotype

2.34× 105 — —

Coarse-grained pheno-

type network

Coarse-grained polar-

ized phenotype

1.70× 105 — —

Computed Mean First Passage Times (MFPTs, time-units k−1) of the ExMISA network,
using different computation methods. For each row, MFPTXY = MFPTY X due to symmetry
in the network, and the start- and end-state (X and Y ) for the transition are defined either
with respect to distance from the centers of the polarized phenotype basins, or in terms of
aggregated states in the coarse-grained phenotype definition. For basin centers, State X is
defined as a hypersphere of radius 1 centered around the state vector [4,16,0,0,1,0,1,0],
corresponding to the species: [a,b,A00,A10,A01,B00,B10,B01]. State Y is a hypersphere
centered around [16,4,0,1,0,0,0,1]. For the coarse-grained phenotype definition, states
correspond to the polarized a/b hi/lo and lo/hi phenotypes.
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Table 6.8: Computed Mean First Passage Times of Inter-Phenotype Transitions in the
Pluripotency Network (Parameter Set I)

Method Transition

SC → LN1 LN1 → SC SC → TE TE → SC

CME — — — —

ConventionalSSA 1.85(1.75, 2.33)× 101 2.69(2.30, 3.43)× 102 1.65(1.07, 2.34)× 105 3.59(2.50, 5.18)× 105

Weighted Ensemble 1.71(1.64, 1.78)× 101 1.94(1.85, 2.05)× 102 1.36(1.02, 1.77)× 105 2.70(2.48, 2.91)× 105

Rate Mode

Weighted Ensemble 2.09× 101 4.13× 102 2.19× 105 2.21× 105

Transition Matrix Mode

MSM 2.23× 101 3.89× 102 2.06× 105 2.20× 105

The Mean First Passage Times of NANOG Fluctuation and (De)differentiation in the pluripotency
network calculated using τ = 10 and f = 10. The MFPT reported for the WE is a block average over
the last 500 iterations. The MFPT and standard deviation are found for transitioning between the stem
cell phenotype (SC) and the pluripotent phenotype with low NANOG expression (LN1) (analogous to
high NANOG production (Nhi) and low NANOG production (N lo) transitions measured in
experiments) and for transitioning between the stem cell phenotype (SC) and the trophectoderm
phenotype (TE), calculated on the timescale of the protein degradation rate k. The SC, TE, and LN1
regions of interest (ROI) are defined as the SC, TE, and LN1 phenotypes derived from the MSM
reduction of the sampled transition matrix.
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Table 6.9: qPCR primers

Gene Direction Sequency Amplicon length (bp)
Arg1 F CTCTGTCTTTTAGGGTTACGG 152

R CTCGAGGCTGTCCTTTTGAG
Chi3l3 F AGTGCTGATCTCAATGTGGATTC 142

R TAGGGGCACCAATTCCAGTC
Gapdh F GTCAAGCTCATTTCCTGGTATGAC 131

R TCTCTTGCTCAGTGTCCTTGC
Hprt F TGGACAGGACTGAAAGACTTGCTCG 81

R CCTTGAGCACACAGAGGGCCAC
Il10 F CCCACTTCCCAGTCGGCCAG 300

R GGAGAAATCGATGACAGCGCCTC
Kdm6b F GGTTCACTTCGGCTCAACTTAG 75

R CTCCACCGTATGTTCACCGC
LdhaA F TGTCTCCAGCAAAGACTACTGT 155

R GACTGTACTTGACAATGTTGGGA
Mrc1 F TGTTTTGGTTGGGACTGACC 269

R TGCAGTAACTGGTGGATTGTC
mVPA1 [79] F GGAGCCCAGTGTAGAAGAGCA 87

R AGCCAGCGAACCATATCCTGA
Nos2 F TTGGGTCTTGTTCACTCCAC 211

R TGTATTGTTGGGCTGAGAACAG
Retnla F GCCAATCCAGCTAACTATCCC 187

R AGTCAACGAGTAAGCACAGG
SdhaB F CTTGAATGAGGCTGACTGTG 87

R ATCACATAAGCTGGTCCTGT
Tnfa F CCCACGTCGTAGCAAACCACCA 172

R TCGGGGCAGCCTTGTCCCTT
A RTPrimerDB7 3720; B RTPrimerDB 3875
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Table 6.10: Macrophage Model Parameter Definitions

Parameter Meaning
k1 Maximum stimulation rate of M1 cascade under induction with S1
k2 Maximum stimulation rate of M2 cascade under induction with S2
k3 Maximum stimulation rate of M1 cascade under self-activation
k4 Maximum stimulation rate of M2 cascade under self-activation
k5 Basal rate of M1 activation
k6 Basal rate of M2 activation
k7 Maximum rate of M2 stimulation from Y and M2 cooperative stimulation
k8 Maximum rate of Y production under S1 induction
KY Level of Y to reach half-maximum inhibition of M1
KCY Level of Y to reach half-maximum cooperative activation of M2
KCM2 Level of M2 to reach half-maximum cooperative activation of M2
Krep1 Level of M1 to reach half-maximum inhibition of M2
Krep2 Level of M2 to reach half-maximum inhibition of M1
Kind1 Level of S1 to reach half-maximum induction of M1
Kind2 Level of S2 to reach half-maximum induction of M2
Kact Level of M1 or M2 to reach half-maximum self-activation
d1 M1 decay rate
d2 M2 decay rate
d3 Y decay rate
d4 CD86 decay rate
d5 CD206 decay rate
g1 CD86 production rate
g2 CD206 production rate
n Hill coefficient
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Table 6.11: Macrophage Model Parameter Values

Model 1 2 3 4 5 6
k1 0.4341 0.5871 10.421 0.7595 2.2698 2.8511
k2 1.1124 1.6691 1.4815 1.4998 0.8939 1.0146
k3 0.8322 0.791 1.0512 0.6856 1.1102 0.7833
k4 1.6865 0.311 0.9216 0.4332 1.5412 1.1121
k5 0.0456 0.0679 0.0421 0.0968 0.0332 0.1067
k6 0.0172 0.5813 0.3239 0.541 0.0831 0.1589
k7 N/A N/A 0.1977 4.3814 2.8281 2.2411
k8 N/A N/A 0.1096 0.1594 0.7288 0.1206
KM2 N/A N/A N/A 9.9178 1.3292 0.0012
KCY N/A N/A 0.3438 8.4118 5.4604 5.4965
KY N/A N/A N/A N/A 0.0209 0.9182
Krep1 N/A 2.8882 2.2441 1.9004 2.4051 1.0306
Krep2 N/A 14.228 1.4216 2.0858 1.0162 1.195
Kind1* 1 1 1 1 1 1
Kind2* 0.3 0.3 0.3 0.3 0.3 0.3
Kact* 1 1 1 1 1 1
d1* 1 1 1 1 1 1
d2* 1 1 1 1 1 1
d3* N/A N/A 0.05 0.05 0.05 0.05
d4* 0.05 0.05 0.05 0.05 0.05 0.05
d5* 0.05 0.05 0.05 0.05 0.05 0.05
g1* 1 1 1 1 1 1
g2* 1 1 1 1 1 1
n N/A 2 N/A 2 2 2
Free parameters 6 8 11 12 13 13

Representative best fit parameter values for each model from optimization. Parameters are
in arbitrary units of concentration and time, relative to the rate of degradation of the M1
species (d1), which is approximated to be 1 [/hr] according to the half-life of STAT1 [82].
The parameters were optimized to normalized CD86 and CD206 expression levels.
Parameters with an asterisk were fixed to constrain parameter space during optimization.
Fixed values were chosen based on initial parameter searches. Alternative constraints yielded
different quantitative values, but the same ordering of model scores according to the AICc.
The threshold parameters for induction, Kind1 and Kind2 are based on the dose-response of
CD86 and CD206 under the single-stimulus conditions. Kact is approximated from the
experimental data condition with no induction stimulus at 24 hours. A Hill coefficient of 2
was used for all parameter sets. Parameter sets estimated using a Hill coefficient of 1
produced AICc scores equivalent or worse than the AICc scores using a Hill coefficient of 2.
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