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Determining Model Accuracy of Network

Traces

Almudena Konrad a Ben Y. Zhao b Anthony D. Joseph c

aMills College
bUniversity of California at Santa Barbara

cUniversity of California at Berkeley

Abstract

Accurate network modeling is critical to the design of network protocols. Traditional
modeling approaches, such as Discrete Time Markov Chains (DTMC) are limited
in their ability to model time-varying characteristics. This problem is exacerbated
in the wireless domain, where fading events create extreme burstiness of delays,
losses, and errors on wireless links. In this paper, we describe the data precondition-
ing modeling technique that is capable of capturing the statistical characteristics
of wired and wireless network traces. We revise our previous developed data pre-
conditioning modeling algorithm, the Markov-based Trace Analysis (MTA), and
present the Multiple states MTA (MMTA) algorithm. Our main contributions are
methodologies created to quantify the accuracy of network models, methodology to
choose the most accurate model for a given network and characteristic of interest
(e.g., delay, loss, or error process), and the validation of our data preconditioning
modeling algorithms.

Key words: model accuracy, network traces, wireless networking, Markov chains,
stationarity, data preconditioning

1 Introduction

Simulation of network links is perhaps the most common method for evaluating
application and network protocol designs. Simulation enables researchers to
accurately and repeatably explore the behavior of a protocol under different
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Joseph).
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network conditions (e.g. varying loss, delay, and error). However, the validity
of results are highly dependent on the accuracy of the network simulation
model. Floyd [1] argues that the use of inaccurate models leads to flaws in
networking research. We also demonstrated the importance of model accuracy
by observing that a naive error model used in simulation during protocol
design led to a poor choice of a protocol parameter [2]. For example, a detailed
understanding of the packet loss process and burstiness of errors is necessary
for the proper design of error control protocols such as Automatic Repeat
reQuest (ARQ) protocols.

In realistic networks and especially wireless networks, researchers must model
measurements whose characteristics experience non-stationarity (time vari-
ability) and complex patterns due to a number of factors, including both
internal network elements and external events. While classical models such as
Bernoulli, Gilbert, high-order Discrete Time Markov Chain (DTMC), or Hid-
den Markov Models (HMM) have worked surprisingly well in modeling events
in traditional networks, they are ill-suited for handling traces of today’s net-
works (e.g., lossy wireless channels). For example, the Bernoulli model is a
memory-less process, where each value is generated statistically independent
of previous outputs. Thus, it is unlikely to produce accurate models of net-
works exhibiting bursty losses such as wireless links. To address this, we intro-
duce a data preconditioning technique that extracts and models the stationary
components of non-stationary datasets. We describe the original data precon-
ditioning model the Markov-based Trace Analysis (MTA) [3], and introduce
the Multiple states MTA (MMTA) model.

In addition, given the large number of existing traditional and new models,
researchers face the challenge of choosing the most accurate model for their
datasets. As history has shown, a bad choice can result in inaccurate models
that result in misleading simulation results. We show that datasets corre-
sponding to different networks experience different statistical characteristics,
underscoring the need to develop a tool that identifies the best model for a
given set of network characteristics. In this paper, we introduce a methodology
to quantify the accuracy of different models, and show how to use it to choose
the best model for a given set of network characteristics.

The paper is structured as follows. We begin with related work in Section 2. In
Section 3, we define and classify network traces. In Section 4, we discuss tradi-
tional modeling techniques. We present our data preconditioning technique in
Section 5. We then present our approach to evaluate model accuracy and our
modeling methodology in Section 6. In Section 7, we apply these techniques to
network path traces collected from seven different networks. In Section 8, we
introduce our Domain of Applicability Plots (DAP), a tool to rapidly visualize
model accuracy , and use it to evaluate the behavior of various classical and
data preconditioning models. Finally, we conclude with Section 9.
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2 Related Work

There is significant interest in the area of using network measurements to
model network behavior. However, very few researchers address the problem
of non-stationarity in network modeling. Zhang and others study stationarity
in the Internet and introduce a new notion of stationarity that is more relevant
to network properties [4]. They call a dataset operationally stationary if the
statistics of interest remain within bounds considered operationally equivalent.
Their most interesting finding is that stationarity depends on the time scale
that is used for evaluation. Others have looked at the stationarity behavior
of network traffic, traffic stationarity. For example, Molnar et al. [5] propose
a simple approach for identifying stationary intervals and analyzing them in-
dependently. They introduce a new technique for identifying these intervals.
Leland et al. [6] study the stationarity of self-similar models of network traffic.

Several researchers have applied traditional models to the analysis of non-
stationary data collected in computer networks. In particular, they have used
traditional models to characterize the loss process of various channels. Bolot et
al. [7] use a characterization of the loss process of audio packets to determine
the appropriate error control scheme for streaming audio. They model the loss
process as a two-state Markov chain, and show that the loss burst distribution
is approximately geometric. Yajnik et al. [8] characterize the packet loss in a
multicast network by examining the spatial (across receivers) and temporal
(across consecutive packets) correlation in packet loss. Of particular interest is
their modeling of temporal loss using a 3rd order Markov chain. Yajnik’s work
identifies the problem of non-stationarity in their datasets, and they analyze
the data by removing these parts of the data that experience non-stationary
error behavior.

There is also related work in wireless traffic modeling. Nguyen et al. [9] present
a two-state Markov wireless error model (i.e., Gilbert model), and develop an
improved model based on collected Lucent 900 MHz WaveLAN error traces.
Building on this work, Balakrishnan and Katz [10] also collected error traces
from a Lucent 900 MHz WaveLAN network and developed a two-state Markov
chain error model. Willig et al. [11] present a special class of Markov models,
called bipartite models. Zorzi et al. [12] also investigate the error characteristics
of a wireless channel and compare an Independent and Identically Distributed
(IID) model to the Gilbert model. Their work postulates that higher order
models are not necessary.
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Trace Frames FER Lexp, EFexp, Lden C

IP 1 360,385 0.027 0.034, 0.099, 0.82 1

IP 2 331,021 0.050 0.002, 0.099, 0.11 82

IP 3 155,889 0.064 0.057, 0.099, 0.79 1

WLAN E 288,804 0.063 0.044, 0.099, 0.34 5

WLAN D 188,436 0.293 0.046, 0.005, 0.414 41

GSM E 616,404 0.055 0.005, 0.056, 0.41 23

GSM D 2,579 0.055 0.002, 0.028, 0.95 31
Table 1
Collected traces and their characteristics: number of frames, Frame Error Rate
(FER), the variables (Lexp, EFexp, Lden), and the change of state variable, C.

3 Defining and Classifying Binary Network Path Traces

We define binary network path traces as sequences of 0’s and 1’s, where a
1 denotes the occurrence of a specific event in the network path, while a
0 denotes the lack of the event. For example, a 1 could represent a lost or
dropped packet, while a 0 could represent a correctly received packet. In [2],
we used the Runs Test developed by Bendat and Piersol [13] to show that GSM
binary error traces are locally stationary binary time series [14], consisting of
regions that experience various statistical behaviors. In this paper, we extend
that work by analyzing and modeling several types of network path traces.
In particular, we analyze traces that capture the following events: IP packet
losses, wireless frame errors, and packet delays. A 1 signifies a lost packet in
a loss trace and a corrupted frame in an error trace; and in a delay trace,
it means that the packet or frame arrived with a delay greater than some
maximum threshold 1 . To generalize these cases, we refer to values of 1 in a
packet or frame trace as an error frame.

We define the Frame Error Rate (FER) as the overall percentage of frames (or
packets) that have errors (or losses, or delays) relative to the total number of
frames (or packets) in a trace.

To understand the effectiveness of our techniques for a broad set of network
types and metrics, we analyzed traces collected under various scenarios from
several networks and at different protocol layers (see Table 1). IP 1 is a loss
trace collected by Yajnik et al. [8] during an uncongested IP connection from
Massachusetts to Sweden. IP 2 and IP 3 are IP loss traces collected by Wenyu

1 The threshold value is dependent upon the particular application of interest and
it indicates the delay value for which packets will be dropped by the application.

4



C
... 100011100...0     00000...0000    1111011100...0 ...

C

Error−free State Lossy StateLossy State

Fig. 1. An error trace with lossy and error-free states.

Jiang at Columbia University (CU). IP 2 was collected on an uncongested
path from CU to GMD (the German National Research Center for Informa-
tion Technology), and IP 3 was collected on an uncongested connection from
CU to the University of Massachusetts. WLAN E was collected under good
signal quality conditions from an IEEE 802.11b wireless LAN testbed at the
Technical University of Berlin by Andreas Willig [11]. We collected GSM E
under poor signal quality conditions at the Circuit-Switched Data (CSD) ra-
dio link layer of a GSM wireless data cellular network at the UC Berkeley
campus.

We also collected GSM D and WLAN D at the transport layer using UDP over
a poor signal quality GSM CSD link 2 and a good signal quality IEEE 802.11b
network at the UC Berkeley campus. These two traces were collected to an-
alyze the delays introduced in applications by various wireless networks. For
GSM D, the delay threshold was chosen to be 2 seconds, while for WLAN D,
we chose a delay threshold of 20 milliseconds. Note that each of the delay
values obtained in GSM D and WLAN D is the sum of delay values across
the wireless and wired components of the path. We analyze the end-to-end
network delay in this paper, and plan to explore per-link statistics in future
work. Finally, we are in the process of collecting and analyzing loss and delay
traces in a General Packet Radio Service (GPRS) GSM network and a Code
Division Multiple Access (CDMA) 1xRTT wireless data network.

We analyzed the traces in Table 1 and observed that these traces can be
decomposed into clusters of 1’s and 0’s, and long clusters of just 0’s. We
associate these clusters with lossy states and error-free states (see Figure 1),
by dividing the trace into states (clusters). Lossy states begin with an element
of 1 and contains bursts of 1’s and 0’s, and ends with a burst of 0’s of length
equal to or greater than a change-of-state variable C. The next 0 element
following the burst of C 0’s marks the beginning of an error-free state, which
is terminated by the 0 preceding the next 1 element in the trace. The value of
C is a design parameter that we have defined as the mean plus one standard
deviation of the length of error bursts in a trace. In Section 5.2, we provide
an analysis to optimize and justify the parameter C.

In [2], we observe that the length distributions of lossy and error-free states can
be approximated with an exponential distribution function, where the smaller
the exponential parameter, the larger the average cluster length. Based on this

2 We are still in the process of collecting additional GSM D traces.
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observation, we characterize collected traces using a tuple of three variables
(Lexp, EFexp, Lden), where Lexp and EFexp are the parameters of the lossy and
error-free state length exponential distribution, and Lden is the error density
in the lossy state (i.e., the probability of getting a 1 inside a lossy state). Note
the significant difference between Lden and the FER.

3.1 Stationarity of Network Path Traces

We now discuss the notion of statistical stationarity and how we use it to
improve accuracy of our models. We define a trace to be the process {Xn |
n ≥ 0} with a discrete space E = {0, 1}. A process Xn is strictly stationary if
the distribution of (Xp+1, ..., Xp+k) is the same as that of (X1, ..., Xk) for each
p and k. Xn is second-order stationary if the mean mn = E(Xn) is constant
(independent of n), and the auto-covariance only depends on the difference k
for all n (i.e., Cov(k, n) = Cov(Xn, Xn − k) = Cov(k)). Given a second-order
stationary binary time series Xn, the process can be modeled as a homogeneous
DTMCs, where the value of the chain at time n is determined by the memory of
the process [14]. In a homogeneous DTMC, the transition probabilities remain
constant over time, (i.e., Pr(Xn+1 = j | Xn = i) = Pr(X2 = j | X1 = i)).

However, checking a binary trace for second-order stationarity is mathemat-
ically challenging, and, we believe, not necessary for network modeling. For
our purposes, we define a binary trace as stationary whenever the statistical
properties, such as mean, median or standard deviation do not vary over time
for small window sizes (i.e., values of k). The requirement on the window size
to be small is necessary to be able to apply high-order DTMCs, where the
transitions probabilities do not vary over time.

As mentioned above, we observe that empirical network traces are non-stationary,
since the statistical properties of traces vary over time. However, these traces
exhibit local stationarity (i.e., a non-stationary data set composed of deter-
ministic regions and small stationary regions). Our work will show that at-
tempting to fit traditional models onto traces with non-stationary properties
can lead to inaccurate models.

We use the previously discovered Runs Test [13] to analyze the stationarity
of network path traces. The Runs Test computes the median run (i.e., error
burst) value of the trace, divides the trace into equal size segments, and plots
a histogram of runs not equal to the median value in each segment. Too few
or too many runs is a sign of non-stationarity. If a trace is stationary, the
number of runs distribution between the 0.05 and 0.95 cut-offs will be close
to 90 percent. The Runs Test can be summarized as follows:

(1) Define a run as a number of consecutive ones (also referred to as an error
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Fig. 3. Gilbert model state transition di-
agram.
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Fig. 4. Bayesian Network of a 2nd Order
Hidden Markov Model.

4.1 The Gilbert Model

We choose the Gilbert model because it is one of the most common models
used for network simulation. The model is a DTMC of order one and has two
states (see Figure 3). In a network trace, the Gilbert model states correspond
to the status of each data frame {0,1}, as defined previously. The Gilbert
model predicts the state of the next frame by only considering the previously
received frame. As a result, the Gilbert model can only model relatively short
bursts of an event.

An alternative to the Gilbert model is a 3rd order Markov model, a DTMC
of order three with eight states. Compared to the Gilbert model, this model
keeps track of the status of the previous three frames, increasing its prediction
accuracy at the cost of additional complexity. However, even with this increase
in accuracy, 3rd order Markov models do not always accurately capture real
network statistical characteristics (see [2]).

4.2 The Hidden Markov Model

For the second model, we choose a HMM model because many statisticians be-
lieve that the non-stationary characteristics of empirical network traces makes
Hidden Markov Models (HMM) a good potential candidate to model network
traces. In a HMM, each data pattern is associated with a hidden state, giving
the HMM its main advantage: the ability to model non-stationary processes.
The model parameters in a HMM are the transition probabilities between
hidden states, the memory of the process, and the conditional probabilities of
the observations given the current state. In a HMM, the current observation
is statistically independent of the previous observations and only depends on
the current state. This is known as the output independence assumption. Fig-
ure 4 illustrates the Bayesian network [16] for the graphical representation of
a HMM of order 2, where s1, ..., sk, ... represents the sequence of states and
y1, ..., yk, ... represents the sequence of observation.

We model network traces with a two-hidden-state 4th order hidden Markov
model. The states {S1, S2} correspond to the lossy and error-free states de-
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fined in Section 3, while the observation symbols {Y1, Y2} correspond to the
status of the data frame {0, 1}. We choose a high order of 4 to account for
possible correlations between consecutive states. Using an order greater than
4 improves accuracy slightly while significantly increasing the computational
complexity of the model.

5 Modeling through Data Preconditioning

In this section, we introduce data preconditioning , a new modeling method-
ology that supports a greater degree of behavior complexity in computer net-
works. We first describe the concepts behind the methodology, then discuss a
way to optimize the change-of-state variable C. Finally, we further illustrate
the concept by describing two instances of this methodology, the Markov-based
Trace Analysis (MTA) algorithm and the Multiple-states MTA (MMTA) al-
gorithm.

5.1 Data Preconditioning

The search to create accurate network models for datasets exhibiting non-
stationarity led us to a new methodology that calls for analysis and precondi-
tioning of data before it is fed into traditional models. Intuitively, we use pat-
tern recognition to break down non-stationary datasets into stationary subsets
which can be accurately modeled using traditional models. For a particular
network characteristic, we follow the process illustrated in Figure 5. First,
we identify data patterns that exhibit stationarity and suggest an underlying
process consisting of some number of “states.” Each state is associated with
a specific data pattern corresponding to a particular network behavior 3 . For
example, for network traces presented in Section 3, we identified two distinct
states: lossy and error-free. Second, we concatenate trace regions with same
states to form stationary subtraces, (i.e., lossy and error-free subtraces). Be-
cause of their stationarity, these subtraces can be accurately modeled using a
high-order DTMC. Note that there will be as many subtraces as states. Finally,
we use Markov models (or other similar modeling techniques) to calculate the
transition probabilities between states.

This approach can be used to model very different characteristics of datasets
from collected network measurements, including packet loss, end-to-end la-
tency, or throughput. In this paper, we demonstrate how this research method-

3 Each network behavior has certain statistical properties.
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Subtrace 1

Network
Trace

Subtrace 2

Subtrace 3

Fig. 5. Data Preconditioning: in this example a network trace is decomposed into
three subtraces, each consisting of a concatenation of a specific data pattern.

ology can significantly improve the modeling accuracy of error and delay pro-
cesses in wired and wireless networks.

5.2 Optimizing the change-of-state variable C

An important design decision in our data preconditioning methodology is how
to locate the appropriate transitions between different states. As the model
scans the input trace, it transitions from its current state S to a new state S ′

if it observes a sequence of C events corresponding to state S ′. We call C the
change-of-state variable.

In Section 3, we defined C as the mean plus one standard deviation of the
length of error bursts in the trace. In this section we will analyze our choice
on the value C, and provide an algorithm to optimize the value of C. We use
the GSM E trace for our analysis.

We first calculate the mean and standard deviation for the error burst length
in GSM E. For this trace, the mean value was found to be 6 frames and the
standard deviation was 17 frames, yielding a state-of-change constant value C
of 23 (6 + 17) frames. With C = 23, we first identify lossy states as described
in Section 3, and then concatenate all lossy states together to form the lossy
subtrace. To prove that the resulting lossy trace is a stationary process, we
apply the Runs Test described in Section 3.1. Figure 6 shows that 90.5 percent
of the runs distribution lie between the 0.05 and 0.95 cut-offs. Therefore, this
result proves that the lossy subtrace, constructed with a C value of 23, is a
stationary process for a window size of 60. Recall from Section 3 that GSM E
only had 21.2 percent of the runs distribution between the boundary points.

Next, in order to optimize the C value, we developed an algorithm that takes
an original non-stationary trace and executes the Runs Test for a large range
of C values. The goal is to find the largest C value that yields a stationary
lossy subtrace.

Table 2, shows the the percentage of runs distribution between the boundary
points for various C values between 21 and 25. We are interested in obtaining
the largest C value that gives 90 percent distribution. Table 2 illustrates that
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for the lengths of both lossy and error-free states. MTA approximates the
states’ lengths distribution using an exponential distribution function and
computes the exponential function’s parameters using a fitting function. The
Cumulative Distribution Function (CDF) of the empirical trace is plotted
along with exponential distributions with parameter values ranging from 0 to
1 in steps of 0.001. MTA then chooses the exponential parameter that yields
a CDF curve that is the best approximation to the empirical CDF curve. The
best approximation is determined by calculating the correlation coefficient, as
explained in Section 6, between the original CDF curve and the exponential
approximations.

We define two random processes with a discrete space E = {0, 1, 2, ...}:

• The lossy state length process {Bn | n ≥ 0}, where Bn represents the number
of elements in the nth lossy state, (i.e., the length of the state).

• The error-free state length process {Gn | n ≥ 0}, where Gn represents the
nth error-free state length.

The application of the MTA algorithm to an input trace can be summarized
as follows:

(1) Calculate the mean (me) and standard deviation (sde) values for error
burst lengths in the trace.

(2) Set C, the change-of-state variable, equal to me + sde.
(3) Partition the trace into lossy state and error-free state portions using the

following definitions:
• Lossy state: runs of 1’s and 0’s, with the first element being a 1, and

with runs of only 0’s that have length less than or equal to the C.
• Error-free state: runs of only 0’s that have length greater than C.

(4) Create lossy sub-trace by concatenating the lossy state portions of the
error trace.

(5) Model lossy sub-trace as a DTMC, and calculate its order and transition
probabilities.

(6) Determine the best fitting exponential distributions for the length pro-
cesses Bn and Gn.

5.4 The Multiple States MTA

The Multiple states MTA (MMTA) modeling algorithm is the most recent ap-
plication of our data preconditioning methodology. Unlike the MTA algorithm,
the MMTA algorithm is capable of modeling traces with two or more data pat-
terns and non-exponential state length distributions. The MMTA views each
data pattern as a state, and it models the transition among states with a
high order DTMC. Using the data preconditioning approach, the MMTA al-

12



S
k−2

S S S Sk−1 k k+1 k+2

y y y y y
k−2 k−1 k+1

k+2k

Fig. 7. Bayesian Network of a 2nd Order MMTA Model.

gorithm concatenates subtraces from each of the same states encountered in
the original trace to form subtraces, and then models each subtrace with a
higher order DTMC. Figure 7 shows the Bayesian network representation of
a MMTA model of order 2.

In Section 3, we identified two hidden states in our network traces (i.e., the
error-free and lossy states). Using this observation, we summarize the steps of
the MMTA algorithm as follows:

• Similar to the method used for MTA, MMTA first identifies the states in
the original trace and creates subtraces by concatenating states of the same
type.

(1) Create lossy subtrace from the lossy state portions of the error trace.
(2) Model lossy subtrace as a DTMC, and calculate its order and transition

probabilities.
(3) Model the error-free state as a deterministic process, where each element

is 0.
• Next, MMTA determines the transitions between error-free and lossy states:
(1) Create state trace. This trace corresponds to the collected dataset (e.g.,

GSM E trace), with lossy states (as defined by the first step) replaced by
all 1’s and error-free states (as defined by the first step) remaining all 0’s.

(2) Model state trace as a DTMC, and calculate its order and transition
probabilities.

In summary, the MMTA algorithm applies traditional Markov process prop-
erties to local stationary data by identifying stationary regions and modeling
these regions and the transition between them using DTMCs.

6 Model Accuracy and Validation

The MTA and MMTA models add to an already long list of existing models.
Each model has an associated computational cost and complexity, and its
own level of accuracy. Given a dataset, researchers want to choose the more
accurate and least complex model, but lack a clear metric of model accuracy.

In this section, we present three mechanisms to solve this dilemma. First, we
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describe an approach for evaluating the accuracy of a particular model. Next,
we describe a way to determine the minimum size of a collected trace necessary
to extract model parameters for a specific network. Finally, we provide a pro-
cess that determines whether created models are representative of a particular
network path scenario and metric of interest.

6.1 Measuring Model Accuracy

We illustrate our model accuracy metric by comparing the model accuracy
of two classical models (i.e., Gilbert and 4th order HMM) and two data pre-
conditioning algorithms (i.e., MTA and MMTA). Using each model with the
collected traces in Table 1, we can generate artificial traces and compare each
their resulting statistics with those of the original trace. We then quantify
the accuracy of each model, by first plotting the error and error-free burst
Cumulative Distribution Functions (CDF) for each artificial trace. We then
calculate for each trace the correlation coefficient (cc) [13] between the CDFs
of original trace and the CDFs of the artificial trace from the model. We use
the cc as a measure of how closely each artificial trace approximates the orig-
inal trace. A cc of 1 signifies that the two traces experience the same error or
error-free statistics, while a cc of 0 indicates no statistical correlation between
the traces.

To better understand the relationship between cc values and model accuracy,
we calculated the error burst statistics of several artificial traces and computed
their cc values for a given reference trace. First, we generate a reference trace
with a fixed set of (Lexp, EFexp, Lden) values of (0.006, 0.1, 1.0). Next, we
generate artificial traces by changing the value Lexp from 0.0065 to 0.02 in
steps of 0.0005, while keeping EFexp and Lden constant (i.e., (EFexp, Lden) =
(0.1, 1)), and computing the associated cc value for each artificial trace. Finally,
using the reference trace’s mean error burst size as a reference point (i.e., 173
frames), we plot the mean error burst and its percentage reduction (relative to
the reference trace’s error burst size) for each observed cc value (see Figure 8).
Thus the proportional reduction indicates the decrease in size of the mean error
burst of an artificial trace relative to the mean error burst of the reference
trace. Figure 8 shows that an artificial trace with a cc of 0.99 yields a mean
error burst of 160 frames or only an 8 percent reduction. As the cc decreases,
the percentage of reduction increases, and cc values smaller than or equal
to 0.96 will yield percentages greater than or close to 50 percent. Based on
these observations, we choose to associate cc values smaller than or equal to
0.96 (i.e., mean percentage reduction greater that 50 percent) with inaccurate
models.
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6.2 Minimum Trace Length for Accurate Modeling

Another important aspect in the generation of accurate models is determining
the minimum trace length required to precisely capture model parameters. To
address this issue, we provide the following analysis method. Given a specific
network path, scenario, and metric of interest, we collect a very large trace,
(e.g., a 200,000 frame trace representing over an hour’s worth of data), we call
this trace the reference trace. Next, we calculate the maximum error-free burst
(max EFB) encountered in this trace. If max EFB is close to the size of the
collected trace (i.e., 200,000 in this case), then a larger trace must be collected.
Once we have the typical max EFB and a reference trace of length ref len, we
divide this trace into subtraces of sizes ref len

2j , where j = 1, 2, 3, ..., m. The

maximum value of j (i.e., m) is chosen such that ref len
2j > 1, 000 frames.

For example, a reference trace of 200,000 frames will generate 2 subtraces of
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100,000 frames, 4 subtraces of 50,000 frames, 8 subtraces of 25,000 frames, 16
subtraces of 12,500 frames, 32 subtraces of 6,250 frames, 64 subtraces of 3,125
frames, and 128 subtraces of 1,562 frames (i.e., m = 7 is the maximum value
that yields a subtrace length greater than 1,000 frames). Then, we calculate
the cc value of each subtrace to the reference trace. The cc value indicates the
degree of statistical correlation between the subtraces and the reference trace.
As previously discussed, a cc of 0.96 or less signifies an inaccurate model,
therefore a subtrace with such a cc value should not be used to obtain a
model’s parameters.

As an example, we perform this analysis on WLAN E and GSM E. First, we
calculate their max EFB values to be 81,493 and 20,447, respectively. We then
take the first 200,000 frames of each trace to construct the reference traces,
ref WLAN E and ref GSM E. We choose m = 6, which generates a total of 126
subtraces of similar and different lengths. For reference traces ref WLAN E
and ref GSM E, Figures 9 and 10 illustrate the mean and standard cc values
for each subtrace length. For GSM E, subtraces of sizes as small as 25,000
frames yield cc values greater than 0.96. Subtraces of size equal or smaller
than 12,500 frames can give cc values greater that 0.96, but there is a greater
chance that the cc value will be smaller than 0.96. For WLAN E, any trace
smaller than 100,000 frames will have a high probability of having a cc value
smaller than 0.96, and even the 100,000 length subtraces have some likelihood
of having cc values of 0.96 or less. From this analysis, we conclude that given a
particular path, the minimum length required to extract the model parameters
is a somewhat arbitrary choice that depends on the path’s typical max EFB.
A reasonable, safe length would be to use a trace of length equal to or greater
than the double of the max EFB. For WLAN E, the doubled max EFB is
162,986, which is greater than 100,000 frames, the maximum subtrace length
that we found in our earlier analysis. For GSM, the doubled max EFB is
40,894, and our analysis shows than any length equal to or greater than 25,000
will lead to accurate model parameters.

6.3 Modeling Technique Validation

The final step in validating our modeling methodology is to guarantee that
a generated model accurately capture the statistical properties for the metric
of interest on the given network path. The model should accurately describe
the statistical properties of additional traces collected from the same network.
To verify this, we run our algorithm on a subsection of a reference trace and
use the model to create an artificial trace. We then compare the statistics of
the artificial trace to those of other subsections of the reference trace and the
entire reference trace as a whole.
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We extracted 200,000 frames from GSM E trace, and call this reference trace
AB. We divided AB into two subtraces of 100,000 frames each, and called
these subtraces A and B. Next, we calculate the best model for subtrace A
using the cc metric to determine model accuracy (see Section 6.1). The MMTA
model yielded the highest cc value, therefore we chose this model to create a
100,000 frame artificial trace MMTAA.

To determine the accuracy of the statistics of artificial trace, MMTAA, we
calculated the cc of the error burst and error-free burst CDFs (see Section 6.1)
between MMTAA and traces A (0.98 and 0.90), B (0.98 and 0.95), and AB
(0.99 and 0.93). The computed cc values between MMTAA and A and between
MMTAA and B are relatively close in value (especially for for error bursts),
which indicates that the artificial trace generated by MMTA accurately models
other regions of the reference trace.

This analysis shows that our model generation technique is not biased by a
particular section of a trace we are analyzing, but rather it demonstrates that
a captured trace can be used to accurately model the statistics of a particular
network characteristic over a long period of time.

7 Choosing the Best Network Path Model

In this paper we have presented two classical models and two data precon-
ditioning models that capture the error and error-free statistics of network
traces. In this section, we apply the model validation methods described in
the previous section to the collected traces listed in Table 1. We show that the
various models yield differing degrees of accuracy when used to emulate differ-
ent metrics on different network paths. We then compare the computational
complexity and performance of the various models.

7.1 Choosing Accurate Models for Collected Traces

For each of the collected traces in Table 1, we determined the model parame-
ters for the two classical and two data preconditioning models. We list the cc
values for the error and error-free bursts CDF of the traces, the best model
choice, and the associated best average cc value in Table 3. Examining the
error burst CDF cc values for the GSM E trace shows values for the Gilbert,
HMM, MTA, and MMTA models of 0.74, 0.89, 0.99, and 0.99 respectively. As
we discussed in the previous section, cc values less than or equal to 0.96 indi-
cate models that poorly capture the statistics of the network and metric being
investigated. To better clarify the differences between a cc of 0.99 and a cc of
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Trace Gilbert HMM MTA MMTA Best Model Best Average cc

IP 1 0.99, 0.98 0.99, 0.66 0.72, 0.95 0.99, 0.98 Gilbert or MMTA 0.99 or 0.99

IP 2 0.92, 0.81 0.19, 0.68 0.95, 0.62 0.98, 0.94 MMTA 0.96

IP 3 0.99, 0.99 0.98, 0.75 0.76, 0.96 0.99, 0.98 Gilbert 0.99

WLAN E 0.92, 0.74 0.73, 0.51 0.99, 0.87 0.99, 0.73 MTA 0.93

WLAN D 0.93, 0.80 0.29, 0.37 0.99, 0.54 0.98, 0.95 MMTA 0.97

GSM E 0.74, 0.92 0.89, 0.92 0.99, 0.96 0.99, 0.94 MTA 0.98

GSM D 0.27, 0.74 0.71, 0.96 0.91, 0.84 0.82, 0.82 MTA 0.88
Table 3
Artificial traces, their correlation coefficient (error burst CDF, error-free burst
CDF), best model(s), and average correlation coefficient for best model(s).

Trace Original Gilbert HMM MTA MMTA

IP 1 23, 1, 0 5, 1, 0 7, 1, 0 62, 4, 4 13, 1, 0

IP 2 6374, 2, 80 4, 1, 0 594, 102, 103 37, 2, 4 169, 2, 9

IP 3 13, 1, 0 5, 1, 0 7, 1, 0 34, 3, 3 10, 1, 1

WLAN E 42, 2, 3 4, 1.67, 0.54 140, 13, 15 23, 2, 2 28, 2.68, 2.68

WLAN D 2212, 4, 37 8, 1, 1 1448, 194, 206 61, 4, 6 122, 4, 8

GSM E 626, 6, 17 6, 1.86, 0.40 124, 16, 16 44, 5, 6 72, 6.37, 8.21

GSM D 38,20,11 2,1.5,0.87 36,12,12 7,3,3 52,26,18
Table 4
Original and artificial traces’ error burst statistics: maximum, mean, and standard
deviation.

0.74, we plot the error burst CDF for the GSM E trace models in Figure 11.
Examining this figure, we can see that the CDFs for the Gilbert and the HMM
model are not good approximations to the real distribution, therefore we may
conclude that cc values of 0.74 and 0.89 indicate poor correlations between
the artificial traces and the actual trace. On the other hand, a cc value of 0.99
yields a very good approximation.

Tables 4 and 5 show the maximum, mean, and standard deviation values of
the error and error-free bursts for the original and artificial traces for each of
the models. Note that those models with mean values that are similar to the
reference traces’ mean values in general have higher cc values.

Overall, the results show two important observations: different models have
varying degrees of success in capturing the statistical properties of different
metrics for different networks, and as shown by the modeling of IP 2 and
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Trace Original Gilbert HMM MTA MMTA

IP 1 977,40,70 383,121,90 3500,1033,791 260,55,46 486,156,118

IP 2 3079,50,193 404,239,195 5973,1400,1220 15205,3743,3251 5769,325,489

IP 3 607,17,27 146,81,66 678,254,193 149,45,38 240,68,51

WLAN E 81493,42.00,1306 393,195,159 1799,415,356 331,63,53 2689,219,258

WLAN D 5893, 11, 132 148, 50, 40 2295, 1724, 1558 2094, 294, 305 1830, 42, 90

GSM E 20447,114,550 888,535,438 3258,654,563 2927,477,420 3453,574,550

GSM D 907,347,253 1107,2805,2270 523,674,488 2160,4516,3528 864,1688,1194
Table 5
Original and artificial traces’ error free burst statistics: maximum, mean, and stan-
dard deviation.

GSM D, we still need better models for capturing network path behaviors. The
Gilbert model performs well when modeling wired IP networks. Surprisingly,
however, it is not always accurate for IP networks (e.g., IP 2). The HMM
model accurately captures error bursts in some wired networks, but is fairly
inaccurate at modeling wireless networks. The data preconditioning models
perform well at modeling many of the networks, especially the error burst
portions. However, in general, as shown in Table 5, they are not as accurate in
modeling the error free bursts. Note that the same observation is true for both
the Gilbert and HMM models. We believe that future research should focus
on optimizing the modeling of both error burst and error free burst behavior.

7.2 Model Computational Complexity

Another important feature to consider when choosing a network model is the
model’s computational complexity. One measure of the complexity of a model
is its execution time. For example, on a 1.8GHz Intel Pentium 4 processor, the
modeling of the IP 1 trace took 8 seconds using the Gilbert model, 57 seconds
using the HMM model, 7 seconds using the MTA algorithm, and 59 seconds
using MMTA. Note that the MMTA uses two 4th order DTMCs, resulting in
a total of 32 states. The HMM model consists of a single 4th order DTMC,
and it calculates the output according to the state. The cost of the HMM is
similar to the MMTA model. The MTA model consists of one small 4th order
DTMC for modeling the lossy subtrace portion of the trace, while the Gilbert
model uses one large 1st order DTMC for modeling the original trace. The
MTA model has a lower computation cost than the Gilbert because it only
needs to calculate the transition probability for the lossy subtrace, which is
a much smaller trace than the original trace. Overall, we observe that the
MMTA is the highest cost model.
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Fig. 15. Optimal model for Lden=0.7.

Thus, the choice of model may also depend on the type of simulation being
done. If a trace can be generated in advance, model complexity will be less
of an issue. However, for real-time trace generation, developers may need to
consider both the complexity and the accuracy of a model.

8 Determining the Domain of Applicability

In this section, to better understand the behavior of each of the four models, we
observe them while they attempt to capture the properties of a synthetic net-
work. We first use the three parameters for classifying traces (Lexp, EFexp, Lden,
defined in Section 3) to capture the properties of a synthetic network and net-
work characteristic of interest, and then identify the domain of applicability
for each model: for a given characteristic of a trace, which model performs best
at modeling that characteristic?
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8.1 Generating Artificial Traces

We answer this question with the following process. We begin by generating
artificial traces (using a method described below) for various values of Lexp,
EFexp, and Lden. Next, for each model and each trace, we calculate the cc for
the error and error-free burst CDFs, and the average value of these two cc
values. Note that the accuracy of the cc for the error bursts CDF is equally as
important as the accuracy of the error-free burst CDF. However, one could add
a weight to either one depending on the importance of obtaining the correct
distribution accuracy for each burst type. For example, in Table 3 for the IP 1
trace, the Gilbert, the HMM, and the MMTA models give a cc for the error
burst distribution of 0.99, however, the cc for the error-free burst distribution
in the HMM is only 0.66.

To generate artificial traces for our exploration of domain analysis, we first
choose three fixed values for the parameter Lden of 0.2, 0.4, and 0.7, while
for the Lexp and EFexp parameters, we vary the values of each from 0.001
to 0.1 in steps of 0.001. We use the fixed Lden values to generate Bernoulli
process-based random errors inside the lossy state. Note that this means that
inside a lossy state the occurrence of errors are memoryless (i.e., the next
frame’s value doesn’t depend on the previous frame’s value). The effect of
using a Bernoulli process to generate errors is, for small values of Lden, that it
biases the domain analysis results towards the simpler Gilbert model, instead
of more complex higher order models. However, as the value Lden increases,
so does the likelihood of occurrence of multiple consecutive errors; and thus,
the bias switches towards higher order models. Since most real network traces
will experience some degree of memory, using them for domain analysis would
yield results that were almost always biased towards memory process-based
models. Thus, we choose an artificial trace generation method that will allow
us to explore the full range of domain analysis and results.

We determine the lossy and error-free bursts lengths by using the inverse
transformation method [17]. Given a random variable X with a CDF F (x),
the variable u is uniformly distributed between 0 and 1. We can generate
a sample value of X by generating u and calculating x = F−1(u). For an
exponential function with parameter α, u = F (x) = 1 − e−αx. Thus, we can
determine x from x = −ln(u)/α.

We summarize the algorithm for generating an artificial trace as follows:

(1) Choose the number of frames, N, to generate in the artificial trace.
(2) The algorithm repeats the following steps until all N frames have been

generated:
(a) Determine glen, the error-free state length from the error-free state
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length distribution (i.e., exponential distribution function with pa-
rameter EFexp).

(b) Determine blen, the lossy state length from the lossy state length
distribution (i.e., exponential distribution function with parameter
Lexp).

(c) Generate glen error-free frames (i.e., a sequence of “0” of length glen).
(d) Generate blen frames, where each frame is an error frame with prob-

ability Lden.

In examining the artificial trace generator’s results, it is important to consider
that some of the parameter values explored by the trace generator are not
found in real networks. As a point of reference, Table 1 shows the parameter
values for several sample traces of real networks.

In this section, we introduce a methodology that will allow us to choose the
most accurate models for a wide variety of network traces. To this end, we
generate a large number of synthetic traces by varying the three parameters
(Lexp, EFexp, Lden), defined in Section 3. We then generate Domain Applica-
bility Plots (DAP) to show the most accurate model for each combination of
Lexp, EFexp, and Lden, where the best model is defined as the model with a
corresponding maximum average cc value for the error and error-free bursts.
Since we cannot show three-dimensional plots, we choose two representative
values for Lden (0.2, 0.4 and 0.7), and perform experiments that vary across
the Lexp and EFexp parameters, both varying from 0.001 to 0.1 in steps of
0.001.

Figures 13, 14, and 15 show the DAPs for Lden values of 0.2, 0.4, and 0.7,
respectively. Observe that, for Lden = 0.2 (see Figure 13), the Gilbert model
is best for a large portion of the graph. The result is as we expected because
of the use of a Bernoulli process to generate losses in the lossy state. Here,
the error burst length is relatively small. As a result, for a large portion of
points in this plot, the Gilbert model is the optimal choice. However, as the
probability of error in the lossy state Lden increases, the error burst length
increases and thus, the region occupied by the Gilbert model decreases and
the MMTA and MTA become better choices.

Further examination of the results shows that the mean cc value in this area
for the Gilbert model is 0.99, while for this same region the mean cc value for
the MMTA model is 0.98 (see Table 6). Thus, while the Gilbert model yields
the best results, the M3 also performs very well for this “optimal-Gilbert”
region (see Section 6 for an explanation of the relationship between cc values
and a model’s accuracy). For the region where the MMTA is optimal (the
“optimal-MMTA” region), the mean cc value for the MMTA model is 0.97,
while the mean cc for the Gilbert model in this region is 0.96. In Section 6, we
showed that cc values smaller than or equal to 0.96 yield inaccurate models.
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Optimal Model Region

Lden = 0.2 Lden = 0.4 Lden = 0.7

Model Gilbert MMTA Gilbert MTA M3 MTA MMTA

Gilbert 0.99 0.96 0.99 0.96 0.91 0.90 0.92

HMM 0.90 0.92 0.89 0.91 0.92 0.64 0.77

MTA 0.89 0.82 0.97 0.98 0.91 0.99 0.97

MMTA 0.98 0.97 0.96 0.96 0.97 0.99 0.98
Table 6
Correlation coefficient for each Lden value (0.2, 0.4, 0.7) and each optimal region.

Therefore, we can conclude that, for this network, an Lden value of 0.2, using
the MMTA model always yields highly accurate models, while the Gilbert
model only performs best for a subset of the network parameter space.

Next, we examine the model choices for an Lden value of 0.4 (see Figure 14). In
this DAP diagram, there are three optimal regions. In the “optimal-Gilbert”
region, the mean cc value for the Gilbert model is 0.99. Table 6 shows the
mean cc values for the other models in this “optimal-Gilbert” region. The
MTA model performs the best over the largest region of the plot, with a mean
cc value for the model of 0.98. The other models in this “optimal-MTA” region
have mean cc values of less than or equal to 0.96, which indicates that they
are inaccurate representations for these regions. For the “optimal-MMTA”,
the mean cc value for the model is 0.97, while the other models for this region
have mean cc values of less than 0.93 (i.e., they are inaccurate models for this
region).

Finally, we examine the model choices for a high value of Lden, 0.7. For this
high value, almost the entire DAP diagram consists of an “optimal-MMTA”
region with a mean cc value for the model of 0.98. In this region, the MTA
model’s mean cc value was 0.97, which is also very good, while both the Gilbert
and HMM perform very poorly. We believe that this result can be explained as
the inability of traditional models to capture the long error bursts inside lossy
states. In contrast, the data preconditioning models are capable of accurately
capturing both low and high error densities inside lossy states.

9 Conclusion

Our work seeks to aid network and application protocol developers in develop-
ing and choosing appropriate models for network simulation. We introduce our
data preconditioning methodology for modeling non-stationary datasets, and
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present the new Multiple states MTA model (MMTA). We show that MMTA
is better in capturing error burst statistics than classical models and more
consistently accurate across different networks than our previous MTA model.
The primary conclusion from our analysis of existing models is that classic
modeling techniques work well for some, but not all wired networks. However,
when modeling delay and losses in wireless networks, the data preconditioning
approaches are more accurate.

The main contribution of this paper are methodologies to evaluate the accu-
racy of models, to choose the best models for a given network, and to evalu-
ate modeling techniques. Using our methodology and Domain of Applicability
Plots (DAP), researchers can quickly evaluate any analytical model for a given
network characteristic.
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