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Robust Estimation of ARMA Models with Near Root Cancellation 

Timothy Cogley 

Richard Startz* 

May 2012 

Abstract  

Standard estimation of ARMA models in which the AR and MA roots nearly cancel, so that 

individual coefficients are only weakly identified, often produces inferential ranges for 

individual coefficients that give a spurious appearance of accuracy. We remedy this problem 

with a model that mixes inferential ranges from the estimated model with those of a more 

parsimonious model. The mixing probability is derived using Bayesian methods, but we show 

that the method works well in both Bayesian and frequentist setups. In particular, we show that 

our mixture procedure weights standard results heavily when given data from a well-identified 

ARMA model (which does not exhibit near root cancellation) and weights heavily an 

uninformative inferential region when given data from a weakly-identified ARMA model (with 

near root cancellation). When our procedure is applied to a well-identified process the 

investigator gets the “usual results,” so there is no important statistical cost to using our 

procedure. On the other hand, when our procedure is applied to a weakly-identified process, 

the investigator learns that the data tell us little about the parameters—and is thus protected 

against making spurious inferences. We recommend that mixture models be computed 

routinely when inference about ARMA coefficients is of interest. 
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Introduction 

Near root cancellation can lead to misleading inference for      models in both frequentist 

and Bayesian frameworks. The     (       ) model     ( )       ( )   has an 

equivalent statement as the     (   ) model with an additional factor (    ) in both the 

AR and MA polynomials. 

(    )    ( )   (    )    ( )   
(1) 

In equation (1),   is not identified. Unfortunately, when roots cancel—or nearly cancel—

maximum-likelihood estimation gives spuriously precise estimates of      coefficients. For 

instance, Ansley and Newbold (1980, p. 181) write “…severe problems with these estimators 

arise in mixed models when, if there is anything approaching parameter redundancy, [the usual 

maximum likelihood interval estimators]…can be far too narrow.” As an example, Nelson and 

Startz (2007, Table 1) report on a Monte Carlo experiment in which an ARMA(1,1) model is fit to 

data generated by an AR(1) process with autoregressive parameter          Even in a large 

sample (1000 observations), the standard Wald-type t-test against a moving average coefficient 

of zero,       had an actual size of 45.7 percent for nominal size of 5 percent. 

The robust estimation procedure we set out in this paper works by mixing1 an 

unrestricted     (   ) representations with a constrained     (       )  model that 

enforces an exact common factor        on higher-order lags. Since    and    are 

unidentified in the latter representation, their posteriors are the same as their prior, which 

                                                      
1 To be clear, we don’t want to do model selection. There are two reasons for this. First, doing model 

selection introduces a pre-test bias in the final results; as a practical matter this bias is rarely 
corrected. Second, in the case of near root cancellation the     (   ) actually is the “true” model 
but it has very bad sampling properties. 
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assigns unit mass to the unidentified ridge in     (   ) space. A Bayesian mixture therefore 

combines the posterior for the unrestricted     (   ) representation with the prior on 

          When data are from a well-identified DGP, the posterior probability on the 

unrestricted model is close to 1, and the mixture inherits the good properties of standard ML 

estimators. When data are from a weakly-identified representation, however, the posterior 

probability on the unrestricted     (   ) representation is close to 0, and the posterior 

mixture resembles the prior on           In this case, the mixture correctly conveys that 

the data are uninformative for    or     We present both Bayesian and frequentist mixtures, 

and find that they work about equally well. In this context, whether you mix seems to be more 

important than how you mix. 

As a motivating example, we study returns on the S&P 500 stock index. Asset pricing 

models typically imply that stock returns should be a martingale difference. In the first column 

of Table 1, we provide the maximum likelihood estimate of an     (   ) model fit to 658 

monthly observations on the return on the S&P 500.2,3 The parameters    and    are not 

identified under the null hypothesis that stock returns are a white-noise process. Despite that, 

the maximum likelihood estimate makes it appear that they are quite well identified. The point 

estimates are -0.67 and 0.75, respectively, with reported asymptotic standard errors of 0.18 

and 0.16, and the likelihood ratio statistic against the     (   ) null is 7.6 with a p-value of 

                                                      
2  Throughout we use conditional maximum likelihood, dropping the first   observations. Since   is large 

and the data is not close to having a unit root, the difference between conditional and exact maximum 
likelihood should be small. We ignore the considerable heteroskedasticity in the stock return data 
used for the illustration; both reported coefficients are significant at the 0.05 level using Huber-White 
standard errors. 

3  The return is defined as the demeaned value of    (  )     (    ), where    is the first observation 
in the month from the St. Louis Federal Reserve Economic Data (FRED) series SP500. 



-4- 

0.02, which seems rather convincingly to reject the white-noise hypothesis. Still, the point 

estimates make us suspect (near) root cancellation, and Ansley and Newbold (1980) warn us to 

distrust conventional asymptotic approximations in cases like this. ML estimates for the      

parameters are unsatisfactory because they suggest that we know    and    quite precisely—

despite strong theoretical reasons to believe the parameters are not well-identified. 
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 Maximum 
Likelihood 
    (   ) 

Bayesian 
    (   ) 

Maximum 
Likelihood 
    (   ) 

Bayesian 
    (   ) 

Maximum 
Likelihood 
Mixture 

Bayesian 
Mixture 

   -0.67 
(0.18) 

-0.51 
(0.20) 

  -0.05 
(0.58) 

-0.02 
(0.58) 

    0.75 
(0.16) 

 0.60 
(0.18) 

  0.04 
(0.59) 

0.04 
(0.58) 

       
   -6.29 

(0.06) 
-6.28 
(0.06) 

-6.28 
(0.06) 

-6.28 
(0.06) 

-6.29 
(0.06) 

-6.29 
(0.06) 

log likelihood 1134.18  1130.38    

log marginal 
likelihood 
(Chib and 
Jeliazkov 
method) 

 1123.9  1126.8   

log marginal 
likelihood 
(Laplace 
approximation) 

 1114.0  1123.5   

log marginal 
likelihood 
(Schwarz 
approximation) 

 1124.4  1127.1   

95% HPD  (-0.86,0.07)   (-1.0,1.0) (-1.0,1.0) 

Note: Parameter estimates are maximum likelihood estimates and Bayesian posterior means, 
respectively. Standard errors in parentheses. For the mle, standard errors are taken from the 
last step of the Gauss-Newton conditional mle regression. For the Bayesian estimates, standard 
errors are numerical standard deviations from the sampled posterior. The 95% HPD gives the 
bounds of the 95% highest posterior density. 

ARMA Estimates of Monthly S&P500 Returns 

Table 1 

 What would we like to see for a confidence set, whether frequentist or Bayesian, when 

an     (   ) model is fit to     (       ) data? Presumably, the confidence set 

should reflect ignorance of the highest order ARMA terms, except possibly a restriction that the 

additional roots lie in the stationary and invertible regions. For instance, if we have 



-6- 

distributions for   (   )(    ) and   (   )(    )  we would like the higher order lag 

polynomials,  ̃ ( )(  ) and  ̃ ( )(  ), to reflect the factors (    )     and (    )    , 

   (    ), where  ( ) indicates a uniform prior distribution.4 At the same time, if the AR and 

MA terms are strongly identified, we want the conventional estimates to be left alone. 

We propose Bayesian and frequentist techniques that achieve these objectives. When a 

near common factor is present, our methods correctly signal that the data are uninformative 

for weakly-identified parameters. On the other hand, when a model is well-identified, our 

methods return the usual parameter distributions. Confidence sets and distributions of ARMA 

parameters therefore behave appropriately in both well-identified and poorly-identified 

situations. 

Our methods are based on mixture models for     (   ) and     (       ) 

specifications. For a Bayesian implementation, the mixture probability is computed using a 

Bayes factor. For a frequentist approach, the models are weighted in accordance with the 

Schwartz information criterion (SIC) approximation to the Bayes factor. Both seem to work well; 

the Bayesian approach is slightly more costly to compute. 

                                                      
4  More generally, if informative prior information on   is available, the posterior on   should resemble 

the prior.  
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Bayesian implementation 

Our basic idea is to construct posteriors for both the     (       ) and     (   ) 

models and then mix the two using posterior model probabilities. We begin by using simulation 

to draw posteriors for the two specifications using a variant of the Chib and Greenberg (1994) 

algorithm.6 Assuming Gaussian errors with       ( )   , we approximate the log likelihood 

function as in Harvey (1993, p. 62), 

 (     )   
   

 
   (  )  

   

 
  

 

    ( )
∑   

 

 

     

 

                                      

                            

(2) 

We choose normal priors,  ( ),   {     }, that are fairly non-informative, but that 

keep most of the weight in the stationary and invertible regions. The prior means for   and   

are    and   . The prior mean for   is -6, which is roughly the log variance of the unconditional 

S&P 500 return. Prior variances for   and   are        and       , which in this example 

leaves the (    ) stationary and invertible regions within  
 

 
 standard deviation from the prior 

mean. The prior variance for   is   . 

We simulate the posterior using an independence chain Metropolis-Hastings algorithm 

with a candidate generating density that is normal around the maximum-likelihood estimates, 

truncated to the stationary and invertible regions. Specifically we estimate     
  

{    
      

      }, obtaining      and      by grid search and letting 

                                                      
6  We simplify Chib and Greenberg by dropping the mean function, conditioning on initial observations, 

and modeling    ( ) as log normal rather than inverse gamma. 
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        (
 

   
∑   

  
     ). We take the variance-covariance for the ARMA parameters,     , 

from the Jacobean,         ( ) [
  

 {   }

   

 {   }
 ]

  

 , and then let      
 [

     

 
 

   

]. 

The Metropolis-Hastings (MH) algorithm proceeds in the following steps. 

1. Draw a candidate  ( ) from  (          
). If the draw lies outside the stationary 

or invertible region, reject and draw again. 

2. Compute the MH log acceptance probability 

    (  )  { ( ( ))      ( ( ))       ( ( )           
)}  

 { ( (   ))      ( (   ))       ( (   )           
)} 

(3) 

where the log-likelihood,  ( ), is given in equation (2) and   ( ) gives the normal 

pdf.7 

3. Accept  ( ) with probability    (   (    ( ( )))   ), otherwise  ( )   (   ). 

For the stock return example in Table 1, the acceptance probability was 57 percent for 

an     (   ) specification and 98 percent for an ARMA(0,0) model. In each case 55,000 

values of   were drawn, the first 5,000 of which were discarded. 

We next compute the marginal likelihood following Chib and Jeliazkov (2001). We 

evaluate the basic marginal likelihood identity, equation (4), at the mean of the Metropolis-

Hastings sample,  ̅, 

                                                      
7 The acceptance ratio accounts for truncation to the stationary and invertible regions implicitly. See 

Appendix available from the authors. 
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    ( )   ( ̅)      ( ̅)      ( ̅  ) (4) 

The first two terms in equation (4) are computed directly. The posterior density is computed as 

follows. 

1. The posterior kernel for draw ( ) is      ( 
( ))   ( ( ))      ( ( )). The 

posterior kernel for  ̅ is      ( ̅ )   ( ̅ )      ( ̅ ). 

2. Compute the numerator acceptance probability 

     
( )     ({     ( ̅ )       ( ̅           

)}

 {     ( 
( ))       ( ( )           

)}  ) 
(5) 

3. Draw  (  )          draws from the candidate density  (          
). 

4.  The posterior kernel for draw (  ) is      ( 
(  ))   ( (  ))      ( (  )).  

5. Compute the denominator acceptance probability 

6. Compute the posterior density 

 ( ̅  )  

 
 ∑(  

( )    ( ̅           
))

 
 ∑  

(  )
 (7) 

As a computationally convenient alternative to equation (7), the marginal likelihood can 

also be approximated in a large sample by a Laplace approximation,8 

                                                      
8 See Kass and Raftery (1995) for discussion and references. 

     
(  )

    ({     ( 
(  ))       ( (  )           

)}

 {     ( ̅ )        ( ̅           
)}  ) 

(6) 
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    ̃( )   (    )      (    )  (     )       
 

 
   |     

|

 
     

 
     

(8) 

However,  ̃( ) may be a poor approximation for a weakly-identified model. Since the 

asymptotic variance matrix is nearly singular,    |     
| is likely to be inaccurate. 

Assuming even prior odds on the two representations, the mixing probability in favor of 

the more parsimonious model,   , (    (   ) in preference to     (   ) in our example) is 

given by9 

   
    

      
      

 (    )

 (    )
  (9) 

Having run MCMC samplers on both     (       ) and     (   ) models, we 

numerically mix the posterior distributions. 

1. With probability     , draw with replacement {     } from the     (   ) 

sample. 

2. With probability   , draw with replacement {         } from the     (  

     ) sample. Draw    (    ).10 Generate the draw the coefficients of the AR 

polynomial  ̃        ̃                  . Generate the coefficients of 

the MA polynomial  ̃                  . (For          and for 

        .) 

                                                      
9  One could assign uneven prior odds if desired. 
10  Here we assume that p( ) is  (    ) and independent a priori from the other parameters of the 

ARMA(p-1,q-1) model. It follows that the posterior for the ARMA(p-1,q-1) model is p(       )  
 (           ) ( ). We adopt a uniform prior in part to maintain consistency with the frequentist 
results that follow and in part for simplicity. 
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In the example in Table 1, the ARMA(0,0) specification has a posterior probability of 

0.95. The Bayes factor computed using the Laplace approximation differs considerably from the 

Chib-Jeliazkov calculation (which is Monte Carlo consistent and thus preferred aside from 

computational costs), primarily because of differences in the marginal likelihood calculation for 

the     (   ) model. In this particular application the difference is of little consequence, as 

   would be estimated to be 0.9999 rather than 0.95. 

Figure 1 shows three distributions for    for the     (   ) model for stock returns. 

The maximum likelihood estimate concentrates spuriously around the negative point estimate. 

The Bayesian estimate, although influenced by mildly informative priors pulling the distribution 

toward zero, is also quite concentrated around negative values. In contrast, the mixture model 

shows that    is effectively unidentified. Because the weight on the ARMA(0,0) model is close 

to 1, the posterior mixture on   is essentially the same as the prior on  .  
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Figure 1 

Frequentist implementation 

The same procedure can be deployed in a maximum-likelihood framework either to economize 

on the need for MCMC runs or simply because the investigator prefers a frequentist approach. 

In a sufficiently large sample, Bayesian and frequentist estimators coincide. More interestingly, 

we find that for the size samples often used in ARMA estimates and with relatively diffuse 

priors, the Bayesian and frequent results of our procedure are quite similar. 

The need for priors and MCMC simulations to estimate the marginal likelihood can be 

eliminated by use of the Schwarz criterion 

    ( )     (    )  
     

 
     (10) 
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The Schwarz information criterion (also called the Bayesian  information criterion (BIC)), which 

equals minus twice the difference in the Schwarz criterion, is often used as a frequentist model 

selection technique. Rather than selecting a model, we use   to compute the frequentist 

mixture probability.11 Writing the log likelihood from the     (       ) and     (   ) 

as    and    respectively, we can write the frequentist approximations to the Bayes factor and 

mixing probability as 

        (          )         
    

      
 (11) 

The mixing procedure is the same as given above for the Bayesian case, except that draws are 

taken from the asymptotic distribution for the maximum likelihood estimators,  (          
) 

instead of from the posterior draws. 

For the S&P example, the frequentist mixture probability is 0.94, and the mixture 

distribution shown in Figure 2 correctly reflects the lack of identification. The rightmost two 

columns of Table 1 show that frequentist and Bayesian mixture distributions are essentially 

identical for this example, both being close to  (    ).12 

                                                      
11 Hannan (1980) shows that selecting with the BIC gives a consistent estimate of the true order of an 

     model. 
12 The HPD intervals reported in Table 1 are computed by binning draws in a histogram, collecting the 

bins that contain the highest 95 percent of the draws, and then recording the edges of the highest and 
lowest bins in the set. In principle, the HPD need not be continuous so looking at these bounds 
somewhat exaggerates the width of the HPD. If the posterior were literally  (    ), then the HPD 
would not be unique. If the posterior is close to uniform, then the exact location and width of the HPD 
somewhat random with respect to the simulation results. Thus our reported HPDs are slightly wider 
than expected. 
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Figure 2 

 

Monte Carlo results 

For a well-identified problem, our procedure should closely mimic standard results. For a 

weakly-identified problem, our procedure should indicate that we are largely ignorant about 

the location of parameters. For the S&P 500 example, the results indicate the latter. 

In this section we present Monte Carlo results for three data generating processes, one 

well-identified, one weakly-identified, and one twixt well- and weakly-identified. The three 

DGPs are     (   ) models. In all cases, the moving average coefficient   is set to 0. The 

autoregressive parameter   is set equal to 0.9, 0.2, and 0.01, respectively, for strongly-, twixt, 
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and weakly-identified DGPs. Asymptotically, the models are all identified—the issue is whether 

the conventional asymptotic approximation for strongly-identified representations is reliable in 

finite samples. 

We report the results of 1,000 Monte Carlo trials. Data series of length       were 

generated, and the     initial burn-ins were discarded, for samples of size 

  {                              }. As a first step, we computed standard maximum-

likelihood estimates to reconfirm the Ansley and Newbold’s (1980) statement.13 Figure 3 shows 

90 percentile bands for the reported standard error of     , as well as the asymptotic standard 

error. For the well-identified,      , model in the bottom panel, asymptotic approximations 

work well even for small (    ) samples, and asymptotic and the median reported standard 

errors are essentially the same (      and 0.078 respectively). For the weakly-identified model, 

the asymptotic approximation is off by a factor of three even at         —at       the 

asymptotic standard error is 56 times the reported median. As expected,       gives results 

in-between the other two models. 

                                                      
13 We computed the likelihood function on a coarse 40,000 point grid for   {          } and 

  {          } with a resolution of 0.01 to obtain initial estimates    and   . We then searched 
on a finer grid        and          with a resolution of 0.001 to obtain our final estimates. 



-16- 

Figure 3 

Figure 4 gives the empirical size of nominal five percent Wald tests on   for each data 

generating process. In the well-identified model, nominal and actual size are approximately 

equal for all our sample lengths. In contrast, the weakly identified model rejects the true value 

66 percent of the time at      and 41 percent of the time even at         . The middle 

model performs quite badly at modest sample sizes, rejecting 37 percent of the time at 

     , but by          achieves a 7 percent size. 
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Figure 4 

The size results suggest that we would like largely to ignore the estimated results for the 

weakly-identified model. At the same time, the estimated results for the well-identified model 

should be left alone. In betwixt, we should down-weight estimation results at small sample 

sizes but lean heavily on the estimated results with large samples. 

The large sample approximation to the mixing probability based on the Schwarz criteria 

is easily calculated for maximum likelihood models. Figure 5 provides 90 percentile bands from 

our Monte Carlo. In the weakly-identified model, the median value of    (the weight on the 

    (   ) representation) ranges from 94 percent in the smallest sample to 99.9 percent at 

        . In contrast, for          is always zero for all practical purposes. 
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The median mixing probability for the middle model is above 85 percent through 

     , although there is considerable variation around the median. At      , median    

is close to zero. These middle results suggest that our proposed mixture greatly improves 

frequentist inference, although not completely achieving the asymptotic size. 

Figure 5 

Turn now from examination of the frequentist approximation at varying sample sizes to 

a more detailed Monte Carlo examination of both Bayesian and frequentist approaches at 

     . Note that since the asymptotic variance for      is 
(    )

   
, the asymptotic standard 

errors are 0.034,0.346, and 7.07, for              , and          respectively. 
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We begin with the well-identified,      , DGP. The results are summarized simply by 

saying that everything is well-behaved. Figure 6 shows the density of the Monte Carlo draws for 

    . The density is what one would expect from asymptotic distribution theory. The upper 

panel of Table 2 gives more detailed results. Note in particular that according to the MLE results 

given in the first column, the asymptotic standard deviation agrees with both the Monte Carlo 

standard deviation and the median reported standard deviation. Furthermore, the actual size in 

the Monte Carlo for a Z-score test against       matches the nominal size. 

Figure 6 

The second column of Table 2 provides results for the Bayesian estimates, which are 

essentially the same as the maximum likelihood estimates, as would be expected from a well-
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identified model with a relatively noninformative prior. The 95 percent HPD is very slightly 

wider for the Bayesian estimate, presumably reflecting the priors having been centered at 

zero.14 A ‘Bayesian’ Z-score15 test of       has the correct frequentist size, rejecting the null 

hypothesis at a nominal 5 percent level in 5 percent of the samples.  

The bottom three rows of the upper panel of Table 2 give the median values of the 

probability weight on the ARMA(0,0) specification, as well as the outer 2.5 percent tail values. 

The weight is always zero, so our proposed mixture model simply returns the traditional 

standard maximum likelihood and Bayesian results. The choice of Bayes factor calculation by 

Chib and Jeliazkov versus either of the approximations in this well-identified model makes no 

difference. The minor differences between the original and mixture HPD intervals simply reflect 

sampling with replacement from the original distributions. 

To summarize the Monte Carlo results for the well-identified model, the standard 

procedures work well, and since our proposed modification replicates the standard procedure, 

our mixture model also works well. Robustness costs the investigator nothing other than a few 

seconds of computer time. 

                                                      
14 The maximum likelihood “HPD” is calculated as              (            ). 
15 The ‘Bayesian’ Z-score is a conventional Z-score computed using the posterior mean and standard 

deviation. 



-21- 

 MLE Bayes MLE Mixture Bayes 
Mixture 

      
              (    )         

 

Monte Carlo std. dev. 0.037 0.037 0.037 0.037 

Mean reported std. dev. 0.036 0.036 0.036 0.036 

Median reported std. dev. 0.035 0.035 0.035 0.035 

empirical size, 5 percent nominal test 0.048 0.050 0.050 0.050 

Median 95% HPD width 0.138 0.181 0.150 0.185 

{0.025, Median, 0.975} percentile mixture 
probability (Chib and Jeliazkov method) 

{                          
      } 

{0.025, Median, 0.975} percentile mixture 
probability (Laplace approximation) 

{                          
      } 

{0.025, Median, 0.975} percentile mixture 
probability (Schwarz approximation) 

{                          
      } 

      
              (    )         

 

Monte Carlo std. dev. 0.455 0.367 0.158 0.158 

Mean reported std. dev. 0.277 0.257 0.464 0.464 

Median reported std. dev. 0.265 0.257 0.526 0.526 

empirical size, 5 percent nominal test 0.256 0.179 0.015 0.015 

Median 95% HPD width 1.04 1.31 2.00 2.00 

{0.025, Median, 0.975} percentile mixture 
probability (Chib and Jeliazkov method) 

{                 } 

{0.025, Median, 0.975} percentile mixture 
probability (Laplace approximation) 

{               } 

{0.025, Median, 0.975} percentile mixture 
probability (Schwarz approximation) 

{                 } 

       
              (    )        

 

Monte Carlo std. dev. 0.801 0.663 0.024 0.024 

Mean reported std. dev. 0.264 0.209 0.577 0.576 

Median reported std. dev. 0.134 0.158 0.577 0.577 

empirical size, 5 percent nominal test 0.703 0.611 0 0 

Median 95% HPD width 0.525 0.652 2.00 2.00 

{0.025, Median, 0.975} percentile mixture 
probability (Chib and Jeliazkov method) 

{              } 

{0.025, Median, 0.975} percentile mixture 
probability (Laplace approximation) 

{              } 

{0.025, Median, 0.975} percentile mixture 
probability (Schwarz approximation) 

{              } 

Monte Carlo Results 
Table 2 
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Turn now to the Monte Carlo results for the weakly-identified,       , model in the 

bottom panel of Table 2. Unfortunately, as in the previously cited literature, the maximum 

likelihood estimator often understates the uncertainty associated with the estimate of  . The 

median reported standard error is only 0.13, while the Monte Carlo standard deviation is 0.80. 

The bottom line is that a nominal 5 percent test has an actual size equal to 70 percent. 

Results for the Bayesian estimator—shown in the second column of the lower panel of 

Table 2—are similarly unsatisfactory. The actual size is 61.1 percent.16 Weak identification 

occurs when   is close to –    The prior for the     (   ) model assigns very little probability 

to this ridge in the parameter space, essentially limiting the     (   ) posterior to the well-

identified region in which   is not close to –   17 Hence the     (   ) posterior inherits the 

defects of mle. Ironically, a seemingly uninformative prior on the parameters of the 

    (   ) specification encodes a strong prior belief that the model is well identified. 

One way to counterbalance this strong-identification prior is by mixing the     (   ) 

model with another that assigns a heavier weight of prior probability to the  =–   ridge. That is 

what the     (       ) model does. Priors for the     AR and     MA terms are 

weakly informative, but the prior on   enforces exact equality between    and –   . Hence the 

prior for the     (       ) specification assigns a prior mass of 1 to the unidentified 

ridge in     (   ) space. By mixing the two models, we strike a balance between strong and 

weak identification. 

                                                      
16 Since our prior is centered at zero and has some influence on the posterior, the slight improvement 

over the mle doesn’t really reflect information from the data. 
17 Hannan (1980) points to this ridge as the source of inconsistency of MLE estimates. 
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For the example in Table 2, the median mixture probability places 99 percent of the 

weight on the augmented     (   ) model, resulting in a posterior for   which is essentially 

 (    ) in a given Monte Carlo run. The Bayesian and maximum likelihood mixture models 

give the same results, telling us that the data are uninformative about  . This contrasts with 

both of the traditional estimators, which are distributed across (    ) across Monte Carlo runs 

but are spuriously tightly distributed within a run.  

All three methods of calculating the marginal likelihood do an excellent job of picking 

the     (   ) model (even though the true model is     (   )). If we take the Chib and 

Jeliazkov calculation as the standard, the Schwarz approximation occasionally understates    

while the Laplace approximation overstates   . The latter reflects the underestimate of      
 in 

equation (8). 

Our twixt results are given in the middle panel of Table 2. As expected from the Monte 

Carlo run reported earlier, the maximum likelihood estimator performs poorly but not 

disastrously. Empirical size is one-fourth and the median standard error is too small. The poor 

size results despite the fact that the width of the median confidence interval covers is relatively 

large, 1.04. Standard Bayesian results aren’t much different. The median mixture probabilities 

put more of the weight on the     (   ) model, but 30 percent of the time draws from the 

parsimonious model. As a result, the mixture models rarely reject the null and have somewhat 

larger median HPD widths than the standard estimators. Note that the mixing probabilities 

from the Schwarz approximation are close to those from Chib and Jeliazkov, but that the 

Laplace approximation again puts somewhat too much weight on the parsimonious model.  
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The Monte Carlo results indicate that our proposed mixture returns the standard results 

for inference for a well-identified data generating process. In contrast, when faced with a 

weakly identified data generating process the standard procedure indicate spurious precision 

while the mixture correctly reports our inability to infer the true parameter from the data. 

Conclusion 

It has long been known that standard estimation of ARMA models in the presence of near root 

cancellation produces spuriously tight confidence intervals for the estimated coefficients. Our 

mixture procedure avoids such spurious inference without any significant cost for well-

identified models. While our procedure is derived with a Bayesian justification, it seems to work 

equally well in the maximum-likelihood context. Computation of the Schwarz approximation to 

the mixing probability works well. For maximum-likelihood the only extra computation is 

estimation of the     (       ) model and numerical mixing of two normals. We 

recommend, at a minimum, that mle mixture models be computed when inference about 

ARMA coefficients is of interest.  
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Appendix – Not for publication 

In the Metropolis-Hastings algorithm employed in the body of the paper we use a truncated 

normal proposal density. The truncation is not explicit in the calculation of the proposal density 

in equation (3). In this appendix we show why the calculations are correct. Our proposal density 

has probability 

   ( ( )           
)  

 ( ( ))  ( ( )           
)

∫  ( )  (            
)  

 (12) 

where   ( ) and    ( ) are normal and truncated normal densities, respectively, and  ( ) is an 

indicator function 

 ( )                         

             

The denominator of equation (12) is the probability of an acceptable draw. Step 1 in in 

the Metropolis-Hastings algorithm generates a proposal from this density. 

Note further that the denominator, ∫  ( )  (            
)  , does not depend on 

the draw, and that since we are using an independence chain Metropolis-Hastings this value is 

the same for all draws so that 

   ( ( )           
)

   ( (   )           
)

 

[
 ( ( ))  ( ( )           

)

∫  ( )  (            
)  

]

[
 ( (   ))  ( (   )           

)

∫  ( )  (            
)  

]

 (13) 

 
 ( ( ))

 ( (   ))
 

  ( ( )           
)

  ( (   )           
)
 



-27- 

Since all draws that pass through step 1 are in the acceptance region,  ( ( ))  

 ( (   ))   . Therefore in equations (3) and (13) evaluating the candidate density using the 

normal distribution gives the same value as using the truncated normal. 

The analogous argument holds as well for evaluation of the prior densities. 




