
UCLA
UCLA Electronic Theses and Dissertations

Title

Channel Coding Techniques for Scaling Modern Data-Driven Applications: From Blockchain
Systems to Quantum Communications

Permalink

https://escholarship.org/uc/item/0cp2c3tk

Author

Mitra, Debarnab

Publication Date

2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0cp2c3tk
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Channel Coding Techniques for Scaling Modern Data-Driven

Applications: From Blockchain Systems to Quantum Communications

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical and Computer Engineering

by

Debarnab Mitra

2023

© Copyright by

Debarnab Mitra

2023

ABSTRACT OF THE DISSERTATION

Channel Coding Techniques for Scaling Modern Data-Driven

Applications: From Blockchain Systems to Quantum Communications

by

Debarnab Mitra

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2023

Professor Lara Dolecek, Chair

Channel coding theory offers advanced mathematical techniques that have proven to be

highly effective at improving the reliability of traditional communication systems such as

wireless communication, storage in memories, and many more. However, modern data-

driven applications such as blockchains and quantum communications encounter a new set

of challenges resulting in new metrics of concerns, e.g., storage requirements, communica-

tion costs, security, data rates, etc., compared to traditional systems. These new metrics

necessitate new and specialized channel code designs to improve the performance of these

systems. In this dissertation, we aim to mitigate the challenges encountered in certain widely

used data-driven applications viz. blockchains and quantum communications by designing

specialized channel codes that are tailor-made for each specific application.

The first line of the dissertation is focused on specialized Low-Density Parity-Check

(LDPC) code design to mitigate challenges present in blockchain systems. These systems

are known to suffer from a security vulnerability known as Data Availability (DA) Attacks

where system users accept an invalid block with unavailable portions. Existing work focused

ii

on utilizing random LDPC codes and 2D Reed-Solomon (2D-RS) codes to mitigate DA

attacks. Although effective, these codes are not necessarily optimal for this application,

especially for blockchains with small block sizes. For these types of blockchains, we propose

a co-design of specialized LDPC codes and code word sampling strategies to result in good

system performance in terms of DA detection probability and communication cost. We

devise our co-design techniques to tackle adversaries of varying strengths and demonstrate

that they result in a higher probability of detection of DA attacks and lower communication

cost compared to approaches in earlier literature.

The second line of the dissertation is focused on specialized polar code design to mitigate

DA attacks in blockchains with large block sizes. Previously used 2D-RS codes and LDPC

codes are difficult to apply to blockchains with large block sizes due to their large decoding

complexity and coding fraud proof size (2D-RS codes), and intractable code guarantees

for large code lengths (LDPC codes). To mitigate DA attacks in blockchains with large

block sizes, we propose a novel data structure called Graph Coded Merkle Tree (GCMT):

a Merkle tree encoded using the encoding graph of polar codes. Additionally, we propose

a specialized polar code design algorithm for the GCMT. We demonstrate that the GCMT

build using the above specialized polar codes simultaneously performs well in the various

performance metrics relevant to DA attacks at large block sizes including DA detection

probability, communication cost, tractable code guarantees, and decoding complexity.

The third line of the dissertation is focused on an important application in quantum

communication known as Quantum Key Distribution (QKD). QKD aims to provide private

keys to multiple users at a large key generation rate. LDPC codes have been previously

utilized to extract private keys in QKD. However, the existing LDPC codes do not fully

utilize the properties of the QKD channel to optimize the key rates. In this dissertation, we

propose novel and specialized channel coding techniques to result in high key generation rates

in QKD systems. Firstly, we propose a joint code rate and LDPC code design algorithm that

is tailored to use the properties of the QKD channel for high key rates. Secondly, we propose

iii

an interleaved decoding algorithm to extract the private key from raw quantum data. We

demonstrate that the above techniques significantly improve the private key generation rate

in QKD systems compared to approaches in earlier literature.

iv

The dissertation of Debarnab Mitra is approved.

Dariush Divsalar

Lin Yang

Danijela Cabric

Gregory J. Pottie

Lara Dolecek, Committee Chair

University of California, Los Angeles

2023

v

To my parents, Gopa and Debashis

vi

TABLE OF CONTENTS

1 Introduction . 1

1.1 Contributions . 5

2 LDPC Codes to Mitigate DA Attacks on Blockchain Light Nodes 8

2.1 Introduction . 8

2.1.1 Contributions . 12

2.1.2 Previous Work . 13

2.2 Preliminaries and System Model . 15

2.2.1 Coded Merkle Tree (CMT) . 15

2.2.2 Stopping sets and LDPC notation . 18

2.2.3 System and Network Model . 18

2.2.4 Threat Model . 21

2.3 LDPC code and sampling co-design for Weak Adversary 24

2.3.1 Aligning the parity check matrices of the CMT 27

2.3.2 Entropy-Constrained PEG (EC-PEG) Algorithm 29

2.4 LDPC code and sampling co-design for Medium and Strong Adversary . . . 32

2.4.1 Linear-programming-sampling (LP-sampling) for DA attacks on any

layer of the CMT . 33

2.4.2 Linear-programming-Constrained PEG (LC-PEG) Algorithm 35

2.5 System Aspects . 39

2.6 Simulation Results . 41

2.7 Conclusion . 48

vii

2.8 Appendix . 48

2.8.1 Proof of Lemma 2 . 48

2.8.2 Proof of Lemma 3 . 49

2.8.3 Proof of Lemma 4 . 49

2.8.4 Proof of Lemma 5 . 51

3 LDPC Codes to Mitigate DA attacks in Side Blockchains 52

3.1 Introduction . 52

3.2 Preliminaries and System Model . 53

3.3 Design Idea: Secure Stopping Set Dispersal 57

3.4 Dispersal-Efficient PEG Algorithm . 60

3.5 Simulation Results . 62

3.6 Conclusion . 65

3.7 Appendix . 66

3.7.1 Construction of Coded Interleaving Tree 66

3.7.2 Proof of Lemma 6 . 67

3.7.3 Proof of Lemma 7 . 68

3.7.4 Proof of Lemma 8 . 69

4 Polar Codes to Mitigate DA attacks in Blockchains with Large Blocks . 71

4.1 Introduction . 71

4.1.1 Contributions . 74

4.1.2 Previous Work . 75

4.2 Preliminaries and System Model . 76

viii

4.2.1 Coded Merkle Tree (CMT) Preliminaries 77

4.2.2 DA attacks in blockchains with light nodes 80

4.2.3 DA oracle in Side blockchains . 83

4.2.4 Design objectives for CMT at large code lengths 85

4.3 Graph Coded Merkle Tree (GCMT) . 86

4.3.1 Polar Factor Graphs Preliminaries . 86

4.3.2 GCMT construction using polar factor graphs 89

4.3.3 System metrics for the GCMT . 92

4.4 Polar Factor Graph Design for the GCMT: Sampling Efficient Freezing . . . 93

4.4.1 Building the GCMT using the SEF Algorithm 97

4.5 Pruning the Factor Graph of Polar codes for the GCMT construction 99

4.6 Simulation Results and Performance Comparison 105

4.7 Conclusion . 110

4.8 Appendix . 112

4.8.1 Proof of Lemma 10 . 112

4.8.2 Proof of Lemma 11 . 112

4.8.3 Proof of Lemma 12 . 113

4.8.4 Proof of Lemma 14 . 114

4.8.5 Proof of Lemma 15 . 115

4.8.6 Proof of Lemma 16 . 116

4.8.7 Proof of Lemma 17 . 116

5 Non-Binary LDPC Codes for Quantum Key Distribution 118

5.1 Introduction . 118

ix

5.1.1 Contributions . 121

5.2 Preliminaries and System Model . 123

5.2.1 ET-QKD system model . 123

5.2.2 ET-QKD channel model . 126

5.2.3 Non-Binary LDPC code preliminaries 127

5.2.4 Example: Fully Non-Binary (FNB) Protocol for IR 129

5.3 Non-Binary Multi-Level Coding . 131

5.3.1 Interactive communication to mitigate error propagation 134

5.3.2 Design choices in the NB-MLC(a) protocol 135

5.4 Optimizing the NB-MLC(a) protocol . 136

5.4.1 Joint Rate and Degree Distribution Optimization (JRDO) 136

5.4.2 Interleaved Decoding and Communication 139

5.4.3 Mappings . 143

5.5 Simulation Results . 146

5.6 Conclusion . 151

6 Conclusion . 154

6.1 Summary of Contributions . 154

6.2 Future Directions . 156

References . 158

x

LIST OF FIGURES

2.1 DA attack and its detection . 9

2.2 Construction of CMT and associated DA attack 16

2.3 Illustration of cycle and stopping set concentration 31

2.4 Performance of EC-PEG algorithm and greedy sampling for Nl = 128, R = 0.5,

dv = 4 . 41

2.5 Performance of EC-PEG algorithm and greedy sampling for Nl = 200, R = 0.5,

dv = 4 . 43

2.6 Performance of LP-Sampling . 44

2.7 Performance of the LC-PEG algorithm and LP-Sampling 45

3.1 Side Blockchain System Model . 54

3.2 Communication cost for various coding schemes and dispersal protocols 65

4.1 DA attack illustration . 72

4.2 General CMT contruction . 78

4.3 Properties of Polar Factor Graphs . 87

4.4 GCMT construction example . 90

4.5 Illustration of the SEF and pruning algorithm 95

4.6 GCMT construction example with SEF algorithm output 98

4.7 PrGCMT construction example . 102

4.8 Comparison of various CMT performance metrics for different coding methods. . 103

4.9 IC proof size for different data symbol sizes. 106

4.10 Probability of failure comparison of GCMT and LCMT 107

xi

4.11 Communication cost comparison of GCMT and LCMT 108

4.12 Comparison of various performance metrics for 2D-RS, an LCMT, and a PrGCMT.111

5.1 Improvements in IR rate due to our techniques compared to prior work 121

5.2 Raw Key Generation in the ET-QKD system. The arrival times of photons are

discretized to get the raw key symbols. Each frame has 2q bins and the spacing

between frames is called binwidth. 124

5.3 ET-QKD channel model. 127

5.4 IR rate and FER vs. coding rate for the FNB protocol. 130

5.5 Illustration of the NB-MLC(a) protocol. 131

5.6 Improvment in IR rates due to interactive communication. 134

5.7 Comparison of IR rates due to different mapping functions. 145

5.8 IR rate of the NB-MLC(a) protocol. 147

5.9 IR rate for different NB-LDPC code constructions. 149

5.10 IR rate comparison for the IDC and SDC protocol. 150

5.11 IR rate comparison of our techniques and the MLC scheme. 152

xii

LIST OF TABLES

2.1 Probability of failure for various CMT parameters, coding schemes, and sampling

strategies. 46

2.2 Parameters used for LP-sampling and LC-PEG code construction for various

CMTs in Table 2.1. 46

2.3 Maximum CN degree for the LDPC codes used in different layers of the CMT. . 47

3.1 Communication costs achieved by k∗-secure dispersal 63

3.2 Comparison of total communication cost . 64

4.1 Comparison of various performance metrics of 2D-RS codes, an LCMT, and a

GCMT/PrGCMT. 104

4.2 Comparison of the total number of VNs in the FG of various CMTs 109

xiii

VITA

2018 Bachelor of Technology (with Honors) in Electrical Engineering

Indian Institute of Technology Bombay

2020 Master of Science in Electrical and Computer Engineering

University of California, Los Angeles

2019-2023 Graduate Student Researcher

Electrical and Computer Engineering Department

University of California, Los Angeles

2022 Modem Systems Engineer (Intern)

Modem Systems Team, Qualcomm Technologies

2019, 2020 System-on-Chip Engineer (Intern)

Non-Volatile Memory Solutions Group, Intel Cooperation

2023 Dissertation Year Fellow

University of California, Los Angeles

PUBLICATIONS

D. Mitra, L. Tauz, and L. Dolecek, “Graph coded Merkle tree: Mitigating data availability

attacks in blockchain systems using informed design of polar factor graphs," IEEE Journal

on Selected Areas in Information Theory, vol. 4, pp. 434-452, Sept. 2023.

D. Mitra, L. Tauz, and L. Dolecek, “Overcoming data availability attacks in blockchain

systems: Short code-length LDPC code design for coded Merkle tree," IEEE Transactions

xiv

on Communications, vol. 70, no. 9, pp. 5742-5759, Sep. 2022.

D. Mitra, L. Tauz, and L. Dolecek, “Polar coded Merkle tree: Improved detection of data

availability attacks in blockchain systems", IEEE International Symposium on Information

Theory (ISIT), Jun. 2022.

D. Mitra, L. Tauz, and L. Dolecek, “Communication-efficient LDPC code design for data

availability oracle in side blockchains," IEEE Information Theory Workshop (ITW), Oct. 2021.

D. Mitra, L. Tauz, and L. Dolecek, “Concentrated stopping set design for coded Merkle

tree: Improving security against data availability attacks in blockchain systems," IEEE

Information Theory Workshop (ITW), Apr. 2021.

D. Mitra and L. Dolecek, “Patterned Erasure Correcting Codes for Low Storage Over-

head Blockchain Systems", IEEE Asilomar Conference on Signals, Systems, and Computers

(ACSSC), Nov. 2019.

xv

CHAPTER 1

Introduction

Channel coding theory [1] is a well-known mathematical tool that has been used to improve

the reliability of traditional communication systems such as wireless communication, data

storage in memories, and many more. However, the rise of modern data-driven applications

such as blockchains and quantum communications brings about new challenges in channel

code design that are specific to these applications. These modern applications have different

challenges and metrics of concern such as storage overheard, security, high data rates, etc.

compared to traditional systems. Hence, these modern applications require new and spe-

cialized channel code designs to mitigate the challenges encountered in them and improve

their efficiency and reliability. In this dissertation, we consider the challenges encountered

in two widely used data-driven applications viz. blockchains and quantum communications,

and demonstrate how specialized channel codes can mitigate these challenges.

Blockchain is a tamper-proof ledger of transaction blocks connected together by hashes

in the form of a chain. It is built upon the technology stack of distributed storage, cryptog-

raphy, and networks and provides a method to maintain this ledger of transaction blocks in a

decentralized manner among its users. This property eliminates the need for a central author-

ity to oversee transactions in the system. Hence, blockchains form the backbone of various

cryptocurrencies like Bitcoin [2] and Ethereum [3]. At the same time, the decentralization

and security properties of blockchains have led to their application outside finance in diverse

fields such as medical services [4,5], supply chains [6], copyright protection [7], and Internet

of Things [8, 9]. However, blockchains provide the security and decentralization properties

1

at the expense of poor performance in terms of storage overhead of nodes and transaction

throughput. For instance, to provide decentralization, the blockchain protocol requires each

of its users (called full nodes) to store the entire blockchain ledger. This operation incurs

a prohibitive storage cost (e.g., 400GB for Bitcoin as of Oct 2023 [10]) and prevents nodes

with limited resources from joining the blockchain network. At the same time, blockchains

such as Bitcoin and Ethereum have a poor throughput of only a few transactions per second

[11], which is significantly lower than well-known payment processing systems like VISA,

with a throughput of thousands of transactions per second. The design of high-performance

blockchains with low storage overhead and high transaction throughput without sacrificing

the security properties has been a major research area in recent years [12].

A popular approach for improving the storage and throughput performance of blockchains

is by allowing certain nodes called accepting nodes to not store or validate the blockchain

blocks. Instead, these nodes only store a small fraction of each block (called its header)

and rely on verifiable fraud-proofs [13] sent out by other nodes called validating nodes (that

store/validate the full blocks) to reject invalid blocks. Examples for the above model include

blockchains with light nodes [13] and side blockchains [14] that respectively improve the

storage and throughput of blockchains. However, only storing the header and relying on fraud

proofs to reject invalid blocks make the accepting nodes vulnerable to data availability (DA)

attacks [13], [15] when the majority of validating nodes are malicious. To maintain security

while improving the storage and throughput performance of blockchains, it is important to

devise techniques to mitigate DA attacks, which we focus on in this dissertation. Channel

coding [1] has been actively utilized to mitigate DA attacks in blockchains [13–15]. For

example, authors in [13–15] proposed to use 2D Reed-Solomon (RS) codes and random Low-

Density Parity-Check (LDPC) codes to prevent DA attacks. Although effective, the codes

used in these works were off-the-shelves designed for channels such as the binary symmetric

channel (BSC), binary erasure channel (BEC), or additive white Gaussian noise (AWGN)

channel that are unlike the channel observed during DA attacks. Thus, 2D-RS and random

2

LDPC codes used in earlier literature are not the best choice of codes to mitigate DA attacks.

The application of channel coding has to be carefully considered depending on the size

of the transaction blocks in blockchains. They can range from a few MBs (small block size),

e.g., Bitcoin [16], Bitcoin Cash [17], to hundreds of MBs (large block size), e.g., Bitcoin SV

[18]. Small block size applications such as low latency blockchains [19] or resource-limited

IoT blockchains [9] require small code lengths. Small code lengths are advantageous in these

systems since they keep the fraud proof size and encoding/decoding complexity small. 2D-RS

and random LDPC codes utilized in previous work [13–15] have large fraud-proof sizes (2D-

RS codes), poor DA detection probability, and high communication cost (LDPC codes) and

hence are insufficient for use in small block size applications. In this dissertation, we utilize

the fact that the performance of the system depends both on the code design and a system-

specific code word sampling strategy. For short code lengths, we then demonstrate in [20–22]

that a suitable co-design of specialized LDPC codes and the code word sampling strategy

can improve the probability of detection of DA attacks and communication cost while having

small fraud proof sizes and encoding/decoding complexity. We consider different adversary

models based on their computational capabilities and provide a co-design of specialized

LDPC codes and sampling strategies that reduce the probability of failure to detect DA

attacks and communication cost compared to techniques proposed in earlier literature.

Contrary to small block sizes, to mitigate DA attacks in large block size applications,

we require large code lengths since large code lengths allow for smaller partitioning of the

block, thereby reducing the load on the network bandwidth. However, along with requiring

small encoding/decoding complexity, fraud proof size, probability of failure to detect DA

attacks, and communication cost (similar to small block size applications), in this case, we

additionally require a small complexity of designing the code. The complexity of designing

the code becomes an important performance metric at large code lengths since it affects

the overall system design complexity. The NP-hardness of determining certain problematic

objects in LDPC codes [23] makes it difficult to extend the techniques already established

3

in prior work as well as those we devised for short code lengths to larger code lengths. We

address the above limitation in [24,25] by proposing a novel method of mitigating DA attacks

at large code lengths using polar codes. In particular, we propose a new data structure for

detecting DA attacks called the Graph Coded Merkle Tree (GCMT). A GCMT is a Merkle

tree [2] encoded using the encoding graph of polar codes [26]. Additionally, we provide a

specialized design algorithm for the polar encoding graphs to be used in the GCMT. We

demonstrate that at large block sizes, the GCMT built using the specialized polar encoding

graphs results in improved performance in the various performance metrics relevant at large

block sizes compared to 2D-RS and LDPC codes.

Being able to maintain security while providing desirable properties such as low storage

overhead and high throughput is in no way unique to the blockchain setting. A similar

problem is encountered during Quantum Key Distribution (QKD) [27, 28] in quantum com-

munications. QKD aims to tackle the problem of secure shared key generation between

two users for use in one-time pad encrypted communications [27–32]. The goal in QKD is

to securely generate the shared key at a high key generation rate. Channel coding tech-

niques, especially LDPC codes, are being actively researched in this domain due to their

potential to achieve the above goal [33–36]. Secret keys in QKD systems are established by

first performing a quantum phase where two users, Alice and Bob, exchange quantum states

over a quantum communication channel to obtain raw key symbols. The quantum phase is

succeeded by a post processing phase where Alice and Bob reconcile the differences in their

raw keys to obtain a shared secret key. In prior literature, a technique called the multi-level

coding (MLC) scheme [37] based on LDPC codes was proposed for the post processing phase.

The MLC scheme splits the raw key symbols into bit layers and utilizes binary LDPC codes

to reconcile each layer. Although binary LDPC codes are able to offer low complexity for

reconciliation, they have poor error-correcting performance compared to their non-binary

counterparts leading to low key rates. Additionally, existing LDPC codes do not fully utilize

the properties of the observed QKD channel to optimize the key rates. We address the above

4

issues in [38] by proposing a flexible protocol for reconciliation called the Non-Binary Multi-

Level Coding (NB-MLC). The NB-MLC protocol is a generalization of the MLC scheme that

utilizes NB-LDPC codes. To improve the key rates using the NB-MLC protocol, we propose

a joint rate and degree distribution optimization (JRDO) algorithm to design the NB-LDPC

codes for the protocol and an interleaved decoding algorithm to decode the different layers of

the protocol. We demonstrate that the NB-MLC protocol with the above techniques results

in 40− 60% improvement in the key rate compared to approaches in earlier literature.

1.1 Contributions

In this section, we provide a summary of the contributions in the upcoming chapters of the

dissertation. Our related publications and manuscripts corresponding to the contributions

are [20, 22] for Chapter 2, [21] for Chapter 3, [24, 25] for Chapter 4, and [38] for Chapter 5.

Additional details about the techniques described in this dissertation can be found in the

aforementioned publications and manuscripts.

Contributions in Chapter 2

In this chapter, we focus on mitigating DA attacks that are pertinent to blockchain systems

with light nodes [13]. Additionally, we focus on the case of small block sizes which are rele-

vant in low latency systems, IoT blockchains, etc., as previously discussed. We categorize all

possible adversaries into three types called the weak, medium, and strong adversary based

on their computational capabilities. Our main contributions in this chapter are co-design

techniques for LDPC codes and coupled code word sampling strategies that result in a high

probability for the light nodes to detect DA attacks against the above three adversary mod-

els. For the weak adversary model, we devise a new LDPC code construction termed as the

entropy-constrained progressive edge growth (EC-PEG) algorithm and a greedy sampling

strategy. For the medium and the strong adversary models, we provide a co-design of a

5

sampling strategy called linear-programming-sampling (LP-sampling) and an LDPC code

construction called linear-programming-constrained PEG (LC-PEG) algorithm. We demon-

strate that the above co-design techniques result in a higher probability of detection of DA

attacks compared to approaches in earlier literature.

Contributions in Chapter 3

In this chapter, we focus on mitigating DA attacks pertinent to side blockchains [14] that

are used to improve the throughput performance of the overall blockchain system. Similar

to Chapter 2, we focus on the case of small block sizes in this chapter. Note that to mitigate

DA attacks in side blockchains, the role of sampling the code words (as in the case of light

nodes) is achieved by communicating different portions of the block to different nodes in the

system, a process termed as dispersal [14]. The goal, in this case, is to reduce the overall

communication cost associated with the dispersal. To achieve this goal, we provide a special-

ized LDPC code construction called the dispersal-efficient PEG (DE-PEG) algorithm and

a tailored dispersal protocol. We demonstrate that our new code construction coupled with

the dispersal protocol reduces the communication cost, and additionally, is less restrictive in

terms of system design compared to earlier literature.

Contributions in Chapter 4

In this chapter, we provide techniques to mitigate DA attacks for the case of large block

sizes in both blockchains with light nodes and side blockchains. In particular, we provide

the method to construct the Graph Coded Merkle Tree (GCMT) using the encoding graph

of polar codes and demonstrate how it can be used to mitigate DA attacks in blockchains

with light nodes and side blockchains. We then provide a specialized algorithm to design the

polar encoding graph called Sampling Efficient Freezing and an algorithm to prune the polar

encoding graph for further performance improvement. We demonstrate that the GCMT built

using the above techniques results in a better DA detection probability and communication

6

cost compared to LDPC codes, has a lower fraud proof size compared to LDPC and 2D-RS

codes, has a low complexity of designing the code at large code lengths, and has comparable

decoding complexity to 2D-RS and LDPC codes. Thus, our techniques provide improved

trade-offs in the different performance metrics relevant to DA attacks at large block sizes

compared to codes used in earlier literature.

Contributions in Chapter 5

In this chapter, we provide techniques to increase key rates in QKD systems. In particular,

we provide the NB-MLC protocol which is parameterized by an integer parameter a. We

show that by using a small value of a, the NB-MLC protocol significantly improves the key

rate without much increase in the key generation complexity. To further improve the key

rates of the NB-MLC protocol, we provide i) the JRDO algorithm to design the NB-LDPC

codes for the NB-MLC protocol; ii) the interleaved decoding schemes to decode the different

layers of the NB-MLC protocol. The JRDO algorithm is designed to use the QKD channel

information and we show that it results in higher key rates than prior work. Additionally,

the interleaved decoding scheme improves the key rate compared to the decoding and com-

munication methods utilized in prior work. Overall, we show that the NB-MLC protocol

that uses JRDO LDPC codes and the interleaved decoding scheme results in a significant

40− 60% improvement in key rates compared to prior work.

7

CHAPTER 2

LDPC Codes to Mitigate DA Attacks on Blockchain

Light Nodes

2.1 Introduction

A blockchain is a collection of transaction blocks arranged in the form of a hash-chain.

Full nodes in the blockchain network store the entire blockchain ledger and operate on it

to validate transactions. However, storing the entire ledger requires a significant storage

overhead1 which prevents resource limited nodes from joining the blockchain system. To

alleviate this problem, some blockchain systems also run light nodes [2]. These are nodes

that only store the headers corresponding to each block of the blockchain. The header for each

block contains a field called a Merkle root which is constructed from the block transactions

[2]. Using the Merkle root, light nodes can verify the inclusion of a given transaction in a

block via a technique called a Merkle proof. However, they cannot verify the correctness of

the transactions in the block.

Assuming that the system has a majority of honest full nodes, light nodes simply accept

headers that are a part of the longest header chain because honest full nodes will not mine

blocks on chains containing fraudulent transactions (i.e., a longest chain consensus protocol

[2] is used). However, when the honest majority assumption is removed, the longest chain

protocol becomes insecure for light nodes. As such, researchers were prompted to find meth-

1At the time of writing, the size of the Bitcoin and Ethereum ledgers are around 400GB [10] and 650GB
[39], respectively

8

Figure 2.1: Left: Data Availability (DA) attack; Right: Detection of DA attack via light node
sampling

ods to provide security even under a dishonest majority of full nodes. One such research

endeavor was [13] where authors provided protocols for honest full nodes to broadcast ver-

ifiable fraud proofs of invalid transactions. The mechanism allows light nodes, even in the

presence of a majority of malicious full nodes, to reject headers of invalid blocks on receiving

fraud proofs from an honest full node. However, with a majority of malicious full nodes, the

light nodes are still susceptible to data availability (DA) attacks [13, 15]. In this attack, as

illustrated in Fig. 2.1 left panel, a malicious full node generates a block with invalid trans-

actions, publishes the header of the invalid block to the light nodes, and hides the invalid

portion of the block from the full nodes. Honest full nodes cannot validate the missing por-

tion of the block and hence are unable to generate fraud proofs to be sent to the light nodes.

Since the absence of a fraud proof also corresponds to the situation that the block is valid,

light nodes accept the invalid header2.

Light nodes can independently detect a DA attack if a request for a portion of the

block is rejected by the full node that generates the block. As such, as illustrated in Fig.

2.1 right panel, light nodes randomly sample the block, i.e., randomly request for different

2In this system, there is no way of identifying honest alarm messages sent by full nodes about block
unavailability [15], [40].

9

portions of the block transactions and accept the header if all the requested portions are

returned. In this dissertation, we are interested in reducing the probability of failure for

a light node to detect a DA attack for a given sample size, thus improving the security

of the system. Since the size of individual transactions is much smaller compared to the

entire block, an adversary can hide a very small portion of the block corresponding to the

invalid transactions. Such a hiding will result in a high probability of failure for the light

nodes using random sampling. To alleviate this problem, authors in [13] proposed coding

the block using erasure codes3. When the block is erasure coded, to make the invalid portion

of the block unavailable, the malicious block producer must prevent honest full nodes from

decoding back the original block. They do so by either 1) hiding a larger portion of the coded

block (more than the erasure correcting capability of the code). This hiding can be detected

with a high probability by the light nodes using random sampling; 2) incorrectly generating

the coded data. In this case, honest full nodes can broadcast verifiable incorrect-coding (IC)

proofs [13], [15] allowing light nodes to reject the header. To keep the IC proof size small,

authors in [13] used 2D Reed-Solomon (RS) codes. 2D-RS codes result in an IC proof size of

O(
√
b log b), where b is the size of the block. Work in [15] extends the idea into a technique

called Coded Merkle Tree (CMT). A CMT uses Low-Density Parity-Check (LDPC) codes

for encoding a Merkle tree and it provides the following benefits: 1) small check node (CN)

degrees in the LDPC codes reduce the IC proof size to O(log b) [15]; 2) LDPC codes can

be decoded using a linear time peeling decoder [1], thus reducing the decoding complexity

compared to Reed-Solomon codes. Despite these benefits, an LDPC code with a peeling

decoder leads to certain problematic objects, called stopping sets [1] that allow malicious

nodes to successfully hide a smaller portion of the block compared to Reed-Solomon codes.

A stopping set of an LDPC code is a set of variable nodes (VNs) that if erased prevents

3As with all applications of channel coding, coded redundancy results in a rate penalty, which in this case
is a storage overhead at the full nodes. In this work, we improve the trade-off between the storage overhead
and the probability of failure of detecting DA attacks by providing better codes, thus, making channel coding
a more viable solution despite the overhead.

10

a peeling decoder from fully decoding the original block. If a malicious node hides coded

symbols corresponding to a stopping set of the LDPC code, full nodes will not be able to

decode the CMT. Since the malicious node can hide the smallest stopping set, the best code

design strategy to reduce the probability of failure using random sampling is to construct

deterministic LDPC codes with large minimum stopping set size. Constructing such LDPC

codes is considered a hard problem [41].

Another important coding parameter for the CMT is the length of the LDPC codes which

affects the encoding/decoding complexity and Merkle proof sizes. Similar to applications

such as wireless systems, short code lengths are beneficial in CMT applications (like low

latency blockchains [19] or resource limited IoT blockchains [9]) since they keep the above

quantities small. Previous work in [15] have focused on using codes from an LDPC ensemble

to construct the CMT. At large code lengths, the LDPC ensemble guarantees, with high

probability, a large stopping ratio (the smallest stopping set size divided by the code length

[15]) and hence a low probability of failure. However, at short code lengths, the LDPC

ensemble is unable to provide good guarantees on the minimum stopping set size. Authors

in [15] combat this issue through the use of bad-code proofs when codes with a smaller

stopping ratio (bad-codes) than guaranteed by the ensemble get used. A bad-code proof

triggers all nodes in the system to use a newly sampled code from the ensemble. However,

at short code lengths, this approach requires many rounds of bad codes until a good code

has been found which undermines the security of the system. Thus, the LDPC code design

of [15] is inappropriate for short CMT code lengths. Hence, in this dissertation, we focus on

short CMT code lengths and provide deterministic LDPC codes that allow for good detection

of DA attacks. Due to our focus on short code-lengths, we do not make guarantees for the

extension of the techniques proposed in this chapter to longer code lengths. For various

adversary models, we provide a co-design of specialized LDPC codes and sampling strategies

that reduce the probability of failure compared to techniques used in earlier literature.

We can broadly categorize all possible adversaries into three types based on their compu-

11

tational capabilities. The computational complexity is based on how hard it is for a malicious

node to find the minimum stopping set in the LDPC code (which is known to be an NP-hard

problem [23]). Note that the light node sampling strategy is known by all entities in the

system. The first adversary type is termed as a weak adversary. A weak adversary does not

have the resources to find a large number of stopping sets. It settles for hiding a random

one it finds and is unable to take advantage of the light node sampling strategy. The second

type is a medium adversary. A medium adversary, using more computational resources,

can find all stopping sets up to a certain size and select the stopping set that performs the

worst under the posted light node sampling strategy. While the medium adversary has more

computational capability than a weak adversary, a medium adversary represents a malicious

node with bounded resources and can only find stopping sets up to a certain size within a

reasonable time frame. The final type is a strong adversary which we assume has unlimited

resources and can find all stopping sets (of any size) and hide one among them that performs

the worst. These three models represent how much resources we assume an adversary pos-

sesses to disrupt our system. As such, our modeling encompasses everything from a single

hacker with a standard computer to a small group of hackers with a cluster of computers to

a large organization with unlimited resources.

2.1.1 Contributions

Our main contributions in this chapter are co-design techniques for LDPC codes and coupled

light node sampling strategies that result in a low probability of failure under the different

adversary models described above. In LDPC codes with no degree-one VNs, all stopping

sets are made up of cycles [42]. Since working with stopping sets directly is computationally

difficult, in this chapter, we design LDPC codes by optimizing cycles to indirectly optimize

stopping sets. We show that our LDPC codes result in the desired stopping set properties

and produce low probability of failures for the different adversary models. The contributions

are listed as follows:

12

1. For the weak adversary, we demonstrate that concentrating stopping sets in LDPC

codes to a small set of VNs and then greedily sampling this small set of VNs results

in a low probability of light node failure. We then provide a specialized LDPC code

construction technique called the entropy-constrained Progressive Edge Growth (EC-

PEG) algorithm that is able to concentrate stopping sets in the LDPC code to a small

set of VNs. We provide a greedy sampling strategy for the light nodes to sample this

small set of VNs. We demonstrate that for a weak adversary, LDPC codes constructed

using the EC-PEG algorithm along with greedy sampling result in a significantly lower

probability of failure compared to techniques used in earlier literature.

2. To secure the light nodes against a medium and a strong adversary, we provide a

co-design of a light node sampling strategy called linear-programming-sampling (LP-

sampling) and an LDPC code construction called linear-programming-constrained PEG

(LC-PEG) algorithm. LP-sampling is tailor-made for the particular LDPC codes used

to construct each layer of the CMT. It is designed by solving a linear program (LP)

based on the knowledge of the small stopping sets in the LDPC codes to minimize

the probability of failure. We demonstrate that, for a medium and a strong adversary,

LDPC codes designed by the LC-PEG algorithm coupled with LP-sampling result in

a lower probability of failure compared to techniques used in earlier literature.

2.1.2 Previous Work

In [13], authors proposed to solve DA attacks by encoding the block using 2D-RS codes.

Their approach was optimized in [43]. However, 2D-RS codes results in an IC proof size of

O(
√
b log b). In [15], authors proposed the CMT and demonstrated that encoding the CMT

using LDPC codes results in a small IC proof size of O(log b). Authors in [15] used codes

from a random LDPC ensemble of [44] to construct the CMT to result in a low probability

of failure. However, random LDPC ensembles used in [15] were originally designed for

13

other types of channels (i.e., BSC) and we show that they are not the best choice for this

specific application at short CMT code lengths. At the same time, as described before,

random LDPC ensembles undermine the security of the system, especially at short CMT

code lengths. In this work, we demonstrate that the presented co-design techniques result in

a lower probability of failure compared to using codes from a random LDPC ensemble and

random sampling. Furthermore, to alleviate the security problem, we provide deterministic

LDPC code design algorithms in this chapter. In [45], authors provide a protocol called

CoVer based on CMT, which allows light nodes to collectively validate blocks. However,

[45] still uses random sampling and random LDPC ensembles to mitigate DA attacks.

DA attacks are possible in other blockchain systems as well. Sharded blockchains where

each node stores a fraction of the entire block are vulnerable to DA attacks that can be

solved using the CMT [46]. The LDPC co-design techniques described in this chapter can

also be used in sharded blockchains. Side Blockchains [14] that improve the throughput of

block transactions are also vulnerable to DA attacks. The vulnerability is mitigated in [14]

by introducing a DA oracle that uses the CMT. A similar idea as this chapter of co-design

to construct specialized LDPC codes to improve the performance of the DA oracle will be

demonstrated in Chapter 3.

While this chapter focuses on designing codes to mitigate DA attacks, channel coding

has been extensively used to mitigate other scalability issues in blockchain systems: [47]

uses network codes to reduce the storage cost associated with full nodes; [48] combines

downsampling and erasure coding to reduce the storage cost while allowing nodes to directly

use the stored data without decoding; [49] proposes secure fountain codes to reduce the

storage and bootstrapping communication cost of full nodes; [50] uses Lagrange coding

in sharded blockchains to simultaneously improve storage, computation, and security; [51]

proposes using erasure codes to allow light nodes to contribute in storing the blockchain.

The proposal in [51] can be combined with techniques proposed in this chapter to enable

light nodes to ensure data availability. We refer the reader to [12] for an extensive survey on

14

more works that utilize channel coding for scaling blockchain systems.

The rest of this chapter is organized as follows. In Section 2.2, we provide the prelim-

inaries and system model. In Section 2.3, we describe the greedy sampling strategy and

the EC-PEG algorithm and how they overcome DA attacks against the weak adversary. In

Section 2.4, we present our approach for the medium and strong adversary where we de-

scribe the LP-sampling strategy and the LC-PEG algorithm. We discuss system aspects of

our co-design in Section 2.5. We provide simulation results in Section 2.6 and conclude the

chapter in Section 2.7.

2.2 Preliminaries and System Model

In this section, we first look at the preliminaries of the CMT and LDPC notation. We then

present our system, network, and threat model. We use the following notation in the rest

of the chapter. For p = (p1, . . . , pt) such that pi ≥ 0,
∑t

i=1 pi = 1, we use the entropy

function H(p) = −
∑t

i=1 pi log(pi). For a vector a, let max(a) (min(a)) denote the largest

(smallest) entry of a and let ai denote the ith element of a. For a matrix M of size c× d, let

Mki denote the element of M on the kth row and ith column, 1 ≤ k ≤ c, 1 ≤ i ≤ d. Define

x mod p := (x)p.

2.2.1 Coded Merkle Tree (CMT)

2.2.1.1 CMT construction

A CMT of a block is built using the block transactions as leaf nodes and the CMT root is

included in the block header. It is constructed by encoding each layer of the Merkle tree [2]

with an LDPC code and then hashing the layer to generate its parent layer. A simplified

description of the CMT construction is shown in Fig. 2.2 left panel. As shown in Fig. 2.2

left panel, coded symbols of a layer are interleaved into the data symbols of the parent layer.

15

Figure 2.2: Left Panel: Construction process of a CMT. A block of size b is partitioned into k data
chunks (data symbols) each of size b

k and a rate R systematic LDPC code is applied to generate n
coded symbols. These n coded symbols form the base layer of the CMT. The n coded symbols are
then hashed using a hashing function and the hashes of every q coded symbols are concatenated
to get one data symbol of the parent layer. The data symbols of this layer are again coded using
a rate R systematic LDPC code and the coded symbols are further hashed and concatenated to
get the data symbols of its parent layer. This iterative process is continued until there are only t
(t > 1) hashes in a layer which form the CMT root. Left panel shows a CMT with n = 16, q = 4,
R = 0.5 and t = 4. The circled symbols in L1 and L2 are the Merkle proof of the circled symbol in
L3. Right panel: DA attack on the CMT.

Note that we refer to chunks of a fixed length as symbols of a field. A symbol of c bits

is represented as an element in Fc2 and encoding and decoding are performed using bitwise

XOR operations over the bitwise representation of the symbols (similar to [49]). Thus, the

complexity of encoding and decoding depends on the size of the chunks (i.e., symbols) c

which is calculated as c = b
nR

where b is the block size, and n and R are the length and rate

of the LDPC code in the CMT base layer.

In this chapter, we adopt the interleaving technique introduced in [14]. Let the CMT

have l layers (except the root), L1, L2, . . . , Ll, where Ll is the base layer. The root of the

CMT is referred to as L0. For 1 ≤ j ≤ l, let Lj have nj coded symbols and let the LDPC code

used in Lj have a parity check matrix Hj. Let Nj[i], 0 ≤ i < nj, be the (i + 1)th symbol of

the jth layer Lj4. Also, let Dj[i] = Nj[i], 0 ≤ i < Rnj and Pj[i] = Nj[i], Rnj ≤ i < nj, be the

systematic (data) and parity symbols of Lj, respectively. Coded symbols Pj[i], Rnj ≤ i < nj

4Due to modulo operations, we define Nj [i] starting with index 0 for i. All other variables in the chapter
start with index 1.

16

are obtained from Dj[i], 0 ≤ i < Rnj using a rate R systematic LDPC code Hj. In the

above CMT, hashes of every q coded symbols of Lj are concatenated to form a data symbol

of Lj−1. Hence, nj = nl

(qR)l−j , j = 1, . . . , l. The CMT root has t = n1 hashes. Let the

number of systematic and parity symbols in Lj be denoted by sj = Rnj and pj = (1−R)nj,

respectively. For 1 ≤ j ≤ l, the data symbols of Lj−1 are formed from the coded symbols of

Lj as follows:

Dj−1[i] = Nj−1[i] =concat({Hash(Nj[x]) | 0 ≤ x < nj, i = (x)sj−1
}) ∀ 0 ≤ i < sj−1,

where Hash and concat represent the hash and the string concatenation functions, respec-

tively.

2.2.1.2 Merkle Proof for CMT symbols

The Merkle proof of a symbol in Lj consists of a data symbol and a parity symbol from

each intermediate layer of the tree that is above Lj [14]. An illustration of a Merkle proof is

shown in Fig. 2.2 left panel. In particular, the Merkle proof of the symbol Nj[i], 1 < j ≤ l,

is the set of symbols {Nj′ [(i)sj′], Nj′ [sj′ + (i)pj′] | 1 ≤ j′ ≤ j − 1}. Detailed discussion on

the properties of Merkle proofs5 can be found in [14].

2.2.1.3 Hash-Aware Peeling decoder

Using the CMT root and the available symbols of each layer of the CMT, the original

block can be decoded using a hash-aware peeling decoder described in [15]. The hash-aware

peeling decoder decodes each layer of the CMT (from top to bottom) like a conventional

peeling decoder [1]. However, after decoding a symbol in layer j, the decoder matches its

5The data part of the Merkle proof of Nj [i] from each layer lie on the path of Nj [i] to the CMT root and
can be used to check the integrity of Nj [i] in a manner similar to regular Merkle trees in [2]. The parity
symbols in the Merkle proof are only for sampling purposes and the information provided in the Merkle
proof of Nj [i] are sufficient to check their integrity [14].

17

hash with the corresponding hash present in layer j − 1. Matching the hashes allows the

decoder to detect IC attacks and generate IC proofs as described in [15]. The IC proof size

is proportional to the degree of CNs in the LDPC codes used to build the CMT.

2.2.2 Stopping sets and LDPC notation

A stopping set of an LDPC code is a set of VNs such that every CN connected to this set is

connected to it at least twice [1]. A stopping set is hidden (made unavailable) by a malicious

node if all VNs present in it are hidden. The hash-aware peeling decoder fails to successfully

decode layer j of the CMT if a stopping set of Hj is unavailable. Let the Tanner graph (TG)

[1] representation of Hj be denoted by Gj such that Gj has nj VNs {v(j)1 , . . . , v
(j)
nj }. VN v

(j)
i

corresponds to the ith column of Hj and CNs in Gj correspond to the rows of Hj. Let Hj[v
(j)
i]

denote the column of the parity check matrix corresponding to VN v
(j)
i . CMT symbol Nj[i],

0 ≤ i < nj, corresponds to VN v
(j)
i+1 of Gj. A cycle of length g is called a g-cycle. For a set

S, let |S| denote its cardinality. For a cycle (stopping set) in the TG G, we say that a VN

v touches the cycle (stopping set) iff v is part of the cycle (stopping set). Define the weight

of a stopping set as the number of VNs touching it. Let ω(j)
min denote the minimum stopping

set size of Hj, 1 ≤ j ≤ l. The girth of a TG is defined as the length of the smallest cycle

present in the graph.

2.2.3 System and Network Model

We consider a blockchain system similar to [13] and [15] that has full nodes and light nodes.

One of the full nodes acts as a block producer of a new block. We consider the same blockchain

network model as [15]. In particular, we assume a synchronous network where the subgraph

of honest full nodes is connected6 and the messages sent on the network are anonymous. The

6The connected subgraph of honest full nodes ensures that a message broadcasted by a honest node
reaches all honest nodes.

18

network can have a dishonest majority of full nodes, but each light node is connected to at

least one honest full node (thus preventing eclipse attacks [13]). Nodes broadcast a message

(fraud proofs, IC proofs, and CMT symbols) by sending the message to all its connected

nodes. The connected nodes check the message correctness (Merkle proofs) and forward

valid messages to their neighbors7. In the following, we describe actions performed by the

block producer, other full nodes, and light nodes. We also mention the items included in the

publicly available protocol that is designed by a blockchain system designer for the nodes in

the system. In Section 2.5, we provide a discussion on the blockchain system designer.

1. Items included in the protocol: Parity check matrices Hj, 1 ≤ j ≤ l, systematic

generator matrix of each Hj, and the light node sampling strategy (a rule to sample

CMT symbols).

2. Block Producer: A full node that produces (mines) a new block (see Fig. 2.1). On

producing a new block, the block producer encodes the block to construct its CMT

using the systematic generator matrices specified in the protocol. It then broadcasts

all the coded symbols in the CMT (including the root) to other full nodes and the root

of the CMT to the light nodes. On receiving a sampling request from the light nodes,

it returns the requested symbols along with their Merkle proofs. The block producer

can be malicious and can act arbitrarily.

3. Full nodes that are not the block producer: These nodes perform Merkle proof checks on

the coded symbols of the CMT that they receive from a block producer, other full nodes,

or light nodes (see Fig. 2.1). They forward symbols that satisfy the Merkle proofs to

other connected full nodes. Using the symbols that they received, they decode each

layer of the CMT with a hash-aware peeling decoder using the parity check matrices

Hj, 1 ≤ j ≤ l, specified in the protocol. After decoding the base layer of the CMT,

7Since messages are communicated only to connected nodes, the cost of broadcasting is not high. More-
over, honest nodes prevent fake communication from malicious nodes by forwarding only valid messages.

19

which contains transaction data, they verify all the transactions. They store a local

copy of all blocks (i.e., its CMT) that they verify to be valid (i.e., fully available,

having no fraudulent transactions and no incorrect-coding at any layer). They declare

the availability of this valid block to all other nodes and respond to sample requests

from the light nodes. If they find a certain block to be invalid, either due to fraudulent

transactions or incorrect coding, they broadcast a fraud proof or an IC proof for other

nodes to reject the block. If they find a certain layer of the CMT to be unavailable

(i.e., having coded symbols missing that prevent decoding), they reject the block. A

malicious full node need not follow the above protocol and can act arbitrarily.

4. Light nodes: These nodes are storage constrained and only store the CMT root cor-

responding to each block (see Fig. 2.1). They download only a small portion of the

block and perform tasks like fraud and IC proof checks. Additionally, light nodes check

the availability of each layer of the CMT. They do so by making sampling requests for

coded symbols of the CMT base layer from the block producer (or any other full node

that declares the block to be available). They make sample requests using the sampling

strategy specified in the protocol. They perform Merkle proof checks on the returned

symbols and broadcast symbols that satisfy the Merkle proofs to other connected full

nodes. Upon receiving all the requested symbols and verifying their Merkle proofs,

light nodes accept the block as available and store the block header. On receiving

fraud proofs or IC proofs sent out by a full node, light nodes verify the proof and reject

the header if the proof is correct. We assume that each light node is honest.

Remark 1. In this chapter, we provide co-design of LDPC codes and sampling strategies

(that are included in the protocol) to reduce the probability of failure. As such, we do not

compromise on other performance metrics considered in [15]: the CMT root has a fixed size

t which does not grow with the blocklength; the hash-aware peeling decoder has a decoding

complexity linear in the blocklength; we empirically show that the IC proof size for our codes

is similar to [15].

20

2.2.4 Threat Model

A blockchain system involves two aspects: block generation and block verification. The block

generation depends on the consensus algorithm used in the blockchain e.g., Proof of Work

(PoW) [2], Proof of Stake (PoS) [52], etc.. However, a DA attack caused by an adversary

with dishonest majority (in terms of work, stake, etc.) affects the block verification process.

Hence, the exact consensus algorithm used by the blockchain system is not relevant to our

work. Similar to [13] and [15], we focus on the block verification process and propose LDPC

codes to mitigate DA attacks8.

Similar to [13] and [15], we model our system security in terms of two properties: i)

Soundness: If a light node thinks that a block is available and accepts the block, then

at least one honest full node in the system will be able to fully decode all layers of the

CMT corresponding to the block; ii) Agreement: If a light node determines that a block is

available, all light nodes in the system determine that the block is available. Similar to [13],

we analyse probability of soundness or agreement failure per light client. Let P S,A
f be the

probability that soundness or agreement fails for a single light client due to a DA attack.

In Section 2.5, we show that in our proposed co-design, P S,A
f is reduced by reducing the

probability of failure of a single light node to detect DA attacks when there is a sufficiently

large number of light nodes in the system. Thus, in the rest of the chapter, we focus on

reducing the probability of failure of a single light node.

We consider an adversary that conducts a DA attack by hiding coded symbols of the

CMT. An illustration of a DA attack is shown in Fig. 2.2 right panel. On receiving sampling

requests from the light nodes, the adversary only returns coded symbols that it has not

hidden and ignores other requests. The adversary conducts a DA attack at layer j of the

CMT by 1) generating coded symbols of layer j, that satisfy their Merkle proof, for the light

8Note that forking-based double spending attacks (related to block generation) where an adversary gen-
erates an invalid longest chain are still possible with a dishonest majority of full nodes [13] but are not
necessary to launch a DA attack.

21

nodes to accept these coded symbols as valid, and 2) hiding a small portion of the coded

symbols of layer j, corresponding to a stopping set of Hj, such that honest full nodes are

not able to decode the layer. A DA attack at layer j prevents an honest full node from

generating a fraud proof of fraudulent transactions (if j = l) or an IC proof for incorrect

coding at layer j. Since an incorrect coding can occur at any layer, for the full nodes to be

able to send IC proofs, light nodes must detect a DA attack at any layer j that the adversary

may perform. They do so by sampling few base layer coded symbols. For each intermediate

layer j, 1 ≤ j < l, the symbols of layer j collected as part of the Merkle proofs of the base

layer samples are used to check the availability of layer j.

Light nodes fail to detect a DA attack if none of the base samples requested or the

symbols in their Merkle proofs are hidden. Let P (j)
f (s), 1 ≤ j ≤ l, be the probability of

failure of detecting a DA attack at layer j by a single light node when it samples s base layer

coded symbols. Also, let Jmax = argmax
1≤j≤l

P
(j)
f (s). To maximize the probability of failure, we

assume that the adversary is able to perform a DA attack at layer Jmax. We now provide

precise mathematical definitions of the three adversary models discussed in Section 2.1 based

on their computational capabilities:

2.2.4.1 Weak Adversary

For each layer j, 1 ≤ j ≤ l, they hide stopping sets of size < µj for the parity check matrix

Hj (for some integer µj). Moreover, they do not exhaustively find all stopping sets of a

particular size of a given parity check matrix or perform a tailored search for stopping sets.

Instead, we assume that to conduct a DA attack at layer j, for all stopping sets of Hj of a

particular size, they randomly choose one of them to hide.

22

2.2.4.2 Medium Adversary

For each layer j, 1 ≤ j ≤ l, they hide stopping sets of size < µj for the parity check matrix

Hj. However, they use the knowledge of the sampling strategy employed by the light nodes to

hide the worst case stopping set that has the lowest probability of being sampled by the light

nodes. Let Ψj be set of all stopping sets of Hj of size < µj. Also, let P (j)
f (s) = max

ψ∈Ψj

P
(j)
f (s;ψ),

where P (j)
f (s;ψ) is the probability of failure for the light nodes to detect a DA attack at layer

j under the light node sampling strategy when the adversary hides the stopping set ψ of Hj.

For Jmax = argmax
1≤j≤l

P
(j)
f (s), the medium adversary conducts a DA attack at layer Jmax by

hiding a stopping set ψ from ΨJmax with the highest P Jmax

f (s;ψ).

2.2.4.3 Strong Adversary

They can find the worst case stopping sets of any size of Hj, 1 ≤ j ≤ l. Let Ψ∞
j be the set

of all stopping sets of Hj. Similar to the medium adversary, define P (j)
f (s) = max

ψ∈Ψ∞
j

P
(j)
f (s;ψ)

and Jmax = argmax
1≤j≤l

P
(j)
f (s). The strong adversary conducts a DA attack at layer Jmax by

hiding a stopping set ψ from Ψ∞
Jmax with the highest P Jmax

f (s;ψ).

The co-design that we provide to mitigate DA attacks against weak adversaries, i.e., the

EC-PEG algorithm and the greedy sampling strategy, has the advantage of being computa-

tionally cheap and does not involve finding stopping sets. In order to mitigate DA attacks

against a medium and a strong adversary we provide LP-sampling and the LC-PEG algo-

rithm. LP-sampling uses stopping sets of size < µj from layer j of the CMT and is more

computationally expensive. It is an overkill for the weak adversary which can be mitigated

using cheaper techniques. Factors such as the choice of the consensus algorithm, area of de-

ployment, etc. can give an idea about the expected computational capabilities of full nodes

in the system and allow the system designer to choose the adversary model. For example,

in PoS [52] and PoSpace [53] consensus blockchains, full nodes need not have a high com-

putational power and a weak adversary would be a reasonable model to follow. For PoW

23

blockchains [2], full nodes are expected to have high computational power and a strong and

medium adversary model would be a suitable design choice. Another example is small scale

IoT-blockchains where the blockchain nodes are IoT devices [9]. Here, full nodes have low

computational power and a weak adversary model would be appropriate.

In our co-design to mitigate a DA attack against a medium and a strong adversary, we

assume that a blockchain system designer decides the value of µj, 1 ≤ j ≤ l, and is able

to find all stopping sets of Hj of size < µj, that is used to design LP-sampling. Although

finding all stopping sets of Hj of size < µj is NP-hard, since we focus on short code lengths

in this chapter, the set of stopping sets can be found in a reasonable amount of time using

Integer Linear Programming (ILP) methods demonstrated in [54]. Note that µj and the set

of all stopping sets of Hj of size < µj that the designer uses to design LP-sampling is not

publicly released. Only the final design output, i.e., the LP-sampling strategy is included

in the protocol. Here, we have made a trusted set up assumption of a blockchain system

designer to design the items included in the protocol. In Section 2.5, we will discuss potential

ways to prevent security attacks by a malicious designer and how some attacks are naturally

handled by our co-design method.

Given the above adversary models, we provide LDPC code construction and sampling

strategies to minimize the probability of failure for a single light node to detect DA attacks.

Next, we discuss the techniques to mitigate DA attacks conducted by a weak adversary.

2.3 LDPC code and sampling co-design for Weak Adversary

In this section, we demonstrate our novel design idea of concentrating stopping sets in LDPC

codes to reduce the probability of failure against a weak adversary. Since working with stop-

ping sets directly is computationally difficult, we focus on concentrating cycles to indirectly

concentrate stopping sets. It is well known that codes with irregular VN degree distributions

are prone to small stopping sets. Thus, we consider VN degree regular LDPC codes of VN

24

degree dv ≥ 3 in this chapter. In the following, we first look at the effect of the light node

sampling strategy on the probability of failure when a DA attack occurs on the base layer

of the CMT. This will motivate the LDPC code construction for the base layer. Later, we

demonstrate how the LDPC code construction for the base layer can be used in all layers by

aligning the columns of the parity check matrices before constructing the CMT. For simplic-

ity of notation, we denote Hl by H having n VNs V = {v1, v2, . . . , vn} and TG G. Consider

the following definition.

Definition 1. For a parity check matrix H, let ssκ = (ssκ1 , ss
κ
2 , . . . , ss

κ
n) denote the VN-

to-stopping-set of weight κ distribution where ssκi is the fraction of stopping sets of H of

weight κ touched by vi. Similarly, for a parity check matrix H, let ζg = (ζg1 , ζ
g
2 , . . . , ζ

g
n) be

the VN-to-g-cycle distribution where ζgi is the fraction of g-cycles of H touched by vi.

We informally say that distribution ssκ (ζg) is concentrated if a small set of VNs have

high corresponding stopping set (g-cycle) fractions ssκi (ζgi). The following lemma demon-

strates that LDPC codes with concentrated ssκ results in a smaller probability of light node

failure when a weak adversary conducts a DA attack (on the base layer). The proof is

straightforward and is omitted for brevity. It can be found in [20] and references therein.

Lemma 1. Let SSκ denote the set of all weight κ stopping sets of H. For a weak adversary

that randomly hides a stopping set from SSκ, the probability of failure at the base layer,

P
(l)
f (s), when the light nodes use s samples and any sampling strategy satisfies P (l)

f (s) ≥

1 − maxS⊆V,|S|=s τ(S, κ). Here, τ(S, κ) is the fraction of stopping sets of weight κ touched

by the subset of VNs S of H. The lower bound in the above equation is achieved when light

nodes sample, with probability one, the set Soptκ = argmaxS⊆V,|S|=sτ(S, κ).

Lemma 1 suggests that for a sample size s, the lowest probability of failure to detect

a DA attack against the weak adversary is 1 − τ(Soptκ , κ) and is achieved when the light

nodes sample the set Soptκ . Now, τ(Soptκ , κ) is large if a majority of stopping sets of weight

κ are touched by a small subset of VNs. This goal is achieved if the distributions ssκ are

25

concentrated towards a small set of VNs. Thus, designing LDPC codes with concentrated

ssκ increases τ(Soptκ , κ) and reduces the probability of failure. In Section 2.3.2, we design the

EC-PEG algorithm that achieves concentrated stopping set distributions.

We are unaware of an efficient method to find Soptκ . Instead, we use a greedy algorithm

using cycles to find the light node samples, provided in Algorithm 1. Algorithm 1 takes

as input the TG G, its girth gmin, an upper bound cycle length gmax, and the sample size

s. It outputs a set of VNs S(s)
greedy that the light nodes will sample, which we call greedy

samples. The probability of failure using this strategy when a weak adversary randomly

hides a stopping set of size κ from the base layer is P (l)
f (s) = 1 − τ(S(s)

greedy, κ) (see proof of

Lemma 1 in [20]). At the end of this section, we empirically show that concentrating the

cycle distributions ζg also concentrates the stopping set distributions. Thus, the EC-PEG

algorithm aims to concentrate the cycle distributions to improve the probability of failure. It

is easy to see that the complexity of Algorithm 1 is dominated by the complexity of finding

cycles (of worst case length gmax) and is O(ngmax/2) using brute force.

Algorithm 1 Light node sampling strategy for weak adversary:
greedy-set(G, gmin, gmax, s)

1: Inputs: TG G, gmin, gmax, s, Output: S(s)
greedy, Initialize: S(s)

greedy = ∅, g = gmin, Ĝ = G
2: while |S(s)

greedy| < s do
3: v = VN that touches the maximum number of g-cycles in Ĝ (ties broken randomly)
4: S

(s)
greedy = S

(s)
greedy ∪ {v}, Purge v and all its incident edges from Ĝ

5: if Ĝ has no g-cycles then g = g + 2

6: if g ≥ gmax then
7: Vr = randomly select s− |S(s)

greedy| VNs from Ĝ; S(s)
greedy = S

(s)
greedy ∪ Vr

Remark 2. (Overall Greedy Sampling Strategy) In the above sampling strategy, some coded

symbols may never get sampled which can affect the soundness of the system. We alleviate

this problem without affecting the probability of failure by modifying the sampling strategy as

follows: Let ρ, 0 < ρ < 1, be a parameter. For a total of s samples, the light nodes select ρs

greedy samples S(ρs)
greedy = greedy-set(G, gmin, gmax, ρs) and randomly select s−ρs base layer

26

coded symbols for the remaining samples. We discuss the soundness and agreement of this

modified strategy in Section 2.5. For this strategy, P (l)
f (s) = [1−τ(S(ρs)

greedy, κ)]
(
1− ω

(l)
min

nl

)(s−ρs).
2.3.1 Aligning the parity check matrices of the CMT

In the above discussion, we demonstrated how to mitigate a DA attack conducted by a weak

adversary on the base layer of the CMT using greedy sampling. Now, we extrapolate the

idea of greedy sampling to the intermediate layers. Since the intermediate layers are sampled

via the Merkle proofs of the base layers samples, we align the base and intermediate layer

symbols such that the intermediate layers are also sampled greedily. We do so by aligning

(permuting) the columns of the parity check matrices used in different CMT layers. We

align the columns such that the samples of an intermediate layer j collected from the Merkle

proofs of the base layer samples coincide with the greedy samples for layer j provided by

greedy-set(Gj, g(j)min, g
(j)
max, s̃). Here, g(j)min is the girth of Gj and g

(j)
max is the upper cycle

length for layer j.

We assume that the output S(s)
greedy of Algorithm 1 is ordered according to the order VNs

were added to S
(s)
greedy. Let S(j)

ordered = greedy-set(Gj, g(j)min, g
(j)
max, nj), 1 ≤ j ≤ l. VNs in

S
(j)
ordered are all the VNs of Hj ordered (permuted) according to the order they were added to

S
(j)
ordered. Hence, we denote S(j)

ordered[i] as the ith VN in this ordered list of VNs. The procedure

to align the columns of the parity check matrices of different layers of the CMT is provided

in Algorithm 2. In the algorithm, we first permute the columns of the base layer parity check

matrix Hl (to obtain H̃l) such the VNs in S(l)
ordered appear as columns 1, 2, . . . , nl in H̃l (line

3). Recall that when the base layer symbol corresponding to v(l)i is sampled, then for every

intermediate layer j, the VNs with with subscript indices {1 + (i − 1)sj , 1 + sj + (i − 1)pj}

get sampled. We assign columns of H̃j at these indices (starting from i = 1) the columns of

Hj correspond to the greedy samples in S
(j)
ordered from start to end (lines 4-6). We continue

this process until all columns of H̃j have been assigned. The complexity of Algorithm 2 is

27

O(
∑l

j=1 n
g
(j)
max/2
j) which is dominated by the complexity of finding S(j)

ordered in Algorithm 1.

Algorithm 2 Aligning parity check matrices of CMT for greedy sampling

1: Inputs: Hj, S
(j)
ordered, 1 ≤ j ≤ l, Outputs: H̃j, 1 ≤ j ≤ l

2: Initialize: H̃j: matrix with unassigned columns, 1 ≤ j ≤ l, counter = 1

3: H̃l[i] = Hl[S
(l)
ordered[i]], 1 ≤ i ≤ nl

4: for j = 1, 2, . . . , l − 1 do for i = 1, 2, . . . , nl do d = 1 + (i− 1)sj , p = 1 + sj + (i− 1)pj
5: if H̃j[d] is not assigned before then H̃j[d] = Hj[S

(j)
ordered[counter]], counter += 1

6: if H̃j[p] is not assigned before then H̃j[p] = Hj[S
(j)
ordered[counter]], counter += 1

7: if all columns of H̃j have been assigned then Break i for loop

Remark 3. The parity check matrices H̃j, 1 ≤ j ≤ l, after aligning the columns are included

in the protocol. Recall that a CMT is built using systematic LDPC codes. Under the assump-

tion of full rank, for the parity check matrices H̃j, 1 ≤ j ≤ l, the corresponding generator

matrices are constructed in a systematic form which are then included in the protocol for

the construction of the CMT. Additionally, after the alignment, the overall greedy sampling

strategy as described in Remark 2 becomes: sample the first ρs coded symbols of the base

layer of the CMT and then randomly sample s− ρs base layer coded symbols. This sampling

rule is included in the protocol for the light nodes to follow.

For a CMT built using H̃j, 1 ≤ j ≤ l, provided by Algorithm 2, greedy sampling of

the base layer of the CMT according to Algorithm 1 ensures that all intermediate layers

of the CMT are greedily sampled according to Algorithm 1 through the Merkle proofs of

the base layer samples. Next, we provide a design strategy to construct LDPC codes with

concentrated stopping set distributions that result in a low probability of failure under greedy

sampling. Note that codes produced in the next subsection are aligned by Algorithm 2 and

then included in the protocol.

28

2.3.2 Entropy-Constrained PEG (EC-PEG) Algorithm

The EC-PEG algorithm is based on minimizing the entropy of cycle distribution ζg. The

intuition behind our algorithm is using the fact that uniform distributions have high entropy

and distributions that are concentrated have low entropy. Thus, we construct LDPC codes

using the PEG algorithm [55] by making CN selections that minimize the entropy of the

cycle distributions. Algorithm 3 presents the EC-PEG algorithm for constructing a TG G̃

with n VNs, m CNs, and VN degree dv that concentrates distributions ζg′ , ∀g′ < gc. Choice

of gc is a complexity constraint of how many cycles we keep track in the algorithm. All ties

in the algorithm are broken randomly.

Algorithm 3 EC-PEG Algorithm

1: Inputs: n, m , dv, gc, Outputs: G̃, gmin, Initialize G̃ to n VNs, m CNs and no edges
2: Initialize Λ

(g′)
i = 0, for all g′ < gc and 1 ≤ i ≤ n, T = |{4, 6, . . . , gc − 2}|

3: for j = 1 to n do
4: for k = 1 to dv do
5: [K, g] = PEG(G̃, vj)
6: if g ≥ gc then
7: csel = Select a CN from K with the minimum degree under the current TG G̃
8: else ▷ (g-cycles, g < gc, are created)
9: for each c in K do

10: λ
(g′,c)
i = Λ

(g′)
i , g′ < gc, 1 ≤ i ≤ n

11: Lcycles = new g-cycles formed in G̃ due to the addition of edge between c and
vj

12: for all v in G̃ do λ
(g,c)
v = λ

(g,c)
v + |{O ∈ Lcycles | v is part of O}|

13: α(g′) = (α
(g′)
1 , α

(g′)
2 , . . . , α

(g′)
n), where α(g′)

i =
λ
(g′,c)
i∑n

i=1 λ
(g′,c)
i

, g′ < gc (define 0
0
= 0)

14: αgc = (
∑

g′<gc

α
(g′)
1

T
,
∑

g′<gc

α
(g′)
2

T
, . . . ,

∑
g′<gc

α
(g′)
n

T
); Entropy[c] = H(αgc)

15: csel = CN in K with minimum Entropy[c]; Λgi = λ
(g,csel)
i , 1 ≤ i ≤ n

16: G̃ = G̃ ∪ edge{csel, vj}

The PEG algorithm builds a TG by iterating over the set of VNs and for each VN vj

in the TG, establishing dv edges to it. For establishing the kth edge to VN vj, the PEG

algorithm encounters two situations: i) addition of the edge is possible without creating

29

cycles; ii) addition of the edge creates cycles. In both situations, the PEG algorithm finds a

set of candidate CNs that it proposes to connect to vj, to maximize the girth. We abstract

out the steps followed in [55] to find the set of candidate CNs by a procedure PEG(G̃, vj). The

procedure returns the set of candidate CNs K for establishing a new edge to VN vj under

the TG setting G̃ according to the PEG algorithm in [55]. For ii), the procedure returns the

cycle length g of the smallest cycles formed when an edge is added between any CN in K

and vj. For i), it returns g =∞. K is the set of all CNs in G̃ that create new g-cycles when

an edge is added between the CN and vj. When g =∞, K is the set of all CNs in G̃ that if

connected to vj create no cycles.

Thus, when the PEG(G̃, vj) procedure returns g ≥ gc, either no new cycles are created or

the cycles created have length ≥ gc. In both these situations, similar to the original PEG

algorithm in [55], we select a CN from K with the minimum degree under the current TG

setting G̃ (line 7). When PEG(G̃, vj) returns g < gc, we modify the CN selection procedure,

as described next, so that the resultant cycle distributions get concentrated.

While progressing through the EC-PEG algorithm, for all g′-cycles, g′ < gc, we maintain

VN-to-g′-cycle counts Λ(g′) = (Λ
(g′)
1 ,Λ

(g′)
2 , . . . ,Λ

(g′)
n), where Λ

(g′)
i is the number of g′-cycles

that are touched by VN vi. When the PEG(G̃, vj) procedure returns g < gc, for each candidate

CN c ∈ K, new g-cycles are formed in the TG when an edge is established between c and vj.

These cycles are listed in Lcycles (line 11). For these new g-cycles, we calculate the resultant

VN-to-g-cycle counts λ(g,c)i , 1 ≤ i ≤ n, if an edge is established between c and vj (line 12).

Using λ(g,c)i , we calculate the VN-to-g′-cycle normalized counts αg′ = (αg
′

1 , α
g′

2 , . . . , α
g′
n) (line

13) and then the joint normalized cycle counts αgc for g′-cycles, g′ < gc (line 14). The joint

normalized cycle counts αgc is simply the average of the normalized cycle counts across all

the cycle lengths. Using αgc , we calculate the entropy H(αgc) for each CN c in K (line 14).

Our modified CN selection procedure is to select a CN from K with minimum Entropy[] (line

15). We then update the VN-to-g-cycle counts for the new g-cycles that get created (line 15)

to be used in future iterations. Minimizing the entropy of the joint normalized cycle counts

30

0.01

0.02

0.03

0.04

0.05

0 20 40 60 80 100 120

VN index

ζ
g

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120

Original PEG

EC-PEG

VN index

ss
1
3

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120

Original PEG

EC-PEG

VN index

ss
1
4

Figure 2.3: Results for LDPC codes with R = 0.5, dv = 4, n = 128 using different PEG algorithms.
The x-axis in all the plots are the VN indices vi in the decreasing order of the 6-cycle fractions
ζ6i (for the respective codes); Left panel: cycle distributions ζ6 and ζ8; Right Panel: stopping set
distribution ss13; Bottom Panel: stopping set distribution ss14. The lines in the right and bottom
panels are the best fit lines for ssκ indicating the graph slope.

ensures that the different cycle distributions are concentrated towards the same set of VNs.

We now mention the complexity of the EC-PEG algorithm. Note that the complexity

of the original PEG algorithm is O(mn) [55]. The EC-PEG algorithm differs from the

original PEG algorithm in steps 8-15. Step 14 has the largest complexity which results in

the complexity of the EC-PEG algorithm to be at most O(mn2) = O(n3). Note that Lcycles

in step 11 is obtained during step 5 as a by-product and does not incur additional complexity.

Fig. 2.3 demonstrates the effectiveness of the EC-PEG algorithm in concentrating the

31

stopping set distribution. In Fig. 2.3 left panel, we plot the cycle distributions generated

by the PEG and EC-PEG algorithms. From the figure, we see that the EC-PEG algorithm

generates significantly concentrated distributions ζ6 and ζ8 compared to the original PEG

algorithm. Fig. 2.3 right and bottom panels show the corresponding stopping set distri-

butions ssκ. We see that for the EC-PEG algorithm, the VNs towards the left (right) on

the x-axis have high (low) stopping set fraction. Thus, concentrating the cycle distributions

concentrates the stopping set distributions towards the same set of VNs as the cycles. In

Section 2.6, we demonstrate that such concentrated distributions result in a low probability

of failure using the greedy sampling strategy in Algorithm 1.

2.4 LDPC code and sampling co-design for Medium and Strong

Adversary

For the medium and strong adversary, the EC-PEG algorithm and greedy sampling is insuf-

ficient to secure the system and requires stronger code and sampling design. In this section,

we focus on overcoming these stronger adversaries that hide the worst case stopping set.

Similar to Section 2.3, we first look at a medium and a strong adversary who conduct a DA

attack on the base layer of the CMT and propose a sampling strategy for the light nodes

to sample the base layer to minimize the probability of failure. This will motivate the con-

struction of LDPC codes for the base layer. Finally, we will generalize the sampling strategy

and LDPC construction for the situation when the adversary conducts a DA attack at any

layer of the CMT.

Recall that for each layer j, 1 ≤ j ≤ l, the medium adversary hides stopping sets of Hj

of size < µj. Let Ψj = {ψ(j)
1 , ψ

(j)
2 , . . . , ψ

(j)
|Ψj |} be the set of all stopping sets of Hj of size < µj,

1 ≤ j ≤ l. For Ψj, let Π(j) denote the VN-to-stopping-set adjacency matrix of size |Ψj| ×nj,

where Π
(j)
ki = 1 iff v

(j)
i touches stopping set ψ(j)

k , else Π
(j)
ki = 0, 1 ≤ i ≤ n, 1 ≤ k ≤ |Ψj|.

Definition 2. A sampling (with replacement) strategy
(
x , β(l)

)
is a nl × 1 vector x =

32

[x1 · · · xnl
]T , where xi is the probability that a light node requests for the ith base layer symbol

(i.e., v(l)i) for every sample request and β(l) controls the minimum probability of requesting a

given CMT base layer symbol.
(
x , β(l)

)
satisfy 0 ≤ β(l) ≤ xi ≤ 1,

∑n
i=1 xi = 1.

Let P (l)
(f,med)(s) (P (l)

(f,str)(s)) be the probability of failure against a medium (strong) adver-

sary for a DA attack on the base layer of the CMT. (Define similarly P (j)
(f,med)(s) and P (j)

(f,str)(s)

for DA attack on layer j). We have the following lemma. The proofs of all lemmas in this

chapter are deferred to the Appendix in Section 2.8.

Lemma 2. For a sampling strategy
(
x , β(l)

)
, P (l)

(f,med)(s) =
[
max(1− Π(l)x)

]s. Define

P
(l)
(f,str-bnd)(s) :=

(
1− β(l)µl

)s. Then, P (l)
(f,str)(s) ≤ max

(
P

(l)
(f,med)(s), P

(l)
(f,str-bnd)(s)

)
.

In the rest of the chapter, we assume that P (l)
(f,str)(s) is equal to the upper bound provided

in Lemma 2. We find the light node sampling strategy by formulating a linear program (LP)

in
(
x , β(l)

)
to minimize the probabilities in Lemma 2. The optimization problem (which

can be easily converted into an LP by introducing additional variables) is provided below:

minimize
x , β(l)

max
(
max(1− Π(l)x), θ ×

[
1− β(l)µl

])
(2.1)

subject to β(l) ≤ xi ≤ 1, i = 1, . . . , nl; β
(l) ≥ 0;

nl∑
i=1

xi = 1,

where θ, 0 ≤ θ ≤ 1, is a parameter that controls the trade-off between P
(l)
(f,med)(s) and

P
(l)
(f,str)(s).

2.4.1 Linear-programming-sampling (LP-sampling) for DA attacks on any layer

of the CMT

In this subsection, we modify LP (2.1) to take into effect a DA attack conducted on any

layer of the CMT and derive the sampling strategy based on the modified LP. We first align

the columns of the parity check matrices of all the CMT layers as described in Section 2.3.1.

33

Assume that the stopping sets and VNs in the following are based on the aligned parity

check matrices.

Since a base layer symbol samples, via its Merkle proof, two symbols from every interme-

diate layer of the CMT, the events of sampling intermediate layer symbols are not disjoint.

To calculate the probability that each intermediate layer symbol is sampled, we define for

each j, 1 ≤ j ≤ l − 1, a matrix A(j) of size nj × nl whose entries are as follows: 1) if

(k ≤ sj and 1 + (i − 1)sj = k) then A
(j)
ki = 1; 2) if (k > sj and 1 + sj + (i − 1)pj = k) then

A
(j)
ki = 1; 3) A(j)

ki = 0 for all other cases. For simplicity, assume that A(l) is an nl×nl identity

matrix. Also, define for 1 ≤ j ≤ l, the matrices ∆(j) = min(Π(j)A(j), 1) where the minimum

is element wise. Using the above matrices, we calculate P (j)
(f,med)(s) and P (j)

(f,str)(s) in Lemma

3. First, consider the following definition.

Definition 3. A sampling (with replacement) strategy
(
x , β(1) , β(2) , . . . , β(l)

)
is a sam-

pling strategy
(
x , β(l)

)
, such that for x(j) = A(j)x, 1 ≤ j ≤ l − 1, x(j)i ’s satisfy x

(j)
i ≥ β(j),

1 ≤ i ≤ nj, 1 ≤ j ≤ l − 1. Parameter β(j), 1 ≤ j ≤ l, is a non-negative real number and

controls the minimum probability of requesting a given symbol from layer j of the CMT.

Lemma 3. For a sampling strategy
(
x , β(1) , . . . , β(l)

)
, let x(j) = A(j)x, 1 ≤ j ≤ l. x

(j)
k is

the probability that v(j)k is sampled and P (j)
(f,med)(s) =

[
max(1−∆(j)x)

]s. Also, for 1 ≤ j < l,

let P (j)
(f,str-bnd)(s) :=

(
1− 1

2
β(j)µj

)s. Then, P (j)
(f,str)(s) ≤ max(P

(j)
(f,str-bnd)(s), P

(j)
(f,med)(s)).

Using Lemmas 2 and 3, we formulate the following LP to find the light node sampling

strategy:

minimize
x, β(1), . . . , β(l)

max

(
max
1≤j≤l

max(1−∆(j)x), (2.2a)

max
1≤j≤l

θ(j) ×
[
1− ξ(j)β(j)µj

])
(2.2b)

subject to β(l) ≤ xi ≤ 1, i = 1, . . . , nl,

nl∑
i=1

xi = 1, (2.2c)

34

β(j) ≤ min(A(j)x), j = 1, . . . , l − 1, (2.2d)

β(j) ≥ 0, j = 1, . . . , l, (2.2e)

where ξ(j) = 1
2

for 1 ≤ j < l and ξ(l) = 1. The first and second terms in the outer maximum

above corresponds to the probability of failure against the medium and strong adversary,

respectively, for a DA attack on different layers of the CMT. θ(j)’s are trade-off parameters

and control the importance given to a strong adversary on layer j of the CMT compared to

a medium adversary.

The sampling strategy
(
x , β(1), . . . , β(l)

)
obtained as the optimal solution of LP (2.2)

is called LP-sampling and is included in the protocol. To reduce the probability of failure

against a medium and a strong adversary under LP-sampling, we design LDPC codes aimed

towards minimizing the probability for each layer. The complexity of LP-sampling is deter-

mined by the complexity of finding all stopping sets of Hj of size < µj. Although stopping

set enumeration is NP-hard, they can be found in a reasonable time for small code lengths

using an ILP [54]. However, it is difficult to obtain an analytical complexity expression for

stopping set enumeration using ILP.

2.4.2 Linear-programming-Constrained PEG (LC-PEG) Algorithm

In this section, we design LDPC codes that perform well under LP-sampling. We design

such codes by modifying the CN selection procedure in the PEG algorithm. We call our con-

struction linear-programming-constrained PEG or LC-PEG algorithm since it is trying to

minimize the optimal objective value of an LP. Codes designed in this section are aligned by

Algorithm 2 and then included in the protocol. Similar to the EC-PEG algorithm, we opti-

mize cycles instead of stopping sets. The motivation for focusing on cycles is the following: for

lists C and Ψ of cycles and stopping sets, respectively, such that for every ψ ∈ Ψ, there exists

a O ∈ C which is part of ψ, we have maxψ∈Ψ

(
1−

∑
vi:vi∈ψ xi

)
≤ maxO∈C

(
1−

∑
vi:vi∈O xi

)
.

35

Thus, the optimal objective value of LP (2.1) can be upper bounded by the optimal objec-

tive value of a modified version of LP (2.1) which is based on cycles. We select CNs in the

PEG algorithm depending on the optimal objective value they produce on the modified LP.

Algorithm 4 presents our LC-PEG algorithm for constructing a TG G̃ with n VNs, m CNs,

and VN degree dv. All ties are broken randomly.

Algorithm 4 LC-PEG Algorithm

1: Inputs: n, m , dv, gc, Tth, θ̂, µ̂; Outputs: G̃, gmin

2: Initialize G̃ to n VNs, m CNs and no edges, L = ∅
3: for j = 1 to n do
4: for k = 1 to dv do
5: [K, g] = PEG(G̃, vj); Kmindeg = CNs in K with the minimum degree under the TG

setting G̃
6: if g ≥ gc then csel = Select a CN randomly from Kmindeg
7: else ▷ (g-cycles, g < gc, are created)
8: Kmincycles = CNs in Kmindeg that result in the minimum number of new g-cycles

due to the addition of edge between the CN and vj
9: for each c in Kmincycles do

10: Lccycles = new g-cycles formed in G̃ due to the addition of edge between c and
vj

11: cost[c] = LP-objective(L ∪ Lccycles, G̃)
12: csel = CN in Kmincycles with minimum cost[c]

13: Lsel = cycles in Lcselcycles that have EMD ≤ Tth; L = L ∪ Lsel

14: G̃ = G̃ ∪ edge{csel, vj}

In the LC-PEG algorithm, we use the concept of the extrinsic message degree (EMD) of

a set of VNs that allows us to rank the harm a cycle may have in creating stopping sets.

EMD of a set of VNs is the number of CN neighbors singly connected to the set [42] and is

calculated using the method in [56]. EMD of a cycle is the EMD of the VNs involved in the

cycle. Low EMD cycles are more likely to form stopping sets and we term cycles with EMD

below a threshold Tth as bad cycles. We use bad cycles to form the modified linear program

below:

36

min
x̂, β̂

max
(
max(1− Cx̂), θ̂[1− β̂µ̂]

)
s.t. β̂ ≤ x̂i ≤ 1, i = 1, . . . , n̂; β̂ ≥ 0;

n̂∑
i=1

x̂i = 1.

(2.3)

The LC-PEG algorithm uses LP (2.3) via the procedure LP-objective(L̂, Ĝ) which

outputs its optimal objective value. The procedure has inputs of a list L̂ = {O1, . . . ,O|L̂|}

of cycles and a TG Ĝ. Let Ĝ have n̂ VNs {v̂1, . . . , v̂n̂}. Here, C is a matrix of size |L̂| × n̂,

such that Cki = 1 if v̂i touches Ok, else Cki = 0, 1 ≤ i ≤ n̂, 1 ≤ k ≤ |L̂|. Also, θ̂, 0 ≤ θ̂ ≤ 1,

is a parameter.

In the LC-PEG algorithm, we use the procedure PEG() defined in Section 2.3.2 for the

EC-PEG algorithm. The LC-PEG algorithm proceeds exactly as the EC-PEG algorithm

when the PEG() procedure returns cycle length g ≥ gc. When the PEG() procedure returns

cycle length g < gc, we select a CN from the set of candidate CNs K such that the resultant

LDPC codes have a low optimal objective value of LP (2.1). We explain the CN selection

procedure next.

While progressing through the LC-PEG algorithm, we maintain a list L of cycles. L

contains cycles of length g < gc that had EMD less than or equal to threshold Tth when

they were formed. Cycles in L are considered bad cycles and we base our CN selection

procedure on these cycles. When the PEG() procedure returns candidate CNs K, we first

select the set of CNs Kmindeg that have the minimum degree under the current TG setting G̃

(line 5). Of the CNs in Kmindeg, we select the set of CNs Kmincycles that form the minimum

number of new g-cycles if an edge is established between the CN and vj (line 8). Now for

every CN c in Kmincycles, we find the list Lccycles of new g-cycles formed due to the addition

of an edge between c and vj (line 10) and compute LP-objective(L ∪ Lccycles, G̃) to get

cost[c] (line 11). Our modified CN selection procedure is to select a CN in Kmincycles that

has the minimum cost[c] (line 12). After selecting csel using the above criteria, we update L

as follows: let Lsel be the list of g-cycles in Lcselcycles that have EMD ≤ Tth. We add Lsel to L

37

(line 13). Finally, we update the TG G̃ (line 14).

Remark 4. We empirically observed that reducing the number of cycles in the TG (and

hence the number of stopping sets) reduces the probability of failure against the medium and

strong adversary when LP-sampling is employed. The above holds even if the size of the

smallest stopping set remains unchanged. This is in contrast to random sampling where the

probability of failure only depends on the size of the smallest stopping set and is agnostic to

the number of stopping sets of small size present in the code. Thus, based on this observation,

we have added line 8 in our LC-PEG algorithm which selects CNs Kmincycles that form the

minimum number of cycles when a new edge is established. However, we further make an

informed choice among the CNs in Kmincycles to select a CN that has the minimum optimal

objective value of LP (2.3).

We now discuss the complexity of the LC-PEG algorithm. Note that it differs from the

original PEG algorithm (that has complexity O(mn) [55]) in steps 7-13. Of these steps, step

11 has the largest complexity due to solving LP (2.3). An LP minAz≤b c
T z with d variables

and t constraints can be solved with complexity Õ((nnz(A) + d2)
√
d) [57] where nnz(A) is

the number of non-zero entries in A and Õ hides factors poly-logarithmic in d and t. In our

case, LP (2.3) has n variables and at most mndv constraints (step 10 in the algorithm can

result in at most m cycles) and hence nnz(A) ≤ gcmndv. Thus, the overall complexity of

the LC-PEG algorithm is at most Õ(mn
√
n(gcmndv + n2)) = Õ(n4.5). In our simulations,

we were able to generate codes up to length 500 for different rates in a reasonable time frame

(within a day) using the LC-PEG algorithm. Note that the algorithms proposed in this

chapter for LDPC code construction and sampling strategy design have more complexity

compared to [15]. However, these algorithms are used offline instead of on-the-fly. The

complexity increase is still tractable for short code lengths. We demonstrate improvement

in the probability of failure using our algorithms in Section 2.6.

38

2.5 System Aspects

2.5.0.1 Security Performance

Here, we discuss how soundness and agreement defined in Section 2.2.4 are affected by our co-

design. Let M be the total number of light nodes in the system and ηrec =
(
max
1≤j≤l

nj−ω
(j)
min+1

nj

)
,

where ω(j)
min is the minimum stopping set size of the LDPC code used in layer j of the CMT.

We have the following lemmas (we defer the proofs to the Appendix).

Lemma 4. For a weak adversary, when light nodes sample according to the overall greedy

sampling strategy, the probability of soundness or agreement failure per light client P S,A
f

satisfies

P S,A
f ≤ max

(
max

1≤j≤l, ω(j)<µj

[
[1− τ(S(ρs , j)

greedy , ω
(j))]

(
1− ω(j)

nj

)s−ρs]
, 2[H(ηrec,1−ηrec)nl−Ms(1−ρ) log(1

ηrec
)]

)

Here, S(ρs , j)
greedy is the samples of layer j, 1 ≤ j ≤ l, collected when the light nodes request for

the first ρs coded symbols from the base layer of the CMT.

Lemma 5. For a medium and a strong adversary, when light nodes sample according to LP-

sampling x, the probability of soundness or agreement failure per light client P S,A
f satisfies

P S,A
f ≤ max

(
max
1≤j≤l

P
(j)
f (s), 2

[H(ηrec,1−ηrec)nl−Ms log
(

1∑ηrecnl
i=1

x[i]

)
]
)

Here, P (j)
f (s) = P

(j)
(f,med)(s) and P

(j)
f (s) = P

(j)
(f,str)(s) for the medium and strong adversary,

respectively, as defined in Section 2.4.1 and x[i] is the ith largest entry in vector x.

The first term in the maximum in Lemma 4 and 5 is the probability of failure of a single

light node against different adversaries. Thus, when the number of light nodes M is large,

P S,A
f is affected by the probability of failure of a single light node, which we minimize in this

chapter.

39

2.5.0.2 Blockchain System Designer

In the system model in Section 2.2.3, we have made a trusted set up assumption of a

blockchain system designer who designs the parity checks matrices and the LP-sampling

strategy. Note that for greedy sampling, after the overall sampling rule described in Remark

3, nothing more needs to be designed by the system designer. Additionally, as previously

mentioned in Section 2.2.4, only the final LP-sampling strategy obtained by solving LP (2.2)

is included in the protocol and inputs to LP (2.2) (µj and set of all stopping sets of Hj of

size < µj) are not part of the protocol. Existing examples of blockchain systems that rely on

trusted set up assumptions include [52,58,59]. In our system, there are two attacks possible

by a compromised designer: i) incorrect protocol design (i.e., the designed sampling strategy

and LDPC codes do not result in the claimed probability of failure. Here, the probability of

failure can be thought of as an output of the protocol design computation task and nodes

join the system based on the published probability of failure performance); ii) the designer

acts as the adversary and launches a DA attack using the known stopping sets of Hj of size

< µj.

A possible direction to remove the first attack is as follows. A cryptographic tool called

zk-STARK [60] can be used by the system designer to create verifiable proofs of correct

computation of the LDPC codes, the LP-sampling strategy, and the probability of failure.

This proof can be verified by nodes (full and light) before joining the blockchain system

to ensure that the protocol is correctly designed. The proof created using zk-STARK has

the following properties: it has a small size, it can be verified using significantly less com-

putational complexity compared to the actual computation, it is secure against quantum

computers, it reveals no information about the secrets involved in the computation (here µj

and all stopping sets of Hj of size < µj).

In the second attack, the system designer acts as the adversary (medium) to launch a

DA attack using the knowledge of the stopping sets (which it enumerated while correctly

40

0 5 10 15 20 25 30 35

0

0.2

0.4

0.6

0.8

1

s

P
(4
)

f
,
ω
(s
)

0 5 10 15 20 25 30 35
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

s

P
(j
)

f
(s
)

Figure 2.4: The probability of light node failure for various coding schemes and sampling strategies
for CMT T1 = (128, 0.5, 4, 4) and weak adversary. In this and all other figures, RS refers to random
sampling; Left panel: probability of failure for a DA attack on the base layer for different stopping
set sizes. The black curve is achieved using stopping ratio ν∗ = 0.064353. The value ν∗ is the best
stopping ratio obtained for a rate 0.5 code following the method in [15, section 5.3] using parameters
(c, d) = (8, 16). GS refers to the overall greedy sampling strategy described in Section 2.5 1) where
we have used ρ = 0.9. P

(j)
f, ω(s) for GS is calculated as [1− τ(S

(ρs , j)
greedy , ω)](1−

ω
nj
)s−ρs, where S

(ρs , j)
greedy

is described in Lemma 4; Right panel: probability of failure across different layers of the CMT.
P

(j)
f (s) is calculated as P

(j)
f (s) = maxω<µj P

(j)
f, ω(s), where µj = ω

(j),PEG
min + 6.

designing LP-sampling x). However, this DA attack will be detected by the light nodes

with a probability of failure P (j)
(f,med)(s) which is guaranteed by the protocol. Also, to launch

this DA attack, the system designer spends the same amount of computational power as a

medium adversary who doesn’t have the knowledge of the stopping sets and wishes to attack

the system. Thus, the system designer is not at an advantage to launch DA attacks due to

the knowledge of the secret.

2.6 Simulation Results

In this section, we compare the performance of our co-design techniques with that of codes

designed by the original PEG algorithm and the performance of [15] using random LDPC

codes and random sampling (RS). Since many works e.g., [45] [46] use random LDPC codes

and random sampling to mitigate DA attacks, any improvements we show in comparison to

41

[15] will also provide benefits in these works. The different CMTs used for simulation are

parametrized by T = (nl, R, q, l) (individual parameters are defined in Section 2.2.1). For a

CMT T , in order to compare the performance of different PEG based codes, we choose µj =

ω
(j),PEG
min + γ, 1 ≤ j ≤ l, for the various adversary models described in Section 2.2.4. Here,

ω
(j),PEG
min is the minimum stopping set size for an LDPC code constructed using the original

PEG algorithm for layer j of the CMT T and γ is a parameter. We calculate the probability

of failure when the light nodes request for s base layer samples using random sampling for

various scenarios as follows: for the base layer when the adversary hides a stopping set of

size ω, P (l)
f, ω(s) =

(
1− ω

nl

)s
; for intermediate layers, we calculate the probability of failure

for the medium and strong adversary by substituting x =
1nl

nl
in the probability of failure

expressions provided in Section 2.4.1, where 1nl
is a vector of ones of length nl; for an LDPC

code with a stopping ratio ν∗ we calculate the probability of failure at the base layer using

random sampling as P (l)
f (s) = (1−ν∗)s. The LDPC codes at different layers of the CMTs are

aligned using Algorithm 2 where we use gmax = gc (observed cycles in the code constructions)

and gmin is set to the girth of the respective codes.

Fig. 2.4 demonstrates the performance of the EC-PEG algorithm and the greedy sampling

strategy for CMT T1 = (128, 0.5, 4, 4) and a weak adversary. For the EC-PEG algorithm,

we have used the parameters: dv = 4 for all layers, R = 0.5, g(4)c = 10 and g
(j)
c = 8 for

j = 1, 2, 3. For the adversary model we have chosen γ = 6. Note that ω(4),PEG
min = 9 and

thus µ4 = 9 + 6 = 15. In Fig. 2.4 left panel, we plot P (4)
f, ω(s) for various coding algorithms

and sampling strategies when a weak adversary conducts a DA attack on the base layer of

the CMT by hiding stopping sets of size ω < µ4. The codes designed by the original PEG

and EC-PEG algorithms have a minimum stopping set size of 9 and 10, respectively. For

these algorithms, P (4)
f, ω(s) quickly becomes zero for ω = 9, 10 using greedy sampling as s

increases. Hence, we have not included these stopping set sizes in Fig. 2.4 left panel. The

figure demonstrates three benefits of our co-design. The first benefit is due to the use of

deterministic LDPC codes that provide larger stopping set sizes than random ensembles, as

42

0 5 10 15 20 25 30 35

0

0.2

0.4

0.6

0.8

1

s

P
(4
)

f
,
ω
(s
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200

Original PEG

EC-PEG

VN index

ss
1
7

Figure 2.5: Weak adversary performance plots for Nl = 200, R = 0.5, dv = 4. Left panel: probability
of failure for a DA attack on the base layer for different stopping set sizes (see Fig. 2.4 left panel
for plot properties). We have parameters ωPEGmin = 13 and γ = 5, ρ = 0.9; Right panel: stopping set
distribution ss17.

can be seen when comparing the black and green curves. The second benefit comes from

using greedy sampling as opposed to random sampling, which can be observed by comparing

the green and red curves. The final benefit is provided by the EC-PEG algorithm, as can be

seen by comparing the red and blue curves. These benefits combine to significantly reduce

P
(4)
f, ω(s) compared to the black curve which was proposed in earlier literature9.

In Fig. 2.4 right panel, we plot the probability of failure P (j)
f (s) when the weak adversary

conducts a DA attack on layer j of CMT T1. From Fig. 2.4 right panel10, we see that the

base layer of the CMT (L4) has a larger probability of failure compared to other layers

and the probability of failures for the intermediate layers quickly become very small. This

is due to the alignment of the columns of the parity check matrices, which ensures that

each intermediate layer is greedy sampled. We next observe that the EC-PEG algorithm

9The singularities in some plots in Fig. 2.4 (e.g., Original PEG + GS ω = 11) is because P
(4)
f, ω(s) becomes

zero after certain number of greedy samples. This situation happens when all the stopping sets of weight ω
get touched by the greedy samples.

10The plots for P
(4)
f, ω(s) and P

(j)
f, ω(s) in Fig. 2.4 sometimes exhibit floors (i.e., they remain constant for

different values of s). This is due to i) the new greedy samples that are selected (on increasing s) do not
increase the number of stopping sets that are touched; ii) the number of random samples in the overall
greedy sampling strategy remain same on increasing s.

43

20 25 30 35 40 45 50
10

-5

10
-4

10
-3

10
-2

10
-1

10
0 Original PEG

s

P
(j
)

f
(s
)

20 25 30 35 40 45 50
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

LC-PEG

s

P
(j
)

f
(s
)

20 25 30 35 40 45 50
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

MC-PEG

s

P
(j
)

f
(s
)

Figure 2.6: For CMT T1 = (128, 0.5, 4, 4), we plot the probability of failure for a DA attack at all
layers for different codes under the following cases; i) Base layer is randomly sampled (RS base), ii)
LP-Sampling with medium adversary (Med), iii) LP-sampling with strong adversary (Str-bound).
For the strong adversary, we plot P

(j)
(f,str)(s).

with greedy sampling results in a lower P (j)
f (s) compared to the original PEG algorithm

for all layers of the CMT. Moreover, for the base layer, P (4)
f (s) (for both EC-PEG and

original PEG coupled with greedy sampling) is lower than the probability of failure using

random sampling for ω = 14 (green curve) and the probability of failure achieved by random

LDPC codes and random sampling (black curve). Thus, in combination, the co-design

of concentrated LDPC codes and greedy sampling results in a significantly lower P (4)
f, ω(s)

compared to methods proposed in [15]. To illustrate the benefits of the EC-PEG algorithm

and the greedy sampling strategy, we provide plots similar to Fig. 2.3 and Fig. 2.4 for a

44

25 30 35 40 45

10
-2

10
-1

s

P
(4
)

f
(s
)

0.94 0.96 0.98 1

0.01

0.1

3 10
-1

θ(4)

P
(4
)

f
(s

=
30
)

Figure 2.7: The probability of light node failure for a DA attack on the base layer of CMT T1 =
(128, 0.5, 4, 4); Left panel: comparison of different coding schemes and sampling strategies. The
black curve uses ν∗ = 0.064353; Right panel: variation in P

(4)
f (s = 30) for the strong and medium

adversary as a function of θ(4) for θ(j) = 1, j = 1, 2, 3.

different choice of code parameters in Fig. 2.5. From the figure, we see similar stopping set

concentration and probability of failure improvement as in Fig. 2.3 and Fig. 2.4.

In Figs. 2.6, 2.7 and Table 2.1, we demonstrate the performance of the LC-PEG algorithm

and LP-sampling (LS) against a medium and a strong adversary. Fig. 2.6 and 2.7 correspond

to CMT T1 = (128, 0.5, 4, 4) where we have used γ = 4, thus µj = ω
(j),PEG
min + 4. Table 2.2

lists ω(j),PEG
min for different j. Additionally, for LP-sampling, we have used θ(4) = 0.993,

θ(j) = 1, j = 1, 2, 3. For the LC-PEG algorithm, we have used dv = 4 for all layers, R = 0.5,

g
(4)
c = 10 and g(j)c = 8 for j = 1, 2, 3, T (j)

th = 3 for j = 1, 2, T (j)
th = 4 for j = 3, 4, θ̂(j) = 0.997,

j = 1, 2, 3, 4 (we tested with Tth = 3, 4 and θ̂ = 0.995, 0.996, 0.997, 0.998 and picked the

codes that provide the lowest P Jmax

f (s)) and µ̂j = µj, j = 1, 2, 3, 4. To demonstrate the

effectiveness of the LC-PEG algorithm, we also plot the performance of an algorithm termed

as the Minimum-Cycles PEG (MC-PEG) algorithm. It is the same as the LC-PEG algorithm

but instead of the CN selection steps in lines 10-13 of Algorithm 4, the MC-PEG algorithm

selects a CN randomly from Kmincycles as csel.

We first look at the improvements provided by LP-sampling. Fig. 2.6 shows the per-

45

Table 2.1: P
(l)
f (s = 0.25nl) for a DA attack on the base layer for various CMT parameters, coding

schemes, and sampling strategies. The parameters used for the different CMTs is listed in Table
2.2. For the ensemble codes, we follow the method of [15, Section 5.3] and for each R obtain the
following parameters (R, c, d, ν∗) = {(0.5, 8, 16, 0.0643),
(0.4, 6, 10, 0.0851), (0.8, 11, 55, 0.0187)} where (c, d) are optimized to maximize the stopping ratio
ν∗.

Random Sampling LP-Sampling
CMT Ensemble PEG MC-PEG LC-PEG Strong Adversary Medium Adversary

T = (nl, R, q, l) PEG MC-PEG LC-PEG PEG MC-PEG LC-PEG
(128, 0.5, 4, 4) 0.1190 0.0970 0.0740 0.0428 0.04914 0.04602 0.04106 0.03925 0.03675 0.03279
(208, 0.5, 4, 4) 0.0314 0.0204 0.0155 0.0267 0.0304 0.02427 0.02294 0.00815 0.00651 0.00615
(200, 0.5, 4, 3) 0.0356 0.0347 0.0202 0.0202 0.02778 0.02028 0.01781 0.00606 0.00447 0.00388
(200, 0.4, 5, 4) 0.0117 0.0089 0.0067 0.0052 0.00558 0.00513 0.00484 0.00225 0.00207 0.00195
(200, 0.8, 5, 2) 0.3891 0.4697 0.3641 0.2820 0.2827 0.256 0.2332 0.171 0.1549 0.1411

Table 2.2: Parameters used for LP-sampling and LC-PEG code construction for various CMTs in
Table 2.1. For all LDPC codes we use dv = 4, g(j)c = g

(j)
max = g

(j)
min + 4, j = 1, . . . , l. For LC-PEG

algorithm, we use µ̂(j) = µ(j) = ω
(j),PEG
min + γ, j = 1, . . . , l. Under each variable that depends on the

layer, we enumerate the layer numbers.

CMT T
(j)
th θ̂(j) g

(j)
min ω

(j),PEG
min γ

θ(j)

T = (nl, R, q, l) 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
(128, 0.5, 4, 4) 3 3 4 4 0.997 0.997 0.997 0.997 4 4 4 6 2 4 5 9 4 1 1 1 0.993
(208, 0.5, 4, 4) 3 4 4 5 0.997 0.997 0.997 0.9959 4 4 6 6 4 6 10 15 3 1 1 0.997 0.975
(200, 0.5, 4, 3) 4 4 5 - 0.997 0.997 0.998 - 4 6 6 - 6 8 13 - 3 1 0.99 0.97 -
(200, 0.4, 5, 4) 3 4 4 5 0.997 0.997 0.997 0.998 4 4 6 6 5 8 11 18 4 1 1 0.992 0.982
(200, 0.8, 5, 2) 4 5 - - 0.997 0.997 - - 4 4 - - 2 3 - - 3 1 0.99 - -

formance of LP-sampling for a DA attack at different layers of the CMT constructed using

the PEG, LC-PEG and MC-PEG algorithms. We see that while the probability of failure

for some layers worsens in comparison to random sampling, for the worst layer, which is the

base layer, the probability of failure improves for both the strong and medium adversary.

We generally find that the base layer is the worst layer so we focus on the base layer in the

subsequent simulations.

We plot P (4)
f (s) vs. s for the PEG, MC-PEG, and LC-PEG algorithms using LP-sampling

in Fig. 2.7 left panel, where we see the following improvements. The first improvement is

between the black and magenta curves due to using deterministic LDPC codes that produce

larger stopping set sizes. The second improvement is due to using LP-sampling compared to

46

Table 2.3: Maximum CN degree for the LDPC codes used in different layers of the CMT. Under
each algorithm, we enumerate the layer numbers and specify the maximum CN degree for that layer.

CMT Ensemble PEG EC-PEG MC-PEG LC-PEG
T = (nl, R, q, l) 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
(128, 0.5, 4, 4) 16 8 8 9 9 10 13 12 14 8 8 9 9 8 8 9 9
(208, 0.5, 4, 4) 16 8 9 8 8 11 11 11 16 8 9 8 9 8 8 9 9
(200, 0.5, 4, 3) 16 9 9 9 - 12 11 18 - 9 9 9 - 8 9 9 -
(200, 0.4, 5, 4) 10 7 7 7 7 12 9 11 14 7 7 7 8 7 8 7 7
(200, 0.8, 5, 2) 55 20 21 - - 26 48 - - 20 20 - - 20 20 - -

random sampling. Compared to random sampling (magenta curve), LP-sampling with the

original-PEG algorithm results in a lower probability of failure for the medium (red-solid

curve) and strong adversary (red-dotted curve). The third improvement (between the red

and light blue curves) comes from utilizing the MC-PEG algorithm to reduce the number

of small cycles as discussed in Remark 4. The final improvement comes from the informed

CN selection in the LC-PEG algorithm to create tailored codes for LP-sampling as seen by

comparing the dark and light blue curves.

In Fig. 2.7 right panel, we plot P (4)
f (s = 30) as a function of the parameter θ(4) for

the original PEG, MC-PEG and LC-PEG algorithms using LP-sampling. From Fig. 2.7

right panel, we see that θ(4) controls the trade-off between the probabilities of failure for

the medium adversary and strong adversary. Thus, θ(4) can be chosen as a hyper-parameter

based on the system specifications. We also see from Fig. 2.7 right panel that for all the

values of θ(4), the LC-PEG algorithm outperforms the PEG and MC-PEG algorithm for both

the medium and strong adversary.

For completeness, we provide further examples of how our novel code constructions im-

prove the probability of failure for different CMT parameters. In Table 2.1, we list P (l)
f (s)

and compare various sampling strategies and LDPC code constructions. Similar to Fig. 2.7

left panel, from Table 2.1, we see that the novel co-design of the LC-PEG algorithm and

LP-sampling results in the lowest probability of failure for the different CMT parameters.

We see that even at a high rate of 0.8, our techniques of LC-PEG algorithm and LP-sampling

47

offer an improvement.

In Table 2.3, we compare the maximum CN degree for the LDPC codes used in different

CMT layers for various construction techniques. We see that PEG based constructions have

similar maximum CN degrees compared to the ensemble LDPC codes used in [15]. Since the

incorrect coding proof size is proportional to the maximum CN degree, we conclude that the

new LDPC code constructions do not significantly impact the incorrect coding proof size to

improve the probability of failure. Additionally for rate 0.8 codes, we see that the LC-PEG

algorithm results in a significantly lower maximum CN degree compared to the ensemble

LDPC codes thus also improving the incorrect coding proof size along with the probability

of failure.

2.7 Conclusion

In this chapter, we considered the problem of DA attacks pertinent to blockchains with light

nodes. For various strengths of the malicious nodes, we demonstrated that, at short code

lengths, a suitable co-design of specialized LDPC codes and the light node sampling strategy

can result in a much lower probability of failure to detect DA attacks compared to schemes

in prior literature.

2.8 Appendix

2.8.1 Proof of Lemma 2

P
(l)
(f,med)(s) = max

k∈{1,2,...,|Ψl|}
P

(l)
f (s;ψ

(l)
k) = max

k∈{1,2,...,|Ψl|}

(
1−

∑
i:v

(l)
i ∈ψ(l)

k
xi

)s
=

[
max(1− Π(l)x)

]s
.

Recall that Ψ∞
j is set of all stopping sets of Hj. We have the following: P

(l)
(f,str)(s) =

maxψ∈Ψ∞
l
P

(l)
f (s;ψ) = max

([
max(1− Π(l)x)

]s
,maxψ∈Ψ∞

l ,size(ψ)≥µl P
(l)
f (s;ψ)

)
≤ max

([
max(1− Π(l)x)

]s
,
[
1− β(l)µl

]s)
=

(
max

(
max(1− Π(l)x), 1− β(l)µl

))s.
48

The second term in the maximum of P (l)
(f,str)(s) is because max

ψ∈Ψ∞
l ,size(ψ)≥µl

P
(l)
f (s;ψ) ≤(

1− β(l)µl
)s.

2.8.2 Proof of Lemma 3

For 1 ≤ j ≤ l− 1, the ith column of A(j) (see Section 2.4.1) corresponds to VN v
(l)
i of the

base layer and the non-zero positions in the ith column (two per column) correspond to the

symbols of layer j which are part of the Merkle proof of v(l)i . Thus, for a sampling strategy(
x , β(l)

)
and x(j) = A(j)x, 1 ≤ j ≤ l, it is easy to see that x

(j)
k is the probability that v(j)k is

sampled. Now, consider a stopping set ψ that belongs to an intermediate layer j. Note that

the Merkle proof for a base layer sample contains a single data and a single parity symbol

from layer j and is deterministic given the base layer sample. If both the symbols (VNs)

exist in ψ, it is possible for a single base layer symbol to sample ψ at two VNs. To avoid

over-counting, we have defined the matrices ∆(j) in Section 2.4.1. ∆(j) has the property that

∆
(j)
ki is 1 if the ith base layer symbol (i.e., v(l)i) samples, via its Merkle proof from layer j, the

kth stopping set of Ψj and zero otherwise. Thus, for a sampling strategy
(
x , β(1) , . . . , β(l)

)
,

it is not difficult to see that P (j)
(f,med)(s) =

[
max(1−∆(j)x)

]s, 1 ≤ j ≤ l.

Now, let us consider the strong adversary. Since a Merkle proof contains one data and

one parity symbol from every intermediate layer, all data (parity) symbols are sampled

disjointly. As such, we can bound the probability of sampling a stopping set ψ of size ≥ uj,

1 ≤ j < l, by P
(j)
f (s = 1;ψ) ≤ 1 −

∑
x
(j)
i :v

(j)
i ∈ψ,v(j)i is a data symbol x

(j)
i and P

(j)
f (s = 1;ψ) ≤

1−
∑

x
(j)
i :v

(j)
i ∈ψ,v(j)i is a parity symbol x

(j)
i . Summing the two inequalities and dividing over 2 yields

P
(j)
f (s = 1;ψ) ≤ 1 − 1

2

∑
x
(j)
i :v

(j)
i ∈ψ x

(j)
i ≤ 1 − 1

2
β(j)µj. Finally, use P (j)

f (s;ψ) = (P
(j)
f (s =

1;ψ))s.

2.8.3 Proof of Lemma 4

Soundness fails if the light nodes get back all the requested samples but no honest full

49

node is able to fully decode the entire CMT. We consider two cases:

i) There is a DA attack at layer j: In this case, no honest full node will be able to decode

layer j of the CMT. Light nodes fail to detect this DA attack using the overall greedy

sampling strategy described in Remark 3 with probability

P
(1)
f (s) = max

ω(j)<µj

[
[1− τ(S(ρs , j)

greedy , ω
(j))]

(
1− ω(j)

nj

)s−ρs]
.

The term inside the maximum is the probability of failure using the overall greedy sampling

strategy when the weak adversary hides a stopping set of size ω(j).

ii) There is no DA attack: In this case, light nodes will accept the block. Soundness

failure occurs when honest full nodes are not able to decode the entire CMT from the

samples broadcasted by the light nodes. Let P (2)
f (s) be the probability of this event. To

bound P
(2)
f (s), we use the following property of the CMT which was proved in [14]: the

Merkle proof of η fraction of distinct base layer coded symbols have at least η fraction of

distinct coded symbols from each layer of the CMT. Thus for ηrec =
(
max1≤j≤l

nj−ω
(j)
min+1

nj

)
,

if a full node has ηrec fraction of distinct coded symbols from the base layer of the CMT,

then it has at least ηrec fraction or at least ηrecnj distinct coded symbols from layer j of

the CMT. Since ηrecnj ≥ nj − ω(j)
min + 1, using these ηrecnj distinct coded symbols, the full

node will be able to successfully decode layer j, ∀1 ≤ j ≤ l. Let Z be the total number of

distinct base layer coded symbols collected by a honest full node from the random portion of

the light node’s overall greedy sampling strategy. Then, we have P (2)
f (s) ≤ P (Z ≤ ηrecnl) ≤(

nl

ηrecnl

) (ηrecnl)
Ms(1−ρ)

n
Ms(1−ρ)
l

≤ 2[H(ηrec,1−ηrec)nl−Ms(1−ρ) log(1
ηrec

)]. The probability of soundness failure is

smaller than the maximum of the above two cases. Moreover, in our system, for the same

reasons as [15], soundness implies agreement (since each light node is connected to at least

one honest full node and honest full nodes form a fully connected graph; see network model

in Section 2.2.3). Thus, P S,A
f ≤ max(P

(1)
f (s), P

(2)
f (s)) completing the proof.

50

2.8.4 Proof of Lemma 5

Again we consider the two cases described in the proof of Lemma 4. For the first case,

light nodes fail to detect the DA attack at layer j using LP-sampling with probability

P
(1)
f (s) = max

1≤j≤l
P

(j)
f,med(s) and P

(1)
f (s) = max

1≤j≤l
P

(j)
f,str(s) for the medium and the strong adver-

sary, respectively. For the second case, let Z be the total number of distinct base layer coded

symbols collected by a honest full node when light nodes use LP-sampling. We have P (2)
f (s) ≤

P (Z ≤ ηrecnl) ≤
(

nl

ηrecnl

) (∑ηrecnl

i=1 x[i]
)Ms ≤ 2

[H(ηrec,1−ηrec)nl−Ms log

(
1∑ηrecnl

i=1
x[i]

)
]

. Similar to the

proof of Lemma 4, soundness implies agreement and we have P S,A
f ≤ max(P

(1)
f (s), P

(2)
f (s)).

51

CHAPTER 3

LDPC Codes to Mitigate DA attacks in Side Blockchains

3.1 Introduction

Side blockchains, e.g., [61–64], are a popular method of improving the transaction throughput

of blockchain systems where a single trusted blockchain supports a large number of side

blockchains (smaller blockchain systems) by storing the block hashes of the side blockchains

in their ledger [14]. Systems that run side blockchains are vulnerable to a form of data

availability attack [13,15] called a stalling attack, where a side blockchain node commits the

hash of a block to the trusted blockchain but makes the block itself unavailable to other

side blockchain nodes. Authors in [14] proposed a scalable solution to the above attack by

introducing a data availability oracle between the trusted blockchain and the side blockchains.

The oracle consists of nodes whose goal is to collectively ensure that the block is available,

even if some of the oracles nodes are malicious. Nodes in the oracle layer accept the block

from a side blockchain node (who wishes to commit its hash to the trusted blockchain), and

push the hash commitment only if the block is available to the system. The goal is to share

(disperse) the block among the oracle nodes in a storage and communication efficient way to

check the block availability. The solution in [14] involves using a Low-Density Parity-Check

(LDPC) code to generate coded chunks from the block such that each oracle node receives

different coded chunks, and using incorrect-coding proofs, used earlier in [13,15], as a means

of ensuring that the block is correctly coded. A dispersal protocol ensures that the oracle

nodes receive sufficient coded chunks that guarantee that the original block can always be

decoded by a peeling decoder using the coded chunks sent to the oracle nodes, (i.e., the even

52

in the presence of malicious oracle nodes.

Recall from Chapter 2 that stopping sets are a set of variable nodes (VNs) of an LDPC

code that if erased prevent a peeling decoder from decoding the block. To guarantee block

availability in the presence of malicious oracle nodes, the dispersal protocol defined in [14],

requires every subset of oracle nodes of a particular size to receive at least M −Mmin + 1

distinct coded chunks, where M and Mmin are the blocklength and the minimum stopping

set size of the LDPC code, respectively. As a result, the communication cost associated with

the dispersal is inversely proportional to the minimum stopping set size of the LDPC code.

Thus, authors in [14] focused on LDPC code constructions with large minimum stopping

set size for their dispersal protocol. This combination of dispersal protocol and LDPC

construction may not necessarily be optimal in terms of communication costs. In this chapter,

we design a new dispersal protocol that considers the multiplicity of small stopping sets and

provide a specialized LDPC code construction based on the Progressive Edge Growth (PEG)

algorithm [55], which we call the dispersal-efficient PEG (DE-PEG) algorithm, that aims

at minimizing the communication cost within our protocol. We demonstrate a significantly

lower communication cost using our specialized LDPC construction and dispersal protocol

in comparison to [14]. Our techniques support a wider range of system parameters allowing

for more flexibility in system design such as scaling the number of oracle nodes.

The rest of this chapter is organized as follows: In Section 3.2, we describe the prelim-

inaries and the system model. In Section 3.3, we provide our new dispersal protocol and

motivate our LDPC design criterion. The DE-PEG algorithm is described in Section 3.4.

Simulation results are presented in Section 3.5 and we conclude the chapter in Section 3.6.

3.2 Preliminaries and System Model

In this chapter, we assume the blockchain and the data availability oracle model of [14] and

is summarized in Fig. 3.1. Suppose that there are N oracle nodes and an adversary is able

53

Figure 3.1: System Model. The network consists of oracle nodes and side blockchain nodes (called
clients), where clients propose blocks to the oracle nodes to commit to the trusted blockchain.
Oracle nodes verify the correctness of each received block and submit the block commitment to the
trusted blockchain if the block is available.

to corrupt a fraction β of them, where β < 1
2
, such that the maximum number of malicious

oracles nodes is f = ⌈βN⌉. When a client proposes a block of size b, it first generates a special

CMT, called a Coded Interleaving Tree (CIT) introduced in [14], with the data chunks of

the block as leaf nodes of the CIT. Similar to a CMT, a CIT is a coded version of a regular

Merkle tree [2] and is constructed by applying a rate-R systematic LDPC code to each layer

of the Merkle tree before hashing the layer to generate its parent layer. Details regarding

the CIT construction can be found in [14] and in Appendix 3.7.1. In particular, the CIT

has M base layer coded chunks (symbols), each with an associated Proof of Membership

(POM), which consists of a systematic (data) symbol and a parity symbol from each layer of

the CIT. The CIT has a root with t hashes and in each layer q hashes are batched together

into a data chunk for the layer. The data availability oracle functions in the following way

as shown in Fig. 3.1:

1. When a client proposes a block of size b, it constructs its CIT, which generates a set

of base layer coded symbols, each with an associated POM, and a CIT root.

2. The client then uses a dispersal protocol to disperse the base layer coded symbols, their

associated POMs, and the CIT root to the N oracle nodes. The dispersal protocol

54

specifies the base layer coded chunks each oracle node should receive, each receiving k

of them (with their POMs) and the CIT root.

3. Each of the oracle nodes, on receiving the specified k coded chunks check their correct-

ness (i.e., whether they satisfy the associated POM with the root). The dispersal is

accepted if γ + β fraction of the nodes vote that they individually received all correct

coded chunks, for a parameter γ ≤ 1 − 2β defined in the dispersal protocol. In this

case, the CIT root is committed to the trusted blockchain and each of the oracle nodes

store the k coded chunks they received to allow for future block retrieval. The CIT

prevents clients from performing incorrect coding of the block via an incorrect-coding

proof [14].

The focus of this chapter is to design a dispersal protocol and an associated LDPC code

to reduce the communication cost of the dispersal process. The dispersal protocol must

satisfy the availability condition: whenever the root of the CIT is committed to the trusted

blockchain, an honest client must be able to decode each CIT layer using a peeling decoder

by requesting for the coded chunks stored at the oracle nodes. Each CIT layer in [14] is

constructed using random LDPC codes that with high probability have a stopping ratio

(minimum stopping set size divided by the blocklength) α∗. The dispersal protocol in [14]

is designed such that every γ fraction of the oracle nodes receive more than 1− α∗ fraction

of distinct base layer coded chunks. Moreover, it was shown in [14] that the POMs of any η

fraction of distinct base coded chunks have at least η fraction of distinct coded chunks from

each CIT layer (we call this the repetition property). Thus, the dispersal protocol ensures

that every γ fraction of nodes also have more than 1− α∗ fraction of distinct coded chunks

from each CIT layer. Hence, when a root is committed, due to 3), there is a γ fraction of

honest oracle nodes who have more than 1 − α∗ fraction of coded symbols from each CIT

layer, allowing a peeling decoder to decode each layer ensuring availability.

We use the following notation for the rest of this chapter. Let the CIT have l layers

55

and nj coded chunks in layer j, 1 ≤ j ≤ l, where nl = M . Let Hj denote the parity check

matrix of the LPDC code used in layer j which has nj columns {vj1, v
j
2, . . . , v

j
nj
} (we drop

the superscript j based on context). Let Gj denote the Tanner graph (TG) representation

of Hj, where we also refer to vi as the ith VN in Gj and rows of Hj as CNs in G. A cycle

of length g is called a g-cycle. For a set T , let |T | denote its cardinality. Let the dispersal

protocol be defined by the set C = {A1, A2, . . . , AN}, where Ai denotes the set of base layer

coded chunks sent to oracle node i and |Ai| = k. For a set S of VNs, let neigh(S) be the set

of oracle nodes who have at least one coded chunk corresponding to the VNs of S. Let the

hashes of each coded block be of size y. Let He(p) = −p ln(p)− (1− p) ln(1− p). The proofs

of all Lemmas can be found in the appendix in Section 3.7.

Definition 4. Protocol C is called η-valid for layer j if every γ fraction of oracle nodes have

> η fraction of distinct layer j coded chunks. Similarly, C is µ-SS-valid for layer j if every γ

fraction of oracle nodes have > nj − µ distinct layer j coded chunks. If no layer is specified,

we refer to the base layer.

Note that a protocol that is µ-SS-valid for layer j is also
(
nj−µ
nj

)
-valid for layer j. Due

to the repetition property, if the base layer if µ-SS-valid, we can determine µ̃ such that the

protocol is µ̃-SS-valid for layer j. Thus, we majorly talk about the base layer and drop the

specification of the layer according to Definition 4. In [14], the dispersal protocol is required

to be (1 − α∗)-valid for all layers. A protocol which is µ-SS-valid for layer j can guarantee

that a client will be able to decode layer j of the CIT using a peeling decoder when the block

is committed and stopping sets of size < µ do not exist in Hj.

In [14], elements of Ai are randomly chosen with replacement from the set of M base

layer coded chunks. For such a design, it was shown in [14] that for k > M
Nγ

ln 1
1−η ,

Prob(C is not η-valid) ≤ exp(NHe(γ) − Mf(η, ρ)) := PUB(η,N,M, k, γ), where ρ = γNk
M

and f(η, ρ) = (eρ(1−η)−1)2

eρ(eρ(1−η)+1)
is a positive function. It is clear that M can be made sufficiently

large to make PUB(η,N,M, k, γ) arbitrarily small. This principle was used in [14] to ran-

domly design the dispersal protocol. However, as we show next, to make PUB(η,N,M, k, γ)

56

smaller than a given threshold probability pth, for a fixed M , there is a limit on the number

of oracle nodes the system can support.

Lemma 6. Let NUB = M(1−η)+ln(pth)
He(γ)

and η̄ = 1− η. If N ≥ NUB, PUB(η,N,M, k, γ) > pth

∀k > M
Nγ

ln 1
η̄
. If N < NUB, then PUB(η,N,M, k, γ) ≤ pth for k ≥ kfmin where kfmin =

M
Nγ

ln

(
−(2η̄+v)−

√
8η̄v+v2

2η̄(v−η̄)

)
and v = NHe(γ)−ln(pth)

M
.

Thus, the dispersal protocol used in [14] cannot guarantee with high probability to be

(1− α∗)-valid for all (N,M) pairs. This feature is undesirable and we would like for a given

M , any number of oracle nodes to be supported by the protocol. The problem is alleviated

if each Ai gets k distinct coded chunks chosen uniformly at random from the M base layer

coded chunks which we consider in our design idea.

3.3 Design Idea: Secure Stopping Set Dispersal

Definition 5. A protocol C = {A1, . . . , AN} is called a k-dispersal if each Ai is a k element

subset chosen uniformly at random with replacement from all the k element subsets of the M

base layer coded chunks.

We analyze the minimum number of distinct coded chunks k to disperse to each oracle

node so that the protocol C is µ-SS-valid with probability at least 1 − pth. We utilize the

fact that the process of a given γN nodes sampling with replacement the k element subsets

of the M base layer chunks is known as the coupon collector’s problem with group drawings

[65].

Lemma 7. For a k-dispersal protocol, for the base layer,

Prob(C is not µ-SS-valid) ≤ eNHe(γ)Pf ,

57

where Pf =
M−µ∑
j=0

(−1)M−µ−j
(
M

j

)(
M − j − 1

µ− 1

)[(
j
k

)(
M
k

)]γN

Now, eNHe(γ)Pf can be made smaller than an arbitrary threshold pth by choosing a suffi-

ciently large k. Let k∗(µ,N,M, γ, pth) be the smallest k such that eNHe(γ)Pf ≤ pth. Thus, a

k∗(µ,N,M, γ, pth)-dispersal will be µ-SS-valid for the base layer with probability ≥ 1− pth.

The associated communication cost is NXk∗(µ,N,M, γ), where X is the total size of one

base layer coded chunk along with its POM. To ensure availability, if we set µ =Mmin, we see

that the communication cost is directly affected by the minimum stopping set size. Thus, for

a k∗(Mmin, N,M, γ, pth)-dispersal protocol, the best code design strategy is to design LDPC

codes with large minimum stopping set sizes which is considered to be a hard problem[41,66].

In this work, we modify the above dispersal protocol to reduce the communication cost. We

then provide a specialized LDPC code construction aimed at minimizing the communication

cost associated with the modified dispersal protocol.

Definition 6. A stopping set S is said to be securely dispersed by a dispersal protocol C if

|neigh(S)| ≥ f + 1.

Since f is the maximum number of malicious oracle nodes, for a stopping set that is

securely dispersed, at least one honest oracle node will have a coded chunk corresponding

to a VN of S and hence the peeling decoder will not fail due to S and can continue the

decoding process. Based on this principle, we consider the following dispersal protocol:

Sampling Strategy 1. (k∗-secure dispersal) For µ ≥ Mmin, let Sj be the set of stopping

sets of layer j (i.e., of Hj) of size less than nj −
⌈(

M−µ+1
M

)
nj
⌉
+ 1. Our dispersal protocol

consists of two dispersal phases. In the first phase (called the secure phase), all stopping sets

in Sj, 1 ≤ j ≤ l, are securely dispersed. This is followed by a k∗(µ,N,M, γ, pth)-dispersal

protocol (called the valid phase).

Lemma 8. Dispersal protocol 1 guarantees availability with probability ≥ 1− pth.

58

We use the following greedy procedure to securely disperse all stopping sets in Sj, 1 ≤

j ≤ l. Let Vgrj be a set of VNs of Hj with the property that for all S ∈ Sj, ∃ v ∈ Vgrj
such that v is part of S. Note that if each VN in Vgrj is sent to (f + 1) oracle nodes, all

S ∈ Sj will be securely dispersed. We obtain Vgrj in the following greedy manner: Initialize

Vgrj = ∅. Find a VN v that is part of the maximum number of stopping sets in Sj, add the

VN to Vgrj and remove all stopping sets in Sj that have v. We repeat the process until Sj is

empty. Let the VNs in each set Vgrj be ordered according to the order they were added to

Vgrj . For each j, we permute the columns of Hj such that the VNs in Vgrj appear as columns

1, 2, . . . , |Vgrj |, the rest of the columns are randomly ordered. Note that the Hj’s after the

column permutation are used to build the CIT. Now, our secure phase is designed as follows:

the design starts from layer l and moves iteratively up the tree till layer 1. For each layer j,

if all VNs corresponding to the first |Vgrj | columns of Hj are marked as dispersed, we mark

layer j as complete and move to layer j − 1, else, we disperse the remaining coded chunks

corresponding to the first |Vgrj | columns of Hj that are not marked dispersed by randomly

selecting f + 1 oracle nodes to send each of the coded chunk with its POMs. For each layer

i above layer j, coded chunks that were sent to (f + 1) nodes as part of POMs of the coded

chunks of layer j in the previous step are marked as dispersed. We mark layer j as complete

and proceed to layer j − 1. We continue until layer 1 is complete. Note that by initially

permuting the columns of Hj’s, we have ensured that when a coded chunk of a particular

layer j with its POMs are sent to (f + 1) nodes, the systematic symbol of the POMs from

each layer i above layer j are exactly the VNs in the first |Vgri | columns of Hi that we require

to send to (f + 1) nodes to securely disperse Si. If the POM for layer i is outside the first

|Vgri | columns (happens if |Vgrj | > |V
gr
i |), this would imply that layer i is already complete.

Let Xj be the size of one coded chunk of layer j along with its POMs which involve a

data and parity symbol from each layer above layer j. Also, let tj = maxi∈{j+1,...,l} |Vgri |.

As such, Xl = b
RM

+ y(2q − 1)(l − 1) and Xj = qy + y(2q − 1)(j − 1), 1 ≤ j < l,

[14] (details can also be found in Appendix 3.7.1). The total communication cost CT

59

for Dispersal Protocol 1 is CT = Nty + Cs + Cv, where Cs and Cv are the costs as-

sociated with the secure and the valid phases, respectively, and Nty is the cost of dis-

persing the CIT root. Now, Cv = Nk∗(µ,N,M, γ, pth)Xl and Cs can be calculated as

Cs = (f +1)
[
|Vgrl |Xl +

∑l−1
j=1max

(
(|Vgrj | − tj), 0

)
Xj

]
, where we have made the assumption

that each |Vgrj | is smaller than Rnj which is true for small µ and since Rnj is the total number

of systematic variable nodes. The communication cost of the secure phase depends strongly

on |Vgrl | as the base layer involves data chunks whose sizes are larger than the chunks of

the higher layers which are concatenations of hashes. Thus, we can reduce the total cost

by designing LDPC codes that have small |Vgrl |. We provide the construction in the next

section.

3.4 Dispersal-Efficient PEG Algorithm

Algorithm 5 presents our DE-PEG algorithm that constructs a TG Ĝ with M VNs, J CNs,

and VN degree dv that results in a small size of Vgrl . Note that the same algorithm is used

for all layers to reduce the sizes of Vgrj . Since stopping sets in LDPC codes are made up of

cycles [42], the DE-PEG algorithm focuses on cycles as they are easier to optimize. In the

algorithm, all ties are broken randomly.

The algorithm uses the concept of the extrinsic message degree (EMD) [67] of a set of

VNs similar to 2. It is calculated using the method described in [56]. EMD of a cycle is

the EMD of the VNs involved in the cycle. Cycles with low EMD are more likely to form

a stopping set and we consider them as bad cycles. The algorithm also uses a procedure

greedy-size(L̃, v) which takes as input a list L̃ of cycles, and outputs |S̄|, where S̄ is a

set of VNs with the property that for every cycle C in L̃, ∃ a VN in S̄ that is part of C, and

S̄ is obtained in a manner similar to that of obtaining Vgrj from Sj described in Section 3.3,

however, by ignoring the VN v during the greedy selection procedure.

The PEG algorithm, proposed in [55], builds a TG by iterating over the set of VNs and

60

Algorithm 5 DE-PEG Algorithm

1: Inputs: M , J , dv, gmax, Tth Output: Ĝ
2: Initialize Ĝ to M VNs, J CNs and no edges, L = ∅
3: for j = 1 to M do
4: for e = 1 to dv do
5: [K, g] = PEG(Ĝ, vj)
6: if g > gmax then
7: cs = uniformly random CN in K
8: else ▷ (g-cycles, g ≤ gmax, are created)
9: for each CN c in K do

10: Lcycles = g-cycles formed due to c
11: s̄[c] = greedy-size(L ∪ Lcycles, vj)
12: cs = CN in K with minimum s̄[c]
13: Ls = g-cycles formed due to cs with EMD ≤ Tth
14: L = L ∪ Ls
15: Ĝ = Ĝ ∪ edge{cs, vj}

for each VN vj, establishing dv edges to it. For establishing the eth edge, there are two

situations that the algorithm encounters: i) addition of an edge is possible without creating

cycles; ii) addition of an edge creates cycles. In both the situations, the PEG algorithm

finds a set of candidate CNs to connect vj to, that maximises the girth of the cycles formed.

Similar to chapter 2, we do not go into the detailed procedure followed by [55] to find the

set of candidate CNs, but assume a procedure PEG(G, vj) that provides us with the set of

candidate CNs K for establishing a new edge to VN vj under the TG setting G according to

the PEG algorithm in [55]. We assume that the set K only contains CNs with the minimum

degree under the TG setting G. For situation ii), the procedure returns the cycle length g

of the smallest cycles formed when an edge is established between any CN in K and vj. For

situation i) g = ∞ is returned. When g > gmax is returned, we follow the original PEG

algorithm in [55] and select a CN randomly from K.

During the course of the DE-PEG algorithm, we maintain a list L of bad cycles of lengths

≤ gmax that had EMD less than or equal to some threshold Tth when they were formed. In

the algorithm, when cycle length g ≤ gmax is returned by the PEG() procedure, for each CN

61

c ∈ K, g-cycles are formed when an edge is added between c and vj. These cycles are listed

in Lcycles (line 10). We use greedy-size(L ∪ Lcycles, vj) to get s̄[c] (line 11), for each CN

c in K. Our CN selection procedure is to select a CN from K that has the minimum s̄ (line

12). Once this CN is selected, we update the list of bad cycles as follows: of all the g-cycles

formed due to the addition of an edge between cs and vj, we find the list of g-cycles Ls that

have EMD ≤ Tth (line 13) and add them to L (line 14). We then update the TG Ĝ (line

15). The intuition behind the DE-PEG algorithm is that since we want the stopping sets in

Sl to produce a small Vgrl by a greedy procedure, we select CNs such that a similar greedy

procedure produces small |S̄| on the bad cycles which are more likely to form stopping sets.

Remark 5. In the DE-PEG algorithm, greedy-size(L ∪ Lcycles, vj) ignores the VN vj

while forming the greedy set of VNs to find |S̄| as vj is part of all the cycles formed by all

CNs c in K and ignoring vj allows to better distinguish between the CNs in terms of set sizes

s̄. While the DE-PEG algorithm is based on cycles, Dispersal Protocol 1 uses stopping sets

Sj to find Vgrj for the secure phase.

3.5 Simulation Results

In this section, we present the performance of the codes designed using the DE-PEG algo-

rithm when using the k∗-secure dispersal protocol. To demonstrate the benefits, we consider

a baseline system that uses codes constructed using the original PEG algorithm and uses k-

dispersal with k chosen such that for all layers j, 1 ≤ j ≤ l, the k-dispersal is M j
min-SS-valid,

where M j
min is the minimum stopping set size of layer j (and Mmin = M l

min). To compute a

lower bound on the total communication cost using Dispersal Protocol 1, we consider a code

that has Sj = ∅, 1 ≤ j ≤ l, i.e., for the given µ, has costs only due to k∗(µ,N,M, γ, pth)-

dispersal and the root, and no cost due to the secure phase. This is equivalent to designing

codes having larger minimum stopping set sizes which is considered hard. We use the fol-

lowing parameters for simulations: b = 1MB, y = 32 Bytes, t = 32, q = 4, l = 4, M = 256,

62

Table 3.1: Communication costs achieved by k∗-secure dispersal for various choices of µ using the
PEG and the DE-PEG algorithm for N = 9000, β = 0.49. Lower bound on CT for µ = 20 is
4.438GB.

µ k∗ Cv (|Vgr1 |, |V
gr
2 |, |V

gr
3 |, |V

gr
4 |) Cs CT

PEG DE-PEG PEG DE-PEG PEG DE-PEG
17 67 5.116 (0,0,0,0) (0,0,0,0) 0 0 5.125 5.125
18 64 4.887 (0,0,0,1) (0,0,0,0) 0.037 0 4.933 4.896
19 61 4.658 (0,0,1,3) (0,0,0,1) 0.112 0.037 4.779 4.704
20 58 4.428 (0,0,1,7) (0,0,0,4) 0.262 0.149 4.700 4.587
21 56 4.276 (0,1,2,14) (0,1,0,13) 0.524 0.486 4.809 4.771

R = 0.5, γ = 1 − 2β, pth = 10−8 (specified if otherwise). The CIT thus has 4 layers with

n4 = M = 256, n3 = 128, n2 = 64 and n1 = 32. For the LDPC codes constructed using the

DE-PEG algorithm, we use gmax = 8 for layer 3 and 4 and gmax = 6 for layer 1 and 2, dv = 4,

and Tth = 5 (provides the best results from a range of thresholds tested). For the base layer,

the PEG and the DE-PEG codes constructed have Mmin = 17 and 18 respectively. All com-

munication costs are in GB. Costs Cs, Cv and CT are calculated using equations described

in Section 3.3.

Table 3.1 compares the communication cost achieved by the PEG and the DE-PEG

algorithm with the k∗-secure dispersal protocol as the value of µ is varied. We see that as µ

is increased, the value of k∗ decreases and Cv decreases. The table next shows the 4-tuple

(|Vgr1 |, |V
gr
2 |, |V

gr
3 |, |V

gr
4 |) for the PEG and the DE-PEG algorithm and we see that the DE-

PEG algorithm always results in lower values thus resulting in a lower cost Cs during the

secure phase compared to the PEG algorithm. Note that, as µ is increased, Cs increases.

Finally, we look at the total cost CT , which is lowest for µ = 20 for both the PEG and the

DE-PEG algorithms, and are 0.425GB and 0.528GB lower, respectively, compared to the

baseline (CT = 5.125GB) at µ = 17. Interestingly, CT does not monotonically decrease with

µ. Note that the lower bound on CT at µ = 20 is 0.687GB lower than the baseline.

Table 3.2 compares the performance of the k∗-secure dispersal protocol and the DE-

PEG algorithm with the performance achieved by the data availability oracle of [14]. The

communication cost associated with kmin (considering that each node gets the same chunk

63

Table 3.2: Comparison of total communication cost of our work with [14] for β = 0.49, M = 256.
For each pth, N is the maximum no. of oracle nodes permissible for the oracle of [14] and kmin is
the minimum number of chunks at each oracle node for η = 1−α∗ and are computed using Lemma
6 (Note that kmin =

⌈
kfmin

⌉
).

Oracle [14] Our Work

pth N
α∗ = 0.125 µ = 17 µ = 20

kmin CT
full C

T
distinct k

∗ CT
baseline k

∗ CT
PEG CT

DE−PEG
10−8 138 895 1.048 0.2909 207 0.2425 199 0.2372 0.2355
10−6 185 671 1.053 0.3729 184 0.2890 175 0.2803 0.2780
10−4 232 539 1.061 0.4430 164 0.3231 155 0.3122 0.3092

multiple times and similar to the computation carried out in [14]) is provided in CT
full.

The cost CT
distinct shows the total cost by considering only distinct chunks (out of the kmin

chunks) at each node (calculated using Monte-Carlo simulations). For our work, we present

the baseline and the k∗-secure dispersal protocol with µ = 20 (best results in Table 3.1) with

the PEG and the DE-PEG algorithms. From Table 3.2, we see three levels of cost reduction.

Reduction from CT
distinct to CT

baseline is due to sampling with replacement and hence a tighter

bound provided in Lemma 7. Reduction from CT
baseline to CT

PEG is by using the k∗-secure

dispersal protocol for µ = 20 and finally the reduction from CT
PEG to CT

DE−PEG is by using

specialized LDPC codes to reduce the cost associated with the secure phase of the protocol.

Note that these reductions are for a single 1MB block. Also, for the Oracle of [14], we use

α∗ = 0.125 which is for a rate 1
4

code but assume the data chunk sizes are the same as a

rate 1
2

code to demonstrate that even in this disadvantageous situation we have a better

communication cost.

In Fig. 3.2, the total communication cost CT is plotted as a function of the number of

oracle nodes and the adversary fraction. The solid plots show CT vs. N at β = 0.49. We see

that at N = 15000, compared to the baseline, there is around 7% reduction in CT by using

the k∗-secure dispersal protocol with µ = 20 and the PEG algorithm, and a 9.3% reduction

by using the protocol with µ = 20 and the DE-PEG algorithm. The yellow plot corresponds

to the lower bound on CT for µ = 20 and is tantamount to a maximum of 13% reduction

64

β (- - - -)

N (——)

C
T

(i
n

G
B

)

Figure 3.2: CT for various coding schemes and dispersal protocols vs. (a) N at β = 0.49 (solid
plots, top axis) and (b) β at N = 20000 (dotted plots, bottom axis). For k∗-secure dispersal µ = 20
is used.

in CT from the baseline. The dotted plots show CT vs. β at N = 20000. We see a sharp

increase in CT for higher β and as β is increased from 0.4 to 0.49, CT increases by around

5.1GB for the baseline, whereas for the PEG and the DE-PEG algorithms using the k∗-secure

dispersal protocol (with µ = 20), CT increases by around 4.52GB and 4.47GB, respectively.

The result indicates that using our methods, the system has to pay less in terms of the total

communication cost in order to handle a higher adversary fraction.

3.6 Conclusion

In this chapter, we provided a new dispersal protocol and a modification of the PEG algo-

rithm called the DE-PEG algorithm that when combined provide a much lower communica-

tion cost in the data availability oracle of [14] compared to previous schemes. We demonstrate

the efficacy of our work by providing simulation results that confirm significant improvement

in the communication cost. Additionally, we demonstrate how our new constructions are less

restrictive in terms of system parameters.

65

3.7 Appendix

3.7.1 Construction of Coded Interleaving Tree

Let the CIT have l layers (except the root), L1, L2, . . . , Ll, where Ll is the base layer. For

1 ≤ j ≤ l, let Lj have nj coded symbols, where we use nl = M in this paper. Let Nj[i],

1 ≤ i ≤ nj, be the ith symbol of the jth layer, where Sj = {Nj[i], 1 ≤ i ≤ Rnj} and

Pj = {Nj[i], Rnj + 1 ≤ i ≤ nj} are the set of systematic (data) and parity symbols of Lj,

respectively, where we also write Sj[i] = Nj[i], 1 ≤ i ≤ Rnj. Pj is obtained from Sj using

a rate R systematic LDPC code Hj. In the above CIT, hashes of q coded symbols of every

layer are batched (concatenated) together to form a data symbol of its parent layer, where

the nj’s satisfy nj = M
(qR)l−j , j = 1, 2, . . . , l.

Let sj = Rnj and pj = (1 − R)nj denote the number of systematic and parity symbols

in Lj. Also define x mod p := (x)p. The data symbols of Lj−1 are formed from the coded

symbols of Lj as follows (for 1 < j ≤ l):

Sj−1[i] = Nj−1[i] = concat({Hash(Nj[x]) | 1 ≤ x ≤ nj, i = 1 + (x− 1)sj−1
}), 1 ≤ i ≤ sj−1,

where Hash is a hash function (whose output size is y) and concat represents the string

concatenation function. The CIT has a root which consists of t hashes. The CIT allows to

create a Proof of Membership (POM) for each base layer coded symbol (which consists of a

data and a parity symbol from each intermediate layer of the tree). In particular, the POM

of symbol Nl[i] is the set of symbols {Nj[1 + (i− 1)sj], Nj[1 + sj + (i− 1)pj] | 1 ≤ j ≤ l− 1}.

The POMs have the sibling property [14], i.e., for each layer j, 1 ≤ j < l−1, the data part of

the POM from layer j is the parent of the two symbols of the POM from layer j+1. In other

words, Nj[1 + (i− 1)sj] is the parent of Nj+1[1 + (i− 1)sj+1
] and Nj+1[1 + sj+1 + (i− 1)pj+1

].

By parent, we mean that Nj[1 + (i − 1)sj] contains the hashes of Nj+1[1 + (i − 1)sj+1
] and

Nj+1[1 + sj+1 + (i − 1)pj+1
]. The POM of a symbol from any intermediate layer j of the

66

tree 1 < j < l similarly consists of a data and a parity symbol from each layer above

layer j. In particular, POM of the symbol Nj[i] is the set of symbols {Nj′ [1 + (i − 1)sj′],

Nj′ [1+ sj′ +(i− 1)pj′] | 1 ≤ j′ < j} and they also satisfy the sibling property. The POM of a

coded symbol is its Merkle proof [2] and is used to check the inclusion of the coded symbol

in the tree (w.r.t to the CIT root). Note that with the described POM for each symbol, the

process of checking the Merkle proof is same as for regular Merkle trees in [2].

Let Xj be the size of one coded chunk of layer j along with its POMs which involves a

data and parity symbol from each layer above layer j as defined in Section 3.3. Note that

the size of each base layer coded chunk is b
RM

, where b is the block size. Thus,

Xl =
b

RM
+ [(q − 1)y + qy](l − 1) =

b

RM
+ y(2q − 1)(l − 1)

where the term (q− 1) arises due to the fact that of the q hashes present in the data symbol

of the POM from layer j, 1 ≤ j < l − 1, the hash corresponding to the data symbol of

the POM from layer (j + 1) is not communicated in the POM (since, due to the sibling

property, it can be calculated by taking a hash of the data symbol of the POM from layer

(j + 1)). Similarly, of the q hashes present in the data symbol of the POM from layer

l − 1, the the hash corresponding to the actual base layer data chunk is not communicated.

Thus we only get (q − 1) hashes from each layer for the data part in the POMs. Similarly,

Xj = qy + y(2q − 1)(j − 1), 1 ≤ j < l.

3.7.2 Proof of Lemma 6

Let ρ = γNk
M

, and x = eρ. The condition k > M
Nγ

ln 1
1−η is equivalent to x > 1

η̄
and the

condition PUB(η,N,M, k, γ) ≤ pth can be simplified to x2(vη̄ − η̄2) + (2η̄ + v)x − 1 ≤ 0.

For N = M(1−η)+ln(pth)
He(γ)

, v = η̄ and hence we need x ≤ 1
3η̄

which is not possible for x > 1
η̄

(note that η̄ > 0). For N > M(1−η)+ln(pth)
He(γ)

, v > η̄ and hence x2(vη̄ − η̄2) + (2η̄ + v)x − 1 is

an upward facing quadratic equation with roots of opposite sign. Since x is always positive,

67

x2(vη̄ − η̄2) + (2η̄ + v)x − 1 ≤ 0 iff x ≤ xmax =
−(2η̄+v)+

√
8η̄v+v2

2η̄(v−η̄) , where xmax is the positive

root of the quadratic equation. However, a quick algebraic check would reveal that xmax <
1
η̄

for v > η̄ and hence there is no feasible x which satisfies x2(vη̄ − η̄2) + (2η̄ + v)x − 1 ≤ 0.

Thus, for N ≥ M(1−η)+ln(pth)
He(γ)

, PUB(η,N,M, k, γ) > pth ∀k > M
Nγ

ln 1
1−η .

For N < M(1−η)+ln(pth)
He(γ)

, v < η̄. In this case x2(vη̄ − η̄2) + (2η̄ + v)x − 1 is a downward

facing quadratic equation with roots xmax =
−(2η̄+v)−

√
8η̄v+v2

2η̄(v−η̄) and xmin =
−(2η̄+v)+

√
8η̄v+v2

2η̄(v−η̄)

satisfying xmin <
1
η̄
< xmax. In this situation, x2(vη̄ − η̄2) + (2η̄ + v)x − 1 ≤ 0 iff x ≥ xmax

which is equivalent to k ≥ M
Nγ

ln

(
−(2η̄+v)−

√
8η̄v+v2

2η̄(v−η̄)

)
.

3.7.3 Proof of Lemma 7

We use the following result from [65].

Lemma 9. ([65]) Let S be a set of s elements and let A ⊆ S, |A| = l. From S, let T subsets

of size m be drawn with replacement, each subset drawn uniformly at random from all subsets

of size m of S. Let XT (A) be the number of distinct elements of the set A contained in the

above T drawings. Then

Prob(XT (A) ≤ n) := χ(n, l, s, T,m)

=
n∑
j=0

(−1)n−j
(
l

j

)(
l − j − 1

l − n− 1

)[(
s−l+j
m

)(
s
m

)]T
.

Now, following in a manner similar to [14, Appendix A]

68

Prob(C is not µ-SS-valid) = Prob(∃S such that |S| = γN, | ∪i∈S Ai| ≤M − µ)

≤
∑

S⊆[M]:|S|=γN

Prob(| ∪i∈S Ai| ≤M − µ)

=
∑

S⊆[M]:|S|=γN

χ(M − µ,M,M, γN, k)

=

(
N

γN

)
χ(M − µ,M,M, γN, k)

≤ eNHe(γ)χ(M − µ,M,M, γN, k)

= eNHe(γ)Pf

where similar to [14], we have used the fact that
(
N
γN

)
≤ eNHe(γ) and Prob(| ∪i∈S Ai| ≤

M − µ) = Prob(XT (A) ≤ n) when S = A, l = s =M , n =M − µ, m = k and T = γN .

3.7.4 Proof of Lemma 8

In the secure phase of Dispersal protocol 1, for each layer j, 1 ≤ j ≤ l, all stopping sets (of

Hj) of sizes < (nj −
⌈(

M−µ+1
M

)
nj
⌉
+ 1) are securely dispersed. Hence a peeling decoder will

never fail to decode layer j, 1 ≤ j ≤ l due to these stopping sets.

Furthermore, the valid phase of Dispersal protocol 1 ensures that every γ fraction of

the oracle nodes have at least M − µ + 1 distinct base layer coded chunks with probability

≥ 1 − pth. Thus, due to the repetition property described in Section 3.2, this ensures that

for a given layer j, 1 ≤ j < l, every γ fraction of the oracle nodes have has at least M−µ+1
M

fraction of distinct coded chunk, or at least
⌈(

M−µ+1
M

)
nj
⌉

distinct coded chunks. Thus, with

probability ≥ 1 − pth, the dispersal protocol is (nj −
⌈(

M−µ+1
M

)
nj
⌉
+ 1)-SS-valid for each

layer j, 1 ≤ j ≤ l.

Since the CIT root is committed only when γ + β fraction of the oracle nodes vote that

they received correct coded chunks, this implies that at least γ fraction of honest oracle nodes

69

have received correct coded chunks. Now, since with probability ≥ 1 − pth, the dispersal

protocol is (nj−
⌈(

M−µ+1
M

)
nj
⌉
+1)-SS-valid for each layer j, a peeling decoder can successfully

decoder layer j for all stopping sets of size ≥ (nj −
⌈(

M−µ+1
M

)
nj
⌉
+ 1) by downloading the

coded chunks from the above honest γ fraction of oracle nodes who voted that they received

correct coded chunks.

Combining the above two situations, the decoder can decode the entire CIT if the block

is committed. Hence Dispersal Protocol 1 guarantees availability with probability ≥ 1− pth.

70

CHAPTER 4

Polar Codes to Mitigate DA attacks in Blockchains with

Large Blocks

4.1 Introduction

As seen in Chapters 2 and 3, blockchains provide the security properties at the expense

of poor performance in terms of storage overhead of nodes and transaction throughput.

To improve the storage and throughput performance of blockchains, certain nodes called

accepting nodes are allowed to not store or validate the blockchain blocks. Instead, these

nodes only store the header of each block and rely on verifiable fraud-proofs [13] sent out

by validating nodes (that store/validate the full blocks) to reject invalid blocks. The above

models both blockchains with light nodes seen in Chapter 2 and side blockchains seen in

Chapter 3. As discussed before, only storing the header and relying on fraud proofs makes

the accepting nodes, i.e., the light nodes and side blockchains, vulnerable to DA attacks.

In this attack, as illustrated in Fig. 4.1 left panel, a malicious block producer generates a

block with invalid transactions, publishes its header to the accepting nodes, and hides the

invalid portion of the block from the validating nodes. The validating nodes cannot validate

the missing portion of the block and are unable to generate fraud proofs. In the absence of

fraud proofs, the invalid block is accepted by the accepting nodes1.

1Recall that, as described in Chapter 2, DA attacks cannot be prevented using alarm messages sent by
validating nodes about block unavailability due to the system’s inability to distinguish between honest and
false alarms, and the presence of a dishonest majority of validating nodes [15,40].

71

Figure 4.1: Left panel: Data availability (DA) attack; Middle panel: Detection of DA attack
using probabilistic sampling; Right panel: Preventing DA attacks by storing the block at certain
intermediary oracle nodes.

Note that a DA attack can be modeled as an adversarial erasure channel where the

malicious node decides the positions in the transaction block to inject erasures into. As

seen in Chapters 2 and 3, channel coding has been extensively used to mitigate DA attacks

[13–15,20–22]. In this method, the transaction block is encoded using an erasure code and the

erasure coded symbols of the block are either i) probabilistically sampled by each accepting

node, i.e., they randomly request different coded symbols and reject the block if a certain

requested symbol is not returned by the block producer [13,15,20,22] as done in Chapter 2; or

ii) stored at certain intermediate nodes (called oracle nodes), which ensures that the original

block can be decoded back by accumulating the symbols stored at the different oracle nodes

even if a fraction of them are malicious as done in Chapter 3. Important performance metrics

in the above cases, which we henceforth call system specific metrics, are the probability of

failure of detection of the hidden block portions in the case of probabilistic sampling by

light nodes and the communication costs of communicating the erasure coded symbols of the

block to the oracle nodes in the case of storage at oracle nodes. Encoding the blocks using

erasure codes helps improve the system specific metrics in both scenarios. In particular,

the improvement in the system specific metrics depends on the undecodable threshold of the

code which is defined as the minimum number of coded symbols the malicious block producer

must hide to prevent validating nodes from generating fraud proofs. Despite improved system

72

specific performance, erasure coding still allows the malicious block producer to carry out

an incorrect-coding (IC) attack where it incorrectly encodes the block such that the original

block cannot be decoded back by the validating nodes. In this case, honest validating nodes

can broadcast IC proofs that allow accepting nodes to reject the header [13, 15]. The IC

proof size is another important metric that must be small since this proof is communicated

to all nodes in the system. For linear codes, the IC proof size is proportional to the degree

of the parity check equations of the code used for encoding the transaction block.

Previously, 2D Reed-Solomon (RS) codes [13,43] and Low-Density Parity-Check (LDPC)

codes (Chapters 2 and 3) were used to encode the transaction block. However, as with clas-

sical applications of channel coding, each choice of code comes with its own set of trade-offs

(see Section 4.1.2). Polar codes [26] have seen an enormous success in the past decade includ-

ing the pioneering work of Vardy and co-authors [68–70]. As we demonstrate in this chapter,

these foundational results have far-reaching consequences even in emerging technologies such

as blockchains. In particular, we show a non-trivial method of using the factor graph of polar

codes to mitigate DA attacks and demonstrate that it offers improved trade-offs in various

performance metrics.

In this chapter, we focus on blockchains with large block sizes such as in Bitcoin SV [18],

and provide techniques to mitigate DA attacks in such blockchains. As previously discussed,

large block size applications require large code lengths since large code lengths allow for

smaller partitioning of the large block, thereby reducing the load on the network bandwidth.

In the context of DA attacks, authors in [15] used random LDPC codes for large code lengths.

However, as pointed out in Chapter 2, random LDPC codes undermine the security of the

system due to having a non-negligible probability of generating bad codes. At the same time,

the techniques developed in Chapters 2 and 3 provide deterministic LDPC codes for short

code lengths that result in good performance of the system specific metrics. However, the

undecodable threshold for deterministic LDPC codes is NP-hard to determine [23] making

it difficult to extend the techniques of Chapters 2 and 3 to large code lengths. We fill the

73

above void in this chapter by providing techniques to mitigate DA attacks at large code

lengths. An important performance metric at large code lengths is the threshold complexity

of the code which is defined as the complexity of finding the undecodable threshold. The

threshold complexity affects the system design complexity in blockchains, and, hence, needs

to be small. Overall, for a given code, the following metrics are important at large code

lengths: i) undecodable threshold, ii) IC proof size, iii) threshold complexity, and iv) decoding

complexity. For good performance in mitigating DA attacks, metric i) must be large and the

other metrics should be small.

4.1.1 Contributions

Our contributions in this chapter are listed as follows:

1. We propose the Graph Coded Merkle Tree (GCMT), a CMT that is built using the

encoding graph of polar codes. Although polar codes have dense parity check equations

[71], they have sparse encoding graphs. Thus, we propose a novel technique for building

a CMT using the encoding graph of polar codes and demonstrate that it results in

small IC proof sizes. The IC proof size for the GCMT is around 30-60% smaller in

our simulations compared to a CMT which uses LDPC codes. Note that the earlier

CMT construction discussed in Chapters 2 and 3 uses the parity check matrix of a

code which is unlike the GCMT that is built using the encoding graph.

2. We provide a specialized polar encoding graph design algorithm for the GCMT called

Sampling Efficient Freezing (SEF). The SEF algorithm has the following properties: i)

it results in polar encoding graphs that have large undecodable thresholds and, hence,

good performance of the system specific metrics, ii) it allows flexibility in designing

polar encoding graphs of any codelength instead of just power of 2, and iii) it results

in a very low threshold complexity, simplifying system design at large codelengths.

A GCMT built using the encoding graph produced by the SEF algorithm results in

74

half an order of magnitude reduction in the probability of failure and around 8-10%

reduction in the communication cost in our simulations compared to a CMT built using

LDPC codes.

3. We provide a pruning algorithm that reduces the size of the polar encoding graph

without changing its undecodable threshold. Pruning helps further improve the per-

formance of the system specific metrics by around 5-10%, IC-proof size by around

3-10%, and decoding complexity by more than 50% in our simulations compared to

encoding graphs produced by the SEF algorithm.

4. We provide an extensive performance comparison of a GCMT and its pruned version

with LDPC and 2D-RS codes to demonstrate the advantages of the techniques proposed

in this chapter.

For the rest of this chapter, we call a CMT built using an LDPC code as an LCMT and

a GCMT built using the FG outputted by the pruning algorithm as a PrGCMT.

4.1.2 Previous Work

In [13, 43], 2D-RS codes were used to mitigate DA attacks. Due to their algebraic con-

structions, 2D-RS codes provide large undecodable thresholds that can be easily calculated.

However, 2D-RS codes result in large IC-proof sizes and decoding complexity. The above

limitation of 2D-RS codes was overcome in Chapters 2 and 3 where we used the CMT and

encoded each layer using an LDPC code. The sparse parity check equations in LDPC codes

result in small IC proofs. At the same time, LDPC codes also allow the use of a low com-

plexity peeling decoder [1] for decoding each CMT layer. For LDPC codes, the undecodable

threshold is the minimum stopping set size [1] of the LDPC codes.

Authors in [15] used codes from a random LDPC ensemble to construct the CMT. How-

ever, as pointed out in Chapter 2, random LDPC codes undermine the security of the system

75

due to a non-negligible probability of generating bad codes. Additionally, in Chapters 2 and

3, we proposed specialized LDPC codes for the CMT to mitigate DA attacks based on the

PEG algorithm [55] that demonstrate good system specific performance. However, the works

in Chapters 2 and 3 are designed for short code lengths. The NP-hardness of computing the

minimum stopping set size of LDPC codes [23] makes it difficult to extend the techniques of

Chapters 2 and 3 to large code lengths, which is the focus of this chapter. In the chapter, we

additionally focus on coding-theoretic approaches to mitigate DA attacks. There are works

such as [59] that use KGZ polynomials to mitigate DA attacks. These non-coding-theoretic

techniques may require heavy cryptographic computations.

The rest of this chapter is organized as follows. In Section 4.2, we provide the prelimi-

naries and system model. In Section 4.3, we provide our novel construction of the GCMT. In

Section 4.4, we provide the SEF algorithm to design polar encoding graphs for the GCMT.

In Section 4.5, we provide the pruning algorithm to reduce the size of the encoding graphs

used in the GCMT. We provide simulation results in Section 4.6 and concluding remarks in

Section 4.7.

4.2 Preliminaries and System Model

We use the following notation in this chapter. For a vector a, let a(i) denote the ith element

of a and let min(a; k) denote the kth smallest value of a. Let Z⊗n denote the nth Kronecker

power of matrix/vector Z. Let |S| be the cardinality of set S. All logarithms are with

base 2 in this chapter. Let F2 =

1 0

1 1

 and TN =

1
2

⊗

⌈logN⌉

, for a positive integer N .

For integers a and b, define [a, b] = {i | a ≤ i ≤ b}, (a, b] = {i | a < i ≤ b}, and [a] =

{i | 1 ≤ i ≤ a}, where the elements in the three sets are integers. Let (x)p := x mod p. Also,

let Hash and concat represent the hash and string concatenation functions, respectively.

For functions f and g, f = Ω(g) means ∃ n0 and a constant e > 0 such that ∀ n > n0,

76

eg(n) ≤ |f(n)|. Similarly, f = Θ(g) means ∃ n0 and constants e1, e2 > 0 such that ∀ n > n0,

e1g(n) ≤ |f(n)| ≤ e2g(n).

4.2.1 Coded Merkle Tree (CMT) Preliminaries

In this section, we provide a general framework for the CMT construction that captures its

key properties. Later in Sections 4.3 and 4.5, we present the construction of the GCMT and

its pruned version within the general CMT framework.

A CMT is parameterized by T = (K,R, q, l), where K is the number of information

symbols obtained by partitioning the transaction block, R is the rate of the code used to

encode each layer of the CMT, q is the factor by which the information length decreases at

each CMT layer as we go up along the tree, and l is the number of layers (excluding the

CMT root). At a high level (recall description in Chapter 2), the CMT is constructed as

follows: the transaction block is first partitioned intoK data symbols and a rate R systematic

channel code is applied to generate parity symbols, which together with the data symbols

form Nl coded symbols. These Nl coded symbols form the base layer of the CMT. The Nl

coded symbols are then hashed and the hashes of these Nl coded symbols are combined to

get data symbols of the parent layer. The data symbols of this layer are again coded using a

rate R systematic code and the coded symbols are further hashed and combined to get data

symbols of its parent layer. This iterative process is continued until we get l layers. The

hashes of the coded symbols in the final layer form the CMT root. The CMT root is part of

the header of each transaction block.

Let the layers of the CMT be L0, L1, . . . , Ll where Ll is the base layer and L0 is the

CMT root. For j = 1, 2, . . . l, let the code length and information length of Lj be Nj and

kj, respectively, where2 kj =
K

(qR)l−j . Note that in prior work [14,15,22], Nj =
kj
R

but it need

not be in general. As explained above, the formation of the CMT is an iterative process.

2Note that kj , j ∈ [l], can be any arbitrary decreasing sequence. For simplicity, we define kj as shown
above so that the entire CMT can be defined by the parameters (K,R, q, l) similar to [14,15,22].

77

Figure 4.2: Recursive construction of the CMT. The input to the general layer is the data symbols.
The outputs are the parity symbols (that become part of the general layer) and the data symbols
of the parent layer.

Thus, throughout this chapter, without loss of generality, we only consider two layers of the

CMT which we call the general layer and the parent layer as shown in Fig. 4.2. The parent

layer is created from the general layer and the parent layer becomes the general layer for

the next step of the iterative process. We, henceforth, drop the subscript j for the layer

index from the different variables (unless the context is unclear) which are assumed to either

belong to the general or parent layer. Variables having a tilde accent belong to the parent

layer, otherwise, they belong to the general layer. The general layer gets as input k data

symbols. The outputs for this layer are N coded symbols (that constitute the general layer)

and k̃ data symbols that form input to the parent layer. Let C[i] be the ith coded symbol

of the general layer and let CodeSym = {C[i] | i ∈ [N]} be the set of all coded symbols of

the general layer, where data = {C[i] | i ∈ [k]} and parity = {C[i] | i ∈ (k,N]} are the

set of data and parity symbols of the general layer, respectively. The input to the general

layer is data and the outputs are parity and d̃ata = {C̃[i] | i ∈ [k̃]}. Outputs are

formed as follows in the general CMT framework: 1) Form the parity symbols parity from

the data symbols data using a rate R systematic linear code via a procedure parity =

encodeParity(data); 2) Form the data symbols d̃ata from the coded symbols CodeSym

by a procedure d̃ata = formParentIn(CodeSym). Note that for initialization, when the

general layer is the base layer, data is set to the K partitions of the transaction block.

Generally in the formParentIn() procedure, hashes of a certain number of symbols of

78

CodeSym are concatenated into each data symbol C̃[i] in d̃ata. The number of symbols

concatenated into each data symbol depends on the parameter q. After forming l layers, the

hashes of all the symbols in the final layer forms the root Root of the CMT.

Merkle proofs are an important construct that helps generate verifiable proofs that a

malicious entity has altered the value of symbols, encoding rule, etc. Every coded symbol

τ in the CMT has a Merkle proof Proof(τ) that can be used to check the integrity of τ

with respect to the CMT root Root using a procedure Verify-Inclusion(τ , Proof(τ),

Root). The CMT is decoded using a hash-aware decoder (for example the hash-aware peel-

ing decoder in [15]) that decodes the CMT sequentially from layer L0 to Ll. Due to the

top-down decoding, when the decoder decodes the general layer, it already has the hashes

of the symbols of this layer (provided by the parent layer) to compare against. Using suffi-

cient symbols of each layer Lj, the hash-aware decoder decodes the layer using a procedure

decodeLayer(Lj). The hashes of all the decoded symbols are matched with their hashes

provided in the parent layer.

The hash-aware decoder via the above procedure of hash matching allows detecting IC

attacks and generating IC proofs. Let the decoded CMT symbols τ1, . . . , τd satisfy a degree

d parity check equation (of the erasure code used for encoding). Amongst these symbols,

if there exists a symbol τe whose hash does not match the hash provided by the parent

of τe in the CMT, an IC attack is detected. In this case, the IC proof consists of the

following: the symbols {τ1, . . . , τd} \ τe along with their Merkle proofs, and the Merkle proof

of τe. The IC proof is verified using the following procedure: i) verify that each symbol τi,

i ∈ [d], i ̸= e, satisfies Verify-Inclusion(τi, Proof(τi), Root), ii) decode τe from the

remaining symbols and check that τe does not satisfy Verify-Inclusion(τe, Proof(τe),

Root). More details regarding hash-aware decoders and how they are used to generate IC

proofs can be found in [13,15].

We now describe the method of [15] of building the CMT from the parity check ma-

trix of any erasure code. For the CMT, the encodeParity() procedure is performed via

79

systematic encoding using the parity check matrix. The formParentIn() procedure is as

follows:

C̃[i] = concat({Hash(C[x]) | x ∈ [N], i = 1 + (x− 1)k̃}) ∀i ∈ [k̃], (4.1)

and d̃ata = {C̃[i] | i ∈ [k̃]}. The above method of grouping was chosen in the formParentIn()

procedure because it allows an easy method to describe the Merkle proof of the CMT sym-

bols as well as it satisfies a key property called the repetition property that we will explain

shortly. The Merkle proof of the CMT symbol Cj[i], i ∈ [Nj] consists of a data symbol and a

parity symbol from each intermediate layer of the tree that is above Lj [15,22]. In particular,

for j ∈ [2, l], Proof(Cj[i]) = {Cj′ [1 + (i− 1)kj′], Cj′ [1 + kj′ + (i− 1)Nj′−kj′] | j
′ ∈ [j − 1]}.

The coded symbols built using the formParentIn() procedure in (4.1) satisfy an important

property called the repetition property [14]. According to this property, the Merkle proofs

of η fraction of distinct base layer coded symbols of the CMT contain at least η fraction of

distinct coded symbols from each CMT layer. This property is important to us for the design

of the dispersal protocol in side blockchains and we show in Section 4.3 that the GCMT also

satisfies the repetition property.

In the next two subsections, we summarize important aspects of the system models for DA

attacks that occur in light nodes and side blockchains from Chapters 2 and 3, respectively.

4.2.2 DA attacks in blockchains with light nodes

4.2.2.1 System Model

To reduce the storage requirement, blockchain systems run light nodes. In this case, light

nodes act as accepting nodes and the validating nodes are full nodes that send fraud proofs

to the light nodes. To analyze DA attacks in blockchains with light nodes, we consider

the following simplified system model compared to Chapter 2. Consider a blockchain system

80

that has a block producer, light nodes, and a full node oracle. The full node oracle and all the

light nodes are honest. The block producer can be malicious. Each light node is connected

to the full node oracle and the block producer. The above system description follows 2 where

the full node oracle represents the fact that the network of honest full nodes is connected

and each light node is connected to at least one honest full node. The system functions in

the following way:

1. When the block producer generates a block, it constructs its CMT. It then sends the

CMT to the full node oracle and the CMT root to the light nodes. On receiving sam-

pling requests from the light nodes, the block producer returns the requested samples

with their Merkle proofs.

2. The full node oracle, on receiving a CMT from the block producer, decodes the CMT

using the hash-aware decoder (as described in the general CMT framework). After

decoding the base layer of the CMT that contains the transaction data, it verifies all

transactions and sends a fraud proof to all light nodes if it finds invalid transactions.

During decoding, if the full node oracle detects an IC attack, it sends out an IC proof

to all the light nodes.

3. Light nodes only store the CMT root corresponding to the block generated by the

block producer. On receiving a CMT root, light nodes make sampling requests for

coded symbols of the CMT base layer from the block producer. They perform Merkle

proof checks on the returned symbols and send the symbols that satisfy the Merkle

proofs to the full node oracle. A light node rejects the block if any of the requested

samples are not returned or fail the Merkle proof check. On receiving fraud proofs or

IC proofs sent out by the full node oracle, light nodes verify the proof and reject the

block if the proof is correct.

81

4.2.2.2 Threat Model

We consider an adversary that acts as a malicious block producer and conducts a DA attack

by hiding coded symbols of the CMT. On receiving sampling requests from light nodes, it

only returns coded symbols that it has not hidden and ignores other requests. The adversary

causes a DA attack at layer Lj of the CMT by i) correctly generating the CMT of a block

according to the general CMT framework in Section 4.2.1, ii) hiding a small portion of the

coded symbols of Lj such that the full node oracle is unable to decode Lj.

The light nodes aim to detect a DA attack that the adversary may perform on any layer

of the CMT [15, 22]. To do so, they randomly sample a few base layer coded symbols to

check the availability of the base layer. Randomly sampling the base layer of the CMT

results in the random sampling of all the intermediate layers of the CMT via the Merkle

proof of the base layer samples [15] that allows the light nodes to check the availability of

the intermediate layers.

4.2.2.3 System Specific Metric

The system specific metric in the case of light nodes is the probability of failure for a single

light node to detect a DA attack Pf (s), where s is the total number of base layer samples

requested by the light nodes. A light node fails to detect a DA attack if none of the samples

requested from the base layer of the CMT or their Merkle proofs are hidden by the malicious

node. Let αmin,j be the undecodable threshold of layer Lj of the CMT. Then Pf (s) =

maxj∈[l]

(
1− αmin,j

Nj

)s
. Thus, large αmin,j result in small Pf (s).

82

4.2.3 DA oracle in Side blockchains

4.2.3.1 System Model

To improve the transaction throughput, a single trusted blockchain supports a large number

of side blockchains, each of which makes transactions in parallel[14]. In this case, the block

producer is a node in the side blockchain, where the other side blockchain nodes (that are

not the block producer) act as the validating nodes, and the nodes in the trusted blockchain

act as the accepting nodes. To mitigate DA attacks in side blockchains, a DA oracle is used

as seen in Chapter 3. The DA oracle acts as an interfacing layer between the side blockchain

nodes and the trusted blockchain with the goal of storing chunks of the transaction block in

order to ensure availability. We now provide a brief description of the DA oracle required for

the purposes of this chapter. Detailed descriptions can be found in Chapter 3 and [14]. Let

the DA oracle have θ nodes where the adversary is able to corrupt a maximum β fraction

of them. Similar to Chapter 3 and [14], we assume β < 1
2
. For side blockchains that use the

DA oracle, there exists a dispersal protocol which is a rule that specifies which oracle node

receives which base layer CMT symbols, each receiving g of them along with their Merkle

proofs and the CMT root. The DA oracle functions as follows:

1. When the block producer generates a block, it constructs its CMT. The block producer

then uses the dispersal protocol to communicate the coded symbols of the CMT base

layer and their Merkle proofs to the θ oracle nodes. Each oracle node also receives the

CMT root.

2. Each oracle node on receiving the g coded symbols of CMT as specified in the dispersal

protocol performs Merkle proof checks on the received symbols. Each oracle node

accepts the CMT root and votes a yes if all its received symbols pass the Merkle proof

checks.

3. For a parameter γ such that γ ≤ 1−2β, the CMT root is sent to the trusted blockchain

83

nodes if at least γ + β fraction of the oracle nodes vote yes. In this case, each oracle

node stores the received g coded symbols, their Merkle proofs, and the CMT root.

Note that in the above system, other side blockchain nodes (that are not the block

producer) prevent IC attacks and invalid transactions by sending IC proofs and fraud proofs

to the oracle nodes. The oracle nodes check the proof validity and forward it to the trusted

blockchain nodes.

4.2.3.2 Dispersal Protocol

The dispersal protocol satisfies the condition that whenever the CMT root is sent by the

DA oracle to the trusted blockchain nodes, any side blockchain node must be able to decode

each layer of the CMT from the coded symbols stored at the oracle nodes. We define the

dispersal protocol by the set C = {A1, . . . ,Aθ}, where Ai, i ∈ [θ] denotes the set of base

layer coded symbols sent to the ith oracle node and |Ai| = g. Consider the following.

Definition 7. Dispersal Protocol C is (j, η)-correct if every γ fraction of oracle nodes col-

lectively receives at least Nj − η + 1 distinct coded symbols from layer Lj of the CMT.

A dispersal protocol that is (j, αmin,j)-correct ensures that if the CMT root is sent by

the DA oracle to the trusted blockchain, any side blockchain node will be able to decode

back layer Lj of the CMT. Thus, we want a dispersal protocol that is (j, αmin,j)-correct for

all 1 ≤ j ≤ l. Consider the following lemma. The proofs of all lemmas in this chapter are

provided in the Appendix in Section 4.8.

Lemma 10. Let µmin = ⌊min1≤j≤l

(
αmin,j−1

Nj

)
Nl⌋ + 1. For CMTs that satisfy the repetition

property as mentioned in Section 4.2.1, if a dispersal protocol is (l, µmin)-correct, then it is

(j, αmin,j)-correct for all 1 ≤ j ≤ l.

Thus, based on the above lemma, we would like to design a (l, µmin)-correct dispersal

protocol. First, consider the following definition.

84

Definition 8. ([21, Definition 2]) Dispersal protocol C = {A1,A2, . . . ,Aθ} is called a g-

dispersal if each Ai is a g element subset chosen uniformly at random with replacement from

all the g element subsets of the Nl base layer coded symbols of the CMT.

Now, we can show the following for a g-dispersal based on [21, Lemma 2].

Lemma 11. Let He(p) = −p ln(p)− (1− p) ln(1− p). For a g-dispersal protocol C,

Prob(C is not (l, µmin)-correct) ≤ eθHe(γ)×Nl−µmin∑
j=0

(−1)Nl−µmin−j
(
Nl

j

)(
Nl − j − 1

µmin − 1

)[(
j
g

)(
Nl

g

)]γθ
 .

The RHS of the above inequality can be made smaller than an arbitrary threshold pth by

using a sufficiently large g. Let g∗(µmin, θ, Nl, γ, pth) be the smallest g such that the RHS in

Lemma 11 is less than pth. In this chapter, we use a g∗(µmin, θ, Nl, γ, pth)-dispersal protocol.

4.2.3.3 System Specific Metric

The system specific metric in side blockchains is the communication cost associated with the

dispersal protocol. It is the cost of communicating the different base layer CMT symbols

(along with their Merkle proofs) to the different oracle nodes (each receiving g∗(µmin, θ, Nl, γ, pth)

of them) as specified in the dispersal protocol. Let X be the total size of one CMT coded

symbol along with its Merkle proof (X is called the single sample download size). Mathemat-

ically, we can write the communication cost as CommCost= θg∗(µmin, θ, Nl, γ, pth)X since

g∗(µmin, θ, Nl, γ, pth) coded symbols, each of size X, are sent to θ oracle nodes. Large un-

decodable thresholds αmin,j result in a large µmin and, hence, a smaller g∗(µmin, θ, Nl, γ, pth),

which in turn reduces the communication cost.

4.2.4 Design objectives for CMT at large code lengths

85

As mentioned earlier, in this chapter, we focus on designing CMTs at large code lengths using

polar factor graphs. The different metrics that are of importance to a CMT at large code

lengths are i) IC proof size; ii) decoding complexity; iii) undecodable thresholds αmin,j; iv)

threshold complexity of computing the undecodable thresholds; v) CMT root size. Improved

performance on the system specific metrics requires large undecodable thresholds αmin,j of

the different layers of the CMT. Additionally, since the system specific metrics depend on

the undecodable threshold, in order to provide guarantees on the system specific metrics, the

threshold complexity must be small. At the same time, the CMT must also result in small

IC proof sizes, small decoding complexity, and small CMT root size. In the next section,

we provide a CMT construction using polar factor graphs called the GCMT which performs

well in all the above metrics when the size of the transaction blocks is large.

4.3 Graph Coded Merkle Tree (GCMT)

In this section, we first provide background about the factor graph of polar codes that we

use in the GCMT construction. We then explain the construction method of the GCMT.

4.3.1 Polar Factor Graphs Preliminaries

The transformation matrix F2n = F⊗n
2 is used to define an (N, k) polar code of codelength

N = 2n for some positive integer n and information length k [26]. Each row of F2n cor-

responds to either a data (information) symbol or a frozen symbol (zero symbol in this

chapter). The generator matrix of the polar code is the submatrix of F2n corresponding to

the data symbols. The design of a polar code involves choosing which rows of F2n should

correspond to the data symbols (or equivalently which rows should correspond to frozen

symbols). A polar code can also be represented using a factor graph (FG) [72]. For example,

the FG representation of F8 is shown in Fig. 4.3 left panel. In general, the FG of FN , which

we denote by GN , has n + 1 columns of VNs and n columns of CNs. For the variable node

86

Figure 4.3: Left panel: FG G8 where circles represent VNs and squares represent CNs; Right panel:
Stopping set; Bottom panel: Stopping tree. The black VNs and CNs in the right and bottom panels
represent the stopping set/tree.

at VN column m and row i in FG GN , we define its VN index λ = (m − 1)N + i, i ∈ [N],

m ∈ [n+ 1] and refer to the VN as vλ. Similarly, for each check node at CN column m and

row i in FG GN , we define its CN index z = (m− 1)N + i, i ∈ [N], m ∈ [n] and refer to the

CN as cz. The VN and CN indexing is also shown in Fig. 4.3. Note that in the FG of polar

codes, CNs have a small degree of either 2 or 3. We leverage this property in our GCMT

construction to result in small IC proof sizes.

The construction of the CMT in Section 4.2.1 requires systematic encoding that can be

performed similar to [73] by operating on the FG GN of the polar code. While efficient

systematic encoding of polar codes is presented in works such [73, 74], we propose a new

encoder known as the peeling encoder for polar codes (PEPC). The motivation for using a

87

PEPC is it allows successful encoding on the pruned polar code FGs obtained in Section 4.5.

The systematic encoders in [73, 74] are designed to use the full FG of polar codes and it is

not straightforward whether they can be used on the pruned FGs produced in Section 4.5.

Given information and frozen index sets A ⊂ [N] and F = [N] \ A, such that |A| = k

(also, let N = 2n), systematic encoding in the PEPC is performed as follows: i) place the k

data symbols at the VNs {vnN+i | i ∈ A} (i.e., VNs in the rightmost column of FG GN at

rows corresponding to A) and set the VNs at {vi | i ∈ F} (i.e., VNs in the leftmost column

of FG GN at rows corresponding to F) to zero symbols; ii) determine (decode) the rest of

the VNs from the check constraints of the FG GN using a peeling decoder. By design, the

coded symbols {vnN+i | i ∈ [N]}, are systematic. Since we are relying on a peeling decoder

for encoding, we need to verify the correctness of the encoding procedure, which we do in

the following lemma.

Lemma 12. The PEPC results in a valid codeword for all choices of information set A.

For decoding, we again use a peeling decoder on the code FG. Similar to LDPC codes,

the peeling decoder on the FG of polar codes fails if all VNs corresponding to a stopping

set of the FG are erased. Mathematically, a stopping set is a set of VNs with the property

that every CN connected to a VN in this set is connected to at least two VNs in the set.

The subset of VNs of a stopping set ψ that are in the rightmost column of the FG is called

the leaf set [72] of ψ which we denote as Leaf-Set(ψ). An important category of stopping

sets in the FG of polar codes is called stopping trees [72]. A stopping tree is a stopping set

that only contains one VN from the leftmost column of the FG, which is called the root of

the stopping tree. An example of a stopping set and a stopping tree in the FG G8 is shown

in Fig. 4.3. For a given information index set A, let ΨA denote the set of all stopping sets

in the FG GN that do not have any frozen VNs from the leftmost column of the FG. The

following lemma from [72] provides important properties of stopping sets in the FG of polar

codes that help simplify its undecodable threshold.

88

Lemma 13. ([72]) Consider a polar FG GN , where N is a power of two and let A be the

information set. Each VN vi, i ∈ [N], in GN is the root of a unique stopping tree. Let

STNi be the unique stopping tree with root vi in GN . Then, |Leaf-Set(STNi)| = TN(i) and

minψ∈ΨA |Leaf-Set(ψ)| = mini∈A |Leaf-Set(STNi)| = mini∈ATN(i).

4.3.2 GCMT construction using polar factor graphs

In this section, we provide the construction of the GCMT within the general CMT framework

provided in Section 4.2.1. We later show in Section 4.5 how the GCMT construction provided

below can be customized to use pruned polar FGs. For the purposes of clarity, we first provide

the GCMT construction that uses the entire FG of the polar codes. We later demonstrate

how the GCMT construction can be modified when the full FG is not used. The construction

of the GCMT provided below can be generalized to use any encoding graph (hence the name

Graph Coded Merkle Tree). In this chapter, we focus on the factor graph of polar codes for

the construction of the GCMT because it provides provable guarantees on its undecodable

threshold, as we demonstrate in Lemma 16.

We next describe the construction of a GCMT T = (K,R, q, l). Consider the general layer

of the GCMT with codelength N and information length k. When the full FG of polar codes

is used, N = k
R
, but it need not be the case in general3. For now, assume that N is a power

of 2. We later remove this assumption. Let A and F be the information and frozen index

sets of the general layer. We have |A| = k and |F| = N−k. For notational ease, we re-index

the row indices in FG GN such that A and F are the indices [1, k] and (k,N], respectively.

For FG GN , we define TVN as the total number of VNs in the FG. Additionally, for FG GN ,

define an index called the dropped index dI which is the difference between TVN and N . For

the full FG of polar codes, TVN = N(logN + 1) and dI= N(logN + 1)−N = N logN .

For the GCMT, we also define certain intermediate coded symbols that are used to

3In this chapter, we use K to represent the GCMT parameter and k to represent the information length
of the general layer.

89

Figure 4.4: GCMT T = (K = 8, R = 0.5, q = 4, l = 3). In the GCMT, the coded symbols of all
the columns of the polar FG are hashed into the parent layer. The dropped symbols are shown in
dotted. The symbols in L3 are colored according to the column they belong to in FG G16. The
circled symbols in L1 and L2 are the Merkle proof of the red symbols in L3. The data (parity)
symbols in the Merkle proofs are shown in solid (dashed) circles.

form the GCMT as C[λ] which corresponds to VN vλ in the FG GN . In the general CMT

framework, we have data = {C[λ] | λ ∈ [dI + 1,dI + k]}, parity = {C[λ] | λ ∈

(dI + k,dI + N]}, and CodeSym = data ∪ parity. Next, we explain the different

procedures involved in the general CMT framework for the GCMT construction.

4.3.2.1 Formation of GCMT coded symbols

We first explain the encodeParity() procedure. For the data symbols data, use a PEPC

to find the parity symbols parity, where VNs corresponding to frozen = {C[λ] | λ ∈

(k,N]} in GN are set as zero symbols. The PEPC also provides the set of symbols dropped =

{C[λ] | λ ∈ [dI]} in FG GN which are dropped from the GCMT, i.e., they are not included

in CodeSym. However, before dropping, we use their information in the formParentIn()

90

procedure which is as follows for a GCMT. We have

C̃[λ] =concat({Hash(C[x]) | x ∈ [TVN], λ = 1 + (x− 1)k̃}), ∀λ ∈ [d̃I + 1, d̃I + k̃],

(4.2)

and d̃ata = {C̃[λ] | λ ∈ [d̃I + 1, d̃I + k̃]}. An example4 for the formation of the symbols

C2[28] and C1[10] in the GCMT T = (K = 8, R = 0.5, q = 4, l = 3) is shown in Fig. 4.4.

In the above formParentIn() procedure, the data symbols in d̃ata are formed using

the hashes of all the TVN intermediate coded symbols C[λ] of the general layer, i.e., all the

symbols in dropped∪CodeSym or all the VNs in the FG GN . Each data symbol in d̃ata is

formed by combining q̃ = TVN
k̃

hashes (of the intermediate coded symbols of the general layer)

together according to (4.2). The intuition behind using the hashes of all the intermediate

coded symbols in the formParentIn() procedure is so that the symbols in dropped also

have Merkle proofs. Although dropped, the symbols in dropped can be decoded back by a

peeling decoder using the available (non-erased) symbols of CodeSym. Once decoded, they

can be used to build IC proofs of small size using the degree 2 and 3 CNs in the FG GN .

4.3.2.2 Merkle Proof of GCMT symbols

Due to the above formParentIn() procedure, the symbols in both CodeSym and dropped

of the general layer have Merkle proofs. Since dropped∪CodeSym are all the intermediate

coded symbols C[λ], we specify the Merkle proof Proof(C[λ]). For j ∈ [2, l], the Merkle

proof of the symbol Cj[λ], λ ∈ [TVNj], consists of a data symbol and parity symbol from

each layer of the GCMT above Lj similar to an LCMT in [14, 15, 22]. Precisely, the Merkle

4The formParentIn() procedure for the GCMT is the same as that provided in (4.1). The only difference
is that now we consider the modulo operation across all the VNs in the FG.

91

proof is given by the following. For j ∈ [2, l]

Proof(Cj[λ]) = {Cj′ [dIj′ + 1 + (λ− 1)kj′], Cj′ [dIj′ + 1 + kj′ + (λ− 1)Nj′−kj′] | j
′ ∈ [j − 1]}.

(4.3)

An illustration of Merkle proof for different symbols in the GCMT T = (K = 8, R =

0.5, q = 4, l = 3) is shown in Fig. 4.4. The Merkle proof in (4.3) is defined such that the

data symbols from each layer in Proof(Cj[λ]) lie on the path of Cj[λ] to the GCMT root

as shown in Fig. 4.4. Similar to an LCMT ([14, 15, 22]), the data symbols in this path are

used to check the integrity of Cj[λ] in Verify-Inclusion(Cj[λ], Proof(Cj[λ]), Root).

Due to the definitions of formParentIn() procedure in (4.2) and Merkle proofs in (4.3),

we have the following.

Lemma 14. The GCMT satisfies the repetition property.

4.3.2.3 Hash-aware peeling decoder and IC proofs

We decode the GCMT using a hash-aware peeling decoder similar to an LCMT in [14,15,22].

In the general CMT framework, the decodeLayer() procedure for the general layer is as

follows: it acts on the FG GN that is used to encode the general layer. It takes as inputs the

frozen symbols frozen and the non-hidden symbols of CodeSym. Using a peeling decoder,

it finds all symbols in dropped ∪ CodeSym (i.e., the value of all the VNs in FG GN). The

hash of every decoded symbol is matched with its hash provided by the parent layer. In the

case that the hashes do not match, an IC proof is generated using the degree 2 or 3 CN of

the FG GN as per the general CMT framework.

4.3.3 System metrics for the GCMT

With the GCMT construction provided above, we now analyze the main system metrics.

Note that the decoding complexity, IC proof size, and the GCMT root size have straight-

92

forward calculations and we delegate their discussion to Section 4.6 where we also compare

the performance to other coding methods. In this subsection, we focus on the undecodable

threshold of the GCMT.

Recall that the undecodable threshold αmin,j for layer Lj of the GCMT is the minimum

number of coded symbols that must be hidden (erased) from layer Lj to prevent the peeling

decoder from decoding the layer. Consider the general layer of the GCMT. Note that the VNs

corresponding to frozen are set to zero symbols during the encodeParity() procedure

in the GCMT and, hence, cannot be erased. Thus, stopping sets in ΨA are all the sets of

VNs that, if erased, will prevent the hash-aware peeling decoder from decoding the general

layer. Since all the coded symbols except the rightmost column of GN are dropped, i.e., they

are not stored in the GCMT in CodeSym, the hash-aware peeling decoder fails if the leaf set

of a stopping set in ΨA is hidden/erased. Thus, the undecodable threshold (for the general

layer) αmin = minψ∈ΨA |Leaf-Set(ψ)| = mini∈ATN(i) (from Lemma 13).

Note that (from Lemma 13) TN(i) is the leaf set size of the stopping tree with root vi,

i ∈ [N]. Thus, based on the expression of the undecodable threshold, the best strategy for

the adversary to result in the smallest undecodable threshold is to erase/hide the smallest

leaf set amongst all stopping trees with a non-frozen root. Clearly, the undecodable threshold

depends on the choice of the information index set A used in the general layer of the GCMT.

In the next section, we will provide the Sampling Efficient Freezing (SEF) algorithm to choose

the information index set in order to maximize the undecodable threshold.

4.4 Polar Factor Graph Design for the GCMT: Sampling Efficient

Freezing

In this section, we provide a method to select the frozen index set F (or equivalently the

information index set A) to be used in the general layer that results in large αmin. Note that

|F| = N − k and A = [N] \F , where k is the message length. Since, αmin = mini∈ATN(i), a

93

naïve frozen set selection method to maximize αmin would be to select the indices of k VNs

from the leftmost column of the FG GN that have the smallest stopping tree leaf set sizes

TN(i). We call the naïve frozen set selection as Naïve-Freezing (NF) algorithm that satisfies

αNFmin = min (TN ;N − k + 1) (i.e., the (N − k + 1)-th smallest value of TN).

It should be noted that for a given N and k, the NF algorithm results in the largest

possible undecodable threshold. However, next, we show that the SEF algorithm via a more

informed method of selecting the frozen index sets can improve the performance of the system

specific metrics compared to the NF algorithm. The detailed SEF algorithm is provided in

Algorithm 6 and it is based on the following principle. It first selects the indices to freeze

such that the undecodable threshold becomes the largest possible (this is achieved by line 4

of the algorithm). The remaining indices to freeze are then selected from the bottom of the

FG (lines 5-6) which allows the code to be punctured (i.e., it reduces the code length at a

fixed information length). Since for a fixed undecodable threshold, the performance of the

system specific metrics is inversely related to the code length, the SEF algorithm results in

improved performance. Note that the SEF algorithm also allows us to design polar factor

graphs where the code length N is not limited to be a power of two. For the remainder of

this section, assume that for all FG GN , the rows in GN are indexed 1 to N from top to

bottom (as opposed to the indexing mentioned in Section 4.3.2). We now explain the SEF

algorithm in detail. Consider the following lemma.

Lemma 15. Consider FG GN where N is a power of two and let F and A be the frozen

and information index sets, respectively. For a parameter δ, define the set of VNs VδN [m] =

{vλ | λ = (m − 1)N + i, i ∈ [N − δ + 1, N]}. If [N − δ + 1, N] ⊂ F , then: i) ∀ ψ ∈ ΨA, ψ

does not have any VNs in VδN [logN + 1]; ii) all VNs in {VδN [m] | m ∈ [logN + 1]} are zero

symbols.

According to the above lemma, if VNs corresponding to the last δ rows from the bottom

in the leftmost column of FG GN are all frozen, then no stopping set in ΨA can have a VN

from the last δ rows in the rightmost column of FG GN . This property helps puncture the

94

Figure 4.5: Left panel: FG G6 obtained by removing the VNs from the last 2 rows of G8 (removed
VNs are shown in low opacity). The values of the stopping tree size for each VN in the leftmost
column of FG G6, i.e., T6(i), are provided in the figure. The VNs marked in red are the frozen VNs
F selected using the SEF algorithm. The rows in FG G6 are numbered such that the information
and frozen indices A and F are the indices [1, 3] and (3, 6], respectively, as required for the GCMT
construction mentioned in Section 4.3. The non-dropped VNs in FG G6 are marked in blue where
the dark blue circles represent the information symbols and the light blue circles represent the
parity symbols. Note that since the last two rows in FG G6 are frozen, the VNs in these rows are
removed to get the SEF algorithm output G4 (indicated by the dotted box) and NSEF = 4; Middle
panel: Pruned FG Ĝ4 obtained by using the pruning algorithm with input FG G4 obtained from the
left panel. The VN indexing corresponds to the index of the corresponding VNs in the unpruned
FG; Right panel: Pruned FG Ĝ4 same as the middle panel but with VNs and CNs re-indexed in
ascending order according to their index in middle panel.

code in the SEF algorithm while keeping the undecodable threshold constant, which improves

the performance of the system specific metrics since i) the VNs in VδN [logN +1] do not need

to be sampled, thus, improving the probability of failure; ii) the VNs in VδN [logN + 1] do

not need to be dispersed to the oracle nodes, thus, reducing the communication cost. We

formally calculate the undecodable threshold of the SEF algorithm in Lemma 16. Lemma

15 also allows us to reduce the size of FG GN by noting that all the VNs in the last δ rows

of GN are zero symbols and, hence, can be pruned along with their associated edges. This

removal will give us a polar FG GN−δ of code length N−δ. We utilize this property to design

FGs of code lengths that are not powers of two. An example of FG G6 is shown in Fig. 4.5.

The SEF algorithm takes as input information length k and target code length N (for a

target rate of R = k
N

). The outputs of the algorithm are the actual code length NSEF where

NSEF ≤ N , FG GNSEF
to be used for the GCMT construction where GNSEF

has NSEF coded

95

Algorithm 6 SEF Algorithm
1: Inputs: N , k Output: NSEF , GNSEF

, FSEF
2: Initialize: N̂ = 2⌈logN⌉, polar FG GN̂ , δ1 = N̂ −N , i = N
3: tN = TN̂ with last δ1 entries removed
4: F = {e | e ∈ [N], tN(e) < min(tN ;N − k + 1)}
5: while |F| < N − k do
6: if i ̸∈ F then F = F ∪ i end if ; i = i− 1

7: δ2 = max ({δ | [N − δ + 1, N] ⊂ F}); NSEF = N − δ2
8: GNSEF

= FG obtained by removing all VNs in {Vδ1+δ2
N̂

[m] | m ∈ [log N̂ + 1]} and their
connected edges from GN̂ (also remove any CNs that have no connected edges); FSEF =
{e | e ∈ F , e ≤ NSEF}

symbols, and the frozen index set FSEF such that |FSEF | = NSEF − k. The actual rate of

the code is k
NSEF

≥ R.

In the SEF algorithm, N̂ denotes the smallest power of two larger than N . We derive

the FG of code length N (i.e., GN) from the FG GN̂ . The vector TN̂ stores the stopping tree

sizes for VNs vλ, λ ∈ [N̂] in the FG GN̂ . We start the algorithm by implicitly removing the

last δ1 = N̂−N rows from FG GN̂ to obtain GN , where the vector tN stores the stopping tree

sizes of the corresponding VNs in FG GN (step 3). Then in steps 4-6, we select the frozen

index set F that contains the indices in [N] to be frozen for the FG GN such that |F| = N−k

(output FSEF is derived from F). For the selection of F , we first select all the indices e in

[N] such that the VNs ve have their stopping tree sizes less than min(tN ;N − k + 1) (step

4). Then, the remaining indices in F (so that |F| = N − k) are selected as the VN indices

from the bottom row of FG GN that are not already present in F (steps 5-6). The variable

δ2 (step 7) represents the largest number δ such that the last δ rows from the bottom of

FG GN are frozen. Thus, δ2 represents the rows of FG GN , the VNs corresponding to which

can be removed from the FG GN without affecting the undecodable threshold. We achieve

the removal in step 8 that gives us the output FG GNSEF
. The removal also results in

NSEF = N − δ2 (step 7). The output frozen index set FSEF is keeping the indices from F

that are less than or equal to NSEF (step 8). An example of the application of the SEF

algorithm is provided in Fig. 4.5. For the FG GNSEF
, we denote the total number of VNs in

96

the factor graph by totVN(GNSEF
).

It is important to note that in the SEF algorithm, we freeze the bottom rows of FG

GN̂ which allows us to completely prune the VNs and CNs in these rows from the FG. In

contrast, for traditional applications (e.g. transmission over the BEC), this type of pruning

is not advisable since the last few rows generally contain the most reliable VNs and are rarely

frozen [26]. In the next section, we explain how the SEF algorithm is used for the GCMT

construction.

Remark 6. In the SEF algorithm, we can first freeze all rows with stopping tree sizes less

than τ for some τ < min(tN ;N − k + 1) and then freeze the remaining indices from the

bottom of the FG. However, since the stopping tree sizes are a power of 2 [72], it is easy to

see that we cannot get a larger ratio αmin

NSEF
. Thus, the SEF algorithm optimizes to reduce the

probability of failure. For convenience, we use the same SEF algorithm for side blockchains.

4.4.1 Building the GCMT using the SEF Algorithm

Consider the construction of a GCMT T = (K,R, q, l). For the general layer with informa-

tion length k, we use the SEF algorithm with inputs (k
R
, k) to get the outputs (NSEF ,GNSEF

,FSEF)

which are used for the construction of the GCMT as described in Section 4.3.2. In particular,

the set of VNs V = {vλ | λ ∈ [totVN(GNSEF
)]} of FG GNSEF

is used in formParentIn()

procedure of the GCMT. Recall that the formParentIn() procedure groups the hashes of

the symbols of the general layer into k̃ symbols (that form the information symbols of the

parent layer). Thus to make an even partition into k̃ groups, we zero pad the set of VNs V .

Let q̃ = ⌈totVN(GNSEF
)

k̃
⌉. We zero pad q̃ · k̃ − totVN(GNSEF

) VNs to V and set TVN = q̃ · k̃

and dropped index dI = TVN−NSEF . Using these parameters, we construct the GCMT as

explained in Section 4.3.2. An example of the GCMT construction using the above proce-

dure is shown in Fig. 4.6. We have the following lemma for a GCMT built using the SEF

algorithm.

97

Figure 4.6: GCMT T = (K = 6, R = 0.5, q = 2, l = 2) constructed using the FGs output by the
SEF algorithm. Here, NSEF,2 = 11 and NSEF,1 = 4

Lemma 16. For the general layer of a GCMT T = (K,R, q, l) constructed using the SEF

algorithm as explained above, where ASEF = [NSEF] \ FSEF , the undecodable threshold is

αmin = mini∈ASEF
T k

R
(i). Additionally, the threshold complexity (see Section 4.2.4) is the

complexity of the SEF algorithm (applied on all layers of the GCMT) and is
∑l

j=1O(
K

(qR)l−j).

Due to step 4 of the SEF algorithm, mini∈A T k
R
(i) ≥ min(tN ;N − k + 1) and hence the

undecodable threshold of the SEF algorithm is as big as that of the NF algorithm. In the

next lemma, we analyze the asymptotic performance of the GCMT for large block sizes and

compare it to Merkle trees that do not use channel coding and those that use 2D-RS codes5.

Lemma 17. Consider a GCMT T = (K,R, q, l) built using the SEF algorithm and 2D-RS

codes [13] with K data symbols and rate R. Let the block size and the hash size be b and y,

respectively. Let Sg, Su, and SRS be the total sample download size (i.e., the size of the base

5Due to the NP-hardness of determining the minimum stopping set size for LDPC codes, it is difficult to
provide similar asymptotic performance guarantees for the LCMT built using such codes.

98

layer samples and their Merkle proofs) for the light nodes to achieve a certain probability

of failure Pf to detect a DA attack on the base layer of the GCMT, uncoded Merkle tree

and 2D-RS codes, respectively. Also, let Ig and IRS be the IC proof size for the GCMT and

2D-RS codes, respectively. For b ≫ yK (case of large block sizes): i) Su

Sg = Ω(
√
K), ii)

Su

SRS = Ω(K), and iii) IRS

Ig
= Θ(

√
K).

According to Lemma 17, the GCMT is a factor
√
K worse than 2D-RS codes in the

asymptotic total sample download size while being a factor
√
K better than 2D-RS in the

IC proof size. Additionally, the GCMT has lower decoding complexity and CMT root size

compared to 2D-RS codes as we show in Table 4.1. Thus, the GCMT offers a better trade-off

in the different performance metrics compared to 2D-RS codes. In Section 4.6, we provide

empirical evaluations to further demonstrate the benefits of our GCMT construction. In

the next section, we provide techniques to prune the FG of polar codes (in addition to the

pruning in the SEF algorithm) to further improve the performance of the GCMT.

4.5 Pruning the Factor Graph of Polar codes for the GCMT con-

struction

For inputs (k
R
, k) to the SEF algorithm, let the output be the FG GNSEF

and let N̂ =

2⌈log(k/R)⌉. The FG GNSEF
contains NSEF (log N̂ + 1) VNs. In the GCMT, the hashes of all

these VNs are stored in the parent layer. In the case of a CMT where an (k
R
, k) channel code

is used in the general layer, the hashes of only k
R

VNs are stored in the parent layer. More

hashes in the case of a GCMT imply that each symbol in a GCMT is of a larger size than

the corresponding symbol of a CMT with the same parameters (K,R, q, l). Large symbol

sizes increase the Merkle proof sizes which can increase the IC proof sizes, limit the total

number of samples for a fixed download size budget increasing the probability of failure,

and increase the communication cost in DA oracles. A higher number of VNs in the GCMT

FG also results in higher decoding complexity. Thus, in this section, we provide a pruning

99

algorithm to remove VNs from the FG of polar codes so as to reduce the Merkle proof sizes

and the decoding complexity.

We now explain the pruning algorithm. It takes as input the polar FG GN , where N is

the number of coded symbols, and the frozen index set F . We call the VNs in the rightmost

column of GN (N in number) as the non-dropped VNs (since they are the VNs that are

actually stored in the GCMT and are not dropped as per Section 4.3.2). The remaining

VNs are called the dropped VNs. We keep track of which VNs are the non-dropped VNs in

the algorithm. The output of the algorithm is the pruned FG ĜN with the same codelength

N . Our algorithm is similar to [75] which was designed for the belief propagation decoder.

However, our algorithm is designed to remove the redundant operations specifically for the

peeling decoder while ensuring that the decoded value of the coded symbols remain the same.

Thus, the undecodable threshold does not change due to pruning. Additionally, unlike [75],

the maximum CN degree is not increased by our pruning algorithm which ensures that the

IC proof size does not increase due to pruning. A CN of degree d connected to coded symbols

τ1, . . . , τd satisfies the parity check constraint
∑d

i=1 τi = 0. We remove VNs and CNs from

the FG while ensuring that the CN constraints are not affected. Our algorithm has the

following main components:

1. Frozen VNs: During encoding, the frozen VNs are set to zero symbols (see Section

4.3.1). Thus, the frozen VNs do not affect the CN constraints and can be removed

from the FG. We call the procedure that acts on the FG GN and removes all the frozen

VNs as pruneFrozenVN(GN).

2. Degree 1 CNs: Due to the removal of VNs, degree 1 CNs can be formed in the FG.

The parity check constraint of a degree 1 CN is satisfied iff the connected VN is a zero

symbol. Thus, the degree 1 CN and the connected VN can be removed from the FG.

We call the procedure that removes all the degree 1 CNs and their connected VNs from

GN as pruneDeg1CN(GN).

100

3. Degree 2 CNs: The two VNs that are connected to a degree 2 CN must have the same

value for the parity check constraint to be satisfied. Thus, these two connected VNs

can be merged into a single VN and the degree 2 CN can be removed from the FG.

Here, we distinguish the following cases based on the type of VNs connected to the

degree 2 CN. The first case is when the connected VNs are dropped VNs. In this

case, we merge the two VNs and drop the degree 2 CN. The new merged VN takes

place (for VN indexing purposes) of the VN with the smaller VN index in the FG. The

second case is when one of the connected VN is a dropped VN and the other one is

a non-dropped VN. In this case, we again merge the two VNs and remove the degree

2 CN. However, the newly merged VN takes the place of the non-dropped VN in the

FG and is now a non-dropped VN. The third case is when the two connected VNs are

non-dropped VNs. In this case, we do not perform any action, i.e., the two VNs are not

merged. This step is to ensure that the number of non-dropped VNs i.e., the number

of coded symbols remains fixed. We call the procedure that performs the above actions

on FG GN as mergeDeg2CN(GN).

4. Empty CNs: CNs that are not connected to any VNs get created due to the above

operations. We remove such CNs from the FG. We call the corresponding procedure

pruneEmptyCN(GN).

The pruning algorithm is as follows. We first perform step 1 on GN . We then repeat

steps 2,3, and 4 until the size of the FG does not change anymore, at which point we

terminate and output the pruned FG as ĜN . The size of the FG is defined as the sum

of the number of VNs and CNs in the graph. Note that the complexity of the pruning

algorithm is at most O(N logN) since each VN is touched at most once by the algorithm.

An example of the output of the pruning algorithm with input G4 is shown in Fig. 4.5 right

panel where the non-dropped VNs are marked in blue. Let the total number of VNs in

the pruned FG ĜN be totVN(ĜN). Also, let the VNs in ĜN be indexed in ascending order

according to the indices of the VNs in the original FG GN . Fig. 4.5 right panel shows the

101

Figure 4.7: PrGCMT T = (K = 6, R = 0.5, q = 2, l = 2) constructed using the pruned FGs output
by the pruning algorithm. Note that the NSEF values for different layers are the same as that of
the left pannel. In both panels, the zero padded VNs are shown in green.

indexing of the VNs in the output FG Ĝ4. According to the indexing, the VNs with the

N (here N = 4 in the example) largest indices are the non-dropped VNs. The remaining

VNs are the dropped VNs. The VNs in FG ĜN are {vλ | λ ∈ [totVN(ĜN)]} where the VNs

{vλ | λ ∈ [totVN(ĜN) − N + 1,totVN(ĜN)]} are the non-dropped VNs and contain the

coded symbols. Note that the maximum CN degree in ĜN is still 3. Next, we explain how

we use the polar FGs output by the pruning algorithm for the construction of the PrGCMT.

For the general layer with SEF algorithm output GNSEF
, we first use the pruning algorithm

with input GNSEF
to get the FG ĜNSEF

. Now for the PrGCMT construction, we use the

procedure mentioned in Section 4.4.1 with the pruned FG ĜNSEF
. An example of a PrGCMT

built6 using the pruned FGs is shown in Fig. 4.7. Note that the asymptotic performance of

the PrGCMT is the same as the GCMT in Lemma 17 since the PrGCMT performance is

upper bounded by the GCMT performance.

6Note that the FG ĜNSEF
used in layer Lj of the PrGCMT is fixed during system initialization and this

fixed FG is used for the purposes of encoding and decoding layer Lj .

102

0 20 40 60 80 100

4

6

8

10

12

14

16
10

-3

Data symbol size c (in KB)

IC
pr

oo
fs

iz
e

/
bl

oc
k

si
ze

0 20 40 60 80 100
10

-5

10
-4

10
-3

10
-2

10
-1

Data symbol size c (in KB)
P
f
(s
)

0 20 40 60 80 100

0

5

10

15

20

25

30

Data symbol size c (in KB)

C
om

m
un

ic
at

io
n

co
st

(i
n

G
B

)

0 2 4 6 8 10 12

0

2

4

6

8
10

-3

Block size (in MB)

C
M

T
ro

ot
si

ze
/

bl
oc

k
si

ze

Figure 4.8: Comparison of various CMT performance metrics for different coding methods. Top
panels and bottom left panel use CMT parameters T = (K,R = 0.5, q = 4, l = 4). Top left
panel: IC proof size normalized by the block size for different data symbol sizes c. Top right
panel: Probability of light node failure Pf (s) for different data symbol sizes c. Bottom left panel:
Communication cost associated with DA oracle for different data symbol sizes c. Bottom right
panel: CMT root size normalized by the block size as the block size is varied. For rates R = 0.5
and 0.75 we use (q = 4, l = 4) and (q = 4, l = 3), respectively.

103

Table 4.1: Comparison of various performance metrics of 2D-RS codes, an LCMT, and a GCMT/PrGCMT.
The LCMT and GCMT/PrGCMT have the same (K,R, q, l) parameters. The maximum degree of the CNs
in the LDPC codes and polar FG used on the base layer of the CMTs are dc and dp = 3, respectively. The
size of the transaction block is b. 2D-RS has K data symbols and ⌈log

√
Nl⌉ layers in the Merkle tree where

Nl = K
R . For a GCMT/PrGCMT, TVNj is the total number of VNs in the FG used to encode layer Lj .

Note that the system specific performance depends on the single sample download size and the undecodable
threshold αmin.

2D-RS LCMT GCMT, PrGCMT
Root size 2y

⌈√
Nl

⌉
yN1 yTVN1

Single sample download
size X

b
K
+ y

⌈
log
√
Nl

⌉
b
K
+ y(2q − 1)(l − 1) b

K
+ y

∑l−1
j=1

(
2⌈TVNj+1

kj
⌉ − 1

)
IC proof size (b

K
+ y

⌈
log
√
Nl

⌉
)
⌈√

K
⌉ (dc−1)b

K
+ dcy(q − 1)(l − 1)

(dp−1)b

K
+

dpy
∑l−1

j=1

(
⌈TVNj+1

kj
⌉ − 1

)
Decoding complexity O(N1.5

l) O(Nl) O(TVNl) ≤ O(Nl⌈logNl⌉)

αmin
Analytical expression in

[13] NP-hard to compute Lemma 16

Threshold complexity O(1) NP-hard
∑l

j=1O(
K

(qR)l−j)

Remark 7. For the pruned FG ĜNSEF
used above, the performance of the system specific

metrics depends both on the ratio αmin

NSEF
and the total number of VNs totVN(ĜSEF) in ĜNSEF

.

In this chapter, we optimize these two quantities sequentially, i.e., the SEF algorithm first

produces the graph GNSEF
that has the largest αmin

NSEF
. The graph GNSEF

is then pruned to reduce

totVN(ĜSEF). The sequential approach allows us to optimize the graphs for each layer of the

PrGCMT separately and has low complexity. The graph ĜSEF may not, however, result in

the optimal performance of the system-specific metrics. To get optimal graphs, we can alter-

natively perform a joint optimization of αmin

NSEF
and totVN(ĜSEF) by looking at all the possible

αmin

NSEF
in the SEF algorithm (see Remark 6), checking the resultant totVN(ĜSEF) produced by

pruning, and then picking the graph that results in the largest system-specific performance.

However, this joint approach requires the optimization of all layers simultaneously and has

high complexity.

104

4.6 Simulation Results and Performance Comparison

In this section, we demonstrate the benefits of a GCMT and a PrGCMT when the size

of the transaction block b is large. We demonstrate the improvements with respect to the

performance metrics mentioned in Section 4.2.4. We also compare the performance with an

LCMT [22] and 2D-RS codes [13]. Although 2D-RS codes offer a high undecodable threshold

and, hence, a very good performance on the system specific metrics, they have a very high

IC proof size and decoding complexity. Thus, we first compare the performance of a GCMT

with an LCMT in Figs. 4.8, 4.9, 4.10, and 4.11. Finally, in Fig. 4.12, we compare the

performance to 2D-RS codes. For CMT parameter K, we use the block size b = cK, where

c is the data symbol size of the base layer. We denote the output size of the Hash function

as y and use y = 256 bits in our simulations. All the GCMTs and PrGCMTs are built

using FGs designed by the SEF algorithm described in Section 4.4. All LCMTs are built

(as described in Section 4.2.1) using LDPC codes constructed using the PEG algorithm [55]

where we set the degree of all VNs to 3. For PEG LDPC codes, the undecodable threshold

αmin,j for each LCMT layer is calculated by solving an Integer Linear Programs (ILP) as

described in [54] and is computationally infeasible for larger code lengths. Due to complexity

issues of calculating the undecodable threshold (and, hence, the system specific metrics) for

an LCMT, we compute the system specific metrics for an LCMT in Figs. 4.8, 4.10, and 4.11

only for feasible code lengths and, thus, for feasible block sizes. To calculate the IC proof

size of an LCMT, we use the maximum CN degree dc across all the LDPC codes used in

the LCMT. For a GCMT and PrGCMT, the maximum CN degree dp = 3. The probability

of light node failure Pf (s) for different coding methods is calculated based on the equation

provided in Section 4.2.2.3. In the probability of failure calculation, the sample size s for

an LCMT, a GCMT, and a PrGCMT are selected such that the total sample download size

is b/3 in all cases. The total sample download size is equal to Xs, where s is the total

number of samples and X is the single sample download size of one base layer symbol and

its Merkle proof. The equation to calculate the single sample download size X is provided

105

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

Block size (in MB)

IC
pr

oo
fs

iz
e

/
bl

oc
k

si
ze

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

Block size (in MB)

IC
pr

oo
fs

iz
e

/
bl

oc
k

si
ze

Figure 4.9: IC proof size normalized by block size as the block size is varied for different data symbol
sizes c. Left panel: Rate R = 0.5, T = (K,R = 0.5, q = 4, l = 4); Right panel: Rate R = 0.75,
T = (K,R = 0.75, q = 4, l = 3).

in Table 4.1. The communication cost associated with the DA oracle in side blockchains is

calculated using the equation provided in Section 4.2.3.3 where we again calculate X using

Table 4.1. For the DA oracles, we use the parameters β = 0.49, γ = 1 − 2β, pth = 10−8,

and θ = 400. Table 4.1 provides a comparison of the various performance metrics for 2D-RS

codes, an LCMT, and a GCMT. Derivation of the formulae in Table 4.1 is provided in the

supplementary material. We use the equations in Table 4.1 to generate Figs. 4.8, 4.9, 4.10,

and 4.11.

In Fig. 4.8 top and bottom left panels, we compare the performance of different CMT

metrics as the size of the data symbol c varies. We compare results for different values of K

where the block size b = cK. In Fig. 4.8 top left panel, we compare the IC proof normalized

by the block size for different coding methods. We see that for different values of c, the

LCMT has a larger IC proof size compared to the GCMT and PrGCMT. The low value of

the IC proof size for the GCMT and PrGCMT is due to a low maximum CN degree of 3 in

the polar FGs. In the figure, we also see that the IC proof size for the PrGCMT is lower than

the GCMT. Looking at the expression for the IC proof size for the GCMT and PrGCMT in

Table 4.1, we can see that the lower value of the IC proof size for the PrGCMT is due to a

106

0 0.2 0.4 0.6 0.8 1 1.2

10
-1

10
0

Block size (in MB)

P
f
(s
)

0 50 100 150 200 250
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Block size (in MB)

P
f
(s
)

Figure 4.10: Pf (s) vs. block size b for the LCMT and PrGCMT. The two panels use (R, q, l) =
(0.4, 5, 4), (0.5, 4, 4), and (0.75, 4, 3) and a constant data symbol size c. Sample size s for the GCMT
and LCMT are selected such that the total sample download size is b

3 . Left Panel: c = 1KB; Right
Panel: c = 200KB.

lower value of the total number of VNs TVNj, which is a result of FG pruning. In Fig. 4.8 top

right and bottom left panels, we plot the performance of the system specific metrics as the

value of c varies. Note that in these plots, we do not have curves corresponding to K = 800

and K = 1024 for the LCMT due to an infeasible complexity of calculating the undecodable

thresholds αmin,j. ForK = 400, we see from Fig. 4.8 top right and bottom left panels that the

GCMT has a higher probability of failure and communication cost compared to the LCMT

at small data symbol sizes c and gets smaller than the LCMT as c increases. The reason

why the LCMT performs better at lower c values is due to the penalty in the single sample

download size X of the GCMT which is reduced at larger values of c. In the figures, we

also see that the PrGCMT always has a lower probability of failure and communication cost

compared to the GCMT. Note that the PrGCMT and GCMT have the same undecodable

threshold and the lower value of the system specific metrics in the PrGCMT is due to a

smaller single sample download size which is a result of FG pruning.

In Fig. 4.8 bottom right panel, we compare the CMT root size normalized by the block

size for different coding methods as the block size varies. In the figure, we fix the data

107

0 0.2 0.4 0.6 0.8 1 1.2

0

0.5

1

1.5

Block size (in MB)

C
om

m
un

ic
at

io
n

co
st

(i
n

G
B

)

0 50 100 150 200 250

0

20

40

60

80

100

Block size (in MB)

C
om

m
un

ic
at

io
n

co
st

(i
n

G
B

)

Figure 4.11: Communication cost vs. block size b for the LCMT and PrGCMT. The two panels
use (R, q, l) = (0.4, 5, 4), (0.5, 4, 4), and (0.75, 4, 3) and a constant data symbol size c. Left Panel:
c = 1KB; Right Panel: c = 200KB.

symbol size c = 10KB and vary the parameter K such that the block size is b = cK. From

the figure, we see that the GCMT has a significantly larger CMT root size compared to

the LCMT. The root size gets reduced in the PrGCMT as can be seen by comparing the

green and blue curves. The reduction is due to the pruning of the FG which decreases the

number of VNs. We see that the CMT root size for the PrGCMT is slightly more than that

of the LCMT. However, since the size of the CMT root is very small compared to the actual

block size (root size/block size is in the order of 10−3- 10−2), a slight increase in root size is

outweighed by the significant improvements in the IC proof size and system specific metrics.

In Fig. 4.9, we compare the IC proof size of an LCMT, a GCMT, and a PrGCMT for

different data symbol sizes c and rate R. Similar to before, we vary the values of K and set

b = cK. In Fig. 4.9 left panel, we see that for c = 200KB and 50KB, which correspond to

large block sizes, the IC proof size for the GCMT and PrGCMT is smaller compared to the

LCMT. At c = 1KB which corresponds to small block sizes, the IC proof size for the LCMT

is smaller than that of the GCMT but still larger than that of the PrGCMT. For a larger

rate of R = 0.75, we can see from Fig. 4.9 right panel that for all values of c, the IC proof

size for the GCMT and PrGCMT is always smaller than that of the LCMT. Note that the

108

Table 4.2: Comparison of the total number of VNs TVNl in the FG of various CMTs.

R = 0.4 R = 0.5 R = 0.75

Nl LCMT GCMT PrGCMT GCMT PrGCMT GCMT PrGCMT
200 200 1440 499 1674 615 1674 766
400 400 3980 1311 3150 1258 3450 1619
600 600 5456 1963 4719 1889 5456 2585
800 800 7040 2591 8239 3163 8437 3904

maximum CN degree is always 3 in the polar FG irrespective of the rate R. However, for

PEG LDPC codes (used in the LCMT), the maximum CN degree increases with an increase

in the rate which results in a larger IC proof size compared to the GCMT even for small

values of c as seen in Fig. 4.9 right panel.

In Fig. 4.10, we compare Pf (s) for the PrGCMT and LCMT and different rates R. We

compare Pf (s) for small and large block sizes in the left and right panels, respectively. From

Fig. 4.10 left panel, we see that the PrGCMT has a worse probability of failure compared

to the LCMT for small block sizes. However in Fig. 4.10 right panel, we see that for large

block sizes, the PrGCMT has a significantly lower probability of failure compared to the

LCMT across all rates R and block sizes b. The reason for a lower Pf (s) at large block sizes

for the PrGCMT is due to a higher αmin for the SEF algorithm and a negligible penalty in

the single sample download size.

In Fig. 4.11, we compare the communication cost associated with the DA oracle for the

PrGCMT and LCMT. Similar to Pf (s), we compare the communication cost for small and

large block sizes (in left and right panels, respectively). From Fig. 4.11, we see that for

small block sizes, the PrGCMT has a larger communication cost compared to the LCMT7.

However, for large block sizes, the PrGCMT has a lower communication cost compared to

the LCMT for all rates R and block sizes b (due to the same reason as Fig. 4.10 right panel).

In Table 4.2, we compare the total number of VNs TVNl in the base layer FG of various

7We remark that the plots in Figs. 4.10 and 4.11 corresponding to PrGCMT are not smooth due to the
sudden increase in the undecodable threshold as the code length increases.

109

CMTs. The actual number of decoding operations of a peeling decoder is a scaled version of

TVNl, and thus, Table 4.2 acts as a proxy for the overall decoding complexity. From Table

4.2, we see that for different rates, GCMT and PrGCMT have a higher TVNl than an LCMT.

However, due to FG pruning, the PrGCMT has a significantly lower TVNl than the GCMT

resulting in a significantly lower decoding complexity compared to the GCMT8.

A comparison across various performance metrics for 2D-RS codes, an LCMT, and a

PrGCMT is provided in Fig. 4.12 (see Table 4.1 for threshold and decoding complexity).

We first note that the PrGCMT outperforms the LCMT with respect to the IC-proof size,

total sample download size, and communication cost with a small increase in root size and

decoding complexity. Additionally, the PrGCMT has a low threshold complexity as opposed

to the LCMT where the threshold complexity of the LCMT is NP-hard. On the other

hand, the PrGCMT outperforms 2D-RS codes significantly in terms of the root size, IC

proof size, and decoding complexity while having a higher total sample download size and

communication cost. Overall, the PrGCMT simultaneously performs well across all the

different performance metrics relevant to this application and offers a different trade-off on

these metrics compared to the LCMT and 2D-RS codes, thus, providing flexibility to a

system designer to customize the code based on different applications.

4.7 Conclusion

In this chapter, we considered the problem of designing polar factor graphs to mitigate DA

attacks in blockchain systems with large block sizes. We first provided a novel construction of

a Merkle tree using polar FGs called a GCMT that can be used to mitigate DA attacks. Then,

we provided a specialized polar FG design algorithm for the GCMT called the SEF algorithm

8In Table 4.2, we see that TVNl is non-monotonic in rate R. This is due to the nature of the SEF algorithm
which involves pruning the last few rows that reduces the total number of VNs in the FG. However, the
undecodable threshold is monotonic in rate. Overall, as the rate increases, since TVNl decreases, it can
improve the system specific metrics as seen in Figs. 4.10 and 4.11.

110

0 1000 2000 3000 4000 5000

1

2

3

4

5

6

K

R
oo

t
si

ze
(i

n
K

B
)

0 1000 2000 3000 4000 5000

0

200

400

600

800

1000

1200

1400

K

IC
pr

oo
fs

iz
e

(i
n

K
B

)

0 1000 2000 3000 4000 5000

0

2

4

6

8

10

K

To
ta

ls
am

pl
e

do
w

nl
oa

d
si

ze
(i

n
M

B
)

0 1000 2000 3000 4000 5000

0

10

20

30

40

50

K

C
om

m
un

ic
at

io
n

co
st

(i
n

G
B

)

Figure 4.12: Comparison of various performance metrics for 2D-RS, an LCMT, and a PrGCMT.
All curves use T = (K,R = 0.5, q = 4, l = log(K8)), c = 20KB, and b = cK. The total sample
download size is calculated such that Pf (s) is 0.01. Due to the high threshold complexity for the
LCMT, we do not have a corresponding total sample download size and communication cost value
for K > 1000.

111

and a graph pruning algorithm to reduce the size of the polar FGs. We demonstrated that

a GCMT built using pruned SEF FGs performs well in mitigating DA attacks and offers

trade-offs in different performance metrics compared to an LCMT and 2D-RS codes.

4.8 Appendix

4.8.1 Proof of Lemma 10

Since the dispersal protocol is (l, µmin)-correct, every γ fraction of oracle nodes collectively

receive at least Nl − µmin + 1 distinct coded symbols or at least Nl−µmin+1
Nl

fraction of dis-

tinct coded symbols from the base layer of the CMT. Since the CMT satisfies the repe-

tition property, it implies that every γ fraction of oracle nodes receives at least Nl−µmin+1
Nl

fraction of distinct coded symbols from layer Lj of the CMT for 1 ≤ j ≤ l. Thus, ev-

ery γ fraction of oracle nodes receives at least ⌈
(
Nl−µmin+1

Nl

)
Nj⌉ distinct coded symbols

from Lj. Now, ⌈
(
Nl−µmin+1

Nl

)
Nj⌉ = Nj − ⌈

(
µmin−1
Nl

)
Nj⌉ ≥ Nj − ⌈Nj

Nl

(
⌊
(
αmin,j−1

Nj

)
Nl⌋

)
⌉ ≥

Nj−⌈Nj

Nl

((
αmin,j−1

Nj

)
Nl

)
⌉ = Nj−αmin,j+1. Thus, every γ fraction of oracle nodes receives at

least Nj −αmin,j +1 coded symbols implying that the dispersal protocol is (j, αmin,j)-correct.

4.8.2 Proof of Lemma 11

We prove the lemma using [21, Lemma 4]. Let χ(n, l, s, T,m) =
∑n

j=0(−1)n−j
(
l
j

)(
l−j−1
l−n−1

) [(s−l+j
m)
(s
m)

]T
.

Note that Prob(| ∪i∈S Ai| ≤ Nl − µmin) = χ(Nl − µmin, Nl, Nl, γθ, g) due to [21, Lemma 4].

Additionally,
(
θ
γθ

)
≤ eθHe(γ). We have

Prob(C is not (l, µmin)-correct) = Prob(∃S such that |S| = γθ, | ∪i∈S Ai| ≤ Nl − µmin)

≤
∑

S⊆[Nl]:|S|=γθ

Prob(| ∪i∈S Ai| ≤ Nl − µmin)

112

=
∑

S⊆[Nl]:|S|=γθ

χ(Nl − µmin, Nl, Nl, γθ, g)

=

(
θ

γθ

)
χ(Nl − µmin, Nl, Nl, γθ, g)

≤ eθHe(γ)χ(Nl − µmin, Nl, Nl, γθ, g) = eθHe(γ)×Nl−µmin∑
j=0

(−1)Nl−µmin−j
(
Nl

j

)(
Nl − j − 1

µmin − 1

)[(
j
g

)(
Nl

g

)]γθ
 .

4.8.3 Proof of Lemma 12

We prove Lemma 12 by proving the following property of stopping sets in the FG of SEF

polar codes. To the best of our knowledge, we have not seen the following result before in

the literature and, hence, it may be of independent interest. Let n = ⌈logN⌉.

Lemma 18. Consider a polar FG GN produced by the SEF algorithm. Every stopping set

of GN must contain the VNs of at least one full row from the FG i.e., every stopping set

contains all VNs in the set {vλ | λ = (m− 1)N + i, m ∈ [n+ 1]} for some i ∈ [N].

Proof. Let ψ be a stopping set of GN . Let GψN be the induced subgraph of GN corresponding

to the set of VNs in ψ. Observe that the FG GN has two types of edges (see Fig. 4.3):

horizontal edges and slanted edges (which connect a degree 3 VN to a degree 3 CN). We

consider two cases: i) GψN does not have any slanted edges; ii) GψN has at least one slanted

edge.

For case i), it can be easily seen that the stopping set ψ must include a full row of VNs.

For case ii), since GψN has at least one slanted edge, it implies that ψ has at least one VN

of degree 3. Thus, define the set ∆ψ = {(i,m) | i ∈ [N], m ∈ [n], λ = (m − 1)N + i, vλ ∈

ψ, degree of vλ = 3}. Also define imax = max({i|(i,m) ∈ ∆ψ for some m ∈ [n]}). ∆ψ

contains the indices of all the degree 3 VNs of ψ and imax denotes the largest row index such

that ψ has a degree 3 VN from that row. Due to the definition of case ii), ∆ψ is nonempty.

We now show that ψ has all the VNs in the row imax of FG GN , i.e., ψ contains all the VNs

113

in {vλ | λ = (m−1)N + imax;m ∈ [n+1]}. Let m, m ∈ [n], be such that (imax,m) ∈ ∆ψ. By

the definition of a stopping set, the CNs to the right and left of v(m−1)N+imax must belong

to the induced subgraph graph of the stopping set. In other words, c(m−2)N+imax ∈ G
ψ
N and

c(m−1)N+imax ∈ G
ψ
N (unless v(m−1)N+imax is the rightmost or the leftmost VN in which case we

will have only one CN neighbor). Now, to satisfy the stopping set property, for both these

CNs, their corresponding VNs to their left and right in the same row imax must belong to the

stopping set ψ. If not, then to satisfy the stopping set property, the CN must be connected

to a VN v(m−1)N+i ∈ ψ by a slanted edge. Note that a slanted edge connects a CN to a

degree 3 VN in a lower row. In other words, a slanted edge connects a CN from row imax to

a degree 3 VN in a row with index greater than imax. This condition violates the definition

of imax. Thus, v(m−2)N+imax ∈ ψ and v(m)imax ∈ ψ. Now, considering v(m−2)N+imax ∈ ψ and

v(m)imax ∈ ψ as the starting VN (similar to v(m−1)+imax), we can apply the above logic to show

that v(m−3)N+imax ∈ ψ and v(m+1)N+imax ∈ ψ. Repeatedly applying the same argument, we

can show that all the VNs in {vλ | λ = (m− 1)N + imax, m ∈ [n+ 1]} belong to ψ.

We now use the above result to prove Lemma 12. Since A∪F , the information and frozen

indices form a partition of all row indices. Now, due to the above lemma, every stopping set

either contains a VN from the leftmost column of the FG belonging to the frozen indices or a

VN from the rightmost column of the FG belonging to an information index. Thus for every

stopping set, at least one VN of the stopping set is not erased at the start of the peeling

decoding in the PEPC. Hence, the PEPC will always be successful and will result in a valid

codeword.

4.8.4 Proof of Lemma 14

In the GCMT construction with parameters (k,R, q, l), after dropping the symbols corre-

sponding to the intermediate layers of the FG of the polar codes, the final tree contains

N (j) coded symbols and kj information symbols in each layer Lj j ∈ [l]. Note that each

114

information symbol in Lj is formed according to Eqn. (4.2). Due to the modulo operation,

there are most a = N(l)

kj
base layer symbols mapping to one symbol in Lj. Thus, in the worst

case, ηN (l) distinct base layer symbols map to ηN(l)

a
= ηkj distinct information symbols of

Lj. Similarly, there are e = N(l)

N(j)−kj
base layer symbols mapping one parity symbol of Lj.

Thus, in the worst case, ηN (l) distinct base layer symbols map to ηN(l)

e
= η(N (j)−kj) distinct

parity symbols of Lj. Thus, in total, ηN (l) base layer symbols contain ηN (j) coded symbols

from each layer Lj of the GCMT, satisfying the repetition property.

4.8.5 Proof of Lemma 15

Firstly, it is easy to see that when all the VNs in Vδ
N̂
[1] (i.e., the VNs in the last δ rows from

the leftmost column of FG GN̂) are set to zero symbols, all the VNs in the last δ rows of all the

columns of the FG will be zero symbols. This result proves claim ii) of the lemma. For claim

i), let ψ ∈ ΨA and let GψN be the induced subgraph of GN corresponding to the set of VNs

in ψ. From the definition of ΨA, ψ does not have any frozen VNs from the leftmost column

of the FG GN . Now, since [N − δ + 1, N] ⊂ F , ψ does not have any VNs in VδN [1]. We now

prove claim i) by contradiction. Assume that ψ has a VN from VδN [logN +1]. In particular,

assume that vnN+i1 ∈ ψ, where n = logN and i1 ∈ [N − δ + 1, N]. Now, by the property of

stopping sets, c(n−1)N+i1 ∈ G
ψ
N . To satisfy the stopping set property, either v(n−1)N+i1 ∈ ψ or

v(n−1)N+i2 ∈ ψ where i1 < i2 ≤ N and v(n−1)N+i2 and c(n−1)N+i1 are connected in GN . Thus,

∃ i, i ∈ [N − δ + 1, N] such that v(n−1)N+i ∈ ψ. Proceeding in a similar manner, we have at

least one index i, i ∈ [N − δ + 1, N] such that v(n−2)N+i ∈ ψ. Repeating the same process

until we reach the leftmost column, we can find at least one index i, i ∈ [N − δ + 1, N]

such that vi ∈ ψ which is a contradiction of the fact that ψ does not have any VNs in set

VδN [1] = {vi | i ∈ [N − δ + 1, N]}.

115

4.8.6 Proof of Lemma 16

The SEF algorithm produces an (NSEF , k) polar code with a FG GNSEF
. Let N̂ = 2⌈log

k
R
⌉.

FG GNSEF
is obtained from freezing (and, hence, removing) the last δ1 + δ2 rows of GN̂ .

For the output FSEF , let ASEF = [NSEF] \ FSEF . Also define F̂ = FSEF ∪ [NSEF + 1, N̂],

Â = [N̂]\F̂ . Clearly, the sets Â and ASEF are the same. Thus, the (NSEF , k) polar code can

be seen as a code defined on the FG GN̂ with frozen index set F̂ and information index set

ANSEF
. We now apply Lemma 13 on FG GN̂ . The smallest leaf set size of all stopping sets

in ΨASEF is given by minψ∈ΨASEF |Leaf-Set(ψ)| = mini∈ASEF
TN̂(i) = mini∈ASEF

T k
R
(i).

The threshold complexity is the complexity of the SEF algorithm which is at most lin-

ear in the input kj = K
(qR)l−j . Overall, the threshold complexity of the entire GCMT is∑l

j=1O(
K

(qR)l−j).

4.8.7 Proof of Lemma 17

Let sg, su and sRS be the total number of samples to get a base layer probability of failure Pf

using the GCMT, uncoded Merkle tree, and 2D-RS codes, respectively. Since b ≫ yK, we

can ignore the size of the Merkle proofs in the total sample download sizes and IC proof sizes.

Thus, we can write the total sample download sizes as Sg = b
K
sg, Su = b

K
su, and SRS =

b
K
sRS. Similarly, we can write the IC proof sizes as Ig = (dp−1) bK , IRS = b√

K
(see Table 4.1).

Thus, IRS

Ig
= Θ(

√
K). Now for the uncoded Merkle tree, Pf =

(
1− 1

K

)su
=⇒ su =

logPf

log(1− 1
K)

.

For 2D-RS codes, we have Pf =
(
1− (

√
N−

√
K+1√
N

)2
)sRS

≤
(
1− (1−

√
R)2

)sRS

whereN = K
R

.

Thus, sRS ≤ logPf

log
(
1−(1−

√
R)

2
) . As such, Su

SRS ≥
log
(
1−(1−

√
R)

2
)

log(1− 1
K)

=⇒ Su

SRS = Ω(K).

Next, we calculate the probability of failure of the GCMT. Let n = ⌈logN⌉, and N̂ = 2n.

Based on Lemma 16, for the base layer we have αmin = mini∈ASEF
TN̂(i) where ASEF =

[NSEF] \ FSEF , and FNSEF
is the output of the SEF algorithm with inputs (K

R
, K). Now,

due to step 5 of the SEF algorithm, αmin = min(tN ;N − K + 1) where tN is obtained

116

from TN̂ by removing the last N̂ − N entries from the bottom. Additionally note that,

min(tN ;N −K +1) ≥ min(TN̂ ;N −K +1). Thus, αmin ≥ min(TN̂ ;N −K +1). The vector

TN̂ has the following property [72]: TN̂ has exactly
(
n
q

)
entries with value 2q for q ∈ [0, n].

Using this property, we have a simple algorithm to lower bound αmin. Let q∗ be the largest

q ∈ [0, n] such that
∑q−1

r=0

(
n
r

)
≤ N −K. Then, αmin ≥ min(TN̂ ;N −K + 1) = 2q

∗ .

Now, for 0 < q− 1 ≤ n
2
,
∑q−1

r=0

(
n
r

)
≤ 2nH2(

q−1
n

) (bound on the volume of a hamming ball).

Let q1 be largest q ∈ [0, 1 + n
2
] such that 2nH2(

q−1
n

) ≤ N − K. Then from the definitions

of q∗ and q1, q∗ > q1. Now 2nH2(
q−1
n

) ≤ N − K =⇒ q ≤ 1 + nH−1
2 (log(N−K)

n
). Note that

log(N−k)
n

≤ 1. Thus, 1 + nH−1
2 (log(N−K)

n
) ≤ 1 + n

2
. Hence, q1 = 1 + nH−1

2 (log(N−K)
n

)) and

αmin = 2q
∗ ≥ 21+nH

−1
2 (

log(N−K)
n

). As such, sg =
logPf

(1− αmin
NSEF

)
≤ logPf

log

(
1− 2

1+(logN)·H−1
2 (

log(N−K)
n)

N

) . To

compute the asymptotic growth rate of Su

Sg , we compute the following limit

∆ = lim
K→∞

1√
K

log

(
1− 21+(logN)·H−1

2 (
log(N−K)

n)

N

)
log

(
1− 1

K

) .

As K → ∞, 21+(logN)·H−1
2 (

log(N−K)
n

) → 21+
(logN)

2 . Hence, ∆ = lim
K→∞

1√
K

log

(
1−2·2−

(logN)
2

)
log(1− 1

K)
=

lim
K→∞

1√
K

log
(
1−2·

√
R√
K

)
log(1− 1

K)
= 2
√
R. Thus, noting that ∆ uses an upper bound on sg, we get Su

Sg =

Ω(
√
K).

117

CHAPTER 5

Non-Binary LDPC Codes for Quantum Key Distribution

5.1 Introduction

Quantum Key Distribution (QKD) provides a physically secure way to share a secret key

between two users, Alice and Bob, over a quantum communication channel in the presence

of an eavesdropper Eve [27–30, 37, 76, 77]. Secret keys in QKD systems are established by

first performing a quantum stage where Alice and Bob exchange quantum states over a

quantum channel. The quantum stage is succeeded by a post processing stage that occurs

over a classical communication channel. At the end of the two stages, Alice and Bob ideally

arrive at identical random sequences (the secret key) which are only known to them. The

ultimate goal of a QKD protocol is to achieve a high secret key rate, i.e., to extract a high

number of bits in the secret key per generated photon. QKD protocols based on Energy-

Time (ET) entanglement of photons have the potential to achieve this goal due to their

high-dimensional nature where multiple bits can be extracted from each generated entangled

photon pair [76,78,79]. Additionally, ET-QKD protocols also provide unconditional security

through non-local Franson and conjugate-Franson interferometry [78] that is critical for

secure communications.

At a high level, an ET-QKD protocol consists of three steps [37]: i) Raw key generation

ii) Information reconciliation (IR) and iii) Privacy amplification (PA). Raw key genera-

tion takes place during the quantum stage where Alice and Bob generate raw keys using

a quantum communication channel. The use of the quantum channel prevents undetected

118

eavesdropping by Eve. However, due to the transmission noise in the quantum channel as a

result of issues such as timing jitters, photon losses, and dark counts, the raw keys at Alice

and Bob may disagree in some positions. The raw key may also be partly known to Eve and

may not be uniformly random given Eve’s knowledge. These shortcomings are overcome in

the post-processing stage that consists of the IR and PA steps. In the IR step, Alice and

Bob communicate over a classical channel (public and accessible to Eve) to reconcile the

differences in the raw keys to obtain reconciled keys that Eve may have some knowledge

about. The IR step is followed by the PA step, where Alice and Bob compress their recon-

ciled key sequences by accounting for Eve’s knowledge to amplify the privacy of the key and

to achieve uniform randomness. At the end of the above three steps, Alice and Bob end up

with a shared secret key known only to them, or they had aborted the protocol [77]. In this

chapter, we focus on the IR step of the ET-QKD protocol, which has a significant impact

on the overall secret key rate of the system.

Error correcting codes (ECC) [1] are a major mathematical tool used in the IR step

[33, 34, 37, 76, 78, 80–83] to overcome the transmission noise in the raw key generation step

and ensure that Alice and Bob arrive at an identical sequence of symbols. Any information

leaked to Eve during the IR step must be subtracted from the final secret key during privacy

amplification [84, 85]. Thus, in order to study the performance of various IR protocols, we

define the IR rate RIR of the system (in bits per photon) as

RIR = E
[
LIR − leakIR

N

]
, (5.1)

where LIR is the length (in bits) of the reconciled key, leakIR is the length (in bits) of the

information leaked to Eve during IR, N is the number of entangled photon pairs, and E[]

denotes the expectation operator. A high IR rate results in a high secret key rate in the

system, and, in this chapter, we provide techniques to improve the IR rate compared to

existing schemes.

119

IR protocols for binary-based QKD systems, where a single bit is exacted from each

generated photon, have been extensively researched in the literature. However, very little

effort has been placed into optimizing IR protocols for high-dimensional QKD systems (that

extract multiple bits from each generated photon) apart from the introduction of a protocol

called multi-level coding (MLC) [37] in 2013 which has been considered for works such as

[76, 86]. In the MLC protocol, the sequence of symbols after the raw key generation step

is converted into multiple bit layers and then each bit layer is sequentially reconciled using

binary Low-Density Parity-Check (LDPC) codes. Due to the low complexity of decoding

binary LDPC codes, the MLC protocol results in a low key generation complexity. However,

binary LDPC codes have poor error-correcting performance compared to their non-binary

counterparts leading to reduced IR rates. On the other hand, a fully non-binary (FNB)

protocol defined as an IR protocol that uses a non-binary (NB) LDPC code to directly en-

code/decode the generated raw key symbols can naturally lead to higher IR rates. However,

the symbols in the key generation step can belong to a Galois field of size as large as 210

and it is known that iterative decoding of NB-LDPC codes has a very high complexity (log-

linear in the field size [87]) at large field sizes. Hence, an FNB protocol with a large field

size is not favorable in QKD applications requiring low complexity, such as in [88,89]. Apart

from the above techniques of IR in ET-QKD systems, various other ECC techniques have

been used for IR, however, in the continuous-variable (CV) QKD setting [90]. For example,

spatially-coupled (SC) LDPC codes [34], irregular repeat accumulate (IRA) and SC-IRA

codes [33], polar codes [80,81], and spinal codes [82] have been used for CV-QKD. However,

these techniques involve a different method of IR compared to that used in ET-QKD and

hence are not applicable for IR considered in this chapter. Additionally, the above works

focus on channel models such as binary input additive white Gaussian noise (BIAWGN) that

do not match the ET-QKD channel [36].

120

100 200 300 400 500
0.8

1

1.2

1.4

1.6

1.8

Binwidth

IR
ra

te

Figure 5.1: Improvements in IR rate due to our techniques compared to the MLC scheme of [37].
The red curve utilizes binary LDPC codes and the blue curve utilizes NB-LDPC codes in GF(25).
The code length of the LDPC codes used in both curves is 2000. Overall, our techniques result in
40 − 60% improvement in the IR rates for different values of binwidth. Simulation details about
this figure are provided in Fig. 5.11.

5.1.1 Contributions

In this chapter, we provide techniques to get high IR rates without a large increase in the key

generation complexity by optimizing the MLC scheme of [37]. Our techniques involve NB-

LDPC code design considering the properties of the ET-QKD channel resulting in higher IR

rates compared to conventional LDPC codes. In particular, the contributions of this chapter

are listed as follows:

1. We provide a flexible protocol for IR in ET-QKD systems called Non-Binary Multi-

Level Coding NB-MLC(a), which is parameterized by an integer a > 0. The NB-MLC(a)

protocol is a generalization of the MLC protocol of [37]. It splits the raw key symbols

into multiple layers with non-binary symbols belonging to GF(2a) and utilizes NB-

LDPC codes in GF(2a) for reconciliation. For a = 1, the NB-MLC(a) protocol becomes

equivalent to the MLC protocol, and for a = q, where q is the number of bits required

to represent each raw key symbol, the NB-MLC(a) protocol becomes equivalent to the

FNB protocol discussed above. The NB-MLC(a) protocol, thus, offers a natural trade-

121

off between IR rate and complexity depending on the value of a, allowing flexibility

in system design. Additionally, we demonstrate that the NB-MLC(a) protocol with a

small value of a significantly improves the IR rate without much increase in complexity.

2. The IR rate of the NB-MLC(a) protocol is affected by the NB-LDPC codes used in

each layer and the order of decoding and communication among the different layers.

In this chapter, we provide techniques to optimize these two aspects. In particular, we

provide i) a joint code rate and degree distribution optimization (JRDO) framework

based on differential evolution [91, 92] to construct NB-LDPC codes for each layer of

the NB-MLC(a) protocol; ii) an interleaved decoding and communication (IDC) scheme

to decode the different layers of the NB-MLC(a) protocol. The JRDO code design

algorithm is tailored to use the ET-QKD channel information and we demonstrate that

it results in a higher IR rate compared to the LDPC codes used in the MLC scheme

[37] and that obtained by utilizing degree distributions optimized for conventional

channels such as the BIAWGN channel [93]. Additionally, we show that the IDC

scheme improves the IR rate compared to the traditional sequential decoding and

communication scheme used in [37].

Overall, as demonstrated in Fig. 5.1, the NB-MLC(a) protocol with a small value of a

that utilizes the above proposed techniques results in a significant 40− 60% improvement in

the IR rate compared to the MLC scheme without much increase in complexity.

The rest of this chapter is organized as follows. In Section 5.2, we provide the prelimi-

naries and the ET-QKD system model. We describe the NB-MLC(a) protocol in Section 5.3.

In Section 5.4, we provide the techniques to optimize the NB-MLC(a) protocol that include

the JRDO algorithm and the IDC scheme. Finally, we provide simulation results in Section

5.5 to demonstrate the improvements provided by our techniques and conclude the chapter

in Section 5.6.

122

5.2 Preliminaries and System Model

In this section, we discuss the general setting for IR in ET-QKD systems, the channel model,

relevant performance metrics, and the necessary background about NB-LDPC codes. We

then describe our proposed techniques in detail. We use the following notation for the rest

of this chapter. For a set S, let |S| denote its cardinality. Let ⌊x⌋ and ⌈x⌉ denote the floor

and ceil of integer x, respectively. For integers x and y, let mod(x, y) denote the remainder

when x is divided by y. Let l(B) denote the length (in bits) of the sequence of bits B. Let

ACK and NACK denote acknowledge and negative acknowledge messages, respectively. For a

function f(x), let f ′(x) denote the first derivative of f(x). For a vector v and matrix m, let

v[k] and m[k, j] denote the kth component of the vector v and the element at the kth row

and jth column of m, respectively. For quantities Ci,Ci+1, . . . ,Cj (which could be scalars,

vectors, sets, etc) where i < j are integers, we define the notation Cj
i := {Ci,Ci+1, . . . ,Cj}.

Additionally, Cj
i = Dj

i iff Ck = Dk ∀i ≤ k ≤ j. All logarithms use base 2 in this chapter.

5.2.1 ET-QKD system model

As discussed in Section 2.1, an ET-QKD system consists of the following steps:

1. Raw key generation: As shown in Fig. 5.2, in this step, energy-time entangled photon

pairs are first generated by a third party. Alice and Bob receive one photon each out

of the pair who then record the arrival times of the received photons. The raw key

symbols are derived from the arrival times of the received photons. In this method,

the time domain of Alice and Bob (assumed to be synchronized) is divided into non-

overlapping frames. Each frame is further divided into 2q bins of equal size, where q is a

positive integer. Thus, each arrival time within a frame can be represented as a symbol

in GF(2q) based on the bin number the received photon occupies within each frame.

Alice and Bob only retain frames in which they both detect a single photon arrival and

discard all other frames. The GF(2q) symbols corresponding to non-discarded frames

123

Figure 5.2: Raw Key Generation in the ET-QKD system. The arrival times of photons are dis-
cretized to get the raw key symbols. Each frame has 2q bins and the spacing between frames is
called binwidth.

are then divided into blocks of N symbols. Let X = {X1, . . . , XN}, Xi ∈ GF(2q) and

Y = {Y1, . . . , YN}, Yi ∈ GF(2q) be the sequences of length N recorded by Alice and

Bob, respectively. X and Y are the raw keys obtained by Alice and Bob, respectively, at

the end of the raw key generation step. Due to imperfections in the raw key generation

step (e.g., timing jitters, photon losses, dark counts, etc. [79]) the raw key Y is a noisy

version of X. We assume that the sequences X and Y are memoryless and each Yi is

the output of the ET-QKD channel characterized by transition law PY |X and input Xi.

2. Information reconciliation (IR): In this step, Alice and Bob communicate over the

public channel which is authenticated but accessible to eavesdropper Eve. Based on the

public communication and raw key X, Alice generates a sequence of bits K. Similarly,

based on the public communication and Y, Bob generates a sequence of bits K′. The

goal of the IR step is to make K equal to K′ but Eve can have some information about

K. The sequences K and K′ are called the reconciled keys.

The IR step involves a verification procedure verify-key(B,B′) that Alice and

Bob use to check whether some sequence of bits B and B′ held by Alice and Bob,

124

respectively, match [94]. Here, B and B′ are substrings of the reconciled keys K and

K′. Using verification, Alice and Bob ensure that K and K′ are equal with high

probability. In this chapter, we use the verification procedure mentioned in [95]. To

determine whether B and B′ are equal, Alice and Bob compare the hashes h(B) and

h(B′), where h() is a hash function described in [95]. The verification procedure

verify-key(B,B′) is as follows. Bob first sends h :=h(B′) to Alice. Alice checks

if h(B) is equal to h. If h(B) = h, Alice sends an ACK message to Bob. Alice and

Bob then consider B and B′ as verified and use them as part of the reconciled keys. If

h(B) ̸= h, Alice sends a NACK message to Bob and they both reject the sequences B

and B′.

For a prime p, let lp = ⌊log p⌋. The hash length of the hash function h() and the

collision probability ϵ(), i.e., the probability that h(B) =h(B′) for some B ̸= B′ are

related to p as follows [95]. We have, lht = ⌈log p⌉ bits and

ϵ(l(B)) ≤ ⌈l(B)/lp⌉ − 1

p
. (5.2)

The collision probability ϵ() affects the probability of verification failure ϵver, which is

the event that Alice and Bob accept reconciled keys K and K′ that are not the same.

The probability of verification failure ϵver can be made small by choosing a large p.

We measure the performance of the IR step using the IR rate RIR described in Eqn.

(5.1) where LIR = l(K) = l(K′). Any information about the reconciled key K com-

municated over the public channel during IR (including the hashes during verification)

must be included in leakIR and subtracted in the IR rate calculation as per Eqn. (5.1).

3. Privacy Amplification (PA): This step is applied to the reconciled keys K and K′

obtained after IR to extract secret keys S and S′ by Alice and Bob, respectively. Note

that if K = K′, then S = S′. PA ensures that Eve has no information about S and

125

that the resulting S is uniformly distributed given Eve’s information. Hence, S can be

safely used as a cryptographic key. The length of S is determined by the amount of

information leaked to Eve during the raw key generation and IR steps. The objective

of QKD protocols is to maximize the length of S. In this chapter, we focus on the IR

step and optimize the IR rate RIR to achieve the above goal.

Remark 8. The overall secret key rate RSKR (in bits per photon) of the system can be

approximated from the IR rate RIR as RSKR ≈ RIR − χBE (in bits per photon), where χBE

is Eve’s Holevo information [76]. Thus, improving the IR rate RIR improves the overall

secret key rate of the system.

5.2.2 ET-QKD channel model

As suggested in [36,96] and also observed from our ET-QKD experiment testbed [79], the ET-

QKD channel PY |X in the raw key generation step is a mixture of a local and a global channel

modeling local and global errors, respectively. Local errors are caused by timing jitters and

synchronization errors that result in the two entangled photons falling into different but

close enough bins. Global errors are caused due to channel losses and accidental concurrent

detection of two non-entangled photons in the same frame. Experimental results show that

the local channel is well-fitted by a discretized Gaussian distribution whereas the global

channel is well-fitted by a mixture of a discretized Gaussian and a uniform distribution.

Overall, the ET-QKD channel can be approximated using the transition probability

PY |X(Y = y|X = x) = c

(
e
−
(

y−x−µ1
σ1

)2
+ αe

−
(

y−x−µ2
σ2

)2)
+ β, x, y ∈ GF(2q), (5.3)

where the parameters α and β, respectively, determine the strengths of the Gaussian com-

ponent and the uniform component of the global channel in the overall channel transition

probability and c is a normalization constant. We observe from our experimental data that

126

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

Model

Data

y

P
Y
|X
(Y

=
y
|X

=
x
0
)

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

Model

Data

y

P
Y
|X
(Y

=
y
|X

=
x
0
)

Figure 5.3: Empirical transition probabilities obtained from our experimental data and the channel
model approximation of Eqn. (5.3). The QKD system has 25 bins per frame (q = 5). Left panel:
Binwidth 100ps, (α, σ1, µ1, σ2, µ2, β) = (0.013, 1.084, 0.212, 17.175, 1.719, 0.0028); Right Panel: Bin-
width 700ps, (α, σ1, µ1, σ2, µ2, β) = (0.052, 0.562, 0.069, 7.286, 0.959, 0.0039). Both the plots use
x0 = 16.

µ1 and µ2 are both non-zero which makes the ET-QKD channel asymmetric. This asymme-

try is due to the misalignment of the center of the bins with the real arrival time of photons

[96]. The global component of the channel causes a low SNR in our system resulting in

a high operating frame error rate (FER) (∼ 1 − 10%). Finally, note that the distribution

P (X = x) is uniform in GF(q).

Fig. 5.3 provides a comparison of the model in Eqn. (5.3) with that of the empirical

transition probabilities obtained from our experimental data. We can see the model closely

approximates the data for different choices of q and binwidth. Importantly, the ET-QKD

channel is different from conventional channels such as AWGN, BSC, etc. As such, LDPC

codes that have been optimized for these channels are not necessarily the best ones for the

ET-QKD channel.

5.2.3 Non-Binary LDPC code preliminaries

A NB-LDPC code over GF(2g), where g is a positive integer, is defined by a sparse parity

check matrix H ∈ GF(2g)M×N . The matrix H has a Tanner graph representation comprising

of M check nodes (CNs) and N variable nodes (VNs) corresponding to rows and columns

127

of H. A CN is connected to a VN by an edge if the corresponding entry in H is non-

zero where the edge is additionally labeled by the non-zero entry. The interconnection

between VNs and CNs of a code is represented by node-perspective degree distributions

L(x) =
∑

d Ldx
d and P (x) =

∑
d Pdx

d, where Ld and Pd represent the fraction of VNs and

CNs of degree d, respectively. The coding rate R of the code is given by R = 1− L′(1)
P ′(1)

. The

FER performance of the code depends on the degree distributions L(x) and P (x). Degree

distribution optimization techniques for LDPC codes based on code thresholds (e.g., [93])

optimize the degree distribution for a fixed code rate R and are not directly applicable to

the current ET-QKD problem which needs a joint code rate and FER optimization as we

demonstrate in Section 5.2.4. Additionally, the optimized degree distributions are designed

for non-QKD channels (e.g., BIAWGN in [93]) and they do not result in large IR rates as

we demonstrate in Section 4.6.

In the IR step, we perform NB-LDPC decoding using side information which is known

as the Slepian-Wolf (SW) problem [97]. In the SW problem, we try to decode a sequence of

symbols Xsw from syndrome Ssw = HXsw and side information Ysw, where H is the parity

check matrix of an NB-LDPC code. The decoder is very similar to the sum-product decoder

used in conventional decoding of NB-LDPC codes [1] with minor modifications in the way

the channel log-likelihood (LLR) messages are initialized and the CN to VN messages. We

describe these quantities briefly here and refer the reader to see [97] and references therein

for details about SW-LDPC decoding. The channel LLR message for VN n, denoted by mch
n ,

in a SW-LDPC decoder is

mch
n [k] = log

P (X = 0|Y = Ysw[n])

P (X = k|Y = Ysw[n])
, k = 0, 1, . . . , 2g − 1. (5.4)

Let ⊖ and ⊘ be the usual operators for subtraction and division, respectively, in GF(2g).

At iteration ℓ of the sum-product decoder, the message m
(ℓ)
m,n from CN m to VN n is given

by [97]

128

m(ℓ)
m,n = As̄[m]F̃−1

 ∏
n′∈N (m)\n

F̃
(
Wḡ[n′,m]m

(ℓ−1)
n′,m

) ,

where, s̄m = ⊖Ssw[m]⊘H[n,m], ḡ[n′,m] = ⊖H[n′,m]⊘H[n,m], N (m) is the set of variable

nodes in row m of H, and F and F−1 represent an Fourier-like transform and its inverse as

defined in [97]. Additionally, As̄[m] and Wḡ[n′,m] are matrices whose definitions can be found

in [97]. Note that the only difference between the CN to VN message in the above equation

and the channel coding version of the sum-product LDPC decoder is the matrix As̄[m] which

is due to the syndrome Ssw present in the SW problem (in the channel coding version, the

syndrome is zero). As such, the decoding complexity of the SW-LDPC sum-product decoder

is O(g log g).

Throughout this chapter, for all non-binary parity check matrices H ∈ GF(2g)M×N , each

non-zero entry in H is chosen uniformly at random from the set of non-zero element of

GF(2g). For a given coding rate R and VN node degree distribution L(x), the CN node

degree distribution P (x) is chosen to be a two-element distribution [1] such that it results

in rate R. These types of CN degree distributions are called concentrated [1] and we show

in Section 4.6 that they result in high IR rates. Finally, in the SW-LDPC sum-product

decoding used in this chapter, the maximum number of decoding iterations is set to Γ.

5.2.4 Example: Fully Non-Binary (FNB) Protocol for IR

In this subsection, we explain the FNB protocol for IR as a demonstrative example. Recall

that X ∈ GF(2q)N and Y ∈ GF(2q)N are the raw keys recorded by Alice and Bob, respec-

tively. In the FNB protocol, the raw keys are directly encoded/decoded using NB-LDPC

codes in GF(2q). The protocol is as follows. Alice sends Bob S = HX over the public chan-

nel where H ∈ GF(2q)M×N is the parity check matrix of a NB-LDPC code. Bob decodes X

using the received S and side information Y following SW-LDPC decoding as explained in

129

0.25 0.3 0.35

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

Coding Rate

IR
ra

te

F
E

R

0.2 0.25 0.3 0.35

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

Coding rate

IR
ra

te

F
E

R

Figure 5.4: IR rate and FER vs. coding rate for the FNB protocol. Left panel: q = 5; Right panel:
q = 6. Both plots use an ET-QKD system with binwidth 300ps. In the plots, the ET-QKD channel
is fixed and the coding rate is varied. IR rate is calculated using Eqn. (5.5). All plots use a VN
degree regular LDPC code with a constant VN degree of 3 constructed using the PEG algorithm
[55].

Section 5.2.3 to get the decoding output X̂. After decoding, Alice and Bob proceed with the

verification procedure verify-key(X, X̂). If the verification is successful, Alice and Bob

use K = X and K′ = X̂ as the reconciled keys.

The goal of the NB-LDPC code is to make the decoding output X̂ equal to X with high

probability. Following Eqn (5.1), the IR rateRFNB
IR for the FNB protocol can be calculated as

follows. Let E be the frame error rate during decoding. Then, we have E[LIR] = q(1−E)N .

Similarly, we have E[leakIR] = q(1 − E)M + lht(1 − E) (recall that lht is the length of the

hash function used during verification). Thus,

RFNB
IR = q(1− E)N −M

N
− (1− E) lht

N
. (5.5)

Note that in the above equation, N−M
M

is the code rate of H. A unique property of

the ET-QKD problem is that the IR rate of the system, as seen in Eqn. (5.5), is closely

dependent on both the code rate and the FER. Fig. 5.4 shows the FER and IR rates obtained

by a VN degree regular LDPC code constructed using the PEG algorithm [55] for different

values of code rate. From this graph, we see that increasing the code rate can improve the

130

Figure 5.5: Illustration of the NB-MLC(a) protocol.

IR rate even at the cost of higher FER. Additionally, the maximum in the IR rate occurs for

a relatively large value of FER (∼ 1−10%). While the conventional code design approach is

to minimize the FER to a very small value for a given code rate, in this chapter, we jointly

optimize both the code rate and the FER to maximize the IR rate in Section 5.4.1. In the

next section, we explain the NB-MLC(a) protocol for IR.

5.3 Non-Binary Multi-Level Coding

In the FNB protocol described in Section 5.2.4, the symbol size is equal to the number of bins

2q and the protocol utilizes NB-LDPC codes in GF(2q). In this section, we propose the NB-

MLC(a) protocol where the symbol size can be varied through an integer parameter a, 1 ≤ a ≤

q. The NB-MLC(a) protocol offers a trade-off between IR rate RIR and decoding complexity

through the parameter a allowing flexibility in system design. Let b and r be integers such

that q = ab+r, where b = ⌊ q
a
⌋ and r = mod (q, a). Also, let T = ⌈ q

a
⌉. Let αi = a, 1 ≤ i ≤ b

and αb+1 = r. Thus, q =
∑T

i=1 αi. Let u : GF(2q) → GF(2α1) × GF(2α2) . . . × GF(2αT) be

an bijective mapping such that for x ∈ GF(2q), u(x) = (u1(x), u2(x), . . . , uT (x)) where

ui(x) ∈ GF(2αi), 1 ≤ i ≤ T . At the beginning of the NB-MLC(a) protocol, Alice and Bob

initialize their reconciled keys K and K′ to empty bit sequences.

Each symbol X in X received by Alice is an element of GF(2q). Using the injective

131

mapping u(), Alice maps X into T symbols (X1, X2, . . . XT), where Xi = ui(X), 1 ≤ i ≤ T .

Using the above conversion, Alice splits the sequence X into T layers (X1,X2, . . . ,XT), where

Xi ∈ GF(2αi)N , 1 ≤ i ≤ T . For each layer i, Alice uses a NB-LDPC code Hi ∈ GF(2αi)mi×N ,

1 ≤ i ≤ T . Alice then generates a message S = {S1, . . . ,ST} where Si = HiXi, 1 ≤ i ≤ T ,

are the corresponding syndromes for each layer. Alice then sends S to Bob.

Bob sequentially decodes every layer Xi, 1 ≤ i ≤ T , using S, Y and Hi, i ≤ i ≤ T . Let

X̂i−1
1 := {X̂1, X̂2, . . . , X̂i−1} be the decoding output of layers 1, 2, . . . i − 1. Since Xi, 1 ≤

i ≤ T are correlated, Bob uses the decoding output X̂i of layer i for decoding the subsequent

layers i+1, . . . , T . As such, Bob decodes layer i using the syndrome Si and side information

{Y, X̂i−1
1 } to get X̂i following SW-LDPC decoding described in Section 5.2.3. After decoding

layer i to get X̂i, Alice and Bob perform a verification procedure verify-key(Xi , X̂i).

For each layer i, if verification procedure verify-key(Xi , X̂i) is successful, Alice and Bob

append Xi and X̂i to the reconciled keys K and K′, respectively. An illustration of the

NB-MLC(a) protocol is provided in Fig. 5.5.

In the SW-LDPC decoding procedure carried out by Bob above, the ith layer has an

equivalent channel with input Xi, output {Y,Xi−1
1 } and channel transition law γiseq :=

P (Y = y,X i−1
1 = xi−1

1 |Xi = xi). The transition law γiseq is used in the channel LLR

initialization of the SW-LDPC decoder as per Eqn. (5.4) and can be derived from the

ET-QKD channel PY |X(Y = y|X = x) as follows:

γiseq := P (Y = y,X i−1
1 = xi−1

1 |Xi = xi) =

∑
x∈A1(x1,x2,...,xi)

PY |X(Y = y|X = x)

|A2(xi)|
, (5.6)

where, A1(x1, x2, . . . , xi) = {x ∈ GF(2q) | uj(x) = xj, 1 ≤ j ≤ i} and A2(xi) = {x ∈

GF(2q) | ui(x) = xi}. Additionally, note that P (Xi = xi) is uniform in GF(2αi).

We now calculate the IR rate RNB-MLC(a)
IR for the NB-MLC(a) protocol. Let Ei be the

frame error rate encountered while decoding the ith layer using the decoded outputs of the

132

previous layers. We discuss the effect of error propagation on Ei and ways to mitigate it in

Section 5.3.1. For the IR rate calculation in Eqn. (5.1), we have E[LIR] =
∑T

i=i αi(1−Ei)N

and E[leakIR] =
∑T

i=i αi(1− Ei)mi +
∑T

i=i(1− Ei)lht. Thus1,

RNB-MLC(a)
IR =

T∑
i=i

αi(1− Ei)
N −mi

N
−

T∑
i=1

(1− Ei)
lht
N
. (5.7)

In the above equation, the IR rate for the NB-MLC(a) protocol is the sum of the IR rates

of each layer which is a result of using the verification procedure verify-key(Xi , X̂i) on

each layer individually. Due to using the verification procedure on each layer, a decoding

success in one layer can contribute to the overall reconciled key K even if other layers have

decoding failures, thus helping to improve the IR rateRNB-MLC(a)
IR . Additionally, we conjecture

that the IR rate RNB-MLC(a)
IR is non-monotonic in a due to the following reasons: i) Increasing

the value of a makes the NB-MLC(a) protocol use NB-LDPC codes from a larger Galois field.

These are typically stronger codes with better FER performance resulting in better IR rates

per layer; ii) However, using a smaller a results in more layers. Thus, due to the sum IR

rate property described above, a higher number of layers as a result of smaller a positively

affects the overall IR rate. Due to the above effects in i) and ii), the overall IR rate is

non-monotonic. We demonstrate the non-monotonic behavior of RNB-MLC(a)
IR in Section 4.6.

Note that the decoding complexity of the NB-MLC(a) protocol is the sum of the decoding

complexities of each of the layers in the protocol. As such, the complexity can be written as

O(
∑T

i=1 αi logαi) which can be shown to monotonically increase with a. Finally, note that

in the NB-MLC(a) protocol described above, setting a = 1 gives us the binary MLC scheme

of [37] and a = q provides the FNB protocol described in Section 5.2.4.

The NB-MLC(a) protocol involves the verification of each layer separately. As such, the

probability of verification failure ϵNB-MLC(a)
ver of the NB-MLC(a) protocol can be calculated as

1Note that the IR rate calculation in Eqn (5.7) takes into account the information leakage due to the
verification procedure verify-key(Xi , X̂i).

133

100 200 300 400 500

1

1.1

1.2

1.3

1.4

Binwidth (ps)

IR
ra

te

100 200 300 400 500

1.1

1.2

1.3

1.4

1.5

Binwidth (ps)

IR
ra

te

Figure 5.6: Comparison of the IR rate RNB-MLC(a)
IR with and without interactive communication

(IC) for different values of q. Left panel: a = 1; Right panel: a = 2. All plots use a VN degree
regular LDPC code with a constant VN degree 3 constructed using the PEG algorithm [55]. Plots
corresponding to IC do not have error propagation while plots corresponding to No IC have error
propagation during decoding the layers of the NB-MLC(a) protocol. The channel PY |X for different
binwidths is derived empirically from our experimental data.

ϵNB-MLC(a)
ver ≤ (1− (1− ϵ(a))T)

which is the probability of at least one collision in the verification of all layers, where an

upper bound on the function ϵ() is provided in Eqn. (5.2). The value of ϵNB-MLC(a)
ver can forced

to be small by choosing a large prime p. Next, we discuss the effect of error propagation

in the NB-MLC(a) protocol and how it can be eliminated using interactive communication

between Alice and Bob.

5.3.1 Interactive communication to mitigate error propagation

In the NB-MLC(a) protocol described above, the decoding output X̂i of layer i is used in

the decoding of the subsequent layers. This process results in error propagation where a

decoding error in X̂i results in decoding errors in the subsequent layers, increasing the FERs

Ei+1, . . . , ET and decreasing the overall IR rate RNB-MLC(a)
IR . However, the effect of error prop-

agation can be eliminated by using interactive communication (IC) between Alice and Bob

134

[37]. In the interactive communication protocol, after decoding layer i, if the verification

procedure verify-key(Xi , X̂i) fails, then Alice directly sends Xi to Bob which Bob uses

to decode the subsequent layers instead of X̂i. Since now Bob uses the true Xi instead of

X̂i for decoding the subsequent layers, it gets a more accurate channel LLR initialization in

Eqn. (5.4), resulting in improved FERs Ei+1, . . . , ET and overall IR rate RNB-MLC(a)
IR . Note

that when decoding fails for layer i, since the corresponding Xi and X̂i are not added to

the reconciled keys K and K′, revealing Xi does not add anything to leakIR. Hence, the IR

rate for the NB-MLC(a) protocol with interactive communication is still given by Eqn. (5.7)

(where the FERs Ei, 1 ≤ i ≤ T , are calculated considering the interactive communication

protocol described above). The average communication cost due to interactive communica-

tion CommCost-IC(a) is given by CommCost-IC(a) =
∑T−1

i=1 αiEiN . Note that the FERs

Ei encountered at the point of maximum IR rate are typically less than 10% and hence

the additional communication cost due to interactive communication is small compared to

the communication cost involved in sending the syndromes S. Fig. 5.6 demonstrates the

improvement in IR rates for different values of q when the NB-MLC(a) protocol utilizes

interactive communication to prevent error propagation.

We call the decoding and the interactive communication protocol mentioned in this sec-

tion as sequential decoding and communication (SDC) due to its sequential nature. Next,

we discuss the design choices present in the NB-MLC(a) protocol which can be optimized to

result in high IR rate RNB-MLC(a)
IR .

5.3.2 Design choices in the NB-MLC(a) protocol

For a given a, the IR rate RNB-MLC(a)
IR provided in Eqn. (5.7) depends on three key design

choices (marked in green in Fig. 5.5):

1. NB-LDPC code design which involves the NB parity check matrix Hi and the code

rate Ri =
N−mi

N
used in each layer i. The parity check matrix Hi and the rate Ri affect

135

the FER Ei and hence the IR rate RNB-MLC(a)
IR . In Section 5.4.1, we provide the JRDO

algorithm to jointly design Hi and Ri for each layer i of the NB-MLC(a) protocol.

2. The order of operations of decoding and interactive communication of the different

layers. In the NB-MLC(a) protocol described above, the order of decoding operations

and communication is sequential in the sense that Bob first completes the decoding of

layer i and then performs interactive communication before proceeding to decode the

subsequent layers. To further improve the IR rate under interactive communication, in

Section 5.4.2, we provide an interleaved decoding and communication (IDC) protocol

where Bob starts decoding another layer before completing the decoding of the existing

layer.

3. The mapping u(x) = (u1(x), u2(x), . . . , uT (x)) used to map the raw key symbols X

into symbols of different layers in the NB-MLC(a) protocol. The mapping function

u(x) affects the channel transition probability γiseq of each layer provided in Eqn. (5.6)

thus affecting the frame error rate Ei and hence the IR rate of layer i. In Section 5.4.3,

we show that binary mapping is a good choice of mapping for the ET-QKD channels

we have encountered in our testbed and it results in high IR rates.

5.4 Optimizing the NB-MLC(a) protocol

In this section, we provide the techniques to optimize the NB-MLC(a) protocol. We start with

providing the JRDO algorithm based on differential evolution to jointly optimize the code

rate and degree distribution of the NB-LDPC codes to be used in the NB-MLC(a) protocol.

5.4.1 Joint Rate and Degree Distribution Optimization (JRDO)

In this section, we describe the algorithm to design parity check matrices Hi and coding rate

Ri, 1 ≤ i ≤ T for use in the ith layer of the NB-MLC(a) protocol that has a channel transition

136

probability γiseq provided in Eqn. (5.6). The mapping, that determines the channel transition

probability γiseq, is u(). Note that the construction method is the same for all layers, hence

we drop index i. As mentioned in Section 5.2.3, the FER performance of the code (and

hence the IR rate RNB-MLC(a)
IR) depends on the VN node degree distribution L(x) and coding

rate R of H. In this section, we construct H using the PEG algorithm [55] with VN node

degree distribution L(x), code length N , and coding rate R that are optimized by the JRDO

framework. We call such parity check matrices HPEG(L(x), R).

The JRDO algorithm utilizes differential evolution (DE) [91,92] to find L(x) and R. DE

is a popular and effective population-based evolutionary algorithm that can be used for the

maximization (or minimization) of any function f(). The algorithm iteratively improves a

candidate solution (that maximizes f()) using an evolutionary process and can explore large

design spaces with low complexity. DE has been extensively used in coding theory literature

to design good irregular LDPC codes for the erasure channel [98], AWGN channel [93],

Rayleigh fading channel [99], etc. The goal in these works is to design degree distributions

that have low FER. This goal is achieved by using DE where the function f() is generally

set to a low complexity predictor of the FER performance of the code such as the threshold

obtained by density evolution [93]. However, the goal for us in this chapter is to maximize

the IR rate RNB-MLC(a)
IR and not merely to minimize the FER. Additionally, the techniques for

optimizing the degree distributions using code thresholds work for a fixed code rate and we

have not found any work, relevant for this setting, that jointly optimizes the code rate along

with maximizing the threshold. In the JRDO algorithm, we perform the join optimization

of the code rate and the degree distribution by maximizing the function fJRDO(L(x), R)

described as

fJRDO(L(x), R) = (1− E)R, (5.8)

where E is the FER obtained by the parity check matrix HPEG(L(x), R) on a channel

137

with transition probability γseq. The function fJRDO(L(x), R) is proportional to the IR

rate (without the verification cost penalty2) of the corresponding layer of the NB-MLC(a)

protocol whose parity check matrix is getting designed. Note that to be able to optimize

fJRDO(L(x), R) feasibly using DE, the cost of computing fJRDO(L(x), R) must be low (since

the DE algorithm evaluates fJRDO(L(x), R) a certain fixed number of times in every itera-

tion). However, since the FER E of the code at the point of maximum in IR rate is high

(∼ 1 − 10%), fJRDO(L(x), R) can again be easily estimated using MC simulations with a

small number of MC experiments (e.g., 200-300). The overall JRDO algorithm is provided

in Algorithm 7.

Algorithm 7 JRDO: Joint Rate and degree Distribution Optimization
1: Inputs:, Np, dv, dmax

v , Rmax, Rstep, Rmin, ∆1, ∆2

2: Initialize population Π = {(L1, R1), . . . , (LNp , RNp)}:
3: L1(x) = regular distribution with VN degree dv
4: R1 = argmax

R∈Rsearch

fJRDO(L1, R)

5: for j = 1 : Np do
6: Lj = random degree distribution with no degree 1 VNs and maximum VN degree

dmax
v

7: Rj = random rate in the range [R1 −∆1, R1 +∆1]
8: for max number of iterations do
9: for j = 1 : Np do

10: (Lmj , R
m
j) =DiffMutation(j,Π)

11: (Lcj, R
c
j) = CrossOver

(
(Lmj , R

m
j), (Lj, Rj)

)
12: Evaluate fJRDO(L

c
j, R

c
j) using Monte-Carlo simulations

13: for j = 1 : Np do
14: if fJRDO(L

c
j, R

c
j) > fJRDO(Lj, Rj) then

15: Update population: (Lj, Rj)← (Lcj, R
c
j)

16: (Lf , Rf)← entry in Π with largest fJRDO()
17: Rf

search = {Rf −∆2, R
f −∆2 +Rstep, R

f −∆2 + 2Rstep, . . . , R
f +∆2}

18: Ro = argmax
R∈Rf

search

fJRDO(L
f , R)

19: Output: (Lf , Ro)

2We do not subtract the information leakage due to verification in Eqn. (5.8) to allow the design to be
independent of the chosen verification parameters.

138

The algorithm starts with initializing a population Π of degree distribution and rate pairs

of size Np. The first entry L1(x) in the population is initialized to a regular distribution with

VN degree dv (line 3) and the rate R1 is such that it results in the maximum value of

fJRDO(L1, R1) (line 4), where Rsearch = {Rmax, Rmax − Rstep, Rmax − 2Rstep, . . . , Rmin}. The

remaining entries of the population are initialized randomly as shown in lines 5-7. Note

that the rates are initialized from a small interval around R1 (e.g., ∆1 = 0.1) to ensure

that the algorithm starts with good enough rates. Now, at every iteration of the JRDO

algorithm, each population entry undergoes mutation and cross over (lines 9-12) to result

in pairs (Lcj, R
c
j), 1 ≤ j ≤ Np, where the procedures DiffMutation() and CrossOver()

have conventional meanings as per [91]. Each population entry (Lj, Rj) is then replaced

with the corresponding (Lcj, R
c
j) if the function evaluation fJRDO(L

c
j, R

c
j) > fJRDO(Lj, Rj).

After the completion of the maximum number of iterations of differential evolution, we

perform a final rate search (lines 16-18) around the population entry (Lf , Rf) to allow for

further improvements in the function value. Finally, the algorithm outputs (Lf , Ro). We

demonstrate the improvements in the IR rate RNB-MLC(a)
IR due to the JRDO algorithm in

Section 4.6. In the next subsection, we provide the interleaved decoding and communication

(IDC) protocol to further improve the IR rate under interactive communication.

5.4.2 Interleaved Decoding and Communication

In the NB-MLC(a) protocol described in Section 5.3 using interactive communication, the

order of operations followed by Alice and Bob is the following: Starting from the first layer, i)

Bob decodes layer i to get X̂i; ii) Alice and Bob perform the verification procedure verify-

key(Xi , X̂i) iii) Alice sends Xi to Bob if the verification procedure fails; iv) Bob decodes

layer i+1. The process is then continued for all layers. We call the above sequential decoding

and communication (SDC) since the order of operations is sequential where Bob completes

the decoding of layer i and performs interactive communication to get the correct Xi before

starting to decode the next layer. In this case, sending the correct Xi to Bob via interactive

139

communication in the event of a decoding failure of layer i helps Bob get more reliable

channel LLR initialization (Eqn. (5.4)) for decoding layers i + 1, . . . , T using the channels

γi+1
seq , . . . , γ

T
seq mentioned in Eqn. (5.6). More reliable channel LLR initialization improves

the FERs Ei+1, . . . , ET of layers i+ 1, . . . , T , thus, improving the overall IR rate RNB-MLC(a)
IR .

Now, consider the following transition probability:

γiint := P (Y = y,X i−1
1 = xi−1

1 ,XT
i+1 = xTi+1|Xi = xi)

=

∑
x∈A′

1(x1,x2,...,xT) PY |X(Y = y|X = x)

|A2(xi)|
, (5.9)

where, A′
1(x1, x2, . . . , xT) = {x ∈ GF(2q) | uj(x) = xj, 1 ≤ j ≤ T} and A2(xi) = {x ∈

GF(2q) | ui(x) = xi}. The above transition probability can provide a more accurate channel

LLR for Xi compared to the transition probability γiseq mentioned in Eqn. (5.6), provided

Bob has reliable values of {X1, . . . ,Xi−1,Xi+1, . . . ,XT}. Thus, similar to the SDC protocol,

the IR rate can also be improved if Bob can utilize the correct Xi+1,Xi+2, . . . ,XT sent by

Alice after interactive communication of layers i + 1, i + 2, . . . , T for decoding the previous

layers i, i − 1, . . . , 1. We now describe the IDC protocol that achieves the above goal. The

protocol provides an alternative way for Bob and Alice to get the reconciled keys K and

K′ using X, Y, Hi, 1 ≤ i ≤ T , and syndromes S = {S1, . . . ,ST} compared to the SDC

procedure mentioned in Section 5.3. The overall IDC protocol is provided in Algorithm 8

below. Recall that the maximum number of LDPC decoder iterations for each layer is Γ.

In the above IDC protocol, Bob first decodes layers 1, 2, . . . , T sequentially (lines 2-4), but

performs maximum Γ1 decoding iterations out of the Γ iterations allowed for each layer. The

decoded output of the different layers at the end of Γ1 iterations are denoted by X1, . . . ,XT

(line 4). Here, the outputs X1, . . . ,Xi−1 are used in the channel LLR initialization3 of layer

3This method of channel LLR initialization can result in error propagation during decoding the different
layers. However, the interleaved interactive communication ensures that this error propagation does not

140

Algorithm 8 IDC: Interleaved Decoding and Communication
1: for i = 1 : T do
2: Bob:
3: Initialize channel LLR mch,i

seq for the LDPC decoder of layer i using γiseq,
X1,X2, . . . ,Xi−1, Y

4: Xi = LDPC decode using Hi, Si, channel LLR mch,i
seq for Γ1 iterations

5: for i = T : 1 do
6: Bob:
7: Update channel LLR for the LDPC decoder of layer i to mch,i

int using γiint, X1, . . . ,Xi−1,
X̂i+1, X̂i+2, . . . , X̂T , Y

8: X̂i = continue LDPC decoding of step 4 using updated channel LLR mch,i
int for re-

maining Γ− Γ1 iterations
9: Alice and Bob:

10: verify-key(Xi , X̂i)
11: If verification in the previous step is unsuccessful, Alice sends Xi to Bob and Bob

updates X̂i ← Xi

12: K = concatenation of Xi of all layers where verification is sucessfull
13: K′ = concatenation of X̂i of all layers where verification is sucessfull
14: Output: Reconciled keys K and K′ at Alice and Bob, respectively

i using transition probability γiseq (line 3). After performing Γ1 decoding iterations for every

layer, Bob continues the decoding of the different layers in reverse order (lines 6-12) for

Γ − Γ1 more decoding iterations using the updated channel LLRs mch,i
int . For each layer i,

it finds the updated4 channel LLR mch,i
int using the transition probability γiint. To find the

updated channel LLR, it uses the decoded outputs X1, . . . ,Xi−1 of the layers 1, . . . , i − 1

(obtained after Γ1 iterations). It also uses X̂i+1, . . . , X̂T which are the decoded outputs of

layers i + 1, . . . , T after continuing the decoding of each layer for Γ − Γ1 more decoding

iterations with the updated channel LLR messages (line 8). Additionally, after obtaining X̂i

for each layer, Alice and Bob perform the verification procedure verify-key(Xi , X̂i) (line

10). If the verification is unsuccessful, Alice sends the correct Xi to Bob and Bob updates

reduce the IR rates.

4Note that since γT
seq and γT

int are the same transition probabilities, there is no channel LLR update for
the last layer. The Algorithm directly decodes the last layer with channel LLRs initialized in step 3 for Γ
iterations.

141

X̂i with Xi (line 11). Thus, the X̂i+1, . . . , X̂T that Bob uses in line 7 to get the updated

channel LLRs γiint are always accurate due to the interactive communication step in line 11.

In the IDC protocol, since Bob uses the transition probability γiint with the correct

Xi+1,Xi+2, . . . ,XT (due to interactive communication) to get the updated channel LLRs (in

line 7), it can improve the FER of layer i for the same rate or allow a higher rate for the

same FER allowing to improve the IR rate. Note that since in the initial decoding phase

(lines 2-4), the unverified decoded outputs X1, . . . ,Xi−1 are used in the decoding of the next

layers as well as in calculating the updated channel LLRs γiint, there is an effect of error

propagation in the system. However, with appropriately chosen code rates Ri, 1 ≤ i ≤ T ,

and the value of Γ1 (which is the number of decoding iterations in the first phase), the effect

of error propagation can be made small and the IDC protocol can improve5 the IR rate

RNB-MLC(a)
IR . Note that the IR rate RNB-MLC(a)

IR using the IDC protocol is also provided by Eqn.

(5.7).

We now describe how to choose appropriate rates RIDC
i , 1 ≤ i ≤ T , for use in the different

layers of the NB-MLC(a) protocol with IDC. Let Ro
i , 1 ≤ i ≤ T , be the rates provided by the

JRDO algorithm. Note that the rates Ro
i , 1 ≤ i ≤ T , in the JRDO algorithm are designed

for the SDC case described in Section 5.3. For the case of the IDC protocol, the rates used

have to be modified compared to Ro
i , 1 ≤ i ≤ T , to result in the largest IR rate6. To find the

rates, we perform a heuristic search in a small interval around Ro
i , 1 ≤ i ≤ T , as provided in

Algorithm 9 using the function

fIDC(R1, . . . , RT) =
T∑
i=1

αi(1− Ei)Ri,

5We have observed that choosing Γ1 to be 5-10 iterations less than Γ improves the IR rate compared to
the SDC protocol.

6Note that we use the same degree distributions in the IDC protocol as those provided by JRDO to reduce
the complexity of degree distribution design.

142

where Ei is the FER encountered in layer i of the NB-MLC(a) protocol with IDC. We demon-

strate the improvements in IR rate provided by the IDC protocol in Section 4.6. In the next

subsection, we discuss the choice of the mapping function u().

Algorithm 9 Rate Search for IDC
1: for i = 1 : T do
2: RIDC

search = {Ro
i −∆3, R

o
i −∆3 +Rstep, R

o
i −∆3 + 2Rstep, . . . , R

o
i +∆3}

3: RIDC
i = argmax

R∈RIDC
search

fIDC(R
IDC
1 , . . . , RIDC

i−1 , R,R
o
i+1, . . . , R

o
T)

4: Output: RIDC
i , 1 ≤ i ≤ T

5.4.3 Mappings

In this section, we discuss the choice of the mapping function u() that results in high IR

rates. The mapping function u : GF(2q) → GF(2α1) × . . . × GF(2αT) can be equivalently

represented as a mapping ub : GF(2q) → GF(2)q that converts a symbol x ∈ GF(2q) into a

binary string xb of length q =
∑T

i=1 αi. Let xb1||xb2|| . . . ||xbT be the partition of the binary

string xb, such that l(xbi) = αi, 1 ≤ i ≤ T . Then, xbi is the binary (base 2) representation

of ui(x). Thus, in the rest of the chapter, we directly discuss the choices for the mapping

function ub(x) that leads to a reasonably good IR rate.

Binary mapping is the simplest mapping to consider. It is the function ub : GF(2q) →

GF(2)q such that for x ∈ GF(2q), x =
∑q

i=1 ub(x)[i]2
i−1, where ub(x)[i] is the ith bit in

the bit string ub(x). Another commonly used mapping is the gray mapping [100] where two

successive symbols in GF(2q) differ only in 1 bit in their mapped bit strings. Binary and gray

mappings are easy to construct. However, it is not clear if they are good choices of mapping

to get high IR rates RNB-MLC(a)
IR for our particular channels. Due to the large search space of

mappings, it is computationally expensive to find the optimal mappings using a brute-force

search. Here, we use a heuristic approach using the simulated annealing (SA) algorithm

[101] to see whether we can improve the IR rates compared to binary or gray mapping.

143

In the SA algorithm, we start with the binary mapping as the initial choice of ub and then

modify ub if the modification leads to a better mapping. Specifically, we swap the output of

ub for two distinct input values x, y ∈ GF(2q) if the operation leads to a higher value of the

function fSA(ub) defined as

fSA(ub) =
T∑
i=1

max
Ri∈Rsearch

(αi(1− Ei)Ri) , (5.10)

where, Rsearch = {Rmax, Rmax − Rstep, Rmax − 2Rstep, . . . , Rmin}, αi and T are constants in

the NB-MLC(a) protocol, and Ei is the FER obtained on layer i of the NB-MLC(a) protocol

with SDC by a VN degree regular NB-LDPC code constructed using the PEG algorithm

[55] with constant VN degree dv, code length N , and coding rate Ri. The function fSA(ub)

follows similarly as Eqn. (5.8) and approximates the maximum IR rate RNB-MLC(a)
IR (see Eqn

(5.7)) achieved by a VN degree regular PEG NB-LDPC code, where the rate Ri is found

using a grid search in the set Rsearch. The detailed SA algorithm is provided in Algorithm

10.

Algorithm 10 Simulated Annealing (SA) for Mapping
1: ub = Binary mapping
2: fmax

SA = fSA(ub)
3: umax

b = ub
4: for T = max number of SA iterations to 1 do
5: u′b = mapping obtained from up by swapping the output for two distinct input values

x, y ∈ GF(2q)
6: Df = fSA(u

′
b)− fSA(ub)

7: if Df ≥ fth then
8: ub ← u′b
9: if fSA(u′b) > fmax

SA then
10: umax

b = u′b
11: fmax

SA = fSA(u
′
b)

12: else if e
Df−fth
T×λ > rand(0, 1) then

13: ub ← u′b
14: Output: umax

b

144

100 200 300 400 500

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Binwidth (ps)

IR
R

at
e

100 200 300 400 500

1.1

1.2

1.3

1.4

1.5

Binwidth (ps)

IR
R

at
e

100 200 300 400 500

1.3

1.35

1.4

1.45

1.5

Binwidth (ps)

IR
R

at
e

Figure 5.7: Comparison of IR rates due to different mapping functions ub() for the NB-MLC(a)
protocol described in Section 5.3 with SDC. Left panel: a = 2; Right panel: a = 3; Bottom panel:
a = 4. All plots use a VN degree regular LDPC code with a constant VN degree 3 constructed
using the PEG algorithm [55]. The channel PY |X for different binwidths is derived empirically from
our experimental data.

In the SA algorithm, we start with the binary mapping as the current mapping. Then

in each iteration, we modify the current mapping ub to obtain a new mapping7 u′b in line 5.

Now, if the difference Df in the fSA() values of u′b and ub is greater than threshold fth (line

7), we update the current mapping to u′b. If the difference Df is less than fth, we update the

current mapping to u′b only a fraction of the times based on the condition in line 12 to allow

the algorithm to break out of a local maximum.

7Duing the algorithm we ensure that at each iteration, we generate a mapping u′
b that has not been

encountered before

145

A comparison of the IR rates obtained by mappings output by the SA search algorithm

with that of binary and gray mapping is provided in Fig. 5.7. From the figure, we first see

that in all cases, the binary and gray mappings have very close IR rates. Additionally, we

see that the IR rates produced by the SA search algorithm are very close compared to binary

and gray mappings. Thus, binary and gray mappings are good choices for mappings for use

in the NB-MLC(a) protocol.

5.5 Simulation Results

In this section, we demonstrate the performance of the NB-MLC(a) protocol and the op-

timization techniques introduced in Section 5.4. We compare the performance with the

MLC scheme of [37] as well as with LDPC codes designed for the BIAWGN [93] channel.

For the verify-key() procedure, we use the parameters, p = 232 − 5, lp = ⌊log p⌋ = 31,

lht = ⌈log p⌉ = 32 bits. ForRsearch used in Section 5.4.1, we use Rmax = H(X|Y)+0.1, where

H() denotes the entropy function8, Rmin = 0.01 and Rstep = 0.01. Similarly, we use dv = 3

in Section 5.4.1. For the JRDO algorithm in Algorithm 7, we optimize degree distribution

L(x) =
∑dmax

v
d=2 Ld with dmax

v = 5 and L1 = 0. For the rate initialization (line 6 in Algorithm

7), we use ∆1 = 0.1, Additionally, for Rf
search (line 16 of Algorithm 7), we use ∆2 = 0.05 and

Rstep = 0.01. For codes that are not designed using the JRDO algorithm, to calculate the

corresponding RNB-MLC(a)
IR , we choose the rates Ri, 1 ≤ i ≤ T , that maximize fSA() defined in

Eqn. (5.10). For SW-LDPC decoding, we use the maximum number of decoding iterations

Γ = 50 and Γ1 = 35 for the IDC protocol9 (Algorithm 8). For the rate search in the IDC

protocol (Algorithm 9), we use ∆2 = 0.05 and Rstep = 0.01. Finally, in the ET-QKD system,

we use N = 2000 in our simulations. For all simulations, we show trends when the channel

transition probability PY |X is provided by the parameterized channel model in Eqn. (5.3) as

8The chosen value to Rmax ensures a high enough starting rate for the search in line 4 of Algorithm 7.

9We found from our simulations that among {35, 40, 45}, Γ1 = 35 results in the largest IR rate RNB-MLC(a)
IR .

146

0 2 4 6

1.2

1.4

1.6

1.8

2

a

IR
ra

te

0 2 4 6
1.1

1.2

1.3

1.4

1.5

1.6

a

IR
ra

te

Figure 5.8: IR rate for different q as the NB-MLC(a) protocol parameter a is varied. Left Panel:
PY |X is given by Eqn. (5.3) with (α, σ1, µ1, σ2, µ2, β) = (0.005, 1.1, 0.2, 17, 1.5, 0.0025). Right Panel:
PY |X derived empirically from our experimental data with binwidth 100ps. In both the figures, NB-
MLC(a) protocol utilizes binary mapping for ub() and SDC. All plots use a VN degree regular LDPC
code with a constant VN degree 3 constructed using the PEG algorithm [55].

well as on actual experimental data [79] where PY |X is derived empirically from the data. For

simulations considering the channel transition law PY |X provided by Eqn. (5.3), we choose

a default set of values for parameters (α, σ1, µ1, σ2, µ2, β) that are close to the ones that fit

our experimental data for binwidth 100ps (as provided in Fig. 5.3).

In Fig. 5.8, we study the effect of the NB-MLC bit size a on the IR rate RNB-MLC(a)
IR .

The left panel corresponds to the parameterized channel model in Eqn. (5.3) while the right

panel corresponds to our experimental data. From the figure, we can see that for all values

of q, the IR rate is non-monotonic in a and has a maximum when a is strictly between 1

and q. As explained in Section 5.3, the IR rate is non-monotonic in a due to the following

two effects: i) Increasing a makes the NB-MLC(a) protocol utilize NB-LDPC codes from a

larger Galois field which are stronger resulting in improved FER performance and better IR

rates per layer. ii) More number of layers due to a smaller a, however, has a positive effect

on the IR rate due to the sum IR rate formula in Eqn. (5.7). The combined effect of i)

and ii) makes the IR rate non-monotonic. Note that, as described in Section 5.3, increasing

the value of a increases the complexity of the NB-MLC(a) protocol monotonically. Thus,

based on Fig. 5.8, the NB-MLC(a) protocol with a small value of a (3 or 4) provides the best

147

trade-off between IR rate and complexity. Additionally, note that the points a = 1 in the

different curves in the figure correspond to the MLC scheme of [37]. We can clearly see that

by using a = 3 or 4, there is a large improvement in IR rates compared to using a = 1.

In Fig. 5.9, we demonstrate the performance of the JRDO algorithm. In the figure,

we compare the IR rate of JRDO-LDPC codes with the IR rates obtained by other code

constructions used in prior work. The left and right panels correspond to the parameterized

channel model in Eqn. (5.3), where we vary the channel parameters α and β, respectively,

while keeping the rest of the parameters fixed. The bottom panel corresponds to our ex-

perimental data. The red curves correspond to NB-LDPC codes used in the MLC scheme

[37]. As per [37], these LDPC codes are randomly constructed such that each VN has a

constant degree of 3. Note that there is no limitation on the CN degree distribution in [37].

The orange curves correspond to LDPC codes chosen from a random LDPC ensemble [1]

with regular VN degree distribution L(x) = x3 (similar to [37]) but with a two-element CN

degree distribution (that is chosen to result in the required coding rate). Note that these

type of CN degree distributions are called concentrated [1]. The purple curves correspond

to NB-LDPC code constructed using the PEG algorithm [55] with regular VN degree dis-

tribution L(x) = x3. The PEG algorithm is known to result in concentrated CN degree

distributions [55] similar to the ones used in the orange curve. The green curves correspond

to NB-LDPC codes constructed using the PEG algorithm using the degree distribution pro-

vided in [93, Table I] with a maximum VN degree 5. Note that this degree distribution is

optimized for the BIAWGN channel. Finally, the blue curves correspond to NB-LDPC codes

constructed using the PEG algorithm with degree distributions and rates obtained using the

JRDO algorithm. From the three plots in Fig. 5.9, we make the following observations.

The IR rates for the red curves are worse compared to the orange and purple curves. This

trend suggests that it is better to use a concentrated CN degree distribution. Note that the

IR rates for the orange and purple curves are very close. The IR rates for the green curves

(BIAWGN optimized degree distribution) are better compared to the purple curves (VN

148

0.005 0.008 0.011 0.014 0.017 0.02
1

1.2

1.4

1.6

1.8

2

α

IR
R

at
e

0.002 0.0024 0.0028 0.0032 0.0036 0.004

1.2

1.4

1.6

1.8

2

β

IR
R

at
e

100 200 300 400 500
1

1.1

1.2

1.3

1.4

1.5

1.6

Binwidth (ps)

IR
R

at
e

Figure 5.9: IR Rate for different NB-LDPC code constructions. Left and Right panels have PY |X
given by Eqn. (5.3). Left panel: IR rate vs α for (σ1, µ1, σ2, µ2, β) = (1.1, 0.2, 17, 1.5, 0.0025);
Right Panel: IR rate vs β for (α, σ1, µ1, σ2, µ2) = (0.005, 1.1, 0.2, 17, 1.5); Bottom panel: IR rate vs
binwidth where PY |X is derived empirically from our experimental data for different binwidths. In
all figures, the NB-MLC(a) protocol uses q = 5, a = 4, binary mapping for ub() and SDC.

149

0.005 0.008 0.011 0.014 0.017 0.02

1

1.2

1.4

1.6

1.8

2

2.2

α

IR
R

at
e

0.002 0.0024 0.0028 0.0032 0.0036 0.004

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

β

IR
R

at
e

100 200 300 400 500

1.2

1.3

1.4

1.5

1.6

1.7

Binwidth (ps)

IR
R

at
e

Figure 5.10: IR rate comparison for the IDC and SDC protocol. Left and Right panels have PY |X
given by Eqn. (5.3). Left panel: IR rate vs α for (σ1, µ1, σ2, µ2, β) = (1.1, 0.2, 17, 1.5, 0.0025);
Right Panel: IR rate vs β for (α, σ1, µ1, σ2, µ2) = (0.005, 1.1, 0.2, 17, 1.5); Bottom panel: IR rate vs
binwidth where PY |X is derived empirically from our experimental data for different binwidths. In
all figures, the NB-MLC(a) protocol uses, binary mapping for ub() and JRDO PEG-LDPC codes.

degree 3 regular LDPC codes). This trend suggests that it is better to use irregular LDPC

codes compared to regular LDPC codes to get improved IR rates. Finally, we observe that

the blue curves that correspond to JRDO-LDPC codes have better IR rates compared to

the green curve and result in the largest IR rates among all codes. The reason JRDO-LDPC

codes have higher IR rates compared to other codes is because they are optimized for the

ET-QKD channel.

In Fig. 5.10, we compare the performance of the interleaved decoding and communication

(IDC) and sequential decoding and communication (SDC) protocols. Note that the SDC

150

protocol was utilized in [37]. Similar to Fig. 5.9, the left and right panels correspond to

the parameterized channel model with varying α and β, respectively, and the bottom panel

corresponds to our experimental data. We compare the performance for NB-MLC(a) protocol

parameters q = 4, a = 3 (blue curves) and q = 5, a = 4 (red curves). The solid curves

correspond to IDC while the dotted curves correspond to SDC. From the figure, we can

clearly see that for different choices of protocol parameters and channel conditions, the IDC

protocol always results in a greater IR rate compared to the SDC protocol. As explained

in Section 5.4.2, the IDC protocol improves the IR rate since it strategically utilizes the

channels γiint, 1 ≤ i ≤ T , during the decoding of each layer of the NB-MLC(a) protocol which

provides more reliable information about the reconciled keys Xi compared to the channels

γiseq, 1 ≤ i ≤ T , used in SDC.

In Fig. 5.11, we combine all the techniques introduced in this chapter and demonstrate

the overall improvement in the IR rate compared to the MLC scheme of [37]. The solid

curves correspond to our techniques and utilize the NB-MLC(a) protocol with JRDO PEG-

LDPC codes and the IDC protocol. The values of a in the the NB-MLC(a) protocol are

chosen (as per the discussion in Fig. 5.8) to improve the IR rate without much increase in

complexity. The dotted curves correspond to the MLC scheme of [37] that utilizes randomly

constructed LDPC codes with regular VN degree distribution L(x) = x3 and the SDC

protocol. From the curves, we can clearly see a significant improvement in the IR rates

using our techniques compared to the MLC scheme. Overall, our techniques result in around

40− 60% improvement in IR rates on actual experimental data (right panel) demonstrating

their efficacy.

5.6 Conclusion

In this chapter, we considered the problem of IR in ET-QKD systems and proposed a protocol

for IR called NB-MLC(a). The NB-MLC(a) protocol offers flexibility in system design in terms

151

0.005 0.008 0.011 0.014 0.017 0.02

0.8

1

1.2

1.4

1.6

1.8

2

2.2

α

IR
R

at
e

0.002 0.0024 0.0028 0.0032 0.0036 0.004

1

1.2

1.4

1.6

1.8

2

2.2

β
IR

R
at

e

100 200 300 400 500

0.8

1

1.2

1.4

1.6

1.8

2

Binwidth (ps)

IR
R

at
e

Figure 5.11: IR rate comparison of our techniques combined (solid curves) vs. the MLC scheme of
[37] (dotted curves). The solid curves are the result of utilizing the NB-MLC(a) protocol with JRDO
PEG-LDPC codes and the IDC protocol. All curves use binary mapping. Left and Right panels have
PY |X given by Eqn. (5.3). Left panel: IR rate vs α for (σ1, µ1, σ2, µ2, β) = (1.1, 0.2, 17, 1.5, 0.0025);
Right Panel: IR rate vs β for (α, σ1, µ1, σ2, µ2) = (0.005, 1.1, 0.2, 17, 1.5); Bottom panel: IR rate
vs binwidth where PY |X is derived empirically from our experimental data for different binwidths.
The curves corresponding to q = 5 in the right panel are presented in Fig. 5.1.

152

of IR rate and complexity via the parameter a. Additionally, using a small value of a (3 or 4),

the NB-MLC(a) protocol results in a significant improvement in the IR rate compared to prior

work without a large increase in complexity. To further improve the IR rate performance of

the NB-MLC(a) protocol, we proposed the JRDO algorithm to design NB-LDPC codes for

each layer and the IDC scheme to decode the different layers of the NB-MLC(a) protocol.

Overall, NB-MLC(a) protocol that uses NB-LDPC codes designed by the JRDO algorithm

and the IDC scheme results in a significant 40 − 60% improvement in IR rate compared to

prior work. The techniques proposed in this work can be additionally combined with the

adaptive modulation techniques of [102] to further improve the IR rates. It is an exciting

direction of future research to tailor the NB-MLC(a) protocol to use adaptive modulation.

153

CHAPTER 6

Conclusion

6.1 Summary of Contributions

In this dissertation, we considered two modern communication systems: blockchains and

quantum communication. We demonstrated that these modern systems encounter new chal-

lenges in system design resulting in new metrics of concern such as probability of failure,

communication costs, key rates, etc., that necessitate new channel code design compared to

traditionally used channel codes. For the considered blockchain and quantum communica-

tion systems, we then developed specialized channel codes that are tailor-made to overcome

the different challenges in these systems and demonstrated that they perform significantly

better in terms of the metrics of concern compared to codes used in earlier literature for

these applications as well as other codes designed for traditional systems.

For blockchain systems, we focused on channel code design to mitigate a security vulner-

ability known as data availability (DA) attacks that is pertinent to blockchains with light

nodes and side blockchains. We demonstrated that, in order to mitigate DA attacks in both

these systems, various new metrics that are not encountered in traditional communication

need to be optimized such probability of failure (for light nodes), dispersal communication

cost (for side blockchains), incorrect coding proof size, Merkle root size, etc., necessitating

new channel code design. We then designed specialized channel codes for light nodes and side

blockchains that simultaneously perform well on all the concerned metrics relevant to these

systems. In particular, we demonstrated that the design of suitable channel codes to mitigate

154

DA attacks in light nodes and side blockchains depends on the size of the transaction blocks

in the blockchain. For blockchains having small and large transaction block sizes, we showed

that LDPC codes (Chapter 2, 3) and polar codes (Chapter 4), respectively, are the class

of codes most suitable to mitigate DA attacks. We then designed specialized LDPC codes

and polar codes for small and large block sizes, respectively, and demonstrated that these

specialized codes offer improved trade-offs in the concerned metrics (probability of failure in

light nodes, communication cost in side blockchains, incorrect coding proof size, Merkle root

size, design complexity) compared to other codes used in literature for this application.

In quantum communication, we focused on channel code design for an important appli-

cation known as Quantum Key Distribution (QKD). Similar to blockchain systems, in this

case, a new metric called the secret key rate/information reconciliation rate needs to be max-

imized. Traditional communication systems such as wireless communication or storage in

memories are typically concerned with obtaining extremely low frame error rates (FERs) at a

given coding rate for high system reliability. However, in the case of QKD, we demonstrated

that the new metric information reconciliation rate depends jointly on the FER and code

rate, necessitating a new code design technique that performs a joint code rate and FER op-

timization. At the same time, we demonstrated that the channel observed in QKD is vastly

different than the ones considered in traditional systems such as binary symmetric, binary

erasure, additive white Gaussian noise, etc., thus also requiring a tailored code construction.

We then provided a design algorithm to jointly design the code rate and specialized non-

binary LDPC codes (that are customized to the observed QKD channel) and demonstrated

that they result in a significantly higher information reconciliation rate compared to codes

used in earlier literature for this application.

155

6.2 Future Directions

For mitigating DA attacks in blockchains with small block sizes, the LDPC codes designed in

this thesis (Chapters 2 and 3) are based on the progressive edge growth (PEG) algorithm [55].

Other classes of LDPC codes such as Quasi-Cyclic (QC) [103] and photograph-based [104]

LDPC codes, due to their structured construction, can also lead to good performance in terms

of mitigating DA attacks. Thus, it is an interesting direction for future research to design

specialized QC-LDPC and photograph-based LDPC codes and tailored sampling/dispersal

strategies for mitigating DA attacks and compare their performance with the PEG LDPC

codes designed in this thesis.

For mitigating DA attacks in blockchains with large block sizes, we proposed the Graph

Coded Merkle Tree (GCMT) in Chapter 4. While the proposed GCMT is general enough to

use any encoding trellis for its construction, in this thesis, we focused on the encoding graph

of polar codes due it its nice stopping set properties. It is an interesting direction for future

research to consider other graphical structures such as the expander graphs [105] within the

GCMT setup, analyze their performance with respect to the various performance metrics

relevant to DA attacks, and compare the performance to polar factor graphs.

For obtaining high secret key rates in quantum key distribution, we proposed specialized

NB-LDPC codes where the degree distribution of the codes is optimized for the observed

QKD channel. However, the edge weights in the optimized NB-LDPC codes are selected

uniformly at random from the possible choices of edge weights. Modifying the edge weight

distribution compared to uniform distribution has been known to improve the code perfor-

mance [106, 107]. Thus, it is an interesting direction for future research to find optimized

edge weight distributions for NB-LDPC codes that result in high secret key rates.

Another appealing direction for future research is the combination of the NB-MLC(a)

protocol proposed in this thesis with adaptive modulation techniques such as in [102] that

aim to improve the secret key rates. Adaptive modulation schemes utilize the frames that

156

have multiple detections instead of discarding them (as considered in this thesis) by strate-

gically changing the frame size, thus naturally increasing the key rate. Integrating adaptive

modulation within the NB-MLC(a) protocol will require a hybrid coding solution that uti-

lizes NB-LDPC codes with different alphabet sizes and hence must be designed differently

compared to the design provided in this thesis.

157

REFERENCES

[1] T. Richardson and R. Urbanke, Modern coding theory. Cambridge university press,
2008.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized business
review, 2008.

[3] G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,”
Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.

[4] M. Mettler, “Blockchain technology in healthcare: The revolution starts here,” in 2016
IEEE 18th International Conference on e-Health Networking, Applications and Services
(Healthcom), pp. 1–3, 2016.

[5] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, “Medrec: Using blockchain for med-
ical data access and permission management,” in 2016 2nd International Conference
on Open and Big Data (OBD), pp. 25–30, 2016.

[6] M. J. Casey and P. Wong, “Global supply chains are about to get bet-
ter, thanks to blockchain,” in Harvard Business Review, [Online]. Avail-
able: https://hbr.org/2017/03/global-supply-chains-are-about-to-get-better-thanks-to-
blockchain, Mar. 2017.

[7] Z. Ma, M. Jiang, H. Gao, and Z. Wang, “Blockchain for digital rights management,”
Future Generation Computer Systems, vol. 89, pp. 746–764, 2018.

[8] A. Bahga and V. K. Madisetti, “Blockchain platform for industrial internet of things,”
in Journal of Software Engineering and Applications, vol. 9, p. 533, 2016.

[9] X. Wang, X. Zha, W. Ni, R. P. Liu, Y. J. Guo, X. Niu, and K. Zheng, “Survey on
blockchain for internet of things,” Computer Communications, vol. 136, pp. 10–29,
2019.

[10] Online: https://www.blockchain.com/charts/blocks-size, Accessed: Oct. 10, 2023.

[11] C. Li, P. Li, D. Zhou, Z. Yang, M. Wu, G. Yang, W. Xu, F. Long, and A. C.-C.
Yao, “A decentralized blockchain with high throughput and fast confirmation,” in 2020
{USENIX} Annual Technical Conference ({USENIX}{ATC} 20), pp. 515–528, 2020.

[12] C. Yang, K.-W. Chin, J. Wang, X. Wang, Y. Liu, and Z. Zheng, “Scaling blockchains
with error correction codes: A survey on coded blockchains,” arXiv preprint
arXiv:2208.09255, 2022.

158

[13] M. Al-Bassam, A. Sonnino, V. Buterin, and I. Khoffi, “Fraud and data availability
proofs: Detecting invalid blocks in light clients,” in Financial Cryptography and Data
Security: 25th International Conference, FC 2021, Virtual Event, March 1–5, 2021,
Revised Selected Papers, Part II 25, pp. 279–298, Springer, 2021.

[14] P. Sheng, B. Xue, S. Kannan, and P. Viswanath, “Aced: Scalable data availability
oracle,” in Financial Cryptography and Data Security: 25th International Conference,
FC 2021, Virtual Event, March 1–5, 2021, Revised Selected Papers, Part II 25, pp. 299–
318, Springer, 2021.

[15] M. Yu, S. Sahraei, S. Li, S. Avestimehr, S. Kannan, and P. Viswanath, “Coded merkle
tree: Solving data availability attacks in blockchains,” in International Conference on
Financial Cryptography and Data Security, pp. 114–134, Springer, 2020.

[16] Online: https://www.blockchain.com/charts/avg-block-size, Accessed: Oct. 10,
2023.

[17] Online: https://bitinfocharts.com/comparison/bitcoin%20cash-size.html#
3y, Accessed: Oct. 10, 2023.

[18] Online: https://bitinfocharts.com/comparison/bitcoin%20sv-size.html#3y,
Accessed: Oct. 10, 2023.

[19] T. Rocket, M. Yin, K. Sekniqi, R. van Renesse, and E. G. Sirer, “Scalable
and probabilistic leaderless bft consensus through metastability,” arXiv preprint
arXiv:1906.08936, 2019.

[20] D. Mitra, L. Tauz, and L. Dolecek, “Concentrated stopping set design for coded merkle
tree: Improving security against data availability attacks in blockchain systems,” in
2020 IEEE Information Theory Workshop (ITW), pp. 1–5, IEEE, 2021.

[21] D. Mitra, L. Tauz, and L. Dolecek, “Communication-efficient ldpc code design for data
availability oracle in side blockchains,” in 2021 IEEE Information Theory Workshop
(ITW), pp. 1–6, IEEE, 2021.

[22] D. Mitra, L. Tauz, and L. Dolecek, “Overcoming data availability attacks in blockchain
systems: Short code-length ldpc code design for coded merkle tree,” IEEE Transactions
on Communications, vol. 70, no. 9, pp. 5742–5759, 2022.

[23] K. M. Krishnan and P. Shankar, “Computing the stopping distance of a tanner graph
is np-hard,” IEEE transactions on information theory, vol. 53, no. 6, pp. 2278–2280,
2007.

[24] D. Mitra, L. Tauz, and L. Dolecek, “Polar coded merkle tree: Improved detection of
data availability attacks in blockchain systems,” in 2022 IEEE International Sympo-
sium on Information Theory (ISIT), pp. 2583–2588, IEEE, 2022.

159

[25] D. Mitra, L. Tauz, and L. Dolecek, “Graph coded merkle tree: Mitigating data avail-
ability attacks in blockchain systems using informed design of polar factor graphs,”
IEEE Journal on Selected Areas in Information Theory, vol. 4, pp. 434–452, 2023.

[26] E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes
for symmetric binary-input memoryless channels,” IEEE Transactions on information
Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[27] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and
coin tossing,” Theoretical computer science, vol. 560, pp. 7–11, 2014.

[28] H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nature Pho-
tonics, vol. 8, no. 8, pp. 595–604, 2014.

[29] Q. Zhuang, Z. Zhang, J. Dove, F. N. Wong, and J. H. Shapiro, “Floodlight quantum
key distribution: A practical route to gigabit-per-second secret-key rates,” Physical
Review A, vol. 94, no. 1, p. 012322, 2016.

[30] Z. Zhang, Q. Zhuang, F. N. Wong, and J. H. Shapiro, “Floodlight quantum key dis-
tribution: demonstrating a framework for high-rate secure communication,” Physical
Review A, vol. 95, no. 1, p. 012332, 2017.

[31] Z. Zhang, C. Chen, Q. Zhuang, F. N. Wong, and J. H. Shapiro, “Experimental quantum
key distribution at 1.3 gigabit-per-second secret-key rate over a 10 db loss channel,”
Quantum Science and Technology, vol. 3, no. 2, p. 025007, 2018.

[32] E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in quantum key
distribution,” npj Quantum Information, vol. 2, no. 1, pp. 1–12, 2016.

[33] S. J. Johnson, V. A. Chandrasetty, and A. M. Lance, “Repeat-accumulate codes for
reconciliation in continuous variable quantum key distribution,” in 2016 Australian
Communications Theory Workshop (AusCTW), pp. 18–23, IEEE, 2016.

[34] X.-Q. Jiang, S. Yang, P. Huang, and G. Zeng, “High-speed reconciliation for cvqkd
based on spatially coupled ldpc codes,” IEEE Photonics Journal, vol. 10, no. 4, pp. 1–
10, 2018.

[35] K. Zhang, X.-Q. Jiang, Y. Feng, R. Qiu, and E. Bai, “High efficiency continuous-
variable quantum key distribution based on atsc 3.0 ldpc codes,” Entropy, vol. 22,
no. 10, p. 1087, 2020.

[36] S. Yang, M. C. Sarihan, K.-C. Chang, C. W. Wong, and L. Dolecek, “Efficient informa-
tion reconciliation for energy-time entanglement quantum key distribution,” in 2019
53rd Asilomar Conference on Signals, Systems, and Computers, pp. 1364–1368, IEEE,
2019.

160

[37] H. Zhou, L. Wang, and G. Wornell, “Layered schemes for large-alphabet secret key
distribution,” in 2013 Information Theory and Applications Workshop (ITA), pp. 1–
10, IEEE, 2013.

[38] D. Mitra, L. Tauz, M. C. Sarihan, C. W. Wong, and L. Dolecek, “Non-binary ldpc
code design for energy-time entanglement quantum key distribution,” arXiv preprint
arXiv:2305.00956, 2023.

[39] Online: https://etherscan.io/chartsync/chaindefault, Accessed: Oct. 10, 2023.

[40] Online: https://github.com/ethereum/research/wiki/A-note-on-data-availability-and-
erasure-coding.

[41] X. Jiao, J. Mu, J. Song, and L. Zhou, “Eliminating small stopping sets in irregular low-
density parity-check codes,” IEEE communications letters, vol. 13, no. 6, pp. 435–437,
2009.

[42] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, “Construction of irregular ldpc
codes with low error floors,” in IEEE International Conference on Communications,
2003. ICC’03., vol. 5, pp. 3125–3129, IEEE, 2003.

[43] P. Santini, G. Rafaiani, M. Battaglioni, F. Chiaraluce, and M. Baldi, “Optimization
of a reed-solomon code-based protocol against blockchain data availability attacks,”
in 2022 IEEE International Conference on Communications Workshops (ICC Work-
shops), pp. 31–36, IEEE, 2022.

[44] A. Orlitsky, K. Viswanathan, and J. Zhang, “Stopping set distribution of ldpc code
ensembles,” IEEE Transactions on Information Theory, vol. 51, no. 3, pp. 929–953,
2005.

[45] S. Cao, S. Kadhe, and K. Ramchandran, “Cover: Collaborative light-node-only verifi-
cation and data availability for blockchains,” in 2020 IEEE International Conference
on Blockchain (Blockchain), pp. 45–52, IEEE, 2020.

[46] T. Team, “Trifecta: the blockchain trilemma solved,” 2019.

[47] M. Dai, S. Zhang, H. Wang, and S. Jin, “A low storage room requirement framework
for distributed ledger in blockchain,” IEEE access, vol. 6, pp. 22970–22975, 2018.

[48] Q. Huang, L. Quan, and S. Zhang, “Downsampling and transparent coding for
blockchain,” IEEE Transactions on Network Science and Engineering, vol. 9, no. 4,
pp. 2139–2149, 2022.

[49] S. Kadhe, J. Chung, and K. Ramchandran, “Sef: A secure fountain architecture for
slashing storage costs in blockchains,” arXiv preprint arXiv:1906.12140, 2019.

161

[50] S. Li, M. Yu, C.-S. Yang, A. S. Avestimehr, S. Kannan, and P. Viswanath, “Polyshard:
Coded sharding achieves linearly scaling efficiency and security simultaneously,” IEEE
Transactions on Information Forensics and Security, vol. 16, pp. 249–261, 2020.

[51] D. Perard, J. Lacan, Y. Bachy, and J. Detchart, “Erasure code-based low stor-
age blockchain node,” in 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData),
pp. 1622–1627, IEEE, 2018.

[52] P. Daian, R. Pass, and E. Shi, “Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake,” in Financial Cryptography and Data
Security: 23rd International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis,
February 18–22, 2019, Revised Selected Papers 23, pp. 23–41, Springer, 2019.

[53] S. Park, A. Kwon, G. Fuchsbauer, P. Gaži, J. Alwen, and K. Pietrzak, “Spacemint:
A cryptocurrency based on proofs of space,” in Financial Cryptography and Data Se-
curity: 22nd International Conference, FC 2018, Nieuwpoort, Curaçao, February 26–
March 2, 2018, Revised Selected Papers 22, pp. 480–499, Springer, 2018.

[54] A. Sarıduman, A. E. Pusane, and Z. C. Taşkın, “An integer programming-based search
technique for error-prone structures of ldpc codes,” AEU-International Journal of Elec-
tronics and Communications, vol. 68, no. 11, pp. 1097–1105, 2014.

[55] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Regular and irregular progressive edge-
growth tanner graphs,” IEEE transactions on information theory, vol. 51, no. 1,
pp. 386–398, 2005.

[56] S.-H. Kim, J.-S. Kim, D.-S. Kim, and H.-Y. Song, “Ldpc code construction with low
error floor based on the ipeg algorithm,” IEEE communications letters, vol. 11, no. 7,
pp. 607–609, 2007.

[57] Y. T. Lee and A. Sidford, “Efficient inverse maintenance and faster algorithms for linear
programming,” in 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science, pp. 230–249, IEEE, 2015.

[58] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza, “Ze-
rocash: Decentralized anonymous payments from bitcoin,” in 2014 IEEE symposium
on security and privacy, pp. 459–474, IEEE, 2014.

[59] K. Nazirkhanova, J. Neu, and D. Tse, “Information dispersal with provable retrievabil-
ity for rollups,” in Proceedings of the 4th ACM Conference on Advances in Financial
Technologies, pp. 180–197, 2022.

[60] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable, transparent, and
post-quantum secure computational integrity,” Cryptology ePrint Archive, 2018.

162

[61] H. Saleh, S. Avdoshin, and A. Dzhonov, “Platform for tracking donations of charitable
foundations based on blockchain technology,” in 2019 Actual Problems of Systems and
Software Engineering (APSSE), pp. 182–187, IEEE, 2019.

[62] A. Foti and D. Marino, “Blockchain and charities: A systemic opportunity to create
social value,” Economic and Policy Implications of Artificial Intelligence, pp. 145–148,
2020.

[63] M. Jirgensons and J. Kapenieks, “Blockchain and the future of digital learning cre-
dential assessment and management,” Journal of teacher education for sustainability,
vol. 20, no. 1, pp. 145–156, 2018.

[64] R. Zambrano, A. Young, and S. Verhulst, “Connecting refugees to aid through
blockchain-enabled id management: world food programme’s building blocks,” GovLab
October, 2018.

[65] W. Stadje, “The collector’s problem with group drawings,” Advances in Applied Prob-
ability, vol. 22, no. 4, pp. 866–882, 1990.

[66] Y. He, J. Yang, and J. Song, “A survey of error floor of ldpc codes,” in 2011 6th Interna-
tional ICST Conference on Communications and Networking in China (CHINACOM),
pp. 61–64, IEEE, 2011.

[67] T. Tian, C. R. Jones, J. D. Villasenor, and R. D. Wesel, “Selective avoidance of cycles
in irregular ldpc code construction,” IEEE Transactions on Communications, vol. 52,
no. 8, pp. 1242–1247, 2004.

[68] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Transactions on Information
Theory, vol. 59, no. 10, pp. 6562–6582, 2013.

[69] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE transactions on information
theory, vol. 61, no. 5, pp. 2213–2226, 2015.

[70] K. Tian, A. Fazeli, and A. Vardy, “Polar coding for deletion channels: Theory and im-
plementation,” in 2018 IEEE International Symposium on Information Theory (ISIT),
pp. 1869–1873, IEEE, 2018.

[71] N. Goela, S. B. Korada, and M. Gastpar, “On lp decoding of polar codes,” in 2010
IEEE Information Theory Workshop, pp. 1–5, IEEE, 2010.

[72] A. Eslami and H. Pishro-Nik, “On finite-length performance of polar codes: stopping
sets, error floor, and concatenated design,” IEEE Transactions on communications,
vol. 61, no. 3, pp. 919–929, 2013.

[73] E. Arikan, “Systematic polar coding,” IEEE communications letters, vol. 15, no. 8,
pp. 860–862, 2011.

163

[74] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar decoders:
Algorithm and implementation,” IEEE Journal on Selected Areas in Communications,
vol. 32, no. 5, pp. 946–957, 2014.

[75] S. Cammerer, M. Ebada, A. Elkelesh, and S. ten Brink, “Sparse graphs for belief
propagation decoding of polar codes,” in 2018 IEEE International Symposium on In-
formation Theory (ISIT), pp. 1465–1469, IEEE, 2018.

[76] T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli,
J. C. Bienfang, R. P. Mirin, T. Gerrits, et al., “Photon-efficient quantum key distribu-
tion using time–energy entanglement with high-dimensional encoding,” New Journal
of Physics, vol. 17, no. 2, p. 022002, 2015.

[77] L. Dolecek and E. Soljanin, “Qkd based on time-entangled photons and its key-rate
promise,” IEEE BITS the Information Theory Magazine, vol. 2, no. 3, pp. 39–48, 2022.

[78] Z. Zhang, J. Mower, D. Englund, F. N. Wong, and J. H. Shapiro, “Unconditional
security of time-energy entanglement quantum key distribution using dual-basis inter-
ferometry,” Physical review letters, vol. 112, no. 12, p. 120506, 2014.

[79] K.-C. Chang, X. Cheng, M. C. Sarihan, A. K. Vinod, Y. S. Lee, T. Zhong, Y.-X. Gong,
Z. Xie, J. H. Shapiro, F. N. Wong, et al., “648 hilbert-space dimensionality in a biphoton
frequency comb: entanglement of formation and schmidt mode decomposition,” npj
Quantum Information, vol. 7, no. 1, p. 48, 2021.

[80] M. Zhang, Y. Dou, Y. Huang, X.-Q. Jiang, and Y. Feng, “Improved information recon-
ciliation with systematic polar codes for continuous variable quantum key distribution,”
Quantum Information Processing, vol. 20, pp. 1–16, 2021.

[81] M. Zhang, H. Hai, Y. Feng, and X.-Q. Jiang, “Rate-adaptive reconciliation with po-
lar coding for continuous-variable quantum key distribution,” Quantum Information
Processing, vol. 20, pp. 1–17, 2021.

[82] X. Wen, Q. Li, H. Mao, Y. Luo, B. Yan, and F. Huang, “Novel reconciliation protocol
based on spinal code for continuous-variable quantum key distribution,” Quantum
Information Processing, vol. 19, no. 10, p. 350, 2020.

[83] Q. Li, X. Wen, H. Mao, and X. Wen, “An improved multidimensional reconciliation
algorithm for continuous-variable quantum key distribution,” Quantum Information
Processing, vol. 18, pp. 1–20, 2019.

[84] K. Brádler, M. Mirhosseini, R. Fickler, A. Broadbent, and R. Boyd, “Finite-key security
analysis for multilevel quantum key distribution,” New Journal of Physics, vol. 18,
no. 7, p. 073030, 2016.

164

[85] C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, “Generalized privacy
amplification,” IEEE Transactions on Information theory, vol. 41, no. 6, pp. 1915–
1923, 1995.

[86] C. Lee, D. Bunandar, Z. Zhang, G. R. Steinbrecher, P. B. Dixon, F. N. Wong, J. H.
Shapiro, S. A. Hamilton, and D. Englund, “Large-alphabet encoding for higher-rate
quantum key distribution,” Optics express, vol. 27, no. 13, pp. 17539–17549, 2019.

[87] M. C. Davey and D. J. MacKay, “Low density parity check codes over gf (q),” in 1998
Information Theory Workshop (Cat. No. 98EX131), pp. 70–71, IEEE, 1998.

[88] J. Martinez-Mateo, D. Elkouss, and V. Martin, “Key reconciliation for high perfor-
mance quantum key distribution,” Scientific reports, vol. 3, no. 1, p. 1576, 2013.

[89] S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road
ahead,” Science, vol. 362, no. 6412, p. eaam9288, 2018.

[90] S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, and P. Grangier,
“Field test of a continuous-variable quantum key distribution prototype,” New Journal
of Physics, vol. 11, no. 4, p. 045023, 2009.

[91] R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces,” Journal of global optimization, vol. 11, pp. 341–
359, 1997.

[92] K. Price, R. M. Storn, and J. A. Lampinen, Differential evolution: a practical approach
to global optimization. Springer Science & Business Media, 2006.

[93] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE transactions on infor-
mation theory, vol. 47, no. 2, pp. 619–637, 2001.

[94] A. S. Trushechkin, E. O. Kiktenko, D. A. Kronberg, and A. K. Fedorov, “Security of
the decoy state method for quantum key distribution,” Physics-Uspekhi, vol. 64, no. 1,
p. 88, 2021.

[95] A. Fedorov, E. Kiktenko, and A. Trushechkin, “Symmetric blind information reconcili-
ation and hash-function-based verification for quantum key distribution,” Lobachevskii
Journal of Mathematics, vol. 39, pp. 992–996, 2018.

[96] S. Yang, Application-Driven Coding Techniques: From Cloud Storage to Quantum
Communications. University of California, Los Angeles, 2021.

[97] E. Dupraz, V. Savin, and M. Kieffer, “Density evolution for the design of non-binary
low density parity check codes for slepian-wolf coding,” IEEE Transactions on Com-
munications, vol. 63, no. 1, pp. 25–36, 2014.

165

[98] A. Shokrollahi and R. Storn, “Design of efficient erasure codes with differential evo-
lution,” in 2000 IEEE International Symposium on Information Theory (Cat. No.
00CH37060), p. 5, IEEE, 2000.

[99] J. Hou, P. H. Siegel, and L. B. Milstein, “Performance analysis and code optimization of
low density parity-check codes on rayleigh fading channels,” IEEE Journal on Selected
areas in Communications, vol. 19, no. 5, pp. 924–934, 2001.

[100] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,” IEEE trans-
actions on information theory, vol. 44, no. 3, pp. 927–946, 1998.

[101] F. W. Glover and G. A. Kochenberger, Handbook of metaheuristics, vol. 57. Springer
Science & Business Media, 2006.

[102] E. Karimi, E. Soljanin, and P. Whiting, “Increasing the raw key rate in energy-time
entanglement based quantum key distribution,” in 2020 54th Asilomar Conference on
Signals, Systems, and Computers, pp. 433–438, IEEE, 2020.

[103] S. Myung, K. Yang, and J. Kim, “Quasi-cyclic ldpc codes for fast encoding,” IEEE
Transactions on Information Theory, vol. 51, no. 8, pp. 2894–2901, 2005.

[104] J. Thorpe, “Low-density parity-check (ldpc) codes constructed from protographs,” IPN
progress report, vol. 42, no. 154, pp. 42–154, 2003.

[105] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their applications,”
Bulletin of the American Mathematical Society, vol. 43, no. 4, pp. 439–561, 2006.

[106] V. Savin, “Non binary ldpc codes over the binary erasure channel: density evolution
analysis,” in 2008 First International Symposium on Applied Sciences on Biomedical
and Communication Technologies, pp. 1–5, IEEE, 2008.

[107] G. Han, Y. L. Guan, L. Kong, K. S. Chan, and K. Cai, “Towards optimal edge weight
distribution and construction of field-compatible low-density parity-check codes over
gf (q),” IET Communications, vol. 8, no. 18, pp. 3215–3222, 2014.

166

