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EBI2 positions naïve and activated B cells 

By Lisa M. Kelly 

Abstract 

The immune system is organized to allow lymphocytes to survey for antigen and 

rapidly respond to an infection. B lymphocytes reside in B cell follicles and, upon 

exposure to antigen, rapidly migrate to interact with T cells, and then later go on 

to quickly produce protective antibodies and more slowly generate a memory 

response to prevent later reinfection. The role of chemokines and their receptors 

in positioning naïve and activated cells is well appreciated; CXCR5 is required for 

B cells to home to B cell follicles, and CCR7 is required for migration toward T 

cells. However, the positioning of B cells is not completely explained by these 

two chemokine receptors. During activation, B cells migrate after T cell 

interaction to the outer follicle, and some then migrate toward the center of the 

follicle to form germinal centers. The cues positioning cells to these areas have 

been poorly understood. Here we describe the role of the G protein coupled 

receptor EBI2 in positioning B cells, both homeostatically and upon activation. 

EBI2 promotes naïve B cell localization to the outer follicle, and EBI2 deficient 

cells are found toward the center of the follicle in competition. EBI2 expression is 

increased after B cell activation, directing activated cells to the outer follicle 

before CCR7 brings them toward T cells. After receiving CD40 stimulation from T 

cells, activated B cells migrate again to the outer follicle in an EBI2-dependent 

manner. EBI2 downregulation is required for B cells to move into the follicle and 



 xii

for germinal center development. Some cells remain at the outer follicle and 

produce antibody. EBI2 is required for efficient antibody production in a T-

dependent immune response. These data demonstrate that EBI2 acts in 

coordination with the chemokine receptors CXCR5 and CCR7 to position naïve 

and activated B cells and contributes to the immune response. 
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Chapter 1 

Introduction 
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Secondary lymphoid tissue organization 

The immune system has evolved to protect the organism from pathogens 

and is organized throughout the body. Primary lymphoid organs support the 

development of hematopoietic cells, while secondary lymphoid organs (SLO), 

including spleen, lymph nodes (LN) and Peyer’s patches (PP), are distributed 

throughout the body and collect and concentrate antigens (Ag), which can then 

be displayed to rare recirculating antigen-specific T and B cells. The circulatory 

system makes possible the transport of both cells and Ag throughout the body. 

Naive lymphocytes circulate throughout the body in blood and can enter SLO to 

survey for Ag. 

Lymphocytes also egress from lymphoid tissues via the lymph, or, when 

exiting the spleen, via the blood. Lymph is collected into the lymphatic ducts and 

then funnels back into the blood, allowing for continued recirculation of 

cells.  While large Ag requires cellular transport to reach SLO, small particulate 

or soluble Ag can drain from sites of infection or immunization to the lymph, 

which in turn drains to LN. Ag reaches the spleen via the blood (Cyster, 2010). 

The site of infection or immunization will determine the site of Ag drainage. 

Ag access to SLO is carefully moderated, allowing processing and display 

of Ag to proceed in order to launch a productive immune response to the Ag. Ag 

can arrive at the SLO in a sinus between the outer capsule of the SLO and a 

layer of cells surrounding a B cell follicle. In the LN, Ag arrives in the subcapsular 

sinus via the lymph, while in the spleen, blood drains through the marginal sinus 

(Figure 1). In PP, specialized epithelial cells, termed M cells, transcytose Ag from  
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the gut lumen, to the subepithelial dome containing dendritic cells (DC) above the 

B cell follicle. While sufficiently small Ag can diffuse into the follicle, larger Ag 

must be actively transported across a layer of CD169+ macrophages. In the LN, 

CD169+ macrophages extend arms into the lymphatic sinus, allowing collection 

of Ag, which is translocated into the follicle (Carrasco and Batista, 2007; Junt et 

al., 2007; Phan et al., 2007). In the absence of these macrophages, infection is 

not contained to the LN and may become systemic (Junt et al., 2007). In the 

spleen, the marginal sinus is lined by MadCAM1+ cells. The marginal zone 

contains SIGNR1+ MARCO+ marginal zone macrophages, while the white pulp 

contains CD169+ marginal zone metallophilic macrophages near the marginal 

sinus (Mebius and Kraal, 2005). Another cell type located among the 

macrophages is the marginal reticular cell (MRC), a stromal cell type found in 

SLO including the spleen, LN, and mucosal sites such as PP, isolated lymphoid 

follicles (ILF), and nasal-associated lymphoid tissue (Figure 1). MRCs are most 

easily distinguished by their staining for TRANCE (Katakai et al., 2008). 

 

B cell follicle organization 

Beneath the CD169+ macrophages and MRC in SLO is the B cell follicle. 

The B cell follicle is established via an interplay between stromal cells and 

lymphocytes. Stromal cells, including follicular dendritic cells (FDC), produce the 

chemokine CXCL13, which is recognized by cells expressing CXCR5, such as B 

cells and lymphoid tissue inducing cells (LTIC). These cells are recruited to 

nascent follicles and express lymphotoxin on their surface, which is recognized 
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by LTbR on FDC, leading to their maturation and further expression of CXCL13. 

This generates a positive feedback loop between CXCL13-expressing FDC and 

lymphotoxin-expressing B cells and LTIC, establishing B cell follicles in SLO 

(Ansel et al., 2000; Cyster, 2005; Ngo et al., 1999). A primary follicle consists of 

FDC centered in an area of naive B cells, in addition to a network of other 

stromal cells. 

The B cell follicle itself is organized into different areas, the structure and 

function of which are still under investigation. The outer follicle (OF) is the area of 

the follicle closest to sites of Ag drainage; in spleen, the area of follicle closest to 

blood, in LN, the area closest to subcapsular sinus, and in PP, the area closest to 

gut epithelium. As multiple follicles exist within each SLO, there are areas where 

follicles are adjacent to each other, termed “interfollicular” (IF) areas (Figure 1). 

IF zones tend to be enriched for DEC205- CD11c+ cells in the spleen and LN 

(Steinman et al., 1997). In addition to containing selectively enriched 

hematopoetic cells, the IF zone is also stromally distinct from the follicle. While 

the follicle contains sparse reticular fibers, the IF zone has a higher density of 

reticular fibers, as stained with ER-TR7. The IF zone is the starting point of a 

“cortical ridge” of reticular fibers that extends around the B cell follicle, at the 

interface between the B and T cell zones. However, the cortical ridge is not 

observed in the spleen (Katakai et al., 2004). In the spleen, follicles can also be 

separated by bridging channels, formed where the T cell zone meets the red pulp 

(Figure 1). This area is often observed as a gap in the ring of CD169+ 

macrophages surrounding the white pulp and may have a higher concentration of 
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CD11c+ DEC205- DCs (Steinman et al., 1997). The IF zone may also contain a 

greater concentration of MRCs, which express CXCL13 and may thereby help 

recruit B cells to this area, although other cues may also bring cells to this area, 

as CXCR5-deficient cells localize to IF zones (Ansel et al., 2000; Katakai et al., 

2008; Roozendaal and Mebius, 2011). This area has been proposed to be 

important for Ag capture and retention (Mueller and Germain, 2009). High 

endothelial venules (HEV) tend to be located in the LN between the B cell follicle 

and T cell zone and in IF areas, bringing newly arriving cells, possibly with Ag, to 

these areas. While subcutaneously injected, labeled Ag was observed in the 

subcapsular sinus 4 hrs after immunization, by 18 hr, it was enriched at IF zones 

of the draining LN (Ingulli et al., 2002). 

The center of the B cell follicle contains FDC, radiation-resistant stromal 

cells that are important both for follicular development and the immune response. 

In a primary follicle, present in the absence of an immune response, FDC 

express the complement receptor CD35, allowing the binding of complement 

coated, opsonized Ag. During an immune response, a secondary follicle 

develops as a germinal center (GC) forms and the FDC mature, upregulating 

expression of the integrin ligand VCAM-1 and the Fc receptor Fc rIIb. FDC also 

express the stromal markers MadCAM-1, gp38 and BP-3 (Allen and Cyster, 

2008). The germinal center has been recognized as a histologically distinct 

compartment of the follicle since its observation in 1884. Recent imaging of the 

GC has shown that B cells move dynamically within this structure (Allen et al., 

2007; Hauser et al., 2007; Schwickert et al., 2007). 
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Chemokines and lymphoid architecture  

The organization of B cell follicles is mediated by chemokines and their 

receptors. CXCR5, expressed by B cells, recognizes the chemokine CXCL13 

found throughout the follicle and made by stromal cells including FDC and MRC, 

as well as by hematopoietic cells (Ansel et al., 2000; Katakai et al., 2008). In the 

absence of either CXCL13 or CXCR5, neither splenic primary follicles nor 

peripheral LN form. In the spleen, B cells form rings around the T cell zone and 

the marginal zone is thicker  than in WT (Ansel et al., 2000; Forster et al., 1996). 

However, B cells still do segregate in discrete areas from T cells, demonstrating 

that there is still organization of B cells in the absence of CXCL13/CXCR5. Naïve 

B cells express additional chemokine receptors including, at low levels, CCR7, 

which recognizes the chemokines CCL19 and CCL21. While these chemokines 

are found at high levels in the T cell zone, CCL21 extends into the B cell follicle 

adjacent to the T cell zone (Okada et al., 2005). CCR7 plays a role in positioning 

of naïve B cells, as CCR7-deficient B cells localize toward the T cell-distal area of 

the B cell follicle upon transfer (Reif et al., 2002). CCL19 and 21 are made by the 

T zone stromal cells, also known as fibroblastic reticular cells (FRCs). In addition, 

CCL19 is made by DC, and CCL21 by HEV. The mutant mouse strain plt lacks 

CCL19 and CCL21 in lymphoid tissues, resulting in decreased entry of T cells to 

LN via HEV and DC from lymphatics (Luther et al., 2000). Additionally, lymphoid 

organization is perturbed in plt mice, with smaller periarterial lymphoid sheaths 

(PALS) in the spleen, with few T cells residing in this area despite an increase in 
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T cell numbers in the spleen. In the LN, following immunization, T cells and 

DEC205+ DC can be observed prominently in IF zones (Mori et al., 2001). The 

CCR7 KO has similar perturbed architecture with T cells found in both the red 

and white pulp. Increased numbers of T cells are found in the spleen and blood, 

while numbers of T cells and DC are decreased in LN due to impaired homing, 

similar to the plt phenotype (Muller et al., 2003). CXCR5/CCR7 dKO have even 

more severely perturbed architecture, although B still cluster in the white pulp, 

and some T cells can be seen in the PALS. Interestingly, ER-TR7 is broadly 

distributed throughout the white pulp in these mice (Muller et al., 2003; Ohl et al., 

2003b).  

CCR7 was originally identified as EBI1 in a screen for genes upregulated 

by Epstein Barr virus infection in Burkitt’s lymphoma cells in vitro (Birkenbach et 

al., 1993). The gene most highly induced in the study was identified as EBI2. 

Both genes were predicted to be GPCRs and have been confirmed as such. 

EBI2 shares homology with lipid and purine receptors (Rosenkilde et al., 2006). 

EBI2 was known to be highly expressed in naive B cells with increased 

expression in activated B cells, while GC B cells have decreased expression of 

EBI2 (Glynne et al., 2000; Shaffer et al., 2000). EBI2 has also been reported to 

be constitutively active (Rosenkilde et al., 2006). However, the role of EBI2 in B 

cell localization has been unclear. Interestingly, EBV-infected cells in human 

tonsils tend to localize to extrafollicular areas, outside the follicle or GC 

(Niedobitek et al., 1992). 
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The aforementioned receptors are important for homeostatic localization 

of lymphocytes. They also play important roles in relocalizing lymphocytes during 

an immune response, allowing cognate B and T cells to interact and generate a 

productive immune response.  

 

Ag transport and recognition by B cells 

B cells can recognize cognate antigen in SLO in different ways and 

locations. The Ag may diffuse into the LN follicle if it is small enough. This 

appears to occur within seconds to minutes after Ag administration, and within 

hours this Ag is no longer found in the follicles and instead is predominantly in 

the medullary sinus (Pape et al., 2007). Small Ag is not observed to freely diffuse 

into the T zone. Instead, a conduit system has been shown to transport Ag from 

the subcapsular sinus to DC. The conduits have a collagen core surrounded by 

FRC (Gretz et al., 1997; Gretz et al., 2000). These conduits are less dense in the 

B cell follicle, but a similar network has been suggested to distribute small Ag into 

this compartment (Bajenoff and Germain, 2009; Gonzalez et al., 2011; 

Roozendaal et al., 2009). While follicular conduits have been most extensively 

investigated in the LN, there is also evidence they exist and transport small Ag in 

the spleen (Nolte et al., 2003). 

Larger, and/or opsonized, Ag is unable to reach the follicle by diffusion 

and instead must be actively transported to the LN follicle. As mentioned above, 

CD169+ subcapsular sinus macrophages may actively transport larger, 

opsonized Ag and virus, bringing Ag from the subcapsular sinus to the B cell 
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follicle, as has been recently imaged. Branches of the CD169+ macrophages 

extend membrane-attached Ag into the follicle (Carrasco and Batista, 2007; Junt 

et al., 2007; Phan et al., 2007). Immune complexes containing Ag can be 

recognized by either cognate B cells, via the B cell receptor (BCR), or 

transported by non-cognate B cells via the complement receptor CR1/2 (Phan et 

al., 2007). These non-cognate B cells can bring opsonized Ag into the follicle to 

be deposited on FDC, due to the higher expression of complement receptors 

(Carroll, 1998). FDC in turn serve as a repository for opsonized Ag, as has been 

long observed, providing another site for B cell Ag encounter (Nossal et al., 1968; 

Nossal et al., 1964). FDC retain opsonized Ag longer than subcapsular sinus 

macrophages, providing a more enduring source of Ag for B cell encounter 

(Suzuki et al., 2009). 

Finally, B cells can recognize unprocessed Ag presented on DCs near 

HEV present around the LN follicle and at IF zones. This may be relevant 

particularly for newly-arriving B cells which enter the LN from the blood via HEV 

(Qi et al., 2006). DC have been shown to retain some of the Ag they capture in 

unprocessed forms, allowing for recognition by B cells (Bergtold et al., 2005). 

Ag can be transported to follicular B cells in the spleen by marginal zone 

(MZ) B cells (Cinamon et al., 2008). MZ B cells have high expression of CD21/35 

and CD1d, allowing for capture of non-cognate Ag, and shuttle between the MZ 

and the follicle. Ag is cleared off MZ B cells within hours of exposure, provided 

that this shuttling is intact, and can be detected on FDC. 
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B cell activation 

Once B cells recognize their cognate Ag, a signaling cascade is activated 

which will result in many changes within the cell, including migration. Activated B 

cells upregulate CCR7, promoting migration to the B:T boundary within hours, 

and interaction there with cognate T cells (Okada et al., 2005; Reif et al., 2002). 

Notably, CCR7 surface expression on activated B cells is lower than that of naive 

T cells, and it has been proposed that this, along with continued expression of 

CXCR5, prevents the activated B cell from migrating deep into the T zone 

(Okada and Cyster, 2006). Furthermore, activated B cells that lack CXCR5 

relocalize to IF areas near the T zone, rather than spreading along the B:T 

boundary, and activated B cells that cannot respond to CCR7 signals (due to 

deficiency in the receptor or in the ligands) relocalize to OF and IF zones rather 

than to the B:T boundary (Reif et al., 2002). The signal directing these activated 

B cells to these locations has been unknown. Ablation of CD169+ macrophages 

leads to decreased ability of activated B cells to home to the IF zone, and much 

greater Ag dose, or more time, is required to position them at the IF zone. In the 

absence of subcapsular sinus macrophages, B cells may have decreased 

exposure to Ag, as measured by downregulation of surface BCR (Junt et al., 

2007). 

During the interaction at the B:T boundary, both B and T cells will produce 

and receive important signals. One of the most important signals an activated B 

cell receives is stimulation through CD40 via CD40L expressed on activated T 

cells, which is upregulated following their recognition of cognate Ag on DC. The 
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interaction between CD40/CD40L is crucial for GC development, affinity 

maturation, and isotype switching (Foy et al., 1996). When CD40 signaling is 

blocked for the duration of the immune response by repeated treatment with anti-

CD40L, activated B cells do not expand (Garside et al., 1998). Humans with 

defective CD40/CD40L interactions have hyper-IgM syndrome, characterized by 

an excess production of IgM and inability to isotype switch. It has been 

suggested that increased CD40 signaling, from agonistic Ab, in activated B cells 

in a T-dependent response limits GC development but increases antibody 

secreting cell (ASC) development (Erickson et al., 2002). Additionally, B cells 

with constitutively active CD40 do not develop GC in response to a T-dependent 

immunization (Homig-Holzel et al., 2008). Both of these systems saw decreased 

GC formation relatively late in the response (d7-14). However, other systems 

with increased CD40 signaling in B cells have shown that while the early 

response is skewed toward ASC, GC development is initially normal, but is not 

sustained later in the response (Bolduc et al., 2010; Kishi et al., 2010). As B and 

T cells interact for long periods of time during the immune response, it is not 

clear at what point CD40L signaling is important or needs to be maintained, or 

what early signals CD40L delivers to activated B cells beyond survival.  

Within the first days after recognizing cognate Ag, B cells begin to 

downregulate CCR7 and move toward the IF and OF (Chan et al., 2009; Coffey 

et al., 2009). This can be seen 1-2 days in the spleen and LN after immunization 

in BCR tg or knockin systems (Cyster and Goodnow, 1995; Garside et al., 1998; 

Pape et al., 2003). While the localization to these areas has been observed in 
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different systems, its role in the B cell response has not been well appreciated. 

Activated B cells proliferate in the OF during d3-4, as determined by Ki-67 

staining, leading to an expansion of the cells in this OF location (Coffey et al., 

2009). 

 

B cell effector fates 

From this point and subsequently, two B cell fates can arise: the GC B cell 

or the ASC. These fates are controlled by opposing programs orchestrated by 

the transcription factors bcl6 and blimp1. Bcl6 is highly expressed in GC B cells. 

In the absence of bcl6, germinal centers do not form, while ASC can still be 

generated and in some cases have increased development and Ab production 

(Dent et al., 1997; Tunyaplin et al., 2004; Ye et al., 1997). Blimp1 is expressed in 

ASC. B cell deficiency in blimp1 leads to severely decreased development of 

ASC and antibody response, with enlarged GCs (Shapiro-Shelef et al., 2003). 

Induction of blimp1 induces a decrease in proliferative capacity and increase in 

secretory capabilities, in addition to blocking GC development (Shaffer et al., 

2002). Notably, blimp1’s inhibition of proliferation is dose-dependent, as B cells 

expressing lower levels of blimp1 still are able to proliferate, as observed by 

BrdU incorporation. This suggests that blimp1 intermediate cells correspond to 

the short-lived ASC, while blimp1 high cells are long-lived ASC (Kallies et al., 

2004). Bcl6 and blimp1 interact to repress each other (Shaffer et al., 2000; 

Tunyaplin et al., 2004). The cues that lead to the regulation of the blimp1 and 

bcl6 balance, and fate decision between GC and ASC, have been unclear. 
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Factors that may influence GC and ASC fate include BCR/Ag affinity and 

signals from T cells. Alternatively, the decision could be stochastic (Hasbold et al., 

2004). Low affinity BCR are able to develop into both GC and ASC, so affinity 

does not automatically exclude cells from either compartment (Dal Porto et al., 

1998; Shih et al., 2002). However, affinity can affect the likelihood of 

development into ASC or GC. In addition to the affinity of the Ag and BCR, the 

density of the Ag affects the avidity for the BCR, and may change its signaling 

properties. Experimentally reducing Ag density or BCR affinity leads to a 

reduction in contribution to the ASC, but not GC, compartment. In competition, 

high affinity B cells become ASC, while lower affinity B cells can enter the GC to 

undergo affinity maturation and generate increased  affinity there (O'Connor et al., 

2006; Paus et al., 2006). Lower affinity Ag leads to less expansion and survival of 

early ASC, despite normal generation of these cells (Chan et al., 2009). The 

differentiation is not over once cells enter the GC, as some cells will exit from the 

structure as ASC and some will remain as GC cells. Without competition, varying 

BCR affinities can contribute to a GC response, including low affinity BCR; 

however, low affinity BCR will lead to greater B cell death (Anderson et al., 2009). 

In competition, higher affinity BCR B cells dominate. This is due to increased 

proliferation of the high affinity cells prior to GC development, as they present 

more peptide:MHC to cognate T cells and preferentially receive limiting T cell 

help (Schwickert et al., 2011). 

 

Activated B cell positioning 
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Much work regarding the ASC/GC decision has focused on strength of 

signal through the BCR, but positioning of activated cells may play a role. It has 

recently been proposed that in LN, activated B cells at the IF zone express bcl6 

starting at d2 of the immune response, and by d4 these cells have moved toward 

the follicle, seeding the GC. Another population of activated B cells, residing at 

the OF, did not express bcl6 and instead may represent early PB development 

(Kerfoot et al., 2011). It is unclear both how these cells localize and if these cells 

develop different fates because of their localization, or if an earlier difference has 

directed them to these locations.  

ASC downregulate CCR7 and CXCR5 and upregulate CXCR4. This 

chemokine receptor profile allows ASC to migrate to extrafollicular areas (the red 

pulp in the spleen and medullary cords in LN) (Chan et al., 2009; Hargreaves et 

al., 2001). When ASC lack CXCR4, they are unable to move as far into the red 

pulp, but instead reside close to the edge of the OF, near the MZ (Hargreaves et 

al., 2001). This suggests that ASC may remain attracted to follicular areas in the 

absence of CXCR4. The first wave of ASC are short-lived and rapidly secrete low 

affinity Ab, providing an initial means of defense while the immune response 

continues to evolve. 

Other B cells will migrate from the outer- and inter- follicular areas toward 

the FDC at the center of the follicle, leading to the development of a GC. S1P2 

has recently been shown to have a role in this process, as its expression is 

increased on GC cells relative to FB cells. It is hypothesized that a gradient of 

S1P exists in the B cell follicle, with the highest concentration at the edge of the 
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follicle, and the lowest at the center. S1P2 inhibits migration to CXCL13 and 

other chemoattractants, thereby promoting confinement of GC cells to the GC 

(Green et al., 2011). In the GC, B cells undergo affinity maturation and somatic 

hypermutation over days and weeks, leading to the development of long lived 

memory cells and ASCs that can produce high affinity Ab. 

Isotype switching occurs in both ASC and GC cells. The earliest isotype-

switched cells can be observed 2-3 d after immunization, in the B cell follicles, 

and may be enriched near IF or bridging zones. By d4, isotype switched cells are 

observed both extrafollicularly, in the red pulp near the MZ and bridging zones in 

spleen, and toward the center of the follicle, in the nascent GC (Pape et al., 

2003). While the location where switching events occur has been tracked, it is 

not known how localization within lymphoid tissues may affect switching. It is 

possible that exposure to different cell types and cytokine milieus in 

microenvironments within lymphoid tissue may affect the B cell response. 

While much insight about naïve and activated B cell localization has been 

gained, clearly many issues remain to be addressed. EBI2 is highly expressed on 

naïve and activated B cells, yet its role in positioning B cells has been unknown. 

CXCR5 and CCR7 have been shown to contribute to early activated B cell 

positioning, but movement of activated B cells to the OF by d2 of the immune 

response was not fully explained by these two receptors, nor was the migration 

toward the center of the follicle by GC B cells. Here we have examined the role of 

EBI2 in naïve and activated B cell localization and demonstrate its importance in 

the humoral immune response. 
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Chapter 2 

EBI2 mediates B cell segregation 

between the outer and center follicle 

This chapter was published as: 

Pereira, J. P., Kelly, L. M., Xu, Y., and Cyster, J. G. (2009). EBI2 mediates B cell 
segregation between the outer and centre follicle. Nature 460, 1122-1126. 
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Abstract 

B cell follicles are specialized microenvironments that support events necessary 

for humoral immunity (Allen and Cyster, 2008; Kelsoe, 1996; MacLennan, 1994). 

After antigen encounter, activated B cells initially seek T-cell help at the follicle–

T-zone boundary and then move to IF and T-zone distal (outer) regions of the 

follicle (Coffey et al., 2009; Cyster and Goodnow, 1995; Garside et al., 1998; 

Jacob et al., 1991; Liu et al., 1988; Pape et al., 2003; Reif et al., 2002). 

Subsequently, some cells move to the follicle center, become GC B cells and 

undergo antibody affinity maturation (Allen et al., 2004; Brink et al., 2008; Kelsoe, 

1996; MacLennan, 1994). Although GC  within follicles were described in 1885 

(Nieuwenhuis and Opstelten, 1984) the molecular cues mediating segregation of 

B cells between the outer and center follicle have remained undefined. Here we 

present a role for the orphan G-protein-coupled receptor, Epstein-Barr virus 

induced molecule-2 (EBI2, also known as GPR183) (Birkenbach et al., 1993), in 

this process. EBI2 is expressed in mature B cells and increases in expression 

early after activation, before being downregulated in GC B cells. EBI2 deficiency 

in mice led to a reduction in the early antibody response to a T-dependent 

antigen. EBI2-deficient B cells failed to move to the outer follicle at day 2 of 

activation, and instead were found in the follicle center, whereas EBI2 

overexpression was sufficient to promote B cell localization to the outer follicle. In 

mixed bone marrow chimeras, EBI2-deficient B cells phenocopied GC B cells in 

preferentially localizing to the follicle center. When downregulation of EBI2 in 

wild-type B cells was antagonized, participation in the GC reaction was impaired. 
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These studies identify an important role for EBI2 in promoting B cell localization 

in the outer follicle, and show that differential expression of this receptor helps 

position B cells appropriately for mounting T-dependent antibody responses. 
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The propensity of B cells to migrate to the outer versus center follicle at different 

stages of the antibody response, together with the established roles of G-protein-

coupled receptors (GPCRs) in controlling lymphocyte positioning events, led us 

to address whether new GPCRs differentially expressed between early activated 

and GC B cells may be involved in this subcompartmentalization. These criteria 

focused our attention on EBI2, a G i-coupled orphan receptor (Birkenbach et al., 

1993; Rosenkilde et al., 2006) abundantly expressed in Epstein-Barr virus (EBV)-

infected and activated human B cells, and downregulated in GC B cells (Cahir-

McFarland et al., 2004; Shaffer et al., 2001). To explore the expression pattern of 

mouse Ebi2, we generated a reporter mouse line carrying the enhanced green 

fluorescent protein (EGFP) gene inserted in place of the Ebi2 open reading frame 

(Supplementary Fig. 1). Analysis of Ebi2GFP/+mice showed that EBI2 is 

upregulated during B cell maturation in the bone marrow, and is expressed in 

mature recirculating B cells in bone marrow, spleen and lymph nodes (Fig. 1a). 

The expression of the GFP reporter tracked closely with changes 

in Ebi2 transcript abundance (Fig. 1b). GFP levels were further upregulated after 

B-cell receptor (BCR) engagement with anti-IgM, or combined anti-IgM and anti-

CD40 stimulation (Fig. 1c). To examine expression after receipt of T-cell help, we 

used an adoptive transfer system in which B cells from C57BL/6 

(B6) Ebi2GFP/+ mice were transferred to the coisogenic strain, bm12, that bears a 

three amino acid difference in the I–Ab major histocompatibility complex (MHC) 

class II molecule and contains a high frequency of I–Ab responsive helper T cells 

(Cyster and Goodnow, 1995; Mengle-Gaw et al., 1984). This approach permits  
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Supplementary Figure 1. Generation of Ebi2GFP/+ mice. (a) Schematic of EBI2 
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box) is encoded in exon 2. The EGFP gene is inserted in place of the EBI2 open 
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Figure 1: EBI2 upregulation in activated B cells and downregulation in GC. a,
Flow cytometric detection of GFP fluorescence in the indicated bone marrow,
spleen and lymph node (LN) cell subsets from Ebi2GFP/+ mice. Numbers
indicate the percentage of cells in the gate. FO, follicular B cells; GC, germinal
center; Imm, immature; Mat, mature; PC, plasma cells. b, Quantitative PCR
analysis of Ebi2 transcript abundance in the indicated cell populations.
Expression is shown relative to Hprt1. c, d, Flow cytometric detection of GFP
fluorescence in B cells stimulated for 1 day with anti-IgM or with anti-IgM and
anti-CD40 (c), or that were stimulated for 1 h with anti-IgM and exposed in
vivo for 2 days to T-cell help (red) or not provided with T-cell help (grey) (d).
Grey histograms in c indicate unstimulated cells. The bar graph in c shows the
geometric mean GFP fluorescence for 1 and 2 day cultures and summarizes
three experiments. *P<0.05, unpaired, two-tailed Student’s t-test. e,
Immunofluorescence microscopy of fixed spleen tissue from
an Ebi2GFP/+ mouse, stained to detect GFP+ cells (green) and
CD169+ marginal zone macrophages (blue, left panel) or GL7+ GC B cells and
CD4 T cells (red and blue, respectively, right panel). Scale bar, 100 µm.
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tracking of an activated B cell population in non-transgenic mice at early time 

points after receiving T-cell help. Two days after adoptive transfer of anti-IgM-

stimulated B cells, we found higher GFP expression in B cells transferred to 

bm12 compared to B6 recipients, indicating that interaction with helper T cells 

promoted EBI2 upregulation (Fig. 1d). EBI2 expression was maintained in 

plasma cells but was markedly (~25-fold) downregulated in GC B cells (Fig. 1a, 

b). Most CD4 T cells and a smaller fraction of CD8 T cells also expressed EBI2, 

although at lower levels than B cells (Fig. 1a, b). In sections, GFP was detectable 

throughout the follicle and T zone, but was almost undetectable within GC, 

identified by their expression of GL7 (also known as LY77), making these 

structures appear as EBI2-deficient islands in a ‘sea’ of EBI2-expressing cells 

(Fig. 1e). 

An initial analysis of lymphoid tissues from EBI2-deficient mice showed 

the presence of organized follicles and T-cell compartments, and the mice had 

normal numbers of B and T cells (Supplementary Fig. 2 and data not shown). 

Movement of activated B cells to the follicle–T-zone boundary within 6 h of BCR 

stimulation occurred similarly for EBI2-deficient and wild-type cells (Fig. 2a), 

suggesting that BCR-mediated EBI2 induction (Fig. 1) is not required for this 

CCR7-dependent relocalization event (Reif et al., 2002). We then asked whether 

the next stage(s) of activated B cell migration that occurs during T-dependent 

responses, movement to the OF and IF regions, were EBI2-dependent. To 

permit in situ tracking of activated B cells responding to T-cell help, we used the 

bm12 adoptive transfer approach introduced earlier. Littermate control B cells  
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Figure 2: EBI2 promotes localization of activated B cells in the outer follicle. a-
c, Immunohistochemical staining of spleen cryosections. a, Distribution of wild-type 
and EBI2-deficient B cells that had been stimulated with anti-IgM in vitro for 1 h, and 
analysed 6 h after being transferred to wild-type hosts. Ebi2-/- B cells were CFSE-
labelled before transfer. Sections were stained with an antibody to detect CFSE 
(Ebi2-/-) or co-transferred wild-type Igha (IgMa, Ebi2+/+) B cells (blue) and endogenous 
B cells (IgD, brown). b, Distribution of anti-IgM-treated wild-type and EBI2-deficient 
B cells (CFSE, blue), and internal control Igha B cells (IgMa, blue), after 2 days 
exposure to T-cell help in bm12 hosts. Top and bottom panels are serial sections. 
Endogenous B cells were detected with anti-IgD (brown). c, Distribution of B cells 
transduced with control or Ebi2-expressing retrovirus (human CD4, blue), 1 day after 
transfer. Endogenous B cells were detected with anti-IgD (brown). Scale bars, 100 
µm. d, Anti-nitrophenyl (NP) IgG1 and IgM serum titres in wild-type and EBI2-
deficient mice on day 7 after immunization with NP-CGG in alum. RU, relative units. 
**P < 0.005, unpaired, two-tailed Student’s t-test. 
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that had received anti-IgM stimulation were able to respond to T-cell help within 

bm12 recipients and relocalized to the outer follicle at day 2 (Fig. 2b), as did 

cotransferred wild-type Igha B cells (Fig. 2b), consistent with earlier studies using 

immunoglobulin-transgenic B cells (Cyster and Goodnow, 1995). In contrast, 

EBI2-deficient B cells were unable to localize to this region and instead favoured 

the central area of the follicle (Fig. 2b). To determine whether upregulation of 

EBI2 could be sufficient to control B cell localization to the IF and OF regions 

within lymphoid tissues, we transduced B cells with Ebi2-encoding or control 

retroviruses and transferred them to wild-type recipients. One day later, the EBI2-

overexpressing cells, identified by expression of a human CD4 reporter, were 

situated in IF regions and in the outer follicle (Fig. 2c). This contrasted with the 

distribution of B cells transduced with the control retrovirus, where the cells 

distributed uniformly within the follicle (Fig. 2c). Thus EBI2 seems to be both 

necessary and sufficient to promote positioning of activated B cells in the OF and 

IF regions. Consistent with an essential role for EBI2 in the correct positioning of 

B cells during the early phases of T-dependent humoral responses, EBI2-

deficient mice mounted a reduced day 7 IgG1 antibody response to nitrophenyl-

chicken gamma-globulin (NP-CGG) in alum (Fig. 2d). The IgM response was not 

affected (Fig. 2d). 

As another approach to examine the role of EBI2 in determining B cell 

localization, we examined cell distribution in 20:80 mixed bone marrow 

chimaeras that contained a minority of EBI2-deficient cells (20% Ighb EBI2-

deficient or littermate control and 80% Igha wild-type). Notably, EBI2-deficient B 
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cells selectively localized in a GC-like location at the center of follicles in spleen, 

LN and PP of the bone marrow chimeras (Fig. 3a). These foci of cells were not 

GC as they maintained high expression of IgD and lacked expression of GL7 (Fig. 

3a and Supplementary Fig. 3). In contrast, EBI2-deficient and wild-type T cells 

appeared intermingled throughout the T zone (Supplementary Fig. 4). Analysis of 

90:10 mixed bone marrow chimeras containing mostly EBI2-deficient (or 

littermate control) cells showed that EBI2-deficient B cells colocalized with the 

CD35+ (also known as CR1+) FDC network at the center of follicles, whereas the 

minor population of wild-type B cells in these mice was partially excluded from 

this area and enriched in IF regions or OF (Fig. 3b). Similar findings were made 

in LN and PP (Supplementary Fig. 5). It seems possible that in mice in which 

most B cells lack EBI2, there is increased EBI2 ligand availability and wild-type B 

cells predominate at the sites of ligand production. In control mixed bone marrow 

chimeras reconstituted with a minority (20:80) or majority (90:10) of Ebi2+/+ bone 

marrow, the two types of wild-type B cells were intermingled in both the follicle 

center and periphery (Fig. 3a, b and Supplementary Figs 3 and 5). FDCs are 

dependent on lymphotoxin (LT) LT 1 2 for their maintenance (Fu and Chaplin, 

1999). To test whether the segregation of wild-type and EBI2-deficient B cells 

was dependent on FDCs, we treated mixed bone marrow chimeras with LT R-

immunoglobulin, an LT 1 2 antagonist (Mackay et al., 1997), for 2–3 weeks. The 

CD35+ FDC networks were depleted after treatment (Fig. 3c) as expected 

(Mackay et al., 1997; Ngo et al., 1999). Under these conditions, wild-type and 

EBI2-deficient cells no longer showed a segregated distribution in splenic B cell  
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Figure 3: EBI2-deficient B cells localize to the follicle center in a LT 1 2- and 
CXCL13-dependent manner. a, Distribution of wild-type (Ebi2+/+) and EBI2-deficient 
(Ebi2-/-) B cells in spleen, lymph nodes (LN) and Peyer’s patches (PP) of 20:80 
mixed bone marrow chimaeras (20% Ighb Ebi2+/+ or Ebi2-/- and 80% Igha wild-type). 
Sections were stained to detect Ebi2+/+ or Ebi2-/- B cells (IgDb, green), Igha control B 
cells (IgDa, red), and T cells (CD4+CD8, blue). b, Spleen sections from 90:10 mixed 
bone marrow chimeras (90% Ighb Ebi2+/+ or Ebi2-/-and 10% Igha wild-type) stained to 
detect B cells as in a, and for CD35 to highlight FDC networks (blue). c, Similar 
analysis to b in control or 3 week LT R-Fc treated 90:10 Ebi2-/- mixed bone marrow 
chimeras. d, Distribution of wild-type and EBI2-deficient B cells in Cxcl13-/- hosts 
reconstituted with 70:30 bone marrow mixtures (70% Ighb Ebi2+/+ or Ebi2-/-and 30% 
Igha wild-type). Spleen sections stained to detect EBI2-deficient B cells (IgDb,
green), wild-type B cells (IgDa, red) and marginal zone macrophages (CD169, blue). 
Scale bars, 100 µm. 
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Supplementary Figure 3: Distribution of Ebi2+/+ and Ebi2-/- B cells in spleen of 
mixed BM chimeras. Chimeras were prepared at a ratio of 20% Ebi2-/- or Ebi2+/+ 
(Ighb) and 80% of Ebi2+/+ (Igha) as in Figure 3a. Serial cryosections were stained 
with anti-IgDa (red), anti-IgDb (green) and with anti-CD4+CD8 (blue, left panels) or 
with anti-GL7 (green), anti-IgD (red), and with anti-CD4+CD8 (blue, right panels). 
White bar depicts scale (200 µm).
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Supplementary Figure 4. Distribution of Ebi2+/+ and Ebi2-/- T cells in spleen of 
mixed BM chimeras. Chimeras were prepared at a ratio of 20% Ebi2 -/- or Ebi2+/+ 
(Thy1.2) and 80% of Ebi2+/+ (Thy1.1) as in Figure 3a. Serial cryosections were 
stained with anti-Thy1.1 (red), anti-Thy1.1 (green) and with anti-IgD (blue). White bar 
depicts scale (200 µm). Flow cytometric analysis of B and T cell chimeriam showed 
that the hematopoietic reconstitution was approximately 20:80 for the Ebi2 -/- 
recipient and 40:60 for the Ebi2 +/+ recipient. 
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Supplementary Figure 5. Distribution of Ebi2+/+ and Ebi2-/- B cells in lymph 
nodes and Peyer’s patch of mixed BM chimeras. Chimeras were prepared at a 
ratio of 90% Ebi2 -/- or Ebi2+/+ (Ighb) and 10% of Ebi2+/+ (Igha) as in Figure 3b. 
Cryosections were stained with anti-IgMa + IgDa (red), anti-IgMb + IgDb (green) and 
with anti-CD4+CD8 (blue, left panels) or with anti-GL7 (green), anti-IgD (red), and 
with anti-CD4+CD8 (blue). The FDC network appears in yellow due to deposits of 
IgM.
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areas (Fig. 3c), suggesting a role for FDCs or other LT 1 2-dependent cells in 

this process. In mice that lack CXCL13—a chemokine made broadly by the 

follicular stromal cell network (Gunn et al., 1998; Ngo et al., 1999) —B cell 

localization in the outer splenic white-pulp (where follicles would normally be 

located) is reduced but not completely blocked (Ansel et al., 2000)(Fig. 3d). In 

CXCL13-deficient mice reconstituted with a mixture of EBI2-deficient and WT 

bone marrow, EBI2-deficient B cells were selectively diminished within the white-

pulp cords and instead accumulated in the MZ that surrounds the white pulp (Fig. 

3d). These findings provide further evidence for EBI2-mediated attraction of B 

cells to the outer white-pulp. 

These findings suggested that EBI2 downregulation in GC B cells may 

promote their positioning at the follicle center. To test directly the significance of 

EBI2 downregulation during GC development, we enforced constitutive EBI2 

expression in hen egg lysozyme-specific immunoglobulin-transgenic B cells 

using retroviral gene transduction, and then tested their ability to participate in 

GC and plasma cell responses after short-term adoptive transfer to hen egg 

lysozyme-immunized hosts (Fig. 4a). The frequency of Ebi2 or control-vector 

transduced B cells among the GC and plasma cell populations was tracked using 

the CD4 reporter. By flow cytometric analysis, Ebi2-transduced cells showed a 

reduced ability to participate in GC responses compared to vector-transduced 

cells, while participating with wild-type efficiency in the plasma cell response (Fig. 

4a, b). Although some Ebi2-transduced cells could take on a GC phenotype (Fig. 

4a), the cells were unable to position in GC (Fig. 4c and Supplementary Fig. 6).  
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transduced Ig-transgenic (Ig-tg; IgMa) B cells, 4 days after transfer, showing gating 
scheme to identify representation of transduced (human CD4+) cells among GC B 
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showing maintained Ebi2 expression prevents GC B cell positioning in GCs.
(a) Immunohistochemical analysis of spleen cells from an immunized mouse 4 days 
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Cells transduced with the control vector were readily detected within GC (Fig. 

4c and Supplementary Fig. 6). Ebi2-transduced cells contained Ebi2 transcripts 

in amounts within twofold of those present in follicular B cells, and at least 25-fold 

higher than in GC B cells (Supplementary Fig. 6). These experiments suggest 

that EBI2 downregulation is necessary for localization of developing GC B cells 

to the follicle centre. 

In summary, we establish that EBI2 is upregulated in B cells after BCR 

and CD40 engagement and is necessary to promote the positioning of activated 

B cells to interfollicular regions and the outer follicle. Cognate B cells interact with 

helper T cells and undergo proliferation in these regions (Coffey et al., 2009; 

Garside et al., 1998). Defects in these processes are probably responsible for the 

diminished ability of EBI2-deficient mice to mount an early T-dependent IgG 

antibody response. Our findings suggest EBI2 is needed within B cells for these 

events, but we do not exclude that it also has a role in directing activated CD4 

helper T cells and possibly other cell types to these regions. GC B cells markedly 

downregulate EBI2, a change that seems to be necessary to favor localization of 

activated B cells at the follicle center, in association with the antigen-presenting 

and GC-supportive (Tew et al., 1997) FDC network. BCL6, a transcription factor 

required for GC development, negatively regulates EBI2 expression (Shaffer et 

al., 2001). We suggest that by favoring appropriate niche occupancy, negative 

regulation of EBI2 represents an important component of the Bcl6 gene 

expression program directing GC over plasma cell fate. Although the ligand for  
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EBI2 remains undefined, we speculate that it is more concentrated in the outer 

compared to centre follicle as well as in interfollicular regions. We propose that 

although CXCR5 is sufficient to promote B cell localization in follicles (Ansel et al., 

2000; Forster et al., 1996), cells expressing EBI2 are more strongly attracted to 

the outer follicle compared to cells lacking this receptor. A further FDC-derived 

cue may favor positioning in the center follicle, and when cells lose 

responsiveness to EBI2 ligands, positioning in response to this cue is dominant. 

The activity of EBI2 provides a possible explanation for why CXCR5-deficient B 

cells continue to localize in IF areas and in regions corresponding to the outer 

follicle (Ansel et al., 2000; Forster et al., 1996). Our findings may also help 

explain the niche preferences of certain B cell lymphomas, particularly follicular 

center lymphoma (Lossos and Levy, 2003). Indeed, expression array studies 

demonstrate that EBI2 is downregulated in follicular and GC lymphomas 

(Alizadeh et al., 2000; Cahir-McFarland et al., 2004). Moreover, it seems possible 

that the marked EBI2 induction observed early after EBV infection (Birkenbach et 

al., 1993) serves as a mechanism used by the virus to promote positioning in 

niches that favor the survival of the infected B cells. 
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Methods 

EGFP was inserted in place of the Ebi2 open reading frame within E14 (129) 

embryonic stem cells using standard procedures, and Ebi2GFP/+ mice were 

backcrossed to C57BL/6 for six generations. Six-to-twelve-week-old C57BL/6 

mice were from either the National Cancer Institute or Jackson Laboratories. 

B6(C)-H2-Ab1bm12/KhEgJ (bm12) mice and B6.Cg-IghaThy1aGPi1a/J (IgMa) mice 

were from Jackson Laboratories. MD4 mice (Goodnow et al., 1988) and 

CXCL13-deficient mice (Ansel et al., 2000) were from an internal colony. Bone 

marrow chimeras were generated as described (Allen et al., 2004) and analysed 

after 6–12 weeks. NP-CGG immunizations were performed using 50 µg NP-CGG 

(Solid Phase Sciences) in alum (Accurate Chemical & Scientific Corp.). The 

retroviral construct was made by inserting the mouse Ebi2 open reading frame, 

with a preprolactin–Flag leader sequence (Ishii et al., 1993) in place of the ATG, 

into the MSCV2.2 retroviral vector containing cytoplasmic-domain-truncated 

human CD4 as an expression marker downstream of the internal ribosomal entry 

site (Reif et al., 2002). B cells were isolated and in some cases labelled with 2.5 

µM 5(and 6)-carboxy-fluorescein diacetate succinimidyl ester (CFSE, Molecular 

Probes) as described (Okada et al., 2005). For in vivo analysis of EBI2 

expression, 5–10 106 purified B cells as described previously (Allen et al., 

2004) were transferred into bm12 recipients. Transduced cells were adoptively 

transferred 1 day after spin-infection for transfers to non-immunized hosts or 

immediately after spin-infection for transfers to immunized hosts. For GC 

experiments, B6 mice received 105 MD4 B cells and 105 OTII CD4+ T cells at day 
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-1, were intraperitoneally immunized with 50 µg HEL-OVA in RIBI adjuvant 

system (Sigma) at day 0, and received approximately 106 Ebi2 or control-vector-

transduced cells at day 1. Mice were analysed on day 5. Flow cytometry, ELISA, 

immunohistochemsitry and immunofluorescence microscopy were performed 

using standard techniques and are detailed in the Methods. 

Mice 

Six-to-twelve–week-old C57BL/6 were purchased from either the National 

Cancer Institute or Jackson Laboratories. B6(C)-H2-Ab1bm12/KhEgJ (bm12) mice 

and B6.Cg-IghaThy1aGPi1a/J (IgMa) mice were from Jackson Laboratories. MD4 

mice27 and CXCL13-deficient mice (Ansel et al., 2000) were from an internal 

colony. Bone marrow chimeras were generated as described (Allen et al., 

2004) and analysed after 6–12 weeks. NP-CGG immunizations were performed 

using 50 µg NP-CGG (Solid Phase Sciences) in alum (Accurate Chemical & 

Scientific Corp.). Treatment with LT R-Fc (provided by J. Browning, Biogen Idec) 

was as described (Ngo et al., 1999) using 100 g once a week for 3 weeks. 

Animals were housed in specific pathogen-free environment in the Laboratory 

Animal Research Center at UCSF and all experiments conformed to ethical 

principles and guidelines approved by the UCSF Institutional Animal Care and 

Use Committee. 

Ebi2 gene targeting and retroviral constructs 

A 5  homology arm (5.2 kilobases (kb)) and 3  homology arm (3.7 kb) were 

generated from mouse genomic DNA by PCR and cloned using BD In-Fusion 

Dry-Down PCR cloning kit into vector EGFP-polyA-loxP-Neo-loxP-DTA-PL452 



 39

(provided by N. Killeen) to flank the EGFP-polyA-loxP-Neo-loxP insert. E14 (129) 

embryonic stem cells were transfected by standard techniques and 350 colonies 

were screened by long PCR (Roche Long Template PCR system), yielding 22 

positive clones. Homologous recombination was confirmed by Southern blotting 

and three clones were used for microinjection into B6 blastocysts. Chimeras 

were bred to B6 mice and germline transmission was confirmed by allele-specific 

PCR and flow cytometric detection of GFP expression. Ebi2GFP/+ mice were 

intercrossed with actin-Cre transgenic mice and deletion of the loxP-flanked 

neomycin-resistance cassette was confirmed by PCR. Ebi2GFP/+ (neo-) mice used 

in this study were backcrossed to B6 for at least six generations. The retroviral 

construct was made by inserting the mouse Ebi2 open reading frame, with a 

preprolactin–Flag leader sequence (Ishii et al., 1993) in place of the ATG, into 

the MSCV2.2 retroviral vector containing cytoplasmic-domain truncated human 

CD4 as an expression marker downstream of the internal ribosomal entry site 

(Reif et al., 2002). The control vector contained cytoplasmic domain truncated 

human nerve growth factor receptor as an irrelevant insert. 

Cell isolation, CFSE labelling, retroviral transduction and adoptive 

transfers 

B cells were isolated and in some cases labelled with 2.5 µM 5(and 6)-carboxy-

fluorescein diacetate succinimidyl ester (CFSE, Molecular Probes) as described 

(Okada et al., 2005). For in vivo analysis of Ebi2 expression, 5–10 106 purified B 

cells as described (Allen et al., 2004), were transferred into bm12 recipients. In 

vitro analysis ofEbi2 expression was performed by culturing 105 splenocytes 
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from Ebi2GFP/+ mice with 10–13 µg ml-1 anti-IgM (F(ab’)2 goat anti-mouse IgM, 

Jackson Immunoresearch), 10 µg ml-1anti-CD40 (clone FGK4.5, UCSF 

Hybridoma Core), or both, for 24 and 48 h. Retroviral supernatant was generated 

using Phoenix packaging cells. Retroviral transduction of activated B cells was 

performed as described8 using MD4 Ig-transgenic B cells. Transduced cells were 

adoptively transferred 1 day after spin-infection for transfers to non-immunized 

hosts, or immediately after spin-infection for transfers to immunized hosts. For 

GC experiments, B6 mice received 105MD4 B cells and 105 OTII CD4+ T cells at 

day -1, were intraperitoneally immunized with 50�µg HEL-OVA in RIBI adjuvant 

system (Sigma) at day 0 and received approximately 106 Ebi2- or control-vector-

transduced cells at day 1. Mice were analysed on day 5. 

Flow cytometry 

Bone marrow B cell subsets were analysed as described previously (Pereira et 

al., 2009a). Spleen and LN cells were isolated and stained as described (Allen et 

al., 2004). For analysis of GC B cell differentiation, cells were stained with 

phycoerythrin (PE)–Cy5.5-conjugated anti-B220 (RA3-6B2; BD Biosciences), 

Pacific blue-conjugated anti-CD45.1, FITC-conjugated anti-IgD (11-26c.2a; BD 

Biosciences) and PE–Cy7-conjugated anti-Fas (Jo2; BD Biosciences). For 

analysis of EBI2 expression in T cells, spleens and lymph nodes were stained 

with allophycocyanin (APC)-conjugated anti-TCR  (H57-597, eBioscience), PE–

Cy5.5-conjugated anti-CD4 (RM4-5, Invitrogen), with PE-conjugated anti-CD8 

(CT-CD8a, Invitrogen), and with biotin-conjugated anti-NK1.1 (PK136, BD 

Biosciences). 
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ELISA 

IgG1 anti-NP ELISA was performed by coating 96-well plates (Immunolon) with 

10 µg ml-1 NP(30)BSA (Solid Phase Sciences) in PBS for at least 2 h at 37°C, 

and blocked with 5% (w/v) BSA (Calbiochem) for 2 h at ~25°C. Serum samples 

were serially diluted (1:2) starting at 1:500 in PBS 0.01% Tween, incubated for 2 

h at ~25°C, and NP-binding IgG1 was detected using biotin-conjugated anti-IgG1 

(A85, BD Biosciences), followed by horseradish-peroxidase-conjugated 

streptavidin (Jackson Immunoresearch). Colour development was done using 

ABTS substrate (Southern Biotech) in 55 mM citrate buffer containing 0.03% 

H2O2. Absorbance was measured at 405 nm in a VERSAmax microplate reader 

using SoftMax pro 5.2 (Molecular Devices). The NP-specific IgG1 concentration 

was calculated by determining the dilution required to achieve an optical density 

of 0.5, 1.0 and 1.5 (across these values, the correlation coefficient was >0.99 in 

all serum samples), averaged, and displayed as relative units to a standard 

serum sample. 

Immunohistochemistry and immunofluorescent microscopy 

Cryosections of 5–7 µm were fixed and stained immunohistochemically as 

described8 with combinations of the following antibodies: anti-IgD (11-26c.2a, BD 

Biosciences), anti-IgMa (DS-1, BD Biosciences), human CD4 ( RPA-T4, BD 

Biosciences) and B220 (RA3-6B2, BD Biosciences). For immunofluorescence, 

staining with biotin-conjugated anti-IgDa (AMS9.1, BD Biosciences) was detected 

with Alexa Fluor488-conjugated streptavidin (Invitrogen), PE-conjugated anti-

IgDb (217-170, BD Biosciences), and Alexa 647-conjugated anti-CD4, and anti-
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CD8 (UCSF Hybridoma Core). The FDC network was stained using purified anti-

CD35 (8C12, BD Biosciences) detected with APC-conjugated anti-rat IgG 

(Jackson Immunoresearch). Marginal zone macrophages were stained with an 

anti-Ser4 antibody (P. Crocker, University of Glasgow) conjugated to Alexa 

Fluor647. Analysis of T-cell distribution was performed with biotin-conjugated 

anti-CD90.1 (Thy-1.1, clone HIS51) detected with Alexa Fluor488-conjugated, 

and with PE-conjugated anti-CD90.2 (Thy-1.2, clone 30-H12). Sections were 

then blocked with 5% normal rat serum before staining with additional antibodies. 

FITC-conjugated anti T- and B-cell activation antigen (GL7; BD Biosciences) was 

used to detect GC. For detection of GFP, tissues were fixed in 4% 

paraformaldehyde and prepared as described31. Images were obtained with a 

Zeiss AxioObserver Z1 inverted microscope or a Zeiss AxioImager M1 upright 

microscope. 
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Chapter 3 

EBI2 guides serial movements of 

activated B cells and ligand activity is 

detectable in lymphoid and non-

lymphoid tissues 

 

 

This chapter was published as 

Kelly LM, Pereira JP, Yi T, Xu Y, Cyster JG. 2011. EBI2 guides serial movements 

of activated B cells and ligand activity is detectable in lymphoid and nonlymphoid 

tissues. J. Immunol.
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Abstract 

EBI2 was recently shown to direct the delayed movement of activated B cells to 

inter and outer follicular regions of secondary lymphoid organs and to be required 

for mounting a normal T-dependent antibody response. Here we show that EBI2 

promotes an early wave of antigen-activated B cell migration to the outer follicle 

in mice. Later, when B cells have moved to the T zone in a CCR7-dependent 

manner, EBI2 helps distribute the cells along the B-T boundary. Subsequent 

EBI2-dependent movement to the outer follicle coincides with CCR7 

downregulation and is promoted by CD40 engagement.  Using a bioassay, we 

identify a proteinase K resistant, hydrophobic EBI2 ligand activity in lymphoid and 

non-lymphoid tissues. Production of EBI2 ligand activity by a cell line is sensitive 

to statins, suggesting production in an HMG-CoA reductase-dependent manner. 

CD40 activated B cells show sustained EBI2-dependent responsiveness to the 

bioactivity. These findings establish a role for EBI2 in helping control B cell 

position at multiple stages during the antibody response and they suggest EBI2 

responds to a broadly distributed lipid ligand.   
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Introduction 

B cells migrate into lymphoid follicles in a CXCR5-dependent manner, 

responding to the CXCR5 ligand CXCL13 that is abundantly displayed on 

follicular stromal cells (Cyster, 2010; Muller et al., 2003; Ohl et al., 2003a).  

Within the follicle B cells migrate at an average velocity of 6 µm/min in a ‘random’ 

walk, surveying for antigens displayed by sinus-associated macrophages, 

follicular dendritic cells (FDCs), conduits, or that have diffused into the follicle 

(Cyster, 2010). Within six hours after antigen encounter, antigen-engaged B cells 

move to the B-T zone boundary in a CCR7-dependent manner, responding to 

CCL21 and CCL19 made by T zone stromal cells, to interact with helper T cells 

(Reif et al., 2002). CXCR5 remains expressed by activated B cells and helps 

distribute cells along the B-T boundary. By day 2 of T-dependent responses, 

some activated B cells relocalize to the outer and inter-follicular regions (Coffey 

et al., 2009; Pereira et al., 2010). Plasmablasts then emerge, particularly in 

interfollicular regions, and germinal center (GC) B cells soon accumulate at the 

follicle center (Goodnow et al., 2010; Pereira et al., 2010). 

EBI2 is an orphan GPCR that was identified during a screen for EBV-

induced genes (Birkenbach et al., 1993). Transcript analysis and studies in an 

EBI2-GFP reporter mouse line showed that EBI2 is abundantly expressed in B 

cells and it is further upregulated following activation; expression was also found 

in some T cells and myeloid cells (Cahir-McFarland et al., 2004; Gatto et al., 

2009; Glynne et al., 2000; Heinig et al., 2010; Pereira et al., 2009b; Shaffer et al., 

2001). Studies in two EBI2-knockout mouse lines established that EBI2 was 
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required for B cells to correctly localize to inter- and outer-follicular niches at days 

2-3 of the T-dependent antibody response (Gatto et al., 2009; Pereira et al., 

2009b). As B cells differentiate into GC cells they downregulate EBI2 and this is 

important for the cells to participate in the GC response (Gatto et al., 2009; 

Pereira et al., 2009b). Deficiency in EBI2 leads to a reduction in the magnitude of 

the T-dependent antibody response, establishing a role for this receptor in 

humoral immunity (Gatto et al., 2009; Pereira et al., 2009b). 

Based on sequence alignments, EBI2 has been clustered with a number 

of G-protein coupled receptor subgroups, most commonly with subsets of lipid 

receptors (Rosenkilde et al., 2006; Shimizu, 2009; Surgand et al., 2006). 

Although one study suggested EBI2 may be a constitutively active receptor 

(Rosenkilde et al., 2006), the in vivo studies provided strong evidence that EBI2 

is responsive to an extrinsic ligand (Gatto et al., 2009; Pereira et al., 2009b).  

Here we have further examined the kinetics of EBI2 induction and 

determined how the prompt upregulation of the receptor affects B cell behavior. 

We show that EBI2 helps early-activated B cells access the outer follicle but by 6 

hours, CCR7 function dominates to shift cells to the B-T boundary. EBI2 

continues to function at this stage by helping retain and distribute cells along the 

length of the B-T boundary.  Subsequent EBI2-dependent movement of activated 

B cells back to the T-zone distal outer follicle and to inter-follicular regions is 

promoted by CD40 engagement. Finally, we employ a bioassay to provide 

evidence for EBI2 ligand activity in lymphoid tissues, and also multiple non-

lymphoid tissues, and we suggest the ligand is a lipid.   
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Materials and methods 

Mice. C57BL/6 (B6) and B6-CD45.1 mice were obtained from The Jackson 

Laboratory, the National Cancer Institute, or an internal colony. B6.Cg-

IghaThy1aGPi1a/J (IgMa) and bm12 mice were from The Jackson Laboratory. 

CXCR5-/- (MGI 2158677; (Forster et al., 1996)), plt (MGI 1857881; (Nakano and 

Gunn, 2001)), EBI2-/- (MGI 4399081; (Pereira et al., 2009b)), CD40-deficient 

(MGI 2182733), MD4 (MGI 2384162) and OTII (MGI 4836972) mice were from 

an internal colony. Mixed bone marrow chimeras were generated as described 

(Pereira et al., 2009b). Animals were housed in a specific-pathogen free 

environment in the Laboratory Animal Research Center at UCSF, and all 

experiments conformed to ethical principles and guidelines approved by the 

Institutional Animal Care and Use Committee.  

 

Flow cytometry and cell sorting. Splenocytes were isolated and stained as 

described (Allen et al., 2004), except for CCR7 staining, in which cells were 

blocked with Fc block for 10 min at room temperature, and then stained with anti-

CCR7 biotin (1:10 4B12, BioLegend) for 20 min at room temperature. The cells 

were washed twice and secondary staining occurred on ice. Flow cytometry 

analysis was conducted on an LSR II flow cytometer (Becton Dickinson), and 

data were analyzed with FlowJo software (Tree Star, Inc). For cell sorting for in 

vivo analysis of Ebi2 expression, cell suspensions were first prepared from 

spleens in HBSS (UCSF Cell Culture Facility) containing 0.5% FBS and 0.5% 

fatty acid free bovine serum albumin (BSA; Calbiochem). Cells at a density of 4 
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107 cells/ml were stained for 30 min on ice and then erythrocytes were lysed by 

centrifugation at 4 °C in a solution of Tris-buffered NH4Cl. Cells were labeled on 

ice with B220, CD4, Ly5.1, and Ly5.2. Dead cells were excluded with DAPI. Cells 

were sorted on a FACSAria.  

Cell isolation, CFSE labeling, immunizations and adoptive transfers. Mice 

were intraperitoneally immunized with 50 µg HEL-OVA in RIBI adjuvant system 

(Sigma) one day after receiving splenocytes containing 5-10x106 WT, EBI2 KO 

or CD40 KO MD4 B cells and 2.5-5x106 OTII T cells transferred intravenously. 

For CD40L-blocking experiments, mice were injected intravenously with 1 mg 

anti-mouse CD40L (clone MR1, BioExpress Inc.) 24 hours after immunization. 

Spleens were harvested and digested with 2 mg ml-1 collagenase type 2 

(Worthington Biochemical Corporation) or frozen for sectioning. For positioning 

studies, splenocytes containing 10-40x106 MD4 cells were transferred 

intravenously and the following day mice were injected with 1 mg HEL (Sigma 

Aldrich) intravenously. Splenocytes containing 30x106 MD4 B cells were 

transferred into CD40-KO recipients, or lethally irradiated recipients reconstituted 

for at least 6 weeks with CD40 deficient bone marrow. The next day, 1 mg HEL 

was injected intravenously, followed 6 h subsequently by 250 g anti-CD40 

(clone FGK4.5, UCSF Hybridoma Core). Mice were analyzed 36 h later. Bm12 

experiments were performed as in (Pereira et al., 2009b). Purified and labeled 

wild-type and CD40-deficient B6 B cells (20x106 each) were mixed and 

stimulated with anti-IgM for 6 hours, and then transferred to bm12 recipients for 2 

days. B cells were isolated by negative selection using Dynabeads Mouse CD43, 
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following manufacturer’s protocol.  In vitro analysis of Ebi2 and Ccr7 expression 

was performed by culturing 105 purified B cells with 13 µg ml-1 anti-IgM (F(ab’)2 

goat anti-mouse IgM, Jackson Immunoresearch). For homeostatic positioning, 

30x106 B cells were isolated by negative selection as described and labeled with 

2.5 µM CFSE (Molecular Probes). 

Immunohistochemistry and immunofluorescent microscopy. Tissue was 

prepared and 7µm cryosections were fixed and stained immunohistochemically 

as described (Allen et al., 2004) with combinations of: goat anti-mouse IgD 

(Accurate Chemical and Scientific), biotin anti-IgMa ( DS-1, BD Biosciences), 

B220 FITC (RA3-6B2, Biolegend) and/or biotin anti-IgDa (AMS9.1, BD 

Biosciences) followed by HRP-conjugated donkey anti-goat IgG (H+L), HRP-

conjugated anti-FITC, AP-conjugated anti-FITC, and/or AP-conjugated SA 

(Jackson Immunoresearch). For immunofluorescence, staining was with FITC-

conjugated anti-IgDa (AMS9.1, BD Biosciences) and PE-conjugated anti-IgDb 

(217-170, BD Biosciences). Images were obtained with a Zeiss AxioObserver Z1 

inverted microscope or a Zeiss AxioImager M1 upright microscope. 

EBI2 ligand bioactivity in mouse tissue extracts. Mouse tissue/organ 

interstitial fluid-enriched extracts were prepared as previously described (21). 

Briefly, organs were weighed and mashed in 10 volumes (assuming a density of 

1mg/ml) of sterile chemotaxis media (RPMI + 0.5% fatty acid free BSA) through a 

70 m filter.  Clean supernatants were collected after centrifugation and tested 

for bioactivity by transwell chemotaxis assays (Pereira et al., 2009b)  of M12 B 
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cell line transduced with an EBI2-IRES-GFP retroviral construct (Pereira et al., 

2009b) against chemotaxis media containing 10% of each tissue supernatant or 

1% mouse plasma. SDF1-a (Peprotech) was used as a positive control for 

chemotaxis.  PTX or oligomer B (List Biological Labs, Inc.) pretreatment of M12 

cells was for 1 h at 100ng/ml. 

 

EBI2 ligand bioactivity in mouse cell line supernatants, and inhibitors of 

Ebi2 ligand production.  Supernatants from various cell lines including bone 

marrow stromal line OP-9, 3T3, WEHI, M12 and HEK293 cells, were obtained by 

incubating each cell line in chemotaxis media for 12 h at 37°C 5% CO2.  In some 

cases, HEK293 cells were cultured in chemotaxis media containing the indicated 

concentrations of cycloxygenase inhibitor (Ibuprofen, Sigma), cytosolic 

phospholipase A1 and A2 inhibitor (AACOCF3, arachidonyltrifluoromethyl ketone, 

Biomol), cyclooxygenases and lipoxygenase inhibitor (ETYA 5,8,11,14-

eicosatetraynoic acid, Biomol) or HMG-CoA reductase inhibitor (Atorvastatin and 

Mevastatin, Sigma) for 12 h at 37 5% CO2. 

 

EBI2 ligand fractionations.  Mouse tissue extracts and HEK293 culture 

supernatants were prepared for reverse-phase high pressure liquid 

chromatography (RP-HPLC) by adjusting trifluoracetic acid to 0.1% and CH3CN 

to 10%.  Small precipitates were removed by centrifugation.  Supernatants were 

fractionated with reverse phase C18 Sep-Pak columns (Waters) by serial washes 

with increasing concentrations of CH3CN +0.1%TFA. Semi preparative reverse 
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phase HPLC was performed on a Varian ProStar solvent delivery system 

equipped with a semi-preparative C18 Zorbax Stable Bond column (300Å Pore 

Size), Agilent Technologies (VWR) column and an analytical C18 Phenyl Zorbax 

Stable Bond column (80Å Pore Size), Agilent Technologies (VWR) using CH3CN 

(0.1% TFA)/H2O (0.1% TFA) gradient (10–100%) as the mobile phase and 

monitored by UV scan between =180 and 360 nm.  One minute fractions were 

collected, lyophilized and tested for bioactivity by chemotaxis assay. 
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Results 

EBI2 promotes movement of naïve B cells through the outer follicle. EBI2 is 

abundantly expressed in naïve B cells and when naïve cells lack this receptor 

they have a propensity to be enriched at the follicle center and underrepresented 

at the follicle periphery in spleen, LNs and Peyer’s patches (Gatto et al., 2009; 

Pereira et al., 2009b) (Suppl. Fig. S1a).  Isolated lymphoid follicles (ILFs) in the 

intestine are rudimentary B cell-rich aggregates that do not have all the features 

of secondary lymphoid organs (Fagarasan et al., 2010). However, here too we 

found that EBI2 favored access of naïve B cells to the outer follicle (Fig. 1a).  In 

short-term transfer experiments, a bias in the distribution of EBI2-deficient naïve 

B cells between the outer and center follicle could also be detected though it 

appeared less marked than in mixed BM chimeras (Suppl. Fig. S1b) (Gatto et al., 

2009). However, when the reciprocal experiment was performed and WT B cells 

were transferred to EBI2-deficient recipients, a striking bias in cell distribution to 

the outer follicle was observed in all the lymphoid tissues examined (Fig. 1b). We 

interpret this more obvious positional influence of EBI2 on the behavior of small 

numbers of WT cells to be a consequence of elevated availability of ligand in 

EBI2-deficient hosts.   

 

EBI2 is rapidly upregulated after B cell activation and promotes early 

movement to the outer follicle. Transcript analysis showed that BCR 

engagement caused marked EBI2 upregulation within one hour, intermediate 

expression at 2 hours and a return to levels similar to naïve cells at 6 hours (Fig.  
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Supplemental Figure 1: EBI2 homeostatically promotes localization to outer 
and inter follicular areas:  (A) Spleen (spl), lymph node (LN) and Peyer's patch 
(PP) sections from 50:50 mixed het or EBI2KO Ighb (red) and WT Igha (green) BM 
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cells in the spleen of WT hosts one day after transfer. Transferred B cells were 
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total IgD (brown). 
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Figure 1. Naïve B cell access to the outer follicle is promoted by EBI2. (A)
Isolated lymphoid follicles in the small intestine of 50:50 mixed het or EBI 2-/- Ighb

(red) and WT Igha (green) BM chimeras, stained as indicated. (B) Spleen and pLN 
sections from WT or EBI2 deficient mice that had received one day transfers of WT 
(Igha) B cells. Stained to detect the transferred B cells (IgMaDa, blue) and 
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2a) in agreement with other studies (Cahir-McFarland et al., 2004; Gatto et al., 

2009; Glynne et al., 2000; Shaffer et al., 2001). By contrast, CCR7 transcripts 

were not significantly upregulated in the first hours of activation under these 

stimulation conditions (Fig. 2b). CCR7 surface abundance did change, however, 

as anticipated (Reif et al., 2002), increasing only slightly by 2 hours but being 

significantly upregulated over control levels at 6 hours (Fig. 2b).  The very rapid 

induction of EBI2 suggested it had a role in regulating B cell behavior in the first 

hours after activation, possibly before increases in CCR7 abundance had 

occurred. To examine this possibility, wild-type (WT) or EBI2-deficient hen egg 

lysozyme (HEL)-specific MD4 Ig-transgenic B cells were transferred to WT hosts 

and then the mice were systemically immunized with soluble HEL.  Prior to 

antigen injection, EBI2-deficient B cells were distributed in follicles with a bias for 

the follicle center (Fig. 2c). Three hours after antigen injection, WT B cells were 

enriched in the outer follicle (Fig. 2c) whereas EBI2-deficient B cells failed to 

move to this region and instead had already arrived at the B-T boundary (Fig. 2c).  

By 6 hours after HEL injection, WT B cells were distributed along the B-T 

boundary.  EBI2-deficient B cells also localized to the boundary at this time point 

(Fig. 2c) as previously observed (Gatto et al., 2009; Pereira et al., 2009b), though 

they tended to distribute more extensively into the T zone (Fig. 2c).  Transcript 

abundance in 6 hour activated B cells was close to the levels in naïve cells 

(relative to hprt), amounts that generate sufficient EBI2 to influence B cell 

behavior (Fig. 1); direct assessment of EBI2 protein levels awaits generation of 

an antibody reagent. At 10 hours after transfer it was also evident that EBI2- 
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Figure 2. EBI2 is rapidly upregulated after B cell activation and promotes early 
movement to the outer follicle. (A, B) Ebi2 and Ccr7 transcript abundance (A), and 
CCR7 surface expression (B) in 1, 2 and 6 h anti-IgM stimulated B cells. In A, data 
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from four experiments.  (C) Distribution of WT and EBI2 KO MD4 B cells in the 
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(brown). Black arrows highlight interfollicular regions. Views are representative of at 
least two mice of each type.
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deficiency caused the activated B cells to be more clustered at the midline of the 

follicle-T zone interface rather than being well-distributed along the length of the 

boundary (Fig. 2c). Increased dispersal of antigen-activated EBI2-deficient B 

cells into the T zone was also observed at day 1 of the response in a previous 

study (Gatto et al., 2009). Taken together, these observations suggest that EBI2 

is upregulated in the first hours after antigen exposure, promoting early 

movement to the outer follicle, and that once cells have upregulated CCR7 and 

moved to the B-T boundary, EBI2 helps retain cells near and distributed along 

the boundary. 

 

EBI2 functions with CCR7 and CXCR5 to distribute activated B cells along 

the B-T boundary.  As a further test of EBI2 activity in B cells 6 hours after B cell 

activation, we examined the distribution of antigen-engaged B cells in plt/plt mice 

that are deficient in CCR7 ligand expression in lymphoid tissues (Luther et al., 

2000; Nakano and Gunn, 2001). In these mice, 6 hour activated B cells fail to 

move to a location corresponding to the B-T boundary and instead accumulate in 

the outer follicle (Fig. 3a and (Reif et al., 2002)). Strikingly, 6 hour activated EBI2-

deficient B cells failed to relocate to the outer follicle in plt/plt spleens and 

remained near the follicle center (Fig. 3a). These data provide further evidence 

that EBI2 is functional in 6 hour antigen activated B cells and they suggest that 

coordinated regulation of CCR7 and EBI2 function helps to direct B cell 

positioning during the early stages of activation.  
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CCR7 ligands are abundant throughout the T zone of WT mice and it has 

been unclear what factors restrain CCR7hi activated B cells to the B-T boundary 

(Okada and Cyster, 2006). CXCR5-deficiency led to a less efficient distribution of 

cells along the boundary but did not allow their spread through the T zone (Reif 

et al., 2002). However, the finding of an increase in the number of 6-10 hours 

activated EBI2-deficient B cells extending into the T zone (Fig. 2c) led us to 

examine the impact of combined deficiency in CXCR5 and EBI2. Prior to 

activation, CXCR5-deficient B cells failed to access follicles (Suppl. Fig. S2a) 

consistent with earlier studies (Ansel et al., 2000; Forster et al., 1996). CXCR5 

EBI2 double knockout (DKO) B cells also failed to access follicles, remaining 

mostly in the red-pulp though with small numbers of cells reaching the T zone 

(Suppl. Fig. S2a). At 6 hours after activation, CXCR5 KO cells were constrained 

to interfollicular regions and generally did not enter deeply into the T zone 

whereas CXCR5 EBI2 DKO cells often showed substantial penetration into the T 

zone (Fig. 3b and Suppl. Fig. S2b). EBI2 KO and EBI2 CXCR5 DKO cells had 

similar in vitro responsiveness to CCL21 suggesting that the differences in 

distribution were due to the loss of EBI2 function rather than indirect effects on 

CCR7 function (Suppl. Fig. S2c). These data provide further evidence that EBI2 

ligand is present in interfollicular regions, and suggest that it extends along the B-

T boundaries near these regions, whereas it is low or absent in the deep T zone, 

allowing EBI2 to help distribute activated B cells over the length of the B-T 

boundary. 
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CD40 promotes movement of activated B cells to the outer follicle. At day 2 

of the response to a T-dependent antigen, many activated B cells are 

redistributed to inter and outer follicular regions in a strictly EBI2-dependent 

manner (Fig. 4a and (Gatto et al., 2009; Pereira et al., 2009b)). Thus, although 

EBI2 transcripts are reduced in abundance (relative to HPRT) at this time point 

(Fig. 4b) the genetic studies indicate that the receptor continues to function. 

Previous studies have provided evidence that CCR7 can become downregulated 

on B cells by day 2 of the response (Chan et al., 2009; Coffey et al., 2009) and 

this was observed in our experiments (Fig. 4c).  In the absence of T cell help, 

antigen-engaged B cells fail to relocalize from the B-T boundary at day 2 and 

many of the cells die in this location (Cyster and Goodnow, 1995). We 

speculated that CD40 engagement provides a key input from T cells that not only 

enhances B cell survival but also facilitates movement from the B-T boundary to 

the outer follicle. To test whether CD40 signaling was sufficient to promote 

movement of activated B cells to the outer follicle, we transferred WT or EBI2 KO 

MD4 B cells into CD40-deficient hosts, immunized with soluble HEL in the 

absence of adjuvant to activate the B cells but avoid recruiting helper T cells 

(Cyster and Goodnow, 1995) and then treated with or without anti-CD40. By 

using CD40-deficient hosts, we ensured that the CD40-activating signal was 

restricted to the transferred B cells.  The WT MD4 B cells receiving CD40 

stimulation were not only rescued from elimination but many were induced to 

relocalize to outer and inter follicular regions, while the EBI2 KO MD4 B cells did 

not relocalize to these areas (Fig. 4d). In the absence of CD40 signaling, many of  
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the antigen-engaged B cells were eliminated by 2 days of antigen exposure (Fig. 

4d) as expected (Cyster and Goodnow, 1995). These findings suggest that CD40 

engagement may be sufficient to augment EBI2 function in antigen-activated B 

cells, helping facilitate their movement to inter and outer follicular regions. 

 To test whether CD40 engagement during receipt of cognate T cell help 

was necessary for B cell movement to the outer follicle, we examined the 

distribution of activated CD40-deficient B cells in two T-dependent systems. First, 

BCR-stimulated WT or CD40-deficient B cells were adoptively transferred into 

coisogenic bm12 mice, which provide T cell help from I-Ab responsive T cells 

(Cyster and Goodnow, 1995). After 2 days, as expected, WT B cells became 

concentrated in the outer follicle. By contrast, CD40-deficient B cells did not 

become enriched in this region and instead were dispersed throughout the follicle 

(Fig. 4e). Second, the positioning of CD40-deficient MD4 B cells was analyzed at 

day 2 following T-dependent immunization. While the majority of WT B cells had 

relocalized to the outer follicle (Fig. 4f), CD40-deficient B cells were not uniformly 

positioned at this location, and instead were also found throughout the follicle. 

Finally, the role of CD40 signaling in promoting localization of activated B cells to 

the back of the follicle was investigated by blocking CD40L at day 1 following 

immunization (Suppl. Fig. S3). CD40L-blocking decreased the propensity of 

activated B cells to localize to the back of the follicle, and many remained 

localized near the B-T boundary. Together, these results suggest that, in addition 

to supporting activated B cell survival, CD40 transmits signals that promote 

localization to the outer follicle. 
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spleen.
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Detection and properties of EBI2 ligand bioactivity.  To test for the presence 

of EBI2 ligand within lymphoid tissues we generated tissue extracts using a 

procedure we had previously employed in our analysis of interstitial S1P 

concentrations (Schwab et al., 2005). To our surprise, extracts prepared from 

spleen, LNs and thymus showed a readily detectable attractant activity for EBI2-

transduced but not control cells (Fig. 5a). Bioactivity was also detected in a 

number of non-lymphoid tissues including brain, kidney, liver and lung, but not 

plasma (Fig. 5a). Chemoattraction by this bioactivity was sensitive to pertussis 

toxin (PTX) pretreatment of the EBI2-expressing cells (Fig. 5b), providing 

evidence that EBI2 is a Gi-coupled receptor, in agreement with a previous report 

(Rosenkilde et al., 2006).  We next tested if the bioactivity was proteinaceous in 

nature by treatment with proteinase K.  While this treatment readily destroyed 

SDF1 (CXCL12) activity, it had no effect on the EBI2 ligand activity (Fig. 5c). The 

resistance of EBI2 ligand to digestion was not a consequence of inhibitory effects 

of the tissue extract because SDF1 could still be inactivated by proteinase K 

following mixing with tissue extract (Fig. 5c). The bioactivity bound to a C18 

reverse-phase matrix and was eluted with 60% acetonitrile, providing evidence 

that it was hydrophobic in character (Fig. 5d), a property that was further 

established during HPLC-based purification efforts (Suppl. Fig. S4).   

We also found that bioactivity was generated in the culture supernatants 

of a number of cell lines, including HEK293 cells (Fig. 5e). Given the protease 

resistant and hydrophobic nature of the activity, we tested whether treating cell 

cultures with inhibitors of lipid biosynthetic pathways altered ligand production.  
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Figure 5.   Detection of a proteinase K resistant, hydrophobic EBI2 ligand 
bioactivity in multiple tissues and statin-sensitivity of bioactivity generation by 
HEK293 cells. (A) Extracts from the indicated tissues were tested for their ability to 
attract EBI2-IRES-GFP transduced (GFP+, gray bars) compared to untransduced 
(GFP-, open bars) M12 cells in the same samples (left graph); control-IRES-GFP 
vector (CTR) transduced M12 cells were similarly analyzed (right graph). Sp, spleen; 
Thy, thymus; MP, mouse plasma. Nil indicates medium alone. (B) Migration 
response of control, PTX or oligomer B (OB, inactive PTX subunit) pretreated EBI2-
IRES-GFP transduced M12 cells to spleen extract (Sp). Open bars, GFP- (EBI2-) 
and gray bars GFP+ (EBI2+) cells. (C) Migration response of transduced M12 cells 
to proteinase K (PK) treated spleen extract, SDF1 or spleen extract plus SDF1. (D) 
Migration response of transduced M12 cells to tissue extract fractions eluted from a 
C18 sep-pak column with the indicated amounts of acetonitrile. Sp, starting spleen 
extract; FT, flow through. (E) Migration response of transduced M12 cells to culture 
supernatants from HEK293 cells incubated in the absence or presence of the 
indicated concentrations of mevastatin. Data in C-E are plotted as in B. 
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Inhibitors of phospholipase A2 (AACOCF3), cyclooxygenase (ibuprofen) and 

lipoxygenase (ETYA) pathways had variable but not convincing inhibitory effects 

(Suppl. Fig. S4). However, treatment with either of two statins, inhibitors of HMG-

CoA reductase, led to a decrease in migration of EBI2-transduced cells without 

affecting the background migration of the control cells (Fig. 5e and Suppl. Fig. 

S4). These observations provide evidence that EBI2 ligand biosynthesis depends 

on cells having an intact cholesterol biosynthetic pathway.  

 

CD40 engagement promotes sustained EBI2-dependent responsiveness to 

bioactivity.  We took advantage of the identification of EBI2 ligand activity in 

tissue extracts to test whether EBI2-dependent chemotactic function was 

detectable in day 2 activated B cells, a time point when EBI2 transcript levels 

were slightly reduced but the in vivo positioning data showed EBI2 was highly 

functional (Fig. 4). Indeed, chemotaxis assays with cells harvested at day 2 of the 

T-dependent response showed migration to spleen extracts that was EBI2-

dependent (Fig. 6a). Endogenous (naïve) B cells did not show an EBI2-

dependent response, likely because the extracts contained only low amounts of 

ligand (Fig. 6a). Moreover, stimulation of HEL-antigen exposed B cells for 2 days 

with anti-CD40 led to an EBI2-dependent migratory response to spleen extracts 

(Fig. 6b). Extracts prepared from CXCL13-deficient spleens and thus lacking this 

efficacious B cell attractant revealed even more clearly the EBI2-dependent 

migration of cells activated by antigen plus anti-CD40 (Fig. 6b), whereas cells 

exposed to antigen only did not demonstrate an EBI2-dependent migratory  
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Supplemental Figure 4:  Detection of hydrophobic EBI2 ligand bioactivity and 
statin-sensitivity of bioactivity generation by HEK293 cells:  (A) Migration 
response of EBI2-IRES-GFP transduced (GFP+, grey bars) and untransduced 
(GFP-, white bars) M12 cells to tissue extract fractions eluted with a 10-90%
acetonitril gradient by HPLC. (B) Migration response of EBI2-IRES-GFP transduced 
(GFP+, grey bars) and untransduced (GFP-, white bars) M12 cells to tissue extract 
fractions 15-38. (C) Migration response of EBI2-IRES-GFP transduced (GFP+, grey 
bars) and untransduced (GFP-, white bars) M12 cells to culture supernatants from 
HEK293 cells incubated in the absence or presence of the indicated inhibitors of lipid 
biosynthetic pathways.
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response in this assay (Fig. 6b).  The EBI2-independent bioactivity present in 

CXCL13-deficient extracts likely reflects the presence of other chemoattractants 

of activated B cells such as SDF1 and CCL21. These findings provide strong 

evidence that despite the slight reduction in mRNA abundance, EBI2 function is 

elevated in antigen-exposed B cells by CD40 engagement.  
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Discussion 

The above studies demonstrate that in the first hours after BCR 

engagement EBI2 is transcriptionally upregulated and mediates attraction of B 

cells to the outer (T-zone distal) follicle. At 6-10 hours, CCR7 upregulation 

dominantly influences cell location but EBI2 functions together with CXCR5 to 

distribute the activated cells along the length of the B-T boundary. Subsequent 

movement of activated B cells to inter and outer follicular regions is promoted by 

CD40 engagement and is associated with sustained high EBI2 function. Finally, 

we demonstrate that EBI2 functions as a Gi-coupled chemoattractant receptor 

and provide evidence that EBI2 ligand is a lipid and is present not only in 

lymphoid tissues but in many non-lymphoid tissues. The widespread distribution 

of ligand is consistent with our finding that EBI2 is active in intestinal ILFs. These 

observations coupled with the presence of EBI2 in multiple hematopoietic cell 

types and the recent genetic evidence that EBI2 may regulate an inflammatory 

gene network (Heinig et al., 2010) suggest a broad role for this receptor in the 

immune system. 

The propensity of WT B cells to localize to the outer follicle of EBI2-deficient mice 

demonstrates that the receptor is active in naïve B cells. However, naïve B cell 

migration to the outer follicle can take place in the absence of EBI2. Since the 

CXCR5 ligand, CXCL13 is abundant in the outer follicle (Cyster, 2010), the 

sufficiency of CXCR5 in supporting cell movement to this region is not surprising. 

It will be important in future studies to determine whether EBI2 influences the 

dynamics of naïve B cell migration in the outer follicle even in the presence of 
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CXCR5. The basis for WT cells preferentially accumulating in the outer follicle in 

EBI2-deficient mice is not yet clear but might indicate that EBI2-expressing cells 

contribute to local depletion of ligand or provide a feedback signal that modulates 

local production. Analysis of EBI2 ligand bioactivity in EBI2-deficient mice has not 

revealed elevated production at the whole organ level indicating that any such 

alteration must be local. Alternatively, differences in the strength of attraction to 

the outer follicle of WT versus EBI2-deficient B cells might somehow lead to a 

competitive ‘sorting out’ of the cells. 

The tight temporal coupling of EBI2 induction to BCR signaling suggests 

an important role for EBI2 during the early hours of B cell activation. Our studies 

suggest that at least part of this role is to promote a transient increase in 

migration to the outer follicle, prior to CCR7 upregulation and redirection to the T 

zone. The outer follicle in all lymphoid tissues is the most proximal region to sites 

of antigen (Cyster, 2010). Recent studies have highlighted a role for LN 

subcapsular sinus macrophages, located between the incoming lymph and the 

outer follicle, in presenting antigens to B cells (Cyster, 2010). It seems possible 

that B cells that have encountered low amounts of antigen in the follicle (or while 

entering the tissue from circulation) initially relocalize to the outer follicle to 

survey for further incoming antigen on such macrophages, improving their 

chance of internalizing sufficient antigen to later interact productively with helper 

T cells. Attraction to the outer follicle might also increase exposure to IFNa/b and 

other cytokines or innate stimuli reaching the tissue from sites of infection, 

helping instruct appropriate differentiation of the cells.  
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CCR7 and CCR7 ligands are critical for movement of 6 hour activated B 

cells to the B-T boundary. Our finding that the reverse movement in the absence 

of CCR7 function – to the outer follicle (Reif et al., 2002) – is EBI2 dependent 

provides in vivo evidence that EBI2 is highly active in 6 hour activated B cells. 

Thus, CCR7 normally comes to dominate over the EBI2-dependent outer-follicle 

tropism by 6 hours, and the time course of CCR7 upregulation is consistent with 

this delayed effect.  The activity of EBI2 in helping to retain and distribute 

activated B cells along the length of the B-T boundary may contribute to ensuring 

efficient B-T interaction. These observations indicate EBI2 ligand is present at 

the B-T boundary as well as in inter and outer follicular regions, a suggestion 

supported by the circumferential distribution of WT naïve B cells around follicles 

in spleens of mixed bone marrow chimeras (Suppl. Fig. 1 and (Pereira et al., 

2009b)). The propensity of EBI2 over-expressing cells to travel selectively to the 

outer follicle (Pereira et al., 2009b) could indicate that ligand concentration is 

highest in this region but might also reflect the outcome of the concerted action of 

EBI2 and CXCR5 relative to CCR7 in the activated B cells used in such retroviral 

transduction experiments. 

Although EBI2 transcripts appear to be reduced in B cells that have been 

activated for 2 days in the presence of helper T cells, our in vivo data show that 

EBI2 is active in positioning the cells at this time and our in vitro studies provide 

evidence that EBI2 has elevated chemotactic function in these cells. We provide 

evidence that a key T cell-derived signal promoting high EBI2 function is CD40L 

engagement of CD40 on the B cell.  Determining the basis for this augmenting 
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effect of CD40 signaling will require development of tools to study EBI2 protein 

abundance on the cell surface and within the cell. Additionally, while CD40-

deficient B cells have reduced access to the outer follicle following T cell help, 

they were not excluded from this area to the extent of EBI2-deficient B cells, 

suggesting that further T-cell derived signals promote EBI2-mediated positioning 

during an immune response.  

The widespread distribution of EBI2 ligand activity, including production by 

HEK293 cells, might explain why a previous study concluded EBI2 had 

constitutive activity (Rosenkilde et al., 2006); HEK293 cells were one of the cell 

types used in that study. The properties of the EBI2 ligand bioactivity from tissue 

extracts and the sensitivity of ligand production by HEK293 cells to statins 

suggests that it is a lipid whose synthesis depends on an intact cholesterol 

biosynthetic pathway. Consistent with these data, a recent patent publication 

reported identification of 7 ,25-dihydroxycholesterol and 7 ,27-

dihydroxycholesterol as EBI2 ligands present in inflamed sheep and pig liver 

(patent # WO/2010/066689). It will be important in future studies to test whether 

these oxysterols are physiological EBI2 ligands in lymphoid and non-lymphoid 

tissues. It will also be important to determine the key cell types producing EBI2 

ligand within lymphoid tissues. The detection of EBI2 ligand bioactivity in multiple 

organs suggests that EBI2 will have functions beyond regulating B cell responses. 

Consistent with this prediction, genetic studies in rats recently linked 

polymorphisms in the EBI2 promoter to differences in the inflammatory state of a 

number of organs including the kidney, liver and pancreas (Heinig et al., 2010). 
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Polymorphisms in human EBI2 were also associated with type I diabetes and 

other inflammatory diseases (Heinig et al., 2010). EBI2 is expressed in a range of 

myeloid cells as well as some T cells (Heinig et al., 2010; Pereira et al., 2009b) 

and the rat studies suggested EBI2 may regulate IRF7-mediated gene 

expression in macrophages (Heinig et al., 2010). We can therefore anticipate a 

broad role for EBI2 in influencing cell migration and immune function during 

innate as well as adaptive immune responses. 
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Chapter 4 

Conclusion 



Figure 1: Model of B cell positioning by EBI2 during homeostatis and an 
immune response. Naïve WT B cells (top) express CXCR5 and EBI2, which allow 
them to localize to and migrate throughout the follicle, in which CXCL13 is displayed 
(light blue). In the absence of EBI2, B cells still localize to the follicle in a CXCR5-
dependent manner, but tend to be found near the center of the follicle (bottom). 
Within 6 hours of B cell activation by cognate Ag, both EBI2 and CCR7 have 
increased activity, first positioning activated B cells to the OF in an EBI2-dependent 
manner (pink arrow), and then bringing them to the B:T boundary in a CCR7-
dependent manner (green arrows), drawn by CCL21 in the T zone (green). EBI2 KO 
B cells also migrate to the B:T boundary, but are not evenly distributed toward IF 
regions and sometimes extend further into the T zone. By d2-3, activated B cells 
interact with T cells and receive CD40 stimulation. CCR7 surface abundance is 
decreased (light green arrows), while EBI2 functionality increases (red arrows), 
leading to positioning of B cells at the OF and IF. Without EBI2, B cells are unable to 
reach the OF and IF (bottom). By d4, some B cells have downregulated EBI2 and 
migrated to the center of the follicle to become GC B cells, while other B cells remain 
at the OF and IF and become ASC (top). EBI2 KO B cells are preferentially found 
toward the center of the follicle and have decreased propensity to become ASC, 
leading to decreased Ab production (bottom). Based on these observations, we 
propose EBI2L (red) is present in the OF and IF, and low in the center of the follicle. 

77
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Dynamic B cell positioning 

We have shown a role for EBI2 in the positioning of naive and activated B 

cells, and demonstrated that it is necessary for efficient PB generation and Ab 

production (Chapter 2). However, there are many questions that remain 

regarding the role of EBI2 in B cells. We do not know how EBI2 contributes to 

real-time B cell migration dynamically and rapidly. It will be interesting to 

determine if EBI2 plays a role in B cell movement, both homeostatically and 

during an immune response, using two-photon microscopy. EBI2 could play a 

role in determining B cell velocity and turning angles, especially as cells 

approach the OF. Future analysis needs to determine to the distribution of ligand 

in the follicle. We have used indirect evidence to posit that the concentration of 

EBI2L is low at the center of the follicle and deep T zone, and relatively high at 

the edges of the follicle. CXCL13 is distributed throughout the follicle, including 

the outer follicle, so we would expect EBI2 KO B cells to still gain access to the 

OF normally without competition. They might have different migration kinetics at 

the outer follicle, however. Additionally, naïve B cells require EBI2 to efficiently 

access the outer follicle when in competition with other B cells (Chapter 2); it 

would be interesting to determine if EBI2 KO B cells simply slow down when 

migrating toward the OF or if they actively turn around. It would also be 

interesting to determine if EBI2 KO B cells actually interact with FDC more than 

WT B cells. EBI2 KO B cells seem to reside toward the center of the follicle in 

static sections, but whether they interact more with FDC, or just migrate near 

them is unknown. Additionally, we have observed the same effect noted by 
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another group, that EBI2 KO B cells home to the center of the follicle, but do not 

enter into GC (Gatto et al., 2009). This may be due to lack of expression of S1P2, 

which is expressed on GC B cells and helps confine them to the GC (Green et al., 

2011). It would be interesting to observe this migration pattern dynamically as 

well to determine how EBI2 KO B cells travel around the GC and if they have an 

increased probability of entering it compared to the rare WT naive B cells that 

have been observed to do so. The function of homeostatic access to the outer 

follicle is unknown. It is possible this allows more rapid access to Ag arriving from 

outside the follicle, although this has been technically difficult to demonstrate ex 

vivo. Using intravital microscopy could be a useful step in preserving the 

architecture of the LN itself as well as the lymphatic structures and subcapsular 

sinus. Ag could then be administered subcutaneously and Ag capture by EBI2 

WT or KO B cells monitored in real-time to determine if EBI2 plays a role in this 

process; additionally, EBI2 may act in conjunction with other GPCRs in these 

processes, which would also warrant investigation.    

 

Early activation 

EBI2 is induced early after B cell activation, and we have shown that this 

induction repositions activated B cells to the outer follicle within hours, before 

later migration to the B:T boundary (Chapter 3). The importance of this 

movement is unknown, although it also appears to be present soon after viral 

infection (Scandella et al., 2007). It is possible that a BCR signal induces EBI2 to 

promote the search for further Ag or other stimulation in the outer follicle. This 



 80

could increase B cell exposure to Ag and the chance for B cells to encounter the 

highest affinity Ag possible. We have shown that EBI2 is required for efficient PB 

generation, but it is unclear at what point between initial activation and PB 

development is affected. B cells that lack EBI2 do not localize to IF/OF areas at 

d2 of the immune response, but is it this positioning defect that leads to 

decreased PB production, or is interaction with the cognate T cell affected? We 

have attempted to look at early activation markers of B cells and have not 

observed a difference between WT and EBI2 KO B cells. Another group has 

observed that EBI2-deficient B cells have reduced proliferation early in the 

immune response, although we have not reproducibly seen this effect (Gatto et 

al., 2009). It would be interesting to observe dynamic interactions by two-photon 

microscopy between EBI2 deficient B cells and WT T cells to see if there is a 

defect in the B:T interaction. Alternatively, the B:T interaction could occur 

normally, but the cells simply may not localize to the IF/OF. If it were necessary 

for B cells to localize to this area to become PB, then this may be responsible for 

the defect. 

 

EBI2 and IF/OF 

The nuances of the B cell follicle anatomy clearly require further 

exploration. We have shown that EBI2 can direct cells to the OF and IF zones by 

d2 of the immune response, but these areas, and the signals they may convey to 

B cells, are still ill-defined (Chapter 2). The nature of the OF and IF zones will 

likely also differ depending on the lymphoid tissue. As discussed above, the 
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spleen is exposed to Ag from the blood into the marginal sinus, whereas Ag 

drains to the subcapsular sinus in the LN, so the OF in each location may be 

exposed to different Ag and process them differently. The marginal zone is only 

present in the spleen, and plays a role in Ag capture from the blood. Additionally, 

the IF zones in the spleen may be near bridging channels, which do not exist in 

LN. One group has observed that activated B cells migrate more extensively to IF 

zones in the LN, while in the spleen they are sometimes less congregated to 

these areas and instead more evenly distributed along the B:T boundary (Kerfoot 

et al., 2011). The IF area has been observed as the first site of bcl6 induction 

(Kerfoot et al., 2011; Kitano et al., 2011). Bcl6 has observed in B cells at the IF, 

but not OF, early in the immune response, suggesting that GC B cells arise from 

activated B cells positioned at the IF, while PB may arise from activated cells at 

the OF (Kerfoot et al., 2011). How these distinct, although potentially 

interconnected, populations might arise is unknown, as is whether the fate 

decision might occur before or after localization to these areas. Ag exposure and 

T cell help may be different at these two locations. It is also unknown whether 

this same pattern is observed in the spleen. 

 We have shown that EBI2 promotes activated B cell localization to the 

outer follicle and is required for full development of early, isotype switched PB 

(Chapter 2). We hypothesize that cues seen in outer and interfollicular areas 

promote PB development and isotype switching, but the nature of these cues 

remains unknown. 
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 Despite initial reports that did not observe T cells at the OF (Coffey et al., 

2009) possibly owing to a lack of clearly trackable T cells, cognate T cells also 

localize to the IF with B cells, and could continue to provide signals to activated B 

cells (Kerfoot et al., 2011; Kitano et al., 2011). This could provide a location for B 

and T cells to undergo continued interaction. However, it remains to be 

determined if EBI2 deficient B cells still colocalize with cognate T cells, despite 

the mispositioning of activated B cells to the follicle center by d2. 

CD11c+ staining is clearly observed in IF spaces (Steinman et al., 1997), 

but the role of DCs here is not clear. It has been suggested that these DCs 

interact with B cells in T-independent responses, but ablation of DCs has not 

affected the early T-independent response to virus or NP-Ficoll (Hebel et al., 

2006; Scandella et al., 2007). Some of the dendritic cells in these areas in the 

spleen that present Ag carry it in from the blood (Balazs et al., 2002). It is 

possible that DCs interact with B cells during T-dependent immune responses, 

as they have been proposed to do in T-independent responses and upon initial 

Ag exposure to naive B cells (Qi et al., 2006). It is also possible that DCs in these 

areas can interact with helper T cells that relocalize to the IF/OF and deliver 

signals to them, thus indirectly affecting the B cell response. 

Activated B cells in the OF and IF may also interact with macrophages. 

During infection, SCS macrophages and other cell types may become infected. 

These cells can block further infection of other cell types and also produce 

effector molecules such as type I IFN which can subsequently influence the 

immune responses directly and by recruiting other cell types (Iannacone et al., 
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2010). It is interesting to consider the role of infected macrophages both in 

producing effector molecules that may skew the outer follicle milieu, and as a 

continuous source of Ag. Subcutaneously administered IC are rapidly cleared 

from SCS macrophages, resulting in complete transfer to FDC by 8 hr (Phan et 

al., 2007). However, during an infection, Ag may continuously be generated in 

the periphery to drain to the LN, or may be continuously produced locally. As 

these macrophages are not proficient at degrading Ag, it has been suggested 

that this site may be enriched for infection and Ag retention (Cyster, 2010). This 

may generate a more constant exposure to Ag at inter and outer follicular regions, 

and EBI2 may allow cells to efficiently access these areas. 

EBI2 is required for B cells to localize to outer and inter follicular areas at 

d2 of a T-dependent immune response (Gatto et al., 2009; Chapter 2). However, 

by d3-4, EBI2-deficient B cells are able to localize toward the outer follicle, and 

PB and GC cells appear normally positioned. It is possible that chemokine 

receptors known to have roles in these processes are sufficient to direct 

activated B cells to the appropriate positions even in the absence of EBI2, ie, 

continued downregulation of CCR7 to allow activated cells to migrate away from 

the T zone and T zone-proximal follicle area, and downregulation of CXCR5 and 

upregulation of CXCR4 to position PB. However, it is also possible that other 

receptors may direct activated B cells to the outer follicle, with delayed action 

compared to EBI2. CXCR3 recognizes the inflammatory chemokine CXCL9, 

which is induced in the outer follicle in some infections. CXCR3 has recently 

been shown to be upregulated on CD8+ T cells by d3 of a viral infection and is 
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required for responding T cells to migrate out of the T zone to infected MZM in 

the OF (Hu et al., 2011). It will be interesting to determine if CXCR3 has a role in 

positioning activated B cells to this area with delayed kinetics relative to EBI2. 

 

EBI2 and early PB generation 

 EBI2 deficiency leads to decreased generation of PB and serum Ab, but 

this effect has been variable depending on the system examined. In the T-

dependent immune response to NP-KLH, we observed significantly decreased 

Ag-specific serum IgG1, while Ag-specific IgM production was not decreased 

(Chapter 2). Another group has shown that in response to the T-dependent 

response to SRBC, production of IgG1+ PB is significantly decreased, and we 

have confirmed this observation, and noted that IgM+ PB are increased in a B 

cell intrinsic manner (Gatto et al., 2009). In response to HEL-SRBC immunization, 

total PB generation is decreased in EBI2 deficient B cells, and both antigen-

specific IgG1 and IgM is decreased; conversely, activated B cells constitutively 

expressing EBI2 were shown to have both increased IgM and IgG1 in serum 

(Gatto et al., 2009). In some circumstances, it seems that EBI2 is required for 

total PB generation, while in others, isotype switching is also affected. The 

differences among these systems have not yet been reconciled. It is possible that 

Ag affinity and density is different in these systems, although Gatto et al report 

similar observations in unpublished data with Ag over a 10,000-fold range (Gatto 

et al., 2009). Furthermore, effects on isotype switching have so far only been 
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observed in switching to IgG1, so it will be important to determine if this effect 

extends to other isotypes. 

 EBI2 may also be more relevant in response to certain Ags and 

immunizations. As discussed above, Ag distribution varies depending on Ag size 

and solubility. EBI2 may be most important during immune responses in which 

Ag is preferentially retained near the OF, which may involve large Ag, chronic 

infection in which Ag is continually draining to the OF, or locally produced Ag in 

the case of infected CD169+ macrophages, for example. Most of the 

investigations into the role of EBI2 in the immune response have focused on the 

spleen, although similar homing patterns are observed in pLN (Pereira et al., 

2010). It may be interesting to examine responses in the LN induced by 

subcutaneous immunization. 

 

EBI2 and GC B cells 

The activity of EBI2 in B cells later in the immune response will also be 

interesting to analyze. EBI2 transcripts are downregulated in GC B cells and the 

GFP reporter is strongly downregulated as well, leading GCs to appear as GFP 

negative “islands” in the center of follicles, surrounded by GFP-positive naive B 

cells in sections of EBI2-GFP/+ mouse lymphoid tissues (Chapter 2). Bcl6 is 

highly expressed by GC B cells and targets EBI2, leading to repression of EBI2 

(Basso et al., 2010; Shaffer et al., 2001); a bcl6 hypomorph has recently been 

reported to be defective in EBI2 downregulation in preGC B cells (Kitano et al., 

2011). We have not observed perturbed organization of the GC in the absence of 



 86

EBI2, as expected since EBI2 is normally downregulated in these cells. However, 

we have not analyzed GC organization of EBI2 KO B cells in competition with 

WT. Centrocytes express higher amounts of EBI2 than centroblasts, although 

whether this effect is from late centrocytes which may be exiting the GC and re-

expressing EBI2 or from contamination of the centrocyte population with EBI2-

expressing memory cells, is unknown (Luckey et al., 2006). 

 Memory B cell localization is still under investigation, and it is difficult to 

stain for these cells in sections as they express some markers common to naive 

or GC B cells. However, recent attempts have suggested that IgM+ memory cells 

are found in the B cell follicle, while IgG+ memory cells exist adjacent to residual 

germinal centers (Aiba et al., 2010). Re-expression of EBI2 could help memory B 

cells leave the GC, and analysis of the localization of EBI2 KO memory B cells 

could help test this hypothesis. We have not seen a difference in the number of 

GFP-expressing B cells still residing in GC of EBI2GFP/GFP (KO) versus 

EBI2GFP/+ mice, implying that EBI2 is not required for exiting the GC. However, 

without careful analysis of memory B cell numbers and survival, it is not clear if 

memory B cells have decreased survival without EBI2. 

 

EBI2 and ASC 

EBI2 transcripts in ASC appear to be decreased compared to naïve B 

cells, although to a lesser extent than in GC (Gatto and Brink, 2010; Luckey et al., 

2006), but EBI2 reporter GFP is still expressed in these cells. It remains to be 

determined if EBI2 plays a role in ASC localization. ASC localize to areas that we 
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predict have high EBI2L concentrations, such as bridging channels of the spleen, 

which may reflect ongoing contributions of EBI2 to ASC localization. However, 

decreased CXCR5 and increased CXCR4 expression may be sufficient to 

account for ASC localization to the red pulp. Thus far, EBI2-deficient ASC have 

not been observed to be mislocalized, although subtle effects in positioning may 

be difficult to discern in the red pulp. CXCR4-deficient ASCs seem to reside 

closer to the follicles than WT ASCs, which may reflect ongoing activity of EBI2 in 

these cells (Hargreaves et al., 2001). 

 

EBI2 regulation 

 So far, EBI2 expression has been tracked at the transcriptional and 

functional level. Use of an EBI2-GFP reporter line has also been informative for 

predicting EBI2 protein expression, although the long half-life of GFP may 

confound these results (Chapter 2). EBI2 transcript analysis does not always 

seem to faithfully report the amount of functional EBI2 expressed by a cell. While 

the initial increase of EBI2 within an hour following BCR stimulation is reflected in 

EBI2 activity in positioning B cells at this timepoint, at later points, such as d2 of 

the immune response, EBI2 is functionally upregulated despite being 

transcriptionally decreased compared to naive B cells (Chapter 3). Activated cells 

may still have a high amount of EBI2 while having less than naive B cells, since 

naïve B cells highly express EBI2. However, decreased transcription and 

increased function may suggest that EBI2 can be regulated post-transcriptionally. 

The half-life of EBI2 protein is unknown. It will be useful to develop tools to track 
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EBI2 protein, for example to monitor surface levels of EBI2 throughout the 

immune response. 

 

EBI2L 

 EBI2 was originally identified as an orphan GPCR, and its ligand has been 

very recently discovered to be 7 ,25-dihydroxycholesterol (7 ,25-OHC) 

(Hannedouche et al., 2011; Liu et al., 2011). Cells migrate to 7 ,25-OHC and 

related oxysterols in an EBI2-dependent manner. The details of the production, 

regulation, and degradation of EBI2L are still under intense investigation. Since 

EBI2 is required for B cells to access the OF, and since EBI2 deficient B cells 

cluster toward the center of the follicle, we have hypothesized the EBI2L 

concentration is highest at the edges of the follicle and decreases toward the 

center. It is not known whether this gradient is established due to production of 

ligand at the OF with a passive decrease in concentration toward the center, or if 

ligand concentration is actively reduced toward the center due to degradation 

there.  We observed the lymphotoxin blockade perturbs EBI2-mediated 

segregation, implying that the EBI2L gradient is disrupted in this process. A 

variety of cells that may establish or maintain the gradient are lymphotoxin 

dependent, including FDC, MRC, and CD169+ macrophages, so it will be 

interesting to investigate which of these cells are important in this process 

(Pereira et al., 2010). The generation of 7 ,25-OHC requires cellular cholesterol 

25-hydroxylase and oxysterol 7 -hydroxylase (cyp7b1), so the localization and 

regulation of these enzymes is also being analyzed. 
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 Chemokine production is known to change during infection and 

immunization. While inflammatory chemokines are induced, homeostatic 

chemokine production also changes. CCL21 and CXCL13 transcript and protein 

abundance is transiently decreased in the spleen following viral or bacterial 

infection, as well as immunizations (Mueller et al., 2007). While CXCL13 protein 

is normally found throughout the follicle, especially toward the center on FDC but 

also more broadly, during infection, central follicular CXCL13 is decreased. At 

least in some circumstances, CXCL13 can be seen on ER-TR7+ stromal cells in 

the outer follicle, which may help activated cells move to the edge of the follicle 

during infection or immunization, or decrease their attraction toward the center 

(Mueller and Ahmed, 2008). It will be interesting to examine EBI2L production 

throughout infection and immunization; however, this effect required IFNgamma 

and thus may be most relevant in Th1 immune responses, while EBI2 may play a 

more dominant role in Th2 responses (Mueller et al., 2007). LPS may increase 

EBI2L production, showing that this chemoattractant may be modulated during 

infection (Hannedouche et al., 2011). 

 

EBI2 and other B cell activation states 

The role of EBI2 in T-independent responses remains unknown. Following 

T-independent immunizations, such as with NP-Ficoll, responding B cells have 

been shown to localize to the outer follicle and interfollicular areas of the spleen 

early after activation (Garcia de Vinuesa et al., 1999). However, the receptor that 

mediates this localization is not known. This may be particularly physiologically 
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relevant in response to blood-borne bacteria, in which cognate B cells, which 

may be enriched in the MZ, migrate to both the B:T boundary and IF or bridging 

zones in the spleen (Balazs et al., 2002). T-independent responses are divided 

into type I, induced by TLR activation, and type II, induced by BCR activation by 

repeating polysaccharides. TLR stimulation has thus far not shown increases in 

EBI2 transcript, although we have shown that EBI2 transcription does not always 

correlate with activity. We have not compared the ability of highly repetitive 

polysaccharides to modulate EBI2 activity through BCR activation. 

The role of EBI2 in anergy remains unknown. Anergic B cells are excluded 

from the B cell follicle and reside at the B:T boundary. Unlike naive B cells that 

migrate to the B:T boundary upon recognition of cognate Ag, anergic B cells do 

not have increased CCR7 levels but instead depend on decreased expression of 

CXCR5 for this localization. CCR7-deficient anergic B cells localize to the outer 

follicle, suggesting that EBI2 may be active in anergic cells (Ekland et al., 2004). 

If so, EBI2 may help keep anergic B cells near the follicle, as we have shown that 

without EBI2, activated B cells may enter deeper into the T zone. We have 

shown this to be especially evident in the absence of CXCR5, and thus may be 

relevant for anergic cells which express decreased CXCR5 compared to naive B 

cells. 

 

Summary 

Here we have shown that the GPCR EBI2 plays a role in positioning naïve 

and activated B cells. EBI2 is highly expressed on naïve B cells, and this 
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expression is further increased immediately following B cell activation. EBI2 

positions B cells to the OF and IF both before and after B cells receive T cell help. 

Downregulation of EBI2 is necessary for GC formation, and EBI2 is required for 

efficient generation of a T-dependent antibody response. The mechanism of this 

requirement is still under investigation, as are still broader roles of EBI2 and its 

ligand in many aspects of the immune response. 
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