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Abstract

Essays in Innovation, Past and Present

by

Daniel Pincus Gross

Doctor of Philosophy in Economics

University of California, Berkeley

Professor Benjamin R. Handel, Chair

This dissertation studies the economics of historical and modern innovation. The first chapter
makes inroads into understanding how competition and incentives shape the creative process which
lies at the heart of all technological progress. The creative act is a classic example of a black box
in academic research: we can see the inputs and outputs, but we know little about what happens
in between. This paper uses new tools for measuring the content of digital media to see how
commercial graphic designers’ work evolves in winner-take-all competition. In this chapter, I show
that competition both creates and destroys incentives for innovation: some competition is necessary
to motivate high-performers to experiment with novel, untested ideas over tweaking tried-and-true
approaches, but heavy competition will drive them out of the market.

In the second chapter, I study the effects of performance feedback on innovation in competitive
settings. Feedback typically serves two functions: it informs agents of their relative performance,
and it also helps them improve the quality of their product. The presence of these effects suggests
a tradeoff between participation and improvement, as the revelation of asymmetries discourages
effort. Using data from the same setting as chapter one, I first show that this tradeoff is real. I
then develop a structural model of the setting – the first of its kind in the literature – and use the
results to evaluate counterfactual feedback policies. The results suggest that feedback is on net a
desirable mechanism for a principal seeking high-quality innovation.

In the third chapter, I use the farm tractor as a case study to demonstrate that technologies diffuse
along two distinct margins: scale and scope. Although tractors are now used in nearly every field
operation and with nearly all crops, early models were far more limited in their capabilities, and
only in the late 1920s did the technology begin to generalize for broader use with row crops such
as corn. Diffusion prior to 1930 was accordingly heavily concentrated in the Wheat Belt, while
growth in diffusion from 1930-1940 was concentrated in the Corn Belt. Other historically important
innovations in agriculture and manufacturing share similar histories of expanding scope. The key to
understanding the pace and path of technology diffusion is thus not only in explaining the number
of different users, but also in explaining the number of different uses.

A common theme across all three chapters is the focus on developing tools or strategies to study
innovation that are less dependent on patent data than the extant literature, since the majority of
innovation is not patented (and often not patentable), and doing so while advancing the empirical
literature on innovation in new directions.
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Part I

Creativity Under Fire: The Effects of
Competition on the Creative Process
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Chapter Abstract

Creativity is fundamental to innovation and pervasive in everyday life, yet the creative process
has received only limited attention in economics and can in practice be difficult to model and
measure. In this paper, I study the effect of competition on individuals’ incentives for creative
experimentation in the production of commercial art. Using a sample of logo design contests, and
a novel, content-based measure of designs’ originality, I find that competition has an inverted-U
shaped effect on individuals’ propensity for innovation: some competition is necessary to induce
players to experiment with novel, untested ideas, but heavy competition can drive them to abandon
the tournament altogether, such that experimentation is maximized by the presence of one high-
quality competitor. The evidence is consistent with a generalized model of agents’ choice between
risky, radical innovation; more reliable, incremental innovation; and exit from a creative tournament
where agents are risk-averse or face decreasing returns to improvement due to a concave success
function. These results reconcile conflicting evidence from an extensive literature on the effects of
competition on innovation and have direct implications for R&D policy, competition policy, and
the management of organizations in creative or research industries.
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The creative act is among the most important yet least understood phenomena in economics and the
social and cognitive sciences. Technological progress – the wellspring of lasting, long-run economic
growth – at heart consists of creative solutions to familiar problems. Millions of people in the U.S.
alone work in creative fields ranging from research, to software development, to media and the
arts,1 and surveys show CEOs’ top concerns consistently include creativity and innovation in the
firm.2 Despite its importance, the creative process has received only limited attention in economic
research and has historically proven difficult to both model and measure.

In this paper, I study the incentive effects of competition on creative production. I do so in an
empirical setting where creative experimentation and competition can be both precisely measured
and disentangled: commercial graphic design tournaments. Using image comparison algorithms to
measure experimentation, I provide causal evidence that competition can both create and destroy
incentives for innovation. I find that some competition is necessary for high-performing agents to
prefer experimenting with novel, untested ideas over tweaking their earlier work, but that heavy
competition discourages effort of any kind. These patterns are driven by risk-return tradeoffs
inherent to innovation, which I show to be high-risk, high-return. The implication of these results
is an inverted-U shaped effect of competition on innovation, with incentives for taking creative risks
maximized by the presence of one high-quality competitor.

The challenge of motivating creativity can be naturally characterized as a principal-agent problem.
Suppose a firm wants its workers to experiment with new, potentially better (lower cost or higher
quality) product designs, but the firm does not observe workers’ creative choices and can only reward
them on the quality of their output. In this setting, failed experimentation is indistinguishable from
shirking. Workers who are risk-averse or face decreasing returns to improvement, as they do in
this paper, may then prefer exploiting existing solutions over experimenting if the existing method
reliably yields an acceptable result – even if creative and routine effort are equally expensive.
Motivating innovation will be even more difficult when creative effort is more costly.

To better understand the economics of the creative process, I begin by developing a model of
a winner-take-all “creative tournament,” building on the economics literature on innovation and
tournament competition.3 In the model, a principal seeks a high-value product design from a
pool of workers and solicits ideas using a fixed-length tournament mechanism, awarding a prize
to the preferred entry. Workers compete for the prize by entering designs in turns. At each turn,
a worker must choose between experimenting with a new design, tweaking an existing design, or

1According to the U.S. Census 2010 County Business Patterns, over 15 million people are employed in the Media and
Communications; Professional, Scientific, and Technical Services; Management; and Arts and Entertainment sectors
alone – fields that could be considered creative professions. This total represents nearly 15% of U.S. employment
and over 20% of wages, and it excludes industries in which creativity may be valued but is not strictly essential.

2Annual CEO surveys by The Conference Board reveal “stimulating innovation/creativity/enabling entrepreneurship”
is consistently among executives’ top concerns. “Innovation” was perceived as the top global challenge in 2012 and
the third biggest challenge in 2013 and 2014. See http://www.conference-board.org/subsites/index.cfm?id=14514.

3Since the seminal contributions of Arrow (1962), countless papers have studied incentives for innovation. Wright
(1983) presents an interesting theoretical comparison of patents, prizes, and research contracts as incentive mecha-
nisms, and Scotchmer (2004) provides a summary of the literature. The model in this paper is most closely related
to the work of Taylor (1995), Che and Gale (2003), Fullerton and McAfee (1999), and Terwiesch and Xu (2008).
Though this mechanism is commonly described in the economics literature as an “R&D,” “research,” or “innovation”
tournament, I refer to it in the remainder of this paper as a “creative” tournament to emphasize that it applies to
creative production of all kinds – not strictly research or product development. The model in this paper also has ties
to recent work on tournaments with feedback, such as Yildirim (2005) and Ederer (2010), where agents accumulate
effort over multiple rounds with interim evaluation.
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abandoning the tournament altogether.4 Each submission receives immediate, public feedback on
its quality, and at the end of the contest, the sponsor selects the winner. The model establishes a
new explanation for an inverted-U relationship between competition and innovation, with incentives
for experimentation maximized at intermediate levels of competition.5

I then bring the theoretical intuition to an empirical study of design competitions similar to the
model’s setting, using a sample of logo design contests from a prominent online platform.6 In
these contests, a firm (“sponsor”) solicits custom designs from a community of freelance designers
(“players”) in exchange for a winner-take-all prize. The contests in the sample offer prizes of
a few hundred dollars and on average attract nearly 35 players and 100 designs. An important
feature of this setting is that the sponsor can provide interim feedback on players’ designs in the
form of 1- to 5-star ratings. These ratings allow players to gauge the quality of their own work
and the level of competition they face. The dataset also includes the designs themselves, allowing
me to study experimentation in this venue: I use image comparison algorithms similar to those
used by commercial content-based image retrieval software (e.g., Google Image Search) to calculate
similarity scores between pairs of images in a contest, which I then use to quantify the originality
of each design in a contest relative to prior designs by that player and her competitors.

This setting presents a unique opportunity to directly observe creative experimentation in the field.
Though production of commercial advertising is interesting in its own right – advertising is a $120
billion industry in the U.S. and a $520 billion industry worldwide7 – the design process observed
here is similar to that in other settings where new products are developed. It also has parallels to the
experimentation with inputs and production techniques responsible for productivity improvements
in firms, including those not strictly in the business of producing cutting-edge ideas: Hendel and
Spiegel (2014) study plant-level productivity at a steel mill and suggest that a large fraction of its
unexplained TFP growth results from the accumulation of adjustments to its production process
that are tested, evaluated, and implemented over time.

The sponsors’ ratings are critical in this paper as a source of variation in the information that both
I and the players have about the state of the competition. Using these ratings, I am able to directly
estimate a player’s probability of winning, and the results establish that ratings are meaningful: a
five-star design has 10 times the weight of a four-star design, 100 times that of a three-star design,
and nearly 2,000 times that of a one-star design in the success function. Data on the time at
which designs are entered by players and rated by sponsors enables me to determine what every
participant knows at each point in time – and what they have yet to find out. To obtain causal

4The explore-exploit dilemma is endemic to a class of decision models known as bandit problems, which have received
extensive coverage in the economics, statistics, and operations research literatures. Weitzman (1979) provides one
of the earliest applications in economics, examining optimal stopping rules in a sequential search for an innovation.
Manso (2011) and Ederer and Manso (2013) study incentives for exploration in a single-agent, dynamic two-armed
bandit model and an accompanying lab experiment and find that the optimal contract for motivating innovation
tolerates early failure and rewards long-term success. See Bergemann and Valimaki (2008) for other examples.

5These results concord with the standard result from the tournament literature that asymmetries discourage effort
(e.g., Baik 1994, Brown 2011). The contribution of this paper is to embed an explore-exploit problem in the model,
effectively adding a new margin along which effort may vary: radical versus incremental. I show that intermediate
competition not only maximizes incentives to participate; it also maximizes incentives to experiment.

6The empirical setting is conceptually similar to the computer programming competitions studied by Boudreau et
al. (2011), Boudreau et al. (2014), and Boudreau and Lakhani (2014). Logo design competitions have also recently
been studied in the management literature as examples of innovation tournaments (Wooten and Ulrich 2014).

7Magna Global Advertising Forecast for 2014, available at http://news.magnaglobal.com/.
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estimates of the effects of feedback and competition, I exploit naturally-occurring, quasi-random
variation in the timing of sponsors’ ratings, and identify the effects of ratings they can observe.
The empirical strategy effectively compares players’ responses to feedback and competition they
observe at the time of design against that which has not yet been given.

I find that feedback and competition have significant effects on creative choices. In the absence
of competition, positive feedback causes players to cut back sharply on experimentation: players
with the top rating enter designs that are one full standard deviation more similar to their previous
work than those who have only low ratings. The effect is strongest when a player receives her first
five-star rating – her next design will be a near replica of the highly-rated one, on average three
standard deviations more similar to it – and attenuates at each rung down the ratings ladder. But
these effects are significantly reversed (by half or more) when high-quality competition is present.
Intense competition and negative feedback also drive players to stop investing, as their work is
unlikely to win; the probability of abandonment increases with each high-rated competitor. In
both reduced-form regressions and a descriptive choice model, I find high-performers are most
likely to experiment when they face exactly one high-quality competitor.

For players with poor designs, the data show that continued experimentation clearly dominates
imitation of the poor-performing work. But why would a top contender ever deviate from her
winning formula? The model suggests that even a top contender may wish to experiment when
competition is present, provided there is sufficient upside to experimentation. To evaluate whether
it pays to innovate, I recruit a panel of professional designers to provide independent ratings on
all five-star designs in my sample and correlate their responses with these designs’ originality. I
find that experimentation on average results in higher-rated designs than incremental changes but
that the distribution of opinion also has higher variance. These results validate one of the standard
assumptions in the innovation literature – that experimentation is high-risk and high-reward –
which is the necessary condition for competition to motivate innovation.

To my knowledge, this paper provides the most direct view into the creative process to-date in the
economics literature. The creative act is a classic example of a black box: we can see the inputs
and outputs, but we have little evidence or understanding of what happens in between. Reflecting
these data constraints, empirical research has opted to measure innovation in terms of inputs (R&D
spending) and outcomes (patents), when innovation is at heart about what goes on in between:
individual acts of discovery and invention. Because experimentation choices cannot be inferred
from R&D inputs alone, and because patent data only reveal the successes – and only the subset
that are patentable and its owners are willing to disclose – we may know far less about innovation
than commonly believed. This paper is an effort to fill this gap.

While creativity has only recently begun to receive attention from economists,8 social psychologists
have studied the effects of intrinsic and extrinsic motivation on creativity for decades.9 The consen-
sus from this literature is that creativity is inspired by intrinsic “enjoyment, interest, and personal
challenge” (Hennessey and Amabile 2010), and that extrinsic pressures of reward, supervision,

8For examples, see Weitzman (1998) and Azoulay et al. (2011). Akcigit and Liu (2014) and Halac et al. (2014) study
problems more similar to the one in this paper: the former embed an explore-exploit problem into a two-player patent
race, as risky and safe lines of research, and study the efficiency consequences of private information; the latter study
the effects of various disclosure and prize-sharing policies on effort in contests for innovation. Charness and Grieco
(2014) find that financial incentives can elicit “closed” (targeted) creativity but not “open” (blue-sky) thinking.
Mokyr (1990) provides a history of technological creativity at the societal level, dating to classical antiquity.

9See Hennessey and Amabile (2010) for a comprehensive review of creativity research in psychology.
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evaluation, and competition tend to undermine intrinsic motivation by causing workers to “feel
controlled by the situation.” The implication is that creativity cannot be managed: any attempts
to manage creativity will backfire, and the best one can do is to provide a supportive environment
for creative workers, leave them alone, and hope for the best.10 Although intrinsic motivation is
undoubtedly important to creativity, I counter these claims with evidence that individuals’ creative
choices respond positively to well-designed incentive schemes.11

The evidence that incentives for assuming creative risk are highest with moderate competition
has broader implications for R&D policy, competition policy, and management of organizations in
creative and research industries, which I discuss in Section I.6. The results also provide a partial
resolution to the long-standing debate on the effects of competition on innovation, summarized by
Gilbert (2006) and Cohen (2010). Since Schumpeter’s contention that monopoly is most favorable to
innovation, researchers have produced explanations for and empirical evidence of positive, negative,
and inverted-U relationships between competition and innovation. The confusion results from
disagreements of definition and measurement; ambiguity in the type of competition being studied;
problems with econometric identification; and institutional differences, such as whether innovation
is appropriable. This paper addresses these issues by establishing clear and precise measures of
competition and innovation, identifying the causal effects of information about competition on
innovation, and focusing the analysis on a setting with a fixed, winner-take-all prize and copyright
protections. Moreover, as Gilbert (2006) notes, the literature has largely ignored that individuals
are the source of innovation (“discoveries come from creative people”), even if patents get filed by
corporations. It is precisely this gap that I seek to fill with the present paper.

The paper proceeds as follows. Section I.1 presents the model of winner-take-all creative competi-
tion. Section I.2 introduces the empirical setting, including my approach to measuring experimen-
tation, and describes the identification strategy. Section I.3 estimates the effects of competition
on creative experimentation and participation. Section I.4 establishes that experimentation in this
setting is high-risk, high-return, confirming the driving assumption of the model. In Section I.5, I
unify these results and show that experimentation is maximized with one high-quality competitor.
Section I.6 discusses implications of these results for policymakers, managers, and future research
on innovation and the creative process. Section I.7 concludes with several questions on the creative
act that I believe are ripe for attention.

I.1 A Model of a Creative Tournament

Suppose a risk-neutral principal seeks to develop a new product design. Because R&D is risky, and
designs are difficult to objectively value, the principal cannot contract directly on performance.
It instead sponsors a tournament to solicit prototypes from a pool of J risk-neutral players, who
enter designs in turns and receive immediate, public feedback on their quality (defined below). Each

10As Amabile and Khaire (2008) write, “One doesn’t manage creativity. One manages for creativity.”
11The findings of this paper are not unprecedented. A smaller, rival camp of psychologists has argued that reward can

have profound effects on creativity, if only applied the right way: Eisenberger and Rhoades (2001) show in a series
of experiments that creativity is enhanced by rewards when it is clear to participants that creative performance
is precisely what is being rewarded. This is not to say that intrinsic motivators are unimportant or should be
disregarded (e.g., as Stern (2004) shows, corporate scientists sacrifice wages for the opportunity to conduct self-
directed research and publish) but rather that even creative types appreciate, and will compete for, rewards of
money, status, and recognition, be it out of self-interest, a desire to share the value of one’s discovery or creation
with a broader audience, or both.
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design in the competition is either generated by experimentation, which has stochastic outcomes,
or incrementally adapted from the blueprints of previous entries; players who choose to continue
working on a given design post-feedback can re-use the blueprint to create variants, though the
original version remains in contention. At a given turn, the player must choose whether to continue
participating and if so, what type of innovation to undertake: radical or incremental. At the end
of the tournament, the sponsor awards a fixed, winner-take-all prize P to its favorite entry. The
sponsor seeks to maximize the value of the winning design.

To hone intuition, suppose each player enters at most two designs. Let each design be characterized
by latent value νjt, which only the sponsor observes (possibly sponsor-specific):

νjt = ln (βjt) + εjt, εjt ∼ i.i.d. Type-I E.V. (I-1)

where j indexes players and t indexes designs. In this model, βjt represents the design’s quality,
which may not be known ex-ante and is revealed by the sponsor’s feedback. The design’s value to
the sponsor, νjt, is increasing and concave in its quality, and the design with the highest ν wins
the contest.12 The εjt term is a random shock, which can be interpreted as idiosyncracies in the
sponsor’s tastes at the time a winner is chosen. Player j’s probability of winning is then:

Pr (player j wins) =
βj1 + βj2∑

k 6=j (βk1 + βk2) + βj1 + βj2
=

βj1 + βj2
µj + βj1 + βj2

(I-2)

where µj ≡
∑

k 6=j (βk1 + βk2) is the competition that player j faces in the contest.13 This function
is concave in the player’s own quality and decreasing in the quality of competition.

Players develop and submit designs one at a time, in turns, and immediately receive public feedback
that reveals βjt. It is assumed that property protections are in place to prevent idea theft by
competitors. Every player’s first design in the contest is therefore novel to that contest, and at
their subsequent turn, players have three options: they can exploit (tweak, or adapt) the existing
design, explore (experiment with) an entirely new design, or abandon the contest altogether. I
elaborate on each of these options below.

1. Exploitation is undertaken at cost c > 0 and yields a design concept of the same quality as
the one being exploited. A player who chooses to exploit will tweak her first design, which
has quality βj1, resulting in a second-round design with βj2 = βj1 and a new draw of the luck
term, and increasing her probability of winning accordingly.

After exploitation, the player’s expected probability of winning is:

E [Pr (player j wins | exploit)] =
βj1 + βj1

µj + βj1 + βj1
(I-3)

12The decision to model designs’ latent value (νjt) as a function of logged quality (βjt) is taken for analytical
convenience but also supported by the intuition of decreasing returns to quality. νjt could also be linear in βjt and
similar results would obtain: the feature of the model driving the results is the concavity of the success function.

13Note that the level of competition is determined by both the number and quality of competing designs. As Section
I.2 shows, a single, high-quality design can present an equal amount of competition as several lower-quality ones.
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2. Exploration costs d ≥ c and yields either a high- or low-quality design concept, each with
positive probability. Define α ≥ 1 as the exogenous degree of experimentation under this
option (conversely, 1

α ∈ [0, 1] can be interpreted as the similarity of the new, experimental
design and the player’s first design). With probability q, experimentation will yield a high-
quality design with βHj2 = αβj1, and with probability (1− q) it will yield a low-quality design

with βLj2 = 1
αβj1. I assume q > 1

1+α , which implies that a design’s expected quality under
exploration (E[βj2|Explore]) is greater than that under exploitation (βj1). A risk-neutral
sponsor will therefore always want players to explore. Note that as written, exploitation is a
special case of exploration, with α = 1.14

After exploration, the player’s expected probability of winning is:

E [Pr (player j wins | explore)] = q ·

(
βj1 + βHj2

µj + βj1 + βHj2

)
+ (1− q) ·

(
βj1 + βLj2

µj + βj1 + βLj2

)
(I-4)

3. Abandonment is costless: the player can always walk away. Doing so leaves the player’s
probability of winning unchanged, as her earlier work remains in contention.

After abandonment, the player’s probability of winning will be:

E [Pr (player j wins | abandon)] =
βj1

µj + βj1
(I-5)

In this setting, feedback has three effects: it informs each player about her first design’s quality,
helps her improve and set expectations over her second design, and reveals the level of competition.
Players use this information to decide (i) whether to continue participating and (ii) whether to do
so by exploring a new design or re-using a previous one, which is a choice over which kind of effort
to exert: creative or rote. The model thus characterizes incentives for innovation.

In the remainder of this section, I examine a player’s incentives to explore, exploit, or abandon
the competition. Section I.1 studies the conditions required for the player to prefer exploration
over the alternatives and shows that these conditions lead to an inverted-U relationship between
competition and innovation (proofs in Appendix I.B). Section I.1 contextualizes this result in the
existing literature. To simplify the mathematics, I assume the level of competition µj is known
to player j, though the results are general to other assumptions about players’ beliefs over the
competition they will face, including competitors’ best responses. The model can also be extended
to allow players to enter an arbitrary number of designs, and the results will hold as long as players
do not choose exploration for its option value.

Incentives for Radical Innovation

To simplify notation, let F (β2) = F (β2|β1, µ) denote player j’s probability of winning with a
second design of quality β2, given β1 and µ (omitting the j subscript). The model permits four
values of β2: βH2 , βL2 , β1, and 0. The first two values result from exploration, and the latter two from

14In this model, I assume α and q are fixed. When α is endogenized and costless, the (risk-neutral) player’s optimal
α is infinite, since the experimental upside would then be unlimited and the downside bounded at zero. A natural
extension would be to relax experimentation costs d (·) and/or the probability of a successful experiment q (·) to
vary with α. Such a model is considerably more difficult to solve and beyond the scope of this paper.
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exploitation and abandonment, respectively. For player j to experiment on a new design, she must
prefer exploration over both exploitation (incentive compatibility) and abandonment (individual
rationality):

[
qF
(
βH2
)

+ (1− q)F
(
βL2
)]
· P − d︸ ︷︷ ︸

E[π|explore]

> F (β1) · P − c︸ ︷︷ ︸
E[π|exploit]

(IC)

[
qF
(
βH2
)

+ (1− q)F
(
βL2
)]
· P − d︸ ︷︷ ︸

E[π|explore]

> F (0) · P︸ ︷︷ ︸
E[π|abandon]

(IR)

These conditions can be rearranged to be written as follows:

qF
(
βH2
)

+ (1− q)F
(
βL2
)
− F (β1) >

d− c
P

(IC)

qF
(
βH2
)

+ (1− q)F
(
βL2
)
− F (0) >

d

P
(IR)

In words, the probability gains from exploration over exploitation or no action must exceed the
cost differential, normalized by the prize. These conditions are less likely to be met as the cost
of exploration rises, but the consideration of cost in players’ decision-making is mitigated in tour-
naments with large prizes that dwarf experimentation costs. As written, they will generate open
intervals for µ ∈ R+ in which players will degenerately prefer one of exploration, exploitation, or
abandonment. If costs were stochastic – taking a distribution, as is likely the case in practice – the
conditions would similarly generate intervals in which one action is more likely than (rather than
strictly preferred to) the others.

Exploration versus Abandonment (IR)

At what values of µ are the payoffs to exploration greatest relative to abandonment? I answer this
question with the following lemma that characterizes the shape of these payoffs and a proposition
establishing the existence of a unique µ∗1 that maximizes this function.

Lemma 1. Payoffs to exploration over abandonment. The gains to exploration over abandonment
are increasing and concave in µ when µ is small and decreasing and convex when µ is large. The
gains are zero when µ = 0 and approach zero from above as µ −→∞, holding β1 fixed.

Proposition 1. For all values of q, there exists a unique level of competition µ∗1 at which the gains
to exploration, relative to abandonment, are maximized.

According to Lemma 1, a player becomes likely to abandon the tournament when there is either
very little competition (µ � β1) or very much competition (µ � β1). This result constitutes the
first empirically testable prediction of the model. The level of competition µ∗1 at which these gains
are greatest is implicitly defined by the following first-order condition:

q

(
− (1 + α)β1

((1 + α)β1 + µ∗1)2

)
+ (1− q)

(
−
(
1 + 1

α

)
β1((

1 + 1
α

)
β1 + µ∗1

)2
)

+
β1

(β1 + µ∗1)2 = 0
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Exploration versus Exploitation (IC)

I now ask the counterpart question: at what values of µ are the payoffs to exploration greatest
relative to exploitation? I answer this question with a similar lemma and proposition.

Lemma 2. Payoffs to exploration over exploitation. When q ∈ ( 1
1+α ,

1
2), the gains to exploration

over exploitation are decreasing and convex in µ for small µ, increasing and concave for intermediate

µ, and decreasing and convex for large µ. When q ∈
(

1
2 ,

3α+1
4α+1

)
, they are increasing and convex for

small µ and decreasing and convex for large µ. When q > 3α+1
4α+1 , they are increasing and concave

for small µ and decreasing and convex for large µ. When q < 1
1+α , they are decreasing and convex

for small µ and increasing and concave for large µ. In every case, the gains are zero when µ = 0;
when q > 1

1+α (q < 1
1+α), they approach zero from above (below) as µ −→∞, holding β1 fixed.

Proposition 2. When q > 1
1+α , there exists a unique level of competition µ∗2 at which the gains to

exploration, relative to exploitation, are maximized.

Corollary. When q < 1
1+α , exploration will never be preferred to exploitation.

A player’s incentive to explore over exploit depends on her relative position in the contest. Provided
q > 1

1+α , in regions where incentive compatibility binds, a player will prefer exploration when she
lags sufficiently far behind her competition, and she will prefer exploitation when she is sufficiently
far ahead. These results naturally lead to a second empirical prediction: more positive feedback
is expected to increase continuing players’ tendency to exploit their existing work rather than
experiment, but this effect will be offset by greater competition. The level of competition µ∗2 at
which the benefits to exploration are maximized relative to exploitation is defined by the first-order
condition for the IC constraint:

q

(
− (1 + α)β1

((1 + α)β1 + µ∗2)2

)
+ (1− q)

(
−
(
1 + 1

α

)
β1((

1 + 1
α

)
β1 + µ∗2

)2
)

+
2β1

(2β1 + µ∗2)2 = 0

Tying it together: Exploration vs. the next-best alternative

Proposition 3. At very low and very high µ, the next-best alternative to exploration is abandon-
ment. At intermediate µ, the next-best alternative is exploitation.

As µ increases from zero to infinity, the player’s preferred action will evolve from abandonment, to
exploitation, to exploration (provided that in expectation it outperforms exploitation, i.e. q > 1

1+α),
to abandonment again. Figure I.1 plots the absolute payoffs to each as the level of competition
increases for an example parametrization and highlights each of these regions, holding β1 fixed.
Note that the region in which players will abandon R&D due to a lack of competition is very
narrow, and effectively occurs only with pure monopoly.

[Figure I.1 about here]

Putting the first three propositions together, the implication is an inverted-U shaped effect of
competition on innovation: there exists an optimal, intermediate level of competition for motivating
experimentation, and it will be attainable as long as experimentation costs are not so large as to
make it entirely infeasible for the player. This inverted-U pattern is plotted in Figure I.2 for the
same parametrization in Figure I.1.
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Proposition 4. When q > 1
1+α , there exists a unique level of competition µ∗ ∈ [µ∗1, µ

∗
2] at which

the gains to exploration are maximized relative to the player’s next-best alternative.

[Figure I.2 about here]

The origins of this result can be traced directly to the IC and IR constraints. Though increasing
competition makes experimentation more attractive relative to incremental tweaks, doing so also
reduces the gains to continued effort of any kind. At low levels of competition, incentive compati-
bility binds, such that greater competition increases creative effort. As competition intensifies, the
participation constraint eventually binds, and further increases reduce creative effort. Incentives
for creativity will generally peak at the point where the participation constraint becomes binding.

At the heart of this model is the player’s choice between a gamble and a safe outcome. The concavity
of the success function implies that players may prefer the certain outcome to the gamble – forgoing
a positive expected quality improvement – even though they are risk-neutral. The inverted-U result
is thus robust to risk-aversion, which increases the concavity of payoffs, as well as to limited risk-
seeking behavior, provided the utility function does not offset the concavity of the success function.

While these results speak most directly to the incentives of the player with the last move, they
carry forward to players with earlier moves. On the one hand, µ can be equally interpreted as
present or anticipated, future competition. The inverted-U pattern will persist even when players
internalize competitors’ best responses: a player with an inordinate lead or deficit has no reason
to continue, one with a solid lead can compel her competitors to abandon by exploiting, and one
in a neck-and-neck state or somewhat behind will be most inclined to chance it with exploration
to have a fighting chance at winning.

Remarks and Relation to Previous Literature

The inverted-U effect of competition on experimentation is intuitive. With minimal-to-no competi-
tion, the player is already assured victory and will not benefit from additional effort; with extreme
competition, the gains to effort are too low to justify continued participation. These patterns are
consistent with existing theoretical and empirical results from the tournament literature, which
has argued that asymmetries reduce effort from both leaders and laggards (Baik 1994, Brown
2011). The contribution of this model is to consider participation jointly with the explore-exploit
dilemma, which adds a new layer to the problem. At intermediate levels of competition, contin-
ued participation is justified, but experimentation may not be: with only limited competition, the
player is sufficiently well-served by exploiting her previous work. Only at somewhat greater levels
of competition will the player have an incentive to experiment.

It is tempting to also draw comparisons against models of patent races, in which firms compete
to be the first to arrive at a successful innovation, with the threshold for quality fixed and time
of arrival unknown. In innovation contests such as the one modeled here, firms compete to create
the highest-quality innovation prior to a deadline. Although Baye and Hoppe (2003) establish an
isomorphism between the two, it requires that players are making i.i.d. draws with each experiment.
A player’s probability of winning in either model is then determined by the number of draws they
make – their “effort.” This assumption quite clearly does not carry over to the present setting,
where designs are drawn from distributions varying across players and over time. Some of the
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intuition from patent race models nevertheless applies, such as predictions that firms that are
hopelessly behind will abandon the competition (Fudenberg et al. 1983).

The model adds a new explanation of an inverted-U pattern to the literature on competition and
innovation, and in particular one distinct from that of Aghion et al. (2005), who study the effects
of product market competition (PMC) on step-by-step innovation. In the Aghion et al. model,
industries can be technologically level or unlevel. In leveled industries, profits are determined by
the (exogenous) intensity of price competition in the product market; in unleveled industries, a
technological leader earns monopoly rents. When PMC is low, firms tend towards a leveled state,
where pre-innovation rents are already large under collusion. When PMC is high, one firm will live
in a state of permanent technological leadership, because post-innovation rents are insufficient to
motivate the laggard to innovate up to competing in the product market. Incentives for ongoing,
back-and-forth innovation by firms are therefore maximized in the middle.

Though the Aghion et al. (2005) result is prima facie similar to the one in this section, it is in fact
quite different in its theoretical foundations. The primary point of departure is that I study R&D
competition for a fixed prize rather than price competition in the product market. In contrast
to Aghion et al., competition arises endogenously out of players’ choice of whether and how to
innovate, and the most competitive contests will be those in which players are technologically
similar. Another distinction is the possibility of preemption and leapfrogging in my setting. The
two models are thus complementary, in that they show that innovation responds non-monotonically
to competition of various types.

I.2 Graphic Design Contests

I collected a randomly-drawn sample of 122 commercial logo design contests from a widely-used on-
line platform to study competition and the creative process.15 The platform from which the data
were collected hosts hundreds of contests each week in several categories of commercial graphic
design, including logos, business cards, t-shirts, product packaging, book/magazine covers, web-
site/app mock-ups, and many others. Logo design is the modal design category on this platform
and is thus a natural choice for analysis. A firm’s choice of logo is also nontrivial, since it is
the defining feature of its brand, which can be one of the firm’s most valuable assets and is how
consumers will recognize and remember the firm for years to come.

In these contests, a firm (the sponsor; typically a small business or non-profit organization) solicits
custom designs from a community of freelance designers (players) in exchange for a fixed prize
awarded to its favorite entry. The sponsor publishes a design brief describing its business, its
customers, and what it likes and seeks to communicate with its logo; specifies the prize structure;
sets a deadline for submissions; and opens the contest to competition. While the contest is active,
players can enter (and withdraw) as many designs as they want, at any time they want, and sponsors
can provide players with private, real-time feedback on their submissions in the form of 1- to 5-star
ratings and written commentary. Players see a gallery of competing designs and the distribution of

15The sample consists of all logo design contests with public bidding that began the week of Sept. 3-9, 2013 and every
three weeks thereafter through the week of Nov. 5-11, 2013, excluding those with multiple prizes or mid-contest
rule changes such as prize increases or deadline extensions. Appendix I.C describes the data collection in detail.
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ratings on these designs, but not the ratings on specific competing designs. Copyright is enforced.16

At the end of the contest, the sponsor picks the winning design and receives the design files and
full rights to their use. The platform then transfers payment to the winner.

For each contest in the sample, I observe the design brief, which includes a project title and
description, the sponsor’s industry, and any specific elements that must be included in the logo;
the contest’s start and end dates; the prize amount; and whether the prize is committed.17 While
multiple prizes are possible, the sample is restricted to contests with a single, winner-take-all prize.
I also observe every submitted design, the identity of the designer, his or her history on the platform,
the time at which the design was entered, the rating it received (if any), the time at which the rating
was given, and whether it won the contest. I also observe when players withdraw designs from the
competition, but I assume withdrawn entries remain in contention, as sponsors can request that
any withdrawn design be reinstated. Since I do not observe written feedback, I assume the content
of written commentary is fully summarized by the rating.18

The player identifiers allow me to track each player’s activity over the course of each contest. I
use the precise timing information to reconstruct the state of the contest at the time each design
is submitted. Specifically, for every design, I calculate the number of preceding designs in the
contest of each rating. I do so both in terms of the prior feedback available (observed) at the
time of submission as well as the feedback eventually provided. To account for the lags required
to produce a design, I define preceding designs to be those entered at least one hour prior to a
given design, and I similarly require that feedback be provided at least one hour prior to the given
design’s submission to be considered observed at the time it is made.

The dataset also includes the designs themselves. I invoke image comparison algorithms commonly
used in content-based image retrieval software (similar to Google Image’s Search by Image feature)
to quantify the originality of each design entered into a contest relative to preceding designs by the
same and other players. I use two mathematically distinct procedures to compute similarity scores
for image pairs, one of which is a preferred measure (the “perceptual hash” score) and the other
of which is reserved for robustness checks (the “difference hash” score). Appendix I.C explains
exactly how they work. Each one takes a pair of digital images as inputs, summarizes them in
terms of a specific, structural feature, and returns a similarity index in [0,1], with a value of one

16Though players can see competing designs, the site requires that all designs be original and actively enforces
copyright. Players have numerous opportunities to report violations if they believe a design has been copied or
misused. Violators are permanently banned from the site. The site also prohibits stock art and has a strict policy
on the submission of overused design concepts. These mechanisms seem to be effective at limiting abuses.

17The sponsor may optionally retain the option of not awarding the prize to any entries if none are to its liking.
18One of the threats to identification throughout the empirical section is that the effect of ratings may be confounded

by unobserved, written feedback: what seems to be a response to a rating could be a reaction to explicit direction
provided by the sponsor that I do not observe. This concern is substantially mitigated by evidence from the dataset
in Gross (2014), collected from the same platform, in which written feedback is occasionally made publicly available
after a contest ends. In cases where it is observed, written feedback is only given to a small fraction of designs in a
contest (on average, 12 percent), far less than are rated, and typically echoes the rating given, with statements such
as “I really like this one” or “This is on the right track.” This written feedback is also not disproportionately given to
higher- or lower-rated designs: the frequency of each rating among designs receiving comments is approximately the
same as in the data at large. Thus, although the written commentary does sometimes provide players with explicit
suggestions or include expressions of (dis)taste for a particular element such as a color or font, the infrequency
and irregularity with which it is provided suggests that it does not supersede the role of the 1- to 5-star ratings in
practice or confound the estimation in this paper.
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indicating a perfect match and a zero indicating total dissimilarity. This index effectively measures
the absolute correlation of two images’ structural content.

For each design in a contest, I compute its maximal similarity to previous designs in the same
contest by the same player. Subtracting this value from one yields an index of originality between
0 and 1. This index is my principal measure of experimentation, and it is an empirical counterpart
to the parameter 1/α in the model. I also make use of related measures: for some specifications, I
compare each design against only the best previously-rated designs by the same player or against the
best previously-rated designs by competing players. Since players tend to re-use only their highest-
rated work, the maximal similarity of a given design to any of that player’s previous designs and
maximum similarity to her highest-rated previous designs are highly correlated in practice (0.88
for the preferred algorithm, 0.87 for the alternative algorithm).

Creativity can manifest in other ways. For example, players sometimes enter several designs at
once, and when doing so they can make each one similar to or distinct from the others. To capture
this phenomenon, I define “batches” of proximate designs entered into the same contest by a single
player and compute the maximum intra-batch similarity as a measure of creative experimentation.
Two designs are proximate if they are entered within 15 minutes of each other, and a batch is a
set of designs in which every design in the set is proximate to another in the same set. Intra-batch
similarity is thus an alternative measure that reflects players’ tendency to try minor variants of the
same concept over a short period of time.

These measures are not without drawbacks or immune to debate. One drawback is that these
algorithms require substantial dimensionality reduction and thus provide only a coarse measure
of experimentation. Concerns on this front are mitigated by the fact that the empirical results
throughout the paper are similar in sign, significance, and magnitude under two distinct algo-
rithms. One might also question how well these algorithms emulate human perception. The
specific examples examined in Gross (2015a) assuage this concern; more generally, I have found
these algorithms to be especially good at detecting designs that are plainly tweaks to earlier work
(by my perception) versus those that are not, which is the margin that matters most for this paper.
Appendix I.C discusses these issues in more detail.

Characteristics of the Sample

The average contest in the data lasts eight days, offers a $250 prize, and attracts 96 designs from
33 players (Table I.1). On average, 64 percent of designs are rated; less than three receive the top
rating. Among rated designs, and the median and modal rating is three stars (Table I.2). Though
fewer than four percent of rated designs receive a 5-star rating, over 40 percent of all winning
designs are rated five stars, suggesting that these ratings convey substantial information about a
design’s quality and odds of success.19 The website also provides formal guidance on the meaning of
each star rating, which generates consistency in their interpretation and application across different
sponsors and contests.

[Table I.1 about here]

[Table I.2 about here]

19Another 33 percent of winning designs are rated 4 stars. Twenty-four percent of winning designs are unrated.
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Table I.3 characterizes the similarity measures used in the empirical analysis. For each design in the
sample, I measure its maximal similarity to previous designs by the same player, previously-rated
designs by the same player, and previously-rated designs by the player’s competitors (all in the
same contest). For every design batch, I calculate the maximal similarity of any two designs in
that batch. Note that the analysis of intra-batch similarity is restricted to batches that are not
missing any constituent design files.

[Table I.3 about here]

The designs themselves are available for 96 percent of submissions in the sample. The table shows
that new entries are on average more similar to that player’s own designs than her competitors’
designs, and that designs in the same batch tend to be more similar to each other than to previous
designs by even the same player. But these averages mask more important patterns at the extremes.
At the upper decile, designs can be very similar to previous work by the same player (≈0.75 under
the perceptual hash algorithm) or to other designs in the same batch (0.91), but even the designs
most similar to competing work are not all that similar (0.27). At the lower end, designs can be
original by all these measures.

Correlations of contest characteristics with outcomes

To shed light on how these contests operate and how assorted levers affect outcomes of interest,
Table I.4 explores the relationship of contest outcomes with prize value, feedback, and other contest
characteristics. I borrow the large-sample data of Gross (2015b), which uses a similar (but much
larger) sample of logo design contests from the same setting to study the effects of feedback on
outcomes of creative tournaments. Though the Gross (2015b) dataset lacks the image files, it
includes most of the other variables for these contests. As Appendix I.H shows, this sample is
broadly similar to that of the present paper.

The specifications in columns (1) to (3) regress the number of players, designs, and designs per
player (as measures of participation) on: the prize value, committed prize value, contest duration,
length of the design brief, number of materials provided to be included in the design, and fraction
of designs rated. In a departure from existing empirical research on tournaments, these regressions
also control for the average cost of effort for all players in the contest as estimated by Gross (2015b),
which reflects the design difficulty and would otherwise be an omitted variable biasing the estimated
effects of other variables.20 Column (4) provides estimates from a probit model of whether sponsors
of contests with uncommitted prizes choose to award the prize, implying the tournament produced
a design good enough to be awarded.

20Gross (2015b) develops a semi-parametric procedure to estimate the heterogeneous cost of design for every player
in every contest, under the assumption that this cost is constant for a given player in a given contest (as in the
model) and the same under both exploration and exploitation (a possibility supported by the model, and a sensible
approximation if the variation in cost across players is much larger than the variation in cost of each action for a
given player). The procedure effectively uses players’ abandonment decision to bound their contest-specific design
cost, which must be less than the expected gains from their final design but greater than the gains from an additional
design; these gains are estimated in course. Although the average cost in a contest is an imperfect control in that
it is calculated from a selected sample of players, it nevertheless appears to be a reasonable estimate of design
difficulty, for the reasons discussed in the paper.
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[Table I.4 about here]

The estimates in Table I.4 suggest that an extra $100 in prize value on average attracts an additional
14.8 players, 55.4 designs, and 0.1 designs per player and increases the odds the prize will be awarded
by 3.5 percent at the mean of all covariates. There is only a modest and statistically insignificant
incremental effect of committed prize dollars, likely because the vast majority of uncommitted
prizes in the sample are awarded anyway. Higher-cost contests have lower participation and a
lower probability of being awarded. The effects of feedback are equally powerful: a sponsor who
rates a high fraction of the designs in the contest will typically see fewer players enter but receive
more designs from the participating players and have a much higher probability of finding a design
it likes enough to award the prize. The effect of full feedback (relative to no feedback) on the
probability the prize is awarded is nearly equal to that of a $300 increase in the prize – a more
than doubling of the average and median prize in the sample.

Do ratings predict contest success? Estimating the success function

With the right data, the success function can be directly estimated. Recall from equation (1) that
a design’s latent value is a function of its rating and an i.i.d. extreme value error. In the data,
there are five possible ratings. This latent value can thus be flexibly specified with fixed effects for
each rating (or no rating). The success function can then be structurally estimated as a conditional
logit model, using the observed win-lose outcomes of every design in a large sample of contests.
To formalize the empirical success function, let Rijk denote the rating on design i by player j in
contest k, and (in a slight abuse of notation) let Rijk = ∅ when design ijk is unrated. The value
of each design, νijk, can be written as follows:

νijk = γ∅1(Rijk = ∅) + γ11(Rijk = 1) + . . .+ γ51(Rijk = 5) + εijk ≡ ψijk + εijk (I-6)

This specification is closely related to the theoretical success function in equation (1), with the
main difference being a restricted, discrete domain for the feedback. As in the theoretical model,
the sponsor is assumed to select as winner the design with the highest value. In estimating the
γ parameters, each sponsor’s choice set of designs is assumed to satisfy I.I.A.; in principle, the
submission of a design of any rating in a given contest will reduce competing designs’ chances of
winning proportionally.21 For contests with an uncommitted prize, the choice set also includes an
outside option of not awarding the prize, with value normalized to zero. Letting Ijk be the number
of designs by player j in contest k, and Ik be the total number of designs entered into that same
contest k, the empirical success function for player jk takes the following form:

Pr(j wins k) =

∑
i∈Ijk e

ψijk∑
i∈Ik e

ψik + 1(Prize committed)

Gross (2015b) estimates this model by maximum likelihood using a sample of 496,401 designs
entered in 4,294 contests from the same setting. The results are reproduced in Table I.5.

[Table I.5 about here]

21I have also tested this assumption by removing subsets of designs from each contest and re-estimating the model.
The parameter estimates are statistically and quantitatively similar even when the choice set changes.
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Several patterns emerge from this table. The fixed effects are precisely estimated, and the estimated
value of a design is monotonically increasing in its rating. Only a 5-star design is on average
preferred to the outside option. The contribution of a 5-star design to the success function (e1.53)
is roughly 12 times that of a 4-star design (e−0.96), 137 times that of a 3-star design (e−3.39), and
nearly 2,000 times that of a 1-star design (e−6.02); competition at the top effectively only comes from
other 5-star designs. As a measure of fit, the model correctly “predicts” the true winner relatively
well, with the odds-on favorite winning almost half of all contests in the sample. These results
demonstrate that this simple model fits the data quite well and in an intuitive way, suggesting that
ratings provide considerable information about a player’s odds of winning. The strong fit of the
model also reinforces the assumption that players can accurately assess these odds: though players
do not observe the ratings on specific competing designs, they are provided with the distribution
of ratings on their competitors’ designs, which makes it possible for players to invoke a simple
heuristic model such as the one estimated here in their decision-making.

Empirical Methods and Identification

I exploit variation in the level and timing of the sponsor’s ratings to estimate the effects of compe-
tition on players’ creative choices. With timestamps on all activity, I can determine exactly what a
player knows at each point in time about the sponsor’s tastes for her work and the competition she
faces, and identify the effects of ratings observed at the time of design. Identification is achieved
by the quasi-random release of information: it is difficult to predict ex-ante exactly when or how
often sponsors will log onto the site to rate new entries, and even more so to predict whether or
when a given design will be rated.

Formally, the identifying assumption is that there are no omitted factors correlated with observed
feedback that also affect creative choices. This assumption is supported by two pieces of evidence:
that (i) the arrival of ratings is unpredictable, and (ii) players’ choices are uncorrelated with ratings
they have not yet received or cannot observe. The relevant thought experiment is to compare the
actions of a player with a 5-star design under her belt before she learns the rating, versus after,
or with latent 5-star competition before finding out, versus after – though empirically, undisclosed
information is as good as no information.22

To establish evidence that feedback provision is unpredictable, I explore the relationship between
feedback lags and the rating given. In concept, sponsors may be quicker to rate the designs they
like the most, to keep these players engaged and improving their work, in which case players might
infer the eventual ratings on their designs from the time elapsed without any feedback. Players may
also react to uncertainty generated by delays in the provision of feedback, and if this uncertainty
is related to the rating given, it would confound my estimates. Table I.6 demonstrates that this is
not the case. Column (1) regresses the lag in hours between the time a design is entered and the
time it is rated on indicators for the rating given, restricting the sample to designs rated before
the contest ends. Column (2) repeats the exercise, measuring the lag as a percent of the total
contest duration. Column (3) expands the sample to all rated designs and replaces the dependent
variable with an indicator for whether the design was rated prior to the contest’s conclusion. I
also control for the fraction of the contest elapsed at the time the design was entered, the number

22Though this setting may seem like a natural opportunity for a controlled experiment, the variation of interest
is in the 5-star ratings, which are sufficiently rare that a controlled intervention would require either unrealistic
manipulation or an infeasibly large sample. I therefore rely on exogenous variation inherent to the setting.
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of previous designs by that player and her competitors, and contest and player fixed effects, and
cluster standard errors by contest. Across all specifications, I find that lags in feedback provision
are unrelated to ratings.

[Table I.6 about here]

Evidence that choices are uncorrelated with unobserved feedback is provided in Section I.3. As a
first check, I estimate the effects of observed ratings on experimentation both with and without
controls for forthcoming ratings and find the results unchanged. For further evidence, I estimate the
relationship between forthcoming ratings and experimentation, finding that with appropriate con-
trols, it is indistinguishable from zero. I similarly examine players’ tendency to imitate highly-rated
competing designs and find no such patterns – either due to the copyright protection mechanism
or, more likely, because players simply do not know which competing designs are highly rated (and
therefore which ones to imitate).

I.3 Competition and the Creative Process

The theoretical predictions can now be put to the test. Section I.3 provides a battery of evidence
that conditional on continued participation, competition induces the best-performing players to
experiment more than they otherwise would. The basic estimating equation in this part of the
paper is the following specification, with variants estimated throughout:

Similarityijk = β0 + β5 · 1(R̄ijk = 5) + β5c · 1(R̄ijk = 5)1(R̄−ijk = 5) + β5p · 1(R̄ijk = 5)Pk

+
4∑
r=2

βr · 1(R̄ijk = r) + γ · 1(R̄−ijk = 5) + λDRijk +Xijkθ + ζk + ϕj + εijk

where Similarityijk is the maximal similarity of design ijk to previous designs by player j in
contest k; R̄ijk is the highest rating player j received in contest k prior to design ijk; R̄−ijk is
the highest rating player j’s competitors received prior to design ijk; Pk is the prize in contest k
(measured in $100s); DRijk is the number of days remaining in the contest at the time design ijk
is entered; Xijk is a vector of design-level controls; and ζk and ϕj are fixed effects.

It may be helpful to provide a roadmap to this part of the analysis in advance. In the first
set of regressions, I estimate the specification above. In the second set, I replace the dependent
variable with the similarity to that player’s best, previously-rated designs, and then within-batch
similarity. The third set of regressions examines the change in similarity to previously-rated designs,
as a function of newly-received feedback. The fourth set of regressions tests the aforementioned
identifying assumption that players are not acting on private information that I cannot observe.
The fifth set of regressions tests whether players imitate high-performing competitors, which they
should not be able to discern from the information they are given.

Section I.3 provides the counterpart analysis examining the effects of competition on players’ ten-
dency to continue investing in the contest. The evidence substantiates the model’s second predic-
tion: that increasing competition can drive players to quit. The specifications in this section are
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similar to those of the experimentation regressions. I estimate variants of the following model:

Abandonijk = β0 +
5∑
r=1

βr · 1(R̄ijk = r) +
5∑
r=1

γr · 1(R̄−ijk = r)

+
5∑
r=1

δr · 1(R̄ijk = r)N−ijk

+ δN−ijk + λDRijk +Xijkθ + ζk + ϕj + εijk

where Abandonijk indicates that player j entered no additional designs in contest k after design
ijk; N−ijk is the number of five-star designs by player j’s competitors in contest k at the time of
design ijk; and R̄ijk, R̄−ijk, DRijk, Xijk, ζk, and ϕj retain their previous definitions. The precise
moment at which each player makes an active choice to abandon is impossible to measure, and I
thus use inactivity as a proxy. In general, this measure does not distinguish between a “wait and
see” approach that ends with abandonment versus abandonment immediately following design ijk.
Since the end result is the same, the distinction is immaterial for the purposes of this paper. Note
that standard errors throughout both Sections I.3 and I.3 are clustered by player to account for
any within-player correlation in the error term.

Competition and Experimentation

Similarity of new designs to a player’s previous designs

I begin by studying players’ tendency to tweak any of their previous work in a contest. Table I.7
provides estimates from regressions of the maximal similarity of each design to previous designs
by the same player on indicators for the highest rating that player had previously received. All
specifications include interactions of the indicator for having received the top rating with (i) the
prize value (in $100s) and (ii) a variable indicating the presence of top-rated competition, as well as
contest and player fixed effects. The even-numbered columns additionally control for the fraction
of the contest elapsed at the time of submission and the number of designs previously entered
by the player and her competitors, which characterize the overall state and progression of the
contest. Columns (3) and (4) control for future feedback on the player’s earlier work; if players
have contest-specific ability or other information unobserved by the researcher (e.g., sponsors’
written comments), it will be accounted for by these regressions.

[Table I.7 about here]

The results are consistent across all specifications in the table. Players with the top rating enter
designs that are 0.3 points, or roughly one full standard deviation, more similar to previous work
than players who have low (or no) feedback. Roughly one third of this effect is reversed by high-
rated competition. With a highest observed rating of four stars, new designs are on average around
0.1 points more similar to previous work. This effect further attenuates as the best observed rating
declines, and it is indistinguishable from zero at a best observed rating of two stars.

In practice, players tend to tweak only their best work. Table I.8, columns (1) and (2) estimate
a variant on the first two columns of Table I.7, regressing each design’s maximal similarity to the
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highest-rated preceding designs by the same player on the same explanatory variables. Columns
(3) and (4) use a sample of batches and the alternative measure of experimentation: the maximal
similarity of any two designs in each batch. Columns (5) and (6) repeat the latter exercise, weighting
observations by batch size. All specifications control for contest and player fixed effects, and the
table shows variants of the regressions with and without design- and batch-level covariates.

[Table I.8 about here]

The results for the design-level regressions (Columns 1 and 2) are similar to but slightly stronger
than those of the previous table. Players with the top rating enter designs that are 0.35 points, or
about 1.3 standard deviations, more similar to their highest-rated work in that contest, but this
effect is reduced by more than half when there is top-rated competition, and the tendency tweak
is again monotonically decreasing in the highest rating the player has received.

Columns (3) to (6) confirm that competition has similar effects on experimentation within batches.
When entering multiple designs at once, the maximal similarity of any two designs in the batch
declines 0.3 points, or approximately one standard deviation, for players with a top rating who also
face top-rated competition, relative to those who do not. Top players facing competition are thus
more likely to experiment not only across batches but also within them. The consistency of the
results demonstrates that they are not sensitive to inclusion of controls or weights.

The regressions in Tables I.7 and I.8 use contest and player fixed effects to control for factors
that are constant within contests, across players or within players, across contests, but they do
not control for factors that are constant throughout a given contest for a given player, as doing
so leaves too little variation for me to identify the effects of feedback and competition. Such
factors may nevertheless be confounding omitted variables. For example, if players can sense their
match to a particular contest, and change their behavior accordingly throughout the contest, the
estimated effects may be confounded by this unobserved self-selection – though such concerns are
in part relieved by the consistency of results in Table I.7 controlling for forthcoming ratings. The
estimates in the previous tables additionally mask potential heterogeneity that may be present in
players’ reactions to feedback and competition over the course of a contest.

Table I.9 addresses these issues with a model in first differences. The dependent variable is the
change in similarity to the player’s best previously-rated work. This variable can take values in
[-1,1], where a value of 0 indicates that the given design is as similar to the player’s best preceding
design as was the last one she entered; a value of 1 indicates that the player transitioned fully from
experimenting to copying; and a value of -1, the converse. The independent variables are changes
in indicators for the highest rating the player has received, with the usual interactions of the top
rating with the prize and the presence of top-rated competition. I estimate this model with assorted
configurations of fixed effects and controls to account for other reasons why experimentation may
vary over time, though the results are not statistically different across specifications.

[Table I.9 about here]

The results provide the most powerful evidence thus far on the effects of feedback and competition
on experimentation. When a player receives her first five-star rating, her next design will be a
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near replica. The similarity score increases by nearly 0.9 points, or three standard deviations. Top-
rated competition shaves nearly half of this effect. Given their magnitudes, these effects will be
plainly visible to the naked eye. The effects of new best ratings of four-, three-, and two-stars on
experimentation attenuate monotonically, akin to previous results.

Interestingly, these regressions also find that new recipients of the top rating can be induced to
experiment by larger prizes. The theory suggests a natural explanation: large prizes moderate the
role of costs in players’ decision-making. If experimentation is more costly (takes more time or
effort) than tweaking, it may only be worth doing when the prize is large. This is particularly the
case for players with highly-rated work in the contest, given how the shape of and movement along
a player’s success function depends on the quality of her prior submissions.

The appendix provides robustness checks and supplementary analysis. To confirm that these pat-
terns are not an artifact of the perceptual hash algorithm, Appendix I.D re-estimates the regressions
in the preceding tables using the difference hash algorithm to calculate similarity scores. The re-
sults are statistically and quantitatively similar. In Appendix I.E, I split the effects of competition
by the number of top-rated competing designs, finding no significant differences between the effects
of one versus more than one high-quality competitor on experimentation.

This latter result is especially important for ruling out an information-based story. The fact that
other designs received a 5-star rating might signal that the sponsor has diverse preferences and
that experimentation has a higher likelihood of success than the player might otherwise believe.
If this were the case, we should see experimentation continue to rise as 5-star competition grows.
That this is not the case suggests that the effect is in fact the due to incentives.

In unreported regressions, I look for effects of five-star competition on experimentation by players
with only four-star designs, and find attenuated effects that are negative but not significantly
different from zero. I also explore the effect of prize commitment on experimentation, since the
sponsor’s outside option of not awarding the prize is itself a competing alternative – one which
according to the conditional logit estimates in Table I.5 is on average preferred to all but the
highest-rated designs. The effect of prize commitment is not estimated to be different from zero. I
similarly test for effects of the presence of four-star competition on experimentation by players with
five-star designs, finding none. These results reinforce the perception that competition in effect
comes from designs with the top, five-star rating.

Similarity of new designs to a player’s not-yet-rated designs

The identifying assumptions require that players are not acting on information that correlates with
feedback but is unobserved in the data. As a simple validation exercise, the regressions in Table
I.10 test whether players’ creative choices are related to forthcoming, not-yet-available feedback.
If an omitted determinant of creative choices is correlated with the feedback, then it would appear
as if experimentation responds to future ratings, but if the identifying assumptions hold, I should
only find zeros.

[Table I.10 about here]

The specification in Column (1) regresses a design’s maximal similarity to the player’s best designs
that will eventually be – but have not yet been – rated on indicators for the ratings they later receive.
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The estimates ostensibly suggest a potential failure of the identifying assumptions: although many
are not significantly different from zero, the point estimates imply that players tweak these “placebo
best designs” that have yet to be rated more or less depending on the rating they eventually receive,
and that competition continues to induce experimentation, suggesting that it’s not feedback per
se that shapes creative choices, but rather some omitted factors that correlate with it. However,
similarity to a high-rated placebo may in fact be the result of tweaks on an even earlier design that
the placebo also happens to look like. Column (2) of the table thus controls for both the given
and placebo designs’ similarity to the observed best design at the time; Column (3) relaxes these
controls to vary by the observed best rating. As a final check, I isolate the similarity to the placebo
best design that cannot be explained by similarity to a third design in the form of a residual, and
in Column (4) I regress these residuals on the same independent variables. In all cases, I find no
evidence that players systematically tweak designs with positive forthcoming ratings. Feedback
only relates to creative choices when it is observed at the time of design.

Imitation of competing designs

Though players can see competing designs in the same contest, they see only the distribution of
feedback these designs have received – not the ratings on specific, competing entries – and should
therefore not be able to use this information to imitate highly-rated competitors. The regressions
in Table I.11 test this assumption by examining players’ tendency to imitate competitors.

The first two columns of the table provide estimates from regressions of similarity to the highest-
rated design by competing players on indicators for its rating. As in previous specifications, the
top-rating indicator is interacted with the prize and with an indicator for whether the player
herself also has a top-rated design in the contest. The latter columns repeat the exercise with first-
differenced variants of the same specifications. There is little evidence in this table that players
imitate highly-rated competitors in any systematic way – likely because they are simply unable
to identify which competitors are highly-rated. In unreported results, I replace the left-hand side
with imitation of any competing design and similarly find no effect. The results establish that
“experimentation” in the presence of competition is not just imitation of competitors’ designs.
Appendix Table I.D.5 provides counterpart estimates using the difference hash algorithm, which
suggest that if anything, players tend to deviate away from competitors’ high-rated work.

[Table I.11 about here]

Competition and Abandonment

Having established that competition induces players to experiment, it remains to be seen how
competition affects players’ decision to continue in versus abandon a contest. In Table I.12 I
examine the effect of a player’s first rating and the competition she faces when it is received on the
probability she subsequently enters at least one more design. I focus on the first rating a player
receives because it will typically be ex-ante unpredictable. The specifications in the table regress
this measure of abandonment on dummies for each rating the player may have received, alone and
interacted with the number of top-rated competing designs, the latter as a distinct regressor, and
dummies for the highest rating on competing designs at the time.

[Table I.12 about here]
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Columns (1) to (3) estimate linear specifications with contest, player, and contest and player
fixed effects. Linear specifications are used in order to control for these fixed effects (especially
player fixed effects), which may not be estimated consistently in practice and could thus render
the remaining estimates inconsistent in a binary outcome model, due to an incidental parameters
problem. Column (4) estimates a logit model with only the contest fixed effects. The linear model
with two-way fixed effects (in Column 3) is the preferred specification.

Players with poor initial feedback drop out with probability close to one. Those with high initial
feedback enter additional designs with roughly a 50 percentage-point higher rate, but competition
counteracts this effect: with just a handful top-rated competitors, a player is likely to walk away
no matter what rating she receives. The effect is significant at only the 10 percent level, and thus
somewhat imprecise. But it appears that by driving players to stop investing, heavy competition
can discourage experimentation just as much as an absence thereof.23

I also study abandonment at points in a contest other than immediately following a player’s first
rating. Table I.13 estimates the probability that a given design is a player’s final design on the
feedback and competition observed at the time. As previously discussed, this measure could reflect
either a simulatneous choice to stop investing or a “wait and see” strategy that yields no further
action – although according to one designer who participates on this platform, it is often the case
that players will enter their final design knowing it is such and never look back.

[Table I.13 about here]

This table again estimates three linear specifications and a logit model, with the same arrangement
of fixed effects, and adding the design-level controls from earlier sections. The independent variables
are analogous to those in the previous table, measured at the time the given design was submitted.
In the preferred, linear specification of Column (3), I find that players with a top-rated design
are more likely to subsequently enter more designs, but this effect is negated by the presence of
one five-star competitor, and more than offset by multiple five-star competitors – with all effects
significant at the one percent level.

I.4 Does it Really Pay to Innovate?

Why do the designers in these contests respond to competition by experimenting with new ideas?
In conversations with creative professionals (including the panelists hired for the exercise below),
many have asserted that competition means that they need to “be bold” or “bring the ‘wow’
factor,” and that it induces them to take creative risks. Gambling on a more radical, untested
idea is thus a calculated and intentional choice. The implicit assumption motivating this type of
creative risk-taking both in the model and in practice is that experimentation is a high-risk, high-
return endeavor – the upside to experimentation is what makes it worthwhile. This assumption is
pervasive not only in research, but also in the public discourse on innovation and entrepreneurship.
Whether or not it is true is ultimately an empirical question.

A natural way to answer this question in the present context is to examine the distribution of
sponsors’ ratings on radical versus incremental designs in the sample. To do so, I categorize

23Note that although this outcome runs counter to the interests of the principal, it may be desirable from a social
welfare perspective if the high-rated designs are unlikely to be outdone. See Appendix I.G for further discussion.
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designs as tweaks if they have similarity to any earlier designs by the same player of 0.7 or higher
and record the rating of the design they are most similar to; I classify designs as experimental if
their maximal similarity to earlier designs by that player is 0.3 or below and record the highest
rating the player had previously received.24 I then compute the distribution of sponsors’ ratings on
this subsample, conditioning on the rating of the tweaked design (for tweaks) or the highest rating
previously given to that player (for experimentation).

Figure I.3 illustrates these distributions. Although the modal rating in all cases is that of the
conditioning variable, the figure demonstrates that experimentation is indeed higher variance than
tweaking. Experimenting after poor feedback on average outperforms tweaks to designs with low
ratings, especially considering that the top rating is orders of magnitude more valuable to a player
than lower ratings (Table I.5). Yet experimentation appears to on average underperform tweaks of
top-rated designs, raising the question of why a player would deviate from her top-rated work.

[Figure I.3 about here]

The problem with this analysis is that the observed outcomes are censored: it is impossible to
observe the fruits of experimentation beyond a five-star rating. With this top-code in place, explo-
ration after a five-star design will necessarily appear to underperform exploitation – in the data,
the sponsor’s rating can only go down. The data are thus inadequate for evaluating the benefits to
experimentation for players at the top. To circumvent the top-code, I hired a panel of professional
graphic designers to independently assess all designs in my sample that were rated five stars by
contest sponsors, and I look to the panelists’ ratings for evidence that experimentation is in fact
high-risk, high-return.

Results from a Panel of Professional Designers

To obtain independent appraisals of all 316 five-star designs in the sample, I hired five professional
graphic designers at their regular rates to administer their own ratings to each design on an extended
scale. These ratings were collected though a web-based application in which designs were presented
in random order and panelists were limited to 100 ratings per day. With each design, the panelist
was provided the project title and client industry (as excerpted from the source data) and asked
to rate the design’s “quality and appropriateness” on a scale of 1–10.

Appendix I.F provides more detail on the survey procedure and shows the distribution of ratings
from each panelist. One panelist (“Rater 5”) was a particularly critical judge and frequently ran
up against the lower bound. The mass around the lower bound was apparent after the first day
of the survey, and though I include this panelist in the appendix for disclosure, the decision was
made at that time to exclude these ratings from subsequent analysis. The results are nevertheless
robust to including ratings from this panelist above the lower bound.

To account for differences in the remaining panelists’ austerity, I first normalize their ratings by
demeaning, in essence removing rater fixed effects. For each design, I then compute summary
statistics of the panelists’ ratings (mean, median, maximum, and s.d.). As an alternative ap-
proach to aggregating panelists’ ratings, I also calculate each design’s score along the first principal
component generated by a principal component analysis. Collectively, these summary statistics

24A player’s intentions are more ambiguous at intermediate values, which I accordingly omit from the estimation.
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characterize the distribution of opinion on a given design. One way to think about them is as
follows: if contest sponsors were randomly drawn from this population, then the design’s realized
rating would be a random draw from this distribution.

I identify designs as tweaks or experimentation using the definitions above and then compare the
level and variation in panelists’ ratings on designs of each type. Table I.14 provides the results.
Designs classified as tweaks are typically rated below-average, while those classified as experimen-
tation are typically above-average. These patterns manifest for the PCA composite, mean, and
median panelist ratings; the difference in all three cases is on the order of around half of a standard
deviation and is significant at the one percent level. The maximum rating that a design receives
from any of the panelists is also greater for experimentation, with the difference significant at the
one percent level. Yet so is the level of disagreement: the standard deviation across panelists’
ratings on a given design is significantly greater for experimentation than for tweaks. The evidence
thus appears to support the popular contention that radical innovation is both higher mean and
higher variance than incremental innovation, even at the top.25

[Table I.14 about here]

I.5 When is Experimentation Most Likely?

The reduced-form results establish that while competition can motivate high performers to exper-
iment with new ideas, too much competition will drive them out of the market altogether. How
much is “too much”? Given that the full effect of competition on the degree of experimentation
is achieved by a single, high-quality competitor, and that players are increasingly likely to quit as
competition intensifies, it would be natural to conclude that incentives for active experimentation
peak in the presence of exactly one top-rated competitor – just enough to ensure that competition
exists without further eroding the returns to effort.

To formalize an answer to this question, I estimate a choice model in which with each submission,
a player selects from the three basic behaviors I observe in the data: (i) tweak and enter more
designs, (ii) experiment and enter more designs, and (iii) do either and subsequently abandon the
contest. To distinguish between players who are more likely to be truly giving up versus adopting
a “wait and see” strategy, I condition the latter case on the player’s contemporaneous probability
of winning, calculated using the conditional logit estimates in Table I.5. This model will allow
me to determine on which margin players are operating as competition builds and to identify the
conditions under which active experimentation is most likely. As before, I classify each design as a
tweak if its similarity to any earlier design by the same player is 0.7 or higher and an experiment
if its maximal similarity to earlier designs by that player is 0.3 or lower.

Each action in this choice set is assumed to have latent utility uaijk, where i indexes submissions
by player j in contest k. I model this latent utility as a function of the player’s own ratings, com-

25If anything, these differences may be understated. If a player enters the same design twice, the first would be
classified as an experiment, and the second as a tweak, but they would receive the same rating from panelists.
Excluding designs that are either tweaks of or tweaked by others in the sample does not affect the results.
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petitors’ ratings, the time remaining in the contest, additional controls, and a logit error:

uaijk = βa0 +
5∑
r=1

βar · 1(R̄ijk = r) +
5∑
r=1

γar · 1(R̄−ijk = r)

+ δa1 · 1(R̄ijk = 5)1(N−ijk = 1)

+ δa2 · 1(R̄ijk = 5)1(N−ijk = 2)

+ δa3 · 1(R̄ijk = 5)1(N−ijk ≥ 3)

+ λaDRijk +Xijkθ
a + εaijk, εaijk ∼ i.i.d. Type-I E.V.

The explanatory variables are defined as before: R̄ijk is the highest rating player j has received in
contest k prior to ijk, R̄−ijk is the highest rating on competing designs, N−ijk is the number of
top-rated competing designs, DRijk is the number of days remaining, and Xijk are controls.

I estimate this model and then use the results to predict the probability that a player with a
5-star design takes each of the three actions near the end of a contest, and to evaluate how these
probabilities vary as the number of top-rated competitors increases from zero to three or more.26

These probabilities are shown in Figure I.4. Panel A plots the probability that the player tweaks
and enters another design; Panel B, that she experiments and enters another design; and Panels C
and D, that she abandons, conditional on her probability of winning at that time being 0.5 versus
0.05.27 The bars around each point provide the associated 95 percent confidence interval.

[Figure I.4 about here]

The probability that a player tweaks and remains active (Panel A) peaks at 52 percent when there
are no 5-star competitors and is significantly lower with non-zero competition, with all differences
significant at the one percent level. The probability that the player actively experiments (Panel B)
peaks at 52 percent with one 5-star competitor and is significantly lower with zero, two, or three
5-star competitors (differences against zero and three significant at the one percent level; difference
against two significant at the ten percent level). Panels C and D show that the probability of
abandonment increases monotonically in the level of competition, and approaches 80 percent for
players with a low probability of success.

Observed behavior thus appears to conform to the predictions of economic theory: when com-
petition is low, players are on the margin between exploration and exploitation, whereas when
competition is high, they straddle the margin between exploration and abandonment. The re-
sults of this execise also agree with the reduced-form evidence, in finding that high-rated players
are most likely to actively experiment when they encounter precisely one highly-rated competitor.

26For the case of no 5-star competitors, I assume the highest rating on any competing design is 4 stars.
27To produce Panels C and D, I estimate a choice model that includes this probability as an explanatory variable.

The results are not sensitive to this choice, which is taken in order to separate players who are competitive and
those who lag far behind. In unreported estimations, I also split abandonment into “tweak and abandon” and
“experiment and abandon.” The exercise reveals that players rarely tweak and then abandon, and the probability
of doing so is statistically invariant to competition, but the probability that players experiment and then abandon
is significantly increasing in competition. This evidence is strikingly consistent with the theoretical model, which
suggests that tweaking and abandoning isn’t a margin where we should see much activity, and that players who
abandon will be on the margin with experimentation.
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Panel C directly illustrates the inverted-U shaped effect of competition on experimentation and is
an empirical counterpart to the theoretical illustration in Figure I.2.

I.6 Implications for Research, Management, and Policy

These results have direct implications for policies and programs to incentivize innovation, in both
the workplace and the market. The foremost result is that the sharp incentives of prize competition
can motivate creative effort in a work environment, but that doing so requires striking a delicate
balance in the intensity of competition. In designing contracts for creative workers, managers
would be keen to offer incentives for high-quality work relative to that of peers or colleagues, in
addition to the traditional strategy of establishing a work environment with intrinsic motivators
such as intellectual freedom, flexibility, and challenge. Another advantage of the tournament-style
incentive structure is that it incorporates tolerance for failure by allowing players to recover from
unsuccessful experimentation, which has been shown to be an important feature of contracts for
motivating innovation (e.g., Manso 2011, Ederer and Manso 2013).

In practice, the ‘Goldilocks’ level of competition preferred by a principal may be difficult to achieve,
much less determine. Finding it could potentially require experimentation with the mechanism
itself, such as by changing the prize; subsidizing or restricting entry; or eliminating non-preferred
players midway through the contest. In this paper, one high-quality competitor was found to be
sufficient to induce another high-quality player to experiment, and further increases in competition
have the effect of driving players away. As a rule of thumb for other settings, a good approximation
may be to assume that one competitor of equal ability is enough to induce innovative effort, but
having more than a few such competitors is likely more harmful than helpful.

The results also have bearing on design of public incentives for R&D, which is itself a creative
endeavor, and the implementation of other policies (such as antitrust policy) undertaken with the
intent of incentivizing innovation. Although this paper is fundamentally about individuals, the
theoretical framework can be interpreted as firms competing in a winner-take-all market. This
interpretation is not without some peril, as markets are inherently more dynamic and less struc-
tured than the model allows.28 The results nevertheless shed light on the forces that define the
relationship between competition and innovation, particularly in settings where post-innovation
rents are much larger than competitors’ pre-existing rents.

Three concrete policy implications follow. The first is support for prize competition as a mechanism
for generating innovation. While the focus of this paper is graphic design for marketing materials,
it is conceivable to think that similar forces might be at work in other creative endeavors, including
R&D. For example, Scotchmer (2004) recounts that in the 1970s, the U.S. Air Force established
a system whereby rival companies vying for fighter jet contracts would build prototypes and fly
them in competition to demonstrate quality, with the top performer winning a production con-
tract – a process which ultimately led to the F-16 and F-18 fighter jets. Looking further back in
history, Brunt, Lerner, and Nicholas (2012) show that prize competitions sponsored by the Royal
Agricultural Society of England in the 19th and 20th centuries generated subsequent innovation

28In many settings, incentives for innovation are shaped by both post- and pre-innovation rents, the latter of which
are absent in this paper. The model could be extended to account for pre-innovation rents by re-defining the
“prize” as the incremental rents and allowing it to vary by player – though even with this modification, many of
the features of sequential innovation in other settings would be absent from the model.
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in the targeted areas, and Moser and Nicholas (2013) show that prizes offered at the 1851 Crystal
Palace Exhibition shaped the direction of inventive activity for years to come. These issues are
particularly relevant today, as governments, private foundations, and firms commit ever larger sums
to R&D prizes and institutionalize prize competition.29 The U.S. government now even operates
a website where federal agencies can run public prize competitions for problems large and small,
and has hosted over 280 contests from nearly 50 agencies with prizes ranging from status only
(non-monetary) to tens of millions of dollars (OSTP 2014).

The second implication is an argument for monopoly and perfect competition potentially being
equally harmful to innovation in market settings. According to the most recent U.S. Horizontal
Merger Guidelines (2010), “competition often spurs firms to innovate,” and projected post-merger
changes in the level of innovation is one of the government’s criteria for evaluating mergers. The
results of this paper suggest that a transition from no competition to some competition increases
incentives for radical innovation over more modest, incremental improvements to existing technolo-
gies, but that the gains to innovation can decline to zero in crowded or overly competitive markets,
leaving participants content to remain with the status quo.

A final implication of the results in this paper is that contrary to the conventional wisdom that
duplicated R&D is purely wasteful,30 simultaneous, duplicated efforts may be ex-ante efficient: the
competition of a horserace may induce more radical innovation, whose fruits might compensate for
the deadweight loss of the duplicated effort. From a social welfare perspective, institutional policies
prohibiting joint support of dueling research programs would then do more harm than good. This
corollary requires further testing, but if true, it suggests not only a fresh look at existing research on
the welfare impacts of R&D, but potentially important changes to both R&D policy and strategies
for managing innovation in the firm.

I.7 Conclusion

Ingenuity undoubtedly occurs along a continuum, with some innovations being inherently more
novel than others. Consider the smartphone: the first Apple iPhone was extremely original at the
time it was developed, while later generations and competitors have essentially only tweaked the
design with hardware and operating system changes. Though most innovation consists of modest,
incremental advances, many historically important innovations were more radical departures from
the status quo. Understanding what inspires individuals to experiment with new and untested
ideas is thus critical to policy and management practices implemented to foster innovation.

This paper combines theory, data, and new tools for measuring experimentation to show that
while some competition is necessary to induce high performers to experiment with new ideas,
excessive competition can equally discourage innovative effort. The results imply that there is an
intermediate level of competition that maximizes incentives for innovation. In the setting of this
paper, this intermediate value is exactly one high-performing competitor.

These results tie together the literatures in bandit decision models and tournament competition, and
they provide what is to my knowledge the most direct evidence yet available on how incentives affect
experimentation within the creative process. The results also contribute to a long-standing debate

29See Williams (2012) for more examples and an in-depth review of the literature on innovation inducement prizes.
30For example, see Jones (1995), Jones and Williams (1998), and Jones and Williams (2000).
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on the effects of competition on innovation that dates back to Schumpeter (1942). Previous research
has returned evidence of positive, negative, and inverted-U relationships between competition and
innovation but generally suffers from inconsistencies and imprecision in measuring competition and
innovation, lack of econometric identification, and confusion regarding the economic mechanism at
play. This paper addresses these issues by establishing clear and precise measures of key quantities,
exploiting the arrival of information on the state of competition to identify its effects, and clarifying
the mechanism responsible for the results. The end result is clear-cut evidence of an inverted-U
effect of competition on innovation in winner-take-all markets.

Many questions and opportunities remain for future research. Most importantly, as Weitzman
(1996) writes, “we need to understand, much better than we do, the act of human innovation.”
Is the essence of innovation the recombination of existing ideas in new forms, or the creation of
something truly new? What are the implications for the increasingly unpopular classical liberal
arts education, which exposes students to diverse views and approaches to problem-solving, versus
specialized training? Can diversity in teams compensate for a lack of breadth within its individual
members? Another goal for future research is to better understand how the creative process unfolds,
and especially how it adapts to constraints. A final question is whether successful innovation is
stochastic, deterministic in research inputs, or something in between, as the answer has direct
implications for how innovation is modeled or measured in other settings.
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Figure I.1: Payoffs to each of exploration, exploitation, and dropout (example)
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Figure I.2: Payoff to exploration over next-best option (example)
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Figure I.3: Sponsor ratings on tweaks vs. experimental designs
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Notes: Figure shows the distribution of ratings given to tweaks and experimental
designs. Each design in the sample is classified as a tweak if its maximal similarity
to any previous design by the same player is greater than 0.7 and experimental if less
than 0.3. This figure uses the perceptual hash algorithm to calculate similarity scores.
Sample size in each subfigure, from left-to-right across each row: 10, 24, 93 (first row);
186, 36, 1828 (second row).
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Figure I.4: Probability of tweaking, experimenting, and abandonment as a function of competition
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Notes: The figure plots the probability that a player who already has at least one 5-star rating in
a contest does one of the following on (and after) a given submission: tweaks an existing design
and then enters more designs (Panel A), experiments and then enters more designs (Panel B),
and does either and subsequently abandons the contest, as a function of her contemporaneous
probability of winning (Panels C and D). These probabilities are estimated as described in the
text, and the bars around each point provide the associated 95 percent confidence interval.

The figure establishes that active experimentation is equally non-monotonic over competition in
practice as it is in the theoretical model. Panel B directly illustrates this inverted-U pattern.
This non-monotonicity appears to arise for the posited reasons: when competition is low, players
are on the margin between tweaks and experimentation (the incentive compatibility constraint,
Panels A and B); as competition increases, they are increasingly likely to stop investing, especially
when their probability of winning is very low (participation constraint, Panels C and D).
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Table I.1: Characteristics of contests in the sample

Variable N Mean SD P25 P50 P75

Contest length (days) 122 8.52 3.20 7 7 11
Prize value (US$) 122 247.57 84.92 200 200 225
No. of players 122 33.20 24.46 19 26 39
No. of designs 122 96.38 80.46 52 74 107

5-star designs 122 2.59 4.00 0 1 4
4-star designs 122 12.28 12.13 3 9 18
3-star designs 122 22.16 25.33 6 16 28
2-star designs 122 17.61 25.82 3 10 22
1-star designs 122 12.11 25.24 0 2 11
Unrated designs 122 29.62 31.43 7 19 40

Number rated 122 66.75 71.23 21 50 83
Fraction rated 122 0.64 0.30 0.4 0.7 0.9
Prize committed 122 0.56 0.50 0.0 1.0 1.0
Prize awarded 122 0.85 0.36 1.0 1.0 1.0

Notes: Table reports descriptive statistics for the contests. “Fraction rated” refers to
the fraction of designs in each contest that gets rated. “Prize committed” indicates
whether the contest prize is committed to be paid (vs. retractable). “Prize awarded”
indicates whether the prize was awarded. The fraction of contests awarded awarded
subsumes the fraction committed, since committed prizes are always awarded.

Table I.2: Distribution of ratings (rated designs only)

1-star 2-star 3-star 4-star 5-star Total

Count 1,478 2,149 2,703 1,498 316 8,144
Percent 18.15 26.39 33.19 18.39 3.88 100

Notes: Table tabulates rated designs by rating. 69.3 percent of
designs in the sample are rated by sponsors on a 1-5 scale. The site
provides guidance on the meaning of each rating, which introduces
consistency in the interpretation of ratings across contests.
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Table I.3: Similarity to preceding designs by same player and competitors, and intra-batch

Panel A. Using preferred algorithm: Perceptual Hash

Variable N Mean SD P10 P50 P90

Max. similarity to any of own preceding designs 5,075 0.32 0.27 0.05 0.22 0.77
Max. similarity to best of own preceding designs 3,871 0.28 0.27 0.03 0.17 0.72
Max. similarity to best of oth. preceding designs 9,709 0.14 0.1 0.04 0.13 0.27
Maximum intra-batch similarity 1,987 0.45 0.32 0.05 0.41 0.91
Image missing 11,758 0.04 0.19 0.00 0.00 0.00

Panel B. Using alternative algorithm: Difference Hash

Variable N Mean SD P10 P50 P90

Max. similarity to any of own preceding designs 5,075 0.58 0.28 0.16 0.62 0.94
Max. similarity to best of own preceding designs 3,871 0.52 0.3 0.09 0.54 0.93
Max. similarity to best of oth. preceding designs 9,709 0.33 0.21 0.09 0.29 0.63
Maximum intra-batch similarity 1,987 0.69 0.28 0.23 0.77 0.98
Image missing 11,758 0.04 0.19 0.00 0.00 0.00

Notes: Table reports summary statistics on designs’ similarity to previously entered designs (both own
and competing). Pairwise similarity scores are calculated as described in the text and available for all
designs whose digital image could be obtained (96% of entries). The “best” preceding designs are those
with the most positive feedback provided prior to the given design. Intra-batch similarity is calculated
as the similarity of designs in a given batch to each other, where a design batch is defined to be a set
of designs entered by a single player in which each design was entered within 15 minutes of another
design in the set. This grouping captures players’ tendency to submit multiple designs at once, which
are often similar with minor variations on a theme.
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Table I.4: Correlations of contest outcomes with their characteristics

(1) (2) (3) (4)
Players Designs Designs/Player Awarded

Total Prize Value ($100s) 14.828*** 55.366*** 0.124*** 0.248***
(0.665) (2.527) (0.015) (0.042)

Committed Value ($100s) 1.860* 5.584 0.008
(1.118) (4.386) (0.025)

Average Cost ($) -1.790*** -9.074*** -0.088*** -0.133***
(0.096) (0.353) (0.004) (0.010)

Fraction Rated -14.276*** -20.056*** 0.683*** 0.691***
(0.812) (2.855) (0.040) (0.106)

Contest Length 0.340*** 1.113*** 0.003 0.007
(0.069) (0.251) (0.004) (0.010)

Words in Desc. (100s) 0.061 2.876*** 0.059*** -0.158***
(0.081) (0.389) (0.005) (0.014)

Attached Materials -0.878*** -1.557** 0.051*** -0.011
(0.161) (0.604) (0.012) (0.016)

Prize Committed 1.076 2.909 -0.023
(3.290) (12.867) (0.085)

Constant 9.150*** -4.962 2.488*** 1.967***
(1.760) (6.180) (0.073) (0.179)

N 4294 4294 4294 3298
R2 0.63 0.65 0.31

Notes: Table shows the estimated effect of contest attributes on overall participation
and the probability that the prize is awarded from Gross (2015b), controlling for the
average cost of participating players. The final specification is estimated as a probit on
contests without a committed prize. *, **, *** represent significance at the 0.1, 0.05,
and 0.01 levels, respectively. Monthly fixed effects included but not shown. Robust SEs
in parentheses.

Table I.5: Conditional logit of win-lose outcomes on ratings

Fixed effect Est. S.E. t-stat Corresponding β

Rating==5 1.53 0.07 22.17 4.618
Rating==4 -0.96 0.06 -15.35 0.383
Rating==3 -3.39 0.08 -40.01 0.034
Rating==2 -5.20 0.17 -30.16 0.006
Rating==1 -6.02 0.28 -21.82 0.002
No rating -3.43 0.06 -55.35 0.032

Notes: Table provides estimates from conditional logit estima-
tion of the win-lose outcome of each design as a function of its
rating. Outside option is not awarding the prize, with utility
normalized to zero. The design predicted by the model as the
odds-on favorite wins roughly 50 percent of contests.
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Table I.6: Correlation of feedback lags with the rating given

(1) (2) (3)
Lag (hours) Lag (pct. of contest) Rated before end?

Rating==5 1.577 0.006 -0.023
(3.394) (0.016) (0.031)

Rating==4 -2.389 -0.013* 0.009
(1.727) (0.007) (0.020)

Rating==3 -0.740 -0.004 0.007
(2.106) (0.009) (0.016)

Rating==2 1.167 0.005 0.006
(1.904) (0.008) (0.011)

Constant 16.655* 0.134*** 1.075***
(8.514) (0.042) (0.050)

N 7388 7388 8144
R2 0.45 0.48 0.63
Controls Yes Yes Yes
Contest FEs Yes Yes Yes
Player FEs Yes Yes Yes

Notes: Table illustrates tendency for designs of different ratings to be rated more or less
quickly. The results suggest that sponsors are not quicker to rate their favorite designs.
Dependent variable in Column (1) is the time between submission and feedback, in
hours; Column (2), this lag as a fraction of the contest length; and Column (3), an
indicator for whether a design receives feedback before the contest ends. All columns
control for time of entry, the number of previous designs entered by the given player
and competitors, and contest and player fixed effects. *, **, *** represent significance
at the 0.1, 0.05, and 0.01 levels, respectively. SEs clustered by contest in parentheses.

36



Table I.7: Similarity to player’s previous designs

(1) (2) (3) (4)

Player’s prior best rating==5 0.284*** 0.277*** 0.289*** 0.286***
(0.085) (0.087) (0.085) (0.087)

* 1+ competing 5-stars -0.106* -0.118** -0.101* -0.112*
(0.058) (0.059) (0.058) (0.058)

* prize value ($100s) -0.013 -0.021 -0.011 -0.020
(0.028) (0.028) (0.028) (0.029)

Player’s prior best rating==4 0.099*** 0.077*** 0.111*** 0.090***
(0.017) (0.017) (0.017) (0.018)

Player’s prior best rating==3 0.039*** 0.029** 0.050*** 0.039***
(0.014) (0.014) (0.014) (0.014)

Player’s prior best rating==2 -0.004 -0.009 0.007 0.001
(0.020) (0.020) (0.020) (0.020)

One or more competing 5-stars -0.014 -0.016 -0.016 -0.018
(0.020) (0.022) (0.019) (0.022)

Days remaining -0.005* -0.009 -0.005** -0.009
(0.003) (0.007) (0.003) (0.007)

Constant 0.351* 0.414** 0.355* 0.419**
(0.181) (0.195) (0.181) (0.196)

N 5075 5075 5075 5075
R2 0.47 0.47 0.47 0.47
Controls No Yes No Yes
Contest FEs Yes Yes Yes Yes
Player FEs Yes Yes Yes Yes
Forthcoming ratings No No Yes Yes

Notes: Table shows the effects of feedback on players’ experimentation. Observations are
designs. Dependent variable is a continuous measure of a design’s maximum similarity to
previous entries in the same contest by the same player, taking values in [0,1], where a
value of 1 indicates the design is identical to another. The mean value of this variable in
the sample is 0.32 (s.d. 0.27). Columns (2) and (4) control for time of submission and
number of previous designs entered by the player and her competitors. Columns (3) and (4)
additionally control for the best f orthcoming rating on the player’s not-yet-rated designs.
Similarity scores in this table are calculated using a perceptual hash algorithm. Preceding
designs/ratings are defined to be those entered/provided at least 60 minutes prior to the
given design. *, **, *** represent significance at the 0.1, 0.05, and 0.01 levels, respectively.
SEs clustered by player in parentheses.
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Table I.8: Similarity to player’s best previously-rated designs & intra-batch similarity

Designs Batches (uwtd.) Batches (wtd.)
(1) (2) (3) (4) (5) (6)

Player’s prior best==5 0.351*** 0.362*** 0.214 0.238 0.249 0.285
(0.096) (0.102) (0.311) (0.304) (0.304) (0.296)

* 1+ competing 5-stars -0.204*** -0.208*** -0.302* -0.305* -0.300* -0.295*
(0.070) (0.071) (0.163) (0.162) (0.170) (0.168)

* prize value ($100s) -0.013 -0.018 0.016 0.015 0.010 0.009
(0.031) (0.033) (0.099) (0.097) (0.095) (0.093)

Player’s prior best==4 0.119*** 0.116*** 0.050 0.065* 0.062* 0.086**
(0.031) (0.032) (0.032) (0.037) (0.032) (0.038)

Player’s prior best==3 0.060** 0.056** 0.053 0.062* 0.051 0.065*
(0.028) (0.028) (0.035) (0.037) (0.035) (0.037)

Player’s prior best==2 0.026 0.024 0.018 0.027 0.006 0.018
(0.030) (0.030) (0.050) (0.051) (0.047) (0.047)

1+ competing 5-stars -0.000 0.001 0.019 0.027 0.024 0.027
(0.022) (0.024) (0.048) (0.049) (0.052) (0.054)

Days remaining 0.000 -0.007 0.001 -0.008 0.000 -0.005
(0.003) (0.008) (0.005) (0.011) (0.005) (0.011)

Constant 0.409** 0.487*** 0.383*** 0.507*** 0.386*** 0.459***
(0.167) (0.187) (0.073) (0.148) (0.069) (0.146)

N 3871 3871 1987 1987 1987 1987
R2 0.53 0.53 0.57 0.57 0.58 0.58
Controls No Yes No Yes No Yes
Contest FEs Yes Yes Yes Yes Yes Yes
Player FEs Yes Yes Yes Yes Yes Yes

Notes: Table shows the effects of feedback on players’ experimentation. Observations in Columns (1)
and (2) are designs, and dependent variable is a continuous measure of a design’s similarity to the
highest-rated preceding entry by the same player, taking values in [0,1], where a value of 1 indicates
the design is identical to another. The mean value of this variable in the sample is 0.28 (s.d. 0.27).
Observations in Columns (3) to (6) are design batches, which are defined to be a set of designs by
a single player entered into a contest in close proximity (15 minutes), and dependent variable is a
continuous measure of intra-batch similarity, taking values in [0,1], where a value of 1 indicates that
two designs in the batch are identical. The mean value of this variable in the sample is 0.48 (s.d.
0.32). Columns (5) and (6) weight the batch regressions by batch size. All columns control for the time
of submission and number of previous designs entered by the player and her competitors. Similarity
scores in this table are calculated using a perceptual hash algorithm. Preceding designs/ratings are
defined to be those entered/provided at least 60 minutes prior to the given design. *, **, *** represent
significance at the 0.1, 0.05, and 0.01 levels, respectively. SEs clustered by player in parentheses.
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Table I.9: Change in similarity to player’s best previously-rated designs

(1) (2) (3) (4) (5) (6)

∆(Player’s best==5) 0.878*** 0.928*** 0.914*** 0.885*** 0.929*** 0.924***
(0.170) (0.203) (0.205) (0.171) (0.202) (0.205)

* 1+ competing 5-stars -0.411*** -0.419*** -0.427*** -0.414*** -0.418*** -0.429***
(0.125) (0.144) (0.152) (0.125) (0.144) (0.152)

* prize value ($100s) -0.095** -0.114** -0.108** -0.096** -0.114** -0.110**
(0.039) (0.049) (0.047) (0.040) (0.049) (0.048)

∆(Player’s best==4) 0.281*** 0.268*** 0.276*** 0.283*** 0.270*** 0.279***
(0.065) (0.073) (0.079) (0.065) (0.073) (0.079)

∆(Player’s best==3) 0.150*** 0.135** 0.137** 0.151*** 0.136** 0.138**
(0.058) (0.065) (0.069) (0.058) (0.065) (0.069)

∆(Player’s best==2) 0.082* 0.064 0.059 0.082* 0.063 0.059
(0.046) (0.052) (0.056) (0.046) (0.053) (0.057)

1+ competing 5-stars -0.004 -0.003 0.003 -0.002 -0.004 0.003
(0.014) (0.014) (0.024) (0.015) (0.014) (0.026)

Days remaining -0.001 -0.001 -0.001 -0.005 -0.001 -0.004
(0.002) (0.002) (0.003) (0.004) (0.003) (0.007)

Constant -0.006 -0.006 0.037 0.025 -0.015 0.060
(0.009) (0.008) (0.066) (0.040) (0.037) (0.077)

N 2694 2694 2694 2694 2694 2694
R2 0.05 0.11 0.14 0.05 0.11 0.14
Controls No No No Yes Yes Yes
Contest FEs Yes No Yes Yes No Yes
Player FEs No Yes Yes No Yes Yes

Notes: Table shows the effects of feedback on players’ experimentation. Observations are designs. Depen-
dent variable is a continuous measure of the change in designs’ similarity to the highest-rated preceding
entry by the same player, taking values in [-1,1], where a value of 0 indicates that the player’s current
design is as similar to her best preceding design as was her previous design, and a value of 1 indicates
that the player transitioned fully from experimenting to copying (and a value of -1, the converse). The
mean value of this variable in the sample is -0.00 (s.d. 0.23). Columns (4) to (6) control for time of
submission and number of previous designs entered by the player and competitors. Similarity scores in
this table are calculated using a perceptual hash algorithm. Preceding designs/ratings are defined to be
those entered/provided at least 60 minutes prior to the given design. *, **, *** represent significance at
the 0.1, 0.05, and 0.01 levels, respectively. SEs clustered by player in parentheses.
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Table I.10: Similarity to player’s best not-yet-rated designs (placebo test)

Similarity to forthcoming Residual
(1) (2) (3) (4)

Player’s best forthcoming rating==5 0.227 -0.036 -0.051 -0.128
(0.300) (0.225) (0.244) (0.154)

* 1+ competing 5-stars -0.223 -0.041 -0.052 0.012
(0.176) (0.114) (0.132) (0.099)

* prize value ($100s) -0.029 0.005 0.010 0.028
(0.060) (0.053) (0.056) (0.042)

Player’s best forthcoming rating==4 0.137* 0.006 0.003 0.000
(0.072) (0.068) (0.067) (0.061)

Player’s best forthcoming rating==3 0.146*** -0.017 -0.015 -0.015
(0.054) (0.100) (0.098) (0.097)

Player’s best forthcoming rating==2 0.072 -0.181* -0.174* -0.153
(0.051) (0.101) (0.098) (0.094)

One or more competing 5-stars -0.079 0.002 0.005 -0.002
(0.102) (0.116) (0.122) (0.123)

Days remaining 0.011 -0.038 -0.038 -0.040
(0.027) (0.057) (0.056) (0.061)

Constant -0.123 0.387 0.657 0.265
(0.185) (0.464) (0.495) (0.489)

N 1147 577 577 577
R2 0.68 0.83 0.83 0.67
Controls Yes Yes Yes Yes
Contest FEs Yes Yes Yes Yes
Player FEs Yes Yes Yes Yes

Notes: Table provides a test of the effects of not-yet-available feedback on players’ experimen-
tation. Observations are designs. Dependent variable in Columns (1) to (3) is a continuous
measure of a design’s similarity to the best designs that the player has previously entered and
has yet to but will eventually be rated, taking values in [0,1], where a value of 1 indicates that
the two designs are identical. The mean value of this variable in the sample is 0.26 (s.d. 0.25). If
players depend on sponsors’ ratings for signals of quality, then forthcoming ratings should have
no effect on current experimentation. The results of Column (1) suggest this may not be the
case; however, similarity to an unrated design may actually be the result of both these designs
being tweaks on a third design. To account for this possibility, Column (2) controls for the given
design’s similarity to the best previously-rated design, the best not-yet-rated design’s similarity
to the best previously-rated design, and their interaction. Column (3) allows these controls to
vary by the best rating previously received. Dependent variable in Column (4) is the residual
from a regression of the dependent variable in the previous columns on these controls. These
residuals will be the subset of a given design’s similarity to the placebo that is not explained
by jointly-occurring imitation of a third design. All columns control for time of submission and
number of previous designs entered by the player and her competitors. Similarity scores in this
table are calculated using a perceptual hash algorithm. Preceding designs/ratings are defined
to be those entered/provided at least 60 minutes prior to the given design. *, **, *** represent
significance at the 0.1, 0.05, and 0.01 levels, respectively. SEs clustered by player in parentheses.
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Table I.11: Similarity to competitors’ best previously-rated designs

(1) (2) (3) (4)

Competing best==5 -0.029* -0.003 ∆(Competing best==5) -0.002 0.000
-0.016 -0.017 -0.046 (0.046)

* 1+ own 5-stars -0.011 -0.011 * 1+ own 5-stars 0.027 0.027
-0.008 -0.008 -0.027 (0.027)

* prize value ($100s) -0.005** -0.017*** * prize value ($100s) -0.008 -0.009
-0.003 -0.003 -0.009 (0.009)

Competing best==4 0.001 0.006 ∆(Competing best==4) 0.035 0.035
-0.013 -0.013 -0.033 (0.033)

Competing best==3 0.016 0.023* ∆(Competing best==3) 0.04 0.041
-0.012 -0.012 -0.032 (0.032)

Competing best==2 0.013 0.013 ∆(Competing best==2) 0.049 0.050
-0.014 -0.014 -0.034 (0.034)

One or more own 5-stars 0.008 0.009 One or more own 5-stars 0.007 0.010
-0.027 -0.028 -0.006 (0.006)

Days remaining -0.007*** 0.002 Days remaining -0.001 0.000
-0.001 -0.001 -0.001 (0.002)

Constant 0.059 -0.002 Constant 0.006 0.004
-0.061 -0.063 -0.022 (0.029)

N 9709 9709 N 6065 6065
R2 0.43 0.44 R2 0.11 0.11
Controls No Yes Controls No Yes
Contest FEs Yes Yes Contest FEs Yes Yes
Player FEs Yes Yes Player FEs Yes Yes

Notes: Table provides a test of players’ ability to discern the quality of, and then imitate, competing
designs. Observations are designs. Dependent variable in Columns (1) and (2) is a continuous measure
of the design’s similarity to the highest-rated preceding entries by other players, taking values in [0,1],
where a value of 1 indicates that the design is identical to another. The mean value in the sample is
0.14 (s.d. 0.10). Dependent variable in Columns (3) and (4) is a continuous measure of the change in
designs’ similarity to the highest- rated preceding entries by other players, taking values in [-1,1], where
a value of 0 indicates that the player’s current design is equally similar to the best competing design as
was her previous design, and a value of 1 indicates that the player transitioned fully from experimenting
to copying (and a value of -1, the converse). The mean value of this variable in the sample is 0.00 (s.d.
0.09). In general, players are provided only the distribution of ratings on competing designs; ratings of
specific competing designs are not observed. Results in this table test whether players can nevertheless
identify and imitate leading competition. Columns (2) and (4) control for time of submission and
number of previous designs entered by the player and her competitors. Similarity scores in this table
are calculated using a perceptual hash algorithm. Preceding designs/ratings are defined to be those
entered/provided at least 60 minutes prior to the given design. *, **, *** represent significance at the
0.1, 0.05, and 0.01 levels, respectively. Robust SEs in parentheses.
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Table I.12: Abandonment after a player’s first rating, as function of rating

Dependent variable: Abandon after first rating
(1) (2) (3) (4)

Linear Linear Linear Logit

Player’s first rating==5 -0.352*** -0.298*** -0.481*** -1.794***
(0.093) (0.101) (0.123) (0.457)

* competing 5s 0.038** 0.024 0.076* -0.044
(0.019) (0.032) (0.042) (0.200)

Player’s first rating==4 -0.392*** -0.386*** -0.500*** -1.945***
(0.050) (0.068) (0.083) (0.267)

* competing 5s 0.020 0.035 0.056* -0.119
(0.015) (0.025) (0.031) (0.176)

Player’s first rating==3 -0.302*** -0.286*** -0.374*** -1.467***
(0.039) (0.057) (0.063) (0.212)

* competing 5s 0.013 -0.000 0.028 -0.184
(0.013) (0.025) (0.030) (0.172)

Player’s first rating==2 -0.082** -0.068 -0.135** -0.390*
(0.037) (0.055) (0.062) (0.206)

* competing 5s -0.016 -0.007 0.006 -0.328*
(0.012) (0.025) (0.030) (0.170)

Competitors’ prior best==5 -0.040 0.030 -0.025 -0.453
(0.082) (0.109) (0.130) (0.420)

Competitors’ prior best==4 0.001 0.080 0.052 -0.022
(0.063) (0.085) (0.091) (0.307)

Competitors’ prior best==3 -0.079 -0.002 -0.025 -0.376
(0.064) (0.093) (0.096) (0.321)

Competing 5-star designs 0.031** 0.021 0.007 0.446**
(0.013) (0.024) (0.029) (0.178)

Days remaining -0.019*** -0.017*** -0.026*** -0.098***
(0.006) (0.006) (0.010) (0.030)

Constant 0.899*** 0.817*** 0.904*** 1.961***
(0.080) (0.095) (0.206) (0.720)

N 1673 1673 1673 1635
R2 0.20 0.57 0.65
Contest FEs Yes No Yes Yes
Player FEs No Yes Yes No

Notes: Table shows the effect of a player’s first rating in a contest, and the competition at that
time, on the probability that she subsequently enters more designs. Observations are contest-
players. Columns (1) to (3) estimate linear models with fixed effects; Column (4) estimates a
logit model without player fixed effects, which could render the results inconsistent. *, **, ***
represent significance at the 0.1, 0.05, and 0.01 levels, respectively. SEs clustered by player in
parentheses.

42



Table I.13: Abandonment after a given design, as function of player’s ratings and competition

Dependent variable: Abandon after given design
(1) (2) (3) (4)

Linear Linear Linear Logit

Player’s prior best rating==5 -0.017 -0.182*** -0.154*** -0.068
(0.033) (0.053) (0.044) (0.179)

* competing 5s 0.014** 0.030*** 0.027*** 0.068**
(0.007) (0.009) (0.008) (0.032)

Player’s prior best rating==4 -0.054*** -0.104*** -0.091*** -0.212***
(0.016) (0.022) (0.023) (0.082)

* competing 5s 0.016*** 0.024*** 0.023*** 0.091***
(0.005) (0.008) (0.007) (0.026)

Player’s prior best rating==3 -0.025 -0.020 -0.006 -0.051
(0.015) (0.020) (0.019) (0.073)

* competing 5s 0.015** 0.024*** 0.020** 0.074***
(0.006) (0.009) (0.009) (0.027)

Player’s prior best rating==2 -0.018 0.026 0.031 -0.023
(0.023) (0.027) (0.028) (0.110)

* competing 5s 0.007 0.027* 0.026* 0.035
(0.010) (0.014) (0.014) (0.045)

Player’s prior best rating==1 -0.024 0.063 0.058 -0.056
(0.037) (0.038) (0.039) (0.176)

* competing 5s -0.024 -0.012 -0.017 -0.109
(0.016) (0.021) (0.020) (0.075)

Competitors’ prior best==5 0.119*** 0.085*** 0.137*** 0.574***
(0.022) (0.021) (0.024) (0.109)

Competitors’ prior best==4 0.050*** 0.020 0.065*** 0.245***
(0.017) (0.016) (0.017) (0.083)

Competing 5-star designs 0.004 -0.015*** -0.003 0.020
(0.004) (0.004) (0.005) (0.020)

Days remaining 0.004 0.007** 0.009* 0.028
(0.005) (0.003) (0.006) (0.022)

Constant 0.217*** 0.073** 0.061 -1.229***
(0.044) (0.036) (0.102) (0.336)

N 11758 11758 11758 11758
R2 0.07 0.26 0.28
Controls Yes Yes Yes Yes
Contest FEs Yes No Yes Yes
Player FEs No Yes Yes No

Notes: Table shows the effects of feedback and competition at the time a design is entered on the
probability that a player subsequently enters more designs. Observations are designs. Columns (1) to
(3) estimate linear models with fixed effects; Column (4) estimates a logit model without player fixed
effects, which could render the results inconsistent. All columns control for time of submission and
number of previous designs entered by the player and her competitors. Results are qualitatively similar
under a proportional hazards model. *, **, *** represent significance at the 0.1, 0.05, and 0.01 levels,
respectively. SEs clustered by player in parentheses.
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Table I.14: Normalized panelist ratings on tweaks vs. experimental designs

Outcomes under: Diff. in
Metric Tweaking Experimentation means

PCA score of -0.45 0.18 0.64***
panelist ratings (0.21) (0.15) p=0.008

Average rating -0.45 0.22 0.67***
by panelists (0.20) (0.14) p=0.004

Median rating -0.46 0.23 0.69***
by panelists (0.21) (0.15) p=0.005

Max rating 1.08 1.99 0.91***
by panelists (0.22) (0.17) p=0.001

Disagreement (s.d.) 1.34 1.59 0.25**
among panelists (0.10) (0.07) p=0.019

Notes: Table compares professional graphic designers’ ratings on tweaks and
experimental designs that received a top rating from contest sponsors. Pan-
elists’ ratings were demeaned prior to analysis. The PCA score refers to a
design’s score along the first component from a principal component compo-
nent analysis of panelists’ ratings. The other summary measures are the mean,
median, max, s.d. of panelists’ ratings on a given design. A design is classified
as a tweak if its maximum similarity to any previous design by that player
is greater than 0.7 and an experiment if it is less than 0.3. Standard errors
in parentheses below each mean; results from a one-sided test of equality of
means is provided to the right. ***, **, and * indicate significance at the 1%,
5%, and 10% levels, respectively. Similarity scores calculated using perceptual
hash algorithm. Results are robust to both algorithms and alternative cutoffs
for experimentation.
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Part II

Feedback in Tournaments for Ideas:
Trading Off Participation for Quality
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Chapter Abstract

Performance feedback is a common feature of competitive settings in which new products are
developed. While the adverse effects of feedback on incentives have recently received attention in
the economics literature, its countervailing effect on productivity is generally overlooked: feedback
not only informs agents of their rank, but also helps them improve. This paper uses a sample of
four thousand commercial logo design tournaments to show that feedback reduces participation but
increases the quality of new submissions, with an ambiguous net effect on high-quality output. To
evaluate this tradeoff, I develop a procedure to estimate players’ effort costs and use the estimates
to simulate counterfactuals under alternative feedback policies. The results suggest that feedback
on net increases the number of high-quality ideas produced and can thus be a desirable mechanism
for a principal seeking innovation.
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Feedback and evaluation are pervasive practices in industries where ideas and new products are
developed: workers pitch their ideas to managers and clients, who provide critiques and direction;
prototypes are tested at R&D labs, with focus groups, and in public demonstrations; and customers
are the ultimate arbiters of value. Despite its widespread use, relatively little is known about the
impacts of performance feedback on innovation in competitive environments. While feedback is
argued to be essential to improving innovation (Manso 2011) and assuring its quality, research on
the effects of feedback in competitive settings (e.g., Ederer 2010 and others) suggests that it can
damage incentives by revealing asymmetries between competitors.

This paper studies the tension between incentives and improvement in feedback practices, which is
of fundamental importance to firms in creative industries, as well as other organizations interested
in promoting innovation. This tension is intrinsic to the product development process, and is
particularly stark in formal competitions such as innovation prizes (Taylor 1995, Che and Gale
2003, Terwiesch and Xu 2008), which are undergoing a renaissance across private, public, and
non-profit sectors (Williams 2012).1 Innovation inducement prizes have been used for centuries
to provide incentives for third parties to solve vexing commercial or social problems, and despite
the attention-grabbing sums of popular examples, the mechanism is much more widely used: the
America COMPETES Reauthorization Act of 2010 gave U.S. Federal agencies broad authority to
conduct public prize competitions for problems large and small, and Challenge.gov has since hosted
at least 280 contests from nearly 50 governmental agencies, with prizes ranging from status only
(non-monetary) to tens of millions of dollars (OSTP 2014). In many cases, the sponsor has better
information on performance than participants or can compel interim disclosures of progress and
must decide whether to make it known while the competition is underway.2

A similar tension is present in non-innovation organizational settings, where performance appraisals
serve the dual purposes of employee development and evaluation for tournament-like promotion and
retention (Beer 1981, 1987; DeVries et al. 1981)., but this literature is short on empirical evidence
and, with the exception of Wirtz (2014), does not account for the effects of feedback on agents’
productivity. Another subliterature (e.g., Choi 1991, Gill 2008, Rieck 2010, Bimpikis et al. 2014,
Halac et al. 2015) studies disclosure policies specifically in patent races and innovation contests, but
it too is exclusively theoretical, and efforts to-date have excluded the possibility of feedback-driven
improvement. I seek to add to the literature on both dimensions.

In this paper, I use a sample of four thousand winner-take-all commercial logo design contests
to study the effects of feedback on the quantity and quality of submissions. I first show that
feedback causes players to advantageously select into or out of participating and improves the
quality of their designs, but disclosure of intense competition discourages effort from even the
top performers. A principal seeking a high-quality product design thus faces a tradeoff between
participation and improvement in deciding whether to provide its agents with feedback. To better

1Popular examples range from the 1714 British Longitudinal Prize for a method of calculating longitude at sea to
recent, multi-million dollar X-Prizes for suborbital spaceflight and lunar landing. See Morgan and Wang (2010) for
additional examples, and Terwiesch and Ulrich (2009) for practitioner-oriented discussion.

2In practice, sponsoring organizations often do. For example, in the 2006 Netflix contest to develop an algorithm
that predicts users’ movie ratings, entries were immediately tested and scored, with the results posted to a public
leaderboard. In the U.S. Defense Advanced Research Projects Agency’s 2005 and 2007 prize competitions to develop
autonomous vehicles, participants had to publicly compete in timed qualifying races before moving on to a final
round. Though the best-known examples have large (million-dollar) stakes, interim scoring is also common in contests
for smaller-scale problems with lower stakes, such as architecture competitions or coding contests (Boudreau et al.
2011, Boudreau et al. 2014).
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understand this tradeoff, I estimate a structural model of the setting and use the results to simulate
tournaments with alternative feedback mechanisms. The results suggest that provision of feedback
on net modestly increases the number of high-quality designs generated, with this increase entirely
attributable to improvement rather than advantageous selection – implying that feedback is a
valuable tool for generating innovation even in the presence of competition.

The paper begins by developing a simple model of a winner-take-all innovation contest to clarify the
forces at play. In this model, a principal seeks a new product design and solicits candidates through
a tournament, awarding a prize to the best entry. Players take turns submitting ideas, each of
which receives immediate, public feedback revealing its quality. Partial-equilibrium predictions echo
previous theoretical findings for other settings, particularly those of Ederer (2010): revelation of
agents’ performance can be motivating for high-performers, but in general will tend to disincentivize
effort by exposing leaders and laggards. Yet the ostensible detriment to participation of providing
feedback could nevertheless potentially be offset by the quality improvements it generates. Within
this framework, I characterize feedback as having two effects: a selection effect, which drives players
with poor reviews or facing fierce competition to quit, and a direction effect, which guides continuing
players towards making increasingly better designs.

The paper then transitions to an empirical study of 4,294 commercial logo design competitions
from a popular online platform. In these contests, a firm solicits custom designs from freelance
designers, who compete for a winner-take-all prize awarded to the preferred entry. The contests in
this sample typically offer prizes of a few hundred dollars and attract around 35 players and 115
designs. An essential feature of the setting is that the sponsor can provide real-time feedback on
players’ submissions in the form of 1- to 5-star ratings, which allow players to evaluate the quality
of their own work and the competition they face. The first signs of a tension between participation
and the quality of new submissions are apparent from correlating feedback provision with contest
outcomes: contests in which a higher fraction of designs are rated attract fewer players and designs,
but are also more likely to see sponsors award a retractable prize.

Using data at the contest-player and design level, I first provide evidence of the hypothesized
effects. To identify an effect of feedback on quality, I examine (i) ratings on players’ second
designs, as a function of whether their first design was rated in advance; and (ii) improvements
between consecutive submissions by a given player, where new information is made available but the
latent ratings history is unchanged. I find that feedback does indeed improve subsequent entries,
especially when the previous design was poorly-rated: for a player whose first design is rated 1-star,
the probability that she improves with her second design increases from 26 percent to 51 percent
when that rating is observed in advance (for those with a first design rated 2-stars, it is 27 to 41
percent; for 3-stars: 17 to 26 percent; for 4-stars: 6 to 11 percent).3

For evidence of an effect on participation, I estimate the probability that a player continues invest-
ing in or abandons a contest after their first rating. The likelihood of continuation is increasing
monotonically in the first rating, with high performers continuing at a 50 percent higher rate than
low performers. Yet even high performers can be driven away if their probability of winning is
revealed to be close to either zero or one. Though these effects are clearly present, the results
do not reveal whether the alleged trade-off between participation and quality is real, or which
effect dominates. Since this question cannot be directly answered with the data in hand, I turn to
structural estimation and simulations for insight.

3The second empirical strategy yields similar results.
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I develop a theoretically-motivated procedure to estimate the success function and then the key
parameter of the model that is unobserved: the cost of effort. The estimated costs are permitted
to vary by player and contest and are identified from players’ first-order conditions. In effect, I
calculate (i) the expected payoff to each player’s final design in a contest and (ii) the expected
benefit of an additional, unentered design, and argue that the cost must be bounded by these two
quantities. Because the contests in the sample typically attract dozens of players and hundreds of
designs, the difference in the gains to a player’s nth design and (n+ 1)th design will generally be
small, and the estimated bounds are thus tight.

I then use the estimates to simulate contests under policies that isolate selection and direction, to
demonstrate their individual and combined effects. I also simulate contests in which no designs are
rated, all designs are rated, and a random subset are rated (according to the frequency of feedback
observed in the data), to see if occasional feedback can outperform the alternatives by providing
direction while limiting the fallout from selection. Both sets of simulations offer insights.

I find that direction has a dominant effect on the number of high-quality designs. When feed-
back operates only through selection (without improving quality), the number of top-rated designs
declines by roughly 15 percent relative to a baseline of no feedback: despite selecting for better
players, enough of them are driven away so as to reduce high-quality submissions. When improve-
ment is enabled and selection suppressed, the number of top-rated designs explodes, increasing by
over 900 percent: in effect, players learn to make increasingly better designs, and because they are
oblivious to intensifying competition, they continue participating even as the tournament becomes
excessively competitive. With both channels active, they cancel each other out, resulting in a more
modest but positive, 10 percent increase in the number of top-rated entries. Providing feedback
to only a random subset of designs increases the number of top-rated submissions by 35 percent
relative to no feedback – outperforming comprehensive feedback.

Two implications follow. First, despite prior findings, feedback can be quite valuable in competitive
settings when it improves the quality or productivity of agents’ effort. However, feedback that
merely selects for high performers is unlikely to increase high-quality innovation if they cannot
leverage that feedback to improve their work. The key to getting the most out of a feedback
policy in this setting is thus to provide guidance while limiting attrition. The second implication is
that persistence is substantially more important to successful innovation in this setting than talent
or luck: less talented players who respond to feedback will eventually outperform more talented
players who ignore this feedback or otherwise fail to improve.

The paper proceeds as follows. Section II.1 discusses the literature in more depth and presents the
theory. Section II.2 introduces the empirical setting. Section II.3 provides reduced-form evidence
of the effects of feedback on participation and improvement. Sections II.4 and II.5 develop the
structural model and characterize the cost estimates. Section II.6 presents results of the simulations.
Section II.7 concludes.

II.1 Feedback in Innovation Contests

Existing Literature on Feedback in Tournaments

Rank-order tournaments have been the subject of a considerable amount of research since the
seminal contributions of Tullock (1980) and Lazear and Rosen (1981), and the framework has been
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used to characterize competition in a wide variety of settings, most often workplace promotion.
Interim evaluation in dynamic tournaments is a recent addition to the literature, motivated by the
observation that “between 74 and 89 percent of organizations have a formal appraisal and feedback
system” (Ederer 2010) and examples of evaluation in other settings.

This literature generally predicts that feedback will cause relative low-performers to reduce their
investment and can incentivize high-performers to exert more or less effort. Ederer (2010) provides
a nuanced view of the problem, showing that feedback can be motivating for high-performers,
who learn their high productivity, but disclosure of asymmetries will discourage effort from both
players, implying a tradeoff between what he terms “motivation” and “evaluation” effects. Such
a result follows naturally from research on the effects of asymmetries on effort in tournaments,
which consistently finds that incentives of both favorites and underdogs are reduced by unbalanced
competition (e.g., Baik 1994, Brown 2011). Though a similar sorting effect arises in the present
paper, the existing literature restricts attention to two-player competition. When there are many
high-performing contestants, feedback may dampen incentives even if they are equally capable,
since it reveals a crowded competition where the returns to effort are near zero.

The empirical evidence is both scarcer and more varied. Ederer and Fehr (2009) conduct an
experiment in which agents select efforts over two periods and find that second-period effort declines
in the revealed difference in first-round output. Eriksson et al. (2009) conduct an experiment in
which competitors earn points for solving math problems and find that maintaining a leaderboard
does not have significant effects on total attempts but can drive poor performers to make more
mistakes, perhaps from adopting risky strategies in trying to catch up. Azmat and Iriberri (2010)
examine the effects of including relative performance information in high schoolers’ report cards on
their subsequent academic performance, which has a tournament-like flavor. The evidence suggests
that this information has heterogeneous but on average large, positive effects on treated students’
future grades, which the authors attribute to increased effort.

The economics literature has also studied the question of whether to disclose performance in dy-
namic patent races and innovation contests. Choi (1991), for example, models a patent race and
shows that information on rivals’ interim progress has offsetting effects: it exposes a discouraging
technological gap, but also changes perceptions of the success rate of R&D, which can be encour-
aging for laggards. Bimpikis et al. (2014) find similar results for R&D contests. Continuing the
trend, Rieck (2010) shows that enforced secrecy yields the highest expected innovation in R&D
contests, since disclosure only serves to introduce asymmetry. Finally, Halac et al. (2015) argue
that in a setting where innovation is binary and the principal seeks one success, the principal’s
optimal mechanism either has disclosure and a winner-take-all prize (awarded to the first success,
as in a race) or no disclosure and prize-sharing (split among successes).4

However, in none of these examples is feedback used to improve the quality of innovation or success
rates. When the goal is to realize high-quality innovation, feedback can help workers learn, re-
optimize with new strategies, and ultimately improve their product. My contribution here is thus
to bring attention to the value of feedback as guidance, as Wirtz (2014) does for organizational
settings, while recognizing potential adverse effects on incentives.5

4This model is also interesting in that it blends the features of contests and patent races.
5As Manso (2011) shows, this type of guidance is essential to motivating innovation in single-agent settings. Wirtz
(2014) offers a similar rationale for feedback in tournament settings. In both cases, the instructive role of feedback
is to inform the agent whether to stick to her current technology or experiment with a new one.
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Theoretical Underpinnings

Suppose a risk-neutral principal seeks a new product design.6 Because R&D is risky and designs
are difficult to objectively value, the principal cannot contract directly on performance and instead
sponsors a tournament to solicit prototypes from J risk-neutral agents, who enter designs in turns.
At a given turn, a player must choose whether to continue participating and if so, what idea
to develop next, with each submission receiving immediate, public feedback. At the end of the
tournament, the sponsor awards a winner-take-all prize P to its preferred entry.

To hone intuition, suppose each player enters at most two designs. Let each design be characterized
by the following latent value νjt, perhaps sponsor-specific, that only the sponsor observes:

νjt = ln (βjt) + εjt, εjt ∼ i.i.d. Type-I E.V. (II-1)

where j indexes players and t indexes designs. In this model, βjt represents the design’s quality,
which may not be known ex-ante and is revealed by the sponsor’s feedback. The design’s value to
the sponsor, νjt, is increasing and concave in its quality, and the design with the highest ν wins
the contest. The εjt term is a random shock, which can be interpreted as idiosyncracies in the
sponsor’s tastes at the time a winner is chosen. Player j’s probability of winning is then:

Pr (player j wins) =
βj1 + βj2

βj1 + βj2 + µj
(II-2)

where µj ≡
∑

k 6=j (βk1 + βk2) is the competition that player j faces in the contest. This success
function is effectively a discrete choice probability and obtains directly from the primitives.

Further suppose designs can be good, with quality βH , or bad, with quality βL. Every player’s
first design is an i.i.d. random draw from a distribution Fβ(·), which yields a good design with
probability q or a bad design with probability 1−q, in expectation E[β] = qβH +(1−q)βL. Players
who receive positive feedback and choose to enter a second will recycle the high-quality design (with
a new draw of the luck term), while those with negative feedback will make a new draw from Fβ(·)
– such that feedback yields weak improvement in expectation. Absent feedback, players may mix
but will not consistently recycle a good design or make a new draw after a bad design. Moreover,
players without feedback are ostensibly symmetric, entering designs with expected quality E[β],
and a player’s perceived win probability is simply her share of submissions.

The remainder of this section provides two illustrative results in partial equilibrium, which conveys
the basic intuition. First, I show that asymmetries reduce players’ incentives to enter a second
design and argue that feedback will tend to exacerbate these asymmetries, resembling the evaluation
effect in Ederer’s (2010) setting. I then show that provided competition is sufficiently high, as it
typically is in the data, players with better feedback have greater incentives to continue participating
than those with worse feedback, similar to Ederer’s (2010) motivation effect.7

Proposition 1. The returns to a player’s second design decline as the quality of her first design
and the cumulative competition grow distant, approaching zero at the limit. Feedback that reveals
these asymmetries will therefore discourage participation, relative to a state of ignorance.

6Some primitives of the model, and portions of the associated text, are borrowed from Gross (2014).
7Proofs are provided in Appendix II.A.
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Proposition 2. Upon provision of feedback, provided competition is sufficiently high, players with
better feedback have higher incentives to participate than those with lower feedback.

Intuitively, we might expect that negative feedback induces quitting: players with poor feedback not
only face an uphill battle, but they are also more likely to produce lower-quality designs. Conversely,
distant favorites can be equally unmotivated to exert effort, as victory is nearly assured – though
this scenario is less likely to occur in a large field of competitors. In settings with many players,
a third result emerges: high-performers who face heavy competition will also have low incentives
to participate, because competition flattens the payoff curve to the point where marginal returns
fall below cost. While these results have abstracted from the effects of strategic interactions,
more explicit consideration would only tend to reinforce them. Additional effort would then yield
indirect benefits to the inframarginal player by discouraging effort from followers (Ederer 2010), but
this benefit would dissipate when competition is already high, since future competition is already
deterred. This is similar to the notion of ε-preemption described in the context of patent races by
Fudenberg et al. (1983).

II.2 Graphic Design Contests

I turn to a sample of 4,294 logo design contests from a widely-used online platform to study the
effects of feedback on participation and the quality of innovation in tournament competition. This
platform hosts hundreds of contests each week in several categories of commercial graphic design,
including logos, business cards, t-shirts, product packaging, book/magazine covers, website/app
mock-ups, and others. Logo design is the modal design category on this platform and is thus a
natural choice for analysis. A firm’s choice of logo is also nontrivial, since it is the defining feature
of its brand, which can be one of the firm’s most valuable intangible assets and is how consumers
will recognize and remember the firm for years to come.

In these contests, a firm (the sponsor; typically a small business or non-profit organization) solicits
custom designs from a community of freelance designers (players) in exchange for a fixed prize
awarded to its favorite entry. The sponsor publishes a design brief describing its business, its
customers, and what it likes and seeks to communicate with its logo; specifies the prize structure;
sets a deadline for entries; and opens the contest to competition. While the contest is open, players
can enter (and withdraw) as many designs as they want, at any time they want, and sponsors can
provide players with private, real-time feedback on their submissions in the form of 1- to 5-star
ratings and written commentary. Players see a gallery of competing designs and the distribution of
ratings on these designs, but not the ratings on specific competing designs. Copyright is enforced.
At the end of the contest, the sponsor picks the winning design and receives the design files and
full rights to their use. The platform then transfers payment to the winner.

Appendix II.B describes the data gathering and dataset construction procedures in detail. For each
contest in the sample, I observe the design brief, which includes a project title and description, the
sponsor’s industry, and any specific elements that must be included in the logo; the contest’s start
and end dates; the prize amount; and whether the prize is committed. Though multiple prizes are
possible, the sample is restricted to contests with a single, winner-take-all prize. I further observe
every design submission, the identity of the designer, his or her history on the platform, the time
and order in which the design was entered, the rating it received (if any), the time at which the
rating was given, and whether it won the contest. I also observe when players withdraw designs
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from the competition, but I assume withdrawn entries remain in contention, as sponsors can request
that any withdrawn design be reinstated. Since I do not observe written feedback, I assume the
content of written commentary is fully summarized by the rating.8

The player identifiers allow me to track players’ activity over the course of each contest and across
all publicly observed contests in other design categories dating back to the platform’s creation. I
use the precise timing information to reconstruct the state of a contest at the time each design is
submitted. For every design, I calculate the number of preceding designs in the contest of each
rating. I do so both in terms of the prior feedback available (observed) at the time of submission
as well as the feedback eventually provided. To account for the lags required to produce a design,
I define preceding designs to be those entered at least one hour prior to a given design, and I
similarly require that feedback be provided at least one hour prior to the given design’s submission
to be considered observed at the time it is made.

Characteristics of the Sample

Table II.1 provides descriptive statistics for the contests in the sample. The average contest in the
sample lasts nine days, offers a $295 prize, and attracts 116 designs from 37 players; on average, 66
percent of these are rated, but only three designs receive the top rating. By default, the sponsor
retains the option of not awarding the prize to any design if none are to its liking, but the sponsor
can forgo this option and commit to awarding the prize when it creates the contest. Though only
23 percent of contests have a committed prize, 89 percent are awarded.

[Table II.1 about here]

The median player in the sample competed in seven contests in any design category on the platform
in the four years between the platform’s launch in 2008 and August 1, 2012, when the data collection
ended. This distribution is heavily skewed, with most players entering only one or two contests and
a few participating frequently over extended periods. Less than a quarter of players in the sample
have ever won a contest. The average winnings per submitted design is $4.58.

Table II.2 provides the distribution of ratings on rated designs. Fifty-eight percent of the designs
in the sample (285,082 out of 496,041) are rated, slightly more than the average fraction of designs
rated in a contest. The median and modal rating on these designs is three stars. Only five percent of
all rated designs in the data receive the top, 5-star rating, suggesting that sponsors reserve this top
rating for their most preferred entries. Indeed, a disproportionate number (almost 40 percent) of all
winning designs are rated 5 stars, and nearly 75 percent are rated four or more stars, suggesting that

8One of the threats to identification throughout the empirical section is that the effect of ratings may be confounded
by unobserved, written feedback: what seems to be a response to a rating could be a reaction to explicit direction
provided by the sponsor that I do not observe. This concern is substantially mitigated by records of written feedback
that were made available for a subset of contests in the sample. In cases where it is observed, written feedback
is only given to a small fraction of designs in a contest (on average, 12 percent), far less than are rated, and
typically echoes the rating given, with statements such as “I really like this one” or “This is on the right track”.
This written feedback is also not disproportionately given to higher- or lower-rated designs: the frequency of each
rating among designs receiving comments is approximately the same as in the data at large. Thus, although the
written commentary does sometimes provide players with explicit suggestions or include expressions of (dis)taste
for a particular element such as a color or font, the infrequency and irregularity with which it is provided suggests
that it does not supersede the role of the 1- to 5-star ratings in practice.
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these ratings convey substantial information about a design’s quality and odds of success, though
they do not perfectly predict them: one- or two-star designs are occasionally observed to win
contests (0.4 percent and 1.0 percent of awarded contests in the sample, respectively), suggesting
that an element of luck remains until the end. Explanations for why low-rated designs sometimes
win, or more generally why five-star designs do not always win, include last-minute changes of
heart or differences of opinion between the member of the sponsoring organization administering
the ratings and the person or committee selecting the winner.

[Table II.2 about here]

Correlations of Contest Characteristics with Outcomes

To shed light on how the sampled contests operate and how different levers affect contest outcomes,
Table II.3 explores the relationship of various outcomes with prize value, feedback, and other
characteristics. The specifications in columns (1) to (3) regress the number of players, designs,
and designs per player on the prize value, contest duration, length of the design brief, number of
materials provided to be included in the design, and fraction of designs rated, as well as the average
cost of participating players, which is estimated in later sections. Most of these variables are fixed
by the sponsor before the contest begins, and while the fraction of entries rated and players’ costs
are in part endogenously determined during the contest, in practice they largely reflect the sponsor’s
type (engaged or aloof) and the difficulty of the project.

[Table II.3 about here]

An extra $100 in prize value on average attracts around an additional 15 players and 55 designs.
The effects of feedback are equally powerful: relative to a sponsor who rates no designs, one who
rates every design will typically attract 14 fewer players and 20 fewer designs. Other features have
more modest but nevertheless significant effects: contests with longer durations and longer design
briefs tend to attract more submissions, but those with more complex design briefs are also less
likely to be awarded.

In Column (7), I model of the probability that a sponsor chooses to award an uncommitted prize,
implying that the contest generated a design good enough to be awarded. Feedback dramatically
increases the probability that the prize is awarded, suggesting that feedback is critical to the
development of high-quality work. In light of the aforementioned evidence that feedback reduces
participation, this result provides the first indication of a tension between attracting more effort
versus higher-quality effort. Contests with larger prizes, shorter design briefs, and lower costs are
also more likely to be awarded, though the magnitude of these effects is considerably smaller than
the effect of feedback: the effect of full feedback (relative to no feedback) on the probability the
prize is awarded is nearly equal to that of a $300 increase in the prize – more than doubling the
average and median prizes in the sample.
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II.3 Reduced-form Evidence of Selection and Direction

Effects of Feedback on Quality

In evaluating the effects of feedback on the quality of new submissions, a natural starting point
is to examine the distribution of ratings on a player’s second design, conditional on whether her
first design was rated before the second was entered. As Figure II.2 shows, the overall mass of the
ratings distribution shifts upwards when feedback is observed in advance – although this pattern
could potentially be confounded by simultaneity, for example if sponsors are more likely to give
timely feedback to high-performing players.

[Figure II.2 about here]

To alleviate this concern, I condition the comparison on the first design’s rating. Figure II.3 shows
the resulting conditional distributions:

[Figure II.3 about here]

Table II.4 provides the accompanying differences in means and shows that players improve at
significantly higher rates when they observe feedback in advance. Among players with a 1-star
design, 51 percent score a higher rating on their second entry when they observe feedback in
advance, versus 26 percent among those who do not (Panel A). For players with a 2-star design,
the percentages are 41 and 27 percent; for players with a 3-star design, 26 and 17 percent; and
for players with a 4-star design, 11 and 6 percent, with all differences precisely estimated and
significant the one percent level. Panel B shows the estimated effect on the second design’s rating
in levels, conditional on weak improvement.

[Table II.4 about here]

Though these specifications control for initial performance, they could nevertheless still be con-
founded if the players who are most likely to improve disproportionately wait for feedback before
entering their second design. To resolve this issue, I turn to an alternative source of variation:
pairs of consecutive submissions by a given player, in a given contest, between which the player’s
information set may change but her latent ratings history remains the same. This setting allows
me to identify the effects of not only new information, but different levels of the feedback, while
still conditioning on past performance. I estimate the following specification:

∆Ratingijk = β0 +

5∑
r=1

βr∆1(Observed r-star ratings > 0)ijk + εijk

conditioning on a player’s latent performance being constant, where ∆Ratingijk is the difference
in the scores of successive designs by player j in contest k, and the independent variables indicate
the arrival of the player’s first r-star rating in contest k between designs (i− 1) and i.

Table II.5 provides the results. Panel A estimates a variant in which the outcome is an indicator
for improvement (∆Ratingijk > 0), while Panel B estimates the specification shown, moving the
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prior design’s rating out of the first difference and into the constant to ease the interpretation. In
both cases I further condition on the prior design’s rating, to allow the effects on first differences
to vary with the initial value.

[Table II.5 about here]

With few exceptions, revelation of feedback equal to or higher than the rating on the previous
design leads to improvements (Panel A), while revelation of lower ratings generally has a precisely-
estimated zero effect. Absent new information, new submissions tend to be of roughly the same
quality as the prior submission (Panel B, constant), but feedback has large effects: players who
enter 1- or 2-star designs and then receive a 5-star rating on an earlier submission tend to improve
by over a full point more than they otherwise would. The magnitude of these effects expectedly
declines the better the prior submission (i.e., from left to right across the table), reflecting the
difficulty of improving from a high initial value.

Effects of Feedback on Participation

Theory and intuition suggest that selection into and out of participating is a natural response
to feedback. Though this effect can be discerned at various points in a contest, I again look
to the first rating a player receives to identify the effect on participation. I focus on a player’s
first rating because it will typically be the first indication of the sponsor’s preferences and ex-ante
unpredictable, presenting an opportunity for clean identification. Appendix II.C provides estimates
from analogous regressions on players’ second ratings and finds similar results.

Table II.6 provides descriptive evidence of these effects. The table shows the distribution of the
number of designs a player enters after receiving her first rating, conditional on whether that first
rating is 1-star (left-most panel), or 4- to 5-stars (right-most panel). A majority (69.5 percent) of
players whose first rating is the worst possible will subsequently drop out. In contrast, the majority
(61.2 percent) of players who receive a high rating will subsequently enter additional designs.

[Table II.6 about here]

To formalize this result, I estimate the effect of each player’s first rating and the competition
perceived at the time it is made on the probability that the player subsequently abandons the
contest, projecting an indicator for abandonment on indicators for each rating she may have received
as well as indicators for the highest rating on competing designs:

Abandonjk = β0 +

5∑
r=1

βr · 1(Rjk = r) +

5∑
r=1

γr · 1(R̄−jk = r)

+ δ · Timingjk +Xjkθ + ζk + ϕj + εjk

where Abandonjk indicates that player j entered no designs in contest k after her first rating;
Rjk is the player’s first rating; R̄ijk is the highest rating on any competing designs at that time;
Timingjk measures the fraction of the contest elapsed at the time of that first rating; Xjk is a
vector of controls; and ζk and ϕj are contest and player fixed effects, respectively. While it is likely
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the case that players with no observed activity after their first rating made a deliberate choice to
stop participating, this measure cannot distinguish immediate abandonment from a “wait and see”
strategy that ends in abandonment down the line. Since the result is the same, the distinction is
immaterial for the purposes of this paper.

[Table II.7 about here]

Columns (1) to (3) estimate linear specifications with contest, player, and contest and player
fixed effects, respectively. Linear specifications are used in order to control for these fixed effects
(especially player fixed effects), which may not be estimated consistently in practice and could thus
render the remaining estimates inconsistent in a binary outcome model. Column (4) estimates a
logit model with only contest fixed effects. The linear model with two-way fixed effects (in Column
3) is the preferred specification.

The probability that a player enters more designs is monotonically increasing in that first rating:
players with the most positive initial feedback are significantly more likely to remain active than
those with poor initial feedback, and enter more designs at a precisely-estimated 50 percentage-
point higher rate. High-rated competition also makes it more likely that a player abandons after
her first rating. Altogether, these results establish that feedback leads to advantageous selection,
with the high-rated players more likely to actively compete and low performers opting out after
receiving low marks, but that by revealing high-rated competition, feedback can have the perverse
consequence of driving everyone away.

To shed more light on the effects of asymmetries, I estimate a similar model replacing the indicators
with a quadratic in a player’s probability of winning upon receiving her first rating, which can be
computed from the results of conditional logit estimation (described in detail in Section II.4 of this
chapter). Table II.8 shows results from a similar arrangement of specifications: linear models with
contest, player, and contest and player fixed effects in Columns (1) to (3), and a logit model with
contest fixed effects in Column (4).

[Table II.8 about here]

The tendency to abandon is definitively convex in a player’s probability of winning, reaching a
minimum near a win probability of 0.5, and the estimates are statistically similar across all spec-
ifications – matching theoretical predictions that incentives for effort are greatest when agents
are running even with their competition (Baik 1994). To visualize these results, Figure II.4 plots
the predicted probability of abandonment against the win probability from a logit specification
omitting the fixed effects.

[Figure II.4 about here]

Results in Context

The collective evidence shows that feedback can have the desirable effects of improving the quality
of future submissions and of nudging poor performers out of the contest, reducing wasteful effort
and concentrating incentives for the remaining participants. But by revealing competition, feedback
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can reduce incentives for even the high-performers to participate, relative to the incentives in a
state of ignorance. The principal thus faces a fundamental trade-off between participation and
improvement. Given that sponsors who provide the most feedback are the most likely to award a
retractable prize (recall Table II.3), it would seem that feedback has a large enough effect on quality
to be desirable. Yet the reduced form is ultimately inconclusive and cannot discern how much of the
increase in quality is due to better players or better designs. The distinction is not only important
for understanding how to deliver feedback, but also revealing of the relative contributions of ability
versus improvement to success in this setting.

If feedback were allowed to operate through only a selection or a direction channel, what would the
competitive landscape look like, and how many high-quality designs would the principal receive?
To answer this question, I develop a procedure to estimate the success function and players’ costs
of design, and use the estimates to simulate alternative feedback mechanisms. The simulations
turn off the selection and direction channels one at a time in order to demonstrate the importance
of each and their combined effect. I also compare outcomes when feedback is provided to zero,
some, or all designs, since partial feedback may be sufficient to reap the benefits of direction while
limiting the damage from selection.

II.4 Structural Model

To disentangle the effects of selection and direction, I need an estimate of players’ costs, which is
the key parameter of tournament models not directly observed in the data. To obtain one, I develop
a theoretically-motivated estimation procedure that bounds each player’s cost in every contest in
which she participates. The resulting estimates can then be used to simulate counterfactuals that
decompose the effects of selection and direction on the quality of innovation in this setting.

The empirical model borrows ideas from the empirical auctions literature, which uses theoretical
insights to estimate unobserved distributions of bidder values, and it is flexible in that costs are
allowed to vary by contest and player, reflecting the fact that some contests are more demanding
than others and that players have heterogeneous reservation wages. The main assumptions are (i)
that each player has a constant cost in a given contest and (ii) that players compete until this cost
exceeds the expected benefit. With a consistently estimated success function, a given player’s cost
in a given contest will be set-identified in a sample with any number of contests or players. The
bounds of the identified set converge on a point as the number of players or designs in a contest
grows large, irrespective of the number of contests in the sample.

The estimation proceeds in two steps. In the first step, I estimate a logistic success function that
translates players’ effort into their probability of winning. I then combine the success function with
non-parametric frequencies of ratings on a player’s next design, conditional on her prior history
in the contest, to calculate the expected payoff to each player’s last design in a contest and the
“extra” design that the player chose not to enter. Under the assumption that the game ends in a
complete information Nash equilibrium, these quantities place bounds on cost: a player’s cost must
be less than the expected benefit from her final design but greater than the expected benefit of an
additional, unentered design. The logic behind this procedure is closely related to that of Haile
and Tamer (2003), who use an analogous approach with drop-out bid levels to put bounds on the
distribution of latent bidder values in symmetric English auctions.
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Denote the rating of design i from player j in contest k as Rijk, and let Rijk = ∅ when the sponsor
declines to rate ijk. Ratings provide players with information on two unknowns: (i) the likelihood
of a given design winning the contest, conditional on the competition, and (ii) how well her next
design is likely to be rated. To make the intuition concrete, consider three cases:

1. Rijk = 5. The design is outstanding and has a very high chance of winning the contest.
The player has caught onto a theme that the sponsor likes. The player’s subsequent designs
are likely to be highly rated as well - though the marginal benefit of another submission fall
dramatically, because the player already entered a design that is a strong contender. Any
other five-star designs she enters will substantially cannibalize ijk’s odds.

2. Rijk = 1. The design is not good and is unlikely to win the contest. The player hasn’t yet
figured out what the sponsor likes, and her next design will likely be poorly rated as well.

3. Rijk = ∅. The player receives no feedback on her design. She has no new information on the
sponsor’s tastes, and the distribution of ratings on her next design is roughly unchanged.

In the model below, I formalize this intuition. The empirical model treats the design process as
a series of experiments that adapts to feedback from the sponsor, as in the theoretical model of
Section II.1 and in Gross (2014). Players use feedback to determine the probability that the rated
design wins the contest, refine their experimentation, and set expectations over the ratings on any
subsequent designs. Using the non-parametric distribution of ratings on a design in conjunction
with a conditional logit model translating those outcomes into contest success, players then (1)
calculate the expected benefit of another design, (2) compare it to their contest-, player-specific
cost, and (3) participate until the costs exceed the benefits. The cost of design is set-identified
from this stopping choice. I take the midpoint of the set as a point estimate.

The estimated cost will be the cost of making a single design and will be that which rationalizes the
stopping choices observed in the data. I assume that this cost is constant for each player throughout
a given contest. Design costs primarily reflect the opportunity cost of the time and resources a
player expends in the activity of designing a logo. They thus reflect differences in reservations
wages, which figure prominently when players can enter from anywhere in the world. But the
estimated costs may also reflect (and net out) any unobserved payoffs in the form of learning,
practice, and portfolio-building, all of which motivate players’ participation. There may also be an
unobserved payoff that accrues to the winner, such as a new client relationship; the expected value
of this benefit will be captured in the estimates as well. Finally, the estimates will also reflect any
level bias that a player has over the process determining her probability of winning. In effect, I
will be measuring the costs that players behave as if they face.9

Details: Framework and estimation

Estimating the success function

Let i index submissions, j index players, and k index contests. Suppose every contest k has Jk > 0
risk-neutral players, and every player j in contest k makes Ijk > 0 submissions. Let Ik =

∑
j∈Jk Ijk

be the total number of designs in contest k. Players in contest k compete for a prize Pk.

9For example, if a player has a high reservation wage, has a low unobserved payoff, or underestimates her chances of
winning, she will exert limited effort and be perceived to have a high cost of design.
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As in the theoretical model, I assume the sponsor awards the prize to its preferred design. Formally,
let νijk be the latent value of design ijk to the sponsor of contest k, and suppose that this value is
a function of the design’s rating and an i.i.d. Type-I E.V. error. With six possibilities for ratings,
a design’s value can be written as the sum of fixed effects for each rating and an error term:

νijk = γ∅1(Rijk = ∅) + γ11(Rijk = 1) + . . .+ γ51(Rijk = 5) + εijk ≡ ψijk + εijk (II-3)

This specification is closely related to the theoretical model in equation (II-1), with the main
difference being a restricted, discrete domain for feedback. The error term represents unpredictable
variation in the sponsor’s preferences and explains why 5-star designs do not always win. While the
number and content of designs in the sponsor’s choice set varies between contests, designs always
share a common attribute in their rating, which is assumed to fully characterize the predictable
component of a design’s quality, including any written commentary provided to players but not
observed in the dataset. The choice set is assumed to satisfy I.I.A.; in principle, adding a design of
any rating to a given contest would reduce competing designs’ chances of winning proportionally.10

For contests with an uncommitted prize, the choice set includes an outside option of not awarding
the prize, whose value is normalized to zero.

Under the model in equation (II-3), player j’s probability of winning is:

Pr(j wins k) =

∑
i∈Ijk e

ψijk∑
i∈Ik e

ψik + 1(Prize committed)

This success function can be estimated as a conditional logit model (McFadden 1974) using the
win-lose outcome of every design in the sample. Results are provided in Appendix Table II.C.4,
from which several patterns emerge. First, the value of a design is monotonically increasing in its
rating, with only a 5-star rating being on average preferred to the outside option, and the fixed
effects are precisely estimated. To produce the same change in the success function generated by
a 5-star design, a player would need 12 4-star designs, 137 3-star designs, or nearly 2,000 1-star
designs – so competition effectively comes from the top. As a measure of fit, the predicted odds-on
favorite wins almost half of all contests in the sample. These results demonstrate that this simple
model fits the data quite well and in an intuitive way, suggesting that ratings provide considerable
information about a player’s probability of winning.

Calculating the expected benefit from a design

To compute the expected benefit to a given player of entering an additional design, I consider all
of the ratings the design may receive (ratings of 1 to 5, or no rating), calculate the incremental
change in the success function under each rating, and take the weighted average, weighting by the
non-parametric probability of obtaining each rating conditional on a player’s history in the given
contest. For players without any ratings in a given contest, these non-parametric frequencies are
allowed to vary by quartile of their historical average to account for ex-ante heterogeneity in ability.
This approach flexibly incorporates both ability and the learning that occurs with feedback and is
central to the creative process.

10I also test the I.I.A. assumption by removing subsets of designs from each contest and re-estimating the model.
The results are statistically and quantitatively similar when the choice set is deliberately varied.
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Distribution of outcomes for each design

Let sijk be a state variable characterizing the eventual ratings on all of player j’s designs in contest
k made prior to her ith design. sijk can be summarized as a six-dimensional vector:

sijk =

[∑
x<i

1(Rxjk = ∅),
∑
x<i

1(Rxjk = 1), . . . ,
∑
x<i

1(Rxjk = 5)

]

In practice, a player’s earlier designs aren’t always rated before she makes her next one. Since
sijk incorporates all information on j’s past designs that will ever be known, and we can think
of it as the ratings history under omniscience. However, players’ experimentation choices must
be made on the basis of prior, observed ratings, which are typically incomplete. Let s̃ijk be the
ratings on previous submissions that player j observes at the time of her ith submission in contest
k. Writing R̃xjk, x < i as the rating on submission x < i observed by the player at the time of her
ith submission, we can write the observable ratings history as:

s̃ijk =

[∑
x<i

1(R̃xjk = ∅),
∑
x<i

1(R̃xjk = 1), . . . ,
∑
x<i

1(R̃xjk = 5)

]

The sum of the entries in the vector s̃ijk will equal the sum of those in sijk, but the null rating
count may be higher for s̃ijk, since some of the submissions made prior to i that will eventually be
rated have not yet been given a rating at the time the player makes her ith submission.

With a sample of 496,041 submissions, we can estimate the non-parametric distribution of the
rating on j’s ith submission conditional on her contemporaneously observable ratings history s̃ijk:

f̂(Rijk = r|s̃ijk) =

∑
`∈Ik,k∈K 1(R`k = r|s̃`k = s̃ijk)∑

`∈Ik,k∈K 1(s̃`k = s̃ijk)

d−→ f(r|s̃ijk)

In words, the probability that player j’s ith design in contest k is rated r, given an observable ratings
history of s̃ijk, can be estimated from the data as the fraction of all designs in the data made in
state s̃ijk that received the rating r. With a small, discrete sample space, these probabilities are
easily estimated without the kernel methods required for continuous distributions.

The distribution f̂(·) nevertheless suffers a curse of dimensionality due to the large heterogeneity in
ratings histories. To reduce the dimensionality, I re-define sijk and s̃ijk to indicate whether a player
has received each rating, as opposed to counts of each rating. This adjustment is designed to make
the non-parametric estimation tractable (with 26 = 64 cells) while retaining the most important
information in the ratings history. Under this construction, s̃ijk can be re-defined as follows:

s̃ijk =

[(∑
x<i

1(R̃xjk = ∅) > 0

)
,

(∑
x<i

1(R̃xjk = 1) > 0

)
, . . . ,

(∑
x<i

1(R̃xjk = 5) > 0

)]

Figure II.1 illustrates some examples of f̂(·). The top panel shows the distribution on a player’s
first design in a contest, and the bottom panel shows the distribution on a player’s second design
conditional on the first design receiving (from left to right): 1 star, no rating, and 5 stars. The
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results are intuitive: Players with high ratings enter better designs, players with low ratings enter
worse designs, and players with no feedback draw from approximately the same distribution with
their second design as with their first.

[Figure II.1 about here]

Heterogeneity in ability likely exists even in the absence of feedback. To account for this hetero-
geneity, I model players with no feedback as drawing from ability-specific distributions. For these
cases, I estimate these distributions conditional on her quartile for average ratings in previous
contests, adding an additional category for players who have no ratings in previous contests. In
effect, this allows players with a good track record to draw their first design from a higher-quality
bucket. However, once players have feedback on designs in a given contest, the estimation only
conditions on feedback received in that contest, and players’ track record in earlier contests is no
longer relevant to the estimation.

I assume the players know the distributions f(·|s̃) (or can infer it by intuition, experience, and
examination of past contests) and plug in their observable ratings history, s̃ijk, when they do the
implicit cost-benefit calculations and decide whether to continue participating.

Expected benefit from an additional design

The expected rating on an additional design Ijk + 1, at the time player j chooses to make it, is:

E
[
RIjk+1,jk

]
=
∑
r

r · f(r|s̃Ijk+1,jk) ,

the weighted average of all possible ratings, weighted by the probability of each. The expected
increase in the player’s odds of winning from the additional design, in a guaranteed-prize contest
and holding the competition constant, can similarly be written as follows:

E [∆Pr (j wins k)] =
∑
r

(
∆Pr(j wins k)|RIjk+1,jk = r

)
· f(r|s̃Ijk+1,jk)

=
∑
r

(
eβr +

∑
i∈Ijk e

ψijk

eβr +
∑

i∈Ik e
ψik
−
∑

i∈Ijk e
ψijk∑

i∈Ik e
ψik

)
· f(r|s̃Ijk+1,jk)

The first term is the probability of winning with an additional design rated r, while the second
term is the probability of winning without it. Their difference is the increase in player j’s odds
from that design, which is weighted by the probability of an r-star rating and summed to get its
expected value. The expected benefit of the design is this quantity multiplied by the prize:

E
[
MBIjk+1,jk

]
= E [∆Pr(j wins k)] · Pk
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Estimating costs from stopping choices

Having obtained a success function from the sponsor’s choice problem, and derived a non-parametric
procedure for predicting quality, estimation requires two final assumptions:

• Players exert effort if the expected benefit exceeds the cost

• Players do not exert effort if the cost exceeds the benefit

The appeal of these assumptions is self-evident: they impose minimal requirements on agents
and are nearly axiomatic in economic modeling.11 To make the logic concrete, consider the final
moments of a single contest. If designs can be made and entered in an infinitesimal amount of time
(an assumption which, while hyperbolic, is perhaps not a bad approximation), then the contest
should end in Nash equilibrium: given her ratings history and the ratings on competing designs,
no player wants to experiment with another design. I similarly assume that a player’s final design
is a best response to competitors’ play.

The implication is that the expected benefit of each player’s last design exceeds her cost, whereas
the expected benefit of the next design does not. These conditions allow me to place bounds on
costs. Given the depth of these contests, the incremental benefit of an additional design is usually
small, and the estimated bounds will therefore tend to be tight. I estimate each player’s contest-
specific cost of design to be bounded below by the expected benefit of the “extra” design that she
does not to make (Ijk + 1) and bounded above by the ex-ante expected benefit of her final design
(Ijk), as follows:

Cjk ∈
[
E[MBIjk+1,jk] , E[MBIjk,jk]

]
Bootstrapped standard errors

As functions of the MLE parameters and non-parametric frequencies, the estimated bounds are
themselves random, taking the distribution of the convolution of their components. The maximum
likelihood estimates are known to be normally distributed. A player’s predicted success function at
a given vector of efforts is thus the ratio of a sum of log-normals over a sum of log-normals. This
ratio is calculated for the “final” design, subtracted from a similar quantity at the “extra” design,
multiplied by the non-parametric probability of a given rating, and summed over all possible ratings
to obtain the bounds. Randomness therefore enters from two sources: the MLE parameters and
the non-parametric frequencies.

I use a block-bootstrap to obtain standard errors. To do so, I subsample entire contests from the
dataset with replacement, re-estimate the logit parameters and non-parametric frequencies within
the subsample, and use these estimates to re-calculate bounds on cost for every contest-player in
the original dataset. My baseline bootstrap consists of 200 replications. As Section II.5 shows,
the bounds are estimated precisely, and the identified set for each contest-player’s cost is narrow
relative to the midpoint.

11Haile and Tamer (2003) use similar assumptions to motivate their method of estimating bounds on bidder values
in symmetric English auctions, which provided the foundations for the procedure developed in this paper.
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Assumptions and Identification

Identification of players’ design costs hinges on four assumptions:

1. Costs are constant for a given player in a given contest (i.e., linear in effort).

2. The latent quality of each design is linear in its rating and an i.i.d. logit error.

3. The players know the distribution of ratings on their next design conditional on
past ratings, as well as the process generating the odds of each design winning.

4. Players experiment up to the point where E[MB] ≤ MC.

The assumption of linear costs could be reinterpreted as an approximation rather than a true
assumption per se. The second assumption implies that all available information about quality is
captured by a design’s rating, and the reason 5-star designs do not win every contest effectively
boils down to luck – in practice, the sponsor may change its mind, or different people might provide
feedback versus award winners. Although the third assumption can be debated, these distributions
are both intuitive and available to any player that has competed in or browsed past contests. The
fourth assumption derives from economic theory.

For the purposes of estimation, I further assume that:

5. Players stop competing at the time they enter their last design.

6. At the time of this final submission, players have foresight over the
state of the competition they will face at the end of the contest.

The fifth assumption is supported by conversations with professional designers who have partici-
pated on this platform and allege that they often enter their final design knowing it is their final
design and simply “hope for the best.” If players regularly checked in on each contest and decided
whether to continue competing, the true time of abandonment would be unobserved. The final
assumption is necessary for the agents to be able to compute the success function. On average,
the majority of players in a contest exit in the last quarter. Since the distribution of ratings in the
contest is publicly available, I assume that players know or can forecast the competition they will
face at the end of the contest.12 Appendix II.D offers descriptive evidence that the information
available midway through a contest is sufficient to project the state of competition at the end of
the contest reasonably well, supporting an assumption of foresight.

II.5 Cost Estimates

Table II.9 provides summary statistics on the estimated costs of all 160,059 contest-players in the
sample, calculated as the midpoint of the bounds estimated by the procedure described above. The
cost estimates range from near zero to as high as $108.24, with an average of $5.77 and a median
of $4.62. To put these numbers in context, recall that the average per-design winnings for players
in the sample, taken over their complete history on the platform, is $4.58 (the median is zero).

12These players have available contemporaneous activity in the given contest, historical evidence from past contests
(competed or observed), and intuition to make an informed assessment of competition.
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[Table II.9 about here]

Figure II.5 shows the estimated bounds on cost for every contest-player in the sample. The upper
bound is denoted in blue, and the lower bound in green. The red line traces the midpoint of
these bounds for each player, which is my preferred point estimate for cost. Though confidence
bands are not shown, these bounds are precisely estimated: the standard errors on the bounds are
generally around 4.1 percent of the value (median 3.3 percent, 90th percentile 5.9 percent). They
are also very tight, with the width of the identified set on average being 3.2 percent of the midpoint
(median 2.6 percent, 90th percentile 6.2 percent), further motivating the choice of the midpoint as
the preferred point estimate for simulations.

[Figure II.5 about here]

Upon seeing these results, the foremost question is whether the estimated costs are plausible. The
mean estimated cost is around the average per-design winnings, suggesting that the estimates have
approximately the right magnitude. What of their variation? Closer inspection of contests in
which players are estimated to have very high costs typically reveals why. For example, in one
such contest, players were asked to pay close attention to an unusually long list of requirements
and provide a detailed, written explanation or story accompanying each design; as a result, only 23
designs were entered, in spite of a prize in the 99th percentile of all contests. This result is a natural
consequence of the model: since the expected benefits to an additional design will be high when
participation is low, ceteris paribus, costs must be high to rationalize the observed exit patterns.
Case studies of other contests further validate the estimates.

While these estimates are inevitably approximations, their quality is further evidenced by the fact
that contest and player fixed effects explain nearly all (over 77 percent) of the variation in log costs,
which should be the case if costs are primarily determined by the requirements of the contest and
the characteristics of the player, and less so by the match between contests and players. Most of
this variation (68 percent) is explained by contest fixed effects alone; in other words, costs vary
considerably more between contests than within them. A smaller fraction (17 percent) is explained
by player fixed effects alone.

The foremost shortcoming of the cost estimates is the imprecision that results from the dimen-
sionality reduction in the model. Recall that the empirical model has players experimenting and
projecting design outcomes on the basis of coarse ratings histories, with 64 variants. The low di-
mensionality is needed to make the estimation tractable, but it also sometimes results in multiple
players having the same histories at the time of their stopping decisions and thus being estimated
to have the same cost. This result is a reminder that the estimates are approximations, though
it is not necessarily a reason to view them with skepticism. Approximations will generally be
sufficient to account for costs in regressions (Section II.3) or use them to simulate contests under
counterfactual conditions (Section II.6).

Estimated costs are not strictly mechanical

The nature of this procedure raises the question of whether the estimated costs are mechanical or
substantive economic quantities. Recall that costs are estimated at the midpoint of the payoffs
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to a player’s final design and an extra, unentered design (Pk · ∆Pr(Win|final design) and Pk ·
∆Pr(Win|extra design)). Holding fixed the gains to the player’s win probability, a one percent
increase in prize would mechanically generate a one percent increase in the costs that I estimate.
However in practice, the increase in a player’s probability of winning from entering an additional
design will not be fixed: theory predicts that players will compete away the value of larger prizes.
The probability gains available at the player’s final or extra design will then be reduced, offsetting
the mechanical effect of prize increases in the cost estimation.

To test for the presence of such an offset, Appendix Table II.C.5 regresses the log probability gains
achieved by a player’s final design on the log prize. I find that larger prizes indeed tend to be
heavily competed away: when the prize increases by one percent, the probability gains of players’
final submissions declines by 0.75 percent – such that the residual cost estimate increases by only
0.25 percent. Though a perfect offset would manifest as an elasticity of -1, it should not be expected
if projects with larger prizes are also more difficult, as the aforementioned evidence suggests. The
regression results in Section II.2 additionally show that costs relate to contest outcomes in expected
ways, with sensible magnitude, reinforcing the evidence that the cost estimates are real economic
quantities and not merely an artifact.

II.6 Decomposing the Effects of Feedback

I use the structural estimates to simulate tournaments under alternative feedback institutions which
can clarify the role of feedback in this setting and separate its effects on participation and quality.
In Section II.6, I compare total entry and the number of high-quality designs submitted when no,
some, or all entries receive feedback. In Section II.6, I enable selection and direction individually
to compare their separate and combined effects relative to a baseline of no feedback.

I sample 100 contests from the data and simulate three-player, sequential-play tournaments. Lim-
iting the field to a few players reduces the dimensionality of the game sufficiently to be able to
backwards-induct the best responses of each player’s competitors and allow players to internalize
these best responses, imposing discipline on their choices. The disadvantage to this approach is
that the simulated contests have substantially fewer players than those in the sample, limiting the
role that selection can play on the extensive margin (number of players). However, because the
intensive margin (number of designs) features prominently, the presence of selection effects will still
be highly detectable, as the results demonstrate.

The procedure is as follows. For every simulation of a given contest, I first (randomly) select three
players in the contest and fix the order of their moves. The first player always enters. Beginning
with player two, I project the distribution of ratings on her next design conditional on her ratings
history in the contest, as well as the distribution of ratings that player three and then player one
might subsequently receive, should they choose to engage. I then (i) evaluate player one’s decision
to participate or abandon conditional on the preceding outcome for players two and three, under
a presumption of no further moves; (ii) backwards-induct player three’s decision to participate
or abandon conditional on the preceding outcome for player two and the anticipated response of
player one; and finally (iii) backwards-induct player two’s decision to participate or abandon given
the distribution of responses from his competitors, choosing the action with the higher expected
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payoff.13 If applicable, I then draw a design (in the form of a rating) for the given player, proceed
to the next player, and repeat until every player has exited.

As in the empirical model, feedback enters players’ decision-making in two places: it determines the
distribution of the rating on a player’s next design and the value and shape of her success function.
The direction effect relates to the former, while the selection effect is a convolution of the two:
players choose to remain active or abandon on the basis of the projected benefit to continuation,
which is a function of both the rating on the next design and the incremental increase in the
win probability that it generates. The net effects of feedback will reflect selection, improvement,
and their interaction, but the advantage to simulation is that it makes it possible to gauge their
relative importance by allowing one to vary while holding the other fixed, which is a possibility not
otherwise supported by the data.

Feedback vs. No Feedback

The first set of simulations compares contest outcomes under zero, partial, and full feedback policies.
In these simulations, I draw each new design as a rating, according to the empirical frequencies in
the data, irrespective of whether feedback is provided. Every design will thus have a latent rating,
and the variation between feedback policies is in the disclosure of this rating to the players, which
is implemented as follows. In the full feedback simulation, ratings are immediately revealed. In the
simulation with partial feedback, designs will randomly have their ratings concealed, according to
the empirical frequency of unrated designs in the sample. In the simulation without feedback, all
ratings are concealed.

As context for the comparisons below, Table II.10 shows the distribution (across contests) of total
submissions under each feedback policy, after averaging across simulations for each contest. Absent
feedback-induced knowledge of asymmetries, simulated participation can grow quite large, but
the design counts in simulations with feedback are comparable to those in the observed contests:
the average simulated contest attracts 102 designs under partial feedback and 75 designs with
comprehensive feedback.

[Table II.10 about here]

Table II.11 shows the effects of these feedback policies on the number of players, designs, and
designs of each rating. The table shows the mean percent change in these outcomes across all
contests and simulations as the policy varies from zero to partial feedback (Column 1), partial to
full feedback (Column 2), and zero to full feedback (Column 3), with standard errors below. Given
a pool of only three players, the number of players entering is relatively unaffected by feedback, as
they will generally all participate: the reduction in extensive entry is (a statistically significant) 1.4
percent. However, moving from none rated to all rated on average reduces the number of entries
in the simulations by over 81 percent.

13This approach to simulation was taken due to the absence of a closed-form solution amenable to plug-in simulation.
Note that foresight remains partially limited under this procedure, as the player two moves ahead is forecast
to behave as if she were the marginal player, which is necessary to make the dimensionality of the simulation
tractable. However, the results suggest that this procedure sufficiently internalizes competitive best-responses, as
the simulated number of designs in each contest are comparable to counts observed in the sample.
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[Table II.11 about here]

Drilling down, the simulations suggest that feedback increases the number of top-rated designs and
reduces the number of designs of every other rating, in some cases dramatically: comprehensive
feedback leads to a 10 percent increase in 5-star designs and 90 percent reductions in 1- and 2-
star designs, relative to no feedback. However, as demonstrated in the reduced-form, feedback
is a double-edged sword, since it reveals competition and can reduce all players’ incentives to
participate. Partial feedback may be the more effective policy if it can support improvement while
limiting the revelation of intensified competition. The results of these simulations suggest this
is precisely the case: occasional feedback yields greater increases in top-rated designs, and more
designs of every rating, than comprehensive feedback.

Selection vs. Direction

The second set of simulations performs the focal exercise, toggling selection and direction. To turn
off selection, I allow players to see only the number of own and competing designs and not the
ratings on these designs when choosing whether to continue participating or abandon. To turn off
direction, I hide the ratings from each player when a new design is drawn.14

Table II.12 provides the results. The first and second columns show the selection and direction
effects individually, and the third column shows their combined effect for comparison. When
feedback enters players’ participation choices but not their design choices, as in Column (1), the
total number of designs declines by 15 percent, with a roughly constant effect across ratings. When
feedback enters design choices but not participation choices (Column 2), the number of top-rated
designs increases more than nine-fold relative to no feedback. In this scenario, feedback aids players
in improving their work, and the shrouding of asymmetries causes players to continue competing
much longer than they would with complete information. When feedback is allowed to enter both
the participation and design choices (Column 3), these countervailing forces offset, resulting in
a tempered but nevertheless significant, positive effect on high-quality submissions and a sharp
reduction in low-quality submissions. Together, the results imply that the increase in high-quality
innovation in this setting is entirely attributable to improvement.

[Table II.12 about here]

II.7 Conclusion

This paper studies the effects of interim feedback on creative production in competitive environ-
ments. Although practitioners consider feedback to be an essential feature of product development,
the interaction of its effects on quality and incentives presents an intricate problem for the mecha-
nism designer: feedback provides meaningful information that both generates quality improvements
and reveals asymmetries between competitors that dampen incentives for effort. To my knowledge,
this tradeoff has not previously been studied in the economics literature.

14These constraints could in concept arise in a real-world scenario in which the competitors were firms with managers
and designers, and either (i) the designers could see the feedback but the managers deciding whether to continue
competing were ignorant (i.e., a scenario without self-selection); or (ii) the managers deciding whether to continue
competing do not pass along feedback they receive to the designers (scenario with no direction).
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I use a sample of several thousand real-world commercial logo design tournaments to study this
question. In these tournaments, a sponsor solicits custom designs from participants, provides feed-
back, and selects a winner after a pre-announced deadline. Reduced-form evidence corroborates
the tension between improvement and participation: feedback both increases the quality of subse-
quent entries and motivates high performers, but the revelation of intense competition discourages
continued participation. Since the net effect on high-quality submissions is ambiguous, I develop
a structural procedure to estimate a function translating ratings into a probability of winning, as
well as effort costs, and simulate tournaments under alternative feedback institutions. I compare
outcomes when feedback is provided to all, some, or no designs, and when feedback is provided to
all but the effect on quality or participation is muted.

The simulations are insightful. First, they suggest that complete feedback modestly increases the
number of high-quality designs relative to no feedback. I also find that randomly administering
feedback to only a subset of designs yields more high-quality submissions than complete feedback:
partial feedback provides enough direction to yield improvements yet limits the amount of compe-
tition disclosed and the attrition this information generates. I then show that the positive effect of
feedback on the quality of innovation is entirely the consequence of direction – implying that im-
provement is far more important to successful innovation in this setting than either talent or luck.
It is also likely that the findings are externally valid: in many creative fields, including research,
learning-by-doing and perseverance are crucial to achieving success.

In light of the evidence in this paper, a natural opportunity for future research is to further explore
the optimal frequency of feedback in organizations, comparing regular evaluation, no evaluation,
and stochastic evaluation. An additional opportunity might be to compare a feedback mechanism
to elimination, which is widely used in practice to pare down the competition and sharpen incen-
tives for remaining finalists. Finally, this paper introduces a generalizable, structural approach to
empirical research on tournaments, which has historically been constrained by a scarcity of large-
sample data, and the methods developed in this paper can potentially be used or adapted to study
tournaments in smaller samples.
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Figure II.1: Distribution of ratings on 1st and 2nd designs
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Notes: Figure shows distribution of ratings for: players’ first design in a
contest (top) and players’ second design after receiving a 1-star rating on
their first design (bottom left), after no rating (bottom center), and after a
5-star rating (bottom right).

Figure II.2: Distribution of ratings on 2nd design, by whether 1st design’s rating observed
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Notes: Figure reports the distribution of ratings on a player’s second design
in a contest conditional on whether that player’s first design was rated prior
to making the second one. The fraction rated 5 in the left panel is 0.03.
The fraction rated 5 in the right panel is 0.06. The difference is significant
with p=0.00.
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Figure II.3: Distribution of ratings on 2nd design, by rating on 1st design and whether observed
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Notes: Figure shows the distribution of ratings on a player’s second design in a contest,
conditioning on (i) the rating they receive on their first design, and (ii) whether that
rating was observed prior to entering their second design. In all subfigures, the fraction
of players who score a better rating on their second design than on their first is higher
when they observe feedback in advance (for players with a 1-star: 51 percent versus 26
percent; for those with a 2-star: 41 percent versus 27 percent; for those with a 3-star:
26 percent versus 17 percent; for those with a 4-star: 11 percent versus 6 percent). All
differences are significant at the one percent level.
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Figure II.4: Probability of abandoning after first rating
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Notes: Figure shows the predicted probability that a player abandons
the contest after her first rating, as a function of the contemporaneous
win probability, estimated from a quadratic in Pr(Win) and controlling
for timing. The win probability at which continued participation is
most likely is 0.52.
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Figure II.5: Estimated design costs, with bounds, in ascending order
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Notes: Figure shows estimated costs for each contest-player in the sample.
The upper bound is plotted in blue, and the lower bound in green. The red
line traces the midpoint, which is the preferred point estimate. The figure
arranges contest-players in increasing order of this midpoint.
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Table II.1: Descriptive Statistics

Panel A. Characteristics of contests in the sample

Variable N Mean SD P25 P50 P75

Contest length (days) 4,294 9.15 3.72 7 7 13
Prize value (US$) 4,294 295.22 128.12 200 250 350
No. of players 4,294 37.28 25.35 23 31 43
No. of designs 4,294 115.52 94.82 65 92 134

5-star designs 4,294 3.41 6.97 0 1 4
4-star designs 4,294 13.84 17.89 3 9 19
3-star designs 4,294 22.16 26.99 5 15 30
2-star designs 4,294 16.04 23.36 2 8 21
1-star designs 4,294 10.94 28.78 0 3 12
Unrated designs 4,294 49.14 63.36 10 34 65

Number rated 4,294 66.38 73.34 21 50 88
Fraction rated 4,294 0.56 0.33 0.3 0.6 0.9
Prize committed 4,294 0.23 0.42 0.0 0.0 0.0
Prize awarded 4,294 0.89 0.31 1.0 1.0 1.0

Panel B. Characteristics of contest-players in the sample

Variable N Mean SD P25 P50 P75

No. of designs 160,059 3.10 3.53 1.0 2.0 4.0
Number rated 160,059 1.78 2.95 0.0 1.0 2.0

Panel C. Characteristics of players in the sample

Variable N Mean SD P25 P50 P75

No. of contests entered 14,843 32.45 97.01 2 7 22
Has ever won a contest 14,843 0.19 0.39 0 0 0
Winnings/contest 14,843 14.68 75.27 0 0 0
Winnings/submission 14,843 4.58 24.76 0 0 0

Notes: Panel A reports descriptive statistics for the contests. “Fraction rated” refers to the fraction
of designs in each contest that gets rated. “Prize committed” indicates whether the contest prize is
committed to be paid (vs. retractable). “Prize awarded” indicates whether the prize was awarded.
The fraction of contests awarded awarded subsumes the fraction committed, since committed prizes
are always awarded. Panel B reports descriptives at the level of contest-players. Panel C reports
descriptives across the entire sample for players who participated in at least one of the contests in
the two-year sample used in the paper. These performance statistics calculations reflect a players’
entire history on the platform through August 1, 2012 for all publicly visible contests (including design
categories other than logos, which is the modal category).

Table II.2: Distribution of ratings (rated designs only)

1-star 2-star 3-star 4-star 5-star Total

Count 46,983 68,875 95,159 59,412 14623 285,052
Percent 16.48 24.16 33.38 20.84 5.13 100

Notes: Table tabulates rated designs by rating. 57.5 percent of designs
in the sample are rated by sponsors on a 1-5 scale. The site provides
guidance on the meaning of each rating, which introduces consistency
in the interpretation of ratings across contests.
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Table II.3: Correlations of contest outcomes with their characteristics

(1) (2) (3) (4)
Players Designs Designs/Player Awarded

Total Prize Value ($100s) 14.828*** 55.366*** 0.124*** 0.248***
(0.665) (2.527) (0.015) (0.042)

Committed Value ($100s) 1.860* 5.584 0.008
(1.118) (4.386) (0.025)

Average Cost ($) -1.790*** -9.074*** -0.088*** -0.133***
(0.096) (0.353) (0.004) (0.010)

Fraction Rated -14.276*** -20.056*** 0.683*** 0.691***
(0.812) (2.855) (0.040) (0.106)

Contest Length 0.340*** 1.113*** 0.003 0.007
(0.069) (0.251) (0.004) (0.010)

Words in Desc. (100s) 0.061 2.876*** 0.059*** -0.158***
(0.081) (0.389) (0.005) (0.014)

Attached Materials -0.878*** -1.557** 0.051*** -0.011
(0.161) (0.604) (0.012) (0.016)

Prize Committed 1.076 2.909 -0.023
(3.290) (12.867) (0.085)

Constant 9.150*** -4.962 2.488*** 1.967***
(1.760) (6.180) (0.073) (0.179)

N 4294 4294 4294 3298
R2 0.63 0.65 0.31

Notes: Table shows the estimated effect of contest attributes on overall participation and
the probability that the prize is awarded. The final specification is estimated as a probit
on contests without a committed prize. *, **, *** represent significance at the 0.1, 0.05,
and 0.01 levels, respectively. Monthly fixed effects included but not shown. Robust SEs
in parentheses.
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Table II.4: Effects of feedback: Improvement between first and second submissions

Panel A. Probability of improvement

When first design rated:
1-star 2-star 3-star 4-star

1(First rating observed) 0.251*** 0.140*** 0.087*** 0.045***
(0.015) (0.010) (0.007) (0.006)

Constant 0.258*** 0.267*** 0.171*** 0.060***
(0.006) (0.005) (0.004) (0.003)

N 8466 12653 16739 9192
R2 0.04 0.02 0.01 0.01

Panel B. Rating of second design

When first design rated:
1-star 2-star 3-star 4-star

1(First rating observed) 0.403*** 0.260*** 0.150*** 0.079***
(0.026) (0.016) (0.010) (0.010)

Constant 1.373*** 2.362*** 3.226*** 4.095***
(0.011) (0.007) (0.005) (0.005)

N 8466 11017 13072 5701
R2 0.04 0.03 0.02 0.01

Notes: Table shows the effects of observing feedback in advance of a player’s
second design in a contest on the probability that it is higher-rated than her first
entry (Panel A) and on its rating, conditional on weakly improving (Panel B).
*, **, *** represent significance at the 0.1, 0.05, and 0.01 levels, respectively.
Standard errors clustered by player in parentheses.
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Table II.5: Effects of feedback: Improvement between any consecutive submissions

Panel A. Probability of improvement

When previous design rated:
1-star 2-star 3-star 4-star

∆1(Obs. 5-star rating) 0.184 0.389*** 0.426*** 0.274***
(0.155) (0.114) (0.047) (0.030)

∆1(Obs. 4-star rating) 0.290*** 0.358*** 0.222*** 0.001
(0.055) (0.030) (0.016) (0.007)

∆1(Obs. 3-star rating) 0.258*** 0.137*** 0.030*** -0.007
(0.036) (0.020) (0.008) (0.012)

∆1(Obs. 2-star rating) 0.147*** 0.119*** -0.050*** -0.013
(0.030) (0.012) (0.014) (0.018)

∆1(Obs. 1-star rating) 0.195*** -0.028 -0.026 -0.017
(0.015) (0.026) (0.024) (0.029)

Constant 0.253*** 0.290*** 0.215*** 0.105***
(0.006) (0.005) (0.003) (0.003)

N 13012 19955 32637 21785
R2 0.04 0.02 0.01 0.01

Panel B. Rating of subsequent design

When previous design rated:
1-star 2-star 3-star 4-star

∆1(Obs. 5-star rating) 1.336** 1.396*** 0.695*** 0.324***
(0.553) (0.307) (0.073) (0.033)

∆1(Obs. 4-star rating) 0.999*** 0.708*** 0.260*** 0.012
(0.155) (0.065) (0.020) (0.010)

∆1(Obs. 3-star rating) 0.576*** 0.194*** 0.057*** 0.010
(0.083) (0.032) (0.011) (0.018)

∆1(Obs. 2-star rating) 0.212*** 0.194*** -0.020 0.009
(0.056) (0.018) (0.022) (0.032)

∆1(Obs. 1-star rating) 0.303*** 0.041 -0.004 -0.019
(0.027) (0.044) (0.037) (0.049)

Constant 1.373*** 2.396*** 3.282*** 4.147***
(0.012) (0.007) (0.005) (0.004)

N 13012 17796 27025 15360
R2 0.05 0.04 0.02 0.01

Notes: Table shows the effects of newly-arrived feedback on the probability that
a given design is higher-rated than that player’s previous submission (Panel A)
and on its rating, conditional on weakly improving (Panel B). These effects are
identified by comparing the ratings on successive entries by a given player, in
a given contest, where the player has the same latent ratings at the time of
both entries but experiences change in her information set between the two as
a result of newly-arrived feedback. *, **, *** represent significance at the 0.1,
0.05, and 0.01 levels. Standard errors clustered by player in parentheses.
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Table II.6: Designs entered after a player’s first rating

When first rating is 1 (out of 5) When first rating is 4 or 5 (out of 5)
Designs after 1st rating Freq. Pct. Designs after 1st rating Freq. Pct.

0 designs 11,378 69.49 0 designs 7,399 38.80
1 design 1,696 10.36 1 design 2,978 15.61
2 designs 1,084 6.62 2 designs 2,339 12.26
3 designs 611 3.73 3 designs 1,662 8.71
4 designs 403 2.46 4 designs 1,223 6.41
5 designs 332 2.03 5 designs 854 4.48
6 designs 208 1.27 6 designs 621 3.26
7 designs 157 0.96 7 designs 436 2.29
8 designs 90 0.55 8 designs 292 1.53
9 designs 69 0.42 9 designs 264 1.38
10+ designs 346 2.11 10+ designs 1,004 5.26

Total 16,374 100 Total 19,072 100

Notes: Table reports the activity of players after receiving their first rating in a contest, by the value
of that first rating. A total of 86,987 contest-players received first ratings. Of these: 16,374 were rated
1 star (18.8 percent); 22,596 were rated 2 stars (26.0 percent); 28,945 were rated 3 stars (33.3 percent);
16,233 were rated 4-star (18.7 percent); and 2,839 were rated 5-star (3.3 percent). The table illustrates
that players are much more likely to continue participating in a contest after positive feedback.
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Table II.7: Tendency to abandon after first rating, as function of rating

Dependent variable: Abandon after first rating
(1) (2) (3) (4)

Linear Linear Linear Logit

Player’s first rating==5 -0.444*** -0.394*** -0.485*** -2.311***
(0.017) (0.017) (0.020) (0.086)

Player’s first rating==4 -0.437*** -0.385*** -0.454*** -2.269***
(0.010) (0.010) (0.012) (0.055)

Player’s first rating==3 -0.280*** -0.242*** -0.290*** -1.468***
(0.008) (0.008) (0.009) (0.044)

Player’s first rating==2 -0.114*** -0.097*** -0.120*** -0.620***
(0.007) (0.007) (0.008) (0.038)

Competitors’ prior best==5 0.037*** 0.064*** 0.058*** 0.203***
(0.013) (0.011) (0.014) (0.065)

Constant 0.483*** 0.465*** 0.174 -0.898
(0.026) (0.020) (0.106) (1.130)

N 48125 48125 48125 46935
R2 0.24 0.36 0.46
Contest FEs Yes No Yes Yes
Player FEs No Yes Yes No

Notes: Table shows the effect of a player’s first rating in a contest and the competition
at that time on the probability that the player subsequently enters no more designs.
Observations are contest-players. The dependent variable in all columns is an indicator
for whether the player abandons after her first rating. Columns (1) to (3) estimate
linear models with fixed effects; Column (4) estimates a logit model without player fixed
effects, which may render the estimates inconsistent. *, **, *** represent significance at
the 0.1, 0.05, and 0.01 levels, respectively. All specifications control for time remaining,
both in levels and as a percent of the contest duration. Standard errors clustered by
player in parentheses.
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Table II.8: Tendency to abandon after first rating, as function of Pr(Win)

Dependent variable: Abandon after 1st rating
(1) (2) (3) (4)

Linear Linear Linear Logit

Pr(Win) -1.643*** -1.565*** -1.644*** -8.756***
(0.049) (0.053) (0.055) (0.280)

Pr(Win)2 1.565*** 1.478*** 1.537*** 8.284***
(0.055) (0.061) (0.061) (0.306)

Constant 0.398*** 0.379*** -0.052 -1.622
(0.025) (0.019) (0.085) (1.389)

N 48125 48125 48125 46935
R2 0.20 0.34 0.43
Contest FEs Yes No Yes Yes
Player FEs No Yes Yes No
Minimizer 0.52 0.53 0.53 0.53

Notes: Table shows the effect of a player’s win probability after
receiving her first rating on the probability that she subsequently
enters no more designs. Observations are contest-players. The
dependent variable in all columns is an indicator for whether the
player abandons after her first rating. Columns (1) to (3) es-
timate linear models with fixed effects; Column (4) estimates a
logit model without player fixed effects, which may render the es-
timates inconsistent. *, **, *** represent significance at the 0.1,
0.05, and 0.01 levels, respectively. All specifications control for
time remaining, both in levels and as a percent of the contest
duration. Standard errors clustered by player in parentheses.

Table II.9: Summary statistics for estimated costs

N Mean SD Min P25 P50 P75 Max

Est. Cost 160,059 5.77 4.76 0.04 2.15 4.62 8.06 108.24
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Table II.10: Distribution of simulated contests’ submission counts under each feedback policy

Simulated policy N Mean SD P10 P25 P50 P75 P90

No feedback 100 486.29 571.65 60.5 120.86 263.43 681.71 1224.09
Partial feedback 100 101.72 112 19.15 29.99 61.26 134.04 243.98
Full feedback 100 75.24 83.13 12.71 22.75 48.07 97.67 187.14

Notes: Table shows the distribution (across contests) of design counts for each simulated feedback
policy: (i) no designs receive ratings, (ii) a subset receive ratings, and (iii) all receive ratings.
Design counts for each contest are first averaged across its 50 simulations.

Table II.11: Effects of Feedback on Outcomes of Simulated Tournaments

Percent change in outcome, when:

Some rated, relative All rated, relative All rated, relative
Outcome to none rated to some rated to none rated

Players -0.7% *** -0.7% *** -1.4% ***
(0.1%) (0.1%) (0.1%)

Designs -75.1% *** -6.2% *** -81.3% ***
(0.2%) (0.2%) (0.2%)

Num. 5-star 35.3% *** -24.9% *** 10.4% ***
(1.9%) (1.9%) (1.5%)

Num. 4-star -53.5% *** -8.9% *** -62.4% ***
(0.6%) (0.7%) (0.6%)

Num. 3-star -74.6% *** -6.4% *** -81.1% ***
(0.3%) (0.4%) (0.3%)

Num. 2-star -83.3% *** -5.3% *** -88.6% ***
(0.3%) (0.3%) (0.2%)

Num. 1-star -88.3% *** -3.9% *** -92.2% ***
(0.2%) (0.3%) (0.2%)

Notes: This table illustrates the effect of feedback on principal outcomes in simulated design
contests. One hundred contests were randomly selected from the sample and simulated
50 times with three randomly-selected players. Simulations were performed under three
scenarios: (i) feedback not provided; (ii) feedback randomly provided to a subset of designs,
drawn according to the frequencies in the data; and (iii) feedback provided to all designs.
In all cases, feedback is made available immediately after the player submits the design.
The table provides the average percent change in the given outcome relative to a baseline
simulation with no feedback, averaged over all simulations of all contests. Feedback is seen to
reduce participation and increase the frequency of high-quality designs. *, **, *** represent
significance at the 0.1, 0.05, and 0.01 levels, respectively. Standard errors in parentheses.
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Table II.12: Effects of Feedback on Outcomes of Simulated Tournaments

Percent change in outcome, when:

Selection/no direction, Direction/no selection, Combined effects,
Outcome rel. to no feedback rel. to no feedback rel. to no feedback

Players -1.1% *** 0.0% n.a. -1.4% ***
(0.1%) (0.0%) (0.1%)

Designs -15.1% *** 0.0% n.a. -81.3% ***
(0.8%) (0.0%) (0.2%)

Num. 5-star -17.5% *** 941.7% *** 10.4% ***
(1.0%) (8.9%) (1.5%)

Num. 4-star -16.6% *** 98.7% *** -62.4% ***
(0.8%) (1.0%) (0.6%)

Num. 3-star -14.9% *** -19.6% *** -81.1% ***
(0.8%) (0.3%) (0.3%)

Num. 2-star -11.4% *** -54.0% *** -88.6% ***
(0.9%) (0.3%) (0.2%)

Num. 1-star -12.0% *** -66.4% *** -92.2% ***
(0.9%) (0.3%) (0.2%)

Notes: This table separates feedback’s effects on quality and participation in the simulated contests.
Effects are isolated by running simulations in which feedback is allowed to enter players’ decisions to
continue or drop out but not influence experiment outcomes (Column 1), and vice versa (Column 2).
In effect, the simulations make feedback visible to players when deciding whether to continue or drop
out but invisible/unavailable when they draw their next design (and vice versa). One hundred contests
were randomly selected from the sample and simulated 50 times with three randomly-selected players.
Simulations were performed under three scenarios: (i) feedback is available for the continuation decision
but not experimentation; (ii) feedback is available for creative choices but not the continuation decision;
and (iii) feedback is available for both choices. The table provides the average percent change in the
given outcome relative to a baseline simulation with no feedback, averaged over all simulations of all
contests. *, **, *** represent significance at the 0.1, 0.05, and 0.01 levels, respectively. Standard errors
in parentheses.
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Part III

Scale versus Scope in the
Diffusion of New Technology
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Chapter Abstract

Using the farm tractor as a case study, I show that lags in technology diffusion arise along two
distinct margins: scale and scope. Though tractors are now used in nearly every agricultural
field operation and in the production of nearly all crops, they first developed with much more
limited application, and early diffusion was accordingly limited in scope until tractor technology
generalized. Other historically important innovations share similar histories. The results suggest
that the key to understanding technology diffusion is not only in explaining the number of different
users, but also in explaining the number of different uses.
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Technology diffusion is widely held to be a leading explanation for productivity growth and pro-
ductivity differences across industries, firms, and geographic regions. For example, it is frequently
argued that facilitating the diffusion of modern agricultural technologies to developing countries is
a key to lifting incomes and breaking a cycle of poverty. Previous research on technology diffusion
has focused heavily on explaining variation in the scale of diffusion for particular applications.
Considerably less attention has been paid to determinants of its scope – the set of applications in
which the focal technology is used at all – despite Griliches’ (1957) contention that this extensive
margin is one of the principal dimensions along which diffusion occurs.1

In this paper, I show that the key to understanding lags in the diffusion of the farm tractor and
other historically important innovations lies not only in explaining the number of users, but also in
explaining the number of uses. Each of the examples in this paper – tractors and hybrid seed corn
in agriculture, and steam and electric power in manufacturing – first developed for applications
with exogenously high demand, and initial diffusion was accordingly limited in scope. Only later
did these technologies become sufficiently general to be useful for other purposes. The history is
consistent with economic theory, which suggests that R&D will naturally progress from specific- to
general-purpose variants of an innovation, and that these technical advances will directly translate
to increased scope for diffusion. Lags in diffusion will therefore often be the consequence of holdups
and market failures in R&D that stymie the generalization of new technology.

To clarify the forces underlying changes in the scope of diffusion, I begin by developing a model
of innovation with R&D in specific- versus general-purpose technological attributes.2,3 The model
intuitively predicts that product features will endogenously be developed in the order in which
they are most valuable, implying that new technologies will first be invented for narrow, high-value
applications and only later – if at all – generalize for broader use. Diffusion will thus tend to
follow an S-shaped pattern not only within applications, but also across them. Complementarities
between the given technology and other innovations can drive a wedge between the private and
social returns to investing in a general-purpose variant, and inventing firms will therefore often be
suboptimally incentivized to invest in expanding the scope of their technology.

The paper then transitions to an empirical study of tractor diffusion, followed by a shorter survey
of hybrid corn, steam engines, and electric power. Though tractors are now used in nearly every
agricultural field operation and in the production of nearly all crops, they first developed for much
more limited applications of tillage and harvesting grain. Recent research has emphasized the role
of factor price changes and quality improvements in explaining aggregate diffusion (Manuelli and
Seshadri 2014), but the literature is missing a crucial part of the story: tractor quality historically
varied as much or more across space as it did over time. Indeed, its significance today is the

1As Griliches (1957) shows, the diffusion of hybrid corn in each U.S. crop-reporting district was defined not only by the
rate at which it proceeded, but also by when it began. Most research on diffusion focuses on the former, which has
been attributed to heterogeneous costs/benefits (Duflo et al. 2008, Suri 2011), fixed costs of adopting an indivisible
technology (David 1966, Olmstead 1975), and changes in relative factor prices (Manuelli and Seshadri 2014), as well
as to suboptimal decision-making due to credit constraints (Clarke 1991), information spillovers (Conley and Udry
2010, Dupas 2014, Munshi 2004), and individual biases (Duflo et al. 2011). The onset of diffusion, on the other
hand, is a consequence of what Griliches termed the “availability” problem: hybrid seed corn had to be adapted to
growing conditions of different crop-reporting districts before it could be locally grown.

2The model builds on the theoretical framework developed by Bresnahan and Trajtenberg (1995) to characterize
general-purpose technologies. Though this paper is not a study of general-purpose technologies, the framework is a
useful starting point for thinking about the path of R&D and other issues at hand.

3The model also has analogy to Lazear’s (2009) study of specific and general human capital.
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consequence of not only its mechanical efficiency, but also its versatility as a source of mechanical
power in agriculture. The other examples studied here share a similar history.

To fully understand the role of scope in the tractor’s diffusion, it is necessary to first understand
how tractors are used and the associated technical demands. Tractors power and tow the agri-
cultural implements that do the day-to-day work of plowing, planting, cultivating, and harvesting
crops. Given the diverse demands for power in farming, the modern tractor is no small feat: the
technical requirements vary not only across stages of crop production, but also across different
crops, especially for crops grown in dense fields versus organized rows. Early models could not
navigate row crops for cultivation and harvest without destroying the crop, and this generation
of tractor technology was therefore not a candidate to replace draft power on corn farms at any
price. By the 1930s, however, more versatile designs emerged and made it possible for these farms
to “replace [all] their horses and mules with one general-purpose tractor” (Sanders 2009).

As a direct consequence of this path for product development, early tractor diffusion was over-
whelmingly concentrated in the Wheat Belt states of North Dakota, South Dakota, and Kansas.
As contemporaries noted, “the possible market for tractors ... in the corn belt has hardly been
scratched” (Iverson 1922). Between 1930 and 1940, this pattern reversed, with diffusion proceeding
most quickly in Corn Belt. This historical sequence is plainly visible in maps of wheat acreage,
corn acreage, and diffusion in 1930 and from 1930-40, shown in Figure III.1.

Figure III.1: Tractor diffusion in U.S. Midwest, 1930 and 1930-40

Wheat concentration, 1910 Tractor diffusion, 1930

Corn concentration, 1910 ∆(Tractor diffusion), 1930-40

Notes: Figure shows the distribution of wheat and corn production in the U.S.
Midwest (left) and tractor diffusion through 1930 and from 1930-40 (right). Crop
concentrations calculated as the fraction of farmland in the given crop; tractor
diffusion as the fraction of farms owning a tractor. Darker blues represent higher
values. Counties in white omitted due to missing data or because their borders
changed over the sample period. Data from 1910-1940 Census of Agriculture.
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Traditional explanations for technology diffusion cannot fully account for these patterns. Wheat
Belt farmers were not less credit-constrained in the 1920s – if anything, these areas were in greater
financial distress following the post-World War I collapse in wheat prices. Though in 1930 there
was a cluster of diffusion in eastern Illinois, nearer to the major manufacturers of the day (in
Chicago, Milwaukee, and Detroit), the majority of diffusion occurred in the region’s western pe-
riphery, suggesting only a limited role for trade costs and information spillovers. And while farms
were substantially larger across the Plains relative to other parts of the Midwest, fixed costs and
acreage thresholds cannot explain the gap that persisted in Nebraska. The source of these patterns
ultimately lies in the path of manufacturers’ R&D in tractor technology.

Using county-level data on farm characteristics, and exploiting the fact that crop choices persis-
tently reflect exogenous climatic and soil conditions, I estimate the relationship between tractor
diffusion in 1930, and the change in diffusion from 1930-1940, and county crop mix. The results
confirm that tractors were significantly quicker to diffuse to wheat-growing regions of the Midwest
relative to corn-growing regions, and that this pattern is not the result of New Deal relief, the Dust
Bowl, financial conditions, local factor prices, or other variables that could conceivably determine
tractor demand. The estimates suggest that relative to state averages, tractor diffusion in 1930 was
on average 5 percentage points (p.p.) greater for every 10 percent of farmland planted in wheat
but did not vary with acreage planted in corn. By 1940, diffusion was still roughly 5 p.p. higher
for every 10 p.p. in wheat, but it was also nearly 4 p.p. greater for every 10 percent of farmland in
corn, having caught up over the intervening decade. Under counterfactual projections, aggregate
diffusion throughout the Midwest would have been 25 percent higher in 1930, and approximately
equal across all of the major grain-growing states in the region (and country), had tractors diffused
at the same rate to counties with equal concentrations of wheat and corn.

Given the tractor’s historical impact on agriculture, an increase or temporal shift of this magnitude
would have had significant consequences for agricultural productivity and output. The tractor
completely upended the organization of U.S. agriculture, reducing labor requirements by at least
one-fourth through 1960, and increasing available cropland by even more (Olmstead and Rhode
2001). What was once slow, back-breaking work for humans and animals alike became relatively
effortless. As Olmstead and Rhode (1994) put it, “the conversion from draft power to the internal
combustion engine was one of the most far-reaching technological changes ever to occur in the
United States.” Confirming this sentiment, Steckel and White’s (2012) estimates suggest that by
1954 the tractor was generating social savings of as much as 8.6 percent of GNP.

Though the tractor is important in its own right, I argue that scope is an important, inherent
property of technology diffusion. To support this claim, I re-examine the diffusion of steam and
electric power in U.S. manufacturing and hybrid corn in agriculture. Each of these technologies first
developed for narrow applications – the steam engine for pumping water out of coal mines; electric
motors for use in electric street cars, subway trains, and elevators; and the earliest commercial
varieties of hybrid corn for the heart of the Corn Belt – and only after the technology generalized
did it become truly pervasive. Moreover, lags in scope could be as great or greater than lags in scale:
the time it took to go from a positive level of hybrid corn diffusion in one state to positive levels
in all 48 contiguous states exceeded the time it took to go from 0 to 100 percent diffusion within
several of these states individually. Using state-level data on acreage planted to hybrid seed, I show
that diffusion follows an S-shaped pattern not only along the well-documented intensive margin,
but also along its extensive margin – confirming the model’s predictions.
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A natural implication of these results is that in addition to studying the population of users, re-
searchers and policymakers should also focus attention on the firms performing R&D that increases
the scope of existing technologies such that they can be used more broadly. Given the presence of
externalities that decouple private returns to R&D from social returns, a second implication is that
investment in technological generality may be a high-value target for R&D policy tools. The results
of this paper might also be able to explain previously-documented spatial patterns in technology
diffusion, such as the evidence from Comin and Hobijn (2004) that technology diffusion “trickles
down” from more- to less-developed economies and from Keller (2002) that R&D spillovers appear
to decline with distance: new technology is often first developed in more advanced regions and in
many cases would have to be adapted to conform to local conditions, users’ needs, and technology
standards in other parts of the world in order to penetrate these markets.

The paper proceeds as follows. In Section III.1, I present a model of R&D in specific- and general-
purpose technological attributes, obtain predictions for the path of product development and scope
of diffusion, and derive policy implications. In Section III.2, I review the tractor’s history from the
1890s to the 1940s, drawing on narrative accounts, with an emphasis on its expanding capabilities.
In Section III.3, I describe the data and empirical strategy for identifying the scope of tractor
diffusion in 1930 and 1940. In Section III.4, I estimate the relationship between crop mix and tractor
diffusion in the U.S. Midwest, provide counterfactual projections, and briefly discuss diffusion in
other regions. In Section III.5, I show that scope is equally important to explaining lags in the
diffusion of steam engines, electric power, and hybrid seed corn. Section III.6 concludes.

III.1 Theoretical Framework

Suppose a monopolist inventing firm develops a technology that it sells to users in an arbitrary
number of application sectors. The focal technology is characterized by general-purpose quality zg
and a vector of application-specific qualities {za}a∈A across a range of applications a ∈ A, with
associated R&D costs Cg(zg) and {Ca(za)}, which are increasing and convex in their arguments.
General-purpose quality is embodied in features that are generic or useful for many purposes, such
as the rotary motion produced by a motor. Application-specific quality is embodied in features
which are limited in scope, like a component that performs a specific, repetitive task, and as the
terminology implies is valuable only in particular applications of the technology. Within such
applications, this limited functionality can substitute for general functions (e.g., a self-powered
component). The technology’s total quality in a given application a can thus be expressed as
ζa(zg, za) = zg + za. In this framework, general quality is special for two reasons: it is useful across
many applications, and it complements the sector-specific technologies of other firms. I assume
that the focal technology is produced at marginal cost c and sold at price w.

Developers in the application sectors create complementary products that address a narrow, sector-
specific need. Each such product is characterized by quality Ta and increasing and convex R&D
costs Ca(Ta). Application sector firms’ investment in quality improvements generates private re-
turns of Πa(Ta|w, zg, za). The exact form of Πa depends on the downstream market structure and
is nonessential; the key assumptions for the purposes of this paper are (1) that Πa is decreasing
in w and increasing in zg, za, and Ta, and (2) that Πa

zgTa
≥ 0. This latter assumption implies

innovational complementarity between the focal technology and sector-specific complements, as in
Bresnahan and Trajtenberg (1995): improvements in the former make complementary innovation
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more profitable, and vice versa. Changes in the application-specific quality of the focal technology
for other applications (i.e., changes in zã for ã 6= a) have no direct bearing on Πa.

It may be useful to elaborate on these ideas with a concrete example. The modern farm tractor is
a device with substantial general-purpose quality: its primary functions are to power and tow the
agricultural implements used for field operations, and it is now used with nearly all crops and in
nearly all stages of crop production, from pre-planting to harvest. Indeed, the earliest tractors with
this versatility were aptly marketed as “general-purpose” tractors. Tractor-drawn implements, on
the other hand, are used for a single task or stage of crop production and may even be specific to
a single crop. Implements are sector-specific technologies that complement, and are complemented
by, the tractor’s various features. Tractor-drawn implements can be contrasted with independent
devices such as the standalone cultivator or grain combine, each of which is used in a single stage of
production and neither of which requires a separate tractor. In this model, these could be described
as tractor-like devices with a high level of application-specific quality.

Each application sector is assumed to include a single sector-specific inventing firm. These firms
undertake R&D to maximize firm-specific profits Πa, subject to a periodic budget constraint Ba.
Within this framework, firm a’s solution is to expend its R&D budget each period developing Ta up
to the point where the marginal returns to R&D equal the incremental cost. Denote this solution
as T ∗a = T ∗a (w, zg, za). This function is increasing in zg and za, which can complement Ta, and
decreasing in w, which reduces demand for the focal technology and in turn its complements. The
presence of a budget constraint does not change this solution, but it does introduce the possibility
for delays: difficult or expensive R&D will slow down product development. Although this feature
isn’t crucial to what follows, it is useful for explaining historical episodes in which the development
of complementary equipment lags behind that of the focal technology.

Demand for the focal technology from each sector a takes the form Xa(w, zg, za, T
∗
a ), where Xa

w < 0,
Xa
z > 0, Xa

T > 0, and Xa
wz < 0 for z ∈ {zg, za}. It follows that the focal firm’s marginal revenue has

similar properties. The latter condition implies that the firm supplying the focal technology “cannot
appropriate more than the incremental surplus” generated by quality improvements (Bresnahan
and Trajtenberg 1995), leading it to undersupply quality. In essence, whenever the firm invests
in quality improvements, a fraction of the ensuing rents will accrue to inventors of complements,
and these rents cannot be fully re-appropriated: if the firm attempts to tax these developers (e.g.,
with licensing fees) to re-appropriate this surplus, it will reduce their incentive to invest in Ta, and
demand will accordingly decline. As a result, the focal firm’s investment in expanding the scope of
its technology will be less than the social optimum.

The Path of Product Development

The focal inventing firm must choose how much general-purpose and application-specific quality
to develop each period, subject to its own periodic R&D budget constraint Bg. If the returns
to application-specific quality or the costs of developing general-purpose features are large, or if
complementary technologies exist for only a handful of applications, the firm may prefer to invest
in specific features in advance of more general features. Formally, the firm’s problem is

max
zg ,za1 ,...,zan

Πg(zg, za1 , . . . , zan |c,T)− Cg(zg)−
∑
a

Ca(za) ,
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where
Πg(zg, za1 , . . . , zan |c,T) = (w∗ − c)

∑
a∈A

Xa(w∗, zg, za1 , . . . , zan , Ta)

is the firm’s return, w∗ is the monopoly price, and T is a vector of complementary technologies’ qual-
ity. Note that since the firm takes price w∗ as given when solving for the profit-maximizing levels of
zg and {za}, the assumption of monopoly is unnecessary as long as the firm can (even temporarily)
retain rents from innovation. The firm’s solution is z∗ = {z∗g(c,T), z∗a1(c,T), . . . , z∗an(c,T)}. Due
to innovational complementarities, each z∗ is increasing in T. As with the application sector firms,
the budget constraint dictates the pace at which the firm converges to this solution – but not the
form this solution takes – and explains why product development is not instantaneous.

The long run solution has Πgγ/Cγγ = 1 for all γ = g, a1, . . . , an. But as long as the R&D budget
constraint is binding – in other words, at all points along the adjustment path – the features
with the highest shadow price will be developed until others exceed them. In practice, this means
that the focal technology will often first develop for applications with exogenously high demand
or exogenously inexpensive development costs. History suggests there is merit to this argument,
as many technologies that eventually evolved to be very general first developed with applications
limited to areas in which they were especially needed – including the primary examples (tractors,
steam engines, electric motors, hybrid corn) discussed in this paper. Only when the gains to
specialization are exhausted will product development proceed to general-purpose features, if at
all. A typical path for product development will therefore be:

1. Invention for applications with exogenously high demand or inexpensive R&D

2. (Potentially) Develop general-purpose capabilities that serve a wide range of users

3. (Potentially) Round out development of remaining application-specific features

These results can be summarized with the following proposition.

Proposition 1.

1) In the long run, general and application-specific quality will develop up to an interior solution
where marginal benefits equal costs across all γ = g, a1, . . . , an for which zγ > 0.

2) Product development will follow an adjustment path along which technological attributes with
the highest shadow price are developed until others exceed it; in practice, this means that the focal
technology may first develop for particular applications and only later generalize to broader use.

Implications for the Scope of Diffusion

The predictions for the path of development are intuitive: product features develop in the order in
which they are most valuable. In some cases, product development will lead to a general-purpose
variant, but in many cases it may never get there. Externalities can also constrain investment
in greater scope by driving a wedge between private and social returns to innovation, implying
that there is a role in this setting for well-designed R&D policies. But the most striking result
from the model is its implication for diffusion, and in particular for understanding the source of
cross-sectoral lags in diffusion, which will be shaped by the set of applications for which a given
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technology can be used at all. Since scope must precede scale, this margin can play a paramount
role in explaining diffusion lags both in cross-section as well as in the aggregate.

Griliches (1957) calls it the “availability” problem: the diffusion of hybrid corn within a given state
or crop reporting district required a seed variety adapted to local growing conditions. I refer to
it as the scope, or extensive margin, of diffusion. The key insight is that cross-sectional variation
in diffusion results not only from the rate at which it proceeds, but also from when it begins.
And because product development naturally proceeds from specific- to general-purpose variants,
diffusion will tend to follow a characteristic S-curve not only within applications, but also across
them. Later sections verify this prediction for hybrid corn: for any fixed level of diffusion, and in
particular for lower levels indicating availability of locally-adapted varieties, the number of states
that have surpassed that level of diffusion follows an S-shape over time.

The argument can be formalized as follows. Recall that the focal technology has quality zg + za
for applications in sector a. We can write diffusion in sector a as Da = F (zg + za), where F (·)
is a characteristic S-shaped CDF. Diffusion in sector a is thus increasing in both zg and za, while
diffusion in sector b will be increasing in zg but not directly affected by za. Since F (·) is one-to-one,
it has a functional inverse F−1(·), and we can writeF

−1(Da1)
...

F−1(Dan)

 =

zg + za1
...

zg + zan

 . (III-1)

Equation (III-1) is a system of n equations with (n+1) unknowns, one of which may be normalized
to zero with no loss of generality. As zg increases, diffusion will increase across all applications
sectors, including previously untapped markets, and as product development evolves from specific-
to general-purpose features, so will the scope of diffusion begin with a narrow set of applications,
accelerate to many others, and then top off with the remainder.

Proposition 2. The scope of diffusion varies one-to-one with that of R&D. Diffusion will therefore
typically follow an S-shaped pattern not only within applications, but also across them.

In concept, the diffusion of the focal technology should also depend on the quality of complementary
innovation. This parameter is omitted from equation (III-1), since it is fully determined by the
characteristics of the focal technology itself (recall that T ∗a = T ∗a (w, zg, za)). What this implies in
practice is that when the focal technology improves in its general-purpose capabilities, complements
should immediately develop to take advantage of these new features. Historical experience broadly
concords, though exceptions do exist. For example, the mechanical corn harvester was invented
just five years after the the first general-purpose tractor (1930 and 1925, respectively). Firms
similarly began attacking the cotton harvesting problem immediately following the development
of a general-purpose tractor, but the mechanical cotton picker was relatively slower to develop
due to the difficulty of the engineering problem as well as institutional features of the U.S. South
constraining demand (Whatley 1985, 1987).
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III.2 History of the Tractor

The modern tractor’s history begins around 1870 with the invention of the steam tractor, which
was effectively little more than a steam engine on wheels. These were equipped with a drawbar for
towing portable implements and a belt pulley to power stationary equipment, and were primarily
used for plowing and post-harvest threshing, with little portable use beyond tillage. They were
also heavy, expensive to purchase and maintain, and prone to mechanical failures and explosion.
While they were never a serious threat to farms’ dependence on draft power, steam tractors were
a clear antecedent to the internal combustion tractors pervasive in agricultural today.

Kerosene tractors were developed around 1890 yet were hardly an improvement on steam models.
As Olmstead and Rhode (2001) put it, the earliest gas tractors were expensive behemoths, much
like the steam tractors that preceded them, and had similarly limited functionality; any portable
implement that needed to be powered would either have to get that power from the movement
of a bullwheel or provide it independently. Given their immense size, cost, and unreliability,
tractor diffusion was practically nonexistent prior to 1910 (Figure III.2). The transition to small,
lightweight, affordable tractors began with the Bull tractor in 1913, but this transition was only
finalized with the commercial introduction of the Ford Fordson four years later, in 1917.

[Figure III.2 about here]

The Fordson was the first big commercial success in the tractor industry, and by all accounts –
including Figure III.2 above – it marked the beginning of the tractor era. By the end of 1918,
Ford had overtaken its competitors in sales (Leffingwell 1998), and by the early 1920s, the Fordson
accounted for 75 percent of all tractor sales in the U.S. (Leffingwell 2002). Henry Ford continued
his assault on the tractor industry by initiating a price war in 1922, cutting the Fordon’s price by 35
percent overnight. The “tractor price wars” (as they are now called) led to a wave of consolidation
from over 150 manufacturers to just a few dozen. By the time Ford ended production of the Fordson
in 1928, it had sold nearly half of all tractors sold in the 1920s (White 2010).4

The advantage of the Fordson was its size, agility, and low price, but its low clearance made it
impractical for cultivating row crops such as corn or cotton, leading manufacturers to separately
develop and sell expensive, standalone cultivators (Sanders 2009) and Corn Belt farms to continue
relying heavily on draft power. Contemporary observers noted that “The possible market for
tractors ... in the corn belt has hardly been scratched, for study reveals that only about six per
cent of the farms in these six states have tractors, while the other ninety-four percent still depend
on horses for power” (Iverson 1922). The “logical solution” was to “design a tractor that will do
cultivating as well as plowing, disking, dragging, and other drawbar work.”

IHC saw these deficiencies as an opportunity to develop a “general-purpose” (G-P) model, and in
1925 it began selling the first such tractor – the Farmall.5 The Farmall had high clearance and
adjustable-width treads for use in all of plowing, cultivating, and harvesting, on both row crops and

4Other sources agree that Ford dominated the decade: Gilbert’s (1930) survey of four agricultural regions in New
York in 1926 revealed that 54.7 percent of tractors used on surveyed farms were Fordsons.

5The IHC effort to develop a general-purpose tractor was spearheaded by a single employee, Bert Benjamin, and
supported by the engineering department. According to Benjamin, while “there was talk about a new kind of tractor
in the industry” at the end of the 1910s, it was also the case that “no one had such a machine or even much of an
idea on how to start building one” (Klancher 2008). The first references to this project in IHC records appears in
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small grains. It also had a more powerful engine, a belt pulley to power stationary equipment, and
a motor-driven shaft that could power implements (power take-off). As Sanders (2009) describes
it, “It was designed (and thus named) to accomplish all of the power needs on the farm. At last,
farmers could replace their horses and mules with one general-purpose tractor.”

The Farmall was an instant hit, and it ushered in a new generation of tractor technology as
competitors rushed to imitate the Farmall’s design and develop their own G-P tractors. John
Deere came out with a version in 1928, and Allis-Chalmers in 1930, but by that point the Farmall
was already dominant, having overtaken Fordson sales in 1927/28. Further advances in tractors
soon followed: in 1927, Deere invented the power lift for raising implements during turns – an
enervating and time-consuming task; in 1931, Caterpillar built the first diesel-engine tractor; in
1932, Allis-Chalmers introduced pneumatic rubber tires that improved fuel efficiency and forward
horsepower; and in 1938, Ford introduced the Ferguson three-point hitch for attaching implements,
replacing the drawbar. Manufacturers quickly made these features standard, and by the early 1940s
the industry had arrived at a dominant design: the main features of the modern tractor had been
set. Over the following decades, G-P tractors “would change little, except for increasing in size
and horsepower” (White 2010) and adding comfort and safety features.

History in Relation to the Theory

Several features of the model in Section III.1 are embedded in this history, especially the sequence of
generalization and the co-development of tractors and complementary agricultural implements. The
tractor’s earliest applications were in tillage – back-breaking work for animals and humans alike.
The physical requirements of plowing generated exogenously high demand for mechanical power
and explains why the first steam tractors were developed to be, and termed, “plowing engines.”
Tractor development subsequently continued in applications related to grain production, where
demand was relatively high, the engineering problem was relatively easier, and complementary
harvesting equipment was already available. Only later, when the marginal gains to improvements
in standard tractors were exhausted, and specialized equipment such as standalone cultivators were
found to be unprofitable, did manufacturers direct their research effort towards a general-purpose
design with broad-based demand – and its diffusion rapidly followed.

Once the tractor generalized, implements were invented to perform nearly any task in the field.
Plows, harrows, planters, and grain harvesters, threshers, and combines were all available for use
with standard, Fordson-type tractors. Later came cultivators, corn harvesters (1930), cotton pickers

1919, but it took many experimental prototypes, each built at considerable cost, to arrive at a commercially viable
product. The earliest prototypes looked little like other tractors of the day and were heavy and cumbersome to
operate, but they could be used with many more implements than the firm’s existing models. Company records
from 1921 reveal that executives were unenthusiastic about these early prototypes and many wanted to abandon
the research program; it continued in large part due to the support of the firm’s president. By the end of the year,
Benjamin had proposed a version that looked more like a Fordson but had higher clearance and a narrow front
wheelset – beginning to resemble the model that would eventually be commercially sold – and support for the idea
within the company was beginning to grow. By 1923, the engineering group had shifted to making more marginal
improvements in power, weight, and cost, and in 1924, the firm began a production run of 200 units, which it quietly
sold without advertising in case they proved unsuccessful and to avoid cannibalizing existing product lines. Further
tweaks were implemented in 1925, as sales gradually expanded, and in 1928, when Ford exited the industry, the
Farmall was there to take its place. For a more detailed history, see Klancher (2008).
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(1942), and harvesters for several other crops.6 Mechanical corn harvesters entered production
only a few years after the Farmall, supporting the theoretical assertion that manufacturers of
complementary devices respond quickly to improvements in general-purpose functionality. IHC
similarly began working on a mechanical cotton picker immediately after the Farmall and by the
early 1930s believed it had solved the fundamental engineering problems for such a device (Whatley
1987, referencing the IHC “New Works Committee”). Tractors were in turn adapted to be used with
such equipment, reflecting the two-way effects of innovational complementarities, and improvements
such as power take-off and the three-point hitch specifically served this end.

Most importantly, although tractor diffusion began in the late 1910s, it was apparent even to
contemporaries that this early diffusion was restricted in scope by the tractor’s limitations, which
were only overcome by general-purpose models. Figure III.2 reveals that the data accord with
this narrative history: 1920-30 is the first decade of the tractor, with diffusion rising from 3.6 to
13.5 percent of U.S. farms, mostly in Midwest and Pacific states. Figure III.3 below shows the
path of diffusion in each Midwest state from 1920 to 1940. In 1920, only 6.8 percent of farms in
the Midwest owned a tractor. Between 1920 and 1930, this fraction nearly quadrupled to 25.7
percent of Midwestern farms, and by 1940, diffusion had reached 42.4 percent, despite stagnating
during the Great Depression. North Dakota, South Dakota, and Kansas led the trend towards
mechanization throughout the 1920s, while Corn Belt states like Iowa, Illinois, and Nebraska were
relative laggards in 1925/1930 but experienced the largest increases the following decade.

[Figure III.3 about here]

Previous Research on Agricultural Technologies

Though a large body of research has examined the historical diffusion of tractors and other agri-
cultural technologies, the distinction between scale and scope is missing from this literature. Most
research treats the tractor as a product of uniform quality both over time and across space and
attributes lags in diffusion to fixed costs with indivisibility, credit constraints, or exogenous factor
price changes. Even when the existing literature recognizes that “a ‘tractor’ in 1960 is not the
same capital good as a ‘tractor’ in 1920” (Manuelli and Seshadri 2014), it tends to overlook the
fact that tractor quality varied as much or even more in cross-section as it did over time.

David’s (1966) study of antebellum reaper adoption introduced the neoclassical threshold model to
this literature, asserting that reaper diffusion was driven by increases in farm size. Olmstead (1975),
however, calls into question the assumption of a static, indivisible technology, showing that joint
ownership and contract work were common practice and that reaper quality was improving, and
suggests that farm size was in fact simultaneous with the adoption decision. Ankli and Olmstead
(1981), Clarke (1991), White (2000), and others have nevertheless attempted to calculate adoption
thresholds for tractors in order to explain its delayed diffusion, despite the well-known critiques of
David’s (1966) model. Myers (1921) and Gilbert (1930) lend support to both advocates and critics
of the threshold model, acknowledging that “the advantages of a tractor increase with [the] size
of the farm” while also pointing out that contract work was common and that tractor adoption

6Harrows smooth the soil after plowing, planters lay the seed, and cultivators turn the topsoil for secondary tillage
of budding row crops. Grain harvesters, threshers, and combines cut grain stalks and separate the grain itself from
the chaff. Other mechanical harvesters are generally crop-specific. Mowers and balers cut and bundle hay.
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led farms to expand: “the ability to do more work with the tractor resulted in an increase in the
amount of land worked on nearly one-third of the farms visited” (Gilbert 1930).

Clarke (1991) argues that financial barriers slowed tractor diffusion in Illinois and Iowa in the
1920s and that New Deal relief – rather than changes in farm size, factor prices, or technology –
was responsible for a surge in diffusion in the 1930s. To support this claim, Clarke first calculates a
1929 adoption threshold of 100 acres for farms in Corn Belt states. Clarke then finds that only about
half of the farms above this threshold owned a tractor in 1929, and that this gap narrowed over the
subsequent decade. After correlating “underdiffusion”7 with farmers’ cash holdings and mortgage
debt ratios and obtaining coefficients with the expected signs (negative and positive, respectively),
she attributes the growth in diffusion to New Deal price supports and lending programs that might
have improved Corn Belt farmers’ financial positions and borrowing conditions.

Would-be adopters would have had to be credit-constrained for New Deal policies to cause a surge
in tractor purchases. Yet farms in North and South Dakota were leading adopters of tractors in
the 1920s, despite the post-WWI collapse in wheat prices and mortgage foreclosure rates near 50
percent (Alston 1983, Table 1). White (2000) further notes that “the same farmers that Clarke
concluded might not have been able to obtain a loan for a tractor were cheerfully buying automobiles
for cash” before 1930: roughly 80 percent of farms in Midwest states owned automobiles at that
time, compared to only 25 percent with tractors. The difference was not for a lack of manufacturer
credit, as both Ford and IHC provided financing to their customers. Given these inconsistencies,
the evidence that liquidity constraints can explain diffusion lags in the Corn Belt is questionable,
though financing undoubtedly plays an important role in large equipment purchases.8 In Appendix
III.F, I use data on New Deal relief at the county level (borrowed from Fishback, Kantor, and
Wallis 2003) to explore the possibility that improving financial conditions were more important to
1930s tractor diffusion than the technical advances that are the focus of this paper.

Manuelli and Seshadri (2014) counter the claim that tractor diffusion was inefficiently slow due to
market imperfections such as credit constraints with the more traditional argument that exogenous
changes in factor prices and improvements in tractor quality over time can rationalize the tractor’s
allegedly slow diffusion. Accounting for the tractor’s changing quality over time is an important
addition, but by modeling only aggregate diffusion and ignoring the variation in quality across
space, it misses a crucial part of the story: tractors hardly diffused to farms growing row crops
until the 1930s because they could not replace the horse at any price. Treating the tractor’s quality
as a unidimensional parameter that follows a secular process over time, and using it to explain the
scale of diffusion at the aggregate level, belies the true nature of the problem.

7Defined in Clarke (1991) as the fraction of farms above the 100-acre threshold without tractors.
8Clarke’s regressions also suffer from ordinary econometric shortcomings, as adoption thresholds are simultaneous
with financial conditions: an increase in the interest rate will necessarily raise the threshold, resulting in a mechanical
decline in diffusion among 100+ acre farms, as farms just above 100 acres will no longer be in the adoption zone.
Large and small farms may also be differentially likely to be mortgaged – an additional source of simultaneity.
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III.3 Data and Empirical Strategy

For empirical evidence, I turn to a panel of 1,059 counties in the U.S. Midwest through 1940.9 The
Midwest led the country in tractor adoption through WWII and exhibits sufficient spatial variation
in diffusion early on in the tractor era to discern its expanding scope. The Midwest also spans the
principal grain-producing U.S. counties, making it of inherent interest.

This analysis integrates data from several sources. I use county-level data in Midwest states from
the 1910, 1920, 1930, and 1940 U.S. Census of Agriculture to measure tractor diffusion, investment
in agricultural implements, farmland, crop mix, and other characteristics of farms and farmers. I
draw on the U.S. Census of Population in the same years for supplementary county-level data. The
dataset also includes records of bank failures from the FDIC; county-level New Deal expenditures
from Fishback, Kantor, and Wallis (2003); point-to-point freight rates and local railroad density
from W.J. Hartman Publishing (1916) and Donaldson and Hornbeck (2013), respectively; Dust
Bowl soil erosion from Hornbeck (2012); average levels and variation in elevation and rainfall at the
county-level, from the USGS and PRISM Climate Group at Oregon State University, respectively;
and usual harvesting dates by state and crop, from the USDA. I use these data to understand and
control for other features of U.S. agriculture affecting tractor adoption.

I use the NHGIS county boundary shapefiles (Minnesota Population Center 2011) for the 1910-
1940 Census years to aggregate continuous geospatial data (elevation, rainfall) at the county level
and drop all counties that merged or divided over the sample period as well as counties whose
geographic centroids shifted more than 0.01 degrees in latitude or longitude between decades. The
main analysis treats remaining counties’ borders as static, reflecting the stability over these years
of the centroids calculated by mapping software. For robustness I explore the sensitivity of the
analysis to adjustments that maintain 1910 borders, following the procedure described in Hornbeck
(2010), and obtain statistically and quantitatively similar results.

Empirical Methods and Identification

Identification hinges on the fact that particular areas are inherently better suited to growing differ-
ent crops for exogenous reasons (such as soil type, climate, etc.), and an assumption that farmers’
crop choices reflect these local advantages regardless of whether they own a tractor. If the histor-
ical account is true, diffusion in the 1920s should be higher in areas where field grains are grown
and lower in areas more concentrated in corn. Following the development of the general-purpose
tractor in the late 1920s, the difference should then mitigate or reverse, with corn-heavy counties
experiencing catch-up increases in diffusion. Formally, the identifying assumption is that crop mix
is independent of any unobserved factors affecting the decision to adopt the tractor. Since crop mix
is simultaneous with the choice of inputs and technology, I also instrument for contemporaneous

9The included states are: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota,
Ohio, South Dakota, and Wisconsin. These states form the East and West North Central Census Divisions. Across
these 12 states, there were 1,049 counties in 1910, 1,056 in 1920, 1,057 in 1930 and 1940, and 1,056 in 1950,
reflecting county mergers and divisions over time, mostly occurring in North and South Dakota. In sum there are
1,059 uniquely defined counties over this period. The baseline sample is restricted to the 1,035 counties whose borders
were unchanged from 1910 to 1940; regression sample sizes are generally less than 1,035 due to missing variables for
some county-years. I forgo Hornbeck’s (2010) border adjustment procedure in the main analysis to avoid synthetic
observations constructed by piecing together fractions of counties on the assumption that county-level variables are
evenly dispersed across space, though the results are insensitive to this choice.

96



crop mix with pre-tractor values and regress directly on lagged values, as tractors were unlikely to
have influenced crop choices in 1910 (or even 1920, in some areas), when there were only around
1,000 tractors on U.S. farms (Historical Statistics, Table Da623).

Table III.1 provides more information on the mix of crops grown in the Midwest through World War
II. Six crops – corn, wheat, oats, barley, rye, and hay – alone accounted for roughly 50 percent of
farmland and 85 percent of harvested acreage in the Midwest. Though wheat acreage temporarily
spiked at the end of the first World War, and acreage in oats and hay declined modestly along with
the draft stock it fed, the fraction of Midwest farmland planted in each of these crops is on the
whole fairly steady from 1910 to 1940. Appendix III.B provides further evidence that their level
and distribution as a fraction of farmland, cropland, and harvested acreage changed little over the
period. The most compelling evidence of a stable Wheat Belt and Corn Belt can be seen in the
maps in Appendix III.G, which plot the spatial distributions of acreage in each crop and confirm
that these distributions are unchanged throughout the sample period.10

[Table III.1 about here]

III.4 The Scope of Tractor Diffusion

According to the historical narrative, “the tractors of the Fordson generation were ill-adapted to
the majority of farms in the United States [and] were of questionable value on farms growing corn
or cotton or other row crops” (Williams 1987). As such, tractor diffusion in the 1920s was by and
large confined to farms growing small grains: until the general-purpose tractor was invented, it was
necessary to keep horses for cultivating and harvesting corn, and the cost of owning both a tractor
and a team of draft animals was prohibitive to nearly any farm. This can be seen most directly
in Figure III.1 (in the introduction), which shows the geographic distribution of wheat acreage in
1910 and tractor diffusion in 1930. Counties where tractors were most common in 1930 tended to
be counties where wheat was historically grown in higher concentration.11

The development of the general-purpose tractor and other technological advances rapidly trans-
formed the industry: Fordson-type tractors’ share of sales for domestic use declined from 92 percent
in 1925 to 4 percent in 1940, while G-P tractors’ share grew to 38 percent in 1935 and 85 percent
by 1940 (Olmstead and Rhode 2001). These technical advances allowed the tractor to completely
replace draft animals in corn production, and the tractor’s subsequent diffusion to the Corn Belt
between 1930 and 1940 is as visible in Figure III.1 as its absence pre-1930.

The visual evidence in maps is corroborated by descriptive statistics. Table III.2 compares tractor
diffusion in counties above and below the median percent of farmland in corn, wheat, and barley in

10The Midwest crop mix began to change in the early 1940s, shortly after the sample ends. Prior to the 1940s,
soybeans were uncommon and were typically grazed off or plowed under after being used for nitrogen fixation.
Harvested soybean acreage exploded during the war, much of it displacing corn fields in the Corn Belt. The other
new crop with significant acreage was sorghum, mostly grown in Kansas, Oklahoma, and Texas. The current
acreage and geographic concentration of field crops is available from USDA (2010).

11A cluster of diffusion is also visible within a roughly 100-mile radius of Chicago. Diffusion in these counties may
have been influenced by their proximity to IHC, which had its headquarters in and shipped from Chicago. Proximity
to Chicago would have reduced the freight costs paid by purchasing farmers, which could range from a few percent
to upwards of 15 or 20 percent of the sticker price in the outer reaches of the Midwest (calculations based on data
from Hartman’s 1916, Donaldson and Hornbeck 2013). IHC also had a strong, century-old marketing presence in
northern Illinois, which may partially explain why farmers in these counties adopted early.
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the sample. By 1930, farms in counties with an above-median concentration of wheat had adopted
the tractor at a significantly faster rate than those in below-median counties, and an even stronger
pattern holds for barley. These patterns persist through 1940 and are significant at the one percent
level. In stark contrast, farms in counties with high and low concentrations of corn were using
tractors at statistically identical rates in 1930, and only over the next decade did diffusion in
above- and below-median counties begin to diverge. By 1940, tractor diffusion was quantitatively
the same in counties with a high concentration of either wheat or corn.

[Table III.2 about here]

To empirically identify the tractor’s evolution into an all-purpose machine, and the consequently
expanding scope of its diffusion, I regress county-level tractor diffusion in 1930 and 1940 and the
change in diffusion between 1930 and 1940 on the local crop mix and controls. I present two sets
of regressions: Table III.3 shows the results from regressions of diffusion on contemporaneous crop
mix, and Table III.4 instruments with 1910 values, which pre-date the tractor era and reflect the
naturally-occurring comparative advantage to growing wheat (or corn, etc.) in the Wheat and
Corn Belts.12 The principal estimating equation throughout this section is the following:

Diffusionit = β0 +
5∑
c=1

βcCropPctOfFarmlandc,it + Xitθ + γs + εit

where i indexes counties, t indexes years, and c indexes crops. The crop mix variables are calculated
as the fraction of county farmland in each of corn, wheat, oats, barley, and rye. The Xit term
represents a set of county-level controls, and γs denotes state fixed effects.

In each table I provide six specifications. All specifications include state fixed effects, and the latter
three columns of each table additionally control for county longitude and latitude, average rainfall,
elevation, and distance from the f.o.b. shipping terminals of Ford (Detroit) and IHC (Chicago).
These specifications also control for farm size, local interest rates, farm mortgage debt ratios, horses
per acre of farmland (contemporaneous and 1910), mules per acre (contemporaneous and 1910),
and per-acre expenditure on labor in 1910 from the Census of Agriculture.

The OLS estimates in Table III.3 shows that farms in counties growing more wheat, oats, and barley
were significantly more likely to have adopted tractors in 1930, while those in counties concentrated
in corn or rye adopted tractors with much lower frequency. However, by 1940, counties with similar
concentrations of wheat and corn were using tractors at similar rates.

[Table III.3 about here]

These patterns are confirmed in the IV regressions of Table III.4, where the coefficients for wheat
and corn are quantitatively similar to the OLS estimates: wheat-growing counties adopted tractors
at high rates before 1930, and diffusion in corn-growing counties caught up over the subsequent
decade. The table also provides the minimum F-statistic from the first-stage regressions for the
crop mix, confirming that crop mix in 1910 strongly predicts that in 1930 or 1940.

12In unreported tables, I regress directly on these lagged values and find similar results.
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[Tables III.4 about here]

The 1940 Census of Agriculture provides detailed information on farms’ ownership of tractors by
model vintage, reporting the number of farms whose latest model-year tractor is pre-1930, 1931-
1935, and 1936-1940. Tables III.5 and III.6 regress the share of each vintage among farms reporting
any tractor vintage in 1940 on the crop mix and control variables used in the previous regressions.13

As with the diffusion regressions, I provide two variants (OLS and IV). OLS estimates reveal that
counties concentrated in corn, oats, barley, and rye were significantly more likely to own later-
vintage tractors in 1940 relative to the average county, while the opposite is the case for wheat.
The IV estimates provide similar results but emphasize that the tendency to own the latest-vintage
tractors was limited to counties with high concentrations of corn or barley.

[Tables III.5 and III.6 about here]

In addition to lagging diffusion in the Corn Belt, two others results stand out across all tables.
First, barley-heavy counties both adopted early and were using later-vintage tractors in 1940,
suggesting that barley growers had high demand for tractors – a result which is likely explained
by barley’s exceptionally short harvest season. According to the USDA (1997, 2010), the active
harvest season for barley lasts between one and three weeks; in comparison, wheat’s active season
lasts three weeks, while corn’s active season typically extends beyond a month. The barley harvest
is thus brief and frenzied, and any labor, feed, or animal shortage or mechanical failure could cause
a ruinous disruption. The tractor reduced barley farms’ reliance on local labor and draft animals,
and the reliability of newer models was especially valuable on these farms.

The other surprising result is that rye was associated with the lowest rates of tractor adoption of all
the crops studied. As Table III.1 shows, rye acreage on average generally comprises less than one
percent of county farmland, so to some degree it is surprising that the coefficients on rye for tractor
diffusion are estimated to be anything other than zero. But this pattern is surprising for two other
reasons: counties growing other small grains adopted tractors at breakneck pace, and rye has an
even shorter, more hectic harvest than barley. Further reading suggests that technical factors may
have limited the effectiveness of tractors in the production of rye. Rye grows on especially large
stalks, sometimes reaching over six feet in height, and when threshers or combines are fed the entire
stalk, they can get jammed by the excess chaff. Another possibility is that rye shatters (breaks
from the hull) easily, and the implements of the 1920s and 1930s may have been too destructive to
make the tractor a sensible investment. Rye’s tendency to lodge (bend, or flatten) in the field may
have also limited the tractor’s effectiveness for harvest.

Robustness Checks on Baseline Results

The baseline regressions of Tables III.3 and III.4 define diffusion as the fraction of farms in a
county reporting a tractor. This definition imposes an assumption of perfect indivisibility, despite
evidence to the contrary of cooperative ownership (Myers 1921) and custom work (Gilbert 1930).
To ensure that the results are not sensitive to this assumption, in Appendix III.C I re-estimate

13The vintage shares are taken over all farms answering the vintage question on the Census form, which is generally
less than but close to the number of farms reporting tractors. The median rate of underreporting is 1.55 percent
of farms with tractors (90th percentile: 7.83 percent of farms with tractors).
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these regressions defining diffusion as the number of tractors per 100 acres of county farmland. The
results of this exercise are qualitatively similar to those of the baseline regressions.

In Appendix III.D I explore the robustness of these results to weighting observations by farm
count, under the premise that diffusion is the aggregation of individual adoption choices. Appendix
Tables III.D.1 to III.D.4 re-estimate the specifications of Tables III.3 to III.6 applying these weights
and find the results unchanged. In Appendix III.E I relax the specifications to allow for spatial
correlation in the errors that is declining in the distance between county centroids up to 25-, 50-, and
100-mile cutoffs (Conley 1999). While standard errors generally increase when spatial correlation
is permitted to enter the model, the basic patterns and coefficients remain highly statistically
significant.

Finally, in Appendix III.F, I explore alternative explanations for these patterns such as differential
New Deal relief or Dust Bowl soil erosion. To rule out the possibility that New Deal relief explains
the sharp increase in diffusion in the Corn Belt, I control for county-level grant aid under the
Agricultural Adjustment Act and farm credit extended under the Farm Credit Act. The effects of
New Deal relief hardly register relative to those of crop mix. I also consider the possibility that the
Dust Bowl may have disproportionately affected wheat-growing regions in Plains states and caused
a regional shift in tractor purchases, though evidence from Hornbeck (2012, Table 1) suggests that
Corn Belt counties suffered equally if not more than Wheat Belt counties. Indeed, accounting for
cumulative erosion does not affect the core results.

Counterfactual Projections

Though this evidence establishes that tractors were indeed slower to reach the Corn Belt, the
magnitude of the effect is more difficult to interpret. The IV results suggest that relative to state
averages, county-level diffusion in 1930 tended to be 5 percentage points (p.p.) higher for every
10 percent of farmland devoted to wheat but did not vary with the fraction of farmland in corn.
In 1940, diffusion was still roughly 5 p.p. higher for every 10 percent of farmland in wheat, but it
was also nearly 4 p.p. greater for every 10 percent of farmland in corn, having caught up over the
intervening decade. What would aggregate diffusion in the Midwest have looked like had tractors
diffused at the rate for wheat to counties more heavily concentrated in corn?

To get a better handle on this question, I use the OLS and IV estimates from the diffusion regressions
to project counterfactuals. Although these estimates are linear approximations, they can offer a
sense of the magnitude of the effect. Table III.7 provides actual tractor diffusion along with
counterfactual projections using the OLS and IV results for both 1930 and 1940. The estimates
for 1930 are calculated from the regression sample of 1,034 counties, while the estimates for 1940
are calculated from the regression sample of 941 counties. The IV-based projections suggest that
tractor diffusion would have been over 25 percent higher in 1930 had tractors diffused at the same
rate to the Corn Belt as they did to the Wheat Belt.

[Table III.7 about here]

Figures III.4 and III.5 disaggregate these results, plotting state-level diffusion in 1930 and 1940
for the IV counterfactuals. Not surprisingly, much of the 1930 effect comes from the Corn Belt
heartland of Illinois, Iowa, and Nebraska, though a substantial amount also comes from parts of
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Indiana, South Dakota, and Kansas along the Corn Belt’s periphery. According to these estimates,
diffusion would have been around 40 percent and roughly constant throughout the Corn Belt and
Plains had it had equal scope for both wheat and corn. The tractor’s technological limitations can
thus explain nearly all of the cross-sectional variation in its diffusion to the major grain-producing
U.S. states. By 1940, these states are observed to have similar levels of tractor diffusion, and the
estimates suggest little difference between actual and counterfactual values.

[Figures III.4 and III.5 about here]

Tractor Diffusion in Other Regions

The increasing scope of tractor diffusion is similarly apparent in most other parts of the country
at this time. Table III.8 shows the fraction of farms in each state with tractors from 1920 to 2002.
Between 1920 and 1940, the Midwest Census Region led the country in tractor adoption, with 42.4
percent of farms adopting by 1940. Northeastern and Western states were also mechanizing at high
rates (29.2 and 27.9 percent of farms, respectively), reflecting the general utility of tractors across
applications. The striking exception to this trend was the South: in states where agriculture was
sharecropped, less than five percent of farms owned a tractor in 1940.

[Table III.8 about here]

Since the tractor was by this time suitable for use in cotton production, the rejection of mecha-
nization in the South complicates the theoretical assertion that diffusion moves in lock-step with
technological scope. How can this evidence be reconciled with that from other regions such as the
Midwest, where generalization and diffusion seem to go hand in hand?

Researchers have largely converged on two explanations: southern agricultural labor institutions,
and the difficulty of designing an affordable, functional mechanical cotton picker. The challenge of
the engineering problem is summarized by Fite (1980), who catalogs the many reasons why “the na-
ture of the cotton plant made the invention of a successful harvesting machine especially difficult.”
Whatley (1985, 1987) then explains how this obstacle, in conjunction with southern agrarian insti-
tutions, inhibited even partial mechanization of cotton production. Without a mechanical cotton
harvester, southern farmers required a large population of farm workers to collect the harvest. In
states where this labor was supplied by a migrant workforce, such as those on the Mexican border,
cotton farms could mechanize pre-harvest operations without cutting into the harvest labor supply
– but in most southern states, labor was supplied by annual contract in the form of tenancy and
sharecropping, which was necessary to guarantee the availability of farm hands when they were
needed most. Under these circumstances, mechanization became an all-or-nothing proposition: as
long as the harvest technology was labor-intensive, and labor could only be secured with annual
contracts, year-round operations tended to remain labor-intensive as well.

The Institutional Hypothesis (Whatley 1985) is supported by the evidence in Table III.8. In the
cotton-heavy states of Texas and Oklahoma, where migrant labor was abundant, tractor diffusion
increased between 1930 and 1940 to a level comparable to much of the rest of the country. Ac-
cording to Fite (1950), cotton mechanization in these states indeed began in the mid-1920s with
the G-P tractor, and with the subsequent development of implements for pre-harvest operations,
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“remarkable progress occurred in the mechanization of cotton” even prior to the invention of a
functional cotton picker. Given that cotton farms in these states were using tractors, the lagging
diffusion in the rest of the South cannot be explained by the technology alone, which was common
to both regions. The Institutional Hypothesis is further bolstered by evidence from Hornbeck and
Naidu (2013), who find that farms in the Mississippi Delta mechanized in response to the large
rural outmigration caused by the Great Mississippi Flood of 1927.

III.5 Extending to Other Examples

The tractor is not unique in its history of expanding scope. In this section I show that scope was
an equally important property of steam engines, electric power, and even the canonical example
of hybrid corn. Each of these technologies was first developed for specific applications, with their
technological limitations bounding the scope of their diffusion, and only when they generalized did
they become truly pervasive. Because state-level data on hybrid acreage are available at annual
frequency, hybrid corn also presents an opportunity to directly test the hypothesis that diffusion
follows an S-curve both within and across distinct applications.

Hybrid Seed Corn

While experiments with hybrid seed corn were underway at agricultural experiment stations and
by private seed companies in the early twentieth century, commercial use did not meaningfully
begin until the 1930s. In 1933, only around 0.1 percent of corn acreage in the U.S. was planted
with hybrid seed – but by 1945, the core Corn Belt states (Illinois, Indiana, and Iowa) were nearly
fully planted in hybrids, and by 1960, so was the rest of the country (Sutch 2011, 2014). Diffusion
was slower to take root in regions more distant from the heart of the Corn Belt, but similarly, once
it did, it was overwhelmingly swift and complete (Griliches 1960).

Griliches (1957) used the example of hybrid corn to demonstrate the basic empirical fact that
technology diffusion proceeds in an S-shaped pattern over time and can be approximated by a
logistic function. The argument was strictly one of scale: within a given state, crop reporting
district, or the country as a whole, diffusion begins slowly, accelerates to an inflection point, and
subsequently decelerates and asymptotes at its ceiling, as in Figure 1 of Griliches (1957), which I
reproduce below as Figure III.6 of the present paper. When modeled with a logistic function, each
of these curves can be fully characterized by three parameters: the origin, the rate of growth, and
the ceiling. Griliches contends that cross-sectional variation in diffusion is driven by differences in
both the rate of acceptance and the availability of locally-adapted seed varieties.

[Figure III.6 about here]

Though Griliches acknowledged availability as an important source of variation in diffusion, the
subsequent literature has tended to overlook this margin. What Griliches seemingly failed to discern
is that hybrid corn diffusion also proceeded along an S-curve on this extensive margin, as hybrid
seed varieties were transferred or adapted to the conditions of other regions peripheral to the Corn
Belt. Figure III.7 shows the distribution of states by the year they achieve each of four different
levels of diffusion: 5, 10, 25, and 50 percent of acres planted. At all levels, and especially at lower
levels indicating availability, the scope of diffusion follows a curve which is well-approximated by
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the logistic function. This evidence aligns directly with the theoretical predictions from the first
section of this paper. Perhaps most strikingly, the time it took to go from a positive level of
diffusion in one state to positive levels of diffusion in all 48 contiguous states exceeds the time it
took to go from 0 to 100 percent diffusion within many of the individual states in this sample – a
fact which speaks to the crucial role of scope in explaining lags in aggregate diffusion.

[Figure III.7 about here]

The Steam Engine

The first practical steam engine was invented in 1712 for the exclusive purpose of pumping water
out of coal mines, and for the next 60 years, steam engines were manufactured and used to pump
water and little else. Not until 1781 did the technology develop to a point where it could be used
more broadly: James Watt, who had previously improved on the Newcomen design by making it
more powerful and fuel efficient, developed a steam engine that could produce continuous rotary
motion using a crank and flywheel and power machinery with a drive belt – opening up the steam
engine to effectively all industrial applications. The following year Watt developed the double-
acting cylinder, which could generate both forwards and backwards belt movement. In a matter of
years, Watt had thus taken the steam engine from a device with a single use to a technology that
would eventually be used to power factories, vessels, and locomotives.

The steam engine fits neatly into the predictions of the theoretical model, with the exception that
Watt’s patent claims delayed its broader diffusion by several decades. But the history makes clear
that the key to understanding the steam engine’s diffusion lies in its scope. To bring this point into
empirical focus, I examine the transition to steam power in U.S. manufacturing using the Atack,
Bateman, and Weiss (1999; hereafter ABW) nationally representative samples from 1850 to 1870
U.S. Census of Manufactures. The ABW dataset includes a “power type” variable that specifies
the principal source of power for each firm. This variable can be coded as steam, water, hand
(manual), animal (draft), a combination of the above, or not given, and it enables me to trace
steam power’s diffusion within and across manufacturing industries. In the figures and tables that
follow, I drop firms with no source given to focus on those with known power use.

For context, Table III.9 shows the share of firms reporting each power type, by decade. Manual
labor was clearly the dominant source of power at this time, but steam power was on the rise.14

Figure III.8 collapses the sample to the industry level and shows the distribution of industries in
terms of the fraction of firms associating with each of manual, water, and steam power, by decade.
In 1850, steam power was relatively concentrated: most industries had zero firms reporting steam
power, and in industries where steam was in use, usually less than half of firms were converted.
Over the following decades, steam power diffused considerably in scope, but only modestly in scale:
steam power was in use in nearly three-quarters of all industries by 1870, but industries where
steam power was used still tended to have less than half of firms on steam. The importance of the
scope of diffusion is even more apparent when comparing steam to water, which was concentrated
in just a handful of industries, thus limiting its aggregate industrial impact.

14The table contains some odd patterns in steam and manual power usage, most notably that the share of firms
reporting manual power drops sharply in 1860 and then returns to its previous level in 1870. It is unclear why this
occurs. Potential explanations include sampling variance, non-representative samples, or dislocations during the
Civil War. These patterns persist if the sample is restricted to Union states east of the Mississippi and north of
the Ohio Rivers, where a majority of U.S. manufacturing activity was concentrated at the time.
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[Table III.9 and Figure III.8 about here]

Electric Power

A similar exercise can be performed for electric power in U.S. manufacturing. The earliest practical
dynamos were invented in 1867, and shortly after, Zenobe Gramme introduced a variant capable of
providing a constant flow of high-voltage, direct current power to attached motors (which was later
discovered to be a motor itself when supplied with electrical current). As a generator, the Gramme
dynamo found use in electroplating, however as a motor it was limited by its inability to produce
constant-speed rotary motion under variable loads, making it inadequate for other industrial uses.
The first motor capable of operating at a constant speed with variable loads was invented by Frank
Sprague in 1886, and together with Edison’s development of power stations it marked the beginning
of electrification. Using this motor, Sprague developed the first electric streetcars in Richmond,
electric subway trains in Chicago, and electric elevators in New York.

Around the same time, other inventors were experimenting with alternating current, which was
preferred to direct current for long-distance transmission because it reduced power loss. In the late
1880s, these inventors developed the three-phase electric generator, transformer, and induction
motor that are still widely used today. The transmission advantages of alternating current led to
its victory in the standards battles of the nineteenth century, and the three-phase electrical system
became the basis for contemporary industrial applications and the power grid.

The 1910 Census of Manufactures provides the earliest evidence of electrification in U.S. manufac-
turing. The Census final report includes a table listing the primary horsepower from electricity,
gas engines, steam engines, and water wheels in 102 manufacturing industries from 1899 to 1909.
I use these data to trace the growing scope of electric power in manufacturing.

Table III.10 shows the share of total horsepower in U.S. manufacturing from each of the four primary
power sources by year. In 1899, roughly 80 percent of manufacturing horsepower was generated
by steam engines, declining to 65 percent by 1909. The share produced by water wheels fell even
more precipitously, from almost 10 percent to less than 5 percent. The difference was entirely made
up by electric power. In contrast, gas engines had almost no presence in manufacturing, despite
contemporary technological advances and an increasing use in transportation.

[Table III.10 about here]

Figure III.9 shows the distribution of manufacturing industries by the fraction of horsepower gen-
erated from each power source, for each year in the sample. In 1899, over 40 percent of industries
were not at all electrified, and of those that were, most obtained only a small fraction of their
power from electricity. The industries drawing the most horsepower in the form of electricity at
this time were C ars and general shop construction and repairs by street-railroad companies (at
59 percent) and C opper, tin, and sheet-iron products (41 percent), reflecting its earliest uses. By
1909, effectively all industries were partially electrified – though the streetcar industry was still the
heaviest user, now drawing 87 percent of its power from electricity. Electric power thus began to
take root in U.S. manufacturing over this 10 year period, diffusing both in scale and in scope, the
latter supported in particular by the development of alternating current technology.15

15As the theory would suggest, the growth of electric power was likely also a result of complementary innovation,
especially in electric generation and transmission, as well as changes in the production practices.
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[Figure III.9 about here]

III.6 Conclusion

As Griliches (1957) demonstrates in his seminal study of hybrid corn, technology diffusion is the
consequence of both the availability of user-friendly varieties and the subsequent rate of accep-
tance. This paper studies the role of scope in the diffusion of farm tractors and other historically
important innovations in U.S. agriculture and manufacturing. To better understand the economic
underpinnings of the scope of diffusion, I begin by developing a model of innovation in specific-
and general-purpose product varieties. This model suggests that new products will first develop
for applications with exogenously high demand or low R&D costs. Only when the gains to special-
ization are exhausted will product development proceed to general-purpose variants – and only if
it is technically feasible. Diffusion will in turn be shaped by the set of applications for which the
product can be used. Since diffusion in scope must precede diffusion in scale, this margin can be
fundamental to explaining lags in diffusion both in cross-section and in the aggregate. Moreover,
due to horizontal spillovers resulting from complementarities with other innovations, inventing firms
will typically have less than the socially-optimal incentives to generalize their technology for wider
use, suggesting that generality should be a target for R&D policy interventions.

Though tractors are pervasive in modern agriculture, they were not born to be that way: the earliest
models were first developed for tillage and harvesting small grains, and only in the late 1920s did
the technology begin to generalize for use with row crops such as corn, cotton, and vegetables.
Using county-level data on tractor ownership, crop acreage, and other variables from the 1910 to
1940 Census of Agriculture and related sources, I show that tractors were consequently quick to
diffuse to areas of the U.S. Midwest growing wheat and other small grains and slower to penetrate
the Corn Belt. Had the tractor diffused at the same rate to counties with equal concentrations of
wheat and corn, total diffusion in the Midwest would have been on the order of 25 percent higher
by 1930, and cross-sectional variation in diffusion across the major grain-producing states of the
country would have been all but eliminated. Conversely, had the tractor not generalized, its impact
would be so limited that it would most likely be an afterthought today.

The importance of this extensive margin of diffusion is not unique to tractors: several historically
important innovations share a similar history, and many others never generalize at all. Steam
engines, electric motors, and hybrid corn were each invented for applications in specific industries
or geographic areas; early diffusion was accordingly limited in scope, and only when they grew
more general did they become truly pervasive. Using annual data, I find that hybrid corn diffusion
followed an S-shaped pattern in both its intensive and extensive margin, as predicted by the theory,
and that lags in scope could be as large as or larger than those in scale.

This evidence supports a substantially different interpretation of lagging technology diffusion than
what is typically found in the literature: in the examples above, lags result from a fundamental
mismatch between the technology’s capabilities and the technical requirements of users in different
settings. The key point of departure is the idea that a single technology, at single point in time,
may be used across multiple, different settings, with varying quality for each. While Suri (2011)
makes the related point that the costs and benefits of technology adoption can vary across users,
this heterogeneity is attributable to the quality of local infrastructure and crop yields rather than
the fitness of the hybrid corn technology that is the subject of the paper per se.
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Other existing research similarly treats diffusion as varying only in scale. Early studies argued that
factor prices or the fixed cost of acquiring an indivisible technology could explain lags in diffusion.
More recently, researchers have turned their attention to externalities and market failures impeding
technology adoption, with evidence that imperfect credit markets; assorted forms of learning and
education; and present bias may all affect individual adoption decisions. But in the case of the
tractor, the late-adopting U.S. Corn Belt had to wait for the row-crop tractor to be invented before
farms growing corn for harvest could be fully mechanized. The results of this paper thus highlight
the importance of product designs that meet the heterogeneous requirements of users in different
settings, and they suggest that the most effective way to get technology into the hands of new users
may simply be to make a variant adapted to their needs.
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Figure III.2: Draft animals, tractors, and implements in the U.S.

Figure III.3: Tractor diffusion, by state and year
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Figure III.4: Observed and counterfactual tractor diffusion, by state, 1930 (IV estimates)
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Notes: Figure shows the projected increase in tractor diffusion across all 12 states
in 1930 had the tractor diffused at the same rate to counties with the same concentration
of wheat and corn crops. Counterfactual calculated as described in the text.
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Figure III.5: Observed and counterfactual tractor diffusion, by state, 1940 (IV estimates)
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Notes: Figure shows the projected increase in tractor diffusion across all 12 states
in 1940 had the tractor diffused at the same rate to counties with the same concentration
of wheat and corn crops. Counterfactual calculated as described in the text.
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Figure III.6: Reproduction of Griliches (1957) Fig. 1: Percentage of corn acreage planted to hybrids

Figure III.7: Distribution of states, by year at which given level of hybric corn diffusion attained
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Figure III.8: Distribution of manufacturing firms by source of power, 1850-1870

Figure III.9: Distribution of manufacturing industries by source of power, 1899-1909
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Table III.1: County crop mix and tractor diffusion, by year

1910 1920 1930 1940
(N=1035) (N=1035) (N=1035) (N=1035)

Percent in corn 0.168 0.143 0.145 0.128
(0.12) (0.11) (0.12) (0.10)

Percent in wheat 0.080 0.122 0.082 0.070
(0.09) (0.10) (0.11) (0.08)

Percent in oats 0.075 0.081 0.078 0.064
(0.06) (0.06) (0.07) (0.06)

Percent in barley 0.014 0.011 0.021 0.019
(0.03) (0.02) (0.03) (0.03)

Percent in rye 0.005 0.015 0.005 0.007
(0.01) (0.02) (0.01) (0.01)

Percent in hay 0.120 0.149 0.110 0.097
(0.04) (0.06) (0.05) (0.05)

Tractor diffusion 0.267 0.437
(0.16) (0.21)

Notes: Table reports average crop percentages and tractor diffusion for all
counties in the sample. Crop percentages are calculated as harvested crop
acreage as a fraction of county farmland. Tractor diffusion is the fraction of
farms reporting tractors, available in 1930 and 1940. Standard deviations
are provided in parentheses below each average.

Table III.2: Tractor diffusion, by crop intensity and year

1930 (N=1035) 1940 (N=1035)

Above Below Above Below
median median t-stat median median t-stat

Tractor diffusion, when 0.270 0.264 0.60 0.473 0.400 5.77 ***
1910 corn acreage is: (0.13) (0.18) (0.19) (0.22)

Tractor diffusion, when 0.299 0.236 6.68 *** 0.473 0.400 5.72 ***
1910 wheat acreage is: (0.16) (0.15) (0.19) (0.22)

Tractor diffusion, when 0.325 0.210 12.80 *** 0.522 0.352 14.51 ***
1910 barley acreage is: (0.15) (0.15) (0.17) (0.21)

Notes: Table reports average tractor diffusion in 1930 and 1940 in counties with more and less
than the median fraction of farmland in the given crop. Groups are formed based on crop acreage
reported in the 1910 Census of Agriculture to avoid classifications on the basis of endogenous crop
choice; at this time, tractors were owned only about 1,000 farms in the U.S. (Historical Statistics,
2006). Standard deviations are provided in parentheses below each average, and t-statistics for
the difference in means is reported to the right. ***, **, and * indicate significance at the 1%, 5%,
and 10% levels respectively. The table suggests that tractor adoption was not sensitive to the frac-
tion of farmland in corn prior to the 1930s but was sensitive to the fraction of farmland in wheat
and especially sensitive to the fraction of farmland in barley.
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Table III.3: Effect of crop mix on tractor diffusion, 1930 and 1940; OLS

Diffusion Diff. Change Diffusion Diff. Change
1930 1940 1930-1940 1930 1940 1930-1940

Pct. in corn -0.095* 0.466*** 0.296*** 0.033 0.395*** 0.164***
(0.049) (0.070) (0.035) (0.059) (0.051) (0.043)

Pct. in wheat 0.907*** 0.788*** 0.122*** 0.695*** 0.477*** -0.019
(0.042) (0.070) (0.037) (0.043) (0.046) (0.046)

Pct. in oats 1.108*** 1.378*** 0.611*** 0.995*** 1.129*** 0.466***
(0.069) (0.099) (0.053) (0.082) (0.070) (0.057)

Pct. in barley 0.898*** 1.430*** 0.728*** 0.795*** 1.141*** 0.657***
(0.182) (0.146) (0.089) (0.152) (0.135) (0.093)

Pct. in rye -1.068*** -1.465*** 0.321** -1.270*** -1.166*** 0.091
(0.309) (0.324) (0.141) (0.247) (0.247) (0.136)

Constant 0.136*** 0.226*** 0.077*** 0.957** 1.818*** -0.702**
(0.013) (0.020) (0.009) (0.479) (0.489) (0.353)

N 1034 954 954 1034 941 941
R2 0.70 0.71 0.67 0.79 0.90 0.73
RMSE 0.09 0.11 0.05 0.07 0.06 0.05
State FEs? Yes Yes Yes Yes Yes Yes
Controls? No No No Yes Yes Yes

Notes: Table shows the tendency of counties with different crop mixes to adopt the farm tractor in 1930,
1940, and from 1930-1940. All specifications regress the fraction of farms with tractors on contempora-
neous crop mixes. Columns (4)-(6) add controls. *, **, *** represent significance at the 0.1, 0.05, and
0.01 levels, respectively. Robust SEs in parentheses.
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Table III.4: Effect of crop mix on tractor diffusion, 1930 and 1940; IV

Diffusion Diff. Change Diffusion Diff. Change
1930 1940 1930-1940 1930 1940 1930-1940

Pct. in corn -0.271*** 0.034 0.333*** 0.056 0.375*** 0.397***
(0.073) (0.112) (0.046) (0.076) (0.083) (0.074)

Pct. in wheat 0.533*** 0.933*** 0.229*** 0.483*** 0.568*** 0.184**
(0.069) (0.118) (0.057) (0.062) (0.087) (0.079)

Pct. in oats 1.394*** 2.529*** 0.624*** 1.007*** 1.357*** 0.182
(0.105) (0.187) (0.095) (0.100) (0.123) (0.118)

Pct. in barley 0.243 0.589 0.918*** 0.594** 0.961*** 1.275***
(0.313) (0.421) (0.209) (0.287) (0.358) (0.288)

Pct. in rye -1.005** -0.953 0.023 -2.452*** -1.913*** -0.437
(0.447) (0.592) (0.332) (0.463) (0.475) (0.282)

Constant 0.181*** 0.218*** 0.061*** 1.102** 2.095*** -1.174**
(0.015) (0.024) (0.011) (0.488) (0.646) (0.532)

N 1034 954 954 1034 941 941
R2 0.66 0.66 0.66 0.78 0.89 0.69
RMSE 0.09 0.12 0.06 0.07 0.06 0.05
State FEs? Yes Yes Yes Yes Yes Yes
Controls? No No No Yes Yes Yes
Min. F-stat 18.67 20.79 20.79 23.35 15.98 15.98

Notes: Table shows the tendency of counties with different crop mixes to adopt the farm tractor
in 1930, 1940, and from 1930-1940. All specifications regress the fraction of farms with tractors on
contemporaneous crop mixes instrumented with pre-tractor era values. The lowest first stage F-stat
is provided. Columns (4)-(6) add controls. *, **, *** represent significance at the 0.1, 0.05, and 0.01
levels, respectively. Robust SEs in parentheses.
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Table III.5: Effect of crop mix on tractor vintage, 1940; OLS

Vintage: Vintage: Vintage: Vintage: Vintage: Vintage:
Pre-1930 1931-35 1936-40 Pre-1930 1931-35 1936-40

Pct. in corn -0.723*** 0.127*** 0.596*** -0.468*** 0.122*** 0.346***
(0.058) (0.022) (0.053) (0.066) (0.026) (0.060)

Pct. in wheat -0.251*** 0.070*** 0.181*** -0.024 0.013 0.011
(0.053) (0.021) (0.045) (0.064) (0.025) (0.058)

Pct. in oats -0.386*** 0.024 0.362*** -0.640*** 0.139*** 0.501***
(0.090) (0.034) (0.084) (0.094) (0.037) (0.083)

Pct. in barley -1.221*** 0.484*** 0.737*** -1.296*** 0.520*** 0.775***
(0.196) (0.068) (0.150) (0.188) (0.065) (0.150)

Pct. in rye -1.177*** -0.160 1.337*** -1.097*** -0.029 1.126***
(0.282) (0.098) (0.224) (0.296) (0.101) (0.237)

Constant 0.450*** 0.167*** 0.384*** 1.411** 0.568** -0.979
(0.015) (0.006) (0.014) (0.668) (0.257) (0.599)

N 954 954 954 941 941 941
R2 0.65 0.42 0.62 0.72 0.53 0.68
RMSE 0.09 0.04 0.08 0.08 0.03 0.08
State FEs? Yes Yes Yes Yes Yes Yes
Controls? No No No Yes Yes Yes

Notes: Table shows the tendency of counties with different crop mixes to own tractors of
different vintages in 1940. All specifications regress the fraction of farms with tractors whose
latest model-year tractor is pre-1930, 1931-35, and 1936-40 on contemporaneous crop mixes.
Columns (4)-(6) add controls. *, **, *** represent significance at the 0.1, 0.05, and 0.01
levels, respectively. Robust SEs in parentheses.
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Table III.6: Effect of crop mix on tractor vintage, 1940; IV

Vintage: Vintage: Vintage: Vintage: Vintage: Vintage:
Pre-1930 1931-35 1936-40 Pre-1930 1931-35 1936-40

Pct. in corn -0.856*** 0.114*** 0.742*** -0.592*** 0.153*** 0.439***
(0.091) (0.035) (0.082) (0.136) (0.047) (0.114)

Pct. in wheat -0.212** 0.079** 0.134 -0.203 0.095** 0.108
(0.098) (0.034) (0.083) (0.132) (0.043) (0.113)

Pct. in oats 0.304* -0.102 -0.202 0.179 -0.162** -0.017
(0.181) (0.067) (0.159) (0.210) (0.078) (0.167)

Pct. in barley -3.040*** 1.046*** 1.994*** -3.361*** 1.299*** 2.063***
(0.482) (0.164) (0.383) (0.640) (0.206) (0.498)

Pct. in rye -1.104* -0.665*** 1.769*** 0.381 -0.513** 0.132
(0.642) (0.234) (0.623) (0.697) (0.223) (0.599)

Constant 0.428*** 0.178*** 0.394*** 4.171*** -0.481 -2.690***
(0.021) (0.008) (0.019) (1.048) (0.369) (0.875)

N 954 954 954 941 941 941
R2 0.59 0.34 0.57 0.63 0.40 0.63
RMSE 0.10 0.04 0.09 0.10 0.04 0.08
State FEs? Yes Yes Yes Yes Yes Yes
Controls? No No No Yes Yes Yes
Min. F-stat 20.79 20.79 20.79 15.98 15.98 15.98

Notes: Table shows the tendency of counties with different crop mixes to own tractors of differ-
ent vintages in 1940. All specifications regress the fraction of farms with tractors whose latest
model-year tractor is pre-1930, 1931-35, and 1936-40 on contemporaneous crop mixes instru-
mented with pre-tractor era values. The lowest first stage F-stat is provided. Columns (4)-(6)
add controls. *, **, *** represent significance at the 0.1, 0.05, and 0.01 levels, respectively.
Robust SEs in parentheses.
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Table III.7: Counterfactual Midwest tractor diffusion, 1930 and 1940

1930 (% Increase) 1940 (% Increase)

Actual diffusion 0.256 0.431
OLS counterfactual 0.358 39.7% 0.443 2.6%
IV counterfactual 0.322 25.6% 0.458 6.3%

Sample size 1034 941

Notes: Table reports projections of tractor diffusion across the U.S. Midwest in 1930

and 1940 had the tractor diffused at the same rate to counties with equal concen-

trations of wheat and corn. The estimates in this table are approximations, projected

from the OLS and IV estimates (respectively) in Tables III.3 and III.4, as described

in the text. The sample for these estimates (including for the calculation of actual

diffusion above) is restricted to counties that were included in the regressions.

Table III.8: Percent of farms with tractors, by region and year

Census Region 1920 1925 1930 1940 2002

Northeast 2.7 9.5 18.6 29.2 86.2
Midwest 6.8 13.6 25.7 42.4 89.6
South 1.0 2.3 4.0 7.9 91.8

excl. DE, MD, OK, TX 0.7 1.8 2.7 4.2 90.0
DE, MD alone 2.8 7.5 15.5 23.0 90.3
OK, TX alone 2.2 3.7 7.9 21.3 95.0

West 7.0 10.7 19.4 27.9 83.2

Notes: Table reports percent of farms in each region owning a tractor
in 1920, 1925, 1930, 1940, and 2002. The table highlights the lagging
adoption of tractors in Southern states through 1940, especially those
with historically poor labor institutions (slavery and sharecropping),
and their eventual catch-up to the rest of the country. Source: 1940
U.S. Census of Agriculture, Volume 1, State Table 11.
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Table III.9: Shares of firms in U.S. manufacturing, by power source, 1850-1870

Steam Water Draft Manual Combo

1850
0.077 0.297 0.044 0.552 0.030

(N=5179)

1860
0.203 0.335 0.036 0.397 0.029

(N=3975)

1870
0.202 0.181 0.029 0.572 0.016

(N=4439)

Notes: Table reports the share of U.S. manufacturing firms associating with each
of five different power sources. Sample excludes firms not providing a primary
power source or for which the primary power source is unavailable. Source: Atack,
Bateman and Weiss nationally representative samples from manuscript Censuses
of Manufactures, 1850-1870.

Table III.10: Shares of horsepower in U.S. manufacturing, 1899-1909

Electric Gas Steam Water

1899
0.065 0.044 0.800 0.091

(N=93)

1904
0.147 0.061 0.720 0.072

(N=97)

1909
0.247 0.052 0.653 0.048

(N=97)

Notes: Table reports the share of horsepower in U.S. manu-
facturing held by the four principal power sources in industry
at the turn of the 20th century. Horsepower shares are aggre-
gated over all industries reported in the 1910 U.S. Census of
Manufactures, censoring industries with the 5% largest power
demands in each year. Source: 1910 U.S. Census, Volume VIII
(Manufactures), Chapter III, Table 3.

117



Bibliography

Aghion, Philippe, Nick Bloom, Richard Blundell, Rachel Griffith, and Peter Howitt, “Com-
petition and Innovation: An Inverted-U Relationship,” Quarterly Journal of Economics, 2005, 120 (2),
701–728.

Akcigit, Ufuk and Qingmin Liu, “The Role of Information in Innovation and Competition,” 2014.
Working Paper.

Alston, Lee J., “Farm Foreclosures in the United States during the Interwar Period,” The Journal of
Economic History, 1983, 43 (4), 885–903.

Amabile, Teresa M. and Mukti Khaire, “Creativity and the Role of the Leader,” Harvard Business
Review, 2008, October, 100–109.

Ankli, Robert and Alan Olmstead, “The Adoption of the Gasoline Tractor in California,” Agricultural
History, 1981, 55 (3), 213–230.

Aoyagi, Masaki, “Information Feedback in a Dynamic Tournament,” Games and Economic Behavior,
2010, 70 (2), 242–260.

Arrow, Kenneth J., “Economic Welfare and the Allocation of Resources for Invention,” in “The Rate and
Direction of Inventive Activity: Economic and Social Factors,” Princeton: Princeton University Press,
1962.

Atack, Jeremy, Fred Bateman, and Thomas Weiss, Samples from the Manuscript Censuses of Man-
ufactures, 1850-1880. Available at: https://my.vanderbilt.edu/jeremyatack/data-downloads/.

Azmat, Ghazala and Nagore Iriberri, “The Importance of Relative Performance Feedback Information:
Evidence from a natural experiment using high school students,” Journal of Public Economics, 2010, 94
(7), 435–452.

Azoulay, Pierre, Joshua S. Graff Zivin, and Gustavo Manso, “Incentives and Creativity: Evidence
from the Academic Life Sciences,” RAND Journal of Economics, 2011, 42 (3), 527–554.

Baik, Kyung Hwan, “Effort Levels in Contests with Two Asymmetric Players,” Southern Economic
Journal, 1994, pp. 367–378.

Baye, Michael R. and Heidrun C. Hoppe, “The Strategic Equivalence of Rent-seeking, Innovation,
and Patent-race Games,” Games and Economic Behavior, 2003, 44 (2), 217–226.

Beer, Michael, “Performance Appraisal,” in Jay W. Lorsch, ed., Handbook of Organizational Behavior,
Englewood Cliffs: Prentice Hall, 1987.

Bénabou, Roland and Jean Tirole, “Intrinsic and Extrinsic Motivation,” Review of Economic Studies,
2003, 70 (3), 489–520.
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I.A Analogy for Search Process

A simple analogy can illustrate the nature and consequences of experimentation in this setting. Consider
a sponsor with smooth preferences f (·) over the real line, mapped as a function over R, as illustrated in
Figure I.A.1. This function is ex-ante unknown to players, and perhaps even to the sponsor, but known to
exist. Players begin by drawing a random number x and learning the value of f (x). Since f (·) is smooth,
the player knows that any incremental movement along R, left or right, to x′ will yield f (x′) ≈ f (x); the
outcome of a more radical deviation from x is uncertain.

Figure I.A.1: Sponsor’s preferences over the real line

The player can use incremental search to seek out a local maximum, or the highest local maximum in
a neighborhood of x, but to identify even higher local maxima or a global maximum, she will need to
experiment. Experimentation from a relatively favorable initial x is likely to be high mean, but also high
variance, as in Figure I.A.1. These are features of the model in Section I.1: the expected outcome of
experimentation, qαβ1 + (1− q) 1

αβ1, and the difference between upside and downside outcomes, αβ1− 1
αβ1,

are both increasing in β1, the player’s initial draw. Section I.4 shows they are also features of the empirical
setting.

In Figure I.A.1, the probability of successful experimentation after an initial draw of x is a function of f (x):
the better a player’s existing draw, the less likely it is that experimentation will yield an even better one
(and vice versa). Intuitively, when the best draw is very good, experimentation has mostly downside; when
the best draw is low, it has mostly upside. This feature can naturally be incorporated into the model of
Section I.1 by endogenizing q = q (β1), with q (·) a decreasing, convex function of β1 (a simple, parametric
example is q = exp {−β1}). Doing so does not fundamentally change the results of Sections I.1 to I.1, since
those results obtain from comparative statics with respect to the level of competition µ. Section I.4 shows
that the probability of high and low experimentation outcomes varies as expected with the initial draw.

The conclusion of Section I.1 is that competition can shape incentives for experimentation when this search
process is embedded in a tournament: a player with a high-quality design may be induced to experiment
by the competition she faces. This result holds as long as this probability of successful experimentation is
greater than the minimum threshold derived in the paper.
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I.B Proofs of Theorems and Additional Figures

Lemma 1: The gains to exploration over abandonment are increasing and concave in µ when µ is small and
decreasing and convex when µ is large. The gains are zero when µ = 0 and approach zero from above as
µ→∞, holding β1 fixed.

Proof:

Part (i): Low µ. As µ−→ 0:
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Part (ii): High µ. As µ−→∞:
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Taken together, these asymptotics generate a curve with the shape described.
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Proposition 1: For all values of q, there exists a unique level of competition µ∗1 at which the gains to
exploration, relative to abandonment, are maximized.

Proof: Existence follows from lemma and continuity of the success function. Since the difference of the
success function under exploration and abandonment is quadratic in µ, it has at most two real roots, one of
which is shown below to be zero, the other of which is shown to be negative. Given the shape described by
the lemma, the value at which this difference is maximized must be unique.

To find the roots, set qF
(
βH2
)

+(1−q)F
(
βL2
)
−F (0) = 0 and solve for µ:

0 = q

(
(1+α)β1

(1+α)β1 +µ

)
+(1−q)

( (
1+ 1

α

)
β1(

1+ 1
α

)
β1 +µ

)
−
(

β1

β1 +µ

)
= q(1+α)β1

[((
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1

α

)
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)
(β1 +µ)

]
+(1−q)

(
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1

α

)
β1 [((1+α)β1 +µ)(β1 +µ)]

−β1

[
((1+α)β1 +µ)

((
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1

α

)
β1 +µ

)]
=µ2β1

[
q(1+α)+(1−q)

(
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1

α

)
−1

]
+µβ2

1

[
q

(
2+α+

1

α

)
+(1−q)

(
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1

α

)
+q(1+α)+(1−q)

(
1+

1

α

)
−
(

2+α+
1

α

)]
+β3

1

[
q

(
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1

α

)
+(1−q)

(
2+α+

1

α

)
−
(

2+α+
1

α

)]
= aβ1µ

2 +bβ2
1µ+cβ3

1 ,

where

a= q+αq+(1−q)+
1

α
(1−q)−1 =αq+

1

α
(1−q) =

1

α

((
α2−1

)
q+1

) {> 0 if q < 1
1−α2

< 0 if q > 1
1−α2

b= q+αq+(1−q)+
1

α
(1−q) =αq+

1

α
(1−q)+1 =

1

α
(α+1)((α−1)q+1)

{
> 0 if q < 1

1−α
< 0 if q > 1

1−α

c= 0

By the quadratic formula, the roots are thus:

−
(
bβ2

1

)
±
√

(bβ2
1)

2−0

2(aβ1)
=
−(bβ1)±−(bβ1)

2a
=

{
−β1

b
a

0

Since α is greater than one, a< 0 and b< 0. Thus the non-zero root is negative.
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Lemma 2: When q ∈ ( 1
1+α ,

1
2 ), the gains to exploration over exploitation are decreasing and convex in

µ for small µ, increasing and concave for intermediate µ, and decreasing and convex for large µ. When

q ∈
(

1
2 ,

3α+1
4α+1

)
, they are increasing and convex for small µ and decreasing and convex for large µ. When

q > 3α+1
4α+1 , they are increasing and concave for small µ and decreasing and convex for large µ. When q < 1

1+α ,
they are decreasing and convex for small µ and increasing and concave for large µ. In every case, the gains
are zero when µ = 0; when q > 1

1+α (q < 1
1+α ), they approach zero from above (below) as µ→∞, holding

β1 fixed.

Proof:

Part (i): Low µ. As µ−→ 0:
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(
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Part (ii): High µ. As µ−→∞:
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> 0 if q > 1

1+α

< 0 if q < 1
1+α

Taken together, these asymptotics generate a curve with the shape described.
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Proposition 2: When q > 1
1+α , there exists a unique level of competition µ∗2 at which the gains to exploration,

relative to exploitation, are maximized.

Proof: Existence follows from lemma and continuity of the success function. Since the difference of the
success function under exploration and exploitation is quadratic in µ, it has at most two real roots, one of

which is shown below to be zero, the other of which is shown to be positive if q ∈
(

1
1+α ,

1
2

)
and negative

otherwise. Given the shape described by the lemma, the value at which this difference is maximized must
be unique.

To find the roots, set qF
(
βH2
)

+(1−q)F
(
βL2
)
−F (β1) = 0 and solve for µ:
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(
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where
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1

α
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1
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1

α
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c= 0

By the quadratic formula, the roots are thus:

−
(
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)
±
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(bβ2
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2a
=

{
−β1

b
a

0

When q < 1
1+α , a< 0 and b< 0, and the non-zero root is negative. When q ∈

(
1

1+α ,
1
2

)
, a> 0 and b< 0, and

the non-zero root is positive. When q > 1
2 , a> 0 and b> 0, and the non-zero root is negative.
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Corollary: When q < 1
1+α , exploration will never be preferred to exploitation.

Proof: Follows from lemma, continuity of the success function, and results from the previous proof showing
that when q < 1

1+α , there is no positive root for the difference of the success function for exploration and
exploitation, such that this difference never becomes positive.

Proposition 3: At very low and very high µ, the next-best alternative to exploration is abandonment. At
intermediate µ, the next-best alternative is exploitation.

Proof: Lemma 1 can be used to characterize the shape of the gains to exploration versus abandonment
and exploitation versus abandonment, since in this model, exploitation is a special case of exploration, with
α = 1. The proof to Lemma 1 establishes that the gains to exploitation are zero when µ = 0, increasing for
small µ, decreasing for large µ, and approach zero from above as µ → ∞. Provided the prize-normalized
cost of exploitation is not greater than the maximum of this function, the payoffs to exploitation will begin
negative, turn positive, and finish negative, implying that abandonment (the IR constraint) is binding to
exploration at low and high µ and exploitation (the IC constraint) is binding at intermediate µ.

Proposition 4: When q > 1
1+α , there exists a unique level of competition µ∗ ∈ [µ∗1, µ

∗
2] at which the gains to

exploration are maximized relative to the player’s next-best alternative.

Proof: Result follows from the first three propositions.
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Figure I.B.1: Exploration, exploitation, and abandonment regions
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Figure I.B.2: µ∗ at which benefits to exploration are maximized
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I.C Dataset Construction

Data were collected on all logo design contests with open (i.e., public) bidding that launched the week of
September 3 to 9, 2013, and every three weeks thereafter through the week of November 5 to 11, 2013.
Conditional on open bidding, this sample is effectively randomly drawn. The sample used in the paper is
further restricted to contests with a single, winner-take-all prize and with no mid-contest rule changes such
as prize increases, deadline extensions, and early endings. The sample also excludes one contest that went
dormant and resumed after several weeks, as well as a handful of contests whose sponsors simply stopped
participating and were never heard from again. These restrictions cause 146 contests to be dropped from
the sample. The final dataset includes 122 contests, 4,050 contest-players, and 11,758 designs.

To collect the data, I developed an automated script to scan these contests once an hour for new submis-
sions, save a copy of each design for analysis, and record their owners’ identity and performance history
from a player profile. I successfully obtained the image files for 96 percent of designs in the final sample.
The remaining designs were entered and withdrawn before they could be observed (recall that players can
withdraw designs they have entered into a contest, though this option is rarely exercised and can be reversed
at the request of a sponsor). All other data were automatically acquired at the conclusion of each contest,
once the prize was awarded or the sponsor exercised its outside option of a refund.

Variables

The dataset includes information on the characteristics of contests, contest-players, and designs:

• Contest-level variables include: the contest sponsor, features of the project brief (title, description,
sponsor industry, materials to be included in logo), start and end dates, the prize amount (and whether
committed), and the number of players and designs of each rating.

• Contest-player-level variables include: the player’s self-reported country, his/her experience in previous
contests on the platform (number of contests and designs entered, contests won), and that player’s
participation and performance in the given contest.

• Design-level variables include: the design’s owner, its submission time and order of entry, the feedback
it received, the time at which this feedback was given, and whether it was eventually withdrawn. For
designs with images acquired, I calculate originality using the procedures described in the next section.
The majority of the analysis occurs at the design level.

Note that designs are occasionally re-rated: five percent of all rated designs are re-rated an average of 1.2
times each. Of these, 14 percent are given their original rating, and 83 percent are re-rated within 1 star of
the original rating. I treat the first rating on each design to be the most informative, objective measure of
quality, since research suggests first instincts tend to be most reliable and ratings revisions are likely made
relative to other designs in the contest rather than an objective benchmark.
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Image Comparison Algorithms

This paper uses two distinct algorithms to calculate pairwise similarity scores. One is a perceptual hash
algorithm, which creates a digital signature (hash) for each image from its lowest frequency content. As
the name implies, a perceptual hash is designed to imitate human perception. The second algorithm is a
difference hash, which creates the hash from pixel intensity gradients.

I implement the perceptual hash algorithm and calculate pairwise similarity scores using a variant of the
procedure described by the Hacker Factor blog.1 This requires six steps:

1. Resize each image to 32x32 pixels and convert to grayscale.

2. Compute the discrete cosine transform (DCT) of each image. The DCT is a widely-used transform
in signal processing that expresses a finite sequence of data points as a linear combination of cosine
functions oscillating at different frequencies. By isolating low frequency content, the DCT reduces a
signal (in this case, an image) to its underlying structure. The DCT is broadly used in digital media
compression, including MP3 and JPEG formats.

3. Retain the upper-left 16x16 DCT coefficients and calculate the average value, excluding first term.

4. Assign 1s to grid cells with above-average DCT coefficients, and 0s elsewhere.

5. Reshape to 256 bit string; this is the image’s digital signature (hash).

6. Compute the Hamming distance between the two hashes and divide by 256.

The similarity score is obtained by subtracting this fraction from one. In a series of sensitivity tests, the
perceptual hash algorithm was found to be strongly invariant to transformations in scale, aspect ratio,
brightness, and contrast, albeit not rotation. As described, the algorithm will perceive two images that
have inverted colors but are otherwise identical to be perfectly dissimilar. I make the algorithm robust to
color inversion by comparing each image against the regular and inverted hash of its counterpart in the pair,
taking the maximum similarity score, and rescaling so that the scores remain in [0,1]. The resulting score is
approximately the absolute value correlation of two images’ content.

I follow a similar procedure outlined by the same blog2 to implement the difference hash algorithm and
calculate an alternative set of similarity scores for robustness checks:

1. Resize each image to 17x16 pixels and convert to grayscale.

2. Calculate horizontal gradient as the change in pixel intensity from left to right, returning a 16x16 grid
(note: top to bottom is an equally valid alternative)

3. Assign 1s to grid cells with positive gradient, 0s to cells with negative gradient.

4. Reshape to 256 bit string; this is the image’s digital signature (hash).

5. Compute the Hamming distance between the two hashes and divide by 256.

The similarity score is obtained by subtracting this fraction from one. In sensitivity tests, the difference
hash algorithm was found to be highly invariant to transformations in scale and aspect ratio, potentially
sensitive to changes in brightness and contrast, and very sensitive to rotation. I make the algorithm robust
to color inversion using a procedure identical to that described for the perceptual hash.

Though the perceptual and difference hash algorithms are both conceptually and mathematically distinct,
and the resulting similarity scores are only modestly correlated (ρ = 0.38), the empirical results of Section
I.3 are qualitatively and quantitatively similar under either algorithm. This consistency is reassurance that
the patterns found are not simply an artifact of an arcane image processing algorithm; rather, they appear
to be generated by the visual content of the images themselves.

1See http://www.hackerfactor.com/blog/archives/432-Looks-Like-It.html.
2See http://www.hackerfactor.com/blog/archives/529-Kind-of-Like-That.html.
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Why use algorithms?

There are three advantages to using algorithms over human judges. The first is that the algorithms provide
a consistent, objective measure of similarity, whereas individuals can have significantly different, subjective
perceptions of similarity in practice (Tirilly et al. 2012). This conclusion is supported by a pilot study I
attempted using Amazon Mechanical Turk, in which I asked participants to rate the similarity of pairs of
images they were shown; the results (not provided here) were generally very noisy, except in cases of nearly
identical images, in which case the respondents tended to agree. The second advantage to algorithms over
human judges is that algorithms can be directed to evaluate specific features of an image (in this case, the
low frequency content or pixel intensity gradient), while human judges will see what they choose to see, and
may be attuned to different features in different comparisons. The final advantage of algorithms is more
obvious: they are cheap, taking only seconds to execute a comparison.

The evidence of disagreement in subjects’ assessments of similarity nevertheless raises a deeper question: is
it sensible to apply a uniform similarity measure in this setting? I argue that it is, for the following reasons.
First, in both Tirilly et al. (2012) and the Mechanical Turk trials, respondents agreed on extremes, when
images were either highly similar or highly dissimilar – in other words, it tends to be obvious when two
images are near replicas, which is the margin of variation that matters most for this paper. Squire and Pun
(1997) also found that expert subjects’ assessments of similarity tend to agree at all levels; the designers in
this paper could reasonably be classified as visual experts. Finally, divergence in opinion may result from
the fact that subjects in the above studies were instructed to assess similarity as they perceive it, rather
than in terms of specific features. If subjects were instructed to focus on specific features, they would likely
tend to agree – not only with each other, but also with the computer.

Appendix References:

[1] Tirilly, Pierre, Chunsheng Huang, Wooseob Jeong, Xiangming Mu, Iris Xie, and Jin Zhang. 2012.
“Image Similarity as Assessed by Users: A Quantitative Study.” Proceedings of the American Society for
Information Science and Technology, 49(1), pp. 1-10.

[2] Squire, David and Thierry Pun. 1997. “A Comparison of Human and Machine Assessments of Image
Similarity for the Organization of Image Databases.” Proceedings of the Scandinavian Conference on Image
Analysis, Lappeenranta, Finland.
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I.D Robustness Checks (1)

The following tables provide variants of the tables in Section I.3 estimating the effects of feedback and
competition on experimentation, using the difference hash algorithm instead of the preferred, perceptual
hash algorithm. These estimates serve as robustness checks to the principal empirical results of the paper,
demonstrating that they are not sensitive to the procedure used to calculate similarity scores.

Table I.D.1 is a robustness check on Table I.7; Table I.D.2, on Table I.8; Table I.D.3, on Table I.9; Table
I.D.4, on Table I.10; and Table I.D.5, on Table I.11. The results in these appendix tables are qualitatively
and quantitatively similar to those in the body of the paper.

Table I.D.1: Similarity to player’s previous designs (difference hash)

(1) (2) (3) (4)

Player’s prior best rating==5 0.270*** 0.253*** 0.269*** 0.256***
(0.086) (0.087) (0.087) (0.086)

* 1+ competing 5-stars -0.128** -0.141** -0.127** -0.140**
(0.058) (0.056) (0.058) (0.056)

* prize value ($100s) -0.038 -0.047* -0.034 -0.046*
(0.026) (0.027) (0.026) (0.027)

Player’s prior best rating==4 0.057*** 0.025 0.064*** 0.030
(0.020) (0.021) (0.020) (0.021)

Player’s prior best rating==3 0.027* 0.011 0.035** 0.016
(0.017) (0.017) (0.017) (0.017)

Player’s prior best rating==2 -0.004 -0.012 0.003 -0.008
(0.020) (0.020) (0.020) (0.020)

One or more competing 5-stars -0.011 -0.022 -0.011 -0.022
(0.022) (0.024) (0.022) (0.023)

Days remaining -0.004 0.001 -0.004* 0.001
(0.003) (0.007) (0.003) (0.007)

Constant 0.508*** 0.454*** 0.512*** 0.461***
(0.139) (0.160) (0.139) (0.159)

N 5075 5075 5075 5075
R2 0.48 0.48 0.48 0.48
Controls No Yes No Yes
Contest FEs Yes Yes Yes Yes
Player FEs Yes Yes Yes Yes
Forthcoming ratings No No Yes Yes

Notes: Table shows the effects of feedback on players’ experimentation. Observations are
designs. Dependent variable is a continuous measure of a design’s maximum similarity to
previous entries in the same contest by the same player, taking values in [0,1], where a value
of 1 indicates the design is identical to another. The mean value of this variable in the sample
is 0.58 (s.d. 0.28). Columns (2) and (4) control for time of submission and number of previous
designs entered by the player and her competitors. Columns (3) and (4) additionally control
for the best f orthcoming rating on the player’s not-yet-rated designs. Similarity scores in this
table are calculated using a difference hash algorithm. Preceding designs/ratings are defined to
be those entered/provided at least 60 minutes prior to the given design. *, **, *** represent
significance at the 0.1, 0.05, and 0.01 levels, respectively. SEs clustered by player in parentheses.
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Table I.D.2: Similarity to player’s best previously-rated designs & intra-batch similarity (d. hash)

Designs Batches (uwtd.) Batches (wtd.)
(1) (2) (3) (4) (5) (6)

Player’s prior best==5 0.244* 0.242* 0.224 0.246 0.236 0.260
(0.131) (0.141) (0.299) (0.293) (0.286) (0.281)

* 1+ competing 5-stars -0.168* -0.177** -0.327** -0.324** -0.314** -0.308**
(0.086) (0.087) (0.146) (0.144) (0.147) (0.145)

* prize value ($100s) -0.018 -0.024 -0.022 -0.023 -0.025 -0.026
(0.038) (0.042) (0.093) (0.092) (0.087) (0.085)

Player’s prior best==4 0.066* 0.049 -0.016 -0.003 -0.012 0.004
(0.039) (0.041) (0.031) (0.032) (0.029) (0.031)

Player’s prior best==3 0.044 0.033 0.011 0.019 0.010 0.020
(0.038) (0.039) (0.033) (0.035) (0.031) (0.032)

Player’s prior best==2 0.014 0.007 -0.019 -0.012 -0.021 -0.014
(0.040) (0.040) (0.047) (0.049) (0.045) (0.045)

1+ competing 5-stars -0.012 -0.019 -0.018 -0.018 -0.014 -0.017
(0.031) (0.032) (0.033) (0.034) (0.031) (0.033)

Days remaining 0.002 0.001 -0.000 -0.002 -0.000 0.001
(0.003) (0.009) (0.004) (0.008) (0.004) (0.009)

Constant 0.844*** 0.863*** 0.646*** 0.673*** 0.672*** 0.661***
(0.152) (0.173) (0.121) (0.156) (0.096) (0.128)

N 3871 3871 1987 1987 1987 1987
R2 0.53 0.53 0.59 0.59 0.59 0.59
Controls No Yes No Yes No Yes
Contest FEs Yes Yes Yes Yes Yes Yes
Player FEs Yes Yes Yes Yes Yes Yes

Notes: Table shows the effects of feedback on players’ experimentation. Observations in Columns (1)
and (2) are designs, and dependent variable is a continuous measure of a design’s similarity to the
highest-rated preceding entry by the same player, taking values in [0,1], where a value of 1 indicates
the design is identical to another. The mean value of this variable in the sample is 0.52 (s.d. 0.30).
Observations in Columns (3) to (6) are design batches, which are defined to be a set of designs by
a single player entered into a contest in close proximity (15 minutes), and dependent variable is a
continuous measure of intra-batch similarity, taking values in [0,1], where a value of 1 indicates that
two designs in the batch are identical. The mean value of this variable in the sample is 0.72 (s.d.
0.27). Columns (5) and (6) weight the batch regressions by batch size. All columns control for the time
of submission and number of previous designs entered by the player and her competitors. Similarity
scores in this table are calculated using a difference hash algorithm. Preceding designs/ratings are
defined to be those entered/provided at least 60 minutes prior to the given design. *, **, *** represent
significance at the 0.1, 0.05, and 0.01 levels, respectively. SEs clustered by player in parentheses.
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Table I.D.3: Change in similarity to player’s best previously-rated designs (d. hash)

(1) (2) (3) (4) (5) (6)

∆(Player’s best==5) 0.657*** 0.680*** 0.687** 0.659*** 0.693*** 0.693***
(0.218) (0.256) (0.269) (0.217) (0.256) (0.267)

* 1+ competing 5-stars -0.347** -0.374* -0.362* -0.350** -0.379* -0.368*
(0.174) (0.206) (0.218) (0.174) (0.206) (0.218)

* prize value ($100s) -0.049 -0.060 -0.063 -0.048 -0.063 -0.064
(0.046) (0.055) (0.057) (0.046) (0.055) (0.057)

∆(Player’s best==4) 0.262*** 0.236*** 0.231*** 0.262*** 0.237*** 0.232***
(0.070) (0.081) (0.086) (0.070) (0.081) (0.086)

∆(Player’s best==3) 0.192*** 0.169** 0.161** 0.192*** 0.169** 0.162**
(0.062) (0.073) (0.077) (0.063) (0.073) (0.077)

∆(Player’s best==2) 0.132** 0.110 0.104 0.131** 0.110 0.104
(0.058) (0.067) (0.071) (0.058) (0.067) (0.071)

1+ competing 5-stars -0.005 -0.000 -0.005 0.001 0.000 -0.001
(0.016) (0.016) (0.025) (0.018) (0.016) (0.029)

Days remaining -0.000 -0.000 0.000 -0.007 -0.005 -0.009
(0.002) (0.002) (0.003) (0.005) (0.004) (0.009)

Constant -0.012 -0.013 -0.237*** 0.058 0.038 -0.169**
(0.010) (0.010) (0.045) (0.050) (0.047) (0.072)

N 2694 2694 2694 2694 2694 2694
R2 0.04 0.10 0.13 0.04 0.10 0.13
Controls No No No Yes Yes Yes
Contest FEs Yes No Yes Yes No Yes
Player FEs No Yes Yes No Yes Yes

Notes: Table shows the effects of feedback on players’ experimentation. Observations are designs.
Dependent variable is a continuous measure of the change in designs’ similarity to the highest-rated
preceding entry by the same player, taking values in [-1,1], where a value of 0 indicates that the player’s
current design is as similar to her best preceding design as was her previous design, and a value of
1 indicates that the player transitioned fully from experimenting to copying (and a value of -1, the
converse). The mean value of this variable in the sample is -0.01 (s.d. 0.25). Columns (4) to (6) control
for time of submission and number of previous designs entered by the player and competitors. Simi-
larity scores in this table are calculated using a difference hash algorithm. Preceding designs/ratings are
defined to be those entered/provided at least 60 minutes prior to the given design. *, **, *** represent
significance at the 0.1, 0.05, and 0.01 levels, respectively. SEs clustered by player in parentheses.
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Table I.D.4: Similarity to player’s best not-yet-rated designs (placebo test; using d. hash)

Similarity to forthcoming Residual
(1) (2) (3) (4)

Player’s best forthcoming rating==5 0.512 0.215 0.122 0.238
(0.447) (0.214) (0.202) (0.207)

* 1+ competing 5-stars -0.220 -0.111 -0.052 -0.108
(0.262) (0.144) (0.146) (0.145)

* prize value ($100s) -0.122 -0.026 -0.006 -0.024
(0.089) (0.049) (0.046) (0.051)

Player’s best forthcoming rating==4 0.105 0.105 0.109 0.122
(0.085) (0.113) (0.117) (0.117)

Player’s best forthcoming rating==3 0.093 0.103 0.101 0.121
(0.057) (0.135) (0.140) (0.143)

Player’s best forthcoming rating==2 0.045 0.049 0.048 0.077
(0.050) (0.136) (0.142) (0.139)

One or more competing 5-stars -0.076 -0.079 -0.081 -0.075
(0.081) (0.122) (0.126) (0.131)

Days remaining -0.019 0.003 0.006 0.004
(0.030) (0.055) (0.056) (0.062)

Constant 0.998*** 0.452 0.348 -0.179
(0.170) (0.473) (0.513) (0.489)

N 1147 577 577 577
R2 0.69 0.87 0.88 0.69
Controls Yes Yes Yes Yes
Contest FEs Yes Yes Yes Yes
Player FEs Yes Yes Yes Yes

Notes: Table provides a test of the effects of not-yet-available feedback on players’ experimen-
tation. Observations are designs. Dependent variable in Columns (1) to (3) is a continuous
measure of a design’s similarity to the best designs that the player has previously entered and
has yet to but will eventually be rated, taking values in [0,1], where a value of 1 indicates that
the two designs are identical. The mean value of this variable in the sample is 0.50 (s.d. 0.29). If
players depend on sponsors’ ratings for signals of quality, then forthcoming ratings should have
no effect on current experimentation. The results of Column (1) suggest this may not be the
case; however, similarity to an unrated design may actually be the result of both these designs
being tweaks on a third design. To account for this possibility, Column (2) controls for the given
design’s similarity to the best previously-rated design, the best not-yet-rated design’s similarity
to the best previously-rated design, and their interaction. Column (3) allows these controls to
vary by the best rating previously received. Dependent variable in Column (4) is the residual
from a regression of the dependent variable in the previous columns on these controls. These
residuals will be the subset of a given design’s similarity to the placebo that is not explained
by jointly-occurring imitation of a third design. All columns control for time of submission and
number of previous designs entered by the player and her competitors. Similarity scores in this
table are calculated using a difference hash algorithm. Preceding designs/ratings are defined to
be those entered/provided at least 60 minutes prior to the given design. *, **, *** represent
significance at the 0.1, 0.05, and 0.01 levels, respectively. SEs clustered by player in parentheses.
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Table I.D.5: Similarity/change in similarity to competitors’ best previously-rated designs (d. hash)

(1) (2) (3) (4)

Competing best==5 -0.168*** -0.127*** ∆(Competing best==5) -0.064 -0.062
-0.033 -0.034 -0.096 (0.096)

* 1+ own 5-stars -0.018 -0.017 * 1+ own 5-stars 0.006 0.005
-0.017 -0.017 -0.066 (0.066)

* prize value ($100s) 0.025*** 0.005 * prize value ($100s) 0.001 -0.000
-0.006 -0.006 -0.018 (0.018)

Competing best==4 0.027 0.033 ∆(Competing best==4) 0.069 0.069
-0.025 -0.025 -0.076 (0.076)

Competing best==3 0.032 0.045* ∆(Competing best==3) 0.068 0.069
-0.025 -0.025 -0.075 (0.076)

Competing best==2 -0.052* -0.052* ∆(Competing best==2) 0.014 0.016
-0.03 -0.029 -0.077 (0.077)

One or more own 5-stars 0.004 0.005 One or more own 5-stars 0.016 0.020
-0.027 -0.03 -0.012 (0.013)

Days remaining -0.011*** 0.008*** Days remaining 0.001 0.004
-0.001 -0.002 -0.001 (0.003)

Constant 0.537*** 0.396*** Constant 0.035 0.016
-0.094 -0.097 -0.114 (0.118)

N 9709 9709 N 6065 6065
R2 0.54 0.54 R2 0.14 0.15
Controls No Yes Controls No Yes
Contest FEs Yes Yes Contest FEs Yes Yes
Player FEs Yes Yes Player FEs Yes Yes

Notes: Table provides a test of players’ ability to discern the quality of, and then imitate, competing
designs. Observations are designs. Dependent variable in Columns (1) and (2) is a continuous measure
of the design’s similarity to the highest-rated preceding entries by other players, taking values in [0,1],
where a value of 1 indicates that the design is identical to another. The mean value in the sample is
0.33 (s.d. 0.21). Dependent variable in Columns (3) and (4) is a continuous measure of the change in
designs’ similarity to the highest- rated preceding entries by other players, taking values in [-1,1], where
a value of 0 indicates that the player’s current design is equally similar to the best competing design as
was her previous design, and a value of 1 indicates that the player transitioned fully from experimenting
to copying (and a value of -1, the converse). The mean value of this variable in the sample is 0.00 (s.d.
0.15). In general, players are provided only the distribution of ratings on competing designs; ratings of
specific competing designs are not observed. Results in this table test whether players can nevertheless
identify and imitate leading competition. Columns (2) and (4) control for time of submission and
number of previous designs entered by the player and her competitors. Similarity scores in this table
are calculated using a difference hash algorithm. Preceding designs/ratings are defined to be those
entered/provided at least 60 minutes prior to the given design. *, **, *** represent significance at the
0.1, 0.05, and 0.01 levels, respectively. Robust SEs in parentheses.
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I.E Robustness Checks (2)

In additional robustness checks, I show that competition has a constant effect on high-performing players’
tendency to experiment. Tables I.E.1 to I.E.3 demonstrate this result with the perceptual hash similarity
measures, and Tables I.E.4 to I.E.6 do so with the difference hash measures. In all cases, I estimate differential
effects for one vs. multiple top-rated, competing designs and find no differential effect.

Table I.E.1: Similarity to player’s previous designs (p. hash)

(1) (2) (3) (4)

Player’s prior best rating==5 0.269*** 0.250*** 0.268*** 0.253***
(0.087) (0.087) (0.088) (0.086)

* 1+ competing 5-stars -0.102 -0.110 -0.101 -0.108
(0.087) (0.080) (0.087) (0.081)

* 2+ competing 5-stars -0.034 -0.039 -0.034 -0.041
(0.094) (0.080) (0.093) (0.081)

* prize value ($100s) -0.037 -0.046* -0.034 -0.045*
(0.026) (0.027) (0.027) (0.027)

Player’s prior best rating==4 0.058*** 0.027 0.066*** 0.032
(0.020) (0.021) (0.020) (0.021)

Player’s prior best rating==3 0.028* 0.013 0.036** 0.018
(0.017) (0.017) (0.017) (0.017)

Player’s prior best rating==2 -0.004 -0.012 0.003 -0.008
(0.020) (0.020) (0.020) (0.020)

One or more competing 5-stars -0.042 -0.044 -0.043 -0.045
(0.036) (0.038) (0.036) (0.037)

Two or more competing 5-stars 0.049 0.036 0.050 0.037
(0.037) (0.040) (0.038) (0.040)

Days remaining -0.004 0.001 -0.004 0.001
(0.003) (0.007) (0.002) (0.007)

Constant 0.506*** 0.460*** 0.510*** 0.467***
(0.139) (0.160) (0.138) (0.159)

N 5075 5075 5075 5075
R2 0.48 0.48 0.48 0.48
Controls No Yes No Yes
Contest FEs Yes Yes Yes Yes
Player FEs Yes Yes Yes Yes
Forthcoming ratings No No Yes Yes

Notes: Table shows the effects of feedback on players’ experimentation. Observations are designs. Depen-
dent variable is a continuous measure of a design’s maximum similarity to previous entries in the same
contest by the same player, taking values in [0,1], where a value of 1 indicates the design is identical to
another. The mean value of this variable in the sample is 0.32 (s.d. 0.27). Columns (2) and (4) control for
time of submission and number of previous designs entered by the player and her competitors. Columns
(3) and (4) additionally control for the best f orthcoming rating on the player’s not-yet-rated designs.
Similarity scores in this table are calculated using a perceptual hash algorithm. Preceding designs/ratings
are defined to be those entered/provided at least 60 minutes prior to the given design. *, **, *** represent
significance at the 0.1, 0.05, and 0.01 levels, respectively. SEs clustered by player.

143



Table I.E.2: Similarity to player’s best previously-rated designs & intra-batch similarity (p. hash)

Designs Batches (uwtd.) Batches (wtd.)
(1) (2) (3) (4) (5) (6)

Player’s prior best==5 0.239* 0.234* 0.239 0.271 0.253 0.285
(0.132) (0.141) (0.317) (0.312) (0.300) (0.295)

* 1+ competing 5-stars -0.144 -0.149 -0.327** -0.328** -0.328** -0.327**
(0.140) (0.138) (0.143) (0.142) (0.131) (0.131)

* 2+ competing 5-stars -0.032 -0.036 0.006 0.009 0.025 0.030
(0.143) (0.134) (0.189) (0.186) (0.173) (0.172)

* prize value ($100s) -0.016 -0.022 -0.026 -0.031 -0.030 -0.033
(0.038) (0.042) (0.100) (0.099) (0.092) (0.090)

Player’s prior best==4 0.067* 0.050 -0.015 -0.002 -0.012 0.004
(0.039) (0.041) (0.031) (0.032) (0.029) (0.031)

Player’s prior best==3 0.044 0.033 0.012 0.019 0.011 0.020
(0.038) (0.039) (0.033) (0.035) (0.031) (0.032)

Player’s prior best==2 0.013 0.006 -0.018 -0.011 -0.020 -0.012
(0.040) (0.040) (0.047) (0.048) (0.044) (0.045)

1+ competing 5-stars -0.050 -0.050 0.037 0.038 0.031 0.030
(0.045) (0.045) (0.041) (0.042) (0.037) (0.038)

2+ competing 5-stars 0.058 0.052 -0.089* -0.096* -0.076 -0.082
(0.049) (0.051) (0.052) (0.055) (0.048) (0.051)

Days remaining 0.002 0.001 -0.001 -0.003 -0.001 -0.000
(0.003) (0.009) (0.004) (0.009) (0.004) (0.009)

Constant 0.841*** 0.870*** 0.649*** 0.677*** 0.675*** 0.666***
(0.152) (0.174) (0.120) (0.156) (0.095) (0.128)

N 3871 3871 1987 1987 1987 1987
R2 0.53 0.54 0.59 0.59 0.59 0.59
Controls No Yes No Yes No Yes
Contest FEs Yes Yes Yes Yes Yes Yes
Player FEs Yes Yes Yes Yes Yes Yes

Notes: Table shows the effects of feedback on players’ experimentation. Observations in Columns (1)
and (2) are designs, and dependent variable is a continuous measure of a design’s similarity to the
highest-rated preceding entry by the same player, taking values in [0,1], where a value of 1 indicates
the design is identical to another. The mean value of this variable in the sample is 0.28 (s.d. 0.27).
Observations in Columns (3) to (6) are design batches, which are defined to be a set of designs by
a single player entered into a contest in close proximity (15 minutes), and dependent variable is a
continuous measure of intra-batch similarity, taking values in [0,1], where a value of 1 indicates that
two designs in the batch are identical. The mean value of this variable in the sample is 0.48 (s.d.
0.32). Columns (5) and (6) weight the batch regressions by batch size. All columns control for the time
of submission and number of previous designs entered by the player and her competitors. Similarity
scores in this table are calculated using a perceptual hash algorithm. Preceding designs/ratings are
defined to be those entered/provided at least 60 minutes prior to the given design. *, **, *** represent
significance at the 0.1, 0.05, and 0.01 levels, respectively. SEs clustered by player in parentheses.
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Table I.E.3: Change in similarity to player’s best previously-rated designs (p. hash)

(1) (2) (3) (4) (5) (6)

∆(Player’s best==5) 0.656*** 0.685*** 0.693*** 0.657*** 0.695*** 0.695***
(0.218) (0.253) (0.265) (0.217) (0.253) (0.264)

* 1+ competing 5-stars -0.398* -0.449* -0.425* -0.400* -0.456* -0.429*
(0.210) (0.235) (0.255) (0.211) (0.236) (0.256)

* 2+ competing 5-stars 0.070 0.106 0.090 0.068 0.109 0.088
(0.154) (0.167) (0.185) (0.155) (0.167) (0.185)

* prize value ($100s) -0.048 -0.060 -0.064 -0.047 -0.062 -0.063
(0.046) (0.053) (0.055) (0.045) (0.053) (0.055)

∆(Player’s best==4) 0.264*** 0.240*** 0.235*** 0.264*** 0.241*** 0.237***
(0.070) (0.081) (0.086) (0.070) (0.081) (0.085)

∆(Player’s best==3) 0.194*** 0.174** 0.165** 0.194*** 0.173** 0.166**
(0.063) (0.073) (0.077) (0.063) (0.074) (0.077)

∆(Player’s best==2) 0.134** 0.114* 0.108 0.133** 0.114* 0.108
(0.058) (0.068) (0.071) (0.058) (0.068) (0.071)

1+ competing 5-stars -0.013 -0.020 -0.031 -0.008 -0.018 -0.026
(0.029) (0.035) (0.047) (0.029) (0.036) (0.048)

2+ competing 5-stars 0.011 0.028 0.041 0.015 0.026 0.046
(0.027) (0.037) (0.047) (0.028) (0.038) (0.048)

Days remaining -0.000 -0.000 0.001 -0.007 -0.005 -0.009
(0.002) (0.002) (0.003) (0.005) (0.004) (0.009)

Constant -0.013 -0.014 -0.243*** 0.059 0.040 -0.171**
(0.010) (0.010) (0.044) (0.049) (0.046) (0.073)

N 2694 2694 2694 2694 2694 2694
R2 0.04 0.10 0.13 0.04 0.10 0.13
Controls No No No Yes Yes Yes
Contest FEs Yes No Yes Yes No Yes
Player FEs No Yes Yes No Yes Yes

Notes: Table shows the effects of feedback on players’ experimentation. Observations are designs.
Dependent variable is a continuous measure of the change in designs’ similarity to the highest-rated
preceding entry by the same player, taking values in [-1,1], where a value of 0 indicates that the player’s
current design is as similar to her best preceding design as was her previous design, and a value of
1 indicates that the player transitioned fully from experimenting to copying (and a value of -1, the
converse). The mean value of this variable in the sample is -0.00 (s.d. 0.23). Columns (4) to (6) control
for time of submission and number of previous designs entered by the player and competitors. Similarity
scores in this table are calculated using a perceptual hash algorithm. Preceding designs/ratings are
defined to be those entered/provided at least 60 minutes prior to the given design. *, **, *** represent
significance at the 0.1, 0.05, and 0.01 levels, respectively. SEs clustered by player in parentheses.
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Table I.E.4: Similarity to player’s previous designs (d. hash)

(1) (2) (3) (4)

Player’s prior best rating==5 0.269*** 0.250*** 0.268*** 0.253***
(0.087) (0.087) (0.088) (0.086)

* 1+ competing 5-stars -0.102 -0.110 -0.101 -0.108
(0.087) (0.080) (0.087) (0.081)

* 2+ competing 5-stars -0.034 -0.039 -0.034 -0.041
(0.094) (0.080) (0.093) (0.081)

* prize value ($100s) -0.037 -0.046* -0.034 -0.045*
(0.026) (0.027) (0.027) (0.027)

Player’s prior best rating==4 0.058*** 0.027 0.066*** 0.032
(0.020) (0.021) (0.020) (0.021)

Player’s prior best rating==3 0.028* 0.013 0.036** 0.018
(0.017) (0.017) (0.017) (0.017)

Player’s prior best rating==2 -0.004 -0.012 0.003 -0.008
(0.020) (0.020) (0.020) (0.020)

One or more competing 5-stars -0.042 -0.044 -0.043 -0.045
(0.036) (0.038) (0.036) (0.037)

Two or more competing 5-stars 0.049 0.036 0.050 0.037
(0.037) (0.040) (0.038) (0.040)

Days remaining -0.004 0.001 -0.004 0.001
(0.003) (0.007) (0.002) (0.007)

Constant 0.506*** 0.460*** 0.510*** 0.467***
(0.139) (0.160) (0.138) (0.159)

N 5075 5075 5075 5075
R2 0.48 0.48 0.48 0.48
Controls No Yes No Yes
Contest FEs Yes Yes Yes Yes
Player FEs Yes Yes Yes Yes
Forthcoming ratings No No Yes Yes

Notes: Table shows the effects of feedback on players’ experimentation. Observations are
designs. Dependent variable is a continuous measure of a design’s maximum similarity to
previous entries in the same contest by the same player, taking values in [0,1], where a value
of 1 indicates the design is identical to another. The mean value of this variable in the sample
is 0.58 (s.d. 0.28). Columns (2) and (4) control for time of submission and number of previous
designs entered by the player and her competitors. Columns (3) and (4) additionally control
for the best f orthcoming rating on the player’s not-yet-rated designs. Similarity scores in this
table are calculated using a difference hash algorithm. Preceding designs/ratings are defined to
be those entered/provided at least 60 minutes prior to the given design. *, **, *** represent
significance at the 0.1, 0.05, and 0.01 levels, respectively. SEs clustered by player.
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Table I.E.5: Similarity to player’s best previously-rated designs & intra-batch similarity (d. hash)

Designs Batches (uwtd.) Batches (wtd.)
(1) (2) (3) (4) (5) (6)

Player’s prior best==5 0.239* 0.234* 0.239 0.271 0.253 0.285
(0.132) (0.141) (0.317) (0.312) (0.300) (0.295)

* 1+ competing 5-stars -0.144 -0.149 -0.327** -0.328** -0.328** -0.327**
(0.140) (0.138) (0.143) (0.142) (0.131) (0.131)

* 2+ competing 5-stars -0.032 -0.036 0.006 0.009 0.025 0.030
(0.143) (0.134) (0.189) (0.186) (0.173) (0.172)

* prize value ($100s) -0.016 -0.022 -0.026 -0.031 -0.030 -0.033
(0.038) (0.042) (0.100) (0.099) (0.092) (0.090)

Player’s prior best==4 0.067* 0.050 -0.015 -0.002 -0.012 0.004
(0.039) (0.041) (0.031) (0.032) (0.029) (0.031)

Player’s prior best==3 0.044 0.033 0.012 0.019 0.011 0.020
(0.038) (0.039) (0.033) (0.035) (0.031) (0.032)

Player’s prior best==2 0.013 0.006 -0.018 -0.011 -0.020 -0.012
(0.040) (0.040) (0.047) (0.048) (0.044) (0.045)

1+ competing 5-stars -0.050 -0.050 0.037 0.038 0.031 0.030
(0.045) (0.045) (0.041) (0.042) (0.037) (0.038)

2+ competing 5-stars 0.058 0.052 -0.089* -0.096* -0.076 -0.082
(0.049) (0.051) (0.052) (0.055) (0.048) (0.051)

Days remaining 0.002 0.001 -0.001 -0.003 -0.001 -0.000
(0.003) (0.009) (0.004) (0.009) (0.004) (0.009)

Constant 0.841*** 0.870*** 0.649*** 0.677*** 0.675*** 0.666***
(0.152) (0.174) (0.120) (0.156) (0.095) (0.128)

N 3871 3871 1987 1987 1987 1987
R2 0.53 0.54 0.59 0.59 0.59 0.59
Controls No Yes No Yes No Yes
Contest FEs Yes Yes Yes Yes Yes Yes
Player FEs Yes Yes Yes Yes Yes Yes

Notes: Table shows the effects of feedback on players’experimentation. Observations in Columns (1)
and (2) are designs, and dependent variable is a continuous measure of a design’s similarity to the
highest-rated preceding entry by the same player, taking values in [0,1], where a value of 1 indicates
the design is identical to another. The mean value of this variable in the sample is 0.52 (s.d. 0.30).
Observations in Columns (3) to (6) are design batches, which are defined to be a set of designs by
a single player entered into a contest in close proximity (15 minutes), and dependent variable is a
continuous measure of intra-batch similarity, taking values in [0,1], where a value of 1 indicates that
two designs in the batch are identical. The mean value of this variable in the sample is 0.72 (s.d.
0.27). Columns (5) and (6) weight the batch regressions by batch size. All columns control for the time
of submission and number of previous designs entered by the player and her competitors. Similarity
scores in this table are calculated using a difference hash algorithm. Preceding designs/ratings are
defined to be those entered/provided at least 60 minutes prior to the given design. *, **, *** represent
significance at the 0.1, 0.05, and 0.01 levels, respectively. SEs clustered by player in parentheses.
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Table I.E.6: Change in similarity to player’s best previously-rated designs (d. hash)

(1) (2) (3) (4) (5) (6)

∆(Player’s best==5) 0.656*** 0.685*** 0.693*** 0.657*** 0.695*** 0.695***
(0.218) (0.253) (0.265) (0.217) (0.253) (0.264)

* 1+ competing 5-stars -0.398* -0.449* -0.425* -0.400* -0.456* -0.429*
(0.210) (0.235) (0.255) (0.211) (0.236) (0.256)

* 2+ competing 5-stars 0.070 0.106 0.090 0.068 0.109 0.088
(0.154) (0.167) (0.185) (0.155) (0.167) (0.185)

* prize value ($100s) -0.048 -0.060 -0.064 -0.047 -0.062 -0.063
(0.046) (0.053) (0.055) (0.045) (0.053) (0.055)

∆(Player’s best==4) 0.264*** 0.240*** 0.235*** 0.264*** 0.241*** 0.237***
(0.070) (0.081) (0.086) (0.070) (0.081) (0.085)

∆(Player’s best==3) 0.194*** 0.174** 0.165** 0.194*** 0.173** 0.166**
(0.063) (0.073) (0.077) (0.063) (0.074) (0.077)

∆(Player’s best==2) 0.134** 0.114* 0.108 0.133** 0.114* 0.108
(0.058) (0.068) (0.071) (0.058) (0.068) (0.071)

1+ competing 5-stars -0.013 -0.020 -0.031 -0.008 -0.018 -0.026
(0.029) (0.035) (0.047) (0.029) (0.036) (0.048)

2+ competing 5-stars 0.011 0.028 0.041 0.015 0.026 0.046
(0.027) (0.037) (0.047) (0.028) (0.038) (0.048)

Days remaining -0.000 -0.000 0.001 -0.007 -0.005 -0.009
(0.002) (0.002) (0.003) (0.005) (0.004) (0.009)

Constant -0.013 -0.014 -0.243*** 0.059 0.040 -0.171**
(0.010) (0.010) (0.044) (0.049) (0.046) (0.073)

N 2694 2694 2694 2694 2694 2694
R2 0.04 0.10 0.13 0.04 0.10 0.13
Controls No No No Yes Yes Yes
Contest FEs Yes No Yes Yes No Yes
Player FEs No Yes Yes No Yes Yes

Notes: Table shows the effects of feedback on players’ experimentation. Observations are designs.
Dependent variable is a continuous measure of the change in designs’ similarity to the highest-rated
preceding entry by the same player, taking values in [-1,1], where a value of 0 indicates that the player’s
current design is as similar to her best preceding design as was her previous design, and a value of
1 indicates that the player transitioned fully from experimenting to copying (and a value of -1, the
converse). The mean value of this variable in the sample is -0.01 (s.d. 0.25). Columns (4) to (6) control
for time of submission and number of previous designs entered by the player and competitors. Simi-
larity scores in this table are calculated using a difference hash algorithm. Preceding designs/ratings are
defined to be those entered/provided at least 60 minutes prior to the given design. *, **, *** represent
significance at the 0.1, 0.05, and 0.01 levels, respectively. SEs clustered by player in parentheses.
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I.F Collection of Professional Ratings

The panelists that participated in the ratings exercise were recruited through the author’s personal and pro-
fessional networks and hired at their freelance rates. All have formal training and experience in commercial
graphic design, and they represent a diverse swath of the profession: three panelists work at advertising
agencies, and two others are employed in-house for a client and primarily as a freelancer (respectively).

Ratings were collected though a web-based application created and managed on Amazon Mechanical Turk.
Designs were presented in random order and panelists were limited to 100 ratings per day. With each
design, the panelist was provided the project title and client industry (as they appear in the design brief in
the source data) and instructed to rate the “quality and appropriateness” of the given logo on a scale of 1 to
10. Panelists were asked to rate each logo “objectively, on its own merits” and not to “rate logos relative to
others.” Figure I.F.1 provides the distribution of ratings from each of the five panelists and their average.

Figure I.F.1: Panelists’ ratings on subsample of sponsors’ top-rated designs
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Notes: Figure shows the distribution of professionals’ ratings on all 316 designs in
the dataset that received the top rating from contest sponsors. Professional graphic
designers were hired at regular rates to participate in this task. Each professional
designer provided independent ratings on every design in the sample rated 5 stars by
a contest sponsor. Ratings were solicited on a scale of 1-10, in random order, with a
limit of 100 ratings per day.

It can be seen in the figure that one panelist (“Rater 5”) amassed over a quarter of her ratings at the lower
bound, raising questions about the reliability of these assessments: it is unclear what the panelist intended
with these ratings, why such a high proportion was given the lowest rating, and whether the panelist would
have chosen an even lower rating had the option been available. The panelist’s tendency to assign very low
ratings became apparent after the first day of her participation, and in light of the anomaly, the decision to
omit this panelist’s ratings from the analysis was made at that time. The results of the paper are nevertheless
robust to including ratings from this panelist that lie above the lower bound.
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I.G Discussion of Social Welfare

Continued experimentation is always in the sponsor’s best interest. But the implications for players’ welfare
and social welfare are ambiguous: the social benefits to innovation can exceed the private benefits, and the
social costs will always be greater than the individual designer’s cost, due to the negative externalities from
competitive business stealing. In this appendix, I elaborate on the welfare implications of prize competition
as a mechanism for procuring innovation, focusing on the model of Section I.1.

Whether a player’s effort is socially optimal depends on the incremental value it generates and the cost of
the effort incurred. By this criterion, even tweaks can be desirable, since they come with a new draw of the
stochastic component (ε) of the innovation’s value. To formalize the argument, let Vjt be the value of the
most valuable design to-date prior to the t-th design by player j, and let νjt = ln (βjt) + εjt continue to
denote the value of design jt, as in the body of the paper. A new design will only be socially optimal if it is
higher-value than Vjt, which occurs with probability Pr (νjt > Vjt); otherwise, it will be discarded. Letting
ΠS denote social welfare, we can write the expected welfare gains as follows:

E
[
∆ΠS

]
= E [νjt − Vjt | νjt > Vjt] · Pr (νjt > Vjt)︸ ︷︷ ︸

Expected incremental value of an upgrade

+ 0 · Pr (νjt ≤ Vjt)︸ ︷︷ ︸
Design discarded

− cost of effort

= E [ln (βjt) + εjt − Vjt | εjt > Vjt − ln (βjt)] · Pr (εjt > Vjt − ln (βjt))− cost ,

which may be greater than or less than zero. Note that this expression omits the change in each players’
expected earnings, which offset each other – the net effect is strictly a function of the beneficiary’s gains
and the player’s private costs. The condition for a socially optimal decision-rule thus reduces to whether
the innovation value exceeds the private cost of innovating, be it radical or incremental.

Private choices can deviate from the social optimum under a multitude of circumstances. Because the private
benefits are bounded at the dollar prize, whereas the social benefits are unbounded – and potentially quite
large, if the fruits of innovation are enjoyed by an entire society – innovation can be inefficiently low unless
the prize fully reflects the social value of the innovation. This is more likely to occur in explicit tournaments
than in market settings, where the prize is monopoly rents, the size of which are dynamically determined
by the level and shape of demand. On the other hand, rent-seeking motives may encourage players to exert
effort that increases their expected earnings but yields no net value. A more precise understanding of social
welfare would require a specific empirical example or parametrization.
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I.H Summary of Companion Paper: Gross (2015b)

In a companion paper, I use a sample of 4,294 logo design contests from the same setting to study the effects of
feedback on tournament outcomes. Whereas the present paper studies the effects of feedback on the creative
process, in the companion paper I focus on the effects of feedback on the quality of creative outcomes;
the distinction is that of the process of innovation versus its result, which in this case is a copyrightable
product. Gross (2015b) shows that feedback affects design quality via two channels: a selection effect,
whereby unsuccessful players are driven to exit and successful players continue, and a direction effect, which
guides continuing players towards better designs. In the paper, I use a combination of structural estimation
and counterfactual simulations to establish that improvements in quality resulting from feedback accrue
entirely as a result of direction rather than selection. These findings imply that successful innovation in this
setting requires continuous learning and improvement substantially more than talent or luck.

To highlight some of the basic features and relationships in the tournaments studied here, Section I.2 of
the present paper reproduces a subset of the results in Gross (2015b). In particular, Table I.4 uses the
companion paper’s sample to estimate the relationship between contest characteristics such as the prize,
difficulty, and frequency of feedback and key outcomes, and Table I.5 uses it to estimate the relationship
between a design’s rating and its probability of being selected as the winner. I invoke the Gross (2015b)
sample in these cases because they require a large sample of contests to obtain precise, consistent estimates,
and because they are broadly similar across a large set of observable characteristics, as shown below.

The dataset in Gross (2015b) consists of nearly all logo design contests with open bidding completed on
the platform between July 1, 2010 and June 30, 2012, excluding those with zero prizes, multiple prizes,
mid-contest rule changes, or otherwise unusual behavior, and it includes nearly all of the same information
as the sample in this paper – except for the designs themselves. Although this sample comes from a slightly
earlier time period than the one in the present paper (which was collected in the fall of 2013), both cover
periods well after the platform was created and growth had begun to stabilize.

Table H.1 compares characteristics of contests in the two samples. The contests in the Gross (2015b) sample
period are on average slightly longer, offer larger prizes, and attract a bit more participation relative to the
sample of the present paper, but otherwise, the two samples are similar on observables. These differences are
mostly due to the presence of a handful of outlying large contests in the Gross (2015b) data. Interestingly,
although the total number of designs is on average higher in the Gross (2015b) sample, the number of designs
of each rating is on average the same; the difference in total designs is fully accounted for by an increase
in unrated entries. The most notable difference between the two samples is in the fraction of contests
with a committed prize (23 percent vs. 56 percent). This discrepancy is explained by the fact that prize
commitment only became an option on the platform halfway through the Gross (2015b) sample period.
Interestingly, the fraction of contests awarded is nevertheless nearly the same in the two samples.

Tables H.2 and H.3 compare the distribution of ratings and batches in the two samples. The tables demon-
strate that individual behavior is consistent across samples: sponsors assign each rating, and players enter
designs, at roughly the same frequency. The main differences between the two samples are thus isolated to
a handful of the overall contest characteristics highlighted in the previous table.
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Table H.1: Comparing Samples: Contest characteristics

Gross (2015b) This paper

Sample size 4,294 122

Contest length (days) 9.15 8.52
Prize value (US$) 295.22 247.57
No. of players 37.28 33.20
No. of designs 115.52 96.38

5-star designs 3.41 2.59
4-star designs 13.84 12.28
3-star designs 22.16 22.16
2-star designs 16.04 17.61
1-star designs 10.94 12.11
Unrated designs 49.14 29.62

Number rated 66.38 66.75
Fraction rated 0.56 0.64
Prize committed 0.23 0.56
Prize awarded 0.89 0.85

Table H.2: Comparing Samples: Distribution of ratings

Gross (2015b) This paper

Sample size 285,052 8,144

1 star (in percent) 16.48 18.15
2 stars 24.16 26.39
3 stars 33.38 33.19
4 stars 20.84 18.39
5 stars 5.13 3.88

100.00 100.00

Table H.3: Comparing Samples: Design batches by size of batch

Gross (2015b) This paper

Sample size 335,016 8,072

1 design (in percent) 72.46 71.84
2 designs 17.04 18.62
3 designs 5.75 5.57
4 designs 2.50 2.19
5+ designs 2.25 1.77

100.00 100.00
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Appendix for Chapter II
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II.A Proofs of Propositions

Proposition 1: The returns to a player’s second design decline as the quality of her first design and the
cumulative competition grow distant, approaching zero at the limit. Feedback that reveals these asymmetries
will therefore discourage participation, relative to a state of ignorance.

Proof:

The discouraging effects of asymmetries are a standard result in the tournament literature. Formally:

Case 1: Player with a low first draw (βL)

The expected increase in the player’s probability of winning from a second draw is:

q

(
βL + βH

βL + βH + µ

)
+ (1− q)

(
2βL

2βL + µ

)
−
(

βL

βL + µ

)

As µ −→ 0, this quantity approaches q
(
βL+βH

βL+βH

)
+ (1− q)

(
2βL

2βL

)
−
(
βL

βL

)
= 0

As µ −→∞, this quantity approaches 1
µ

(
q
(
βL + βH

)
+ (1− q)

(
2βL

)
− βL

)
−→ 0

Case 2: Player with a high first draw (βH)

The expected increase in the player’s probability of winning from a second draw is:(
2βH

2βH + µ

)
−
(

βH

βH + µ

)

As µ −→ 0, this quantity approaches
(

2βH

2βH

)
−
(
βH

βH

)
= 1− 1 = 0

As µ −→∞, this quantity approaches 1
µ

(
2βH − βH

)
= βH

/µ −→ 0
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Proposition 2: Upon provision of feedback, provided competition is sufficiently high, players with better
feedback have higher incentives to participate than those with lower feedback.

Proof:

The proposition asserts that provided µ is sufficiently high, players with positive feedback benefit more from
their second design than players with negative feedback.

In mathematical notation, the claim is that there exists a µ∗ such that when µ > µ∗,(
2βH

2βH + µ

)
−
(

βH

βH + µ

)
︸ ︷︷ ︸

Benefit to effort|pos. feedback

> q

(
βL + βH

βL + βH + µ

)
+ (1− q)

(
2βL

2βL + µ

)
−
(

βL

βL + µ

)
︸ ︷︷ ︸

Benefit to effort|neg. feedback

or in other words, that there exists a µ∗ such that for all µ > µ∗,[(
2βH

2βH + µ

)
− q

(
βL + βH

βL + βH + µ

)
− (1− q)

(
2βL

2βL + µ

)]
−
[(

βH

βH + µ

)
−
(

βL

βL + µ

)]
> 0

To support this claim, I derive the shape of the expression above and show that it is always positive beyond
some fixed, implicitly-defined level of competition. First, note that as µ −→ 0 or µ −→ ∞, the expression
goes to 0, by the same arguments as in the proof to Proposition 1.

The derivative of the expression is

∂

∂µ

[(
2βH

2βH +µ

)
−q
(

βL+βH

βL+βH +µ

)
−(1−q)

(
2βL

2βL+µ

)]
−
[(

βH

βH +µ

)
−
(

βL

βL+µ

)]
=

[(
−2βH

(2βH +µ)2

)
−q
(
−βL−βH

(βL+βH +µ)2

)
−(1−q)

(
−2βL

(2βL+µ)2

)]
−
[(

−βH

(βH +µ)2

)
−
(
−βL

(βL+µ)2

)]
As µ −→ 0, the derivative goes to[

q

(
1

βL + βH

)
+ (1− q)

(
1

2βL

)
−
(

1

2βH

)]
−
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1

βL

)
−
(

1

βH

)]
=

[
q

(
1

βL + βH

)
+ (1− q)

(
1

2βL

)
− 1

2βH

]
−
[

1

βL
− 1

βH

]
<

[
q

(
1

βL + βL

)
+ (1− q)

(
1

2βL

)
− 1

2βH

]
−
[

1

βL
− 1

βH

]
=

1

2

[
1

βL
− 1

βH

]
−
[

1

βL
− 1

βH

]
= −1

2

[
1

βL
− 1

βH

]
< 0 , since βH > βL

As µ −→∞, the derivative goes to

1

µ2

[
q
(
βL + βH

)
+ (1− q)

(
2βL

)
− 2βH + βH − βL

]
=

1

µ2

[
q
(
βL + βH

)
+ (1− q)

(
2βL

)
− βH − βL

]
=

1
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[
qβH − qβL −

(
βH − βL
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=

1

µ2

[
(q − 1)

(
βH − βL

)]
−→ 0−
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Additionally, the expression can be shown to have at most three roots, and only one positive, real root. To
demonstrate this, set the expression equal to zero:[(

2βH

2βH + µ

)
− q

(
βL + βH

βL + βH + µ

)
− (1− q)

(
2βL

2βL + µ

)]
−
[(

βH

βH + µ

)
−
(

βL

βL + µ

)]
= 0

To simplify the notation, redefine H = βH and L = βL. Additionally, let

A = 2H + µ

B = H + L+ µ

C = 2L+ µ

D = H + µ

E = L+ µ

We can then rewrite the equation as the following:

[2H ·BCDE]− [q(H + L) ·ACDE]− [(1− q)(2L) ·ABDE]− [H ·ABCE] + [L ·ABCD] = 0

Rearranging more terms, we get:

[H ·BCE (2D −A)]− [L ·ABD (2E − C)] + [q ·ADE ((2B − C)L− (C)H)] = 0

Observe that 2D −A = 2E − C = µ, and that 2B − C = A. Then simplifying further:

µ [H ·BCE]− µ [L ·ABD] + qADE (AL− CH) = 0

Now observe that AL− CH = µ(L−H). We continue simplifying:

µ [H ·BCE]− µ [L ·ABD] + µ [qADE (L−H)] = 0

[H ·BCE]− [L ·ABD] + [qADE (L−H)] = 0

[H ·BCE]− [L ·ABD]− [qADE (H − L)] = 0

which is now cubic in µ (reduced by algebra from what was ostensibly quartic).

Additionally, it can be shown that

BCE = µ3 + (H + 4L)µ2 +
(
3HL+ 5L2

)
+
(
2HL2 + 2L3

)
and by symmetry,

ABD = µ3 + (4H + L)µ2 +
(
3HL+ 5H2

)
+
(
2H2L+ 2H3

)
such that

H ·BCE = Hµ3 +
(
H2 + 4HL

)
µ2 +

(
3H2L+ 5HL2

)
+
(
2H2L2 + 2HL3

)
L ·ABD = Lµ3 +

(
4HL+ L2

)
µ2 +

(
3HL2 + 5H2L

)
+
(
2H2L2 + 2H3L

)
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and the difference between them being

H ·BCE − L ·ABD = (H − L)µ3 +
(
H2 − L2

)
µ2 +HL (3(H − L) + 5(L−H))µ+ 2HL

(
L2 −H2

)
= (H − L)µ3 +

(
H2 − L2

)
µ2 +HL (3(H − L)− 5(H − L))µ+ 2HL

(
L2 −H2

)
= (H − L)

[
µ3 + (H + L)µ2 − 2HLµ− 2HL (H + L)

]
Now note that

ADE = µ3 + (3H + L)µ2 +
(
3HL+ 2H2

)
µ+ 2H2L

Returning to above, we can then write

[H ·BCE]− [L ·ABD]− [qADE (H − L)] =
[
µ3 + (H + L)µ2 − 2HLµ− 2HL (H + L)

]
− q

[
µ3 + (3H + L)µ2 +

(
3HL+ 2H2

)
µ+ 2H2L

]
= 0

and in the final simplification,

(1− q)µ3

+ ((1− 3q)H + (1− q)L)µ2

−H (2qH + 3qL+ 2L)µ

−2HL ((1 + q)H + L) = 0

By the rule of signs, the polynomial has exactly one positive, real root.

The difference between the benefits to a second design after positive feedback relative to the benefits after
negative feedback is thus (i) zero with no competition, (ii) decreasing and negative as competition initially
grows, (iii) later increasing and turning positive, and (iv) eventually decreasing and asymptoting towards
zero as competition grows infinitely large, as in the figure below. Beyond a fixed, intermediate (and typically
relatively low) µ, this difference will therefore always be positive.

µ

Difference
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II.B Dataset Construction

The sample for this paper consists of all publicly viewable logo design contests on the platform from July
2010 through June 2012 with a single, winner-take-all prize and no mid-contest rule changes. Although the
complete dataset includes contests in other design categories dating back to the platform’s inception, logo
design is the modal contest category and is thus a natural choice for analysis. The focal sample begins
over two years after the platform was created, by which point it was a well-known, established player in the
graphic design industry, most of its features were set, and its growth had begun to stabilize.

Variables

The dataset includes information on the characteristics of contests, contest-players, and designs:

• Contest-level variables include: the contest sponsor, features of the project brief (title, description,
sponsor industry, materials to be included in logo), start and end dates, the prize amount (and whether
committed), and the number of players and designs of each rating.

• Contest-player-level variables include: his/her experience in previous contests on the platform (number
of contests and designs entered, contests won, prize winnings, recent activity), average ratings from
previous contests, and that player’s participation and performance in the given contest.

• Design-level variables include: the design’s owner, its submission time and order of entry, the feedback
it received, the time at which this feedback was given, and whether it was eventually withdrawn.3 In
contrast to Gross (2014), I do not have the designs themselves for this sample.

The full dataset – most of which is not used in this paper – consists of nearly all contests with public bidding
completed since the birth of the platform in 2008, or about 80 percent of all contests on the platform through
August 1, 2012. I use these contests to re-construct players’ history on the platform up to each contest that
they enter in my primary sample and over the entire four-year period.

Note that designs are occasionally re-rated: five percent of all rated designs are re-rated an average of 1.2
times each. Of these, 14 percent are given their original rating, and 83 percent are re-rated within 1 star of
the original rating. I treat the first rating on each design to be the most informative, objective measure of
quality, since research suggests first instincts tend to be most reliable and ratings revisions are likely made
relative to other designs in the contest rather than an objective benchmark.

3Note that the “withdrawn” indicator is unreliable, as all of a user’s designs are flagged as withdrawn whenever
the user deletes her account from the website – including designs in completed contests. In the analysis, I assume
withdrawn entries remain in contention, as sponsors can ask for any withdrawn design to be reinstated.
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II.C Additional Tables

Abandonment after Second Rating

This appendix provides robustness checks on the results of Section II.3, which evaluates the effects of a
player’s first rating on her continued participation, by presenting analogous tables for second ratings.

Table II.C.1 is the counterpart to Table II.6 from the paper, showing the distribution of the number of
designs a player enters after her second rating, conditional on that rating being one star or four to five
stars. While the majority (63.6 percent) of players receiving a 1-star rating will drop out, the majority (60.0
percent) of those receiving a 4- or 5-star rating will enter more designs. For comparison, recall that the
analogous frequencies for first ratings were 69.5 percent and 61.2 percent, respectively.

Table II.C.1: Designs entered after a player’s second rating

When second rating is 1 (out of 5) When second rating is 4 or 5 (out of 5)
Designs after 2nd rating Freq. Pct. Designs after 2nd rating Freq. Pct.

0 designs 4,891 63.60 0 designs 5,329 39.99
1 design 764 9.93 1 design 1,803 13.53
2 designs 584 7.59 2 designs 1,574 11.81
3 designs 334 4.34 3 designs 1,113 8.35
4 designs 257 3.34 4 designs 899 6.75
5 designs 213 2.77 5 designs 605 4.54
6 designs 133 1.73 6 designs 441 3.31
7 designs 93 1.21 7 designs 316 2.37
8 designs 69 0.90 8 designs 239 1.79
9 designs 73 0.95 9 designs 221 1.66
10+ designs 279 3.63 10+ designs 785 5.89

Total 7,690 100 Total 13,325 100

Notes: Table reports the activity of players after receiving their second rating in a contest, by the
value of that second rating. A total of 50,229 contest-players received second ratings. Of these: 7,690
were rated 1 star (15.3 percent); 12,182 were rated 2 stars (24.3 percent); 17,032 were rated 3 stars
(33.9 percent); 11,043 were rated 4-star (22.0 percent); and 2,282 were rated 5-star (4.5 percent). The
table illustrates that players are much more likely to continue participating in a contest after positive
feedback, similar to the results for first ratings.

Table II.C.2 formalizes these results, as in Table II.7 for the first rating. Recall the specification:

Abandonjk = β0 +

5∑
r=1

βr · 1(Rjk = r) +

5∑
r=1

γr · 1(R̄−jk = r)

+ δ · Timingjk +Xjkθ + ζk + ϕj + εjk

where Abandonjk now indicates that player j entered no designs in contest k after her second rating; Rjk
is the player’s second rating; R̄ijk is the highest rating on any competing designs at that time; Timingjk
is the fraction of the contest elapsed at the time of that rating; Xjk is a vector of controls; and ζk and
ϕj are contest and player fixed effects, respectively. The table provides the same sequence of specifications
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presented the body of the paper: linear models with contest, player, and contest and player fixed effects in
Columns (1) to (3), and a logit model with contest fixed effects in Column (4).

Table II.C.2: Tendency to abandon after second rating, as function of rating

Dependent variable: Abandon after second rating
(1) (2) (3) (4)

Linear Linear Linear Logit

Player’s second rating==5 -0.266*** -0.265*** -0.316*** -1.408***
(0.024) (0.029) (0.031) (0.119)

Player’s second rating==4 -0.266*** -0.255*** -0.309*** -1.410***
(0.016) (0.018) (0.020) (0.078)

Player’s second rating==3 -0.191*** -0.173*** -0.211*** -1.019***
(0.014) (0.016) (0.017) (0.069)

Player’s second rating==2 -0.096*** -0.083*** -0.112*** -0.516***
(0.013) (0.015) (0.016) (0.064)

Competitors’ prior best==5 0.039 0.069*** 0.054* 0.323**
(0.024) (0.021) (0.029) (0.127)

Constant 0.420*** 0.365*** -0.383* -1.053
(0.039) (0.034) (0.203) (0.735)

N 25996 25996 25996 24139
R2 0.27 0.38 0.51
Contest FEs Yes No Yes Yes
Player FEs No Yes Yes No

Notes: Table shows the effect of a player’s second rating in a contest and the competition at
that time on the probability that the player subsequently enters no more designs. Observa-
tions are contest-players. The dependent variable in all columns is an indicator for whether
the player abandons after her second rating. Columns (1) to (3) estimate linear models with
fixed effects; Column (4) estimates a logit model without player fixed effects, which may
render the estimates inconsistent. *, **, *** represent significance at the 0.1, 0.05, and 0.01
levels, respectively. All specifications control for the player’s first rating and the time remain-
ing, both in levels and as a percent of the contest duration. Standard errors clustered by
player in parentheses.

The effect of second ratings on the probability that a player enters more designs is similar to those of
first ratings, albeit a bit attenuated at the top. However, players with more positive feedback are again
significantly more likely to remain active than those with poor initial feedback, and high-rated competition
continues to make it more likely that a player abandons.

Table II.C.3 reestimates the model above as a quadratic in the probability of winning after the second
rating, as in Table II.8 for first ratings. The tendency to abandon remains significantly convex in a player’s
probability of winning, and is still minimized near a win probability of 50 percent.
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Table II.C.3: Tendency to abandon after second rating, as function of Pr(Win)

Dependent variable: Abandon after 2nd rating
(1) (2) (3) (4)

Linear Linear Linear Logit

Pr(Win) -1.208*** -1.195*** -1.311*** -6.698***
(0.058) (0.065) (0.074) (0.332)

Pr(Win)2 1.109*** 1.068*** 1.199*** 5.955***
(0.069) (0.076) (0.086) (0.396)

Constant 0.345*** 0.298*** -0.554*** -1.118
(0.036) (0.028) (0.207) (0.763)

N 25996 25996 25996 24139
R2 0.26 0.37 0.50
Contest FEs Yes No Yes Yes
Player FEs No Yes Yes No
Minimizer 0.54 0.56 0.55 0.56

Notes: Table shows the effect of a player’s win probability after re-
ceiving her second rating on the probability that she subsequently
enters no more designs. Observations are contest-players. The de-
pendent variable in all columns is an indicator for whether the player
abandons after her second rating. Columns (1) to (3) estimate lin-
ear models with fixed effects; Column (4) estimates a logit model
without player fixed effects, which may render the estimates incon-
sistent. *, **, *** represent significance at the 0.1, 0.05, and 0.01
levels, respectively. All specifications control for the time remaining,
both in levels and as a percent of the contest duration. Standard
errors clustered by player in parentheses.

Conditional Logit Estimates

Table II.C.4 provides the conditional logit estimates for the success function in Section II.4. Recall that the
latent value of a design is modeled as linear in fixed effects for each rating and an i.i.d. Type-I E.V. error:

νijk = γ∅1(Rijk = ∅) + γ11(Rijk = 1) + . . .+ γ51(Rijk = 5) + εijk ≡ ψijk + εijk

The table provides estimates for the γs and is discussed in greater detail in the text. The content of the
discussion is copied below for reference:

Several patterns emerge [from Table II.C.4]. First, the value of a design is monotonically
increasing in its rating, with only a 5-star rating being on average preferred to the outside
option, and the fixed effects are precisely estimated. To produce the same change in the success
function generated by a 5-star design, a player would need 12 4-star designs, 137 3-star designs,
or nearly 2,000 1-star designs – so competition effectively comes from the top. As a measure of
fit, the predicted odds-on favorite wins almost half of all contests in the sample. These results
demonstrate that this simple model fits the data quite well and in an intuitive way, suggesting
that ratings provide considerable information about a player’s probability of winning.
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Table II.C.4: Conditional logit of win-lose outcomes on ratings

Fixed effect Est. S.E. t-stat

Rating==5 1.53 0.07 22.17
Rating==4 -0.96 0.06 -15.35
Rating==3 -3.39 0.08 -40.01
Rating==2 -5.20 0.17 -30.16
Rating==1 -6.02 0.28 -21.82
No rating -3.43 0.06 -55.35

Notes: Table provides estimates from conditional logit estima-
tion of the win-lose outcome of each design as a function of its
rating. Outside option is not awarding the prize, with utility
normalized to zero. The design predicted by the model as the
odds-on favorite wins roughly 50 percent of contests.

The results of this exercise make it possible to compute predicted probabilities of winning for any player
at any ratings history, and are used towards this end in several parts of the paper, including regressions,
estimation of effort costs, and simulations.

Evidence that costs are not mechanical

Table II.C.5 regresses the log probability gains achieved by a player’s final design or an extra design on
the log prize. The estimates reveal that large prizes are competed away: when the prize increases by one
percent, the probability gains of players’ final submissions declines by 0.75 percent, with the remaining 0.25
percent being reflected in a higher cost. This evidence supports the argument that the estimated costs are
meaningful rather than mechanical. See Section II.5 for further discussion.

Table II.C.5: Evidence that players compete away prize increases

Log of win probability gains acheived by:
Final design Extra design

Log prize -0.752*** -0.734***
(0.006) (0.006)

Constant -0.047 -0.180***
(0.034) (0.034)

N 160059 160059
R2 0.10 0.10

Notes: Table shows the correlation between the prize and the estimated
probability gains (1) achieved by players’ final designs, and (2) available
from players’ next, unentered designs. *, **, *** represent significance at
the 0.1, 0.05, and 0.01 levels, respectively. Robust SEs in parentheses.
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II.D Evidence of Foresight

The structural model in Section II.4 requires an assumption that at the time of their final submission, players
can predict the level of competition they will face at the end of a contest. This assumption is necessary
for players to be able to compute the benefits to continued participation at the time of exit, which I use to
bound their cost. This appendix provides empirical support for the assumption.

Two pieces of information are required to support this claim: the distribution of exit times and the quality
of predictions made at those times. Figure II.D.1 provides the cumulative distribution of a player’s first and
last designs in a contest, calculated over the fraction of the contest elapsed. The figure shows that players
tend to exit in the later stages of a contest: roughly half of all contest-players exit a given contest after 80
percent of the contest has transpired, and nearly two-thirds exit after 50 percent has transpired.

Given that players tend to exit late, the question remains as to how well they can forecast the terminal
state of competition at that time. Table II.D.1 shows the goodness-of-fit (R2) of a regression of the terminal
number of competing designs of each rating on the number observed after a given fraction of the contest
has elapsed. This method can predict the total number of competing designs with a high degree of accuracy
(R2 = 0.88) when only half of the contest has elapsed, and even better (R2 = 0.97) when 80 percent of the
contest has elapsed. Given that competition tends to come from the top, we may be more interested in the
quality of forecasts over top-rated competitors: predictions of the terminal number of 5-star designs at the
50 percent mark and 80 percent mark have an R2 = 0.67 and R2 = 0.90. Figures II.D.2 to II.D.8 provide
scatterplots of the regressions in Table II.D.1, so that the goodness-of-fit can be visualized.

The combined evidence that the majority of players exit in the latter half of a contest and that terminal
levels of competition can be forecast from the levels observed at that time provide support to the assumption
of foresight in the empirical model.

Table II.D.1: Predictability of final number of competing designs of each rating

Percent of contest elapsed All Unrated 1-star 2-star 3-star 4-star 5-star

50 0.88 0.66 0.37 0.68 0.69 0.55 0.67
51 0.86 0.74 0.37 0.65 0.75 0.62 0.67
52 0.87 0.78 0.48 0.71 0.78 0.65 0.71
53 0.89 0.74 0.37 0.68 0.80 0.63 0.75
54 0.90 0.75 0.39 0.75 0.78 0.54 0.68
55 0.90 0.80 0.51 0.73 0.78 0.62 0.78
56 0.91 0.75 0.54 0.74 0.80 0.58 0.74
57 0.91 0.72 0.43 0.71 0.78 0.60 0.75
58 0.92 0.78 0.56 0.77 0.87 0.83 0.77
59 0.90 0.81 0.62 0.76 0.84 0.83 0.76
60 0.91 0.77 0.50 0.75 0.83 0.84 0.82
61 0.93 0.85 0.63 0.79 0.86 0.86 0.77
62 0.92 0.81 0.52 0.75 0.79 0.78 0.74
63 0.94 0.76 0.48 0.81 0.88 0.86 0.78
64 0.93 0.73 0.48 0.78 0.86 0.85 0.76
65 0.94 0.82 0.54 0.79 0.86 0.87 0.78
66 0.94 0.84 0.52 0.84 0.88 0.88 0.79
67 0.93 0.76 0.44 0.79 0.85 0.83 0.77
68 0.94 0.80 0.48 0.78 0.87 0.86 0.77
69 0.94 0.69 0.40 0.81 0.87 0.85 0.80
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Table II.D.1: Predictability of final number of competing designs of each rating (cont’d)

Percent of contest elapsed All Unrated 1-star 2-star 3-star 4-star 5-star

70 0.95 0.76 0.42 0.82 0.87 0.85 0.73
71 0.94 0.76 0.44 0.78 0.81 0.82 0.77
72 0.94 0.79 0.51 0.83 0.86 0.84 0.83
73 0.95 0.82 0.44 0.83 0.87 0.85 0.81
74 0.95 0.82 0.46 0.80 0.88 0.88 0.82
75 0.95 0.76 0.52 0.78 0.88 0.87 0.79
76 0.96 0.70 0.45 0.80 0.87 0.86 0.77
77 0.96 0.76 0.39 0.85 0.86 0.87 0.80
78 0.97 0.86 0.48 0.84 0.88 0.86 0.82
79 0.97 0.83 0.58 0.90 0.91 0.90 0.86
80 0.97 0.83 0.85 0.88 0.89 0.90 0.90
81 0.97 0.88 0.92 0.85 0.88 0.89 0.89
82 0.97 0.91 0.95 0.87 0.88 0.87 0.86
83 0.97 0.89 0.92 0.88 0.90 0.87 0.88
84 0.97 0.89 0.90 0.85 0.90 0.88 0.88
85 0.97 0.92 0.93 0.83 0.87 0.87 0.90
86 0.98 0.91 0.84 0.82 0.88 0.87 0.87
87 0.98 0.93 0.91 0.85 0.92 0.89 0.92
88 0.98 0.93 0.95 0.87 0.93 0.90 0.90
89 0.98 0.95 0.94 0.90 0.93 0.89 0.92
90 0.98 0.94 0.97 0.88 0.92 0.88 0.90
91 0.99 0.93 0.95 0.87 0.92 0.88 0.90
92 0.99 0.92 0.96 0.90 0.92 0.89 0.89
93 0.99 0.92 0.97 0.90 0.92 0.88 0.91
94 0.99 0.92 0.97 0.92 0.92 0.89 0.93
95 0.99 0.95 0.99 0.92 0.94 0.91 0.95
96 0.99 0.94 0.99 0.91 0.94 0.89 0.94
97 0.99 0.95 0.99 0.93 0.94 0.89 0.94
98 1.00 0.95 0.98 0.94 0.94 0.91 0.95
99 1.00 0.96 0.99 0.96 0.96 0.89 0.95

Notes: Table provides R2 from regressions of the final number of competing designs of each
rating on the number observed after a given fraction of the contest has elapsed. Observations
are individual submissions; for each submission I record the number of competing designs at
that time and seek to project the state of competition when the contest concludes. The high fit
suggests that future levels of competition (especially top-rated competition) can be reasonably
well forecast in the latter half of any contest, when the majority of players stop competing
(Figure II.D.1), supporting the modeling assumption that players have foresight.
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Figure II.D.1: Empirical CDFs of player entry and exit

Figure II.D.2: Predictability of final number of competing designs
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Figure II.D.3: Predictability of final number of competing 5-star designs

Figure II.D.4: Predictability of final number of competing 4-star designs

166



Figure II.D.5: Predictability of final number of competing 3-star designs

Figure II.D.6: Predictability of final number of competing 2-star designs
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Figure II.D.7: Predictability of final number of competing 1-star designs

Figure II.D.8: Predictability of final number of competing unrated designs
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Appendix for Chapter III
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III.A Data Appendix

The majority of the data used in the paper come from the U.S. Census of Agriculture for years 1910,
1920, 1925, 1930, and 1940. When possible, data were acquired from NHGIS; remaining variables were
encoded from PDF files obtained from the Census website.4 Stock variables (e.g., farms, farmland, number
and value of farm machinery and draft animals, etc.) are reported for the Census year; flows (inputs,
outputs) are always from the preceding year. Where corn acreage is separately reported for corn harvested
for grain, cut for silage, cut for fodder, and hogged or grazed off (1925 and later), I use the acreage of
corn harvested for grain, which is typically around 90 percent of total corn acreage and the subset most
relevant to mechanization. Certain crops are not reported for certain states in certain years (barley and rye
in Missouri, rye in Kansas – both in 1930) due to omission from the state-specific questionnaire, which likely
resulted from low acreage; production of these crops in the affected counties is coded as zero. Occasionally, a
page went missing in the Census documents; in these cases, the affected observations were coded as missing.
Scans of the 1954 Census of Agriculture (obtained from the USDA National Agricultural Statistics Service;
see link in footnote) provided data on tractor and implement ownership in 1950.

U.S. county shapefiles were obtained from NHGIS for each decade from 1910 to 1940. These maps were used
to calculate counties’ geographic centroids, mean and standard deviation elevation (calculated from USGS
National Elevation Dataset rasters), and average annual rainfall (calculated from the PRISM Climate Group
30-year normals). I use county entry and exit into/out of the dataset and movement in geographic centroids
to identify counties that formed, merged, split, or dissolved between Census years; any such counties are
dropped from the analysis. As the text explains, I also apply Hornbeck’s (2010) county border fix algorithm
as a robustness check. I calculate distance to the f.o.b. shipping locations of Ford (Detroit) and International
Harvester (Chicago) as a proxy for freight costs; comparison with point-to-point freight rates from Hartman
(1916) suggests distance is a reasonable proxy, with correlations between route distance and point-to-point
rates of > 0.95 for routes originating in Detroit or Chicago.

The data used in the New Deal and Dust Bowl robustness checks in Appendix III.F were obtained from
Fishback, Kantor, and Wallis (2003) and Hornbeck (2012), respectively. The New Deal robustness checks
include the Fishback et al. measures of AAA relief spending and FCA lending by county, normalized by
county farm acreage; the Dust Bowl robustness checks uses the Hornbeck measures of low, medium, and
high soil erosion. The latter are restricted to Midwest counties for which soil erosion data were available
(those in Kansas, Nebraska, North and South Dakota, Iowa, Minnesota).

Hybrid corn diffusion is from the USDA Agricultural Statistics and was provided in digital format by
Richard Sutch (Sutch 2011, 2014). Data on water wheels, steam engines, gas engines, and electricity in
U.S. manufacturing were obtained from the Atack, Bateman, and Weiss (1999) sample from the manuscript
Census of Manufactures for 1850-1870 and the 1910 Census of Manufactures.

4Historical Censuses and associated documents are available at http://www.census.gov/prod/www/decennial.html.
A complete collection of historical Agricultural Census publications can be found at http://www.agcensus.usda.gov/
Publications/Historical Publications/index.php.
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III.B Additional Descriptive Figures

Figure III.B.1: Crop shares of midwest farmland

0.00

0.05

0.10

0.15

0.20

P
c
t.
 o

f 
F

a
rm

la
n
d
 i
n
 C

ro
p

 

1910 1920 1930 1940

Notes: Percentages are measured as each crop’s harvested acreage over total acres of
farmland. Corn acreage is limited to corn harvested for grain only (versus silage). The six
crops represented here constitute 48% of all acres of farmland in the Midwest in 1930
and 52% in 1940. Data from 1910−1940 Census of Agriculture.
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Figure III.B.2: Crop shares of midwest cropland
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Notes: Percentages are measured as each crop’s harvested acreage over total acres of
cropland. Cropland includes harvested crops, crop failure, and land idle or fallow. Corn
acreage is limited to corn harvested for grain only (versus fodder or grazed). The six crops
represented here constitute 79% of all acres of cropland in the Midwest in 1930 and 55%
in 1940. The fraction of cropland in each crop is highly correlated with the fraction of farm−
land in each crop, with correlations of 0.94 for corn, 0.97 for wheat, 0.95 for oats, 0.97 for
barley, 0.96 for rye, and 0.79 for hay. Data from 1930 and 1940 Census of Agriculture.
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Figure III.B.3: Crop shares of midwest harvested acreage
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Notes: Percentages are measured as each crop’s harvested acreage over total acres
of cropland. Corn acreage is limited to corn harvested for grain only (versus fodder or
grazed). The six crops represented here constitute 86% of all acres harvested in the
Midwest in 1930 and 84% in 1940. The fraction of harvested acreage in each crop is
highly correlated with the fraction of farmland in each crop, with correlations of 0.90 for
corn, 0.90 for wheat, 0.94 for oats, 0.95 for barley, 0.95 for rye, and 0.73 for hay. Data
from 1930 and 1940 Census of Agriculture.
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III.C Regressions for Tractors per Acre

Table III.C.1: Effect of crop mix on tractor diffusion, 1930 and 1940; OLS

Diffusion Diff. Change Diffusion Diff. Change
1930 1940 1930-1940 1930 1940 1930-1940

Pct. in corn 0.081** 0.612*** 0.302*** -0.025 0.211*** 0.146***
(0.040) (0.061) (0.028) (0.049) (0.054) (0.030)

Pct. in wheat 0.346*** 0.497*** 0.117*** 0.348*** 0.330*** 0.060**
(0.023) (0.048) (0.022) (0.026) (0.047) (0.027)

Pct. in oats 0.863*** 1.152*** 0.536*** 0.615*** 0.931*** 0.478***
(0.072) (0.092) (0.044) (0.057) (0.066) (0.037)

Pct. in barley 0.018 1.075*** 0.261*** 0.405*** 0.841*** 0.206***
(0.116) (0.207) (0.080) (0.094) (0.148) (0.061)

Pct. in rye -1.257*** -1.320*** -0.334*** -0.734*** -0.863*** -0.260***
(0.230) (0.293) (0.099) (0.185) (0.231) (0.093)

N 1034 954 954 1034 941 941
R2 0.50 0.63 0.65 0.75 0.87 0.82
RMSE 0.08 0.11 0.05 0.06 0.07 0.04
State FEs? Yes Yes Yes Yes Yes Yes
Controls? No No No Yes Yes Yes

Notes: Table shows the tendency of counties with different crop mixes to adopt the farm tractor in 1930,
1940, and from 1930-1940. All specifications regress tractors per 100 farm acres on contemporaneous
crop mixes. Columns (4)-(6) add controls. *, **, *** represent significance at the 0.1, 0.05, and 0.01
levels, respectively. Robust SEs in parentheses.

Table III.C.2: Effect of crop mix on tractor diffusion, 1930 and 1940; IV

Diffusion Diff. Change Diffusion Diff. Change
1930 1940 1930-1940 1930 1940 1930-1940

Pct. in corn 0.232*** 0.636*** 0.371*** 0.008 0.310*** 0.276***
(0.054) (0.083) (0.037) (0.064) (0.099) (0.050)

Pct. in wheat 0.278*** 0.591*** 0.173*** 0.308*** 0.399*** 0.131***
(0.045) (0.088) (0.036) (0.040) (0.094) (0.049)

Pct. in oats 0.762*** 1.761*** 0.701*** 0.593*** 1.377*** 0.621***
(0.099) (0.195) (0.085) (0.070) (0.144) (0.076)

Pct. in barley 0.354 -0.393 -0.369* 0.435** -0.453 -0.370**
(0.283) (0.504) (0.189) (0.209) (0.445) (0.186)

Pct. in rye -0.043 -1.056 -0.134 -2.210*** -1.767*** -0.224
(0.853) (0.747) (0.337) (0.476) (0.588) (0.278)

N 1034 954 954 1034 941 941
R2 0.48 0.59 0.62 0.74 0.84 0.79
RMSE 0.08 0.11 0.05 0.06 0.07 0.04
State FEs? Yes Yes Yes Yes Yes Yes
Controls? No No No Yes Yes Yes
Min. F-stat 18.67 20.79 20.79 23.35 15.98 15.98

Notes: Table shows the tendency of counties with different crop mixes to adopt the farm tractor in 1930,
1940, and from 1930-1940. All specifications regress tractors per 100 farm acres on contemporaneous
crop mixes instrumented with pre-tractor era values. The lowest first stage F-stat is provided. Columns
(4)-(6) add controls. *, **, *** represent significance at the 0.1, 0.05, and 0.01 levels, respectively.
Robust SEs in parentheses.
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III.D Weighted Regressions

Table III.D.1: Effect of crop mix on tractor diffusion, 1930 and 1940, weighted by farms; OLS

Diffusion Diff. Change Diffusion Diff. Change
1930 1940 1930-1940 1930 1940 1930-1940

Pct. in corn 0.035 0.621*** 0.317*** 0.057 0.375*** 0.152***
(0.045) (0.063) (0.033) (0.059) (0.052) (0.040)

Pct. in wheat 0.873*** 0.780*** 0.153*** 0.626*** 0.439*** 0.012
(0.042) (0.067) (0.033) (0.048) (0.046) (0.043)

Pct. in oats 1.112*** 1.390*** 0.581*** 0.895*** 1.104*** 0.440***
(0.065) (0.091) (0.056) (0.073) (0.071) (0.058)

Pct. in barley 0.894*** 1.624*** 0.626*** 0.592*** 1.273*** 0.613***
(0.187) (0.139) (0.088) (0.164) (0.127) (0.091)

Pct. in rye -1.122*** -1.582*** 0.076 -1.272*** -1.392*** -0.137
(0.317) (0.337) (0.155) (0.261) (0.258) (0.144)

N 1034 954 954 1034 941 941
R2 0.70 0.75 0.69 0.80 0.91 0.76
RMSE 0.08 0.10 0.05 0.06 0.06 0.05
State FEs? Yes Yes Yes Yes Yes Yes
Controls? No No No Yes Yes Yes

Notes: Table shows the tendency of counties with different crop mixes to adopt the farm tractor in 1930,
1940, and from 1930-1940. All specifications regress the fraction of farms with tractors on contempora-
neous crop mixes. Columns (4)-(6) add controls. *, **, *** represent significance at the 0.1, 0.05, and
0.01 levels, respectively. Regressions are weighted by farm count. Robust SEs in parentheses.

Table III.D.2: Effect of crop mix on tractor diffusion, 1930 and 1940, weighted by farms; IV

Diffusion Diff. Change Diffusion Diff. Change
1930 1940 1930-1940 1930 1940 1930-1940

Pct. in corn -0.014 0.360*** 0.334*** 0.014 0.343*** 0.290***
(0.062) (0.091) (0.040) (0.080) (0.078) (0.062)

Pct. in wheat 0.549*** 0.931*** 0.225*** 0.359*** 0.543*** 0.140**
(0.069) (0.111) (0.050) (0.071) (0.079) (0.071)

Pct. in oats 1.197*** 2.258*** 0.650*** 0.863*** 1.333*** 0.284***
(0.094) (0.152) (0.085) (0.090) (0.118) (0.101)

Pct. in barley 0.827** 1.090*** 0.700*** 0.520 1.187*** 0.955***
(0.375) (0.333) (0.191) (0.355) (0.297) (0.228)

Pct. in rye -1.499*** -1.563** -0.192 -2.673*** -2.700*** -0.718**
(0.580) (0.673) (0.365) (0.512) (0.532) (0.323)

N 1034 954 954 1034 941 941
R2 0.68 0.73 0.68 0.79 0.90 0.74
RMSE 0.08 0.10 0.05 0.07 0.06 0.05
State FEs? Yes Yes Yes Yes Yes Yes
Controls? No No No Yes Yes Yes
Min. F-stat 22.01 20.86 20.86 25.09 17.66 17.66

Notes: Table shows the tendency of counties with different crop mixes to adopt the farm tractor
in 1930, 1940, and from 1930-1940. All specifications regress the fraction of farms with tractors on
contemporaneous crop mixes instrumented with pre-tractor era values. The lowest first stage F-stat
is provided. Columns (4)-(6) add controls. *, **, *** represent significance at the 0.1, 0.05, and 0.01
levels, respectively. Regressions are weighted by farm count. Robust SEs in parentheses.
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Table III.D.3: Effect of crop mix on tractor vintage, 1940, weighted by farms; OLS

Vintage: Vintage: Vintage: Vintage: Vintage: Vintage:
Pre-1930 1931-35 1936-40 Pre-1930 1931-35 1936-40

Pct. in corn -0.810*** 0.161*** 0.649*** -0.448*** 0.118*** 0.330***
(0.064) (0.020) (0.061) (0.069) (0.024) (0.065)

Pct. in wheat -0.284*** 0.089*** 0.195*** -0.029 0.038 -0.009
(0.052) (0.021) (0.045) (0.068) (0.024) (0.064)

Pct. in oats -0.304*** 0.008 0.297*** -0.590*** 0.116*** 0.474***
(0.104) (0.033) (0.099) (0.100) (0.036) (0.089)

Pct. in barley -1.244*** 0.487*** 0.757*** -1.216*** 0.530*** 0.685***
(0.195) (0.059) (0.155) (0.188) (0.058) (0.156)

Pct. in rye -0.959*** -0.256** 1.215*** -0.895*** -0.124 1.019***
(0.293) (0.104) (0.233) (0.301) (0.102) (0.242)

N 954 954 954 941 941 941
R2 0.65 0.46 0.60 0.71 0.56 0.66
RMSE 0.09 0.03 0.08 0.08 0.03 0.07
State FEs? Yes Yes Yes Yes Yes Yes
Controls? No No No Yes Yes Yes

Notes: Table shows the tendency of counties with different crop mixes to own tractors of
different vintages in 1940. All specifications regress the frequency of each tractor vintage on
contemporaneous crop mixes. Columns (4)-(6) add controls. *, **, *** represent significance
at the 0.1, 0.05, and 0.01 levels, respectively. Regressions are weighted by farm count. Robust
SEs in parentheses.

Table III.D.4: Effect of crop mix on tractor vintage, 1940, weighted by farms; IV

Vintage: Vintage: Vintage: Vintage: Vintage: Vintage:
Pre-1930 1931-35 1936-40 Pre-1930 1931-35 1936-40

Pct. in corn -0.989*** 0.203*** 0.787*** -0.630*** 0.179*** 0.451***
(0.090) (0.031) (0.088) (0.129) (0.043) (0.113)

Pct. in wheat -0.311*** 0.100*** 0.211*** -0.245* 0.127*** 0.119
(0.091) (0.030) (0.079) (0.131) (0.038) (0.118)

Pct. in oats 0.265 -0.155*** -0.109 0.067 -0.174** 0.107
(0.174) (0.059) (0.163) (0.182) (0.068) (0.152)

Pct. in barley -2.589*** 0.882*** 1.707*** -2.605*** 1.094*** 1.510***
(0.414) (0.122) (0.337) (0.502) (0.150) (0.404)

Pct. in rye -0.615 -0.679*** 1.294** 0.416 -0.607*** 0.191
(0.663) (0.222) (0.619) (0.705) (0.226) (0.631)

N 954 954 954 941 941 941
R2 0.60 0.41 0.57 0.66 0.47 0.64
RMSE 0.09 0.04 0.08 0.09 0.03 0.07
State FEs? Yes Yes Yes Yes Yes Yes
Controls? No No No Yes Yes Yes
Min. F-stat 20.86 20.86 20.86 17.66 17.66 17.66

Notes: Table shows the tendency of counties with different crop mixes to own tractors of
different vintages in 1940. All specifications regress the frequency of each tractor vintage on
contemporaneous crop mixes instrumented with pre-tractor era values. The lowest first stage
F-stat is provided. Columns (4)-(6) add controls. *, **, *** represent significance at the 0.1,
0.05, and 0.01 levels, respectively. Regressions are weighted by farm count. Robust SEs in
parentheses.
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III.E Spatial Standard Errors

Table III.E.1: Comparison to Conley (1999) Standard Errors, 1930 Diffusion; OLS

20-mile 50-mile 100-mile
Coefficient Robust s.e. Conley s.e. Conley s.e. Conley s.e.

Pct. in corn 0.033 0.059 0.060 0.081 0.104
Pct. in wheat 0.695 0.043 *** 0.043 *** 0.054 *** 0.062 ***
Pct. in oats 0.995 0.082 *** 0.083 *** 0.117 *** 0.156 ***
Pct. in barley 0.795 0.152 *** 0.151 *** 0.188 *** 0.229 ***
Pct. in rye -1.270 0.247 *** 0.245 *** 0.283 *** 0.315 ***

Notes: Table compares heteroskedasticity-robust and Conley (1999) standard errors on the main indep-
endent variables in a regression of 1930 tractor diffusion on the fraction of farmland in each of the five
principal crops and controls. Conley (1999) standard errors allow for spatial correlation in error terms
that declines linearly in distance up to a cutoff-point, which is given in the column heading for each set
of standard errors. *, **, *** represent significance at the 0.1, 0.05, and 0.01 levels, respectively.

Table III.E.2: Comparison to Conley (1999) Standard Errors, 1940 Diffusion; OLS

20-mile 50-mile 100-mile
Coefficient Robust s.e. Conley s.e. Conley s.e. Conley s.e.

Pct. in corn 0.395 0.051 *** 0.051 *** 0.067 *** 0.087 ***
Pct. in wheat 0.477 0.046 *** 0.046 *** 0.056 *** 0.068 ***
Pct. in oats 1.129 0.070 *** 0.070 *** 0.093 *** 0.116 ***
Pct. in barley 1.141 0.135 *** 0.134 *** 0.166 *** 0.206 ***
Pct. in rye -1.166 0.247 *** 0.245 *** 0.301 *** 0.323 ***

Notes: Table compares heteroskedasticity-robust and Conley (1999) standard errors on the main indep-
endent variables in a regression of 1940 tractor diffusion on the fraction of farmland in each of the five
principal crops and controls. Conley (1999) standard errors allow for spatial correlation in error terms
that declines linearly in distance up to a cutoff-point, which is given in the column heading for each set
of standard errors. *, **, *** represent significance at the 0.1, 0.05, and 0.01 levels, respectively.

Table III.E.3: Comparison to Conley (1999) Standard Errors, 1930-40 Diffusion Change; OLS

20-mile 50-mile 100-mile
Coefficient Robust s.e. Conley s.e. Conley s.e. Conley s.e.

Pct. in corn 0.164 0.043 *** 0.043 *** 0.058 *** 0.079 **
Pct. in wheat -0.019 0.046 0.045 0.058 0.074
Pct. in oats 0.466 0.057 *** 0.056 *** 0.072 *** 0.091 ***
Pct. in barley 0.657 0.093 *** 0.092 *** 0.112 *** 0.136 ***
Pct. in rye 0.091 0.136 0.134 0.156 0.190

Notes: Table compares heteroskedasticity-robust and Conley (1999) standard errors on the main indep-
endent variables in a regression of the change in tractor diffusion from 1930 to 1940 on the fraction of
farmland in each of the five principal crops and controls. Conley (1999) standard errors allow for spatial
correlation in error terms that declines linearly in distance up to a cutoff-point, which is given in the
column heading for each set of standard errors. *, **, *** represent significance at the 0.1, 0.05, and
0.01 levels, respectively.
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Table III.E.4: Comparison to Conley (1999) Standard Errors, 1930 Diffusion; IV

20-mile 50-mile 100-mile
Coefficient Robust s.e. Conley s.e. Conley s.e. Conley s.e.

Pct. in corn 0.056 0.076 0.077 0.101 0.124
Pct. in wheat 0.483 0.062 *** 0.063 *** 0.085 *** 0.105 ***
Pct. in oats 1.007 0.100 *** 0.104 *** 0.143 *** 0.183 ***
Pct. in barley 0.594 0.287 ** 0.290 ** 0.387 0.469
Pct. in rye -2.452 0.463 *** 0.468 *** 0.548 *** 0.591 ***

Notes: Table compares heteroskedasticity-robust and Conley (1999) standard errors on the main indep-
endent variables in a regression of 1930 tractor diffusion on the fraction of farmland in each of the five
principal crops, instrumenting with 1910 values, and controls. Conley (1999) standard errors allow for
spatial correlation in error terms that declines linearly in distance up to a cutoff-point, which is given
in the column heading for each set of standard errors. *, **, *** represent significance at the 0.1, 0.05,
and 0.01 levels, respectively.

Table III.E.5: Comparison to Conley (1999) Standard Errors, 1940 Diffusion; IV

20-mile 50-mile 100-mile
Coefficient Robust s.e. Conley s.e. Conley s.e. Conley s.e.

Pct. in corn 0.375 0.083 *** 0.084 *** 0.103 *** 0.121 ***
Pct. in wheat 0.568 0.087 *** 0.087 *** 0.106 *** 0.127 ***
Pct. in oats 1.357 0.123 *** 0.126 *** 0.162 *** 0.192 ***
Pct. in barley 0.961 0.358 *** 0.362 *** 0.471 ** 0.569 *
Pct. in rye -1.913 0.475 *** 0.481 *** 0.555 *** 0.566 ***

Notes: Table compares heteroskedasticity-robust and Conley (1999) standard errors on the main indep-
endent variables in a regression of 1940 tractor diffusion on the fraction of farmland in each of the five
principal crops, instrumenting with 1910 values, and controls. Conley (1999) standard errors allow for
spatial correlation in error terms that declines linearly in distance up to a cutoff-point, which is given
in the column heading for each set of standard errors. *, **, *** represent significance at the 0.1, 0.05,
and 0.01 levels, respectively.

Table III.E.6: Comparison to Conley (1999) Standard Errors, 1930-40 Diffusion Change; IV

20-mile 50-mile 100-mile
Coefficient Robust s.e. Conley s.e. Conley s.e. Conley s.e.

Pct. in corn 0.397 0.074 *** 0.075 *** 0.094 *** 0.122 ***
Pct. in wheat 0.184 0.079 ** 0.079 ** 0.100 * 0.120
Pct. in oats 0.182 0.118 0.118 0.155 0.193
Pct. in barley 1.275 0.288 *** 0.289 *** 0.367 *** 0.448 ***
Pct. in rye -0.437 0.282 0.284 0.333 0.358

Notes: Table compares heteroskedasticity-robust and Conley (1999) standard errors on the main indep-
endent variables in a regression of the change in tractor diffusion from 1930 to 1940 on the fraction of
farmland in each of the five principal crops, instrumenting with 1910 values, and controls. Conley
(1999) standard errors allow for spatial correlation in error terms that declines linearly in distance up
to a cutoff-point, which is given in the column heading for each set of standard errors. *, **, ***
represent significance at the 0.1, 0.05, and 0.01 levels, respectively.
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III.F Alternative Explanations of Tractor Diffusion

New Deal Relief and Diffusion in the 1930s

Between the Great Depression, the New Deal, and the Dust Bowl, the 1930s was a tumultuous decade for
U.S. agriculture. These trends in 1930s agriculture may have affected tractor adoption and be correlated
with regional crop mix, generating bias in the baseline estimates. Here I rule out the possibility that New
Deal relief programs explain regional differences in tractor diffusion from 1930 to 1940.

Several New Deal programs provided grant and loan relief to farms across the U.S. beginning in 1933. The
principal sources of farm relief were the Agricultural Adjustment Administration (AAA), which paid farmers
to take farmland out of production and raise crop prices, and Farm Credit Administration (FCA), which
provided emergency farm mortgage debt relief and increased the supply of agricultural credit for all purposes.
AAA spending comprised 12.1 percent of all New Deal grants from March 1933 to June 1939, while FCA
lending totaled 12 percent of all New Deal loans (Fishback, Kantor, and Wallis 2003). In this section I use
the county-level AAA and FCA relief variables of Fishback, Kantor, and Wallis (2003; collected from a 1940
government publication) to isolate any potential confounding effects of New Deal relief.

The “New Deal” hypothesis of Clarke (1991) is that AAA payments and FCA loans landed disproportion-
ately in the hands of corn-growing farmers, aiding in their purchase of tractors. Indeed, though counties
concentrated in corn tended to receive AAA relief at the same rate as those concentrated in wheat, corn
counties received FCA loans at twice the rate of wheat counties (Table III.F.1). If the delayed diffusion of
tractors to the Corn Belt or other regions in the Midwest is primarily due to credit constraints, as Clarke
argues, then higher levels of FCA lending should positively affect diffusion.

[Table III.F.1 about here]

Table III.F.3 regresses the county-level change in tractor diffusion from 1930 to 1940 on crop mix, AAA
relief spending, and FCA loans. Similar to the alternative specifications of previous tables, column (1) uses
contemporaneous crop mix, Column (2) instruments with 1910 crop mix, and column (3) regresses directly
on 1910 values. Columns (4) to (6) add controls used in previous tables. The effects of New Deal relief are
notably absent from these results: AAA spending and FCA lending add little-to-no additional explanatory
power beyond the local crop mix. Controlling for New Deal farm relief does not refute the argument that
technical advances were the main force behind tractor diffusion in the 1930s.

[Table III.F.3 about here]

Fishback, Kantor, and Wallis (2003) provide one clue as to why New Deal relief might not have affected
tractor purchases: AAA spending and FCA lending favored “large farmers and high-income areas.” These
farms were more likely to own tractors even in the absence of New Deal relief and less likely to be dependent
on government financing for general equipment purchases.

Effects of the Dust Bowl

The Dust Bowl – a series of dust storms that severely eroded topsoil from Plains farmland in the 1930s –
may have also interfered with tractor diffusion in the 1930s. Hornbeck (2012) documents the short- and
long-run effects of the Dust Bowl and finds that it had an immediate and persistent effect on agricultural
land values. These storms caused widespread crop failure and led to declines in agricultural land value on
the order of 30 percent in the most affected counties (Hornbeck 2012). Farmers living in affected counties
might have subsequently been unable to afford or borrow against their land to buy a tractor.
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Figure 2 of Hornbeck (2012) provides a map of cumulative soil erosion in the 1930s across portions of 12
states in or near the U.S. Plains region. Six of the states and 472 of the counties in this map are in
the Midwest sample studied here.5,6 Hornbeck (2012) digitally traces this map to calculate the fraction
of farmland in each county (using 1910 borders) with low, medium, and high erosion.7 Among the 472
counties in both Hornbeck’s (2012) data and the border-adjusted Midwest sample, the average fraction of
high-erosion farmland is 0.18; medium-erosion, 0.39; and low-erosion, 0.44. The counties in this subsample
were less severely hit by the Dust Bowl than those in Hornbeck’s 779-county sample, where the average
county has 37, 48, and 15 percent of its farmland in high-, medium-, and low-erosion areas, respectively.

The intersected sample nevertheless includes sufficient variation to distinguish the effects of the Dust Bowl
from those of crop mix and technological advances in tractor design. Table III.F.2 shows how the severity
of erosion varied with crop concentrations in this sample. Counties concentrated in corn suffered the most
severe erosion. Those growing wheat tended to experience moderate erosion; this pattern differs from that
of Hornbeck’s 779-county sample, over which the percent of farmland in wheat correlates with lower levels of
both moderate and severe erosion (Hornbeck 2012, Table 1). Counties growing oats and barley were among
the least affected, lying further away from the figurative eye of the storm.

[Table III.F.2 about here]

These patterns suggest that the Dust Bowl cannot explain the relatively larger increases in tractor diffusion
from 1930 to 1940 across the Corn Belt, as counties in the heart of this region were among the most severely
impacted. Table III.F.4 incorporates the erosion variables into the baseline regressions for the change in
diffusion over the decade. Though the IV specification no longer has sufficient explanatory power in the first
stage to generate unbiased second-stage estimates, the regressions on 1910 crop mix (Columns 3 and 6) are
identified. The results suggest relatively modest, if any, effects of the Dust Bowl on tractor diffusion but
continue to highlight the importance of the local crop mix to the technology’s spread.

[Table III.F.4 about here]

5For all Dust Bowl-related regressions I apply Hornbeck’s (2010) border adjustment procedure to reapportion all
post-1910 data for my sample to 1910 county borders. This allows me to merge Hornbeck’s (2012) erosion variables,
which are defined for 1910 county borders, to my data without any additional changes.

6The states in the intersected sample are Iowa, Kansas, Minnesota, Nebraska, North Dakota, and South Dakota.
Other states shown in Hornbeck’s map are Colorado, Montana, New Mexico, Oklahoma, Texas, and Wyoming.
Substantial portions of these states suffered severe erosion, especially areas in eastern Colorado, Oklahoma, and
central Montana. Most of eastern New Mexico and central Texas also suffered moderate erosion.

7“Low erosion” is defined to be less than 25 percent of topsoil lost; “medium erosion” indicates between 25 and 75
percent of topsoil lost, and “high erosion” indicates more than 75 percent of topsoil lost.
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Table III.F.1: New Deal Farm Relief (AAA/FCA) by 1930 crop mix

(1) (2)
AAA spending ($/acre) FCA loans ($/acre)

Pct. in corn, 1930 8.151*** 3.052***
(0.624) (0.366)

Pct. in wheat, 1930 8.921*** 1.519***
(0.386) (0.216)

Pct. in oats, 1930 1.378* 2.824***
(0.811) (0.495)

Pct. in barley, 1930 9.426*** 4.794***
(1.603) (1.244)

Pct. in rye, 1930 -0.751 -0.277
(1.622) (3.150)

Constant 0.265 0.471***
(0.221) (0.131)

N 1032 1032
R2 0.71 0.49
RMSE 0.86 0.63

Notes: Table shows the rate at which counties with different crop mixes
received New Deal relief spending. Column (1) regresses AAA spending per
acre of farmland on the fraction of farmland in five principal crops. Column
(2) regresses FCA lending per acre on crop percentages. All regressions
include state FEs (not shown). *, **, *** represent significance at the 0.1,
0.05, and 0.01 levels, respectively. Robust SEs in parentheses.

Table III.F.2: Dust Bowl Soil Erosion (low/med/high) by 1930 crop mix

(1) (2) (3)
Erosion: Low Erosion: Med. Erosion: High

Pct. in corn, 1930 -1.576*** 0.360* 1.216***
(0.206) (0.207) (0.153)

Pct. in wheat, 1930 -0.118 0.413*** -0.294***
(0.129) (0.150) (0.110)

Pct. in oats, 1930 2.197*** -0.399 -1.798***
(0.411) (0.401) (0.321)

Pct. in barley, 1930 1.738*** -2.036*** 0.298
(0.568) (0.482) (0.402)

Pct. in rye, 1930 -0.831 2.032 -1.201*
(1.533) (1.506) (0.618)

Constant 0.465*** 0.389*** 0.146**
(0.061) (0.059) (0.057)

N 471 471 471
R2 0.44 0.15 0.34
RMSE 0.29 0.31 0.24

Notes: Table shows the severity of the Dust Bowl across counties with dif-
ferent crop mixes. Columns (1) to (3) regress the fraction of farmland with
low, medium, and high cumulative erosion in the 1930s (respectively) on the
fraction of farmland in five principal crops. All regressions include state FEs
(not shown). *, **, *** represent significance at the 0.1, 0.05, and 0.01 levels,
respectively. Robust SEs in parentheses.
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Table III.F.3: Effect of crop mix on change in tractor diffusion, 1930-40, controlling for New Deal

(1) (2) (3) (4) (5) (6)
Pct. in corn 0.231*** 0.352*** 0.175*** 0.466***

(0.053) (0.062) (0.048) (0.093)
Pct. in wheat 0.070 0.246*** -0.007 0.258***

(0.044) (0.068) (0.046) (0.096)
Pct. in oats 0.630*** 0.632*** 0.458*** 0.114

(0.052) (0.096) (0.059) (0.126)
Pct. in barley 0.691*** 0.928*** 0.657*** 1.385***

(0.089) (0.209) (0.093) (0.297)
Pct. in rye 0.336** 0.007 0.083 -0.511*

(0.140) (0.328) (0.138) (0.294)
Pct. in corn, 1910 0.241*** 0.356***

(0.039) (0.050)
Pct. in wheat, 1910 0.142*** 0.120***

(0.037) (0.041)
Pct. in oats, 1910 0.581*** 0.293***

(0.045) (0.053)
Pct. in barley, 1910 0.665*** 0.676***

(0.114) (0.113)
Pct. in rye, 1910 -0.088 -0.481**

(0.275) (0.236)
AAA spending ($/acre) 0.007** -0.001 0.003 -0.002 -0.011*** -0.005*

(0.003) (0.003) (0.003) (0.003) (0.004) (0.003)
FCA loans ($/acre) -0.002 -0.002 0.002 0.002 0.004 0.004

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Constant 0.075*** 0.062*** 0.048*** -0.681* -1.182** -0.821**

(0.009) (0.011) (0.009) (0.351) (0.546) (0.369)
N 953 953 1033 940 940 1015
R2 0.67 0.65 0.65 0.73 0.68 0.70
RMSE 0.05 0.06 0.06 0.05 0.05 0.05
State FEs? Yes Yes Yes Yes Yes Yes
Controls? No No No Yes Yes Yes
Min. F-stat 19.71 16.29

Notes: Table shows the tendency of counties with different crop mixes to adopt the farm tractor from
1930-1940. Columns (1) and (4) regress the fraction of farms with tractors on contemporaneous crop
mixes. Columns (2) and (5) instrument with pre-tractor era crop mixes. Columns (3) and (6) regress
on lagged crop percentages. Columns (4)-(6) add controls. *, **, *** represent significance at the 0.1,
0.05, and 0.01 levels, respectively. Robust SEs in parentheses.
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Table III.F.4: Effect of crop mix on change in tractor diffusion, 1930-40, controlling for Dust Bowl

(1) (2) (3) (4) (5) (6)
Pct. in corn 0.056 0.170** 0.065 0.519**

(0.047) (0.085) (0.071) (0.227)
Pct. in wheat 0.026 0.165* -0.114** 0.277*

(0.043) (0.090) (0.056) (0.148)
Pct. in oats 0.794*** 0.518** 0.673*** 0.036

(0.079) (0.213) (0.087) (0.200)
Pct. in barley 1.134*** 1.703*** 0.737*** 1.296**

(0.115) (0.436) (0.137) (0.612)
Pct. in rye 0.305** -0.515 0.014 -1.507**

(0.153) (0.604) (0.178) (0.742)
Pct. in corn, 1910 0.258*** 0.520***

(0.054) (0.082)
Pct. in wheat, 1910 0.108** 0.037

(0.045) (0.057)
Pct. in oats, 1910 0.607*** 0.320***

(0.077) (0.088)
Pct. in barley, 1910 0.706*** 0.501***

(0.130) (0.133)
Pct. in rye, 1910 -1.400* -1.840***

(0.714) (0.610)
Erosion: Med. -0.009 -0.018 -0.032*** -0.007 -0.017 -0.028**

(0.011) (0.012) (0.012) (0.012) (0.015) (0.012)
Erosion: High -0.003 -0.023 -0.018 -0.019 -0.013 -0.016

(0.017) (0.022) (0.016) (0.018) (0.026) (0.017)
Constant 0.123*** 0.132*** 0.112*** 1.633 -3.950* -1.334

(0.015) (0.028) (0.013) (1.648) (2.326) (1.897)
N 446 446 472 441 441 467
R2 0.60 0.54 0.55 0.66 0.51 0.60
RMSE 0.06 0.07 0.07 0.06 0.07 0.07
State FEs? Yes Yes Yes Yes Yes Yes
Controls? No No No Yes Yes Yes
Min. F-stat 9.64 4.65

Notes: Table shows the tendency of counties with different crop mixes to adopt the farm tractor
from 1930-1940. Columns (1) and (4) regress the fraction of farms with tractors on contemporaneous
crop mixes. Columns (2) and (5) instrument with pre-tractor era crop mixes. Columns (3) and (6)
regress on lagged crop percentages. Columns (4)-(6) add controls. *, **, *** represent significance
at the 0.1, 0.05, and 0.01 levels, respectively. Robust SEs in parentheses.
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III.G Additional Maps

Figure III.G.1: Percent of farmland in corn, 1910

Figure III.G.2: Percent of farmland in corn, 1920
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Figure III.G.3: Percent of farmland in corn, 1930

Figure III.G.4: Percent of farmland in corn, 1940
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Figure III.G.5: Percent of farmland in wheat, 1910

Figure III.G.6: Percent of farmland in wheat, 1920
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Figure III.G.7: Percent of farmland in wheat, 1930

Figure III.G.8: Percent of farmland in wheat, 1940
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Figure III.G.9: Percent of farmland in oats, 1910

Figure III.G.10: Percent of farmland in oats, 1920
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Figure III.G.11: Percent of farmland in oats, 1930

Figure III.G.12: Percent of farmland in oats, 1940
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Figure III.G.13: Percent of farmland in barley, 1910

Figure III.G.14: Percent of farmland in barley, 1920
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Figure III.G.15: Percent of farmland in barley, 1930

Figure III.G.16: Percent of farmland in barley, 1940
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Figure III.G.17: Percent of farmland in rye, 1910

Figure III.G.18: Percent of farmland in rye, 1920

190



Figure III.G.19: Percent of farmland in rye, 1930

Figure III.G.20: Percent of farmland in rye, 1940
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Figure III.G.21: Percent of farmland in hay, 1910

Figure III.G.22: Percent of farmland in hay, 1920
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Figure III.G.23: Percent of farmland in hay, 1930

Figure III.G.24: Percent of farmland in hay, 1940
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