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Abstract

String Theory, Chern-Simons Theory and the Fractional Quantum Hall Effect

by

Nathan Paul Moore

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Ori Ganor, Chair

In this thesis we explore two interesting relationships between string theory and quantum
field theory.

Firstly, we develop an equivalence between two Hilbert spaces: (i) the space of states of
U(1)n Chern-Simons theory with a certain class of tridiagonal matrices of coupling constants
(with corners) on T 2; and (ii) the space of ground states of strings on an associated mapping
torus with T 2 fiber. The equivalence is deduced by studying the space of ground states
of SL(2,Z)-twisted circle compactifications of U(1) gauge theory, connected with a Janus
configuration, and further compactified on T 2. The equality of dimensions of the two Hilbert
spaces (i) and (ii) is equivalent to a known identity on determinants of tridiagonal matrices
with corners. The equivalence of operator algebras acting on the two Hilbert spaces follows
from a relation between the Smith normal form of the Chern-Simons coupling constant
matrix and the isometry group of the mapping torus, as well as the torsion part of its first
homology group.

Secondly, the Fractional Quantum Hall Effect appears as part of the low-energy descrip-
tion of the Coulomb branch of the A1 (2, 0)-theory formulated on (S1 × R2)/Zk, where the
generator of Zk acts as a combination of translation on S1 and rotation by 2π/k on R2. At
low-energy the configuration is described in terms of a 4+1D Super-Yang-Mills theory on a
cone (R2/Zk) with additional 2+1D degrees of freedom at the tip of the cone. Fractionally
charged quasi-particles have a natural description in terms of BPS strings of the (2, 0)-theory.
We analyze the large k limit, where a smooth cigar-geometry provides an alternative descrip-
tion. In this framework a W-boson can be modeled as a bound state of k quasi-particles. The
W-boson becomes a Q-ball, and it can be described by a soliton solution of BPS monopole
equations on a certain auxiliary curved space. We show that axisymmetric solutions of these
equations correspond to singular maps from AdS3 to AdS2, and we present some numerical
results.
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Chapter 1

Introduction

Here we give a brief introduction to the main concepts used in this thesis.

1.1 Relativistic Quantum Mechanics
In order to describe the high energy behavior of the fundamental particles that make up

the energy and matter in the universe, one must construct mathematical models for them
that incorporate both special relativity and quantum mechanics.

In classical mechanics the equations of motion that govern the behavior of particles
making up a system can be found by extremizing the action

S =

∫
dt L(xi, ẋi, t),

which yields the Euler-Lagrange equations for the particle coordinates, xi(t).
In quantum mechanics a particle’s position and momentum no longer commute but satisfy

the canonical commutation relations

[x(t)i, p(t)j] = iδij pi =
∂L

∂ẋi
.

The behavior of xi and pi can be found by making the Legendre transformation to the
Hamiltonian picture

H(xi, pi, t) ≡
∑
i

piẋi − L(xi, ẋi, t)

and using the Heisenberg equations of motion, or the Feynman Path Integral. However, we
see that time and space are on unequal footing since time is simply a parameter, while space
is an operator, which makes it difficult to incorporate special relativity. There are two ways
of alleviating this problem:
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1. Quantum Field Theory (QFT)

Demote space to a parameter and quantize fields φ(x, t), governed by the action

S =

∫
d4x L(φ(x, t), ∂µφ(x, t), xµ), π(x, t) =

∂L
∂φ̇

,

by imposing the commutation relations

[φ(x, t), π(y, t)] = iδ3(x− y).

The Fourier modes of the field in momentum space can be interpreted as particle
creation and annihilation operators that create one-particle momentum eigenstates.

The advantage of this method is that it is fairly straightforward to deal with processes
that do not conserve particle number. QFT has been successfully used to describe the
relativistic theory of the strong, weak and electromagnetic interactions, but runs into
major difficulties in attempts to describe quantum gravity.

2. String Theory

Promote time to an operator. Now we have four operators, Xµ(τ), labeling the parti-
cle’s trajectory in space-time, parameterized by a coordinate τ . Our system is governed
by an action for the one dimensional fields, Xµ(τ),

S =

∫
dτ L(Xµ, Ẋµ, τ).

For example, the simplest Poincare-invariant action that does not depend on the pa-
rameter τ is proportional to the length of the world-line traced out by the Xµ(τ). The
Lagrangian is

L ∼
√
−ẊµẊµ,

and we can quantize this system by imposing the commutation relations

[Xµ(τ), P ν(τ)] = iηµν , P ν =
∂L

∂Ẋν
.

The main difference between this approach and the previous one is that now the Fourier
modes of our one dimensional space-time fields are operators that create and destroy
single particle modes rather than creating and destroying particles, which makes it
more difficult to deal with processes that do not conserve particle number.

The advantage of this method is that it is relatively straightforward to write down
a relativistic quantum theory of extended objects. We can quantize one-dimensional
strings by using two dimensional fields, Xµ(τ, σ), hence the name string theory. We can
also quantize higher dimensional objects, known as p-branes, through the use of higher
dimensional fields that are functions p spacial dimensions and one time dimension.
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While all of the forces other than gravity can be straightforwardly quantized using
QFT, the graviton appears in the spectrum of closed string states and this eventually
allows for the construction of a consistent theory of quantum gravity. String theory
also appears to have all of the necessary ingredients to describe a relativistic quantum
theory of the strong weak and electromagnetic forces, but the exact nature of how this
comes about is not yet known.

1.2 Chern-Simons Theory and 1/k Charged Particles
In this thesis we frequently refer to the 2+1D quantum field theory with action

S =
k

4π

∫
A ∧ dA,

known as abelian Chern-Simons theory. A is one-form abelian gauge field, and k is an integer
known as the Chern-Simons level.

1/k charged particles arise in the Fractionally Charged Quantum Hall Effect in which
electrons confined to a 2D spacial surface combine with flux quanta of the magnetic field to
produce fractionally charged quasiparticles. The effective QFT description of this system in
terms of a Chern-Simons theory gives us a simple way of seeing how this happens.

Let Jµ be the electromagnetic current of the 2+1D electrons. By charge conservation we
have

∂µJ
µ = 0

Since the topology of flat 2+1D space is trivial we can write Jµ globally as the curl of a
3-vector

Jµ = εµνλ∂νaλ

We notice immediately that the current is invariant under the gauge transformation aµ →
aµ + ∂µΛ. The effective local Lagrangian description of this system is given to leading order
by a Chern-Simons term:

L =
k

4π
εµνλaµ∂νaλ + · · ·

The dots indicate the kinetic term for a as well as any other terms, however, the Chern-
Simons term is the only gauge invariant, dimension 3 or less, local operator that we can
write down, and thus the only relevant one at long distances. Let us now couple our electron
system to an external electromagnetic field via the interaction JµAµ. If we substitute our
formula for Jµ as a function of a and integrate by parts (dropping a surface term) our
Lagrangian becomes

L =
k

4π
εµνλaµ∂νaλ −

1

2π
εµνλAµ∂νaλ =

k

4π
εµνλaµ∂νaλ −

1

2π
εµνλaµ∂νAλ
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The quasiparticles are defined as the entities that couple to the gauge potential through
the interaction aµj

µ, where jµ is the quasiparticle current. Including quasiparticles our
Lagrangian becomes

L =
k

4π
εµνλaµ∂νaλ + aµj

µ − 1

2π
εµνλaµ∂νAλ

Now we make the change of variables j̃µ = jµ − 1
2π
εµνλ∂νAλ, use Loretz gauge for aµ, and

integrate out aµ to get

L =
π

k
j̃µ
(
εµνλ∂

ν

∂2

)
j̃λ =

1

4πk
εµνλAµ∂νAλ +

1

k
Aµj

µ +
π

k
jµ
(
εµνλ∂

ν

∂2

)
jλ

The second term tells us that our quasiparticles have electric charge 1
k
.

1.3 Supersymmetry and the (2,0) Theory
Supersymmetry is a symmetry between bosons and fermions. The canonical example of

a supersymmetric quantum field theory is the Wess-Zumino model, whose action is given by

S =

∫
d4x(−∂µφ∗∂µφ+ iψ†σ̄µ∂µψ).

This action describes a massless complex scalar and a massless 2-component left-handed
Weyl spinor. This action is invariant under the transformations

δφ = εψ δφ∗ = ε†φ†

δψα = i(σµε†)α∂µφ δψ†α̇ = −i(εσµ)α̇∂µφ
∗

where εα is a two component infinitesimal Weyl spinor. The massless fermion and massless
complex scalar are said to form a lefthanded chiral supermultiplet and by Noether’s theorem
there are two conserved supercharges associated with this symmetry.

There are many other supersymmetric quantum field theories in various dimensions with
more supercharges and more complicated supermultiplets. One of the most interesting is
the (2,0) Theory, which is a six dimensional supersymmetric quantum field theory with 16
supercharges. The (2,0) Theory is quite mysterious at the quantum level because it contains
a tensor multiplet that has 5 scalars, 4 left-handed Weyl spinors, and a two-form gauge field,
B, with self-dual field strength H = dB; H = ∗H. It is difficult to quantize B using standard
methods because it is very difficult to find a Lorentz covariant Lagrangian for B. The most
natural Lagrangian,

H ∧ ∗H = H ∧H = −H ∧H = 0

in six dimensions. In 1996 Pasti, Sorokin and Tonin managed to write down a rather compli-
cated Lorentz covariant Lagrangian [1], however, this only works for an abelian gauge field.
There is no known way to quantize the non-abelian (2,0) Theory, and thus anything one can
learn about it is of great interest.
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1.4 Compactification
Lower dimensional theories can be constructed from higher dimensional theories by plac-

ing the higher dimensional theories on a space-time in which one or more of the spacial
dimensions form a compact subspace. At energies that are too small to resolve the compact
subspace, the higher dimensional theory behaves like a lower dimensional one.

The canonical example is that of a D+1 dimensional massless scalar field on a space in
which one of the spacial dimensions is a circle of length L. The equation of motion of the
field in D+1 dimensions is

�2
D+1φ(x, y) = 0

where x labels the non-compact directions, and y the circular one. Since the field is now
periodic in y we can write it as a Fourier series

φ(x, y) =
∑
n

φn(x, y)e
iny
L .

The equation of motion is now

�2
Dφn(x)− n2

L2
φn = 0,

and we see that the D+1 dimensional theory of a single massless scalar field behaves like a
D dimensional field theory of infinitely many massive scalar fields.

1.5 Superstring Theory and M-Theory
By combining the bosonic Xµ(τ, σ) coordinates with fermionic coordinates, ψµ(τ, σ), that

are related to the bosonic ones by supersymmetry, one can construct a theory of superstrings.
The latter is the simplest way of incorporating fermions into string theory. Superstring
theories have string modes that can be grouped into various supersymmetry multiplets such
as the gravity multiplet (which contains the graviton among other things) as well as tensor
and/or vector multiplets that contain gauge bosons.

There are five distinct superstring theories that are consistent quantum theories of gravity
in 10 space-time dimensions: type I, type IIA, type IIB, E8 × E8 Heterotic and SO(32)
Heterotic. Type I consists of unoriented open and closed superstrings, has 16 supercharges,
and is consistent only when the gauge group is SO(32). The two Heterotic superstring
theories consist of closed oriented superstrings, have 16 supercharges, and have gauge groups
of either SO(32) or E8 × E8, hence the names. The type II string theories are theories of
oriented closed superstrings, with 32 supercharges, and they also contain oriented open
superstrings that can end on p-branes called Dp-branes. Type IIA contains only stable Dp-
branes of even dimensionality while IIB contains only stable Dp-branes of odd dimensionality.
The ends of the open strings in the type II theories can be charged under various gauge
groups, which provides a simple way of constructing non-abelian gauge theories from them.
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These theories can all be related to one another through a series of dualities and are all
believed to derive from a unique theory in 11 space-time dimensions known as M-theory.
Unfortunately, M-theory does not contain fundamental strings, which are required for a
perturbative description, hence very little is known about the full theory. M-theory does
however contain M2 branes and M5 branes, and the field theory that describes the world
volume of an M5 brane is the (2,0) Theory. Non-abelian forms of the (2,0) theory can be
realized as the world volumes of configurations of M5 branes.

It is hoped that one day we will be able to determine how our four dimensional world
arises from compactifications of M-theory and its lower dimensional descendants. In the
meantime, however, one can use the relationships between the various superstring theories
and M-theory to learn new things about the field theories that are associated with them.

1.6 Relationships between String and Field Theory
In this thesis we explore two interesting relationships between string theory and field

theory. In chapter 2 we develop an equivalence between the space of states of U(1)n Chern-
Simons theory with a certain class of tridiagonal matrices of coupling constants (with corners)
on T 2 and the space of ground states of strings on an associated mapping torus with T 2 fiber.
In chapter 3 the Fractional Quantum Hall Effect, which can be derived from a Chern-Simons
theory, appears as part of the low-energy description of the Coulomb branch of the A1

(2, 0)-theory formulated on (S1 × R2)/Zk, which is derived from M-theory.
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Chapter 2

Janus configurations with
SL(2,Z)-duality twists, Strings on
Mapping Tori, and a Tridiagonal
Determinant Formula

We develop an equivalence between two Hilbert spaces: (i) the space of states of U(1)n

Chern-Simons theory with a certain class of tridiagonal matrices of coupling constants (with
corners) on T 2; and (ii) the space of ground states of strings on an associated mapping torus
with T 2 fiber. The equivalence is deduced by studying the space of ground states of SL(2,Z)-
twisted circle compactifications of U(1) gauge theory, connected with a Janus configuration,
and further compactified on T 2. The equality of dimensions of the two Hilbert spaces (i) and
(ii) is equivalent to a known identity on determinants of tridiagonal matrices with corners.
The equivalence of operator algebras acting on the two Hilbert spaces follows from a relation
between the Smith normal form of the Chern-Simons coupling constant matrix and the
isometry group of the mapping torus, as well as the torsion part of its first homology group.

2.1 Introduction and summary of results
Our goal is to develop tools for studying circle compactifications of N = 4 Super-Yang-

Mills theory on S1 with a general SL(2,Z)-duality twist (also known as a “duality wall”)
inserted at a point on S1. The low-energy limit of such compactifications encodes information
about the operator that realizes the SL(2,Z)-duality, and can potentially teach us new facts
about S-duality itself. Some previous works on duality walls and related compactifications
include [2]-[11].

In this paper we consider only the abelian gauge group G = U(1), leaving the extension
to nonabelian groups for a separate publication [12]. We focus on the Hilbert space of ground
states of the system and study it in two equivalent ways: (i) directly in field theory; and (ii)
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via a dual type-IIA string theory system (extending the techniques developed in [27]). As
we will show, the equivalence of these two descriptions implies the equivalence of:

(i) the Hilbert space of ground states of U(1)n Chern-Simons theory with action

L = 1
4π

n∑
i=1

kiAi ∧ dAi − 1
2π

n−1∑
i=1

Ai ∧ dAi+1 − 1
2π
A1 ∧ dAn ,

on T 2, and

(ii) the Hilbert space of ground states of strings of winding number w = 1 on a certain
target space that contains the mapping torus with T 2 fiber:

M3 ≡
I × T 2

(0, v) ∼ (1, f(v))
, (v ∈ T 2) ,

where I = [0, 1] is the unit interval, and f is a large diffeomorphism of T 2 corresponding
to the SL(2,Z) matrix

W ≡
(
kn −1
1 0

)
· · ·
(
k2 −1
1 0

)(
k1 −1
1 0

)
. (2.1)

We will explain the construction of these Hilbert spaces in detail below.
An immediate consequence of the proposed equivalence of Hilbert spaces (i) and (ii) is

the identity

det


k1 −1 0 −1

−1
. . . . . . . . .

0
. . . . . . . . . 0
. . . . . . . . . −1

−1 0 −1 kn

 = tr

[(
kn −1
1 0

)
· · ·
(
k2 −1
1 0

)(
k1 −1
1 0

)]
− 2 . (2.2)

which follows from the equality of dimensions of the Hilbert spaces above. This is a known
identity (see for instance [13]), and we will present a proof in Appendix A, for completeness.1

Moreover, equivalence of the operator algebras of the systems associated with (i) and
(ii) allows us to make a stronger statement. The operator algebra of (i) is generated by
Wilson loops along two fundamental cycles of T 2, and keeping only one of these cycles
gives a maximal finite abelian subgroup. Let Λ ⊆ Zn be the sublattice of Zn generated by
the columns of the Chern-Simons coupling constant matrix, which appears on the LHS of

1 The continuum limit of (2.2) with n → ∞ and ki → 2 + 1
n2V ( i

n ) might be more familiar. It
leads to a variant of the Gelfand-Yaglom theorem [14] with a periodic potential: det[−d2/dx2 + V (x)] =

tr
[
P exp

∮ (√V + V ′

2V
V ′

2V

−
√
V −

√
V

)
dx

]
− 2 (up to a renormalization-dependent multiplicative constant).
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(2.2). Then, the abelian group generated by the maximal commuting set of Wilson loops
is isomorphic to Zn/Λ. The operator algebra of (ii), on the other hand, is constructed by
combining the isometry group of M3 with the group of operators that measure the various
components of string winding number in M3. The latter is captured algebraically by the
Pontryagin dual ∨(· · · ) of the torsion part Tor of the homology group H1(M3,Z). (The terms
will be explained in more detail in §2.4.3.) Thus, ∨TorH1(M3,Z) as well as the isometry
group are both equivalent to Zn/Λ. Together, ∨TorH1(M3,Z) and Isom(M3) generate a
noncommutative (but reducible) group that is equivalent to the operator algebra of the
Wilson loops of the Chern-Simons system in (i). The subgroup ∨TorH1(M3,Z) corresponds
to the group generated by the Wilson loops along one fixed cycle of T 2 (let us call it “the α-
cycle”) and Isom(M3) corresponds to the group generated by the Wilson loops along another
cycle (call it “the β-cycle”), where α and β generate H1(T 2,Z). The situation is summarized
in the following diagram:

Chern-Simons

Hilbert space on T 2

@
@
@
@R

String ground states

on Mapping Torus M3

�
�

�
�	

�
@

@
�

Wilson loops
on β-cycle

Wilson loops
on α-cycle

Isometry group of M3

∨TorH1(M3,Z)

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


dim

tr

[(
kn −1
1 0

)
· · ·
(
k1 −1
1 0

)]
− 2

B
B
B
B
B
B
B
B
B
B
B
B
B
BBN

dim

∼=
∼=

=det


k1 −1 0 −1

−1
. . . . . . . . .

0
. . . . . . . . . 0
. . . . . . . . . −1

−1 0 −1 kn


We will now present a detailed account of the statements made above. In §2.2 we con-

struct the SL(2,Z)-twist from the QFT perspective, and in §2.3 we take its low-energy limit
and make connection with U(1)n Chern-Simons theory, leading to Hilbert space (i). In §2.4
we describe the dual construction of type-IIA strings on M3. In §2.5 we develop the “dictio-
nary” that translates between the states and operators of (i) and (ii). We conclude in §2.6
with a brief summary of what we have found so far and a preview of the nonabelian case.



2.2. THE SL(2,Z)-TWIST 10

2.2 The SL(2,Z)-twist
Our starting point is a free 3+1D U(1) gauge theory with action

I =
1

4g2
ym

∫
F ∧∗ F +

θ

2π

∫
F ∧ F,

where F = dA is the field strength. As usual, we define the complex coupling constant

τ ≡ 4πi

g2
ym

+
θ

2π
≡ τ1 + iτ2.

The SL(2,Z) group of dualities is generated by S and T that act as τ → −1/τ and τ → τ+1,
respectively.

Let the space-time coordinates be x0, . . . , x3. We wish to compactify direction x3 on a
circle (so that 0 ≤ x3 ≤ 2π is a periodic coordinate), but allow τ to vary as a function of x3

in such a way that

τ(0) =
aτ(2π) + b

cτ(2π) + d
,

where W ≡
(
a b
c d

)
∈ SL(2,Z) defines an electric/magnetic duality transformation. Such a

compactification contains two ingredients:

• The variable coupling constant τ ; and

• The “duality-twist” at x3 = 0 ∼ 2π.

We will discuss the ingredients separately, starting from the duality-twist.
The duality-twist can be described concretely in terms of an abelian Chern-Simons theory

as follows. Represent the SL(2,Z) matrix in terms of the generators S and T (nonuniquely)
as (

a b
c d

)
= T k1ST k2S · · ·T knS , (2.3)

where k1, . . . ,kn are integers, some of which may be zero. To understand how each of
the operators T and S act separately, we pretend that x3 is a time-direction and impose
the temporal gauge condition A3 = 0. At any given x3 the wave-function is formally Ψ(A),
where A is the gauge field 1-form on the three-dimensional space parameterized by x0, x1, x2.
The action of the generators S and T on the wave-functions is then given by (see for instance
[15, 16]):

S : Ψ(A)→
∫
e−

i
2π

R
A∧dA′Ψ(A′)DA′ , T : Ψ(A)→ e

i
4π

R
A∧dAΨ(A) .
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It is now clear how to incorporate the duality twist by combining these two elements to
realize the SL(2,Z) transformation (2.3). We have to add to the action a Chern-Simons
term at x3 = 0 with additional auxiliary fields A1, . . . , An+1 and with action

ICS = 1
4π

n∑
i=1

kiAi ∧ dAi − 1
2π

n∑
i=1

Ai ∧ dAi+1 , (2.4)

and then set
A1 = A|x3=0 , An+1 = A|x3=2π .

The second ingredient is the varying coupling constant τ(x3). Systems with such a varying τ
are known as Janus configurations [17]. They have supersymmetric extensions [18]-[52] where
the Lagrangian of N = 4 Super-Yang-Mills with variable τ is modified so as to preserve 8
supercharges. In such configurations the function τ(x3) traces a geodesic in the hyperbolic
upper-half τ -plane, namely, a half-circle centered on the real axis [52]. In this model, the
surviving supersymmetry is described by parameters that vary as a function of x3, so that
in general the supercharges at x3 = 0 are not equal to those at x3 = 2π. This might have
been a problem for us, since we need to continuously connect x3 = 0 to x3 = 2π to form a
consistent supersymmetric theory, but luckily, we also have the SL(2,Z)-twist, and as shown
in [21], in N = 4 Super-Yang-Mills (with a fixed coupling constant τ), the SL(2,Z) duality
transformations do not commute with the supercharges. Following the action of duality, the
SUSY generators pick up a known phase. But as it turns out, this phase exactly matches
the phase difference from 0 to 2π in the Janus configuration. Therefore, we can combine the
two separate ingredients and close the supersymmetric Janus configuration on the segment
[0, 2π] with an SL(2,Z) duality twist that connects 0 to 2π. We describe this construction
in more detail in Appendix B.

The details of the supersymmetric action, however, will not play an important role in
what follows, so we will just assume supersymmetry and proceed. Thanks to mass terms
that appear in the Janus configuration (which are needed to close the SUSY algebra [52]),
at low-energy the superpartners of the gauge fields are all massive (see Appendix B), with
masses of the order of the Kaluza-Klein scale, and we can ignore them. We will therefore
proceed with a discussion of only the free U(1) gauge fields.

2.3 The Low-energy limit and Chern-Simons theory
At low-energy we have to set A1 = An+1 in (2.4), since the dependence of A on x3 is

suppressed. Then, the low-energy system is described by a 2+1D Chern-Simons action with
gauge group U(1)n and action

I = 1
4π

n∑
i,j=1

KijAi ∧ dAj ,
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with coupling-constant matrix that is given by

K ≡


k1 −1 0 −1

−1
. . . . . . . . .

0
. . . . . . . . . 0
. . . . . . . . . −1

−1 0 −1 kn

 . (2.5)

We now make directions x1, x2 periodic, so that the theory is compactified on T 2, leaving
only time uncompactified. The dimension of the resulting Hilbert space of states of this
compactified Chern-Simons theory is | detK|.

Next, we pick two fundamental cycles whose equivalence classes generate H1(T 2,Z). Let
α be the cycle along a straight line from (0, 0) to (1, 0), and let β be a similar cycle from
(0, 0) to (0, 1), in (x1, x2) coordinates. We define 2n Wilson loop operators:

Uj ≡ exp

(
i

∮
α

Aj

)
, Vj ≡ exp

(
i

∮
β

Aj

)
, j = 1, . . . , n.

They are unitary operators with commutation relations given by

UiUj = UjUi , ViVj = VjVi , UiVj = e2πi(K−1)ijVjUi .

[(K−1)ij is the i, j element of the matrix K−1.] In particular, for any j = 1, . . . , n the
operator

∏n
i=1 U

Kij
i commutes with all 2n operators, and hence is a central element. In an

irreducible representation, it can be set to the identity. The Ui’s therefore generate a finite
abelian group, which we denote by g. Similarly, we denote by Gβ the finite abelian group
generated by the Vi’s. Both groups are isomorphic and can be described as follows. Let
Λ ⊆ Zn be the sublattice of Zn generated by the columns of the matrix K. Then, Zn/Λ is
a finite abelian group and g ∼= Gβ ∼= Zn/Λ, since an element of Zn represents the powers of
a monomial in the Ui’s (or Vi’s), and an element in Λ corresponds to a monomial that is a
central element. We therefore map

g 3
n∏
i=1

UNi
i 7→ (N1, N2, . . . , Nn) ∈ Zn (mod Λ) , (2.6)

and similarly

Gβ 3
n∏
i=1

V Mi
i 7→ (M1,M2, . . . ,Mn) ∈ Zn (mod Λ) . (2.7)

We denote the operator in g that corresponds to v ∈ Zn/Λ by Oα(v), and similarly we define
Oβ(v) ∈ Gβ to be the operator in Gβ that corresponds to v. For u, v ∈ Zn/Λ we define

χ(u, v) ≡ e2πi
P
i,j(K

−1)ijNiMj , (u, v ∈ Zn/Λ). (2.8)
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The definition is independent of the particular representatives (N1, . . . , Nn) or (M1, . . . ,Mn)
in Zn/Λ. The commutation relations can then be written as

Oα(u)Oβ(v) = χ(u, v)Oβ(v)Oα(u) . (2.9)

We recall that for any nonsingular matrix of integers K ∈ GL(n,Z), one can find matrices
P,Q ∈ SL(n,Z) such that

PKQ = diag(d1, d2, . . . , dn) (2.10)

is a diagonal matrix, d1, . . . , dn are positive integers, and di divides di+1 for i = 1, . . . , n− 1.
The integers d1, . . . , dn are unique, and we have

Zn/Λ ∼= Zd1 ⊕ · · · ⊕ Zdn ,

where Zd is the cyclic group of d elements. The matrix on the RHS of (2.10) is known as the
Smith normal form of K. The integer dj is the greatest common divisor of all j × j minors
of K. For K of the form (2.5), the minor that is made of rows 2, . . . , n − 1 and columns
1, . . . , n− 2 is (−1)n−2, so it follows that dn−2 = 1 and therefore also d1 = · · · dn−2 = 1. We
conclude that

g ∼= Gβ ∼= Zdn−1 ⊕ Zdn .

2.4 Strings on a mapping torus
The system we studied in §2.2 has a dual description as the Hilbert space of ground states

of strings of winding number w = 1 (around a 1-cycle to be defined below) on a certain type-
IIA background. We will begin by describing the background geometry and then explain
in §2.5 why its space of ground states is isomorphic to the space of ground states of the
SL(2,Z)-twisted compactification of §2.2.

Set

W =

(
kn −1
1 0

)
· · ·
(
k2 −1
1 0

)(
k1 −1
1 0

)
= T knS · · ·T k2ST k1S ≡

(
a b
c d

)
∈ SL(2,Z) .

(2.11)
We will assume that | trW | > 2 so that W is a hyperbolic element of SL(2,Z). (The case of
elliptic elements with | trW | < 2 was covered in [27], and parabolic elements with | trW | = 2
are conjugate to ±T k for some k 6= 0, and since they do not involve S, they are elementary.)

Let 0 ≤ η ≤ 2π denote the coordinate on the interval I = [0, 2π] and let (ξ1, ξ2) denote
the coordinates of a point on T 2. The coordinates ξ1 and ξ2 take values in R/Z (so they are
periodic with period 1). We impose the identification

(ξ1, ξ2, η) ∼ (dξ1 + bξ2, cξ1 + aξ2, η + 2π). (2.12)

The metric is
ds2 = R2dη2 + (

4π2ρ2

τ2

)|dξ1 + τ(η)dξ2|2
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where R and ρ are constants, and τ = τ1 + iτ2 is a function of η (with real and imaginary
parts denoted by τ1 and τ2) such that

τ(η + 2π) =
aτ(η) + b

cτ(η) + d
,

thus allowing for a continuous metric.

2.4.1 The number of fixed points

We will need the number of fixed points of the SL(2,Z) action on T 2, i.e., the number of
solutions to:

(ξ1, ξ2) = (dξ1 + bξ2, cξ1 + aξ2) (mod Z2) .

Let f : T 2 → T 2 be the map given by

f : (ξ1, ξ2)→ (dξ1 + bξ2, cξ1 + aξ2) . (2.13)

The Lefschetz fixed-point formula states that

∑
fixed point p

i(p) =
2∑
j=0

(−1)j tr(f∗|Hj(T
2,Z)) = 2− trW = 2− a− d.

The index i(p) of a fixed point is given by [22]:

i(p) = sgn det(J (p)− I) = sgn det(W − I) ,

where J (p) is the Jacobian matrix of the map f at p. In our case, i(p) is either +1 or −1
for all p, and therefore the number of fixed points is

|2− trW | = | det(W − I)| = |2− a− d| .

2.4.2 Isometries

Let v1, v2 ∈ R/Z be constants and consider the map

(ξ1, ξ2, η) 7→ (ξ1 + v1, ξ2 + v2, η). (2.14)

It defines an isometry of M3 if(
a c
b d

)(
v2

v1

)
≡
(
v2

v1

)
(mod Z) . (2.15)

Set
H ≡ W − I =

(
a− 1 c

b d− 1

)
, v ≡

(
v2

v1

)
. (2.16)
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Then, the isometries are given by v = H−1

(
n2

n1

)
for some n1, n2 ∈ Z. The set of vectors v

that give rise to isometries therefore live on a lattice Λ̃ generated by the columns of H−1.
Since H ∈ GL(2,Z) we have Z2 ⊆ Λ̃, and since the isometries that correspond to v ∈ Z2

are trivial, the group of isometries of type (2.14) is isomorphic to Λ̃/Z2. Changing basis to
u ≡ Hv, we can replace v ∈ Λ̃/Z2 with u ∈ Z2/Λ′, where Λ′ ⊆ Z2 is the sublattice generated
by the columns of H, and the group Giso of isometries of type (2.14) is therefore

Giso ∼= Λ̃/Z2 ∼= Z2/Λ′ . (2.17)

Its order is
|Giso| = | detH| = |2− a− d|. (2.18)

2.4.3 Homology quantum numbers

To proceed we also need the homology group H1(M3,Z). Let γ be the cycle defined by a
straight line from (0, 0, 0) to (0, 0, 2π), in terms of (ξ1, ξ2, η) coordinates. Let α′ be the cycle
from (0, 0, 0) to (1, 0, 0) and let β′ be the cycle from (0, 0, 0) to (0, 1, 0). The homology group
H1(M3,Z) is generated by the equivalence classes [α′], [β′] and [γ], subject to the relations

[α′] = d[α′] + c[β′] , [β′] = b[α′] + a[β′]. (2.19)

Now suppose that (c1 c2) is a linear combination of the columns of H [defined in (2.16)] with
integer coefficients. Then the relations (2.19) imply that c1[α′] + c2[β′] is zero in H1(M3,Z).
With Λ′ ⊂ Z2 being the sublattice generated by the columns of H, as defined in §2.4.2, it
follows that

H1(M3,Z) ∼= Z⊕ (Z2/Λ′), (2.20)

where the Z factor is generated by [γ] and (Z2/Λ′) is generated by [α′] and [β′]. In particular,
the torsion part is

TorH1(M3,Z) ∼= Z2/Λ′ . (2.21)

Denote the Smith normal form [see (2.10)] of the matrix H by
(
d′1

d′2

)
. We prove in

Appendix A that dn−1 = d′1 and dn = d′2, where dn−1 and dn were defined in (2.10). Thus,
combining (2.17) and (2.20) we have

Z2/Λ′ ∼= Giso ∼= TorH1(M3,Z) ∼= Zdn−1 ⊕ Zdn .

The physical meaning of these results will become clear soon.
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2.4.4 The Hilbert space of states

As we have seen in §2.4.2, the Hilbert space of string ground states has a basis of states
of the form |v′〉 with v′ ∈ Λ̃/Z2. In this state, the string is at (ξ1, ξ2) coordinates given by
v′. According to (2.17), an element v ∈ Λ̃/Z2 defines an isometry, which we denote by Y(v),
that acts as

Y(v)|v′〉 = |v + v′〉 , v,v′ ∈ Λ̃/Z2 .

Given the string state |v′〉, we can ask what is the element in H1(M3,Z) that represents the
corresponding 1-cycle. The answer is [γ] + N ′1[α′] + N ′2[β′], where the torsion part N ′1[α′] +
N ′2[β′] is mapped under (2.21) to v′. To see this, note that for 0 ≤ t ≤ 1, the loops Ct in
M3 that are given by{

(4πs, tv′1, tv
′
2) for 0 ≤ s ≤ 1

2

(2π, tv′1 + (2s− 1)t[(d− 1)v′1 + bv′2], tv′2 + (2s− 1)t[cv′1 + (a− 1)v′2]) for 1
2
≤ s ≤ 1

[which go along direction η at a constant (ξ1, ξ2) given by tv′, and then connect tv′ to its
SL(2,Z) image tWv′] are homotopic to the loop corresponding to string state |0〉. Setting
t = 1 we find that C1 breaks into two closed loops, one corresponding to string state |v′〉, and
the other is a closed loop in the T 2 fiber above η = 0, which corresponds to the homology
element

((d− 1)v′1 + bv′2)[α′] + (cv′1 + (a− 1)v′2)[β′] ,

and this is precisely the element corresponding to Hv′ ∈ Z2/Λ′ ∼= TorH1(M3,Z), as defined
in §2.4.3.

We now wish to use the torsion part of the homology to define a unitary operator R(ũ)
for every ũ ∈ Z2/Λ′. This operator will measure a component of the charge associated with
the homology class of the string. For this purpose we need to construct the Pontryagin dual
group ∨TorH1(M3,Z), which is defined as the group of characters of TorH1(M3,Z) (i.e.,
homomorphisms from TorH1(M3,Z) to R/Z). The dual group is isomorphic to Z2/Λ′, but
not canonically. In our construction ũ is naturally an element of the dual group and not the
group itself. We define R(ũ) as follows. For

ũ = (M ′
1,M

′
2) ∈ Z2/Λ′ , v = (N ′1, N

′
2) ∈ Z2/Λ′ ,

we define the phase

ϕ(ũ,v) ≡ e2πi(H−1)ijN
′
iM
′
j , ũ ∈ Z2/Λ′ , v ∈ Z2/Λ′ . (2.22)

This definition is independent of the representatives (N ′1, N
′
2) and (M ′

1,M
′
2) of v and ũ, and

it corresponds to the character of TorH1(M3,Z) associated with ũ. We then define the
operator R(ũ) to be diagonal in the basis |v〉 and act as:

R(ũ)|v〉 = ϕ(ũ,v)|v〉 , ũ ∈ Z2/Λ′ , v ∈ Z2/Λ′ .

From the discussion above about the homology of the string state, and from the linearity of
the phase of ϕ(ũ,v) in ũ and v, it follows that

R(ũ)Y(v) = ϕ(ũ,v)Y(v)R(ũ) . (2.23)
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2.5 Duality between strings on M3 and the compactified
SL(2,Z)-twisted U(1) gauge theory

We can now connect the string theory model of §2.4 with the field theory model of §2.3.
We claim that the Hilbert space of ground states of a compactification of a U(1) gauge theory
on S1 with an SL(2,Z) twist and string ground states on M3 are dual. This is demonstrated
along the same lines as in [27]. We realize the (supersymmetric extension of the) U(1) gauge
theory on a D3-brane along directions x1, x2, x3. We compactify direction x3 on a circle with
a Janus-like configuration and SL(2,Z)-twisted boundary conditions. We assume that the
Janus configuration can be lifted to type-IIB, perhaps with additional fluxes, but we will not
worry about the details of the lift. We then compactify (x1, x2) on T 2 and perform T-duality
on direction 1, followed by a lift from type-IIA to M-theory (producing a new circle along
direction 10), followed by reduction to type-IIA along direction 2. This combined U-duality
transformation transforms the SL(2,Z)-twist to the geometrical transformation (2.12). It
also transforms some of the charges of the type-IIB system to the following charges of the
type-IIA system:

D3123 → F13 , F11 → P1 , F12 → F110 , D11 → F11 , D12 → P10 . (2.24)

where Pj is Kaluza-Klein momentum along direction j, Dpj1...jr is a Dp-brane wrapped along
directions j1, . . . , jr, and F1j is a fundamental string along direction j.

Now suppose we take the limit that all directions of M3 are large. The dual geometry
has a Hilbert space of ground states which corresponds to classical configurations of strings
of minimal length that wind once around the x3 circle. This means that the projection of
their H1(M3,Z) homology class on the Z factor of (2.20) is required to be the generator
[γ]. The torsion part of their homology is unrestricted. The string configurations of minimal
length must have constant (x1, x2) which in particular means that (x1, x2) is invariant under
the SL(2,Z) twist, i.e., (

a c
b d

)(
x2

x1

)
≡
(
x2

x1

)
(mod Z) .

But this is precisely the same equation as (2.15), and indeed when the isometry that cor-
responds to a vector v ∈ Λ̃/Z2 acts on the solution with (x1, x2) = (0, 0) it converts it to
the solution with (x1, x2) = (v1, v2). The dimension of the Hilbert space of ground states of
the type-IIA system is therefore the order of Giso, which is given by (2.18). This is also the
number of fixed points of the W action on T 2, as we have seen in §2.4.1. Since the number
of ground states of the Chern-Simons theory is | detK|, we conclude from the duality of the
Chern-Simons theory and string theory that

| detK| = |Giso| = |2− a− b| .

This is the physical explanation we are giving to (2.2).
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2.5.1 Isomorphism of operator algebras

Going one step beyond the equality of dimensions of the Hilbert spaces, we would like to
match the operator algebras of the string and field theory systems. Starting with the field
theory side, realized on a D3-brane in type-IIB, consider a process whereby a fundamental
string that winds once around the β-cycle of T 2 is absorbed by the D3-brane at some time t.
This process is described in the field theory by inserting a Wilson loop operator V1 at time
t into the matrix element that calculates the amplitude. On the type-IIA string side, the
charge F12 that was absorbed is mapped by (2.24) to winding number along the α′ cycle
(denoted by F110). The operator that correpsonds to V1 on the string side must therefore
increase the homology class of the string state by [α′]. Since the state |v〉, for v = (N ′1, N

′
2),

has homology class [γ] + N ′1[α′] + N ′2[β′], it follows that the isometry operator Y(v′) with
v′ = (1, 0) does what we want. We therefore propose to identify

V1 → Y(v′) , for v′ = (1, 0).

By extension, we propose to map the abelian subgroup Gβ generated by the Wilson loops
V1, . . . , Vn with the isometry group generated by Y(v′) for v′ ∈ Z2/Λ′.

Next, on the type-IIB side, consider a process whereby a fundamental string that winds
once around the α-cycle of T 2 is absorbed by the D3-brane. This process is described in the
field theory by inserting a Wilson loop operator U1 into the matrix element that calculates
the amplitude. On the type-IIA string side, the charge F11 that was absorbed is mapped by
(2.24) to momentum along the β′ cycle (denoted by P11). The operator that correpsonds to
U1 on the string side must therefore increase the momentum along the [α′] cycle by one unit.
We claim that this operator is R(ũ) for ũ = (1, 0). To see this we note that, by definition of
“momentum”, an operator X that increases the momentum by M ′

1 units along the [α′] cycle
and M ′

2 units along the [β′] cycle must have the following commutation relations with the
translational isometries Y(v′):

Y(v′)−1XY(v′) = ϕ(ũ,v′)X , ũ = (M ′
1,M

′
2) ∈ Z2/Λ′.

But given (2.23), this means that up to an unimportant central element, we can identify
X = R(ũ), as claimed. So, we have

U1 → Y(ũ) , for ũ = (1, 0),

and by extension, we propose to map the abelian subgroup g generated by the Wilson loops
U1, . . . , Un with the subgroup generated by R(ũ) for ũ ∈ Z2/Λ′.

In particular, g ∼= Gβ ∼= Zn/Λ implies that (Z2/Λ′) ∼= (Zn/Λ). This is equivalent to
requiring that the Smith normal form of H is

P ′HQ′ = diag(dn−1, dn)

where dn−1 and dn are the same last two entries in the Smith normal form of K. We provide
an elementary proof of this fact in Appendix A.
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Since the Smith normal forms of H and K are equal, the abelian groups Zn/Λ and Z2/Λ′

are equivalent, and it is also not hard to see that under this equivalence χ that was defined
in (2.8) is mapped to ϕ defined in (2.22). We have the mapping

Oα(v)→ Y(v′) , v ∈ Zn/Λ , v′ ∈ Z2/Λ′

and
Oβ(u)→ R(ũ) , u ∈ Zn/Λ , ũ ∈ Z2/Λ′.

The commutation relations (2.9) are then mapped to (2.23).

2.6 Discussion
We have argued that a duality between U(1)n Chern-Simons theory on T 2 with coupling

constant matrix (2.5) and string configurations on a mapping torus provide a geometrical
realization to the algebra of Wilson loop operators in the Chern-Simons theory. Wilson loop
operators along one cycle of T 2 correspond to isometries that act as translations along the
fiber of the mapping torus, while Wilson loop operators along the other cycle correspond to
discrete charges that can be constructed from the homology class of the string.

These ideas have an obvious extension to the case of U(N) gauge group with N > 1,
where SL(2,Z)-duality is poorly understood. The techniques presented in this paper can be
extended to construct the algebra of Wilson loop operators. The Hilbert space on the string
theory side is constructed from string configurations on a mapping torus whose H1(M3,Z)
class maps to N under the projection map M3 → S1. In other words, the homology class
projects to N [γ] when the torsion part is ignored. Such configurations could be either a
single-particle string state wound N times, or a multi-particle string state. A string state
with r strings with winding numbers N1, . . . , Nr is described by a partition N = N1 + · · ·Nr,
and the jth single-particle string state is described by an unordered set of Nj points on T 2

that is invariant, as a set, under the action of f in (2.13). The counterparts of the Wilson
loops on the string theory side can then be constructed from operations on these sets. A
more complete account of the nonabelian case will be reported elsewhere [12].

It is interesting to note that some similar ingredients to the ones that appear in this work
also appeared in [31] in the study of vacua of compactifications of the free (2, 0) theory on
Lens spaces. More specifically, a Chern-Simons theory with a tridiagonal coupling constant
matrix and the torsion part of the first homology group played a role there as well. It would
be interesting to further explore the connection between these two problems.



20

Chapter 3

Fractional Quantum Hall Effect,
Quasi-Particles, and the (2, 0)-Theory

The Fractional Quantum Hall Effect appears as part of the low-energy description of the
Coulomb branch of the A1 (2, 0)-theory formulated on (S1×R2)/Zk, where the generator of
Zk acts as a combination of translation on S1 and rotation by 2π/k on R2. At low-energy the
configuration is described in terms of a 4+1D Super-Yang-Mills theory on a cone (R2/Zk)
with additional 2+1D degrees of freedom at the tip of the cone. Fractionally charged quasi-
particles have a natural description in terms of BPS strings of the (2, 0)-theory. We analyze
the large k limit, where a smooth cigar-geometry provides an alternative description. In this
framework a W-boson can be modeled as a bound state of k quasi-particles. The W-boson
becomes a Q-ball, and it can be described by a soliton solution of BPS monopole equations
on a certain auxiliary curved space. We show that axisymmetric solutions of these equations
correspond to singular maps from AdS3 to AdS2, and we present some numerical results.

3.1 Introduction
The Fractional Quantum Hall Effect (FQHE) with filling-factor 1/k (k ∈ Z) appears

in 2+1D condensed matter systems whose low-energy effective degrees of freedom can be
described by the Chern-Simons action

I =
k

4π

∫
a ∧ da +

1

2π

∫
A ∧ da . (3.1)

Here, A is the electromagnetic gauge field, and a is a 2+1D U(1) gauge field that describes
the low-energy internal degrees of freedom of the system. It is related to the electromagnetic
current by j = ∗da. Excited levels of the system may include quasi-particle excitations that
are charged under the gauge symmetry associated with a. Such quasi-particles with one unit
of a-charge will have 1/k electromagnetic charge.

The FQHE appears in appropriately constructed 2+1D condensed-matter systems with
strongly correlated electrons in a strong magnetic field. The (Laughlin) wave-functions of
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the low-energy states are then holomorphic in the position of the electrons (up to a common
Gaussian factor). One of the remarkable features of this system is that there is a dual
description of the low-energy spectrum in which the quasi-particles are fundamental and the
electrons can be viewed as bound states of the quasi-particles.

The goal of this paper is to gain a better understanding of this dual description of
an integrally charged particle as a bound state of quasi-particles using a particularly intu-
itive string-theoretic model of the FQHE. Over the past two decades several realizations
of FQHE in string theory have been constructed [50]-[55]. Generally speaking, these re-
alizations construct the Chern-Simons action (3.1) as low-energy effective description of a
(d + 2)-dimensional brane compactified on a d-dimensional compact space, possibly in the
presence of suitable fluxes, to yield the requisite 2 + 1D effective description. We will use a
realization in terms of a compactification of the 5+1D (2, 0)-theory. Our system is a special
case of a general class of 2 + 1D theories obtained from the (2, 0)-theory by taking three of
the dimensions to be a nontrivial manifold. A beautiful framework for understanding such
compactifications has been developed in [29]-[31]. We will focus on a particular aspect of
the system which is the dynamics of the quasi-particles that in the condensed-matter system
can arise from impurities. The (2, 0)-theory allows for a simple geometrical realization of the
quasi-particles and their relationship with the integrally charged particles. In our construc-
tion, the geometry of the extra dimensions will have long 1-cycles and short 1-cycles, the
short ones being 1/k the size of the long ones. The quasi-particles will be realized as BPS
strings of the (2, 0) theory wound around short 1-cycles, while the integrally charged particles
(the “electrons”) will be realized as strings wound around long 1-cycles. The construction in
terms of D3-branes ending on (p, q) 5-branes [54] is dual to ours.

We are especially interested in the limit k � 1, where the filling fraction becomes ex-
tremely small. This is the strong-coupling limit of the condensed-matter system, and as we
will see, our model has a dual description where quasi-particles are elementary and the inte-
grally charged particles can be described as classical solitons, or rather Q-balls, in terms of
the fundamental quasi-particle fields. We will show that solutions to the equations describing
these solitons correspond to harmonic maps from AdS3 to AdS2.

The paper is organized as follows. In §3.2 we describe the (2, 0) compactification. In §3.3
we study the quasi-particles which are BPS strings and calculate their quantum numbers.
In §3.4 we study the large k limit and write down the semiclassical action of the system.
In §3.5 we develop the differential equations that describe the integrally charged particles
as solitons of the fundamental quasi-particle fields in the large k limit. We show that they
can be mapped to the equations describing a magnetic monopole on a 3D space with metric
ds2 = x2

3(dx2
1 + dx2

2 + dx2
3). In §3.6 we analyze the soliton equations in more detail. They are

not integrable in the standard sense, and we were unable to solve them in closed form, but we
were able to make several observations: (i) using a rather complicated transformation we can
recast the equations in terms of a single “potential” function; (ii) we present an expansion up
to second order in an asymptotic corner of moduli space; (iii) we plot a numerical solution;
and (iv) we propose a connection with Sine-Gordon equation in a corner of moduli space.
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3.2 The (2, 0) theory on (R2 × S1)/Zk

Our starting point is the 5+1D A1 (2, 0)-theory on R2,1 × M3, where R2,1 is 2+1D
Minkowski space and M3 ' (R2×S1)/Zk is the flat, noncompact, smooth three-dimensional
manifold defined as the quotient of R2 × S1 by the isometry that acts as a simultaneous
rotation of R2 by an angle 2π/k, and a translation of S1 by 1/k of its circumference. The
A1 (2, 0)-theory is the low-energy limit of either type-IIB on R4/Z2 [25] or of 2 M5-branes
[26] (after decoupling of the center of mass variables). We are interested in the low-energy
description of the Coulomb branch of the theory, and in particular in the low-energy degrees
of freedom that are localized near the origin of R2. The fractional quantum Hall effect, as
we shall see, naturally appears in this context.

3.2.1 The geometry

The space M3 can be constructed as a quotient of R3 as follows. We parameterize R3 by
x3, x4, x5 and set z ≡ x4 + ix5. Then, M3 is defined by the equivalence relation

(x3, z) ∼ (x3 + 2πR, ze−2πi/k) , [defining relation of M3] (3.2)

where R is a constant parameter that sets the scale, and k > 1 is an integer. The Euclidean
metric on M3 is given by

ds2 = dx2
3 + dx2

4 + dx2
5 = dx2

3 + |dz|2 .

For future reference we define the (2k)th root of unity:

ω ≡ eπi/k . (3.3)

We also set
z = reiθ ,

so that (3.2) can be written as

(x3, r, θ) ∼ (x3 + 2πR, r, θ − 2π
k

) . (3.4)

The z = 0 locus [i.e., the set of points (x3, 0) with arbitrary x3] forms an S1 of radius R
that we will call the minicircle and denote by S1

m. The space M3 \S1
m (which is M3 with the

minicircle excluded) is a circle-bundle over a cone:

S1 −→ M3

↓
C/Zk

(3.5)

The cone C/Zk is parameterized by z, subject to the equivalence relation z ∼ ω2z. In polar
coordinates the cone is parameterized by (r, θ) with 0 < r < ∞ and 0 ≤ θ < 2π/k. (θ is
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Figure 3.1 : (a) The geometry of M3 ' (C × S1)/Zk: in the coordinate system (x4 + ix5, x3),
the point (r, 0) is identified with (re−2πi/k, 2πR) and (r, 2πkR); The large dots indicate equivalent
points; (b) The fibration M3 → C/Zk with the generic fiber that is of radius kR.

understood to have period 2π/k when describing the cone.) The projection M3 → C/Zk is
given by (x3, z) 7→ z. For a given z 6= 0, the fiber S1 of the fibration (3.5) over z ' ω2z
is given by all points (x3, z) with 0 ≤ x3 < 2πkR. The equivalence (3.2) then implies
(x3 + 2πkR, z) ∼ (x3, z), and so this S1 has radius kR.

In order to preserve half of the 16 supersymmetries we augment (3.2) by an appropriate
R-symmetry twist as follows. Let Spin(5) ' Sp(2) be the R-symmetry of the (2, 0)-theory. In
the M5-brane realization of the (2, 0)-theory [26], Spin(5) is the group of rotations (acting on
spinors) in the five directions transverse to the M5-branes, which we take to be 6, . . . , 10. We
now split them into the subsets 6, 7 and 8, 9, 10. This corresponds to the rotation subgroup
[Spin(3)× Spin(2)]/Z2 ⊂ Spin(5). Let γ ∈ Spin(5) correspond to a 2π/k rotation in the 6, 7
plane. We then augment the RHS of the geometrical identification (3.2) by an R-symmetry
transformation γ. The setting now preserves 8 supersymmetries.

We now go to the Coulomb branch of the (2, 0)-theory by separating the two M5-branes
of §3.2.1 in the M-theory direction x10. This breaks Spin(3) to an SO(2) subgroup (cor-
responding to rotations in directions 8, 9) which we denote by SO(2)r. On the Coulomb
branch of the (2, 0)-theory there is a BPS string whose tension we denote by Ṽ .

At energies E � 1/kR, sufficiently far away from S1
m, the dynamics of the (2, 0)-theory on

R2,1×M3 reduces to SU(2) 4+1D Super-Yang-Mills theory on R2,1× (C/Zk). The coupling
constant is given by

4π

g2
ym

=
1

kR
. (3.6)

All fields are functions of the coordinates (x0, x1, x2, r, θ), but the periodicity θ ∼ θ + 2π/k
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is modified in two ways:

• The shift by 2πR in x3, expressed in (3.4), implies that as we cross the θ = 2π/k ray a
translation by 2πR in x3 is needed in order to patch smoothly with the θ = 0 ray. Since
x3-momentum corresponds to conserved instanton charge in the low-energy SYM, we
find that we have to add to the standard SYM action an additional term

1

16kπ

∫
θ=0

tr(F ∧ F ) , (3.7)

where the integral is performed on the ray at θ = 0.

• the R-symmetry twist γ introduces phases in the relation between values of fields
at θ = 0 and at θ = 2π/k. Of the five (gauge group adjoint-valued) scalar fields
Φ6, . . . ,Φ10 (corresponding to M5-brane fluctuations in directions 6, . . . , 10) the last
three Φ8,Φ9,Φ10 are neutral under γ and hence periodic in θ, while the combination
Z ≡ Φ6 + iΦ7 satisfies

Z(x0, x1, x2, r, θ + 2π
k

) = ω2Ω−1Z(x0, x1, x2, r, θ)Ω . (3.8)

where we have included an arbitrary gauge transformation Ω(x0, x1, x2, r) ∈ SU(n).
The gluinos have similar boundary conditions with appropriate exp(±π/k) phases.

At the origin z = 0, which is the tip of the cone C/Zk, boundary conditions need to be
specified and additional 2+1D degrees of freedom need to be added. These degrees of freedom
and their interactions with the bulk SYM fields are the main focus of this paper and will be
discussed in §3.2.4. But at this point we can make a quick observation. When a BPS string
of the (2, 0)-theory wraps the S1 of (3.5) we get the W -boson of the effective 4+1D SYM.
The circle has radius kR and so the mass of theW -boson is 2πkRṼ . On the other hand, the
BPS string can also wrap the minicircle S1

m whose radius is only R. The resulting particle
in 2+1D has mass 2πRṼ which is 1/k of the mass of the W -boson. Its charge is also 1/k
of the charge of the W-boson. This is our first hint that we are dealing with a system that
exhibits a Fractional Quantum Hall Effect. We will soon see that indeed a BPS string that
wraps S1

m can be identified with a quasiparticle of FQHE.

3.2.2 Symmetries

Now, let us discuss the symmetries of the theory at a generic point on the Coulomb
branch. The continuous isometries of M3 are generated by translations of x3 and rotations
of the z-plane. We denote the latter by SO(2)z and normalize the respective charge so that
dz has charge +1. The isometry group of M3 also contains a discrete Z2 factor generated
by the orientation-preserving isometry

(x3, z) 7→ (−x3, z).
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This by itself does not preserve our setting because it converts the R-symmetry twist γ to
γ−1. To cure this problem, we introduce an extra reflection x7 → −x7, and finally, in order
to preserve parity we also introduce another reflection, say, x9 → −x9. Altogether, we define
the discrete symmetry Z′2 to be generated by

(x0, x1, x2, x3, z, x6, x7, x8, x9, x10) 7→ (x0, x1, x2,−x3, z, x6,−x7, x8,−x9, x10) . [Z′2]
(3.9)

Next, the SO(2) subgroup of the R-symmetry that corresponds to rotations in the 6 − 7
plane will be referred to as SO(2)γ and normalized so that Φ6 + iΦ7 has charge +1. The
SU(2) = Spin(3) subgroup of the R-symmetry that corresponds to rotations in the 8, 9, 10
directions will be referred to as SU(2)R. For future reference we also denote the SO(2)
subgroup of rotations in the 8, 9 plane by SO(2)r.

The parity symmetry of M-theory [28], which acts as reflection on an odd number of
dimensions combined with a reversal of the 3-form gauge field (C3 → −C3) can also be
used to construct a symmetry of our background. We define Z′′2 as the discrete symmetry
generated by the reflection that acts as

x10 → −x10, C3 → −C3 . [Z′′2]

This symmetry preserves the M5-brane configuration and the twist. We summarize the
symmetries in the following table:

SO(2)z rotations of the z (x4 − x5) plane;
SO(2)γ rotations of the x6 − x7 plane;
SU(2)R rotations of the x8, x9, x10 plane;
SO(2)r rotations of the x8, x9 plane;
Z′2 reflection in directions x3, x5, x7, x10;
Z′′2 reflection in direction x10 (and C3 → −C3);

We denote the conserved charges associated with SO(2)z, SO(2)γ, and SO(2)r by qz,
qγ, and qr, respectively. These are the spins in the 4 − 5, 6 − 7, and 8 − 9 planes. The
supersymmetry generators are also charged under these groups, and the background preserves
those supercharges for which qz + qγ = 0. These observations will become useful in §3.3,
where we will study the quantum numbers of the quasi-particles.

3.2.3 Relation to D3-(p, q)5-brane systems

As we have seen in §3.2.1, following dimensional reduction on the S1 fiber of (3.5), we
get a low-energy description in terms of 4+1D SYM on the cone C/Zk, interacting with
additional (as yet unknown, but to be described below) degrees of freedom at the tip of
the cone (at x4 = x5 = 0). These additional degrees of freedom are three-dimensional and
can be expressed in terms of SU(2) Chern-Simons theory coupled to the IR limit of a U(1)
gauge theory with two charged hypermultiplets (with N = 4 supersymmetry in 2 + 1D).
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The latter is the self-mirror theory introduced in [56], and named T (SU(2)) by Gaiotto and
Witten [54]. The arguments leading to the identification of the degrees of freedom at the tip
of the cone were presented, in a somewhat different but related context, in [27]. The idea
is to relate the local degrees of freedom of M-theory on the geometry of §3.2.1 to those of
a (p, q) 5-brane of type-IIB, as originally done in [34], and then map our two M5-branes to
two D3-branes, to obtain the problem of two D3-branes ending on a (p, q) 5-brane. This is
precisely the problem that was solved in [54] in terms of T (SU(2)), which thus also furnishes
the solution to our problem. On the Coulomb branch, the gauge part of the system reduces
to U(1) Chern-Simons theory interacting with T (U(1)), which reproduces (3.1). Although
the details of the argument will not be needed for the rest of this paper, we will review them
below for completeness. More details can be found in [27].

Our geometry in directions 3, . . . , 7 is of the form (S1 × C2)/Zk, and leads to a (1,k)
5-brane. This was demonstrated in [34] by replacing C2 with a Taub-NUT space, whose
metric can be written as

ds2 =

(
1 +

R̃

2r̃

)−1

(dy + cos θ̃ dφ̃)2 +

(
1 +

R̃

2r̃

)
[dr̃2 + r̃2(dθ̃2 + sin2 θ̃ dφ̃2)] , (3.10)

where y is a periodic coordinate with range 0 ≤ y < 2π. We then add an additional S1,
parameterized by x3 as in (3.2). The plane C that appears in (3.2) is now embedded in
the C2 tangent space of the Taub-NUT space at the origin r̃ = 0, and is recovered in the
limit R̃ →∞. In that limit, and with a change of variables r̃ = R̃r2, we can identify the C
plane of (3.2) as a plane at constant (θ̃, φ̃) (say θ̃ = π/2 and φ̃ = 0), and the z ≡ x4 + ix5

coordinate of (3.2) is identified with

z = reiy =
√
R̃r̃ eiy.

In this limit R̃ → ∞, the x6, x7 plane is identified with a transverse plane to the z-plane,
which we can take to be given by φ̃ = ±π/2 and y = 0. We now return to the finite R̃
geometry, and impose the Zk equivalence of (3.2) by setting

(x3, y, r̃, θ̃, φ̃) ∼ (x3 + 2πR, y − 2π
k
, r̃, θ̃, φ̃) .

We then wrap two M5-branes on the (θ̃ = π
2
, φ̃ = 0) subspace of this 5-dimensional geometry.

In the limit R̃→∞ this reproduces the setting of §3.2.1.
The technique that Witten employed in [34] is to convert the Taub-NUT geometry to a

D6-brane by reduction on the y-circle from M-theory to type-IIA, and then apply T-duality
on the x3-circle to get type-IIB with a complex string coupling constant of the form

τIIB =
2πi

gIIB
− 1

k
,

which turns out to be strongly coupled (gIIB → ∞) in the limit R̃ → ∞, but can, in turn,
be converted to weak coupling with an SL(2,Z) transformation

τIIB → τ ′IIB =
τIIB

kτIIB + 1
= 1

k
+
igIIB
2πk2

→ 1
k

+ i∞ .
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As explained in [34], the combined transformations convert the Taub-NUT geometry to a 5-
brane of (p, q)-type (1,k) [where k is the NS5-charge and 1 is the D5-charge]. It also converts
the M5-branes to D3-branes. The boundary degrees of freedom where the two D3-branes
end on the (1,k) 5-brane were found in [54] as follows. Let A denote the boundary 2 + 1D
value of the SU(2) gauge field of the D3-branes (with the superpartners left implicit). One
then notes that (

1
k

)
=

(
0 1
−1 0

)(
1 k
0 1

)(
0
1

)
.

Thus a (1,k) 5-brane can be obtained from an NS5-brane by a combining the two trans-
formations: τ → τ + k, followed by τ → −1/τ . Each transformation can be implemented
on the boundary conditions. The τ → τ + k transformation introduces a level-k Chern-
Simons theory expressed in terms of an ancillary SU(2) gauge field that we denote by A′,
and the τ → −1/τ (S-duality) transformation introduces 2 + 1D degrees of freedom, named
T (SU(2)) by Gaoitto and Witten, that couple to both the A and A′ gauge fields. T (SU(2))
was identified with the Intriligator-Seiberg theory [56] that is defined as the low-energy limit
of N = 4 U(1) gauge theory coupled to two hypermultiplets. The theory has a classical
SU(2) flavor symmetry (which will ultimately couple to, say, the gauge field A), and it also
has a U(1) global symmetry under which only magnetic operators are charged, and this
symmetry is enhanced to SU(2) in the (strongly coupled) low-energy limit. This SU(2) is
then coupled to A′. It is also not hard to check that A is the r → 0 limit of the 4 + 1D gauge
field on the cone. To see this, consider the T 2 formed by varying (x3, y) for fixed r, θ, and φ.

The SL(2,Z) transformation
(

1 0
k 1

)
converts 1-cycle from (0, 0) to (2πR,−2π/k) into the

1-cycle from (0, 0) to (2πkR, 0), and this is precisely the 1-cycle used in the reduction from
the (2, 0)-theory to 4+1D SYM.

3.2.4 Appearance of the fractional quantum Hall effect

On the Coulomb branch the SU(2) gauge group of 4+1D SYM is broken to U(1). At
energies below the breaking scale, the SU(2) gauge fields A and A′ reduce to U(1) gauge
fields which we denote by A and a. The theory T (SU(2)) reduces to T (U(1)) which is
described by the action [54] (1/2π)

∫
A∧da. The total gauge part of the action at the tip of

the cone is therefore given by (3.1). As we have already seen, the BPS strings that wrap the
minicircle S1

m have fractional charge 1/k under the bulk A which we have now identified as
the unbroken U(1) gauge field of the bulk 4+1D SYM. If we move such a string away from
the tip, adiabatically, we will get a string that, in the (x3, y) coordinates of §3.2.3, wraps
the 1-cycle from (0, 0) to (2πR,−2π/k). This implies that it has one unit of charge under
a, which lends credence to the proposal of identifying such a string with a quasi-particle
of FQHE. The quasi-particle is confined to R2,1, because everywhere else a wound string is
longer than the BPS bound 2πR.

Following the breaking of SU(2) to U(1), the bulk 4+1D W -boson gets a mass. The W -
boson corresponds to a (2, 0)-string wound around the S1 fiber of (3.5), and the homotopy
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class of the bulk S1 fiber is k times the homotopy class of the minicircle S1
m. It is therefore

clear that, in principle, we should be able to design a process in which a bulk W -boson
reaches the tip of the cone and breaks-up into k strings that wrap the minicircle:

W −→ k quasi-particles. (3.11)

Alternatively, it should be possible to describe the W -boson as a bound state of k quasi-
particles. In §3.4-§3.6, we will show how this works in the limit of large k. Before we
proceed to this analysis, which is the main focus of our paper, let us compute the spin
quantum numbers of the quasi-particles.

3.3 Quasi-particles
The quasi-particle is obtained by wrapping the (2, 0) BPS string on the minicircle S1

m.
Its quantum numbers can be deduced by quantization of the zero-modes of the low-energy
fermions that live on the BPS string of the (2, 0)-theory. Let us begin by reviewing the
low-energy fermionic degrees of freedom on a BPS string. We assume that the M5-branes
are in directions 0, . . . , 5, separated in direction 10, and the BPS string is in direction x3. We
first ignore the equivalence (3.2) and the R-symmetry twist. For simplicity we will now refer
to rotation groups as SO(m) instead of Spin(m). Thus, the VEV breaks the R-symmetry
to SO(4)R ⊂ SO(5)R, and the presence of the string breaks the Lorentz group down to
SO(1, 1)× SO(4). We will denote the last factor by SO(4)T , and we will describe represen-
tations of SO(1, 1)× SO(4)T × SO(4)R as (r1, r2, r3, r4)s, where (r1, r2) is a representation
of SO(4)T ∼ SU(2)×SU(2), (r3, r4) is a representation of SO(4)R ∼ SU(2)×SU(2), and s
is an SO(1, 1) charge (spin). The representation of the unbroken supersymmetry charges is
the same as the supersymmetry that is preserved by an M2-brane ending on an M5-brane.
If the M2-brane is in directions 0, 3, 10 and the M5-brane is in directions 0, 1, 2, 3, 4, 5 then
a preserved SUSY parameter ε satisfies

ε = Γ0123456789\ε = Γ03\ε = Γ012345ε, (3.12)

where we denote \ ≡ 10, to avoid ambiguity. The SUSY parameter therefore transforms as

(2,1,2,1)+1
2
⊕ (1,2,1,2)−1

2
.

On the worldsheet of the BPS string there are 4 scalars XA (A = 1, 2, 4, 5) that correspond to
translations of the string in transverse directions. These are in the representation (2,2,1,1)0.
In addition, there are fermions in

(1,2,2,1)+1
2
⊕ (2,1,1,2)−1

2
. (3.13)

Now, consider this theory on R2,1 ×M3 and let the BPS string be at rest at x1 = x2 = 0.
It thus breaks the Lorentz group SO(2, 1) to the rotation group SO(2) in the x1− x2 plane,
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which we denote by SO(2)J . The representations appearing in the brackets of (3.13) refer
to SO(4)T × SO(4)R, but in our setting, according to the discussion above, we have to
reduce SO(4)T → SO(2)J × SO(2)z and SO(4)R → SO(2)γ × SO(2)r. Thus, denoting
representations as

(qJ , qz, qγ, qr)s , (3.14)

we decompose the left-moving spinors of (3.13) as

(+1
2
,+1

2
,−1

2
,+1

2
)
+

1
2
⊕ (+1

2
,+1

2
,+1

2
,−1

2
)
+

1
2
⊕ (−1

2
,−1

2
,−1

2
,+1

2
)
+

1
2
⊕ (−1

2
,−1

2
,+1

2
,−1

2
)
+

1
2

(3.15)
and the right-movers as

(+1
2
,−1

2
,+1

2
,+1

2
)
−1

2
⊕ (+1

2
,−1

2
,−1

2
,−1

2
)
−1

2
⊕ (−1

2
,+1

2
,+1

2
,+1

2
)
−1

2
⊕ (−1

2
,+1

2
,−1

2
,−1

2
)
−1

2
(3.16)

These modes can be described by fermionic fields on the string worldsheet, which are func-
tions of (x0, x3). To get the quantum numbers of the lowest-energy multiplet we need to find
the zero-modes of these fermionic fields. The twisted boundary conditions such as (3.8) also
introduce twists on some of the modes (3.15)-(3.16). On a field ψ(x0, x3) with charges qz
and qγ, these boundary conditions are

ψ(x0, x3 + 2πR) = ω2(qz+qγ)ψ(x0, x3).

The only zero modes are therefore of those modes with qz + qγ = 0. These have quantum
numbers

(+1
2
,+1

2
,−1

2
,+1

2
)
+

1
2
⊕ (−1

2
,−1

2
,+1

2
,−1

2
)
+

1
2
⊕ (+1

2
,−1

2
,+1

2
,+1

2
)
−1

2
⊕ (−1

2
,+1

2
,−1

2
,−1

2
)
−1

2
(3.17)

Quantizing these modes gives a multiplet with quantum numbers

(qJ
(0) − 1

2
, qz

(0), qγ
(0), qr

(0) − 1
2
), (qJ

(0), qz
(0) + 1

2
, qγ

(0) − 1
2
, qr

(0)),
(qJ

(0), qz
(0) − 1

2
, qγ

(0) + 1
2
, qr

(0)), (qJ
(0) + 1

2
, qz

(0), qγ
(0), qr

(0) + 1
2
),

(3.18)
where the charges qJ (0), qz(0), qγ(0), qr(0) still need to be determined. To determine them,
consider the discrete symmetry Z′2, defined in §3.2.2. It preserves the setting and the BPS
particle but does not commute with all the charges qJ , qz, qγ, qr . It acts on the charges as
follows:

qJ → qJ , qz → −qz , qγ → −qγ , qr → qr . [generator of Z′2]

The constants qJ (0), qz(0), qγ(0), qr(0) must therefore be chosen so that the charges (3.18)
will be invariant, as a set, under Z′2. In other words, Z′2 is allowed to permute the states in
(3.18), but must convert an existing state to an existing state. This is only possible if both
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qz
(0) and qγ(0) vanish. The BPS states are therefore in a multiplet with quantum numbers

given by:

(qJ
(0)− 1

2
, 0, 0, qr

(0)− 1
2
)⊕(qJ

(0),+1
2
,−1

2
, qr

(0))⊕(qJ
(0),−1

2
,+1

2
, qr

(0))⊕(qJ
(0)+ 1

2
, 0, 0, qr

(0)+ 1
2
) .

Spin-statistics requires qJ (0) and qr(0) to be half-integral. To determine them we note that
the setting of (3.4) can be defined for any value of k, not necessarily an integer (as suggested
in [34]). And so we can determine the quantum numbers from the limit k → ∞ at which
the multiplet must become part of the multiplet of the wrapped string of the (2, 0)-theory.
This determines the charges up to an overall sign (which can be determined arbitrarily and
flipped with a parity transformation). So we pick qJ (0) = −qr(0) = 1

2
and find the following

multiplet structure:

(0, 0, 0,−1)⊕ (+1
2
,+1

2
,−1

2
,−1

2
)⊕ (+1

2
,−1

2
,+1

2
,−1

2
)⊕ (1, 0, 0, 0) . (3.19)

As a corollary, we can immediately restrict the types of processes described in (3.11). Let
us write down the qJ , qz, qγ, and qr quantum numbers of the W -boson supermultiplet. The
bosons (vectors and scalars) are in

(±1, 0, 0, 0)⊕ (0,±1, 0, 0)⊕ (0, 0,±1, 0)⊕ (0, 0, 0,±1) . (3.20)

and the gluinos are ingeom

(±1
2
,±1

2
,±1

2
,±1

2
) . [even number of (−1

2
)’s] (3.21)

Starting with a W -boson with charges (1, 0, 0, 0), a process such as

W -boson −→ k quasi-particles. (3.22)

can only produce k quasi-particles of charge (1, 0, 0, 0), and (k− 1) units of orbital angular
momentum need to convert into spin. We therefore expect that if the W -boson’s velocity u
in the x1 − x2 plane is small, the amplitude will be suppressed as uk−1.

The process (3.22) also suggests that the W boson can be viewed as a bound state of k
quasi-particles. This is similar to the well-known result in FQHE theory that the electron
can be regarded as a bound state of k fractionally charged edge-states. The edge-states are
the low-energy excitations of the Chern-Simons theory that reside on the boundary, or on
impurities in the bulk. In the analogy the FQHE system, our quasi-particles correspond to
external impurities that couple to the Chern-Simons theory gauge field.

Our goal is to develop a concrete description of the W -boson as a composite of k quasi-
particles. For this purpose we will first need to switch to a dual formulation of the low-energy
theory whereby the quasi-particles are fundamental.
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3.4 The large k limit
A weakly-coupled dual formulation of our system can be constructed in the limit k→∞.

In FQHE terminology, this is the small filling fraction regime which in ordinary systems
corresponds to very strong interactions. More insight can be gained in this limit by choosing
a different fibration structure for M3 than the one represented in (3.5). While (3.5) is
convenient to work with because the fibers are of constant size and are geodesics, the fibration
was singular at the origin z = 0 — indeed the tip of the cone is singular, and the fiber over
z = 0 is smaller by a factor of k from the generic one.

Instead, in this section we will represent M3 as a smooth fibration in another way. The
base is the well-known cigar geometry and the fiber corresponds to a loop at constant |z|.
(See also [58][59] for other uses of this technique.) We will then reduce the (2, 0)-theory to
4 + 1D SYM along this fiber. The fiber’s size varies and the base’s geometry is curved, but
nevertheless this representation is very useful, as we shall see momentarily.

3.4.1 Cigar geometry

To arrive at the the alternative fibration we change variables on M3 from (x3, z) to x3

and
z̃ ≡ exp

(
− ix3

kR

)
z ≡ reiθ . (3.23)

We then write the metric as

ds2 = dx2
3 + |dz|2 = α̃(dx3 +

r2

kRα̃
dθ)2 + dr2 + α̃−1r2dθ

2
, (α̃ ≡ 1 +

r2

k2R2
) (3.24)

This metric describes a circle fibration over a cigar-like base with metric

ds2
B = dr2 + α̃−1r2dθ

2
= dr2 + (

k2R2r2

k2R2 + r2
)dθ

2
. (3.25)

We denote the cigar space by Υ. Note that the cigar-metric is smooth everywhere and for
r � kR it behaves like a cylinder R+ × S1, where S1 has radius kR. The “global angular
form” of the circle fibration is

χ ≡ dx3 +
r2

kRα̃
dθ ≡ dx3 +Ra , (3.26)

where we have defined the 1-form

a ≡ r2

kR2α̃
dθ = (

kr2

k2R2 + r2
)dθ . (3.27)

In this context, a is a U(1) gauge field on the cigar with associated field-strength

dχ ≡ da =
2k3R2r

(k2R2 + r2)2
dr ∧ dθ .
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Figure 3.2 : The cigar geometry with the typical scales indicated. The curvature of the cigar sets
the length scale kR, and the 4 + 1D SYM coupling constant sets the length scale g2

ym.

The total magnetic flux of this gauge field is
∫
B
da = 2πk.

An anti-self-dual field H = −∗H on M3 × R2,1 can be reduced along the fibers of the
circle fibration (3.24) to obtain a 4 + 1D gauge field strength f on Υ× R2,1 as follows:

H =
(
dx3 +

r2

kRα̃
dθ
)
∧ f − α̃−

1
2 (∗f). (3.28)

Here ∗f is the 4+1D Hodge dual of the 2-form f on Υ× R2,1. The coupling constant of the
effective 4 + 1D super Yang-Mills theory for f is

g2
ym = α̃1/2R = (1 +

r2

k2R2
)

1
2R . (3.29)

The coupling constant g2
ym has dimensions of length and can be compared to the length

scale set by the order of magnitude of the curvature of the cigar metric at the origin – this
length-scale is kR. For r ∼ kR we find g2

ym � kR, and so the Yang-Mills theory is weakly
coupled on length scales of the order of the curvature. The Yang-Mills theory becomes
strongly coupled only when the two scales become comparable, which happens for r ∼ k2R,
and therefore for large k our low-energy semi-classical 4 + 1D SYM approximation is valid
for r � k2R. The various length scales are depicted in Figure 3.2.

3.4.2 Equations of motion

The bosonic fields of maximally supersymmetric 4+1D SYM are the gauge field and 5
adjoint scalars. The scalars correspond to the relative motion of the M5-branes in direc-
tions x6, . . . , x10. We will be interested in supersymmetric solutions where only the scalar
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corresponding to direction x10 can be nonzero. We will therefore ignore the remaining 4
scalars, as well as the fermions, and denote the single adjoint-valued relevant scalar by Φ.
The boundary conditions at infinity are

Φ→
(
v 0
0 −v

)
(up to a gauge transformation),

where v ≡ 2πṼ , where Ṽ is the tension of the BPS string defined in §3.2.1.
We set polar coordinates in the x1 − x2 plane by

ρ ≡
√
x2

1 + x2
2 , x1 + ix2 = ρeiϕ . (3.30)

The SYM theory is therefore formulated on a space with 4+1D metric

ds2 = −dt2 + dr2 + α̃−1r2dθ
2

+ dρ2 + ρ2dϕ2 .

The action contains three terms,

Ibosonic = IΦ + IYM + Iθ , (3.31)

where IΦ is the action of the scalar field, IYM is the standard Yang-Mills action with variable
coupling constant, and Iθ is the 4+1D θ-term that arises due to the nonzero connection a (see
(3.27)). We will only consider θ-independent field configurations. For such configurations
the explicit expressions for the terms in the action are

IΦ = 1
2
R tr

∫ [
(D0Φ)2 − (DρΦ)2 − 1

ρ2
(DϕΦ)2 − (DrΦ)2

]
rρdrdρdϕdt , (3.32)

IYM = 1
2
R−1 tr

∫
1eα(F 2

0r + F 2
0ρ − F 2

rρ − 1
ρ2
F 2
rϕ − 1

ρ2
F 2
ρϕ

)
rρdrdρdϕdt , (3.33)

Iθ = tr

∫
r2

kR2eα(F0rFρϕ − F0ρFrϕ + F0ϕFrρ
)
drdρdϕdt , (3.34)

where Dµ is the covariant derivative of an adjoint-valued field. The equations of motion are:

0 = DβFαβ +DrFαr − 1
r
Fαr − i r2

k2R2 [DαΦ,Φ] , (3.35)

0 = DβFrβ − i r2

k2R2 [DrΦ,Φ] , (3.36)
0 = DαDαΦ +DrDrΦ + 1

r
DrΦ . (3.37)

where α, β = 0, 1, 2.

3.5 Integrally charged particles as bound states of quasi-
particles

We now have two alternative descriptions of the low-energy limit in terms of 4+1D SYM.
In the first description, studied in §3.2, the 4+1D SYM theory is formulated on a cone, with
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Figure 3.3 : In the limit va2 � 1 the soliton is approximately described by the Prasad-Sommerfield
solution (of width 1/va) near r = a and ρ = 0. Note that ρ =

√
x2

1 + x2
2 and the directions x1, x2

are not drawn since they are perpendicular to the r, θ directions.

extra degrees of freedom at the tip. In the second description, studied in §3.4, the 4+1D
SYM theory is formulated on a cigar geometry. The latter description is most suitable in
the large k limit, because the strongly-coupled region is pushed to r = ∞ (see Figure 3.2).
The quasi-particles that we studied in §3.3 are the fundamental fields of 4+1D SYM in the
cigar-setting. We have seen that k quasi-particles can form a bound state that is free to
move into the bulk of the cone. Let us now identify this state in the cone-setting.

From the perspective of the (2, 0)-theory, the bound state is a string wrapped on the
fiber of (3.5). Let us consider such a string wrapped on the fiber at the cone base point
given by coordinates r = a and θ = x1 = x2 = 0, with variable x3. In the cigar variables,
this reduces to a string at fixed r = a and x1 = x2 = 0 but variable θ. Recall that on the
Coulomb branch of SU(2) 4+1D SYM, the monopole is a 1+1D object – a monopole-string.
The bound state of k quasi-particles is therefore associated with a monopole-string wrapped
around the θ-circle of the cigar at r = a, as depicted in Figure 3.3. Thanks to the θ-term
(3.34), the monopole-string gains k units of charge, as required.

In flat space, a monopole-string is described by the Prasad-Sommerfield solution [36]. In
our case, the Prasad-Sommerfield solution is a good approximation if the thickness of the
monopole is small compared to the typical scale kR over which the coupling constant varies,
and also small compared to a. In this case, setting

w ≡
√

(r − a)2 + ρ2 ,
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we find the gauge invariant magnitude of the scalar field near the core r = a to be given by

|Φ| ≡
√

tr(Φ2)/2 = ṽ coth(ṽw)− 1

w
, (3.38)

where
ṽ = (1 + a2

k2R2 )1/2Rv

is the effective VEV of the normalized scalar field α̃1/2RΦ at the core (r = a) of the monopole.
The “thickness” of the Prasad-Sommerfield solution is of the order of 1/ṽ, and the condition
that the monopole should be “thin” becomes

a� 1

Rv
.

If this condition is not met, the Prasad-Sommerfield solution does not provide a good ap-
proximation for the particle that corresponds to a (2, 0)-string wrapped on the generic fiber
(of size kR) of (3.5). Nevertheless, this is a BPS state with charge k, which can be described
in the large k limit by a soliton solution to the equations of motion (3.35)-(3.37). The so-
lution describes a Q-ball, and we expect the position a to be a modulus of the solution. In
the next section we will derive the BPS equations that this soliton satisfies.

3.5.1 BPS equations

As we will derive in §3.5.2, the BPS equations that describe static solutions that preserve
the same amount of supersymmetry as a (2, 0)-string wrapped on a fiber of (3.5) are given
by:

DrΦ =
kR

r
F12 = F0r , D1Φ =

kR

r
F2r = F01 , D2Φ = −kR

r
F1r = F02 . (3.39)

These equations imply the equations of motion (3.35)-(3.37). Assuming that Ar, A1, A2

are time independent, we find DµΦ = F0µ = −DµA0 (for µ = 1, 2, r), which is solved by
Φ = −A0. So the equations are reduced to

DrΦ =
kR

r
F12 , D1Φ =

kR

r
F2r , D2Φ = −kR

r
F1r , Φ = −A0 . (3.40)

The nonzero A0 is consistent with a Q-ball [63]. It can be gauged away at the expense of
creating time-varying phases for the other fields, but we will not do so. We can rewrite the
first three equations of (3.40) as the Prasad-Sommerfield [36] equations

DiΦ̃ = Bi (3.41)

where
Φ̃ ≡ 1

kR
Φ , Bi ≡

1

2
√
g
gijε

jklFkl , (3.42)
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are defined on a 3D auxiliary space W parameterized by x1, x2, r, with metric gij given by

ds2 = gijdx
idxj = r2(dr2 + dx2

1 + dx2
2) = r2(dr2 + dρ2 + ρ2dϕ2). (3.43)

In §3.6.2 we will show that the problem of finding an axisymmetric (ϕ-independent) BPS
soliton can be converted to the problem of finding a harmonic map from the AdS3 space
with metric

ds2 =
1

r2
(dr2 + dρ2 + ρ2dϕ2)

to AdS2, with a certain singular behavior along a Dirac-like string at ρ = 0 and 0 < r < a.
We will conclude with a formula for the energy. For a static configuration, the energy is

minus the integral of the Lagrangian that appears in the action (3.31). If we set A0 = −Φ
the energy for static and ϕ-independent configurations can be written as

Estatic = πR tr

∫
1eα[F 2

rρ + 1
ρ2

(Frϕ − rρ
kR
DρΦ)2 + 1

ρ2
(Fρϕ − rρ

kR
DrΦ)2

]
rρdrdρ

+ π tr

∫ [
∂ρ
(
r2

keαFrϕΦ
)

+ ∂r
(
r2

keαFρϕΦ
)]
drdρ (3.44)

The term on the RHS vanishes when the BPS equations (3.40) are satisfied, and the second
line is a total derivative.

3.5.2 Derivation of the BPS equations

In this subsection we will explain how (3.39) were derived. (The rest of the paper does not
rely on this subsection, and it can be skipped.) We wish to find the equations that describe
the W-boson from (3.22) in terms of the low-energy fields of 4+1D SYM on Υ × R2,1,
where R2,1 corresponds to directions 0, 1, 2, and Υ was defined in §3.4.1. Let us first discuss
the equations on the Coulomb branch of the (2, 0)-theory. The contents of the low-energy
theory is a free tensor multiplet with 2-form field B, field strength H = dB, five scalar fields
Φ6, . . . ,Φ10, and chiral fermionic fields ψ in the representation of 4× 4 of SO(5, 1)×SO(5).
We assume

Φ6 = Φ7 = Φ8 = Φ9 = 0

and only allow Φ10 ≡ φ to be nonzero. The BPS equations are derived from the SUSY
transformation of the fermions. Let ε be a constant SUSY parameter, which we represent as
a 32-component spinor on which the 10+1D Dirac matrices ΓI (I = 0, . . . , 10) can act. The
BPS conditions on ε are:

• Invariance of ε under simultaneous rotations by 2π/k in the planes 4− 5 and 6− 7;

• Invariance of an M5-brane in direction 0, . . . , 5 under a SUSY transformation of 10+1D
SUGRA with parameter ε; and

• Invariance of an M2-brane in directions 0, 3, 10 under a SUSY transformation of 10+1D
SUGRA with parameter ε.
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Therefore, the equations are (we set 10 ≡ \ in Dirac matrices):

ε = Γ012345ε = Γ03\ε = Γ4567ε . (3.45)

To get the BPS equations we require that the fermions ψ of the tensor multiplet of the
(2, 0)-theory be invariant under any SUSY transformation with a parameter ε that satisfies
(3.45):

0 = δψ = (HµνσΓµνσ − ∂µφΓµ\)ε . (3.46)

There are four linearly independent solutions to (3.45), and substituting these into (3.46) we
find the BPS equations in the form

H03µ = ∂µφ , H0ij = 0 , (i, j = 1, 2, 4, 5). (3.47)

The other components of H are determined by anti-self-duality H = −∗H. We now convert
the BPS equations (3.47) to Υ × R2,1 using (3.28) and the change of variables (3.23). To
avoid ambiguity, we momentarily denote by x′3 and θ′ the coordinates before the change of
variables, so that the change of variables is given by

x3 = x′3 , θ = θ′ − x′3
kR

.

We then find:

0 = H03′r − ∂rφ = H03′θ′ − ∂θ′φ = ∂3′φ = ∂0φ , 0 = H03′i − ∂iφ , (i = 1, 2) , (3.48)

and
0 = H012 = H0ir = H0iθ′ = H0iθ = H0rθ′ = H0rθ , (i = 1, 2) .

The dual relations are

0 = H3′rθ′ = H3′iθ′ = H3′ir = H3′12 , (i = 1, 2) ,

which are transformed in the x3, θ coordinates to

0 = H3rθ = H3iθ = H3ir −
1

kR
Hθir = H312 −

1

kR
Hθ12 , (i = 1, 2) . (3.49)

Next we use the anti-self-duality conditions

H03′r =
1

r
Hθ′12 =

1

r
Hθ12 , H03′1 =

1

r
Hrθ′2 =

1

r
Hrθ2 , H03′2 = −1

r
Hrθ′1 = −1

r
Hrθ1 ,

and the relations (3.49) to write

H03′r =
1

r
Hθ12 =

kR

r
H312 , H03′1 =

1

r
Hrθ2 =

kR

r
H32r , H03′2 = −1

r
Hrθ1 = −kR

r
H31r .

(3.50)
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Combining with (3.48), we end up with the BPS equations

∂rφ = H03′r =
kR

r
H312 , ∂1φ = H03′1 =

kR

r
H32r , ∂2φ = H03′2 = −kR

r
H31r , (3.51)

and further combining with (3.28) we have

∂rφ =
kR

r
f12 , ∂1φ =

kR

r
f2r , ∂2φ = −kR

r
f1r . (3.52)

Altogether, we have

∂rφ =
kR

r
f12 = f0r , ∂1φ =

kR

r
f2r = f01 , ∂2φ = −kR

r
f1r = f02 . (3.53)

The equations (3.39) are the nonabelian extension of (3.53), and the fact that they imply
the equations of motion (3.35)-(3.37) shows that no additional terms are needed.

3.6 Analysis of the BPS equations
We are looking for a solution to the BPS equations (3.40) that describes the (2, 0)-string

wrapped on the fiber of (3.5). We can assume that the string is at the origin of the x1 − x2

coordinate system, and the solution will therefore be axisymmetric (independent of ϕ). We
expect the solution to have a modulus a corresponding to the position of the string in the
x4 − x5 plane. Technically, these solutions could only describe a string that is “smeared”
along the angular coordinate θ of the x4 − x5 plane, so only the r coordinate of the string
is fixed. The soliton is spread out in the r direction as well, but we can expect its core
to be around r ∼ a, and we will see that a can be defined via the boundary conditions at
r → ∞ or ρ → ∞. More generally, we can look for axisymmetric solutions that describe
several (2, 0)-strings centered at different r locations, but all at ρ = 0. This will be described
by a more complicated axisymmetric solution of (3.40). To proceed, we will treat the BPS
equations as Bogomolnyi-Prasad-Sommerfield monopole equations (3.41) on a curved space
(3.43).

3.6.1 Manton gauge

The Bogomolnyi monopole equations on R3 have the renowned Prasad-Sommerfield so-
lution [36] for one SU(2) monopole, and the general solution was given by Nahm [72]. It was
given a string-theoretic interpretation in [39]. The extension to hyperbolic space is known
[43], but we are unaware of an extension of Nahm’s technique to the space given by the
metric (3.43), and so we will proceed using other means. We adopt a remarkable ansatz
developed in [45] for axially symmetric solutions. Adapted from R3 to our metric (3.43) we
make the Ansatz:

Φ = 1
2
(Φ1σ1 + Φ2σ2) , A = −[(η1σ1 + η2σ2)dϕ+W2σ3dρ+W1σ3dr], (3.54)
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The BPS equations then reduce to

∂ρΦ1 −W2Φ2 = − 1
rρ

(∂rη1 −W1η2) , (3.55)

∂ρΦ2 +W2Φ1 = − 1
rρ

(∂rη2 +W1η1) , (3.56)

η2Φ1 − η1Φ2 = ρ
r
(∂ρW1 − ∂rW2) , (3.57)

∂rΦ1 −W1Φ2 = 1
rρ

(∂ρη1 −W2η2) , (3.58)

∂rΦ2 +W1Φ1 = 1
rρ

(∂ρη2 +W2η1) , (3.59)

Next, we adapt to our metric the technique developed in [41], solving (3.55)-(3.57) by setting

Φ1 = −1

r
f−1∂rχ , Φ2 =

1

r
f−1∂rf , η1 = ρf−1∂ρχ , η2 = −ρf−1∂ρf , (3.60)

and
W1 = −f−1∂rχ , W2 = −f−1∂ρχ . (3.61)

where f and χ are as yet undetermined real functions of r and ρ.

3.6.2 Harmonic maps from AdS3 to AdS2

We plug the ansatz (3.60)-(3.61) into (3.58)-(3.59) and get:

0 = fχrr + fχρρ − 2frχr − 2fρχρ + 1
ρ
fχρ − 1

r
fχr , (3.62)

0 = f 2
r + f 2

ρ − χ2
r − χ2

ρ − ffrr − ffρρ + 1
r
ffr − 1

ρ
ffρ , (3.63)

where subscripts (· · · )r and (· · · )ρ denote derivatives with respect to r and ρ, respectively.
The equations (3.62)-(3.63) can be derived from the action

I =

∫
ρ

rf 2
(f 2
r + f 2

ρ + χ2
r + χ2

ρ)drdρ . (3.64)

We give a simple geometrical interpretation to the equations of motion (3.62)-(3.63) by
considering an auxiliary AdS3 space parameterized by (r, ρ, ϕ) with metric

ds2 =
1

r2
(dr2 + dρ2 + ρ2dϕ2) .

We can then interpret the function f(r, ρ) and χ(r, ρ) as describing an axisymmetric map
from AdS3 to the two-dimensional (f, χ) “target-space.” If we further endow this target-space
with the AdS2 metric

ds2 =
1

f 2
(df 2 + dχ2) , (3.65)

it is then easy to see that the equations of motion derived from (3.64) describe harmonic
maps

(f, χ) : AdS3 7→ AdS2 . (3.66)
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The connection between AdS2 (the “pseudosphere”) and axisymmetric solutions to monopole
equations on R3 was first noted in [41]. The harmonic map (3.66) is required to have
a singularity along a Dirac-like string. To see this we first need to discuss the asymptotic
behavior of the maps far away from the core, where the solution reduces to a U(1) monopole.

3.6.3 The abelian solution

We can find a special solution to (3.62)-(3.63) by setting χ = 0. The remaining equa-
tion (3.63) then states that log f is a harmonic map on AdS3. Alternatively, the solution
describes a U(1) monpole on the (x1, x2, r) space with metric (3.43), centered at (0, 0, a),
which becomes a singular point. But it is easiest to construct the solution starting with
5+1D. In the abelian limit, the fields of the (2, 0) theory that are relevant to our problem
reduce to a free anti-self-dual 3-form field H = −∗H and a free scalar field φ. We start by
solving (3.47) on R5,1, which in particular implies that φ is harmonic. Consider a solution
that describes the H and φ fields that emanate from a (2, 0)-string centered at

(x1, x2, x4, x5) = (0, 0, a cos θ, a sin θ) .

The scalar field is given by

φ = v +
1

x2
1 + x2

2 + (x4 − a cos θ)2 + (x5 − a sin θ)2
. (3.67)

But the solution that we need must be indepedent of θ. We can, however, obtain it from
(3.67) by “smearing”:

φ(x1, x2, r) = v +
1

2π

∫ 2π

0

dθ

ρ2 + (r cos θ − a)2 + r2 sin2 θ
=

1√
(ρ2 + r2 + a2)2 − 4a2r2

(3.68)

and it is not hard to check that

A =
( ρ2 + a2 − r2

2
√

(ρ2 + r2 + a2)2 − 4a2r2
− 1
)x2dx1 − x1dx2

ρ2
. (3.69)

The solution corresponds to

f = exp

∫
φ(r, ρ)rdr = e−

1
2
vr2
(
ρ2 + r2 − a2 +

√
(ρ2 + r2 + a2)2 − 4a2r2

)
. (3.70)

To explore the Dirac string singularity, it is convenient to use instead of the Poincaré coor-
dinates on AdS3, a coordinate system with the point r = a at the origin, via the coordinate
transformation,

ρ

r
= sinhχ sinα ,

ρ2 + r2 − a2

2ar
= sinhχ cosα , ds2 = dχ2 + sinh2 χ(dα2 + sin2 α dϕ2),
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with the inverse transformation

r = a
coshχ+ sinhχ cosα

1 + sinh2 χ sin2 α
, ρ = a

coshχ+ sinhχ cosα

1 + sinh2 χ sin2 α
sinhχ sinα .

In these coordinates we have, up to an unimportant constant,

log f = −1
2
va2

(
coshχ+ sinhχ cosα

1 + sinh2 χ sin2 α

)2

+ log

(
coshχ+ sinhχ cosα

1 + sinh2 χ sin2 α

)
+ log sinhχ+ log(1 + cosα) . (3.71)

The singularity in the last term at α = π represents the Dirac string. The abelian solution
must describe the asymptotic behavior of the nonabelian solution when either r → ∞ or
ρ→∞ (or both).

3.6.4 Comments on (lack of) integrability

The classic BPS equations for monopoles on R3 admit the well-known Nahm solutions
[72], which also have a nice string-theoretic interpretation [39]. The rich properties of these
solutions essentially stem from an underlying integrable structure. One way to describe the
structure is to map a solution of the BPS equations to a holomorphic vector bundle over
minitwistor space [37, 38]. (Minitwistor space is the space of oriented straight lines on R3 and
it has a complex structure.) The BPS equations arise as the integrability condition for an
auxiliary set of equations in terms of an auxiliary 2-component field ψ, that require ψ’s gauge-
covariant derivative along a line in R3 to be related to multiplication by the scalar field Φ̃,
and also require ψ to be holomorphic in the directions transverse to the line. This technique
can be extended to other metrics, such as AdS3 (whose corresponding minitwistor space also
possesses a complex structure and is equivalent to CP1 × CP1). But this technique fails
for the metric (3.43), whose space of geodesics is not complex, and the monopole equations
(3.41) cannot be expressed as the integrability condition for an auxiliary system of linear
differential equations, at least not in an obvious way.

Another way to see where integrability fails is to focus on axially-symmetric solutions as
in [41]. Defining the symmetric SL(2,R) matrix

G ≡ 1

f

(
1 −χ
−χ (f 2 + χ2)

)
,

the equations of motion (3.62)-(3.63) can then be recast as

0 = ∇α(∇αGG−1) , (3.72)

where the covariant derivatives are with respect to another auxiliary metric,

ds2 = dr2 + dρ2 + (
ρ2

r2
)dϕ2 , (3.73)
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and G(r, ρ) is, of course, assumed to be independent of ϕ. It is possible [41] to recast axially
symmetric solutions of the BPS equations on R3 in the form (3.72) – the metric in that case
would be the Euclidean metric

ds2 = dr2 + dρ2 + ρ2dϕ2 ,

and the connection with the σ-model (3.72) leads to an integrable structure. To describe the
integrable structure we switch to complex coordinates,

ξ ≡ r + iρ , ξ ≡ r − iρ ,

and write (3.72) as the integrability condition for a system of first order linear differential
equations for a two-component field Ψ(ξ, ξ):

Ψξ =
1

1 + γ
GξG−1Ψ , Ψξ =

1

1− γ
GξG−1Ψ ,

where (· · · )ξ and (· · · )ξ are derivatives with respect to ξ and ξ, and the function γ(ξ, ξ) has
to be suitably chosen (so that the integrability condition (Ψξ)ξ = (Ψξ)ξ will be automatically
satisfied). There are, in fact, infinitely many choices for the function γ, but it has to be a
solution of

γξ =
γ

ξ − ξ
(
1 + γ

1− γ
) , γξ = − γ

ξ − ξ
(
1− γ
1 + γ

) ,

which are compatible (see [42] for review). This construction is easy to extend to any metric
of the form

ds2 = dr2 + dρ2 + Λ(r, ρ)2dϕ2 ,

as long as Λ(r, ρ) is harmonic (in the metric dr2 +dρ2). In our case Λ = ρ/r is not harmonic,
so the standard integrability structure is not present.

One can also attempt to extend the technique of [39], to “probe” the solution with a string
that extends in an extra dimension, say x8. It is not hard to construct BPS string solutions
that preserve some supersymmetry, compatible with that of the M5-branes and the twist.
For example, in the M-theory variables we can take an M2-brane along a holomorphic curve
given by

x4 + ix5 = C0e
i

kR
(x3+ix8) ,

where C0 is a constant. This would translate in type-IIA to a string whose x8 coordinate
varies logarithmically with r. However, this string does not preserve any common SUSY with
the soliton. We were unable to find an exact solution to (3.41), and in fact, the appearance
of polylogarithms in the expansion at large VEV (see Appendix D) suggests that even if a
closed form exists, it is very complicated. We will therefore proceed to numerical analysis.
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3.7 Numerical results
As a first step, we find it convenient to recast the equations in a different gauge. We

begin by parameterizing the scalar field as:

φα = xα(f + h) , φ3 = g , (3.74)

and the gauge field as:

Aαβ = x(βεα)γx
γp + 1

2
εαβq , Aαr = −rεαγxγ(f − h) , A3

β = εβγx
γv , A3

r = 0 . (3.75)

with α, β, γ = 1, 2, εαβ being the anti-symmetric Levi-Civita symbol, and with f , g, h, p, q,
and v functions of (r, ρ) only. Next, we fix the gauge by setting p = 0. Defining

U ≡ ρ2 , V ≡ r2,

the BPS equations (3.41) reduce (after rescaling φ by kR) to:

0 = hv − 2 ∂h
∂U

, (3.76)

0 = 2U ∂f
∂U

+ Uvf + 2f + ∂q
∂V

+ 1
2
gq , (3.77)

0 = V(h− f)g + 1
2
qv + 2V ∂f

∂V
+ 2V ∂h

∂V
− ∂q

∂U
, (3.78)

0 = ∂v
∂V
− ∂g

∂U
+ 1

2
hq , (3.79)

0 = UV(f2 − h2) + 1
4
q2 + 2v + 2V ∂g

∂V
+ 2U ∂v

∂U
. (3.80)

Let us also set

Z ≡ 1
2a

(ρ2 + r2 − a2) , R ≡
√
ρ2 + Z2 = 1

2a

√
(ρ2 + r2 − a2)2 + 4a2ρ2 . (3.81)

The advantage of the ansatz (3.74)-(3.75) is that the abelian solution (3.68)-(3.69) can be
written in the form:

f =
v

2R
− 1

aR2
, g =

vZ

R
− Z

aR2
, h =

v

2R
, q =

a2 + U−V

aR2
, v = − 1

R2
− Z

aR2
.

(3.82)
which has no singularities except at r = a (and in particular no Dirac string).

We require that at either limit r → ∞ or ρ → ∞ the solution should reduce to the
abelian solution. At the tip r = 0 the solution is required to be regular. This allows us to
determine q, h, and v at the tip as follows. Setting V = 0 in (3.76), (3.78), and (3.80), we
get the ordinary differential equations

hv − 2 ∂h
∂U

= 1
2
qv − ∂q

∂U
= 1

4
q2 + 2v + 2U ∂v

∂U
= 0 , (V = 0) (3.83)

which we can solve uniquely, given the known boundary conditions at U→∞, by expressing
q and h in terms of the function (1 + Uv) and its derivatives, and changing variables to
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log U. The result is that unique solution to (3.83) that satisfies the boundary conditions at
U→∞ is

q =
4a

U + a2
, v = − 2

U + a2
, h =

va

U + a2
, (V = 0). (3.84)

which is non other than the abelian solution (3.82) at V = 0.
We cannot determine f and g at V = 0 so easily, and our strategy will be to find an

approximate solution to (3.76)-(3.80) by the variational method, minimizing the energy of
the field configuration within a certain class of trial functions of (U,V). For the energy we
take the expression for the excess energy above the BPS bound for a static configuration of
gauge field and minimally coupled adjoint scalar on a manifold given by the three dimensional
metric (3.43):

E ≡ 1

2
tr

∫
√
ggij(DiΦ̃−Bi)(DjΦ̃−Bj)d

3x

=
1

2
tr

∫ [
(rDrΦ̃− F12)2 + (rD1Φ̃− F2r)

2 + (rD2Φ̃− Fr1)2
]
ρdρ(dr

r
) , (3.85)

where Bi and Φ̃ were defined in (3.42), and the “tr” is in the fundamental representation.
Note that E is different from the physical energy (3.44). The integrand in (3.85) is α̃/r2 bigger
than the integrand in the first term on the RHS of (3.44), but they are both minimized on
the BPS configurations, and (3.85) gives more weight to the vicinity of r = 0. We can rewrite
E in terms of the right-hand-sides of (3.76)-(3.80),

X1 = hv − 2 ∂h
∂U

, (3.86)

X2 = 2U ∂f
∂U

+ Uvf + 2f + ∂q
∂V

+ 1
2
gq , (3.87)

X3 = V(h− f)g + 1
2
qv + 2V ∂f

∂V
+ 2V ∂h

∂V
− ∂q

∂U
, (3.88)

X4 = ∂v
∂V
− ∂g

∂U
+ 1

2
hq , (3.89)

X5 = UV(f2 − h2) + 1
4
q2 + 2v + 2V ∂g

∂V
+ 2U ∂v

∂U
, (3.90)

as
E =

∫ (1

8
U2X 2

1 +
1

8
X 2

2 +
X 2

3

16V
+

1

4
UX 2

4 +
X 2

5

16V

)
dUdV . (3.91)

We also note that the BPS bound on energy is given by

EBPS = tr

∫
√
ggij(BjDiΦ̃)d3x

= tr

∫ [
F12DrΦ̃ + F2rD1Φ̃ + Fr1D2Φ̃

]
ρdρdr =

∫
dλ , (3.92)

where the 1-form λ is defined by

λ ≡
[

1
8
Uqv(f + h) + 1

16
q2g + 1

2
vg + 1

2
Ug

∂v

∂U
− 1

4
U(f + h)

∂q

∂U

]
dU

+

[
1
8
Ugq(h− f) + 1

4
U(h2 − f2)(1 + Uv)− 1

4
U(f + h)

∂q

∂V
+ 1

2
Ug

∂v

∂V

]
dV . (3.93)
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Requiring the asymptotic behavior for large U and V to be as in (3.82), we find

EBPS = 2va2 .

We construct our trial functions by modifying the abelian solution (3.82). But first
we need to smooth out the singularity of that solution at V = a2, while preserving the
asymptotic behavior at large U and V, as well as the behavior (3.84) at V = 0. For this
purpose we define:

R ≡
√

U + V + a2 =
√
r2 + ρ2 + a2 (3.94)

and then define

f̃ ≡ av

R2
+

2a(va2 − 2)

R4
− 2a3vU

R6
,

g̃ ≡ v − 2

R2
− 2va2U

R4
,

h̃ ≡ v

(
a

R2
+

2a3

R4
− 2a3U

R6
− 2a5(a2 + U)

R8

)
,

q̃ ≡ 4a

R2
− 8aV

R4
,

ṽ ≡ − 2

R2
− 8a2

R4
+

8a2(a2 + U)

R6
,

so that for fixed U and V→∞ we have

f̃ =
v

2R
− 1

aR2
+O

(
1

V4

)
,

g̃ =
vZ

R
− Z

aR2
+O

(
1

V3

)
,

h̃ =
v

2R
+O

(
1

V4

)
,

q̃ =
a2 + U−V

aR2
+O

(
1

V3

)
,

ṽ = − 1

R2
− Z

aR2
+O

(
1

V4

)
,

and f̃ , g̃, h̃, ṽ, q̃ are smooth everywhere. We also define

Rb ≡
√

U + V + b2 =
√
r2 + ρ2 + b2 ,

where b is a parameter to be determined dynamically by the variational principle. We now
pick a sufficiently large integer N (we chose N = 20 below), and construct trial functions in
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the form:

f = f̃ +
1

R5+2N
b

n+m≤N∑
n,m≥0

fm,nU
mVn ,

g = g̃ +
1

R4+2N
b

n+m≤N∑
n,m≥0

gm,nU
mVn ,

h = h̃ +
V

R5+2N
b

n+m≤N−1∑
n,m≥0

hm,nU
mVn ,

q = q̃ +
V

R4+2N
b

n+m≤N−1∑
n,m≥0

qm,nU
mVn ,

q = ṽ +
V

R4+2N
b

n+m≤N−1∑
n,m≥0

vm,nU
mVn ,

where fm,n, gm,n, hm,n, qm,n, vm,n are coefficients to be determined. These expressions are
designed to preserve the boundary condition (3.84), as well as the asymptotic behavior for
large U and V. We then find the coefficients fm,n, gm,n, hm,n, qm,n, vm,n that minimize E ,
using the Newton-Raphson method for given b, and finally we optimize b.

For example, we find for the dimensionless coefficient va2 = 1 and N = 20 that the
optimal b is 2.8a. We define the energy density

U ≡ 1

2
tr
[
(DrΦ̃)2 + (D1Φ̃)2 + (D2Φ̃)2

]
+

1

2
r2 tr

[
F 2

12 + F 2
1r + F 2

2r

]
, (3.95)

for the exact solution we have

U = UBPS ≡ r tr
[
F12DrΦ̃ + F2rD1Φ̃ + Fr1D2Φ̃

]
. (3.96)

The total energy is then

EBPS =
1

4

∫
1

V
UBPSdVdU .

We present in Figure 3.4 our1 numerical results for Θ ≡ U/V as well as for the gauge
invariant absolute value of the scalar field

|Φ̃| ≡ (Φ̃aΦ̃a)1/2 =
√

U(f2 + h2) + g2 .

The results are for va2 = 1, and it is interesting to note that for such a relatively small
value of va2, the core of the soliton (where |Φ̃| = 0) is at r ≈ 2.9 (V = 8.3 in the graph of
Figure 3.4), which is far from a = 1.

1Graph drawn by Mathematica, Version 9.0, (Wolfram Research, Inc.).
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Figure 3.4 : Results of a numerical simulation with parameters b = 2.80 and N = 22. The graphs
show the energy density Θ ≡ U/V (solid line) and the gauge invariant absolute value of the scalar
field |Φ̃| ≡ (Φ̃aΦ̃a)1/2 (dashed line) for VEV v = 1 and soliton center at a = 1. The graphs are on
the axis U = 0 and the horizontal axis is V. At V = 0 the value of Θ is 2.0× 10−3 and the value
of |Φ̃| is 0.76. The value of the excess energy E for this simulation is less than 2× 10−5 of EBPS.
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Appendix A

A proof of the determinant identity and
the Smith normal form of the coupling
constant matrix

Molinari gave an elegant proof [13] to a generalization of (2.2) using only polynomial
analysis. Here we present an alternative basic linear-algebra proof for (2.2). At the same
time we also demonstrate that the Smith normal form of the coupling constant matrix K
defined in (2.5),

K =



k1 −1 0
. . . −1

−1
. . . . . . . . . . . .

0
. . . . . . . . . 0

. . . . . . . . . . . . −1

−1
. . . 0 −1 kn


,

is identical to the Smith normal form of

H = W − I =

(
a− 1 b

c d− 1

)
,

where W was defined in (2.11).
We begin by moving the first row of K to the end, to get K ′1. We have

detK = (−1)n detK ′1

but both K and K ′1 have the same Smith normal form. For clarity, we will present explicit
matrices for the n = 5 case. We get:

K ′1 ≡


−1 k2 −1 0 0
0 −1 k3 −1 0
0 0 −1 k4 −1
−1 0 0 −1 k5

k1 −1 0 0 −1

 ,
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We will now show how to successively define a series of matrices

K ′2, . . . , K
′
n−1 =


−1

. . .
−1

a− 1 b
c d− 1

 ,

related to each other by row and column operations that preserve the Smith normal form.
At each step, we need to keep track of a 2× 2 block of K ′m formed from the elements on the
(n− 1)th and nth rows and the mth and (m+ 1)st columns.

H ′m ≡
(

[K ′m](n−1)m [K ′m](n−1) (m+1)

[K ′m]nm [K ′m]n (m+1)

)
At the outset we have

H ′1 ≡
(

[K ′1](n−1) 1 [K ′1](n−1) 2

[K ′1]n 1 [K ′1]n 2

)
=

(
−1 0
k1 −1

)
.

As will soon be clear from the construction, the matrix K ′m has the following block form:

K ′m =


−Im−1

−1 km+1 −1 ∗ ∗ ∗
−1 km+2 ∗ ∗ ∗

Xn−m−4 ∗ ∗
[H ′m]11 [H ′m]12 −1 kn
[H ′m]21 [H ′m]22 −1

 , (A.1)

where Im−1 is the (m−1)× (m−1) identity matrix, ∗ represents a block of possibly nonzero
elements, Xn−m−4 represents a nonzero (n−m−4)×(n−m−4) matrix and empty positions
are zero. To get K ′m+1 from K ′m we perform the following row and column operations on
K ′m:

• Add [H ′m]11 times the mth row to the (n− 1)st row;

• Add [H ′m]21 times the mst row to the nth row;

• For j = m+ 1, . . . , n, add [K ′m]mj times the mth column to the jth column.

It is not hard to see that these operations produce a matrix that fits the general form (A.1)
with m→ m+ 1. Tracking how the bottom two rows transform, we find that for m < n− 2,

H ′m+1 =

(
[H ′m+1]11 [H ′m+1]12

[H ′m+1]21 [H ′m+1]22

)
=

(
[H ′m]12 + km+1[H ′m]11 −[H ′m]11

[H ′m]22 + km+1[H ′m]21 −[H ′m]21

)
= H ′m

(
km+1 1
−1 0

)
.
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Since, by definition, H ′1 =

(
−1 0
k1 −1

)
, it follows that

H ′n−2 =

(
−1 0
k1 −1

)(
k2 1
−1 0

)
· · ·
(
kn−2 1
−1 0

)
.

It can then be easily checked that the last two steps yield:

H ′n = H ′n−2

(
kn−1 1
−1 0

)(
kn 1
−1 0

)
−
(

1 0
0 1

)
.
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Appendix B

Compatibility of the supersymmetric
Janus configuration and the duality twist

In this section we describe the details of the supersymmetric Lagrangian. As explained in
§2.2, the system is composed of two ingredients: (i) the supersymmetric Janus configuration;
and (ii) an SL(2,Z) duality twist. We will now review the details of both ingredients and
demonstrate that their combination preserves supersymmetry.

B.1 Supersymmetric Janus
Extending the work of [17]-[19], Gaiotto and Witten [52] have constructed a supersym-

metric deformation of N = 4 Super-Yang-Mills theory with a complex coupling constant τ
that varies along one direction, which we denote by x3. We will now review this construc-
tion, using the same notation as in [52]. First, the real and imaginary parts of the coupling
constant are defined as

τ =
θ

2π
+

2πi

e2
, (B.1)

It is taken to vary along a semi-circle on the upper half τ -plane, centered on the real axis:

τ = a+ 4πDe2iψ , (B.2)

where ψ(x3) is an arbitrary function.
The action is defined as

I = IN=4 + I ′ + I ′′ + I ′′′

where IN=4 is the standard N = 4 action, modified only by making τ a function of x3, and
I ′, I ′′, and I ′′′ are correction terms listed below. We will list the actions for a general gauge
group, as derived by Gaiotto and Witten, although the application in this paper is for a
U(1) gauge group, and so several terms drop out. The bosonic fields are: a gauge field Aµ
(µ = 0, 1, 2, 3), 3 adjoint-valued scalar fields Xa (a = 1, 2, 3) and 3 adjoint-valued scalar
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fields Y p (p = 1, 2, 3). In the U(1) case, Xa and Y p are real scalar fields. In the type-IIB re-
alization on D3-branes, the D3-brane is in directions 0, 1, 2, 3, Xa corresponds to fluctuations
in directions 4, 5, 6, and Y p corresponds to directions 7, 8, 9. The fermionic fields are encoded
in a 16-dimensional Majorana-Weyl spinor Ψ on which even products of the 9+1D Dirac
matrices Γ0, . . . ,Γ9 act. Products of pairs from the list Γ0, . . . ,Γ3 correspond to generators
of the Lorentz group SO(1, 3), while products of pairs from the list Γ4,Γ5,Γ6 correspond
to generators of the R-symmetry subgroup SO(3)X acting on X1, X2, X3, and products of
pairs from the list Γ7,Γ8,Γ9 correspond to generators of the R-symmetry subgroup SO(3)Y
acting on Y 1, Y 2, Y 3. We have the identity Γ0123456789 = 1.

The additional terms are

I ′ =
i

e2

∫
d4xTr Ψ(αΓ012 + βΓ456 + γΓ789)Ψ ,

I ′′ =
1

e2

∫
d4xTr

(
uεµνλ(Aµ∂νAλ + 2

3
AµAνAλ) + v

3
εabcXa[Xb, Xc] + w

3
εpqrYp[Yq, Yr]

)
,

I ′′′ =
1

2e2

∫
d4xTr (rXaX

a + r̃YpY
p) ,

where

− 1
4
u = α = −1

2
ψ′ , −1

4
v = β = − ψ′

2 cosψ
, −1

4
w = γ =

ψ′

2 sinψ
, (B.3)

r = 2(ψ′ tanψ)′ + 2(ψ′)2 , r̃ = −2(ψ′ cotψ)′ + 2(ψ′)2 . (B.4)

As we are working with a U(1) gauge group, we will not need the cubic terms in I ′′. They
are nevertheless listed here for reference, and they will become relevant for extensions to a
nonabelian gauge group.

To describe the preserved supersymmetry we follow Gaiotto-Witten and work in a spinor
representation where

Γ0123 = −Γ456789 =

(
0 −I
I 0

)
, Γ3456 =

(
0 I
I 0

)
, Γ3789 =

(
I 0
0 −I

)
,

where I is an 8× 8 identity matrix. The surviving supersymmetries are those parameterized
by a 16-component ε16 which takes the form

ε16 =

(
cos(ψ

2
)ε8

sin(ψ
2
)ε8

)
, (B.5)

where ε8 is an arbitrary constant 8-component spinor.

B.2 Introducing an SL(2,Z)-twist
Here ψ is a function of x3 such that τ(x3) traces a geodesic on τ -plane with metric

|dτ |2/τ 2
2 . We pick the parameters a and D so that the semi-circle (B.2) will be invariant
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- τ1

6

τ2

pp
pppppp

�

r r

a a+ 4πDa− 4πD

τ(2π) τ(0)1
τ → aτ+b

cτ+d

Figure B.1 : In the Janus configuration the coupling constant τ traces a portion of a semi-circle
of radius 4πD in the upper-half plane, whose center a is on the real axis. We augment it with an
SL(2,Z) duality twist that glues x3 = 2π to x3 = 0.

under
τ → aτ + b

cτ + d
.

This amounts to solving the two equations

(a− 4πD) =
a(a− 4πD) + b

c(a− 4πD) + d
, (a+ 4πD) =

a(a+ 4πD) + b

c(a+ 4πD) + d
.

The solution is:

a =
a− d

2c
, 4πD =

√
(a + d)2 − 4

2|c|
,

and is real for a hyperbolic element of SL(2,Z) (with |a + d| > 2). Note that it is important
to have both (a±4πD) as fixed-points of the SL(2,Z) transformation, so as not to reverse the
orientation of the τ(x3) curve, and not create a discontinuity in τ ′(x3). So, given a, b, c, d,
our configuration is constructed by first calculating a and D, and then picking an arbitrary
ψ(2π) with a corresponding τ(2π) = a + 4πDe2iψ(2π). Next, we calculate the SL(2,Z) dual
τ(0) = (aτ(2π) + b)/(cτ(2π) + d) and match it to a point on the semicircle according to
τ(0) = a + 4πDe2iψ(0). The function ψ(x3) can then be chosen arbitrarily, as long as it
connects ψ(0) to ψ(2π). It can then be checked that r and r̃ are continuous at x3 = 2π.

At low-energy, the mass parameters r and r̃ in I ′′′ make the scalar fields (Xa and Y p)
massive. Note that in principle, the parameters can be locally negative [although this can
be averted by choosing ψ(x3) so that ψ′′ = 0], but the effective 2+1D masses, [obtained by
solving for the spectrum of the operators −d2/dx2

3 + r(x3), and −d2/dx2
3 + r̃(x3)] have to

be positive, since the configuration is supersymmetric and the BPS bound prevents us from
having a profile of Xa(x3) or Y p(x3) with negative energy. Similar statements hold for the
fermionic masses in I ′.
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B.3 The supersymmetry parameter
As explained in [21], the SL(2,Z) duality transformation acts nontrivially on the SUSY

generators. Define the phase ϕ by

eiϕ =
|cτ + d|
cτ + d

.

Then, the SUSY transformations act on the supersymmetry parameter as

ε→ e
1
2
ϕΓ0123ε .

(See equation (2.25) of [21].)
We can now check that

|cτ + d|
cτ + d

= ei(ψ̃−ψ) , (B.6)

where ψ̃ is defined by

τ̃ ≡ aτ + b

cτ + d
≡ a+ 4πDe2iψ̃ .

It follows from (B.6) that the Gaiotto-Witten phase that is picked up by the supersymmetry
parameter as it traverses the Janus configuration from η = 0 (corresponding to angular
variable ψ) to η = 2π (corresponding to ψ̃) is precisely canceled by the Kapustin-Witten
phase of the SL(2,Z)-duality twist. The entire “Janus plus twist” configuration is therefore
supersymmetric.

B.4 Extending to a type-IIA supersymmetric background
In section §2.4 we assumed that there is a lift of the gauge theory construction to type-IIB

string theory and, following a series of dualities, we obtained a type-IIA background with
NSNS fields turned on. Here we would like to outline how such a lift might be constructed.
We start with the well-known AdS3×S3×T 4 type-IIB background, and perform S-duality (if
necessary) to get the 3-form flux to be NSNS. Then, take AdS3 to be of Euclidean signature
and replace T 4 with R4, which we then Wick rotate to R1,3. We take the AdS3 metric in the
form

ds2 =
r2

r1r5

(−dt2 + dx2
5) +

r1

r5

9∑
i=6

dx2
i +

r1r5

r2
dr2 + r1r5dΩ2

3

H(RR) =
2r2

5

g
(ε3 + ∗

6ε3) , eφ =
gr1

r5

where ε3 is the volume form on the unit sphere, and ∗6 is the Hodge dual in the six dimensions
x0, . . . , x5 (of AdS3 × S3), and where r1, r5 are constants. (We follow the notation of [23].)

We need to change variables r → x3, t → ix1 and x9 → ix0, and perform S-duality
(where the RHS of arrows are the variables of §2.5). We then compactify directions x1 and
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x2 so that 0 ≤ xi < 2πLi (i = 1, 2). As a function of x3, we define the Kähler modulus of
the x1 − x2 torus to be

ρ = i
4π2r2

1L1L2

x2
3

Finally, we perform T-duality on direction x5 to replace ρ with the complex structure τ of
the resulting T 2. In an appropriate limit, this gives a solution where τ goes along a straight
perpendicular line in the upper half plane. We can convert it to a semi-circle with an SL(2,R)
transformation.



61

Appendix C

Recasting BPS equations in terms of a
single potential

The action (3.64) is invariant under dilatations that act as

f(r, ρ)→ f(λr, λρ) , χ(r, ρ)→ χ(λr, λρ) .

The components of the associated Noether current are given by

Jr =
ρf 2

r

2f 2
+
ρ2frfρ
rf 2

−
ρf 2

ρ

2f 2
+
ρχ2

r

2f 2
+
ρ2χrχρ
rf 2

−
ρχ2

ρ

2f 2
,

Jρ =
ρ2f 2

ρ

2rf 2
+
ρfrfρ
f 2
− ρ2f 2

r

2rf 2
+
ρ2χ2

ρ

2rf 2
+
ρχrχρ
f 2

− ρ2χ2
r

2rf 2
.

The equations of motion (3.63)-(3.62) imply the conservation equation1

(Jr)r + (Jρ)ρ = 0,

which implies that there exists a potential function Φ such that

Jρ = Φr , Jr = −Φρ . (C.1)

To proceed, we think of the functions f and χ as defining a change of coordinates from (f, χ)
to (r, ρ) [similar to (3.66), except with the φ coordinate absent]. In (r, ρ) coordinates, the
AdS2 metric (3.65) becomes:

ds2 = Grrdr
2 + 2Grρdrdρ+ Gρρdρ

2 , (C.2)

where the metric G can be expressed, using (C.1), as:

Grr = − r2

r2+ρ2
(Φρρ + Φrr + 1

r
Φr + 1

ρ
Φρ) ,

Gρρ = − r2

r2+ρ2
(Φρρ + Φrr − 1

r
Φr − 1

ρ
Φρ) ,

Grρ = r
ρ(r2+ρ2)

(rΦr − ρΦρ) .

1We stress that this is not directly related to the stress-energy tensor in the original fields Ai and Φ.
These generally vanish in BPS configurations [61].
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Φ then satisfies a nonlinear differential equation that states that the Ricci scalar of (C.2) is
R = −2. In order to incorporate the Dirac string for r < a, the function Φ must diverge
like log ρ as ρ→ 0 and r < a. For large a, the solution to f and χ is given by adapting the
Prasad-Sommerfield solution as given by [41]:

f =
ρ sinh R

R + R cosh R cosh Z− Z sinh Z sinh R
, χ =

Z cosh Z sinh R−R sinh Z cosh R

R + R cosh R cosh Z− Z sinh Z sinh R
(C.3)

where Z and R are given in (3.81), we have set the VEV v = 1, and we have used R as a
substitute for the distance from the core of the monopole. From this we find,

Φ→ −1
4
ρ2 + 1

2
log ρ− log R + log sinh R . (C.4)

We also note that the abelian solution

f =

(
R− Z

2a

)
e−

1
2
vr2 , χ = 0 ,

can be derived from the potential

Φ = 1
4
v2r2ρ2 + 1

2
v(2aR + r2 − ρ2) + log

[
2aR

(R− Z)(a+ R + Z)

]
.

Finally, we note that a change of variables,

r = aeτ cosσ , ρ = aeτ sinσ ,

converts the metric to the more compact form

ds2 = − cos2 σ(Φσσ + Φττ )(dσ
2 + dτ 2) + cot σ

[
Φσ(dσ2 − dτ 2) + 2Φτdσdτ

]
.
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Appendix D

Large VEV expansion

In this section we will discuss the behavior of the solution to (3.40) for large VEV v.
Since the dimensionless combination is va2, we can just as well discuss fixed v and large a,
which means that the core of the monopole solution is far from the tip. Let us set1 x3 ≡ r−a
and rescaling φ = aΦ/kR, so that equations (3.40) can be rewritten as

(1 + x3

a
)Diφ = 1

2
εijkFjk (D.1)

where in this section i, j, k = 1, 2, 3 refer to x1, x2, x3 with Euclidean metric

ds2 = dx2
1 + dx2

2 + dx2
3 .

In the limit a→∞, (D.1) reduce to Bogomolnyi’s equations and the one-monopole solution
is [36]:

A
a (0)
i = εiajxjK(R) , φa (0) = xaH(R) , (D.2)

where
H ≡ 1

R
cothR− 1

R2 , K ≡ 1
R sinhR

− 1
R2 , (D.3)

and here

R2 =
3∑
i=1

x2
i .

We set
b ≡ 1

a
, ~̀≡ (0, 0, b) ,

so that x3

a
= ~̀ · ~x, and (D.1) can be written as:

(1 + ~̀ · ~x)Diφ = 1
2
εijkFjk . (D.4)

1We hope the no confusion will arise with the coordinate x3 that was used in §3.2.1. That coordinate
plays no role here, and the only coordinates relevant for this section are x1, x2 and r = a+ x3.
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We can now expand around the Prasad-Sommerfield solution:

Ai = A
(0)
i + bA

(1)
i + b2A

(2)
i + · · · , φ = φ(0) + bφ(1) + b2φ(2) + · · · ,

where we set the 0th order terms to the Prasad-sommerfield solution (D.2).
At order O(b) we write all possible terms that are allowed by spherical symmetry and we

keep only the terms that are also invariant under the parity symmetry

φa(~x, ~̀)→ −φa(−~x,−~̀) , Aai (~x,
~̀)→ −Aai (−~x,−~̀) . (D.5)

The general expression is then

bφa(1) = `af1,1(R) + xa(`kxk)f1,2(R) , (D.6)

bA
a(1)
i = xaεijkxj`kf1,3(R) + xiεajkxj`kf1,4(R) + εaij`jf1,5(R) , (D.7)

and we note the identity

x[iεa]jkxj`k = 1
2
εaij`jR

2 − 1
2
(`kxk)εaijxj , (D.8)

which is the reason why we did not include a term of the form (`kxk)εaijxjf1,6. The coefficients
f1,1, . . . , f1,5 are unknown functions of R.

We also have the freedom to apply an infinitesimal O(b) gauge transformation which
takes the form

δφa = εabcλ
bφc , δAai = ∂iλ

a − εabcAbiλc

with
λa = εabcxb`cg1,1(R) .

This gives

δφa = εabcεbdexd`eg1,1x
cH = −xa`kxkg1,1H + `aR

2g1,1H , (D.9)
δAai = −εiab`bg1,1 + 1

R
xiεabcxb`cg

′
1,1 + xaεibcxb`cg1,1K . (D.10)

Using this gauge transformation we can set one of the parameters in (D.6)-(D.7) to zero. We
choose to set

f1,5 = 0. (D.11)

We end up with the general form of the O(b) correction:

bφa(1) = `af1,1(R) + xa(`kxk)f1,2(R) , (D.12)

bA
a(1)
i = xaεijkxj`kf1,3(R) + xiεajkxj`kf1,4(R) . (D.13)

Plugging (D.2) and (D.12)-(D.13) into (D.4) and comparing terms of order O(b) we get:

HK − 1
R
H ′ = 1

R
(f ′1,2 + f ′1,3)−Kf1,2 −Kf1,3 + (K −H)f1,4 , (D.14)

0 = 1
R
f ′1,1 + (1 +R2K)f1,3 +R2Hf1,4 , (D.15)

0 = Rf ′1,3 +Kf1,1 − f1,2 + 3f1,3 + (1 +R2K)f1,4 (D.16)
−H(1 +R2K) = Kf1,1 + (1 +R2K)f1,2 + f1,4 , (D.17)



65

These are ordinary inhomogeneous linear differential equations in f1,1, . . . , f1,4. Note that
f1,4 can be eliminated from (D.17), so the general solution is given be an arbitrary solution
of the full equations (D.14)-(D.17) plus a linear combination of three linearly independent
solutions of the homogeneous equations:

0 = 1
R

(f ′1,2 + f ′1,3)−Kf1,2 −Kf1,3 + (K −H)f1,4 , (D.18)
0 = 1

R
f ′1,1 + (1 +R2K)f1,3 +R2Hf1,4 , (D.19)

0 = Rf ′1,3 +Kf1,1 − f1,2 + 3f1,3 + (1 +R2K)f1,4 (D.20)
0 = Kf1,1 + (1 +R2K)f1,2 + f1,4 , (D.21)

The general solution to (D.14)-(D.17) that is nonsingular at R = 0 is

f1,1 = − R
2 sinhR

+ c1(R cosh2R
sinh3R

− coshR
sinh2R

) + c2( 3R
sinhR

− 3R2 coshR
sinh2R

+ R3 cosh2R
sinh3R

) , (D.22)

f1,2 = 1
2R2 + 1−2 coshR

2R sinhR
+ c1( 1

R4 − cosh2R
R sinh3R

+ coshR−1
R2 sinh2R

) + c2(−R cosh2R
sinh3R

+ (2 coshR−3)
R sinhR

+ (3 coshR−1)

sinh2R
) ,

(D.23)
f1,3 = 1

2R2 − 1
2R

cothR + c1(− 1
R4 + coshR

R sinh3R
) + c2(R coshR

sinh3R
+ coshR

R sinhR
− 2

sinhR
) , (D.24)

f1,4 = c1(− 1
R3 sinhR

− coshR
R2 sinh2R

+ 1+cosh2R
R sinh3R

) + c2(R(1+coshR2)

sinh3R
+ 3

R sinhR
− 5 coshR

sinh2R
) , (D.25)

where c1, c2 are undtermined constants. Note that the functions (D.22)-(D.25) have a regular
power series expansion at R = 0 with nonnegative even powers of R only. We note that there
is another homogeneous solution that we discarded because it is singular at R = 0:

f1,1 = c3( cosh2R
sinh3R

) , f1,2 = −c3( cothR
R4 + 1

R3 sinh2R
+ cosh2R

R2 sinh3R
) ,

f1,3 = c3( cothR
R4 + 1

R3 sinh2R
+ coshR

R2 sinh3R
) , f1,4 = c3( coshR

R3 sinh2R
+ 1+cosh2R

R2 sinh3R
) .

(D.26)
We are left with two unknown parameters c1, c2 but one can be a adjusted to zero by
shifting the center of the zeroth order solution: ~x → ~x + c0

~̀, followed by a suitable gauge
transformation to fix the f1,6 = 0 gauge, to set c1 = 0. The parameter c2 is undetermined at
this point, since it depends on the proper boundary conditions at R =∞ and at R = −1/b.

Now we move on to order O(b2). The general ansatz at this order is:

b2φa(2) = `2xaf2,1(R)

+[`a(`kxk)− 1
3
`2xa]f2,3(R) + xa[(`kxk)(`mxm)− 1

3
`2R2]f2,4(R) , (D.27)

bA
a(2)
i = `2εiakxkf2,2(R) + xaεijkxj`k(`mxm)f2,5(R) + xiεajkxj`k(`mxm)f2,6(R)

+εaij[`j(`mxm)− 1
3
`2xj]f2,7(R) + (`iεajkxj`k − 1

3
`2εajixj)f2,8(R) , (D.28)

where we have separated the different terms according to whether they can be expressed
in terms of the spin-0 combination `2 ≡ `k`k or the spin-2 combination `k`m − 1

3
`2δkm.

We again used the identity (D.8) to eliminate the term εaijxj(~̀ · ~x)2, and we also note the
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identity `[iεa]jkxj`k = 1
2
εaij`j(`kxk) − 1

2
`2εaijxj , which we used to eliminate a term of the

form `aεijkxj`kf2,9. At order O(b2) the possible gauge parameters are of the form:

λa = εabcxb`c(`kxk)g2,1(R) ,

and we use the corresponding gauge transformation to gauge fix f2,8 = 0. Our parameters
f2,1, f2,2 have spin-0, while f2,3, . . . , f2,7 have spin-2. The spin-2 equations are:

0 = 1
R
f ′2,4 − 1

R
f ′2,5 −Kf2,4 +Kf2,5 + (H −K)f2,6

+ 1
R
f ′1,2 −Kf1,2 −Hf1,4 − f1,2f1,4 − f1,3f1,4 , (D.29)

0 = 1
R
f ′2,7 +Hf2,7 +Kf2,3 + (1 +R2K)f2,4 − 2f2,6

+Kf1,1 + f1,2 +R2Kf1,2 − f1,1f1,3 , (D.30)
0 = 1

R
f ′2,3 − (1 +R2K)f2,5 + (1−R2H)f2,6 + (K −H)f2,7

+ 1
R
f ′1,1 +R2Hf1,4 + f1,1f1,3 + f1,1f1,4 +R2f1,2f1,4 +R2f1,3f1,4 , (D.31)

0 = Rf ′2,5 − 1
R
f ′2,7 −Kf2,3 + 2f2,4 + 4f2,5 + (2 +R2K)f2,6 +Kf2,7

−Kf1,1 + f1,2 + f1,1f1,3 +R2f1,3f1,4 , (D.32)
0 = f2,3 −R2f2,6 − f2,7 −R2f1,1f1,3 −R4f1,3f1,4 . (D.33)

The spin-0 equations are:

0 = f ′2,1 + 1
R
f2,1 + 2

R
(1 +R2K)f2,2 + 1

3
f ′1,1 + 1

3
R2f ′1,2 + 2

3
Rf1,2 − 2

3
Rf1,1f1,4 , (D.34)

0 = f ′2,2 + ( 2
R

+RH)f2,2 + 1
R

(1 +R2K)f2,1

+1
3
RKf1,1 + 1

3
R(1 +R2K)f1,2 + 1

2
Rf1,1f1,3 − 1

3
R3f1,3f1,4 . (D.35)

We first solve the spin-0 equations. The general solution is given by:

f2,1 = R2

36 sinh2R
+ 1

6
R cothR + c5

(
1

sinh2R
− 1

R
cothR

)
+c6

(
1

R sinh2R

)
, (D.36)

f2,2 = R2 coshR
36 sinh2R

− R
8 sinhR

+ c5

(
coshR
sinh2R

− 1
R sinhR

)
+c6

(
coshR
R sinh2R

)
. (D.37)

Since c6 multiplies an R-odd and singular solution, we set c6 = 0. The unknown c5 needs to
be determined by the boundary conditions at R =∞ and R = −a.

Now, we move on to the spin-2 equations. First we look for a solution of the homogeneous
spin-2 part:

0 = 1
R
f ′2,4 − 1

R
f ′2,5 −Kf2,4 +Kf2,5 + (H −K)f2,6 , (D.38)

0 = 1
R
f ′2,7 +Hf2,7 +Kf2,3 + (1 +R2K)f2,4 − 2f2,6 , (D.39)

0 = 1
R
f ′2,3 − (1 +R2K)f2,5 + (1−R2H)f2,6 + (K −H)f2,7 , (D.40)

0 = Rf ′2,5 − 1
R
f ′2,7 −Kf2,3 + 2f2,4 + 4f2,5 + (2 +R2K)f2,6 +Kf2,7 , (D.41)

0 = f2,3 −R2f2,6 − f2,7 . (D.42)
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The general solution that is well behaved as R→∞ is:

f
(homog)
2,3 = c7{ 4R

sinhR
}+ c8{ 4

R4 sinhR
} , (D.43)

f
(homog)
2,4 = c7{6 coshR−4

R sinhR
− 2

sinh2R
}+ c8{−4(coshR+1)

R6 sinhR
− 2

R5 sinh2R
} , (D.44)

f
(homog)
2,5 = c7{−2 coshR

sinh2R
− 4 coshR−6

R sinhR
}+ c8{−4(coshR+1)

R6 sinhR
− 2 coshR

R5 sinh2R
} , (D.45)

f
(homog)
2,6 = c7{− 2

R sinhR
+ 2 coshR

sinh2R
}+ c8{ 8

R6 sinhR
+ 2 coshR

R5 sinh2R
} , (D.46)

f
(homog)
2,7 = c7{ 6R

sinhR
− 2R2 coshR

sinh2R
}+ c8{− 4

R4 sinhR
− 2 coshR

R3 sinh2R
} . (D.47)

Additionally, there are two more linearly independent solutions that grow exponentially as
R→∞. They are given by:

f
(homog)
2,3 = c9{− 2 cosh2R

R2 sinhR
+ 6 coshR

R3 − 6 sinhR
R4 }

+c10{−6 coshR
R4 − 2 coshR

R2 + 6 cosh2R
R3 sinhR

} , (D.48)

f
(homog)
2,4 = c9{6 sinhR

R6 − 3(1+2 coshR)
R5 + 2 cosh2R

R4 sinhR
+ 1

R3 sinh2R
}

+c10{6(1+coshR)
R6 − 3(coshR+2 cosh2R)

R3 sinhR
+ 2 coshR

R4 − 3
R4 sinh2R

} , (D.49)

f
(homog)
2,5 = c9{6 sinhR

R6 − 3(2+coshR)
R5 + 2 cothR

R4 + coshR
R3 sinh2R

}
+c10{6 coshR

R6 + 6
R6 − 3 cosh2R

R5 sinhR
− 6 cothR

R5 + 2
R4 − 3 coshR

R4 sinh2R
} , (D.50)

f
(homog)
2,6 = c9{−12 sinhR

R6 + 9 coshR
R5 − 2 cosh2R

R4 sinhR
− coshR

R3 sinh2R
}

+c10{−12 coshR
R6 + 9 cosh2R

R5 sinhR
+ 3 coshR

R4 sinh2R
− 2 coshR

R4 } , (D.51)

f
(homog)
2,7 = c9{6 sinhR

R4 − 3 coshR
R3 + coshR

R sinh2R
}

+c10{6 coshR
R4 − 3 cosh2R

R3 sinhR
− 3 coshR

R2 sinh2R
} . (D.52)

Once we have a complete linearly independent set of solutions to the homogeneous problem,
we can find the solution to the inhomogeneous problem by integration. When we perform
the integration we obtain complicated expressions that contain polylogarithms

Lin(z) =
∞∑
k=1

zk

kn
.
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For example, if we set c2 = 0 in (D.22)-(D.25), we get:

f
(inhomog)
2,3 = − 9

2R4 sinhR
Li4(e−2R) +

[
3
R3 (sinhR− 2

sinhR
)− ( 3

R4 + 1
R2 ) coshR

]
Li3(e−2R)

−
[

3
R2 sinhR

+ ( 6
R3 + 2

R
) coshR− 6 sinhR

R2

]
Li2(e−2R)

+
[
( 6
R2 + 2) coshR− 6

R
sinhR

]
log(1− e−2R)− 1

sinhR

(
1
2

+ 45
2R3 + 2

R
+ 59

120
R
)

+
(

R2

8 sinh2R
+ 45

2R4 + 15
2R2 + 2

R
+ 2 + 2

3
R
)

coshR−
(

45
2R3 + 2

R
+ 2 + 2

3
R
)

sinhR ,

(D.53)

f
(inhomog)
2,4 = ( 9

2R6 sinhR
+ 9

2R6 cothR + 9
4R5 sinh2R

) Li4(e−2R)

+
[

3
R6 + ( 3

R6 + 1
R4 ) coshR + 15

2R5 cothR + 6
R5 sinhR

+ 3
R4 sinh2R

− 3
R5 sinhR

]
Li3(e−2R)

+
[

6
R5 + 3

2R3 sinh2R
+ ( 6

R5 + 2
R3 ) coshR + 6

R4 cothR + 3
R4 sinhR

− 6
R4 sinhR

]
Li2(E−2R)

+
[

6
R3 sinhR− 3

R3 cothR− ( 6
R4 + 2

R2 ) coshR− 6
R4

]
log(1− e−2R)

+ ( 45
2R5 + 2

R3 + 2
R2 + 2

3R
) sinhR + ( 45

4R4 + 1
R2 + 1

4R
+ 37

120
) 1

sinh2R
− coshR

8 sinh2R

+ ( 45
2R5 + 2

R3 + 1
2R2 + 59

120R
) 1

sinhR
+ ( 45

4R5 + 2
R3 − 1

2R2 + 1
5R

) cothR

− ( 45
2R6 + 15

2R4 + 2
R3 + 2

R2 + 2
3R

) coshR− 45
2R6 − 2

R3 + 1
8R2 , (D.54)

f
(inhomog)
2,5 = ( 9

2R6 sinhR
+ 9

2R6 cothR + 9 coshR
4R5 sinh2R

) Li4(e−2R)

+( 3
R6 + 1

R4 + 3
R6 coshR− 3

2R5 sinhR + 6
R5 cothR + 15

2R5 sinhR
+ 3 coshR

R4 sinh2R
) Li3(e−2R)

+( 6
R5 + 2

R3 + 6
R5 coshR− 3

R4 sinhR + 3
R4 cothR + 6

R4 sinhR
+ 3 coshR

2R3 sinh2R
) Li2(e−2R)

−
[

6
R4 + 2

R2 + 6
R4 coshR− 3

R3 sinhR + 3
R3 sinhR

]
log(1− e−2R)

− 45
2R6 − 15

2R4 − 2
R3 − 3

8R2 − 2
3R
−
(

45
2R6 + 2

R3 + 1
R2

)
coshR

+
(

45
4R5 + 2

R3 + 1
R2

)
sinhR +

(
45

2R5 + 2
R3 + 1

2R2 + 13
15R

)
cothR

+
(

45
4R5 + 2

R3 − 1
2R2 − 27

40R

)
1

sinhR
+
(

45
4R4 + 1

R2 + 1
4R

+ 37
120

)
coshR
sinh2R

− 1
8 sinh2R

, (D.55)

f
(inhomog)
2,6 = −( 9

R6 sinhR
+ 9 coshR

4R5 sinh2R
) Li4(e−2R)

−
[
( 6
R6 + 1

R4 ) coshR− 9
2R5 sinhR + 27

2R5 sinhR
+ 3 coshR

R4 sinh2R

]
Li3(e−2R)

−
[
( 12
R5 + 2

R3 ) coshR− 9
R4 sinhR + 9

R4 sinhR
+ 3 coshR

2R3 sinh2R

]
Li2(e−2R)

+
[
( 12
R4 + 2

R2 ) coshR− 9
R3 sinhR + 3

R3 sinhR

]
log(1− e−2R)

−( 45
4R4 + 1

R2 + 1
4R

+ 13
30

) coshR
sinh2R

+ ( 45
R6 + 15

2R4 + 4
R3 + 3

R2 + 2
3R

) coshR

−( 135
4R5 + 4

R3 + 3
R2 + 2

3R
) sinhR− ( 135

4R5 + 4
R3 − 13

30R
) 1

sinhR
, (D.56)

f
(inhomog)
2,7 = f

(inhomog)
2,3 −R2f

(inhomog)
2,6 −R2f1,1f1,3 −R4f1,3f1,4 . (D.57)

We note that the combinations of polylogarithms that appear here are the results of the
integrals∫

R3 cothRdR = −3
4

Li4(e−2R)− 3
2
RLi3(e−2R)− 3

2
R2 Li2(e−2R) +R3 log(1− e−2R) + 1

4
R4 ,



69

and ∫
R2 cothRdR = −1

2
Li3(e−2R)−RLi2(e−2R) +R2 log(1− e−2R) + 1

3
R3 .

When we turn on c2 6= 0 we get additional terms, but they can be expressed as rational
functions of eR and R and do not cancel the polylogarithms. In any case, this demonstrates
that a simple solution to the BPS equations (3.40), involving only basic functions, does not
exist.
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