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Abstract

Fast and accurate quantification and differential analysis of transcriptomes

by

Harold Joseph Pimentel

Doctor of Philosophy in Computer science

University of California, Berkeley

Professor Lior Pachter, Chair

As access to DNA sequencing has become ubiquitous to scientists, the use of sequencers
has expanded from determining the genomes of individuals to performing molecular probing
assays. These assays have turned DNA sequencers into molecule counting machines and
can be used to measure biological activities such as gene expression (RNA-Seq [60]), DNA
accessibility (ATAC-Seq [12]) and many others [91].

Each new assay poses new analytical challenges, and the main focus presented here is
in analyzing RNA-Seq data. One of the main challenges in RNA-Seq is that sequenced
fragments are often ambiguous, meaning they are compatible with multiple splice forms
or genomic locations. In order to estimate gene abundances effectively, these ambiguous
fragments should be used in a comprehensive model in order to not bias results [87]. Analysis
has come a long way from ignoring ambiguous mappings, to maximum likelihood models
[87, 50, 49], and even streaming models [72]. Advancements in these models have greatly
improved the accuracy of estimating gene and transcript abundances.

In parallel, methods for determining true expression differences between experimental
conditions, termed differential expression, have been developed [4, 56, 75, 45]. Historically,
these methods have mostly ignored advancements in gene expression estimation but have
made much progress in between-sample variance estimation when sample sizes are small – a
common practice in this field.

Herein, we present advancements to both abundance estimation and differential expres-
sion analysis. We show dramatic improvements to the speed of abundance estimation while
maintaining accuracy. Furthermore, we bridge these two fields by developing a differential
expression model incorporating the uncertainty introduced by abundance estimation. We
show that this model outperforms existing techniques at both the transcript and gene level.

Additionally, we show that these methods can be used to address other biological ques-
tions such as the discovery of novel retained introns and estimation of their abundances. An
extension to the differential expression model is proposed to identify differences in retained
intron levels while incorporating abundance estimation uncertainty.
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Chapter 1

Introduction

Incredible innovations have been made over the past ten years in DNA sequencing. The
cost of DNA sequencing has dropped drastically, throughput has been greatly increased
with improved accuracy, sample preparations have become much simpler, and above all,
sequencing has become easily attainable even for small laboratories. Much of this innovation
is a result of the Illumina sequencing platform which uses a massively parallel sequencing-
by-synthesis method. This platform has the capability of sequencing billions of short reads
commonly ranging from 75 base pairs to 300 base pairs. Here, we call standard short read
DNA sequencing on the Illumina platform DNA-Seq to avoid confusion with other DNA
sequencing platforms. While DNA-Seq is a great feat in its own right, perhaps even more
incredible is the inevitable adaptation of the sample preparation to perform other assays
such as detection of chromatin binding regions, methylation sites, and RNA abundance [91].
At a high level, if the molecule of interest can be translated into DNA, it can be measured
using DNA sequencing by turning the sequencer into a molecular counter.

There have been a plethora of protocols released in the last decade built atop DNA
sequencing [94, 57, 54, 34, 30, 37], but perhaps the most popular is RNA-Seq [60], the process
of sequencing RNA fragments. There are many forms of RNA-Seq, but the most common
is mRNA-Seq which sequences mature messenger RNA. The process can be broken down
into a few major steps: isolate RNA molecules, fragment RNA molecules, perform reverse
transcription to generate cDNA, amplify, and sequence (see Figure 1.1 for an overview) [88].
The output is typically a set of short reads that represent cDNA fragments derived from
the mRNA. Reads are then output in large text files containing the sequences of the ends
of cDNA fragments. There are other sequencing platforms that I will not discuss, most of
which are tailored to perform long-range sequencing, but none of which have had nearly as
many applications as the Illumia platform.

Post-sequencing, analysis of the resulting data is required which in itself poses many
issues. Since the reads are not labeled, sophisticated algorithms have to be used in all steps
of the analysis to recover the signal from the cDNA fragments. Thus, this data leads to a
number of technical issues:
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1. How is a read’s true source transcript/gene identified?

2. How can the transcript abundances be estimated?

3. What types of questions can be answered with this data after the transcript abundances
have been estimated?

These questions are the main focus of this thesis. Questions (1) and (2) are very related
and I will call them “alignment and quantification”. Question (3) is much more broad but I
will address it with a few specific analyses that can be performed, in particular differential
expression analysis and intron retention detection.
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RNA Molecules

(a) RNA fragmentation

(b) Random priming and synthesis 

Gene X Gene Y Gene Z

Gene X
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Feature
Gene X
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…. Expression matrix

(f) Library size normalization
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(c) Wash away RNA and make dsCDNA

(d) Sequence and 
align fragments to genes

Short fragments "Sequenceable" fragments Long fragments

Figure 1.1: Typical workflow of RNA-Seq adapted from [73]. (a) RNA molecules are isolated
and fragmented. (b) Primers are used to initiate reverse transcription and create single-
stranded cDNA. (c) RNA is removed and double-stranded cDNA is created. Typically,
PCR amplification is performed at this step. It is also typical to perform a size selection
step to remove fragments that are either too short or too long to sequence well. This step
often selects fragments around 200 base pairs long. (d) Sequencing is performed and short
reads are reported in plaintext files. These reads are aligned to a reference genome or
transcriptome. (e) The reads are summarized by estimating the relative abundance of each
gene or transcript. (f) After the above steps have been performed on several samples, the
samples can be aggregated and compared to each other using between-sample normalization
techniques [56, 74]. This is necessary because they will likely be sequenced to different depths
and will likely have different relative distributions. After normalization, postprocessing and
other analyses can proceed, such as differential expression.
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1.1 Alignment and quantification

After reads have been generated, their origin should be determined in order to estimate
the abundance of each transcript. The procedure to determine possible locations of origin
is alignment. RNA-Seq alignment is very similar to DNA-Seq alignment [43] with some
added complexities. One complexity is that the reads actually come from RNA transcripts
resulting in reads that span exon junctions. There are two common ways to deal with this:
(1) align directly to a reference transcriptome including only exonic sequences, or (2) align
across splice junctions at the genomic level. Method 1 simplifies the matter as DNA-Seq
aligners can be used [50]. However, a drawback of this is that new splice junctions cannot
be discovered without considerable effort. Usually, this is not an issue if one is studying a
model organism that is well annotated. Method 2 typically involves trying to map directly
to the genome, then mapping the remaining reads across splice junctions. There have been
many approaches, but it is quite typical to create indexes of known splice junctions, then
to try to map to these indexes [86, 41]. Regardless, both of these methods are typically the
most time consuming part of the workflow, often taking several hours for just one sample
[11].

After alignment, many reads typically map ambiguously at both the transcript level
due to alternative splicing and genome level due to duplications. Because of this fact,
simple counting procedures can often give biased results of transcript or gene expression [85]
leading to invalid inferences about the underlying biology. This is typically dealt with by
probabilistic models that attempt to intelligently assign fragments based on a model of the
sequencing procedure. This is quite a difficult problem and much attention has been given
to it [72, 63, 87, 50, 49, 38]. In these models, after potential sites have been identified for
each read, the true origin of the read is typically treated as an unobserved random variable
and often solved for using the Expectation-Maximization algorithm [63].

In 2014, researchers realized that one could get away from read alignments by “shredding”
reads into k-mers and aligning those quickly by using a hash table [66]. While this has speed
advantages compared to typical alignment strategies, the spatial integrity of the reads is lost
when ignoring the fact that k-mers are correlated. As a result, considerable accuracy is lost
[11]. Our approach, kallisto (Chapter 2), improves accuracy by using information from all
of the k-mers in a read at once rather than shredding them and also includes major speed
improvements based on the way we perform the “pseudoalignment” procedure (discussed in
Section 2.2).

1.2 Differential expression analysis

After the abundance of each transcript has been quantified in a set of RNA-Seq samples, a
common question is: are there any features (e.g. transcripts or genes) expressed differently
in different experimental conditions? Experimental conditions can be genetically different
individuals, different experimental perturbations, cancer versus normal cells, etc. Classical
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statistics has tackled these types of questions for many years, however, with RNA-Seq data
there are additional complications making these methods inappropriate off-the-shelf.

Perhaps the most common difficulty in finding differentially expressed features is the small
sample size in most experiments. While it is true that sequencing is relatively inexpensive,
the time and effort in producing samples for sequencing can be considerable. It is fairly
common that an experiment contain as few as 3 control samples and as few as 3 treatment
samples. Small samples typical in RNA-Seq studies violate the assumptions of classical
statistics which typically assume data sizes approaching infinity.

The result of violating the large sample assumptions is that estimators of the biological
variance which are required for differential expression testing are very unstable leading to
potentially unreproducible results and many false-positives [77]. To address this issue there
have been many methods for estimating the variance in a “pooled” manner, commonly
referred to as “shrinkage” in the statistical literature [4, 56, 75, 45]. These methods typically
differ in how they estimate the variance, often by making assumptions of a mean-variance
relationship.

Most of this effort has been at the gene level with a number of assumptions that go into
this modeling. The most common is that the variance has a specific form where the variance
of estimating the abundance (called inferential variance) is constant with respect to the mean
abundance [4]. In Chapter 3 we show that this assumption can be dropped leading to an
increase in performance. When testing for differential expression at the transcript level, this
assumption is even more highly violated and while some methods do exist [48, 85, 28], these
methods have strong assumptions about the inferential variance which are certainly violated.
Our method drops these strong parametric assumptions and learns this component of the
variance by using the bootstrap as implemented in kallisto. Additionally, our method is
generalized to testing arbitrary sets of transcripts and the transcript-level model is a special
case of the gene-level model.

1.3 Intron retention

Another application of RNA-Seq is the abundance estimation and discovery of novel retained
introns. Retained introns have been studied much less than differential expression, not only
from a methods point of view, but also from a functional point of view [9, 10]. Even so, there
have been numerous implications of inappropriate intron retention induced by mutations.
For example, intron retention events have recently been implicated in breast cancer [25]
and MDS [58]. Briefly, a retained intron typically occurs when an intron normally spliced
out during transcription is retained in the final mRNA product. Assuming the library is
poly-A selected, RNA-Seq can be used to detect these events. While some quantification
tools support quantification of retained introns that are annotated [38, 1], no tools exist to
perform discovery of these events. We present our work on discovering novel retained introns
as well as finding differentially expressed introns in Chapter 4.
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Chapter 2

Fast quantification with kallisto

We present kallisto, an RNA-seq quantification program that is two orders of magnitude
faster than previous approaches and achieves similar accuracy. Kallisto pseudoaligns reads
to a reference, producing a list of transcripts that are compatible with each read while
avoiding alignment of individual bases. We use kallisto to analyze 30 million unaligned
paired-end RNA-seq reads in < 10 min on a standard laptop computer. This removes a
major computational bottleneck in RNA-seq analysis.

This work was previously published as “Near-optimal probabilistic RNA-seq quantifica-
tion” [11] and is being reproduced with permission of the co-authors.

2.1 Introduction

The first two steps in typical transcript-level RNA-seq processing workflows are alignment
to a transcriptome or a reference genome and estimation of transcript abundances. These
steps can be time consuming. For example, aligning 20 samples, each with 30 million RNA-
seq reads, using the widely used program TopHat2 [41] takes 28 core hours on 20 cores,
while quantification with the companion program Cufflinks [87] takes another 14 h. Such
running times are likely to become prohibitive as sequence data from increasing numbers of
samples are generated. Although the quantification of aligned reads can be sped up with
streaming algorithms [72] or by naive counting of reads [5], these approaches have resulted
in a decrease in quantification accuracy. To circumvent the alignment step, a recent study
proposed quantifying samples by extraction of k-mers from reads followed by exact matching
of the k-mers using a hash table [66]. However, shredding reads into k-mers discards valuable
information present in complete reads since each k-mer can align to more transcripts than
the read itself. This results in a substantial loss of accuracy (Fig. 2.1).

Although the direct use of k-mers is inadequate for accurate quantification, the hash-
based approach provides a basis for speeding up RNA-seq processing. Here we investigate
whether information from k-mers within reads can be combined to maintain the accuracy of
alignment-based quantification. We examine the central difficulty and key requirement for
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Figure 2.1: Median relative difference for abundance estimates using varying values of k on a
dataset of 30 million 75bp paired-end reads that were simulated without errors. The “k-mers
method” uses the k-compatibility of each k-mer independently and runs the EM algorithm
on k-mers, whereas kallisto uses the intersection of k-compatibility classes across both ends
of a read. Even for k = 75, the full read length in the simulation, independent use of k-mers
results in a significant drop in accuracy due to the loss of paired-end information.

accurate quantification, which is the assignment of reads that cannot be uniquely aligned [60].
Typically, these multi-mapping reads are accounted for using a statistical model of RNA-seq
[60] that probabilistically assigns such reads while inferring maximum likelihood estimates
of transcript abundances. However, it has been shown that accurate quantification does not
require information on where inside transcripts the reads may have originated from, but
rather which transcripts could have generated them [61]. On the basis of this information,
we develop a method based on pseudoalignment of reads and fragments, which focuses only
on identifying the transcripts from which the reads could have originated and does not try
to pinpoint exactly how the sequences of the reads and transcripts align.

2.2 Pseudoalignment

A pseudoalignment of a read to a set of transcripts, T , is a subset, S ⊆ T , without specific
coordinates mapping each base in the read to specific positions in each of the transcripts in S.
Accurate pseudoalignments of reads to a transcriptome can be obtained using fast hashing
of k-mers together with the transcriptome de Bruijn graph (T-DBG). de Bruijn graphs have
been crucial for DNA and RNA assembly [20], where they are usually constructed from reads.
Kallisto uses a T-DBG, which is a de Bruijn graph constructed from k-mers present in the
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transcriptome (Fig. 2.2a), and a path covering of the graph, a set of paths whose union
covers all edges of the graph, where the paths correspond to transcripts (Fig. 2.2b). This
path covering of a T-DBG induces multi-sets on the vertices, called k-compatibility classes.
A compatibility class can be associated to an error-free read by representing it as a path in
the graph and defining the k-compatibility class of a path in the graph as the intersection of
the k-compatibility classes of its constituent k-mers (Fig. 2.2c). An equivalence class for a
read is a multi-set of transcripts associated with the read; ideally it represents the transcripts
a read could have originated from and provides a sufficient statistic for quantification. A
key point is that the k-compatibility class of an error-free read coincides with the minimal
equivalence class consisting of transcripts containing the read for large k (Subsection 2.2).

Previously, the equivalence classes of reads have been determined via the time-consuming
alignment of the reads to the transcriptome. However, since a hash of k-mers provides a fast
way to determine their k-compatibility classes, the equivalence class of (error-free) reads
can be efficiently determined by selecting suitably large k and then intersecting the reads’
constituent k-compatibility classes. The difficulty of implementing such an approach for
RNA-seq lies in the fact that reads have errors. However, with very high probability, an
error in a k-mer will result in it not appearing in the transcriptome, and such k-mers are
simply ignored. The issue of errors is also ameliorated by a technique that we implemented
to improve the efficiency of pseudoalignment that removes redundant k-mers from the com-
putation on the basis of information contained in the T-DBG (Subsection 2.2). Because
fewer k-mers are inspected, there is less opportunity for erroneous k-mers to produce mis-
leading results. With pseudoalignments efficiently computable, we explored the use of the
expectation-maximization (EM) algorithm applied to equivalence classes for quantification
[66] (Subsection 2.3). Although the likelihood function is simpler than some other models
used for RNA-seq [87, 72, 49] it still includes a model for bias, and its use has the advantage
that the EM algorithm can be applied for many rounds very rapidly.

Index construction

The construction of the index starts with the formation of a colored de Bruijn graph [35] from
the transcriptome, where the colors correspond to transcripts. In the colored transcriptome
de Bruijn graph, each node corresponds to a k-mer and every k-mer receives a color for each
transcript it occurs in. Contigs are defined to be linear stretches of the de Bruijn graph that
have identical colorings. This ensures that all k-mers in a contig are associated with the same
equivalence class (the converse is not true: two different contigs can be associated with the
same equivalence class). Once the graph and contigs have been constructed, kallisto stores
a hash table mapping each k-mer to the contig it is contained in, along with the position
within the contig. This structure is called the kallisto index.

For error-free reads, there can be a difference between the equivalence class of a read and
the intersection of its k-compatibility classes. But for a read of length l this can only happen
if there are two transcripts that have the same l− k + 1 k-mers occurring in different order.
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Figure 2.2: The input consists of a reference transcriptome and reads from an RNA-seq
experiment. (a) An example of a read (in black) and three overlapping transcripts with
exonic regions as shown. (b) An index is constructed by creating the transcriptome de
Bruijn Graph (T-DBG) where nodes (v1, v2, v3, ... ) are k-mers, each transcript corresponds
to a colored path as shown and the path cover of the transcriptome induces a k-compatibility
class for each k-mer. (c) Conceptually, the k-mers of a read are hashed (black nodes) to find
the k-compatibility class of a read. (d) Skipping (black dashed lines) uses the information
stored in the T-DBG to skip k-mers that are redundant because they have the same k-
compatibility class. (e) The k-compatibility class of the read is determined by taking the
intersection of the k-compatibility classes of its constituent k-mers.

This is unlikely to happen for large k because it would imply that the T-DBG has a directed
cycle shorter than l − k + 1. This fact also provides a criterion that can be tested.
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Finding pseudoalignments

Reads are pseudoaligned by looking up the k-compatibility class for each k-mer in the read
in the kallisto index and then intersecting the identified k-compatibility classes. In the case
of paired-end reads, the k-compatibility class lookup is done for both ends of the fragment
and all the resulting classes are intersected. Since the T-DBG identifies each k-mer with its
reverse complement, the k-mer hashing in kallisto is strand-agnostic; however, the implemen-
tation could also be adapted to require specific strandedness of reads from strand-specific
protocols. To further speed up the processing, kallisto uses the structural information stored
in the index: because all k-mers in a contig of the T-DBG have the same k-compatibility
class, it would be redundant to include more than one k-mer from a contig in the intersection
of k-compatibility classes. This observation is leveraged in kallisto by finding the distances
to the junctions at the end of its contig each time a k-mer is looked up using the hash. If
the read does arise from a transcript in the T-DBG, the k-mers up to those distances can
be skipped without affecting the result of the intersection, resulting in fewer hash lookups.
To help ensure that the read is consistent with the T-DBG, kallisto checks the last k-mer
that is skipped to ensure its k-compatibility class is equal as expected. In rare case when
there is a mismatch, kallisto defaults to examining each k-mer of the read. For the majority
of reads, kallisto ends up performing a hash lookup for only two k-mers (Fig. 2.3). While
pseudoalignment does not require or make use of the locations of k-mers in transcripts, it
is possible to extract such data from the T-DBG, and a “pseudobam output” option of
kallisto takes advantage of this to produce an alignment file containing positions of reads
within transcripts. With pseudobam it is possible to examine the location of reads within
transcripts and genes of interest for quality control and analysis purposes.
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Figure 2.3: The distribution of the number of k-mers hashed per read for k = 31. Note
that for the majority of reads (61.35%) only two k-mers are hashed. This happens when
the entire read pseudoaligns to a single contig of the T-DBG and we can skip to the end of
the read. Since we also check the last k-mer we can skip over, the most common cases are
checking 2, 4, 6, and 8 k-mers. Only 1.6% of reads required hashing every k-mer of the read.

2.3 Quantification

In order to rapidly quantify transcript abundances from pseudoalignments, kallisto makes
use of the following form of the likelihood function for RNA-seq:

L(α) ∝
∏
f∈F

∑
t∈T

yf,t
αt

lt
(2.1)

=
∏
e∈E

(∑
t∈e

αt

lt

)ce

(2.2)

In equation 2.1, F is the set of fragments, T is the set of transcripts, lt is the (effective)
length [72] of transcript t and yf,t is a compatibility matrix defined as 1 if fragment f is
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compatible with t and 0 otherwise. The parameters are the αt, the probabilities of selecting
fragments from transcripts. The likelihood can be rewritten as a product over equivalence
classes, in which similar summation terms have been factored together. In the factorization
the numbers ce are the number of counts observed from equivalence class e. When equation
2.1 is written in terms of the equivalence classes, the equivalence class counts are sufficient
statistics and thus, in the computations, are based on a much smaller set of data (usually
hundreds of thousands of equivalence classes instead of tens of millions of reads). The like-
lihood function is iteratively optimized with the EM algorithm, with iterations terminating
when, for every transcript t, αtN > 0.01 (N is the total number of fragments) changes less
than 1% from iteration to iteration.

The transcript abundances are output by kallisto in transcripts per million [49] (TPM)
units.

Inferential variability

The bootstrap is highly efficient in kallisto both because the EM algorithm is very fast and
because the sufficient statistics of the model are the equivalence class counts. This latter
fact means that bootstrap samples can be very rapidly generated once pseudoalignment of
the fragments is completed. With the N original fragments having been categorized by
equivalence class, generating a new bootstrap sample consists of sampling N counts from
a multinomial distribution over the equivalence classes, with the probability of each class
being proportional to its count in the original data. The transcript abundances for these
new samples are then recomputed using the EM algorithm.

In kallisto the number of bootstraps to be performed is an option passed to the program,
and because a large amount of data can be produced, the output is compressed in HDF5.
The HDF5 files can be read into another program for processing (for example, R) or can be
converted to plain text using kallisto.

Bias

There are many sources of bias in RNA-seq, but previous work has identified sequence-
specific bias [73] as particularly problematic. Sequence-specific bias arises as a result of
nonrandom priming of fragments, where the nucleotide sequences at the 3’ and 5’ ends affect
the probability of sampling. The kallisto correction is similar to that of [73]; however, it uses
6-mers of the transcript sequence overlapping the 5’ fragment, starting 2 bp upstream of the
fragment. First kallisto measures the empirical frequency of 6-mers as estimated from the
first 1 million pseudoalignable reads. To apply the bias correction, it uses an initial estimate
for the abundance, using 50 rounds of the EM algorithm. The bias of 6-mers is used to adjust
the effective length of each transcript by adding the bias of each 6-mer on both strands. To
account for edge effects, kallisto only add the 6-mers from the start up to the length of the
transcript minus the average fragment length. This process is repeated once more with an
updated expression estimate after 550 rounds of the EM algorithm.



CHAPTER 2. FAST QUANTIFICATION WITH KALLISTO 13

2.4 Evaluation

To validate and benchmark kallisto, we tested it on a set of 20 RNA-seq simulations gen-
erated with the program RSEM (RNA-Seq by Expectation Maximization)[49], as well as
on RNA-seq data from the Sequencing Quality Control Consortium (SEQC) [22] for which
quantitative PCR (qPCR) can be used as an independent validation of quantification. The
transcript abundances and error profiles for the simulated data were based on the quantifi-
cation of sample NA12716 7 from the Genetic European Variation in Health and Disease
(GEUVADIS) data set [44]. To accord with GEUVADIS samples, the simulations consisted
of 30 million reads. We examine the quality of the kallisto pseudoalignments as compared
to pseudoalignments extracted from Bowtie2 alignments. The two methods agreed exactly
on the set of reported transcripts for 70.7% of the reads, but when they differed on the
(pseudo)alignment of a read, Bowtie2 reported 8.02 transcripts on average compared to 4.96
for kallisto. Despite being much more specific than Bowtie2, kallisto had almost 100% sen-
sitivity. The transcript of origin was contained in the set of reported transcripts for 99.89%
of the reads, only 0.1% less than with Bowtie2 (99.99%). On the real data used as the basis
for the simulations (NA12716 7), the programs displayed similar characteristics. The two
methods agreed exactly for 66.22% of reads where both (pseudo)aligned, and for differing
reads Bowtie2 aligned to 8.94 transcripts on average, versus 4.86 for kallisto. As expected,
the number of (pseudo)aligned reads was lower for the real data, with 86.5% of the reads
aligned by Bowtie2 versus 90.8% pseudoaligned by kallisto.

The accuracy of kallisto is similar to those of existing RNA-seq quantification tools (Fig.
2.4a and Fig. 2.5) and enables a substantial improvement over Cufflinks [87] and Sailfish [66].
The inferior performance of Cufflinks can be attributed to its limited application of the EM
algorithm in cases where reads multi-map across genomic locations [73]. Unlike Sailfish [66],
which shreds reads into k-mers for fast hashing, resulting in a loss of information, kallisto’s
pseudoalignments explicitly preserve the information provided by k-mers across reads (Fig.
2.1).

All programs have reduced performance on paralogs owing to the similarity among genes
within a family, but kallisto remains highly competitive, again almost matching RSEM’s
performance (Figs. 2.6, 2.7). To test kallisto’s suitability for allele-specific expression quan-
tification, we simulate reads from a transcriptome with two distinct haplotypes. The Spear-
man’s correlation for kallisto was 0.833 vs. 0.848 for RSEM, 0.830 for eXpress and 0.706
for Sailfish, showing that kallisto is suitable for allele-specific expression. Notably, the sim-
ulation was based on RSEM, for generating both the parameters and then the data using
them.

We also tested kallisto on SEQC data that has independently been quantified with qPCR.
Kallisto performed similarly to other programs (Tables 2.1, 2.2). Learning sequence specific
bias (Subsection 2.3 and Table 2.3) provides a slight improvement in agreement with qPCR,
similar to improvements with bias learning in Cufflinks and eXpress.

Kallisto outperformed all other methods in speed, thanks to optimizations made possible
by the pseudoalignment framework (Fig. 2.2d,e, and Section 2.2). Each simulation was
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Figure 2.4: (a) Accuracy of kallisto, Cufflinks, Sailfish, EMSAR, eXpress and RSEM on 20
RSEM simulations of 30 million 75-bp paired-end reads based on the abundances and error
profile of GEUVADIS sample NA12716 7 (selected for its depth of sequencing). For each
simulation, we report the accuracy as the median relative difference in the estimated read
count of each transcript. Estimated counts were used rather than transcripts per million
(TPM) because the latter is based on both the assignment of ambiguous reads and the
estimation of effective lengths of transcripts, so a program might be penalized for having a
differing notion of effective length despite accurately assigning reads. The values reported
are means across the 20 simulations (the variance was too small to be visible in this plot).
Relative difference is defined as the absolute difference between the estimated abundance
and the ground truth divided by the average of the two. (b) Total running time in minutes
for processing the 20 simulated data sets of 30 million paired-end reads described in a. All
processing was done using 20 cores, with programs being run with 20 threads when possible
(Bowtie2, TopHat2, RSEM, Cufflinks) and 20 parallel processes otherwise (eXpress, kallisto).
Each box represents one dataset. Since eXpress and kallisto process all datasets in parallel,
the only quantification time shown is the maximum of all the quantifications.



CHAPTER 2. FAST QUANTIFICATION WITH KALLISTO 15

Figure 2.5: Accuracy of kallisto, Cufflinks, Sailfish, eXpress and RSEM on 20 RSEM sim-
ulations of 30 million 75bp paired-end reads based on the TPM estimates and error profile
of Geuvadis sample NA12716 (selected for its depth of sequencing). For each simulation we
report the accuracy as the median relative difference in the estimated TPM value of each
transcript. The values reported are means across the 20 simulations (the variance was too
small for this plot). Relative difference is defined as the absolute difference between the
estimated TPM values and the ground truth divided by the average of the two.

Figure 2.6: Performance of different quantification programs on the set of paralogs in the
human genome supplied by the Duplicated Genes Database (http://dgd.genouest.org). This
set includes 8,636 transcripts in 3,163 genes.

processed on average in less than 7.5 min on a single core. The total runtime for kallisto on
the simulated data was 11.47 min (Fig. 2.4b). A simple word count of a simulated data set
took 75 s, providing a lower bound for optimal quantification time and demonstrating that
kallisto’s speed is near optimal. The software is also memory efficient, requiring a maximum
of 3.2 Gb of RAM per sample. This allows kallisto to process 30 million read simulations
in less than 10 min on a small laptop with a 1.3-GHz processor, demonstrating that with
kallisto, RNA-seq analysis of even large data sets is tractable on non-specialized hardware.

The speed of kallisto also enables uncertainty of abundance estimates to be quantified
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Figure 2.7: Count distribution of one simulation. The left panel contains the transcripts
used in Figure 2.6. The right panel contains the remaining transcripts. The x-axis is on the
log scale. Both distributions appear very similar, suggesting that the drop in performance
in Figure 2.6 is from sequence similarity and not oddities in the distribution such as very
low counts.

Method 1 2 3 4
Cufflinks 0.6644 0.6617 0.6648 0.6651
Cufflinks (bias) 0.6716 0.6675 0.6696 0.6697
EMSAR 0.6677 0.6633 0.6688 0.6683
eXpress 0.668 0.6656 0.6679 0.6693
kallisto 0.6673 0.6625 0.665 0.6664
kallisto (bias) 0.6694 0.6649 0.6664 0.6686
RSEM 0.6658 0.6593 0.6664 0.6675
Sailfish 0.658 0.6553 0.6599 0.6606

Table 2.1: Performance of quantification at the transcript level as measured by SEQC qPCR.

Method 1 2 3 4
Cufflinks 0.7378 0.74 0.7424 0.7416
Cufflinks (bias) 0.7503 0.7504 0.7508 0.7503
EMSAR 0.742 0.7439 0.747 0.7467
eXpress 0.7526 0.7528 0.7533 0.7532
kallisto 0.74 0.7417 0.7446 0.7446
kallisto (bias) 0.7465 0.7473 0.75 0.75
RSEM 0.74 0.7421 0.745 0.7447
Sailfish 0.7444 0.7465 0.7494 0.7494

Table 2.2: Performance of quantification at the gene level as measured by SEQC qPCR.

via the bootstrap technique of repeating analyses after resampling with replacement from
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Method Error Error + Bias
MRD Spearman MRD Spearman

kallisto (bias) 0.0788 0.9849 0.103 0.9609
kallisto 0.0794 0.9852 0.1226 0.9509
eXpress 0.061 0.9859 0.1126 0.9722

Table 2.3: Performance of kallisto with and without bias.

the data. After the equivalence classes of the original reads have been computed, kallisto
samples multinomially from the equivalence classes according to their counts and runs the
EM algorithm on those newly sampled equivalence class counts. The running time for each
bootstrap sample depends on the number of equivalence classes, which is much smaller
than, and roughly independent of, the number of reads. While run times are transcriptome-
specific, each sample typically takes on the order of 10 s, and kallisto can multithread the
bootstrapping. Since the data associated with each bootstrap consists solely of a set of
equivalence class counts and transcript abundances, the memory usage is trivial. We explore
the accuracy with which the bootstrap can estimate the uncertainty inherent in a dataset by
examining repeated 30 million read subsamples of a deep 216-million-read human RNA-seq
dataset from the SEQC-MAQCIII [22] consortium (Fig. 2.8). We perform 40 bootstraps
(see Fig. 2.9 for an analysis of convergence) on only a single sample of 30 million reads,
yet the variance in estimates correlated highly (R = 0.933) with the variance of abundance
estimates obtained from the other subsamples. While it is expected that the variance on
abundance estimates should increase approximately linearly with abundance [59], our results
show that there is high variability in uncertainty of estimates as a result of the complex
structure of similarity among transcripts, especially multiple isoforms of genes. A naive
attribution of Poisson variance to the shot noise in read count estimates from transcripts, as
is commonly done in gene-level RNA-seq analyses, is revealed to be a poor proxy for the true
variance (Figs. 2.10, 2.11). Thus, the bootstrap should prove to be valuable in downstream
applications of RNA-seq, as kallisto now allows the uncertainty in estimates to be factored
in to downstream statistical computations.

The simplicity of kallisto means that the software has few parameters. Only the k-mer
length and the mean of the fragment length distribution are required for quantification. The
latter is estimated during run-time when paired-end reads are provided. The k-mer length
must be large enough that random sequences of length k do not match to the transcriptome
and short enough to ensure robustness to errors. Subject to those constraints, the perfor-
mance of kallisto is robust to the k-mer length chosen (Figs. 2.12 and 2.13). Although we
have focused on the performance of kallisto on RNA-seq, the method should be generally
applicable to quantification of sequence census datasets [92].
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Figure 2.8: The data comes from a single library with 216M, 101bp paired-end reads se-
quenced. Each point corresponds to a transcript and is colored by the decile of its expression
level in the single bootstrapped subsample. The Y-axis represents variance of abundance
estimates across 40 subsamples, with 30M reads in each subsample. The X-axis represents
variance as computed from 40 bootstraps of a single subsampled dataset of 30M reads. The
red lines emanating from the lower left corner consist of transcripts that have an estimated
abundance of zero in the single bootstrapped experiment, but show expression in some of
the subsamples (12968 transcripts), and vice versa (720 transcripts).
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Figure 2.9: Median relative error (with respect to 1000 bootstraps) of inferred transcript
variances as a function of number of bootstrap samples performed. The relative error with
40 bootstraps (red line) is 7.8%.

Figure 2.10: Relationship between the mean and variance of estimated counts for each
transcript (x and y axes are on log scale) based on 40 subsamples of 30M reads from a
dataset of 216M PE reads. The x-axis is the mean of each count estimate calculated across the
subsamples. The y-axis is the variance of the count estimates calculated across subsamples.
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Figure 2.11: Relationship between the mean and variance of estimated counts for each tran-
script (x and y axes are on log scale) based on 40 bootstraps of a single subsample of 30M
reads from the same 216M PE read dataset. The x-axis is the mean of the count esti-
mates calculated across the 40 bootstraps. The y-axis is the variance of the count estimates
calculated across the 40 bootstraps.
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Figure 2.12: Median relative difference from 30M 75bp PE reads simulated with error for
different values of k. The “k-mers method” uses the k-compatibility of each k-mer inde-
pendently and runs the EM algorithm on k-mers, whereas kallisto uses the intersection of
k-compatibility classes across both ends of reads. When there are errors in the reads, kallisto
requires smaller k-mer lengths for robustness in pseudoalignment.
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Figure 2.13: Run time for index building and quantification as a function of k-mer length
for one of the simulated samples.
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2.5 Software, simulations and analysis

The kallisto program is available for download from http://pachterlab.github.io/kallisto/.
The parameters and procedures for Cufflinks, Sailfish, EMSAR [46], eXpress, and RSEM
used for the results and figures in the paper are available via a Snakefile [42] at https:

//github.com/pachterlab/kallisto_paper_analysis. Source code for reproducing re-
sults and figures of the paper is available here as well.

http://pachterlab.github.io/kallisto/
https://github.com/pachterlab/kallisto_paper_analysis
https://github.com/pachterlab/kallisto_paper_analysis
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Chapter 3

Differential expression analysis

We describe a novel method for the differential analysis of RNA-Seq data that utilizes boot-
strapping in conjunction with response error linear modeling to decouple biological variance
from inferential variance. The method is implemented in an interactive shiny app called
sleuth that utilizes kallisto quantifications and bootstraps for fast and accurate analysis of
RNA-Seq experiments.

This work is currently available by preprint as “Differential analysis of RNA-Seq incor-
porating quantification uncertainty” [70] and is being reproduced with the permission of the
co-authors.

3.1 Introduction

RNA-Seq technology has largely replaced microarray measurement as a tool for identify-
ing gene expression differences in comparative and clinical analyses of RNA samples [15].
In analogy with microarrays, differential analysis of RNA-Seq experiments requires careful
assessment of variability of gene expression from few replicate samples, so as to be able
to identify biologically relevant expression differences between conditions [29, 4]. However
there are also key differences between the technologies. While microarrays measure cDNA
hybridization intensities at pre-defined probes, RNA-Seq provides a de novo sampling of the
transcriptome, a feature that makes it much more powerful for detecting transcription of
individual isoforms of genes, but that also complicates differential analysis.

Many methods have been developed for differential analysis of RNA-Seq data [21]. Some
of these seek to translate ideas developed for microarray analysis to the RNA-Seq setting
[45] whereas others are based on models tailored to RNA-Seq [36, 50, 87, 63, 28]. One of the
key differences between RNA-Seq and microarray technology is that the data of the former
consists of counts of reads rather than intensities measured at probes, and there has therefore
been considerable effort devoted to exploring appropriate distributions for the modeling of
count-based data in the RNA-Seq context [29, 4, 45, 76, 51, 23, 52]. However the question
of how to best utilize RNA-Seq data for differential analysis continues to be debated, with
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disagreements persisting on some of the most basic questions such as how to measure the
abundance of genes [21], whether there is sufficient power to test for differences in abundance
of individual isoforms [48, 82] and how to best utilize biological replicates [79].

Part of the reason for the continuing uncertainty regarding how best to analyze RNA-
Seq data is the lack of agreed upon standards for testing and benchmarking methods. In
most cases accuracy claims are based on simulations of counts of reads from distributions
assumed in the models, rather than simulations of raw reads [4, 45, 28, 51, 52, 75, 56].
Such count-based simulations typically discount the effects of ambiguously mapping reads
and fail to capture both the possibilities for, and challenges of, isoform-specific differential
analysis. Even when simulation studies are based on reads, they are sometimes restricted to
a small portion of the transcriptome [83, 27] thereby biasing results due to the dependence of
some methods on transcriptome-wide data for obtaining variance estimates from replicates.
Studies utilizing biological data frequently make use of questionable choices for “ground
truth”, e.g. utilizing results from microarrays, or from a differential analysis with a method
that is imperfect [83]. The resulting benchmarks are therefore difficult to interpret.

In this work we describe a novel approach to differential analysis of RNA-Seq data, a
comprehensive framework for benchmarking our method and others that is unprecedented
in its scale and scope, and interactive visualization software for exploring the results of our
method and the data they are based on. The latter is crucial for providing transparency in
assessing our results, and has the benefit of offering users a convenient tool for exploratory
data analysis. Throughout the paper we use the name sleuth to refer both to our statistical
method, as well as the app that allows for working with and exploring results.

The motivation for the conceptual approach underlying sleuth is illustrated in Figure
3.1. A key element of sleuth is borrowed from previous work[4, 45], namely shrinkage to
stabilize variance estimates from few samples. But sleuth is able to leverage recent advances
in quantification[11] to obtain error estimates for quantifications that can in turn be used to
decouple biological variance from inferential variance before shrinkage. A few other methods
have attempted to compute and utilize error estimates on quantifications, but some major
computational and statistical hurdles have been difficult to overcome. For example, the
BitSeq method[28] obtains quantification error estimates via Markov Chain Monte Carlo
sampling, a process that requires significant, and in some cases prohibitive, computational
resources. An update to the initial paper introduces quantification using variational Bayes,
however it is not recommended for use in differential analysis[31]. The Cuffdiff 2 method[85]
also performs sampling to assess variance arising from quantification but has some model
limitations: Cuffdiff 2 fails to accurately assess the increase in variance due to reads mapping
ambiguously across the genome. EBSeq[48] also models inferential variance, but does so in
discrete classes that only act as a proxy for high inferential variance.

Thus, sleuth is able to improve on traditional “count-based” methods by utilizing im-
proved estimates of transcript and gene abundances in a flexible and powerful statistical
framework. The sleuth concept is illustrated by example in Figure 3.1 via the tracing of
genes whose abundances are difficult to estimate. In the example shown, which is based on
a gene-level analysis of data from Bottomly et al. [8], genes with high inferential variance
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(a) Inferential variance on sample SRR099228. The x-axis is the gene
abundance, and the y-axis is the bootstrap estimate of the inferential
variance. The green lines represent the 5% confidence bound, mean,
and 95% confidence bound expected under the Poisson model.

(b) Mean expression versus total variance as estimated by DESeq2.
The left panel contains the raw estimates of the variance. The right
panel contains the smoothed estimate of the variance. Note that the
outliers are fairly randomly distributed across variance and expression
patterns.
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(c) Raw total variance as estimated by
sleuth. Again, the outliers are fairly ran-
domly distributed since they do not consider
the inferential variance.

(d) Biological variance as estimated by
sleuth once the inferential variance has been
removed. The blue line represents the mean-
biological variance relationship modeled in
sleuth. Note that in many cases the infer-
ential variance is greater than the biological
variance resulting in an estimate of biological
variance equal to zero.

(e) Final total variance as modeled by sleuth. Note that almost all of
the outliers have higher abundance than the non-outliers due to high
inferential variance.

Figure 3.1: The effect of modeling inferential variance in sleuth at the gene level. Outliers
are colored red and traced across all plots. A point is an outlier if the variance is greater
than 100 times the interquartile range plus the upper quartile.
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(red dots in Figure 3.1a) are lumped together with genes with high biological variance by
DESeq2 (Figure 3.1b). This makes it difficult to correctly assign a high total variance to
those genes prior to differential analysis (Figure 3.1c). Unlike DESeq2, by decoupling bio-
logical and inferential variance (Figure 3.1c, d), sleuth assigns a high total variance to most
of the genes with high inferential variance (Figure 3.1e).

The key innovation in sleuth, namely the explicit modeling of biological and inferential
variance, is performed with a response error model (see Methods). The model is simple,
transparent and its parameters are easily interpretable. Inference of parameters is straight-
forward (see Methods). Thus, when coupled with kallisto [11], which is fast in both the
quantification and variance estimation, sleuth provides a statistically rigorous, flexible and
efficient solution for RNA-Seq analysis.

3.2 Results

Modeling inferential variability

The fundamental issue in differential analysis of RNA-Seq experiments is quantifying the
variance in experiments so that true differences in expression can be identified as such.
There are multiple sources of variance that contribute to the total variance observed be-
tween samples in an RNA-Seq experiment which we group into two classes: (1) “biological
variance” which is a term used to describe variance in transcript abundance of biological
and experimental origin and (2) “inferential variance” which is a term we use to describe
both variance in the number of reads sequenced from a transcript due to the random nature
of sequencing as well as the variance that emerges as a result of the statistical nature of
transcript abundance estimation with ambiguously mapping reads. In the absence of am-
biguously mapping reads there is no increase in inferential variance as the origin of each read
can be inferred exactly. However when reads map to many transcripts the read counts must
be deconvoluted to obtain the abundance estimates [87] leading to uncertainty in abundance
estimates which translates into variance in quantification across samples.

Response error modeling [13] allows for the separate modeling of biological variance and
inferential variance. The use of the bootstrap during quantification allows us to estimate
the inferential variance directly for each sample [11], whereas biological replicates allow us
to estimate the total variance, albeit via shrinkage due to the limited number of replicates
in most experiments (see Methods). The biological variance can then be estimated (see
Methods). In Figure 3.1 we illustrate this procedure by first showing the inferential variance
versus the mean at the gene level (Figure 3.1a). Notice that for many genes the inferential
variance is much higher than the expected Poisson variance (which is assumed by most
methods). We track the outliers in red throughout all of Figure 3.1. Figure 3.1b shows the
total variance when estimated using DESeq2 (raw estimate on left, final shrinkage estimate
on right). The inferential variance outliers are randomly distributed throughout the mean
variance relationship since there is no additional information about the inferential variance.
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Figure 3.1c shows the raw estimate of the total variance in sleuth without any knowledge
of the inferential variance. Here, the red points are randomly distributed, while Figure 3.1d
shows the biological variance after the inferential variance has been removed. Many of the
red points are distributed near biological variance zero. These points have more inferential
variance than biological variance. The points with nonzero biological variance are a mix
of points where the total variance is very high or inferential variance is very low. Sleuth
performs shrinkage on these estimates (blue line). Figure 3.1d displays the final estimates of
the total variance, which are the smoothed biological estimates plus the inferential variability
estimates (Figure 3.1a). Due to the shrinkage procedure, the red points have the highest
total variance and are penalized heavily as a result unlike the final variance in Figure 3.1b
and 3.1c.

Improved accuracy in differential gene analysis

In order to test the performance of sleuth in differential gene analysis we examined both
simulated and real data and compared it to numerous other widely used methods. Our
simulation was derived from an experiment with two conditions and three replicates in each
condition (see Methods). We simulated biological variance (dispersion) according to the
negative binomial model for counts used by DESeq2 [56] (see Methods). To be able to
accurately assess performance, each simulation was performed with 20 replicates.

Figure 3.2 shows the result of our method in identifying differentially expressed genes,
alongside results from Cuffdiff 2[85], DESeq [4], DESeq2 [56], EBSeq [48], edgeR [76, 75],
voom [45], and log fold change [83]. The sensitivity of sleuth is higher than all other methods
in the false discovery rate (FDR) range of usual interest and beyond, up to FDR 0.3. The
figure also shows that as expected, DESeq2 has more power than DESeq at all the relevant
FDRs, and that the näıve approach of ranking genes by log-fold change produces poor
results. Even when benchmarked in simulation conditions favorable to traditional “count-
based” methods, sleuth outperforms other programs (Figures 3.7, 3.9). We also examined
the effect of different filtering strategies on performance by comparing sleuth with other
programs on a common filtered set of genes, showing that sleuth maintains its advantage
independent of filtering (Section 3.13).

Estimation of false discovery rate

Since the control of the false discovery rate is fundamental for identifying differentially ex-
pressed genes in experiments with few replicates, we examined carefully the accuracy of
methods in self-reporting their false discovery rates [77]. This was easy to do with our sim-
ulated data where the truth was known. In Figures 3.2 and 3.4 the circles, squares, and
diamonds represent the average estimated FDR output by each program across the 20 repli-
cates performed for each simulation scenario. Other than sleuth and voom, other methods
significantly underestimated the FDR with several methods reporting an estimated FDR of
0.01 when the true FDR was greater than 0.1. While sleuth overestimates the FDR, this
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(a) The entire range of FDR and sensitivity.

(b) Zoomed in version of the gray section from (a).

Figure 3.2: Sensitivity versus FDR in the “effect from experiment” simulation at the gene
level. The x- and y-axes show the true false discovery rate and sensitivity, respectively, and
for each program one has a curve showing how those values change as one moves down its
ranking of all genes passing its filter. The circle, triangle, and square on each curve show
where in its ranking that program estimates an FDR of 0.01, 0.05, and 0.10 respectively.
Ideally, each symbol would lie directly above the corresponding symbol on the x-axis indi-
cating a true FDR of 0.01, 0.05, or 0.10. Also displayed are isolines for a constant number
of genes being called differentially expressed. Where an isoline intersects with the curve for
a given program shows its performance when looking at that many genes from the top of its
ranking. The FDR lines were averaged over 20 replications of the simulation.
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error is conservative, i.e. fewer genes are reported, yet they are highly enriched for being
differentially expressed.

To test whether our results translated to FDR estimation accuracy on real data, we
repeated an experiment from the DESeq2 paper [56]. Using the Bottomly data set [8], which
contains multiple replicates from two mice strains (10 and 11 respectively), we created a
training set by randomly selecting 3 versus 3 samples and using differential expression results
from the remaining 7 versus 8 as the “truth”. Each method was compared to itself to see
how well it could recapitulate its results with a smaller set of data and how it controlled the
FDR as assessed by comparing to the results of the high replicate analysis. We iterated this
procedure 20 times. Figure 3.3a shows that as in the simulation, sleuth and voom are the
only methods able to estimate their FDR to within a reasonable approximation.

To see whether the consistency experiment provided results concordant with those of
our simulations, we performed the consistency experiment with simulated data. The results
are shown in Figure 3.3b, which illustrates both that our simulated data recapitulates the
results on real data, and that the self-referential FDRs are good proxies for true FDRs, thus
validating the reliability of the DESeq2 consistency experiment.

sleuth allows for isoform-level differential analysis

While RNA-Seq has become the standard technology for gene-level differential analysis, there
has been some debate about its suitability and power for isoform-level differential analysis.
In previous work, we and others have provided examples of how isoform-level differential
analysis can highlight interesting splicing and differential promoter usage between conditions
[85, 6] but there has been debate about the significance and reliability of such results [82, 83].

In order to examine this question, we repeated the gene-level analysis at the transcript
level (see Figure 3.4). We confirm previous findings that because increased testing is re-
quired for isoform-level analysis, there is a decrease in sensitivity in comparison to gene
level analysis. However we also find that sleuth can still control the false discovery rate at
the isoform level while calling many isoforms differentially expressed. Interestingly, while
there is less power to discover differentially expressed isoforms, our simulations show that
at a given FDR the number of differentially expressed features is fairly similar to that of
genes (isolines in Figures 3.2, 3.4). Moreover, when simulating from a scenario in which
isoform abundances change independently between conditions (Figures 3.6), we find highly
significant improvements in sleuth with respect to other methods. The same is also true
for the correlated effect simulation. In addition, we tested BitSeq [28] (Figure 3.16) on a
single sample as its run-time was prohibitive on the entire simulation set. We found BitSeq
performed well overall although sleuth outperformed it when the true FDR was less than
0.12.
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(a) Self-referential FDR at the isoform level.



CHAPTER 3. DIFFERENTIAL EXPRESSION ANALYSIS 33

(b) Self-referential FDR at the gene level.

Figure 3.3: Self-referential FDR for the Bottomly data set and our simulation at the (a)
isoform level, and the (b) gene level. The suffix “experiment” refers to the Bottomly data set
whereas “simulation” refers to our simulated experiments to mimic the Bottomly resampling
experiment. The panels from top to bottom display the true FDR for each program when it
estimates the FDR as 0.01, 0.05, and 0.10, respectively. The dashed horizontal line represents
the target FDR. Only sleuth and voom seem to control the self-referential FDR reasonably
well at both the isoform and gene level.
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(a) The entire range of FDR and sensitivity.

(b) Zoomed in version of the gray section from (a).

Figure 3.4: Sensitivity versus FDR in the “effect from experiment” simulation as in Figure
3.2 at the transcript rather level.
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Interactive exploratory data analysis using sleuth

The interpretation and analysis of RNA-Seq data is complicated by a number of factors:
the large quantity of reads sequenced in typical experiments (many millions) and the large
number of transcripts / genes (typically tens of thousands) make it difficult to interactively
examine the data. However exploratory data analysis is important both for understanding
how to analyze the data and in the formation of hypotheses about the results. To address
this issue, and to make it possible to evaluate and assess the results of sleuth, we have
developed a Shiny[16]-based interactive app for examining sleuth results.

Figure 3.5 shows some screenshots from a sleuth analysis of the Bottomly data[8]. Figure
3.5a shows the principal component analysis of the data set colored by the different con-
ditions. One can see that the first two principal components do not segregate the data by
experimental condition (mouse strain). Figure 3.5b shows how one can use the drop-down
menu to change the coloring, revealing that the first two principal components seem to ex-
plain some of the variation due to the batch. In addition, there are many other features
assisting in exploring the data, such as the ability to view, sort and search the table of
differential expression results. For example, sorting by the inferential variability and then
by largest p-values, we find transcript ENSMUST00000113388, which is not reported as dif-
ferentially expressed by sleuth, but is reported as differentially expressed by both voom and
DESeq2. This is likely due to the high inferential variability which is not being properly
assessed and adjusted for by those programs. The transcript name can be pasted into the
“transcript view” window and the distribution of inferential variability can be explored with
boxplots describing the variability within each sample (Figure 3.5c).
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(a) PCA plot colored by strain shows that the strain does not
explain much of the variance in the first two principal compo-
nents.

(b) The coloring can be changed immediately by drop-down as
shown here which indicates that there are possible lane effects.
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(c) Sample specific bootstraps for a particular transcript EN-
SMUST00000113388, which does not show differential expres-
sion by sleuth, but shows differential expression by limma and
DESeq2. A possible explanation for this is that the inferential
variance is quite high.

Figure 3.5: Interactive sleuth live Shiny interface on complete Bottomly data set.

3.3 Simulations

A null distribution for transcript abundances was learned from the largest homogeneous
population in the GEUVADIS data set: 59 samples of Finnish females [44]. We estimated
transcript-level abundances with kallisto, then estimated parameters for negative binomial
distributions (using the Cox-Reid dispersion estimator) to model count distributions using
DESeq2.

After the null distribution was constructed, expression features (isoforms or genes de-
pending on the type of simulation) were chosen to be differentially expressed. Transcripts
with less than 5 estimated counts on average across the GEUVADIS samples were marked
as too rare to be simulated as differentially expressed. A gene was assumed to pass the
filter if at least one of its constituent transcripts passed the filter. In each simulation, 20%
of the features that passed the filter were chosen to be differentially expressed at random.
If the simulation had unequal size factors, random size factors were chosen from the set
1/3, 1, 3 such that the geometric mean equaled 1 similar to the simulation procedure in
DESeq2. However, unlike the DESeq2 simulation procedure our size factors were chosen at
random. Counts were generated from the negative binomial distribution after which reads
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were simulated using the RSEM simulator [50]. This resulted in about 30 million 75 base-
pair paired-end reads per sample for a total of 13.8 billion reads overall (Tables 3.2 - 3.5).
Three types of simulations were performed:

Independent effect simulation

Isoforms were chosen to be differentially expressed at random. This simulation was similar
to the default in polyester [26], however our simulation was performed across the entire
transcriptome rather than just a few chromosomes. The simulations were generated with
equal size factors. Effect sizes were chosen from a truncated normal distribution such that
the minimum absolute fold change for differential transcripts or genes was 1.5.

Correlated effect simulation

Genes (instead of isoforms) were randomly chosen to be differentially expressed. A direction
(sign) for each effect size was chosen at random, then all the effects were simulated from
a truncated normal with minimum absolute fold change 1.5. The simulation used random
unequal size factors generated as described above.

Effect from experiment

To mimic the types of changes seen in real experiments, fold changes were learned from
Trapnell et al. [85] from the set of transcripts that either DESeq2 or sleuth found to be
differentially expressed at FDR 0.05. Genes were chosen at random to be differentially
expressed. The null mean counts were used to determine the rank of each transcript relative
to its parent gene. These ranks were matched between the Trapnell data set and the null
distribution learned from the GEUVADIS data set.

Self-consistency experiment

In order to validate whether methods would produce similar results with less data, we per-
formed an experiment similar to Love et al. [56]. For each iteration we randomly selected 3
samples from condition C57BL/6J and 3 samples from condition DBA/2J and ran each tool.
The remaining samples were used as the “truth” by calling differentially expressed genes or
transcripts using them. For each FDR level (0.01, 0.05, 0.10), we compared the results from
the smaller data set to the larger data set for each tool. The FDR was then computed and
plotted in Figure 3.4.

Software notes

The following R programs were used to compile the results: sleuth 0.28.1, BitSeq 1.16.0,
DESeq 0.24.0, DESeq2 1.12.0, EBSeq 1.12.0, edgeR 3.14.0, limma-voom 3.28.2. When test-
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ing programs at the isoform-level, kallisto 0.42.4 was used to obtain quantifications. Cuffdiff
2.21 was used with alignments from HISAT2 2.0.1 [40]. Subread (featureCounts) 1.5.0 [53]
was used with alignments from HISAT2 to get raw gene counts. BitSeq was provided align-
ments from Bowtie 1.1.2 [43]. All analyses in the paper are fully reproducible through the
Snakemake system [42].

3.4 The model

We use the term experiment to denote the measurement of transcript abundances from
a series of n samples which are related by an n × p design matrix x. Each row vector xi
(i = 1, . . . , n) of the matrix x records the fixed design characteristics of sample i with respect
to the p covariates.

For each transcript t and sample i, we model the logarithm of transcript abundance
(measured in counts) with a latent random variable Yti. A vector βt of length p associates
fixed effects to each transcript, and “biological noise” εti perturbs the response xTi βt so that

Yti | xi = xTi βt + εti. (3.1)

While many RNA-Seq models posit that Yti is observed, the ambiguity of read (pseudo)-
alignments means that instead what is measured is

Dti | yti = yti + ξti, (3.2)

where ξti is “inferential noise”.
Assuming that εti and ξti are random variables satisfying εti ∼ N (0, σ2

t ), ξti ∼ N (0, τ 2t ),
cov(εti, εtj) = cov(ξti, ξtj) = 0 ∀i 6= j, cov(εti, ξtj) = 0 ∀i, j and that ∀t 6= u, εt, ξt are indepen-
dent of εu and ξu respectively, we have that Yt = (Yt1, Yt2, ..., Ytn) and Dt = (Dt1, Dt2, ..., Dtn)
are both normally distributed as

Yt ∼ N (xβt, σ
2
t In), (3.3)

Dt ∼ N (xβt, (σ
2
t + τ 2t )In). (3.4)

This model is known as the response error measurement model with no error on the
covariates [13]. For completeness, we describe some of its properties below and explain how
they apply to parameter estimation in the context of the sleuth workflow.

3.5 Overview of sleuth workflow

The input to sleuth consists of estimated counts for transcripts in the samples constituting
the experiment as well as estimates of variance for those counts obtained from bootstraps.
Both the estimated counts and the variance are output by kallisto. The (estimated) counts
for transcript t in sample i is referred to as cti and the variance of Dti given yti estimated
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from the bootstraps of kallisto. The sleuth workflow begins with a filtering of low abundance
transcripts, followed by the application of two normalizations and then parameter estimation
for the model described above. This enables the regularization of the biological variance
contributing to transcript abundance variance across samples, and finally to an overall total
variance estimate for each transcript. The workflow can be applied to either transcripts, or
groups of transcripts such as genes, and the two modes are described below.

3.6 Filtering prior to parameter estimation

Prior to estimating parameters of the model we filter low abundance transcripts. This helps
in fitting the model. We ignore transcripts where there are less than 5 estimated counts in
more than 47% of the samples, i.e. when |{i : cti < 5}| ≥ 0.47 · n.

3.7 Normalization and transformation

Following the filtering there are two different normalizations that we apply to the esti-
mated counts cti: between sample normalization and within sample normalization. First,
we perform between sample normalization to estimate sample specific size factors si on the
estimated counts following the DESeq procedure [4] applied to transcripts:

ŝi = mediant
cti(∏n

j=1 ctj

) 1
n

.

Following between sample normalization, we log transform the data so that transcripts have
similar variance across samples.

For each transcript, the abundance is estimated as the (normalized) log estimated count

dti = log

(
1

ŝi
l̃ti
cti

l̃ti
+ 0.5

)
= log

(
1

ŝi
cti + 0.5

)
,

where l̃ti is the effective length of transcript t in sample i. Note that the expression cti
l̃ti

is

proportional to the abundance of transcript t in sample i, and that the multiplication by the
effective length serves to rescale the abundance estimate to a count estimate. The offset of
0.5 is used to ensure that the argument to the logarithm is positive.
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3.8 Estimation of βt

Conveniently, the standard ordinary least squares estimators for the fixed effects are unbiased
under this model. The standard estimator is

β̂t = (xTx)−1xTdt (3.5)

where dt = (dt1, . . . , dtn). The expected value of β̂t is

E[β̂t] = E[E[(xTx)−1xTdt | yt]]
= E[(xTx)−1xTE[yt + ξt|yt]]
= E[(xTx)−1xT (yt + 0)]

= E[(xTx)−1xT (xβt + εt)]

= (xTx)−1xTE[(xβt + εt)]

= (xTx)−1xT (xβt + 0)

= βt.

Thus β̂t is an unbiased estimator of βt.

3.9 Estimation of the variance of Dti

The variance of Dti decomposes according to the law of total variance:

V[Dti] = E[V[Dti | yti]] + V[E[Dti | yti]]
= E[V[yti + ξti | yti]] + V[yti]

= E[τ 2t ] + σ2
t

= τ 2t + σ2
t .

The inferential variance τ 2t is estimated as the mean of the sample variance estimates τ̂ 2ti
which are obtained from kallisto with the bootstrap:

τ̂ 2t =
1

n

∑
i

τ̂ 2ti. (3.6)

Using the second moment as an estimator for the total variance, namely

V̂[Dti] =
1

n− p

n∑
i=1

(dti − xTi β̂t)2

and solving for the (raw) biological variance, we obtain

σ̂2
t = max

((
1

n− p

n∑
i=1

(dti − xTi β̂t)2
)
− τ̂ 2t , 0

)
, (3.7)
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where the max operation is necessary to ensure that the (raw) biological variance is nonneg-
ative.

When n− p is small, the (raw) biological variance estimate σ̂2
t is unstable. Since this is

the situation in almost all RNA-Seq studies, we regularize the biological variance estimate
by shrinkage. We split the abundance values into 100 “windows” (ranges) such that each
window, w, contains 1% of the mean abundance under the intercept only model. Note that
each transcript t has an abundance contained in a single window denoted by w(t) and a
distribution of estimated biological variance is associated to that window, namely of σ̂2

t . We
denote by IQR(w(t)) the interquartile range of the distribution associated to a window w(t)
and identify a training set of transcripts R for shrinkage using these interquantile ranges:

R = {t : σ̂2
t ∈ IQR(w(t)).} (3.8)

We perform LOESS on the set R and perform shrinkage on the square root of the standard
deviation similar to voom [45] as this results in more stable estimates. Our shrunken estimate
of σ2

t is then a function of the mean d̄t = 1
n

∑n
i=1 dti (the parameter estimate under the

intercept only model):

σ̃2
t = f(d̄t) =

[
(loessr∈R(d̄r, σ̂

1
2
r ))(d̄t)

]4
. (3.9)

Our final estimate of the total variance of transcript t in sample i is therefore (the sample
independent expression)

V̂[Dti] = max(σ̃2
t , σ̂

2
t ) + τ̂ 2t . (3.10)

3.10 Gene level estimates

The sleuth model for transcript abundance, and the associated parameter estimation de-
scribed above can be generalized to groups of transcripts such as genes. To do so, we first
note that a set of genes can be viewed as a partition of the set of transcripts, so that each gene
g is just a set of transcripts. To model gene abundances, we replace transcript abundance
with gene abundance in the model as follows:

Starting with the same design matrix x as in the transcript case, for each gene g and
sample i, we model the logarithm of transcript abundance (measured in counts) with a
latent random variable Ygi. A vector βg of length p associates fixed effects to each gene, and
“biological noise” εgi perturbs the response xTi βg so that

Ygi | xi = xTi βg + εgi. (3.11)

As before, we use a response error measurement model based on underlying normality as-
sumption which leads to

Yg ∼ N (xβg, σ
2
gIn), (3.12)

Dg ∼ N (xβg, (σ
2
g + τ 2g )In). (3.13)



CHAPTER 3. DIFFERENTIAL EXPRESSION ANALYSIS 43

The workflow at the gene level is identical to that of transcript level analysis, with a few
minor differences:

1. At the gene level, if at least one isoform in that gene passes the filter, the entire gene
passes the filter.

2. The normalization at the gene level is analogous to that at the transcript level except
for two differences: the abundance of genes is first calculated by summing up the
abundances of the constituent isoforms and the effective length of a single transcript
is replaced by an effective length for the gene (consisting of the median of the effective
lengths of the constituent transcripts). For a gene G the normalized estimate for
abundance in “effective counts” is therefore

dgi = log

(
1

ŝi
(mediant∈G l̃ti)

∑
t∈G

cti

l̃ti
+ 0.5

)
.

3. The shrinkage procedure is applied at the gene level, leading to a total variance estimate
of

V̂[Dgi] = max(σ̃2
g , σ̂

2
g) + τ̂ 2g ,

where the estiamtes of σ̂2
g and τ̂ 2g are analogous to their transcript counterparts.

Note that dgi reduces to dti when g consists of just a single isoform, so that the workflow
can be viewed as a direct generalization of the transcript level case. Moreover, the procedure
outlined above can be applied to sets of transcripts obtained from any partition of the
transcriptome.
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3.11 Description of filters of benchmarked programs

In this section we describe the filtering procedures of the programs benchmarked (in a few
cases methods did not specify filtering procedures so we selected one for them). Table 3.1
shows the filters used at the transcript and gene level:

method isoform mode filter gene mode filter
Cuffdiff 2 Cuffdiff 2 Cuffdiff 2
DESeq DESeq DESeq
DESeq2 DESeq2 DESeq2
edgeR edgeR edgeR
EBSeq sleuth edgeR
GLFC sleuth edgeR
LFC sleuth edgeR
sleuth sleuth sleuth
voom sleuth edgeR

Table 3.1: The filters used with each program.

Cuffdiff 2

The default filter for the program is described as: “The minimum number of alignments in
a locus for needed to conduct significance testing on changes in that locus observed between
samples. If no testing is performed, changes in the locus are deemed not significant, and the
locus’ observed changes don’t contribute to correction for multiple testing. The default is 10
fragment alignments.” [84]

DESeq

The DESeq vignette [3] describes a filter discarding the lowest 40% of expressed features,
where expression is defined as the total number of counts across all experiments. In some
cases more than 40% of the features were lowly expressed so we implemented a slightly mod-
ified version that first applied the DESeq2 filter.

DESeq f i l t e r <− f unc t i on (mat , . . . ) {
# a modi f i ed ve r s i on o f the DESeq f i l t e r to f i r s t remove th ings that are 0
# be fo r e doing the q u a n t i l e f i l t e r
nonzero <− DESeq2 f i l t e r (mat)
r s <− rowSums(mat [ nonzero , ] )
theta <− 0 .4
use <− ( r s > q u a n t i l e ( rs , probs=theta ) )
r e t <− nonzero
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r e t [ nonzero ] <− use
r e t

}

DESeq2

The filter is described in the DESeq2 vignette [55]. It removes features whose total counts
across all experiments is less than 2:

DESeq2 f i l t e r <− f unc t i on (mat , . . . ) {
rowSums(mat) > 1

}

edgeR

The filter is described in the edgeR vignette [18]. It removes features where less than 2
experiments contain less than or equal to 1 count per million:

edgeR f i l t e r <− f unc t i on (mat , . . . ) {
rowSums(cpm(mat) > 1) >= 2

}

EBSeq

Based on the EBSeq vignette [47] we decided to use the sleuth filter at the isoform level and
edgeR filter at the gene level.

voom

The voom vignette [81] states “The limma-voom method assumes that rows with zero or
very low counts have been removed”, so we decided to use the sleuth filter at the isoform
level and edgeR at the gene level.
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3.12 Performance on independent and correlated

effect simulations

In this section we show how each of the method benchmarked performs on the independent
effect and correlated effect simulations with the filtering procedures described in Section 8.
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Independent effect simulation

Isoform level

(a) The entire range of FDR and sensitivity.

(b) Zoomed in version of the gray section from (a).

Figure 3.6: Sensitivity versus FDR in the “independent effect” simulation at the isoform
level.
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Gene level

(a) The entire range of FDR and sensitivity.

(b) Zoomed in version of the gray section from (a).

Figure 3.7: Sensitivity versus FDR in the “independent effect” simulation at the gene level.
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Correlated effect simulation

Isoform level

(a) The entire range of FDR and sensitivity.

(b) Zoomed in version of the gray section from (a).

Figure 3.8: Sensitivity versus FDR in the “correlated effect” simulation at the isoform level.
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Gene level

(a) The entire range of FDR and sensitivity.

(b) Zoomed in version of the gray section from (a).

Figure 3.9: Sensitivity versus FDR in the “correlated effect” simulation at the gene level.
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3.13 Performance with common filtering

This section shows the comparison of sleuth to other methods when each pair (sleuth and
another method) are tested with a common filter based on intersecting the filtering criteria
of both programs. In each case, the two methods were trained using only the data passing
both filters. This results in higher power for both methods as there are less tests and fewer
low count, high variance targets disrupting the shrinkage estimation.

Independent effect simulation

Isoform level

Figure 3.10: Pairwise comparisons in the independent effect simulation at isoform level with
common filtering (DESeq did not register a datapoint in the FDR-sensivity range).
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Gene level

Figure 3.11: Pairwise comparisons in the independent effect simulation at gene level with
common filtering.
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Correlated effect simulation

Isoform level

Figure 3.12: Pairwise comparisons in the correlated effect simulation at isoform level with
common filtering (DESeq did not register a datapoint in the FDR-sensivity range).
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Gene level

Figure 3.13: Pairwise comparisons in the correlated effect simulation at gene level with
common filtering.
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Effect from experiment simulation

Isoform level

Figure 3.14: Pairwise comparisons in the effect from experiment simulation at isoform level
with common filtering (DESeq did not register a datapoint in the FDR-sensivity range).
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Gene level

Figure 3.15: Pairwise comparisons in the effect from experiment simulation at gene level
with common filtering.
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3.14 Number of reads simulated

Below are tables listing the total number of reads per each sample for each different type of
simulation.

A1 A2 A3 B1 B2 B3
1 25804803 25470509 26167030 29341697 29519936 29488175
2 25885277 25249979 25389240 32370503 30343889 30738282
3 26120446 25827345 25899623 30713524 30243242 30751697
4 25358596 25751655 25122351 33060914 32410330 32989822
5 25256842 25311042 25593932 31890641 30658059 30919290
6 25889040 25051039 26038569 29281347 28643895 28669578
7 25999345 25722280 25292680 30984262 30684305 30958786
8 25601571 25532946 25772470 30649733 30345697 30902790
9 25753144 25161751 26544777 31186168 29804316 30045082
10 26108266 25569269 25855553 32841294 32708783 33222170
11 25742811 25627297 25596448 29374021 28834454 28869359
12 25364068 25137212 25946183 29745829 29789553 30543497
13 25634414 25444127 25682130 27982129 29518922 30585275
14 25090260 25645622 25095267 30182778 29152706 29049277
15 25835121 25671692 25224938 30470838 30650333 30239396
16 25852931 26191755 25509063 31266671 29757417 29669651
17 25615156 25575068 25406585 29418611 30004286 29928450
18 25524970 25356389 26081851 31500275 30436352 30703447
19 26546122 25225294 25908252 30499047 30497149 31153162
20 25949790 25832498 26399110 30414105 29711824 29007750

Table 3.2: Total number of reads for each sample in the independent effect simulation.
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A1 A2 A3 B1 B2 B3
1 75312822 25593373 25235809 9839136 9929876 90460751
2 76754874 77164818 8448302 10128818 91488796 10260035
3 25605293 8695919 25491639 88543891 91209909 10263281
4 78615038 8506970 8385197 9938514 92448519 89436730
5 77364271 74865995 8528707 10076750 10042850 88754945
6 25860713 76275460 8440966 9610553 89957747 29271608
7 8597415 25281982 75251435 10213462 30323374 95540321
8 25522744 76270625 25088664 10137245 10421655 91773477
9 8666259 76943845 8559758 9987635 88007539 89331914
10 8566416 25410620 8490243 30555362 90843296 91010457
11 8455041 75784558 25372293 30267698 87570393 9787472
12 8492502 78575682 77077410 29654868 29818839 9886687
13 25457086 26158929 8471727 29118444 29471345 90230274
14 26002373 26260610 25956110 97485646 31266203 10420089
15 25487509 8493425 25243386 87415490 88713112 9713101
16 77486094 8448668 8663999 29099399 86839687 28969442
17 8407592 25888803 76954183 10420214 30992646 94468557
18 25873615 76371611 8359367 31089875 10122162 88988075
19 25678980 8501752 76183257 10537835 91483251 32587127
20 8454584 25950638 78035981 10428599 30550328 91394732

Table 3.3: Total number of reads for each sample in the correlated effect simulation.
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A1 A2 A3 B1 B2 B3
1 75168780 25485734 8384121 25747475 8534405 77027331
2 8501164 76807800 77633767 8740185 8684330 79993067
3 25331289 76540098 78511757 8447971 8427418 25987110
4 8513095 77563156 76171563 8746602 8828539 78111712
5 25944623 25748634 78161328 8493836 77658353 8625305
6 74728858 25432069 78836864 8805673 8985756 26342445
7 25774678 76049917 25580674 8843625 9010990 81891037
8 8443669 25980365 76146962 26349727 78607969 8721963
9 8526924 25514760 25393205 8893176 81080795 79541529
10 76685128 25597960 8447489 25772831 8863348 79552345
11 26124390 76923452 8679035 26027252 26363462 26557951
12 77306728 8528461 8413117 8841991 80696745 78431231
13 8467790 8686289 75067527 78678591 8653662 78027739
14 25726894 76768529 8477740 79007076 27257417 8990530
15 8317198 26005481 76363404 8420821 76489073 26140406
16 77110090 76973967 8803533 8982341 8838866 78798474
17 8595280 8660676 78462128 9011452 79474418 78080390
18 78598555 8504087 76359175 8780854 80048666 8739335
19 76495399 25188780 8438441 25570493 25599853 25619140
20 74677076 8417349 25938160 8933135 26341988 79293035

Table 3.4: Total number of reads for each sample in the effect from experiment simulation.

A1 76567345 B1 77353279
A2 25501413 B2 8851265
A3 25201440 B3 26670650
A4 8629446 B4 77175275
A5 77679146 B5 8502371
A6 76799156 B6 26087240
A7 8496819 B7 25635027
A8 77535590 B8 8644561
A9 8575806 B9 26012768
A10 25820678 B10 79047338

B11 8562183

Table 3.5: Total number of reads for each sample in the effect from experiment simulation
used in the self-referential FDR experiment.
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3.15 Effect from experiment - BitSeq

We only ran BitSeq on one sample due to the long run time. BitSeq does not allow a external
filtering method, but we attempted to increase power by intersecting the results with the
sleuth filter (BitSeq filtered).

(a) Zoomed out version of performance on independent effect
simulation number 1 at the isoform level including BitSeq. Each
method was run with the filter provided in their respective man-
ual.

(b) Zoomed in version of the gray section from (a).

Figure 3.16: Sensitivity versus FDR in the “effect from experiment” simulation 1 at the
isoform level including BitSeq.
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3.16 Discussion

RNA-Seq experiments produce data that is complex in structure and rich in information.
This data presents an unprecedented opportunity for studying transcriptional mechanisms
and, but its analysis is fraught with challenges. In the case of differential expression, the
large volumes of data and the large sizes of transcriptomes have made it difficult to explore
results “by hand” in order to gain intuition and insight into the experiments. “Count-
based” methods for differential analysis have been popular partly because they are simple in
their approach and present researchers with numbers to examine that are easy to relate to.
However the simplicity of count-based methods comes at a cost: by ignoring the complexity
of ambiguously mapped reads they introduce biases that can have detrimental effects on
results [85].

The sleuth model provides a solution to a perplexing difficulty in RNA-Seq analysis:
it offers a simple yet powerful framework for “counting” even when reads cannot be as-
signed unambiguously to transcripts, and therefore allows for robust and accurate RNA-Seq
analyses. Our results show that by virtue of appropriately accounting for uncertainty in
quantifications, sleuth is more accurate than previous approaches at both the gene and iso-
form levels. Crucially, the estimated FDRs reported by sleuth reflect the true FDRs, and
therefore make the predictions of sleuth reliable and useful in practice.

The sleuth workflow has been deliberately designed to be simple so that it is interpretable
and fast. The model was chosen in part because of its tractability and the Shiny framework
for visualization was chosen for its portability. The modularity of the algorithm also makes
it easy to explore improvements and extensions, such as analysis of more general transcript
groups (e.g. as defined by shared exons, or 5’/3’ UTRs) and different shrinkage and normal-
ization schemes to improve performance. As a result, when coupled with kallisto, which has
dramatically reduced running times for quantification based on the idea of pseudoalignment,
sleuth is a quick, accurate, and versatile tool for the analysis of RNA-Seq data.
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Chapter 4

Intron retention

Many organisms exhibit intron retention events that can be measured with RNA-Seq [14, 10],
and recent publications suggest that these events are important constituents of transcriptome
regulation. While some existing tools can detect intron retention events [38, 6, 7], none that
we are aware of incorporate biological replicates to reduce the reporting of false-positives or
discover novel intron retention events. Other tools have been mentioned in the literature,
but do not have freely available software [39, 93, 10, 9]. There is therefore a need for a
robust intron retention detection method that is based on rigorous quantification of intron
retention followed by assessment of significance using biological replicates.

We present keep me around (kma), a set of tools for detecting intron retention in RNA-
Seq experiments that utilizes biological replicates to improve accuracy. kma currently uses
the transcript quantification method eXpress [72] due to the fact that it was developed before
kallisto, but is compatible with with any RNA-Seq quantification pipeline.

The majority of this chapter is derived from work previously presented in [69] and [67]
and is being reproduced with permission of the co-authors.

4.1 Estimation

kma begins by performing a pre-processing step consisting of several python scripts that find
“measurable” intronic regions called inclusion regions (regions in which none of the overlap-
ping isoforms contain an exon), together with the corresponding isoforms which could retain
the intron called overlap isoforms. kma then outputs a table of intron-transcript relation-
ships. This table includes the (1) intron coordinates, (2) intron quantification coordinates
(3) transcripts which could potentially retain the intron, and (4) the gene name. The in-
tron quantification coordinates differ from the exact intron coordinates by including a small
region of the neighboring exons which is several bases shorter than the read length (Figure
4.1). This exonic overlap ensures that the reads spanning the intron-exon junctions are in-
cluded into the intron expression. These reads are often valuable information; if they are
unique, they give strong evidence for the expression of the intron. kma also outputs a BED
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Figure 4.1: Example of intron retention in orthochromatic erythroblasts from [69] in gene
SF3B1. The “Intron” track shows the regions of included pseudo-transcripts and that each
pseudo-transcript overlaps neighboring exons by 25 bases. The coverage track shows that
the first few introns are covered by very few reads, but intron 4 (chr2:198283675-198185151)
shows intron retention in all replicates.

track containing intronic quantification coordinates, as well as a FASTA file containing the
intronic sequences to quantify against. This pre-processing step only has to be performed
once assuming the transcriptome annotation does not change and read size is at least a few
bases longer than exon overlap.

kma is designed to leverage existing transcript quantification methods. This allows for
the computation of relative abundance of introns as well as transcripts while allowing multi-
mapping reads to be processed using well understood models already developed in existing
tools [63, 50]. After the pre-processing step, the intronic sequences are added to the tran-
scriptome and the chosen quantification method is run using the augmented transcriptome.
Any method can be used, provided it outputs expression in a unit that is additive, e.g.
transcripts per million (TPM).

Once introns and transcripts are quantified from all samples in the experiment, the
data can be post-processed and further analyzed in an R package [71] that is part of kma.
We currently provide functions to read data from eXpress, but it is quite simple to add a
new function that reads in other formats; all that is required is the target identifier and
corresponding expression estimate. Once data is read in, retention is computed by taking
the intron expression (numerator) and summing the expression of the overlapping transcripts
plus the intron expression (denominator) (Figure 4.2). This calculation leads to a natural
measurement of intron retention, the proportion of the transcript expression containing the
intron, also known as the proportion spliced in [38].

While we store a special object of class IntronRetention, the majority of the operations
depend only on the data stored in database-like data frames with each row being an intron
observation from one sample. A common row contains categorical fields intron, sample, con-
dition which serve as a key, along with measurements retention, numerator, denominator,
unique reads and various columns for filters. This allows for fast aggregation and manipula-
tion via packages such as dplyr [90]. Summaries of retention across subgroups such as specific
introns, conditions, or samples can be quickly computed by simple queries. We provide com-
mon summaries as functions, but the raw data frame is always available for further analysis.
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Figure 4.2: Example of a region around an intron with KeepMeAround. The blue rectangles
are exons from different transcripts of the gene SRSF6. The orange transcript is a target
that is added to the transcriptome and quantified against. The black rectangles are single-
end fragments, typical from RNA-Seq data. The estimate of the percent spliced in, Ψ =
TPM(orange) / (TPM(orange) + TPM(blue)).

In addition to easy manipulation, this data format is suitable for exploratory analysis in
plotting tools such as ggplot2 [89].

4.2 Filtering unlikely regions

Occasionally quantification targets contain repeat elements that are not actually expressed
at that locus. A clear indicator is that the expression increases immensely for only a short
number of bases. A way to identify such a region is to compute the probability of observing
long regions of zeros given the abundance estimated of that region. While the algorithm
below is used to remove targets with very uneven coverage, the algorithm can also be used
to identify potential issues in a transcriptome annotation.

Consider a locus (e.g. gene) with m expression targets (isoforms) t1, t2, . . . , tm. We define

• λ(ti) be the expected number of reads per base (i.e. the rate determined from quan-
tification using a method such as eXpress [72]).

• Xp(ti) ∼ Poi (λ(ti)) indicating the number of reads starting at position p on expression
target ti.

Thus, we assume uniform coverage according to the Poisson distribution for each ex-
pression target. We also assume that the number of reads starting at each position of each
expression targets are idependent and identically distributed random variables.
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We can identify targets which have coverage patterns that are not consistent with the
above model (therefore implying incorrect annotation) by finding long regions with no cov-
erage that exceed in length what is expected based on covered regions. Let α be the
level of significance we wish to test at. We assume that α is appropriately scaled by
the Bonferonni method. For example, if we choose to test at level 0.01, we set α =
0.01/(total number of tests).

For every ti that has a zero region of length z, we can bound λ(ti). Since

Pr(Xp(ti) = 0, . . . , Xp+z(ti) = 0) = (Pr(Xt = 0))z

⇒ exp(−zλ(ti)) ≤ α

⇒ λ(ti) ≥ − log(α)
1

z
.

Thus, with probability 1− α, we expect

λ(ti) ≤ − log(α)
1

z
.

A target is labeled as problematic if the previous bound does not hold. To filter out
such targets we chose our (uncorrected for multiple testing) α = 0.01. If any of problematic
targets were part of an overlap set, we removed exons corresponding to that overlap set.

4.3 Testing for inclusion

Our method provides a resampling hypothesis testing procedure to determine whether the
mean is greater than what one would expect due to reshuffling of the given data in those
samples. The null distribution is generated from the filtered list by randomly selecting a
retention value from each sample per condition B times. For each set of samples, the mean
is computed. After the null distribution is generated, the p-value is computed by finding
the proportion of null values that the observed mean is greater than. This allows for a
lower false-positive rate when detecting IR events. This procedure also helps shield against
samples that have contamination of non-mature mRNA.

4.4 Application: terminal erythropoiesis

Erythroid differentiation represents an excellent model system for exploring stage-specific
post-transcriptional remodeling of gene expression during terminal differentiation. Fluorescence-
activated cell sorting (FACS) makes possible isolation of discrete, highly purified populations
of cells as they differentiate, enucleate to form reticulocytes and ultimately mature into red
cells. Early progenitors known as burst-forming unit-erythroid (BFU-E) and colony-forming
unit-erythroid (CFU-E) can be highly purified by this approach, as can proerythroblasts
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(proE) and several stages of terminally differentiating erythroblasts termed basophilic ery-
throblasts (basoE), polychromatophilic erythroblasts (polyE) and orthochromatophilic ery-
throblasts (orthoE). We and others have analyzed RNA-seq libraries prepared from these
purified populations of human erythroid cells to gain new insights into the evolving ery-
throid transcriptome at the level of gene-level expression, alternative splicing, non-coding
RNA expression, etc. [2, 68, 65].

Proliferating mammalian erythroblasts exhibit a robust, dynamic alternative splicing
program [68, 19, 80] enriched in genes involved in cell cycle, organelle organization, chromatin
function and RNA processing [68]. A prominent feature of the erythroblast splicing program
is a number of alternative splicing ‘switches’ that increase PSI (percent spliced in) values
predominantly in late erythroblasts at the polyE and orthoE stages, temporally correlated
with major cellular remodeling as cells conclude their proliferation phase and prepare for
enucleation. Splicing switches can alter protein function in physiologically important ways,
e.g. upregulation of exon 16 splicing in protein 4.1R transcripts leads to synthesis of protein
isoforms that bind spectrin and actin with high affinity, mechanically strengthening the red
cell membrane prior to release into the circulation [17, 24, 32]. In most cases, however,
understanding the physiological functions of alternative protein isoforms generated via the
erythroblast splicing program remains a challenge for future studies.

Previous studies of the erythroid transcriptome entirely over-looked the IR component
of the splicing program. Our new study shows that erythroblasts elaborate an extensive and
diverse intron retention program encompassing numerous essential erythroid genes including
those encoding splicing factors and proteins involved in iron homeostasis. Differentiation
stage-specific changes in IR efficiency largely paralleled switches in splicing of cassette exons
described earlier [68], reinforcing and expanding the concept that careful regulation of RNA
processing plays a major role in terminal erythroid differentiation as cells mature along the
path from proE to orthoE.

RNA-Seq data and processing

RNA-Seq data obtained from five highly purified human erythroblast populations—proerythroblasts
(proE), early basophilic erythroblasts (e-basoE), late basophilic erythroblasts (l-basoE),
polychromatophilic erythroblasts (polyE) and orthochromatophilic erythroblasts (orthoE)
[33] is available at GSE53635. The data include three biological replicates of each pop-
ulation. For other tissues, we imported wiggle plots, showing RNA-seq coverage along
the genome, that were generated from Illumina BodyMap 2.0 data available at http:

//www.ensembl.org/info/genome/genebuild/rnaseq_annotation.html.
RNA-seq reads were mapped using Bowtie v2.1.0 to an augmented transcriptome output

by KeepMeAround (kma ) as described in Section 4.1. Transcripts and introns were then
quantified using eXpress v1.5.1 (19). We identified an unambiguous set of 186,838 quan-
tifiable introns in the RefSeq transcriptome, but only 10,152 unique introns passed filters
in every condition. To reduce false positives, we removed introns with fewer than three
uniquely mapped reads, denominator values of less than 1 TPM (excluding the intron ex-

http://www.ensembl.org/info/genome/genebuild/rnaseq_annotation.html
http://www.ensembl.org/info/genome/genebuild/rnaseq_annotation.html
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pression) and introns with zero coverage regions longer than 20% of the intron length (Section
4.2). KMA’s hypothesis testing feature was then used on the filtered set of introns to test
whether retention levels were higher than expected given the background retention levels
in each experimental condition. This test also incorporates biological replicates to further
reduce the chance of false positives.

Cluster analysis was performed using k-means clustering on a set of introns that passed
the above filters in every sample and every condition.

Interesting intron retention events

Preliminary inspection of mapping data in the wiggle plot format, displaying RNA-seq read
density along the genome, revealed that most introns were efficiently spliced in all erythrob-
last populations. For example, the α and β globin genes exhibited major peaks in read density
over the exons and deep troughs in intronic regions due to highly efficient joining of exons
and removal of introns during pre-mRNA splicing (Figure 4.4, upper). Many housekeeping
genes such as those encoding glycolytic enzymes also exhibited negligible IR (Figure 4.3). In
contrast, a number of important erythroid transcripts exhibited substantial IR (Figure 4.4,
lower). A very prominent IR event was found in the mitoferrin-1 gene (SLC25A37), which
encodes a mitochondrial iron import protein that is critical for iron homeostasis and abun-
dant heme biosynthesis in late erythroblasts. SLC25A37 intron 2, ∼2 kb in length, was
highly retained in orthoE, while introns 1 and 3 were retained at much lower levels. An-
other major IR event occurs in the SPTA1 gene, encoding the structural protein α-spectrin
best known for its essential role in promoting assembly of a mechanically stable erythroid
membrane skeleton. Intron 20 (1.8 kb) exhibited substantial retention. We also observed
moderate IR in EPOR (encoding the erythropoietin receptor), and in spliceosome-associated
RNA binding proteins including UAP56 (encoded by DDX39B) and SAP155 (encoded by
SF3B1). The latter is an important RNA splicing factor that is frequently mutated in the
RARS (refractory anemia with ringed sideroblasts) subtype of myelodysplasia syndrome
(MDS). As reported previously [62], IR also occurs in the CLK1 gene, encoding a tyrosine
kinase that phosphorylates splicing factors of the SR protein family.

Validation

Validation of several intron retention events were performed by the Conboy lab. These vali-
dations were performed on CD34+ purified cells purified from cord blood and differentiated
into erythroblasts over the course of 16 days as described [33].

RT-PCR analysis of IR transcripts

RNA was purified from cultured erythroblasts as described previously using RNeasy columns
according to the manufacturer’s instructions (Qiagen), but with the addition of a DNase step
to eliminate potential contamination by genomic DNA. RNA from nuclear and cytoplasmic
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Figure 4.3: Wiggle plots of glycolysis pathway transcripts (housekeeping genes) reveal that
IR is uncommon in these genes.
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fractions was prepared using Trizol (Life Technologies). To provide additional assurance that
intron-containing polymerase chain reaction (PCR) products were not derived from contam-
inating genomic DNA, we designed PCR assays to span at least one constitutively spliced
intron as well as the candidate retained intron. PCR reaction conditions were adjusted to
allow for amplification of IR products ≥3 kb in length (denaturation at 95°C for 20”, an-
nealing at 60°C for 10”, extension at 70°C for 1’15”; 35 cycles) using KOD polymerase in
the presence of betaine to enhance amplification. PCR products were analyzed on either 2%
agarose gels (for products >1.5 kb) or 4.5% acrylamide gels. All PCR products discussed in
the manuscript were confirmed by DNA sequencing.

Nuclear isolation

Nuclei were prepared from ∼20 million erythroblasts according to published methods [64],
with minor modifications. In brief, the erythroblast plasma membrane was lysed using 0.05%
NP40, and nuclei were separated from the reddish hemoglobin-rich cytoplasmic fraction by
centrifugation through a sucrose cushion at∼2000 rpm. The whitish nuclear pellet was rinsed
with ice-cold phosphate buffered saline containing 1 mM ethylenediaminetetraacetic acid and
was resuspended gently to generate a turbid suspension in which nuclei were microscopically
verified. Purity of the nuclear fractions was further confirmed by immunoblotting with
antibodies to U1–70K protein (a kind gift from D. Black, UCLA).

Clustering and genome wide analysis

Applying these tools to RNA-seq data from the five erythroblast populations revealed wide
variations in percent intron retention (IR), length of retained introns and number of introns
retained per transcript. Cluster analysis was performed using k-means clustering on a set
of introns that passed the above filters in every sample and every condition. Hundreds of
introns were retained at IR > 0.10 in at least one erythroblast population. Some of these
represented single IR events in otherwise efficiently-spliced transcripts; however, there were
also many transcripts that retained multiple introns. The distribution of IR values across the
erythroblast populations showed that overall IR increases as erythroblasts differentiate, with
highest IR in cells at the orthoE stage (Supplementary Figure S2). These data demonstrate
that a robust IR program affects the expression of many important erythroid genes.

We reasoned that dynamic regulation of IR events might be an important gene reg-
ulatory mechanism during terminal erythropoiesis, similar to stage-specific exon splicing
switches executed in late erythroblasts [68]. Cluster analysis of IR values for each intron
at all five maturational stages revealed nine groups of introns (Figure 2). Clusters C1 and
C2, comprising ∼470 introns, represent developmentally dynamic events that substantially
increase IR in the last two differentiation stages. In contrast, clusters C3–C9 constitute a
graded series of developmentally stable intron groups with differentiation-independent IR
values, i.e. relatively little change from proE to orthoE. IR is relatively high in C3 but much
lower in C9.
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Figure 4.4: Intron retention in important erythroid genes from RNA-Seq data. Wiggle plots
showing RNA-seq reads mapped to genes with no IR (top panel, HBA1 and HBB) and genes
with significant retention of one or more introns (CLK1, SPTA1, SLC25A37, SF3B1, and
DDX39B). Portions of the SPTA1 gene were removed due to size constraints. Size of retained
introns is indicated in kilobases and primer locations for PCR validations are shown.
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Figure 4.5: RT-PCR confirmation of IR. The general PCR scheme is pictured at the left,
while PCR products are shown at the right. Lanes M, size markers; 1, CLK1; 2, EPOR; 3,
SPTA1; 4, SLC25A37; 5, SF3B1; 6, DDX39B.

Analysis of intragenic IR patterns revealed that C3, and to a lesser extent in C4, differed
qualitatively from the other clusters in that many of the highly retained introns mapped
to the first or last intron of a transcript (Supplementary Figure S3). Some of these events
might therefore represent alternative initiation or termination of transcription, rather than
intron retention per se. However, a few high-level IR events did localize to internal introns
(e.g. in SLC25A37).

4.5 Differential expression analysis

The model from Chapter 3 can be extended to also test for differential expression. What
we describe below is a simple extension to the sleuth model in conjunction with kallisto to
implement differential intron retention while incorporating inferential variability.

Firstly, estimate the intron retention percent spliced in, Ψ, using the method from Keep-
MeAround. Using the bootstraps from kallisto, compute bootstrap estimates of Ψ. We call
this estimate τ̂ 2ti, denoting the inferential variability from the tth intron from the ith sample.
Transform everything using the logit transform:

logit(Ψ) = log

(
Ψ

1−Ψ

)
. (4.1)

We assume that the unobserved truth follows:

logit(p) ∼ N(logit(Ψ), σ2) (4.2)

where σ2 denotes the between sample (biological) variance. Then, we observe a noisy
sample, q, of this process:
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q | p = logit(p) + ξ (4.3)

ξ ∼ N(0, τ 2). (4.4)

This model then appears to be very similar to Equation 3.3. Much like the transcript or
gene level model, unconditionally we have an unbiased estimate of the expectation, whereas
we unconditionally have two additive components of variance. The estimation procedure can
proceed as described in Chapter 3 without any additional modifications.
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Chapter 5

Conclusion

In the preceding chapters we provided an overview of RNA-Seq and associated analysis
problems (Chapter 1), a method for transcript-level abundance estimation called kallisto
(Chapter 2), a method for performing differential expression at the transcript and gene
level while incorporating inferential variance called sleuth (Chapter 3), and a method for
discovering novel retained introns called KeepMeAround (Chapter 4). These methods are
general and can be used to answer many biological questions in conjunction with RNA-Seq.
The resulting software has also been engineered to empower users to quickly explore their
data in a flexible manner, much faster and more easily than existing tools.

In addition, the assumptions of kallisto and sleuth are general and can be applied to
other types of sequencing data or other types of RNA-Seq analyses. In fact, we are currently
using kallisto with shotgun sequencing data in the metagenomics context [78].

Other areas of extension using RNA-Seq data with kallisto and sleuth include allele
specific expression (ASE) and quantitative trait loci (QTL) analyses. In Section 2.4, we
showed that ASE estimation is possible with kallisto, but one could go even further and
directly estimate haplotypes within kallisto while estimating abundances.

While sleuth has shown great promise by outperforming the current state of the art,
there are several obvious areas for extension. Firstly, the assumption of equal variance
could be relaxed to support unequal variances between samples. This assumption could
be important in QTL analyses where the variance might be different for different genetic
mutations. Secondly, other estimators of the variance, perhaps using empirical Bayes, might
be fruitful when sample sizes are slightly larger. Thirdly, filtering appears to play a crucial
role before model fitting and analysis but is not widely studied.

We showed that by incorporating inferential uncertainty into a differential expression
model, sensitivity can be improved. This process is simple and while we are certainly not
the first to describe it, we are the first to perform shrinkage in this manner. This shrinkage
procedure might also be useful in other areas where inferential variance or other “technical”
variance can be quantified well but other variance components should be regularized due
to small sample sizes. Additionally, while sleuth assumes the log abundance is normally
distributed, it is possible to extend this model to a more general framework, such as the
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exponential family. This could enable further adaptation of similar procedures in different
contexts.
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