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Abstract

Algorithms and Software for High-Performance Fracture Simulation on GPU 

Architectures

Rone Kwei Lim

Computer simulation of fracture in materials with nonlinear mechanical response can be 

computationally expensive. These simulations often require a large number of degrees of 

freedom, and the nonlinearity in the problem can pose difficulties when computing solutions.

This work focuses on two material models. The first model consists of rigid bricks 

interacting through nonlinear cohesive springs. Fracture in the material occurs through the 

rupture of the cohesive springs. The second, more complicated, model consists of deformable

elements interacting through nonlinear cohesive springs.

In the first model, we assume the bricks are under a quasi-static loading scenario. 

With this assumption, the problem can be solved using a global Monte Carlo minimization 

algorithm to minimize the energy of the system. The  energy in the system comes from the 

deformation and rupture of the nonlinear cohesive springs. Since these simulations have a 

high computational cost, we have developed a GPU-based (Graphics Processing Unit) Monte

Carlo minimization algorithm that offers a significant speedup compared to a conventional 

multithreaded CPU-based algorithm. 

With the second model, we have dynamic simulations with explicit time 

discretization. In this case we compute the force, acceleration, velocity, and position 

explicitly. The force in the system comes from both the deformation of the elements as well 

as the deformation of the nonlinear cohesive springs. We have developed explicit, CPU-
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based methods and implicit-explict methods on both CPUs and GPUs. Our implicit-explict 

GPU-based method achieves substantial performance improvement compared to the explicit, 

CPU-based method.

We present our GPU-based implementation of AES (Advanced Encryption Standard),

which is used in the Monte Carlo minimization algorithm to generate random numbers. Our 

implementation is substantially faster than CPU-based implementation of AES. It is also 

faster than previous GPU implementations of AES.
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Chapter 1 Introduction

Computer simulation is an important part of science and engineering. The ability to simulate 

physical processes on a computer has led to greater insight and understanding in many fields,

including structural materials. The combination of computer simulations and physical 

experiments can lead to a deeper understanding than is possible with either one alone. 

Computer simulation of material fracture can be computationally expensive due to the

large number of elements necessary to capture microstructue features. One example of such 

material is nacre and its synthetic analogues, which has a mechanical response that depends 

strongly on the microstructure features. Explicit representation of these features can lead to 

very large problem sizes, for which simulations can require substantial computation time. In 

these materials, individual “bricks” interact with each other through a polymer that binds the 

bricks. The problem size discussed in this dissertation can reach up to 300,000 bricks. Figure 

1.1 shows an example simulation output. In the figure, the colors represent vertical brick 

stress.
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Figure 1.1. An example simulation output. The colors 
represent vertical brick stress.

One way to model the problem is to use rigid elements with interfaces that can 

fracture, under a quasi-static loading scenario. In this case, the problem can be solved by 

using global Monte Carlo minimization algorithms to minimize the energy of the system, 

which comes from the deformation and fracture of the interfaces under external loading. To 

alleviate the high computational cost of these simulations, we have developed GPU- 

(Graphics Processing Unit) based Monte Carlo minimization algorithms that achieve 

significant speedup over conventional CPU-based algorithms. 22,24,25,26 GPUs offer a highly 

parallel computational resource that can substantially increase the performance of algorithms

that can take advantage of it. The details of the algorithms will be described later in the 

dissertation.

Another, more complicated way to model the problem is to use deformable elements 

with interfaces that can fracture, using an explicit time discretization. In this case, the 

problem can be solved using a time-stepping method to evolve the system either explicitly or
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implicitly. We have developed explicit, CPU-based methods as well as implicit-explicit 

methods on both CPUs and GPUs. We describe the details of these methods later in the 

dissertation.

The remainder of this dissertation is organized as follows. In Chapter 2, we discuss 

GPU-based Monte Carlo minimization algorithms for rigid elements. In Chapter 3, we 

present an improved GPU implementation of AES (Advanced Encryption Standard), which is

used to generate random numbers that are required for the Monte Carlo minimization 

algorithms. In Chapter 4, we describe our implementation of explicit methods, and show how

an implicit-explicit time-stepping method can be very well-suited to problems with 

deformable elements and to GPU computations. In Chapter 5, we conclude with a summary.
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Chapter 2 High-performance simulation of fracture in idealized “brick and mortar”

composites using adaptive Monte Carlo minimization on the GPU

Simulations of fracture that explicitly account for material microstructure can be enormously 

expensive, due to the fact that large numbers of degrees of freedom are necessary to capture 

the effect of individual microstructure features. An excellent example of this challenge is the 

simulation of fracture in nacre and its synthetic analogues, which consist of small ceramic 

platelets bonded together with a very small volume fraction of polymer. The mechanical 

response of these materials is strongly influenced by the dimensions and arrangements of the 

platelets, and explicit representation of all features in the microstructure within the fracture 

process zone leads to daunting problem sizes, as a high density of discretized elements is 

required.10,11,14 Further, the strong interaction between the fracture process and the brick 

arrangement implies that fracture pathways are not known a priori, creating the need to allow

for arbitrary cracking pathways to evolve with loading.12,19 The need to capture local material

rupture (e.g. the breaking of bonds holding platelets together) further compounds the 

problem, as rupture represents a strong nonlinearity that produces sharp spatial gradients in 

stiffness (i.e. a crack has zero stiffness while the surrounding material may be intact and 

therefore have high stiffness). For such problems, methods that rely on gradient-based 

techniques to find the roots of non-linear equilibrium equations are often prone to extreme 

convergence difficulties that stem from the sharp discontinuities in stiffness.

We present an idealized model for nacreous materials that represents the platelets 

comprising the microstructure as rectangular bricks, whose position and orientation are 

solution variables to be determined through simulation. The bricks interact through non-
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linear springs, which represent the very small volume fraction (1-5%) of polymer mortar that

hold the bricks together.13,20,21 Hence, the non-linear spring description represents the 

constitutive law that describes mortar, and includes both elastic response (for small 

separations between bricks), plastic response (when the separation between bricks causes 

straining of the mortar beyond its elastic limit), and rupture (when the separation between 

bricks is large enough to cause material failure in the mortar). Figure 2.1 provides a 

schematic illustration of the material model. A companion paper more fully discusses the 

physical justification and implications of the model, using the solution techniques and 

algorithms described here to quantify fracture parameters controlling failure.22

Noting the fact that many fracture problems involve limited amounts of unloading, 

the problem can be cast in terms of energy minimization of a non-linear elastic system: in 

this case, described by the non-quadratic energy potential describing the springs, or mortar. 

We treat the bricks as rigid due to their extreme stiffness relative to that of the mortar, thus 

the problem is essentially that of a collection of nearest-neighbor particle interactions.22

The end result is a material idealization that simply involves finding the collection of 

brick positions and rotations that minimize the energy in the non-linear springs connecting 

the particles. From a purely mathematical point of view, this is a fairly general problem in 

that it involves finding global energy minima of a highly nonlinear system of nearest 

neighbor interactions. While the idealized material model described above serves as the 

motivation, the algorithms described here are applicable to other problems of this type (such 

as the large deformation of fiber networks22). The focus of this chapter is on the strategic 

marriage of the GPU architecture to this class of problems. We will show that the GPU 
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architecture offers powerful advantages, particularly when combined with algorithms that 

exploit the nature of nearest-neighbor interactions. Results are presented quantifying 

computational performance. This work appeared in24. For additional details regarding the 

material aspect of the simulations, see 22,25.

2.1 Background

2.1.1 Model

Figure 2.1. (a) Schematic of macroscopic specimen and loading scenario (bending). There 
is a pre-existing crack in the middle of the specimen. (b) An example configuration of 
bricks. Many more bricks are used in the actual simulations. (c) Assignment of bricks to 
threads using graph-coloring. Adjacent bricks are assigned different colors. Bricks of the 
same color are processed in parallel.

The central objective of the simulations presented here is to predict failure of a macroscopic 

specimen that has a large, pre-defined crack and is loaded in a combination of tension and 

bending, as shown in Figure 2.1(a). The macroscopic specimen is created by defining a two-

dimensional “wall” of overlapping rectangular bricks that are connected with cohesive 

springs; Figure 2.1(b) shows a close-up view of this microstructure and the dimensions that 

define the bricks. The bricks are treated as rigid bodies, while the mortar (implicitly 
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represented by the cohesive springs connecting the bricks) is described as a nonlinear 

material. A large number of bricks are used to accurately capture the complex fracture 

behavior near the tip of the macroscopic crack shown in Figure 2.1(a). The simulation tool 

has been coded to allow for arbitrary combinations of brick width, height, overlap, and 

orientation within a specimen. (Here, example results are presented for a single 

microstructural orientation relative to the specimen; more exhaustive study of the role of 

brick size and orientation is presented in a separate work.22)

The specimen is loaded by applying prescribed displacements to the bricks at the top 

and bottom of the specimen shown in Figure 2.1(a). Bricks without prescribed displacements

can undergo general rigid body motions (translation and rotation). As the bricks displace and 

rotate, the interface opening between bricks can change. The cohesive law describes the 

energy that is stored at the interfaces as the bricks change position, in terms of the relative 

displacements between the adjacent bricks defining the interface. The cohesive description 

contains three parameters: interface stiffness, critical separation, and work to failure. The 

energy of an interface is computed as follows

Einterface=∫ Ept ds (2.1)

where the integral is over the length of the interface. The energy at a given point is given by

Ept=f (√∆n
2+∆ t

2)+g(∆n) (2.2)

where Δn is the displacement in the normal direction and  Δt is the displacement in the 

tangential direction, and f and g are given by
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f (x)={
0.5 k x2 , x≤x1

k x1 (x−0.5 x1) , x1<x≤x2

−0.5 k [x1
2
+x2

2
+x2

−2 x (x1+x2)] , x2<x<x1+ x2

k x1 x2 , x≥x1+x2 (2.3)

g(x )={
0, x≥0

0.0625 k x2 (x
x1

)
4

, x<0
(2.4)

where k is the interface stiffness, x1 is the critical separation,  and k x1 x2 is the work to 

failure. The traction generated between bricks is simply the derivative of the cohesive energy

potential with respect to relative displacements. Figure 2.2 illustrates the traction-separation 

relationship as a function of brick separations, and the associated energy potential. At small 

relative displacements, the tractions are linear with separation, representing the elastic phase 

of mortar response: above a critical displacement, the traction remains constant, representing 

the plastic yielding phase of mortar response. The rupture separation defines the point at 

which the mortar begins to fail: for large relative displacements, the traction between bricks 

is zero, and the energy potential assumes the value of the area under the traction-separation 

curve.
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Figure 2.2. (a) Graph of traction-separation function. (b) Graph of the energy potential, 
defined as the integral of the traction-separation function.

2.1.2 Basic Numerical Method

The simulation is thus an energy minimization problem, where the solution involves finding 

x1,y1,θ1,x2,y2,θ2,....xn,yn,θn, where xn,yn,θn is the x-position, y-position, and orientation of brick 

n, such that the energy E(x1,y1,θ1,x2,y2,θ2,....xn,yn,θn) is minimized. The energy function E 

depends on the brick size and orientation and the properties of interfaces between bricks. For 

problems involving cohesive yielding or rupture, the energy landscape is multidimensional, 

highly non-linear, and may contain several solutions (local minima). For problems of this 

nature, typical gradient based schemes do not perform well; instead, direct heuristic search 

numerical optimization algorithms are preferred. We use the Monte-Carlo direct search 

method, also known as simulated annealing, to find the minimum.15,16,18 In this case, the 

temperature parameter T is a fictitious parameter that is chosen by the user, as opposed to a 

physically meaningful temperature used in annealing simulations involving physical 

quenching.
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One advantage of simulated annealing is that it is highly parallelizable, which allows 

us to leverage the computational power of GPUs. The basic parallelization concept is to 

move multiple bricks simultaneously, computing the associated energy change and accepting 

those that lower the energy. A small fraction of movements that increase the energy are 

accepted as well, to avoid being trapped in a local minima; an exponential function is used to

describe the probability controlling the acceptance of movements that raise energy. In this 

approach, one must avoid moving adjacent bricks at the same time; as will be described, we 

address this problem by coloring the bricks using a graph coloring algorithm to identify sets 

of non-adjacent bricks, as shown in Figure 2.1(c). Different sets of bricks, each with a given 

color, are passed into separate threads of the GPU. 

The basic algorithm is outlined as follows. While the solution for any given 

prescribed displacement can be found in a single minimization step, in the approach taken 

here, the prescribed displacements are applied incrementally. This both captures solutions at 

a range of loads and promotes convergence, as described in subsequent sections:

Apply displacement mi to each driven brick dk

Repeat these steps until convergence

For each free brick bn, perform the following steps:

Compute the current energy Eold

Generate standard uniform random numbers rx, ry, rθ

Perturb the position  and orientation using rx, ry, rθ

Compute the new energy Enew

If Enew – Eold <= 0

10



Accept the new position and orientation

Else

Generate a standard uniform random number r

If r < exp( (Eold - Enew) / T)

Accept the new position and orientation

Else

Reject the new position and orientation

2.2 Adaptive Numerical Methods

We have developed and implemented several enhancements to increase performance and 

usability of the basic algorithm. These methods include adaptive cycle count, adaptive step 

size adjustment, adaptive displacement adjustment, and a position predictor.

The adaptive cycle count allows the user to specify tolerance values. The algorithm 

will run as many iterations (cycles) as necessary to reach the specified tolerance values. 

Without this, the user would have to specify cycle count directly, but the number of cycles 

required to converge is not known beforehand.
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Figure 2.3. (a) Adaptive cycle illustration. The old sliding window is labeled windowold, 
while the new sliding window at the next cycle is labeled windownew. The blue circle is the 
new energy value, and the red circle is the old energy value. The variance and correlation 
coefficient are calculated each time the sliding window is updated. (b) Graph of position 
predictor multiplier. The predictor uses linear prediction when the energy is low, and a 
combination of linear and constant prediction as the energy increases.

The underlying idea is illustrated in Figure 2.3(a). We use a sliding window to monitor the 

variance and correlation coefficient to determine convergence. At each cycle, the new energy

value is added to the sliding window (blue in Figure 2.3(a)), while the old value is removed 

(red). Then the variance and correlation coefficient of the window are calculated and 

compared to user-specified tolerance parameters. These tolerance parameters include WS 

(size of the sliding window, which corresponds to the number of Monte Carlo cycles), STOL 

(tolerance for variance), RTOL (tolerance for correlation coefficient), and ConvergenceRep 

(the number of times the convergence criteria need to be met to advance to the next 

displacement step). After the STOL and RTOL criteria have been met for ConvergenceRep 

times (which is typically set to 1/4 to 1/2 of WS), the current displacement step is considered 

to be finished.
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There are several methods to calculate the correlation coefficient and variance. One 

approach is to use a two-pass algorithm that calculates the mean first and then calculates the 

variance. This approach does not work well for this situation since whenever a new value is 

added or an old value removed from the sliding window, the entire window has to be 

reprocessed. A different approach is to use a one-pass algorithm that dynamically updates 

without reprocessing the entire window. A well-known formula is the following 9

SQnew=SQold+ xnew
2

−xold
2 ; SQinit=0

SN new=SN old+xnew−xold; SN init=0

variance=
SQnew−

SN new
2

WS
WS (2.5)

where xnew is the new value, xold is the old value, WS is the window size, and SQ and SN are 

intermediate variables.

However, this formula suffers from round-off errors and the computed variance can become 

negative rather quickly. We use a more numerically stable one-pass formula 9

meannew=meanold+
xnew−xold

WS
; meaninit=0

SSnew=SSold+(xnew−meannew)(xnew−meanold)−(xold−meannew)(xold−meanold ); SSinit=0

CSnew=CSold+(xnew−meannew)(
WS+1

2
)+(xold−meanold)(

1−WS
2

) ; CS init=0

variance=
SSnew

WS

R2
=

CSnew
2

WS∗variance∗(
WS2

−1
12

)
(2.6)

where variance and R2 (correlation coefficient) are the output values, and mean, SS, CS are 

the intermediate variables.
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This formula accumulates round-off errors more slowly than the previous formula, but it can 

still produce a negative variance after some time. To remedy this problem, the MPFR 

package 8 was used to compute the intermediate values (mean, SS, CS) at quadruple 

precision, whereas normal floating-point numbers are either single or double-precision. The 

MPFR package is a widely used library for performing extended precision calculations. After

the variance and R2 are computed, they are compared to the user-specified STOL and RTOL 

criteria to determine convergence.

We included an adaptive step size strategy that modifies the brick step size (the 

amount of perturbation to a brick's position during one step) and rotation size (the amount of 

perturbation to a brick's orientation) based on acceptance probability.17,23 If the acceptance 

probability is very low, then most of the attempted moves are rejected, which results in a loss

of efficiency. If the acceptance probability is very high, then this implies that the brick step 

size and rotation size is small, so it would take more time to converge after an applied 

displacement. The equation for adjusting both the brick step size and rotation size is given by

sn+1={sn∗(0.5+α) , α<0.4,α >0.6
sn, 0.4≤α≤0.6 (2.7)

where sn is the step size at load step n, and α is the acceptance probability. The step size can 

be adjusted either globally or on a per-brick basis. In global adjustment, a single step size is 

used for all bricks and adjusted periodically. For the per-brick basis, each brick maintains its 

own step size.

Our strategy for adaptive displacement adjustment controls the displacement size to 

reach stable crack growth behavior. The displacement size is adjusted using forward control 
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and backtracking. In forward control, the step size is adjusted proportionally based on a 

target number of cycles for convergence. The equation for forward control is given by

Δn+1=Δn∗
c t

cr (2.8)

where Δn is the displacement step size at load step n, ct is the target number of cycles and cr is

the actual number of cycles required to converge the previous displacement step.

Besides forward control, we also use backtracking, which occurs when the number of cycles 

exceeds an upper limit. In backtracking, the displacement step is reverted and the new 

displacement step size is given by

Δn+1=Δn∗
2
3
∗

c t

cu (2.9)

where cu is the upper limit for cycles.

A position predictor is used during the early stage of the simulation (prior to 

widespread rupture between bricks) to accelerate convergence, since the relationship between

prescribed displacements and brick positions is approximately linear. In this case, the 

converged position of the bricks in one displacement step is linearly extrapolated to obtain an

initial position for the next displacement step that results in a faster convergence. The 

predictor is given by

pi
n+1

=p i
n
+

Δn+1

Δn

∗[ p i
n
−pi

n−1 ]∗m
(2.10)

where pi
n is the position of brick i at displacement step n, and m is the multiplier defined 

below.
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As the simulation progresses, the interfaces between bricks approach the point of fracture, 

where a linear predictor is no longer accurate, and a constant predictor is more appropriate. 

To reduce the prediction error, the following multiplier is used

m=1−1.8 ([max (min( Φ
Φ0

,1.0),0.5)]−0.5)
(2.11)

where Φ is the current brick energy, and Φ0 is the maximum elastic brick energy.

As shown in Figure 2.3(b), when the brick energy is low, the multiplier is equal to 1, so the 

linear predictor is used. As the brick energy increases, the multiplier value decreases, 

resulting in the use of a linear combination of constant predictor and linear predictor. The 

position predictor results in a significant performance improvement during the harmonic 

(non-fracture) part of the simulation, as will be discussed subsequently.

2.3 GPU Architecture

During the past few years, GPUs have increasingly been employed for scientific and 

engineering computations as GPU architectures have become more flexible and powerful.1 

To achieve high performance on the GPU, it is important to understand the differences 

between CPU and GPU architectures, which are illustrated schematically in Figure 2.4. A 

general-purpose CPU, such as the Intel Core i7-2600 or the AMD Phenom II X6 1100T has 

several cores to run multiple threads (4 physical cores / 8 virtual cores for the Core i7-2600 

and 6 physical cores for the Phenom II X6 1100T). It also has a large cache (8MB for the 

Core i7-2600 and 6MB for the Phenom II X6 1100T). A CPU also has sophisticated flow 

control mechanisms, such as branch prediction, data/instruction prefetching, out-of-order 
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execution, and superscalar execution. CPUs are designed to run a few threads as fast as 

possible, and are well-suited for problems with a low degree of parallelism.

In contrast, a GPU, such as the Nvidia GTX 580 or the AMD Radeon HD 6970, has a 

large number of execution units to process a large amount of data in parallel. For example, 

the Nvidia GTX 580 has 16 SMs (Streaming multiprocessors), where each SM has 32 SPs 

(Shader processors). Each SM can execute independent streams of instructions, whereas the 

SPs within each SM execute instructions in a SIMD (Single Instruction Multiple Data) 

manner. The Nvidia GTX 580 has a 64K L1 cache and a 768K L2 cache. GPUs lack the 

sophisticated flow control mechanisms that are present on CPUs, such as branch prediction. 

GPUs are designed to run large numbers of threads, and are suited for problems with a high 

degree of parallelism.1,2

In comparing CPU and GPU, a GPU has many more transistors devoted to execution 

units than a CPU, whereas a CPU has more transistors devoted to cache and flow control 

mechanisms compared to a GPU, as shown in Figure 2.4.
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Figure 2.4. CPU and GPU architectures. A GPU has more transistors devoted to 
execution, while a CPU has more transistors for cache and control mechanisms.

The result is that a GPU can reach higher peak performance, as shown in Figure 2.5, which 

compares flop rates and bandwidths of Nvidia GPUs and Intel CPUs. Figure 2.5(c) shows the

double-precision FLOP rate on the two GPUs and two CPUs used for the test system.
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Figure 2.5. (a) Peak GFlops of CPUs and GPUs. The peak GFlops is significantly higher 
on a GPU. (b) Peak memory bandwidth of CPUs and GPUs. The peak bandwidth is 
significantly higher on a GPU (c) Peak double precision GFLOP/s on the test systems: 
Nvidia GTX 480 GPU/Core 2 Quad Q6600 CPU and Nvidia GTX 580 GPU/Core i7 2600 
CPU.

To approach the peak performance of the GPU, the code needs to be structured in a 

way that takes advantage of the architecture of the GPU and avoids the limitations that 

reduce performance. These considerations include having enough threads running in parallel,

ensuring coalesced memory access, minimizing data transfer between GPU and CPU, and 

minimizing warp divergence.1,3

Having enough threads running in parallel is important because GPUs are designed 

for highly parallel operations, which allows latency in one thread to be hidden by performing

other operations in another thread. In addition, context switching between threads on a GPU 

is significantly less expensive than on a CPU.1 For these reasons, it is typical to have 

thousands of threads running in parallel on a GPU.
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Ensuring coalesced memory access improves performance since the memory 

controller on a GPU performs operations based on groups of threads at a time. Memory 

access is coalesced when the threads within a group access a contiguous region of memory. 

For example, the Nvidia GPU uses a warp of 32 threads.1 If the memory access within a warp

is not coalesced, then the controller must perform additional operations, which reduce 

performance.

Minimizing data transfer between the GPU and the CPU is another important 

consideration. The bandwidth of the link between CPU and GPU is much lower than the on-

board memory in the GPU. For example, the Nvidia GTX 580 has a 16x PCI-Express 2.0 

capable interface, which can transfer a maximum of 8 GB/s between CPU and GPU. In 

contrast, the on-board memory on the GTX 580 has a maximum transfer rate of 192.4 GB/s, 

which is much higher.

Minimizing warp divergence is important since GPUs operate in a SIMD manner. 

Warp divergence is caused by different threads taking different execution paths, such as two 

threads taking different branches in a conditional statement. Whenever the GPU encounters 

warp divergence, it serializes the execution of the warp, which leads to reduced 

performance.1
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2.4 GPU Implementation

Figure 2.6. Flowchart of the overall simulation algorithm.

Prior to the GPU-based simulation algorithm, input processing and initialization steps are 

performed on the CPU. An overview of the CPU and GPU operations in the present code is 

shown in Figure 2.6. The input processing step reads information about the bricks, interfaces,

and the overall structure from input files. This step allows the simulation to handle different 

brick shapes and sizes, and different interface properties. In the data structure, each brick has 

a position, orientation, constraints, neighbor information, and interface properties associated 

with it.

The initialization step involves finding the connectivity between bricks and 

determining which bricks can be processed in parallel. We devised a grid-based algorithm to 
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find the interface connectivity, with a time complexity of O(N). The algorithm works by 

setting up a rectangular grid of cells and associating each brick to a cell. Then it finds all 

candidate bricks that are within a certain distance of the selected brick and tests them for 

interface connectivity, i.e. whether two bricks have a common interface. We then use a 

graph-coloring based algorithm to determine which bricks can be processed in parallel.15 

Neighboring bricks are colored with different colors, then all bricks with the same color are 

grouped together. Figure 2.1(c) provides a diagram that illustrates the graph coloring. 

Adjacent bricks cannot be processed in parallel since this would result in a data race. After 

these steps have been performed, the data structure containing information about bricks and 

interfaces is transferred to the GPU memory. The number of bricks that can be simulated is 

limited by the amount of GPU memory; with the GTX 580, we can simulate up to 2,000,000 

bricks. Next, the pre-simulation phase is performed. In this phase, the different candidate 

graph colorings from the previous phase are used to execute the simulation for a small 

number of cycles. The reason for performing pre-simulation is because in general, the graph 

coloring problem is NP-complete. As a heuristic, we generate several possible candidate 

colorings and determine their execution time. The execution time can vary for different 

colorings because different colorings generate different memory access patterns. It is difficult

to know a priori which coloring will be optimal. The graph coloring that minimizes the 

execution time is selected for the main simulation phase.

At set intervals chosen by the user, some state information is transferred from GPU to

CPU so that intermediate states can be obtained by the user. The majority of the data remains
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on the GPU to minimize the amount of time spent in transferring data across the bus since 

the bus is much slower than the on-board memory of the GPU.

The random numbers that are used in simulated annealing are generated via a two 

stage process. First, parallel, independent streams of random numbers are generated using the

Dynamic Creation Mersenne Twister (DCMT) algorithm.4 Having independent streams 

ensures that there is no correlation between the different streams that could potentially skew 

the simulation results. Each stream of random numbers is associated with a different set of 

generator parameter values, which we computed on a cluster. The parameter values are 

computed once and can be reused multiple times with different seeds to generate different 

sets of independent streams of random numbers. The original DCMT algorithm was written 

to run on a CPU.4 The DCMT algorithm was modified by NVIDIA to run on the GPU using 

CUDA.5 We have further modified the DCMT algorithm to improve its initialization and 

increase randomness. Rather than using one seed value for all the random number generators 

(RNG), we modified the process to generate multiple seed values from the initial seed, one 

for each RNG. We have also improved performance by increasing thread parallelism and 

exploiting instruction pipelining. Then, the output is processed using Advanced Encryption 

Standard-Electronic Codebook (AES-ECB) 6 to improve the randomness properties. We have

parallelized the AES algorithm to run on the GPU. We used TestU01, which contains a large 

collection of statistical tests for random number generators, to test the quality of our random 

number generation.7 In TestU01, the Mersenne Twister passed all tests except for the linear 

complexity tests. Processing the output of MT using AES enables the results to pass all of the

statistical tests in TestU01.
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In the simulation, bricks are assigned to threads using a graph-coloring based 

algorithm since neighboring bricks cannot be modified simultaneously. For example, in

Figure 2.1(c), bricks 1 and 6 are non-adjacent and colored purple, while bricks 2 and 4 are 

colored blue, and so on. Then all of the purple bricks are processed in parallel, followed by 

all of the green bricks, and so on. During the simulation, thousands of threads are launched to

simulate a large number of non-adjacent bricks in parallel. This takes advantage of the large 

number of execution units available on a GPU. However, it also leads to a less coalesced 

memory access pattern since the bricks are non-adjacent, which reduces performance. To 

overcome this issue, we rearranged the data structure on the GPU so that the memory access 

pattern is more coalesced. During input processing, the data is stored in array of structure 

format. In an array of structure format, an object's properties are grouped together. This 

format is used because the data structure needs to change dynamically as input files are 

processed. Afterward, the data is rearranged into a structure of array format for computation 

on the GPU since this is more efficient. In a structure of array format, properties of the same 

type from multiple objects are grouped together. In addition, the order of the individual 

elements in the data structure are rearranged to increase efficiency. The rearrangement is 

performed once on the CPU, prior to the main simulation phase. Figure 2.7 provides a 

diagram of the data structures used in the simulation.
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Figure 2.7. Diagram of the data structures used in the simulation. Initially, the data 
structures are in an array of structure format during input processing. It is then 
rearranged into a structure of array format. Additionally, the individual elements are 
rearranged according to the graph coloring order.

2.5 Results

The test problem discussed below has the following configurations. The bricks are oriented 

with varying angles with respect to the macroscopic crack direction, and the bricks have a 

width to height ratio of approximately 3.5. The number of bricks in various simulations 

ranges from approximately 50,000 to 350,000. The bricks are displaced under a bending 

scenario, as shown in Figure 2.1(a). The parameters used in the simulations considered here 

are listed in Table 2.1.

Table 2.1. Parameters used in the results section.

Adaptive Non-adaptive
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STOL = 0.002
RTOL = 0.03
ConvergenceRep = 1500
WindowSize = 3500
DumpInter = 10e0
AdaptInter = 5e3
TEMP = 0.00075
InitialStepSize = 0.001
MinStepSize = 0.0001
MaxStepSize = 0.02
InitialRotSize = 0.001
MinRotSize = 0.0001
MaxRotSize = 0.02
AmpFactor = 1
InitialLoadStepSize = 0.02
MinLoadStepSize = 0.005
MaxLoadStepSize = 0.08
StructSteps = 1
WindowMul = 20
WindowUpperMul =50000

STOL = 0.002
RTOL = 0.03
ConvergenceRep = 1500
WindowSize = 3500
DumpInter = 10e0
TEMP = 0.00075
InitialStepSize = 0.001
MinStepSize = 0.001
MaxStepSize = 0.001
InitialRotSize = 0.001
MinRotSize = 0.001
MaxRotSize = 0.001
AmpFactor = 1
InitialLoadStepSize = 0.02
MinLoadStepSize = 0.02
MaxLoadStepSize = 0.02
StructSteps = 1

The test problem was run on two different platforms to compare performance. The 

first platform consists of a Core 2 Quad Q6600 CPU at 2.4 GHz, EVGA nForce 780i 

motherboard, 8GB DDR2-800 memory, and an Nvidia GTX 480 GPU. The second consists 

of a Core i7 2600 CPU at 3.4 GHz, Gigabyte Z68X motherboard, 16GB DDR3-1333 

memory, and an Nvidia GTX 580 GPU. The software environment is CentOS 6, GCC 4.4, 

and CUDA runtime 4.0. 
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Figure 2.8. Simulation output. (a) The colors represent the energy of the bricks. (b) The 
total energy for various brick orientations.

Figure 2.8 provides an illustration of the results obtained from the simulation; the energies 

associated with the interfaces surrounding a given brick are shown in Figure 2.8(a), while the

relationship between global system energy and the prescribed loading is shown in Figure 

2.8(b). In Figure 2.8(a), the bricks near the crack tip have high energy due to the significant

stress concentration of the crack tip, and the bricks farther away have lower energy. The 

region shown in red in Figure 2.8(a) represents the fracture process zone where the interfaces

between bricks are experiencing failure; at greater loads, the macroscopic crack advances, 

meandering between bricks according to the microstructural orientation. Extensive details of 

the fracture process are provided in our companion paper.22

Figure 2.8(b) illustrates that for small levels of applied displacement, the system 

energy is essentially quadratic, as implied by a linear (elastic) traction-separation 

relationship. At a critical value of the applied displacement, indicated with open circles, the 
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quadratic nature of the energy with loading is lost, due to nonlinear rupture effects between 

the bricks. The solutions for displacements below the onset of rupture are obtained in a rapid 

fashion using the predictor method described earlier. Once fracture initiates, the linear 

predictor is less efficient, so the constant predictor becomes more appropriate.

A key consideration in this simulation approach is the scaling of the required 

computation times with the number of bricks, which effectively defines the size of problem 

(i.e. the level of microstructural detail) that can be simulated in a reasonable time.

Figure 2.9. (a) Initialization time. (b) GPU and CPU simulation times (semilog).

As shown in Figure 2.9(a), the initialization time scales approximately as O(N), where N is 

the number of bricks. The initialization is done on a single core. Both the Core 2 and Core i7 

are quad-core processors, but the Core i7 has a more modern architecture (Sandy Bridge for 

Core i7 vs Conroe for Core 2) and a faster clock speed, so the result is faster on the Core i7. 

In addition, the Core i7 system also has faster and larger memory.
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After initialization, the main part of the simulation begins. These cases are run with 

the adaptive methods. The simulation times for the two different systems are shown in Figure

2.9(b). We can see that on the first system (GTX 480 and Core 2), the GPU version (GTX 

480) is about 16 times faster than the corresponding multithreaded CPU version (quad-core 

Core 2), whereas on the second system (GTX 580 and Core i7), the GPU version (GTX 580) 

is about 6 times faster than the multithreaded CPU version (quad-core Core i7). The 

simulation time scales roughly as O(N1.5), where N is the number of bricks. The simulation 

time for GTX 580 is approximately 15% faster than for GTX 480, which roughly matches 

the hardware performance difference between GTX 480 and 580.  The simulation time for 

Core i7 is approximately 3 times faster than for Core 2. Both processors are quad-core, but 

the Core i7 has approximately 40% higher clock speed and a newer architecture.

Figure 2.10. (a) GPU simulation times with different tolerance values. (b) Final energy 
value with different tolerance values.

In Figure 2.10(a), the simulation times for different RTOL and STOL are shown. The 

simulation times for larger tolerance values are generally lower; however, there is some 
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variability due to the stochastic nature of Monte Carlo simulations. In Figure 2.10(b), the 

converged energy values at the last displacement step are shown for different tolerance 

values. Simulations with smaller tolerance values generally result in slightly lower energy 

values, although all three tolerance values produce energy values that are quite similar.

Figure 2.11. CPU simulation time with different numbers of cores.

As seen in Figure 2.11, the simulation time on the CPU scales approximately in a linear 

manner with the number of cores. This indicates that the CPU implementation is not 

experiencing scalability bottlenecks that would limit performance, at least up to four cores.
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Figure 2.12. Percentage of simulation time for different parts of the algorithm on GTX 480
and 580.

To determine which tasks of the computation take the most time, Figure 2.12 shows the 

percentage of the total simulation time for the main tasks in the simulation. As seen in the 

figure, the Monte Carlo task takes the largest percentage of the simulation time. The Monte 

Carlo component involves perturbing the position and orientation of each brick, and 

determining whether to accept or reject based on the energy difference. The other two 

components, which are the energy calculation and the random number generation, take 

significantly less time, with the random number generation being the smallest component. 

The random number generation component generates random numbers which are then used 

in the Monte Carlo component. The relative percentages remain roughly constant with 

respect to the number of bricks, which is expected. The percentages are also similar across 

the two GPUs (GTX 480 and 580). These three components take 99% of the simulation time.

The reason that the Monte Carlo component takes a significant portion of the simulation time
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is that it involves non-coalesced memory access. We have optimized the data structure to 

reduce the amount of non-coalesced memory access, but some of it still exists.

2.5.1 Performance improvement due to adaptive methods

In this section, the test problem is the same as in the previous section, but the simulation has 

been run without the adaptive methods to illustrate the difference in performance. Figure 

2.13 provides a comparison of simulation times with and without adaptive methods for two 

GPUs, both in terms of raw values (Figure 2.13(a)) and relative performance (Figure 

2.13(b)).

Figure 2.13. (a) Comparison of GPU simulation time for adaptive vs. non-adaptive 
algorithms. (b) Relative speedup from using GPU and adaptive methods. The time for 
Core 2 Quad Q6600 non-adaptive is an estimated runtime based on the difference between
GTX 480 adaptive and GTX 480 non-adaptive, and the difference between GTX 480 
adaptive and Core 2 Quad Q6600 adaptive, since it takes an impractical amount of time to
run the Core 2 non-adaptive case.
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From Figure 2.13(a), the performance difference between running with the adaptive 

algorithms and without the adaptive algorithms is about a factor of five. The position 

predictor produces the largest improvement in performance. Other adaptive methods, such as

adaptive brick step size and adaptive displacement size, also produce some improvements in 

performance, but not as large as that of the position predictor. The performance gain from 

adaptive methods is problem dependent; in some cases, the improvement can be much 

higher. For example, if a large proportion of the simulation is harmonic, then the adaptive 

methods can result in significantly larger speedups. 

Figure 2.13(b) summarizes the speedup we have achieved through efficient GPU 

implementation and adaptive strategies. As seen in the figure, our GPU implementation 

achieves approximately 16x speedup over the multithreaded CPU (quad-core) 

implementation for the test problem with 300,000 bricks, and the adaptive methods achieve 

an additional 5x speedup, for a total speedup of about 80x. This is a significant speed-up that 

will have a marked impact on studies of microstructural effects.

2.6 Conclusion

In this chapter we have presented an efficient GPU-based Monte Carlo algorithm for fracture

simulation of large-scale “brick and mortar” composite materials. We have enhanced the 

basic algorithm with adaptive methods to increase performance and usability. Our GPU 

implementation processes multiple bricks in parallel using graph-coloring to assign bricks to 

threads. Our GPU version achieved approximately 16x speedup over the corresponding 
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multithreaded CPU (quad-core) version. An additional 5x speedup was achieved using 

adaptive algorithms, for a total speedup of approximately 80x. This enables a simulation to 

be run in hours on a GPU as opposed to weeks on a CPU.
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Chapter 3 Bitsliced High-Performance AES-ECB on GPUs

The purpose of this chapter was to develop fast methods for generating deterministic random 

numbers using the AES in the ECB mode. The resulting random numbers were intended to 

be used in high-performance Monte Carlo simulation of fracture in certain composite 

materials.24 The simulations for this study were done both on CPUs and GPUs to obtain the 

fastest implementations, and thus, to compare the speedup gain. We were motivated to 

develop high-speed implementations of the 128-bit AES-ECB on the NVIDIA GTX 480 

GPU, and subsequently obtained significantly faster implementations of the AES. This 

chapter reports our implementations along with comparisons to recent results found in the 

literature. This work appeared in 26.

3.1 Comparing GPUs

The GTX 285 has 30 SMs, each with 8 SPs. It has 16K L1 cache per SM and no L2 cache. It 

also has 16384 registers per SM and 1 GB of global GPU memory. In comparison, the 8800 

GTX has 16 SMs, each with 8 SPs. It has 16K L1 cache per SM and no L2 cache. It also has 

8192 registers per SM and 768 MB of global GPU memory.

We find it useful to make a comparison of various GPUs that we are referencing in 

the context of our AES implementations. Table 3.1 compares various GPUs referenced in this

paper. Here, CC refers to “Compute Capability”, which is an index assigned by NVIDIA to 

the CUDA devices to indicate its set of computation-related features. Higher CC indicates 

newer architectures, and the NVIDIA’s newest devices have a CC up to 3.540

Table 3.1. Comparison of various GPUs.
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8800 GTX41 GTX 28542 Tesla C205044 GTX 48043

bus bandwidth 4 GB/s 8 GB/s 8 GB/s 8 GB/s

memory size 768 MB 1024 MB 3072 MB 1536 MB
mem bandwidth 86.4 GB/s 159.0 GB/s 144 GB/s 177.4 GB/s

SP count 128 240 448 480
SP clock 1350 MHz 1476 MHz 1150 MHz 1400 MHz

CC 1.0 1.3 2.0 2.0

3.2 AES Encryption on CPU and GPUs

Since the standardization of the Rijndael algorithm as the Advanced Encryption Standard by 

NIST6, many implementations have been reported in the literature, most of which rely on 

known techniques. The creators of the Rijndael algorithm describe two fundamental 

techniques for 8-bit and 32-bit CPUs. 30 The most common use of the AES is for the 128-bit 

(16-byte) key; it is projected that AES will be 40% slower27 for 32-byte keys since it uses 14 

rounds, instead of 10.

Furthermore, there are several modes of operation: the CBC (cipher-block chaining), 

the ECB (electronic code-book), the OFB (output feedback), and the CTR (counter) modes, 

etc. Moreover, there are several ways of benchmarking the AES software, making a fair 

comparison very difficult. Most common comparisons involve AES-ECB and AES-CTR 

modes. We refer the reader to a highly useful paper by Bernstein and Schwabe27 that gives 

extensive analyses of various implementations, along with the most impressive benchmark 

results.

Earlier GPU implementations29,31,49 used graphics pipeline and OpenGL to compute 

the AES round function, since CUDA was not available back then. The availability of CUDA

made sophisticated high-speed implementations possible.
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Another point of discussion that is relevant here is bitsliced AES implementations on 

various CPUs. There are several papers of interest: Rebeiro, Selvakumar and Devi48, 

Matsui37, and Matsui and Nakajima38. Bitsliced implementations are not as competitive with 

word-level implementations on CPUs, due to the cost of transpositions of the ciphertext.

3.3 AES-ECB on the GPUs

Our implementation starts with the CPU-based bitsliced implementation of the AES by 

Kasper and Schwabe.34 Their implementation processes 8 16-byte blocks at a time. A direct 

conversion to a GPU implementation results in poor performance, due to an insufficient 

number of registers. The 8 blocks alone take up 32 registers per thread, and each thread is 

limited to 63 registers maximum. The result is that the compiler spills variables into memory 

instead of keeping them in registers.

We restructured the algorithm to process 4 16-byte blocks at a time to improve 

performance. The sections below describe the performance improvements we made to 

various parts of the AES algorithm.

3.3.1 Bit Ordering

In our bitslicing implementation, bits from multiple blocks are collected together, i.e. bit 0 of 

row 0, column 0 from blocks 0,1,2,3 are grouped together, as shown in Figure 3.1 and Figure

3.2. Each bitsliced state variable has 64 bits; there are 8 of these state variables.
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Figure 3.1: The state of one block.

Figure 3.2: The bitsliced state.

3.3.2 Load and Store

On GPUs, the performance of global memory is improved when it is accessed contiguously. 

When reading the input blocks, we first load the blocks contiguously from global memory to 

shared memory, and then distribute them among individual threads. Similarly, when writing 

the output blocks, we first write the blocks to shared memory from individual threads, and 

then collect them together and store to global memory contiguously.

3.3.3 SubBytes

The AES algorithm defined in 6 used a table lookup for the S-box. In the bitsliced 

implementation, the table lookup is replaced by a series of Boolean operations (xor, or, 

and).34 Kasper and Schwabe34 used 163 CPU SSE instructions. In our implementation, since 

we restructured the algorithm to process 4 blocks at a time, extra registers are available that 
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we use to store intermediate values, thus reducing the instruction count to 117×2  . The 

doubling of the instruction count arises from the fact that the GPU registers are 32 bits, thus, 

each 64-bit bitsliced state requires 2 operations to process. Since the two halves can be 

processed independently, we utilize ILP (instruction level parallelism) to increase 

performance.

3.3.4 ShiftRows

In this step, the bytes in a block are shifted by a variable amount for each row, as shown in

Figure 3.3. In the bitsliced state, this operation becomes a rearrangement of nibbles (4-bits), 

as shown in Figure 3.4. The CPU version used the pshufb instruction34, but this instruction 

is not available on the GTX 480. Instead, we found the GTX 480 has a prmt instruction that

rearranges bytes.45 We combined this instruction with the standard C bit operations (>>, 

<<, &, |, ^) to improve performance. The CPU version uses 8 SSE instructions34, while

our GPU version uses 32 prmt, 16 shift, and 16 bitwise and instructions. The GPU version 

requires more instructions since it involves handling nibbles (4 bits) instead of whole bytes 

(8 bits).

39



Figure 3.3: The ShiftRows step.

Figure 3.4: The ShiftRows step for the bitsliced state.

3.3.5 MixColumns

This step involves a matrix multiplication over the AES finite field, as specified in 6 (see

Figure 3.5). Using Boolean operations, the matrix multiplication becomes a sequence of 

shifts and xor operations. The CPU version of Kasper and Schwabe uses 16 pshufd and 27 

xor instructions34, while our GPU version uses 27×2  xor and 8×2  prmt 

instructions. The factor of 2 is explained in the SubBytes section.

Figure 3.5: Matrix multiplcation in MixColumns.
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3.3.6 AddRoundKey

This step requires only xor operations. Our GPU version loads the 10 round keys into 

shared memory to improve performance when processing multiple blocks. By loading the 

round keys into shared memory, we avoid having to read the round keys from GPU global 

memory repeatedly.

3.3.7 Resistance to Timing-Attack

The CPU-based algorithm of Kasper and Schwabe is resistant to timing side channels due to 

the use of constant time operations.34 By using a bitslicing approach, our algorithm is also 

resistant to timing side channels. All operations that involve key or data use bitwise 

operations whose execution time does not depend on the values of the data. In contrast, other 

GPU-based AES implementations use lookup tables whose execution time depends on the 

data, i.e., these operations are not constant time. Furthermore, the bitsliced implementations 

are also inherently immune to the cache-timing attacks, as discussed in 27,28,47.

3.4 Results and Conclusion

We summarize all recent results in Table 3.2, along with our result in the last row. This table 

shows we have the fastest GPU implementation among all reported results.

Considering that CC (Compute Capability) of these devices is a good indication of 

their architectural richness and computational power, we notice that the first two devices 

(GeForce 8800 GTX and GeForce GTX 285) have their CCs as 1.0 and 1.3, respectively, 

while remaining two devices (Tesla C2050 and GeForce GTX 480) are both 2.0, however, 
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our AES-ECB implementation on a device with the same CC is 62% faster than that of 

Nishikawa, Iwai, and Kurokawa39 and 31% faster than that of Li, Zhong, Zhao, Mei, and 

Chu35.

Moreover, our implementation is quite practical; it is used in the deterministic RNG 

portion of a successful Monte Carlo simulator for fracture computation in certain composite 

materials, as described in 24.

Table 3.2. Comparing recent implementations. CPU speeds are per core.

CPU Bernstein and 
Schwabe27

Core 2 Quad Q6600 1.82 Gbit/s

Kasper and Schwabe34 Core 2 Quad Q6600 2.06 Gbit/s
Core 2 Quad Q9550 2.99 Gbit/s
Core i7 920 3.08 Gbit/s

OpenSSL 1.0.1e46 Core i7 2600 0.98 Gbit/s
Core i7 2600 (AES-
NI)

5.78 Gbit/s

GPU Manavski36 GeForce 8800 GTX 8.28 Gbit/s

Iwai, Kurokawa, and 
Nishikawa32,33

GeForce GTX 285 35.2 Gbit/s

Nishikawa, Iwai, and 
Kurokawa39

Tesla C2050 48.6 Gbit/s

Li, Zhong, Zhao, Mei,
and Chu35

Tesla C2050 60.0 Gbit/s

This implementation GeForce GTX 480 78.6 Gbit/s
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Chapter 4 Integrating material structure with implicit/explicit methods to achieve 

high performance fracture simulations on GPUs

Simulations of material fracture can be quite challenging, due to the fact that the rupture 

process can be governed by behaviors that span many length scales, ranging from 

nanometers to centimeters. Explicit representation of this behavior necessarily involves large 

computational models, with many degrees of freedom that cascade across the relevant length 

scales. This is true even for largely monolithic, brittle materials; rupture occurs at the atomic 

scale, while the energy driving failure that feeds into the process zone must be calculated at 

the scale of the component. The challenge is compounded when material heterogeneity is 

important, such as for composites consisting of two different materials (phases) or 

monolithic crystalline materials with internal grain boundaries and/or defects. In such cases, 

there are many scales that require spatial discretization, and bridging them leads to 

exceedingly large models with potentially millions of connected elements.

The computational problem is compounded by the fact that the relevant material 

response is inherently nonlinear. Essentially, rupture consists of a process in which the forces

between intact pieces of material increases as they are separated, until a critical point is 

reached at which they begin to decrease as the material is torn apart. This non-monotonic 

force-displacement behavior creates significant computational challenges67; many solution 

techniques require repeated solutions of large linear systems and even still, convergence (to 

an acceptable static equilibrium) may not be reached. An attractive alternative to circumvent 

the stability problem is to simulate truly dynamic behaviors in which one integrates a time-

dependent set of nonlinear dynamic equations, instead of iteratively solving a nonlinear set of
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equations to find a quasi-static force balance. This has the added benefit of being able to 

capture truly dynamic physical behaviors that result from rupture, i.e. the dynamic, unstable 

advance of an existing crack that occurs despite the fact that macroscopic loading occurs 

over much slower time scales.

With regards to dynamic simulations, i.e. direct integration of time-dependent 

equations of motion, the computational choices are obvious: implicit methods that allow 

large time steps (good when things are predominantly linear) or explicit methods that 

demand small time steps (to insure computational stability), which are advantageous during 

abrupt transitions of state. For applications involving composite materials with multiple 

material domains, the influence (or choice) of integration time step is even more subtle, since

there are (at least) two characteristic time scales, e.g. the characteristic size of each phase 

divided by its wave speed. Strict stability requirements dictate time steps associated with one

phase, even though nonlinearity in the problem is dictated by the other phase. There are 

many open questions regarding the nature of suitable integration schemes for such scenarios.

This work provides a computational framework for simulating material rupture, in 

which deformable elements (or “bricks”) exhibiting linear behavior are bonded together with 

nonlinear springs (or “mortar”) which represents the rupture process. This material 

framework is applicable to important problems in materials development: (i) the simulation 

of fracture in monolithic materials, in which case the faces of the elements represent the only

possible potential crack paths50,59, and (ii) the simulation of composites consisting of hard 

particles in a soft matrix.60,61,22,62 In the latter problem, the mortar represents a soft phase of 

very low volume fraction that is not explicitly discretized, but rather is represented through 
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the traction-displacement law describing the springs connecting the hard particles (or 

elements). In both cases, the ability to simulate bricks of different shapes is an important 

advantage. For monolithic materials, space filling “bricks” shaped as polygons imply that 

there are many physical orientations for emergent cracks, which appear when the bricks 

separate and the springs representing material bonding rupture. For composite materials, 

there are many interesting composite concepts based on interlocking bricks63,64, wherein the 

brick shape and spatial arrangements combine to produce materials whose apparent work to 

failure at the macroscale far exceeds that associated with rupture along the brick 

interfaces.60,62,65

The combination of implicit and explicit methods have been used in several 

applications. In Ascher et al.56, a combination of implicit and explicit methods was used to 

solve problems in the context of diffusion-convection problems. In Fierz et al.57, a 

combination of implicit and explicit Euler was used for dynamic simulation of deformable 

objects in the context of computer graphics. However, while the use of first order methods 

can provide sufficient accuracy for computer graphics applications, it is typically not 

sufficiently accurate for material simulations. In Stern et al.58, a combination of implicit 

midpoint and explicit Verlet methods was utilized. In that case, the focus was on method 

development and they applied the method to only small problems with relatively few objects.

The key focus of this work is on integration schemes that combine the best 

advantages of implicit and explicit methods for fracture simulations, and on mapping this 

computation to the GPU, while exploiting the specific characteristics of brick arrangements 

to produce simulations that are much faster than with traditional methods. Figure 4.1 
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provides a schematic overview of the assumed structure of the material and the physical 

behaviors associated with the bricks and the mortar. We start with the baseline method, 

which is a time-dependent explicit method with triangular elements and interfaces. We then 

combine the triangular elements to form larger elements and use a combination of implicit 

and explicit methods to solve the problem. We will show how the algorithm was optimized 

for the GPU architecture. Finally, we show results quantifying the computational 

performance.

4.1 Material Description

Figure 4.1. (a) Schematic of macroscopic specimen and loading scenario 
(bending). There is a pre-existing crack in the middle of the specimen. (b) An 
example configuration of bricks. Many more bricks are used in the actual 
simulations. The red interfaces are stiff interfaces, while the black interfaces are 
compliant.

The material description here consists of deformable elements that are combined into 

“bricks”, as shown in Figure 4.1. Bricks are combined to form a macroscale specimen. Each 
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brick is a collection of linear, elastic, constant strain elements. These elements are bonded 

together through the cohesive law that describes the force-displacement relationship between

the elements. Different properties can be assigned to internal interfaces (between the 

elements forming a brick) and external interfaces (between two adjacent bricks). In the 

present study, the internal interfaces in each brick are stiff compared to the interfaces 

between bricks. For the “bolted” studies, the internal interfaces in the brick are removed, 

although the brick remains deformable due to stretching and shear of the elements forming 

the brick. We consider rectangular bricks in this chapter, but in principle, the algorithm is 

designed to allow for arbitrary, space-filling brick shapes consisting of internal triangular 

elements.

The specimen is loaded by applying prescribed displacements to selected bricks in the

specimen. Bricks without prescribed displacements can undergo general rigid body motions 

(translation and rotation), as well as deformations (tension, compression, shear). As time 

progresses, the interface opening between bricks can change. The cohesive law describes 

how the force in the nonlinear springs between bricks changes as the bricks change position. 

The cohesive law contains three parameters: interface stiffness, critical separation, and work 

to failure. The force in an interface is computed as follows

Finterface=∫F pt ds , (4.1)

where the integral is calculated over the length of the interface. The force at a given point is 

given by

Fpt=( f ( Δn ,√ Δn
2
+Δt

2
) , f ( Δt ,√Δn

2
+Δt

2
)) , (4.2)
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where Δn  is the displacement in the normal direction and Δt  is the tangential direction. The 

force has a normal and a tangential component and there is coupling between the two 

components. The function f is given by

f (x , y )={
k x , y≤x1

(k x1 x)/ y , x1< y≤x2

k [((x1+x2)x )/ y−x ] , x2< y<x1+x2

0 , y≥x1+x2

}, (4.3)

where k  is the interface stiffness, x1  is the critical separation, and x2  is the rupture 

separation. Initially, at small displacements, the force in the interface increases linearly with 

the separation distance. Above a critical displacement, the force remains constant. The 

rupture separation defines the point at which the mortar begins to fail, i.e. the force between 

bricks is zero.

The simulation is formulated as a force problem with time-stepping. Given a 

computed force, the acceleration, velocity, and displacement are calculated based on the 

force. These quantities can be computed either explicitly or implicitly, as explained in the 

sections below.

4.2 Algorithms

4.2.1 Unbolted explicit method

The basic method that is often used for this type of simulation is a velocity Verlet, explicit 

time discretization method, with spatial discretization by triangular elements.50,51,52 The 

triangular elements are 2D, isotropic, elastic with constant strain. Between the elements are 

interfaces, which are represented as nonlinear cohesive springs. The elements are 
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deformable, while the interfaces can deform and fracture. In this method, four adjacent 

triangles are combined to form a rectangle using highly stiff interfaces, while the interfaces 

between rectangles are more compliant. The method is based on velocity Verlet and is given 

by

pn+1=pn+h∗p 'n+0.5∗h2
∗p ' 'n

p ''n+ 1=[ M+0.5∗h∗C ]
−1

∗[ Fi+F p+Θ−(K∗pn+1+C∗( p 'n+0.5∗h∗p ''n)) ]
p 'n+1=p 'n+0.5∗h∗( p ''n+ p ''n+1) ,

(4.4)

where pn  is the position vector, p 'n  is the velocity vector, p ''n  is the acceleration vector,

M  is the mass matrix, K  is the element stiffness matrix, C  is the damping matrix, Fi  is 

the interface force, Fp  is the prescribed force, Θ  is the thermal load, and h  is the step size. 

The equations are modified from the classical velocity Verlet since in that method, 

acceleration depends only on the position, whereas in our method, the acceleration depends 

on both the position and velocity. Velocity Verlet is a symplectic integrator, so the energy of 

the system is nearly preserved. 53 The elements are coupled to each other by the interface 

force term. Other terms in the equations can be calculated independently for each element.

In the initialization phase, information about the simulation, such as position and 

orientation of elements, element properties, interface properties, initial conditions, and 

external load are read from a number of user specified files. This allows the user to specify 

different conditions for each simulation.

In our simulations, hundreds of thousands of elements are used to model the 

specimen. With such a large number of elements, the computation time can be significant. 

We enhanced the performance of the method by using an optimized data structure with a 

multithreaded implementation, to take advantage of multiple cores on modern CPUs. Our 
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implementation consists of two main phases. In the first phase, the positions of every element

are computed in parallel. Then a synchronization is applied. In the second phase, the force, 

acceleration, and velocity are computed for every element in parallel. The data structure was 

laid out in memory in a way that increases temporal and spatial CPU cache locality, as shown

in Figure 4.2.

Figure 4.2. Diagram of the data structure 
used in the CPU version.

4.2.2 Bolted explicit method

The bolted, explicit method is built upon the unbolted, explicit method. The unbolted, 

explicit method uses triangular elements as the basic units, whereas the bolted, explicit 

method combines triangular elements into rectangular elements by rigidly locking these 

together at the interface, which is similar to the method discussed in 66. Figure 4.3 shows a 

schematic of this process. Between the rectangular elements are interfaces, which are 

represented as nonlinear cohesive springs. The elements are deformable, while the interfaces 

can deform and fracture. The bolting process eliminates the very stiff interior interfaces that 

are used in the unbolted, explicit method to tie the triangular elements together into 
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rectangular elements, which enables a larger time step. The bolting is performed by 

assembling the corresponding entries in the unbolted matrices to form the bolted matrices. 

For example, if bolted element 1 consists of unbolted elements 1, 2, 5, 7, then the matrices 

are given by

~
M 1=f (M 1 ,M 2 , M 5 , M7)
~C1=f (C1 ,C2 ,C5 ,C7)

~K1= f (K1 , K2, K 5 ,K 7) ,
(4.5)

where ~M 1  is the mass matrix for bolted element 1, M 1  is the mass matrix for unbolted 

element 1, and so on. 

Figure 4.3. Diagram illustrating the bolting process. Values associated with the 
corresponding vertices in the unbolted elements are combined together in the bolted 
element.

For example, in Figure 4.3, the values associated with vertex 2 of unbolted element 1 and 

vertex 2 of unbolted element 2 would be combined into vertex 2 of the bolted element. The 

bolting process starts by constructing a mapping table with the correspondences between the 

unbolted and bolted elements. Once the mapping table is constructed, it is used to combine 

the unbolted matrices into the bolted matrices. The simulation then proceeds in a similar 

manner as the unbolted, explicit method, but using the bolted entities instead. Our 

implementation of this method has also been multithreaded to take advantage of multiple 
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cores on the CPU. The outputs of the simulation, which include stress, strain energy, kinetic 

energy, position, velocity, acceleration, and other quantities, are based on the unbolted 

elements. This is achieved by using the mapping table to perform the reverse mapping from 

bolted to unbolted elements.

4.2.3 Bolted implicit-explicit method

Motivated by the wide range of applications where the bricks are much stiffer than the 

mortar, we introduce here a bolted, implicit-explicit method where the elements are handled 

by implicit midpoint, and the interfaces are handled by the explicit velocity Verlet method. 

The bolted, implicit-explicit method uses the bolted rectangular elements as in the bolted, 

explicit method. The method is given by

[pn+1

p 'n+ 1]=[ pn+1

p 'n+1]+J−1∗[ pn+h∗p 'n+0.5∗h2
∗Q−pn+1

p 'n+h∗R−p 'n+ 1 ] ,

where
S=[ K∗0.5∗( pn+1+ pn)+C∗0.5∗( p 'n+1+ p 'n)]
Q=M−1

∗(F i( pn)+F p(t n)+Θ (t n)−S )

R=M−1
∗(0.5∗[ Fi( pn+1)+F p(t n+1)+Θ(t n+1)+Fi( pn)+Fp(t n)+Θ (t n) ]−S ) ,

(4.6)

and pn  is the position vector, p 'n  is the velocity vector, p ''n  is the acceleration vector,

M  is the mass matrix, K  is the element stiffness matrix, C  is the damping matrix, J  is 

the Jacobian matrix, Fi  is the interface force, F p  is the prescribed force, Θ  is the thermal 

load, and h  is the step size. The Jacobian matrix for the method is given by

J=[I +0.25∗h2
∗M−1

∗K 0.25∗h2
∗M−1

∗C
0.5∗h∗M−1

∗K I +0.5∗h∗M−1
∗C] , (4.7)
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where I  is the identity matrix. The above method is repeated for two iterations. We note that

the Jacobian matrix also includes a term that depends on the interface force, but since the 

interface is less stiff than the bricks, that term −0.5∗h∗M−1
∗

∂F i( pn+ 1)

∂ pn+1

has been 

neglected. The elements are coupled to each other by the self-equilibrating interface force 

term. Other terms in the equations can be calculated independently for each element. This 

has the critical effect of uncoupling the bricks in the Jacobian matrix, which can be exploited 

in the GPU computation. Because the stiffest terms are handled by the implicit method, much

larger stepsizes can be taken, compared to the fully explicit method. This means that there is 

a separate K, M, C, J matrix for each element. In addition, since the K, M, C matrices do not 

change over time, the J matrix is also time invariant. Because the J matrix is time invariant, 

we calculate the inverse J matrix once during initialization for each element. Similar to the 

bolted, explicit, CPU method, the implementation of this method has also been multithreaded

to utilize the multiple cores available on the CPU.

4.3 GPU Acceleration

The bolted, implicit-explicit method is very well suited to GPU architectures. Recall that the 

method uses velocity Verlet for the explicit part and implicit midpoint for the implicit part. 

We compute the explicit and implicit parts on the GPU to accelerate the performance of the 

simulations. Other parts of the simulation, such as stress/strain calculations and data output, 

remain on the CPU to reduce the memory footprint on the GPU. Having the entire simulation

on the GPU would require large amounts of GPU memory and significantly reduce the 
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number of elements that can be simulated. Parts of the simulation that remain on the CPU are

multithreaded. The performance was enhanced by rearranging the data structure to make the 

memory accesses more contiguous. In the CPU version, the data structure was arranged in 

row-major order, whereas in the GPU version, the data structure was rearranged into column-

major order. A more contiguous memory access pattern means that fewer memory 

transactions are required to fetch the data. 

In the implicit-explicit method, several matrix multiplications are used to compute 

various quantities. In the CPU version, these matrix multiplications are performed in a 

straightforward manner. However, due to the smaller cache on the GPU, the straightforward 

approach does not perform well on the GPU. Instead, on the GPU, the matrix multiplication 

is performed in an alternate order that reduces the amount of memory accesses, as shown 

below. This idea relies on the same underlying principle as used in the optimization of matrix

multiplication on CPU, namely the reduction of memory accesses. 54,55

Figure 4.4. Diagram illustrating the alternate matrix multiplication.

In Figure 4.4, the first column of the first NB rows in the matrix are multiplied by the first 

entry in the column vector, with the result stored in a temporary column vector with NB 

rows. Then the second column of the first NB rows is multiplied by the second entry in the 

column vector and added to the temporary output column vector. The process is repeated for 
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the remaining columns. Once that process is completed, the whole process is repeated for the

next NB rows and so on, until the entire matrix has been processed. The size of NB is limited

by the register constraints on the GPU.

In addition, the data output format was optimized to reduce the time spent in I/O. This

optimization was performed in the GPU version, but not in the earlier versions, since the 

time spent in I/O comprises a smaller percentage of the simulation in earlier versions. In the 

CPU version, the data are written in text format (ASCII), whereas in the GPU version, the 

data are written in binary format. By using binary format, the binary-to-text conversions can 

be skipped, thus improving performance. In addition to the format change from text to 

binary, the output file format was also streamlined to eliminate redundancies and improve 

performance. Furthermore, the time required to transfer data between CPU and GPU was 

reduced by using locked memory pages and DMA (Direct Memory Access).

During the course of the simulation, certain information is sent to and from the GPU. 

Information about the external load is computed and sent to the GPU at every time step, 

since the external load can have a different value at each time step. At fixed intervals 

specified by the user, information about the displacement, velocity, and acceleration are sent 

from the GPU back to CPU. This information is used for stress/strain calculations as well as 

data output.

4.4 Results

The test problem discussed below has the following configurations. The rectangular bricks 

are discretized into four triangles. The number of bricks in various simulations ranges from 
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approximately 10,000 to 200,000. The brick to interface stiffness ratios ranges from 1 to 500.

The initial conditions are zero displacement and zero velocity for all cases. The bricks are 

displaced under bending along the edges, as shown in Figure 4.1(a). The parameters are 

listed in Table 4.1 and 4.2. The test problem was run on two different platforms. The CPU 

code was run on a platform with Intel Xeon E5-2630 processors at 2.3 GHz using 8 threads 

and 128GB memory. The GPU code was run on a platform with Intel Xeon E5-2650 

processors at 2.0 GHz using 8 threads, 32 GB memory, and an Nvidia GTX 580 graphics 

card. The software environment is CentOS 6, GCC 4.4, and CUDA runtime 4.0.

Table 4.1. Parameters used in the results section

Stiffness ratio 1 10 50 100 500

E (kN/dm2) 2149.9 21499 107494 214988 1074938

vxy 0.35 0.35 0.35 0.35 0.35

vyz 0.35 0.35 0.35 0.35 0.35

vzy 0.35 0.35 0.35 0.35 0.35

vxz 0.35 0.35 0.35 0.35 0.35

Gxy (kN/dm2) 796.25 7962.5 39812.5 79625 398125

rho (g/cm3) 3.7 3.7 3.7 3.7 3.7

k (daN/mm3) 700.0 700.0 700.0 700.0 700.0

k*x1 4.9990 6.7407 7 7.0346 7.0626

k*x1*x2 2.2 2.2 2.2 2.2 2.2

Table 4.2. Parameters used in the results section

alpha_d 
(Ms-1), 
beta_d (μs)

Stiffness 
ratio

1 10 50 100 500

Number of 
bricks

10206 0.07492, 
0.8342

0.1010, 
0.6187

0.1049, 
0.5958

0.1054, 
0.5928

0.1058, 
0.5905

50400 0.03388, 0.04569, 0.04745, 0.04768, 0.04787, 
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1.8445 1.3679 1.3172 1.3108 1.3056

101150 0.02395, 
2.6098

0.03229, 
1.9355

0.03353, 
1.8638

0.03370, 
1.8546

0.03383, 
1.8473

201600 0.01698, 
3.6813

0.02289, 
2.7302

0.02377, 
2.6290

0.02389, 
2.6161

0.02399, 
2.6057

Figure 4.5. Simulation output. The colors represent the vertical stress 
in the bricks. A crack has propagated about halfway into the 
specimen.

Figure 4.5 provides an example of the results obtained from the simulations, i.e. the direct 

stress in the solid in the vertical direction. In Figure 4.5, bricks near the crack tip have high 

stress concentrations, while bricks farther away from the crack tip have lower stress 

concentrations. As the load on the specimen increases sufficiently, the crack will propagate 

through the specimen.
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Figure 4.6. Critical step size for the unbolted, explicit, CPU (UEC) and bolted, explicit, 
CPU (BEC) methods. The results show an expected decrease in step size as the stiffness 
ratio increases, with interface stiffness constant at 700 daN/mm3.

Figure 4.6 shows the critical step size (how large the step size can be before the simulation 

blows up) for the unbolted explicit and bolted explicit methods. This was determined by 

numerical experiments using various step sizes. As seen from the figure, as the stiffness ratio 

increases, the critical step size decreases in an approximately square root manner. The 

unbolted explicit method has a smaller critical step size than the bolted explicit method since 

in the unbolted explicit method, there are highly stiff internal interfaces connecting the 

components of a brick. These artificial internal interfaces have a stiffness that is 

approximately 50 times higher than the stiffness of the bricks. In addition, the gap in step 

size between the unbolted explicit method and the bolted explicit method is approximately 

equal to the square root of the stiffness of the internal interfaces relative to the stiffness of the

bricks.
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Figure 4.7. Critical step size for the bolted implicit-explicit method (GPU version) (BIEG)
compared to that of the bolted explicit method (CPU version) (BEC), for a constant 
interface stiffness at 700 daN/mm3. The critical step size for the bolted implicit-explicit 
method does not have a strong dependence on stiffness ratio.

Figure 4.7 shows the critical step size for the bolted implicit-explicit method compared to the

bolted explicit method. In contrast to the BEC method, as the stiffness ratio increases, the 

critical step size for the BIEG method does not decrease significantly. At low stiffness ratio, 

the critical step size for the BIEG method is approximately the same as for the BEC method. 

At the highest stiffness ratio, the critical step size for the BIEG method is approximately 15 

times larger than for the BEC method.
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Figure 4.8. Computation time per step for different methods. The 
BIEG method has the smallest computation time per step.

Figure 4.8 shows the computation time per step for the different methods (UEC, BEC, BIEC,

BIEG), with interface stiffness constant at 700 daN/mm3 for all methods. The computation 

time per step scales linearly proportional to the number of bricks. As seen from the figure, 

BEC has a smaller computation time per step compared to the UEC method. This is because 

in the BEC method, the internal interfaces within a brick have been eliminated, thus reducing

the computation cost. On the other hand, the BIEC method has a noticeably higher 

computation time per step than the BEC method, which is caused by additional computations

required for the implicit part. However, by converting the code to run on the GPU, we were 

able to achieve a significant speedup, as seen from the fact that the BIEG method has the 

smallest computation time per step out of these four methods. 
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Figure 4.9. Total speedup for different methods (BEC, BIEC, BIEG) relative to UEC with 
various number of bricks. The BIEC and BIEG methods both show increasing speedup as 
the stiffness ratio increases.

Figure 4.9 shows the total speedup for different methods (BEC, BIEC, BIEG) relative to the 

UEC, taking into account both the critical step size and the computation time per step. The 

speedup of the BEC method over the UEC method is largely independent of the stiffness 

ratio. The BIEC and BIEG methods both show increasing speedup as the stiffness ratio 

increases. The BIEC method is slower than the BEC method at low stiffness ratio, but 

becomes faster at high stiffness ratio. In contrast, the BIEG method is faster than the BEC 

method at low stiffness ratio. At the highest stiffness ratio, the BIEG method is over 100 

times faster than the UEC method, and over 15 times faster than the BEC method. 
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Figure 4.10. Error in strain energy for the BIEG method with different stiffness ratios, with
constant interface stiffness of 700 daN/mm3. Higher stiffness ratios allow for a larger step 
size before the simulation blows up due to instability in the explicit part.

Figure 4.10 shows the error in strain energy for the BIEG method as compared to the BEC 

method with different stiffness ratios. For the lowest stiffness ratio, the BIEG method is 

restricted to approximately the same step size as the BEC method. As the stiffness ratio 
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increases, the BIEG method can take larger step sizes compared to the BEC method, before 

the simulation blows up due to instability in the explicit part. For the highest stiffness ratio, 

the error in strain energy behaves roughly as second order in the stepsize, which is consistent 

with the theoretical results.

Figure 4.11. CPU and GPU memory usage for the different methods. The memory usages 
scales roughly linearly proportional to the number of bricks.

Figure 4.11 shows the CPU memory usage for different methods, as well as the GPU 

memory usage for the BIEG method. The CPU memory usage is approximately linearly 

proportional to the number of bricks. The CPU memory usage also does not vary 

significantly across different methods. For the BIEG method, the GPU memory usage is also 

approximately linearly proportional to the number of bricks. The GPU memory usage of the 

BIEG method is noticeably lower than the CPU memory usage. This was achieved by having

part of the simulation on the GPU, and part on the CPU. Based on the GPU memory usage, 

the BIEG method can simulate approximately 250,000 bricks on the Nvidia GTX 580.
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4.5 Conclusion

In this chapter we have presented a highly efficient algorithm for dynamic fracture 

simulation of large-scale “brick and mortar” composite materials with deformable elements, 

which is very well suited to GPU architecture. Our implicit-explicit GPU version achieved 

over 100x speedup over the baseline explicit, multithreaded CPU version. This enables a 

simulation to be run in hours on a GPU as opposed to weeks on a CPU. Possible future work 

includes incorporating more complex interface properties to allow for plastic deformation, 

and further enhancements to improve performance.
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Chapter 5 Conclusion

In Chapter 2, we presented a high-performance GPU-based Monte Carlo energy 

minimization algorithm for fracture simulation of composite materials with rigid elements. 

The basic algorithm was enhanced with adaptive methods, including adaptive cycle count, 

adaptive brick step size adjustment, adaptive displacement step size adjustment, and position 

predictor, to increase performance and usability. We used graph coloring to assign bricks to 

threads and process them in parallel. The GPU version is approximately 16x faster than the 

corresponding multithreaded CPU version. We achieved an additional 5x speedup using 

adaptive algorithms, for a total speedup of approximately 80x. This allows a simulation to 

complete in hours on a GPU as opposed to weeks on a CPU.

Chapter 3 describes our bitsliced GPU implementation of AES-ECB, which is used to

generate random numbers for our Monte Carlo algorithm. We described how we 

implemented the AES operations, including SubBytes, ShiftRows, MixColumns, 

AddRoundKey, on the GPU using CUDA. We achieved substantial speedup over CPU 

implementations of AES. Our GPU implementation is also faster than previous GPU 

implementations of AES. In addition to improved performance, our implementation is also 

resistant to attacks via timing side channels. 

Chapter 4 presents our explicit and implicit time-stepping methods for fracture 

simulation with deformable elements. We start with the baseline unbolted, explicit, CPU 

(UEC) method, which is based on velocity Verlet. In the bolted, explicit, CPU (BEC) 

method, we combine elements to form larger bolted elements. We then use the implicit 

midpoint method for the stiff elements, and the explicit velocity Verlet method for the 
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interfaces in the bolted, implicit-explicit, CPU (BIEC) method. In the bolted, implicit-

explicit, GPU (BIEG) method, we migrated the algorithm to the GPU and implemented 

GPU-specific optimizations. The BIEG method was able to achieve over 100x speedup 

compared to the baseline UEC method in the case of highly stiff elements. 

There are several possible directions for future work. One possibility is to incorporate

more complex interface properties to allow for plastic deformation and unloading. Another 

possibility is to incorporate more complex geometry for elements, such as hexagons. Since 

accurate simulations typically require a large number of elements, which can take substantial 

amount of computation time, future work could also explore further avenues for performance

enhancements, for example, making use of multi-GPU architecture.
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