UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Algorithms and Software for High-Performance Fracture Simulation on GPU Architectures

Permalink
https://escholarship.org/uc/item/0Obr2k5cd

Author
Lim, Rone Kwei

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/0br2k5cc
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Algorithms and Software for High-Performance Fracture Simulation
on GPU Architectures

A dissertation submitted in partial satisfaction of the requirements for the
degree of

Doctor of Philosophy
in
Computer Science
by
Rone Kwei Lim

Committee:
Professor Linda R. Petzold, Chair
Professor Matthew R. Begley
Professor John R. Gilbert

June 2017

The dissertation of
Rone Kwei Lim is approved:

Professor Matthew R. Begley

Professor John R. Gilbert

Professor Linda R. Petzold, Committee Chair

June 2017

Algorithms and Software for High-Performance Fracture Simulation on GPU Architectures
Copyright © 2017
by

Rone Kwei Lim

ii

Acknowledgements

I would like to thank my Ph.D advisor, Professor Linda Petzold, for her mentorship
and guidance. I would also like to thank my co-advisor, Professor Matthew Begley, for his
support and guidance. I also thank my dissertation committee, Professor John Gilbert, for his
support and insight.

I extend a thank you to my collaborator, Will Pro, without whom this dissertation
would not have been possible. I would also like to thank my other collaborators, Marcel Utz
and Cetin Kaya Koc.

I would like to thank my friends, family members, mentors, teachers, and others who
have helped supported me over the years, and the current and former members of Professor
Petzold’s research group, as well as members of Professor Begley’s research group.

I gratefully acknowledge financial support from the National Science Foundation
through a Graduate Research Fellowship, a Doctoral Scholar Fellowship from UCSB, and
the Department of Computer Science at UCSB. Additional support was provided by NSF,

DOE, and the UCSB Institute for Collaborative Biotechnologies.

iv

Curriculum Vitae

Rone Kwei Lim

Education

2017 Doctor of Philosophy in Computer Science, University of California, Santa
Barbara (expected)

Emphasis: Computational Science and Engineering

2012 Master of Science in Computer Science, University of California, Santa
Barbara

2008 Bachelor of Science in Computer Science, California State University, Los
Angeles

2008 Bachelor of Science in Applied Mathematics, California State University, Los
Angeles

Publications

Lim RK, Petzold LR, Koc CK. Bitsliced high-performance AES-ECB on GPUs. The New
Codebreakers 2016, 9100:125-133.

Pro JW, Lim RK, Petzold LR, et al. The impact of stochastic microstructures on the
macroscopic fracture properties of brick and mortar composites. Extreme Mechanics Letters
2015, 5: 1-9.

Lim RK, Pro JW, Begley MR, et al. High-performance simulation of fracture in idealized
‘brick and mortar’ composites using adaptive Monte Carlo minimization on the GPU. The
International Journal of High Performance Computing Applications 2016, 30: 186-199.

Pro JW, Lim RK, Petzold LR, et al. GPU-based simulations of fracture in idealized brick and
mortar composites. Journal of the Mechanics and Physics of Solids 2015, 80: 68-85.

Sanft KR, Wu S, Roh M, et al. StochKit2: software for discrete stochastic simulations of
biochemical system with events. Bioinformatics 2011, 27: 2457-2458.

Abstract
Algorithms and Software for High-Performance Fracture Simulation on GPU
Architectures
Rone Kwei Lim

Computer simulation of fracture in materials with nonlinear mechanical response can be
computationally expensive. These simulations often require a large number of degrees of
freedom, and the nonlinearity in the problem can pose difficulties when computing solutions.
This work focuses on two material models. The first model consists of rigid bricks
interacting through nonlinear cohesive springs. Fracture in the material occurs through the
rupture of the cohesive springs. The second, more complicated, model consists of deformable
elements interacting through nonlinear cohesive springs.

In the first model, we assume the bricks are under a quasi-static loading scenario.
With this assumption, the problem can be solved using a global Monte Carlo minimization
algorithm to minimize the energy of the system. The energy in the system comes from the
deformation and rupture of the nonlinear cohesive springs. Since these simulations have a
high computational cost, we have developed a GPU-based (Graphics Processing Unit) Monte
Carlo minimization algorithm that offers a significant speedup compared to a conventional
multithreaded CPU-based algorithm.

With the second model, we have dynamic simulations with explicit time
discretization. In this case we compute the force, acceleration, velocity, and position
explicitly. The force in the system comes from both the deformation of the elements as well

as the deformation of the nonlinear cohesive springs. We have developed explicit, CPU-

vi

based methods and implicit-explict methods on both CPUs and GPUs. Our implicit-explict
GPU-based method achieves substantial performance improvement compared to the explicit,
CPU-based method.

We present our GPU-based implementation of AES (Advanced Encryption Standard),
which is used in the Monte Carlo minimization algorithm to generate random numbers. Our
implementation is substantially faster than CPU-based implementation of AES. It is also

faster than previous GPU implementations of AES.

vii

Table of Contents

ACKNOWIBAGEIMENLS.ccuviiiieiiieiieeiieste et erte et esteeteeseeesseessaessseesseeesseesaeesssaeesssseessssseessnnses iv
CUITICUIUIM VILAR..... . eiiiieiitete ettt ettt ettt e sttt e s e s bt e e e bt e e eaaeeeenbeeeeaneas \%
AADSITACE ..ttt ettt ettt e bt et s e s a e bt ea b s bt et e et e bt et e e a e e bt et e e at e bt et e eat e beeanee vi
LSt Of FIGUIES...cuvieiteiieieeieeieeteete sttt ettt ettt et s e st e b e et e s bt e aeetesaeebeentesasenseenses ix
Chapter 1 INtroOQUCHION.ccecieiiieeieeteeieect et e et e e et esaeesseeseseesseesssaesseessseenssesssaesnnns 1
Chapter 2 High-performance simulation of fracture in idealized “brick and mortar”
composites using adaptive Monte Carlo minimization on the GPU...........ccccevvvvvvieriienviennnenns 4
2.1 BaCKGIOUNQ....cc..eiiiiiiieeiieiee ettt ettt ettt e at e st e bt e st s bt e s be e s saneeeeanees 6
2. 1.1 MO Lttt ettt es 6
2.1.2 Basic Numerical Method...........ccooiiiiiiiiiiieieeteeee e 9
2.2 Adaptive Numerical Methods..........ccceerieriiirniieiieiiecieeteeeeee e e e 11
2.3 GPU ATCHITECIUTE.eeiiieeiteite ettt ettt et e e sttt e st e e bt e st e e bt e saeeesneeeeas 16
2.4 GPU ImMPlementation.........ccccueeeueerversieenienireeneessieentessessssessseesseesssesssseesssssessssssesennes 21
2.5 RESUILS. ..ttt ettt ettt e be e et e bt e et e e eaa 25
2.5.1 Performance improvement due to adaptive methods............cceeeuereierrreerrnuenennns 32
2.6 CONCIUSION. .. .eiuiieiiiiteeieeete ettt ettt ettt ettt e bt e sbe e sabe et e e eabeeeenbaeeeanees 33
Chapter 3 Bitsliced High-Performance AES-ECB on GPUS.........ccccceviiiniinieenienieenieeeenee 35
3.1 Comparing GPUS.......cooiiiiiiiiiiteeteee ettt e s ear e e s e ssnnaeee 35
3.2 AES Encryption on CPU and GPUES.........cccoeciirieniiiniiniteieeeieeeeereeesiveeeeve e 36
3.3 AES-ECB 0N the GPUS......uuiiiiiiiciieeeieeeteeeeeeetee et e seeveessveesssae e saaeessreesssaeesnsnneas 37
3.3.1 Bt OTAETING.....veeiuieeiieeieeieerieeie ettt et e e ste et esbeesseessbaesseesssessseesssessseenns 37
3.3.2 L0Ad and STOTE........eiiuiiiiiiiieeieeite ettt ettt ettt ettt et e st e e et e s 38
3.3.3 SUDBYLES...cuutieiieeieeieeete ettt ettt ettt et b e et e e st e e baesnbe e beensaeenaaens 38
3.3.4 SHIftROWS....cectiiiiiiiiecieeeee ettt ettt e te e s taeeereessaeebeessbaebeeeenneaennes 39
3.3.5 MIXCOIUMNS. ...cutiiiiriiriieieeieete ettt sttt st et b e st esaaee s 40
3.3.6 AddROUNAKEY.......cooiiiiiiiieiieeieeteee ettt ettt ettt e e e 41
3.3.7 Resistance to TimMing-AttacCK........ccceceerierriirriieriieirieeieeree et eseeesreeseneeeseneeenaes 41
3.4 Results and CONCIUSION.cootiriiiriieiterie ettt ettt et e e 41
Chapter 4 Integrating material structure with implicit/explicit methods to achieve high
performance fracture simulations 0N GPUES.........c.cccoueeviiiiiieiiieciecieecre et 43
4.1 Material DeSCIIPtION.eiciirciierieeieerteeeerte ettt ettt ste e bt essbeeesstreeesasreesnnsneeas 46
4.2 AlGOTITRIMIS. ..ottt ettt ettt et e st e be e 48
4.2.1 Unbolted explicit Method..........ccceeriiiiriiriiiiieceeeee e 48
4.2.2 Bolted explicit MEthOd.......cceieiiiiieiieeeiieceeceece e e e e 50
4.2.3 Bolted implicit-explicit MethOd.........cceeeieriiriiiirieeieericeeeee e 52
4.3 GPU ACCEIOTAtION.....coiiiiiiieiieiieeieet ettt ettt ettt e st e e s te e e s beeeesanaeens 53
B4 RESUILS...cuiieiiieeiteeet ettt ettt ettt s e bt st a e b et et be et st e b et e e eane s 55
4.5 CONCIUSION. ..cutiiiiiiiieeieet ettt ettt ettt ettt e st e e bt e st e e e s abbe e e s beeeesasaeens 64
Chapter 5 CONCIUSION.....cccuiiiiieiiieeieecieeeie ettt ste et esteebeesetesbeesseessaesssssaesesssasssssseennns 65
BibliO@IaDRY eeieieeieetee ettt sttt ettt e e s e e e areeeas 67

viii

List of Figures

Figure 1.1. An example simulation output. The colors represent vertical brick stress.............. 2
Figure 2.1. (a) Schematic of macroscopic specimen and loading scenario (bending). There is
a pre-existing crack in the middle of the specimen. (b) An example configuration of bricks.
Many more bricks are used in the actual simulations. (c) Assignment of bricks to threads
using graph-coloring. Adjacent bricks are assigned different colors. Bricks of the same color

are processed iN PArallel.........cccviiiiieiciiieeeee e e aa e e s aaeeenes 6
Figure 2.2. (a) Graph of traction-separation function. (b) Graph of the energy potential,
defined as the integral of the traction-separation function............cccecceveevieevienieeeneeeneeenieenenn 9

Figure 2.3. (a) Adaptive cycle illustration. The old sliding window is labeled windowold,
while the new sliding window at the next cycle is labeled windownew. The blue circle is the
new energy value, and the red circle is the old energy value. The variance and correlation
coefficient are calculated each time the sliding window is updated. (b) Graph of position
predictor multiplier. The predictor uses linear prediction when the energy is low, and a

combination of linear and constant prediction as the energy increases..........c..cceceeveerueersueenne 12
Figure 2.4. CPU and GPU architectures. A GPU has more transistors devoted to execution,
while a CPU has more transistors for cache and control mechanisms.......c..cccceceeeveeevuernneenen. 18

Figure 2.5. (a) Peak GFlops of CPUs and GPUs. The peak GFlops is significantly higher on a
GPU. (b) Peak memory bandwidth of CPUs and GPUs. The peak bandwidth is significantly
higher on a GPU (c) Peak double precision GFLOP/s on the test systems: Nvidia GTX 480
GPU/Core 2 Quad Q6600 CPU and Nvidia GTX 580 GPU/Core i7 2600 CPU.................... 19
Figure 2.6. Flowchart of the overall simulation algorithm............cccceeevirviiniiniiiniineeee. 21
Figure 2.7. Diagram of the data structures used in the simulation. Initially, the data structures
are in an array of structure format during input processing. It is then rearranged into a
structure of array format. Additionally, the individual elements are rearranged according to

the graph COlOTING OTAET.........cccuiiiiieiieieeeete ettt e e e et eebe e ssseesaessneas 25
Figure 2.8. Simulation output. (a) The colors represent the energy of the bricks. (b) The total
energy for various brick Orientations..........ccceevuerreeriieerienieeieerie ettt sresre e e s eree s 27
Figure 2.9. (a) Initialization time. (b) GPU and CPU simulation times (semilog).................. 28
Figure 2.10. (a) GPU simulation times with different tolerance values. (b) Final energy value
with different tolerance ValUeS...........coeevierieniriieeiereeeee ettt e 29
Figure 2.11. CPU simulation time with different numbers of cores........c..ccccceeervieniiniinneenn. 30
Figure 2.12. Percentage of simulation time for different parts of the algorithm on GTX 480
AN 580....eieteeitieiteteet ettt ettt sttt h et a e s a et e e a e e st e st e e e bt e e bt e eneeeaee 31

Figure 2.13. (a) Comparison of GPU simulation time for adaptive vs. non-adaptive
algorithms. (b) Relative speedup from using GPU and adaptive methods. The time for Core 2
Quad Q6600 non-adaptive is an estimated runtime based on the difference between GTX 480
adaptive and GTX 480 non-adaptive, and the difference between GTX 480 adaptive and
Core 2 Quad Q6600 adaptive, since it takes an impractical amount of time to run the Core 2

NON-AAAPTIVE CASE...ceuvrieiieriieeiieiieeitterte et esteeteesteesteesstessteesseessseessaesssessseeassessseesssessseesssesnses 32
Figure 3.1: The state of 0ne blOCK........cccoeiiriiiiirieieeeeeee et 38
Figure 3.2: The DitSIiCed State.........ccceerierrieiiieeiierieecie ettt ssre et eaeesaeste e e e ebeessnessnes 38
Figure 3.3: The ShiftROWS SED....cc.cevuiriiiriiiieiereeieetest ettt e e e 40

ix

Figure 3.4: The ShiftRows step for the bitsliced state...........cecceveereriienierneriiineereeceereeeeeee 40
Figure 3.5: Matrix multiplcation in MiXColumns............cceeeuirriieniieenienieeieenieeeeeeeesieee s 40
Figure 4.1. (a) Schematic of macroscopic specimen and loading scenario (bending). There is
a pre-existing crack in the middle of the specimen. (b) An example configuration of bricks.
Many more bricks are used in the actual simulations. The red interfaces are stiff interfaces,
while the black interfaces are COMPLANL..........ccccuierieriiiiiiieieeeeeeeeeee e 46
Figure 4.2. Diagram of the data structure used in the CPU Version.........cccceceveereeeneerneennne 50
Figure 4.3. Diagram illustrating the bolting process. Values associated with the
corresponding vertices in the unbolted elements are combined together in the bolted element.

... 51
Figure 4.4. Diagram illustrating the alternate matrix multiplication.........c..ccccccevveeriieennneenn. 54
Figure 4.5. Simulation output. The colors represent the vertical stress in the bricks. A crack

has propagated about halfway into the SPeCIMEeN..........ccceceerieriiirieriieiierieereeee e 57

Figure 4.6. Critical step size for the unbolted, explicit, CPU (UEC) and bolted, explicit, CPU
(BEC) methods. The results show an expected decrease in step size as the stiffness ratio
increases, with interface stiffness constant at 700 daN/mMmMm3........cccevuvrieeeeiiiriiiinveeereeeerenennnnne. 58
Figure 4.7. Critical step size for the bolted implicit-explicit method (GPU version) (BIEG)
compared to that of the bolted explicit method (CPU version) (BEC), for a constant interface
stiffness at 700 daN/mma3. The critical step size for the bolted implicit-explicit method does

not have a strong dependence on Stiffness ratio.........cccceerierieriieniiienieniecee e 59
Figure 4.8. Computation time per step for different methods. The BIEG method has the
smallest COMPUtation tiMe PEI SEEP.....c.eerierrieerierieerierrieenieeteesressreesteeseesssessseesssessseesssesnses 60

Figure 4.9. Total speedup for different methods (BEC, BIEC, BIEG) relative to UEC with
various number of bricks. The BIEC and BIEG methods both show increasing speedup as the
StIffNESS TAtIO IMCTEASES. ...eeveeuieeiiereieieeterie ettt ettt et e st et e et e sae e te st e sseessessseesnseesaseenns 61
Figure 4.10. Error in strain energy for the BIEG method with different stiffness ratios, with
constant interface stiffness of 700 daN/mm3. Higher stiffness ratios allow for a larger step

size before the simulation blows up due to instability in the explicit part...........ccccveerrureennee 62
Figure 4.11. CPU and GPU memory usage for the different methods. The memory usages
scales roughly linearly proportional to the number of bricks.........cccoccuevviiiviiniiiniiinieeene. 63

Chapter1 Introduction
Computer simulation is an important part of science and engineering. The ability to simulate
physical processes on a computer has led to greater insight and understanding in many fields,
including structural materials. The combination of computer simulations and physical
experiments can lead to a deeper understanding than is possible with either one alone.
Computer simulation of material fracture can be computationally expensive due to the
large number of elements necessary to capture microstructue features. One example of such
material is nacre and its synthetic analogues, which has a mechanical response that depends
strongly on the microstructure features. Explicit representation of these features can lead to
very large problem sizes, for which simulations can require substantial computation time. In
these materials, individual “bricks” interact with each other through a polymer that binds the
bricks. The problem size discussed in this dissertation can reach up to 300,000 bricks. Figure
1.1 shows an example simulation output. In the figure, the colors represent vertical brick

stress.

Figure 1.1. An example simulation output. The colors
represent vertical brick stress.

One way to model the problem is to use rigid elements with interfaces that can
fracture, under a quasi-static loading scenario. In this case, the problem can be solved by
using global Monte Carlo minimization algorithms to minimize the energy of the system,
which comes from the deformation and fracture of the interfaces under external loading. To
alleviate the high computational cost of these simulations, we have developed GPU-
(Graphics Processing Unit) based Monte Carlo minimization algorithms that achieve
significant speedup over conventional CPU-based algorithms. ?%**?® GPUs offer a highly
parallel computational resource that can substantially increase the performance of algorithms
that can take advantage of it. The details of the algorithms will be described later in the
dissertation.

Another, more complicated way to model the problem is to use deformable elements
with interfaces that can fracture, using an explicit time discretization. In this case, the

problem can be solved using a time-stepping method to evolve the system either explicitly or

implicitly. We have developed explicit, CPU-based methods as well as implicit-explicit
methods on both CPUs and GPUs. We describe the details of these methods later in the
dissertation.

The remainder of this dissertation is organized as follows. In Chapter 2, we discuss
GPU-based Monte Carlo minimization algorithms for rigid elements. In Chapter 3, we
present an improved GPU implementation of AES (Advanced Encryption Standard), which is
used to generate random numbers that are required for the Monte Carlo minimization
algorithms. In Chapter 4, we describe our implementation of explicit methods, and show how
an implicit-explicit time-stepping method can be very well-suited to problems with

deformable elements and to GPU computations. In Chapter 5, we conclude with a summary.

Chapter 2 High-performance simulation of fracture in idealized “brick and mortar”
composites using adaptive Monte Carlo minimization on the GPU
Simulations of fracture that explicitly account for material microstructure can be enormously
expensive, due to the fact that large numbers of degrees of freedom are necessary to capture
the effect of individual microstructure features. An excellent example of this challenge is the
simulation of fracture in nacre and its synthetic analogues, which consist of small ceramic
platelets bonded together with a very small volume fraction of polymer. The mechanical
response of these materials is strongly influenced by the dimensions and arrangements of the
platelets, and explicit representation of all features in the microstructure within the fracture
process zone leads to daunting problem sizes, as a high density of discretized elements is
required.'®""'* Further, the strong interaction between the fracture process and the brick
arrangement implies that fracture pathways are not known a priori, creating the need to allow
for arbitrary cracking pathways to evolve with loading.'>" The need to capture local material
rupture (e.g. the breaking of bonds holding platelets together) further compounds the
problem, as rupture represents a strong nonlinearity that produces sharp spatial gradients in
stiffness (i.e. a crack has zero stiffness while the surrounding material may be intact and
therefore have high stiffness). For such problems, methods that rely on gradient-based
techniques to find the roots of non-linear equilibrium equations are often prone to extreme
convergence difficulties that stem from the sharp discontinuities in stiffness.

We present an idealized model for nacreous materials that represents the platelets
comprising the microstructure as rectangular bricks, whose position and orientation are

solution variables to be determined through simulation. The bricks interact through non-

linear springs, which represent the very small volume fraction (1-5%) of polymer mortar that
hold the bricks together."***! Hence, the non-linear spring description represents the
constitutive law that describes mortar, and includes both elastic response (for small
separations between bricks), plastic response (when the separation between bricks causes
straining of the mortar beyond its elastic limit), and rupture (when the separation between
bricks is large enough to cause material failure in the mortar). Figure 2.1 provides a
schematic illustration of the material model. A companion paper more fully discusses the
physical justification and implications of the model, using the solution techniques and
algorithms described here to quantify fracture parameters controlling failure.*

Noting the fact that many fracture problems involve limited amounts of unloading,
the problem can be cast in terms of energy minimization of a non-linear elastic system: in
this case, described by the non-quadratic energy potential describing the springs, or mortar.
We treat the bricks as rigid due to their extreme stiffness relative to that of the mortar, thus
the problem is essentially that of a collection of nearest-neighbor particle interactions.*

The end result is a material idealization that simply involves finding the collection of
brick positions and rotations that minimize the energy in the non-linear springs connecting
the particles. From a purely mathematical point of view, this is a fairly general problem in
that it involves finding global energy minima of a highly nonlinear system of nearest
neighbor interactions. While the idealized material model described above serves as the
motivation, the algorithms described here are applicable to other problems of this type (such
as the large deformation of fiber networks®*). The focus of this chapter is on the strategic

marriage of the GPU architecture to this class of problems. We will show that the GPU

architecture offers powerful advantages, particularly when combined with algorithms that
exploit the nature of nearest-neighbor interactions. Results are presented quantifying
computational performance. This work appeared in**. For additional details regarding the

material aspect of the simulations, see **,

2.1 Background

2.1.1 Model

(a) , (b) (c)
Ban | ™ ' '
1 ¥ h |<— S > 5
y [9]
| | Example Graph Coloring
\i - 1—9 I
a,—>] N
) Ra—— \){* X Thread#1 Thread#2 Thread #3
.) + T —
Brick angle, 6, _3
S & 2
g ¢
L2 i S 3

Parallel

Figure 2.1. (a) Schematic of macroscopic specimen and loading scenario (bending). There
is a pre-existing crack in the middle of the specimen. (b) An example configuration of
bricks. Many more bricks are used in the actual simulations. (c) Assignment of bricks to
threads using graph-coloring. Adjacent bricks are assigned different colors. Bricks of the
same color are processed in parallel.
The central objective of the simulations presented here is to predict failure of a macroscopic
specimen that has a large, pre-defined crack and is loaded in a combination of tension and
bending, as shown in Figure 2.1(a). The macroscopic specimen is created by defining a two-
dimensional “wall” of overlapping rectangular bricks that are connected with cohesive

springs; Figure 2.1(b) shows a close-up view of this microstructure and the dimensions that

define the bricks. The bricks are treated as rigid bodies, while the mortar (implicitly

represented by the cohesive springs connecting the bricks) is described as a nonlinear
material. A large number of bricks are used to accurately capture the complex fracture
behavior near the tip of the macroscopic crack shown in Figure 2.1(a). The simulation tool
has been coded to allow for arbitrary combinations of brick width, height, overlap, and
orientation within a specimen. (Here, example results are presented for a single
microstructural orientation relative to the specimen; more exhaustive study of the role of
brick size and orientation is presented in a separate work.*)

The specimen is loaded by applying prescribed displacements to the bricks at the top
and bottom of the specimen shown in Figure 2.1(a). Bricks without prescribed displacements
can undergo general rigid body motions (translation and rotation). As the bricks displace and
rotate, the interface opening between bricks can change. The cohesive law describes the
energy that is stored at the interfaces as the bricks change position, in terms of the relative
displacements between the adjacent bricks defining the interface. The cohesive description
contains three parameters: interface stiffness, critical separation, and work to failure. The

energy of an interface is computed as follows

Eporoce = E eds (2.1)

interface

where the integral is over the length of the interface. The energy at a given point is given by

E,=f(VA+47)+g(8,) (2.2)
where A, is the displacement in the normal direction and A is the displacement in the

tangential direction, and f and g are given by

0.5 k x°, X<Xx,

fx)= kx, (x=0.5x,), x,<x<x,
—0.5 k [XT+x34x" =2 x (x,+x,)], X,<x<X,+X,
k x, x,, x=x,+x, 2.3)
0, x=0
X)= 4
90710 0625 k +° (X— , x<0
X1 (2.4

where k is the interface stiffness, x; is the critical separation, and k x; x. is the work to
failure. The traction generated between bricks is simply the derivative of the cohesive energy
potential with respect to relative displacements. Figure 2.2 illustrates the traction-separation
relationship as a function of brick separations, and the associated energy potential. At small
relative displacements, the tractions are linear with separation, representing the elastic phase
of mortar response: above a critical displacement, the traction remains constant, representing
the plastic yielding phase of mortar response. The rupture separation defines the point at
which the mortar begins to fail: for large relative displacements, the traction between bricks
is zero, and the energy potential assumes the value of the area under the traction-separation

curve.

1.0F T 1.0F
(a) (b)
0.8f A=0
(no coupling) 0.8}
o
5 06f £ -~ |
= »ah [
g 0.4t @ 0.6f |
B 2 I
E 0.2f u |
g 0.0r 5 |
S €
p - |
-0.2 0.2 (& I
|
-0.4 |
; . . o_o-\ L i
0.0 0.5 1.0 0.0 0.5 1.0
Normal Separation, A,/Ar Normal Separation, A,/Ag

Figure 2.2. (a) Graph of traction-separation function. (b) Graph of the energy potential,
defined as the integral of the traction-separation function.

2.1.2 Basic Numerical Method

The simulation is thus an energy minimization problem, where the solution involves finding
X1,Y1,01,X2,2,02,....Xn,Yn,0n, Where x,,y,0, is the x-position, y-position, and orientation of brick
n, such that the energy E(x1,y1,01,X2,y2,05,....Xn,yn,65) is minimized. The energy function E
depends on the brick size and orientation and the properties of interfaces between bricks. For
problems involving cohesive yielding or rupture, the energy landscape is multidimensional,
highly non-linear, and may contain several solutions (local minima). For problems of this
nature, typical gradient based schemes do not perform well; instead, direct heuristic search
numerical optimization algorithms are preferred. We use the Monte-Carlo direct search
method, also known as simulated annealing, to find the minimum.'>'*'® In this case, the
temperature parameter T is a fictitious parameter that is chosen by the user, as opposed to a
physically meaningful temperature used in annealing simulations involving physical

quenching.

One advantage of simulated annealing is that it is highly parallelizable, which allows
us to leverage the computational power of GPUs. The basic parallelization concept is to
move multiple bricks simultaneously, computing the associated energy change and accepting
those that lower the energy. A small fraction of movements that increase the energy are
accepted as well, to avoid being trapped in a local minima; an exponential function is used to
describe the probability controlling the acceptance of movements that raise energy. In this
approach, one must avoid moving adjacent bricks at the same time; as will be described, we
address this problem by coloring the bricks using a graph coloring algorithm to identify sets
of non-adjacent bricks, as shown in Figure 2.1(c). Different sets of bricks, each with a given
color, are passed into separate threads of the GPU.

The basic algorithm is outlined as follows. While the solution for any given
prescribed displacement can be found in a single minimization step, in the approach taken
here, the prescribed displacements are applied incrementally. This both captures solutions at

a range of loads and promotes convergence, as described in subsequent sections:

Apply displacement m; to each driven brick dx
Repeat these steps until convergence
For each free brick b,, perform the following steps:
Compute the current energy Egiq
Generate standard uniform random numbers 1y, 1y, I
Perturb the position and orientation using ry, Iy, Is
Compute the new energy Eey

If Enew - Eold <= o

10

Accept the new position and orientation
Else
Generate a standard uniform random number r
If r <exp((Eou - Enew) / T)
Accept the new position and orientation

Else

Reject the new position and orientation

2.2 Adaptive Numerical Methods
We have developed and implemented several enhancements to increase performance and
usability of the basic algorithm. These methods include adaptive cycle count, adaptive step
size adjustment, adaptive displacement adjustment, and a position predictor.

The adaptive cycle count allows the user to specify tolerance values. The algorithm
will run as many iterations (cycles) as necessary to reach the specified tolerance values.
Without this, the user would have to specify cycle count directly, but the number of cycles

required to converge is not known beforehand.

11

(a) ® Old Energy Value
® New Energy Value

|<7windowOI >
kiwindownew—ﬂ

Adaptive Sliding Window

Predictor Multiplier, m

—

o
L~~~
O
~—"

o o o
D (2] (o]

o
)

O. " " " M " M "
8.0 02 04 06 08 10 12 14
Brick Energy, ®/d,

to be finished.

Figure 2.3. (a) Adaptive cycle illustration. The old sliding window is labeled window.,
while the new sliding window at the next cycle is labeled window.. The blue circle is the
new energy value, and the red circle is the old energy value. The variance and correlation
coefficient are calculated each time the sliding window is updated. (b) Graph of position
predictor multiplier. The predictor uses linear prediction when the energy is low, and a
combination of linear and constant prediction as the energy increases.
The underlying idea is illustrated in Figure 2.3(a). We use a sliding window to monitor the
variance and correlation coefficient to determine convergence. At each cycle, the new energy
value is added to the sliding window (blue in Figure 2.3(a)), while the old value is removed
(red). Then the variance and correlation coefficient of the window are calculated and
compared to user-specified tolerance parameters. These tolerance parameters include WS
(size of the sliding window, which corresponds to the number of Monte Carlo cycles), STOL
(tolerance for variance), RTOL (tolerance for correlation coefficient), and ConvergenceRep
(the number of times the convergence criteria need to be met to advance to the next

displacement step). After the STOL and RTOL criteria have been met for ConvergenceRep

times (which is typically set to 1/4 to 1/2 of WS), the current displacement step is considered

12

There are several methods to calculate the correlation coefficient and variance. One
approach is to use a two-pass algorithm that calculates the mean first and then calculates the
variance. This approach does not work well for this situation since whenever a new value is
added or an old value removed from the sliding window, the entire window has to be
reprocessed. A different approach is to use a one-pass algorithm that dynamically updates

without reprocessing the entire window. A well-known formula is the following °

— 2 2, —
SQnew - SQold+ Xoew — Xolds SQinit =0

SNnew:SNold+Xnew_Xold; SNinit:0
so. — SN e
variance= _ " WS
WS (2.5)

where X, is the new value, x,4 is the old value, WS is the window size, and SQ and SN are
intermediate variables.
However, this formula suffers from round-off errors and the computed variance can become

negative rather quickly. We use a more numerically stable one-pass formula °

Xnew_ Xold
mean,, =mean ,t———; meanim.t=0
A
SSnew =SS oldt (Xnew —mean,,,) (Xnew - meanold) - (Xolg — medan,,,,) (Xolg—medan,) s SSinit =0
C'Snew = CSold+ (Xnew_ meannew) (@) + (Xold - meanold) (#) N CS init— 0
. _ SSnew
variance = WS
2 Csiew
R = 5
WS xvariance * (M)

12 (2.6)
where variance and R? (correlation coefficient) are the output values, and mean, SS, CS are
p

the intermediate variables.

13

This formula accumulates round-off errors more slowly than the previous formula, but it can
still produce a negative variance after some time. To remedy this problem, the MPFR
package ° was used to compute the intermediate values (mean, SS, CS) at quadruple
precision, whereas normal floating-point numbers are either single or double-precision. The
MPEFER package is a widely used library for performing extended precision calculations. After
the variance and R* are computed, they are compared to the user-specified STOL and RTOL
criteria to determine convergence.

We included an adaptive step size strategy that modifies the brick step size (the
amount of perturbation to a brick's position during one step) and rotation size (the amount of

perturbation to a brick's orientation) based on acceptance probability.'”*

If the acceptance
probability is very low, then most of the attempted moves are rejected, which results in a loss
of efficiency. If the acceptance probability is very high, then this implies that the brick step

size and rotation size is small, so it would take more time to converge after an applied

displacement. The equation for adjusting both the brick step size and rotation size is given by

— s,%(0.5+a), a<0.4,a>0.6

STH-
" ls,, 04<a<0.6 @.7)

where s, is the step size at load step n, and « is the acceptance probability. The step size can
be adjusted either globally or on a per-brick basis. In global adjustment, a single step size is
used for all bricks and adjusted periodically. For the per-brick basis, each brick maintains its
own step size.

Our strategy for adaptive displacement adjustment controls the displacement size to

reach stable crack growth behavior. The displacement size is adjusted using forward control

14

and backtracking. In forward control, the step size is adjusted proportionally based on a

target number of cycles for convergence. The equation for forward control is given by

n+1

C, (2.8)
where A, is the displacement step size at load step n, ¢, is the target number of cycles and ¢, is
the actual number of cycles required to converge the previous displacement step.

Besides forward control, we also use backtracking, which occurs when the number of cycles
exceeds an upper limit. In backtracking, the displacement step is reverted and the new

displacement step size is given by

2 C,
An+1: An*_*_
3 ¢, (2.9)

where c, is the upper limit for cycles.

A position predictor is used during the early stage of the simulation (prior to
widespread rupture between bricks) to accelerate convergence, since the relationship between
prescribed displacements and brick positions is approximately linear. In this case, the
converged position of the bricks in one displacement step is linearly extrapolated to obtain an
initial position for the next displacement step that results in a faster convergence. The
predictor is given by

A

e L L e
P =PIt * PP | 2.10)

where p! is the position of brick i at displacement step n, and m is the multiplier defined

below.

15

As the simulation progresses, the interfaces between bricks approach the point of fracture,
where a linear predictor is no longer accurate, and a constant predictor is more appropriate.

To reduce the prediction error, the following multiplier is used

m=1—1.8|| max|min —0.5

@
—,1.0|,05
@)

0

(2.11)
where @ is the current brick energy, and @, is the maximum elastic brick energy.

As shown in Figure 2.3(b), when the brick energy is low, the multiplier is equal to 1, so the
linear predictor is used. As the brick energy increases, the multiplier value decreases,
resulting in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>