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Abstract

An improved all-speed projection algorithm for low Mach number flows

by

Christopher M. Chaplin

Doctor of Philosophy in Engineering – Mechanical Engineering

Designated Emphasis in Computational and Data Science and Engineering

University of California, Berkeley

Professor Phillip Colella, Co-chair

Professor Panayiotis Papadopoulos, Co-chair

The objective of this work is to design and implement a high fidelity method for simulating
low Mach number compressible flows ranging from inviscid gas dynamics to compressible
Navier-Stokes with reactions. In order to achieve this objective, we introduce three goals.
The first is that ∆t only be constrained by the advective CFL condition. The seconds goal
is that we attain accurate treatment of compressible effects such as bulk compression and
expansion due to thermo-chemical processes and long wavelength acoustics. In particular,
we want to capture well-known low Mach number limiting behavior. The third and final
goal is that we want to use easy solvers.
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Chapter 1

Introduction

Low Mach number flows are found both in natural settings and in engineering applications.
Incompressible hydrodynamics, anelastic hydrodynamics, stellar hydrodynamics, combus-
tion, and plasma physics all have low Mach number cases [3], [119].

1.1 Inviscid Gas Dynamics
The simplest flow equations that reveal the challenge of low Mach number (M) flows are the
Euler equations for inviscid gas dynamics:

∂ρ

∂t
+∇ · (ρv) = 0 (1.1)

∂(ρv)

∂t
+∇ · (ρv ⊗ v + pI) = 0 (1.2)

∂(ρE)

∂t
+∇ · [ρ (E + p)] = 0 (1.3)

E = ρ

(
e+

1

2
||v||2

)
(1.4)

p = ρRT. (1.5)

These equations are composed of the conservation of mass (Equation (1.1)), momentum
(Equation (1.2)), and total energy (Equation (1.3)). The last two equations define the total
energy (Equation (1.4)) in terms of the internal and kinetic energies, and the equation of
state for an ideal gas (Equation (1.5)). For the discussion of low Mach number flows, it is
easier to examine one of the non-conservative forms of the governing equations. Transforming
Equations (1.1) to (1.3) to (p,v, T ) variables yields,
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Dp

Dt
+ γp (∇ · v) = 0 (1.6)

ρ
Dv

Dt
+∇p = 0 (1.7)

ρ
DT

Dt
−
(
γ − 1

γ

)
Dp

Dt
= 0, (1.8)

where the notation D()
Dt

is the material derivative D()
Dt

= ∂()
∂t

+ (v · ∇)().

1.2 Low M Asymptotics
For a flow to be low Mach number, the magnitude of bulk fluid velocity (||v||) must be much
less than the acoustic wave propagation speed (c). The ratio of these two speeds defines the
Mach number,

M =
||v||
c
. (1.9)

In practice flows are considered low Mach number when M < 0.1. Typically the fluid
velocity is resolved at advective time scales throughout a simulation. The acoustic speed
depends on the physics of the problem.

Equations (1.6) to (1.8) can be non-dimensionalized to compare the relative importance of
each term. There are two different analyses that are worth exploring to expose the underlying
nature of this system.

If we start by setting length l = lu, where superscript u denotes the advective scale, the
non-dimensionalization is given by

lu =
l

l∗
, vu =

v

v∗
, ρu =

ρ

ρ∗
, pu =

p

p∗
, T u =

T

T ∗
, Mu =

vu√
γ p

u

ρu

,

where the superscript ∗ denotes non-dimensional values.
If we apply this non-dimensionalization to Equations (1.6) to (1.8) and assume the fol-

lowing asymptotic expansion in M for each variable:

p = p0(x, t) +Mp1(x, t) + γM2p2(x, t) (1.10)

v = v0(x, t) +Mv1(x, t) +O(M2) (1.11)

T = T0(x, t) +MT1(x, t) +O(M2), (1.12)
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we produce the following system of equations

Dp

Dt
+ γp (∇ · v) = 0 (1.13)

ρ
Dv

Dt
+ (γM2)−1∇p = 0 (1.14)

ρ
DT

Dt
−
(
γ − 1

γ

)
Dp

Dt
= 0, (1.15)

where the superscript ∗ notation has been dropped.
The important outcome is that pressure gradient ∇p = O(M−2) in this analysis. We’ll

label this the low M asymptotic result.
If instead the characteristic length is chose to be the size of the entire domain L ∼ ctu,

we find that ∇p ∼ O(M2) [62], [95]. This can be verified from equations of dynamics along
with the equation of state. Let us denote this as the long wavelength acoustic result.

We seek a method that can recover both of the limiting cases described above: low M
asymptotics and long wavelength acoustics. In the low M asymptotic regime, the acoustic
waves are weak and contribute little to the dynamics. The stiffness caused by these waves
constrains ∆t unnecessarily for a fully explicit method. The explicit time step is given by

σ
∆t

∆x
=

1

max(| ||v|| ± c |)
, (1.16)

where σ is the Courant-Friedrichs-Lewy (CFL) number.
At low Mach numbers, the time step for the explicit methods is completely defined by

the rate of acoustic wave propagation c. On the other hand, fully implicit methods can relax
rapidly on time scales based on c. However fully implicit methods introduce complicated
non-linear solves. This motivates the use of Implicit-Explicit (IMEX) schemes that can use
a ∆t based on the advective time scale, but can also account for long wavelength acoustics.

1.3 Thesis Outline
The objective of this work is to design and implement a high fidelity method for simulating
low Mach number compressible flows ranging from inviscid gas dynamics to compressible
Navier-Stokes with reactions. In order to achieve this objective, we introduce three goals.
The first is that ∆t only be constrained by the advective CFL condition. The seconds goal
is that we attain accurate treatment of compressible effects such as bulk compression and
expansion due to thermo-chemical processes and long wavelength acoustics. In particular,
we want to capture well-known low Mach number limiting behavior. The third and final
goal is that we want to use easy solvers.

Our approach is to add redundant equations for the potential component of velocity
and pressure. The combined system of equations is solved using an IMEX formulation,
with the redundant equations solved implicitly and the discretization of the fluid equations
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having a lower-triangular dependence on the redundant variables. This new approach was
motivated by that taken in Colella and Pao [84]. In Colella and Pao a similar set of redundant
equations are added to model inviscid gas dynamics. This work improves the algorithm in
Colella and Pao in three major ways. First, we have removed the need for any variable-
coefficient projection. We restructured the equations in such a way that we can leverage
IMEX frameworks. Lastly, we extended the algorithm to handle viscous, thermal, and
combustion effects.

The remainder of this thesis is broken into five chapters. The next chapter contains a
review of the relevant literature. In Chapter 3, we describe our all-speed splitting approach.
From there we move onto describing discretization methods. The final two chapters cover
the results and conclusions.
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Chapter 2

Numerical Methods for Low Mach
Number Flows

There are a few different solution approaches available to modeling low Mach number gas
dynamics. The following considerations should be taken into account for any low Mach
number method:

1. Take advantage of the disparate scales between the local fluid speed, v, and acoustic
speed, c.

2. Involve either a decomposition of the variables and/or a simplification of the full gov-
erning equations.

3. Reduce to the correct incompressible solution as M → 0.

Recall the original system of equations:

∂ρ

∂t
+∇ · (ρv) = 0 (2.1)

∂(ρv)

∂t
+∇ · (ρv ⊗ v + pI) = 0 (2.2)

∂(ρE)

∂t
+∇ · [ρ (E + p)] = 0. (2.3)

These equations are hyperbolic and have the form,

∂U

∂t
+∇ · (F (U)) = 0. (2.4)

The two large classes of approaches for modeling these flows are preconditioning schemes
and pressure-implicit methods.



CHAPTER 2. NUMERICAL METHODS FOR LOW MACH NUMBER FLOWS 6

2.1 Preconditioning Schemes
The key feature of all of these schemes is they use an artificially chosen sound speed. All of
these methods are in some way related to Chorin’s method of artificial compressibility [17].
In artificial compressibility, the incompressible equations are modified so that there is an
evolution equation for an artificial scalar, density in the original case, in place of the usual
velocity divergence constraint. The resulting auxiliary equations are then solved together
and the solution is advanced in time.

Simple/PISO

SIMPLE/PISO are preconditioning methods quite similar to artificial compressibility. How-
ever, they are important enough to merit their own discussion [10], [11], [14], [19], [23], [42]–
[45], [77], [79], [82], [88], [89], [107], [109], [112].

The SIMPLE (Semi-Implicit Method for Pressure Linked Equations) method was devel-
oped by Spalding and Patankar in the early 1970s [11], [89]. There are three primary features
of the SIMPLE method: replacement of the continuity equation with a pressure evolution
equation, definition of a coupled pressure-velocity system, and implicit treatment of the cou-
pling terms. In practice, SIMPLE looks like a standard predictor-corrector method (define
an initial state and pressure, update velocity with that pressure, solve for new pressure) with
an iterative wrapper around it. The density is updated once the pressure and velocity are
deemed “converged”.

Although the first version of this algorithm was designed for modeling steady flows, it was
quickly extended to modeling transient flows. Many improvements and comparisons between
different versions have been introduced over time [19], [45], [88]. The primary drawback with
this method is that within a given iteration the updated velocities and fluxes do not satisfy
momentum balance, so iteration is required. However, the method is easy to apply and
a single iteration is fairly cheap computationally so it is still useful today, particularly for
steady-state calculations.

In the 1980s, Raad Issa set out to create a refined version of SIMPLE that did not require
iteration. He named his method PISO (Pressure-Implicit with Splitting of Operators) [42],
[43]. PISO is very similar to SIMPLE except that instead of adjusting the density at the end
of the iteration, the density is updated at each predictor-corrector “stage” so that continuity
and momentum balance are discretely satisfied. Issa then was able to show that with a small
number of predictor-corrector stages (2-3), the user could get the solution error to scale as
O((∆t)2).

There is both an incompressible and a compressible version of PISO. The algorithm
is popular and is used in many commercial codes today as a counterpart to SIMPLE for
transient flows [Fluent [5], OpenFoam [118], Converge [105]]. The primary drawback is that
the method requires iteration for complicated flows, regardless of whether the complications
are caused by physics or problem geometry. It is also not clear whether the the method
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extends to high-order accuracy in time. There is no special consideration for transitioning
flows in terms of Mach number.

As with SIMPLE, PISO has had many extensions and improvements over the years [44],
[82].

Explicit Preconditioning

Returning to Equation (2.4), there are some terms in ∇ · (F (U)) which do not scale well as
M → 0. A scaling matrix may be introduced such that the following is true,

P−1∂U

∂t
+∇ · (F (U)) = 0. (2.5)

The goal here is to define P−1 in such a way that the system is less stiff as M → 0. One
could select any number of preconditioning matrices for a steady-state flow and the stiffness
can be resolved. Retaining time accuracy for transient flows requires careful selection of the
preconditioning matrix along with some other tricks. The typical approach is to introduce
artificial compressibility and scale the resulting equations in such a way as to shrink the
maximum eigenvalue of the resulting hyperbolic system.

The initial studies in preconditioning methods were done for steady-state Euler equations
[15], [114], [115]. Weiss and Smith [117] formulated one of the first explicit preconditioning
methods designed to simulate time-varying flows. Their method recovered accuracy in time
by sub-cycling (taking smaller time-steps) until the error in the preconditioned time-evolution
was below a chosen threshold. Meister [72] reviewed some of the early time-dependent
methods and developed a way to extend the method into the weakly compressible regime.
Wesseling [119] has shown that it is possible to extend compressible solvers to the weakly
compressible flow regime via some clever transformations of the equations.

There are some newer splitting techniques that share similarities with the explicit pre-
conditioning schemes. Haack et al. [36] proposed a newer, more advanced explicit scheme
for compressible flow at any speed. In this approach, “preconditioning” is applied to both
the temporal terms and spatial terms. They introduce a splitting of the equations into slow-
speed and high-speed terms via a tunable parameter. The stability analysis reveals that the
time step is independent of the acoustic speed, but there is a constraint on the time step
that is more stringent than desirable.

Other Preconditioning Methods

There are a wide range of methods that resemble explicit-preconditioning available [22], [34],
[36], [37], [46], [51], [53], [54], [57], [60], [61], [63], [72]–[74], [78], [98]–[101], [103], [108], [110],
[113].

There are hybrid implicit-explicit preconditioning methods. Instead of transforming the
equations in an effort to remove the need for implicitness, these methods accept that implic-
itness and iteration will be necessary [49], [69]. The general approach is to start with a fully
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explicit method, conservative or not. A time step is taken with this explicit method and
then corrected with the implicit preconditioning step. This process of taking an explicit step
with an accompanying solve of an implicit system of equations is then iteratively repeated
until a desired accuracy is achieved. There have been many advances in these methods over
the years [8], [15], [28], [32], [48], [49], [64], [87], [124], [125]. The primary drawback of these
approaches is that they are incredibly expensive in terms of the variable preconditioning and
iterative solvers.

Asymptotic methods [16], [113] are another distinct family of compressible methods.
These methods are derived using the low M approximation, but the acoustic effects are not
completely filtered out.

Another approach was discussed by Kwatra et al [57]. In this study, the divergence of
velocity term in the pressure evolution equation is approximated by the pressure gradient
term from the velocity evolution equation (and it is treated implicitly). This produces
the correct elliptic pressure solve in the zero Mach number limit. The method solves the
conservative system of equations and produces convincing results in the high Mach number
limit. One drawback from this study was the lack of enforcing the pressure equation of state.
For a relatively simple example it was shown that a small number of pressure solver iterations
yielded very similar results to the equation of state. Including some sort of relaxation to
the pressure solve would likely improve the results. Also, no discrete error measures or
convergence rates were presented for any of the test problems. The method was recently
expanded to the Navier-Stokes equations [37]. This study showed that there were instabilities
in extending the Kwatra method to include viscous terms, particularly at low Mach numbers
and for long time integrations. The new study ended up fixing the instabilities, but treated
viscous terms explicitly. Again, no convergence studies were provided.

Mach-Uniform Schemes

Mach-uniform, or all-speed schemes seek are a special class of solvers that seek to work well
over the entire range of Mach numbers. The original all-speed method [38] is called ICE
(Implicit Continuous-fluid Eulerian). The framework for this method is the MAC (Marker-
And-Cell) [39] incompressible flow solver. In ICE, as the Mach number approaches zero,
the MAC method is recovered. As the Mach number approaches infinity, an implicit version
of a standard compressible Euler solver is recovered. This method works well for a sub-
set of problems, and the principle ideas and technologies of the method continue to prove
themselves effective and useful in many newer schemes today.

Mach-uniform schemes are designed to reduce to the staggered-grid scheme in the in-
compressible limit as the Mach number approaches zero. As the flow grows transonic, the
methods are designed to exploit many of the benefits of the existing fully compressible meth-
ods. These methods are overall very successful at modeling physics over a wide range of flow
speeds [22], [24], [40], [51], [70], [116], [122], [123]. Few of these studies include high-order
discretizations and there is little to no error or convergence analysis.
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2.2 Pressure-Implicit Methods
For these methods, either the compressibility effects are treated implicitly or they are elim-
inated entirely using asmyptotics. In both cases the pressure is treated implicitly.

Barely Implicit Flux-Corrected-Transport

An approach that is somewhat similar to the explicit preconditioning methods was developed
by Patnaik et al [90]. The idea was to start with the explicit Flux-Corrected Transport (FCT)
method and to add an implicit correction to eliminate the small time step problem at low
Mach number. The implicit correction was based on ideas in [12], wherein it was identified
that certain pressure and velocity terms must be treated implicitly in order to remove the
acoustic dependence on the time step. This study was confined to low-order accuracy in
time and did not include and viscous or thermal effects.

Zero Mach Number Projection

The zero Mach number formulation traces its origins to work done in the 1970s and 1980s
[65], [97], [111]. The start of the formulation is to non-dimensionalize the relevant system of
equations and look at the low M asymptotics.

The pressure expansion in Equation (1.10) and the non-dimensional equations reveal that
the pressure can be split into a time-varying “background” pressure and a space-time-varying
pressure that scales as M2. Another important outcome is that a tidy expression for the
evolution of this pressure can be found:

Dp0(t)

Dt
= −γp0(∇ · v0). (2.6)

This expression was originally derived in [65], but it included additional terms relating
to combustion. Another way to look at Equation (2.6) is that the velocity constraint (v) can
be evaluated as a function of known parameters. For this simple inviscid gas dynamics case,
Equation (2.6) implies that the only cause of expansion in the fluid is the change in global
pressure over time. In combustion, the expansion is also affected by chemical heat release
and heat conduction.

Efficient zero Mach number methods have been proposed and developed over time that
leverage this analysis [2], [6], [7], [25]–[27], [29], [33], [47], [52], [55], [56], [58], [59], [65], [76],
[80], [81], [85], [86], [91]–[94], [96], [97], [102], [104], [111], [126]. These methods allow the
user to eliminate acoustic wave propagation entirely, via the aforementioned assumptions
and pressure splitting, while still retaining compressibility effects from kinetics and thermal
terms.

The seminal computational work by Majda and Sethian [65] was adapted by Lai to apply
a projection formulation of the equations [58], [59]. In the projection method, the state
variables are advanced initially in a predictor step during which time the velocity constraint
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is not imposed. Then the projection enforces the velocity constraint and the state variables
are corrected accordingly. This approach was first combined with Adaptive Mesh Refinement
(AMR) in [92], and then more complicated chemistry was included in [25]. Since then, this
formulation has been extended to higher-order accuracy with the use of spectrally-deferred
time-integration and higher-order spatial discretizations [47], [91].

The method is efficient and accurate for flows that globally remain low Mach number and
for which the complete domain is too small to support long-wavelength acoustics. For flows
for which the Mach number is not small, this method will not work well since the acoustic
wave effects have been removed.

Projection Methods

The projection method was first developed to solve the incompressible Navier-Stokes equa-
tions by Chorin in the 1960s [18]. Projection refers to the procedure in which a predicted
velocity field, which may not satisfy the divergence constraint, is projected onto the space
of divergence-free fields.

These methods have been expanded and added to greatly over time [1], [4], [9], [18], [31],
[35], [58], [59], [66], [67], [75], [84], [106], [121]. Projection methods are used in many of the
most advanced incompressible flow solvers and they work well for methods that are adaptive
in space and time.

As mentioned earlier, Colella and Pao created a new projection method for low speed flows
of varying Mach number [84]. This method was designed to be able to handle compressibility
effects in inviscid gas dynamics. In [31], this projection method was expanded to work on
gravitationally stratified flows. However, in neither study were viscous or thermal effects
considered, high-order spatial discretizations were not considered, and adaptivity was not
included.
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Chapter 3

All-Speed Splitting Methods

We’ll start by returning to the equations of inviscid gas dynamics. The equations are

∂ρ

∂t
+∇ · (ρv) = 0 (3.1)

∂(ρv)

∂t
+∇ · (ρv ⊗ v + pI) = 0 (3.2)

∂(ρE)

∂t
+∇ · [ρ (E + p)] = 0. (3.3)

To fully specify the system, boundary and initial conditions must be given. The domain
of interest is a closed container Ω with fixed boundaries ∂Ω such that the normal velocity is
zero,

v · n = 0 on ∂Ω. (3.4)

Initial conditions are required for the dependent variables

ρ|t=0 = ρ0(x) (3.5)

v|t=0 = v0(x) (3.6)

E|t=0 = E0(x). (3.7)

We’ll look at the standard hyperbolic analysis of this system. Converting the conserved
variables U = (ρ, ρv, ρE) into the primitive variables W = (ρ,v, p) yields,

∂ρ

∂t
+∇ · (ρv) = 0 (3.8)

∂v

∂t
+ (v · ∇)v +

1

ρ
∇p = 0 (3.9)

∂p

∂t
+ (v · ∇)p+ γp(∇ · v) = 0. (3.10)
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We can express this in matrix form as

∂W

∂t
+ AW∇W = 0. (3.11)

If we substitute the following expression for the speed of sound (c2 = γp
ρ
), the eigenvalues

of this system are
λ =

[
(v · n) , (v · n)± c

]
D. (3.12)

3.1 Splitting
We seek an IMEX splitting of the governing equations such that we can block-diagonalize
the system into stiff and non-stiff terms with non-stiff coupling. If the splitting is successful,
we can treat the high-speed terms implicitly and the low-speed terms explicitly. Expressing
this as a system yields,

∂U

∂t
= F (U) (3.13)

F (U) = FE (U) + F I (U) , (3.14)

where U is the collection of evolved variables, FE (U) is the explicit operator acting on the
non-stiff terms, and F I (U) is the implicit operator acting on the stiff terms.

Hodge Decomposition

Applying the Hodge decomposition to the governing equations helps us to block-diagonalize
the system. We apply the decomposition using the projection method for smooth vector
fields. This decomposition involves splitting the vector field into divergence-free and curl-
free components. The variable-coefficient version is presented first,

w = wd +
1

ρ
∇φ. (3.15)

For this particular splitting Equation (3.15), the following must hold for the decomposi-
tion to be orthogonal, ∫

Ω

wd ·
1

ρ
∇φρdΩ = 0. (3.16)

The curl-free vector component has the following properties:

∆ρφ = ∇ ·w in Ω (3.17)
1

ρ

∂φ

∂n
= 0 in dΩ, (3.18)
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where the variable density Laplacian operator is given by

∆ρ() = ∇ · 1

ρ
∇(). (3.19)

The divergence-free component is described by

∇ ·wd = 0 in Ω (3.20)
wd · n = 0 in dΩ. (3.21)

Other boundary conditions could be considered, such as a moving domain, and that would
introduce a harmonic velocity to the splitting (see [31] for an example of a decomposition
with a harmonic velocity).

From Equation (3.15), the two variable-coefficient (in ρ) projection operators can be
defined,

Qρ =
1

ρ
∇
(
∆−1
ρ

)
∇· (3.22)

Pρ = I−Qρ. (3.23)

The more familiar constant-coefficient Hodge decomposition is defined by

v = vd +∇ψ, (3.24)

where orthogonality is guaranteed if the following holds,∫
Ω

vd · ∇ψdΩ = 0. (3.25)

In Equation (3.24), the divergence-free component has the same properties as the variable-
coefficient counterpart. The curl-free component satisfies the following conditions,

∆ψ = ∇ · v in Ω (3.26)
∂ψ

∂n
= 0 in dΩ, (3.27)

where the standard Laplacian is given by

∆() = ∇ · ∇(). (3.28)

The constant-coefficient projection operators are now given

Q0 = ∇
(
∆−1

)
∇· (3.29)

P0 = I−Q0. (3.30)
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Approaches

Recall our three goals in this work. The first is that ∆t only be constrained by the advective
Courant-Friedrichs-Lewy (CFL) condition. The seconds goal is that we attain accurate
treatment of compressible effects such as bulk compression and expansion due to thermo-
chemical processes and long wavelength acoustics. In particular, we want to capture well-
known low Mach number limiting behavior. The third and final goal is that we want to use
easy solvers.

Our approach is to add redundant equations for the potential component of velocity and
pressure. The combined system of equations is solved using an Implicit-Explicit (IMEX)
formulation, with the redundant equations solved implicitly and the discretization of the
fluid equations having a lower-triangular dependence on the redundant variables.

This method is an extension of the work done by Colella and Pao [84]. Accordingly that
method will be presented first.

Colella and Pao Splitting

As recognized in [84], it is possible to split the equations of inviscid gas dynamics into stiff
and non-stiff terms by using the Hodge decomposition. The projection operator is the vehicle
that allows us to perform this decomposition.

The first step is to perform the constant-coefficient Hodge decomposition on the velocity
variable. A suitable splitting will also be applied to the pressure variables.

v = vd + vp (3.31)
p = π + δ (3.32)

The vectors vd and vp are the divergence-free and curl-free vector fields described previously.
For the pressure splitting, δ is the acoustic pressure and π is an auxiliary pressure. In the
limit as M → 0, the acoustic pressure goes to zero and the auxiliary pressure approaches
the the incompressible pressure. The split terms satisfy the following relations for a closed,
fixed domain:

vd = Po(v) vp = Qo(v) (3.33)
∇ · vd = 0 vp = ∇ϕ (3.34)
vd · n = 0 vp · n = 0. (3.35)

Applying this splitting to the non-conservative equations produces the following new
system:

∂ρ

∂t
+∇ · (ρv) = 0 (3.36)

∂δ

∂t
+
∂π

∂t
+ (v · ∇)p = −γp(∇ · vp) (3.37)
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∂vd
∂t

+Ad(v) +
1

ρ
∇π = −P0

(
1

ρ
∇δ
)

(3.38)

∂vp
∂t

+
∇|vp|2

2
= −Q0

(
1

ρ
∇δ
)
, (3.39)

where

Ad(v) ≡= v · ∇v −∇|vp|
2

2
(3.40)

1

ρ
∇π ≡ −Qρ (Ad(v)) . (3.41)

All of the terms involving ∇·vp and 1
ρ
∇δ are the compressible terms that must be treated

implicitly.
Ideally, we could cast these new equations directly into the IMEX formulation. But there

are some challenges with the above system of equations as far as the IMEX formulation is
concerned. The primary issue is that we have a time derivative for π appearing in the
evolution equation for δ. Equations with multiple time derivatives are differential algebraic
equations, and typically have a complicated solution procedure.

For the IMEX formulation to work, we want to ensure that each equation in the system
has a single time derivative. With the equations in this form, a method of lines solution can
be constructed wherein an appropriate spatial discretization is applied to the system first to
produce ordinary differential equations (ODE). Then a time integration scheme integrates
the resulting ODEs.

In light of this, we combine the partial time derivatives of the pressure terms in the
pressure evolution equation. Furthermore, we split δ into p and π contributions in the
compressible velocity,

∂

∂t


ρ

vd

vp

p

 =


−∇ · (ρv)

−Adv + Q0

[
1
ρ
∇δ
]

−∇|vp|2
2

+ P0

[
1
ρ
∇δ
]

+ 1
ρ
∇π

−v · ∇p

+


0

−1
ρ
∇p

−1
ρ
∇p

−γp(∇ · vp)

 . (3.42)

Compressible Projection Splitting

Even with the new IMEX form of the inviscid equations, there are two remaining obstacles.
The first obstacle is that we have two types of projection operators that need to be applied
to advance the solution. The second obstacle is this splitting does not generalize easily to
viscous and reacting flows.

Therefore, a new splitting is proposed that seeks to remove both of these obstacles. First,
we return to the definition of vp = Q0(v). In [84], an ansatz was made as to the form of the
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evolution equation for the curl-free velocity. That evolution equation was designed to capture
all of the potential flow from the total velocity. However, the Q0 operator is designed to do
this by definition. So, an alternative version of the compressible velocity evolution could be,

∂vp
∂t

= Q0

(
∂v

∂t

)
(3.43)

= −Q0

(
(v · ∇)v +

1

ρ
∇p
)
. (3.44)

It is relatively easy to show that this expression is equivalent to the original one.
Putting all of this together, and still retaining the enthalpy equation yields:

∂ρ

∂t
+∇ · (ρv) = 0 (3.45)

∂p

∂t
+ (v · ∇)p = −γp(∇ · vp) (3.46)

∂(ρh)

∂t
+∇ · (ρhv) = −γp(∇ · vp) (3.47)

∂v

∂t
+ (v · ∇)v +

1

ρ
∇p = 0 (3.48)

∂vp
∂t

+ Q0

(
(v · ∇)v +

1

ρ
∇p
)

= 0. (3.49)

The curl-free vp evolution can be amended one final time by substituting Q0 = I − P0.
Looking at the pressure and vp equations,

∂p

∂t
+ (v · ∇)p = −γp(∇ · vp) (3.50)

∂vp
∂t
− P0

(
(v · ∇)v +

1

ρ
∇p
)

+ (v · ∇)v = −1

ρ
∇p, (3.51)

the implicit terms have been placed on the right hand side. Notice that we have removed
the projection operation from the implicit terms. This can be put into IMEX form,

∂

∂t



ρ

v

vp

p

ρh


=



−∇ · (ρv)

− (v · ∇)v

P0

[
1
ρ
∇p+ (v · ∇)v

]
− (v · ∇)v

− (v · ∇) p

−∇ · (ρhv)− γp(∇ · vp)


+



0

−1
ρ
∇p

−1
ρ
∇p

−γp(∇ · vp)

0


(3.52)
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The variable projection has been completely removed from the formulation. How does
this new evolution equation behave in the incompressible limit? Taking the divergence of
Equation (3.51), we have

∇ · ∂vp
∂t

+∇ · ((v · ∇)v) = −∇ ·
(

1

ρ
∇p
)
. (3.53)

In the incompressible limit, vp → 0, so the previous expression becomes

∇ · ((v · ∇)v) = −∇ · 1

ρ
∇p. (3.54)

This is the correct variable-coefficient equation for pressure.

3.2 Compressible Navier-Stokes Equations
The governing equations of compressible gas dynamics with viscous and thermal effects
included are known as the Navier-Stokes equations,

∂ρ

∂t
+∇ · (ρv) = 0 (3.55)

∂v

∂t
+ (v · ∇)v +

1

ρ
∇p− 1

ρ
∇ · τ = 0 (3.56)

∂p

∂t
+ (v · ∇)p+ γp(∇ · v)− (γ − 1) [∇ · q + Φ] = 0 (3.57)

∂(ρh)

∂t
+∇ · (ρhv) + Ψ−∇ · q − Φ = 0, (3.58)

where the viscous stress, strain rate, heat flux, dissipation, and auxiliary terms are

τ = 2ηe+

(
κ− 2

3
η

)
(∇ · v) (3.59)

e =
1

2

(
∇v + (∇v)T

)
(3.60)

q = λ∇T =
λ

cp
∇h (3.61)

Φ = 2η(e : e) +

(
κ− 2

3
η

)
(∇ · v)2 (3.62)

Ψ = −γp(∇ · v) + (γ − 1) [∇ · q + Φ] . (3.63)

The equation of state is the same as in the inviscid case. The coefficients for thermal
conduction (λ), shear viscosity (η), and volume viscosity (κ) are functions of temperature
(see Appendix D).
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∂

∂t



ρ

v

vp

p

ρh


=



−∇ · (ρv)

− (v · ∇)v − 1
ρ∇p

P0

[
1
ρ∇p+ (v · ∇)v − 1

ρ∇ · τ
]
− (v · ∇)v

− (v · ∇) p+ (γ − 1)Φ

−∇ · (ρhv) + Ψ + Φ


+



0

1
ρ∇ · τ

1
ρ∇ · τ −

1
ρ∇p

(γ − 1)(∇ · q)− γp(∇ · v)

∇ · q


(3.64)

3.3 Combustion Equations
The final system investigated is the full compressible Navier-Stokes equations with NS num-
ber of species and combustion (see Appendix B for derivation). The governing equations in
non-conservative form are:

∂ρ

∂t
+∇ · (ρv) = 0 (3.65)

∂(ρYk)

∂t
+∇ · (ρYkv)−∇ · (ρDk∇Yk)− ω̇k = 0 (3.66)

∂v

∂t
+ (v · ∇)v +

1

ρ
∇p− 1

ρ
(∇ · τ ) = 0 (3.67)

∂p

∂t
+ (v · ∇) p− ṗE − ṗI + α

Ns∑
k=1

[(βhk + ζk) ω̇k] = 0 (3.68)

∂(ρh)

∂t
+∇ · (ρhv − qE − qI) + ṗE + ṗI − α

Ns∑
k=1

[(βhk + ζk) ω̇k]− Φ = 0, (3.69)

where Yk is the species mass fraction, Dk is the diffusion vector, hk is the species-specific
enthalpy, ω̇k is the species generation term, qE is the explicitly treated heat flux, qI is the
implicitly treated heat flux, pE is the explicit update to pressure, and pI is the implicit
update to pressure (refer to Appendix B).

∂

∂t



ρ

ρYk

v

vp

p

ρh


=



−∇ · (ρv)

−∇ · (ρYkv)

− (v · ∇)v − 1
ρ∇p

P0

[
1
ρ∇p+ (v · ∇)v − 1

ρ∇ · τ
]
− (v · ∇)v

− (v · ∇) p+ ṗE

−∇ · (ρhv + qE) + ṗE + ṗI + Φ


+



0

∇ · (ρDk∇Yk) + ω̇k

1
ρ∇ · τ

1
ρ∇ · τ −

1
ρ∇p

ṗI − α
Ns∑
k=1

[(βhk + ζk) ω̇k]

∇ · qI + α
Ns∑
k=1

[(βhk + ζk) ω̇k]


(3.70)
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3.4 Domain and Boundary Conditions
The domain of interest is a ND box with unit length (Ω = [0, 1]D). Along the boundary of
the box ∂Ω, boundary conditions must be specified. Two cases will be investigated, peri-
odic boundary conditions and solid wall boundary conditions. For the solid wall boundary
conditions, no mass may leave the domain so the normal flux along ∂Ω should be equal to
zero. This is accomplished by setting the bulk fluid velocity equal to the solid wall velocity
( (v · n)|∂Ω = un|∂Ω = uwall ). The wall is typically stationary, such that un|∂Ω = 0. As for
the scalars, it is assumed that there is no normal derivative across ∂Ω. So this implies that(
∂φ
∂n

)
|wall = 0.

Tangential boundary conditions are required for the viscous velocity terms. Typical
choices for velocity include slip, no-slip, or turbulent law of the wall. No-slip will be used
here( ut|wall = 0 ).

Periodic boundary conditions assume the values are equal at either end of domain and
that the variables are periodic (φ|l=0 = φ|l=1).

Initial conditions are also specified for all dependent variables at time zero.
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Chapter 4

Discretization

4.1 Finite-Volume Preliminaries
The general approach for discretization is that of the high-order finite-volume approach
described in [20], [71]. We will begin this chapter covering the fundamental definitions re-
quired to build a high-order finite-volume discretization. The preliminary definitions include
averages, interpolations, and derivatives.

Computing Finite-Volume Averages

We start by defining the various required averaging operations. The first is the conversion
of cell-centered quantities to cell-averaged quantities:

〈φ〉i = φi +O(h2) (4.1)

= φi +
h2

24

D∑
d=1

(
∂2φ

∂x2
d

)
i

+O(h4). (4.2)

The second is multiplication of cell-averaged quantities:

〈φΨ〉i = 〈φ〉i 〈Ψ〉i +O(h2) (4.3)

= 〈φ〉i 〈Ψ〉i +
h2

12

D∑
d=1

[(
∂φ

∂xd

)
i

(
∂Ψ

∂xd

)
i

]
+O(h4). (4.4)

The third is multiplication of face-averaged quantities:

〈φΨ〉i+ 1
2
ed = 〈φ〉i+ 1

2
ed 〈Ψ〉i+ 1

2
ed +O(h2) (4.5)

= 〈φ〉i+ 1
2
ed 〈Ψ〉i+ 1

2
ed +

h2

12

D∑
d′ 6=d

[(
∂φ

∂xd′

)
i+ 1

2
ed

(
∂Ψ

∂xd′

)
i+ 1

2
ed

]
+O(h4). (4.6)
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It is worth noting that for higher than second-order accuracy, there are additional terms
to compute in these discretizations. Each of these additional terms is a product of derivatives.
The derivatives need only be computed to second-order accuracy using the standard centered-
difference scheme [13]. For this work, centered-differences are used to compute the transverse
derivatives instead of point-wise values,

(
∂φ

∂xd

)
i

=
(
〈φ〉i+ed − 〈φ〉i−ed

)
/(2h) (4.7)(

∂φ

∂xd′

)
i+ 1

2
ed

=
(
〈φ〉i+ 1

2
ed+ed′ − 〈φ〉i+ 1

2
ed−ed′

)
/(2h). (4.8)

Interpolating between Cell-Averages and Face-Averages

The next challenge is to move between cell-averaged and face-averaged quantities and vice-
versa.

Here is the approach for performing the first operation:

〈φ〉i+ 1
2
ed =

1

2

[
〈φ〉i+ed + 〈φ〉i

]
+O(h2) (4.9)

=
1

12

[
7 〈φ〉i+ed + 7 〈φ〉i − 〈φ〉i−ed − 〈φ〉i+2ed

]
+O(h4). (4.10)

The following notation will be used for this operation,

〈φ〉i+ 1
2
ed = Iface (〈φ〉)i+ 1

2
ed . (4.11)

Face-averaged quantities must also be able to be converted to cell-averaged quantities.
That is accomplished by the following approximation

〈φ〉i =
1

2

[
〈φ〉i+ 1

2
ed + 〈φ〉i− 1

2
ed

]
+O(h2) (4.12)

=
1

16

[
9 〈φ〉i+ 1

2
ed + 9 〈φ〉i− 1

2
ed − 〈φ〉i− 3

2
ed − 〈φ〉i+ 3

2
ed

]
+ (4.13)

h2

24

(
∂φ

∂xd

)
i

+O(h4). (4.14)

In the previous equation, the partial derivative
(
∂φ
∂xd

)
may be computed at second-order

accuracy.
Again, a shorthand notation for this interpolation is introduced

〈φ〉i = Icenter (〈φ〉)i . (4.15)
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Derivatives

Typically derivatives are computed at faces in finite-volume schemes. Here is the approach
to computing normal derivatives at faces:

〈
∂φ

∂xd

〉
i+ 1

2
ed

=
1

h

(
〈φ〉i+ed − 〈φ〉i

)
+O(h2) (4.16)

=
1

12h

(
5 〈φ〉i+ed − 5 〈φ〉i − 〈φ〉i+2ed + 〈φ〉i−ed

)
+O(h4) (4.17)

Non-normal derivatives at faces require first computing the cell-averaged value of the
required derivative, then interpolating the cell-averaged quantity to a face-averaged one.
Here is what that approach looks like〈

∂φ

∂xd

〉
i+ 1

2
ed′ 6=d

= Iface
(〈

∂φ

∂xd

〉)
i+ 1

2
ed′ 6=d

. (4.18)

To get the derivative as a cell-averaged quantity, simply take the difference of the face-
averaged values 〈

∂φ

∂xd

〉
i

=
1

h

[
〈φ〉i+ 1

2
ed − 〈φ〉i− 1

2
ed

]
, (4.19)

where the order of accuracy is solely determined by the method used to compute 〈φ〉i± 1
2
ed .

Divergence and Gradient

These are pretty straightforward after the derivative is defined. The discrete divergence is
defined as:

D (〈v〉)i =
1

h

D∑
d=1

[〈
vd
〉
i+ 1

2
ed
−
〈
vd
〉
i− 1

2
ed

]
(4.20)

D (〈v〉)i+ 1
2
ed = Iface (D (〈v〉))i+ 1

2
ed . (4.21)

The divergence of a tensor field is computed in the same manner, except that a vector is
produced.

The gradient of a scalar is defined as

G (φi) =

〈
∂φ

∂x

〉
i

(4.22)

G
(
φi+ 1

2
ed

)
=

〈
∂φ

∂x

〉
i+ 1

2
ed
, (4.23)

where x = [x0, x1, ..., xD].
The gradient of a vector is computed in a similar manner, except with vd in place of φ

in the previous gradient equations. A tensor is created in this case instead of vector.
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Figure 4.1: Vertex (•), Cell (�) and Face (⊕ and ⊗) Sites on a Grid [21].

4.2 Method of Lines
We recall that the system of equations we wish to solve can be given by,

∂U

∂t
= F (U) = FE (U) + F I (U) . (4.24)

A semi-discrete approach is used to discretize and advance the solution. For the spatial
differences, high-order finite-volume discretizations are selected. The solution is advanced in
time via the method of lines with an Additive Runge-Kutta (ARK) ODE integrator.

The finite-volume method discretizes the physical domain Ω into a union of control vol-
umes Vi,

Vi = [ih, (i+ e)h] , i ∈ ZD , e = (1, 1, ..., 1), (4.25)

where h is the isotropic unit grid spacing and i is aD-dimensional index denoting location.
Values of the evolved quantities U are stored as cell-averages 〈U〉 over each Vi, and the fluxes
F d as well as vp are stored as averages

〈
F d
〉
i± 1

2
ed

over the surface faces A±d of each cell:

〈U〉i (t) =
1

hD

∫
Vi

U(x, t)dx, (4.26)

〈
F d
〉
i± 1

2
ed

(t) =
1

hD−1

∫
A±d

F d(x, t) dx. (4.27)

For a graphical depiction of where values are stored, please see Figure 4.1. All of the
variables are collocated at cell-centers, except for the curl-free velocity vp. The curl-free
velocity is used to compute divergence and as such is centered on faces.

Applying the finite-volume discretization (Equation (4.25)) to the IMEX formulation
(Equation (4.24)) yields a semi-discrete system of ordinary differential equations (ODE) in
time
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d 〈U〉i
dt

=
1

hD

∫
Vi

[
F [E] (U) + F [I] (U)

]
dx, (4.28)

where F [E] is the collection of explicit divergence of fluxes and source terms for the system,
and F [I] is the implicit counterpart.

The integration of the above system Equation (4.28) with respect to time from tn to tn+1

produces the solution,

〈U〉n+1
i = 〈U〉ni + ∆t

∑
[E],[I]

〈
F [E,I]

〉n̂
i

(4.29)

〈
F [E,I]

〉n̂
i

=
1

∆t

∫ tn+∆t

tn
〈F 〉[E,I]i (t)dt. (4.30)

4.3 Time Integration
As mentioned previously, the IMEX ODE integrator requires a splitting of the governing
equations into terms that act on different time scales. The stiff terms, resolved on time
scales defined by acoustic wave speed, diffusion, or combustion, are treated implicitly [I].
The non-stiff terms, resolved on time scales defined by the bulk fluid velocity, are treated
explicitly [E].

The Additive Runge-Kutta Method (ARK) is selected for the IMEX ODE integrator.
These methods are composed of two or more Runge-Kutta (RK) methods. Typically, one
RK scheme is chosen to integrate all of the explicit terms and another RK scheme is chosen
to integrate the implicit terms. Explicit Runge-Kutta (ERK) schemes are typically used
for the non-stiff terms and Explicit First Stage, Diagonal Implicit Runge-Kutta (ESDIRK)
schemes are used for the stiff terms. Any combination of RK methods and splittings is
theoretically possible, but only two are used in practice. The two particular schemes are
carefully selected such that coupling and order conditions are satisfied [50]. In practice,
this leads to the selection of RK methods that share the same b[E,I]

i = bi and c
[E,I]
i = ci

coefficients in their respective Butcher Tableau. In this study the ARK4(3)6L[2]SA scheme
is used, and its coefficients are provided in [50]. It is a a six-stage, fourth-order accurate,
L-stable method.

The conceptual idea is to split the ODE into explicit and implicit contributors

d 〈U〉
dt

= F [E] (〈U〉) + F [I] (〈U〉) . (4.31)

The next time value is defined by,

〈U〉n+1 = 〈U〉n + ∆t
s∑

k=1

bk

[
F [E]

(
〈U〉k

)
+ F [I]

(
〈U〉k

)]
, (4.32)
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where

〈U〉k = 〈U〉n + ∆t

[
s∑
j=1

a
[E]
kj F

[E]
(
〈U〉j

)
+

s∑
k=1

a
[I]
kjF

[I]
(
〈U〉j

)]
. (4.33)

The coefficients bk, ck, and a
[E,I]
kj are given by the Butcher Tableau for each RK method.

Also, 〈U〉n = 〈U〉 (tn), 〈U〉n+1 = 〈U〉 (tn + ∆t), and 〈U〉k = 〈U〉 (tn + ck∆t).
The solution is advanced by

χk = ∆t
k−1∑
j=1

[
aEkjF

[E]
(
〈U〉j

)
+ aIkjF

[I]
(
〈U〉j

)]
, (4.34)

〈U〉k = 〈U〉n + χk + ∆tγF [I]
(
〈U〉k

)
, (k ≥ 2). (4.35)

4.4 Evaluating the Spatial Operators
The fundamentals of the spatial discretization, including high-order averaging and derivatives
have already been introduced. The remainder of this section will discuss how to evaluate the
remaining spatial operators belonging to Equation (3.70).

Scalar Advective Transport

The scalar advective terms 〈∇ · (φv)〉i are evaluated by computing the advective fluxes at
cell faces and then taking the divergence

〈∇ · (φv)〉i →
1

h

D∑
d=1

[〈
ρvd
〉
i+ 1

2
ed
−
〈
ρvd
〉
i− 1

2
ed

]
. (4.36)

Again note that
〈
ρvd
〉
is not the simply the product of 〈ρ〉i+ 1

2
ed and

〈
vd
〉
i+ 1

2
ed

if fourth-
order accuracy is desired. The tangential derivatives must be taken into account.

The pressure evolution equation also has an advective term 〈v · ∇p〉i, and it is computed
in the following manner:

〈v · ∇p〉i →
D∑
d=1

[〈
vd
∂p

∂xd

〉
i

]
. (4.37)

Advective Velocity Computation

The advective velocity is required on cell-faces for computing the explicit IMEX updates at
each stage.
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Interpolate v to faces and MAC project (defined later) the result before summing it with
the acoustic velocity. In the Colella and Pao splitting, we interpolate vd to faces instead of
v. 〈

vdd
〉
i+ 1

2
ed

= PMAC
o (Iface (〈v〉)) (4.38)〈

vd
〉
i+ 1

2
ed

=
〈
vdd
〉
i+ 1

2
ed

+
〈
vdp
〉
i+ 1

2
ed
. (4.39)

If an operator requires both normal and tangential face-averaged velocities, use simple
interpolation:

〈v〉i+ 1
2
ed = Iface (〈v〉) + 〈vp〉i+ 1

2
ed . (4.40)

In the Compressible Projection splitting the divergence-free velocity is needed on cell-
faces, but there is no evolution equation for it. This field is computed by applying the
constant-coefficient projection operator to the total velocity field, hence

〈vd〉i = P0
0(vi). (4.41)

Diffusive Transport

There are several diffusion terms in the implicit and explicit operators, including: 〈∇ · q〉i
and 〈∇ · ρDk∇Yk〉i. All the diffusive terms are evaluated in a similar manner. First evaluate
the gradient terms 〈∇Yk〉i+ 1

2
ed and 〈∇h〉i+ 1

2
ed on cell faces. The divergence of these gradient

terms at cell-centers is all that is required. Accordingly, we only need to compute the normal
derivatives on cell faces.

Once the normal derivatives are computed, scale the derivatives by their corresponding
scalars to produce the final diffusive fluxes.

Viscous Tensor Term

The discretization of the viscous tensor term
〈

1
ρ
∇ · τ

〉
i
is now defined. Recall the definition

of τ :
τ = 2ηe+

(
κ− 2

3
η

)
(∇ · v). (4.42)

Since the divergence of τ is required, compute 〈τ〉i+ 1
2
ed as a face-average. The discretiza-

tion approach for (∇ · v)i has already been discussed. The approach for computing the
cell-averaged 〈e〉i will be provided shortly. In this context, compute the strain rate tensor
and divergence as face-averages.

〈e〉i+ 1
2
ed =

1

2

(
〈∇v〉i+ 1

2
ed + 〈∇v〉Ti+ 1

2
ed

)
(4.43)

〈∇ · v〉i+ 1
2
ed = Iface (〈∇ · v〉)i+ 1

2
ed . (4.44)
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A boundary condition needs to be imposed on 〈∇ · v〉i+ 1
2
ed and on the transverse deriva-

tives. The no-slip boundary condition is selected, and the following is true in that case:

〈∇ · v〉|∂Ω =
∂vn

∂xn

∣∣∣∣
∂Ω

. (4.45)

Projection

Projection operators are required for computing updates to evolved variables as well for
synchronizing the compressible velocity to the total velocity.

Constant-Coefficient Projection

Recall that the constant-coefficient projection must be computed, regardless of which form
of the splitting is used. The term Ph0

(
〈Ψ〉i+1

2
ed

)
is sought, where Ψ is a face-centered vector

field. We define this discrete projection operator Ph0 in the following manner

Ph0 = I−Qh
0 , (4.46)

where
Qh

0 = G (DG)−1D, (4.47)

and G and D are the discrete gradient and divergence operators. Going forward we will
drop the superscript h and just assume we are discussing the discrete implementation of all
projection operators.

Typically a face-centered projection is desired, as opposed to a cell-centered one. The
face-centered version is denoted by PMAC

0 as opposed to the cell-centered projection P0
0.

The divergence of the vector field Ψ is simple enough to compute, particularly because
the vector field already exists on cell faces. The solve then looks like

DG 〈φ〉i = D
(
Ψi+1

2
ed

)
. (4.48)

This solve produces a cell-averaged 〈φ〉i.
The boundary condition on the scalar φ is the same Neumann type for the constant and

variable-coefficient projection operators:〈
∂φ

∂xn

〉∣∣∣∣
∂Ω

= 0. (4.49)

The gradient of 〈φ〉i is easily computed afterwards. Since the interest is in PMAC
0 , compute

the face-averaged gradient of 〈φ〉i. Once this gradient is computed, the QMAC
0 computation

is complete. The full projection operator, PMAC
0 , simply requires negating QMAC

0 and incre-
menting by the original input.
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Variable-Coefficient Projection

Although this projection is not required in the Compressible Projection splitting, it is re-
quired in the Colella and Pao splitting. The term Pρ (〈Ad(v)〉)i shows up in the divergence-
free velocity evolution equation. Recall that Pρ is defined as

Pρ = I−Qρ, (4.50)

where

Qρ =
1

ρ
G

(
D

1

ρ
G

)−1

D. (4.51)

The inverted density is needed both as a cell-average and face-average field,

〈1/ρ〉i = 1/ 〈ρ〉i (4.52)
〈1/ρ〉i+ 1

2
ed = 1/Iface (〈ρ〉)i+ 1

2
ed . (4.53)

The divergence of the vector field 〈Ad(v)〉i is simple enough to compute. The solve
requires a little more care, and it looks like

D

〈
1

ρ
∇φ
〉

i+ 1
2
ed

= D 〈Ad(v)〉i . (4.54)

This solve produces a cell-averaged 〈φ〉i.
The boundary condition on the scalar φ is〈

∂φ

∂xn

〉∣∣∣∣
∂Ω

= 0 (4.55)

Once 〈φ〉i is known, then compute
〈

1
ρ
∇φ
〉
i
. This last term is evaluated as the product

of two cell-averaged vector fields after the gradient of 〈φ〉i is computed. This closes out the
computation for Q0

ρ.

Vector Advective Transport

In the Colella and Pao splitting the acoustic and advective velocity equations contain specific,
distinct advective terms. Recall that the advective term in the acoustic velocity evolution is〈
∇
(
|vp|2

2

)〉
i+ 1

2
ed
. It has already been stated how to compute the face-centered gradient of

a cell-centered scalar field, so all that needs to done is to describe how to compute 〈|vp|2〉i.〈
|vp|2

〉
i

= Icenter (〈vp · vp〉)i . (4.56)

The dot product is defined as:

〈vp · vp〉i+ 1
2
ed →

D∑
d=1

[〈
vdpv

d
p

〉
i+ 1

2
ed

]
. (4.57)
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The other advective term in the Colella and Pao splitting is 〈Ad(v)〉i. In principle this
term can be described a few different ways:

〈Ad(v)〉i = 〈v · ∇v〉i −
〈
∇
(
|vp|2/2

)〉
i

= 〈(v · ∇)vd〉i + 〈(vd · ∇)vp〉i
= 〈∇ · (vvd + vdvp)〉i − 〈vd (∇ · vp)〉i

(4.58)

The final expression is the one used here. The second term is computed as a standard
product of two cell-averaged quantities. Expanding the divergence term yields

〈∇ · (vvd + vdvp)〉i →
1

h

D∑
d=1

[〈
vdvd + vddvp

〉
i+ 1

2
ed
−
〈
vdvd + vddvp

〉
i− 1

2
ed

]
. (4.59)

The normal velocities
〈
vd
〉
i+ 1

2
ed

and
〈
vdd
〉
i+ 1

2
ed

are required on faces, and the total velocity
vectors on faces for 〈vd〉i+ 1

2
ed and 〈vp〉i+ 1

2
ed are also needed.

In the Compressible Projection splitting the term 〈v · ∇v〉i+ 1
2
ed is needed, both at cell

faces and centers.
One approach would be to do the following,

〈v · ∇v〉i = 〈∇ · (vv)〉i − 〈v (∇ · v)〉i , (4.60)

where the expansion of the divergence term is similar to Equation (4.59) above.
The approach used herein is to combine the advective operators computed in the Colella

and Pao splitting such that,

〈v · ∇v〉i = 〈Ad(v)〉i + Icenter
(〈
∇
(
|vp|2

2

)〉)
i

(4.61)

〈v · ∇v〉i+ 1
2
ed = Iface [〈Ad(v)〉]i+ 1

2
ed +

〈
∇
(
|vp|2

2

)〉
i+ 1

2
ed
. (4.62)

Viscous Dissipation

There are two apparent manners in which to compute this term. The first is to simply
deconvolve the cell-averaged variables to cell centers and compute all the terms at cell centers.
Then convolve the final solution back to cell-averages. For extremely complicated non-linear
terms, this is likely the best approach. One may also go ahead and compute all intermediate
terms as cell-averages and use the formulae presented earlier for products.

The dissipation term is given by:

e =
1

2

(
∇v + (∇v)T

)
(4.63)

Φ = 2η(e : e) +

(
κ− 2

3
η

)
(∇ · v)2. (4.64)
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First, define the velocity gradient terms in the rate of strain tensor

〈∇v〉di =

〈
∂vd

∂x

〉
i

(4.65)(
〈∇v〉di

)T
=

〈
∂v

∂xd

〉
i

. (4.66)

Complete the specification by defining the tensor contraction e : e:

〈e : e〉i →
D∑
i=1

D∑
j=1

〈
eijeij

〉
i
. (4.67)

Species Generation

This collection of terms is highly non-linear. However, it is a point-wise computation such
that no spatial derivatives appear. The approach taken here is to fully deconvolve to cell-
centered values, compute the generation terms, and then convolve to cell-averages. This
is the most robust way of performing the computation, particularly since this computation
is typically performed by third party software that does not have high-order finite-volume
machinery built in. A discussion of how to compute this term is given in Appendix C.

Boundary Conditions

For each of these standard operations, boundary conditions must be considered. The ap-
proach taken here is to use the standard stencils described above, but to provide ghost-cell
values when the stencils reach outside of the valid domain.

For periodic functions, merely copy the corresponding value(s) from the opposite side of
the problem domain into the ghost cells. So if i is in the left-most d-column of the valid
domain, then the values in the ghost cells to the left would be

〈φ〉i−ed = 〈φ〉i+(N−1)ed (4.68)

〈φ〉i−2ed = 〈φ〉i+(N−2)ed , (4.69)

where N is the number of cells in the d-direction of the valid domain.
For solid wall boundary conditions, values must be computed corresponding to 〈φ〉i−ed

and 〈φ〉i−2ed . Furthermore, there are different computations depending on the particular
boundary condition being enforced.

For scalar fields, it is assumed that there is zero normal derivative at the domain boundary

∂φ

∂xn

∣∣∣∣
∂Ω

= 0. (4.70)
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This condition may be used on the derivative along with valid domain values to build an
extrapolating polynomial to any order of accuracy. Evaluating the polynomial at the ghost
cells, the following stencils are produced

〈φ〉i−ed = 〈φ〉i +O(h2) (4.71)

=
1

11

[
9 〈φ〉i + 3 〈φ〉i+ed − 〈φ〉i+2ed

]
+O(h4) (4.72)

〈φ〉i−2ed = 〈φ〉i+ed +O(h2) (4.73)

=
1

11

[
−30 〈φ〉i + 56 〈φ〉i+ed − 15 〈φ〉i+2ed

]
+O(h4). (4.74)

For velocity fields, the solid wall boundary condition (with no-slip) requires that all the
components are zero at the boundary

v|∂Ω = 0. (4.75)

The extrapolated ghost cell values are then:

〈v〉i−ed = −〈v〉i +O(h2) (4.76)

=
1

3

[
−13 〈v〉i + 5 〈v〉i+ed − 〈v〉i+2ed

]
+O(h4) (4.77)

〈v〉i−2ed = −〈v〉i+ed +O(h2) (4.78)

=
1

3

[
−70 〈v〉i + 32 〈v〉i+ed − 7 〈v〉i+2ed

]
+O(h4). (4.79)

4.5 Organizing ARK and Solvers
All of the equations are discretized in space according to the descriptions provided in the
previous section. The resulting ODEs are integrated in time using the ARK framework.
However, we still need to describe the method of solving for the implicit update at each
ARK stage.

Since an ESDIRK method is used for integrating the implicit operators, each new stage
value involves the solution of a set of equations. The functional form of the solve is given by(

I− F [I]
)
〈U〉k = 〈U〉n + χk (4.80)

χk = ∆t
k−1∑
j=1

[
aEkjF

[E]
(
〈U〉j

)
+ aIkjF

[I]
(
〈U〉j

)]
, (4.81)

where we have already discussed in detail how to compute each term in χk.
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Inviscid Gas Dynamics Solver

Recall the IMEX form the inviscid gas dynamics (Equation (3.52)). Extracting the pressure
and curl-free evolution equations because of their implicit dependence upon one another
leads to,

〈p〉k = p̃k −∆tkγp̃
k
[
D(vp)

k
]

(4.82)

vkp = ṽp
k − ∆tk

ρ̃k
G(pk), (4.83)

where
φ̃k = φk + χφ(φ)k, (4.84)

and χφ is the component of χ in Equation (4.81) corresponding to φ.
It should be noted that the scaling pressure attached to the divergence of vp is lagged in

the right hand side of Equation (4.82). Following the the ARK stage solve context Equa-
tion (4.80) and gathering the implicit terms reveals,[

I ∆tkγp̃
kD

−∆tk
ρ̃k
G I

] [
pk

vp

]
=

[
p̃k

ṽp
k

]
.

Substituting the vp expression into the pressure equation produces a Helmholtz type of
equation for the new pressure 〈p〉k,[

I− (∆tk)
2γp̃kD

1

ρ̃k
G

]
[pk] = p̃k −∆tkγp̃

k
[
D(ṽkp)

]
, (4.85)

with the boundary condition,
∂p

∂xn

∣∣∣∣
∂Ω

= 0. (4.86)

This is the standard boundary condition used for the Helmholtz solves going forward.
Then the pressure scaling term can be divided through,[

1

γp̃k
I− (∆tk)

2D
1

ρ̃k
G

]
[pk] =

1

γ
I−∆tk

[
D(ṽkp)

]
. (4.87)

This equation is linear and may be solved via a variety of standard methods. We elect
to use the multigrid method [68]. Then the curl-free velocity may be updated by back-
substitution,

vkp = ṽkp −
∆tk
ρ̃k

G(pk). (4.88)

The total velocity is updated by interpolating the new scaled pressure gradient term from
faces to centers,

vk = ṽk − Icenter
(

∆tk
ρ̃k

G(pk)

)
. (4.89)
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Colella and Pao Splitting
The Colella and Pao splitting has the same solve as the Compressible Projection splitting

for the equations of inviscid gas dynamics. The difference between the two methods arises
in computing the various spatial operators and in the enforcement of constraints (Equa-
tion (3.42)).

Navier-Stokes Solver

Returning to the IMEX form of the Navier-Stokes equations (Equation (3.64)), we remark
that there are several more implicit terms and couplings to deal with than with the inviscid
equations (Equation (3.52)).

The first step is to solve for the enthalpy update, since the implicitness is self-dependent,

(ρh)k = (ρ̃h)k + ∆tkD

(
λ̃k

c̃p
k
G(hk)

)
. (4.90)

This equation is rearranged to produce a Helmholtz solve for the new enthalpy,[
ρk −∆tkD

λ̃k

c̃p
k
G

]
[hk] = (ρ̃h)k. (4.91)

This linear equation has a Neumann boundary condition, and is solved using the multigrid
method.

The total velocity is also relatively simple to rearrange and solve for, expanding the
viscous term [

I− ∆tk
ρ̃k

D

{
η
(
G+GT

)
+

(
κ− 2

3
η

)
D

}]
[vk] = ṽk. (4.92)

This equation is solved subject to the following boundary conditions,

v|∂Ω = 0̄ (4.93)

∇ · (v)|∂Ω =
∂vn

∂xn

∣∣∣∣
∂Ω

(4.94)

∂vd

∂xd′ 6=d

∣∣∣∣
∂Ω

= 0. (4.95)

This velocity system is also linear and solved using multigrid.
From here, the pressure and curl-free velocity equations must be updated. Focusing again

on the pressure and curl-free evolution equations,

〈p〉k = p̃k + ∆tk(γ − 1)D(
λ

cp
G(h))k −∆tkγp̃

k
[
D(vp)

k
]

(4.96)

vkp = ṽp
k − ∆tk

ρ̃k
G(pk) +

∆tk
ρ̃k

D(τ )k. (4.97)
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The heat flux term and the viscous stress term have already been computed, so they can
be absorbed into the right hand sides for p̃k and vkp respectively. The remainder of the solve
is identical to the inviscid gas dynamics case.

Combustion Solver

The IMEX form of the combustion equations (Equation (3.70)) introduces more evolution
equations and stiff terms.

The enthalpy and mass fraction updates are computed first. Focusing on these updates
reveals,

(ρh)k =
(
ρ̃h
)k

+ ∆tk
[
D
(
qI
)]k

+ ∆tk

(
α

Ns∑
k=1

[(βhk + ηk) ω̇k]

)k

(4.98)

(ρYk)
k =

(
ρ̃Yk

)k
+ ∆tk [D(ρDk∇Yk) + (ω̇k)]

k . (4.99)

This system may be rearranged in the following manner,

−∆tk

(
α

Ns∑
k=1

[(βhk + ηk) ω̇k]

)k

−∆tk

[
D
λ

cp
∇h
]k

+ (ρh)k =
(
ρ̃h
)k

(4.100)

∆tk [D(ρDk∇Yk) + (ω̇k)]
k + (ρYk)

k =
(
ρ̃Yk

)k
. (4.101)

These coupled diffusion-reaction equations (Equations (4.100) to (4.101)) are non-linear.
We have two possible approaches to solve the system: either we can try to solve the coupled
equations together, or we must use a splitting approach to separate the diffusion and reaction
terms. Regardless of which approach we chose we will need a non-linear solver to deal with
the reaction terms. We used CVODE [41] to solve systems of non-linear equations in this
work.

If we elect to solve the complete coupled system, we must pass everything into CVODE
and solve the coupled system. If we decide to split the diffusion and reaction terms, we can
proceed as follows,

(ρh)k1 =
(
ρ̃h
)k

+
∆tk

2

(
α

Ns∑
k=1

[(βhk + ηk) ω̇k]

)k1

(4.102)

(ρYk)
k1 =

(
ρ̃Yk

)k
+

∆tk
2

[(ω̇k)]
k1 . (4.103)

Notice that the resulting fields are evaluated at a half time step. What we have done is
ignored the diffusion terms to compute an initial update based on the reaction terms. The
system Equations (4.102) to (4.103) is solved using CVODE [41].
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Now we can compute the diffusive update, and then correct the result with a final reaction
solve.

(ρh)k2 = (ρh)k1 + ∆tk

[
∇ ·
(
λ

cp
∇h
)]k2

(4.104)

(ρYk)
k2 = (ρYk)

k1 + ∆tk [∇ · (ρDk∇Yk)]k2 . (4.105)
The equations above are linear and of Helmholtz type.

And then the final correction may be made, again using CVODE

(ρh)k = (ρh)k2 +
∆tk

2

(
α

Ns∑
k=1

[(βhk + ηk) ω̇k]

)k

(4.106)

(ρYk)
k = (ρYk)

k2 +
∆tk

2
[(ω̇k)]

k . (4.107)

The remaining implicit terms are solved for via the same procedure described in the
previous two sections.

4.6 Enforcing Constraints
For each system of equations (Equation (3.52), Equation (3.64), Equation (3.70)), we have
introduced redundant equations. In effect, having redundant equations imposes an initial
value constraint on the system. These constraints must be reimposed at regular intervals so
that all of the equations are satisfied.

For the most part these constraints are enforced at the end of a time step. Hence the
enforcement of these two constraints lives outside of the IMEX framework.

Pressure Constraint

We have a pressure evolution equation and an equation of state. The evolved pressure may
drift from the thermodynamic pressure computed by the equation of state. The pressure
equation of state for single-component gas dynamics is

p0 = ρRT, (4.108)

and the equation of state for mixtures is

p0 = ρRT
Ns∑
k=1

Yk
Wk

. (4.109)

Instead of correcting the pressure every time a new stage value is computed, the pres-
sure is corrected at the end of a complete time step. Three equations are affected by this
computation, namely the pressure evolution equation, the curl-free velocity evolution, and
the enthalpy evolution. The required corrections to each variable are denoted: (δp , δvp ,
δ(ρh)).
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Single-Species Pressure Correction

Here is the system of equations that must be solved:

δp = ∆tξ (p0 − p)− γp∆t [∇ · (δvp)] (4.110)

δvp = −∆t

ρ
∇δp (4.111)

δ(ρh) =
γ − 1

γ
δp. (4.112)

The first two form a Helmholtz equation for the pressure,[
1

γp
I− (∆t)2D

1

ρ
G

]
[δp] = ∆t

ξ

γp
(p0 − p) . (4.113)

These equations may be rearranged to produce another Helmholtz solve,[
I− (∆t)2D

1

ρ
G

]
[δp] = ∆tξ (p0 − p) (4.114)

Once δp is known, both δvp and δ(ρh) may be found via substitution.
The final values of (pn+1, vn+1

p , (ρh)n+1) are:

pn+1 = p+ δp (4.115)
vn+1
p = vp + δvp (4.116)

(ρh)n+1 = (ρh) + δ(ρh). (4.117)

Multi-Species Pressure Correction

Although the idea is the same as the single-species correction, the form of the equations is
slightly different based on the evolution equation for the pressure as well as the equation of
state for the pressure.

Velocity Constraint

Both of the velocity splittings discussed lead to a velocity constraint. For the Colella and
Pao splitting, we have the following constraints on the two evolved velocity fields,

vd = P0 (v) , (4.118)

vp = Q0 (v) . (4.119)

There is another relation that must be mentioned, and that is the total velocity given by

v = vd + vp, (4.120)
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so at the end of each time step the divergence- and curl-free velocities are projected.
In the Compressible Splitting case, we have total velocity evolution equation and a curl-

free velocity evolution equation. We want to ensure that all of the divergence in the total
velocity is coming from vp, so at the end of the time-step we project the total velocity
to remove the divergence. Then we increment this now divergence-free velocity with the
curl-free velocity.

Multi-species Transport Constraints

There are some additional constraints, but they are much easier to deal with. Substitutions
can be made directly for these constraints to make sure all of the equations are simultaneously
satisfied at all times. These constraints are described and motivated by Day and Bell [25].

Density

The density discrepancy arises from the first two gas dynamics equations. Total density is
defined by its own conservation equation, but it is also defined as the sum of the density-scaled
mass fractions. This issue is reconciled in the advective term by making the substitution:

〈∇ · (ρv)〉i →
Ns∑
k=1

〈∇ · (ρYkv)〉i (4.121)

This ensures that both expressions are satisfied.
In order for mass to be conserved, the sum of the diffusive fluxes as well as the species

generation terms must be zero

NS∑
k=1

ρDk∇Yk = 0 (4.122)

NS∑
k=1

ω̇k = 0 (4.123)

The species generation terms are easy to specify such that the total mass will be con-
served. However, the diffusive fluxes are more difficult. In the formulation, the explicit
simplification that

∇ · (ρYkVk)→ −∇ · (ρDk∇Yk), (4.124)

has been made.
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The thermomolecular theory states that to first order the following is true (ignoring Soret
effects)

Vk = −Dk
Xk

dk + Vcor (4.125)

dk = ∇Xk + (Xk − Yk)
∇p
p
. (4.126)

If Fick’s law holds for the diffusion then

Ṽk = −Dk
∇Yk
Yk

(4.127)

Vk = Ṽk + Ṽcor, (4.128)

where Ṽcor is the amount by which the computed diffusion velocity is not mass conserving.
This flux must be included in the mass fraction PDE at some point in order to conserve.
The typical approach is to compute an initial update to the mass fractions based upon Ṽk.
Then Ṽcor is computed and the initial mass fractions are corrected.

Enthalpy

For the case of enthalpy, there are three expressions to account for. The first is an evolution
equation for the specific enthalpy The second is an expression for the specific enthalpy of
the mixture as a mass- weighted sum of individual species-specific enthalpies. And lastly
there is an analytic expression for the individual species-specific enthalpies. The analytical
expression typically requires a lookup table. The three types of expressions are provided for
reference,

∂(ρh)

∂t
+∇ · (ρhv) +

Dp

Dt
= ∇ · q + Φ (4.129)

h =
Ns∑
k=1

Ykhk (4.130)

hk = hk(T ). (4.131)

The right hand side of the second expression, h =
∑Ns

k=1 Ykhk, should be used anywhere
h needs to be evaluated. In making the above substitution, hk must be evaluated for each
species over each finite volume. Most terms in the evolution equation do not pose a problem.
The divergence of the heat flux needs to be expounded on. Looking back on the heat flux,
it would be better if everything was transformed into enthalpy variables:
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∇ · q = ∇ · λ∇T +
Ns∑
k=1

∇ · (ρDkhk∇Yk) (4.132)

= ∇ · λ
cp
∇h−

Ns∑
k=1

∇ · λ
cp
hk∇Yk +

Ns∑
k=1

∇ · (ρDkhk∇Yk) (4.133)

= ∇ · λ
cp
∇h−

Ns∑
k=1

∇ ·
[(

λ

cp
− ρDk

)
hk∇Yk

]
(4.134)

This is the formulation used for evaluating the heat flux in the enthalpy equation.

q = qI + qE (4.135)

qI =
λ

cp
∇h (4.136)

qE =

[(
λ

cp
− ρDk

)
hk∇Yk

]
. (4.137)

Temperature

Temperature is needed to evaluate the equation of state, fluid properties, heat flux, and
combustion generation terms. So one can either use the temperature evolution form for
these, or compute it using data already at hand. However, seeing as the link between
enthalpy and temperature is being leveraged so much already, it makes sense to use enthalpy
to define temperature where it is needed. The temperature can be found through using
h, Yk, and hk.

4.7 Complete Single-Level Algorithm
The complete single-level algorithm is summarized in Figure 4.2.
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function TimeStep( l , tl , ∆tl )
(1.) Initialize the state and increment:

〈U〉1 = 〈U〉n (4.138)

k1 = ∆t
[
F [E](〈U〉1) + F [I](〈U〉1)

]
(4.139)

(2.) Compute the subsequent states and increments:
for s = 2 to nStages do

Compute the new state:

(I + γ∆tkF
[I]) 〈U〉s = 〈U〉n + χs (4.140)

χs = ∆t

(
s−1∑
j=1

a
[E]
s,j

[
F [E](〈U〉j)

]
+

s−1∑
j=1

a
[I]
s,j

[
F [I](〈U〉j)

])
(4.141)

Compute the new update:

ks = ∆t
[
F [E](〈U〉s) + F [I](〈U〉s)

]
(4.142)

end for
(3.) Update the solution:

〈U〉n+1 = 〈U〉n +

nStages∑
s=1

bsk
s (4.143)

(4.144)

(4.) Correct for volume discrepancy and synchronize Velocities:

〈U〉n+1 = 〈U〉n+1 +
〈
δUn+1

〉
(4.145)

〈v〉n+1 = P0

(
〈v〉n+1)+ Icenter

(
〈vp〉n+1) . (4.146)

end function

Figure 4.2: Single-Level Algorithm.
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Chapter 5

Results

5.1 Removing the Variable-Coefficient Projection
Here we will show success in removing the variable-coefficient projection from the solution
procedure for the equations of inviscid gas dynamics.

Single Vortex

The single vortex in a box problem has been studied in multiple contexts, and was included
in [84]. The velocity field is divergence-free and produces a single vortex in the middle. The
density is a function of vertical position. The initial pressure is varied to achieve different
Mach numbers.

v(x) = [2 sin2(πx0) sin(πx1) cos(πx1), (5.1)
− 2 sin2(πx1) sin(πx0) cos(πx0)] (5.2)

ρ(x) = 1− 0.5 tanh(10 ∗ (x1 − 0.5)) (5.3)
p(x) = P0 , P0 = 100, 101, 102, 103, 104. (5.4)

Here are the initial conditions for the density and velocity for the case when P0 = 106,
which corresponds to M ∼ 0.002 (Figures 5.1a to 5.1b).

The first results for the single vortex test consist of a qualitative comparison between
the Colella and Pao splitting and the new Compressible Projection splitting after many
time steps. We used the same fourth-order discretization for both splittings. The difference
between the splittings is how the right hand side is computed.

We’ll start by comparing the density results of both splittings at t = 0.5 (Figure 5.2).
We see excellent agreement between both methods for this scalar field.

Now let’s take a look at the divergence-free and curl-free velocity fields (Figure 5.3). Here
again we see very good agreement between the two methods. The velocities are qualitatively
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(a) Initial Density (ρ). (b) Initial Velocity (v0).

Figure 5.1: Initial Conditions for Single Vortex Test.

(a) Colella and Pao Splitting (ρ). (b) Compressible Projection Splitting (ρ).

Figure 5.2: Comparison of Splitting Methods on ρ at t = 0.5.
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(a) Colella and Pao Splitting (v0
p). (b) Compressible Projection Splitting (v0

p).

(c) Colella and Pao Splitting (v0
d). (d) Compressible Projection Splitting (v0

d).

Figure 5.3: Comparison of Splitting Methods on (v0
p, v

0
d) at t = 0.5.
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(a) Colella and Pao Splitting (w). (b) Compressible Projection Splitting (w).

Figure 5.4: Vorticity (w) at t = 0.5.

indistinguishable. The max and min are the same out to four digits, which is fine for this
coarse grid.

Baroclinic Generation of Vorticity

One of the primary motivating factors for the variable-coefficient projection is the desire to
accurately capture baroclinic generation of vorticity. If the splitting developed in this work
is to replace the existing one, it also needs to accurately model this vorticity. The vortic-
ity of the two methods using the single vortex initial condition is nearly indistinguishable
(Figure 5.4),

However, in the example given the density variation was pretty mild. We also ran this
single vortex test except with the following density field so as to generate additional vorticity
to test the new method,

ρ(x) = 0.1− 0.075 ∗ tanh(10 ∗ (x[1]− 0.5)). (5.5)

Figure 5.5 shows the vorticity field generated by the single vortex with this new density
field (Equation (5.5)). Again, we notice that the two methods produce comparable results.

Acoustic Pulse

The acoustic pulse test involves simulating a radially symmetric potential flow [71]. The
velocity is initially zero. The density is set to a function that varies radially from the center.
The pressure is computed assuming that the fluid is polytropic.
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(a) Colella and Pao Splitting (w). (b) Compressible Projection Splitting (w).

Figure 5.5: Vorticity (w) with Larger Density Variation at t = 0.5.

v(x) = [0, 0] (5.6)

r =
√
x2

0 + x2
1 (5.7)

ρ(x) = 1.4 + 0.14 cos6(πr) exp(−16r2) (5.8)
p(x) = (ρ(x))γ (5.9)

The initial density for the acoustic pulse test is shown in (Figure 5.6). As before, we’ll
compare the scalar fields and the vector fields at a later time for both splittings. The
density for the acoustic pulse at t = 0.5 is shown in (Figure 5.7). A comparison between the
divergence-free and curl-free velocities can be seen in (Figure 5.8).

Again, for all fields there is excellent agreement between the two methods.

5.2 Long Wavelength Acoustics
The purpose of this study is to show that our algorithm can capture the long wavelength
acoustics generated by vorticity.

The test consists of a vortex sheet (Section 5.2) aligned along the vertical axis that rotates
and rolls up over time.

Vortex Sheet

This test is inspired by the vortex sheet test found in [83]. The initial condition we used for
the discrete vortex sheet is given in Equation (5.10). As in the previous test, the velocity
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Figure 5.6: Initial Density (ρ) for Acoustic Pulse.

(a) Colella and Pao Splitting (ρ). (b) Compressible Projection Splitting (ρ).

Figure 5.7: Comparison of Splitting Methods on ρ at t = 0.5.
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(a) Colella and Pao Splitting (v0
p). (b) Compressible Projection Splitting (v0

p).

(c) Colella and Pao Splitting (v0
d). (d) Compressible Projection Splitting (v0

d).

Figure 5.8: Comparison of Splitting Methods on (v0
p, v

0
d) at t = 0.5.
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Figure 5.9: Initial Vorticity for Long Wavelength Test.

is projected and the solution is evolved from that point on. The goal of this test is to
show continual generation of acoustic signal by the dynamics of vorticity in the center of the
domain. This test also begins with M ∼ 0.1. In the following formulation l = 10, xc = 5,
and δp = 0.75,

w(x, l, xc, δp) =

{
σ(x, l, xc, δp,+) if x < xc

σ(x, l, xc, δp,−) if x > xc
(5.10)

σ(x, l, xc, δp,±) = 1/(1 + exp(∓l(x− xc ∓ δp))) (5.11)
v = [0, w(x1, l, xc, δp) ∗ tanh((x0 − xc)/(δp))] (5.12)
p = 100 (5.13)
ρ = 1. (5.14)

For this test, we used a solid wall boundary condition in the horizontal dimension and
periodic boundary condition in the vertical dimension. Figure 5.10 provides vorticity and
pressure contours for the vortex sheet problem at various times. There are two sources
generating the acoustic waves in this example. The first source is the initial condition.
The constant pressure field is perturbed by the vortex sheet at t = 0. The second source
of acoustic wave generation is the motion of the vortex sheet. Figure 5.10 shows acoustic
wave generation due to both of these sources. The important outcome is that the algorithm
computes the dynamics of the acoustic waves stably and accurately for both sources.
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(a) Vorticity at t = 1.0. (b) Pressure at t = 1.0.

(c) Vorticity at t = 1.5. (d) Pressure at t = 1.5.

(e) Vorticity at t = 2.0. (f) Pressure at t = 2.0.

Figure 5.10: Long Wavelength Vortex Sheet Results.
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5.3 Viscous Effects
The code was also tested on the compressible Navier-Stokes system of equations. It is
important to demonstrate the effectiveness of the algorithm on systems involving diffusive
terms without combustion. The test problem selected for this was the periodic shear layer.
All of the scalar variables were initially set to constants. The velocity field has the following
form,

v(x) = { tanh((x1 − 0.25)/(δρ)) ifx1 ≤ 0.5 (5.15)
tanh((0.75− x1)/(δρ)) otherwise, (5.16)
δ sin(2πx0)}, (5.17)

where δρ is 1/30 and δ is 0.05.
Figure 5.11 shows a selection of contour plots of the vorticity at different Reynolds num-

bers. We can see that as the viscosity is increased there is indeed a diffusion of the vorticity.

5.4 Combustion
We looked at several combustion problems to evaluate the efficacy of the algorithm.

0D Combustion

This test is designed to ensure that the algorithm can model reaction mechanisms with the
combined ARK4 and CVODE integrators.

We modeled the combustion of methane in oxygen with the following initial conditions:

v(x) = [0, 0] m/s, (5.18)
ρ(x) = 1.0 kg/m3, (5.19)
p(x) = 250 kPa, (5.20)
YCH4 = 0.21, (5.21)
YO2 = 0.79, (5.22)
YCO2 = 0.0, (5.23)
YH2O = 0.0. (5.24)

We expect that the reactants will be consumed and the products created over time until a
steady state is reached. We also expect to see the pressure rising over time until a constant
state is reached. Time plots for the mass fractions as well as the pressure are provided
(Figure 5.12). We see the pressure slowly rising until it hits a critical value. At this point
the combustion occurs rapidly.
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(a) Vorticity Initial Condition (w). (b) Vorticity with η = 0.

(c) Vorticity with η = 1.e− 4. (d) Vorticity with η = 1.e− 3.

Figure 5.11: Shear Layer Vorticity at t = 0.75 for Varying Viscosities.
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Figure 5.12: 0D Combustion Results.

1D Flame

The next combustion test includes spatial variation, but only along a single dimension. For
this test, we use a similar one-dimensional test as in [58]. The solution starts with products
and reactants separated at the middle of the domain. The temperature of the products is
high, and the temperature of the reactants is low. Here is the initial condition:

YCH4(x) =

{
0.22 if x0 < 0.5,

0 otherwise
, (5.25)

YO2(x) =

{
0.78 if x0 < 0.5,

0 otherwise
, (5.26)

YCO2(x) =

{
0.52 if x0 > 0.5,

0 otherwise
, (5.27)

YH2O(x) =

{
0.48 if x0 > 0.5,

0 otherwise
, (5.28)

T (x) =

{
300 if x0 < 0.5,

1500 otherwise
, (5.29)

ρ(x) =1.0, (5.30)
v(x) =[0, 0]. (5.31)

We should see a clear flame front after a period of time when the fuel and oxygen reach a
high enough temperature that combustion may occur. Figure 5.13 contains a plot of the total
pressure at the flame front after a time. In [58], it was noted that the thermodynamic pressure
is uniform and scales as O(M2). In our case the evolved pressure carries compressibility
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Figure 5.14: Pressure Near the Flame Front for 1D Combustion Example.

effects and generates the non-zero velocity at the flame front. But we still expect to see the
pressure rise as the combustion occurs. Figure 5.14 confirms that the pressure is rising in
this case.

2D Flame

This test case is similar to the 1D flame, except that we now have advection and diffusion
in multiple dimensions. We modify that initial condition in the following way: we start off
with nearly all of the fuel in a circular centered region of a 2D domain, and all of the oxygen
outside of that circle. The fuel resides with a radius R0 <= 0.2. The temperature in the
oxygen-rich region is high, whereas it is low in the fuel-rich region. There are no products
at the start.

Cross sections of the mass fractions at different times are show in Figure 5.15.
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Figure 5.15: Mass Fractions for 2D Flame.
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Figure 5.16: Time-Integration Order Effects on Compressible Velocity.

5.5 High-Order Accuracy

Time-Integration

One of the identified issues with the algorithm in [84] was that it used a first-order accurate
time-integration scheme for the compressible variables. This low-order scheme produced
poor results at finite values of M .

Introducing a fourth-order integration scheme for the compressible variables produces
much better results. In Figure 5.16, we are comparing the first component of the curl-
free velocity using the original first-order time-integration and the new fourth-order time-
integration.
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Table 5.1: Error in 〈U〉 for Inviscid Gas Dynamics [σ = 0.01, L∞ ].

Var N=16 Rate N=32 Rate N=64 Rate N=128
ρ 2.1e-06 3.97 1.33e-07 3.99 8.35e-09 4.00 5.23e-10
p 1.86e-06 3.97 1.19e-07 3.99 7.44e-09 4.00 4.66e-10
ρh 1.86e-06 3.97 1.19e-07 3.99 7.44e-09 4.00 4.66e-10
v0 2.14e-05 3.98 1.36e-06 4.00 8.50e-08 4.00 5.32e-09
v1 2.14e-05 3.98 1.36e-06 4.00 8.50e-08 4.00 5.32e-09
v0
p 1.46e-06 3.80 1.05e-07 4.00 6.56e-09 4.10 3.82e-10
v1
p 1.46e-06 3.80 1.05e-07 4.00 6.56e-09 4.10 3.82e-10
v0
d 2.15e-05 3.98 1.36e-06 3.99 8.55e-08 4.00 5.35e-09
v1
d 2.15e-05 3.98 1.36e-06 3.99 8.55e-08 4.00 5.35e-09

Table 5.2: Error in 〈U〉 for Inviscid Gas Dynamics [σ = 0.5, L∞ ].

Var N=16 Rate N=32 Rate N=64 Rate N=128
ρ 2.1e-05 3.74 1.61e-06 3.99 1.01e-07 4.00 6.69e-09
p 1.92e-05 3.74 1.43e-06 4.03 8.81e-08 4.01 5.47e-09
ρh 3.29e-05 3.72 2.49e-06 4.03 1.53e-07 4.01 9.50e-09
v0 3.41e-05 3.87 2.33e-06 3.82 1.65e-07 3.96 1.06e-08
v1 3.41e-05 3.87 2.33e-06 3.82 1.65e-07 3.96 1.06e-08
v0
p 6.87e-05 3.77 5.03e-06 3.99 3.17e-07 3.99 2.00e-08
v1
p 6.87e-05 3.77 5.03e-06 3.99 3.17e-07 3.99 2.00e-08
v0
d 7.52e-05 3.76 5.55e-06 3.94 3.60e-07 3.98 2.28e-08
v1
d 7.52e-05 3.76 5.55e-06 3.94 3.60e-07 3.98 2.28e-08

Convergence

We also provide errors and convergence rates. Both of these were tabulated using Richard-
son’s error estimation.

First, let us examine the solution accuracy for small time-steps. Table 5.1 demonstrates
the accuracy of the solution with σ ∼ 0.01.

The test in Table 5.1 uses a small enough time step that we can safely assume that
the leading-order error source is the spatial-differencing scheme. For each scalar and vector
component, we see the expected fourth-order accuracy.

As we increase σ, we still retain fourth-order accuracy (Table 5.2).
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Figure 5.17: Effectiveness of Pressure Constraint along the Midline.

5.6 Enforcing Constraints

Pressure Constraint

The pressure constraint is required if the equation of the state is to be satisfied. Without the
constraint, the evolved pressure will drift farther away from the equation of state pressure
over time.

Here is the affect of this constraint for the single vortex test with M ∼ 0.28 at t = 0.5
(Figure 5.17). The pressure constraint simulation used two iterations of the constraint solver
per time advance. The data for this comparison were taken along the centerline parallel to
the x-axis We see that the constraint is driving the evolved pressure towards the equation
of state. In fact, the constrained evolved pressure is in nearly perfect alignment with the
equation of state. Looking at the evolved pressures with and without the constraint, the
phase and shape of the fields differ noticeably and the magnitudes are off by up to ten
percent. These discrepancies are unacceptable in combustion since the equation of state
plays a more prominent role in the simulation.

Looking at the effects of the constraint over time at a fixed location yields some additional
insights (Figure 5.18). Again, we remark that the pressure field without the constraint is out
of phase with the equation of state and the magnitude of the field is also diverging. With a
single iteration of the pressure constraint solve we get much better agreement between the
equation of state and the constrained pressure. With two iterations, the constrained pressure
satisfies the equation of state.



CHAPTER 5. RESULTS 57

0.9

0.95

1

1.05

1.1

1.15

0 0.25 0.5

〈p̄
〉

t

No Constraint
One Iter

Converged
pEOS

Figure 5.18: Effectiveness of Pressure Constraint over Time.



58

Chapter 6

Conclusions

The compressible pressure-velocity splitting proposed and developed in this thesis leads to
an algorithm that works well across a variety of systems of equations and conditions. The
algorithm effectiveness has been demonstrated for multiple settings ranging from inviscid
gas dynamics to viscous combustion. We show that the new splitting algorithm produces
identical results to the previous algorithm for inviscid gas dynamics, adequately represents
baroclinic generation of vorticity, captures long wavelength acoustics, extends to viscous and
combustion systems, and attains high-order accuracy.

There are three notable issues with the algorithm as presented: intra-stage synchroniza-
tions, lack of implemented robustness technologies, and lack of demonstrated AMR results.

There is at least one synchronization step required to advance the velocity at each stage.
At the start of each stage computation, the total velocity is projected and interpolated
onto cell faces. In some limited cases, we must also synchronize the total velocity and the
potential velocity at the end of each stage computation. Ideally, any velocity synchronization
and projection would be delayed until the end of the total time advance.

We did not implement some of the standard robustness technologies in this algorithm,
such as flux-limiting. Furthermore, since not all of the modeled equations are in conserva-
tion form, additional care will have to be taken if one wanted to extend this algorithm to
supersonic flows.

There are numerous next steps that can be taken. Embedded boundaries can be intro-
duced to model flow in more complicated, static domains. Front-tracking can be used with
embedded boundaries to model moving surfaces, such as a flat piston moving in a cylindrical
domain. Mapped multi-block grids can be incorporated to model a non-flat piston. It would
potentially be worth hybridizing the method with some sort of fully-conservative represen-
tation for high Mach number flows. More advanced chemistry models may be investigated
as well. Alternative high-order discretizations may be considered, particularly for the time
advance. We could also take the ideas developed here and apply them to other physics prob-
lems that are governed by similar evolution equations and constraints. Although no AMR
results are presented herein, extending this algorithm to AMR is sensible.
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Appendix A

Variables

Here is a complete list of variables, symbols, and units for reference below:

Symbol Variable Units
Ns Total Species [1]
Ru Gas Constant ML2/(T 2molΘ)
η Shear Viscosity M/LT
κ Volume Viscosity M/LT
Dk Approximate Diffusion Vector L2/T
Dij Binary Diffusion Matrix L2/T
λ Thermal Conductivity ML/(T 3Θ)
ρ Total Density M/L3

p Total Pressure M/LT 2

T Temperature Θ
H Enthalpy 1/(LT 2)
e Specific Energy L2/T 2

Mk Molar Mass M/mol
Yk Mass Fraction [1]
Xk Mole Fraction [1]
hk Specific Enthalpy L2/T 2

hstk Enthalpy of Formation L2/T 2

Cp Specific Heat at Constant p L2/(ΘT 2)
Cv Specific Heat at Constant v L2/(ΘT 2)
γ Ratio of Specific Heats [1]
ω̇k Combustion Generation Rate M/L3T
ρ̇sk Spray Generation Rate M/L3T
ρ̇s Total Spray Generation Rate M/L3T

Q̇s Spray Energy Source M/(LT 3)
Φ Viscous Dissipation Term M/(LT 3)
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v Bulk Velocity L/T
Vk Diffusion Velocity L/T
F b Body Force L/T 2

F s Spray Momentum Source L/T 2

q Heat Flux M/T 3

τ Shear Stress Tensor M/LT 2

e Strain-Rate Tensor [1]/T

Variables with subscript “k” are specific to their particular gaseous species. Theta “Θ"
denotes absolute temperature (Kelvin), and “(M,L, T,mol)” denote mass, length, time, and
moles respectively.
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Appendix B

Governing Equations

Gas-Phase Combustion
The conservation equations that govern multicomponent reacting systems for gas-phase com-
bustion are provided below:

∂(ρYk)

∂t
+∇ · (ρYkv) = ∇ · (ρDk∇Yk) + ω̇k + ρ̇sk (B.1)

∂ρ

∂t
+∇ · (ρv) = ρ̇s (B.2)

∂(ρv)

∂t
+∇ · (ρv ⊗ v) = −∇p+∇ · τ + F b + F s (B.3)

∂(ρe)

∂t
+∇ · (ρev) = −p[∇ · v] + Φ +∇ · q (B.4)

p = ρRuT
Ns∑
k=1

Yk
Mk

(B.5)

τ = 2ηe+

(
κ− 2

3
η

)
(∇ · v) (B.6)

e =
1

2

(
∇v + (∇v)T

)
(B.7)

Φ = 2η(e : e) +

(
κ− 2

3
η

)
(∇ · v)2 (B.8)

q = qE + qI (B.9)

qE =
NS∑
k=1

(
λ

cp
− ρDk

)
hk∇Yk (B.10)

qI =
λ

cp
∇h (B.11)
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Assumptions

We are going to ignore the contributions from spray sources and the body force. So all
terms with superscript “s” ( ρ̇sk,ρ̇s,F s ) as well as F b are dropped moving forward. Soret and
Dufour effects have been neglected. Energy sources from reaction rates are included in the
definition of “e”, hence we are evolving energy and not “sensible” energy.

A description of how to compute the reaction terms is provided in Appendix C. A de-
scription of how to compute the fluid properties is provided in Appendix D.

Alternative Forms of Governing Equations

We described the system of PDE initially in terms of the specific energy e and the total
momentum ρv. From these we can deduce additional evolution equations. First we will
define the material derivative for compactness of notation

D(a)

Dt
=
∂(a)

∂t
+ (v · ∇)(a). (B.12)

The alternative evolution equations are:

Velocity

Dv

Dt
= −1

ρ
∇p+

1

ρ
(∇ · τ ). (B.13)

Enthalpy

h = e+
p

ρ
(B.14)

Dh

Dt
=
De

Dt
+
D(p/ρ)

Dt
(B.15)

=
De

Dt
+

1

ρ

Dp

Dt
+
p

ρ
(∇ · v) (B.16)

ρ
Dh

Dt
= ρ

De

Dt
+
Dp

Dt
+ p(∇ · v) (B.17)

=
Dp

Dt
+ Φ +∇ · q. (B.18)

We’ll call the contribution of the pressure derivative on the right hand side Ψ so that,

ρ
Dh

Dt
= Ψ + Φ +∇ · q. (B.19)
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Total Enthalpy

H = h+
v · v

2
(B.20)

ρ
DH

Dt
= ρ

Dh

Dt
+ ρ

D[(v · v)/2]

Dt
(B.21)

=
∂p

∂t
+∇ · (vτ ) +∇ · q. (B.22)

Temperature

hk(T ) = hstk +

∫ T

T0

Cp,k(T )dT (B.23)

h =
Ns∑
k=1

Ykhk (B.24)

cp =
Ns∑
k=1

Yk
dhk
dT

(B.25)

ρ
D
(∑Ns

k=1 Ykhk

)
Dt

= Ψ + Φ +∇ · q (B.26)

Ns∑
k=1

ρ

[
Yk
Dhk
Dt

+ hk
DYk
Dt

]
= Ψ + Φ +∇ · q (B.27)

Ns∑
k=1

[
ρYkcp,k

DT

Dt
+ ρhk

DYk
Dt

]
= Ψ + Φ +∇ · q (B.28)

ρ
DT

Dt

Ns∑
k=1

cp,kYk +
Ns∑
k=1

hkρ
DYk
Dt

= Ψ + Φ +∇ · q (B.29)

ρcp
DT

Dt
+

Ns∑
k=1

hk (∇ · ρDk∇Yk + ω̇k) = Ψ + Φ +∇ · q (B.30)

ρcp
DT

Dt
= Ψ + Φ +∇ · λ∇T −

Ns∑
k=1

[hk (∇ · ρDk∇Yk + ω̇k)−∇ · ρDkhk∇Yk] (B.31)

(ρcp)
DT

Dt
= Ψ + Φ +∇ · (λ∇T )−

Ns∑
k=1

hkω̇k +
Ns∑
k=1

[ρDk∇Yk · ∇hk] (B.32)

ρcp
DT

Dt
= Ψ+Φ+∇· λ

cp
∇h−

Ns∑
k=1

[
hk (∇ · ρDk∇Yk + ω̇k)−∇ ·

(
ρDk +

λ

cp

)
hk∇Yk

]
(B.33)
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ρcp
DT

Dt
= Ψ + Φ +∇ · λ

cp
∇h−

Ns∑
k=1

[hkω̇k + ξ(Yk)] , (B.34)

where we have introduced the following expression,

ξ(Yk) = −∇ ·
(
ρDk +

λ

cp

)
hk∇Yk + hk∇ · ρDk∇Yk. (B.35)

Pressure (Single-Species Ideal Gas)

p = ρRT (B.36)

Dp

Dt
=
∂p

∂ρ

∣∣∣∣
T

Dρ

Dt
+

∂p

∂T

∣∣∣∣
ρ

DT

dt
(B.37)

Dp

Dt
= RT

Dρ

Dt
+ ρR

DT

Dt
. (B.38)

Dp

Dt
= −ρRT (∇ · v) +

ρR

ρcp

[
Dp

Dt
+ Φ +∇ · q

]
(B.39)(

1− R

cp

)
Dp

Dt
= −p (∇ · v) +

Rµ

cp
[Φ +∇ · q] . (B.40)

Dp

Dt
= −γp (∇ · v) + (γ − 1) [Φ +∇ · q] . (B.41)

Pressure (Multi-Species Ideal Gas with Combustion)

p = ρRµT
∑
k

Yk
Wk

. (B.42)

Dp

Dt
=
∂p

∂ρ

∣∣∣∣
T,Yk

Dρ

Dt
+

∂p

∂T

∣∣∣∣
ρ,Yk

DT

dt
+

∂p

∂Yk

∣∣∣∣
ρ,T

DYk
Dt

, (B.43)

Dp

Dt
= RµT

∑
k

Yk
Wk

Dρ

Dt
+ ρRµ

∑
k

Yk
Wk

DT

Dt
+ ρRµT

∑
k

1

Wk

DYk
Dt

. (B.44)

Dp

Dt
=− ρRT

Ns∑
k=1

Yk
Wk

(∇ · v) + ρRµ

Ns∑
k=1

Yk
Wk

1

ρcp

[
Ψ + Φ +∇ · λ

cp
∇h−

Ns∑
k=1

[hkω̇k + ξ(Yk)]

]

+ ρRµT

Ns∑
k=1

1

Wk

1

ρ
[∇ · ρDk∇Yk + ω̇k] .

(B.45)
Since Ψ = Dp

Dt
, we must gather the the pressure derivative terms to produce,
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[
1−

∑
k

RµYk
cpWk

]
Dp

Dt
=− p (∇ · v) +

(∑
k

RµYk
cpWk

)[
Φ +∇ · λ

cp
∇h−

Ns∑
k=1

[hkω̇k + ξ(Yk)]

]

+
∑
k

RµT

Wk

[(∇ · ρDk∇Yk) + ω̇k] .

We will reduce this expression to,

Dp

Dt
= ṗE + ṗI − α

Ns∑
k=1

[(βhk + ζk) ω̇k] , (B.46)

where

ṗE = α

Ns∑
k=1

[βξ(Yk) + ζk(∇ · ρDk∇Yk)] + αβΦ (B.47)

ṗI = αβ
(
∇ · qI

)
− αp (∇ · v) (B.48)

β =
Ns∑
k=1

(
RµYk
cpWk

)
(B.49)

1

α
= [1− β] (B.50)

ζk =

(
RµT

Wk

)
. (B.51)

We may elect to use any combination of these or the previous evolution and state equa-
tions. However our system will be overdetermined if we attempt to evolve all of these
equations independently of their relational expressions and the equation of state.



76

Appendix C

Combustion Chemistry

Chemical Kinetics & Reaction Equations

The equations that govern the full equilibrium chemical reactions are presented now
Ns∑
k=1

ν
′

kjXk 

Ns∑
k=1

ν
′′

kjXk , j = 1, . . . , Nr (C.1)

ω̇k =
Nr∑
j=1

ω̇kj = Mk

Nr∑
j=1

νkjqj ; νkj = ν
′′

kj − ν
′

kj (C.2)

qj = Kfj

Ns∏
k=1

[Xk]
ν
′
kj −Krj

Ns∏
k=1

[Xk]
ν
′′
kj (C.3)

Kfj = AfjT
βexp

(
−Ej
RT

)
(C.4)

Krj = Kfj/Kcj (C.5)

Kcj =
(patm
RT

) Ns∑
k=1

νkj
exp

(
∆S0

j

R
−

∆H0
j

RT

)
(C.6)

∆S0
j =

Ns∑
k=1

νkjS
st
k (C.7)

∆H0
j =

Ns∑
k=1

νkjH
st
k (C.8)

Global One-Step Reaction

The complete specification of equilibrium reaction rates scales exponentially with the number
of carbon atoms in the hydrocarbon fuel. For this reason, global one-step reactions are often
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used as approximations to govern the net consumption and generation of products and
reactants. The following equations describe this simplified approach:

ω̇k = Mkνkqrxt (C.9)
qrxt = A0exp(−Ta/T )[Cfuel]

a[Co2 ]
b (C.10)

qrxt = A0exp(−Ta/T )
ρa+b

(Mfuel)a(Mo2)
b
[Yfuel]

a[Yo2 ]
b (C.11)

To illustrate this formulation clearly, let us take a look at a typical stoichiometric balance
of combustion between a hydrocarbon fuel and air:

CαHβOγ + (α+
β

4
− γ

2
) [O2 + 3.76N2]→ (α)CO2 + (

β

2
)H2O + 3.76(α+

β

4
− γ

2
)N2. (C.12)

In this case, the net reaction coefficients νk for each reactant are the balance coefficients
in the equation. For the products, the net reaction coefficients are the negated balance
coefficients in the equation,

νfuel = −1 (C.13)

νO2 = −(α +
β

4
− γ

2
) (C.14)

νCO2 = α (C.15)

νH2O =
β

2
. (C.16)

All that is left is to specify the molecular weights of each species Mk and the values
of A0, Ta, a, and b. These values have been measured experimentally and are available in
tables.
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Appendix D

Fluid Properties

Fluid properties

There are five fluid properties that need to be computed: shear viscosity (η), volume viscosity
(κ), thermal conductivity (λ), specific heat (cp), and diffusivity (D) . These properties do
not have evolution equations, rather they are evaluated as functions of the evolved variables.

Single Component System

For single component systems there are simple relationships between the temperature and
most of the fluid properties. Standard air is the test fluid for all single component systems
[120].

Shear Viscosity

η(T ) = 1.716e−5 ∗
(
T

273

)0.66 [
Ns

m2

]
(D.1)

Volume Viscosity

κ(T ) = 0.778e−5 ∗
(
T

200

)1.38 [
Ns

m2

]
(D.2)

Thermal Conductivity

λ(T ) = 0.0241 ∗
(
T

273

)0.81 [
W

mK

]
(D.3)

Specific Heat

cp(T ) = 1.704e−4 ∗ T + 0.96 (D.4)

The specific heat for air in many instances may be set to “1”. This linear equation is fit
to the measured specific heats of air at 250K and 1500K. Diffusivity is not a parameter that
exists for a single component system.



APPENDIX D. FLUID PROPERTIES 79

Multicomponent Systems

In general, the fluid properties in multicomponent systems are dependent on (T, p, yk).
Specific Heat

NASA thermodynamic data specifies the specific heat of each individual gaseous component
as a polynomial function of the temperature,

(cp)k = R
[
a1k + a2kT + a3kT

2 + a3kT
3 + a5kT

4
]
. (D.5)

There are typically two such polynomials specified over different temperature ranges. Un-
fortunately, the composite polynomial is only C0 continuous. Any derivatives involving (cp)k
must be computed carefully. The approach taken herein is to extend one of the polynomials
to cover the range of simulated temperatures.

For computing the mixture properties, the formulation presented in [30] is employed.
The mixture coefficients in multicomponent systems have the following form:

Gµ = βµ (D.6)
〈G, µ〉 = 0, (D.7)

where µ represents a generic mixture property, G is the system matrix, G is the constraint
vector, 〈, 〉 represents the scalar product, and βµ is the the associated right hand side for a
given µ. This system of equations is linear and is solved iteratively [30].




