UC Berkeley

UC Berkeley Electronic Theses and Dissertations

Title
Approximate svBRDF Capture From Uncalibrated Mobile Phone Video

Permalink
https://escholarship.org/uc/item/0b89g7h3

Author
Albert, Rachel A.

Publication Date
2018

Supplemental Material
ttps://escholarship.org/uc/item/0b89g7h3#supplementa

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/0b89g7h3
https://escholarship.org/uc/item/0b89g7h3#supplemental
https://escholarship.org
http://www.cdlib.org/

Approximate svBRDF Capture From Uncalibrated Mobile Phone Video
by
Rachel Anastasia Albert
A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy
in
Vision Science
in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor James F. O’Brien, Chair
Professor Jitendra Malik
Professor Alexei Efros

Spring 2018



Approximate svBRDF Capture From Uncalibrated Mobile Phone Video

Copyright 2018
by
Rachel Anastasia Albert



Abstract

Approximate svBRDF Capture From Uncalibrated Mobile Phone Video
by
Rachel Anastasia Albert
Doctor of Philosophy in Vision Science
University of California, Berkeley

Professor James F. O’'Brien, Chair

I describe a new technique for obtaining a spatially varying BRDF (svBRDF) of a flat
object using printed fiducial markers and a cell phone capable of continuous flash video. My
homography-based video frame alignment method does not require the fiducial markers to
be visible in every frame, thereby enabling me to capture larger areas at a closer distance
and higher resolution than in previous work. Clusters of pixels in the resulting panorama
that correspond to like materials are fit with a BRDF based on a recursive subdivision
algorithm, utilizing all the light and view positions obtained from the video. I demonstrate
the versatility of this method by capturing a variety of materials with both one- and two-
camera input streams and rendering my results on 3D objects under complex illumination.
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Chapter 1

Introduction

Artistic expressiveness in the creation of virtual objects has increased tremendously in recent
years thanks to research in computer generated geometry, lighting, and materials. However,
many real-world surfaces exhibit irregular variations in texture and reflectance that are
difficult to reproduce algorithmically. Examples include organic materials such as specific
pieces of wood or granite, hand-made surfaces such as paintings, and well-worn objects with
particular patterns of dirt, scratches, and aging effects. High-quality results can be achieved
when these missing details are filled in manually by artists, but doing so requires significant
expertise, well-sourced input images, and hours of manual adjustment. Alternatively, it is
also possible to obtain high-quality materials through direct capture, but the capture process
is cumbersome due to the specialized equipment typically required.

There are several ways to represent opaque surface reflectance using data derived from the
real world. The most common examples are artist-designed materials, direct measurements
of real objects, and parametric reflectance models. Artist-designed materials are represented
by a set of layers derived from images, wherein each layer describes a component of the
reflectance such as the diffuse color, specular behavior, or normal displacement. The process
for creating these materials typically involves sourcing a high-quality photograph of a nearly-
flat object, and then recombining filtered versions of the photo with procedurally-generated
noise layers [9, 10]. To obtain a realistic result, artists must expend significant time tweaking
parameters via trial-and-error. Libraries of materials, called “material packs” are also widely
available for purchase [45], demonstrating both the value of using realistic material models
and the effort required to create them. Hand-designed material models generally do not
accurately capture the actual reflectance behavior of the real-world material that they are
based on. Rather they mimic the real material’s appearance, which is sufficient for many
rendering applications.

The most complex and complete representations of real materials come from direct mea-
surement. The surface appearance of the object is measured over a densely sampled hemi-
sphere of light and view angles, using a device such as a gonioreflectometer, and these data
are interpolated at render time from a four-dimensional lookup table [40]. When variation
across the surface is included, the measurements span a six dimensional space — azimuth
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and elevation angles for both the camera and light source and 2D coordinates on the surface
— called a spatially varying bi-directional reflectance distribution function (svBRDF') [43].
Obtaining a measured svBRDF is a time-consuming and memory-intensive process that re-
quires a sample to be brought into a lab with controlled lighting and specialized equipment.
Not only are there very few measured svBRDFs available, but this high level of physical
accuracy is also generally excessive when only visually plausible images are required. Fur-
thermore, the mechanical nature of most BRDF capture devices requires the physical extent
of the sample to be quite small, making them better suited to recording a single uniform
BRDF rather than an svBRDF with larger scale textural variation.

In many cases the physical plausibility of the material is important, but the reflectance
behavior is simple enough it can be accurately represented by a parametric model with
only a few parameters. In these cases a parametric BRDF model can be created either by
choosing arbitrary parameter values, navigating the space of BRDFs with a user interface,
or fitting a model to observations of a real object. Well-designed BRDF models adhere to
physical limitations such as conservation of energy and reciprocity, and can be represented
more compactly than a measured BRDF.

I propose a method for allowing artists to create physically plausible parametric sy BRDF
representations of nearly-flat surfaces using simple printed fiducial markers and video ob-
tained from a mobile phone with a flash that can be constantly illuminated. My technique
does not require any specialized equipment and delivers a realistic representation of the
scanned material that is suitable for many artistic applications. To capture svBRDFs in
this way, the fiducial markers are placed on the outside four corners of the captured area
and the phone camera and flash are moved over the surface at a very close capture distance
that maximizes the spatial and angular resolution of the light and view capture positions.
I demonstrate the quality and versatility of my method by reproducing a variety of spa-
tially varying materials including leather, fabric, metal, wood, paint, and tile. Figure 1.1
shows four example materials captured with my method and rendered using Mitsuba [32],
an open-source physically based renderer that supports many different advanced rendering
techniques commonly used by researchers.

My capture technique is limited to relatively flat surfaces that have some medium-scale,
non-repeating color variation to provide sufficient features for the alignment process. Addi-
tionally, due to the collocation of the light and camera, I am able to fit a realistic svBRDF
model to materials with reflectance properties that are complex only near the peak of the
specular highlight and I cannot capture or show reflectance behavior such as Fresnel effects
that are apparent at extremely glancing angles. Fortunately these restrictions still allow for
capture of many interesting and useful materials with a simple, low-cost solution.
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Chapter 2

Background

2.1 Light

Visible light has four physical properties in the real world: intensity, direction, spectral
distribution, and polarization. In this work the spectral distribution and polarization are
not taken into account. Light sources are therefore treated as either point lights illuminating
equally in all directions or as infinitely distant ambient light that is uniformly illuminating
from all directions.

The study of measuring light and other forms of electromagnetic radiation is called ra-
diometry. In the context of surface reflectance, light intensity is described by the term
radiance (watts - steridian™" - meter—2) for a given wavelength in nanometers, which sig-
nifies the power per unit solid angle per unit area that is either emitted by a light source,
or transmitted or reflected from one object to another. The term irradiance (W - m™2) is
commonly used to describe the amount of power per unit area arriving at a surface. The
inverse square law states that the irradiance of light from a point light source is inversely
proportional to the square of the radial distance to the light source; or equivalently, the
irradiance at distance r is equal to (1/7?).

Photometry is a related area of study to radiometry which measures the perceived bright-
ness of a light source as observed by the human eye or a camera sensor. The parellel terms
to radiometry are luminance (lumens-sr~—t-m=2 or candelas-m™2) for radiance and illumi-
nance (lumens-m~2) for irradiance. While radiometry is concerned with the power output
of a light source measured in watts, lumens are defined relative to both the power output
and also human sensitivity to light at a given wavelength.

Dynamic Range

Real world light sources span an incredible range of measured luminance, from starlight at
1073 cd - m™2 to lamplight at 10 cd - m™2 to direct sunlight at 10° c¢d - m~2. However, given a
particular adaptive state for the human eye or exposure level of a camera, it is usually only
possible to observe a relatively narrow range of luminance values at one time. The ratio of
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brightest to dimmest luminance values that an observer can resolve is called dynamic range.
Observed values that are outside the dynamic range of an image are said to be clipped to the
maximum and minimum values, and because of this the actual luminance values at clipped
locations in the image are unknown. However, it is possible to reconstruct the physical
luminance values by capturing the same scene with multiple images, each with different
exposure, such that the set of images includes at least one unclipped value for each point in
the image. The multiple exposures can then be combined into a single high dynamic range
(HDR) image [17]. Viewing HDR images directly requires an HDR display, but it is also
possible to tone-map an HDR image into an easily viewable low dynamic range (LDR) image
by compressing some portions of the dynamic range to preserve the maximum level of detail
in both highlights and shadows [33, 21, 22].

Representing Light in Computer Generated Scenes

The influx of light at every point and direction in a scene can be thought of as a Light Field
25, 35], a Global Radiance Function [49], or a Plenoptic Function [1]. However, representing
the full light field is usually impractical for computer generated scenes. For example, the full
spectral distribution that describes the color of incoming and reflected light is fully described
by an intensity value for each wavelength of light, but this is typically represented by a single
color triplet in a particular color space such as RGB. Surface reflectance properties are also
approximated with a function such as a BRDF that describes both the color and intensity
of reflected light in each direction relative to a given surface.

Additionally, light sources have simplified representations including point lights, area
lights, or environment lights. Point lights are represented as a single 3D position and ra-
diance value, and they illuminate equally in all directions. Area lights also have positional
representation that covers an extent in 3D space, and their radiance has directionality. The
radiance of point lights follows the inverse square law, while the radiance of area lights is rel-
ative to the solid angle of the area light projected onto the surface. Environment or ambient
lighting is a way to simulate a larger and more complex lighting environment without having
to represent each individual emitting and reflecting light source in a scene. Environment
lighting is typically represented as a hemisphere with varying radiant intensity, located at
an effectively infinite distance from the object [16].

2.2 Camera

The pictorial representation of a scene that is formed by a camera is influenced by both
the optical properties of the camera and also the sensor and post-processing settings that
are used. Often both the optics and photometric representation of a camera are imperfect
estimations of real world geometry and luminance and must therefore be calibrated using
refrence objects with known physical properties.
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Optics

Light enters a camera in the form of parallel rays corresponding to the same point in world
space, and these rays are then refracted by the lens, restricted by the aperture, and finally
imaged by the sensor. The distance between the lens and the sensor is called the focal length.
An object is said to be in focus when the bundle of rays corresponding to a specific point on
the object are all converged by the lens to meet at a single point at the exact depth of the
sensor. When the convergence point is either in front of or behind the sensor, the spread of
the rays on the sensor plane is called the circle of confusion and the radius of the spread is
a measure of the defocus blur of the object.

Between the lens and the sensor there is also an aperture that restricts the maximum
spread of rays from any given object. An ideal “pinhole” aperture restricts the rays from
each point such that only a single ray passes through the aperture corresponding to only a
single point on the sensor. Such an image is said to have an infinite depth of field (DOF),
because all objects in the world are in focus regardless of their position relative to the focus
distance. A wider aperture allows a larger maximum defocus blur, and will therefore have
a narrower DOF since only the rays from objects near the same depth as the focus distance
will converge to a single point on the sensor.

Sensor

A camera sensor is an array of photosites that collect red, green, or blue light and the
resulting values from each triplet are combined to form a tri-color sample called a pizel. The
resolution is determined by both the number of pixels per square inch and the size of the
Sensor.

Each photosite integrates all of the light that it receives over the period of time that the
aperture is open, which is referred to as the exposure time. Additionally, it is possible to
control the sensitivity of the sensor by adjusting the ISO. A high ISO causes the sensor to be
less sensitive to the amount of incoming light, so more light is required to produce the same
output pixel value. A low ISO causes the sensor to be more sensitive, which also means the
output pixel values tend to have more noise. The size of the aperture, the shutter speed, and
the ISO sensitivity, all combine together to produce a particular level of overall exposure for
the image.

Because the sensor integrates light over time, any movement of the camera or objects
may cause the same point to be imaged across multiple pixels in the same image and this
effect is called motion blur. Motion blur may be reduced by decreasing either the speed of
camera motion or exposure time.

Calibration

A photograph is a representation of the physical properties of the scene filtered through the
physical properties of the camera. In order to recover an accurate estimation of the scene,
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it is necessary to remove the distortions introduced by the camera via calibration.

The optics of the camera may cause distortions if there are aberrations in the shape
of the lens or misalignment between the lens and the sensor. Nonlinear radial distortions
are the most common, causing straight lines in a scene to appear curved either in a barrel,
pincushion, or mustache shape (mustache distortion is a combination of both barrel and
pincushion distortion that varies with eccentricity from the center of the image). The center
of radial distortion curvature can also be displaced from the center of the image, known as
tilt distortion. Finally, it is also sometimes common to observe a skew in the radial distortion
that is caused by a horizontal or vertical tilt of the lens relative to the sensor.

These geometric distortions can be estimated by imaging an object of known size and
shape (such as a checkerboard) from different points of view [59]. The calibration process
relies on matching the corresponding checkerboard points in each image, which are then
used to recover the relative orientation of the camera. The checkerboard points are then
reprojected back into the images based on the geometry of the estimated camera pose, and
any discrepancy between the actual position of the points in the image and the position of the
reprojected points is attributed to lens distortion. A least squares optimization procedure
is then used to fit a model that includes either two or three parameters for radial distortion
and optionally includes two parameters for shift and two parameters for tilt. The resulting
parameters describe the intrinsics of the camera and may be applied to other images captured
with the same focal length. However, changes in focal length imply a change in the relative
positions of the lens and the camera and therefore produce different distortions requiring a
separate calibration. This change in lens distortion as a function of focal length is called
lens “breathing”. Breathing effects are most obvious at shorter focal lengths and they are
particularly problematic in the case of free form camera motion due to the use of auto-focus.

In addition to geometric calibration, it is also sometimes necessary to determine the exact
luminance and color balance of a scene relative to the particular exposure and white balance
of the captured image. For this purpose it is necessary to introduce objects with known
reflectance properties as reference points for calibration. For luminance it is common to use
a gray card of known reflectance (such as 18%) and for color it is possible to either use an
unclipped image of a white object to calibrate using the white-point method [12] or get a
more complete spectral calibration using a Munsell color chart [13]. Both of these methods
require the physical object to be present in the calibration image and the resulting adjustment
values are only valid for the same lighting environment and camera sensor settings.

2.3 Geometry

Objects in a scene have a physical structure that may be broadly referred to as geometry,
however, there are several levels of scale that may be implied by this term. The largest scale
of geometry is the coarse shape of the object, represented by a set of polygons that dictate
the overall surface orientation and curvature. The smallest scale of geometric variation is the
microfacet normal distribution function that determines the microstructure of the surface
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for each incoming light ray, which dictates the reflectance properties of the material. In
between, the surface normal for each point on the surface can also be perturbed to achieve
medium scale textural variation and shadowing effects. At each of these scales there are
conventions for representing and measuring the geometry of objects for use in CG scenes.

Levels of Scale

The largest scale of object representation for rendered objects is typically an interpolated
triangle mesh or bezier curve. An object is therefore composed of many smaller tiled units
arranged in some geometric configuration relative to each other, wherein each component
has some location and orientation. The triangles or rectangles that make up an object are
typically represented by their vertices and, for bezier surfaces, control points.

The next smaller level of surface geometry is displacement, bump, and texture mapping.
The surface of each geometric unit is also said to have an orientation called the surface nor-
mal. The orientation and position of the normal with respect to both artificial light sources
and other parts of the object determine the amount of incident light on the surface. At this
scale it is possible for parts of the object to both reflect light onto each other (interrefiec-
tions) and also occlude incoming light from each other (self-shadowing). A displacement map
is a perturbation of the surface geometry that is used for calculations of light interaction,
including silhouettes, cast shadows, and self-shadowing. Displacement maps allow coarse
object meshes to support finer geometric details. Bump maps are similar to displacement
maps in that they perturb the surface normals, but they do not change the silhouette or cast
shadows and they do not support self-shadowing. Color variation at this scale may also be
added through the use of a texture map. This level of detail supports medium-scale variation
that is obviously visible to the human eye even at viewing distances where the whole object
is visible.

The smallest level of detail is surface roughness. Roughness is a descriptor of the mucro-
facet distribution of a surface, where the scale of the normal variation is too small for the
human eye to resolve, but the interaction of light with these small normal variations still
produces larger scale effects in the reflectance behavior of the surface as a whole. This level
of geometry is captured in the reflectance function, as described in the next section.

2.4 Surface Appearance

Generalized surface capture encompasses a wide variety of materials and techniques. The
Bi-directional Texture Function (BTF) is used for materials with significant normal varia-
tion. Samples are captured in a series of images from various viewpoints and light positions
to observe the shadowing and reflectance behavior of the material at a very fine scale [15].
The Bi-directional Scattering Distribution Function (BSDF) is used for materials with trans-
parency or translucency which exhibit the property of subsurface scattering, wherein light
may bounce around internally in a material eventually be re-emitted at another point on the
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surface [6]. Finally, the Bi-directional Reflectance Distribution Function (BRDF) is used for
homogeneous and relatively flat opaque materials [42]. In this work I focus on the spatially
varying BRDF (svBRDF), a particular variant of the BRDF also introduced by Nicodemus
et al. [43] that allows for different BRDF parameters at each point on the captured surface.

Sparse svBRDF Acquisition

A complete sampling of the six-dimensional svBRDF may be performed using a spatial go-
nioreflectometer [41], although complete capture is a lengthy and data-intensive task. Efforts
have been made to simplify this process while still accurately capturing all the necessary vari-
ation in surface reflectance. Dong et al. [20] proposed a hand-held array of LEDs mounted
in a circular array around a camera, and they interpolated an estimated svBRDF from a set
of basis BRDFs obtained using manifold bootstrapping. Aittala et al. [3] used structured
light from an LED panel display to show basis patterns of illumination, allowing them to fit
a model to the observed reflectance behavior under these illumination patterns. Francken et
al. [23] also use structured lighting varying in the spatial frequency domain to obtain high-
quality surface normals and gloss estimation (rather than an svBRDF'). Similarly, Ghosh et
al. [27] used structured LEDs with polarizing filters to estimate the reflectance of spherical
objects which contain a more complete sampling of surface normals. Zhou et al. [61] opti-
mized a sparse blending of sparse basis BRDFs with a limited number of input views, as a
way to minimize capture requirements. In another minimalist setup, Xu et al. [57] obtain
interpolated uniform isotropic BRDFs from the MERL database with a two-shot capture
system by using a dynamically determined error metric.

There have also been a variety of capture systems that employ polarized light to separate
the diffuse and specular components. In 2010, Ghosh et al. extended their previous work
to obtain spatially varying reflectance and refraction using a single lighting environment
and circularly polarized spherical illumination [26]. Similarly, Ma et al. also used spherical
objects but with linear and circular polarization to obtain surface normal and gloss lev-
els [38]. Riviere et al. showed that high quality capture of surface normals and isotropic
reflectance was possible under bright sunlight using calibration objects in conjunction with a
linear polarizer attached to a DSLR camera [48]. Tunwattanapong et al. captured both re-
flectance and shape using continuous spherical harmonic illumination with very high spatial
and angular resolution [52].

Linear light sources have also been used, such as by Chen et al., who placed the light
source on a small electronic rig that traversed over the sample in a single dimension from
which they estimated anisotropic BRDFs [14]. Ren et al. [46] proposed a portable setup
involving a static mobile phone, a hand-held linear light source, and a collection of carefully
selected physical material samples with known BRDFs. However, all of these methods still
require expensive or highly specialized equipment for capture, such as multiple DSLR cam-
eras or a complicated or bulky experimental LED hardware setup. Even the highly portable
setup of Ren et al. still requires expensive reference material samples that would be difficult
for an artist to obtain.
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Appearance Matching

Another body of work focuses on tools to help artists match the appearance of a material
through user input or by simplifying the material representation. Dong et al. [19] estimate a
simplified model svBRDF for a single texture image and allow users to adjust the behavior
of regions of similar appearance until they are satisfied. Di Renzo et al. [18] produce a
layered BRDF plus texture image based on user edits in material space. Xuey et al. [5§]
create a static image with material weathering effects for a single lighting environment.
Haro et al. [29] also produce a static image with a single light source “baked in” to the
material appearance. All of these tools circumvent the need for capturing multiple lighting
and viewing angles in favor of simplified appearance estimation.

Aittala et al. [4] combined texture synthesis from a no-flash photo with reflectance
capture from a single flash photo to produce an svBRDF and normal map, however their
technique was limited to highly regular, repeated textures. In subsequent work they repli-
cated these results using a single flash image and deep learning techniques, but with less
consistent results [2]. Most recently, Li et al. [36] also used deep learning to estimate the
ambient lighting and thereby generate a diffuse, specular, and normal map decomposition of
a single arbitrary image.

Image-Based Approximation

My work is most closely related to a group of approaches that approximate a full svBRDF
model using a limited set of input images. Wang et al. [53] produce anisotropic sBRDFs
by synthesizing a spatially varying Normal Distribution Function (NDF) from sparse light
positions captured using a motorized LED array. Zickler et al. [62] estimate an isotropic
svBRDF for objects with known pre-measured geometry using a fixed camera with a moving
point light source in a controlled studio lighting environment. Goldman et al. [28] use
a simplified studio setup to capture multiple high resolution photographs at various light
and view angles and then used BRDF clustering along with linear blending of basis BRDF's
to estimate an svBRDF for each scanned object. Lensch et al. [34] also used a studio
setup for capture with metal spheres for light source tracking, and their iterative BRDF
subclustering method is similar to the one presented here, although the capture setup is
much more complex. Similarly, Zhou et al. [60] estimate an isotropic svBRDF for an
arbitrary-shaped object by employing structure from motion (SFM) using a ring light source
and a linear combination of basis BRDFs. Finally, two approaches have been proposed for
estimating large scale geometry, specularity, and diffuse albedo based on input from a light
field camera [54] and a small number of rendered input images [30], although the resulting
parameterization of surface reflectance is less precise.

In the space of mobile phone capture, Thanikachalam et al. [50] estimated reflectance
from video and optimized the sampling density and capture path, but with very low resolu-
tion output. The approach proposed by Hui and colleagues [31] requires capturing several
images of a texture sample from different viewpoints with the flash providing illumination
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and then using a dictionary-based approach to select a BRDF that matches the observations
of each pixel. They provide an elegant proof showing that it is insufficient to fit a BRDF
using only observations where the light is collocated with the camera, as is the case for a
cellphone, but by using a dictionary they are able to still obtain plausible results for cases
where the subject materials match an example stored in their library. I overcome this lim-
itation in my approach by allowing the user to add a second cellphone camera to obtain
observations from other perspectives that are not collocated with the light. This approach
allows me to fit a BRDF model directly to the data so that each pixel’s appearance is not
restricted to an existing dictionary of materials. However, even when only one cell phone is
used, my initialization strategy still allows the fitting process to obtain reasonable results.

Finally, Riviere et al. [47], also demonstrated svBRDF capture using mobile phone video.
My proposed method improves on their capture system in two ways. First, my unique video
frame alignment technique allows me to capture reflectance data from a much closer distance
(10cm vs 50cm) and does not require the entire sample to be visible in each input image.
By stitching together many partial observations from a closer view distance, I can obtain
very high resolution results even for large samples. I have found that high resolution is
generally required to obtain good results when rendering the svBRDFs on objects in 3D
scenes, particularly for materials with fine-scale specular features such as gold thread or
metallic flakes. The closer viewing distance also produces more oblique lighting and viewing
angles and a brighter specular highlight, allowing me to accommodate capture under more
varied ambient lighting conditions. I captured most of the data sets under approximately
400 LUX ambient illumination (compared to 40 LUX by Riviere et al.). Second, my method
does not require either radiometric calibration of the device nor the inclusion of a specific
color chart at capture time. The fiducial markers I used are less than 2cm square and can be
printed anywhere and easily carried in a wallet. These differences expand the possible use
cases of casual svBRDF estimation to more varied lighting environments and more accessible
tools for capture.
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Chapter 3

Approximate svBRDFs With Mobile
Phone Video

My proposed capture and fitting technique requires only one or two cell phone cameras with
continuous flash video capability and a set of four small fiducial markers which may be
printed on standard copy paper. Using these commonly available tools, I am able to fit an
svBRDF' to mostly-flat, opaque surfaces that have spatially varying reflectance and uneven
surface texture.

I first place the fiducial markers around the area of interest and capture a short, hand-
held flash video at a relatively fixed distance over the object surface. I then align and warp
the resulting video frame images into a single panorama in the global coordinate space with
observations from multiple light and view locations for each pixel. In the second step, I
cluster the pixels by similar appearance, fit a BRDF to the clusters, and then recursively
sub-divide and fit a BRDF and normal vector displacement to each sub-cluster until the size
of each cluster is sufficiently small.

My output is a high-resolution svBRDF based on the Ward model [55] that can be easily
applied to 3D objects for rendering using standard rendering software. Additionally, because
I do not require the fiducial markers to be visible in each frame, larger areas can be captured
than could be contained in a single camera view, enabling me to obtain a high-resolution
output with a more well-defined specular lobe in each sample image with maximum capture
resolution.

3.1 Alignment and Pose Estimation

Each location in the svBRDF will correspond to pixels coming from many video frames. Each
frame includes observations of some set of pixels from a particular light and view direction,
which is the sample data from which we fit a BRDF model. Aligning the video frames is
similar to a panorama stitching problem, but for fitting a BRDF the quality of the alignment
must be very precise. Although a traditional panorama need only avoid noticeable seams
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and distortions, in my case every pixel location needs to be correctly matched across all light
and view positions to avoid spurious correlations between lighting and appearance.

The use of a mobile phone camera for this task creates several difficulties that must be
overcome for good quality results. Mobile phone camera lenses are usually wide-angle, wide-
aperture, and fixed focal length, with a very narrow depth of field (DOF) and significant
barrel or moustache distortion. Traditionally, the lens distortion would be corrected using a
checkerboard calibration technique [59], but such techniques require either a wide DOF or
a relatively large viewing distance so that the entire checkerboard is in focus for all rotated
camera positions. Furthermore, it is necessary to use auto-focus to accommodate the hand-
held camera motion, but lens “breathing” effects are known to cause lens distortion to vary
dramatically across different focus states. Stitching the panorama, therefore, requires solving
for both the camera pose and the current lens distortion for every video frame independently.

One possible solution for correcting the distortion would be to use a parametric lens
model in conjunction with a homography for the camera pose. However, in practice I found
that typical low-order models with two or three parameters were not sufficiently accurate
for my application, and higher-order models with up to seven parameters were cumbersome,
slow to converge, and easily derailed by local minima. Another solution is to include fiducial
markers to establish known physical locations from which one might compute a homography
for each frame. To undistort the entire image, the markers would need to be placed on the
outside edges of the captured area and all the markers would need to be visible in each video
frame. Even for a relatively small sample of 10x10 cm, this arrangement requires a capture
distance further than 30 cm. However, I found that a capture distance closer to 10-15 cm
produces more oblique lighting and viewing angles, provides a brighter specular highlight,
and allows for a higher resolution image of the surface for BRDF fitting. However, the closer
capture distance necessitates that at most only one or even no markers are visible in each
capture frame, and another alignment technique must be used.

In order to capture larger areas at a close distance, I therefore perform a feature-based
alignment for each frame using multiple overlapping homographies to obtain a piece-wise
linear approximation of the lens distortion, as explained in section 3.1. I establish a global
coordinate system by placing four printed fiducial markers at the far edges of the captured
region and obtaining a single reference image of the entire area taken from a larger distance
than that of the video capture. Figure 3.1 shows a depiction of the capture setup for one and
two cameras. The homography solution for each sub-frame is then calculated relative to this
global space, allowing me to estimate the 3D world coordinate camera and light positions
for all frames, even though 50-80% of frames have no fiducial markers visible.

Fiducial Markers and Reference Image

Fiducial markers are created and detected using the ArUco “6x6_250" predefined library [24].
The actual size of the printed markers is 1.6 cm square. Four markers are placed on the
flat capture surface, one in each corner of the area to be captured. An additional reference
image containing all four markers is also captured at a distance of approximately 30 cm
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Figure 3.1: Example images showing the capture setup for one and two cameras. The capture
distance from the surface is approximately 10-15 cm and the side-by-side arrangement of the
two cameras allows for a larger range of relative light and camera angles.

perpendicular to the surface. The android app “Level Camera” is used to ensure the camera
sensor was parallel to the surface for the reference image [56]. The locations of the fiducial
marker corner points are recorded separately for both the reference image and in each video
frame where the fiducials were visible.

Removing Blurry and Disconnected Frames

Because the camera is hand-held without any physical guide or apparatus, irregular camera
motion can sometimes produce blurry frames as a result of intermittent defocus or motion
blur. To detect blurry frames I compute a blur metric f based on the power spectrum for
each image ¢ such that

f (i) = mean(log,,(0.001 + |F(z)]) (3.1)

where F (i) is the Fourier transform of the image, and the absolute value, log, and addition
operators are applied competent-wise and the mean is taken across the result. Frames with
a value of f(i) less than 1.50 below the mean across all frames are discarded.

When removing frames due to blur or insufficient feature matches, there is a potential for
a small subset of frames to be well-connected to each other but lack sufficient connectivity
to determine a unique homography transformation to other frames in the sequence. In
that case it is impossible to determine an unambiguous projective transformation of that
subset to the global space. At the end of the feature matching process I therefore obtain
the connected sub-graph of the connectivity map with the most members and remove any
frames not contained in that sub-graph.
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Alignment Parameters
Scale | SURF SIFT Max. Dist. | Min. Inliers

0.25 | 1,200 | 3,000 (1,200) | 20 pixels 20 points
1 4,800 | 12,000 (4,800) | 60 pixels 60 points

Table 3.1: The parameters used for the coarse and fine alignment steps. Column 1 shows
the scale of the input image (coarse or fine). Columns 2 and 3 show the number of SURF
and SIFT features extracted from each image (the number of selected SIFT features for
matching is shown in parentheses). Columns 4 and 5 show the maximum distance between
matched inlier points and the minimum number of inlier points for the MLESAC procedure,
respectively.

Coarse Alignment

Although each video frame may be trivially assumed to overlap with its immediate neighbors
in time, accurate stitching of a full panorama also requires accurate loop closure for non-
neighboring frames. However, feature matching across all pairs of frames at full resolution
is costly and also likely to return many false matches for self-similar textures. I therefore
first perform a coarse alignment step at a subsampled scale to determine overlapping frames,
then repeat the process for the full resolution images to obtain the locations of matching
features for the final homography estimation. Parameters for both alignment steps are shown
in Table 3.1.

For the coarse alignment step, each frame is downsampled 4x, and a maximum of up to
1,200 uniformly distributed SURF features [7] and 3,000 SIFT features [37] are extracted
from each frame. SIFT features are obtained and matched using the CudaSIFT library
[8]. Features within a 75 pixel radius of the center of each image are discarded to avoid
false matches of the specular highlight. During the feature matching process, all the SURF
features and a random subset of 1200 SIFT features are uniquely matched (1 to 1) to all
the features from each other frame. The matched feature points are used to estimate a
similarity transformation between each pair of frames using MLESAC [51], with a maximum
distance of 20 pixels between inlier feature locations. Any number of inliers greater than 20
is recorded as a potential match.

The resulting matrix of inlier counts (the connectivity map) is further thresholded and
filtered to remove spurious matches. The threshold for the minimum number of inliers is
determined by the 50th percentile of those frame pairs with some overlap. This ensured
that no more than 50% of all frames can be overlapping and only the strongest connections
remain. Finally, the connectivity map is smoothed using a 5x5 median filter to remove any
non-continuous matches.
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Figure 3.2: The left subfigure shows an example reference image with the user-selected
output region outlined in white, while the right subfigure shows an example video frame
from the same data set with sub-frame boundaries overlaid. The contrast of the example
video frame has been decreased for visualization. The thickness of the black lines indicates
the overlap between adjacent sub-frames.

Fine alignment and subdividing frames

In the fine alignment step, full-scale feature point locations are divided into sub-frame regions
and I obtain a global least-squares solution for the homography transformation of each sub-
frame.

Feature matching is only performed for overlapping image pairs from the coarse alignment
connectivity map, with slightly modified parameters. The flash feature removal radius,
maximum number of SURF features, and the max number of SIF'T features are all scaled up
by 4x. The maximum feature location distance for MLESAC is 60 pixels, and the minimum
number of inliers is 60. The large allowable MLESAC distance error is a reflection of the
amount of lens distortion. Although larger allowable error may cause incorrect matching,
restricting the inliers to only precise matches causes only the undistorted portions of each
frame to be matched, and this defeats the purpose of the alignment process completely. It
is therefore much better to have a larger distance error and enforce precision by increasing
the number of inliers. Ideally, any remaining false matches are greatly outnumbered in the
final least squares minimization process.

The inliers from each frame are divided up into a 5x11 grid of uniformly sized sub-frames
whose dimensions are determined by empirically examining the level of lens distortion in the
phone cameras I used. An illustration of the sub-frame divisions is shown in Figure 3.2. For
our setup, the size of each sub-frame is 448x370 pixels with an X and Y overlap of 25 and
22 pixels, respectively. Due to similarity of camera hardware specifications across mobile
phones, it is likely that these values would be appropriate for other devices as well.
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Linear approximation solution

Once I have obtained the corresponding feature locations, I solve for a homography transfor-
mation matrix for each sub-frame to the global space defined by the location of the fiducial
markers in the reference image.

To obtain the transformation matrices, I perform a global least-squares fit simultaneously
for all corresponding feature pairs across all overlapping frames. My solution is the set of
homography matrices that minimizes the sum of squared differences between the projected
global positions of each shared feature point p, as described in equation 3.2 below.

min 3" |[E, - Hy — B, - 1y (3.2)

where F,, and F,, correspond to the [z, y,w] homogeneous coordinates of feature point p in
each pair of overlapping sub-frames i, j, and H; and H; are the corresponding homography
matrices that project each image into the global space.

Unraveling and concatenating all homography matrices H; into a single vector h allows
me to construct a large sparse matrix F;; where each column corresponds to one entry of
h, and each row corresponds to p; — p,; in homogeneous coordinates. We then solve for
the entries of h such that the error between p; and p; after they have been transformed to
the global space by their corresponding entries is minimized. The minimization problem is
therefore

Fi;-h=0. (3.3)

Furthermore, since a homography is only precise up to a scale factor, I add the following
constraints to define the global space:

H;(3,3) =1 (3.4)
such that the (3,3) entry of each homography matrix is defined to be one, and
E, - hy, + F¢m . h¢m =0 (3.5)

Fm - hgm = —knm (3.6)

where F}, is the set of rows in F},;; containing the m fiducial marker points, h,, is the corre-
sponding entries of h, and Fg,, and hg,, are the remaining entries of F,;; and h, respectively.
The ¢ entries of F},, are from the marker point locations in each sub-frame, while the j entries
are from the marker point locations in the reference image. In (3.6) the product of the known
entries is moved to the righthand side of the equation, yielding —F,,, so that hg,, may be
obtained via least squares.

Pose estimation

I determine the real world position of the camera using the homography of the center sub-
frame of each input image. Each transformation matrix is decomposed into its component
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rotation matrix, R;, and translation vector, ¢; according to the process described in Malis et
al. [39]. T use these components to construct a set of 3D homogeneous matrices as shown in
(3.7), wherein each matrix transforms from the reference image pose to the corresponding
camera pose for each frame.

Rt (3.7)

0 0 01

The reference image camera pose and light position are determined as follows. The field
of view (FOV) of the camera is calculated offline using a one-time calibration image with
an object of known size at known distance. Both the rigid offset of the flash relative to
the camera and the size of the fiducial markers are also measured offline. In my case the
FOV was measured to be approximately 70°, the XYZ offset of the flash is [1.4, -0.3, 0]
centimeters, and the fiducial markers are each 1.6 centimeters tall.

At capture time, the global XYZ origin point is defined to be the point on the captured
surface corresponding to the center of the reference image. The reference camera pose is
therefore located at [0, 0] in XY. The Z distance is triangulated from the FOV and the
average size of the reference fiducial markers in pixels relative to their known physical size
in centimeters. The reference light position is obtained by applying the known flash offset
to the reference camera pose.

Finally, the world-to-image transformation matrix described in (3.7) is applied to both
the reference camera and light positions to obtain the camera and light positions for each
frame. Camera poses located outside the fiducial marker boundaries are not guaranteed to
conform to the global constraints and so are discarded, along with their corresponding video
frames.

3.2 Clustering and BRDF fitting

For each point on the surface, the sparse input samples typically cover only a very tiny sliver
of the 4-dimensional hemisphere used to fit a BRDF. However, most materials are made up
of many regions that share similar reflectance properties that would all be well-described
by a single BRDF with minimal loss of accuracy. I take advantage of this similarity by
clustering these pixels together and fitting a BRDF to each cluster.

Determining the number and size of the clusters presents a trade-off between generaliz-
ability and fidelity to the observed data. There are many ambiguous BRDF solutions that
can produce the same appearance behavior. Larger clusters are likely to include a more
complete sampling of the BRDF hemisphere and therefore converge to a more accurate rep-
resentation, but they are also more likely to obscure the small details and variation which
make spatially varying materials interesting. If the clusters are too small, however, it is
probable that over-fitting will produce an incorrect result which does not generalize to novel
light and view positions which were absent from the captured video.
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Figure 3.3: Initial and final sub-clusters for the two-camera red velvet lamé material. The left
image shows the average color. Five clusters were obtained in the initial clustering (middle),
and the final result included 5,152 sub-clusters (right).

Similar to Lensch et al. [34], my solution is to initialize the BRDF with very large clusters
and a constrained BRDF model, and then recursively subdivide the clusters, initializing each
sub-cluster with the fitting output of its parent. My initial clusters are grouped based on the
average observed color of each pixel and then each cluster and sub-cluster is subdivided based
on the per-pixel residual of the fitted BRDF. This encourages each smaller sub-cluster to
find a solution in the neighborhood of solutions defined by the larger parent cluster, greatly
reducing the likelihood of obtaining an incorrect ambiguous solution.

For each sub-cluster I fit an anisotropic Ward svBRDF [55] and a normal map. I am
therefore able to fit opaque materials that do not have any Fresnel effects. Due to the feature-
based homography alignment process, I also require the scanned material to be relatively
flat and have at least some medium-scale albedo variation to align the input video frames.

Clustering and svBRDF Initialization

Using the aligned images, I coarsely approximate the diffuse albedo color by the average
color of each pixel in the global coordinate space. This average color image is then converted
to CIE 1976 L*a*b* color space. I then apply k-means clustering with k-means-++ initial
centroid positions [5] to the normalized albedo color values. The number of clusters, k, is
chosen based on the linear bisection point of the summed squared Euclidean error across all
values of k in the range k = [2:20]. For my data, typically k=4.

For each initial cluster, I fit an isotropic BRDF (see section 3.2) with a single normal
vector for the cluster, constrained to be perpendicular to the surface (that is, n = [0,0, 1]).
This step initializes pg, ps, and a to reasonable values for the average normal vector orienta-
tion. The initial conditions for the isotropic fitting step are the average color over the entire
cluster for the the diffuse component (p;) and twice the average of the standard deviation
across frames for the specular component (ps). The roughness parameter («) is initialized
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to 0.1.

Once an isotropic BRDF has been fit to each initial cluster, I calculate the least squares
fit error for each pixel in the cluster and recursively subdivide the pixels into two sub-clusters
according to the threshold

t = median(E,y) + mad(Ey) (3.8)

where mad is the median absolute deviation and F),, is the per-pixel fit error averaged over
all observations for each pixel. Each sub-cluster is then fit with a full anisotropic BRDF and
a normal offset, and the per-pixel fit error is calculated for the next iteration. I continue
to subdivide clusters in this way until the size of each cluster reaches of a minimum of 50
pixels. Figure 3.3 shows an example of the progression from initial to final clusters for the
red velvet lamé material.

Redundant Observations

Larger clusters tend to contain many redundant observations of similar materials with almost
identical viewpoints and light locations. These extra observations dramatically increase the
BRDF optimization runtime without improving the accuracy of the fit. To simplify the
fitting process, I apply a binning and averaging step to obtain unique viewpoints and light
locations. At each sub-clustering iteration, I group all observations for all pixels in the
subcluster into 5° increments for each of 6;, ¢;, 8,., and ¢,., and 1 cm increments for the light
radius, 7. For each unique combination of these variables, all the BRDF input parameters
(including light and view positions and observed color) are averaged together into a single
unique observation for fitting. The contribution of each unique observation to the calculated
fitting error is then weighted by the number of raw observations included in its average,
according to Equation 3.11. To calculate the per-pixel fitting error, the fitted value for each
unique viewpoint is applied to all the raw observations in its group.

Reflectance Modeling

I model the surface appearance for each point as the incident light from the camera flash
multiplied by the BRDF and modulated by the solid angle of the light source as a function
of the incident light angle.

The surface appearance is therefore described as

3 0;) - dA
Lr(erv ¢r) = /0 /0 LZ . (817 ¢2) ' pbd<9i7 ¢i; 9T7 Qbr) : % (39>

where
L, is the reflected radiance to the camera

L; is the incident radiance from the light
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pra is the BRDF in RGB color space

0, and ¢, are the camera elevation and azimuth angles
0; and ¢; are the light elevation and azimuth angles
dA is the differential surface area of each pixel

r? is the radial distance to the light source

and all angles are relative to the normal vector. Similar to Aittala et al. [4] and many
others, the ambient light is not explicitly modeled but rather implicitly incorporated into
the BRDF.

The ppq term in (3.9) is the Ward BRDF model, described by the following equation

2 2
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(3.10)

where
pa and p, are the diffuse and specular albedo values in RGB color space
a, and o, are the roughness parameters in X and Y

0, and ¢, are the elevation and azimuthal angles of the half-vector between the light
and camera

In the initial clustering step, an isotropic variant of this model is used wherein o, = a,.
Subsequent subclustering iterations are fitted using the full anisotropic BRDF model and
two normal vector offset angles, ng, and ng_, which describe the rotation of the normal vector
about the X and 7Z axes respectively. In the final syBRDF and normal map, all the pixels
in each sub-cluster are therefore represented by the eight BRDF parameters above (one per
color channel for p; and ps) and two normal vector offset parameters.

The optimization problem is therefore

minimize Zw Z Ly —L,)?

subject to  {pa, ps} >0 0° < my, <45°
{a, 0} >0 0° < ng, <180°
pa+ps =1

(3.11)

where L, is the observed color values, Ly is the fitted BRDF evaluated at corresponding
angles to L,, and w is the number of samples per unique viewpoint as described in section 3.2.
[ solve for (3.11) using a sequential quadratic programming (SQP) optimization function [44].
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3.3 Joining Two Video Streams

Although the reflectance properties of some materials are well-described by observations us-
ing a single collocated camera and light source, incorporating a second simultaneous video
stream allows me to also capture somewhat more complex materials without requiring other
specialized tools. By capturing one video with the camera flash turned on while simultane-
ously capturing a second no-flash video, I can observe the behavior of the scanned material
at more oblique light and view angles and thereby obtain a more complete sampling of the
BRDF.

The majority of the pipeline is image-based and accepts a second video stream without
any significant modification. The only requirement is that the two video streams be tempo-
rally synchronized at the first frame of each video, and that the length of the no-flash video
be shorter than the flash video. This ensures that the position of the light source is known
for all observed input frames.

To synchronize the time streams, I simply begin the no-flash recording first and then
crop the start of the no-flash video to the frame where the light from the flash camera first
appears. At the frame rates used in my capture setup the actual transition frame is typically
highly visible because the rolling shutter effect produces an obvious transition line across
the frame. This method afforded acceptable synchronization for my application where the
hand held cameras are moving relatively slowly.
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Chapter 4

Results

My capture data were obtained using a Samsung Galaxy S6 (or S7 for the second camera).
The resolution of the reference images was 5312x2988, and the videos were captured at a rate
of 30 frames per second (fps) and resolution of 2160x3840 pixels. I captured video in Pro-
Mode with the flash turned on, using a shutter speed of 1/500 seconds and an appropriate
ISO setting for the ambient light level, between 50 and 400. White balance was manually
set at the beginning of each video to ensure consistency across frames.

The camera was moved over the surface by hand in a sinusoidal top-to-bottom and side-
to-side fashion to achieve relatively even coverage of the entire captured area. Typical video
capture distance was between 10-15 centimeters from the surface, and reference image cap-
ture distance was usually around 30 centimeters. Each video was 15-30 seconds in duration,
covering an area of approximately 20x20 cm. From this sequence I extracted every 5th frame
(6 fps) for the single-camera examples and every 10th frame (3 fps) for the two-camera ex-
amples. I found this sampling rate to be an acceptable trade-off between sampling density
and data processing limitations.

I provide examples of seven materials captured with only a single camera (aged metal
patina, blue damask fabric, buffalo leather, metallic embossed paper, orange ceramic tile,
damask fabric reversed, and wood block), and seven materials captured with both one and
two cameras for comparison (abstract oil painting, green faux leather, red velvet lamé, woven
rattan mat, wrapping paper, corkboard, and shiny white tile).

Figure 4.1 shows a rendering of all the captured materials mapped onto spheres and
illuminated by the Pisa environment map with a single additional point light source. The
examples in the left column are captured with two cameras, the middle column depicts
the same materials captured with a single camera, and the right column shows additional
materials captured with only one camera. Figure 4.2 also shows several of the same materials
used in a more natural scene under the the same illumination.

In Figures 4.3 and 4.4 I include a comparison to ground truth using a very oblique
light position. This comparison is challenging because the lighting configuration is very
different from anything in the input data for fitting the svBRDF, so the algorithm must
rely on smoothness assumptions implicit in the Ward model. It is apparent that some high
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frequency texture and corresponding specular highlights are missing for several materials.
These highlights most likely occupy a very sharp peak of the BRDF, and are thus difficult
for any method to accurately reproduce without direct observation. Nonetheless my method
produces a plausible appearance for these samples. Additionally, in a video I also show a
comparison between the input video frames and a rendering of the fitted syBRDF output
using the input light and camera locations, for all materials.

Each of the svBRDF output channels is also included for more detailed analysis in Fig-
ures 4.5 through 4.10. The leftmost column is the average color as described in section 3.2.
The remaining columns are the diffuse color (pg), the specular color (p;), the roughness pa-
rameter in the X direction (o), the roughness parameter in the Y direction (o), and the
normal offset map. For materials captured with both one and two cameras, the results are
shown side by side for comparison. A second video shows the materials textured onto a 3D
object with animated illumination changes, as well as a comparison between the one- and
two-camera results.

The differences between the quality of the single and dual camera results for the red
velvet lamé and wrapping paper materials reveal the importance of broader sampling for
more complex materials. The diffuse parameter color is slightly darker for the two-camera
wrapping paper example, but the overall result is very similar to the one camera result.
However, for the red velvet lamé, the single camera case has much more trouble separating
and distinguishing reflectance behavior that changes quickly with direction, as predicted by
Hui et al. [31]. T still get usable results with a single camera, but the algorithm is unable
to disambiguate between a bright surface tilted away from the camera and a darker surface
tilted toward the camera, resulting in over-fitting to the data. This problem could potentially
be corrected manually, but given that it is relatively easy to use two cellphones, I feel that
two cameras is the preferred option when accurate reproduction is desired.

The corkboard and shiny tile materials illustrate failures for my method caused by over-
fitting. In the case of the corkboard material, sloping of the overall surface normal at the top
of the sample incorrectly bleeds into both the specular and roughness parameters. Although
the resulting material can still be rendered with reasonable results, some applications such as
selective editing of individual layers of the sy BRDF would not be possible. In the shiny tile
material the locations of the flash (dark circles) are segmented out into their own sub-clusters
and fit with a darker specular value to offset the intense flash brightness. The manifestation
of this is more severe, as specular highlights are only apparent at the locations they were
originally observed. The shiny white tile was the only material for which I observed this
behavior, and I speculate that it may be partly caused by a much darker auto-exposure
setting on the camera that was incompatible with the estimated flash radiance value.
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Figure 4.1: All of the scanned materials rendered onto spheres with Mitsuba and illuminated
by the Pisa environment map and a single additional point light source. The right column
is captured with two cameras, the middle column depicts the same materials captured with
a single camera, and the left column shows additional materials captured with only one
camera. From top to bottom and left to right: abstract oil painting, green faux leather,
red velvet lamé, woven rattan mat, wrapping paper, corkboard, shiny white tile, aged metal
patina, blue damask fabric, buffalo leather, metallic embossed paper, orange ceramic tile,
damask fabric reversed, and wood block.
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Figure 4.2: A natural scene with three scanned materials rendered with Mitsuba and illu-
minated by the Pisa environment map and a single additional point light source. The table
surface is textured with the damask fabric reversed material, the teapot is textured with the
faux green leather material, and the teacup is textured with the aged metal patina material.
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Figure 4.3: Comparison to a ground truth photo with an oblique light angle not included
in the input fitting data. For each material shown, the first image is the ground truth and
the second image is a rendering with the same light pose as the ground truth using the data
captured with one camera. Images have been cropped square and resized to fit.
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Figure 4.4: Comparison to a ground truth photo with an oblique light angle not included
in the input fitting data. For each material shown, the first image is the ground truth, the
second image is a rendering with the same light pose as the ground truth using the data
captured with one camera, and the third image shows the same rendering using the data
captured with two cameras. Images have been cropped square and resized to fit.
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Figure 4.5: A sample of the results for five of the seven materials captured with one camera.
Each row, from left to right: average color, pg, ps, 0, @y, and the normal offset map. Images
have been cropped square and resized to fit.
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Figure 4.6: A sample of the results for two of the seven materials captured with one camera.
Each row, from left to right: average color, pg, ps, 0, @, and the normal offset map. Images
have been cropped square and resized to fit.

woven rattan mat (two cameras)

Figure 4.7: Example results showing the fitted svBRDF output. The top row of each material
shows the results for one camera, while the bottom row shows the results for two cameras.
Each row, from left to right: average color, pg, ps, 0, @y, and the normal offset map. Images
have been cropped square and resized to fit.



CHAPTER 4. RESULTS 31

green faux leather (one camera)

green faux leather (two cameras)

red velvet lamé (one camera)
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Figure 4.8: Example results showing the fitted syBRDF output. The top row of each material
shows the results for one camera, while the bottom row shows the results for two cameras.
Each row, from left to right: average color, pg4, ps, 0, @y, and the normal offset map. Images
have been cropped square and resized to fit.



CHAPTER 4. RESULTS 32

Figure 4.9: Example results showing the fitted syBRDF output. The top row of each material
shows the results for one camera, while the bottom row shows the results for two cameras.
Each row, from left to right: average color, pq, ps, 0, @y, and the normal offset map. Images
have been cropped square and resized to fit.
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Figure 4.10: Example results showing two failure cases for the fitted svBRDF output. The
top row of each material shows the results for one camera, while the bottom row shows the
results for two cameras. Each row, from left to right: average color, pq, ps, 0, @y, and the
normal offset map. Images have been cropped square and resized to fit.
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Chapter 5

Conclusion and Future Work

I have demonstrated a new method for capturing and modeling the reflectance and small-
scale normal displacement of nearly flat surfaces using printed fiducial markers and a mobile
phone video with continuous flash. My technique employs a very simple capture process
using off-the-shelf hardware, and the output of my system may be directly textured onto 3D
objects using standard rendering software. I have also provided examples showing a variety
of materials captured with both one and two cameras and rendered under complex lighting
environments.

My technique has several limitations. First, because 1 align the video frame images
using homographies I am only able to capture flat surfaces with relatively minimal surface
relief. In practice, if the surface is smooth but unlevel, the alignment optimization will warp
the unlevel surface to the canonical level surface defined in the reference coordinates and
the camera poses will all be offset by a single homography transformation corresponding
to the tilt of the surface plane. In the svBRDF fitting stage, this will produce reflectance
behavior that is qualitatively similar to the original sample but not directly comparable
for the same light and view positions. On the other hand, if the surface is level but has
significant normal variation, then no correct homography solution can possibly exist and the
strength and number of features on each side of the surface contours may bias the alignment
toward different solutions for each video frame. The resulting svBRDF may therefore find
a solution with correlated variation between reflectance behavior and light position (similar
to the results for overall misaligned images) rather than the true normal vector variation.
This is even more apparent for materials with strong self-shadowing effects.

The feature-based alignment also requires captured materials to have some irregular,
medium-scale textural variation. Extremely repetitive textures may not be aligned with
this method at all, and many materials with both strong specular highlights and repetitive
textural motifs pose a significant challenge for alignment. It may be possible to create a
better feature vector that is specifically tuned to capture similar geometric structure under
varying lighting with greater robustness to a large number of close matches, and this could
improve the robustness of my alignment method. However, Aittala and colleagues [4, 2] have
already proposed two excellent solutions for capturing self-similar materials and I consider
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this work to be complementary to theirs.

The results shown here are generated with very sparse sampling and a very simple BRDF
model, and I am therefore unable to capture phenomena such as Fresnel effects. The methods
I used do not place any restrictions on the BRDF model, and it has been suggested that
some micro-facet models may be better suited to approximating more complex reflectance
behavior [11]. However, it is unclear whether a BRDF model with more parameters might
also require a greater number of constraints or a more precise initialization to achieve stable,
well-behaved solutions. It could also be possible to combine the panorama stitching method
with the dictionary approach proposed by Hui and colleagues [31] to obtain high-resolution
models of complex materials that require sampling at very oblique light and camera angles.
Alternatively, for materials with much more complicated reflectance, my implementation
would allow the second no-flash camera to be placed on a tripod at an oblique angle to the
surface to capture the entire flash sequence from the side. This might result in a non-uniform
reduction in resolution because of the perspective distortion of the tripod camera, but the
trade-off for more complete angular sampling could be worthwhile for some materials.

Finally, my research-quality code is not yet optimized and takes about 2 hours to align
and fit an svBRDF from a 20 second video, half of which is taken up by feature extraction
and matching. I speculate that using optic flow information for loop closure might produce
a better estimation of overlap across frames without the need for feature matching in the
coarse alignment step, providing a significant time savings.

There are many additional sensors that could be added to my pipeline to expand the
possible applications and quality of the results. Depth cameras that are robust to unusual
surface reflectance properties could be used in conjunction with robust point cloud optimiza-
tion to fit an svBRDF of a non-flat object using a mobile phone. Accelerometer data from
the phone could also be used to augment or even replace the pose estimation step. Recent
advances in material estimation using deep learning networks could be incorporated into the
BRDF fitting pipeline to augment material models without having to directly sample oblique
light and viewing angles for each sample. Finally, the user could also be brought into the
loop by selecting a family of materials such as wood or fabric to introduce a soft constraint
on the reflectance properties of the final output.

However, even in its current form I believe that the reduced equipment requirements and
simplicity of my capture methodology is a significant contribution to the state of the art.
Any content creator with access to a printer and a mobile phone can quickly and easily obtain
svBRDFs from a variety of interesting materials encountered in everyday life. I hope that
more accessible capture techniques like this one will democratize realistic svBRDF' capture
for everyone.
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