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Abstract

Digital archives are growing rapidly, necessitating

stronger reliability measures than RAID to avoid data loss

from device failure. Mirroring, a popular solution, is too

expensive over time. We present a compromise solution that

uses multi-level redundancy coding to reduce the probabil-

ity of data loss from multiple simultaneous device failures.

This approach handles small-scale failures of one or two

devices efficiently while still allowing the system to survive

rare-event, larger-scale failures of four or more devices.

In our approach, each disk is split into a set of fixed

size disklets which are used to construct reliability stripes.
To protect against rare event failures, reliability stripes are

grouped into larger “über-groups,” each of which has a

corresponding “über-parity;” über-parity is only used to

recover data when disk failures overwhelm the redundancy

in a single reliability stripe. Über-parity can be stored on

a variety of devices such as NV-RAM and always-on disks

to offset write bottlenecks while still keeping the number of

active devices low.

Our calculations of failure probabilities found that the

addition of über-groups allowed the system to absorb many

more disk failures without data loss. Through discrete event

simulation, we found that adding über-groups only nega-

tively impacts performance when these groups need to be

used for a rebuild. Since rebuilds using über-parity oc-

cur very rarely, they minimally impact system performance

over time. Finally, we showed that robustness against rare

events can be achieved for under 5% of total system cost.

1. Introduction

The amount of archival data in the world is growing
rapidly as more corporations go paperless and more per-
sonal data is stored in the cloud. According to the Enter-

prise Strategy Group, a typical company experiences a 50%
annual data store growth rate [15]. Much of this data, in-
cluding medical records, photographs, and electronic cor-
respondence is archival, which means that it is rarely read
or updated yet may be valuable someday. Our goal is to
propose a method to increase the reliability of storage sys-
tems aimed at this sort of archival data without significantly
increasing either the startup or the operational costs of the
underlying storage system.

Though individual disk failures are more common,
large, correlated rare-event disk failures are a major con-
cern for long-term storage. We want to increase reliability
as much as we can afford to because even a very small loss
rate corresponds to significant data loss. For example, a
10PB system with an annual loss rate of 0.001% still loses
a terabyte of data every decade. Recoverable correlated
failures, i.e. those that only include a subset of the disks,
may include power surges, rack failures, operator errors,
cooling malfunctions, and disk batch failure. To inexpen-
sively protect against these sorts of failures, we propose
supplementing the normal redundancy in a storage system
with relatively few devices worth of additional parity infor-
mation.

The underlying storage system can be any declustered
disk array where data is stored in reliability stripes, and we
add additional protection by grouping a number of stripes
into a larger group we refer to as the “über-group” with its
own corresponding additional parity, the “über-parity.” As
before, failures of small, independent sets of disks are han-
dled using the extent redundancy in the reliability stripe. In
rare event failure cases, we can frequently rebuild all of the
failed disks by reading all data in an über-group and using
the über-parity, thus preventing data loss.

We propose a low cost method of adding reliability to
archival systems while potentially reducing the number of
disks spun up on write, resulting in fewer failed disks and
better write performance. We also analyze the reliabil-
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ity trade-off between adding additional layers of reliability
versus adding parity to existing layers.

The remainder of this paper is organized as follows.
First, we present our system design after a short back-
ground on erasure codes. Then we cover related work in
the field, followed by robustness analysis, a breakdown of
the relevant costs, and experimental results. Finally, we
discuss our results and the future directions of our work.

2. Related Work

Several studies have shown that storing data reliably
over the archival time scale presents additional challenges
to the already difficult field of storage reliability [3, 17, 18].
A challenge of this size requires combining known tech-
niques of enhancing reliability with methods optimized for
the expected workload and time scale of archival storage.

High-performance storage systems such as Ceph and
GPFS that add reliability through mirroring are designed
for systems where availability and performance trump
costs [19, 25]. For a long term system, keeping several
times the number of disks you have for data on hand is
infeasible. Coded systems such as RAID-5 [4] or even
RAID-6 [5] reduce the disk overhead while distributing
the risk for individual blocks of data, but do not provide
enough reliability.

GFS [7] takes this a step further and adds the concept of
multiple levels of redundancy to protect somewhat against
correlated failures. Baker et al. [3] showed that the most
important contributors to long-term storage reliability are
fast detection of latent sector errors, independent replicas,
and fast automatic repair. In archival systems, it is worth
relaxing this fast repair constraint to have strong reliability
without the cost overhead of multiple levels of replication.

Disk-based systems such as Oceanstore [14] and Safe-
Store [13] combine mirroring, erasure codes, and strate-
gic data placement to add reliability to their storage net-
works. While these systems are fast and highly available,
they are less suited for archival storage because they are
not optimized to be low power and low cost. Other tiered
reliability schemes similarly lack an emphasis on cost and
power management [8, 16]. We believe that our methods
will work best over power-aware archival storage systems
such as Pergamum [23] or PARAID [24].

Greenan et al. introduced the idea of using large-stripe
erasure codes for storage [9]. We extend their model from
coding over 2-way mirrored groups to looking at trade-offs
betweenmultiple levels of erasure coding. Since their relia-
bility groups are smaller, they can store parity in NVRAM.
This is a future direction for ourmodel once prices are more
competitive with an always-on disk.

3. System Design

Here, we cover our system architecture after presenting
a brief review of erasure codes and their place in storage
reliability.

3.1. Background: Erasure Codes

Erasure codes transform a message ofm symbols into a
message of n symbols, where k = n − m is the number of
redundant, or parity symbols in the code. Most codes that
are used in storage are systemic, meaning that the origi-
nal input data can be found in some part of the output.
The changes required to turn one message into another is
the Hamming Distance of the code, which for storage cor-
responds to the maximal set of failures that the code can
tolerate. We assume a standard maximum distance sepa-
rable (MDS) code with corresponding Hamming distance
k + 1, meaning we can tolerate k failures in our n sym-
bols. For calculating parity, we follow the same method
as Greenan [10] by using an XOR-parity scheme to calcu-
late single parity and a Reed Solomon scheme otherwise,
giving us fast parity calculation. It is likely that a non-
MDS code could provide better a better cost-benefit ratio
for large stripe reliability groups, and we leave this for fu-
ture work.

3.2. Architecture

Our system is based on a disk arrays with a large, vary-
ing numberD of disks. Each disk is split intoL disklets. A
typical value for L would be 32, 64, or 128. The disk array
groups n disklets into a reliability stripe, so thatm disklets
are storing user data and the remaining k, k = n − m,
disklets store parity. The parities are calculated using a
Maximum Distance Separable Code so that a stripe can
have up to k unavailable disklets without losing access to
all the data stored in the stripe. We assume that the data
is protected against corruption by scrubbing [20, 23]. The
system guarantees that all disklets making up a stripe are
located in different disks. At this level, the disk array is
guaranteed to not suffer data loss with up to k disk failures,
and has a high probability of withstanding even more fail-
ures. When disks fail, the data is reconstructed on other
disks in the system. Over time, the number of disks fluctu-
ates as disks fails and more disks are added to the system
On top of this standard disk array, we introduce our

additional protection mechanism that deals with the occa-
sional data loss in a stripe. The system groups r reliability
stripes into an über-group. Figure 1 shows a sample phys-
ical layout of this architecture. Note that the über-parity
is kept on dedicated devices that may be different device
types than the data disks. For each stripe, it adds s disklets
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Figure 1: Sample physical system layout

storing über-parity. The über-parity is calculated from all
user data in all disklets belonging to a stripe in the über-
group using another erasure correcting code.
Unlike disks in the disk array, the storage devices stor-

ing über-parity only see read-modify-write traffic. The
load at each über-parity disklet is r-times larger than at a
reliability-stripe parity disklet. Thus, without a low write
rate it would be hard to store the über-parity on the same
device type as the data disks even if the über-parity disks
were always left powered on. For a typical low-utilization
archival system, however, the über-parity disks can be
smaller, enterprise class disks that collectively handle the
bandwidth. Today (2009), the disk array would contain
1 TB consumer disks, whereas the über-parity would be
200 GB enterprise disks. Other possible über-parity stor-
age devices include Solid State Disks (SSD), Storage Class
Memory (SCM), or even NV-RAM, all of which may alle-
viate a write bottleneck.
When we use über-parity to reconstruct otherwise lost

data, we need to read all data in the über-group. There-
fore, recovery from the effects of disk failures can be sig-
nificantly more involved than for single stripe failure. We
discuss this further in Sections 7 and 6.
We generate parity in our scheme with two different

erasure correcting codes that together make up a pyramid
code [11]. For our purposes, we can think of this class of
codes as resulting from a large, linear, MDS code such as a
Reed Solomon code with rm data symbols and k+s parity
symbols. We then remove the first k parity symbols from
the code. Instead, we add k parity symbols to each stripe
of m data symbols. These local parity symbols are calcu-
lated in the same way as in the original array except that
we replace the data symbols outside this stripe ofm by ze-
roes. Then, each of the old parity symbols is the sum of the
corresponding new parity symbols. With this code, we can
correct k erased symbols in a stripe using only the infor-
mation from the stripe. Globally, our new code is stronger
than the old one, which can only correct k + s erasures.
Assume a set of erased symbols. If there are f erased sym-

Table 1: Parameters and Sample Values

Parameter Meaning
m data disklets in a reliability strip
k parity disklets in a reliability stripe

n = m + k number of disklets in a reliability stripe
r number of reliability stripes in a über-group

D total number of disks
L number of disklets per disk

N = L · D total number of disklets
d = r · n number of disklets per über-group

u = "D·L
n·r # total number of über-groups

s number of über-parities
f number of failed disks

U = "D·L·s
n·r # number of disks storing über-parity

bols in a stripe and f > k, then call f − k the excess of the
stripe. If the sum of the excesses is less than or equal to s,
then we can still correct the erasures.

4. Analytical Model

We calculate the robustness of our disk array by com-
puting the probability of data loss given a certain number of
disk failures. Robustness calculations avoid several prob-
lems that occur when modeling the reliability of disk ar-
rays. First, because we expect large scale failures, we can-
not assume that disk failures are independent. Without a
large-scale study of correlated data failure over time, mod-
eling correlated disk failure would require assumptions that
make the model meaningless. Similarly, given the required
assumptions, MTTDL is difficult to translate into a real-
world reliability metric. For example, we cannot simply
assume that the failure and rebuild rates of disks are con-
stant as they will vary by device type and installation. Since
this analysis is difficult, we use simulation to get some idea
of the expected MTTDL increase in Section 5.

4.1. Robustness

We define our parameters in Table 1. We assume that
there are a small number f of failed disks at any point.
Since disklets in a stripe come from different disks, the
number x of unavailable disklets in a randomly chosen re-
liability stripe is binomially distributed:

px(f, n, D) =

(

n

x

)

f !(D − n)!(D − f)!

D!(D − f − n + x)!(f − x)!

Each reliability stripe protects itself against disklet un-
availability through k parity disklets. Therefore, the proba-
bility pS that all stripes remain accessible without resorting

3



20 40 60 80 100
Failed Disks

0.2

0.4

0.6

0.8

1.0

Prob. no Über!parity Lost

Figure 2: Probability that no über-parity bearing disk is
lost. n = 16, r = 16,D = 1024

to the über-parities after f disk failures is:

pS(k, f, n, D) =
k

∑

i=0

pi(f, n, D).

We denote the number of failed disks in reliability stripe
i as fi. The erasure correcting code can use the s über-
parities to recover all data as long as

∑r
i=1(fi − k) ≤ s.

Define S to be the set of all tuples !f = (f1, f2, . . . fr)
with non-negative integer coordinates fj such that
∑r

j=1 max(fj − k, 0) ≤ s. The probability pUber that an
über-group has failed is:

pÜber(s, k, f, n, D) =
∑

!f∈S

r
∏

i=1

pfi
(f, n, D).

For instance, an über-group with two parity disks per
stripe (k = 2) and two über-parities per über-group pro-
tects against data loss if there is either one stripe with four
unavailable disklets, one or two stripes with three unavail-
able disklets, or no stripe with more than two unavailable
disklets. Correspondingly:

pUber(2, 2, f, n, D) =

(

n

1

)

p4(f, n, D)pS(k, f, n, D)r−1

+

(

n

1

)

p3(f, n, D)pS(k, f, n, D)r−1

+

(

n

2

)

p3(f, n, D)2pS(k, f, n, D)r−2

+ pS(k, f, n, D)r

4.2. Über-parities Failures

Potential failures of the über-parities have a dispropor-
tionately large effect on system reliability. Since we need to
write to the corresponding über-parity whenever we write
to the system, we analyze robustness with respect to two

Table 2: Data Loss Probabilities: Case 1: über-parity disks
can fail; Case 2: über-parity disks cannot fail. k = 1, s = 1
n = 16, D = 1024, r = 16, L = 64.
f Case 1 Case 2
1 0. 0.
2 0.00159525 0.00160774
3 0.0286551 0.0265257
4 0.106224 0.0998437
5 0.248078 0.237821
6 0.442996 0.431747
7 0.651256 0.642184
8 0.82319 0.8177
9 0.930476 0.928003
10 0.979671 0.978861
11 0.995754 0.995567
12 0.99939 0.99936
13 0.999942 0.999939
14 0.999996 0.999996
15 1. 1.

very different classes of über-parity storage devices. First,
we consider über-parity stored on the same sort of devices
as the data, which we assume are the inexpensive, low-
power commodity drives typical in archival systems. There
are "sD/nr# of these devices, which means that many
disks need to fail to lose a large percentage of the über-
parity (Figure 2), though even losing a little über-parity still
has a considerable impact. Alternatively, if we assume that
the über-parity is stored on a device that “never” fails, the
probability of data loss is given by pdlthe probability that
at least one über-group has lost data:

pdl(s, k, f, n, D, r, L) = 1 − (pUber(s, k, f, n, D, r, L))u .

Going back to the case where über-parity is stored on
the same type of disks as the rest of the data: if we assume
first that there is only one über-parity per über-group, i.e.
s = 1, we can calculate puf , the probability that x of the
über-parity disks have failed assuming that there are f total
failures:

puf (x, f, D, U) =

(

U

x

)(

D

f − x

)(

U + D

f

)−1

.

If x über-parity-disks have failed, then ux/U über-groups
have no protection, whereas (1−x/U)u do. An über-group
without über-parity protection has not suffered data loss
with probability:

pS(k, f, n, D)r.

Hence, the probability of data loss is a sum weighted by the
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probability of losing that many über-parities:

pdl(s, k, f, n, D, r, L) = 1−
f

∑

x=0

puf×puxr/U
S ×p(1−x/U)u

Uber .

Table 2 compares calculated values in a typical configu-
ration. Even though in Case 1 (über-parity can fail) the per-
centage of failed disks is predictably smaller than in Case 2
(über-parity cannot fail), the data loss probability is higher
if f ≥ 3. This indicates that über-parities pull more than
their weight for reliability.

4.3. Parameter Sensitivities

We now investigate the impact of various parameters on
the robustness of disk arrays. For simplicity’s sake we as-
sume that über-parity disks do not fail. Figure 3 gives the
behavior of less reliable configurations with regards to n,
the size of the reliability stripes. Figure 3 also shows that a
single über-parity has almost the same effect on robustness
as increasing k = 1, even though the latter increases the
storage costs for parity by a factor of r = 16.
Our next step is to vary L, n, and r across disk lay-

outs with D = 1024 to examine parameter effects. From
Figures 4, 5, and 6, we see that robustness is most heav-
ily affected by n, which makes sense given that n has the
most effect on the parity overhead. Increasing L lowers ro-
bustness by increasing the chances of encountering a bad
configuration of an über-group with the number of über-
groups. Remarkably, increasing r only modestly hurts ro-
bustness. This is good news since in many architectures,
the über-parities would be stored on more expensive de-
vices. The effect is more pronounced for s = 1 than for
s = 2. When comparing schemes with the same amount of
parity information updated by a write (e.g. k = 2, s = 2
and k = 3, s = 1,) we notice that robustness does not
change much.

4.4. Disk Rebuild Workload

To measure the costs of recovery, we calculated the ex-
pected costs of recovering data after f disk failures. In
these calculations, we assumed that we recover even if
there was some data loss in the array. We depict our re-
sults for the k = 2, s = 2 and k = 3, s = 1 configurations
in Figure 4.4 with parametersD = 1024, L = 64, n = 16,
and r = 16. The graphs show both the cumulative recon-
struction load and the reconstruction load due to recovery
within a single stripe. We measure the load with respect
to accessing a complete disk. Thus, a value of 10 means
that we are reading and writing 10 disks worth of data. The
load is sub-linear in f for two reasons. First, with higher
f, a stripe or an über-group is more likely to contain more

10 20 30 40 50 60 70
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0.2

0.4

0.6

0.8

1.0

prob

0 10 20 30 40 50 60 70
f

0.2

0.4

0.6

0.8

1.0
prob

Figure 7: Rebuild workloads for k = 2, s = 2 (top) and
k = 3, s = 1(bottom).

than one unavailable disklet or unrecoverable stripe. More
failures also mean that it is more likely that the disk array
cannot recover a stripe or an über-group. We can see that
über-parity only becomes important after a relatively high
number of disks in the array have failed.

4.5. Comparisons

10 20 30 40 50 60 70
f

0.2

0.4

0.6

0.8

1.0

Data Loss Probability

10 20 30 40 50 60 70
f

0.2

0.4

0.6

0.8

1.0

Data Loss Probability

Figure 8: Naı̈ve (top) versus Fair (bottom) comparisons be-
tween coding schemes.

We compare the robustness of four schemes, k = 1, s =
3; k = 2, s = 2; k = 3, s = 1; and k = 4, s = 0, all of
which protect a data item with four parities, though they
have different parity storage overheads, namely 19/256,
34/256, 49/256, and 64/256. Figure 8(a) shows that data
loss is most likely when k = 1 and s = 3. If we assume for
a moment that storage costs are the same for über-parity as
for stripe parity, we can make a fairer comparison. Fig-
ure 8(b) compares the k = 4, s = 0 scheme with the
k = 3, s = 1 scheme where we are using n = 20 and
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Figure 3: Data Loss Probabilities varying n = 8, 12, . . .32 for different k, s pairs withD = 1024, r = 16, L = 64.
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(b) n = 8, 12, . . . , 40

5 10 15 20 25 30 35
f

0.2

0.4

0.6

0.8

1.0

Data Loss Probability

(c) r = 8, 16, . . . , 128

Figure 4: Data Loss Probabilities for varying parameters from k = 2, s = 1, D = 1024, r = 16, and L = 64.
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Figure 5: Data Loss Probabilities for varying parameters from k = 3, s = 1, D = 1024, r = 16, and L = 64.
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(c) r = 8, 16, . . . , 128

Figure 6: Data Loss Probabilities for varying parameters from k = 2, s = 2, D = 1024, r = 16, and L = 64.

n = 21 in order to bracket the overhead of the k = 3, s = 1
scheme. Using the über-parity gives us the equivalent of
tolerating seven additional disk failures. When we make
the same comparison with the k = 2, s = 2 scheme, we
need to set n = 30, 31 and find that the k = 2, s = 2
scheme tolerates six more disk failures. However, as we
move more parity from the stripe into the über-group, the
probability of having to use the über-parity for reconstruc-
tion increases (Figure 9). In summary, k = 3, s = 1 ap-
pears to be the best combination of standard parity and
über-parity.

5. Simulation

AnalyzingMTTDL directly is very hard (Section 4), but
it is still a useful metric to see the benefits of über-parity.
To examine the gains in MTTDL, we built a discrete event
simulator that models the time to failure of disks and the
rebuild time after a failure. Each iteration of the simulator
runs until a data loss event is reached and the current time
is recorded. Because we want to capture catastrophic fail-
ures, each iteration takes considerable time to run. Thus,
we present results based on 100 iterations of the simulator,
which has shown sufficient in earlier work [23].
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Figure 9: Probability of Reconstruction using the über-
parity: k = 2, s = 2 (top) and k = 3, s = 1 (bottom),
n = 16, r = 16, L = 64.

Our simulator was built on top of the Python
SimPy library [22] and contains five core events:
DiskFail, DiskRebuild, LargeStripeRebuild,
SectorFail and Scrub. Values for disk failure time,
sector failure time and disk scrub are all drawn from an ex-
ponential distribution. Though we believe that it would be
interesting to look at write bottlenecks in the system, this
system is designed for an archival workload where writes
can be batched. Thus we consider exploring these bottle-
necks as a secondary concern and do not model writes.

We model the effects of disk spin-up by subtracting
10 hours from the life of a disk every time it is spun up [20,
23]. This is a high estimate as newer drives become more
robust, and so our simulation should correspond to a lower
MTTDL in a real system.

We initialized the simulator to 1024 1 TB disks with re-
liability groups of 16 disks and über-groups of 256 disks.
Über-parity is assumed to be stored on the same sort of
disks as the data. Our baseline for comparison is hav-
ing no über-parity represented by the 256-0 point on the
graph. Figure 10 shows the percent increase in MTTDL
over baseline from the addition of über-groups. We see
the most gain in the 15 disk, 1 parity case since the über-
parity has the greatest chance of being invoked. Note that
this is a substantial improvement even though, as we dis-
cuss below, we are making worst case assumptions for disk
rebuild. For systems with more parity, the line becomes ef-
fectively flat. This is due to failures being rare enough that
extra parity matters less and the corresponding simulator
results are more likely to fluctuate.

This is a different parity balance than our analytical re-
sult because it is measuring MTTDL instead of robustness.
Our analytical results answer the question “What parity
balance handles the most failures?” while our simulator re-
sults answer the question “What parity balance will result

in the highest increase in MTTDL?” Also, since, making
the assumptions needed to model correlated failures makes
the model meaningless, we modeled failures as indepen-
dent disk events pulled from an exponential distribution.
We believe that a real-world scenario will have more cor-
related failures and thus will show über-parity being more
useful for higher values of k.
We used a disk read rate of 7 MB/s to rebuild the disks,

which leads to a standard rebuild time of approximately
10 hours and a worst case über-parity rebuild time of one
week. This is a long period without data availability, but
we do not expect disks in an archival system to be un-
der a heavy read load and furthermore we expect the disk
read time for commodity hard drives to approach that of
current enterprise drives, which have read rates as high as
125 MB/s [1] within a few years, potentially decreasing
the über-parity rebuild time by an order of magnitude. Fi-
nally, we stress this is a worst case, only triggered by all
of the über-groups needing to rebuild simultaneously and
each only operating at a quarter of the read rate.
We are simulating that rebuilding can only use up to a

quarter of the disk bandwidth and only read from 16 disks
at a time. However, the Reed Solomon style encoding we
are using is completely parallelizable. Thus, if an installa-
tion could temporarily sacrifice disk bandwidth, the rebuild
time would reduce to hours instead of days. Refer back to
Section 7 for a more thorough analysis of rebuild perfor-
mance.

6. Cost Analysis

Additional parity will always add reliability. The more
interesting question is “Is the observed increase in reliabil-
ity worth the cost?”. An archival system is meant to run
for the foreseeable future, so it is important to consider
the operational cost projection as well the up-front costs of
implementing any system meant to handle archival work-
loads. While it is important to keep the up-front cost low,
we project that hardware prices will continue to decrease
while operational costs, dominated by power, cooling, and
data-center availability, will not decrease.
Assume a 10 PB system composed of 1 TB disks that are

kept powered down unless needed for a write. Low power
commodity terabyte drives are available for about $100 [6].
For increased bandwidth, we want to store über-parity on
smaller disks than the data disks. Say that we have 1 TB of
über-parity stored on seven 160 GB enterprise disks, which
can be found for about $50 each [2]. This means that if we
add 1 TB of über-parity disk every 100 disks, we are adding
$3850 per petabyte, or about 4%, to the startup cost of the
system. NV-RAM currently costs about $1 per gigabyte,
leading to an 11% system overhead. While flash is more
reliable than disk, there are few enough über-parity devices
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Figure 10: Percent increase in MTTDL with über-parity vs. no über-parity

that the impact of the device reliability is minimal, and thus
we feel that the cost overhead is too high to justify having
NV-RAM instead of having ten times the number of parity
disks. In the future, solid state drives (SSDs) may also be
an option, but as of now terabyte SSDs are expected to start
at over $10,000 a piece [12].
The running cost of the additional disk is mainly the

power it consumes. While running additional disks in a
data center certainly makes the entire data center warmer,
whether or not this will incur an increase in cooling costs
is difficult to know [21]. On a power-aware archival sys-
tem, we expect disks to typically be spun up about 5% of
the time. Assuming $0.12 per KWatt with modern efficient
drives, this results in an annual operating cost of at least
$40,000. The additional annual operating cost is approxi-
mately $3,000, or 0.7% overhead, and thus a small enough
overhead that the reliability increase is well worth the cost.

7. Future Work

We see several possible extensions to this project. First,
our current analysis is restricted to MDS codes. Non-MDS
codes could allow us to encode our domain knowledge
about the reliability of different sets of disks into the code
itself. For example, if an organization has servers in sev-
eral stable areas and one volatile area, the large-stripe code
could be biased to handle three failures in the unstable re-
gion and only one in the stable for less cost than adding
three-disk parity across the entire stripe. This will be es-
pecially important as we hope to move this technique from
always-on disks to NV-RAM as prices decrease. Another
area for future development is to account for correlated fail-
ures. As we discussed in Section 1, catastrophic, large-

scale failures are likely to correspond to real world events
such as a fire or a batch failure, and thus it is more correct
to treat them as correlated events. This presents several dif-
ficulties in modeling and simulation, especially as there are
very few datasets from which to obtain priors for a real-
world failure model.

8. Conclusion

We have presented a powerful technique for increasing
the reliability of an archival system for minimal cost. In
our analysis, we saw that using über-parity allowed us to
tolerate up to seven additional disk failures. In the simu-
lation, we see up to a four-fold improvement in MTTDL
after adding über-parity. In short, we have a more robust
system than RAID and require many fewer disks than mir-
roring. Thus, with its correspondingly low lost, we believe
adding über-parity is a good value proposition for archival
storage systems. Finally, adding über-parity to a system is
also easy for an administrator to manage, and thus, given
an amenable workload, is a clear choice for making an
archival system more robust.
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