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Neural	mechanisms	of	motor	skill	flexibility	in	songbirds	

by	Lucas	Tian	

Abstract	

	 Even	well-learned	motor	skills	must	be	performed	differently	depending	on	context	

(e.g.,	the	skills	involved	in	riding	a	mountain	bike	and	road	bike	will	generally	differ).	At	the	

same	 time,	 learning	 must	 take	 advantage	 of	 the	 similarities	 between	 similar	 skills	

performed	 in	 different	 contexts	 by	 transferring,	 or	 generalizing,	 learning	 gained	 in	 one	

context	to	performance	of	similar	skills	in	other	contexts	(e.g.,	it	would	be	useful	if	learning	

first	how	to	ride	a	road	bike	makes	it	easier	to	then	learn	how	to	ride	a	mountain	bike).	The	

flexibility	 of	 motor	 skills,	 therefore,	 depends	 on	 the	 ability	 for	 the	 nervous	 system	 to	

adaptively	balance	the	generalization	and	specificity	of	learned	modifications.	

	 This	adaptive	balance	is	perhaps	best	illustrated	in	sequential	motor	skills,	such	as	

speech	or	dance	(indeed	“sequential”	applies	to	a	wide	range	of	skills).	These	skills	depend	

on	the	reuse	of	individual	gestures	in	multiple	sequential	contexts	(e.g.,	a	single	phoneme	

in	 different	 words).	 Yet	 optimal	 performance	 requires	 that	 a	 given	 gesture	 be	modified	

appropriately	 depending	 on	 the	 sequence	 in	 which	 it	 occurs	 -	 this	 “coarticulation”	 is	

thought	 to	 enable	 the	 smooth	 and	 rapid	production	of	 skills.	A	diversity	 of	 experimental	

studies	 on	 humans	 have	 revealed	 that	 learned	modification	 to	 a	 given	 gesture	 tends	 to	

generalize	when	the	same	gesture	is	used	in	other	contexts;	however,	there	is	an	additional	

capacity	 to	 learn	 highly	 context-specific	 modifications	 to	 individual	 gestures	 if	 such	

learning	is	the	optimal	way	to	respond	in	a	given	sensory	environment.	How	this	adaptive	
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balance	 between	 generalization	 and	 specificity	 is	 implemented	 in	 neural	 mechanisms	 is	

largely	unclear.	

	 In	 this	 dissertation	 I	 report	 on	 experiments	 describing	 the	 neural	 mechanisms	

enabling	generalization	and	specificity	of	vocal	learning	in	birdsong.	Bengalese	finch	song	

consists	of	variable	sequences	of	discrete	vocalizations	called	“syllables.”	I	first	showed	that	

at	the	behavioral	level,	Bengalese	finches	balance	generalization	and	specificity	of	learned	

modifications	 to	 syllables	 in	 a	 manner	 that	 looks	 remarkably	 similar	 to	 the	 balance	

previously	 demonstrated	 for	 humans	 in	 similar	 motor	 adaptation	 experiments.	 In	

particular,	 when	 birds	 are	 instructed	 to	 modify	 a	 syllable	 in	 one	 sequential	 context,	

learning	generalizes	across	contexts;	however,	if	unique	instruction	is	provided	in	different	

contexts,	 learning	 is	 highly-specific	 for	 each	 context,	 to	 an	 extent	 unexpected	 given	 the	

original	propensity	to	generalize.	

	 I	 then	 used	 localized	 inactivation	 of	 a	 cortical-basal	 ganglia	 circuit	 specialized	 for	

song	to	find	that	this	balance	between	generalization	and	specificity	reflects	a	hierarchical	

organization	 of	 neural	 substrates.	 Primary	 motor	 circuitry	 [the	 “motor	 pathway”	 (MP)]	

encodes	 a	 core	 syllable	 representation	 that	 contributes	 to	 generalization,	 while	 context-

specific	input	from	cortical-basal	ganglia	circuitry	[the	“anterior	forebrain	pathway”	(AFP)]	

biases	this	representation	to	enable	context-specific	learning.	

	 Finally,	 I	 performed	 neural	 recording	 experiments	 with	 the	 goal	 of	 further	

understanding	how,	in	terms	of	changes	to	neural	activity,	this	context-specific	pitch	bias	is	

implemented.	By	analyzing	the	correlation	between	spiking	activity	in	LMAN	(the	output	of	

the	AFP)	and	RA	(the	primary	motor	circuitry	within	the	MP	crucial	for	encoding	syllable	

acoustic	structure)	during	singing	and	learning,	we	found	evidence	suggesting	the	presence	
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of	a	premotor	signal	conveyed	from	LMAN	to	RA,	generated	during	learning,	which	acts	to	

bias	pitch	through	biasing	of	motor	activity	in	RA.	This	biasing	signal	may	be	the	outcome	

of	the	integration	of	signals	encoding	context,	performance,	and	feedback	in	the	AFP.	

	 Taken	together,	these	results	(1)	establish	Bengalese	finch	song	as	a	model	system	

to	study	the	flexibility	of	motor	skill	learning,	(2)	localize	two	key	behavioral	components	

of	 flexibility	 -	 generalization	 and	 specificity	 -	 to	 two	 different	 circuits,	 and	 (3)	 provide	

empirical	 support	 for	 the	 neural	 mechanisms	 by	 which	 these	 two	 circuits	 interact	 to	

adaptively	balance	generalization	and	specificity	of	learning.		

	 Beyond	 birdsong,	 these	 findings	 may	 suggest	 broader	 principles	 regarding	 the	

neural	 mechanisms	 of	 flexibility	 in	 the	 learning	 and	 execution	 of	 motor	 skills,	 the	

contributions	 of	 cortical-basal	 ganglia	 circuitry	 to	 such	 flexibility,	 and	 the	 neural	

mechanisms	involved	in	the	control	and	adaptation	of	sequenced	motor	skills.	
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Chapter	1:	Introduction	

	 I	will	 first	provide	a	broad	overview	of	the	problems	in	the	neuroscience	of	motor	

skills	that	are	driving	the	work	in	this	dissertation.	I	then	introduce	birdsong	and	motivate	

its	use	as	a	model	to	study	these	problems.	Because	Chapters	2	and	3	each	have	their	own	

introduction	 and	 discussion	 sections,	 in	 this	 chapter	 I	 have	 tried,	 for	 points	 that	will	 be	

made	in	Chapters	2	or	3,	to	limit	the	amount	of	detail	included	here.	In	Chapter	4	I	try	to	tie	

together	all	the	findings	and	relate	them	to	some	more	general	research	problems.	

	

1.1.	Motor	skill	flexibility		

An	experimental	approach	to	motor	skill	flexibility.	

	 Motor	 skills	 allow	 us	 to	 interact	 with	 the	 world	 in	 a	 goal-directed	 manner.	 The	

ability	 to	 precisely	 coordinate	 muscle	 activity	 to	 generate	 movement	 enables	

communication,	tool	use,	locomotion,	sport,	dance,	and	contributes	to	virtually	all	animals’	

behaviors.	Motor	skills	depend	on	the	ability	 for	 the	brain	 to	generate	patterned	activity,	

appropriate	 for	 a	 given	 context,	 goal,	 action,	 that	 is	 conveyed	 through	 the	 rest	 of	 the	

nervous	system	to	drive	appropriately	patterned	activity	of	muscles.		

	 A	 remarkable	 feature	 of	 motor	 skill	 is	 its	 flexibility	 (Adolph	 and	 Eppler,	 2002;	

Bernstein,	1996;	Clearfield	and	Thelen,	2001;	MacKay,	1982;	Wolpert	and	Kawato,	1998;	

Wolpert	et	al.,	2001).	The	movements	underlying	a	given	skill	are	not	generally	produced	

in	an	identical	fashion	from	use	to	use;	instead	the	movements	are	adaptively	modified	in	a	

manner	 appropriate	 for	 all	 the	 different	 contexts	 and	 situations	 in	 which	 it	 may	 be	

expressed.	 Somehow	 the	 nervous	 system	must	 “know”	 how	 to	modify	 the	 way	 a	 tennis	
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racket	is	swung	depending	on	context	unique	to	each	instance	(e.g.,	body	posture,	location	

of	 opponent,	 spin	 on	 the	 ball,	 etc.).	 On	 the	 other	 hand,	 some	 movements	 should1	be	

performed	in	a	similar	way	across	different	contexts	because	these	contexts	do	not	differ	in	

their	demands	on	the	movement	(e.g.,	as	a	tennis	player	tires	gradually	over	the	course	a	

match,	she	should	generally	compensate	in	a	similar	way	across	all	movements	in	order	to	

counteract	 this	 fatigue);	 as	 a	 result	 it	would	be	 optimal	 for	 any	 learned	modifications	 to	

those	 movements	 to	 transfer,	 or	 generalize	 to	 all	 contexts	 in	 which	 this	 movement	 is	

performed.	 In	 general,	 the	 ability	 to	 transfer	 learned	 modifications	 allows	 for	 the	

performance	of	new	skills	with	as	little	relearning	as	possible,	and	also	the	ability	to	build	

on	prior	learning	to	acquire	increasingly	complex	skills.		

	 In	this	dissertation,	the	term	“flexibility”	will	be	used	to	denote	the	ability	to	

adaptively	balance	these	seemingly	competing	aspects	of	motor	skills:	generalization	and	

specificity.	Flexibility	has	been	studied	both	in	naturalistic	behaviors	(Adolph	and	Eppler,	

2002;	Bernstein,	1996;	Clearfield	and	Thelen,	2001;	MacKay,	1982;	Wolpert	et	al.,	2001)	as	

well	as	in	motor	adaption	studies	in	which	the	experimenter	has	precise	control	over	the	

types	of	movements	being	performed	and,	crucially,	the	type	of	sensory	feedback	subjects	

receive	during	movements	(details	below).	Experimentally-induced	systematic	

perturbation	of	sensory	feedback	acts	as	the	training	signal,	which	drives	a	gradual	

																																																								
1	From	the	standpoint	of	what	might	be	“optimal,”	which,	admittedly,	the	nervous	system	

does	not	a	priori	have	to	care	about.	

2	Two	main	types	of	perturbations	are	used:	one	is	a	predictable	force	field	that	perturbs	



	

	 3	

modification	of	behavior	in	a	manner	that	counteract	that	perturbation2.	This	form	of	

motor	learning	is	called	“motor	adaptation.”		

	 Flexibility	 in	motor	adaptation	is	assessed	by	testing	generalization	and	specificity	

of	learning	across	contexts.	Subjects	tend	to	exhibit	partial	generalization	of	learning	across	

contexts	 if	 training	 signals	 are	provided	when	 a	motor	 gesture	 is	 performed	 in	 only	 one	

context.	 For	 example,	 training	 in	 one	 sequential	 context,	 defined	 by	 the	 sequence	 of	

gestures	in	which	the	gesture	“targeted”	for	learning	is	embedded3,	tends	to	generalize	to	

when	 the	 targeted	 gesture	 is	 produced	 in	 other	 sequential	 contexts	 (Houde	 and	 Jordan,	

1998;	Howard	and	Franklin,	2015;	Rochet-Capellan	et	al.,	2012)].	However,	subjects	reveal	

a	capacity	for	learning	modifications	that	are	highly	specific	to	context	if	different	types	of	

incompatible	 training	 signals4	are	 provided	 in	 multiple	 contexts	 (Gandolfo	 et	 al.,	 1996;	

Howard	et	al.,	2012;	Nozaki	et	al.,	2006;	Pearson	et	al.,	2010;	Rochet-Capellan	and	Ostry,	

2011;	Wainscott	et	al.,	2004).	People	therefore	demonstrate	an	adaptive	balance	between	

generalization	and	specificity;	this	balance	depends	on	the	extent	to	which	feedback	signals	

differ	across	contexts5.	The	overarching	question	in	this	dissertation	is:	what	mechanisms	

in	the	brain	enable	this	balance	of	generalization	and	specificity?		

																																																								
2	Two	main	types	of	perturbations	are	used:	one	is	a	predictable	force	field	that	perturbs	

movements	and	the	other	is	disruption	of	sensory	feedback	during	the	movement.	

3	E.g.,	the	word	in	which	a	phoneme	is	embedded,	or	the	sequence	of	arm	movements	

directly	preceding	and	following	a	discrete	reaching	movement.	

4	Incompatible	in	the	sense	that	the	modifications	they	are	driving	are	opposite	to	each	

other.		

5	A	more	extensive	discussion	of	the	study	of	flexibility	in	motor	adaptation	is	in	Chapter	4.		
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Motor	skills	depend	on	the	reuse	of	a	smaller	set	of	motor	“primitives”	in	a	larger	set	of	

contexts.	

	 Posing	this	question	about	generalization	and	specificity	implicitly	assumes,	to	some	

extent,	that	motor	skills	are	organized	in	a	manner	that	involves	the	reuse	of	a	set	of	motor	

gestures	 or	 primitives	 in	 a	 large	 set	 of	 contexts.	 What	 evidence	 is	 there	 that	 skills	 are	

controlled	 in	 this	 hierarchical	 manner? 6 	Indeed,	 it	 is	 difficult	 to	 directly	 observe	

hierarchical	 structure	 from	 inspection	 of	 behavior	 partly	 because	well-learned	 skills	 are	

often	produced	 in	a	highly	smooth	manner	 that	belies	 the	 involvement	of	discrete	motor	

gestures.	 However,	 there	 are	 various	 lines	 of	 evidence	 consistent	 with	 motor	 skills	

depending	 on	 the	 recombination	 of	 motor	 gestures:	 (1)	 There	 is	 the	 common-sense	

argument	that,	given	the	extremely	large	set	of	slightly	different	skilled	sequences	that	one	

could	 perform,	 it	would	 be	 impossible	 to	 learn	 to	 produce	 each	 through	practice	 -	 there	

must	be	some	reuse	of	a	smaller	set	of	primitives	[e.g.,	(Bernstein,	1996;	Jordan,	1986)].	(2)	

There	is	evidence	from	stimulation	studies	and	analyses	of	muscle	electromyography	that	

movements	may	be	constructed	by	the	superposition	and	sequencing	of	primitives	defined	

by	muscle	co-activation	patterns,	or	 “synergies”	(d’Avella	et	al.,	2003,	2015;	Berger	et	al.,	

2013;	Dominici	and	Lacquaniti,	2011).	(3)	Neural	recordings	and	imaging	studies	of	brain	

circuits	 have	 found	 evidence	 for	 hierarchical	 representations	 of	 motor	 sequences	

																																																								
6	“Hierarchical”	in	the	sense	that	representations	of	motor	gestures	make	up	the	lower	

level,	and	sequencing/selection/action/planning	processes	make	up	the	higher	level.	See	

Chapter	4	for	a	discussion	of	different	types	of	hierarchies	in	motor	skills.		
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(Averbeck	et	al.,	2002;	Diedrichsen	and	Kornysheva,	2015;	Tanji	and	Shima,	1994)7.	(4)	It	is	

possible	 for	 some	brain	manipulations	 to	 specifically	 impair	 sequencing,	 but	 leave	 intact	

execution	of	individual	actions	[e.g.,	(Aldridge	and	Berridge,	1998;	Cromwell	and	Berridge,	

1996;	Markowitz	et	al.,	2018;	Shallice	and	Burgess,	1991)]	and	for	other	manipulations	to	

specifically	 impair	execution	while	minimally	affecting	sequencing	(Long	et	al.,	2016).	(5)	

Analysis	of	how	learned	adaptations	to	an	action,	trained	in	one	context	(e.g.	body	posture,	

action	 sequence)	 automatically	 generalizes	 to	 production	 of	 the	 same	 action	 in	 other	

contexts	 indicates	 that	 similar	 neural	 substrates	 are	 involved	 even	 in	 different	 contexts	

[see	 (Poggio	 and	 Bizzi,	 2004;	 Shadmehr	 and	 Mussa-Ivaldi,	 1994)	 and	 discussion	 in	 this	

Chapter	 and	 Chapter	 4).	 (6)	 Detailed	 analysis	 of	 speech	 behavior,	 especially	 of	 errors	 in	

motor	 skill	 production,	 provide	 evidence	 for	 hierarchical	 mechanisms	 [(Hickok,	 2012;	

Sternberg	and	Wright,	 1978);	 for	 an	alternative	view	on	 speech	errors	 see	 (Mowrey	and	

MacKay,	1990)].	While	a	strict	hierarchical	model	is	unlikely	to	entirely	account	for	motor	

skills,	 not	 the	 least	 because	 feedback	 from	 lower	 to	higher	 levels	 is	 crucial,	 the	 evidence	

seems	to	be	strong	enough	such	that	one	can	frame	the	problem	of	motor	skill	flexibility	as	

one	of	understanding	 the	balance	between	generalization	and	specificity	of	modifications	

to	motor	gestures.	

	

																																																								
7	Although	note	that	there	is	also	neural	recording	evidence	that	even	regions	that	one	

might	position	“lower”	in	the	hierarchy	often	exhibits	activity	that	encodes	“higher”	

features	(Ben-Shaul	et	al.,	2004;	Lu	and	Ashe,	2005;	Ostry	et	al.,	1996).	This	argues	that	

even	in	a	hierarchical	model,	there	is	an	important	place	for	feedback	and	non-feedforward	

processing.		
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Neural	mechanisms	of	motor	skill	flexibility	

	 There	 is	extensive	research	 in	human	(and	to	a	 lesser	extent	non-human	primate)	

motor	adaptation	studies	on	patterns	of	how	adaptation	to	a	given	gesture	(e.g.,	a	reaching	

movement	 performed	 to	 one	 target)	 generalizes	 to	 similar	 gestures	 (e.g.,	 a	 reaching	

movement	 to	 another	 nearby	 target,	 or	 the	 same	 reaching	movement	 but	 in	 a	 different	

sequential	 context).	Any	natural	 tendency	 to	partially	 generalize	 is	 thought	 to	 reflect	 the	

similarity	of	the	underlying	neural	substrates,	or	somewhat	synonymously,	the	coordinate	

system	in	which	the	action	is	controlled)	(Mattar	and	Ostry,	2007;	Poggio	and	Bizzi,	2004;	

Shadmehr	and	Mussa-Ivaldi,	1994).	

	 A	crucial	finding	is	that	the	motor	system	is	not	hard-wired	to	generalize.	In	fact	it	

has	a	remarkable	ability	to	 learn	specific	adaptations	associated	with	different	contextual	

cues,	if	those	cues	are	predictive	of	different	types	of	feedback	or	constraints	on	movement.	

From	 an	 ethological	 standpoint	 the	 efficacy	 of	 a	 contextual	 cue	 in	 supporting	 context-

dependent	 adaptation	 seems	 to	 relate	 to	 whether	 it	 would	 normally	 be	 associated	 with	

different	 movement	 requirements;	 for	 example,	 arbitrary	 visual	 cues	 are	 not	 effective	

(Gandolfo	 et	 al.,	 1996;	 Howard	 et	 al.,	 2013;	 Osu	 et	 al.,	 2004),	 while	 some	 of	 the	 most	

effective	 cues	 are	 differences	 in	 posture	 (Gandolfo	 et	 al.,	 1996)	 and	 sequential	 context	

(Howard	et	al.,	2012;	Rochet-Capellan	and	Ostry,	2011)8.	This	might	reflect	that	in	the	real	

world	execution	often	should	differ	based	on	body	state	or	posture	or	action	sequence9.	

																																																								
8	In	Chapter	4	is	a	more	extensive	discussion	of	context-dependent	adaptation.	See	(Ayala,	

2015)	for	a	recent	survey.	

9	Interestingly,	people	seem	much	better	at	using	visual	cues	if	those	cues	are	somehow	

realistically	incorporated	into	something	that	looks	like	a	virtual	tool	(Cothros	et	al.,	2009;	
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	 How	 does	 the	 brain	 learn	 context-dependent	 adaptations10?	 Partly	 because	 these	

studies	 focus	 on	 human	 subjects,	 there	 is	 not	 much	 direct	 understanding	 of	 neural	

mechanism.	In	brief,	there	is	an	expectation	that	the	brain	contains	internal	models	that	it	

can	 switch	 between	 depending	 on	 contexts,	 thus	 enabling	 context-dependent	 behavior.	

These	 ideas,	 and	 their	 relation	 to	 the	 experimental	 findings	 in	 this	 dissertation,	 will	 be	

discussed	in	Chapter	4.		 		

	

1.2.	The	songbird	as	a	model	for	motor	skill	learning	and	production	 	

	 The	 songbird	 has	 for	 decades	 been	 a	 prominent	 model	 system	 for	 studying	 the	

neural	mechanisms	of	motor	skill	 learning	and	production.	There	are	a	 few	 features	 that	

position	birdsong	as	a	useful	model	system.	

	 First,	birdsong	is	learned	through	a	process	that	is	similar	that	that	underlying	the	

learning	of	complex	motor	skills	in	other	species,	and	has	particularly	striking	parallels	to	

the	learning	of	speech	(Doupe	and	Kuhl,	1999).	Learning	involves	a	development	process	

																																																																																																																																																																																			
Howard	et	al.,	2013).	A	similar	“selection”	for	sensory	cues	by	ethological	relevance	occurs	

in	other	behaviors	(Garcia	and	Koelling,	1966).	

10	Note	that	the	above	discussion	focused	entirely	on	laboratory	studies	of	motor	

adaptation,	which	focus	on	the	modification	of	movement	execution,	in	experimental	

paradigms	that	control	for	modification	to	other	features	of	motor	skills	(e.g.,	sequencing).	

However,	the	neuroscience	of	motor	learning	and	control	spans	a	wide	range	of	organisms	

and	tasks;	some	tasks,	such	as	the	learning	of	a	new	skill,	may	involve	a	wide	range	of	

interacting	learning	processes	often	studied	in	separate	subfields	(e.g.,	action	selection,	

sequence	learning,	motor	adaptation).	Chapter	4	includes	a	discussion	of	how	these	

multiple	aspects	of	motor	learning	may	involve	similar	underlying	processes	in	the	basal	

ganglia	(building	on	the	role	of	basal	ganglia	in	birdsong	learning).	
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that	 occurs	 in	 multiple,	 overlapping	 stages	 (Doupe	 and	 Kuhl,	 1999;	 Immelmann,	 1969;	

Konishi,	 1965;	Marler;	 Price,	 1979;	 Thorpe,	 1958).	 In	 the	 “sensory”	 stage,	 juvenile	 birds	

listen	to	and	memorize	the	songs	of	adults	-	this	auditory	memory	forms	a	“template”;	the	

goal	 of	 song	 learning	 is	 to	 mimic	 this	 template.	 Next,	 during	 the	 “sensorimotor	 stage”,	

through	extensive	practice,	birds	transition	from	singing	an	unstructured	“subsong”	(akin	

to	 “babbling”	 in	 speech),	 to	 a	 crystallized	 adult	 song.	 Adult	 song	 can	 be	 described	 as	

consisting	 of	 relatively	 stereotyped	 sequences	 of	 discrete	 vocalizations	 called	 “syllables”	

(Figure	2.1).	This	sensorimotor	practice	requires	both	motor	production	and	hearing,	and	

is	 thought	 to	depend	on	a	 trial-and-error	process	by	which	sensory-motor	circuits	 in	 the	

brain	 evaluate	 sensory	 feedback	 in	 order	 to	 appropriately	 modify	 subsequent	 motor	

output.		

	 Second,	song	 is	relatively	unique	among	complex	motor	skills	 in	 its	amenability	to	

detailed	quantitative	monitoring	and	analysis.	The	“goal”	of	the	motor	system,	for	birdsong,	

is	 to	 produce	 sounds	 of	 certain	 acoustic	 quality	 in	 its	 frequency	 content,	 loudness,	 and	

temporal	modulation	all	of	which	can	be	recorded	in	its	entirety	and	quantified	precisely.	

This	amenability	to	quantitative	monitoring	allows	for	the	detailed	study	of	the	behavioral	

learning	 trajectory,	 and	 the	 analysis	 of	 behavioral	 variation	 and	 how	 it	 correlates	 with	

neural	 signals	 and	 is	 affected	 by	 various	 nervous	 system	 manipulations.	 Moreover,	 the	

ability	 to	 synthetically	 mimic	 song	 by	 playing	 sounds	 through	 a	 speaker	 allows	 for	 the	

experimental	manipulation	of	auditory	tutoring	and	feedback.	

	 Third,	 songbirds	 are	 tractable	 for	 experimental	manipulations	 in	 the	 brain	 due	 to	

their	small	size	and	the	anatomy	of	the	brain	regions	for	song	learning	and	control.	These	

regions	 form	 a	 circuit	 consisting	 of	 discrete	 interconnected	 nuclei	 (see	 Figure	 2.3	 and	
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corresponding	text	for	details).	The	fact	that	these	nuclei	seem	to	only	be	involved	in	song	

and	 no	 other	 behaviors,	 and	 are	 anatomically	 separated	 from	 each	 other,	 allows	 for	

experimental	manipulations	of	relatively	high	specificity.		

	

The	role	of	the	Anterior	Forebrain	Pathway	(AFP)	in	song	plasticity	

	 Lesions	 in	 the	 anterior	 forebrain	 pathway	 (AFP)	 dramatically	 impair	 song	

development	in	juveniles	(Bottjer	et	al.,	1984;	Scharff	and	Nottebohm,	1991;	Sohrabji	et	al.,	

1990)).	Early	on,	it	was	shown	that	part	of	the	contribution	of	the	AFP	to	song	plasticity	is	

likely	 in	 providing	 trophic	 support	 of	 the	 developmental	 changes	 in	 the	motor	 pathway	

(MP)	 that	 are	 crucial	 for	 song	 learning	 (e.g.,	 release	 of	 growth	 factors)	 (Akutagawa	 and	

Konishi,	 1994,	 1998;	 Johnson	 and	 Bottjer,	 1994;	 Johnson	 et	 al.,	 1997;	 Kittelberger	 and	

Mooney,	1999,	2005).	In	addition,	it	was	hypothesized	that	the	AFP	may	also	play	an	active	

role	in	conveying	signals	reflecting	the	outcome	of	an	error	computation	process	(either	in	

the	 AFP	 or	 upstream).	 The	 AFP	would	 therefore	 contribute	 a	 biasing	 signal	 that	 pushes	

behavior	closer	towards	mimicking	the	memorized	tutor	song	template	[e.g.,	(Bottjer	et	al.,	

1984;	Doupe	and	Konishi,	1991;	Scharff	and	Nottebohm,	1991)].	

	 The	 strongest	 evidence	 that	 the	 AFP	 not	 only	 provides	 trophic	 support,	 but	 also	

biases	 behavior	 as	 part	 of	 an	 active	 error-driven	 process,	 came	 arguably	 from	 recent	

studies	on	the	role	of	the	AFP	in	adult	song	plasticity.	This	line	of	research	was	ignited	by	

findings	that	adult	song,	previously	thought	to	be	 immutable,	would,	 in	 fact,	demonstrate	

significant	plasticity	in	response	to	altered	sensory	feedback	(Leonardo	and	Konishi,	1999;	

Nordeen	 and	Nordeen,	 1992;	Okanoya	 and	Yamaguchi,	 1997;	Woolley	 and	Rubel,	 1997).	

This	is	thought	to	reflect	a	natural	ongoing	process	of	sensory-feedback	dependent	motor	
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calibration	 present	 throughout	 life	 (Sober	 and	 Brainard,	 2009).	 Furthermore,	 it	 was	

determined	that	this	adult	plasticity	depends	on	the	AFP,	mirroring	juvenile	plasticity.	This	

was	 inferred	 from	 studies	 in	 which	 lesions	 to	 the	 AFP	 blocked	 adult	 plasticity	 that	 is	

normally	 induced	 by	 deafening	 (Brainard	 and	 Doupe,	 2000),	 denervation	 of	 the	 vocal	

musculature	 (Williams	 and	 Mehta,	 1999),	 or	 developmental	 manipulations	 that	 lead	 to	

juvenile-like	learning	in	adults	(Morrison	and	Nottebohm,	1993).	

	 	

A	training	paradigm	to	study	learned	pitch	modifications	in	adult	birds.	

	 The	 finding	 of	 adult	 song	 plasticity	 allowed	 for	 the	 development	 of	 controlled	

training	paradigms	analogous	to	the	controlled	motor	adaptation	paradigms	in	humans	(as	

described	above).	Adult	song	is	stable	enough	to	implement	closed-loop	feedback	systems	

that	are	able	to	disrupt	sensory	feedback	in	a	controlled	manner;	moreover	this	stability	is	

crucial	in	allowing	experimenters	to	measure	subtle	changes	to	behavior	that	reflect	motor	

adaptation	driven	by	this	disrupted	feedback.		 The	 first	 publication	 to	 use	 such	 a	

paradigm	trained	adult	birds	 to	modify	 the	acoustic	structure	of	song,	over	 the	course	of	

hours,	 by	 providing	 aversive	 auditory	 feedback	 in	 a	manner	 contingent	 on	 the	 pitch	 (or	

fundamental	 frequency)	of	 a	 chosen	 “Target”	 syllable	 (Tumer	and	Brainard,	2007).	Birds	

will	 gradually	 (over	 the	 course	 of	 hours)	 modify	 the	 pitch	 of	 their	 song	 to	 reduce	 the	

probability	 of	 eliciting	 this	 disruptive	 feedback	 (see	 Figure	 2.1).	 This	 paradigm	 offers	

remarkable	control	over	 learning	at	 the	 level	of	 (1)	what	song	element	 is	being	modified	

(i.e.,	which	syllable,	or	subsyllabic	 timepoint,	 is	being	targeted),	 (2)	which	direction	pitch	

should	be	modified	(e.g.,	if	high	pitch	renditions	are	targeted	with	feedback,	then	learning	

proceeds	 downwards),	 and	 (3)	 the	 magnitude	 of	 learning	 can	 be	 controlled	 -	 greater	
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learning	 is	 elicited	 if	 during	 the	 experiment	 the	 pitch	 threshold	 is	 gradually	 shifted	 to	

“follow”	the	bird’s	pitch	as	it	is	gradually	changing,	so	that	the	bird	has	a	constant	drive	to	

increasingly	shift	pitch.		

	 The	 combination	 of	 this	 training	 paradigm	 with	 methods	 for	 disrupting	 neural	

activity,	over	a	large	number	of	studies,	have	led	to	remarkable	insight	into	contributions	of	

the	 AFP	 and	 MP	 to	 adult	 pitch	 modifications.	 Some	 important	 points	 are	 summarized	

below.		

	

Silencing	LMAN,	the	output	nucleus	of	the	AFP,	blocks	initial	learning	and	the	expression	of	

recent	learning.	

	 If	LMAN	 is	 silenced	pharmacologically,	WN-drive	pitch	modifications	cannot	occur	

(Charlesworth	et	 al.,	 2012).	 If	 learning	 is	 first	 initiated,	 and	 then	once	pitch	has	 changed	

appreciably	before	LMAN	is	silenced,	learning	that	was	obtained	recently	is	eradicated	-	i.e.,	

learning	 reverts	 towards	 its	 baseline	 (pre-training)	 value	 (Andalman	 and	 Fee,	 2009;	

Warren	et	al.,	2011).	These	findings	indicate	that	the	AFP	contributes	to	learning	in	adult	

birds	 by	 provide	 a	 bias	 to	 motor	 output,	 such	 that	 pitch	 is	 shifted	 in	 a	 direction	 that	

increases	the	likelihood	of	escaping	aversive	feedback11.	The	neural	mechanisms	by	which	

this	bias	occurs	is	largely	unknown	and	is	a	question	motivating	Chapter	3.		

	

																																																								
11	Learning	seems	to	be	better	explained	as	“learning	to	do	more	of	what	led	to	escapes”	as	

opposed	to	“learning	to	do	less	of	what	led	to	WN	feedback”	(Charlesworth	et	al.,	2011).		
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Reversion	is	incomplete,	suggesting	a	two-stage	mechanism	that	maps	onto	the	AFP	and	the	

motor	pathway	(MP).	

	 Inactivation	of	LMAN	during	learning	does	not	cause	complete	reversion	of	learning.	

Moreover,	dependency	of	learning	on	LMAN	activity	decreases	over	days12	(Andalman	and	

Fee,	 2009;	Warren	 et	 al.,	 2011).	 These	 results	 indicate	 that	 learning	 gradually	 becomes	

dependent	 on	modifications	 downstream	of	 the	AFP.	 There	 are	 a	 few	 reasons	 to	 believe	

that	 these	 modifications	 occur	 in	 the	 MP.	 First,	 there	 is	 evidence	 in	 brain	 slices	 for	 a	

plasticity	mechanism	in	which	the	relative	strength	of	LMAN’s	and	HVC’s	inputs	to	a	given	

RA	 projection	 neuron	 depends	 on	 the	 relative	 temporal	 patterning	 of	 those	 inputs	

(Mehaffey	and	Doupe,	2015).	This	dependence	on	LMAN’s	inputs	may	enable	LMAN	to	bias	

plasticity	 at	 HVC-RA	 synapses,	 thus	 enabling	 the	 “transfer”	 of	 learning-related	 plasticity	

from	the	AFP	to	the	MP.	Second,	variation	in	RA	activity	is	likely	able	to	influence	variation	

in	 behavior	 (Sober	 et	 al.,	 2008),	 increasing	 the	 plausibility	 that	 plasticity	 in	 RA	 could	

encode	pitch	modifications.	Finally,	developmental	plasticity	also	undergoes	a	process	by	

which	song	production	gradually	shifts	from	being	AFP-	to	MP-dependent	[e.g.,	see	(Aronov	

et	 al.,	 2008;	 Kittelberger	 and	 Mooney,	 1999)].	 Indirect	 evidence	 that	 adult	 pitch	

modifications	reflect	a	serial	transfer	of	changes	from	the	AFP	to	the	MP,	as	opposed	to	a	

process	where	modifications	occur	 in	parallel	but	at	different	 rates,	 is	 that	 learning	does	

not	occur	at	all	unless	LMAN	is	active	(in	both	juveniles	and	adults).		

	 A	model	recapitulating	these	points	on	the	role	of	the	AFP	and	the	MP	in	adult	pitch	

modifications	is	presented	in	Figure	2.3	and	the	accompanying	text.	All	of	these	ideas	will	

be	discussed	in	greater	detail	in	Chapter	4.	
																																																								
12	Again,	see	Figure	2.3	and	accompanying	text.	
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1.3.	 Pitch	 learning	 in	 adult	 Bengalese	 finches	 as	 a	 model	 for	 generalization	 and	

specificity	of	motor	skill	learning	

	 A	particular	feature	of	Bengalese	finch	song	positions	this	behavior	as	a	potentially	

powerful	model	to	study	neural	mechanisms	underlying	the	patterns	of	generalization	and	

specificity	 of	 motor	 skill	 learning.	 In	 particular,	 Bengalese	 finch	 song	 exhibits	 sequence	

variability,	such	that	a	given	syllable	can	be	naturally	sung	in	multiple	sequential	contexts	

(Okanoya,	 2004;	 Warren	 et	 al.,	 2012;	 Woolley	 and	 Rubel,	 1997).	 The	 pitch	 training	

paradigm,	which	normally	occurs	by	providing	altered	 feedback	to	drive	 learning	 for	one	

syllable,	 can	 be	 modified	 to	 direct	 context-dependent	 learning	 by	 targeting	 the	 pitch-

contingent	 reinforcement	 to	 a	 given	 syllable	 only	 when	 it	 is	 sung	 in	 one	 preselected	

“Target”	context.	In	turn,	one	can	imagine	varying	the	pitch-contingency	of	feedback	across	

contexts	 in	 any	 arbitrary	 way.	 One	 can	 provide	 a	 strongly	 context-dependent	 task	 by	

providing	 aversive	 feedback	 driving	 pitch	 up	 in	 one	 context	 and	 down	 in	 another.	

Alternatively,	 one	 can	 provide	 feedback	 that	 is	 general	 by	 providing	 the	 same	 direction	

feedback	 across	 contexts.	 I	 take	 advantage	 of	 this	 ability	 to	 experimentally	 “tune”	 the	

complexity13	of	feedback	in	the	behavioral	experiments	in	Chapter	1	to	assess	the	extent	to	

which	 birds	 exhibit	 generalization	 and,	 in	 addition,	 the	 ability	 to	 modify	 patterns	 of	

generalization	depending	on	the	pattern	of	feedback	across	contexts.	

																																																								
13	Here	and	in	other	sections,	I	sometimes	use	“complex”	to	mean	tasks	in	which	training	

feedback	differs	across	contexts	(i.e.,	more	specificity	of	learning	is	required	in	a	complex	

task).		
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	 I	will	briefly	note	that	the	use	of	 this	experimental	strategy	on	a	sequenced	motor	

skill	mirrors	prior	motor	adaptation	studies	in	humans	in	reaching	and	speech	sequences	

(see	 Chapter	 2);	 thus	 behavioral	 results	 with	 birds	 may	 potentially	 be	 productively	

compared	to	those	for	related	human	tasks.		

	 Finally,	the	known	contributions	of	the	AFP	and	MP	to	pitch	modifications	allow	me	

to	 build	 on	 that	 prior	 work	 to	 ask	 how	 the	 song	 system	 enables	 generalization	 and	

specificity	of	pitch	modifications,	as	in	Chapters	2	and	3.	

	

1.4.	Summary	of	this	dissertation	

	 Chapter	2	presents	two	sets	of	experiments.	The	first	set	characterizes	the	patterns	

of	generalization	of	learning	across	sequential	contexts	as	a	function	of	the	extent	to	which	

the	 information	 encoded	 in	 feedback	 signals	 differ	 across	 contexts.	 By	 revealing	 both	 a	

“default”	 tendency	 to	exhibit	 generalization	and	an	additional	 capacity	 for	highly	 specific	

learning,	these	experiments	set	up	Bengalese	finch	song	as	a	potentially	powerful	model	to	

study	the	neural	mechanisms	underlying	the	adaptive	control	of	generalization.	

		 The	second	set	of	experiments	in	Chapter	2	use	transient,	localized,	pharmacological	

silencing	 of	 LMAN	 during	 learning	 to	 reveal	 that	 separate	 circuits	 contribute	 to	

generalization	and	specificity;	in	particular,	modifications	to	circuits	downstream	of	LMAN,	

presumably	 in	 the	 motor	 pathway,	 lead	 to	 generalization	 of	 learning,	 while	 the	 AFP	

generates	 a	 context-specific	 motor	 pitch	 bias	 that	 promotes	 the	 expression	 of	 context-

specific	learning.		

	 Experiments	 in	 Chapter	 3	 seek	 to	 characterize	 the	 neural	 mechanisms	 of	 this	

context-specific	motor	bias	 from	the	AFP.	By	examining	 the	correlations	between	spiking	
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neural	 activity	 in	LMAN	and	RA	during	 singing	and	 learning,	 and	how	 those	 correlations	

relate	 to	 behavior,	 I	 provide	 evidence	 that	 the	 pitch	 bias	 generated	 by	 the	 AFP	 (defined	

with	 respect	 to	 behavior)	 reflects	 fast	 synaptic	 transmission	 of	 signals	 from	 LMAN	 that	

convey	an	instructive	premotor	influence	biasing	RA	premotor	activity.		

	 Chapter	4	integrates	the	results	from	the	prior	chapters	into	a	discussion	regarding	

birdsong	and	motor	skills	in	general.		
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Chapter	 2:	 Discrete	 circuits	 support	 generalized	 vs.	 context-

specific	vocal	learning	

This	chapter	was	previously	published	as:	

Tian,	L.Y.,	and	Brainard,	M.S.	(2017).	Discrete	Circuits	Support	Generalized	versus	Context-

Specific	Vocal	Learning	in	the	Songbird.	Neuron,	96,	1-10.	

	

The	 content	 of	 this	 chapter	 is	 identical	 to	 the	 publication	 except	 in	 three	 ways:	 figure	

numbers	have	been	modified	to	indicate	they	are	in	Chapter	2,	some	footnotes	have	been	

added,	 and	 references	 have	 been	moved	 into	 the	 general	 bibliography	 at	 the	 end	 of	 the	

dissertation.	

	

2.1.	Abstract	

Motor	skills	depend	on	the	reuse	of	individual	gestures	in	multiple	sequential	contexts	(e.g.,	

a	 single	 phoneme	 in	 different	 words).	 Yet	 optimal	 performance	 requires	 that	 a	 given	

gesture	 be	 modified	 appropriately	 depending	 on	 the	 sequence	 in	 which	 it	 occurs.	 To	

investigate	 the	 neural	 architecture	 underlying	 such	 context-dependent	modifications,	we	

studied	 Bengalese	 finch	 song,	 a	 skill	 that,	 like	 speech,	 consists	 of	 variable	 sequences	 of	

“syllables.”	We	found	that	when	birds	are	instructed	to	modify	a	syllable	in	one	sequential	

context,	learning	generalizes	across	contexts;	however,	if	unique	instruction	is	provided	in	

different	 contexts,	 learning	 is	 specific	 for	 each	 context.	 Using	 localized	 inactivation	 of	 a	

cortical-basal	 ganglia	 circuit	 specialized	 for	 song,	 we	 show	 this	 balance	 between	

generalization	 and	 specificity	 reflects	 a	 hierarchical	 organization	 of	 neural	 substrates.	
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Primary	 motor	 circuitry	 encodes	 a	 “core”	 syllable	 representation	 that	 contributes	 to	

generalization,	 while	 top-down	 input	 from	 cortical-basal	 ganglia	 circuitry	 biases	 this	

representation	to	enable	context-specific	learning.			

	

2.2.	Introduction	

The	 efficient	 learning	 and	 execution	 of	 motor	 skills,	 such	 as	 speech	 and	

musicianship,	 depends	 on	 the	 ability	 to	 flexibly	 reorder	 a	 discrete	 set	 of	 distinct	 motor	

gestures	(e.g.,	phonemes	in	speech,	or	finger	movements	in	piano	playing)	into	a	larger	set	

of	appropriate	sequences	(Diedrichsen	and	Kornysheva,	2015).	Reuse	of	a	given	gesture	in	

multiple	 sequential	 contexts	 supports	 efficient	 learning	 because	 it	 permits	 a	 generally-

applicable	adaptive	modification	to	a	given	gesture	-	for	instance,	during	initial	learning	of	

a	skill	or	in	response	to	weakening	of	muscles	-	to	be	expressed	not	only	in	the	sequence	in	

which	 it	was	 learned,	but	also	 in	other	sequences	 that	 incorporate	 the	gesture.	However,	

optimal	 performance	 of	 motor	 sequences	 depends	 not	 only	 on	 the	 ability	 to	 generalize	

gesture	modifications	across	sequential	contexts,	but	also	on	the	ability	to	modify	a	given	

gesture	differentially	for	the	distinct	contexts	in	which	it	is	performed.	This	is	prominent	in	

speech,	in	which	the	execution	of	a	given	phoneme	can	be	systematically	varied	depending	

on	 the	 word	 in	 which	 it	 is	 embedded.	 Such	 natural	 context-dependent	 modification	 of	

gestures	 (“coarticulation”)	 is	 thought	 to	 enable	 the	 smooth	 and	 rapid	 performance	 of	

speech	 (Bouchard	 and	 Chang,	 2014)	 and	 skills	 as	 diverse	 as	 piano	 playing	 (Engel	 et	 al.,	

1997),	sign	 language	(Jerde	et	al.,	2003),	and	reaching	and	grasping	(Ansuini	et	al.,	2008;	

Shah	et	al.,	2013;	Sosnik	et	al.,	2004).		
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The	idea	that	a	flexible	balance	of	generalization	and	specificity	underlies	the	reuse	

of	individual	motor	gestures	is	strongly	supported	by	human	motor	adaptation	studies.	For	

instance,	 if	consistent	external	perturbation	of	speech	or	reaching	movements	is	 imposed	

in	 only	 one	 sequential	 context,	 subjects	 exhibit	 corrective	 adaptations	 of	 the	movement	

that	tend	to	generalize	to	other	contexts	(Houde	and	Jordan,	1998;	Howard	and	Franklin,	

2015;	Rochet-Capellan	et	al.,	2012).	However,	such	generalization	is	typically	only	partial,	

indicating	 some	 natural	 capacity	 to	 limit	 adaptation	 specifically	 to	 the	 trained	 context.	

Moreover,	 if	 different	 directions	 of	 perturbation	 are	 imposed	 in	 distinct	 sequential	

contexts,	 then	 subjects	 can	 learn	 multiple	 sequence-specific	 modifications	 to	 a	 given	

gesture,	 allowing	 it	 to	 be	 executed	 appropriately	 in	 each	 context	 (Howard	 et	 al.,	 2012;	

Rochet-Capellan	 and	Ostry,	 2011;	Wainscott	 et	 al.,	 2004)14.	 Collectively,	 these	behavioral	

observations	 raise	 the	 question	 of	what	 neural	 architectures	might	 support	 the	 efficient	

reuse	of	individual	gestures	across	contexts,	while	also	enabling	the	modulation	of	a	given	

gesture	to	optimize	its	performance	depending	on	context.	

	 Here	 we	 investigate	 the	 neural	 mechanisms	 underlying	 the	 balance	 between	

generalization	 and	 specificity	 of	 learning	 in	 adult	 Bengalese	 finch	 song.	 Bengalese	 finch	

song,	like	human	speech,	consists	of	learned	sequences	formed	by	reordering	a	discrete	set	

of	 vocal	 gestures,	 termed	 syllables,	 so	 that	 a	 given	 syllable	 can	be	 expressed	 in	different	

sequential	 contexts	 [Figure	 2.1A;	 (Doupe	 and	 Kuhl,	 1999)].	 Moreover,	 experimentally	
																																																								
14	A	related	paradigm	looks	at	the	patterns	of	generalization	when	modifications	are	

learned	to	either	discrete	movements	or	rhythmic	movements	formed	by	repeating	the	

discrete	movement	-	the	movement	can	be	construed	as	being	performed	in	two	sequential	

contexts	(discrete	vs.	in	a	repeat).	Motor	adaptation	studies	indicate	that	learning	shows	

specificity	for	this	type	of	sequential	context	(Howard	et	al.,	2011;	Ikegami	et	al.,	2010).	



	

	 19	

induced	sensory	errors	during	the	production	of	a	syllable	in	one	sequential	context	drive	

adaptation	 that	 exhibits	 partial	 generalization	 to	 the	 production	 of	 the	 same	 syllable	 in	

other	contexts	(Hoffmann	and	Sober,	2014).	In	our	study,	we	first	show	that,	as	for	human	

speech,	Bengalese	finches	can	learn	to	modify	individual	syllables	differentially	depending	

on	context.	We	then	used	inactivation	of	the	anterior	forebrain	pathway	(AFP),	a	cortical-

basal	 ganglia	 circuit	 dedicated	 to	 song,	 to	 reveal	 a	 hierarchical	 organization	 of	 neural	

substrates,	 in	 which	 the	 AFP	 enables	 such	 context-specific	 learning	 by	 biasing	 a	 more	

context-independent	 syllable	 representation	 in	 downstream	 motor	 circuitry.	 Moreover,	

when	birds	are	instructed	to	modify	syllables	in	a	general	manner	across	contexts,	learning	

gradually	 becomes	 encoded	 in	 primary	motor	 circuitry,	 but	when	 instruction	 is	 context-

specific,	learning	remains	dependent	on	biasing	signals	from	the	AFP.		

	

2.3.	Results	

Learning	driven	in	a	single	target	context	partially	generalizes	to	non-target	contexts	

	 We	first	evaluated	whether	birds	trained	to	modify	the	fundamental	frequency	(FF),	

or	pitch,	of	a	given	syllable	in	one	context	would	spontaneously	apply	the	learned	changes	

to	 the	 same	 syllable	 in	 other	 contexts.	We	 used	 a	 negative	 reinforcement	 paradigm	 that	

requires	birds	to	gradually	shift	the	FF	of	a	“target”	syllable	in	order	to	escape	white	noise	

(WN)	 delivered	 whenever	 the	 FF	 of	 a	 rendition	 of	 that	 syllable	 exceeds	 a	 set	 threshold	

(Andalman	 and	 Fee,	 2009;	 Charlesworth	 et	 al.,	 2011,	 2012;	 Tumer	 and	 Brainard,	 2007;	

Warren	et	al.,	2011).	This	instructive	WN	reinforcement	was	provided	to	birds	only	when	

the	target	syllable	was	sung	 in	a	single	sequential	context	(Figure	2.1B,	 “target	 context”);	

reinforcement	 was	 withheld	 when	 the	 target	 syllable	 was	 sung	 in	 any	 other	 sequence	
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(“non-target	contexts”)	and	for	all	other	types	of	syllables	(“different	syllables”,	see	STAR	

Methods).	

Context-dependent	 reinforcement,	 delivered	 in	 a	 single	 target	 context,	 drove	

changes	in	the	FF	of	the	target	syllable	that	generalized	to	non-target	contexts	(Figure	2.1C,	

example	 experiment;	 Figure	 2.1D,	 summary,	 signed-rank	 test	 of	 FF	 change	 in	 target	

context:	 p	 <	 5	 x	 10-7;	 signed-rank	 test	 of	 FF	 change	 in	 non-target	 context:	 p	 <	 0.0005).	

However,	the	change	in	FF	in	non-target	contexts	averaged	only	23%	of	the	change	in	the	

corresponding	target	contexts,	indicating	that	there	was	some	natural	tendency	for	context	

specificity	 in	 learning	(Figure	2.1C,	D,	n	=	36	experiments,	 rank-sum	test	of	FF	change	 in	

target	 vs.	 non-target	 context:	 p	 <	 5	 x	 10-9;	 Figure	 2.1E	 right,	 histogram	 of	 percent	

generalization).	In	contrast	to	the	partial	generalization	observed	for	the	target	syllable,	we	

did	not	detect	 any	 learning	 for	 syllables	 that	were	 categorically	different	 from	 the	 target	

syllable	(Figure	2.1C,	D,	signed-rank	test:	p	=	0.34,	Figure	S2.1A,	Kolmogorov-Smirnov	test	

comparing	 distributions	 of	 learning	 vs.	 expected	 drift	 of	 FF:	 p	 =	 0.39).	Hence,	 consistent	

with	 previous	 observations	 in	 both	 human	 and	 songbird	 studies	 (Hoffmann	 and	 Sober,	

2014;	Houde	and	Jordan,	1998;	Rochet-Capellan	et	al.,	2012),	we	found	that	learning	driven	

in	a	single	context	partially	generalizes	to	other	contexts.	

We	next	investigated	factors	that	could	account	for	differences	in	the	magnitude	of	

generalization	across	experiments	 (Figure	2.1E).	 For	each	 target	 syllable,	we	examined	a	

variety	 of	 measures	 of	 similarity	 between	 the	 target	 and	 non-target	 contexts	 that	 have	

previously	been	studied	for	their	potential	explanatory	value	with	respect	to	magnitude	of	

generalization	(Caudrelier	et	al.,	2016;	Hoffmann	and	Sober,	2014;	Howard	and	Franklin,	

2015;	Rochet-Capellan	et	al.,	2012;	Shadmehr	and	Mussa-Ivaldi,	1994).	We	found	that	the	
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magnitude	of	 generalization	 for	a	given	non-target	 context	 could	be	explained,	 to	a	 large	

extent,	by	the	similarity	between	the	identity	of	the	syllables	in	the	sequences	that	made	up	

the	target	and	non-target	contexts	(“contextual	similarity”,	Figure	2.1E).	Greater	contextual	

similarity	corresponded	with	greater	generalization,	with	only	13%	generalization	in	cases	

with	 low	 contextual	 similarity,	 but	 40%	 and	 84%	 generalization	 for	 cases	 with	

intermediate	and	high	levels	of	contextual	similarity	(Figure	2.1E,	simple	linear	regression:	

p	<	5	x	10-5,	r2	=	0.40).	Further	regression	analyses	confirmed	that	contextual	similarity	had	

strong	 explanatory	 power,	 while	 other	 measures	 we	 examined	 provided	 no	 significant	

additional	 power,	 in	 accounting	 for	 variation	 in	 the	 magnitude	 of	 generalization	 across	

experiments	 (Figure	 S2.2	 reports	 tests	 of	 explanatory	 value	 for	 acoustic	 distance,	

rendition-by	rendition	correlation,	and	proximity).	This	 finding	parallels	observations	 for	

human	speech	and	reach	adaptation	that	generalization	tends	to	be	greater	when	gestures	

are	produced	in	sequential	contexts	that	are	more	similar	to	the	context	in	which	learning	

is	driven	(Caudrelier	et	al.,	2016;	Howard	and	Franklin,	2015).		

	

Independent	context-specific	learning	for	the	same	syllable	in	two	contexts	

To	 determine	 whether	 partial	 generalization	 to	 non-target	 contexts	 reflects	 an	

inherently	 limited	 ability	 to	 express	 separate	 learning	 in	 different	 contexts,	 we	 asked	

whether	we	 could	override	 the	natural	pattern	of	 generalization	by	 instructing	opposing	

modifications	 of	 a	 syllable	 in	 two	 contexts.	 For	 each	 learning	 trajectory,	 we	 first	 drove	

learning	 in	 only	 one	 target	 context	 (“single	 context	 phase”),	 which,	 as	 described	 above,	

resulted	 in	 partial	 generalization	 of	 learning	 to	 other	 contexts	 (Figure	 2.2A,	 example	

experiment;	Figure	2.2B,	summary).	We	then	 initiated	reinforcement	 in	a	second	context,	
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with	 the	 FF	 contingency	 opposite	 to	 that	 in	 the	 first	 context,	 while	 maintaining	 the	

contingency	 in	 the	 first	 context	 (Figure	 2.2A,	 B,	 “dual	 context	 phase”).	 During	 the	 dual	

context	phase,	FF	in	the	second	context	changed	in	the	direction	opposing	initial	 learning	

by	an	average	of	109.8	±	19.1	Hz	 (Figure	2.2C,	n	=	13	experiments,	 signed-rank	 test:	p	<	

0.0005).	 By	 the	 end	 of	 the	 dual	 context	 phase,	 FF	 in	 the	 second	 context	 had	 shifted	

downward	past	its	original	baseline	(Figure	2.2B,	signed-rank	test:	p	<	0.05),	and	this	shift	

was	 even	more	 pronounced	 in	 the	 subset	 of	 experiments	 for	which	 training	 in	 the	 dual	

context	 phase	was	 extended	past	 five	 days	 (Figure	 S2.3A).	 In	 contrast,	 learning	 that	 had	

occurred	in	the	first	context	was	maintained	with	no	significant	change	(Figure	2.2C,	n	=	13,	

signed-rank	test:	p	=	0.31;	we	also	did	not	detect	any	significant	changes	to	FF	of	different	

type	 syllables,	 Figure	 S2.3B).	 Correspondingly,	 the	 separation	 between	 FF	 of	 the	 target	

syllable	in	the	two	contexts	increased	from	114.4	±	18.8	Hz	at	the	end	of	the	single	context	

phase	to	211.0	±	30.0	Hz	at	the	end	of	the	dual	context	phase	(p	<	0.0005,	n	=	13,	signed-

rank	 test).	 These	 results	 demonstrate	 that	 Bengalese	 finches	 have	 a	 capacity	 for	

independent,	 context-specific	 modifications	 of	 a	 given	 syllable,	 mirroring	 findings	 for	

human	 speech	 and	 reach	 adaptation	 (Howard	 et	 al.,	 2012;	 Rochet-Capellan	 and	 Ostry,	

2011).			

	

A	cortical-basal	ganglia	circuit,	the	anterior	forebrain	pathway,	adaptively	biases	motor	

output	in	a	context-specific	manner	

	 We	 next	 investigated	 the	 neural	 mechanisms	 underlying	 generalization	 and	

specificity	 in	 context-dependent	 learning.	To	do	 so,	we	 took	 advantage	of	 previous	work	

that	has	elucidated	circuitry	for	production	and	plasticity	of	song.		The	song	motor	pathway	
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(Figure	 2.3A)	 is	 required	 for	 the	 moment-by-moment	 production	 of	 learned	 song	

(Leonardo	 and	 Fee,	 2005;	 Nottebohm	 et	 al.,	 1976;	 Simpson	 and	 Vicario,	 1990;	 Vu	 et	 al.,	

1994).	 In	 contrast,	 the	 anterior	 forebrain	 pathway	 (AFP,	 Figure	 2.3A),	 a	 basal	 ganglia-

thalamo-cortical	circuit	specialized	 for	song,	 is	not	required	 for	 the	normal	production	of	

adult	song,	but	is	required	both	for	developmental	song	learning	and	modifications	to	adult	

song	(Andalman	and	Fee,	2009;	Bottjer	et	al.,	1984;	Brainard	and	Doupe,	2000;	Warren	et	

al.,	2011).	Using	a	similar	WN	reinforcement	paradigm,	previous	work	(Andalman	and	Fee,	

2009;	Warren	et	al.,	2011)	has	shown	that	during	initial	stages	of	learning,	inactivation	of	

the	AFP	causes	a	 reversion	of	FF	 towards	baseline	values	 (Figure	2.3B,	 “Early”),	but	 that	

over	a	period	of	maintained	learning,	the	effects	of	inactivating	the	AFP	gradually	diminish	

(Figure	2.3B,	“Late”).	These	 findings	support	a	model	 in	which	WN-driven	changes	to	the	

FF	of	 targeted	syllables	are	 initially	directed	by	biasing	signals	 from	the	AFP	acting	upon	

the	downstream	motor	pathway	(Figure	2.3B,	“AFP	biasing”;	thick	green	arrow	from	AFP	to	

RA)	 but	 that	 this	 learning	 is	 gradually	 transferred	 to	 the	motor	 pathway	 in	 a	 process	 of	

“systems	 consolidation”	 (Figure	 2.3B,	 “Consolidated	 to	 MP”,	 filled	 green	 circle	 in	 RA).	 If	

these	 same	mechanisms	 contribute	 to	 all	 adaptive	modifications	 of	 song,	 then	we	would	

expect	in	our	experiments	that	the	early	expression	of	learning	in	both	the	target	and	non-

target	contexts	would	rely	on	biasing	signals	from	the	AFP.	

	 To	assess	the	extent	to	which	AFP	bias	contributes	to	the	expression	of	learning	in	

target	 and	 non-target	 contexts,	 we	 used	 the	 previously	 established	 approach	 of	 AFP	

inactivation.	We	first	drove	learning	in	a	single	target	context	and	then	transiently	blocked	

AFP	 output	 by	 infusing	 the	 GABAA	 receptor	 agonist	muscimol	 into	 LMAN.	 As	 previously	

observed	for	learning	in	a	single	context	(Andalman	and	Fee,	2009;	Warren	et	al.,	2011),	we	
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found	that	blocking	AFP	output	caused	a	strong	and	consistent	reduction	in	the	magnitude	

of	 learning	expressed	 in	 the	 target	 context	 (Figure	2.4A	 top,	 example	experiment;	Figure	

2.4B	 top,	 summary,	 n	=	13	 experiments,	 48%	reversion	 from	a	mean	of	138.8	±	11.3	Hz	

during	 PBS	 to	 72.2	 ±	 8.1	Hz	 following	 LMAN	 inactivation,	 signed-rank	 test:	 p	 <	 0.0005).	

This	reversion	in	the	expression	of	learning	indicates	that	the	AFP	was	providing	a	bias	in	

the	target	context	of	~67	Hz	in	the	adaptive	direction	(i.e.,	the	direction	that	escapes	WN).	

In	striking	contrast,	although	there	was	significant	generalization	of	learning	to	non-target	

contexts,	 the	 expression	 of	 that	 generalized	 learning	 did	 not	 depend	 on	 the	AFP	 (Figure	

2.4A	bottom,	example	experiment;	Figure	2.4B	bottom,	summary,	n	=	13	experiments,	14%	

shift	 from	42.7	±	10.3	Hz	during	PBS	versus	36.7	±	12.2	Hz	 following	LMAN	inactivation,	

signed-rank	 test:	 p	 =	 0.50).	 A	 direct	 comparison	 of	 reversion	 in	 target	 and	 non-target	

contexts	in	the	same	experiments	confirmed	that	AFP	bias	was	highly	specific	to	the	target	

context	 (Figure	 2.4D,	 signed-rank	 test:	 p	 <	 0.0005).	 Moreover,	 this	 specificity	 did	 not	

simply	 reflect	 less	 learning	 in	 non-target	 contexts,	 as	 the	 differential	 effect	 of	 LMAN	

inactivation	 on	 expression	 of	 learning	 in	 target	 vs.	 non-target	 contexts	 persisted	 both	 in	

analysis	 of	 experiments	 in	 which	 there	 was	 a	 large	 amount	 of	 generalization	 (as	 in	 the	

example	experiment	of	Figure	2.4A	and	summary	data	in	Figure	S2.4C)	and	in	analysis	of	

the	 ratio	 of	 effects	 of	 inactivation	 on	 expression	 of	 learning	 in	 target	 and	 non-target	

contexts	(Figure	S2.4D).	LMAN	inactivation	also	did	not	have	a	significant	effect	on	FF	for	

different-type	 syllables	 (mean	 learning	 expressed	 during	 PBS	 infusion,	 5.5	 ±	 2.9	Hz,	 and	

during	 muscimol	 infusion,	 3.88	 ±	 2.6	 Hz,	 signed-rank	 test:	 p	 =	 0.77).	 Thus,	 the	 AFP	

contributes	to	the	expression	of	 learning	by	providing	a	motor	bias	that	 is	highly	specific	

for	the	target	versus	non-target	context.	
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	 These	 results	 raise	 the	 question	 of	 how	 generalization	 of	 learning	 to	 non-target	

contexts	 arises.	 We	 hypothesized	 that	 while	 the	 AFP	 provides	 biasing	 signals	 that	 are	

context	 specific,	 the	 motor	 pathway	 contains	 a	 more	 overlapping	 representation	 of	 the	

target	 syllable	 that	 is	 shared	 across	 contexts.	 According	 to	 this	 model	 (Figure	 2.4C),	

generalization	 arises	 because	 AFP	 biasing	 signals	 specific	 to	 the	 target	 context	 drive	 a	

gradual	 modification	 of	 the	 overlapping	 motor	 pathway	 representation	 through	 the	

process	of	consolidation.	Our	results	thus	suggest	a	hierarchical	organization,	in	which	the	

AFP	provides	context-specific	biasing	signals	 that	modulate	and	gradually	modify	a	more	

context-independent,	“core”	syllable	representation	in	downstream	motor	circuitry.		

		

Conflicting	AFP	bias	interferes	with	consolidation	for	context-specific	learning	

	 Our	model	makes	a	prediction	about	 the	nature	of	adaptive	modifications	 that	are	

transferred,	 or	 consolidate,	 to	 the	 motor	 pathway	 during	 learning;	 in	 particular,	 for	

context-specific	 learning	 there	 should	 be	 reduced	 consolidation,	 because	 conflicting,	

context-specific	 biasing	 signals	 would	 exert	 interfering	 influences	 on	 the	 overlapping	

syllable	 representation	 in	 the	 motor	 pathway.	 	 In	 contrast	 to	 our	 model,	 if	 the	 motor	

pathway	 contains	 separate,	 non-overlapping	 representations	 of	 a	 given	 syllable	 in	 each	

context,	then	consolidation	of	learning	should	proceed	equally	for	context-independent	and	

context-specific	 learning.	 To	 test	 our	 model	 predictions,	 we	 carried	 out	 experiments	 in	

which	 birds	 were	 instructed	 to	 either	 shift	 FF	 in	 the	 same	 direction	 in	 all	 contexts	

(“Congruent	training”),	or	shift	FF	in	opposite	directions	in	different	contexts	(“Incongruent	

training”).	 We	 supposed	 that	 for	 Congruent	 training,	 the	 AFP	 would	 generate	 similarly	

directed	 biasing	 signals	 in	 each	 of	 the	 two	 contexts	 during	 the	 early	 phase	 of	 learning	
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(Figure	 2.5Ai,	 “Early”)	 that	 would	 act	 coherently	 to	 drive	 a	 strong	 transfer	 of	 context-

independent	changes	to	the	downstream	motor	pathway	(Figure	2.5Ai,	“Late”).	In	contrast,	

for	Incongruent	training,	the	AFP	would	generate	oppositely	directed	biasing	signals	in	the	

two	contexts	(Figure	2.5Aii,	“Early”),	that	would	antagonize	each	other	in	converging	onto	a	

shared	downstream	motor	 pathway	 representation	 of	 the	 syllable,	 and	 thereby	 interfere	

with	transfer	of	learning	(Figure	2.5Aii,	“Late”).			

	 We	 first	 assessed	 whether	 Congruent	 versus	 Incongruent	 training	 would	 indeed	

generate	coherent	versus	antagonistic	AFP	biasing	signals.	We	measured	AFP	bias	during	

the	first	four	days	of	maintained	learning	(“Early”	in	Figures	2.5A,	B),	when	previous	work	

has	shown	that	the	expression	of	learning	depends	substantially	on	AFP	bias	(Warren	et	al.,	

2011).	 Targeted	 LMAN	 inactivation	 during	 this	 early	 period	 revealed	 that	 during	

Congruent	 Training,	 AFP	 bias	 was	 in	 the	 same	 direction	 in	 each	 context,	 while	 during	

Incongruent	 training,	 AFP	 bias	 was	 in	 opposite	 directions	 in	 different	 contexts	 (Figure	

2.5C).	 These	 results	 further	 demonstrate	 that	 the	 presence	 and	 direction	 of	 AFP	 bias	

accurately	 reflects	 the	 presence	 and	 direction	 of	 context-specific	 instruction,	 even	 in	 an	

extreme	case	in	which	learning	is	oppositely	directed	in	distinct	contexts.	They	additionally	

establish	an	experimental	framework	for	determining	whether	conflicting	AFP	bias	during	

Incongruent	training	interferes	with	the	transfer	of	learning	to	the	motor	pathway.	

	 We	assessed	consolidation	for	both	Congruent	and	Incongruent	training	during	the	

late	 period	 of	 maintained	 learning	 (days	 5-6),	 when	 previous	 work	 indicates	 that	 the	

expression	of	learning	in	a	single	context	becomes	largely	independent	of	the	AFP	(Warren	

et	 al.,	 2011).	 For	 Congruent	 training,	 consolidation	 was	 not	 significantly	 different	 from	

100%	 (Figure	 2.5D,	 84.9	 ±	 5.9%,	 mean	 ±	 SEM,	 signed-rank	 test:	 p	 =	 0.12),	 and	 was	
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indistinguishable	from	consolidation	previously	reported	for	syllables	that	are	sung	in	only	

a	 single	 context	 [Figure	 2.5D,	 84.9	 ±	 7.1%	 in	 (Warren	 et	 al.,	 2011)].	 In	 contrast,	 for	

Incongruent	training,	consolidation	was	both	significantly	less	than	100%	and	significantly	

reduced	relative	to	that	for	Congruent	training	(Figure	2.5D,	44.1	±	12.0%,	p	<	0.05,	signed-

rank	test	vs.	100%;	p	<	0.005,	rank-sum	test	vs.	Congruent).	These	data	indicate	that	under	

conditions	in	which	generalization	is	appropriate,	learning	rapidly	becomes	transferred	to	

the	motor	pathway.	In	contrast,	under	conditions	when	context-specific	modifications	to	a	

gesture	are	 required,	 transfer	 to	 the	motor	pathway	 is	 impaired	and	 there	 is	 an	ongoing	

requirement	of	biasing	signals	from	the	AFP	for	the	expression	of	learning.	

	

2.4:	Discussion	

	 The	 reuse	 of	 individual	 gestures	 in	 multiple	 motor	 sequences	 allows	 efficient	

generalization	 of	 adaptive	 modifications	 across	 contexts	 (Diedrichsen	 and	 Kornysheva,	

2015).	 At	 the	 same	 time,	 optimal	 performance	 requires	 that	 a	 given	 gesture	 be	

differentially	 modified	 depending	 on	 the	 specific	 context	 in	 which	 it	 is	 produced.	 Using	

Bengalese	 finch	 song	 as	 a	 model	 system,	 we	 demonstrate	 that	 the	 balance	 between	

generalization	 and	 specificity	 in	 the	 deployment	 of	 motor	 gestures	 arises	 from	 a	

hierarchical	 organization	within	 the	 nervous	 system;	 pharmacological	 inactivation	 of	 the	

anterior	forebrain	pathway	(AFP)	revealed	that	biasing	signals	from	the	AFP	that	are	highly	

specific	 and	 appropriate	 for	 each	 context	 modulate	 a	 more	 context-independent	

representation	 of	 syllable	 structure	 in	 the	downstream	primary	motor	pathway	 (Figures	

2.4C,	 2.5A).	 When	 similar	 modifications	 to	 a	 syllable	 were	 instructed	 across	 contexts,	

generalized	 learning	was	 gradually	 transferred	 to	 the	motor	 pathway,	 but	when	 distinct	



	

	 28	

modifications	were	 instructed	across	contexts,	 this	transfer	of	 learning	was	 impaired	and	

the	context-specific	expression	of	learning	remained	highly	dependent	on	the	AFP	(Figure	

2.5D).	 These	 findings	 indicate	 that	 the	 primary	 motor	 pathway	 encodes	 a	 relatively	

context-independent	 or	 “core”	 representation	 of	 a	 given	 syllable,	 while	 frontal	 cortical-

basal	ganglia	circuitry	provides	top-down	biasing	signals	that	enable	appropriate,	context-

specific	modulation	and	updating	of	this	core	representation.	

	 Our	 finding	 that	 the	 AFP	 injects	 a	 context-specific	 biasing	 signal	 into	 the	 motor	

pathway	 indicates	 a	 role	 for	 the	 AFP	 in	 integrating	 contextual	 signals	 (reflecting	 the	

current	 syllable	 and	 sequence)	with	 instructive	 signals	 (reflecting	 the	appropriate	FF	 for	

each	 context)	 to	 enable	 context-dependent	 vocal	 learning	 (Figure	 2.4C,	 5A).	 Signals	

encoding	 sequential	 context	may	 be	 conveyed	 from	neurons	 in	 the	 cortical	 nucleus	HVC	

that	 send	 an	 efference	 copy	 of	 premotor	 commands	 to	 the	 basal	 ganglia	 nucleus	 Area	 X	

(HVCX	neurons)	(Fee	and	Goldberg,	2011;	Fujimoto	et	al.,	2011;	Mooney,	2014);	the	firing	

patterns	 of	 these	 neurons	 reflect	 not	 only	 the	 identity	 of	 the	 syllable	 currently	 being	

produced,	 but	 also	 that	 of	 preceding	 syllables	 (Fujimoto	 et	 al.,	 2011).	 Signals	 encoding	

rendition-by-rendition	 variation	 in	 the	 FF	 of	 targeted	 syllables	 are	 potentially	 generated	

within	Area	X	(Woolley	et	al.,	2014)	or	relayed	to	Area	X	by	inputs	from	the	motor	pathway	

(Charlesworth	 et	 al.,	 2012)	 or	 LMAN	 (Fee	 and	Goldberg,	 2011;	 Kao	 et	 al.,	 2005).	 Signals	

encoding	outcomes	–	whether	or	not	a	given	rendition	escapes	WN	–	plausibly	derive	from	

rich	neuromodulatory	 inputs	 to	 the	AFP,	 including	 from	midbrain	dopaminergic	neurons	

(Gadagkar	et	al.,	2016;	Hoffmann	et	al.,	2016).	The	association	between	contextual	signals	

(HVCX	 activity)	 and	 appropriate	 motor-biasing	 AFP	 activity	 could	 then	 be	 mediated	 by	
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plasticity	 at	 cortical-striatal	 (HVCX-X)	 synapses	 (Fee	 and	 Goldberg,	 2011),	 as	 has	 been	

implicated	for	decision-making	tasks	in	mammals	(Xiong	et	al.,	2015).		

	 Our	 finding	 that	 generalization	 of	 learning	 persists	 following	 pharmacological	

inactivation	of	 the	AFP	 (Figure	2.4)	 indicates	 that	 this	 generalization	 largely	depends	on	

the	modification	of	a	core	syllable	representation	in	the	downstream	motor	pathway.	The	

presence	of	such	a	core	representation	is	consistent	with	recordings	in	the	motor	pathway	

nucleus	RA	showing	that	similar	populations	of	neurons	are	active	during	the	production	of	

a	 given	 syllable	 regardless	of	 the	 sequence	 in	which	 it	 is	 sung	 (Leonardo	and	Fee,	2005;	

Wohlgemuth	 et	 al.,	 2010).	 We	 hypothesize	 that	 this	 motor	 pathway	 representation	 is	

gradually	modified	 in	 response	 to	 biasing	 signals	 from	 the	 AFP	 in	 a	 process	 of	 systems	

consolidation	(Andalman	and	Fee,	2009;	Fee	and	Goldberg,	2011;	Warren	et	al.,	2011).	To	

the	extent	that	the	overlapping	neural	elements	(such	as	synapses	from	HVC	afferents	onto	

RA	 neurons)	 are	 active	 during	 the	 production	 of	 a	 syllable	 in	 multiple	 contexts,	

modification	of	those	shared	elements,	driven	by	AFP	bias	in	one	context,	would	naturally	

contribute	 to	 circuit	 changes	 that	 generalize	 to	 the	 production	 of	 the	 syllable	 in	 other	

contexts.		

	 Consistent	with	this	model,	we	found	that	the	degree	of	transfer	of	 learning	to	the	

motor	pathway	depends	on	the	extent	to	which	biasing	signals	from	the	AFP	are	coherent	

across	 contexts	 (Figure	 2.5).	 Our	 results	 indicate	 that	 when	 it	 is	 optimal	 to	 generalize	

modifications	 across	 contexts	 -	 for	 example,	 during	 initial	 learning	 or	 in	 response	 to	

weakening	of	musculature	or	other	perturbations	that	affect	control	of	a	syllable	regardless	

of	context	 -	consistent	biasing	signals	 from	the	AFP	will	promote	an	updating	of	 the	core	

MP	 representation.	 In	 contrast,	 when	 context-specificity	 is	 appropriate	 -	 for	 example,	 to	
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modify	 central	 commands	 in	 a	manner	 that	 accounts	 for	 context-dependent	 dynamics	 of	

the	musculoskeletal	 system	 (Bouchard	 and	Chang,	 2014;	Ostry	 et	 al.,	 1996;	 Schmidt	 and	

Wild,	 2014;	 Wohlgemuth	 et	 al.,	 2010)	 -	 conflicting	 biasing	 signals	 will	 interfere	 with	

consolidation,	and	learning	will	continue	to	rely	on	moment-by-moment	modulation	by	the	

AFP.	Such	a	dependence	of	consolidation	on	the	coherence	of	AFP	bias	may	therefore	be	a	

natural	way	for	the	nervous	system	to	transfer	modifications	that	are	generally	appropriate	

to	 primary	motor	 circuitry,	while	 reserving	 frontal,	 “executive”	 circuitry	 for	 dynamically	

adjusting	 performance	 in	 response	 to	 context-specific	 requirements	 (Duan	 et	 al.,	 2015;	

Hilario	 et	 al.,	 2012;	 Kim	 and	 Hikosaka,	 2013;	 Miller	 and	 Cohen,	 2001;	 Narayanan	 and	

Laubach,	2006).	

	 More	broadly,	a	similar	balance	between	generalization	and	specificity	of	learning	in	

human	 motor	 skill	 adaptation	 (Houde	 and	 Jordan,	 1998;	 Howard	 and	 Franklin,	 2015;	

Howard	et	 al.,	 2012;	Rochet-Capellan	and	Ostry,	2011;	Rochet-Capellan	et	 al.,	 2012)	may	

also	reflect	separate	contributions	of	primary	motor	representations	and	flexible	top-down	

bias	from	frontal	cortical-basal	ganglia	circuits.	Indeed,	neural	signals	indicating	sequential	

context	are	present	in	mammalian	cortical-basal	ganglia	circuitry	(Dudman	and	Krakauer,	

2016;	Mello	 et	 al.,	 2015;	Mushiake	 and	 Strick,	 1995;	 Tanji	 and	 Shima,	 1994;	 Turner	 and	

Desmurget,	 2010),	 and	 the	 contributions	 of	 basal	 ganglia	 circuitry	 to	 motor	 production	

may	include	a	role	in	flexible	fine	time-scale	modulation	of	movement	kinematics	(Dudman	

and	Krakauer,	2016;	Rueda-Orozco	and	Robbe,	2015;	Turner	and	Desmurget,	2010).	Hence,	

the	 critical	 contributions	 of	 frontal	 cortical-basal	 ganglia	 circuits	 to	 sequence-dependent	

vocal	 learning	 in	 the	 songbird	may	 reflect	 a	 general	 role	 of	 these	 circuits	 in	 integrating	
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contextual	 cues	 to	 enable	 adaptive,	 context-dependent	 learning	 and	 execution	 of	 motor	

skills.	
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2.6.	Methods	

CONTACT	FOR	REAGENT	AND	RESOURCE	SHARING	

Further	information	and	requests	for	resources	and	reagents	should	be	directed	to	and	will	

be	fulfilled	by	the	Lead	Contact,	Lucas	Tian	(lucas.tian@ucsf.edu).	

	

EXPERIMENTAL	MODEL	AND	SUBJECT	DETAILS	

Animal	models	

We	 used	 12	 adult	 (range:	 141	 to	 671	 days	 old	 at	 start	 of	 experiment)	 male	 Bengalese	

finches	 (Lonchura	striata	domestica)	 that	were	bred	 in	our	 colony	and	housed	with	 their	

parents	until	at	least	60	days	of	age.	During	experiments,	birds	were	housed	individually	in	

sound-attenuating	chambers	(Acoustic	Systems)	on	a	14h/10h	 light/dark	cycle	with	 food	

and	water	provided	ad	libitum.	All	 experiments	were	performed	on	undirected	song	 (i.e.,	

with	no	 female	present).	 All	 procedures	were	 in	 accordance	with	protocols	 approved	by	

the	University	of	California,	San	Francisco	Institutional	Animal	Care	and	Use	Committee.		
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METHOD	DETAILS	

Song	recording	and	computerized	training	paradigm	

We	 used	 a	 custom-written	 Labview	 program	 (National	 Instruments)	 to	 record	 song	 and	

deliver	white	noise	feedback	during	training	(Charlesworth	et	al.,	2011,	2012;	Tumer	and	

Brainard,	2007;	Warren	et	al.,	2011).	Briefly,	 song	was	recorded	with	an	omnidirectional	

lavalier	 microphone	 (Countryman),	 bandpass	 filtered	 between	 75	 Hz	 and	 10	 kHz,	 and	

digitized	 at	 32	 kHz.	 To	 detect	 a	 specific	 segment	 of	 a	 specific	 syllable	 for	 targeted	

reinforcement,	 the	spectrum	of	each	successive	8ms	segment	of	ongoing	song	was	 tested	

for	a	match	to	a	preconstructed	spectral	template	(based	on	the	Euclidian	distance	between	

those	 spectra).	 Upon	 a	 match,	 the	 fundamental	 frequency	 (FF)	 of	 that	 segment	 was	

compared	to	a	preset	FF	threshold.	To	drive	upwards	shifts	in	FF,	feedback	was	delivered	

with	 <1	ms	 latency	 if	 FF	was	 below	 threshold;	 to	 drive	 downwards	 shifts,	 feedback	was	

delivered	only	 if	FF	was	above	 threshold.	Feedback	was	a	40-60	ms	burst	of	white	noise	

(WN)	 at	 90-95	 dB(A).	 To	 provide	 context-dependent	 reinforcement,	 we	 modified	 the	

training	paradigm	so	that	delivery	of	WN	was	contingent	not	only	on	the	FF	of	the	target	

syllable,	 but	 also	 on	 the	 identity	 of	 the	 syllables	 preceding	 the	 target	 syllable	 (the	

“sequential	context”	as	described	further	below).	

	 	

Determining	sequential	context	for	each	rendition	of	a	given	syllable	

Syllables	 were	 classified	 manually	 by	 visual	 inspection	 of	 spectrograms.	 Similar	 to	 a	

previous	study	in	Bengalese	finches	(Wohlgemuth	et	al.,	2010),	for	a	given	bird	we	detected	

cases	in	which	the	same	syllable	type	was	sung	across	different	sequential	contexts	using	a	

method	 based	 on	 the	 Acoustic	 Distance	 (a	 measure	 of	 difference	 in	 acoustic	 structure)	
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between	 syllables	 in	 a	 pair	 (see	 “Multiple	 regression	 analysis	 of	 generalization”	 for	

calculation	 of	 Acoustic	 Distance).	 The	 distribution	 of	 Acoustic	 Distances	 across	 syllable	

pairs	was	bimodal.	The	Acoustic	Distance	at	which	 the	distribution	had	a	 local	minimum	

between	these	two	modes	was	used	as	a	classification	threshold	-	hence,	any	syllable	pairs	

with	Acoustic	Distance	within	 the	 first	mode	of	 the	distribution	were	 classified	 as	 same-

type	 syllables.	 This	 result	 of	 this	method	 is	 similar	 to	 that	 from	 subjective	hand	 labeling	

(Wohlgemuth	et	al.,	2010).	We	then	defined	“motifs”	as	stereotyped	sequences	of	syllables	

that	 were	 reused	 across	 song	 bouts	 and	 were	 preceded,	 and	 sometimes	 followed,	 by	

introductory	 notes	 or	 song	 termination.	 The	 sequential	 context	 for	 each	 rendition	 of	 a	

given	syllable	was	then	defined	by	the	directly	preceding	syllables	in	that	rendition’s	motif	

(including	introductory	notes	preceding	the	motif).	For	example,	if	a	bird	had	a	repertoire	

consisting	of	two	motifs,	AABHCD	and	AHCGDC,	then	across	all	song	bouts,	that	bird	could	

sing	C	in	three	potential	contexts	(i.e.,	following	either	BH,	AH,	or	GD).	In	cases	of	“repeated”	

syllables	 (i.e.,	 a	 syllable	 repeated	 successively	 >3	 times	 in	 the	 same	motif,	 such	 as	 B	 in	

ACBBBB;	 n	 =	 6),	 we	 only	 included	 the	 first	 rendition	 of	 the	 repeat	 to	 avoid	 over-

representing	the	syllable.		

	 		

Single	context	training	

Birds	 were	 trained	 to	 shift	 the	 FF	 of	 a	 syllable	 in	 one	 sequential	 context,	 and	 no	

reinforcement	was	provided	in	any	other	context.	We	performed	a	total	of	36	single	context	

experiments	in	12	birds.	In	29/36	cases	we	targeted	a	unique	syllable/context	combination	

(In	 11	 cases	we	 targeted	 a	 syllable	 that	 had	 previously	 been	 targeted,	 but	 in	 a	 different	

context	 (Figure	 S2.1B);	 in	 six	 cases	 we	 targeted	 a	 previously	 targeted	 syllable/context	
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combination,	but	drove	learning	in	the	opposite	direction).	In	22	experiments	we	drove	FF	

up;	 in	 the	 other	 14	 experiments	 we	 drove	 FF	 down.	 For	 presentation	 of	 results,	 the	

direction	of	“learning”	is	defined	as	the	direction	that	escaped	WN.	

At	 the	 onset	 of	 training,	 the	 FF	 threshold	 for	 reinforcement	 was	 set	 at	 the	 70th	

percentile	of	FF	determined	 from	the	 last	baseline	day,	 so	 that	~70%	of	 renditions	were	

“hits”,	and	~30%	were	“escapes”.	WN	training	began	when	lights	turned	on	in	the	morning	

of	 the	 first	 training	 day.	 Learning	 was	 quantified	 as	 the	 mean	 FF	 (see	 “FF	 calculation”	

below)	across	renditions	on	days	3	and	4	of	training	minus	the	mean	FF	across	renditions	

on	the	last	two	baseline	days.	Because	successful	learning	results	in	a	reduced	hit	rate,	the	

FF	threshold	was	adjusted	1-2x	a	day	over	2-4	days	to	maintain	a	hit	rate	of	~70%	(in	6	

cases	 until	 day	 2;	 in	 9	 cases	 until	 day	 3,	 in	 21	 cases	 until	 day	 4).	 In	 a	 small	 number	 of	

experiments,	the	bird’s	singing	rate	dropped	dramatically	for	2-4	days	when	training	was	

initiated	 (n	 =	 5	 experiments,	 <5	 catch	 bouts/day);	 in	 these	 cases	 the	 first	 day	 with	

substantial	singing	was	treated	as	the	first	day	of	training.	

	 To	estimate	the	amount	of	change	in	FF	that	could	occur	due	to	“drift”	under	control	

conditions	 we	 collected	 at	 least	 six	 days	 of	 continuous	 baseline	 singing	 data	 in	 24	

experiments	directly	preceding	the	start	of	WN.	For	these	experiments,	we	measured	the	

amount	of	change	in	FF	that	occurred	in	the	absence	of	WN	over	the	same	duration	used	in	

the	analysis	of	learning;	this	“baseline	drift”	was	computed	as	the	difference	between	mean	

FF	on	days	5-6	and	the	mean	FF	on	days	1-2	of	baseline	recordings.	

Generalization	 was	 defined	 for	 non-target	 syllables/contexts	 as	 the	 change	 in	 FF	

calculated	as	a	percent	of	the	change	in	FF	for	the	target	syllable	in	the	target	context	in	the	

same	experiment.	For	analyses	of	generalization,	we	only	used	experiments	with	significant	
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learning	in	the	target	context,	because	generalization	is	not	well-defined	in	the	absence	of	

learning	in	the	target	context.	The	criterion	for	significant	learning	was	that	the	shift	in	FF	

exceeded	the	97.5th	percentile	of	baseline	drift	pooled	across	syllables	and	birds	(n	=	30/36	

experiments	met	that	criterion).	For	all	other	analyses,	we	included	all	36	experiments.	

To	determine	whether	“off	target”	delivery	of	WN	could	have	influenced	measured	

values	 of	 generalization,	 we	 measured	 the	 frequency	 with	 which	 WN	 was	 delivered	 to	

targeted	syllables	in	non-target	contexts	within	the	set	of	songs	that	were	used	to	quantify	

learning	over	days	1-4	of	WN	training.	In	36	out	of	48	cases	the	frequency	of	off-target	hits	

was	0%	(Figure	S2.1Cii,	blue	histogram).	In	the	remaining	12	non-target	context	cases	the	

median	frequency	of	mis-targeting	was	1.2%,	with	a	range	of	0.2%	to	2.7%.	Similarly,	 for	

different-type	syllables,	for	227/235	cases	the	frequency	of	off-target	hits	was	0%	(Figure	

S2.1Cii,	 brown	 histogram).	 In	 the	 remaining	 18	 cases	 for	 different	 type	 syllables,	 the	

median	 hit	 frequency	 was	 1.0%,	 with	 a	 range	 of	 0.2%	 to	 5.6%.	 Moreover,	 regression	

analyses	 confirmed	 that	 the	 rare	 off-target	 hits	 do	 not	 explain	 the	 patterns	 of	

generalization	that	we	report	in	our	manuscript	(Figure	S2.1Ciii,	iv).	

	 To	test	what	features	of	syllables,	when	sung	in	different	contexts,	best	predict	the	

magnitude	 generalization	 across	 contexts,	 we	 fit	 a	 multiple	 linear	 regression	 model	 to	

examine	the	extent	to	which	a	linear	combination	of	three	variables	(contextual	similarity,	

acoustic	distance,	and	FF	correlation)	predicted	the	response	variable	(generalization).	For	

details,	see	“Multiple	regression	analysis	of	generalization”	below.	

	

Dual	context	training	
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In	a	subset	(n	=	13	experiments,	9	birds)	of	the	single	context	experiments	described	above,	

we	extended	the	duration	of	single	context	training	(mean	±	SD	=	12.4	±	6.4	total	days,	with	

4.1	 ±	 2.1	 days	 of	 incremental	 adjustment	 of	 FF	 threshold	 at	 the	 start	 of	 training).	 This	

“single	context	phase”	was	followed	immediately	by	a	“dual	context	phase”,	during	which	a	

contingency	was	 introduced	 to	 shift	 FF	 of	 the	 target	 syllable	 in	 a	 second	 context	 in	 the	

direction	opposite	that	in	the	first	context.	Over	~3	-	5	days	of	the	dual	context	phase	we	

incrementally	 adjusted	 the	 FF	 threshold	 in	 the	 second	 context	 1-2x	 a	 day	 to	maintain	 a	

~70%	 hit	 rate.	 Throughout	 that	 period	 we	 did	 not	 change	 the	 FF	 threshold	 in	 the	 first	

context,	 except	 in	 cases	where	FF	 in	 the	 first	 context	 shifted	 towards	baseline	 to	a	point	

where	>70%	of	renditions	were	being	hit.	In	that	case,	in	order	to	maintain	an	instructive	

reinforcing	signal	in	the	first	context,	we	adjusted	the	FF	threshold	to	maintain	the	hit	rate	

at	~70%.	

	

LMAN	inactivation	

We	used	microdialysis	 to	 infuse	the	GABAA	receptor	agonist	muscimol	(Tocris,	Catalog	#:	

0289)	 into	 LMAN	 to	 transiently	 silence	 neural	 activity	 during	 learning	 (Lindefors	 et	 al.,	

1989;	Warren	et	al.,	2011).	Bilateral	guide	cannulas	(CMA	7,	Harvard	Apparatus)	were	first	

stereotaxically	implanted	over	LMAN.	During	implantation,	the	bird	was	positioned	so	that	

the	ventral	surface	of	the	upper	beak	was	40°	below	horizontal.	Cannulas	were	centered	at	

5.45	 -	 5.65	mm	 rostral	 and	 1.5	mm	 lateral	 to	 the	 caudal	 point	 of	 the	 intersection	 of	 the	

midsaggital	and	transverse	sinuses	(i.e.,	“Y0”),	and	lowered	to	a	depth	such	that	the	tip	of	

the	 probe	 that	would	 subsequently	 be	 inserted	 into	 the	 cannula	would	 be	 2.4	mm	deep	

relative	 to	 the	 surface	 of	 the	 brain.	 Our	 goal	was	 to	 position	 the	 tip	 of	 the	 probe	 at	 the	
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center	 of	 LMAN	 in	 the	 rostral-lateral	 plane,	 and	 ~200	 μm	 below	 the	 dorsal	 surface	 of	

LMAN.	 After	 birds	 recovered	 from	 surgery	 and	 were	 singing	 (~2	 days),	 we	 inserted	

microdialysis	 probes	 (CMA	7,	 1	mm	membrane	 length,	 diameter	 0.24	mm,	 6	 kDa	 cutoff)	

into	the	cannulas.	The	output	of	one	probe	was	used	as	the	input	to	the	other	probe.	Probes	

were	 connected	 to	 pumps	 via	 flexible	 tubing	 and	 PBS	 was	 continuously	 infused,	 except	

during	LMAN	inactivation	when	muscimol	was	infused	(see	below).	Solutes	diffuse	through	

the	membrane	while	maintaining	zero	net	volume	transfer.	In	some	cases,	the	tubing	was	

interfaced	with	 a	 dual	 channel	 liquid	 commutator	 (Instech	 Labs	 2-Channel	Microdialysis	

Swivel).	In	all	cases	birds	could	comfortably	move	and	sing	during	infusion.	The	pump	was	

outside	the	sound-attenuating	chamber,	allowing	us	to	switch	solutions	without	disturbing	

the	bird.	 Flow	 rate	was	maintained	 at	 0.3	 -	 0.5	μl/min	 and	 increased	 to	0.8	 -	 1.0	μl/min	

during	muscimol	infusion.	The	concentration	of	muscimol	(dissolved	in	PBS)	ranged	from	

100	μM	to	700	μM	across	experiments,	and	was	calibrated	before	each	experiment	to	elicit	

a	 reduction	 in	 FF	 variability	 (a	marker	 of	 successful	 LMAN	 inactivation)	 before	 training	

began	(see	below	and	Figures	S2.4A,	B).		

LMAN	 inactivation	was	 performed	 in	 a	 similar	 time	window	 on	 each	 inactivation	

day	for	a	given	experiment	(~12:30	pm	to	~4:00	pm).	We	analyzed	songs	starting	after	a	

lag	 from	 the	 switch	 to	 muscimol,	 which	 accounts	 for	 flow	 of	 drug	 through	 tubing	 and	

diffusion	 within	 tissue.	 The	 duration	 of	 that	 lag	 was	 separately	 determined	 for	 each	

experiment	based	on	 the	amount	of	 time	 it	 took	 from	 the	 start	of	 infusion	 to	observe	an	

~30%	reduction	in	FF	coefficient	of	variation	(CV,	standard	deviation	divided	by	the	mean)	

-	 that	 effect	 is	 a	 consistent	 indicator	 of	 lesion	 (Hampton	 et	 al.,	 2009)	 or	 inactivation	

(Warren	et	al.,	2011)	of	LMAN.	The	duration,	based	solely	on	baseline	days,	from	the	start	
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of	infusion	until	FF	CV	was	reduced	to	a	stable	value	was	used	as	the	lag	duration	for	the	

entire	 experiment	 (Figure	 S2.4A;	 mean	 lag,	 94.2	 min;	 SD,	 31.2	 min).	 Muscimol	 infusion	

successfully	 reduced	 FF	 CV	 across	 syllable	 types	 and	 contexts,	 both	 during	 baseline	 and	

training	(Figure	S2.4B).	In	the	12/14	experiments	in	which	we	restricted	analyses	to	catch	

bouts	 (see	 “FF	 calculation”),	 starting	 from	 the	 time	when	muscimol	 data	were	 collected	

(i.e.,	 the	 end	 of	 the	 lag	 period),	 we	 transiently	 increased	 the	 catch	 rate	 (on	 average	

increased	 to	 0.8	 from	 0.15)	 to	 allow	 us	 to	 collect	 a	 sample	 of	 catch	 song	 bouts	 of	

comparable	size	to	the	sample	collected	pre-inactivation.	This	was	necessary	because	the	

duration	of	singing	during	inactivation	was	lower	than	before	inactivation.	The	catch	rate	

was	decreased	back	to	its	normal	value	at	the	end	of	muscimol	infusion.	FF	during	PBS	was	

quantified	in	a	time	window	starting	at	~8:30	am	(lights	were	turned	on	at	7:00	am)	and	

ending	at	the	PBS-to-muscimol	switch	time.	

FF	 shifts	 during	 PBS	 and	 muscimol	 infusion	 were	 normalized	 relative	 to	 their	

respective	baselines	(number	of	days	directly	preceding	start	of	training,	range:	3	-	7	days;	

muscimol	 inactivation	 baseline	 data	were	 collected	 in	 a	 subset	 of	 those	 days,	 range:	 2-4	

days).	 PBS	 shift	 was	 defined	 as	 FF	 during	 PBS	 infusion	 minus	 baseline	 FF	 during	 PBS	

infusion,	while	muscimol	shift	was	defined	as	FF	during	muscimol	infusion	minus	baseline	

FF	 during	muscimol	 infusion.	 The	differences	 between	baseline	 FF	during	muscimol	 and	

PBS	infusion	were	small	and	not	in	a	consistent	direction;	therefore	all	of	our	results	held	if	

we	instead	normalized	muscimol	FF	to	baseline	FF	during	PBS	infusion.		

	

LMAN	inactivation	during	single	context	training.		
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Based	 on	 a	 previous	 LMAN	 inactivation	 study	 (Warren	 et	 al.,	 2011),	 we	 defined	 a	

maintained	learning	period	as	a	period	of	at	least	five	days	during	which	i)	the	FF	threshold	

for	WN	was	 no	 longer	 being	 adjusted	 and	 ii)	 each	 day’s	mean	 FF	was	within	 a	window	

defined	 by	 the	 mean	 FF	 across	 all	 days	 ±	 0.75	 times	 the	 mean	 of	 within-day	 standard	

deviations	of	FF.	On	average,	the	maintained	learning	period	for	single	context	experiments	

started	 on	 day	 5.2	 (S.D.	 =	 2.8)	 relative	 to	 start	 of	 training.	 The	 period	 in	 which	 LMAN	

inactivation	data	were	obtained	started	on	day	4	of	training,	when	a	large	change	in	FF	in	

the	 target	 context	 had	 been	 reached,	 and	 ended	 on	 day	 10	 of	 training	 or	 day	 4	 of	 the	

maintained	shift	period,	whichever	was	earlier.	We	defined	this	as	an	“early”	period	in	the	

learning	trajectory,	during	which	the	AFP	has	been	shown	to	contribute	significantly	to	the	

expression	 of	 learning	 (Warren	 et	 al.,	 2011).	Our	main	 results	 held	when	we	used	other	

windows	 (first	 and	 last	 day	 modified	 by	 ±	 1	 or	 2	 days).	 LMAN	 inactivation	 days	 were	

usually	 separated	 by	 at	 least	 one	 day	 and	 data	 from	 multiple	 inactivation	 days	 were	

averaged	 (separately	 for	baseline	and	 learning	days).	For	 comparison	of	 effects	of	LMAN	

inactivation	for	target	vs.	non-target	contexts,	effects	for	multiple	non-target	contexts	were	

averaged	to	get	a	single	mean	value	for	each	experiment.	

	

LMAN	inactivation	during	Congruent	and	Incongruent	training	

We	 measured	 the	 contribution	 of	 the	 AFP	 to	 expression	 of	 learning	 for	 Congruent	 and	

Incongruent	training	experiments,	in	both	early	and	late	periods	in	the	learning	trajectory.	

For	 12	 experiments,	 learning	 was	 driven	 and	 maintained	 in	 context	 1,	 following	 which	

learning	was	then	driven	in	the	second	context	in	either	Congruent	(i.e.,	same	direction	as	

in	context	1,	n	=	5),	or	Incongruent	(i.e.,	opposite	direction	from	context	1,	n	=	7)	directions,	
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while	 maintaining	 the	 reinforcement	 in	 the	 first	 context	 (n	 =	 6	 birds,	 with	 5	 birds	 that	

contributed	Congruent	experiments	also	contributing	6	Incongruent	experiments).	Effects	

of	 LMAN	 inactivation	 were	 assessed	 relative	 to	 the	 onset	 of	 a	 period	 of	 maintained	

learning,	defined	as	the	intersection	of	maintained	learning	periods	separately	determined	

for	 each	 context	 (as	 described	 above	 for	 single	 context	 experiments).	 AFP	 bias	 and	

consolidation,	 inferred	 from	effects	 of	 LMAN	 inactivation	on	 learning,	were	 grouped	 and	

averaged	over	an	early	period	(days	1-4)	and	late	period	(days	5-6)	of	maintained	learning.	

For	3	out	of	12	experiments,	feedback	in	context	2	was	provided	in	the	opposite	direction	

prior	 to	 the	onset	of	Congruent	 (n	=	2)	or	 Incongruent	 (n	=	1)	 training.	The	exclusion	of	

those	 3	 experiments	 did	 not	 alter	 the	 significance	 of	 the	 effects	 of	 LMAN	 inactivation	

(Figure	S2.5B).	

	

Localization	of	probes	

We	performed	post-mortem	histology	on	sectioned	(40	μm	thick,	coronal)	tissue	to	confirm	

placement	of	probes	within	or	directly	adjacent	to	LMAN.	Tissue	damage,	revealed	by	Nissl	

or	DAPI	stain,	indicated	the	location	of	the	probe.	LMAN	was	visualized	by	immunostaining	

for	calcitonin	gene	related	peptide	(Sigma,	RRID:	AB_259091,	1:5000	to	1:10000)	(Bottjer	

et	al.,	1997).		

	

QUANTIFICATION	AND	STATISTICAL	ANALYSIS	

Overview	

Unless	 noted	 otherwise,	 to	 compare	 two	 samples	we	 used	 the	 nonparametric	 two-sided	

Wilcoxon	 rank-sum	 test	 and	 for	 paired	 samples	 we	 used	 the	 nonparametric	 two-sided	
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Wilcoxon	 signed-rank	 test.	 Within-group	 variances	 were	 similar	 for	 groups	 being	

compared.	 All	 regression	 analyses	 were	 performed	 using	 the	 ordinary	 least	 squares	

method.	 Tests	 were	 deemed	 statistically	 significant	 if	 p	 <	 0.05.	 Statistical	 details	 for	 all	

experiments	 are	 included	 in	 their	 corresponding	 figure	 legends.	 For	 experiments	

corresponding	to	Figures	2.1-2.4,	no	randomization	was	required	 in	allocating	animals	to	

experimental	 groups	 because	 each	 animal	 contributed	 to	 both	 experimental	 groups	

(dimension	1:	 target	vs.	nontarget	 context;	dimension	2:	PBS	vs.	muscimol	 infusion).	For	

the	experiment	in	Figure	2.5,	randomization	in	allocation	to	experimental	types	(Congruent	

vs.	 Incongruent)	was	 not	 required	 because	 almost	 all	 (5/6)	 animals	 contributed	 data	 to	

both	experimental	 types.	 Syllable	 labeling	was	performed	blind	 to	magnitude	of	 learning	

and	 LMAN	 inactivation	 effects.	 For	 LMAN	 inactivation	 experiments,	 experimenters	 were	

not	 blinded	 to	whether	 data	were	 from	 PBS	 or	muscimol	 infusion	 periods,	 as	muscimol	

infusion	causes	changes	to	pitch	CV	that	are	conspicuous	even	during	visual	inspection	of	

spectrograms.	No	datasets	were	excluded	unless	appropriate	as	described	elsewhere	[i.e.,	

in	calculation	of	percent	generalization	(see	“Single	context	training”	above)	or	 in	control	

analyses	which	were	restricted,	by	design,	to	a	subset	of	experiments	(Figures	S2.3A,	S2.4C,	

S2.5B)].	 Sample	 sizes	were	 not	 predetermined	 but	were	 comparable	 to	 previous	 related	

studies	 (Andalman	and	Fee,	 2009;	Charlesworth	 et	 al.,	 2011,	 2012;	Tumer	 and	Brainard,	

2007;	Warren	 et	 al.,	 2011).	 All	 analyses	were	 performed	 using	 custom-written	MATLAB	

(Mathworks)	software.		
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FF	calculation	

All	 analyses	 were	 performed	 on	 FF	 values	 that	 were	 calculated	 offline.	 In	 33/36	

experiments	we	analyzed	only	“catch”	bouts,	which	were	a	randomly	interleaved	7-16	%	of	

song	 bouts	 in	 which	 reinforcement	 was	 withheld.	 In	 the	 other	 three	 experiments,	 we	

analyzed	both	catch	bouts	and	a	subset	of	bouts	in	which	reinforcement	occurred	normally	

(“training	bouts”).	In	experiments	in	which	we	analyzed	training	bouts,	we	excluded	from	

analysis	 the	 two	 syllables	 directly	 following	 the	 target	 syllable,	 to	 avoid	 potential	 acute	

effects	of	WN	on	the	FF	of	those	syllables	(Sakata	and	Brainard,	2006).	For	each	rendition,	

we	 calculated	 a	 spectrogram	 using	 a	 Gaussian-windowed	 (σ	 =	 1	ms)	 short-time	 Fourier	

transform	(window	size	=	1024	samples;	overlap	=	1020	samples;	sampling	rate	=	32	kHz).	

Within	each	time	bin,	FF	was	defined	as	the	frequency	corresponding	to	peak	power	of	the	

first	 harmonic,	 estimated	 using	 parabolic	 interpolation.	 FF	 for	 the	 rendition	 was	 then	

calculated	as	the	mean	FF	across	time	bins	for	a	fixed	window	defined	relative	to	syllable	

onset	 (mean	window	 size	=	14.4	ms).	All	 syllables	 consisting	 of	 largely	 broadband	noise	

(e.g.	introductory	note	J	in	Figure	2.1A)	were	excluded	from	learning	analyses.	

	

Multiple	regression	analysis	of	generalization	

We	 fit	 a	 multiple	 linear	 regression	 model	 to	 examine	 the	 extent	 to	 which	 a	 linear	

combination	of	three	variables	(contextual	similarity,	acoustic	distance,	and	FF	correlation)	

predicted	the	response	variable	(generalization)	in	experiments	driving	learning	in	only	a	

single	context	(see	“Single	context	training”	above).	
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Contextual	 similarity	 was	 coded	 as	 a	 discrete	 variable	 with	 values	 0,	 1	 or	 2	

corresponding	to	the	number	of	syllables,	directly	preceding	the	target	syllable,	that	were	

shared	in	the	target	and	non-target	contexts	(see	main	text	and	Figure	2.1E	for	details).		

Acoustic	distance	was	measured	between	the	target	syllable	when	sung	in	the	target	

and	non-target	contexts	as	the	mean	Euclidian	distance	in	an	8-dimensional	feature	vector	

space.	The	 acoustic	 features	used	were	FF,	 duration,	 spectral	 entropy,	 temporal	 entropy,	

spectro-temporal	 entropy,	 amplitude	 slope,	 frequency	 slope	 and	 time	 to	 half-peak	

amplitude.	 All	 features	 were	 calculated	 as	 in	 (Wohlgemuth	 et	 al.,	 2010),	 with	 slight	

differences	 for	 FF	 (described	 in	 “FF	 calculation”)	 and	 frequency	 slope	 (as	 in	 Sakata	 and	

Brainard,	 2006).	 For	 each	 syllable	 in	 each	 context,	 we	 calculated	 a	mean	 feature	 vector	

across	 renditions	 from	 baseline	 recordings.	 The	 feature	 vectors	 for	 each	 syllable	 were	

normalized	(via	z-score	relative	 to	a	global	reference	distribution	of	 feature	vectors	 from	

110	 randomly	 sampled	 baseline	 renditions	 from	 each	 syllable	 in	 each	 context),	 and	

acoustic	 distance	 between	 any	 two	 syllables	was	 calculated	 as	 the	 distance	 between	 the	

mean	z-scored	feature	vectors	for	those	syllables.	

FF	correlation	was	measured	as	the	Pearson’s	correlation	of	FF	for	a	syllable	in	two	

different	contexts	across	song	bouts.	If	a	syllable	in	a	specific	context	was	sung	more	than	

once	in	a	given	song	bout,	we	first	took	the	average	across	those	renditions	to	obtain	one	

value	of	FF	 for	each	context	 for	 that	 song	bout.	Therefore,	each	pairwise	correlation	was	

calculated	between	two	vectors,	one	for	each	context	in	the	pair,	each	with	length	equal	to	

the	number	of	song	bouts	in	the	dataset.		

The	parameters	in	the	model	were	fit	using	the	ordinary	least	squares	method.	The	

continuous	predictor	variables	(acoustic	distance	and	FF	correlation)	were	first	scaled	such	
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that	a	unit	change	in	the	scaled	variable	corresponded	to	a	change	of	1.59	times	the	sample	

standard	deviation	of	 that	variable.	This	was	performed	to	 facilitate	comparison	with	the	

regression	coefficient	for	contextual	similarity,	since	a	unit	change	in	contextual	similarity	

corresponded	to	a	change	of	1.59	times	its	sample	standard	deviation.	

	

DATA	AND	SOFTWARE	AVAILABILITY	

Data	and	custom-written	software	are	available	upon	request.	
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2.7.	Figures	

	

	
	
Figure	 2.1.	 Learning	 driven	 in	 a	 single	 target	 context	 partially	 generalizes	 to	 non-
target	contexts	
(A)	 Spectrogram	 of	 an	 example	 song	 with	 syllables	 labeled	 and	 transition	 diagram	
representing	 three	contexts	 for	 the	 syllable	B.	 Scale	bars,	250	ms	 (horizontal)	and	2	kHz	
(vertical).	
(B)	Schematic	of	training	in	a	single	context.	White	noise	feedback	(“hit”)	was	provided	to	
renditions	 of	 the	 target	 syllable	 B	 in	 the	 target	 context	 JAB	 (grey)	 when	 fundamental	
frequency	 (FF)	 of	 B	 was	 below	 a	 threshold	 (red	 fill	 in	 histogram).	 Feedback	 was	 not	
provided	 (“escape”)	when	B	was	 sung	 in	 non-target	 contexts	 (blue),	 or	when	 a	 different	
syllable	(e.g.,	G)	was	sung	in	any	context	(brown).	
(C)	Learning	over	two	days	of	baseline	(“WN	off”)	and	four	days	of	training	[“WN	on”	for	
the	 target	 context;	 arrow	 direction	 represents	 the	 direction	 of	 FF	 shift	 that	 escapes	WN	
feedback]	for	the	experiment	depicted	in	(B).	Each	datapoint	represents	a	single	rendition	
of	 the	 target	 syllable	 in	 the	 target	 context	 (JAB,	 grey),	 the	 target	 syllable	 in	 a	 non-target	
context	(AAB,	blue),	or	a	different	syllable	(BDG,	brown).	Renditions	within	the	red	shading	
were	below	the	FF	threshold	and	were	thus	“hit”	with	white	noise	(WN).	Mean	±	SD	FF	for	
each	day	is	overlaid.	
(D)	 Summary	 across	 experiments	 of	 learning	 for	 target	 syllables	 in	 the	 target	 context	
(n=36),	 the	 target	 syllable	 in	 non-target	 contexts	 (n=48),	 and	 different	 syllables	 in	 any	
context	 (n=235).	 Bars	 represent	 mean	 ±	 SEM	 learning	 (n=36	 experiments,	 in	 12	 birds,	
targeting	 a	 syllable	 in	 a	 single	 context),	 defined	 as	 mean	 FF	 on	 days	 three	 and	 four	 of	
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training	minus	mean	FF	on	the	last	two	baseline	days.	***,	p	<	0.0005,	n.s.,	p	>	0.05,	signed-
rank	test;	###,	p	<	0.0005,	rank-sum	test.		
(E)	Left:	Generalization	as	a	function	of	similarity	between	target	and	non-target	contexts.	
Contextual	 similarity	was	 defined	 by	 the	 number	 of	 syllables	 immediately	 preceding	 the	
target	 syllable	 that	 were	 shared	 between	 the	 target	 context	 (“XYZB”)	 and	 non-target	
contexts.	Variation	in	contextual	similarity	from	low	(“nnnB”,	no	syllables	shared,	n=28),	to	
medium	 (“nnZB”,	 1	 syllable	 shared,	 n=7),	 to	 high	 (“nYZB”,	 2	 syllables	 shared,	 n=3)	
accounted	 for	 significant	 variation	 in	 the	 magnitude	 of	 generalization	 (simple	 linear	
regression,	p	<	5	x	10-5,	r2	=	0.40,	slope	=	-0.33).	Bars	represent	mean	±	SEM.	*,	***,	p	<	0.05,	
0.0005,	 corrected	 for	 multiple	 comparisons	 using	 the	 Tukey-Kramer	 method	 on	 results	
from	ANOVA.	Right:	histogram	of	generalization	for	all	cases	of	the	target	syllable	in	non-
target	contexts	(mean,	23.2	±	5.4%).		
See	also	Figures	S2.1	and	S2.2.	
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Figure	2.2.	Independent	learning	for	the	same	syllable	in	two	contexts.		
(A)	Example	experiment.	In	the	single	context	phase,	the	FF	of	B	was	driven	up	in	the	first	
context,	JAB.	In	the	dual	context	phase,	the	FF	of	the	same	syllable,	B,	was	driven	down	in	
the	 second	 context,	 AAB,	 while	 the	 reinforcement	 contingency	 in	 the	 first	 context	 was	
maintained.	Dots	indicate	the	FF	of	single	renditions,	with	overlaid	thick	lines	representing	
mean	±	SD.		
(B)	 Across-experiment	 mean	 ±	 SEM	 learning	 in	 the	 first	 (top)	 and	 second	 (bottom)	
contexts.	Experiments	were	aligned	to	the	transition	from	the	single	context	phase	to	the	
dual	context	phase	(n	=	13	experiments,	each	including	a	single	and	dual	context	phase,	9	
birds;	*,	**,	***,	p	<	0.05,	0.005,	0.0005,	signed-rank	test	vs.	the	last	single	context	day;	#,	p	
<	0.05	signed-rank	test	vs.	0	Hz).		
(C)	Learning	during	the	dual	context	phase	for	the	first	and	second	contexts.	Learning	was	
measured	as	the	change	in	FF,	on	days	4-5	of	the	dual	context	phase,	relative	to	FF	on	the	
last	2	days	of	the	single	context	phase	(***,	p	<	0.0005,	signed-rank	test;	###,	p	<	0.0005,	
rank-sum	test)	
See	also	Figure	S2.3	
	 	



	

	 48	

	
Figure	2.3.	Neural	circuits	that	contribute	to	song	production	and	learning	
(A)	Top:	song	system	nuclei	schematized	according	to	anatomical	organization.	Blue,	green	
and	red	subdivisions	 refer	 to	 “cortical”	 (pallial),	basal	ganglia,	 and	 thalamic	 subdivisions,	
respectively.	Bottom:	the	motor	pathway	(red)	consists	of	the	cortical	nuclei	HVC	(used	as	a	
proper	name)	and	RA	(robust	nucleus	of	the	arcopallium).	The	anterior	forebrain	pathway	
(AFP,	 tan)	 consists	 of	 the	 striatopallidal	 nucleus	 Area	 X	 (used	 as	 a	 proper	 name),	 the	
thalamic	nucleus	DLM	(medial	dorsolateral	nucleus	of	 thalamus),	 and	 the	 frontal	 cortical	
nucleus	LMAN	(lateral	magnocellular	nucleus	of	the	anterior	nidopallium).		
(B)	Schematic	based	on	previous	work	of	the	contributions	of	the	AFP	and	motor	pathway	
(MP)	to	the	expression	of	WN	driven	learning	for	a	syllable	sung	in	stereotyped	sequences	
(i.e.,	only	ever	sung	in	one	context)	(Andalman	and	Fee,	2009;	Warren	et	al.,	2011).	FF	 is	
driven	 from	 baseline	 and	 then	 maintained	 at	 a	 fixed	 value,	 while	 LMAN	 is	 periodically	
inactivated	by	muscimol	infusion.	The	amount	of	total	learning	(black	lines	and	bars,	“PBS”)	
that	 persists	 during	 LMAN	 inactivation	 (red	 lines	 and	 bars,	 ”MUSC”)	 is	 construed	 as	 the	
motor	 pathway	 (MP)	 contribution	 to	 the	 expression	 of	 learning	 (red	 arrow),	 while	 the	
difference	 between	 total	 learning	 and	 the	 MP	 contribution	 is	 construed	 as	 the	 AFP	
contribution	 to	 the	 expression	 of	 learning	 (gold	 arrow).	 During	 “baseline”,	 LMAN	
inactivation	has	no	 consistent	 effect	 on	FF,	 indicating	 that	well-learned	 song	 structure	 is	
largely	 encoded	 in	 the	 downstream	 motor	 pathway.	 During	 “early”	 learning,	 LMAN	
inactivation	 results	 in	 a	 reversion	 of	 learning	 back	 towards	 baseline,	 indicating	 that	 the	
expression	 of	 recent	 learning	 depends	 on	 biasing	 signals	 from	 the	 AFP	 acting	 on	 the	
downstream	motor	pathway	(“AFP	biasing”;	thick	green	arrow	from	AFP	to	RA).	During	a	
“late”	 period	 of	maintained	 learning,	 LMAN	 inactivation	 no	 longer	 causes	 a	 reversion	 of	
learning,	 indicating	 that	 learning	 has	 been	 transferred	 to	 the	 motor	 pathway	
(“Consolidated	to	MP”,	filled	green	circle	in	RA).			
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Figure	2.4.	The	AFP	adaptively	biases	motor	output	in	a	context-specific	manner.	
(A)	Example	experiment	in	which	FF	of	B	was	driven	up	in	the	target	context	(BCCB,	 top,	
grey),	while	 reinforcement	was	withheld	 in	 the	non-target	 context	 (DCCB,	 bottom,	blue).	
Black	lines	represent	daily	mean	±	SEM	FF	during	infusion	of	vehicle	(PBS)	into	LMAN.	Red	
squares	represent	daily	mean	±	SEM	FF	during	infusion	of	muscimol.	Inset:	FF	of	individual	
renditions	 for	 a	 single	 inactivation	 day;	 lines	 represent	 mean	 FF,	 and	 blue	 scale	 bar	
represents	2	hrs.		
(B)	Muscimol	 infusion	 caused	 significant	 reversion	of	 learning	 in	 the	 target	 context	 (top,	
***,	p	<	0.0005,	signed-rank	test),	but	not	in	non-target	contexts	(bottom,	p	=	0.50,	signed-
rank	 test)	 on	 days	 4-10	 of	 training	 (n	 =	 13	 experiments	 in	 7	 birds).	 Experimental	 data	
(bars)	are	overlaid	on	a	schematic	of	the	learning	trajectory	(dashed	lines).	
(C)	A	model	for	how	the	AFP	and	motor	pathway	contribute	to	learning	in	target	and	non-
target	contexts.	In	this	model,	the	motor	pathway	has	a	“core”	representation	of	the	target	
syllable	that	is	largely	overlapping	between	contexts	(schematized	by	overlapping	circles	in	
RA),	while	the	AFP	has	context-specific	representations	of	the	appropriate	modifications	of	
the	 syllable	 for	 each	 context	 (schematized	by	non-overlapping	 circles	 in	 the	AFP).	 In	 the	
target	context	(top,	“xB”)	the	AFP	provides	a	strong	biasing	signal	to	the	target	syllable	B	
(thick	green	arrow	from	AFP	to	RA),	and	over	time	this	bias	begins	to	drive	a	consolidation	
of	changes	in	the	motor	pathway	representation	of	the	target	syllable	(light	green	circle	in	
RA	 reflecting	 partial	 consolidation	 of	 changes	 to	 the	 MP	 representation	 of	 the	 target	
syllable).	In	the	non-target	context	(bottom,	“yB”),	there	is	no	AFP	bias.	However,	because	
the	 motor	 pathway	 representation	 of	 the	 target	 syllable	 overlaps	 substantially	 between	
contexts,	 the	 gradual	 modification	 of	 the	 MP	 representation	 in	 the	 target	 context	
contributes	 to	 the	 generalization	 of	 learning	 in	 the	 non-target	 context.	 As	 a	 result,	 the	
expression	of	learning	in	the	target	context	depends	on	contributions	from	both	the	MP	and	
AFP	(red	and	gold	bar,	top),	but	learning	that	generalizes	to	the	non-target	context	depends	
only	on	contributions	from	the	MP	(red	bar,	bottom).	
(D)	 Mean	 ±	 SEM	 contribution	 of	 the	 AFP	 to	 expression	 of	 learning	 (AFP	 bias;	 n=13	
experiments,	 identical	 to	 (B)).	AFP	bias	 in	 the	 target	 context	 (p	<	0.0005)	but	not	 in	 the	
non-target	context	(p	=	0.50)	was	significantly	different	from	0	(signed-rank	test).	***,	p	<	
0.0005,	signed-rank	test	comparing	target	and	non-target	contexts.	
See	also	Figure	S2.4.	
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Figure	 2.5.	 Conflicting	 AFP	 bias	 interferes	 with	 consolidation	 for	 context-specific	
learning	
(Ai,	Aii)	Model	predictions	for	Congruent	and	Incongruent	training.	For	Congruent	training	
(Ai),	we	predicted	that	during	early	learning	there	would	be	similarly	directed	AFP	bias	in	
both	context	1(xB)	and	context	2	(yB)	for	the	target	syllable	B	(“Early”,	thick	green	arrows	
from	both	contexts	1	and	2).	These	biasing	signals	would	act	synergistically	to	drive	strong	
consolidation	in	the	overlapping	downstream	motor	pathway	representation	of	the	syllable	
(“Late”,	 dark	 green	 circles	 in	 RA),	 so	 that	 expression	 of	 learning	 would	 become	
independent	 of	 the	 AFP.	 For	 Incongruent	 training	 (Aii),	 we	 predicted	 that	 during	 early	
learning	there	would	be	oppositely	directed	AFP	bias	across	contexts	(“Early”,	thick	green	
arrow	 in	 context	 1	 biasing	 FF	 upwards,	 and	 thick	 purple	 arrow	 in	 context	 2	 biasing	 FF	
downwards).	These	biasing	signals	would	drive	opposing	modifications	to	the	overlapping	
motor	pathway	representation	and	impair	consolidation	(“Late”,	light	circles	in	RA),	so	that	
expression	of	 learning	 in	both	contexts	would	 remain	dependent	on	context-specific	AFP	
biasing	signals.		
(Bi,	 Bii)	 Summary	 data	 for	 Congruent	 and	 Incongruent	 training	 (n	 =	 5	 Congruent	
experiments	 and	7	 Incongruent	 experiments	 in	 6	 birds).	 Bar	 plots	 showing	mean	±	 SEM	
effects	 of	 LMAN	 inactivation	 at	 early	 and	 late	 time	 points	 of	 maintained	 learning	 are	
overlaid	on	lines	schematizing	trajectories	of	learning	for	Congruent	(Bi)	and	Incongruent	
(Bii)	 experiments	 (see	 Methods).	 Early	 and	 late	 periods	 are	 defined	 relative	 to	 a	
maintained	learning	period	(see	Methods).	
(C)	 AFP	 bias	 in	 the	 early	 period	 (days	 1-4)	 of	 maintained	 learning	 was	 highly	 context-
specific	and	appropriate	for	each	type	of	training	(sample	sizes	as	 in	(B)).	Bars	represent	
mean	 (±	 SEM)	 AFP	 bias,	 measured	 as	 the	 amount	 by	 which	 learning	 reverted	 towards	
baseline	while	LMAN	was	inactivated.	*,	p	<	0.05,	signed-rank	test;	##,	p	<	0.005,	rank-sum	
test.	AFP	bias	measured	in	a	separate	set	of	experiments	driving	learning	in	only	a	single	
target	 context	 is	 reproduced	 from	 Figure	 2.4C	 and	 plotted	 here	 for	 comparison	 (n	 =	 13	
experiments	in	7	birds,	***,	p	<	0.0005,	signed-rank	test).		
(D)	 Consolidation	 in	 the	 late	 period	 (days	 5-6)	 of	 maintained	 learning	 was	 strong	 for	
Congruent	training,	but	reduced	for	Incongruent	training.	Bars	represent	the	mean	(±	SEM)	
percentage	 of	 learning	 that	was	 still	 expressed	when	 AFP	 output	was	 blocked	 (and	was	
thus	 dependent	 on	 the	 motor	 pathway	 and	 not	 on	 the	 AFP).	 Dashed	 line	 represents	
magnitude	of	consolidation	from	a	previous	study	driving	learning	for	syllables	that	were	
only	sung	in	stereotyped	sequences	(Warren	et	al.,	2011).	Data	are	shown	for	 learning	 in	
the	first	context,	because	the	magnitude	and	trajectory	of	learning	in	the	first	context	was	
matched	between	training	types	(see	Methods);	however,	significance	of	these	results	were	
unaffected	if	we	used	both	contexts	(Figure	S2.5A).	*,	p	<	0.05,	signed-rank	test	vs.	100%;	
##,	p	<	0.005,	rank-sum	test.	
See	also	Figure	S2.5.	
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Figure	S2.1.	Learning	driven	 in	a	single	 target	context	partially	generalizes	 to	non-
target	contexts.	Related	to	Figure	2.1.	
(A)	Histogram	of	generalization	of	learning	for	different-type	syllables	(n	=	199),	overlaid	
on	the	distribution	of	baseline	drift	(gray,	estimated	by	measuring	day-to-day	fluctuations	
of	mean	FF	 in	baseline	data,	 see	 STAR	Methods).	Arrow	 represents	mean	generalization,	
which	was	 not	 significantly	 different	 from	 0	 by	 signed-rank	 test	 (p	 <	 0.34).	 The	 lack	 of	
generalization	 for	 different-type	 syllables	 is	 consistent	with	 a	 previous	 study	 using	WN-
driven	learning	in	Bengalese	finches	(Tumer	and	Brainard,	2007).	However,	another	study,	
using	 a	 different	 training	 paradigm	 in	 which	 learning	 was	 driven	 by	 sensory	 errors	
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imposed	 by	 earphones,	 found	 that	 different-type	 syllables	 could	 show	 negative	
generalization	 (Hoffmann	 and	 Sober,	 2014).	 The	 reported	 negative	 generalization	 was	
small	 in	magnitude	 and	 inconsistent	 across	 days	 following	 onset	 of	 training.	 Hence,	 this	
difference	 from	 our	 study	 could	 reflect	 either	 a	 difference	 in	 generalization	 of	 learning	
driven	by	sensory	errors	and	binary	reinforcement		(Hoffmann	and	Sober,	2014;	Izawa	and	
Shadmehr,	 2011),	 or	 other	 more	 subtle	 methodological	 differences	 that	 could	 have	
contributed	to	variation	in	the	detection	of	small	effects.		
(B)	Patterns	of	generalization,	for	the	target	syllable	in	non-target	contexts,	across	multiple	
experiments	within	birds	indicate	that	generalization	is	symmetric	between	contexts.	Left:	
learning	was	driven	 in	 a	 single	 target	 context;	 in	 the	 first	 experiment	Context	 1	was	 the	
target	context	and	Context	2	was	the	non-target	context,	and	vice	versa	for	experiment	2.	
Experiments	 1	 and	 2	were	 separated	 by	 a	 “washout”	 period	 in	which	WN	 feedback	was	
turned	 off,	 allowing	 FF	 to	 return	 to	 baseline.	 Right:	 the	 slope	 of	 generalization	 in	
experiment	2	vs.	generalization	in	experiment	1	was	not	different	from	unity	(simple	linear	
regression:	p	=	0.017,	r2	=	0.48,	slope	=	0.95	(CI:	0.21	to	1.68).		
(Ci-iv)	WN	feedback	was	successfully	localized	to	the	target	syllable	in	the	target	context.	
(Ci)	Histogram	of	hit	rate	for	the	target	syllable	in	the	target	context;	each	datapoint	is	one	
experiment.	Hit	rate	was	calculated	as	the	fraction	of	renditions	that	elicited	WN	feedback,	
averaged	 over	 the	 four	 days	 of	 training	 (see	 STAR	 Methods).	 The	 hit	 rates	 were	 set	 to	
~70%	at	the	beginning	of	each	experiment	and	are	generally	lower	than	70%	in	this	plot	
due	to	learning.		
(Cii)	Histogram	of	hit	rates	across	non-target	syllables/contexts	shows	that	off-target	WN	
hits	were	rare.	For	the	target	syllable	in	a	non-target	context	(blue	histogram),	in	36	out	of	
48	 cases	 the	 frequency	 of	 off-target	 hits	was	 0%.	 In	 the	 remaining	 12	 cases	 the	median	
frequency	of	mis-targeting	was	1.2%,	with	a	range	of	0.2%	to	2.7%.	Similarly,	for	different-
type	 syllables	 (brown	histogram),	 for	227/235	cases	 the	 frequency	of	off-target	hits	was	
0%.	In	the	remaining	18	cases,	the	median	hit	frequency	was	1.0%,	with	a	range	of	0.2%	to	
5.6%.	
(Ciii,	Civ)	Generalization	of	learning	to	the	target	syllable	in	non-target	contexts	(Ciii)	or	to	
different-type	syllables	(Civ)	could	not	be	explained	by	the	presence	of	off-target	hits;	there	
was	 no	 detected	 relationship	 between	 the	 amount	 of	 learning	 and	 rate	 of	 off-target	 hits	
(simple	 linear	 regression,	 p	 >	 0.5	 for	 same-type;	 p	 >	 0.91	 for	 different-type).	 Moreover,	
there	was	significant	generalization	to	 the	target	syllable	 in	nontarget	contexts	(p	<	0.05,	
signed-rank	test)	even	if	we	exclude	data	points	with	nonzero	hit	rate.	
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Figure	S2.2.	Examination	of	factors	that	explain	patterns	of	generalization.	Related	to	
Figure	2.1.		
(A)	We	 fit	 a	multiple	 regression	model,	with	 generalization	 to	 the	 target	 syllable	 in	non-
target	 contexts	 as	 the	 response	 variable	 and	 three	 predictor	 variables	 (STAR	Methods):	
contextual	similarity	 (see	main	 text	 and	Figure	2.1E),	acoustic	distance	 (a	measure	of	 the	
difference	 in	 mean	 acoustic	 structure	 between	 the	 target	 syllable	 when	 sung	 in	 two	
contexts)	 and	 FF	 correlation	 (bout-by-bout	 correlation	 between	 FF	 of	 target	 syllable	
renditions	in	the	target	vs.	non-target	contexts).	The	overall	fit	was	significant	(p	<	5	x	10-6,	
R2	 =	 0.42).	 Contextual	 similarity	 had	 a	 strong	 effect	 on	 generalization	 (***,	 p	 <	 0.0005),	
while	 neither	 acoustic	 distance	 (p	 =	 0.58)	 nor	 FF	 correlation	 (p	 =	 0.44)	 had	 significant	
effects.	Bars	represent	estimated	effects	with	standard	errors.	Each	regression	coefficient	is	
the	 expected	 change	 in	 the	 response	 variable	 (generalization,	 in	%)	 for	 a	 change	 in	 the	
predictor	variable	of	1.59	times	its	sample	standard	deviation,	with	the	other	two	predictor	
variables	 held	 constant.	 This	 results	 from	 scaling	 of	 the	 raw	 data	 for	 the	 continuous	
predictor	variables	(acoustic	distance	and	FF	correlation).	Scaling	was	performed	in	order	
to	 facilitate	 comparison	 of	 the	 regression	 coefficients	 for	 acoustic	 distance	 and	 FF	
correlation	with	that	for	the	third	(discrete)	predictor	variable,	contextual	similarity,	since	
a	 unit	 change	 in	 contextual	 similarity	 corresponds	 to	 a	 change	 of	 1.59	 times	 its	 sample	
standard	deviation.		
(B)	 Consistent	 with	 the	 lack	 of	 generalization	 on	 average	 for	 different-type	 syllables	
(Figure	 S2.1A)	 there	was	no	 correlation	between	 generalization	 and	 acoustic	 distance	 to	
the	 target	 syllable	 (simple	 linear	 regression:	 p	 =	 0.25)	 for	 different	 type	 syllables.	 This	
result	parallels	Hoffmann	and	Sober,	2014.	
(C)	 We	 found	 no	 linear	 relationship	 between	 generalization	 and	 either	 the	 sequential	
position	 of	 the	 target	 syllable	 in	 a	 non-target	 context	 (top)	 or	 the	 sequential	 position	 of	
different-type	syllables	(bottom).	We	only	included	contexts	that	had	a	consistent	position	
relative	to	the	target	syllable	in	the	target	context	(i.e.,	in	“stereotyped”	sequences	relative	
to	 the	 target).	 None	 of	 the	 linear	 regression	 analyses,	 performed	 separately	 for	 cases	
grouped	 by	 syllable	 type	 (top:	 same-type;	 bottom:	 different-type)	 and	 whether	 they	
preceded	(left)	or	followed	(right)	the	target,	resulted	in	a	significant	effect	of	position	on	
generalization	(four	p-values	range	between	0.11	and	0.40).	This	result	is	consistent	with	
(Hoffmann	and	Sober,	2014),	who	did	not	find	a	significant	relationship	between	sequential	
position	and	generalization	when	they	used	a	similar	analysis	to	ours,	 in	which	the	mean	
effect	for	each	syllable	at	each	position	from	the	target	is	considered	one	observation	(their	
“Msyls”).	 However,	 Hoffman	 and	 Sober	 reported	 that	 there	 was	 a	 trend	 towards	 a	
relationship	 between	 generalization	 and	 sequential	 position	 using	 “Msyls”	 that	 became	
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significant	if	they	construed	each	iteration	of	each	syllable	as	an	independent	observation	
(their	“Miterations”).	We	did	not	apply	this	analysis	because	each	rendition	of	a	given	syllable	
at	 a	 given	 point	 in	 our	 experiments	 was	 not	 an	 independent	 observation	 and	 therefore	
treating	the	multiple	renditions	of	a	given	syllable	as	independent	observations	would	have	
artificially	inflated	significance.		
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Figure	S2.3.	 Independent	 learning	 for	 the	same	syllable	 in	 two	contexts.	Related	 to	
Figure	2.2.	
(A)	Summary	of	dual	context	training	for	experiments	in	which	training	was	extended	to	10	
days	(n	=	4),	plotted	the	same	way	as	for	the	entire	set	of	experiments	in	Figure	2.2B,	which	
shows	training	up	to	5	days	(***,	p	<	0.0005,	Student’s	t-test	vs.	day	-1).	FF	in	the	second	
context	was	significantly	below	baseline	FF	on	each	of	the	last	2	days,	p	<	0.05,	Student’s	t-
test.	
(B)	We	did	not	detect	any	change	in	FF,	during	the	dual	context	phase,	for	renditions	of	the	
target	syllable	 in	a	 third	context	 that	does	not	receive	WN	(i.e.,	not	 in	 the	 first	or	second	
context,	 top,	n	=	5),	or	 for	different-type	syllables	(bottom,	n	=	89).	For	both	datasets,	FF	
does	not	significantly	deviate	from	FF	on	the	last	day	of	the	single	context	phase	during	any	
of	 the	 dual	 context	 days.	 However,	 we	 do	 not	 construe	 this	 result	 as	 conclusive	 for	 the	
target	syllable	in	a	third	context	(top)	due	to	low	sample	size.	
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Figure	 S2.4.	 The	AFP	 adaptively	 biases	motor	 output	 in	 a	 context-specific	manner.	
Related	to	Figure	2.4.		
(A)	Example	of	a	single	day	of	inactivation	during	baseline	(left)	and	learning	(right)	in	the	
same	experiment	(for	the	target	syllable	in	the	target	context).	The	top	two	plots	show	FF	
for	individual	renditions	and	bottom	two	plots	show	the	running	average	of	the	coefficient	
of	 variation	 for	 FF	 (CV,	 standard	 deviation/mean,	 using	 windows	 of	 15	 renditions	 and	
plotted	at	the	mean	time	of	those	renditions).	On	the	baseline	day,	 infusion	was	switched	
from	PBS	to	muscimol	at	11:25.	FF	during	muscimol	was	defined	as	the	mean	FF	of	songs	
starting	after	a	lag	of	120	minutes	from	start	of	muscimol	infusion,	when	the	CV	for	FF	was	
fully	reduced	(a	marker	of	successful	LMAN	inactivation,	see	STAR	Methods),	and	ending	
when	 infusion	 was	 switched	 back	 to	 PBS.	 FF	 during	 PBS	 was	 defined	 using	 a	 window	
starting	 three	 hours	 before	 the	 switch	 and	 ending	 at	 the	 time	 of	 the	 switch.	 For	 all	
inactivation	days	during	baseline	and	learning	the	temporal	window	for	PBS	and	muscimol	
data	were	defined	in	the	same	manner.	In	this	experiment	the	bird	was	trained	to	shift	FF	
lower.	 The	 plot	 on	 the	 right,	 representing	 a	 day	 during	 learning,	 depicts	 expression	 of	
learning	 before	 inactivation,	 transient	 reversion	 of	 learning	 during	 inactivation,	 and	
recovery	of	learning	once	muscimol	was	washed	out.	
(B)	LMAN	inactivation	caused	a	consistent	reduction	in	the	CV	of	FF.	Mean	±	SEM	across	all	
syllable	types	of	the	ratio	of	the	CV	during	muscimol	infusion	to	the	CV	during	PBS	infusion,	
separately	 plotted	 for	 baseline	 (left)	 and	 learning	 (right)	 days.	 In	 all	 cases	 the	 ratio	was	
significantly	 lower	 than	 one	 (signed-rank	 test:	 p	 <	 0.05),	 and	was	 similar	 to	 the	 ratio	 in	
previous	LMAN	inactivation	experiments	in	Bengalese	finches	(dashed	line,	from	Warren	et	
al.,	2011).	
(Ci,	 ii)	LMAN	inactivation	had	a	differential	effect	on	expression	of	 learning	 in	 target	and	
non-target	contexts,	even	when	restricting	analysis	to	experiments	with	large	magnitude	of	
generalized	 learning	 in	 the	 non-target	 context.	 This	 restriction	 was	 performed	 two	
different	ways.		
(Ci)	First,	we	took	advantage	of	our	finding	that	generalization	is	greatest	in	cases	of	higher	
contextual	 similarity	 (see	Main	 Text	 and	 Figure	 2.1E).	We	 therefore	 considered	 pairs	 of	
target	 and	 non-target	 contexts	 that	 shared	 at	 least	 one	 syllable	 directly	 preceding	 the	
target	syllable	(n	=	8	experiments).	There	was	significant	reversion	for	target	contexts	(*,	p	
<	0.05,	signed-rank	test)	and	no	significant	reversion	for	non-target	contexts	(p	>	0.5),	and	
reversion	was	significantly	greater	for	target	contexts	(###,	p	<	0.0005,	signed-rank	test).	
Mean	 reversion	 for	 the	 target	 context	 was	 57.0	 ±	 9.4	 Hz	 out	 of	 135.4	 ±	 17.1	 Hz	 total	
learning	 (42%	reversion)	and	 for	 the	non-target	 context	was	4.3	±	10.3	Hz	out	of	58.0	±	
14.0	Hz	total	learning	(7%	reversion).	
(Cii)	Second,	we	restricted	our	analysis	to	pairs	of	target	and	non-target	contexts	for	which	
learning	 in	 the	non-target	context	was	greater	 than	50	Hz	(n	=	5);	 this	value	was	chosen	
because	 previous	 experiments	 indicate	 that	 we	 would	 expect	 to	 detect	 reversion	 for	
learning	 of	 this	 magnitude	 or	 greater	 [published	 data	 from	 a	 study	 in	 zebra	 finches	
(Andalman	and	Fee,	2009)].	This	analysis	also	resulted	in	significantly	greater	reversion	for	
target	 versus	 non-target	 contexts	 (##,	 p	 =	 0.008,	 signed-rank	 test),	 with	 no	 significant	
reversion	 in	 the	non-target	context	(p	=	0.48).	Mean	reversion	 for	 the	 target	context	was	
68.7	±	15.1	Hz	out	of	155.3	±	19.9	Hz	total	learning	(44%	reversion)	and	for	the	non-target	
context	was	11.8	±	17.1	Hz	out	of	84.4	±	9.5	Hz	total	learning	(14%	reversion).	
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(D)	LMAN	inactivation	increases	the	ratio	of	 learning	expressed	in	the	non-target	context	
relative	to	the	target	context,	consistent	with	the	effect	of	LMAN	inactivation,	and	therefore	
AFP	bias,	being	highly	specific	to	the	target	context.	The	ratio	of	learning	expressed	in	the	
non-target	 context,	 relative	 to	 the	 target	 context,	 is	estimated	as	 the	slope	 from	a	simple	
linear	regression	analysis	comparing	non-target	context	learning	vs.	target	context	learning	
across	experiments.	This	slope	is	calculated	separately	for	learning	during	PBS	(black,	left)	
or	 muscimol	 (middle,	 red)	 infusion	 in	 the	 same	 experiment.	 The	 increase	 in	 this	 slope	
during	muscimol	infusion,	relative	to	PBS	infusion	(right,	bar	plots,	*,	p	<	0.05,	analysis	of	
covariance)	 indicates	that	LMAN	inactivation	 leads	to	a	greater	proportional	reduction	of	
learning	in	the	target	context	than	in	the	non-target	context.	
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Figure	 S2.5.	 Conflicting	 AFP	 bias	 interferes	 with	 consolidation	 for	 context-specific	
learning.	Related	to	Figure	2.5.	
(A)	 Consolidation	 in	 the	 late	 period	 (days	 5-6)	 of	 maintained	 learning	 was	 reduced	 in	
Incongruent	 (n	 =	 7)	 experiments	 relative	 to	 Congruent	 experiments	 (n	 =	 5)	 when	
measurements	were	combined	between	context	1	and	2	(#,	p	<	0.05,	rank-sum	test).	This	
panel	 is	 analogous	 to	 Figure	 2.5D,	 in	 which	 consolidation	 in	 only	 the	 first	 context	 is	
presented.		
(B)	Consolidation	in	the	late	period	of	maintained	learning	was	reduced	in	Incongruent	(n	
=	 6)	 experiments	 relative	 to	 Congruent	 experiments	 (n	 =	 3)	 even	 when	 only	 including	
experiments	for	which	training	in	the	second	context	was	preceded	by	a	period	with	no	WN	
feedback.	#,	p	<	0.05,	rank-sum	test.	
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Chapter	3:	A	neural	 signature	of	 a	 context-specific	 premotor	

pitch	bias	

The	work	in	this	chapter	was	done	in	collaboration	with	W.	Hamish	Mehaffey	and	Michael	

S.	 Brainard.	 I	 built	 the	 electrode-array	 microdrives,	 and	 performed	 all	 experiments	 and	

analyses.	 W.H.M.	 developed	 the	 custom-made	 headstages	 used	 for	 neural	 recordings,	

which,	 by	 being	 miniaturized	 relative	 to	 the	 commercial	 version,	 reduced	 the	 physical	

burden	on	birds	to	ensure	that	birds	were	comfortable	and	sang	enough	to	exhibit	learning	

within	 a	 single	 day.	 All	 authors	 contributed	 to	 the	 conceptualization	 of	 the	 ideas	 in	 this	

chapter.	M.S.B.	funded	and	supervised	all	aspects	of	the	project.	

	

3.1.	Introduction	

	 In	 Chapter	 2,	 I	 described	 experiments	 in	 which	 we	 assessed	 the	 effects	 of	

pharmacological	 inactivation	 of	 LMAN	 on	 the	 expression	 of	 context-dependent	 learning	

(Figure	3.1A,	B).	We	found	that	transient	LMAN	inactivation	leads	to	reversion	of	learning	

in	a	manner	highly	specific	to	the	Target	context	(in	Chapter	2	see	Figures	2.4,	2.5;	also	see	

summary	in	this	chapter	in	Figures	3.1A-D).	This	finding	indicated	that	the	AFP	contributes	

a	learned	bias	to	pitch	that	is	expressed	only	when	the	Target	syllable	is	sung	in	the	Target	

context;	 in	 other	 words,	 AFP	 pitch	 bias	 promotes	 greater	 specificity	 of	 learning	 (Figure	

3.1C,	 D).	 The	 goal	 of	 those	 previous	 experiments	 was	 to	 elucidate	 neural	 mechanisms	

underlying	 generalization	 and	 specificity	 of	 learning	 at	 the	 level	 of	 where,	 in	 terms	 of	

anatomy,	and	what,	in	terms	of	contributions	of	those	anatomical	regions	to	behavior.	The	

focus	of	this	chapter	is	on	how	this	bias	is	implemented	in	neural	activity.	
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	 One	model	 for	 how	 this	 bias	 is	 implemented	 is	 the	 “premotor	 instruction”	model		

(Andalman	 and	 Fee,	 2009;	 Bottjer	 et	 al.,	 1984;	 Brainard	 and	 Doupe,	 2000;	 Fee	 and	

Goldberg,	2011;	Mooney,	2018;	Scharff	and	Nottebohm,	1991;	Warren	et	al.,	2011;	Williams	

and	Mehta,	1999).	In	this	model,	premotor	neural	activity	in	LMAN	(i.e.,	activity	that	occurs	

directly	 before	 and	 during	movement	 and	 causally	 influences	movement)	modulates	 RA	

activity,	 and	 therefore	biases	pitch,	 through	 fast	 synaptic	 transmission.	These	 instructive	

signals	may	arise	as	a	result	of	plastic	changes	in	the	AFP.	In	other	words,	on	a	rendition-to-

rendition	basis,	 pitch	bias	would	be	 encoded	 in	 the	 activity	 conveyed	 from	LMAN	 to	RA.	

There	are	a	few	indirect	 lines	of	evidence	in	support	of	this	model:	(1)	LMAN’s	pitch	bias	

depends	on	fast	synaptic	transmission	from	LMAN	to	RA;	this	is	shown	by	experiments	in	

which	antagonizing	NMDA	receptors	 in	RA,	which	accounts	 for	almost	all	of	 the	 synaptic	

input	from	LMAN	to	RA	(Mooney	and	Konishi,	1991),	causes	reversion	of	learning	(Warren	

et	al.,	2011)	(2)	Rendition-by-rendition	variation	in	LMAN	activity	seems	sufficient	to	drive	

variation	 in	adult	pitch.	Evidence	 for	 this	comes	 from	findings	that	(i)	 transient	electrical	

stimulation	 of	 LMAN	 is	 sufficient	 to	 systematically	 perturb	 pitch	 (Kao	 et	 al.,	 2005),	 (ii)	

natural	social-context-dependent	fluctuation	in	the	variability	of	pitch	can	be	accounted	for	

by	 an	underlying	 social-context-dependent	 fluctuation	 in	 the	variability	of	 LMAN	activity	

(Hessler	and	Doupe,	1999;	Kao	et	al.,	2005,	2008)	and	(iii)	LMAN	projects	directly	to	RA,	

where	neural	activity	is	known	to	correlate	with	pitch	(Sober	et	al.,	2008).	

	 While	this	“instructive”	model	offers	a	parsimonious	explanation	of	existing	results,	

a	 plausible	 alternative	 class	 of	models	 argues	 for	 a	 “permissive”	 role	 for	 the	 AFP	 in	 the	

expression	 of	 learning.	 In	 these	 models,	 no	 learning-related	 change	 in	 the	 information	

conveyed	from	LMAN	to	RA	is	necessary	for	LMAN	inactivation	to	still	cause	reversion	of	



	

	 63	

recent	 learning.	 Broadly,	 there	 are	 two	 types	 of	 permissive	 models.	 First,	 LMAN	 may	

release	 growth	 factors	 in	 RA	 that	 are	 required	 for	 plasticity;	 indeed,	 there	 is	 evidence	

LMAN	 releases	 trophic	 factors	 crucial	 for	 normal	 development	 of	 RA	 (Akutagawa	 and	

Konishi,	 1994,	 1998;	 Johnson	 and	 Bottjer,	 1994;	 Johnson	 et	 al.,	 1997;	 Kittelberger	 and	

Mooney,	 1999,	 2005).	 However,	 the	 short	 latency	 between	 LMAN	 inactivation	 and	

reversion	 (on	 the	 order	 of	 minutes),	 and	 the	 fact	 that	 blocking	 LMAN-to-RA	 synaptic	

transmission	causes	reversion,	both	argue	against	this	sort	of	permissive	role	for	LMAN	in	

explaining	pitch	bias.	 A	 second	 type	 of	model	 allows	 for	 fast	 synaptic	 transmission	 from	

LMAN	to	RA	to	play	a	crucial	role	in	expression	of	learning,	but	does	not	suppose	that	the	

activity	 conveyed	 from	LMAN	directly	 encodes	 pitch	 bias.	 This	 situation	 could	 occur,	 for	

instance,	if	learning	depends	entirely	on	plasticity	in	the	motor	pathway,	and	that	plasticity	

is	 only	 expressed	 in	 the	 context	 of	 active	 LMAN	 inputs	 (e.g.,	 activity	 at	 newly	 formed	

synapses	in	RA	may	depend	on	a	baseline	level	of	NMDA	receptor-mediated	transmission	

from	LMAN).	A	general	 framework	 for	 this	 type	of	permissive	 role	 is	 that	LMAN’s	 inputs	

establish	 a	 certain	 configuration	 in	 RA	 defined	 by	 the	 activity	 and	 baseline	

electrophysiological	 properties	 (e.g.,	 excitability)	 of	 neurons	 in	 the	 population;	 silencing	

LMAN’s	 inputs	may	 then	 reconfigure	 activity	 enough	 to	 impair	 the	 expression	 of	 recent	

plasticity	 in	 RA	 (Harris-Warrick	 and	 Marder,	 1991).	 This	 impairment	 may	 affect	 only	

recent	 learning	 if,	 for	 instance,	 the	 relevant	 synapses	 are	 strengthened	 over	 time	 in	 a	

process	 of	 “synaptic	 consolidation”	 such	 that	 expression	 of	 learning	 becomes	 less	

susceptible	to	perturbation	of	LMAN’s	inputs	(Dudai,	2004;	Fusi	et	al.,	2005).	We	currently	

lack	recordings	of	LMAN	and	RA	activity	during	 learning,	which	may	provide	evidence	 in	

support	of	either	an	instructive	or	permissive	role	for	LMAN	in	learning	(Figure	3.1E).	
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	 Here	we	recorded	neural	activity	in	LMAN	and	RA	concurrently	throughout	a	day	of	

learning.	We	reasoned	that	if	LMAN	conveys	a	premotor	instructive	signal	to	RA,	then	this	

signal	 may	 be	 reflected	 in	 the	 moment-to-moment	 correlation	 between	 LMAN	 and	 RA	

activities	and	in	how	that	correlation	relates	to	pitch	changes	during	learning.	By	analyzing	

the	cross-covariance	between	spiking	activity	 in	LMAN	and	RA,	we	 found	that	LMAN	and	

RA	 activity	 are	 correlated	 during	 singing;	 analysis	 of	 the	 lag	 in	 the	 cross-covariance	

suggests	that	this	relationship	reflects	a	moment-to-moment	influence	of	LMAN	on	RA.	The	

strength	of	 this	 cross-covariance	 increased	during	 learning.	Consistent	with	 this	 increase	

reflecting	 the	 emergence	 of	 an	 instructive	 premotor	 signal	 from	 LMAN,	 we	 found	 that	

rendition-to-rendition	 variability	 in	 LMAN-RA	 cross-covariance	 predicted	 rendition-to-

rendition	 variability	 in	 the	 expression	 of	 learning.	 Finally,	 in	 experiments	 that	 drove	

learning	 specifically	 in	 one	 “Target”	 sequential	 context,	 the	 increase	 in	 cross-covariance	

was	 specific	 to	 that	 Target	 context.	 Our	 results	 provide	 evidence	 for	 a	 context-specific	

premotor	instructive	signal	during	learning.	

	

3.2.	Results	

Neural	evidence	for	a	premotor	influence	of	LMAN	on	RA	during	singing	

	 We	recorded	neural	activity	simultaneously	from	multiple	spatially	separated	sites	

in	LMAN	and	RA	during	singing	(range	of	number	of	simultaneous	sites	per	session:	N	=	1-2	

in	LMAN,	N	=	1-5	in	RA,	in	11	recording	sessions,	in	3	birds).	For	a	given	site,	all	extracted	

spikes	were	combined	into	one	multi-unit	dataset	(Figure	3.2A-C).	Comparison	of	the	range	

of	mean	firing	rates	obtained	in	these	multiunit	sites	with	previously	reported	single	unit	

recordings	 [LMAN	 in	 zebrafinch	 (Kao	 et	 al.,	 2008);	 RA	 in	 Bengalese	 finch	 (Sober	 et	 al.,	
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2008)]	 suggest	 that	 each	multiunit	 site	 sampled	 activity	 from	 at	 least	 ~4-8	 single	 units,	

depending	on	the	site.	

	 We	first	asked	whether	we	could	detect	any	evidence	of	an	influence	of	LMAN	on	RA	

by	measuring	 the	cross-covariance	between	activity	 in	LMAN	and	RA	before	 the	onset	of	

training	(i.e.,	the	“Baseline”	period)	(Figure	3.2A).	This	was	motivated	by	previous	studies	

which	have	 indicated	that	LMAN	activity	contributes	to	moment-to-moment	variability	 in	

adult	 song	 structure	 even	 during	 baseline	 singing	 (Kao	 et	 al.,	 2005;	 Kojima	 et	 al.,	 2018;	

Olveczky	 et	 al.,	 2005).	 One	 function	 of	 LMAN	 activity	 at	 baseline	 is	 to	 increase	 the	

variability	 of	 acoustic	 structure	 presumably	 to	 facilitate	 behavioral	 exploration	 in	 the	

service	of	trial-and-error	learning.	The	use	of	cross-covariance	was	motivated	by	previous	

studies,	 which	 indicate	 that	 this	 measure	 reflects	 the	 influence	 of	 LMAN	 activity	 on	 RA	

activity	(Hahnloser	et	al.,	2006;	Kimpo	et	al.,	2003)	Cross-covariance	indicates	the	extent	to	

which	moment-to-moment	variation	in	LMAN	activity	predicts,	or	is	predicted	by,	moment-

to-moment	variation	in	RA	activity;	this	is	done	by	computing	the	similarity	between	LMAN	

and	RA	spike	patterns	as	a	function	of	the	lag	between	the	LMAN	and	RA	activity	segments	

that	 are	 being	 compared.	 This	 similarity	 is	 normalized	 to	 the	 similarity	 that	would	 arise	

simply	due	 to	 the	 fact	 that	both	LMAN	and	RA	have	 similar	 average	 song-locked	activity	

(see	Methods;	example	 in	Figure	3.2B-D,	 for	example	of	average	song-locked	activity,	 see	

the	 top	 of	 Figure	 3.2C).	 Cross-covariance	 is	 inherently	 measuring	 correlations,	 and	 so	

biological	interpretation	depends	on	interpreting	the	combination	of	sign,	magnitude,	and	

time	 lag	 of	 non-zero	 values	 combined	with	 prior	 knowledge	 of	 anatomy	 and	 physiology	

(see	Discussion).	In	general,	non-zero	values	in	cross-covariance	with	short	time	lags,	when	

the	 leading	region	 is	known	to	directly	project	 to	 the	 lagging	region,	are	suggestive	of	an	
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influence	of	the	first	region	on	the	second.		

	 We	measured	 the	 cross-covariance	between	each	 simultaneously	 recorded	pair	 of	

LMAN	and	RA	units,	separately	for	each	distinct	syllable,	using	neural	activity	in	a	premotor	

window,	during	which	activity	has	the	potential	to	causally	influence	syllable	pitch	(Figure	

3.2C).	 We	 found	 that	 on	 average	 LMAN-RA	 cross-covariance	 was	 significantly	 positive,	

consistent	with	 prior	 demonstration	 that	 the	 inputs	 from	 LMAN	 are	 excitatory	 (Mooney	

and	Konishi,	1991)	(Figure	3.2E).	Although	there	was	some	variation	in	the	magnitude	and	

time	lag	of	cross-covariance	across	syllables	and	unit	pairs	(see	light	grey	curves	in	Figure	

3.2E),	non-zero	values	were	generally	positive,	and	there	was	a	distinct	positive	peak	in	the	

average	cross-covariance	occurring	at	a	time	lag	of	~3	ms	with	LMAN	leading	(Figure	3.2E).	

Although	this	LMAN-leading	peak	in	the	cross-covariance	function	likely	reflects	a	mixture	

of	 different	 circuit-level	 mechanisms	 (see	 Discussion),	 given	 that	 LMAN	 neurons	 sends	

excitatory	projections	to	RA,	a	parsimonious	explanation	is	that	this	LMAN-leading	positive	

peak	is	an	indirect	measure	of	the	strength	of	the	influence	of	the	local	ensemble	in	LMAN	

on	 the	 local	 ensemble	 in	 RA	 (with	 “local	 ensemble”	 including	 neurons	 not	 recorded	 but	

whose	 activity	 is	 correlated	 the	 neurons	 being	 recorded).	 This	 result	 is	 consistent	 with	

LMAN	modulating	RA	activity	at	baseline	to	inject	variability	into	song.		

	

LMAN-RA	cross-covariance	increases	during	learning	

	 We	next	tested	whether	there	is	a	systematic	change	in	LMAN-RA	cross-covariance	

during	WN-driven	pitch	modification,	which	might	reflect	a	learning-related	change	in	the	

influence	 of	 LMAN	 on	 RA.	 For	 each	 experiment,	 we	 tracked	 neural	 activity	 for	 a	 small	

number	of	sites	in	LMAN	and	RA	over	a	day	of	training	(Figures	3.3A,	B).	
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	 We	 measured	 LMAN-RA	 cross-covariance	 for	 renditions	 before	 the	 onset	 of	 WN	

(“Baseline”,	 Figure	 3.3C)	 and	 for	 the	 set	 of	 renditions	 at	 the	 end	 of	 training	 (“Trained”,	

Figure	 3.3C).	 Comparison	 of	 these	 two	 sets	 of	 cross-covariance	 functions	 revealed	 that	

cross-covariance	increased	on	average	over	the	course	of	a	day	of	training	(Figures	3.3C).	

For	each	pair	of	units	we	computed	a	 single	value	 representing	 its	 increase	 in	LMAN-RA	

cross-covariance	by	 taking	 the	average	cross-covariance	 in	a	short	window	centered	at	a	

lag	 corresponding	 to	 the	 peak	 in	 the	 average	 cross-covariance	 function	 (shaded	 area	 in	

Figure	3.3C,	 right).	 Across	 all	 experiments,	 there	was	 a	 preponderance	 of	 unit	 pairs	 that	

exhibited	increases	in	average	cross-covariance	over	learning	(Figure	3.3D)	

	 This	 change	 exhibited	 several	 features	 that	 parallel	 the	 behavioral	 effects	 of	

learning.	 First,	 the	 average	 time	 course	 of	 this	 increase	 in	 LMAN-RA	 cross-covariance	

exhibited	a	gradual	increase	over	the	day	(Figure	3.3E),	matching	the	average	time	course	

of	changes	to	pitch	(Figure	3.3F).	Second,	increase	in	cross-covariance	was	specific	for	the	

syllable	that	was	being	targeted	for	learning	(Figure	3.3G,	H).			

	

Evidence	that	the	increase	in	LMAN-RA	cross-covariance	reflects	premotor	instruction	

	 This	 increase	 in	 LMAN-RA	 cross-covariance	during	 learning	may	be	 due	 to	 LMAN	

contributing	 a	 premotor	 instructive	 signal	 that,	 from	 rendition-to-rendition,	 biases	 RA	

activity	to	produce	pitch	that	is	shifted	away	from	baseline	in	the	direction	of	learning	(i.e.,	

“instructive”	model	 in	Introduction).	 If	 this	were	the	case,	we	reasoned	that	 inspection	of	

renditions	at	the	end	of	training,	when	learning	should	be	strongly	dependent	on	AFP	bias,	

would	 reveal	 a	 relationship	 between	 the	 natural	 rendition-to-rendition	 variation	 in	 the	

strength	of	the	LMAN-RA	cross-covariance	and	pitch.	This	would	occur	because	variation	in	
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both	 pitch	 and	 the	 measured	 LMAN-RA	 cross-covariance	 would	 be	 driven	 by	 the	 same	

underlying	neural	process	that	generates	the	instructive	signal.	For	the	block	of	renditions	

at	the	end	of	training,	we	placed	renditions	into	one	of	two	groups	based	on	the	direction	in	

which	 pitch	 deviated	 from	 the	 median	 pitch.	 We	 reasoned	 that	 any	 underlying	 neural	

process	contributing	to	expression	of	learning	was	likely	to	be,	on	average,	more	strongly	

expressed	on	renditions	deviating	in	the	direction	that	escapes	WN	(“Stronger”	expression	

of	 learning,	 Figure	 3.4A)	 compared	 to	 renditions	 that	 deviated	 in	 the	 opposite	 direction	

(“Weaker”	expression	of	learning,	Figure	3.4A).	

	 Consistent	 with	 that	 prediction,	 renditions	 with	 stronger	 expression	 of	 learning	

exhibited	 on	 average	 greater	 learning-related	 increase	 in	 LMAN-RA	 cross-covariance	

(example	experiment	in	Figure	3.4B,	C;	summary	in	Figure	3.4D).	This	result	is	consistent	

with	 the	 possibility	 that	 the	 increase	 in	 LMAN-RA	 cross-covariance	 represents	 the	

magnitude	of	 a	 premotor	 instructive	 signal	 that	 directly	 contributes	 to	 the	 expression	of	

pitch	changes.		

	 We	sought	 further	evidence	 in	 support	of	 this	 conclusion.	We	reasoned	 that	 if	 the	

increase	 in	 LMAN-RA	 cross-covariance	 reflects	 an	 instructive	 premotor	 signal,	 then	 this	

increase	should	exhibit	temporal	specificity	for	a	time	window	during	which	neural	activity	

in	 LMAN	 influences	 pitch	 (estimated	 from	 stimulation	 of	 LMAN	 to	 be	 about	 ~30-50	ms	

preceding	syllable	onset	(Kao	et	al.,	2005).	To	test	this	possibility,	we	measured	the	timing	

of	the	change	in	LMAN-RA	cross-covariance	in	multiple	smaller	time	windows	spanning	the	

premotor	 window	 for	 the	 Target	 syllable.	 This	 finer	 resolution	 measurement	 of	 the	

increase	 in	 LMAN-RA	 cross-covariance,	 compared	 to	 the	 single	 measurement	 averaged	

over	 the	 entire	 premotor	 window	 used	 in	 Figure	 3.4D,	 revealed	 that	 the	 relationship	
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between	 the	 expression	 of	 learning	 and	 magnitude	 of	 LMAN-RA	 cross-covariance	 was	

greatest	 at	 a	 timepoint	 directly	 preceding	 syllable	 onset	 (Figure	 3.4E).	 Taken	 together,	

these	 results	 indicate	 that	 enhanced	 LMAN-RA	 cross-covariance	 during	 learning	 is	 a	

signature	of	an	instructive	premotor	signal	that	adaptively	biases	pitch.	

	

Increase	in	LMAN-RA	cross-covariance	is	context-specific	

	 We	 previously	 reported	 that	 for	 sequential-context-dependent	 learning	 the	

contribution	 of	 AFP	 bias	 to	 learning	 is	 highly	 specific	 to	 the	 context	 targeted	 with	 WN	

feedback.	 In	contrast,	 the	expression	of	 learning	 that	 spontaneously	generalizes	 from	the	

“Target”	 context	 to	 other	 “Non-target”	 contexts	 does	 not	 depend	 on	 an	 instructive	

premotor	 bias	 from	 LMAN;	 instead,	 generalized	 learning	 depends	 on	 modifications	 that	

have	 already	 transferred	downstream	 to	 be	 encoded,	 presumably,	 in	 the	motor	 pathway	

(these	findings	were	reported	in	Chapter	2;	 for	a	brief	summary	see	Introduction	for	this	

chapter	 and	Figure	3.1A-D).	This	 finding	of	 differential	 specificity	 of	 the	 contributions	of	

AFP	 bias	 and	motor	 pathway	 changes	 to	 learning	 leads	 to	 another	 prediction	 that	 tests	

whether	 changes	 to	 LMAN-RA	 cross-covariance	 is	 a	 neural	 signature	 of	 AFP	 bias.	 In	

particular,	the	increase	in	LMAN-RA	cross-covariance	should	also	be	specific	to	the	Target	

context.	

	 To	 test	 this	 prediction,	 for	 a	 subset	 of	 the	 experiments	we	 drove	 learning	 for	 the	

targeted	syllable	in	only	one	specific	Target	context.	We	found	that	the	increase	in	LMAN-

RA	 cross-covariance	was	 specific	 to	 this	 Target	 context	 (Fig.	 3.5).	 On	 average,	 LMAN-RA	

cross-covariance	 did	 not	 change	 during	 learning	 for	 the	 Non-target	 context.	 This	

remarkable	 specificity	 of	 the	 LMAN-RA	 cross-covariance	 further	 supports	 the	 conclusion	
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that	the	increase	in	LMAN-RA	cross-covariance	corresponds	to	the	neural	implementation	

of	the	context-specific	pitch	bias	previously	measured	by	the	effect	of	LMAN	inactivation	on	

behavior.	

	

3.3.	Discussion	

	 Previous	work	transiently	inactivating	LMAN	during	learning	has	shown	that	LMAN	

contributes	a	context-specific	pitch	bias	crucial	for	the	expression	of	learning.	It	remained	

unclear	 how	 this	 bias	 is	 implemented	 in	 changes	 to	 neural	 activity.	 Here	 we	 presented	

evidence	 for	 a	 sequential-context-specific	 premotor	 instructive	 signal	 conveyed	 from	

LMAN	to	RA.	By	supporting	a	role	for	the	AFP	in	generating	an	instructive	premotor	signal,	

our	 findings	also	provide	evidence	against	an	entirely	permissive	 role	 for	LMAN	 in	adult	

pitch	 modifications	 (see	 Introduction	 for	 description	 of	 “instructive”	 and	 “permissive”	

models).	 The	 strength	 of	 this	 conclusion	 rests	 on	 two	 key	 assumptions:	 first,	 that	 the	

mechanism	underlying	 the	cross-covariance	of	spike	 trains	 in	LMAN	and	RA	 is	 related	 to	

fast	synaptic	 transmission	 from	LMAN	to	RA;	second,	at	a	 functional	 level	a	 rendition-to-

rendition	 relationship	 between	 pitch	 and	 LMAN-RA	 cross-covariance	 can	 be	 taken	 as	

evidence	 for	 the	 presence	 of	 an	 underlying	 neural	 process	 -	 an	 instructive	 signal	 from	

LMAN	to	RA	-	driving	that	relationship.	Below	we	discuss	the	implications	of	our	findings,	

and	along	the	way	address	the	extent	to	which	these	assumptions	are	warranted,	and	what	

caveats	remain.			

	 What	 mechanisms	 underlie	 non-zero	 LMAN-RA	 cross-covariance?	 The	 direct	

implication	is	that	variation	in	activity	in	LMAN	is	predictive	of	variation	in	activity	in	RA.	

This	predictive	ability	may	in	principle	be	a	result	of	monosynaptic	input	from	LMAN	to	RA.	
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In	sampling	simultaneously	from	multiple	neurons	in	LMAN	and	RA	it	may	be	possible	that	

we	 sampled	 from	some	 cases	of	 directly	 connected	neurons.	However,	 this	 is	 unlikely	 to	

account	entirely	for	the	effect	across	all	experiments,	since	not	all	cases	of	positive	cross-

covariance	 exhibited	 a	 sharp	 LMAN-leading	 peak	 (see	 Figure	 3.2E).	 Such	 a	 peak	 would	

likely	 be	 more	 prominent	 if	 our	 effects	 were	 driven	 largely	 by	 monosynaptic	 influence.	

Instead,	the	shape	of	the	cross-covariance	function	was	somewhat	variable	across	syllables	

and	pairs	of	sites.	It	is	therefore	more	likely	that	the	effect	depends	on	a	combination	of	the	

following	mechanisms:	(1)	monosynaptic	connections	between	neurons	being	sampled,	(2)	

strength	of	the	influence	of	the	local	ensemble	in	LMAN	on	the	local	ensemble	in	RA	(with	

“local	 ensemble”	 including	 neurons	 not	 recorded	 but	 whose	 activity	 is	 correlated	 the	

neurons	being	recorded),	and	(3)	polysynaptic	connections,	 through	 local	circuitry	 in	RA,	

between	 the	 recorded	 LMAN	 and	 RA	 neurons.	 Importantly,	 it	 is	 plausible	 that	 learning-

related	 changes	 in	 LMAN’s	 influence	 on	 RA	 could	 be	 detected	 in	 all	 of	 these	 scenarios.	

Moreover,	 the	 fact	 that	 the	average	cross-covariance	 function	had	a	 short-latency	LMAN-

leading	peak	 argues	 against	 this	 signal	 reflecting	 a	 polysynaptic	 input	 from	RA	 to	 LMAN	

through	DLM.	This	peak	 is	also	unlikely	 to	 reflect	 common	shared	 input	 from	HVC,	 since	

prior	work	has	shown	that	an	LMAN-leading	peak	similar	to	the	one	we	described	remains	

unaffected	in	anesthetized	birds	after	silencing	HVC.	The	LMAN-RA	cross-covariance	likely	

indicates,	to	some	extent,	a	causal	influence	of	LMAN	on	RA,	through	some	combination	of	

direct	(i.e.,	#1)	or	indirect	mechanisms	(i.e.,	#2	and	#3).	

	 What	mechanisms	may	underlie	the	 increase	 in	LMAN-RA	cross-covariance	during	

learning?	 One	 possibility	 is	 that	 the	 increase	 reflects	 modification	 (presumably	 net	

strengthening)	 of	 synapses	 from	 LMAN	 to	 RA;	 indeed	 in	 slice	 preparations	 plasticity	 at	
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these	 synapses	 can	 be	 elicited	 in	 a	 manner	 that	 depends	 systematically	 on	 the	 relative	

timing	of	HVC’s	and	LMAN’s	 inputs	 to	a	given	RA	neuron	(Mehaffey	and	Doupe,	2015).	A	

second	possibility	 is	 that	 there	 is	no	plasticity	at	synapses	 from	LMAN	to	RA,	but	 instead	

there	are	changes	to	LMAN	activity	that	results	in	modifications	to	the	signals	transmitted	

to	 RA.	 Indeed,	 in	 other	 systems	 variation	 in	 the	millisecond-level	 correlation	 of	 neurons	

within	 an	 ensemble	 can	 influence	 the	 extent	 to	 which	 activity	 influences	 downstream	

regions	(Alonso	et	al.,	1996;	Kumar	et	al.,	2010;	Zandvakili	and	Kohn,	2015).	Distinguishing	

between	 these	 two	 possibilities	 may	 require	 more	 dense	 recordings	 of	 LMAN	 and	 RA	

activity	 during	 learning,	 and	 possibly	 the	 ability	 to	 assess	 changes	 in	 LMAN-RA	 synaptic	

strength	as	a	function	of	learning.	

	 We	 interpreted	 the	 rendition-to-rendition	 relationship	 between	 expression	 of	

learning	and	LMAN-RA	cross-covariance	as	evidence	that	the	increase	in	LMAN-RA	cross-

covariance	 reflects	 the	 development	 of	 an	 instructive	 motor	 signal.	 Our	 reasoning	 (see	

Results	 section	 and	 schematic	 in	 Figure	 3.4A)	 was	 that	 if	 it	 is	 indeed	 true	 that	 the	

magnitude	of	LMAN-RA	cross-covariance	reflects	the	strength	or	efficacy	of	an	underlying	

premotor	instructive	signal,	then	any	natural	rendition-to-rendition	variability	(or	“noise”)	

in	 this	 signal	 would	 drive	 correlated	 variability	 in	 both	 the	 measured	 LMAN-RA	 cross-

covariance	and	pitch.	Therefore	renditions	exhibiting	greater	increases	in	LMAN-RA	cross-

covariance	would	 be	 expected,	 on	 average,	 to	 be	 renditions	with	 stronger	 expression	 of	

learned	pitch	changes.	Our	results	were	consistent	with	this	prediction.	

	 What	other	non-instructive	models	may	account	 for	 this	 finding?	 In	principle,	 it	 is	

possible	that	LMAN-RA	cross-covariance	reflects	a	signal	conveyed	from	LMAN	that	is	not	

directly	 influencing	 pitch	 on	 a	 given	 rendition,	 but	 is	 instead	 important	 for	 driving	
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plasticity	 in	 RA.	 In	 this	 model,	 LMAN	 input	 on	 a	 given	 rendition	 acts	 to	 “stamp	 in”	 the	

activity	driven	by	RA	 in	 that	rendition.	This	would	require	LMAN	to	somehow	be	able	 to	

“predict”	whether	a	given	rendition	 is	 likely	 to	be	one	 that	 is	good	(escapes	WN)	or	bad.	

This	 predictive	 ability	 could	 be	 learned	 by	 a	 process	 that	 associates	 input	 from	 HVC,	

encoding	 pitch,	 with	 performance-related	 feedback	 so	 that	 on	 future	 renditions	 similar	

HVC	 input	 to	 the	 AFP	 would	 elicit	 LMAN	 output	 that	 drives	 plasticity	 in	 RA	 in	 an	

appropriate	manner.		

	 An	 alternative,	 non-instructive	 model	 is	 that	 the	 increase	 in	 LMAN-RA	 cross-

covariance	reflects	a	common	input	that	drives	pitch	bias	(likely	by	influencing	RA	activity)	

and	some	change	to	activity	in	LMAN,	RA,	or	both	that	leads	to	increased	LMAN-RA	cross-

covariance	 (e.g.,	 through	one	of	 the	mechanisms	discussed	above).	 In	 that	 case	pitch	and	

LMAN-RA	cross-covariance	would	show	a	rendition-to-rendition	relationship	even	if	LMAN	

does	not	provide	premotor	 instruction.	Following	this	 line	of	reasoning,	one	possibility	 is	

that	the	increase	in	LMAN-RA	cross-covariance	may	be	due	to	increased	excitability	of	RA	

neurons,	so	that	a	given	 input	 from	LMAN	is	more	 likely	 to	drive	spiking	 in	RA.	Learning	

would,	 for	 instance,	 depend	 on	 the	 increase	 in	 excitability	 of	 a	 specific	 ensemble	 of	 RA	

neurons.	While	this	remains	in	principle	possible,	 it	seems	unlikely	because	there	was	no	

difference	 in	 the	mean	 firing	 rate	of	RA	neurons	 for	 renditions	with	 stronger	 vs.	weaker	

expression	 of	 learning	 (Figure	 S3.1).	 The	most	 parsimonious	model	 seems	 to	 be	 one	 in	

which	an	instructive	premotor	signal	from	LMAN	exists	and	is	driving	shared	variation	in	

pitch	and	LMAN-RA	cross-covariance.		

	 How	 might	 the	 processes	 underlying	 the	 increase	 in	 LMAN-RA	 cross-covariance	

encode	a	pitch	bias?	One	possibility	is	based	on	the	idea	that	different	ensembles	in	LMAN	
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influence	or	encode	different	acoustic	parameters	by	virtue	of	how	they	influence	ensemble	

activity	in	RA.	These	functional	“channels”	could	consist	of	distinct	populations	of	neurons,	

or	alternatively	overlapping	sets	of	neurons	but	with	different	ensemble-level	patterns	of	

activity,	which	 controls	 how	 activity	 in	 each	 channel	 affects	 acoustic	 structure.	 Learning	

would	depend	on	modification	of	the	relative	influence	of	different	channels	such	that	the	

net	 effect	 is	 to	 appropriately	 bias	 behavior.	 The	 tuning	 of	 these	 channels	 could	 occur	

through	the	selective	strengthening	of	synapses	from	LMAN	to	RA,	or	alternatively	through	

modifications	in	the	AFP	(as	discussed	above).	Assuming	this	model	is	correct,	it	is	possible	

that	 each	 of	 our	multiunit	 sites	 sampled	 activity	 from	multiple	 channels	 -	 an	 increase	 in	

strength	of	any	of	these	channels	would	potentially	lead	to	an	increase	in	cross-covariance.	

While	it	is	possible	that	there	is	actually	a	preference	for	strengthening	over	weakening	of	

channels,	we	cannot	rule	out	other	reasons	why	potential	decreases	in	strength	of	channels	

may	be	poorly	measured	in	LMAN-RA	cross-covariance	(e.g.	due	to	a	floor	effect).	While	our	

study	does	not	provide	direct	evidence	 for	how	 the	processes	underlying	 the	 increase	 in	

LMAN-RA	cross-covariance	encode	a	pitch	bias,	it	is	consistent	with	a	model	in	which	pitch	

information	is	encoded	in	the	relative	strength	with	which	different	patterns	of	ensemble	

activity	can	drive	downstream	RA	activity.	

	 If	it	is	the	case	that	AFP	bias	reflects	modifications	in	the	AFP,	then	what	are	those	

modifications?	What	 learning	rules	and	plasticity	mechanisms	within	 the	AFP	 lead	 to	 the	

generation	of	context-specific	premotor	instruction?	This	mechanism	must	account	for	the	

finding	 that	 the	 increase	 in	 LMAN-RA	 correlation	 showed	 remarkable	 specificity	 for	

sequential	 context.	 At	 an	 abstract	 level,	 the	 AFP	 must	 be	 able	 to	 precisely	 monitor	 the	

association	between	the	ongoing	song	sequence	(i.e.,	context),	performance	(i.e.,	pitch)	and	
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feedback	(i.e.,	hit	or	escape	rendition),	and	use	that	information	to	“learn”	the	appropriate	

modifications.	A	simple	model	for	how	this	 learning	occurs	is	described	in	the	Discussion	

for	Chapter	2	and	also	in	Chapter	4.	

	 This	 evidence	 that	 the	AFP,	 a	 cortical-basal	 ganglia	 circuit,	 conveys	 an	 instructive	

premotor	signal	to	downstream	primary	motor	circuits	suggests	that	a	general	function	of	

cortical-basal	 ganglia	 circuits	 may	 be	 to	 instruct	 activity	 in	 downstream	 circuits	 to	 bias	

behavior	in	a	context-dependent	manner.	Other	evidence	that	this	is	a	general	function	of	

cortical-basal	ganglia	circuits	is	discussed	briefly	in	the	Discussion	for	Chapter	2	and	will	be	

expanded	on	in	Chapter	4.		

	 Various	 forms	 of	 learning	may	 depend,	 initially,	 on	 the	 engagement	 of	 one	 set	 of	

brain	 circuits	 that	 act	 to	bias	 activity	 in	 another	 set	 of	 circuits.	 In	many	 cases,	 the	 set	 of	

brain	circuits	that	are	selectively	engaged	during	initial	 learning	may	also	be	circuits	that	

are	crucial	for	varying	behavior	depending	on	context.	This	would	mirror	the	idea	that	the	

AFP	contributes	to	 initial	 learning	by	conveying	context-specific	 instructive	signals	to	RA.	

This	idea	will	be	further	discussed	in	Chapter	4.	 	
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3.4.	Methods	

Animal	subjects	

	 We	used	3	adult	male	Bengalese	finches	(Lonchura	striata	domestica)	that	were	bred	

in	our	colony	and	housed	with	their	parents	until	at	least	60	days	of	age.	During	

experiments,	birds	were	housed	individually	in	sound-attenuating	chambers	(Acoustic	

Systems)	on	a	14h/10h	light/dark	cycle	with	food	and	water	provided	ad	libitum.	All	

experiments	were	performed	on	“undirected”	song	(i.e.,	with	no	female	present).	All	

procedures	were	in	accordance	with	protocols	approved	by	the	University	of	California,	

San	Francisco	Institutional	Animal	Care	and	Use	Committee.		

	

Training	pitch	modifications	using	WN	feedback	

	 WN-driven	pitch	modification	(i.e.,	“pitch	training”)	was	performed	in	a	manner	

identical	to	that	described	in	Methods	for	Chapter	2	in	the	sections	“Song	recording	and	

computerized	training	paradigm”,		“Determining	sequential	context	for	each	rendition	of	a	

given	syllable”,	Single	context	training”,	except	for	the	following	differences:	

	 Training	was	driven	both	for	cases	in	which	a	given	syllable	was	only	ever	sung	in	

one	context	and	also	for	cases	in	which	a	syllable	was	sung	in	multiple	contexts	(in	which	

case	WN	feedback	was	provided	in	only	a	single	“Target”	context).	All	analyses	treat	these	

two	types	of	experiments	identically,	except	for	the	analysis	for	Figure	3.5,	where,	because	

of	the	hypothesis	being	tested,	we	only	considered	experiments	where	multiple	contexts	

existed	for	the	targeted	syllable.	Any	analyses	comparing	the	target	syllable	to	different	

syllables	ignored	Nontarget	contexts	for	the	Target	syllable.		
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	 All	training	trajectories	were	over	the	course	of	a	single	day.	WN	was	turned	on	

after	sufficient	“baseline”	data	were	collected	(generally	on	the	order	of	15	to	40	song	

bouts).	In	some	cases	training	extended	until	lights	off,	while	in	other	experiments	training	

ended	earlier	because	neural	signal	was	lost.		

	

FF	calculation	

	 All	analyses	were	performed	on	FF	values	that	were	calculated	offline.	We	excluded	

from	analysis	the	two	syllables	directly	following	the	target	syllable,	to	avoid	potential	

acute	effects	of	WN	on	the	FF	of	those	syllables	(Sakata	and	Brainard,	2006).	For	each	

rendition,	we	calculated	a	spectrogram	using	a	Gaussian-windowed	(σ	=	1	ms)	short-time	

Fourier	transform	(window	size	=	1024	samples;	overlap	=	1020	samples;	sampling	rate	=	

32	kHz).	Within	each	time	bin,	FF	was	defined	as	the	frequency	corresponding	to	peak	

power	of	the	first	harmonic,	estimated	using	parabolic	interpolation.	FF	for	the	rendition	

was	then	calculated	as	the	mean	FF	across	time	bins	for	a	fixed	window	defined	relative	to	

syllable	onset.	All	syllables	consisting	of	largely	broadband	noise	(e.g.	introductory	notes)	

were	excluded	from	learning	analyses.	

	

Electrode	array	microdrives	 	

	 Custom-made	tungsten	electrode	(0.5MOhm,	Microprobes	WE30010.5F)	arrays	

were	interfaced	with	custom-made	microdrives	[modified	from	(Vandecasteele	et	al.,	

2012)]	that	allowed	manual	adjustment	of	arrays	during	recording	sessions.	Electrode	

arrays	for	the	two	microdrives	(LMAN	and	RA)	were	wired	to	the	same	connector	
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(Omnetics,	A79042-001).	During	recordings	sessions	this	connector	interfaced	with	an	

Intan	headstage	(see	below).	

	

Microdrive	implantation	

	 Implants	were	performed	by	first	locating	the	region	of	interest	either	using	

electrophysiological	landmarks	[RA,	tonic	activity,	recorded	using	carbon	fiber	electrodes	

(Kation	Scientific)]	or	stereotaxical	coordinates	(LMAN).	We	implanted	in	the	left	

hemisphere	in	all	birds.	A	reference	electrode	was	implanted	in	either	the	region	centrally	

located	between	LMAN	and	RA	or	in	cerebellum.	

	

Electrophysiological	recordings	

	 Voltage	signals	were	amplified,	filtered	(1Hz	to	12000Hz	pass	band),	and	

multiplexed	on	a	headstage	interfaced	to	a	connector	implanted	on	the	bird’s	skull.	Signals	

were	stored	on	a	computer	for	offline	analysis.	The	head	stages	were	custom-made	by	

W.H.M.	On	each	recording	session	we	slowly	lowered	(<20um/sec)	the	electrodes	from	

their	“resting”	position	towards	either	LMAN	or	RA.	Localization	within	these	nuclei	was	

assessed	by	evaluating	tonic	activity	(RA),	song-locked	firing	rate	modulation,	and	

stereotaxic	coordinates	(i.e.,	depth).	After	the	recording	sessions	electrodes	were	raised	to	

a	position	with	the	tip	at	>300um	above	the	region	of	interest.	

	

Spike	detection	

	 Spikes	were	detected	using	Waveclus	(Chaure	et	al.,	2018).	In	brief,	Waveclus	is	a	

spike	clustering	algorithm	that	detects	putative	spikes	by	amplitude,	transforms	those	
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spikes	into	a	feature	space	defined	by	wavelet	coefficients,	and	then	clusters	spikes	using	

superparamagnetic	clustering.	The	number	of	clusters	was	manually	set	to	one,	resulting	in	

multiunit	datasets.	

	

Normalized	cross-covariance	

	 Normalized	cross-covariance	was	performed	by	first	computing	cross-covariance	as	

in	(Kimpo	et	al.,	2003).	Cross-covariance	was	calculated	over	multiple	sliding	60ms	

windows	preceding	the	onset	of	the	syllable.	The	earliest	window	spanned	from	100ms	to	

40ms	preceding	syllable	onset,	and	the	latest	window	from	60ms	to	0ms	preceding	syllable	

onset	(sliding	by	5ms).	Each	cross-covariance	calculation	was	performed	on	binned	spike	

trains	(2.5ms	bins);	cross-covariance	functions	were	then	smoothed	using	a	Gaussian	

kernel	(SD	=	5ms).	The	cross-covariance	functions	over	all	60ms	windows	were	averaged	

to	generate	one	cross-covariance	function	for	a	given	100ms	premotor	window.	To	

normalize	cross-covariance	so	that	it	is	comparable	across	pairs	of	units	and	experiments,	

we	normalized	this	function,	by	taking	the	z-score	relative	to	the	distribution	of	cross-

covariances	calculated	in	a	control	dataset.	This	control	dataset	consists	of	the	same	data,	

but	shuffled	so	that,	instead	of	comparing	LMAN	and	RA	spike	trains	from	the	same	

rendition,	spike	trains	from	different	(directly	adjacent)	renditions	are	compared.	This	

distribution	represents	the	mean	and	variance	of	cross-covariance	functions	that	would	be	

expected	if	there	were	no	relationships	between	LMAN	and	RA	activity	beyond	that	arising	

from	both	signals	being	modulated,	on	average,	by	singing.	
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Statistical	tests	

	 Unless	noted	otherwise,	to	compare	two	samples	we	used	the	nonparametric	two-

sided	Wilcoxon	rank-sum	test	and	for	paired	samples	we	used	the	nonparametric	two-

sided	Wilcoxon	signed-rank	test.	Tests	were	deemed	statistically	significant	if	p	<	0.05.	All	

analyses	were	performed	using	custom-written	MATLAB	(Mathworks)	software.		
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3.5.	Figures	

	
	
Figure	3.1.	Summary	of	prior	experiments:	the	AFP	biases	pitch	in	a	context-specific	
manner	during	learning.	
(A	-	D)	Summary	of	experiments	and	findings	from	Chapter	2.	
(A)	 Schematic	 of	 an	 example	 context-dependent	 training	 session.	 Aversive	 white	 noise	
feedback	(“hit”)	was	provided	to	renditions	of	the	target	syllable	B	in	the	target	context	JAB	
(grey)	when	fundamental	frequency	(FF)	of	B	was	below	a	threshold	(red	fill	in	histogram).	
Feedback	was	not	provided	(“escape”)	when	B	was	sung	in	non-target	contexts	(blue).	
(B)	Transient	(over	a	few	hours)	infusion	of	muscimol	was	used	to	silence	LMAN	activity	at	
various	 timepoints	 during	 learning.	 This	 effectively	 blocked	 the	 output	 of	 the	 anterior	
forebrain	pathway	 (AFP,	 blue).	 At	 all	 other	 times	 a	 control	 solution	 (phosphate	 buffered	
saline,	 PBS)	was	 infused.	 Schematics	 illustrating	 infusion	 are	 overlaid	 on	 a	 schematic	 of	
song	system	nuclei.	
(C)	 Schematic	 summarizing	 effect	 of	 muscimol	 infusion	 on	 expression	 of	 context-
dependent	learning.	Muscimol	is	infused	a	few	days	into	training;	this	causes	reversion	of	
learning	 in	 the	 target	 context	 but	 not	 the	 nontarget	 context,	 consistent	 with	 the	 AFP	
contributing	a	pitch	bias	specifically	when	the	Target	syllable	is	sung	in	the	Target	context.	
See	Figure	2.4	for	details.	
(D)	A	model	for	how	the	AFP	contributes	to	learning	in	the	target	context.	See	Figure	2.4C	
for	 a	 detailed	 explanation.	 For	 the	 purpose	 of	 this	 chapter,	 the	 key	 point	 is	 that	 during	
learning	 the	AFP	contributes	a	pitch	bias	 (thick	blue	arrow)	specifically	when	 the	Target	
syllable	is	sung	in	the	Target	context.		
(E)	Schematic	summarizing	the	question	motivating	the	experiments	in	this	chapter.		
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Figure	3.2.	Neural	evidence	for	a	premotor	influence	of	LMAN	on	RA	during	singing.	
(A)	For	this	figure,	analyses	focus	on	simultaneously	recorded	multi-unit	activity	in	LMAN	
and	RA	during	singing	at	Baseline	(preceding	onset	of	training).	
(B)	Activity	in	LMAN	and	RA	aligned	to	the	onset	of	the	same	syllable	across	four	example	
renditions.		
(C)	Raster	plot	and	mean	smoothed	firing	rates	(top)	across	a	subset	of	renditions,	ordered	
chronologically.	 For	 all	 analyses	 in	 this	 chapter,	 unless	 otherwise	 noted,	 data	 used	 to	
calculate	 cross-covariance	were	 sampled	 from	 the	 “Premotor	window”	 (-0.1	 sec	 to	 0	 sec	
relative	to	syllable	onset)	
(D)	 Calculation	 of	 normalized	 cross-covariance	 for	 the	 example	 units	 and	 syllable	 in	 (B)	
and	 (C).	 Top:	 the	 sliding	 dot	 product	 was	 calculated	 on	 spike	 trains	 for	 both	 the	 actual	
dataset	and	a	control	dataset	in	which	the	LMAN	and	RA	activity	were	shuffled	across	trials	
(see	 Methods).	 Bottom:	 the	 sliding	 dot	 product	 was	 z-scored	 relative	 to	 the	 shuffle	
distribution	to	compute	a	normalized	cross-covariance	function.		
(E)	 Normalized	 cross-covariance	 across	 all	 syllables	 and	 pairs	 of	 units.	 The	 light	 grey	
curves	 represent	 individual	 syllables	 (N	=	 50	 channel	 pairs,	multiple	 channel	 pairs	were	
averaged	to	obtain	one	trace	per	syllable);	the	green	lines	represent	individual	birds	(N	=	
3),	and	the	orange	trace	represents	the	mean	+/-	S.E.M.	across	all	syllables.		
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Figure	3.3.	LMAN-RA	cross-covariance	increases	during	learning	
(A)	Schematic	of	experiment.	
(B)	Summary	of	pitch	change	across	experiments	(N	=	11	experimental	trajectories	over	3	
birds).		
(C)	Left:	mean	cross-covariance	for	Baseline	and	Trained	(last	quarter	of	trials	during	the	
training	 session)	 across	 experiments	 (N	=	50	unit	 pairs,	 11	 experiments,	 3	 birds).	Right:	
Change	in	cross-covariance	during	training.	The	shaded	region	indicates	the	window	over	
which	 the	 average	 cross-covariance	 was	 taken	 in	 order	 to	 extract	 a	 single	 value	
representing	change	in	cross-covariance	for	each	pair	of	units.	The	window	is	15	msec	long	
centered	at	the	peak	of	the	cross-covariance	at	the	end	of	training.		
(D)	Histogram	of	learning-related	change	to	cross-covariance.	The	crosses	at	top	represent	
mean	+/-	SEM	for	each	individual	bird.	
(E)	 Average	 time	 course	 of	 change	 to	 LMAN-RA	 cross-covariance.	 Renditions	 during	
training	were	split	into	three	bins	of	equal	sample	size	(Training	periods	1-3).	
(F)	Average	time	course	of	change	to	pitch.		
(G)	Same	as	(C),	but	for	syllables	that	were	not	targeted	with	WN	feedback.	Each	unit	pair	
contributed	one	datapoint	after	averaging	over	all	Nontarget	syllables	(N	=	50	unit	pairs,	11	
experiments,	3	birds).	
(H)	 Change	 in	 cross-covariance	 for	 Target	 vs.	 Nontarget	 syllables.	 Each	 light	 grey	 line	
represents	 a	 single	 unit	 pair	 (multiple	 Nontarget	 syllables	 were	 averaged	 into	 one	
datapoint).	Black	lines	represent	individual	birds.	
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Figure	 3.4.	 Evidence	 that	 the	 increase	 in	 LMAN-RA	 cross-covariance	 reflects	
premotor	instruction.	
(A)	 Schematic	 illustrating	 predicted	 outcome	 if	 LMAN-RA	 cross-covariance	 reflects	 a	
premotor	instructive	signal	that	biases	pitch.	See	main	text	for	details.	The	important	point	
is	 that,	 if	 the	 increase	 in	LMAN-RA	cross-covariance	during	 learning	reflects	a	signal	 that	
causally	drives	pitch,	then	natural	variability	in	this	signal	should	correlate	to	some	extent	
with	 variability	 in	 pitch	 (top);	 in	 particular,	 the	 increase	 in	 LMAN-RA	 cross-covariance	
should	be	greater	for	renditions	that	more	strongly	express	learning	(top	&	bottom).	
(B)	Example	experiment	 illustrating	pitch	of	 individual	 renditions	during	Baseline	and	at	
the	 end	 of	 training	 (Trained).	 Renditions	 are	 ordered	 chronologically.	 Renditions	 are	
grouped	 into	 two	 sets	 (“stronger”	 vs.	 “weaker”	 expression	 of	 learning)	 based	 on	 the	
deviation	 of	 the	 rendition’s	 pitch	 from	 the	 median	 pitch	 (black	 horizontal	 line).	 In	 this	
experiment	WN	feedback	targeted	lower	pitch	renditions.	
(C)	Same	example	experiment	as	in	(B),	showing	LMAN-RA	cross-covariance	for	individual	
pairs	 of	 units	 (circles).	 Each	 datapoint	 represents	 the	mean	 cross-covariance	 for	 a	 given	
pair	of	units	in	the	set	of	renditions	defined	by	pitch	(‘Stronger”	or	“weaker”	expression	of	
learning)	 and	 phase	 of	 training	 (Baseline	 vs.	 Trained).	 The	 renditions	 used	 are	 exactly	
those	plotted	in	Figure	3.4B.	
(D)	Change	 in	 LMAN-RA	 cross-covariance	during	 training,	measured	 separately	 for	 trials	
expressing	“stronger”	or	“weaker”	learning.	Baseline	subtraction	was	performed	relative	to	
the	same	group	of	renditions	at	Baseline	(N	=	50	unit	pairs,	11	experiments,	3	birds;	global	
mean	+/-	SEM	is	taken	over	unit	pairs)	
(E)	 LMAN-RA	 cross-covariance	 calculated	 as	 in	 (D),	 but	 at	 finer	 temporal	 resolution	 at	
multiple	time	bins	spanning	the	premotor	window.	Each	calculation	was	perfomed	on	a	60	
msec	window;	 the	resulting	cross-covariance	value	was	plotted	at	 the	 latest	 timepoint	 in	
that	 window.	 The	 asterisk	 and	 black	 line	 indicate	 timepoints	 when	 values	 were	
significantly	greater	than	0.	
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Figure	3.5.	Increase	in	LMAN-RA	cross-covariance	is	context-specific.	
Increase	in	LMAN-RA	cross	covariance	during	training	for	experiments	in	which	feedback	
was	targeted	to	only	a	single	sequential	context	(Target),	and	at	least	one	other	sequential	
context	 exists	 (Nontarget)	 (N	 =	 29	 pairs,	 7	 experiments,	 3	 birds).	 If	 multiple	 Nontarget	
contexts	 existed,	 then	 the	 datapoint	 represents	 the	 mean	 over	 those	 contexts.	 Plotting	
conventions	identical	to	those	in	Figure	3H.	
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Figure	 S3.1.	 No	 significant	 difference	 in	 the	 mean	 firing	 rate	 for	 renditions	
expressing	stronger	vs.	weaker	learning.	
Mean	firing	rate	in	the	premotor	window	is	not	significantly	different	between	two	groups	
of	renditions	split	based	on	strength	of	expression	of	learning.	See	Figure	3.4	for	details	on	
how	renditions	were	 split	 into	 “Stronger”	and	 “Weaker”	 learning	groups,	 and	 to	 contrast	
the	 greater	 increase	 in	 LMAN-RA	 cross-covariance	 seen	 there	 for	 Stronger	 learning	with	
the	lack	of	a	similar	effect	on	firing	rate	here.		
	

	 	



	

	 87	

Chapter	4:	General	discussion	

4.1.	A	neural	mechanism	for	a	particular	form	of	motor	skill	flexibility	in	birdsong.	

Summary	of	findings	

	 At	 the	 behavioral	 level,	 we	 found	 that	 pitch	 modifications	 reflect	 an	 adaptive	

balance	between	generalization	and	specificity	across	contexts	(Chapter	2,	Figures	2.1,	2.2).	

Generalization	 occurs	 when	WN	 feedback	 is	 targeted	 to	 one	 context,	 but	 birds	 have	 an	

additional	capacity	for	highly	context-specific	learning	when	opposite-direction	feedback	is	

provided	 in	 two	 contexts.	 Using	 transient	 pharmacological	 inactivation	 of	 LMAN	 during	

learning,	 we	 found	 that	 this	 balance	 reflects	 separate	 contributions	 of	 two	 distinct,	 but	

interacting,	 circuits:	 the	 AFP	 biases	 pitch	 in	 a	 context-specific	 manner	 to	 promote	

specificity	of	learning,	while	modifications	in	the	motor	pathway	(MP)	are	responsible	for	

the	 expression	 of	 generalized	 learning	 (Chapter	 2,	 Figures	 2.4,	 2.5).	 By	 examining	

correlations	between	neural	activity	in	LMAN	and	RA,	and	how	those	correlations	change	

during	 learning,	we	 reported	 evidence	 that,	 at	 the	 neural	 level,	 AFP	 pitch	 bias	 reflects	 a	

premotor	 instructive	 signal	 that	 influences	 activity	 in	 RA	 through	 fast	 synaptic	

transmission	(Chapter	3).	

	

How	does	the	AFP	“learn”	a	context-specific	pitch	bias?	

	 In	 the	 Discussion	 for	 Chapter	 2,	 I	 outlined	 a	 circuit-level	model	 for	 how	 the	 AFP	

learns	a	context-specific	bias	during	training.	There	are	a	few	things	to	add	to	that	model.	

One	possibility	is	that	plasticity	does	not	actually	occur	not	at	HVC-X	synapses,	as	proposed	

in	 that	 model,	 but	 somewhere	 else	 in	 the	 AFP	 [e.g.,	 related	 to	 plasticity	 mechanisms	 in	
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juvenile	LMAN	(Boettiger	and	Doupe,	2001)],	or	downstream	at	LMAN-RA	synapses.	There	

is	 no	 direct	 evidence	 regarding	 the	 locus	 of	 plasticity,	 but	 there	 seems	 to	 be	 reasonable	

evidence	 suggesting	 that	 plasticity	 occurs	 in	 Area	 X,	 potentially	 at	 HVC-X	 synapses	 as	

originally	 proposed.	 First,	 there	 is	 evidence	 for	 a	 general	 role	 for	 reward-mediated	

plasticity	at	cortico-striatal	synapses15	in	motor	learning	[e.g.,	(Wickens	et	al.,	2003;	Xiong	

et	al.,	2015)];	second,	there	is	evidence	for	a	causal	role	for	dopaminergic	inputs	to	Area	X	

in	driving	plasticity	crucial	for	pitch	modifications	(Gadagkar	et	al.,	2016;	Hisey	et	al.,	2018;	

Hoffmann	et	al.,	2016;	Xiao	et	al.,	2018),	and	the	possibility	of	HVC-X	synapses	undergoing	

dopamine-mediated	plasticity	is	supported	by	experiments	in	brain	slices	(Ding	and	Perkel,	

2004).	Fourth,	normal	transmission	of	activity	at	LMAN-RA	synapses	is	not	required	for	the	

learning	 of	 bias	 in	 the	AFP	 (Charlesworth	 et	 al.,	 2012),	which	 suggests	 that	 the	 relevant	

plasticity	 is	 upstream	 of	 the	 LMAN-RA	 synapses,	 and	 potentially	within	 the	 AFP.	 On	 the	

other	hand,	there	is	direct	evidence	that	the	synapses	from	LMAN	to	RA	can	undergo	plastic	

changes	in	slices,	that	this	plasticity	may	be	crucial	 for	pitch	modifications	(Mehaffey	and	

Doupe,	2015).	Taken	 together,	evidence	suggests	 that	 it	 is	plausible,	but	not	 certain,	 that	

the	 relevant	 plasticity	 underlying	 AFP	 bias	 occurs	 within	 the	 AFP,	 potentially	 at	 HVC-X	

synapses.	

	 A	 second	point	 regards	 the	 source	of	 contextual	 signals	 in	 the	AFP.	We	 suggested	

that	 these	 signals	 may	 be	 conveyed	 from	 HVC	 neurons	 that	 project	 to	 Area	 X	 (HVCX	

neurons);	 indeed,	there	is	evidence	from	neural	recordings	in	Bengalese	finches	that	HVC	

inputs	can	encode	information	about	sequential	context	(Fujimoto	et	al.,	2011).	This	would	

be	 consistent	 with	 a	 model	 in	 which	 AFP	 bias	 depends	 on	 plasticity	 at	 these	 HVCX-X	
																																																								
15	The	synapses	from	HVC	to	spiny	neurons	in	X	may	be	analogous.	



	

	 89	

synapses,	because	then	changes	that	drive	pitch	bias	would	presumably	only	be	expressed	

in	 the	 appropriate	 sequential	 context	 [similar	 to	 ideas	 proposed	 in	 (Fee	 and	 Goldberg,	

2011;	Mooney,	 2014)].	 This	 is	 consistent	with	 the	 possibility	 that	 the	 physiology	 of	 and	

patterns	of	afferent	connections	to	striatal	spiny	neurons	in	Area	X	may	make	them	well-

suited	to	detect	context	in	the	moment-to-moment	configuration	of	inputs	from	HVC	(Fee	

and	Goldberg,	2011;	Houk	and	Wise,	1995).		

	 However,	 it	 is	worth	explicitly	addressing	 the	possibility	of	 some	other	sources	of	

contextual	 information:	 RA	 projects	 to	 DLM,	 which	 projects	 to	 LMAN.	 This	 input	 could	

potentially	 convey	 information	 to	 the	 AFP	 regarding	 the	 sequence	 of	 ongoing	 song	

(Goldberg	 and	 Fee,	 2012;	 Vates	 et	 al.,	 1997).	We	 think	 that	 this	 is	 unlikely	 because	 RA	

activity	only	weakly	encodes	sequential	context	(Leonardo	and	Fee,	2005;	Wohlgemuth	et	

al.,	 2010).	Another	possibility	 is	 that	 context	 is	 encoded	not	 in	 inputs	 to	 the	AFP,	 but	 as	

“memory”	 in	the	AFP;	at	any	point	 in	song	AFP	activity	may	reflect	some	influence	of	 the	

last	few	syllables	in	the	current	song	bout.	This	lasting	influence	may	occur,	for	instance,	as	

a	result	of	recurrent	activity	in	the	AFP16.	However,	given	the	direct	evidence	for	encoding	

of	 context	 in	 HVCX	 neurons	 and	 the	 likelihood	 that	 plasticity	 at	 HVCX-X	 synapses	 is	

important	 for	 learning	 (see	 above),	 we	 favor	 the	 originally	 proposed	 possibility	 that	

context	relevant	for	learning	is	conveyed	from	HVC17.	
																																																								
16	Either	through	the	LMAN-DLM-Area	X	loop,	or	from	local	connectivity	within	these	

regions.	Both	LMAN	and	Area	X	are	known	to	contain	recurrent	connections.		

17	If	it	were	true	that	contextual	signals	conveyed	from	HVC	were	crucial	for	the	AFP	to	

generate	a	biasing	signal,	then	an	experimental	prediction	would	be	that	perturbation	of	

HVC-X	activity	that	“jumbles”	this	contextual	signal	would	block	AFP	bias	and	as	a	result	

lead	to	reversion	of	learning.		
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How	is	learning	transferred	to	the	motor	pathway?	

	 Our	 findings	 indicate	 that	 generalization	 results	 from	modifications	 in	 the	motor	

pathway	(see	Figure	2.4,	2.5	and	Discussion	for	Chapter	2).	A	potential	mechanism	for	how	

these	modifications	occur,	and	how	they	lead	to	generalization,	is	laid	out	in	the	Discussion	

for	 Chapter	 2.	 In	 brief,	 modifications	 would	 occur	 at	 HVC-RA	 synapses,	 driven	 by	

instructive	signals	from	LMAN	biasing	plasticity	in	the	motor	pathway	through	a	process	of	

“systems	 consolidation”	 (Dudai,	 2004).	 While	 it	 is	 likely	 that	 plasticity	 in	 the	 motor	

pathway	underlies	 the	 component	 of	 learning	 that	 remains	when	AFP	output	 is	 blocked,	

there	 is	 no	 direct	 evidence	 for	 instructive	 signals	 from	 LMAN	 directing	 plasticity	 in	 the	

motor	pathway18.	A	plausible	alternative	mechanism	posits	that	plasticity	may	occur	in	the	

MP	as	a	result	of	 feedback	signals	that	arrive	directly	 in	the	MP,	not	through	the	AFP,	 for	

instance	 at	 HVC-RA	 synapses.	 However,	 an	 argument	 against	 this	model	 is	 that	 learning	

does	not	seem	to	occur	at	all	unless	LMAN	synaptic	input	to	RA	is	active	(Charlesworth	et	

al.,	2012),	which	suggests	that	plasticity	in	the	AFP	must	occur	first.19	Moreover,	the	motor	
																																																								
18	Indirect	evidence	comes	from	the	fact	that	the	learning	encoded	in	the	MP	is	remarkably	

similar	to	that	encoded	by	AFP	bias	[warren;	andalman];	moreover	there	is	evidence	that	

plasticity	in	the	MP	cannot	occur	unless	there	is	active	synaptic	transmission	from	the	AFP	

[covert].		

19	An	argument	against	this	interpretation	is	that	silencing	LMAN	blocks	not	only	LMAN’s	

synaptically	transmitted	activity,	but	also	the	secretion	of	neurotrophic	factors	from	LMAN	

that	may	be	crucial	for	plasticity	in	RA.	An	argument	against	this	argument	is	that	learning	

is	blocked	even	when	LMAN’s	inputs	are	silenced	by	antagonizing	LMAN’s	synaptic	input	in	

RA	thus,	presumably,	leaving	intact	LMAN’s	ability	to	secrete	neurotrophic	factors	

(Charlesworth	et	al.,	2012).	
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biasing	 signal	 [that	we	 found	 evidence	 for	 in	 correlations	between	LMAN	and	RA	neural	

activity	 (Chapter	 3)]	may	 represent	 a	mechanism	 that	 drives	 plastic	 changes	 in	 the	MP.	

While	we	currently	lack	direct	evidence	for	such	a	serial	transfer	mechanism,	this	transfer	

process	 accounts	 reasonably	 well	 for	 the	 existing	 data.	 Strong	 evidence	 in	 support	 or	

against	 the	 instructive	 model	 may	 come	 from	 experiments	 testing	 whether	 systematic	

stimulation	 of	 LMAN	 (in	 a	 manner	 sufficient	 to	 drive	 consistent,	 naturalistic,	 biases	 of	

behavior)	 is	 sufficient	 to	 instruct	 corresponding	 learning-related	 modifications	 to	 the	

motor	pathway.	

	

How	do	modifications	in	the	motor	pathway	contribute	to	generalization?	

	 A	model	for	how	changes	in	the	MP	may	underlie	generalization	is	described	in	the	

Discussion	for	Chapter	2.	There	are	a	few	predictions	to	be	made.	First,	the	occurrence	of	

generalization	 as	 a	 function	 of	 plasticity	 at	 HVC-RA	 synapses	 predicts	 that	 the	 same,	 or	

largely	 overlapping,	 set	 of	 synapses	 from	 HVC	 to	 RA	 should	 be	 active	 when	 the	 same	

syllable	 is	 sung	 in	 different	 contexts.	 It	 is	 not	 clear,	 however,	 to	what	 extent	 there	 is	 an	

overlap	 in	 the	synapses	active	 in	different	contexts,	nor	do	we	know	what	 the	activity	of	

neurons	in	HVC	that	project	to	RA	(HVCRA	neurons)	looks	like	during	singing	in	Bengalese	

finch.	 This	 model	 predicts	 that	 HVCRA	 activity	 should	 be	 highly	 overlapping	 in	 different	

contexts20.	 However,	 if	 it	 is	 the	 case	 that	 those	 inputs	 are	 not	 highly	 overlapping	 [as	

																																																								
20	HVCRA	single	unit	activity	has	been	recorded	during	singing,	but	in	zebra	finches,	which	

sing	highly	stereotyped	song	with	little	to	no	sequence	variability	(Hahnloser	et	al.,	2002;	

Kozhevnikov	and	Fee,	2007).	In	Bengalese	finches,	if	it	were	the	case	that	HVCRA	activity	is	

more	similar	across	contexts	than	is	HVCX	activity	(which	we	already	know	to	have	

substantial	differences	across	contexts;	see	above),	then	it	raises	the	question	of	how	
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predicted	by	some	theoretical	models	of	the	motor	pathway	control	of	sequencing	(Jin	and	

Kozhevnikov,	2011;	Katahira	et	al.,	2011)]	then	we	might	still	account	for	the	role	for	the	

motor	pathway	in	generalization	by	positing	that	plasticity	may	alter	activity	of	a	given	RA	

neuron	 in	 a	 manner	 that	 is	 not	 synapse-specific.	 This	 may	 occur	 through	 changes	 to	

excitability	 of	 RA	 neurons	 due	 to	 either	 alteration	 of	 intrinsic	 conductances	 [e.g.,	

(Aizenman	and	Linden,	2000)]	or	local	inhibitory	activity21	(Miller	et	al.,	2017;	Spiro	et	al.,	

1999);	this	may	lead	to	generalization,	since	it	is	already	known	that	activity	for	a	given	RA	

neuron	is	quite	similar	across	contexts	(Leonardo	and	Fee,	2005;	Wohlgemuth	et	al.,	2010).	

	 Note	 that	 the	motor	pathway	did	exhibit	 some	 residual	 capacity	 to	 learn	 separate	

modifications	based	on	context	(Figures	2.4,	2.5).	This	argues	against	a	strictly	hierarchical	

model	 in	 which	 RA	 encodes	 a	 given	 syllable	 identically	 across	 contexts;	 this	 slight	

contextual	difference	is	evident	in	neural	recording	studies	(Wohlgemuth	et	al.,	2010).	This	

may	suggest	that	there	are	slight	differences	in	the	pattern	of	HVC	inputs	across	contexts,	

which	 may	 allow	 HVC-RA	 plasticity	 some	 capacity	 to	 encode	 context-dependent	 pitch	

differences.	Alternatively,	RA	changes	may	be	identical	across	contexts,	with	the	separation	
																																																																																																																																																																																			
contextual	differences	are	present	in	one	cell	type	but	not	another	in	the	same	local	circuit.	

Slice	experiments	indicate	that	a	dominant	microcircuit	motif	in	HVC	is	from	HVCRA	to	

interneurons	to	HVCX	neurons	(Mooney	and	Prather,	2005).	Interneurons	may	act	to	

“separate”	small	differences	in	patterns	of	HVCRA	activity	into	larger	differences	at	HVCX	

(similar	to	what	has	been	suggested	for	some	other	circuits	in	striatum,	hippocampus,	and	

cerebellar	cortex).	Alternatively,	interneurons	may	contain	a	longer	memory	of	sequential	

activity,	which	would	be	conveyed	to	HVCX	neurons.		

21	In	principle	excitability	could	also	be	modulated	by	plasticity	at	local	excitatory	

connections	in	RA;	however,	those	connections	seem	to	be	either	very	rare	or	nonexistent	

in	adult	RA	(Miller	et	al.,	2017).	
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in	 pitch	 reflecting	 context-dependent	 differences	 in	 activity	 in	 the	 motor	 periphery	

(Forssberg	 et	 al.,	 1975;	 Ostry	 et	 al.,	 1996)	 that	 differentially	 transforms	 the	 same	 RA	

activity.	

	 		

At	what	timescale	does	transfer	of	learning	to	the	motor	pathway	occur?	Is	this	timescale	

consistent	with	the	timescale	of	generalization?		

	 We	have	 suggested	 that	 it	may	 be	 the	 signals	 conveyed	 from	LMAN	 to	RA	during	

singing	 that	 drive	modifications	 in	 RA.	 This	 predicts	 that	MP-dependent	 learning	 should	

exhibit	a	gradual	 increase	over	 the	course	of	many	song	bouts,	and,	at	a	 finer	resolution,	

potentially	even	discrete	increments	locked	to	song	bouts.	The	lag	from	each	song	bout	to	

these	increments	would	depend	on	the	speed	with	which	relevant	plasticity	occurs.	From	

inspection	 of	 example	 learning	 trajectories	 (e.g.	 Figure	 2.1,	 2.2)	 it	 is	 clear	 that	

generalization	occurs	with	a	 timecourse	grossly	 similar	 to	 learning	at	 the	 target	 syllable.	

Rendition-by-rendition	 analysis	 of	 the	 timecourse	 of	 both	 consolidation	 (assessed	 using	

electrical	 stimulation	 of	 LMAN	 by	 T.	 Warren	 and	 J.	 Charlesworth,	 data	 not	 shown)	 and	

generalization	 (analysis	 of	 behavioral	 data	 in	 Figure	 2.1;	 data	 not	 shown)	 are	 consistent	

with	consolidation	and	generalization	occurring	with	a	similar	timecourse,	and	in	a	manner	

tightly	 locked	 to	 singing.	 This	 result	 is	 therefore	 consistent	with	 the	 possibility	 that	 the	

motor	 pathway	 is	 gradually	 updated	 during	 singing,	 perhaps	 in	 response	 to	 instructive	

premotor	signals	from	the	AFP22.		

																																																								
22	This	result	also	rules	out	the	possibility	that	transfer	to	the	MP	occurs	entirely,	or	even	

mostly,	overnight,	as	has	been	suggested	for	some	other	forms	of	motor	skills	[see	

(Bönstrup	et	al.,	2019)	for	a	critical	account	of	that	idea].	
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Do	the	mechanisms	that	allow	that	AFP	to	contribute	to	context-dependent	pitch	

modifications	in	adults	also	contribute	to	the	differentiation	of	syllables	in	juvenile	song	

learning?	

	 What	do	 these	 findings	suggest	regarding	 the	role	of	 the	AFP	and	MP	during	song	

learning	during	development?	A	differential	contribution	of	the	AFP	to	specificity	and	MP	

to	generalization	may	account	for	one	aspect	of	song	development:	how	birds	obtain	their	

adult	repertoire	of	syllables.	Longitudinal	tracking	of	the	developmental	trajectory	of	song	

has	 revealed	 different	 “strategies”	 undertaken	 by	 different	 individual	 birds	 (Liu	 and	

Nottebohm,	2004;	Okubo	et	al.,	 2015;	Tchernichovski	et	 al.,	 2001).	One	strategy	 involves	

having	 different	 adult	 syllables	 arise	 from	 the	 same	 early	 stage	 protosyllable23	sung	 in	

different	 sequential	 contexts.	 For	 example,	 the	 sequence	 of	 protosyllables	 “AAAA”	 may	

differentiate	early	in	development	into	“AADA”	and	then	at	a	late	stage	of	development	to	

“BCDE”	 (Liu	 and	Nottebohm,	 2004);	 in	 this	 case,	 four	 variants	 of	 the	 same	 protosyllable	

(“A”),	 which	 differed	 by	 sequential	 context,	 eventually	 differentiated	 into	 four	 different	

adult	syllables.		

	 In	 the	 brain,	 protosyllables	 are	 encoded	 similarly	 in	 HVC	 but,	 as	 protosyllables	

gradually	differentiate	into	adult	syllables,	HVC	activity	concurrently	“splits”	into	different	

representations	 for	 each	adult	 syllable	 (Okubo	et	 al.,	 2015).	One	possible	mechanism	 for	

this	 splitting	 is	 that	 different	 AFP	 input	 in	 each	 context	 to	 RA	 acts	 to	 “push”	 apart	 the	

																																																								
23	A	poorly	structured	developmental	precursor	to	the	adult	syllable.	
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representations	in	RA	for	the	same	syllable.	These	differences	may	then	be	stabilized	and	

eventually	crystallize	by	transfer	to	HVC-RA	synapses24.		

	 How	might	this	model	account	for	the	splitting	of	activity	that	occurs	 in	HVC?	One	

possibility	is	that	auditory	feedback	will	differ	as	the	RA	representation	differentiates	-	this	

feedback	may	drive	modifications	 in	HVC	 to	 separate	 its	 representations	 across	 contexts	

(Mackevicius	 and	 Fee,	 2018)25.	 One	 prediction	 if	 this	 idea	 is	 correct	 is	 that	 during	 the	

protosyllable	 period	 neural	 activity	 in	 the	 AFP	 should	 show	 contextual	 differences	 that	

precede	(and	predict)	contextual	differences	in	HVC.	

	

4.2.	Some	broader	principles	for	motor	skill	adaptation	in	relation	to	these	findings.	

A	simple	model	for	tuning	the	balance	between	generalization	and	specificity	depending	on	

the	complexity	of	feedback	signals	in	a	given	environment.	

	 The	 ability	 to	 adaptively	 balance	 generalization	 and	 specificity	 of	 motor	 skills	 in	

humans	 is	 evident	 from	 studies	 of	 naturalistic	 behavior	 (Adolph	 and	 Eppler,	 2002;	

Bernstein,	1996;	Clearfield	and	Thelen,	2001;	MacKay,	1982;	Wolpert	et	al.,	2001)	as	well	

as	motor	 adaption	 studies;	 perhaps	most	 pertinent	 are	 two	 classes	 of	 studies.	 One	 class	

																																																								
24	A	general	role	for	the	AFP	in	syllable	differentiation	is	supported	by	the	findings	that	

LMAN	lesions	in	late-stage	juveniles	leads	to	song	prematurely	crystallizing	in	the	state	it	is	

at	when	the	lesion	occurs	-	it	is	almost	as	if	normal	development	including	syllable	

differentiation	is	suddenly	halted	(Bottjer	et	al.,	1984;	Scharff	and	Nottebohm,	1991).	

25	This	differentiation	process	may	represent	a	mechanism	for	a	potentially	broad	principle	

in	motor	skill	learning,	namely	that	initial	learning	of	a	skill	may	progress	by	first	learning	a	

small	set	of	motor	primitives	from	which	more	complex	motor	gestures	are	derived	trough	

differentiation.	
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demonstrates	 that	 subjects	 will	 naturally	 generalize	 learning	 across	 contexts	 if	 training	

signals	are	provided	in	only	one	context	(Houde	and	Jordan,	1998;	Howard	and	Franklin,	

2015;	 Rochet-Capellan	 et	 al.,	 2012),	 yet	 reveal	 a	 capacity	 for	 learning	 more	 specific	

modifications	if	training	signals	differ	across	contexts	(Gandolfo	et	al.,	1996;	Howard	et	al.,	

2012;	Nozaki	et	al.,	2006;	Pearson	et	al.,	2010;	Rochet-Capellan	and	Ostry,	2011;	Wainscott	

et	 al.,	 2004)26.	 These	 studies	 are	 analogous	 to	 the	 songbird	 behavioral	 experiments	 I	

described	 in	 Chapter	 2,	 and	 suggest	 the	 ability	 to	 “tune”	 the	 propensity	 to	 generalize	

depending	on	whether	feedback	occurs	in	one	or	multiple	contexts.	Another	class	of	studies	

more	directly	tries	to	measure	patterns	of	generalization	as	they	are	changing	in	response	

to	 changing	 environments	 [(Krakauer	 et	 al.,	 2006;	 Taylor	 and	 Ivry,	 2013;	 Thoroughman	

and	Taylor,	2005);	also	see	(Gandolfo	et	al.,	1996;	Rochet-Capellan	and	Ostry,	2011)27].	In	

these	 studies,	 subjects	 are	 shown	 to	 be	 able	 to	 modify	 their	 natural	 pattern	 of	

generalization	 based	 on	 the	 history	 of	 how	 feedback	 depends	 on	 contextual	 cues.	 As	 a	

																																																								
26	Note	that	these	references	are	biased	towards	studies	of	sequential	context;	it	is	clear	

that	similar	specificity	of	learning	can	be	enabled	by	contexts	of	many	sorts	of	modalities	-	I	

reference	a	few	of	those	studies	here,	but	also	in	Chapter	1	and	the	section	below	

specifically	addressing	the	potential	general	role	of	basal	ganglia	circuits	in	context-specific	

adaptation.	

27	These	two	studies	are	interesting	because	this	tuning	of	generalization	is	not	of	major	

concern	to	the	authors,	but	seems	to	be	present	by	inspection	of	the	example	experiments;	

i.e.,	in	both	of	these	studies	subjects	receiving	feedback	that	differs	across	contexts	seem	to	

initially	generalize,	then	gradually	exhibit	more	specificity	(as	if	gradually	learning	that	in	

this	environment	less	generalization	is	better).	Learning	about	the	environment	in	this	way	

may	be	commonplace	and	expressed	in	experiments	where	such	learning	is	not	directly	

being	tested.		
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result,	 the	 patterns	 of	 generalization,	 in	 response	 to	 the	 exact	 same	 training	 signal,	 can	

generalize	more	 or	 less	 broadly	 depending	 on	whether	 prior	 feedback	was	more	 or	 less	

similar	across	contexts.	In	principle,	these	behavioral	effects	likely	depend	on	some	ability	

of	the	nervous	system	to	keep	track	of	the	statistics	of	feedback	across	contexts,	for	a	given	

environment,	and	to	use	that	information	to	decide	whether	generalization	or	specificity	is	

appropriate.	

	 This	ability	to	shape	generalization	to	fit	the	current	environment	is	thought,	in	an	

abstract	 sense,	 to	 reflect	 the	 inference	 of	 appropriate	 “internal	 models”	 (Wolpert	 and	

Kawato,	1998)28.	These	internal	models	encode	the	relationship	between	contextual	cues,	

motor	parameters,	and	behavioral	outcome29;	this	relationship	would	be	the	one	inferred	

to	be	good	with	respect	to	its	ability	to	account	for	the	history	of	feedback	(especially	the	

correlation	between	contextual	cues,	motor	output,	and	feedback)	in	a	given	environment	

(Korenberg	 and	Ghahramani,	 2002;	Krakauer	 et	 al.,	 2006;	Wolpert	 and	Kawato,	 1998)30.	

																																																								
28	For	example,	if	prior	experience	indicates	that	in	this	environment	feedback	tends	to	

differ	across	contexts,	then	subjects	may	exhibit	less	generalization	when	retested	in	this	

environment.	Note	that	some	have	argued	that	in	some	paradigms,	in	contrast,	

generalization	shows	very	little	modifiability	(Mattar	and	Ostry,	2007).	

29	These	models	could	influence	action	in	a	predictive	manner,	or	alternatively	by	

influencing	movement	using	online	feedback	(Todorov	and	Jordan,	2002)	or	by	modulating	

effector	stiffness	through	muscle	co-contraction	(Davidson	and	Wolpert,	2003).	

30	For	the	behavioral	experiments	in	this	dissertation,	it	is	the	correlation	between	context	

and	feedback,	over	prior	renditions,	that	determines	the	state	of	the	environment.	Indeed	

there	is	empirical	evidence	that	people	evaluate	not	only	the	history	of	prior	contexts,	but	

also	the	history	of	prior	feedback	(errors)	(Herzfeld	and	Shadmehr,	2014),	of	history	of	

correlation	between	errors	and	context	(Roemmich	and	Bastian,	2015;	Thoroughman	and	
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However,	 the	 ability	 to	 learn	 and	 utilize	 an	 internal	 model	 appropriate	 for	 a	 given	

environment	 is	 an	 abstract	 one	 with	 no	 obvious	 or	 empirically-supported	 underlying	

neural	mechanism.31		

	 	The	 current	 findings	 suggest	 a	 simple	 biological	 mechanism	 for	 one	 version	 of	

behavior	 that	 involves	 tuning	 of	 patterns	 of	 generalization.	 The	 bird’s	 “internal	 model”	

consists	of	mappings	between	each	syllable	to	its	appropriate	pitch,	encoded	in	the	MP,	and	

mappings	between	each	syllable/context	combination	to	an	appropriate	pitch,	encoded	in	

the	 AFP.	 Empirically,	 the	 relative	 contributions	 of	 these	 two	 mappings	 to	 behavior	 are	

tuned	 based	 on	 the	 complexity	 of	 feedback	 across	 contexts	 (Figure	 2.5D).	 The	 proposed	

circuit-level	mechanism	 for	 this	 tuning	 is	 simple	 and	 described	 above	 (see	 Chapter	 4.1);	

essentially,	the	more	similar	the	inputs	from	LMAN	to	RA	are	across	contexts,	the	lesser	the	

																																																																																																																																																																																			
Taylor,	2005),	and	that	the	resulting	knowledge	may	accelerate	future	learning	(Braun	et	

al.,	2009,	2010;	Welch	et	al.,	1993).	For	some	other	forms	of	learning,	a	similar	Bayesian	

statistical	learning	process	may	also	enable	flexibility	(Gershman,	2017).	

31	A	class	of	biologically-inspired	models	accounts	for	patterns	of	generalization	by	

similarity	of	the	underlying	“tuning”	of	units	in	the	sensory-motor	circuits	contributing	to	

different	movements.	If	the	sensory	cues	(i.e.,	context)	and	motor	outputs	for	a	given	action	

overlap	strongly	with	those	of	another	action,	then	any	adaption	for	one	will	generalize	

spontaneously	to	the	other	(Darshan	et	al.,	2014;	Nozaki	and	Scott,	2009;	Poggio	and	Bizzi,	

2004;	Shadmehr	and	Mussa-Ivaldi,	1994).	To	account	for	cases	where	patterns	of	

generalization	can	change	depending	on	the	environment,	the	tuning	of	units	must	be	

adaptable	(i.e.,	broader	tuning	leading	to	broader	generalization)	(Thoroughman	and	

Taylor,	2005).	Alternatively,	credit	assignment	(i.e.,	the	determination	of	which	weights	to	

update	during	training)	may	be	tuned	by	context	(Nozaki	and	Scott,	2009).	It	is	not	clear	

how	either	of	these	possibilities	are	implemented,	but	cerebellum	has	been	implicated	(see	

below).		
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interference	of	plasticity	in	RA	and	thus	the	stronger	the	accumulated	plastic	changes	in	RA	

(see	Discussion	 in	 Chapter	 2).	 A	 direct	 result	 of	 this	 interference	 in	RA	 is	 that	 the	more	

simple	 the	 environment,	 the	 more	 learning	 is	 transferred	 to	 update	 the	 “core”	 syllable	

representation	in	RA.	One	may	say	that	the	internal	model	has	therefore	learned	that	in	this	

environment	 generalization	 is	 good.	 A	 similar	 idea	 would	 play	 out	 in	 more	 complex	

environments,	but	would	instead	involve	greater	contributions	from	the	AFP.32	

	

Some	evidence	for	“interference”	of	plasticity	in	motor	cortex			 	

	 There	 is	 indirect	 evidence	 for	 a	 potentially	 similar	 “interference”	 effect	 in	 other	

motor	skills.	For	example,	 interference	of	modifications	 in	motor	cortex	may	occur	when	

learning	 multiple	 similar	 motor	 tasks	 that	 require	 learning	 different	 sensorimotor	

transformations	 (Ganguly	 and	 Carmena,	 2010;	 Zach	 et	 al.,	 2012)];	moreover,	 changes	 in	

activity	 in	 motor	 cortex	 can	 predict	 patterns	 of	 generalization	 (Arce	 et	 al.,	 2010)	 and	

encoding	 can	 be	 similar	 in	 motor	 cortex	 for	 similar	 movements	 that	 are	 performed	 in	

different	 contexts	 (see	 Chapter	 1).	 Moreover,	 there	 is	 evidence	 in	 mice	 that	 overlap	 in	

dendrite-specific	 plasticity	 in	 motor	 cortex	 can	 contribute	 to	 interference	 in	 motor	

learning33 	(Cichon	 and	 Gan,	 2015). 34 	These	 findings	 are	 consistent	 with	 patterns	 of	

																																																								
32	It	is	however	still	not	fully	clear	if	and	how	a	transfer	process	from	LMAN	to	RA	occurs;	

therefore,	there	is	no	strong	empirical	evidence	that	interference	in	RA	plasticity	actually	

occurs	as	described	(see	above	for	weaker	evidence	in	support	of	this	interference).	

33	Interestingly,	they	also	show	that	activity	of	SST	interneurons	may	control	the	level	of	

overlap	in	representation	in	these	dendrites,	suggesting	a	potential	mechanism	to	tune	

interference.	
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generalization	 normally	 being	 dependent	 on	 the	 nature	 of	 learning-related	 changes	 in	

motor	 cortex.35	More	 broadly,	 in	 addition	 to	 motor	 cortex	 there	 may	 be	 other	 plausible	

brain	 regions	 where	 modifications	 may	 be	 expected	 to	 alter	 representations	 of	 motor	

primitives	(see	Chapter	1.1)	and	thus	lead	to	generalization.		

	 	

Hierarchical	representations	of	motor	skills	

	 Since	the	idea	of	a	hierarchical	neural	architecture	underlies	some	of	the	framing	of	

my	results,	it	is	worth	explicitly	clarifying	potential	confusion	regarding	the	different	ways	

hierarchy	may	be	attributed	to	motor	skills.	An	underlying	idea	in	this	dissertation	is	that	

the	motor	 system	 reuses	 a	 smaller	 set	 of	 motor	 primitives	 in	 a	 larger	 set	 of	 sequential	

contexts.	 In	 this	 framework,	 there	are	 at	 least	 two	broad	 classes	of	hierarchies.	The	 first	

																																																																																																																																																																																			
34	This	idea	of	interference	of	plasticity	impairing	learning	in	behavior	is	potentially	related	

to	the	problem	of	credit	assignment.	Learning	partially	depends	on	answering	the	question:	

variation	at	what	level	of	behavior	(e.g.	selection,	sequencing,	planning,	execution)	best	

predicts	variation	in	feedback/performance?	Was	failure	due	to	choosing	the	wrong	action	

or	executing	the	right	action	incorrectly?	For	the	birdsong	studies	here,	the	corresponding	

question	is:	are	patterns	of	WN	feedback	most	strongly	predicted	by	the	syllable	being	

sung?	Or	the	combination	of	syllable	and	context?	Assuming	that	variation	in	these	

behavioral	features	(syllable	and	context)	correspond	to	variation	in	neural	representation	

in	different	“dimensions”	(e.g.,	in	a	simple	case,	different	brain	regions),	then	determining	

whether	one	should	modify	syllable-related	or	context-related	representations	is	a	

particular	case	of	the	general	problem	of	credit	assignment	in	reinforcement	learning	

theory	(Sutton	and	Barto,	1998).	See	(Gulati	et	al.,	2017)	for	discussion	of	empirical	

evidence	regarding	potential	neural	mechanisms	of	credit	assignment	in	motor	learning.	

35	Also	maybe	consistent	with	this	possibility:	stimulation	of	motor	cortex	can	affect	

patterns	of	generalization	(Orban	de	Xivry	et	al.,	2011).	
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class	corresponds	 to	 the	architecture	described	 for	context-dependent	pitch	modification	

(Figure	2.4,	2.5),	with	lower	levels	representing	motor	gestures	(e.g.,	syllables)	and	higher	

levels	 representing	 nodes	 that	 can	 impose	 context-specific	modifications	 to	 execution	 of	

those	 gestures.	 This	 hierarchy	 can	 be	 schematized	 as	multiple	 biasing	 inputs	 converging	

onto	a	given	motor	primitive.		

	 The	 second	 is	 a	 class	 that	 addresses	 the	 ability	 to	 learn	 and	 control	 variable	

sequences	 in	 the	 first	 place.	 The	 higher	 level	 of	 the	 hierarchy	 represents	 some	

understanding	 of	 the	 learned	 (or	 unlearned)	 probabilities	 of	 transitioning	 between	

individual	 gestures;	 these	 higher	 nodes	 can	 be	 crudely	 thought	 of	 as	 representing	

appropriate	“chunks”	of	actions,	or	even	more	abstract	sequences	of	goals	(Botvinick,	2008;	

Diedrichsen	 and	 Kornysheva,	 2015;	 Lashley,	 1951,	 1951;	 Markowitz	 et	 al.,	 2018)36.	 In	

contrast	to	the	first	hierarchy,	here	a	single	higher	node	would	diverge	to	multiple	 lower	

nodes	that	represent	the	motor	primitives	that	comprise	the	action	sequence.	

	 These	two	hierarchies	can	coexist	and	work	together	to	control	motor	skills,	but	it	is	

not	very	clear	what	circuit	mechanisms	 these	hierarchies	may	map	onto,	or	 to	be	 fair,	 to	

what	extent	this	is	a	generally	accurate	and	fruitful	way	(in	terms	of	research	progress)	of	

thinking	 about	 motor	 sequences.	 For	 birdsong,	 however,	 one	 might	 loosely	 map	 this	

																																																								
36	For	some	types	of	sequences	there	seems	to	be	a	relatively	clear	distinction	between	

higher	(abstract)	and	lower	(execution)	level	representations,	since	a	given	sequence	can	

be	implemented	with	very	different	movements.	This	“motor	equivalence”	is	perhaps	most	

strikingly	demonstrated	by	the	ability	to	write	a	sequence	of	words	with	a	pen	held	in	

either	ones	hands	or	ones	toes.	Similar	is	the	finding	that	a	sequence	of	finger	presses	when	

learned	with	one	hand	can	be	readily	produced	with	the	other	(MacKay,	1982;	Witt	et	al.,	

2010).	



	

	 102	

hierarchy	onto	 two	pathways	emanating	 from	HVC	 that	directly	and	 indirectly	project	 to	

LMAN	(Figure	2.3).	HVC	neurons	that	project	to	RA	may	represent	a	high-level	node	in	the	

second	hierarchy,	to	the	extent	that	activity	of	these	neurons	are	crucial	for	controlling	the	

sequencing	 of	 syllables	 and	 seemingly	 less	 important	 for	 controlling	 the	 details	 of	 how	

individual	 syllables	are	executed	 	 (Hahnloser	et	al.,	2002;	Hosino	and	Okanoya,	2000;	 Jin	

and	 Kozhevnikov,	 2011;	 Katahira	 et	 al.,	 2011;	 Long	 and	 Fee,	 2008;	 Margoliash	 and	 Yu,	

1996;	Vu	et	al.,	1994;	Zhang	et	al.,	2017).	My	experiments	suggest	that	HVCX	neurons	that	

project	 indirectly	 to	 RA	 through	 the	 AFP	 may	 correspond	 to	 a	 higher	 node	 in	 the	 first	

hierarchy,	which	acts	to	bias	the	execution	of	a	given	syllable	depending	on	context,	but	are	

not	crucial	for	determining	the	sequential	order	of	syllables.	This	framework	conveniently	

suggests	that	one	place	were	those	hierarchies	may	interact	is	in	HVC37.		

	 	

Can	associative	learning	mechanisms	account	for	all	features	of	motor	skill	flexibility?	

	 In	 this	 dissertation,	 flexibility	 in	 birdsong	 depends	 on	 associative	 learning	

mechanisms;	 e.g.,	 context-specificity	 of	 modifications	 depends	 on	 the	 AFP	 learning	 the	

association	 between	 context	 and	 adaptive	 pitch	 bias.	 Associations	 require	 experience	 to	

learn.	 However,	 some	 aspects	 of	 flexibility	 require	 adapting	 to	 contexts	 that	 have	 never	

before	been	visited.	These	abilities	may	involve	higher-level	cognitive	processes,	including	

prospective	 decision-making	 [e.g.,	 in	 infants	 learning	 new	 skills	 (Adolph	 and	 Eppler,	

2002)].	 While	 fundamentally	 different	 mechanisms	 may	 enable	 this	 sort	 of	 adaptive	

																																																								
37	One	simple	reason	interaction	is	important	is	that	the	influence	of	the	hierarchies	must	

be	temporally	coordinated.		
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behavior,	 it	 is	 possible	 that	 these	 mechanisms	 may	 similarly	 involve	 habitual	 behavior	

being	modified	by	more	rapidly	adapting,	context-dependent	signals.		

	

4.3.	The	basal	ganglia	in	context-dependent	modification	of	motor	skills.	

A	conserved	role	for	basal	ganglia	in	context-dependent	modification	of	motor	skills?	

	 The	 AFP	 plays	 a	 crucial	 role	 in	 the	 context-dependent	 modification	 of	 syllable	

execution,	but	plays	little	role	in	the	sequencing	of	adult	song	(Bottjer	et	al.,	1984;	Hampton	

et	 al.,	 2009;	 Scharff	 and	Nottebohm,	 1991).	 In	 seeming	 contrast,	 it	 is	 thought	 that	 basal	

ganglia	 in	 mammals	 are	 especially	 important	 for	 selecting	 and	 sequencing	 actions	 to	

maximize	expected	reward	resulting	from	those	actions	[e.g.,	(Aldridge	and	Berridge,	1998;	

Canavan	et	al.,	1989;	Doya,	2000;	Graybiel,	1995;	Hikosaka	et	al.,	1999;	Kim	and	Hikosaka,	

2013;	Mannella	and	Baldassarre,	2015;	Wise	and	Murray,	2000)].	This	function	is	though	to	

depend	 on	 an	 implementation	 of	 reinforcement	 learning	 algorithms	 in	 cortical-basal	

ganglia	circuitry	(Doya,	2000;	Schultz	et	al.,	1997;	Sutton	and	Barto,	1998)	so	that	the	basal	

ganglia	learn	the	association	between	context,	actions,	and	reward.	However,	basal	ganglia	

circuits	 have	 well-conserved	 roles	 in	 motor	 learning	 and	 production	 across	 vertebrates	

(Grillner	et	al.,	2013);	mammalian	basal	ganglia	and	 the	AFP	have	striking	homologies	of	

cell	type,	physiology,	gene	expression,	and	anatomy	(Doupe	et	al.,	2005).	In	the	Discussion	

in	Chapter	2	I	briefly	summarized	evidence	that	in	both	mammals	and	birds	a	function	of	

these	 circuits	 is	 to	 integrate	 contextual	 cues	 to	 enable	 adaptive,	 context-dependent	

learning	and	execution	of	motor	skills.	Below	I	flesh	out	this	idea.	

	 Partly	because	context-dependent	motor	skill	adaptation	has	largely	been	studied	in	

humans,	there	is	little	direct	evidence,	as	far	I	know,	for	its	underlying	neural	mechanisms.	
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There	is	evidence	that	motor	adaptation	depends	on	cerebellum	(Shmuelof	and	Krakauer,	

2011),	with	one	study	implicating	a	specific	subregion	of	cerebellum	in	context-dependent	

adaptation	 of	 arm	 movements	 (Lewis,	 2003)38.	 It	 is	 less	 clear	 whether	 basal	 ganglia	 in	

mammals	 play	 a	 prominent	 role	 in	 motor	 skill	 adaptation,	 let	 alone	 context-specific	

adaptation.		

	 There	are	a	 few	lines	of	evidence	consistent	with	the	basal	ganglia	contributing	to	

the	adaptation	of	motor	skills.	Some	of	the	earliest	experimental	lesions	of	basal	ganglia	in	

primates	revealed	severe	disruption	in	the	execution	of	movements,	but	often	had	little	to	

no	effect	on	the	ability	to	select	actions	or	sequence	actions	appropriately	[see	reviews	in	

(Dudman	 and	 Krakauer,	 2016;	 Turner	 and	 Desmurget,	 2010)].	 Impairment	 of	 skilled	

movements	has	been	shown	 in	recent	studies	of	 rodents	as	well	 (Dudman	and	Krakauer,	

2016;	 Paton	 and	 Lau,	 2015;	 Rueda-Orozco	 and	 Robbe,	 2015).	 Moreover,	 both	 fMRI	 and	

intra-cranial	 recordings	 in	 humans	 have	 revealed	 signals	 in	 basal	 ganglia	 that	 correlate	

with	 learning-related	 variables	 during	 motor	 skill	 adaptation	 [e.g.,	 (Doyon	 et	 al.,	 2009;	

Shadmehr	 and	 Holcomb,	 1997;	 Tan	 et	 al.,	 2014)].	 Also,	 behavioral	 experiments	 indicate	

that	 reward-based	 learning,	 often	 thought	 to	 depend	 strongly	 on	 basal	 ganglia,	 plays	 a	

crucial	 role	 in	 motor	 skill	 adaptation	 (Huang	 et	 al.,	 2011;	 Izawa	 and	 Shadmehr,	 2011;	

Morehead	 et	 al.,	 2015;	 Shmuelof	 et	 al.,	 2012;	 Taylor	 and	 Ivry,	 2014)39.	 Finally,	 there	 is	

evidence	that	patients	with	Huntington's	and	Parkinson’s	disease,	which	both	disrupt	basal	

																																																								
38	Although	I	have	not	been	able	to	find	any	follow-up	study	since	then.	

39	Perhaps	telling	are	the	findings	that	reinforcement-learning	processes	seem	to	be	

especially	important	for	long-term	savings	(see	references	in	text),	while	Parkinson’s	

disease	similarly	seems	to	especially	affect	savings	(see	text).	
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ganglia	 function,	 can	 have	 impairments	 in	 the	 control	 and	 adaptation	 of	 movements	

(Bédard	and	Sanes,	2011;	Maurice	et	al.,	2000)40.		

	 A	 behavior	 for	 which	 there	 is	 relatively	 strong	 neurophysiological	 evidence	 for	 a	

role	 for	 basal	 ganglia	 is	 the	 context-dependent	 modification	 of	 saccade	 kinematics	

(Hikosaka	 et	 al.,	 2006).	 In	 these	 tasks	monkeys	must	make	 saccades	 to	 visual	 targets	 to	

obtain	 reward.	 Learning	 is	 reflected	 in	 the	 fact	 that	movement	kinematics	 (e.g.,	 velocity)	

are	 influenced	 by	 the	 association	 between	 contextual	 cues	 and	 expected	 reward	 (more	

expected	 reward	 leads	 to	 faster	 saccades).	 Detailed	manipulation,	 neural	 recording,	 and	

anatomical	 studies	 provide	 relatively	 strong	 evidence	 in	 support	 of	 a	 model	 in	 which	

striatal	plasticity,	gated	by	dopaminergic	reward	signals,	encodes	the	association	between	

context	 and	 appropriate	 saccade	 execution	 (through	 motor	 circuits	 in	 the	 superior	

colliculus)41.	Moreover,	behavioral	studies	have	demonstrated	that	saccade	execution	can	

be	modified	based	on	a	large	variety	of	contextual	cues	(Azadi	and	Harwood,	2014;	Herman	

et	al.,	2009)42.	

																																																								
40	Evidence	suggests	that	Hungtinton’s	affects	online	feedback-dependent	control	while	

Parkinson’s	affects	long-term	saving	of	learned	adaptation.		

41	Studies	of	human	patients	provide	strong	evidence	for	involvement	of	cerebellum	in	

saccade	adaptation,	but	also	evidence	for	cortical-basal	ganglia	circuits	(MacAskill	et	al.,	

2002)	

42	However	I	am	not	aware	of	any	direct	evidence	for	the	neural	mechanisms	of	these	

behaviors	(context-dependent	adaptation	of	saccade	gain),	including	the	possibility	that	

they	utilize	the	same	mechanisms	as	the	control	of	vigor	of	memory-guided	saccades	in	the	

studies	by	Hikosaka	et	al.	
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	 Crucially,	it	is	plausible	that	these	neural	mechanisms	may	contribute	to	movements	

beyond	 saccades.	 The	 basal	 ganglia	 interface	 a	 large	 swath	 of	 inputs	 from	 cortex	 and	

thalamus43	with	outputs	to	a	large	swath	of	motor	circuits44	(Alexander	et	al.,	1986;	Houk	

and	Wise,	1995).	However,	direct	evidence	 is	 lacking	regarding	the	extent	 to	which	basal	

ganglia	contribute	to	the	diverse	ways	in	which	context	can	influence	motor	skill	execution.	

	 	

Do	basal	ganglia	contribute	to	both	context-dependent	action	selection	and	execution?	

	 It	 is	possible	 that	basal	 ganglia	 contribute	 to	both	action	 selection	and	movement	

kinematics	 using	 similar	mechanisms.	 In	 a	 hierarchically	 organization	 in	which	 different	

circuits	encode	behaviors	at	different	time	scales	-	ranging	from	10s	of	milliseconds	for	fast	

muscle	 synergies,	 to	 seconds	 for	 sequences	 of	 actions,	 to	 potentially	 longer	 for	 planned	

sequences	 of	 goals	 -	 biasing	 of	 this	 system	 at	 different	 levels	 may	 selectively	 influence	

																																																								
43	Indeed	recordings	have	revealed	that	activity	of	neurons	in	striatum	can	correlate	with	a	

wide	variety	of	contextual	cues,	including	those	reflecting	visual	and	auditory	stimuli,	

cognitive	states	like	task	set,	and	motor	context	sequential	context:	(Aldridge	and	Berridge,	

1998;	Dudman	and	Krakauer,	2016;	Hikosaka	et	al.,	2006;	Kimura,	1990;	Lidsky	et	al.,	

1985;	Mushiake	and	Strick,	1995;	Nakahara	et	al.,	2004;	Nieuwenhuis	et	al.,	2005;	

Samejima	et	al.,	2005;	Turner	and	Anderson,	2005;	Turner	and	Desmurget,	2010).	Signals	

encoding	motor	contextual	cues	(e.g.,	sequential	context)	have	often	been	interpreted	as	

reflecting	a	role	in	selecting	actions	to	form	a	sequence	[e.g.	(Aldridge	and	Berridge,	

1998)];	it	is	possible,	as	suggested	in	my	results,	that	in	some	cases	these	signals	are	

actually	(or	also)	crucial	for	allowing	basal	ganglia	to	monitor	position	in	sequence	so	that	

it	may	learn	sequential-context	specific	modifications	to	movements.		

44	Activity	in	striatal	circuits	can	correlate	with	a	large	variety	of	movements.	This	activity	

often	peaks	during	the	movement,	consistent	with	a	role	in	modifying	its	execution.	
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behavior	 at	 different	 levels	 (e.g.,	 action	 selection	 vs.	 execution).	 Basal	 ganglia	 output	 is	

incredibly	 diverse	 and	 therefore	 the	 same	 learning	 principles	 may	 allow	 different	 basal	

ganglia	 outputs	 to	 bias	motor	 structures	 at	 different	 organizational	 levels,	 and	 therefore	

contribute	 to	 both	 context-dependent	 action	 selection	 and	 execution.	 Indeed,	 behavioral	

evidence	 already	 suggests	 action	 selection	 and	 execution	 are	 not	 really	 driven	 by	

dissociable	neural	processes	(Cisek,	2012)45.	

	 The	contribution	of	basal	ganglia	to	these	different	 levels	may	differ	depending	on	

the	stage	of	 learning.	This	 is	evident	 in	birdsong,	where	basal	ganglia	control	both	action	

selection	(i.e.	sequencing)	and	structure	early	on	in	song	development	(Aronov	et	al.,	2008;	

Bottjer	 et	 al.,	 1984;	Olveczky	 et	 al.,	 2005;	 Scharff	 and	Nottebohm,	 1991),	 but	 later	 on	 in	

adults	only	influence	acoustic	structure	(Kao	et	al.,	2005).	In	the	case	of	birdsong,	it	could	

be	that	once	sequence	is	“hard-wired”	in	the	motor	pathway,	it	becomes	less	labile	and	thus	

not	affected	by	LMAN	activity.	 Similarly,	 there	 is	 some	evidence	 that	 in	mammals	 frontal	

cortical-BG	circuits	contribute	to	sequencing	early	on	in	learning,	but	become	dispensable	

for	 sequencing	 once	 the	 behavior	 is	 well-learned	 (Hikosaka	 et	 al.,	 1999;	 Miyachi	 et	 al.,	

1997);	separate	studies	 indicate	that	at	this	 late	timepoint	these	circuits	may	still	control	

kinematics	 (Turner	 and	Desmurget,	 2010).	One	 reconciliatory	 possibility	 is	 that	 cortical-

basal	 ganglia	 circuits	 play	 similar	 roles	 in	 birdsong	 and	 mammalian	 arm	 movement	

sequences	(i.e.,	being	 involved	 in	both	sequencing	and	gesture	kinematics);	discrepancies	

in	 experimental	 findings	 may	 simply	 reflect	 differences	 in	 learning	 stage	 and/or	 other	

aspects	of	the	tasks.	

																																																								
45	For	example,	action	selection	seems	to	involve	evaluation	of	the	kinematics	of	potentially	

chosen	actions.	
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4.4.	Distributed	circuits	for	motor	skills.	

	 In	 addition	 to	 key	 roles	 for	 cerebellum	 and	 possible	 roles	 for	 basal	 ganglia	 in	

adaptive	motor	skills,	there	is	separate	evidence	for	involvement	of	multiple	other	regions,	

including	sensorimotor	cortex	in	mice	(Mathis	et	al.,	2017),	and	frontal,	motor,	and	parietal	

cortices	in	humans	[e.g.,	(Doyon	et	al.,	2009;	Makino	et	al.,	2016;	Shadmehr	and	Holcomb,	

1997;	 Shmuelof	 and	 Krakauer,	 2011;	 Tanaka	 et	 al.,	 2009)].	 The	 involvement	 of	multiple	

regions	in	motor	skill	adaptation	may	simply	be	a	result	of	the	incremental	nature	by	which	

evolutionary	 changes	 to	 the	 brain	 build	 up	 over	 time.	 Alternatively,	 it	 may	 suggest	

computationally	unique	and	interacting	roles	for	different	brain	regions	(Doya,	2000;	Houk	

and	Wise,	1995;	 Shmuelof	 and	Krakauer,	2011).	 Future	work	may	 seek	 to	 elucidate	how	

these	regions	interact	to	enable	behavior,	including	the	possibility	for	a	mapping	between	

computation	and	anatomical	modularity.	

	

4.5.	Some	thoughts	on	adaptive	behavior,	beyond	motor	skill	execution,	inspired	by	

neural	mechanisms	of	birdsong	pitch	modifications.	

Early	learning	and	instruction	driven	by	basal	ganglia	circuits	

	 A	transfer	of	learning	may	occur	in	which	the	AFP	provides	instructive	signals	that	

act	 to	 drive	 learning-related	 plasticity	 in	 the	motor	 pathway	 (see	 above).	 There	 is	 some	

evidence	for	a	similar	“tutoring”	role	for	basal	ganglia	in	mammalian	systems.	First,	maybe	

the	 strongest	 evidence	 comes	 from	 findings	 that	 BG	 circuits	 seem	 to	 be	 especially	

important	during	early	stages	of	learning,	but	are	less	important,	or	even	dispensable,	for	

performance	 later	 on.	 This	 is	 from	 a	 variety	 of	 inactivation	 and	 neural	 recording	
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experiment	 (Doyon	 et	 al.,	 2009;	 Dudman	 and	 Krakauer,	 2016;	 Miyachi	 et	 al.,	 1997;	

Pasupathy	and	Miller,	2005;	Sawada	and	Nishimura,	2015;	Turner	and	Desmurget,	2010;	

Yin	et	al.,	2009).	Moreover,	there	is	some	inactivation-based	evidence	for	a	serial	process	

by	 which	 learning	 in	 some	 parts	 of	 cortex	 requiring	 modifications	 to	 first	 occur	 in	 BG	

(Atallah	et	al.,	2007).	

	 These	findings	have	led	to	conceptual	and	computational	models	in	which	the	basal	

ganglia	 first	 learns	 from	reward,	and	 then	biases	activity	 in	order	 to	 “tutor”	downstream	

circuits.	 This	 tutoring	 may	 occur	 through	 a,	 potentially	 slower,	 Hebbian	 mechanism	 in	

cortex	that	effectively	extracts	regularities	in	the	correlation	structure	of	stimuli,	rewards,	

and	other	variables.	(Ashby	et	al.,	2007;	Atallah	et	al.,	2004;	Doya,	2000;	Hélie	et	al.,	2015;	

Houk	and	Wise,	1995;	Makino	et	al.,	2016,	2016).	However,	although	there	is	evidence	for	

interaction	 in	neural	 signals	between	cortex	and	striatum	during	 learning	 (Koralek	et	al.,	

2013;	 Sawada	 and	 Nishimura,	 2015),	 I	 am	 not	 aware	 of	 much	 direct	 evidence	 for	 how	

neural	signals	may	drive	such	tutoring.		

	 It	 is	 important	to	note	that	there	 is	also	evidence	arguing	against	a	direct	 tutoring	

role	by	frontal-basal	ganglia	circuits.	Lacking	direct	evidence	for	neural	signals	that	could	

implement	such	tutoring,	 there	are	other	plausible	explanations	 for	why	 inactivation	of	a	

brain	region	may	have	a	stronger	behavioral	effect	early	 in	 learning46.	Moreover,	 in	some	

cases	 learning	does	seem	to	occur	 in	parallel	 in	multiple	brain	regions,	but	with	different	

learning	rates	[e.g.,	(Yin	et	al.,	2004)].	And	for	some	skills	early	learning	may	depend	on	a	

tutoring	 role	 for	motor	 cortex	 (Kawai	 et	 al.,	 2015).	 It	 seems	 like	 a	 simple	 serial	 learning	

																																																								
46	For	example,	an	early	stage	contribution	may	be	to	enable	a	state	of	heightened	

motivation,	as	argued	in	(Sawada	and	Nishimura,	2015).	
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model	 may	 not	 provide	 a	 general	 explanation	 for	 learning	 (not	 least	 because	 of	 the	

extensive	bidirectional	 interaction	 that	 occurs	 between	 cortex	 and	basal	 ganglia).	 Future	

experiments	may	 indicate	whether	 the	 instructive	 signals	 that	we	 argue	 for	 in	 birdsong	

reflect	 a	 general	 mechanism	 by	 which	 cortical-basal	 ganglia	 circuits	 tutor	 other	 motor	

circuits47.	

	

Are	the	circuits	that	contribute	to	early	learning	also	the	circuits	that	enable	context-

dependent	behavior?	

	 The	AFP	is	crucial	for	early	learning	and	also	for	context-specificity	of	learning.	How	

general	 is	 this	 relationship	 across	 different	 behaviors	 and	 brain	 circuits?	 A	 similar	

relationship	 has	 been	 suggested	 for	 cerebellum48	[(Broussard	 and	 Kassardjian,	 2004;	

Medina	 et	 al.,	 2000,	 2002);	 although	 this	 simple	model	 does	 not	 seem	 to	 account	 for	 all	

behavioral	findings	(Boyden	et	al.,	2004)],	hippocampus49	[e.g.,	(Atallah	et	al.,	2004)],	and	

frontal-basal	ganglia	circuits50	in	flexible,	rule-based	behavior	(Hilario	et	al.,	2012;	Kim	and	

																																																								
47	One	advantage	of	birdsong	in	detecting	these	sorts	of	instructive	signals	is	the	relatively	

precise	behavioral	correlate	of	learning	(pitch),	and	the	relatively	simple	anatomy	(specific	

projections	from	LMAN	to	RA),	which	facilitate	in	isolating	neural	signals	that	relate	to	

behavioral	features	of	learning.		

48	e.g.,	in	adapting	sensorimotor	associations;	context	can	refer	to	many	things	that	may	be	

encoded	in	parallel	fiber	input	to	Purkinje	cells,	including	for	instance	the	precise	timing	of	

sensory	cues.	

49	e.g.,	in	rapidly	learning	and	adapting	rapidly	to	new	environmental	contexts.	

50	e.g.,	in	flexible,	goal-directed	behavior,	such	as	adapting	to	changes	in	task	set	(e.g.	the	set	

of	behavioral	rules	for	a	given	environment	or	block	of	time).		
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Hikosaka,	 2013;	 Miyachi	 et	 al.,	 1997)51.	 It	 has	 been	 suggested	 that	 the	 presence	 of	 two	

separate	learning	 systems,	 one	 fast	 and	 context-dependent,	 the	 other	 slow	 and	 prone	 to	

extraction	 of	 generalities,	 allows	 a	 system	 to	 balance	 the	 need	 to	 continuously	 monitor	

rapidly	 changing	 features	 of	 a	 situation,	 while	 maintaining	 and	 gradually	 updating	 a	

repertoire	of	generally	useful	automatic	responses	[e.g.,	(Atallah	et	al.,	2004;	Doyon	et	al.,	

2009;	Shine	and	Shine,	2014)].	Delegating	automatic	responses	to	more	stable	circuits	may	

free	up	more	“executive”	circuits	for	the	adaptive	context-dependent	biasing	of	behavior.	

	

	

	

	 	

																																																								
51	With	varying	degree	of	evidence;	my	impression	is	that	in	none	of	these	cases	is	there	

incontrovertible	evidence	for	these	conclusions.	
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