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ABSTRACT OF THE THESIS

Predicting Antibiotic Effectiveness

Across the Range of Bacterial Diversity

by

Shaili Mathur

Master of Science in Bioinformatics

University of California, Los Angeles, 2021

Professor Van M. Savage, Chair

How antibiotic efficacy varies with bacterial species is of basic and applied importance,

including understanding of microbial dynamics in clinical and ecological contexts. Cellular

components that antibiotics target — DNA, proteins, mRNA, tRNA, cellular envelope, and

ribosomes — all scale non-linearly with cell volume. We develop theory that shows how

antibiotic efficacy may depend on cell size based on the specific cellular components targeted

by the antibiotics and the nonlinearities between those components and cell size. We measure

cell size and minimum inhibitory concentrations in 11 bacterial species and 24 antibiotics. We

present a detailed model for ribosome-targeting antibiotics through which we can generate

dose-response curves and make predictions for minimum inhibitory concentrations based on

cell size. We find that energetic and volumetric limitations on cell growth create trade-
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offs, leading to the surprising prediction that mid-sized cells are the least susceptible to

antibiotics. This finding is matched by our theoretical predictions.
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1 Introduction

Antibiotic resistance is anticipated to be one of the most serious challenges for human health

worldwide by 2050 [1, 2]. However, we lack a systematic understanding of which bacterial

species can be expected to be susceptible to particular antibiotics. Quantitative models

of antibiotic dynamics within bacterial cells are needed for such general conclusions and

predictions but do not yet exist. A starting point for such models could be to construct them

around general cell features such as cell size and known antibiotic mechanisms-of-actions that

disrupt essential processes including translation in ribosomes, growth and repair of the cell

wall, the function of specific proteins, and genomic repair and replication.

Because bacterial cell size constrains physiological rates and function across species, it

can serve as an early measurable property that is a generic indicator of cellular dynamics

and potential responses to antibiotics. For instance, molecular transport rates change sys-

tematically with size across the cellular envelope (due to surface-area effects), and metabolic

and growth rates, protein composition, and the number of required ribosomes all increase–

often nonlinearly–with cell volume. These shifts with cell size can often be predicted from

fundamental physical constraints such as the total energy available to a cell or the inherent

polymerization rate of the ribosome. Previous work has shown that cell size and composition

drives energy budgets and metabolic rates across bacterial species [3]. Additionally, Kempes

et al [4] have shown that nearly all of cellular composition–including the percentage volume

of genetic material, tRNA, mRNA, ribosomes, proteins, and the cellular envelope–shifts

systematically with cell size across bacterial diversity. Because antibiotics target these com-

ponents it is possible that cell size has an effect on antibiotic susceptibility. This perspective

informs both detailed models of cellular physiology and broad-scale predictions across the

range of life.

Indeed, there is empirical evidence that cell size is correlated with antibiotic susceptibility

in sub-populations of bacterial strains in a variety of species. Vijay et al [5] and Aldrige et

1



al [6] found that Mycobacteria have sub-populations that differ in growth rate and cell size,

and that they have different levels of antibiotic susceptibility. Vijay et al found that smaller

cells are more susceptible to antibiotics including rifampicin and isoniazid, and results from

Aldrige et al suggest that differences in antibiotic susceptibility driven by cell size depend

on antibiotic mechanism of action. Additionally, Song and Ren found a correlation between

smaller cell volume and antibiotic susceptibility in Escherichia coli and Pseudomonas aerug-

inosa biofilms based on the stiffness of the substrate. It has also been observed that exposure

of Escherichia coli biofilms to ampicillin and ciprofloxacin increases the mean and variance

in cell size distributions (Gomes et al [7]), suggesting that increasing cell size could be a phe-

notypically plastic response to antibiotic stress, or that cells within colonies are differentially

susceptible to antibiotics based on cell size.

In order to build a quantitative model of antibiotic susceptibility across bacterial species,

we need to connect the molecular dynamics of antibiotics and target components, cell size-

driven shifts in cell morphology, and the effects of cellular composition on metabolic and

growth rates. Kempes et al showed that cell size predicts cellular composition, and there

is also a body of work linking cellular composition to growth rates in bacterial species [8].

Both of these perspectives can be combined with a knowledge of antibiotic mechanisms to

make quantitative models linking cell size with inhibition of bacterial growth under antibiotic

stress.

Cellular composition, which has been shown to be size dependent, has also been connected

to growth rates in different environmental conditions [9–11]. Monod suggested the simple

principle that all components of the cell double at the same rate by the time of cell division

[12] and Schaechter, Maaløe and Kjeldgaard showed the macromolecular composition of

Salmonella (mass of RNA, DNA, protein and cell mass itself) is a function of the doubling

rate alone across various nutrient media [13]. Greulich et al used these principles to model

the dynamics of growth inhibition by ribosome-targeting antibiotics by incorporating the
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molecular dynamics of diffusion and binding and phenomenological relationships between

ribosomal content and growth rate [14], but did not consider the effects of cell size on

growth inhibition.

To our knowledge there have been no studies of bacterial species that vary in cell size

across several orders of magnitude, or detailed mechanistic models that integrate systematic

changes across cell sizes with the dynamics of antibiotics within cells. To make cross-species

predictions of antibiotic susceptibility, we build theoretical models that combine an antibi-

otic’s mechanism-of-action with systematic size dependent changes in cellular composition

and metabolic rate. We do this by deriving a general model that incorporates diffusion across

the cell membrane, molecular dynamics, the cell’s energy budget, and volumetric constraints.

As a special case of the general model, we construct a detailed model for ribosome-targeting

antibiotic. This allows us to calculate and predict dose-response curves with biologically

meaningful parameters that match our empirical data, and to make across-species predic-

tions of antibiotic susceptibility.

To test the effects of cell size empirically, we made detailed measurements of dose-response

curves in 11 bacterial species of varying cell sizes exposed to 24 antibiotics that span five

different mechanisms-of-action: inhibition of protein synthesis, cell wall repair and growth,

DNA gyrase, RNA synthesis, folic acid synthesis. A common measure of antibiotic suscep-

tibility is the minimum inhibitory concentration (MIC), the concentration at which 95% of

growth is inhibited after 24 hours. We compare experimentally measured MICs of bacterial

species of various cell sizes across several antibiotics.

Our theoretical and empirical work suggests that cells have to growth within multiple

constraints, including limitations on energetic resources and cell volume. The degree to

which cells are limited by these different constraints can shift in opposite directions with

cell size, resulting in non-monotonic trends in antibiotic susceptibility across cell size that

with “energy-limited” and “volume-limited” regimes in cell size. Indeed, we find in our
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theoretical work that there are trade-offs between the two constraints, leading to lower

antibiotic susceptibility in mid-sized cells. Furthermore, this surprising theoretical prediction

is matched by our experimental work.

2 Theoretical Framework

We now develop a general framework for how to model antibiotic dynamics and how antibiotic

susceptibility depends on cell size (schematic in Figure 1). We account for antibiotic diffusion,

changes in metabolic rates, energy budget, and volumetric constraints on cellular response

to make predictions for responses to antibiotic stress, and generate dose response curves. We

use minimum inhibitory concentration (MIC), which is defined as the concentration at which

95% of growth is inhibited at 24 hours as a measure of antibiotic susceptibility. Because this is

the value that we measure experimentally, we are able to compare our theoretical predictions

directly to experimental results. We then connect our model of antibiotic stress response to

cell size dependencies including the surface area effects, shifts in cellular compositions and

the energetic costs of growth to make predictions about shifts in MIC across bacterial species

of different cell sizes [3, 4, 15, 16].

Our framework consists of a dynamical systems model of the antibiotic, target component,

other cellular component(s) that depend directly on the target component, and a model of

the cell’s energy budget. We (i) find the steady-state internal antibiotic concentration that

is driven by both the surface area of the cell membrane and the molecular dynamics of the

antibiotic and the target component, which both depends on cell size, (ii) find the optimal

scheme for mitigating downstream effects of the antibiotic inhibiting the target component

under model constraints and assumptions (by up-regulation or down-regulation of the target

component and resource redistribution) (iii) find the energetic costs associated with the

cellular response to antibiotics, and (iv) find the minimum time of division under antibiotic
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stress which allows the cell to double all of its components, and (v) produce the dose response

curve using a logistic growth model. This gives us the MIC based on energetic principles. We

also consider the increase in dry mass of a cell due to the build up of non-functional antibiotic-

target complexes, and find the “volume-limiting” concentration at which the required dry

volume fraction exceeds the total cell volume. The predicted MIC is the minimum of the

“energy-liming” and “volume-limiting” antibiotic concentration in the model. The general

model that is outlined here is expanded on in the following section, where we derive a detailed

model for ribosome-targeting antibiotics.
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Figure 1: Schematic of the theoretical framework Model of a single cell responding to

antibiotic stress incorporates diffusion of the antibiotic across the cell membrane, molecular

dynamics of the antibiotic and its target, reallocation of resources in the cell, and the energy

budget of the cell to produce a dose response curve. Cell size affects the density of the target

(ribosomes), flux into the cell, and the cell’s energy budget and therefore growth rate. The

bacterial cell is modeled as a well-mixed cell that responds optimally to antibiotic stress

within these model constrains and assumptions.
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2.1 Modeling of Dose Response Curves for Ribosome-Targeting

Antibiotics in in Single Cells

We present a model of ribosome targeting antibiotics as a special case of the general frame-

work described above. This model illustrates how the general framework can be used to

model antibiotic stress response and make cross-species predictions about antibiotic suscep-

tibility.

2.1.1 Model of Ribosome and Protein Dynamics

We modify the dynamical systems model of the ribosomal and protein pool in Kempes et

al [4] to include degradation due to antibiotics. The model in Kempes et al is a system of

coupled differential equations:

dNr

dt
= γ

rr
lr
Nr − ηNr

dNp

dt
= (1− γ)

rr
lp
Nr − φNp

Here Nr is the number of ribosomes and Np is the number of the protein pool. The equa-

tions have production terms that represent the role of ribosomes in synthesizing ribosomes

and proteins. The production of the ribosomes and proteins is governed by the fraction of

mRNA transcripts that are for ribosomal proteins (γ), the rate of translation (rr) (in base

pairs per second), and the average length of ribosomal and protein transcripts, lr and lp

respectively. Degradation of ribosomes and proteins is represented by η and φ, the intrin-

sic degradation rates associated with ribosomes and proteins. Together the production and

degradation terms give the growth rates of the ribosome and protein pools. When model-

ing ribosome targeting antibiotics we include degradation rates adding another degradation

term, kAR, where k is a kinetic rate constant and A is the antibiotic concentration. The
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modified degradation rate is then η(A) = η + kA, and

dNr

dt
= γ

rr
lr
Nr − (η + kA)Nr = γ

rr
lr
Nr − η(A)Nr (1)

dNp

dt
= (1− γ)

rr
lp
Nr − φNp (2)

By solving this system analytically and stipulating that ribosomes and proteins must be

doubled by the time of division, as done in Kempes et al and as suggested by Monod [4,

12], we find the minimum γ(td, A) and initial number of ribosomes Nr,0(td, A) for a fixed

antibiotic concentration A, initial number of proteins, Np,0, and time of division td:

γ(td, A) ≥ lr
rr

( ln 2

t′d
+ η(A)

)
(3)

Nr,0(td, A) ≥ lp(lr(φ− η(A)) + γrr)(2− e−tdφ)

lr(γ − 1)rr
(
e−tdφ − etd(

γrr
lr
−η(A)))Np,0 (4)

Ribosomal allocation has been shown to vary under different environmental conditions

and has been linked to growth rates and cell size Escherichia coli [17, 18]. We model the

optimal cellular response to antibiotics under the assumption that γ, which represents the

allocation of ribosomal resources, is changed in response to the environment. This framework

allows us to understand the minimum requirements for cell division, which we use in the

following section to model the optimal cellular response in terms of the cell’s energy budget

and resource allocation.

2.1.2 Energy Budget, Growth Rates, and Antibiotic Stress Response

Cells must split their resources between growth and maintenance. As the antibiotic concen-

tration increases the energy that the cell allocates to maintenance does also. We use the
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calculations of the optimal γ and Nr,0 detailed in the previous section to calculate the change

in maintenance cost, and tie this to changes in the doubling time of the cell. Kempes et al

[15] model the growth rate of the cell using an energy budget which splits cellular resources

into maintenance and growth;

dV

dt
=
B0

Ev
V α − Bv

Ev
V (5)

whereB0 is the parameter for size-normalized metabolism, α describes how quickly metabolism

changes with total cell volume (approximated to be 1.43 in prokaryotes), Bv(W m−3) is the

metabolic expenditure to support an existing unit of cell volume, Ev(Jm−3) is the metabolic

energy needed to synthesize a new unit of biomass; V (m3) is cell volume, dV
dt

is the growth

rate. The time of division obtained by solving Eq. 5 is

td =
1− b

a
V 1−α
0

b(1− α)
[
1− b

a
(εV0)1−α

] (6)

To model changes in growth rate under antibiotic stress, we can recalculate the per volume

per second metabolic expenditure, Bv, by incorporating the changes in energy expenditure

due to changes in the proportion of ribosomal transcripts γ(t, A) and the initial number of

ribosomes Nr,0(t, A) based on Equations 3 and 4. To do this we first calculate lifetime energy

expenditure without antibiotics from Bv, and the energy required to produce proteins and

ribosomes over the lifetime of the cell with and without antibiotic stress.

Ctot(t, 0) = BvtV (7)

Cr(t, A) = βr

(∫ t

0

γ(A)
rr
lr
Rdt−Nr,0(t, A)

)
(8)

Cp(t, A) = βp

(∫ t

0

(1− γ(A))
rr
lp
Rdt−Np,0

)
(9)
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where Ctot(t, 0) is the lifetime energy spent by the cell, and βr and βp are the energetic

costs of producing a single ribosome and single protein. We calculate the lifetime energy

spent on maintenance under antibiotic stress, Ctot(t, A), by adding the energetic cost of

ribosomes and proteins under antibiotic stress and subtracting the cost without antibiotics

from Ctot(t, 0). The modified value of the per second per volume metabolic expenditure,

Bv(t, A) is then obtained by dividing by time of division and mean volume.

Ctot(t, A) = Ctot(t, 0) + Cr(t, A) + Cp(t, A)− Cr(t, 0)− Cp(t, 0) (10)

Bv(t, A) =
Ctot(t, A)

tV
(11)

It should be noted that this calculation of Bv(t, A) is based on the cell optimizing its

processes for a given time of division t, but this new value of Bv is then used in Eq. 5 to

calculate a time of division.

2.1.3 Calculation of Optimal Time of Division

The modeling framework shown in Equations 3 - 11 represents a bacterial cell optimizing its

metabolic processes, in particular its allocation of ribosomal resources, to a predetermined

antibiotic concentration and time of division. This “macro-molecular” time of division (tmol)

is arbitrarily chosen. The models result in an “energetic” time of division (tenergetic) by

substituting the metabolic expenditure Bv(tmol, A) into Eq. 5. The energetically optimal

tmol for the cell to respond to is tmol such that tmol = tenergetic. This is because tmol is the time

at which the ribosome and protein pool are doubled, and tenergetic is the time at which the cell

actually divides. If tenergetic < tmol, then the cell will have divided before the ribosome and

protein pools have been doubled, and if tenergetic > tmol then the ribosome and protein pools

will be more than double their original sizes, which is sub-optimal because this requires the
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cell to spend more energy on ribosome and protein production than required. In both cases,

the macro-molecular composition of the cell will drift across generations, which homeostasis,

which we assume to be required even under antibiotic stress. Calculating the optimal or “self-

consistent” time of division is not possible analytically, so we calculate it numerically using

the bisection method (Figure 5, Section 4.1.1) . This allows us to calculate the minimum

time of division under model assumptions at any antibiotic concentration, which can then

be used in the generation of dose-response curves.

2.1.4 Antibiotic Diffusion Across Cell Membrane

While theory presented thus far has been framed in terms of the antibiotic concentration

inside the cell, our over-arching goal is to compare our theoretical results with our experimen-

tal results. We control the antibiotic concentration external to the cell in our experimental

work, and therefore model the movement of the antibiotic across the cellular envelope. We

can match the internal dynamics of the antibiotic effects with the outside concentration of

the antibiotic by considering the diffusive flux of antibiotics to the cell. This can be easily

approximated by considering an internally well-mixed spherical cell with an internal steady-

state concentration of antibiotic, where we then match the steady-state flux to the cell with

the internal consumption. The steady-state diffusive flux can be found by considering the

diffusion equation under spherical symmetry:

1

r2
∂

∂r

(
r2
∂A

∂r

)
= 0. (12)

To separate the internal reaction dynamics from the flux dynamics we impose a boundary

condition at the surface of the cell that is equivalent to the well-mixed internal concentration:

A = Ac for r = rc. The other boundary condition is that far from the cell the antibiotic is

held to the known fluid concentration: A = Af for r = ∞. Taken together this gives the
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concentration field of the antibiotic outside of the cell as

A = Af −
(Af − Ac) rc

r
, (13)

from which the total flux at the surface is given by

F = 4πr2cD
∂A

∂r
= 4πDrc (Af − Ac) . (14)

Now we can solve for the total internal reaction separately and find the Ac that matches

external flux to internal consumption.

In the case of an antibiotic that targets ribosomes, the internal consumption is approx-

imated by kAcNr, where Nr, the number of ribosomes averaged over the cell’s lifetime, is

dependent on Ac. Therefore the effective internal concentration is related to the external

concentration by Af =
(kNrr2c

4πD
+ 1
)
Ac, where Nr is determined by the internal antibiotic

concentration.

2.1.5 Generation of Dose Response Curve

We now use the previous theoretical work on how the time of division and external antibiotic

concentration can be determined for a cell with a given internal antibiotic concentration and

cell volume to produce dose-response curves that are comparable to experimental measure-

ments. To do this we calculate the number of cells after 24 hours for a range of antibiotic

concentrations using a logistic growth model for the number of cells (N)

dN

dt
=

ln 2

t

(
K −N
K

)
N (15)

where the carrying capacity K and the initial number of cells N0 correspond to values

determined from experimentation.
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2.2 Incorporation of Cell Volume in Dose-Response Model for

Ribosome-Targeting Antibiotics

Because the percentage volume of components that are targeted by antibiotics shift with

cell size [4], we expect that antibiotic susceptibility will shift due to cell volume effects. In

the following sections we incorporate these shifts in composition into the model outlined

in the previous section to make predictions of size dependencies in inhibitory antibiotic

concentrations.

2.2.1 Shifts in Cellular Composition with Cell Size

The relationship between cell volume and several components can be approximated by power-

law relationships (of the form Vcomponent ∝ V β
cell) [4]. Additionally, growth rate is dependent

on cell volume due to cell size dependencies in energy budgets modeled in Eq. 5. The volume

of other components (ribosomes, tRNA, and mRNA) is then calculated as the minimum

volume required for all of the cellular components to double by the time of division that

is derived from the size dependent time of division. This calculation is equivalent to the

calculations in Eq. 3 - 4, where the antibiotic concentration is 0 and γ and Nr,0 are calculated

with td and Np,0 specified by cell size. The relationships between component volume and cell

volume is specified in the Table below.
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Component Relationship with Cell Volume Unit

Metabolic Rate (B) B0V
βB
c W

Growth Rate (µ)
(Bv/Ev)(1− βB) ln ε

ln[1− (Bv/B0)(Vcdc)1−βB ]− ln[1− ε1−βB(Bv/B0)](Vcdc)1−βB ]
s−1

Protein Volume (VP ) P0V
βP
c m3

Ribosome Volume (VR) lpNp(φ/η+1)

rr/µ−lr(η/µ+1)
m3

tRNA (VtRNA) vtRNAntRNANR m3

mRNA (VmRNA) vmRNAnmRNANR m3

Cellular Envelope (Venv)
(
Vc −

4

3
π
[(3Vc

4π

)1/3 − renv]3)(1-pP ) m3

Table 1: Relationships between component volume and cell volume from derivations in

Kempes et al. Parameters are defined with their values in Table 2
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Figure 2: Shifts in cellular composition with cell volume Previous results from Kempes

et al, (A) Log-log plot of cell volume and components volume. Ribosome, protein mRNA,

tRNA, genome, and cellular envelope volume all shift with cell size. (B) Required dry volume

(orange) compared with cell volume (blue). Lower and upper bounds on cell size are created

by the total required dry volume exceeding the cell volume, where the two curves intersect.

(C) Growth rate, calculated as µ = ln2
td

where td is doubling time increases non-linearly with

cell-size.
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2.2.2 Incorporation of Cell Size Dependencies into Dose-Response Model

The dose response model outlined in Section 3.1 calculates the optimal response to a speci-

fied antibiotic concentration by connecting the molecular dynamics of the cell the energetic

costs, and finds the time of division under this response. In the case of the ribosome-targeting

antibiotic the functioning of ribosome is essential for growing and maintaining the standing

pool of proteins. We assume that there are pre-defined requirements for the number (or vol-

ume) of the protein pool that must be met by the ribosome pool and adjustments in resource

distribution (modeled here by γ, the fraction of ribosomal transcripts). We incorporate cell

size effects in the ribosome model through the size dependence on the protein pool, as protein

number and volume (Np,0 in Eq. 4) is modeled to have a power-law relationship with cell

volume.

2.2.3 Volumetric Constraints at Extreme Cell Sizes

In addition to the cell-size dependence due to energetic factors considered thus far, the

flexibility in cellular composition can be limited by cell size. In particular, we note that

it is a biological impossibility for the total volume of required components to exceed cell

volume, but the dry volume fraction in cells that are responding to ribosome-targeting an-

tibiotics increases sharply in our model. This increase occurs because (i) the number of

ribosomes is up-regulated to compensate for degradation due to the antibiotic, and (ii) the

ribosome-antibiotic complexes are assumed to degrade at the same rate as ribosomes or

slower. Therefore the required dry volume can exceed the cell volume at antibiotic concen-

trations that are calculated to be sub-lethal from the energy-based model in Section 2.1.

This is particularly limiting at extremely large and small cell sizes, at which the dry volume

fraction is high even without antibiotic stress (Figure 2B). The volume limiting antibiotic

concentration is then defined as the antibiotic concentration at which the the required dry

volume fraction is equal to the cell volume. The mean dry volume fraction V component(Vc, A)
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is a function of both antibiotic concentration and cell volume, Vc.

V component(A, Vc) =

∫ td
0

(
vrNr(A, t) + vpNp(A, t) + VtRNA(A, t) + VmRNA(A, t)

)
dt

td
+ Venv

(16)

where the number (and volume) of mRNA and tRNA transcripts is proportional to the

number of ribosomes (Table 2.2.1), and the number of ribosomes and proteins are defined by

the solutions to Eq. 1 and 2, with γ and Nr,0 given by Eq. 3 and Eq. 4, and Np,0 given by the

size-dependent power law relationship defined above. We then use the bisection method to

find the numerical solution for A such that Vcomponent = Vc, which gives us the volume-limiting

minimum inhibitory concentration, MICv. The overall predicted inhibitory concentration is

the minimum of the MICv found here and the energetically limiting concentration predicted

based on Section 2.1.
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Parameter Value Unit
V Cell Volume (varies between

10−21 − 10−15)
m−3

η Intrinsic degradation rate for ribosomes 6.19× 10−5 s−1

φ Intrinsic degradation rate for proteins 6.19× 10−5 s−1

γ Proportion of ribosomal transcripts (derived above)
k Kinetic rate constant free parameter M−1s−1

td Time of division (derived above) s
α Bacterial growth scaling exponent 1.43 Unitless

B0 Parameter for size-normalized metabolism 2.31× 1012 W m−(3(α−1))

Bv Metabolic expenditure to support an existing
unit of cell volume

1.22× 103 Wm−3

Ev Metabolic expenditure to synthesize an ex-
isting unit of cell volume

2.21× 108 Jm−3

βr Average energetic cost of producing a ribo-
some

2.70× 10−15 J per protein

βp Average energetic cost of producing a protein 9.79× 10−17 J per protein
dc Cell density 1.1× 106 gm−3

vr Volume of single ribosome 3.04× 10−24 m3

vmRNA Volume of single mRNA 1.43× 10−21 m3

vtRNA Volume of single tRNA 3.10 ×10−26 m3

βP Volume scaling exponent for proteins 0.7± 0.06 Unitless
P0 Power law constant for size scaling of pro-

teins
3.42× 10−7 m−3βP

pp Average proportion of cellular envelope that
is occupied by protein (by volume)

0.15 Unitless

K Carrying Capactiy 6× 107 Number of cells

Table 2: Parameter definitions and values used in theoretical model

3 Methods

3.1 Experimental Methods

3.1.1 Bacterial Species

We chose 12 bacterial species with a range of cell volumes across seven orders of magnitude

10−13 to 10−19 m3 (as assessed from the literature - see Table 3). Most species were obtained

from ATCC (given website) and inoculated in 6 mL of appropriate media at optimal temper-
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atures/conditions (Table 1). Cultures were grown aerobically until they reached stationary

phase, between 24-48 hours. Cultures were spun at 3500 rpm 4℃ for 10 minutes, the super-

natant was discarded and the pellet was resuspended in 3 mL of 20% glycerol. Permanent

stocks were prepared using 2 mL of the 20% glycerol resuspension. The remaining 1mL was

distributed into 50 µL aliquots reserved as working stocks. All stocks were stored at -80℃.

At the start of each experiment, one 50L aliquot was thawed, inoculated in 2 mL of the

appropriate media and incubated at the optimal temperature for 16-22 hours.

Bacterial Species Optimal Tem-
perature (◦C)

Bacillus licheniformis 38
Bacillus megaterium 37
Bacillus subtilis 37
Escherichia coli 37
Lactococcus lactis 37
Pseudomonas fluorescens 30
Pseudomonas natriegens 32
Pseudomonas putida 30
Staphylococcus epidermidis 36
Staphylococcus thermophilus 38
Lactobacillus plantarum 37

Table 3: Bacterial Species and Optimal Temperatures

3.1.2 Antibiotics

We chose to use antibiotics from a variety of classes and mechanisms of action (summarized

in Table 4) [19–32]. All antibiotic stocks were prepared at 20 mg/mL, with the excep-

tion of antibiotics that had a maximum solubility of less than 20 mg/mL. A list of the

antibiotics used and information regarding stock concentrations can be found in Table . An-

tibiotic stocks were prepared by dissolving the powder form into their respective solvents:

erythromycin, nalidixic acid and spiramycin were dissolved in ethanol, and spectinomycin,

sulfamonomethoxine and trimethoprim were dissolved in 100% DMSO. All other antibi-
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otics were dissolved in autoclaved MilliQ water. All antibiotics were purchased from Sigma

(St. Louis, MO) with the exception of ciprofloxacin (CPR) which was purchased from MP

Biomedicals (Santa Ana, CA).
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Antibiotic Target Component Target Metabolic Pro-
cess

Amikacin 30S Ribosomal Subunit Protein synthesis
Amoxicillin Penicillin Binding Proteins Cell wall synthesis and re-

pair
Ampicillin Sodium Salt Penicillin Binding Proteins Cell wall synthesis and re-

pair
Cefoxitin Sodium Salt Penicillin Binding Proteins Cell wall synthesis and re-

pair
Chloramphenicol HCl 50S Ribosomal Subunit Protein synthesis
Ciprofloxacin HCl DNA Topoisomerase ,

DNA-gyrase
DNA replication, transcrip-
tion, and repair

Clindamycin HCl 50S Ribosomal Subunit Protein synthesis
Doxycycline hyclate 30S Ribosomal Subunit Protein synthesis
Erythromycin 50S Ribosomal Subunit Protein synthesis
Fusidic Acid Sodium Salt EF-G-GDP (Elongation

Factor)
Protein synthesis

Gentamycin Sulfate Salt 30S Ribosomal Subunit Protein synthesis
Levofloxacin DNA Topoisomerase IV,

DNA-gyrase
DNA replication, transcrip-
tion, and repair

Lomefloxacin HCl DNA Topoisomerase IV,
DNA-gyrase

DNA replication, transcrip-
tion, and repair

Nalidixic Acid Sodium Salt DNA-gyrase Transcription
Oxacillin Sodium Salt Penicillin Binding Proteins Cell wall synthesis and re-

pair
Penicillin G Sodium Salt Penicillin Binding Proteins Cell wall synthesis and re-

pair
Piperacillin Sodium Salt Penicillin Binding Proteins Cell wall synthesis and re-

pair
Rifampicin RNA Polymerase RNA synthesis
Spectinomycin HCl 30S Ribosomal Subunit Protein synthesis
Spiramycin 50S Ribosomal Subunit Protein synthesis
Streptomycin Sulfate Salt 30S Ribosomal Subunit Protein synthesis
Sulfamonomethoxine Folic Acid Nucleic acid synthesis
Tobramycin Sulfate Salt 50S Ribosomal Subunit Protein synthesis
Trimethoprim Dihydrofolic Acid (DHF) DNA synthesis

Table 4: Summary of antibiotics and corresponding mechanisms of action used for experi-
mental work. Rows with ribosome targeting antibiotics are highlighted.
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3.1.3 Temperature Assays

To identify the optimal temperature ranges for each species, we performed initial optimal

temperature assays across 10 temperatures ranging from 24℃ - 42℃ in increments of 2℃.

Each species was grown over-night, until exponential growth phase was reached. Cultures

were diluted in appropriate media to a concentration of 103 cells per mL. Using 96-well

plate (Fisher, Costar), we aliquoted the 15 species, 1 per column, resulting in 8 replicates

per species. The last column contained media only to serve as negative controls. The plates

were placed in the Tecan Infinite Pro 2000 plate reader and optical density was read at 500

nm and 600 nm every 20 minutes for 24 hours. This procedure was repeated for each of the

10 temperatures. Growth rates and carrying capacity for each species were calculated at each

temperature and determined the temperatures at which dose-response assays were conducted

(Table 3, Figure 3). Dose-response assays were conducted at the optimal temperatures for

all antibiotics. Additionally, for the eight antibiotics (CHL, CPR, ERY, FUS, GEN, LEV,

STR, TOB) that were expected to interact strongly with temperature (Cruz-Loya et al.),

two additional dose response assays were conducted at temperatures above and below the

optimal.
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Figure 3: Temperature response curves for B. licheniformis and P. natriegens

Temperature curves were used to estimate optimal temperatures for experimental work by

fitting a logistic growth model to estimate carrying capacity and growth rates, and dose-

response curves were measured at optial temperatures for each species.

3.1.4 EC95 and MIC Measurements

To determine MIC for each of 24 antibiotics across all 12 species, we used 96-well plates.

Each plate had a single bacterial species and 8 antibiotics (one per row, diluted across

columns 1-11). Column 12 served as the control column, with the positive controls (media

and bacteria, with no antibiotic) in the top four wells and negative controls (media alone)

in the bottom four wells. The plates were prepared by adding 100L of media plus antibiotic

and 100L of diluted overnight culture ( 105 cells/mL). Plates were incubated for 24 hours at

each measured temperature(s) and growth was determined using optical density (OD600).

Round 1: An 11-step 2-fold dilution for each antibiotic-species combination was prepared.

Starting at 400µg/mL in column 1, we performed a 2-fold serial dilution of the antibiotics in
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media through column 11. Column 12 contained the positive and negative controls. Finally,

100L of overnight culture (∼ 103 cells/mL) was aliquoted across the plate (except negative

control) to obtain a final volume of 200L per well.

Round 2: An 11-step linear dilution for each antibiotic was set up, with the range of

antibiotic concentrations expected to include the MIC based on Round 1 respectively. This

step varied by species and antibiotics and was performed in triplicate. Liquid MIC is defined

as the lowest concentration at which no growth was observed, and EC95 was defined as the

interpolated value at which 95% growth was inhibited.

3.1.5 Microscopy to Estimate Bacterial Cell Sizes

We used microscopy to measure bacterial cell sizes and estimate bacterial cell volumes.

Images were acquired on a Zeiss AxioImager M1 fluorescence microscope with a 100X Plan-

Apochromat objective using the MetaMorph software (Molecular Devices, Sunnyvale, CA).

Wet mounts of approximately 5 µL of overnight culture was prepared on glass slides. Images

of each species were taken and 10 bacterial cells were measured per species. In order to get

an accurate sample of the population, we measured both actively dividing and single cells for

each species. We used the LineScan tool in the MetaMorph offline software and took three

measurements; cell base length (BL), cell base height (BH) and tip radius (TR) (Figure 4).

If the cells were cocci (ex. S. epidermidis and L. lactis), we measured the cell diameter (d).

Initial measurements from the images were measured in pixels, and later converted to µm

(1 pixel = 0.1 µm). Cell volumes (Vc) were calculated based off of the initial measurements

described below.

To calculate total cell volume for bacilli, the volume of the base (VB) was calculated

by VB = πBLBH , the volume of the tips (VT ) were calculated by VT = 4
3
πT 3

R, and Vc was

estimated as VB + VT . To calculate total cell volume for cocci we used Vc = 1
6
πd3.
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Figure 4: Measuring cell Size with microscopy(A) Schematic of the measurements taken

to estimate bacterial cell size. The measurements that were taken for bacilli (rod-shaped)

cells were the base length, base height, and the tip radius. The tip radius measurement begins

at the base height measurement and spans to the end of the cell tip. The only measurement

taken for spherical cells was the diameter. These measurements were used to calculate total

cell area and volume. (B) Example image of Staphylococcus epidermidis culture

3.2 Fitting Dose-Response Data

We fit normalize experimental data by the growth in the positive control, where the bacteria

is grown with no antibiotic. We then fit an inverse Hill function to the data with the form

g(A) = 1− An

EC50n + An
(17)

Here A is antibiotic concentration, and g(A) is the growth after 24 hours at antibiotic

concentration A. EC50 is the concentration at which the growth is at half of the maximum

growth, and n is a parameter that controls the sharpness of the curve. We fit the data using

non-linear least squares.
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3.3 Fitting Model to Dose-Response Data

The dose-response curves generated from our model are similar in shape to the inverse Hill

function described above, and we use free parameters k and D to fit our model to the curve

described above. We define a cost-function by calculating the squared horizontal distance

between the two curves at 8 points.

The squared horizontal distance between two dose-response curves with parameters EC501,

n1 and EC502 and n2 is defined for a fixed value of g:

d2g(EC501, n1, EC502, n2) =

(
EC501

(
1− g
g

) 1
n1

−EC502

(
1− g
g

) 1
n2

)2

(18)

The cost function for the two curves is then defined as

∑
gi

d2gi(EC501, n1, EC502, n2) (19)

where gi ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. We then minimize this cost function

over k for a fixed value of D or vice versa to fit the theoretical model to the curve derived

from data.

4 Results

We tie together theoretical predictions on the effects of cell size on antibiotic susceptibility

with experimental observations. The theoretical model presented in Section 2.1 can be used

to generate dose-response curves that are qualitatively similar to our data, and we are able

to fit dose-response curves using antibiotic-specific free parameters. Size-dependent shifts in

metabolic processes and cellular composition can then be incorporated to make cross-species

predictions of antibiotic susceptibility. We identify multiple fundamental constraints on cells

- the energy and the volume available to the cell. We predict two inhibitory concentra-
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tions corresponding to these constraints - an “energy-limiting” concentration, at which the

growth is inhibited to 5% due to limitations in the cell’s ability to divide (Section 2.1), and

a “volume-limiting” concentration, at which the required dry volume of components and

target-antibiotic complexes exceeds the cell volume (Section 2.2.3).

For ribosome and cell-wall targeting antibiotics we observe experimentally that mid-

sized cells are the least susceptible, suggesting that there are complex trade-offs related

to cell size that affect antibiotic susceptibility. We build on the result from Kempes et

al that dry-volume fraction is lowest in mid-sized cells. This suggests that cells that are

extremely large or small are constrained by limitations on space within the cell in addition

to molecular dynamics and energetic constraints, leading to “energy-limited” and “volume-

limited” regimes in cell size, which could explain the experimental trends that we observe.

4.1 Theoretical Dose-Response Model

4.1.1 Dose-Response Curves can be Generated From Theoretical Model

We detail a model connecting molecular dynamics, resource redistribution, and the overall

energetics and growth of the cell in Section 2.1, which we can use to generate dose response

curves. This model integrates diffusion of the antibiotic into the cell membrane, molecular

dynamics, and overall energetics of the cell.

We first present results on the relationship between the internal antibiotic concentration,

time of divsion, and growth, based on the model outlined in Section 2.1. The cell optimizes

the proportion of ribosomal transcripts (γ) and the number of initial ribosomes in the cell

(Nr,0), so that the protein pool – which is assumed to be fixed under antibiotic stress –

and the ribosome pool are doubled (Eqs. 3 and 4). Resource distribution thorugh γ and

Nr,0 is optimized based on a specific “macromolecular” time of division (tmol), and results in

increases in the metabolic expenditure (Bv). An increase in Bv then result in an increase in

the energetic (actual) time of division of the cell (tenergetic).
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We find the intersection of tmol and tenergetic, the time of division resulting from optimizing

macromolecular parameters based on tmol, to give the minimum time of division (Figure 5A).

This is the miimum time of division because when tmol > tenergetic the cell divides before all

of the components are doubled, and when tmol < tenergetic the ribosome and protein pools are

more than double their initial size, which increases the metabolic expenditure and results

in a longer time to divide than necessary. In both cases the cellular composition will shift

across generations. Figure 5A shows the intersection of the macromolecular time of division

that is optimized on (blue) with the resulting “energetic” time of division at low (orange)

and high (red) internal antibiotic concentrations. The orange and red points on Figures

5B and C correspond to the two antibiotic concentrations shown in Figure 5A. We note

that the optimal time of division increases with internal antibiotic concentration (Figure

5B), which results in fewer cells after 24 hours under a logistic growth model (Figure 5C).

This is particularly useful because we approximate the number of cells after 24 hours in our

experimental system.
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Figure 5: Generation of dose-response curves (A) Plot showing the intersection of the

energetic time of division resulting from the macro-molecular time of division at low (orange)

and high (red) antibiotic concentrations, (B) Optimal time of division increases with internal

antibiotic concentration, and (C) Dose-response curve resulting from the model, with number

of cells after 24 hours decreasing with antibiotic concentration.

The results thus far have focused on the effect of the internal antibiotic concentration

on the growth of the cell. Modeling the diffusion of the antibiotic into the cell allows us to

compare our experimental results directly to theoretical predictions, as external antibiotic

concentration is the free parameter that we control in our experimental work. The detailed

model presented in Section 2.1.4 finds the steady-state internal antibiotic concentration by

incorporating the flux created by the binding of the antibiotic to ribosomes and the surface

area of the cell. We find that internal concentration increases non-linearly with external

antibiotic concentration (red curve in Figure 6), and that the dose-response curves incor-
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porating diffusion produces a qualitatively similar curve (green in Figure 6) to the curve

produced just using internal antibiotic concentration (Figure 5C). The next results are pre-

sented incorporating diffusion.

Figure 6: Effects of diffusion on molecular dynamics (A) Relationship between ex-

ternal and internal antibiotic concentration of a cell, which depends on the surface area of

cell membrane and the concentration gradient created by the antibiotic-ribosome dynamics

within the cell, and (B) Dose-response curve incorporating diffusion of antibiotic into the

cell

In addition to the the results based on changes in the cellular energy budget due to

the molecular dynamics, we consider the space limitations imposed due to the size of the

cell. In Section 2.2.3, we consider the fact that the antibiotic-ribosome complexes increase
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the dry volume of the cell, which could create an additional constraint because the total

required volume of cellular components cannot exceed cell volume. We calculate the total

required dry volume fraction at several antibiotic concentrations, and we note that the total

required dry volume of the cell, which includes the volume of ribosomes, proteins, mRNA,

tRNA, the cellular envelope, genome, and the antibiotic-ribosomes complexes, increases with

antibiotic concentration. Figure 7 shows that for a cell the size of Escherichia coli the

required dry volume fraction increases (blue) beyond the volume of the cell at high antibiotic

concentrations. This is largely driven by increased levels of ribosome-antibiotic complexes

at high antibiotic concentrations (orange). This model allows us to predict a “volume-

limiting” concentration at which the required dry volume increases to the volume of the

cell, in addition to the inhibitory concentrations shown previously. The overall inhibitory

concentration predicted for a cell is then the minimum of the volume-limiting and energy-

limiting concentrations.
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Figure 7: Increases in required dry volume under antibiotic stress can inhibit

growth Cellular composition based on optimal energetic response shifts with antibiotic con-

centration. The volume of antibiotic-ribosome complexes increase in volume with antibiotic

concentration, increasing the total dry volume of the cell beyond the cell volume, which is a

biological impossibility. The upper limit on the dry volume that a cell can tolerate is likely

much less than 100%.

4.1.2 Resource Redistribution Under Antibiotic Stress

In addition to generating dose-response curves, we are able to gain insights into the opti-

mal resource redistribution under antibiotic stress. Under our model assumptions the cell

responds to antibiotic stress by modifying the partitioning of mRNA transcripts between

transcripts for ribosomal and non-ribosomal proteins, and by changing the initial number of
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ribosomes. These two changes result in a shift in the metabolic expenditure for maintaining

the cell, which modifies the time of division. Figure 8C shows that increasing antibiotic

concentration results in increases in metabolic expenditure, Bv, which drives a decrease in

growth rate (Eq. 5), and therefore an increase in time of division (Eq. 6). This results in a

decrease in the number of cells after 24 hours (Figure 5C, 6).

Resource distribution is modeled in terms of the proportion of ribosomal transcripts

and minimum number of ribosomes that minimized time of division for any given antibiotic

concentration. Interestingly, we find that while the proportion of ribosomal transcripts, γ,

increases, the initial number of ribosomes is down-regulated. The decrease in the number of

initial ribosomes (Nr,0) also decreases the number of ribosomes that the cell must have in

order to divide by the time of division, which is 2Nr,0, as the cell needs to double the ribosomal

pool so that the cellular composition is maintained across generations. This decrease in the

total number of ribosomes required at the end of the cell cycle combined with the increase

in time of division can compensate for the higher ribosome production that is required by

additional degradation due to antibiotics.
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Figure 8: Resource redistribution and energetic costs under antibiotic stress (A)

The proportions of ribosomal transcripts, γ, increases under antibiotic stress, as ribosomal

resources are reallocated towards producing more ribosomes in response to increases degra-

dation due to antibiotics. (B) The initial number of ribosomes decreases under antibiotic

stress, which minimizes energy spent on producing ribosomes that are degrading faster due

to antibiotics. (C) The metabolic expenditure per unit time and volume increases under

antibiotic stress, resulting in slower growth rates.
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4.1.3 Theoretical Models can be Fit to Dose-Response Data

The theoretical results presented thus far have shown that dose-response curves that are

qualitatively similar to dose-response data measured experimentally can be generated for

fixed values of the rate constant, k (detailed in Eq.1), the rate at which antibiotic binds to

ribosomes, and the diffusion constant D, the rate at which the antibiotic diffuses across the

cellular membrane. Because these kinetic parameters are difficult to measure precisely and

could depend on antibiotic and species specific traits, literature values vary widely [33]. We

therefore leave these as free parameters that can be used to fit the model to data. Figure

9A and 9B shows that dose-response curves are sensitive to both k and D respectively, and

that varying these parameters allows us to shift the dose-response curve be several orders

of magnitude. We note that as D is increased the curves converge, indicating an asymptote

for minimum inhibitory concentrations as D increases. We fit the curves shown in 9A and

9B as described in Section 3.2, to estimate the EC50 and n parameters from these curves,

as shown in Fig. 9C and 9D. We note that as D increases the sharpness of the curve (n)

and the EC50 value decrease, whereas when k increases the EC50 parameter decreases but

the sharpness of the curve (n) increases. We note that n appears to have upper and lower

bounds when both k and D are changed, indicating that there might be a limiting range

of sharpness in the curves generated from the theoretical model. The trade-offs between

changing cell volume, k, and D are still unclear, and understanding this is an avenue for

future work.
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Figure 9: Model sensitivity to free parameters (A) Model sensitivity the diffusion

constant, D and (B) the rate constant k. (C)Estimated EC50 (inhibitory concentration

that reduces growth by 50%) and n (parameter indicating sharpness of the dose response

curve) from dose response curves generated by the theoretical model for a range of (C) values

of k and D (Panel D). Panels A and B show that we are able to shift the dose response curve

by several orders of magnitude by changing the values of k and D, and Panels C and D

show that EC50 decreases exponentially with both K and D, whereas the sharpness of the

curve decreases with D and increases with k. The sharpness parameter n appears to have

an upper bound of 1.75 and 3.75 with D and k respectively.
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For fixed values of D and cell volume we are able to fit our theoretical model to data by

optimizing over k values (Figure 10). For experimental dose-response curves in which the

steepness falls within the limits on n indicated in Figure 9 (approximately less than 3.75), we

find that curves are fit well (Doxycycline, Spectinomycin, Streptomycin, Chloramphenicol,

and Fusidic Acid). However, for sharp curves (panel Gentamicin, Amikacin, Tobramycin,

Erythromycin, and Spiramycin) we find that the theoretical model is not able to fit the data

as well. It is possible that this can be resolved by optimizing simultaneously over k and D.

We also find that k and D both decrease exponentially with the EC50, the antibiotic

concentration at which growth is inhibited to 50%, the parameter fit from the curve fitting

model as shown in Panel 10B. Additionally, this also indicates that the relationship between

k and D can be approximated as linear, and increasing k is equivalent to increasing D.

Therefore the term of interest is kD. Figures 10C and D show the distributions of k and

D, which are left-skewed. The isolated points on the right are likely to be biologically

meaningful, because the curves are all fit relatively well. Additionally, the relationship

between EC50 and both of the free parameters is exponentially decreasing both when the

curve-fitting algorithm is run on the to theoretical dose-response curves for a range of k and

D values (Figures 9 C and D) and on data (Figure 10B). The variation in the distribution is

likely due to shifts in antibiotic specific diffusion or ribosome binding rates. A wider analysis

can be done in the future by fitting all of the experimental dose response curves of ribosome

targeting antibiotics across species, and analyzing the variation of optimal parameter values

within and across antibiotics.
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Figure 10: Fitting the model to experimental data from E. coli (A) Theoretical model

fit to experimentally measured dose-response curves of E. coli and 10 ribosome-targeting

antibiotics. The data is first fit an inverse-Hill function curve (blue) and then the theoretical

model is fit to the blue curve by optimizing the free parameters in the models – k, the rate

constant for antibiotic binding to ribosomes (blue line) or D, the diffusivity constant (green

line). (B) The optimal k value (red), D value (green) decreases exponentially with the EC50

value that is fit to the data. (C) Histogram of k values. (D) Histogram of D values.
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4.2 Theoretical Predictions of Size Dependent Trade-offs and Con-

straints

Our overarching goal is to make predictions of the relationship between cell size and suscep-

tibility to ribosome targeting antibiotics. In order to do this we incorporate size-dependent

shifts in cellular composition into the model described in Section 2.1 as outlined in Section

2.2. Cell size affects both the percentage volume of ribosomes and proteins (Figure 2A). The

shift in the percentage volume of the protein pool affects the minimum number of ribosomes

the cell must have under antibiotic stress, which affects (i) changes energetic costs and there-

fore the energy-limiting antibiotic concentration, and (ii) the volume of ribosome-antibiotic

complexes, which contribute to the required dry volume of the cell, which cannot exceed total

cell volume. Moreover, a cell that has a high dry volume fraction without antibiotic stress

cannot tolerate the same increase in dry volume that a cell with low dry volume can. The

effect of cell size on the volume-limiting antibiotic concentration is therefore compounded

by the relationship between cell size and the percentage dry volume of the cell without an-

tibiotic stress (shown in Figure 2B). Hence cell size determines both the energy-limiting and

volume-limiting minimum inhibitory concentrations.

We examine the cell size dependent shifts in cellular composition under antibiotic stress

by comparing the volume of ribosome, ribosome-antibiotic complexes, and the total dry

volume at MIC95, the concentration at which cell growth is inhibited to 5% due energetic

limitations. The volume of other cellular components is assumed to be constant under an-

tibiotic stress. Figure 11 shows that the the change in ribosome volume at the minimum

inhibitory concentration is size-dependent, and that for smaller cell sizes the minimum ri-

bosome volume increases under antibiotic stress, but that it increases at larger volumes.

Additionally, the percentage of cell volume taken up by the ribosome-antibiotic complex at

MIC95 (red in Fig. 11) decreases with increases in cell size. This drives the increase in total

required dry volume (purple), which exceeds the cell volume at small cell sizes, indicating
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that a limitations due to space within the cell are the limiting factor in these cell sizes rather

than energetic limitations.

Figure 11: Volumetric constraints on response to antibiotics Cellular composition at

MIC99 shifts based on cell size. Increases in the volume of ribosome-antibiotic complexes

drives the increase in dry volume. For small cell sizes dry volume exceeds total cell volume

at MIC99, indicating that lower antibiotic concentrations would be inhibitory.

Our theoretical results thus far incorporating cellular composition, diffusion, energy bud-

get, and constraints on dry volume suggest cell size affects the both the energy-limiting

and volume-limiting inhibitory antibiotic concentrations. A comparison of these two con-

centrations shows that cell size does have an effect on theoretical predictions of both the

energy-limiting and volume-limiting concentrations, as shown in Figure 12. The predicted

energy limiting concentration, (blue) decreases sharply with cell size, whereas the predicted

volume-limiting concentration increases with cell size. Interestingly, the two curves intersect,

indicating that there is a trade-off between energy and volume limiting concentrations across

cell sizes.

Additionally, we find that there is a strong power-law relationship (of the form IC ∝ V α,

where IC is an inhibitory concentration and V is cell volume) between cell volume and
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both the energy-limiting and volume-limiting concentration. This is indicated by the linear

nature of the two curves in Figure 12, on which both axes are log-scaled. When we fit a

linear regression between log transformed cell volume and both the energy limiting antibiotic

concentration and the volume-limiting antibiotic concentration we find high R2 values of

0.993 and 0.998 respectively. The slopes from the linear regression can be used to find

the exponent in the power-law relationship. Therefore we find that MICe ∝ V −1.35 and

MICv ∝ V 1.87.

The overall predicted inhibitory antibiotic concentration for a cell of a specified size is

the minimum of MICe and MICv, i.e. the minimum of the two curves shows in Figure

12, because any one of these constraints can limit cell growth. Additionally, we model the

case in which cells respond antibiotics by changing their cellular composition and resource

distribution optimally, so our MIC predictions are actually upper bounds on inhibitory con-

centrations, and we expect that cells that do not respond optimally will have a lower MIC

than indicated by the two curves in Figure 12. Therefore, we predict that experimentally

measured minimum inhibitory concentrations will lie in the intersection of the blue and red

shaded areas.
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Figure 12: Predicted energy and space limiting concentrations across species

Changes in the predicted inhibitory concentrations based on cell size are due to system-

atic shifts in cellular composition and surface area. The energy-limiting concentration (blue)

is based on the energetics resulting from the macromolecular dynamics within the cell, and

the space-limiting concentration (orange) is the antibiotic concentration at which the volume

of the required components exceeds the total cell volume. The overall predicted inhibitory

concentration is the minimum of the energy and volume limiting antibiotic concentrations.

Because our model assumes that the cell responds optimally, the minimum of the two lines

is an upper bound on the inhibitory concentration. Hence, the purple shaded region below

the minimum of the two curves represents the predicted inhibitory concentrations.
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4.3 Experimental Results

We measure detailed dose-response curves for 11 bacterial species and 24 antibiotics, 9 of

which are ribosome-targeting, and 10 of which are cell wall targeting, as detailed in Section

3.1. Additionally, we measure dose-response to antibiotics that have been shown to have

non-additive interactions with temperatures at sub-optimal temperatures. We find dose

response curves as shown in Figure 4.3. We fit dose response curves 3.2 and estimate MIC95,

the antibiotic concentration at which growth is limited to 5% of the growth observed in

positive controls. We then compare the MIC95 measured at the optimal temperature to the

size measured using microscopy techniques.
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Figure 13: Example dose-response data Experimental dose-response curves of Lacto-

bacillus plantarum in streptomycin (blue) and spectinomycin (orange)

which are fit to Eq. 17 using non-linear least squares. This is used to measure experimental

minimum inhibitory concentrations.
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Measured MIC95 values at optimal temperatures for 10 cell-wall targeting antibiotics and

9 ribosome-targeting antibiotics are shown in Figures 14 and 15. Panels in Figures 14 and 15

show the relationship between cell size and MIC95 for individual antibiotics. We note that

for both cell wall and antibiotic targeting antibiotics mid-sized cells have higher MICs than

larger and smaller cells, and we find no correlation between optimal growth temperatures

and MIC for any of the panels shown below. In both cases, we find that data points fall

below an envelope that peaks at mid-sized cells. In the plots in these two figures the y-axis

is log-transformed, and the envelopes representing the upper bounds on MIC appear to be

intersections of two lines, which qualitatively matches our theoretical predictions.

Figure 14: Measured MIC95 for cell wall targeting antibiotics across species of

different sizes Log-MIC is presented for 7 cell-wall targeting antibiotics across species of

varying cell sizes. The convex hull of the data points and the x-axis is shown, qualitatively

matching the theoretical predictions of minimum inhibitory concentrations (in Figure 12)
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Figure 15: Measured MIC95 for ribosome targeting antibiotics across species of

different sizes Log-MIC is presented for 10 ribosome targeting antibiotics across species of

varying cell sizes. The convex hull of the data points and the x-axis is shown, qualitatively

matching the theoretical predictions of minimum inhibitory concentrations (in Figure 12)

5 Discussion

We are able to derive a model that can be fit to experimentally measured dose-response

curves and that can make predictions of antibiotic susceptibility across species based on

cell size. We identify two limiting constraints to cell growth with antibiotics – increased

metabolic expenditure due to degradation of antibiotic targets, and a decrease in space

available in the cell due to increased dry volume under antibiotic stress. Trade-offs between

these two constraints lead to theoretical predictions that mid-sized cells are least suscep-

tible to ribosome-targeting antibiotics. Our theoretical prediction is matched qualitatively

by our experimental results that minimum inhibitory concentrations of ribosome-targeting

antibiotics are observed to be higher in mid-sized cells than extremely large or small cells.
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Furthermore, we observe the same trend in cell-wall targeting antibiotics, suggesting that

the underlying trade-offs between multiple constraints such as cellular energetics and volume

limitations could drive size-based trends in antibiotic susceptibility.

The coarse-grained model that we present here captures is able to capture several essential

processes involved in bacterial inhibition by antibiotic, including the disruption of translation

by ribosome-targeting antibiotics and the optimal resource reallocation that can be done by

a cell, and connects this to growth rates, which can be measured experimentally. We make

several assumptions in the model, including the irreversible binding of the antibiotic to

the target and the partitioning of mRNA transcripts between ribosomal and non-ribosomal

transcripts (γ) being constant across the cell cycle. Additionally, we assume that the cell does

not reduce the size of its protein pool under antibiotic stress. These simplifying assumptions

allow us to make analytic calculations that approximate the behavior of the cell under

antibiotic stress.

Our model leads to insights on the complexity of re-calibration of resources such as

the proportion of ribosomal transcripts and number of ribosomes, and connects different

strategies explicitly to energetic costs (Figure 8). Additionally, we identify two limitations

on cell growth - energetic costs and volume limitation. While the model presented here is

specific to ribosome-targeting antibiotics, the general framework connecting optimal macro-

molecular dynamics to energy limitations, volumetric constraints, and cell growth can be

applied widely to other antibiotic classes, and more broadly to other stressors.

By incorporating cell-size dependent shifts in cellular composition into the model for

generating dose-response curves, we are able to make predictions of the maximum antibiotic

concentrations that a cell can tolerate based on energy and volume limitations (Figure 12).

The intersection of the curves representing the two limiting concentrations indicates that

there is a trade-off between energy and volume constraints that cells must navigate in re-

sponse to antibiotics. This creates regimes in cell sizes that are “energy-limited”, where the
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inhibitory concentration based on energetic factors is lower than the concentration based on

volumetric constraints, and similarly a “volume-limited” regime. Therefore our theoretical

framework suggests that cell size determines the limiting factors for cell growth under an-

tibiotic stress. Our theoretical result that cells are volume-limited at larger cell sizes also

suggest that increasing cell size under antibiotic treatment could be a strategy to mitigate

volume-limitations in these size regimes.

Furthermore, in our analysis of cell-size dependent shifts in inhibitory antibiotic concen-

trations we find that the predictions of the energetic and molecular inhibitory concentrations

can be approximated by power-laws. Power laws fit data generated from out model extremely

well, with an R2 value over 0.99 in linear regressions of the log transformed cell size and log

transformed minimum inhibitory concentration. (Figure 12). We note that there is upwards

curvature in the energy-limiting antibiotic concentration, indicating that power-laws are able

to approximate this trend well, especially at large cell sizes, but that there are complex un-

derlying processes that lead to this relationship that are not captured by the power-law

relationship. While cell-size dependency in the model is based upon the power-law approx-

imation of protein volume in cells, the prediction of inhibitory antibiotic concentrations is

complicated by several factors such as cell-size dependencies in growth rates, resource redis-

tribution, and volumetric limitations on total cell component volume, which does not follow

a power-law. Power laws have been observed in several contexts, biological and otherwise

[34]. Our findings indicate that such power-law relationships are also of relevance in the

context of antibiotic stress response in bacteria.

Our model assumes that cells respond optimally and therefore it predicts upper bounds on

inhibitory concentrations, so we expect experimentally measured data points to fall below

our predictions. Additionally, bacterial species might deviate in the cell-size dependent

composition that is predicted in Kempes et al [4], which may also result in deviations from

our predicted results. Because the predictions of cellular composition as a function of cell
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size are based on energetic optimality, deviation from predicted cellular composition could

also result in a lower minimum inhibitory concentration than predicted. Measurements in

this case would also fall under the upper bound on inhibitory concentrations that we predict.

Our experimental measurements of antibiotic susceptibility are matched qualitatively by

our model. The dose-response curves generated by our model are similar to empirically

measured dose-response curves. We are able to fit a our model to a range of dose-response

curves based on free parameters k, the antibiotic-specific rate constant that represents that

rate at which an antibiotic molecule binds to a target component, and D, the diffusivity

constant representing the rate at which the antibiotic moves across the cellular envelope, as

shown in Figure 10. However, fitting empirical data is limited by the range of curves that

our model is able to produce and our understanding of the interactions between the free

parameters and cell size. This is an area for future work.

Moreover, our empirical measurements of minimum inhibitory concentrations across cell

size qualitatively match our theoretical predictions that mid-sized cells are least susceptible

to antibiotics, and therefore have the highest inhibitory concentrations. Because we mea-

sure inhibitory concentrations across the same 11 species, it is possible that their minimum

inhibitory concentrations are correlated, especially within groups of antibiotics, and we find

that this is especially true in the case of cell-wall targeting antibiotics (Figure 14). This

indicates that response to antibiotics is highly dependent on the mechanism of action, and

that response to antibiotics should be modeled based on their mechanism of action, as we

do here.

Our theoretical and experimental results together suggest that cell size could play a role

in antibiotic stress response, and ultimately in the evolution of antibiotic resistance. We find

that cells must deal with multiple constraints such as energy and volume limitations and that

the limiting constraint could depend on cell-size. Future work measuring the response of cells

under antibiotic stress, in particular shifts in molecular composition and cell size in bacteria

49



exposed to antibiotics, could be used to check assumptions in our modeling framework, and

explain our theoretical and experimental results. Additionally, we only address the response

of wild-type strains to antibiotics, and future studies linking cell size with the evolution of

antibiotic resistance could be used as the basis for strategies to combat antibiotic resistance.
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