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ABSTRACT OF THE DISSERTATION

Shapes of Finite Groups through Covering Properties and Cayley Graphs

by

Yilong Yang

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2017

Professor Terence Chi-Shen Tao, Chair

This thesis is concerned with some asymptotic and geometric properties of finite groups. We

shall present two major works with some applications.

We present the first major work in Chapter 3 and its application in Chapter 4. We shall

explore the how the expansions of many conjugacy classes is related to the representations of

a group, and then focus on using this to characterize quasirandom groups. Then in Chapter

4 we shall apply these results in ultraproducts of certain quasirandom groups and in the

Bohr compactification of topological groups. This work is published in the Journal of Group

Theory [Yan16].

We present the second major work in Chapter 5 and 6. We shall use tools from number

theory, combinatorics and geometry over finite fields to obtain an improved diameter bounds

of finite simple groups. We also record the implications on spectral gap and mixing time on

the Cayley graphs of these groups. This is a collaborated work with Arindam Biswas and

published in the Journal of London Mathematical Society [BY17].
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CHAPTER 1

Introduction

1.1 Guiding intuition and summary of the thesis

This thesis tries to explore several properties of the finite groups and their consequences that

might be called the “shape” of finite groups.

Given a geometric object, say a rectangle, there are several ways to measure it. We can

measure its length, its width, its circumference, its area and so on. When we compare these

different ways of measurement to each other, say length with width, or circumference with

area, then we start to see the shape of the rectangle. In this thesis, we shall extend this

idea to finite groups, explore several measurements and compare these measurements, study

their asymptotics, and see what we can derive as consequences.

The first portion of this thesis deals with shapes of finite groups of a more “local” nature.

For a finite group, we can pick any element g and compare the conjugacy classes of g, g2, g3, ....

This gives us a sense of “roundness” or “oblateness”, measured from the perspective of g.It

turns out that these local oblateness are closely tied with representations of these finite

groups. For example, if the groups are too “oblate”, then they cannot have any embedding

into a “round” compact topological group. This can also have applications in ergodic group

theory and topological group theory. More backgrounds on these will be presented at the

start of Chapter 4. These results are published in the Journal of Group Theory [Yan16].

The second portion of this thesis deals more specifically with finite simple groups. We

compare the order of these groups with the diameter of these groups. The diameter is defined

as the following.

Definition 1.1.1. Given a finite group G, its diameter is the supremum of the diameters of
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all possible connected Cayley graphs of G.

This study of this relation between the diameter and the order of a finite group is similar

to the study of growth rate in finitely generated groups. A finite group where the diameter is

log |G| (e.g., SL2(Fp)) is similar to a finitely generated group with exponential growth (e.g.,

finitely generated free groups), and a finite group where the diameter is linear in |G| (e.g.,

Z/nZ) is similar to a finitely generated group with linear growth (e.g., Z). This has many

applications like obtaining expander graphs and establishing nice random walk properties.

Along the intuition above, one would expect that non-abelian fintie simple groups, the

“most unabelian” of finite groups, to behave almost like free groups. So we have the following

conjecture by László Babai.

Conjecture 1.1.2 (Babai’s Conjecture [BS92]). For a finite simple group G, its diameter

should be

diam(G) = (log |G|)O(1).

The first class of simple groups verified for Babai’s conjecture was PSL2(Z/pZ) with p

prime, by Helfgott [Hel08]. Afterwards, a lot of research was done on the diameters and

related expansion properties of these Cayley graphs.

The best result to date are those by Pyber and Szabó [PS16], and Breuillard, Green and

Tao [BGT11a]. They verified Babai’s conjecture for all finite simple groups of Lie type with

bounded rank.3

For all non-abelian finite simple groups, Breuillard and Tointon [BT16] also obtained a

diameter bound of max(|G|ε, Cε) for arbitrary ε > 0 and a constant Cε depending only on ε.

The diameter bounds in all these previous results depend poorly on the rank of the group.

It is one of the aims of this thesis to improve the dependency on the rank, in the case of

finite simple groups of Lie type.

3The preprint of PS [PS10] was published on arXiv in 2010, and proved Babai’s conjecture for all finite
simple groups of Lie type with bounded ranks. Unlike PS, BGT first announced these results [BGT10] only
for finite simple groups not belonging to the Suzuki and Ree family. Their method also applies to these
cases, but this only appeared later in [BGT11b] and [BGG15]. We thank László Pyber for this remark.
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On the other hand, a lot of research was also done for the symmetric group Sn and the

alternating group An. In 1988, Babai and Seress showed the following theorem.

Theorem 1.1.3 (Babai and Seress, [BS88]). Let G = Sn or G = An, then for any generating

set,

diam(G) ≤ exp(
√
n log n(1 + on(1)) = exp(

√
log |G|(1 + on(1)).

This was the best known bound for Sn or An for over two decades, until Helfgott and

Seress recently showed the following.

Theorem 1.1.4 (Helfgott and Seress, [HS14]). Let G = Sn or G = An, then for any

generating set,

diam(G) ≤ exp(O((log n)4 log log n)) = exp((log log |G|)O(1)).

In this thesis we give a modest upper bound on the diameter for finite simple groups

of Lie type, where the dependency on rank is lessened. This is a collaborated work with

Arindam Biswas, published in the Journal of London Mathematical Society [BY17].

1.2 Notation

In this thesis, we denote the commutator subgroup or derived subgroup of a group G by G′,

and we denote the center of a group G by Z(G). Given an element g of a group G, we denote

the conjugacy class containing g by C(g).

Given two subsets A,B of a group G, we define AB = {ab : a ∈ A, b ∈ B}. For any

positive integer n, we define An = {a1...an : a1, ..., an ∈ A}.

We adopt the standard convention of the “big O” and “small o” notation. So g(x) =

Ox(f(x)) means that there are constants C and x0, such that for all x > x0, g(x) ≤ Cf(x).

g(x) = ox(f(x)) means that the limit limx→∞
g(x)
f(x)

= 0.

There is an unfortunate standard notation of dynkin diagrams and alternating groups.

There is a family of dynkin diagrams commonly denoted as An, and the alternating groups
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are also commonly denoted as An. In this thesis, we shall always use the upright An for

alternating groups, and the italicized An for dynkin diagrams.

For a complex number z, we use Re(z) to denote the real part of z.
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CHAPTER 2

Preliminary

2.1 Length functions on finite groups

We shall consider two types of geometries on finite groups. One is to embed a finite group in

an actual geometric space, say the unitary groups, and consider the induced geometry. This

way, we are studying representations of finite groups through their “extrinsic geometries”.

The other is to consider the Cayley graph of the group. This way, we are studying their

“intrinsic geometries”. But for both types of geometries, we are essentially studying the

various metric structures of a finite group. We are particularly interested in metrics on

groups that are compatible with the underlying group structure. Compare the following two

definitions:

Definition 2.1.1. A pseudo-metric space is a set X with a non-negative function d : X ×

X → R+, such that the following is true:

1. d(x, x) = 0 for all x ∈ X.

2. For all x, y ∈ X, d(x, y) = d(y, x).

3. For all x, y, z ∈ X, d(x, y) + d(y, z) ≥ d(x, z).

If d(x, y) 6= 0 whenever x 6= y, then d is a metric, and X is a metric space.

Definition 2.1.2. A pseudo-length function of a group G is a non-negative function ` : G→

R+, such that the following is true:

1. `(e) = 0 for the identity element e.
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2. `(g) = `(g−1) for all g ∈ G.

3. `(gh) ≤ `(g) + `(h) for all g, h ∈ G.

If `(g) 6= 0 whenever g 6= e, then ` is a length function.

Definition 2.1.3. A length function ` on a group G is invariant if `(ghg−1) = `(h) for all

g, h ∈ G.

Given a group G and a pseudo-length function ` on G, then d(g, h) = `(gh−1) is a pseudo-

metric on G, ang it is a metric if ` is a length function. So our task now is to study finite

groups via their length functions.

2.2 Unitary groups

Since we shall study length functions of finite groups induced from their representations, we

shall hereby lay down some basic properties of unitary groups.

Definition 2.2.1. The unitary group Un(C) is the group of complex n by n matrices A such

that the conjugate transpose of A is the inverse of A.

Note that Un(C) is not just a group, but in fact a Lie group with induced smooth

structures as a subset of Mn×n(C) = Cn×n.

Definition 2.2.2. The Hilbert-Schmidt norm of an n by n complex matrix A is defined

as ||A|| =
√

Tr(A ∗ A).

Lemma 2.2.3.

1. The Lie group Un(C) has a Riemannian metric d : Un(C) × Un(C) → R such that

d(A,B) = ||B−A|| for all A,B ∈ Un(C). The norm here is the Hilbert-Schmidt norm.

2. This metric is bi-invariant in the sense that d(AB,AC) = d(BA,CA) = d(B,C) for

all A,B,C ∈ Un(C).
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3. This metric induces a Haar measure, and the volume of Un(C) under this Haar measure

is finite, and vol(Un(C)) = (2π)n(n+1)/2

1!2!...(n−1)!
.

4. Under the metric d, Un(C) has non-negative Ricci curvature everywhere.

5. All geodesic ball of same radius r in Un(C) will have the same volume Bn(r). This

volume is bounded by O(rn
2
), where the implied constant is independent of r. And if

r is small enough, then the volume Bn(r) is also bounde below by Θ(rn
2
), where the

implied constant is independent of r.

6. One parameter subgroups of Un(C) are exactly geodesics through the identity.

Proof. These are very standard facts. See, e.g., [Sep07] and [CE75].

Proposition 2.2.4. The function `HS : Un(C)→ R+ that sends each matrix A in Un(C) to

||A− I|| is an invariant length function on Un(C).

Proof. Let A,B be any unitary matrices. Let d be the Hilbert-Schmidt distance function on

Un(C), which is a bi-invariant metric.

Positivity: Clearly `HS(A) = d(A, I) ≥ 0. And we have

`HS(A) = 0 ⇐⇒ d(A, I) = 0 ⇐⇒ A = I.

Symmetry:

`HS(A) = d(A, I) = d(AA−1, IA−1) = d(I, A−1) = `HS(A−1).

Conjugate Invariance:

`HS(BAB−1) = d(BAB−1, I) = d(BA,B) = d(A, I) = `HS(A).

Triangle Inequality:

`HS(AB) = d(AB, I) ≤ d(AB,B) + d(B, I) = d(A, I) + d(B, I) = `HS(A) + `HS(B).

We call the length function `HS the Hilbert-Schmidt length function.
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2.3 Cayley graphs and Schreier graphs

Definition 2.3.1. Given a group G and a symmetric generating subset S, its Cayley graph

is a graph Γ where the vertices of Γ are elements of G, and two vertices g, h ∈ G are connected

by an edge iff g = sh for some s ∈ S.

Definition 2.3.2. Given an action of a group G on a set X, and a symmetric generating

subset S of G, the corresponding Schreier graph is a graph Γ(G,X) where the vertices of

Γ(G,X) are elements of X, and two vertices x, y ∈ X are connected by an edge iff x = sy

for some s ∈ S.

Note that a Cayley graph is the same as the Schreier graph of G acting on itself.

Definition 2.3.3.

1. Given any graph Γ, it has a natural distance function d : Γ×Γ→ R+ such that d(v, w)

is the smallest number of edges required to go from the vertex v to the vertex w.

2. The diameter of a graph Γ is defined as the following:

diam(Γ) := sup
v,w∈Γ

d(v, w).

We define the diameter to be infinity if the graph Γ is disconnected.

Proposition 2.3.4. Given a group G acting transitively on a finite set X, and a finite

generating set S of G, the diameter of the Schreier graph has a trivial upper bound of |X|,

the number of elements in X. It has a trivial lower bound by log|S| |X|.

Proof. The proof is completely trivial, but it illustrates a nice idea about how we shall

approach the study of diameters of Cayley graphs. So we shall describe it here.

Pick any element x0 of X. Let Br(x0) be the “balls of radius r centered at x0”, which is

the set of all vertices with distance at most r from x0. Then the sequence B0(x0), B1(x0), ...

gives a increasing sequence of subsets in X. Note that, since S is a generating set of G, and

G acts transitively on X, and X is finite, therefore it must follow that Γ(G,X) is connected

and X = Bd(x0) where d is the diameter of the Schreier graph.
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So to study the diameter of Γ(G,X), it is enough to study the growth rate of the sequence

of balls around x0. Now, if Br(x0) = Br+1(x0), then Br(x0) must be a non-empty connected

component of Γ(G,X), so it must in fact be Γ(G,X) itself. So whenever r < d, we always

have |Br+1(x0)| ≥ |Br(x0)|+ 1. So |X| = |Bd(x0)| ≥ d.

Conversely, since S contains the identity, each vertex of Γ(G,X) has degree at most

|S| − 1. So |B1(x0)| ≤ |S|, and for all 2 ≤ r ≤ d, we have

|Br(x0)| ≤ |Br−1(x0)|+ (|S| − 2)(|Br−1(x0)| − |Br−2(x0)|).

By induction we have |Br(x0)| ≤ |S|r for all r ≤ d. So |X| ≤ |S|d.

The above proof illustrated that, to study diameters, it is crucial to understant the growth

rate of subsets. This shall be the guiding philosophy for all diameter problems considered in

this dissertation.

2.4 Formed spaces

In this thesis we shall study linear groups over finite fields from time to time, so it is important

to also study the spaces they act on. In this section we shall formally define formed spaces.

Throughout this section, we shall fix a field k and a vector space V over k. Let σ be an

automorphism of k such that σ2 is the identity automorphism.

Definition 2.4.1. Give a function B : V × V → k, we have the following definitions:

1. B is a bilinear form if it is linear in both the first and the second argument.

2. B is a symmetric bilinear form if it is bilinear and B(v, w) = B(w, v) for all

v, w ∈ V .

3. B is an alternating bilinear form if it is bilinear and B(v, w) = −B(w, v) for all

v, w ∈ V .

4. B is a σ-Hermitian form if it is linear in the first argument, and B(v, w) =

σ(B(w, v)).
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5. B is non-degenerate if B(v, w) = 0 for all w ∈ V implies that v = 0, and B(v, w) = 0

for all v ∈ V implies that w = 0.

Definition 2.4.2. A function q : V → k is called a quadratic form if Q(av) = a2Q(v) for

all a ∈ k and v ∈ V , and q(v + w) − q(v) − q(w) is a symmetric bilinear form. Bq(v, w) =

q(v + w)− q(v)− q(w) is the called the symmetric bilinear form associated to q. A

quadratic form q is non-degenerate if Bq(v, w) = 0 for all w ∈ V and q(v) = 0 imply

v = 0.

2.5 Classification of finite simple groups

Definition 2.5.1. A group is simple if its only normal subgroups are the whole group and

the trivial subgroup.

In this thesis, we shall pay special attention to finite simple groups. So in this section,

we shall briefly introduce a coarse version of the classification of finite simple groups. To do

this, we shall first construct a few families of groups used in our coarse classification of finite

simple groups.

Definition 2.5.2. Given a dynkin diagram X, let G be the corresponding algebraic group

over the algebraic closure of any finite field. Let F : G → G be any endomorphism of the

algeraic group G. Let G
F

be the subgroup of fixed points in G by F , and let G be the

quotient of the derived subgroup of G
F

by its center. We have the following cases.

1. If F is some power of the Frobenius endomorphism, then G called the finite simple

Chevalley groups .

2. If F is the composition of some power of the Frobenius endomorphism with an auto-

morphism of G induced by a non-trivial automorphism of the dynkin diagram X, then

G, G′, G/Z(G), G′/Z(G′) are called the finite simple Steinberg groups.

3. If F is the exceptional endomorphism of G such that the square of F is an odd power

of the Frobenius endomorphism, then G, G′, G/Z(G), G′/Z(G′) are called the finite

10



simple Suzuki-Ree groups .

These groups G are called finite simple groups of Lie type . The rank of G is the

smallest rank of all dynkin diagrams that give rise to G.

Example 2.5.3. Let V be a vector space of dimension n over Fq, the field of order q. The

following four kinds of groups are called the finite simple classical groups:

1. Let SLn(V ) be the group of linear maps with determinant 1. Then the group PSLn(V ) =

SLn(V )/Z(SLn(V )) is a finite simple Chevalley group for the dynkin diagram An−1. In

particular, they have rank at most n− 1.

2. Let Spn(V ) be the group of linear maps fixing a non-degenerate alternating bilinear form

on V . Then the group PSpn(V ) = Spn(V )/Z(Spn(V )) is a finite simple Chevalley group

for the dynkin diagram Cn
2
. In particular, they have rank at most n

2
.

3. Let Un(V ) be the group of linear maps fixing a non-degenerate Hermitian form on V ,

and let SUn(V ) be the subgroup of Un(V ) of determinant 1. Then the group PSUn(V ) =

SUn(V )/Z(SUn(V )) is a finite simple Steinberg group for the dynkin diagram An−1. In

particular, they have rank at most n− 1.

4. Let On(V ) be the group of linear maps fixing a non-degenerate quadratic form on V .

Let Ωn(V ) be its derived subgroup. Then the group PΩn(V ) = Ωn(V )/Z(Ωn(V )) is a

finite simple group of Lie type. If n is odd, then it is a finite simple Chevalley group for

the dynkin diagram Bn−1
2

, so G has rank at most n−1
2

. If n is even, then there are two

possible choices of quadratic forms, one gives rise to the finite simple Chevalley group

for the dynkin diagram Dn
2
, the other gives rise to the finite simple Steinberg group for

the dynkin diagram Dn
2
. Either way, G has rank at most n

2
.

Now we are ready to present the following coarse classification, which is essentially a

much shorter way to write the famous classification of finite simple groups.

Theorem 2.5.4 (Classification of finite simple groups). Any finite simple group must belong

to at least one of the following families of groups:
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1. Cyclic groups of prime order.

2. Alternating groups.

3. Finite simple classical groups.

4. Finite simple groups of Lie type of rank at most 8.

5. 26 Sporadic groups.

At times, results on finite simple groups can usually be generalized to a class of groups

very close to being fintie simple, called quasisimple groups.

Definition 2.5.5. A group G is quasisimple if it is a finite central extension of a finite

simple group, i.e., G is finite and G/ZG is a finite simple group.

It turns out that each finite simple group has a unique “universal covering group”, which

serves as the “largest” possible finite central extension of it. And a group is quasisimple if

and only if it is a non-trivial quotient of some universal covering group, see e.g., [Asc00].

So in order to study quasisimple groups, it is usually enough to study these universal

covering groups. The order of the center of these groups are bounded by the size of the Schur

multipliers of the finite simple groups they cover. And the Schur multipliers are classified as

part of the classification of finite simple groups, so they are all known.

With finitely many exceptions, the universal covering groups for finite simple classical

groups are usually the groups before projectivization.

2.6 The field with one element

The concept of the field with one element is first suggested by Jacques Tits [Tit57]. There is

no field with one element. However, the notion “field with one element” refers to a guiding

philosophy that combines the study of alternating groups and the study of finite simple

groups of Lie type. The general idea is that the symmetric groups Sn should behave like the

general linear groups GLn(Fq) with q = 1, and the alternating groups An should therefore
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behave like the special linear groups SLn(Fq) with q = 1. We shall briefly describe this

intuition here in a combinatorial way.

Suppose for now that there really is a field with one element F1. Then the obvious

obstacle is that any affine space over it An(F1) must only contain one point, the origin.

However, things are much better if one looks at the projective spaces instead.

To start, the projective space of dimension 0 is just one point. For each positive integer

n, then Pn(F1), the projective space over F1 of dimension n, should be An(F1) plus the

“points at infinity”, which form a projective space of dimension n− 1. So as a set, Pn(F1) =

An(F1)∪Pn−1(F1). In particular, by induction Pn(F1) should simply be a set of n+ 1 points.

Since projective spaces should be homogeneous, it should not matter which point we pick

to be An(F1) inside Pn(F1). So in particular, any subset with n elements is a n−1 dimensional

subspace of Pn(F1). It follows that any subset with k elements is a k−1 dimensional subspace

of Pn(F1).

Now let us go back to affine spaces. The projective space Pn−1(F1) is suppose to be the

set of lines through the origin in An(F1). So we see that even though An(F1) has only 1

point, it nevertheless has n lines through the origin, and it has
(
n
k

)
subspaces of dimension

k. And distinct lines are linearly independent. Finally, any quadratic form on An(F1) must

be trivial, so for visual convenience, one can assume the n lines of An(F1) are perpendicular,

and are in fact the n “axis” of An(F1).

Now a general linear group over An(F1) should be a permutation of lines in An(F1) that

preserves the linear structure. Since the linear structure is trivial, it follows that the general

linear group should be the symmetric group Sn. Since the n lines of An(F1) are linearly

independent, they form a “basis”, and the matrix representation of Sn on this “basis” is

simply the representation of Sn as n by n permutation matrices. So one can define the

transpose, determinant and so forth for permutations in Sn. So we see that An corresponds

to the special linear groups, and Sn and An also corresponds to the orthogonal and special

orthogonal groups.

Finally, we conclude this section by a few countings that further support the philosophy
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of treating Sn and An as GLn(Fq) and SLn(Fq) when q = 1.

Definition 2.6.1. For a prime power q, we define the following q-analogues :

1. [n]q = (qn − 1)/(q − 1).

2. [n]q! = [1]q · [2]q · . . . · [n]q.

3.
(
n
k

)
q

= [n]q !

[k]q !·[n−k]q !

Note that, in the above notions, if one take the limit as q goes to 1, then [n]q = n,

[n]q! = n!, and
(
n
k

)
q

=
(
n
k

)
.

Proposition 2.6.2. We have the following analogies:

1. |Pn(Fq)| = [n+ 1]q, and |Pn(F1)| = n+ 1 .

2. The number of k dimensional subspaces of An(Fq) is
(
n
k

)
q
, and the number of k dimen-

sional subspaces of An(F1) is
(
n
k

)
.

3. There are [n]q! maximal flags in An(Fq), and n! maximal flags in An(F1).

4. |GLn(Fq)| = q
n(n−1)

2 |GL1(Fq)|n[n]q!, and |Sn| = 1
n(n−1)

2 |S1|nn!.
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CHAPTER 3

Conjugacy Expansion

3.1 Expansions of conjugacy class

Recall that, for an element g of a group, we denote its conjugacy class by C(g). In this

chapter, we aim to study the shape of a finit group G by looking at C(g), C(g)2, C(g)3, ..., a

sequence of subsets of G.

Definition 3.1.1. Given a finite group G and an element g ∈ G, we say g has covering

number K if C(g)K = G. If no such positive integer K exists, then g has covering number

∞.

Remark 3.1.2. If an element has covering number K, then it has covering number K ′ for

all K ′ ≥ K.

Example 3.1.3.

1. The covering numbers for an element g in finite abelian groups G is |G| only when G

is cyclic and g is a generator. Otherwise, the covering number is ∞. So abelian groups

have the worst covering numbers.

2. On the opposite side, suppose G is a non-abelian finite simple group. By a theorem

of Liebeck and Shalov [LS01], if S is a normal subset of G, then G = SK for any

K ≥ O( logG
logS

). So these groups have optimal covering numbers.

In this section, we shall show that the covering number of a finite group is to some degree

controlled by its representations.
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Definition 3.1.4. Given a finite group G and a representation ρ : G → Un(C), then the

representation pseudo-length function of ρ on G is the length function `ρ that maps

each g ∈ G to `HS(ρ(g)).

Since any representation pseudo-length function must be invariant, we can visualize our

group as sitting in the unitary group with each conjugacy class contained in the boundary

of a ball around the identity matrix.

Proposition 3.1.5. Given a finite group G and an element g ∈ G with covering number K,

then K ≥
√

2 deg(ρ)

`ρ(g)
for any representation ρ with no trivial subrepresentation.

Proof. Let χρ be the character for ρ. Then for any h ∈ G, we have the following:

`ρ(h)2 = Tr((ρ(h)− I)∗(ρ(h)− I))

= Tr(ρ(h)∗ρ(h)− ρ(h)∗ − ρ(h) + I)

= Tr(2I − ρ(h) ∗ −ρ(h)))

=2 deg(ρ)− 2Re(χρ(h)).

Since ρ has no trivial subrepresentation, by orthogonality we have
∑

h∈G χρ(h) = 0. So in

particular, there is an h ∈ G such that Re(χρ(h)) ≤ 0. So `ρ(h) ≥
√

2 deg(ρ).

Now since h ∈ G = C(g)K and `ρ is an invariant pseudo-length function, we have the

following: √
2 deg(ρ) ≤ `ρ(h) ≤ K`ρ(g)

Conversely, the representations of a finite group is also controlled by the covering number

of its elements. In particular, if in a finite groups of large order, all non-trivial elements has

small covering number, then the group has no faithful representations of small dimension.

This can be easily seen as a corollary of the Camille Jordan’s theorem for finite linear groups

[Jor78]. We shall present another proof here, which is similar in flavor with the proof of

Jordan’s theorem, but is slightly more in line with proofs of later sections of this chapter.
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Proposition 3.1.6. Fix positive integers K and D. Then there is a constant CK,D, such

that for any finite group G with order |G| ≥ CK,D, if all elements of G has covering number

at most K, then G has no faithful representation of degree less than D.

Proof. Suppose G has a faithful representation ρ of degree less than D, and every non-trivial

element of G has covering number at most K. By throwing away trivial subrepresentations,

we can assume that ρ is a faithful representation of degree less than D with no trivial

subrepresentation.

By Proposition 3.1.5, for each g ∈ G with covering number at most K, we have

`ρ(g) ≥
√

2 deg(ρ)

K

So for any distinct g, h ∈ G, the Hilbert-Schmidt distance of ρ(g), ρ(h) is at least

√
2 deg(ρ)

K
.

So we can pack balls of radius

√
2 deg(ρ)

2K
and centered at each element of ρ(G). These balls

will be disjoint in Udeg(ρ)(C), and they all have the same volume depending only on deg(ρ).

So this will run into a contradiction if |G| ≥ CK,D for some constant CK,D depending only

on K and D.

3.2 Covering properties and oblateness of a discrete group

In last section, we showed that if all non-trivial elements of a group have small covering

number, then its faithful representations are restricted. It turned out that this is an overkill.

We only need several related elements to have small covering number, and we do not need

to assume that the group is finite or that the representation is faithful. In this section, we

shall lay out the concept of “oblateness” of a discrete group, and prove their relation to their

representations.

Definition 3.2.1.

1. An element g of a group G is said to have symmetric covering number K if

C(g)KC(g−1)K = G.
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2. Let m be a positive integer or ∞. Then an element g ∈ G has the (symmetric)

covering property (K,m) if gi has (symmetric) covering number K for all 1 ≤ i ≤ m.

3. A group G has the (symmetric) covering property (K,m) if it has an element

g ∈ G with the (symmetric) covering property (K,m).

4. A group G has the (symmetric) covering property (K,m) mod N for some normal

subgroup N if G/N has the (symmetric) covering property (K,m).

Definition 3.2.2.

1. A pair of elements (g1, g2) of a group G is said to have symmetric double covering

number (K1, K2) if we have C(g1)K1C(g−1
1 )K1C(g2)K2C(g−1

2 )K2 = G.

2. Let m1,m2 be positive integers or∞. A pair of elements (g1, g2) in G has the symmet-

ric double covering property [(K1,m1), (K2,m2)] if (gi1, g
j
2) has symmetric double

covering number (K1, K2) for all 1 ≤ i ≤ m1, 1 ≤ j ≤ m2.

3. A group G has the symmetric double covering property [(K1,m1), (K2,m2)] if

it has a pair of elements (g1, g2) in G with the symmetric double covering property

[(K1,m1), (K2,m2)].

4. A group G has the symmetric double covering property [(K1,m1), (K2,m2)] mod

N for some normal subgroup N if G/N has the symmetric double covering property

[(K1,m1), (K2,m2)].

Remark 3.2.3.

1. Suppose K < K ′. Then an element with covering number K has covering number K ′.

In general, the (symmetric) covering property (K,m) implies the (symmetric) covering

property (K ′,m′) when K ′ ≥ K,m′ ≤ m. A similar statement is also true for the

symmetric double covering properties.

2. Any symmetric covering property is always weaker than the corresponding non-symmetric

covering property.
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3. Any group with the symmetric covering property (K,m) has the symmetric double cov-

ering property [(1,∞), (K,m)]. This is easily seen by taking g1 to be the identity, and

taking g2 to be the element with the symmetric covering property (K,m).

4. In our definition of the symmetric double covering properties, since C(g1) and C(g2)

are conjugate invariant subsets of G, they necessarily commute, i.e., C(g1)C(g2) =

C(g2)C(g1). So the order of (K1,m1) and (K2,m2) does not matter.

5. By imitating the definition of the symmetric double covering properties, one can in

fact define the symmetric n-tuple covering properties for groups. As n grows larger

and larger, the corresponding covering properties will become weaker and weaker. Note

that most results throughout this paper would still hold by replacing the symmetric

double covering properties by the symmetric n-tuple covering properties, though for our

purpose here, the symmetric double covering properties are enough.

Now, suppose a finite group G is a subgroup of a compact connected Lie group M . M

will have a bi-invariant Riemannian metric unique up to scalar multiples. Under a fixed

bi-invariant metric, cyclic subgroups of G lies in closed geodesics of M through the origin,

and each conjugacy class of G lies in the boundary of a ball centered around the origin. For

visual convenience, assume that M looks like the earth, then cyclic subgroups of G lies in

the circles of longitude, while the conjugacy class lies in the circles of latitude.

Now supposeG has an element g with covering property (K,m). The elements g, g2, ..., gm

are packed in a circle of longitude. So if m is large, then there will be a gi close to the origin.

This gi has covering number K, so if K is small, C(gi) must be large. This means that the

circle of latitude through gi must be large. So a circle of latitude close to the north pole has

large length. Therefore our earth would look “flat”. In fact, there are m circles of latitude

with large length. So our earth looks like an oblate spheroid.

For the general case though, the geodesics going through g, g2, ..., gm might not be as nice

as a circle of longitude, and might have arbitrarily large length. So instead of packing these

elements in a geodesic, it is slightly better to pack disjoint geodesic balls around them into

M .
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In short, we can think of the pair (K,m) as measuring the “oblateness” of a group. If m

is large and K is small, then G with the covering property (K,m) is more “oblate”. And if

m is small and K is large for all possible covering properties (K,m) that G has, then G is

more rounded.

The idea is that, if a finite group is too “oblate”, and a unitary group is not “oblate”

enough, then the finite group cannot fit into the unitary group, and therefore any represen-

tation must be trivial. A more rigorous statement is the following proposition:

Proposition 3.2.4. There is a function f : Z+ → Z+ such that, for any positive integers

K1,m1, K2,m2 with mi
Kn2
i

> f(n) for i = 1, 2, then any discrete group with the symmetric dou-

ble covering property [(K1,m1), (K2,m2)] cannot have non-trivial representations of degree

less than n.

Proof. SupposeG is a discrete group with the symmetric double covering property [(K1,m1), (K2,m2)]

and a non-trivial representation ρ of degree n.

Let g1 and g2 be the pair of elements of G with the symmetric double covering property

[(K1,m1), (K2,m2)]. For any ε1 > 0, if m1 is large enough, then by packing balls of radius

ε1
2

into Un(C), we see that two points of {ρ(g1), ρg2
1, ..., ρ(gm1

1 )} will have distance less than

ε1. Furthermore, if ε1 is small enough, then geodesic balls in Un(C) of radius ε will have

radius Bn(ε1)n
2

for some constant Bn depending only on n. So if m1 ≥ vol(Un(C))

Bn(ε1)n2
for ε1 small

enough, then two points of {ρ(g1), ρg2
1, ..., ρ(gm1

1 )} will have distance less than ε1. Then there

is an integer 1 ≤ i ≤ m1 such that ρ(gi1) is at most ε1 away from the identity matrix I of

Un(C). Similarly, for any ε2 > 0, there is an integer 1 ≤ j ≤ m2 such that ρ(gj2) is at most

ε2 away from I.

Now let h be any element of G. Then since the pair (g1, g2) has the symmetric double

covering property [(K1,m1), (K2,m2)], we conclude that dHS(ρ(h), I) ≤ 2K1ε1 + 2K2ε2.

Now, since ρ is non-trivial, its image ρ(G) contains a non-trivial finite cyclic subgroup of

Un(C). By Lemma 3.2.5, it must contain an element of length at least
√

2. So there is an

element h of G such that ρ(h) is at least
√

2 away from I.

To sum up, we have
√

2 ≤ 2K1ε1 + 2K2ε2.
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So we can choose a function f ′ such that, if mi
Kn2
i

> f ′(n), then we can take ε1 and ε2

to be very small with 2K1ε1 + 2K2ε2 <
√

2. Then G will not be able to have non-trivial

representations of dimension n.

To finish our proof, we only need to take f(n) = sup1≤n′<n f
′(n′).

Lemma 3.2.5. Any non-trivial cyclic subgroup of Un(C) contains an element
√

2 away from

the identity matrix.

Proof. Let A be any nontrivial element of Un(C) of finite order. Let λ1, ..., λn be its eigenval-

ues, and WLOG say λ1 6= 1. Then λ1 is a primitive k-th root of unity for some k. Replacing

A by a proper power of itself, we may assume that λ1 is an k-th root of unity closest to −1.

Then in particular, |λ1 − 1| >
√

2.

Then we know

`(A)2 = Tr(A− I)∗(A− I) =
n∑
i=1

|λi − 1|2 ≥ |λ1 − 1|2 > 2.

Now suppose A has infinite order. Let λ1, ..., λn be its eigenvalues, and WLOG say λ1 6= 1.

Then λ1 is an element of infinite order on the unit circle. Replacing A by a proper power of

itself, we may assume that λ1 is arbitrarily close to −1. Then in particular, |λ1 − 1| >
√

2.

Then we are done by the same computation.

Remark 3.2.6.

1. As can be seen from the proof of Proposition 3.2.4, for a covering property (K,m), the

quantity m is essentially compared with the volume of Un(C), whereas the quantity K

is essentially compared with the length of the shortest geodesic in Un. The study of

the relation between the volume and the length of the shortest geodesic is called systolic

geometry. So essentially, a covering property (K,m) is like a finite analogue of systolic

properties of a finite group.

2. In Proposition 3.2.4, we can in fact replace the unitary group Un(C) by any compact

connected Lie group M with a fixed bi-invariant metric. Then we can essentially use
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the same proof. The constant f(n) would have to be changed though, depending on the

Lie group M .

3.3 Covering properties and cosocles

We shall show that symmetric (double) covering properties ignore cosocles in general.

Definition 3.3.1. For a group G, we define its cosocle Cos(G) to be the intersection of all

maximal normal subgroups of G.

Lemma 3.3.2. Let G be a group, and let N be a normal subgroup of G contained in its

cosocle. Let C be a conjugate invariant symmetric subset of G, such that CN = G. Then

for any non-empty conjugate invariant subset S ⊆ G, SC = S iff S = G.

Proof. Suppose SC = S and S 6= G. Then we have SCi = S for any positive integer i. So

S must contain the subgroup generated by C. Since C is conjugate invariant, the subgroup

generated by C is a normal subgroup, and it is a proper normal subgroup since it is contained

in S 6= G. In particular, C is contained in a maximal normal subgroup M of G.

But since N is in the cosocle, it is contained in M . So

CN ⊆MN = M ( G.

This is a contradiction.

Proposition 3.3.3. Let G be a group with the symmetric double covering property [(K1,m1), (K2,m2)]

mod N for a normal subgroup N contained in the cosocle, and suppose that N contains

exactly n conjugacy classes of G. Then G has the symmetric double covering property

[((3n− 2)K1,m1), ((3n− 2)K2,m2)].

Proof. Find g1, g2 ∈ G such that (g1N, g2N) has symmetric double covering number (K1, K2)

in G/N . Let C := C(g1)K1C(g−1
1 )K1C(g2)K2C(g−1

2 )K2 . Then by assumption, C is mapped

surjectively onto G/N through the quotient map. So CN = G.
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Now N contains exactly n conjugacy classes of G. I claim that C3t contains at least t+ 1

conjugacy classes of G in N , which would imply that C3n−3 ⊇ N . Then C3n−2 ⊇ CN = G,

finishing our proof.

We proceed by induction. As a convention we define C0 to be {e}. Then the claim is

true when t = 0.

Now assume the statement is true for some t < n. Then C3t contains t + 1 conjugacy

classes of G in N . Let them be C1, ..., Ct+1. Then we have C3t+1 ⊇ C(
⋃t+1
i=1 Ci). Suppose for

contradiction that C3t+2 is disjoint from C(N −
⋃t+1
i=1 Ci). Then we observe that

C(N −
t+1⋃
i=1

Ci) ⊇ CN − C(
t+1⋃
i=1

Ci) = G− C(
t+1⋃
i=1

Ci) ⊇ G− C3t+1.

So C3t+2 ⊆ C3t+1. Then Lemma 3.3.2 implies that C3t+2 = C3t+1 = G. This contradicts the

assumption that C3t+2 is disjoint from C(N −
⋃t+1
i=1 Ci).

So, C3t+2 intersects with C(N −
⋃t+1
i=1 Ci). Let g be an element in this intersection. Then

g ∈ CCt+2 for some conjugacy class Ct+2 of G in N disjoint from C1, ..., Ct+1. Find h ∈ Ct+2

such that g ∈ Ch. Then since C is symmetric, we have h ∈ Cg ⊆ C3t+3. So C3t+3 intersects

with Ct+2. Since C3t+3 is conjugate invariant, we conclude that C3t+3 contains Ct+2.

Finally, since e ∈ C, we see that C3t+3 also contains C1, C2, ..., Ct+1. So C3t+3 contains

t+ 2 conjugacy classes of G in N .

Proposition 3.3.4. Let G be a group with the symmetric covering property (K,m) mod N

for a normal subgroup N contained in the cosocle, and suppose that N contains exactly n

conjugacy classes of G. Then G has the symmetric covering property ((3n− 2)K,m).

Proof. Same strategy as Proposition 3.3.3.

3.4 Alternating groups with Covering properties

In the following section, we shall show that all non-abelian finite simple groups has good

covering properties, as long as the order of the group is large enough. We shall start with

alternating groups.
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Definition 3.4.1. An even permutation σ ∈ An is exceptional if its cycles in its decompo-

sition has distinct odd lengths, or equivalently, if its conjugacy class in An is different from

its conjugacy class in Sn.

Lemma 3.4.2 (Brenner [Bre78, Lemma 3.05]). If an even permutation σ ∈ An is fixed-point

free and non-exceptional, then An = C(σ)4.

Proposition 3.4.3. For any m ∈ Z+, An has the covering property (4,m) for large enough

n.

Proof. Pick any odd prime p > m, and pick another prime q > p.

Since p, q are necessarily coprime, for any large enough integer n, we can find positive

integers a, b such that n = ap+ bq. Let σ ∈ Sn be a permutation composed of a p-cycles and

b q-cycles, where all cycles are disjoint.

Since p, q are odd, σ is an even permutation in An. Furthermore, for large enough n, a or

b can be chosen to be larger than 1, so σ will be non-exceptional. Since σ is also fixed-point

free by construction, Lemma 3.4.2 implies that An = C(σ)4.

Now clearly σi will also have a cycle decomposition of a p-cycles and b q-cycles for all

1 ≤ i ≤ p − 1, and this implies that An = C(σi)4 for all 1 ≤ i ≤ p − 1. So An has the

covering property (4, p− 1). Since p− 1 ≥ m, An has the covering property (4,m).

Proposition 3.4.4. Let G be a quasisimple group over an alternating group. Then for any

m <∞, G has the symmetric covering property (16,m) if |G| is large enough.

Proof. Alternating groups An with n > 7 have Schur multiplier 2. So |G| ≤ 2|G/Z(G)|.

So if |G| is large enough, then the alternating group it covers must be large enough. Then

Proposition 3.4.3 implies that An has the covering property (4,m). So G has the covering

property (16,m).
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3.5 Finite simple groups of Lie type of bounded rank with Cov-

ering properties

Lemma 3.5.1 (Stolz and Thom [ST13, Proposition 3.8]). There is a function K : Z+ → Z+

such that, in any finite simple group of Lie type of rank ≤ r, any non-identity element will

have covering number K(r).

We shall fix this function K(r) from now on.

Lemma 3.5.2 (Babai, Goodman and Pyber [BGP97, Proposition 5.4]). Let k be any positive

integer. Then for any finite simple group G, if |G| ≥ kk
2
, then |G| has a prime divisor greater

than k.

Proposition 3.5.3. Let G be a finite simple group of Lie type of rank ≤ r. For any m <∞,

G has the covering property (K(r),m) if |G| is large enough.

Proof. For any m ∈ Z+, suppose G has order larger than mm2
, and thus have an element g

of prime order p > m. Then gi are non-identity for all 1 ≤ i ≤ p − 1. Then Lemma 3.5.1

states that all these elements have covering number K(r). So G has the covering property

(K(r),m).

Corollary 3.5.4. Let G be a finite quasisimple group of rank ≤ r. For any m <∞, G has

the symmetric covering property (K(r) max(3r + 1, 10),m) if |G| is large enough.

Proof. There are only finitely many quasisimple groups covering the same finite simple group,

and there are only finitely many finite simple groups of a given order. So if |G| is large enough,

then the finite simple groups it covers must have large enough order.

Therefore, it is enough to show that, if a finite simple group of Lie type G with rank ≤ r

has the covering property (K,m), then any perfect central extension G′ of it will have the

covering property (K(r) max(3r + 1, 10),m).

Let Z be the center of G′. Then Z will be the cosocle of G′, and the Schur multiplier

of the simple group G would provide an upper bound for |Z|. Since G has a rank at most
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r, by going through the list of finite simple groups, its Schur multiplier has a size at most

max(r+1, 4) if G is large enough. So if G has the covering property (K,m), Proposition 3.3.4

implies that G′ has the symmetric covering property (K(r) max(3r + 1, 10),m).

3.6 Jordan length function for finite classical groups

For our purpose of studying covering properties, the best length function for any group is

the following one.

Definition 3.6.1. For any group G, the conjugacy length function `C : G→ R+ maps each

g to log |C(G)|
log |G| .

However, this is annoying to compute from time to time. Here we shall introduce a length

function for finite classical groups that is asymptotically the same as the conjugacy length

function, but it is much easier to compute in various cases.

Definition 3.6.2. Let g be an n×nmatrix over a finite field F . Letmg := supa∈F× dim(ker(a−

g)). Then the Jordan length of g is `J(g) := n−mg
n

The asymptotic equivalence of Jordan length function and the conjugacy length function

can be deduced essentially from the work of Liebeck and Shalev [LS01], and the case of general

linear groups and special linear groups is explicitely worked out by Stolz and Thom [ST13].

Here we shall obmit the proof of these facts, but merely cite the following consequence of it

which is the most useful to our purpose.

Proposition 3.6.3. Let G be any subgroup of GLn(F ) for some finite field F . The function

`J on G is a pseudo length function.

Proof. Non-negativity: For any g ∈ G,

mg = sup
a∈F×

dim(ker(a− g)) ≤ n.

So `J(g) = n−mg
n
≥ 0.
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Symmetry: For any g ∈ G, any a ∈ F×, and any vector v ∈ F n, we have

v ∈ ker(a− g) ⇐⇒ av = gv ⇐⇒ g−1v = a−1v ⇐⇒ v ∈ ker(a−1 − g−1).

As a result,

mg = sup
a∈F×

dim(ker(a− g)) = sup
a∈F×

dim(ker(a−1 − g−1)) = mg−1 .

So `J(g) = `J(g−1).

Conjugate-invariance: For any g, h ∈ G, any a ∈ F×, and any vector v ∈ F n, we have

v ∈ ker(a− g) ⇐⇒ av = gv ⇐⇒ ahv = (hgh−1)hv ⇐⇒ hv ∈ ker(a− hgh−1).

As a result,

mg = sup
a∈F×

dim(ker(a− g)) = sup
a∈F×

dim(ker(a− hgh−1)) = mhgh−1 .

So `J(g) = `J(hgh−1).

Triangle inequality: For any g, h ∈ G, any a, b ∈ F×, and any vector v ∈ F n, we have

v ∈ ker(a− g) ∩ ker(a− abh−1) =⇒ gv = av = abh−1v =⇒ v ∈ ker(abh−1 − g).

So we know ker(a− g) ∩ ker(a− abh−1) ⊆ ker(abh−1 − g). As a result, we have

mgh ≥ dim ker(ab− gh)

≥ dim ker(abh−1 − g)

≥ dim(ker(a− g) ∩ ker(a− abh−1))

≥ dim(ker(a− g)) + dim(ker(a− abh−1))− n

≥ dim(ker(a− g)) + dim(ker(b− h))− n.

Since this is true for all a, b ∈ F×, thereforemg+mh−n ≤ mgh. So `J(gh) ≤ `J(g)+`J(h).

Lemma 3.6.4 (Stolz and Thom [ST13, Lemma 3.11]). There is an absolute constant c0,

such that for any finite classical quasisimple group of Lie type G, and for any g ∈ G \Z(G),

where Z(G) is the center of G, then C(g)K = G for all K ≥ c
`J (g)

.
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In short, elements of large Jordan length will automatically have small covering number.

Now let us relate Jordan length function to the classical finite groups of characteristic 1, i.e.,

the symmetric and alternating groups. Recall that the matrix representation of these groups

are precisely the permutation matrices.

Lemma 3.6.5. Given an n1 × n1 matrix A over a finite field F , and an n2 × n2 matrix B

over the same finite field, then `J(A⊕B) ≥ n1

n1+n2
`J(A) + n2

n1+n2
`J(B).

Proof. For any a ∈ F×, we have the following

ker(a− A⊕B) = ker((a− A)⊕ (a−B)) = ker(a− A)⊕ ker(a−B).

So dim ker(a − A ⊕ B) ≤ mA + mB. Since this is true for all a ∈ F×, therefore mA⊕B ≤

mA +mB. So we have

`J(A⊕B) =
n1 + n2 −mA⊕B

n1 + n2

≥n1 + n2 −mA −mB

n1 + n2

≥n1 −mA

n1 + n2

+
n2 −mB

n1 + n2

≥ n1

n1 + n2

`J(A) +
n2

n1 + n2

`J(B).

Lemma 3.6.6. If P is an n × n permutation matrix over any finite field where its cycle

decomposition has k cycles, then we have `J(P ) ≥ n−k
n

.

Proof. By cycle decomposition, after a change of basis in the vector space, P will be a direct

sum of many cyclic permutation matrices. By Lemma 3.6.5, it’s enough to prove the case

when P is a single cycle of length n, and show that `J(P ) ≥ n−1
n

.

Since P is a single cycle of length n, its eigenvalues in the algebraic closure of F are

precisely all the n-th roots of unity, with multiplicity 1 for each root of unity. So dim ker(a−

P ) ≤ 1 for all a ∈ F×. So `J(P ) ≥ n−1
n

.
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3.7 Classical finite groups of unbounded rank with Covering prop-

erties

The main idea here is to embed the alternating groups into the classical finite groups, and

extend the conjugacy expansion of the alternating group to the classical finite group that

contains it.

Proposition 3.7.1. There is an absolute constant K0 such that, for any m < ∞, for any

finite quasisimple group of Lie type of n × n matrices, if it contains An as permutation

matrices, then it will have the covering property (K0,m) for large enough n.

Proof. Let K0 > 3c0 for the absolute constant c0 in Lemma 3.6.4. Then any element A of

Jordan length ≥ 1
3

will have covering number K0 in any finite quasisimple group of Lie type.

Pick any odd prime p > m, and pick another prime q > p. For any large enough n, we

have n = ap+bq for some integers a > 1, 0 < b < p+1. Then find σ ∈ An made up of exactly

a p-cycles and b q-cycles, where all cycles are disjoint. This element will be fixed-point free

and non-exceptional, and it will have at most a+ b ≤ n
p

+ p cycles.

For any finite quasisimple group of Lie type of n× n matrices, suppose it contains An as

permutation matrices. Let P be the matrix corresponding to σ. Then we have

`J(P ) ≥
n− n

p
− p

n
= 1− 1

p
− p

n
>

1

3
.

The last inequality follows because p ≥ 3 and n ≥ 2p+ q > 3p.

So this element will have covering number K0 in G. It clearly has order pq, and all of

its powers coprime to pq will also have the same covering number. So G has the covering

property (K0, p− 1).

Corollary 3.7.2. For any m <∞, all finite special linear groups of rank r for large enough

r will have the covering property (K0,m). Here K0 is the absolute constant in Proposi-

tion 3.7.1.

Proposition 3.7.3. There is an absolute constant K0, such that for any m < ∞, we have

the following:
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1. For any finite quasisimple group of Lie type of 2n × 2n matrices, if it contains An as

{P⊕P : P ∈ An is a permutation n×n matrix}, then it will have the covering property

(K0,m) for large enough n.

2. Let I1 be the 1 by 1 identity matrix. Then for any finite quasisimple group of Lie type of

(2n+1)× (2n+1) matrices, if it contains An as {P ⊕P ⊕I1 : P ∈ An is a permutation

n× n matrix}, then it will have the covering property (K0,m) for large enough n.

3. Let I2 be the 2 by 2 identity matrix. Then for any finite quasisimple group of Lie type of

(2n+2)× (2n+2) matrices, if it contains An as {P ⊕P ⊕I2 : P ∈ An is a permutation

n× n matrix}, then it will have the covering property (K0,m) for large enough n.

Proof. The strategy is identical to Proposition 3.7.1. Just take σ⊕σ, σ⊕σ⊕I1 or σ⊕σ⊕I2

instead of σ, and use Lemma 3.6.5.

Definition 3.7.4. A vector space V is a non-degenerate formed space if it has a non-

degenerate quadratic form Q (the orthogonal case), or a non-degenerate alternating bilinear

form B (the symplectic case), or a non-degenerate Hermitian form B (the unitary case).

Lemma 3.7.5 (Witt’s Decomposition Theorem). Let V be any non-degenerate formed space

over a finite field F . Then we have an orthogonal decomposition V = W ⊕ (
⊕n

i=1Hi) where

W is anisotropic of dimension at most 2, and Hi are hyperbolic planes.

Proof. These are standard facts in the geometry of classical groups (e.g., See [Gro02]).

Proposition 3.7.6. For a non-degenerate formed space, the special isometry group, i.e.,

the group of isometries of determinant 1, contains an alternating group in one of the ways

described by Proposition 3.7.3.

Proof. Let V be any finite dimensional non-degenerate formed space over any finite field F .

Then we have an orthogonal decomposition V = W ⊕ H with an anisotropic space W of

dimension at most 2, and an orthogonal sum of hyperbolic planes H =
⊕n

i=1 Hi.
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Then let (vi, wi) be a hyperbolic pair generating Hi for each i. For any σ ∈ An, we

can let σ act by permutation on the set {v1, .., vn, w1, ..., wn}, such that σ(vi) = vσ(i) and

σ(wi) = wσ(i).

Now clearly {v1, ..., vn, w1, .., wn} is a basis of H. So the above action of σ induces a

linear transformation P ⊕P on H, where P is the n×n permutation matrix for σ. And this

P ⊕ P is clearly an isometry on H by construction. Now taking the direct sum of P ⊕ P on

H and the identity matrix on W , we shall obtain our desired embedding of An into the full

isometry group.

Finally, since P is a permutation matrix for an even permutation, it has determinant 1.

Therefore the above embedding of An is in the special isometry group.

Corollary 3.7.7. For any m < ∞, any finite symplectic or special unitary group of rank

r has the covering property (K0,m) for large enough r. K0 is the absolute constant in

Proposition 3.7.3.

Corollary 3.7.8. For any m < ∞, any Ω+
2n(Fq), Ω2n+1(Fq) or Ω−2n(Fq) has the covering

property (K0,m) for large enough n. K0 is the absolute constant in Proposition 3.7.3.

Proof. Embed An in SO+
2n(q), SO−2n(q) and SO2n+1(q) in the ways described by Proposi-

tion 3.7.3. After taking the commutator subgroup, the groups Ω+
2n(q), Ω−2n(q) and Ω2n+1(q)

will still contain An through this embedding, because An is its own commutator subgroup.

So we may apply Proposition 3.7.3 to Ω+
2n(q), Ω−2n(q) and Ω2n+1(q) and obtain the desired

result.

3.8 Combining Covering properties in a uniform way

We have show that for all non-abelian finite quasisimple group, if their order or Lie rank

is large enough, then they will have good enough covering property. It is very tempting to

combine everything to obtain a covering property for all non-abelian finite quasisimple group

of large enough order.
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It turns out that this is too optimistic. To have a covering property (K,m), a finite

simple group of Lie type must either have a large enough rank to accommodate the large

m, according to Corollary 3.7.2, 3.7.7, and 3.7.8, or it must have a small enough rank to

accomodate the small K, according to Corollary 3.5.4. So there might be a gap between the

“large enough rank” and the “small enough rank”, where the finite simple subgroups in the

gap would fail to have the covering property (K,m), no matter how large their order are.

In short, the covering properties of finite quasisimple groups are not necessarily uniform.

It is uniform when obtained through increasing ranks, and it is uniform when obtained

through base fields of increasing sizes. At least with the techniques in this paper, we cannot

combine the two uniformity into one. So we must use the double covering properties.

Lemma 3.8.1. For any integer D and any constant c, we can find integers K1, K2,m1,m2

such that all finite quasisimple groups with large enough order will have the symmetric double

covering property [(K1,m1), (K2,m2)] such that m1 > cKD2

1 , m2 > cKD2
.

Proof. Let K1 be max(16, K0) where the absolute constant K0 is as in Proposition 3.7.1

and Proposition 3.7.3. Pick some m1 > cKD2

1 . Find large enough r such that, according to

Corollary 3.7.2, 3.7.7, 3.7.8 and Proposition 3.4.4, all finite quasisimple groups of Lie type

of ranks ≥ r and all alternating groups with large enough order will have the symmetric

covering property (K1,m1).

Set K2 := K(r) max(3r + 1, 10) as in Corollary 3.5.4, and pick some m2 > cKD2

2 . Then

all finite quasisimple groups of Lie type of ranks ≤ r and with large enough order will have

the symmetric covering property (K2,m2).

In all cases, a finite quasisimple group with large enough order will have the symmetric

double covering property [(K1,m1), (K2,m2)].
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CHAPTER 4

Applications of Covering Properties

4.1 Ultraproducts of Quasirandom groups

As we have seen in the last chapter, groups with good covering properties no representation

of small degree. Such a group is called a quasirandom group.

Definition 4.1.1. A group G is D-quasirandom if it has no non-trivial finite dimen-

sional unitary representation of dimension less than D. The largest of such D is called the

quasirandom degree of G.

Quasirandom groups are first introduced by Gowers to find groups with no large product-

free subset. They can be seen as stronger versions of perfect groups.

Example 4.1.2 (Gowers [Gow08]).

1. A group (not necessarily finite) is 2-quasirandom iff it is perfect, i.e., it is its own

commutator subgroup. The reason is that a non-perfect group has a non-trivial abelian

quotient, which in turn has a non-trivial homomorphism into U1(C). A perfect group,

on the other hand, can only have the trivial homomorphism into the abelian group

U1(C).

2. A finite perfect group with no normal subgroup of index less than n is at least
√

log n/2-

quasirandom. In fact, using a form of Jordan’s theorem [?], a finite perfect group

with no normal subgroup of index less than n is at least c log n-quasirandom for some

constant c.

3. In particular, a non-abelian finite simple group G is at least c log n-quasirandom if it

has n elements.
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4. Conversely, any D-quasirandom group must have more than (D − 1)2 elements.

5. The alternating group An is (n−1)-quasirandom for n > 5, and the special linear group

SL2(Fp) is p−1
2

-quasirandom for any prime p.

Suppose we have a sequence of quasirandom groups with increasing quasirandom degree.

Then a natural question to ask is that if we have some sort of a “limit group” for this

sequence, then would the limit group be “infinitely quasirandom”? I.e., maybe the limit

group will have no non-trivial finite dimensional unitary representation at all. This property

turned out to be related to almost periodic functions of this limit group, which we shall not

get into.

Definition 4.1.3. A group G is minimally almost periodic if it has no non-trivial finite

dimensional unitary representations.

The limit that we shall consider is the ultraproduct. Let us briefly describe it here.

Definition 4.1.4. A filter on N is a collection ω of subsets of N such that:

1. ∅ /∈ ω;

2. If X ∈ ω and X ⊆ Y , then Y ∈ ω;

3. If X, Y ∈ ω, then X ∩ Y ∈ ω.

An ultrafilter is a filter that is maximal with respect to the containment order. A non-

principal ultrafilter is an ultrafilter that contains no finite subset of N.

Definition 4.1.5. Given a sequence of groups (Gi)i∈N, let G be their direct product. Given

an ultrafilter ω on N, let N := {g = (gi)i∈N ∈ G : {i ∈ N : gi = e} ∈ ω}, which is clearly

a normal subgroup of G. Then we call G/N the ultraproduct of the groups (Gi)i∈N by ω,

denoted by
∏

i→ω Gi.

Remark 4.1.6. An ultrafilter ω is principal (i.e., not non-principal) iff we can find an

element n ∈ N such that for all subsets A ⊆ N, we have A ∈ ω iff n ∈ A. In this case, the
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corresponding ultraproduct of groups (Gi)i∈N is isomorphic to Gi. Therefore, in practice, the

useful ultrafilters are usually non-principal.

The particular choice of the ultrafilter is not that important. As long as we fix a non-

principal ultrafilter, then all the discussion for the rest of the chapter will be true for the

ultraproduct of this ultrafilter.

Ultraproducts have an interesting property, given by  Loś’ Theorem [Los55]. Given an

ultraproduct G =
∏

i→ω Gi for an ultrafilter ω, any first-order statement φ in the language

of groups is true for G iff it is true for most of the Gi, i.e., {i ∈ N : φ is true for Gi} ∈ ω. In

particular, this implies that behaviors at the scale of elements are preserved. We shall not

need  Loś’ Theorem in this dissertation.

Now, it is very tempting to claim that an ultraproduct of a sequence of groups with

increasing quasirandom degree is minimally almost periodic. Unfortunately this is not the

case.

Example 4.1.7. We recall that a group G (not necessarily finite) is 2-quasirandom iff

G is perfect. We claim that there is a sequence of Di-quasirandom groups (Gi)i∈Z+ with

limi→∞Di =∞, whose ultraproduct by any non-principal ultrafilter is not even perfect.

Using the construction of Holt and Plesken [HP89, Lemma 2.1.10], one may construct a

finite perfect group Gp,n for each prime p ≥ 5 and positive integer n, such that an element

of Gp,n cannot be written as a product of less than n commutators, and that the only simple

quotient of Gp,n is PSL2(Fp), the projective special linear group of 2 × 2 matrices over the

field of p elements. Then by Example 4.1.2 (ii), for any D, Gp,n is D-quasirandom for large

enough p.

Let Gi be Gpi,i, where (pi)i∈Z+ is a strictly increasing sequence of primes. Then Gi is

Di-quasirandom for some Di with limi→∞Di =∞. Let gi ∈ Gi be an element which cannot

be written as a product of less than i commutators. Then g = (gi)i∈N corresponds to an

element of the ultraproduct G =
∏

i→ω Gi by any ultrafilter ω. When ω is non-principal,

clearly g cannot be written as a product of finite number of commutators in G. So g is not

in the commutator subgroup of G, and thus G is not perfect.
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However, a recent paper by Bergelson and Tao [BT14] showed the following theorem,

which shed some new light on this inquiry:

Theorem 4.1.8 (Bergelson and Tao [BT14, Theorem 49 (i)]). The ultraproduct
∏

i→ω SL2(Fpi)

by a non-principal ultrafilter ω is minimally almost periodic.

Inspired by this, we can make the following definitions:

Definition 4.1.9. A class F of groups is a q.u.p. (quasirandom ultraproduct prop-

erty) class if for any sequence of groups in F with quasirandom degree going to infinity,

their non-principal ultraproducts will be minimally almost periodic.

Definition 4.1.10. A class F of groups is a Q.U.P. class if there is an unbounded

non-decreasing function f : Z+ → Z+ such that any ultraproduct of any sequence of D-

quasirandom groups in F is f(D)-quasirandom.

Remark 4.1.11. A Q.U.P class is automatically a q.u.p. class. It is like an effective version

of q.u.p. class, where we are able to keep track of the amount of quasirandomness passed

down to the ultraproduct.

Now, let Cn be the smallest class of groups that contains all finite quaisisimple groups and

all finite groups with at most n conjugacy classes in its cosocle, and closed under arbitrary

direct products (not necessarily finite). I claim that the following is true:

Theorem 4.1.12. For any sequence of groups in Cn with quasirandom degree going to in-

finity, their non-principal ultraproducts will be minimally almost periodic. In fact, this class

is a Q.U.P. class.

Corollary 4.1.13. An ultraproduct of finite simple groups is either finite or minimally al-

most periodic.

One should note that the possiblity of taking an infinite direct product and arbirary

quotient means that Cn includes many infinite groups as well.
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Proposition 4.1.14. Let G be a group with the symmetric double covering property for

some parameters, and let (Gi)i∈I be an arbitrary family of groups with the symmetric double

covering property for some uniform parameters. Then the following are true:

(i) For any normal subgroup N , G has the symmetric double covering property for the

same parameters mod N .

(ii) Any quotient group of G has the symmetric double covering property for the same

parameters.

(iii) The group
∏

i∈I Gi has the symmetric double covering property for the same parameters.

(iv) As a result of the (ii) and (iii), any ultraproduct
∏

i→ω Gi has the symmetric double

covering property for the same parameters.

Proof. (i), (ii) and (iv) are straightforward.

To see (iii), let gi,1, gi,2 ∈ Gi be the pairs giving Gi the symmetric double covering prop-

erty. Then I claim that (gi,1)i∈I , (gi,2)i∈I ∈
∏

i∈I Gi is the pair giving the desired symmetric

double covering property.

For any element (gi)i∈I ∈
∏

i∈I Gi, then each gi is in Gi. And by its symmetric double

covering property, we know

Gi = C(gi,1)K1C(g−1
i,1 )K1C(gi,2)K2C(g−1

i,2 )K2 .

So we can find ai,j, bi,j ∈ Gi for i ∈ I and 1 ≤ j ≤ K1, and ci,j, di,j ∈ Gi for i ∈ I and

1 ≤ j ≤ K2, such that

gi = (
∏

1≤j≤K1

(ai,jgi,1a
−1
i,j )(bi,jg

−1
i,1 b
−1
i,j ))(

∏
1≤j≤K2

(ci,jgi,2c
−1
i,j )(di,j(gi,2)−1d−1

i,j )).

Since the above identity is true for all i ∈ I, we have

(gi)i∈I =(
∏

1≤j≤K1

((ai,j)i∈I(gi,1)i∈I(ai,j)
−1
i∈I)((bi,j)i∈I(gi,1)−1

i∈I(bi,j)
−1
i∈I))

(
∏

1≤j≤K2

((ci,j)i∈I(gi,2)i∈I(ci,j)
−1
i∈I)((di,j)i∈I(gi,2)−1

i∈I(di,j)
−1
i∈I)).

So we have proven (iii).
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Note that for finite quasisimple groups, to have a large enough order is the same as to

have a large enough quasirandom degree. So when we apply results from Chapter 3, we

can replace all “large enough order” requirements by a “large enough quasirandom degree”

requirement.

Corollary 4.1.15. Let CQS be the class of finite quasisimple groups. Then CQS is a Q.U.P.

class.

Proof. For any integer D, and for the constant c = f(D) as in Proposition 3.2.4, we can find

D′, K1, K2,m1,m2 as in Lemma 3.8.1, where a group with quasirandom degree D′ will have

large enough power for us to use Lemma 3.8.1.

Let Gi be a sequence of D′-quasirandom groups in CQS. Then Gi all have the symmetric

double covering property [(K1,m1), (K2,m2)]. Then any ultraproduct G =
∏

i→ω Gi will

have the symmetric double covering property [(K1,m1), (K2,m2)] by Proposition 4.1.14.

Since m1 > f(D)KD2

1 , m2 > f(D)KD2
, G is D-quasirandom by Proposition 3.2.4.

Corollary 4.1.16 (Quasirandomness implies a Nice Covering Property mod Cosocle). For

any integer D, and any constant c, we can find integers D′, K1, K2,m1,m2 such that all finite

D′-quasirandom groups have the symmetric double covering property [(K1,m1), (K2,m2)] mod

cosocle, with m1 > cKD2

1 , m2 > cKD2

2 .

Proof. Let D′, K1, K2,m1,m2 be exactly as in Lemma 3.8.1, where a group with quasirandom

degree D′ will have large enough power for us to use Lemma 3.8.1. Let G be any finite D′-

quasirandom group.

Let N be the cosocle of G. Then G/N is a direct product of D′-quasirandom fi-

nite simple groups. These simple groups all have the symmetric double covering property

[(K1,m1), (K2,m2)]. So by Proposition 4.1.14, their product G/N will have this same sym-

metric double covering property.

Corollary 4.1.17. Let CCS(n) be the class of finite groups with at most n conjugacy classes

in their cosocles. Then CCS(n) is a Q.U.P. class.
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Proof. Let c = f(D)(3n− 2)D
2
.

For any integer D, and for the constant c, we can find D′, K1, K2,m1,m2 as in Corol-

lary 4.1.16.

Let Gi be a sequence of D′-quasirandom groups in CCS(n). Then Gi all have the symmet-

ric double covering property [(K1,m1), (K2,m2)] mod cosocles. Since the cosocles contain

at most n conjugacy classes, by Proposition 3.3.3, Gi all have the symmetric double cov-

ering property [((3n − 2)K1,m1), ((3n − 2)K2,m2)]. Then any ultraproduct G =
∏

i→ω Gi

will have the symmetric double covering property [((3n − 2)K1,m1), ((3n − 2)K2,m2)] by

Proposition 4.1.14.

Since m1 > f(D)[(3n − 2)K1]D
2
, m2 > f(D)[(3n − 2)K]D

2
, G is D-quasirandom by

Proposition 3.2.4.

Proof of Theorem 4.1.12. For any integer D, let c = f(D)(3n− 2)D
2
. As usual, we can find

D′, K1, K2,m1,m2 as in Corollary 4.1.16 and Lemma 3.8.1.

Let Gi be a sequence of D′-quasirandom groups in Cn. Then each Gi is a direct product of

D′-quasirandom groups in CQS ∪ CCS(n). These factor groups must then have the symmetric

double covering property [((3n − 2)K1,m1), ((3n − 2)K2,m2)]. By Proposition 4.1.14, Gi

must also have this symmetric double covering property [((3n−2)K1,m1), ((3n−2)K2,m2)].

Then any ultraproduct G =
∏

i→ω Gi will have the symmetric double covering property

[((3n− 2)K1,m1), ((3n− 2)K2,m2)] by Proposition 4.1.14.

Since m1 > f(D)[(3n−2)K1]D
2
, m2 > f(D)[(3n−2)K]D

2
, Proposition 3.2.4 implies that

G is D-quasirandom.

4.2 Self-Bohrifying groups

The application in this section is related to topological groups. We shall treat all groups in

previous sections as discrete groups.

Definition 4.2.1. A Bohr compactification of a topological group G is a continuous

homomorphism b : G→ bG such that any continuous homomorphism from G to a compact
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group factors uniquely through b.

Remark 4.2.2.

1. The Bohr compactification exists for any group by the work of Holm [Hol64]. It is

obviously unique up to a unique isomorphism.

2. Clearly, a discrete group is minimally almost periodic iff it has trivial Bohr compactifi-

cation. Note that for a discrete group, any abstract homomorphism from it to another

topological group is automatically continuous.

Definition 4.2.3. A topological group G is said to be self-Bohrifying if its Bohr com-

pactification bG is the same abstract group as G, but with a compact topology.

By the results and techniques of this paper, one can find many examples of self-Bohrifying

groups. In particular, we have the following theorem.

Theorem 4.2.4. Let n be a positive integer. Let Gi be a sequence of increasingly quasiran-

dom groups in Cn, the class defined as in Theorem 4.1.12. Then
∏

i∈NGi is self-Bohrifying

as a discrete group.

Corollary 4.2.5. Let Gi be a sequence of non-abelian finite simple groups of increasing

order. Then
∏

i∈NGi is self-Bohrifying as a discrete group.

We will prove Theorem 4.2.4 by first showing that
∏

i∈NGi/
∐

i∈NGi is minimally almost

periodic, and then using a lemma by Hart and Kunen [HK02].

Definition 4.2.6. Let Gi be a sequence of groups.

1. Their sum is the group
∐

i∈NGi = {g ∈
∏

i∈NGi : only finitely many coordinates of g

is nontrivial}.

2. Their reduced product is the group
∏

i∈NGi/
∐

i∈NGi.

Lemma 4.2.7 (Hart and Kunen [HK02, Lemma 3.8]). Let {Gi}i∈N be a sequence of fi-

nite groups. Then
∏

i∈NGi is self-Bohrifying if all but finitely many Gi are perfect groups,
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and
∏

i∈NGi/
∐

i∈NGi has trivial Bohr compactification, i.e.,
∏

i∈NGi/
∐

i∈NGi is minimally

almost periodic.

Proof of Theorem 4.2.4. All 2-quasirandom groups are perfect. So it is enough to show that

the reduced product of Gi is minimally almost periodic, i.e., it is D-quasirandom for all D.

For any integer D, let c = f(D)(3n− 2)D
2
. We can find D′, K1, K2,m1,m2 as in Corol-

lary 4.1.16 and Lemma 3.8.1.

Let Gi be a sequence of increasingly quasirandom groups in Cn. Then all but finitely

many Gi will be D′-quasirandom. Since we are interested in the reduced product, which is

invariant under the change of finitely many coordinates, we may WLOG assume that all Gi

are D′-quasirandom.

SinceGi ∈ Cn, eachGi is a direct product ofD′-quasirandom groups in CQS∪CCS(n). These

factor groups must then have the symmetric double covering property [((3n−2)K1,m1), ((3n−

2)K2,m2)]. By Proposition 4.1.14, Gi must also have this symmetric double covering prop-

erty [((3n− 2)K1,m1), ((3n− 2)K2,m2)].

Now by Proposition 4.1.14, covering properties are preserved by arbitrary products

and quotients. So
∏

i∈NGi will have this covering property, and the reduced product∏
i∈NGi/

∐
i∈NGi will also have this covering property.

Since m1 > c[(3n−2)K1]D
2
, m2 > c[(3n−2)K]D

2
, the reduced product is D-quasirandom

by Proposition 3.2.4. So we are done by Lemma 4.2.7.
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CHAPTER 5

Schreier graphs of non-abelian finite simple groups

Starting from this chapter, we start our discussion of Cayley graphs of non-abelian finite

simple groups. It turns out that most of the time, it is much easier to study a “quotient

graph” of the Cayley graph, i.e., the Shreier graphs. This amounts to the study of group

actions as a tool to the study of groups.

We shall mainly consider two types of Schreier graphs of a group G, one is the Schreier

graph for the canonical action or its variants if G is a linear group or an alternating group.

The other is the Schreier graph of the action of G on its conjugacy classes. In this chapter,

we shall merely establish some crude bounds on the diameters of these Schreier graphs.

5.1 t-transitive subsets of alternating groups

In this section, we establish some very basic results on transitive subsets of symmetric and

alternating groups. This serves as a motivation for t-transversal subsets of linear groups in

later sections.

Let G be the symmetric group Sn or the alternating group An. We let G act on the set

X = {1, 2, ..., n} as usual.

Definition 5.1.1. A subset T of G is t-transitive if given any injective function f from

any t-element subset Y of X, then there is a permutation in T that extends f .

Lemma 5.1.2. Sn is t-transitive for all t, and An is t-transitive for all t ≤ n− 2.

Proof. This is elementary.
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Lemma 5.1.3. For any symmetric subset S of Sn, if the subgroup generated by S is t-

transitive, then ∪ntd=1S
d is t-transitive.

Proof. Let Y be ay t-element subset of X. Let L(Y ) be the set of all injective functions

from Y to X, and let H be the subgroup generated by S. Then an element g of H acts on

L(Y ) by sending each function f to g ◦f . Let Γ be the corresponding Schreier graph for this

action of H with generating set S.

Now, since H is t-transitive, Γ is connected. So the diameter of Γ is trivially bounded by

its number of vertices, which is nt. So ∪ntd=1S
d can extend any injective function in L(Y ).

5.2 t-Transversal Sets for Special Linear Groups

Let V be a vector space of dimension n over the field Fq. Let the group GLn(Fq) act on it

naturally.

Definition 5.2.1. A subset S of GLn(Fq) is called a t-transversal set if given any em-

bedding X of a t-dimensional subspace W into V , we can find A ∈ S that extends X on

W .

Lemma 5.2.2. GLn(Fq) is t-transversal for all t, and SLn(Fq) is t-transversal for all t < n.

Proof. Let W be any subspace with a basis w1, ..., wt. We can complete this into a basis of

V with new vectors v1, ..., vn−t. Let A be a matrix with column vectors w1, ..., wt, v1, ..., vn−t.

In the case when t < n, we can multiply vn−t by a constant so that det(A) = 1.

For any embedding X of W into V , X(w1), ..., X(wt) are linearly independent. We can

complete this into a basis of V with new vectors u1, ..., un−t. Let B be a matrix with column

vectors X(w1), ..., X(wt), u1, ..., un−t. In the case when t < n, we can multiply un−t by a

constant so that det(B) = 1.

Now B(A)−1 is in GLn(Fq) and, if t < n, also in SLn(Fq). We also have (B(A)−1)|W =

X.
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Lemma 5.2.3. For any symmetric subset S of GLn(Fq), if the subgroup generated by S is

t-transversal, then
⋃d=qnt

d=1 Sd is t-transversal.

Proof. Let W be any t-dimensional subspace. Let L(W ) be the set of embeddings of W

into V . Let H be the subgroup generated by S. Then an element g of H acts on L(W ) by

g(X) = (g ◦ X)|W for any X ∈ L(W ). Let Γ be the corresponding Schreier graph of this

action of H on L(W ) with generating set S, i.e., the vertices are elements of L(W ), and two

vertices X, Y are connected iff g(X) = Y for some g ∈ S.

Now, since H is t-transversal, the graph Γ is connected. So the diameter of Γ is trivially

bounded by its number of vertices, which is at most qnt. As a result, the set
⋃qnt

d=1 S
d is

t-transversal.

Corollary 5.2.4. Given any symmetric generating set S for GLn(Fq), the set
⋃d=qnt

d=1 Sd is

t-transversal. If t < n, then the same statement is true with SLn(Fq) replacing GLn(Fq).

5.3 t-Transversal Sets for Orthogonal Groups, Symplectic Groups,

and Unitary Groups

Let’s fix some notation for the discussion of the following three sections. Let V be a non-

degenerate formed space of dimension n over the field Fq, with a non-degenerate quadratic

form Q (the orthogonal case), non-degenerate alternating bilinear form B (the symplectic

case), or non-degenerate Hermitian form B with field automorphism σ (the unitary case).

In the orthogonal case, we shall let B be the symmetric bilinear form obtained by polarizing

Q, i.e., B(v, w) = Q(v + w)−Q(v)−Q(w). Let G be the group of isometries for V .

Definition 5.3.1. 1. A vector v ∈ V is singular if B(v, v) = 0 and (if applicable)

Q(v) = 0.

2. A pair of singular vectors v, w ∈ V is called a hyperbolic pair if B(v, w) = 1.

3. The subspace generated by a hyperbolic pair is a hyperbolic plane .

4. A subspace W of V is anisotropic if it contains no singular vector other than 0.
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5. A subspace is totally singular if the form B and (if applicable) the quadratic form

Q restricted to it is the zero form.

6. Given any subspace W of V , we define its orthogonal complement to be W⊥ :=

{v ∈ V : B(v, w) = 0 for all w ∈ W}. Two subspaces U,W of V are orthogonal if

they are in each other’s orthogonal complimant. We denote this as U ⊥ W .

7. The radical of V is V ⊥.

8. A subspace W is radical-free if W ∩ V ⊥ = {0}.

Theorem 5.3.2 ((Witt’s Decomposition Theorem)). The non-degenerate formed space V

has an orthogonal decomposition V = Vani⊕(
⊕m

i=1Hi), where Vani is anisotropic of dimension

at most 2, and Hi are hyperbolic planes. In particular, V has a totally singular subspace of

dimension at least dim(V )−2
2

, and any anisotropic space in V has dimension at most 2.

Proof. See [Gro02].

Lemma 5.3.3. Recall that V is a non-degenerate formed space.

1. V ⊥ = {0} unless the non-degenerate form for V is a quadratic form, and charFq = 2.

2. V ⊥ has dimension at most 1.

3. For any subspace W , dimW + dimW⊥ is equal to dimV if W is radical-free, and

dimV + 1 if W is not.

4. For any subspace W , (W⊥)⊥ = W + V ⊥.

5. A totally singular subspace is always radical-free.

Proof. See [Gro02].

Definition 5.3.4. A subset S of G is called a singularly t-transversal set if, for any

isometric embedding X of a t-dimensional totally singular subspace W into V , we can find

A ∈ S that extends X on W .
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Lemma 5.3.5 ((Witt’s Extension Lemma)). G is a singularly t-transversal set for any t.

Proof. This is a special case of Witt’s extension lemma, which states that any bijective

isometry of radical-free subspaces of V could be extended to an isometry of the whole formed

space. See [Gro02] for a proof.

Now, since our focus is on the finite simple groups, we don’t really use the full isometry

group G. Rather, we are interested in its commutator subgroup G′.

Lemma 5.3.6. For any t ≤ n−2
5

, the commutator subgroup G′ of G is singularly t-transversal.

Proof. Let W be a totally singular space of dimension t. Let X : W → V be any isometric

embedding from W to V .

Step 1: I claim that there is a totally singular subspace W ′, which is orthogonal to W

and X(W ), has trivial intersection with W and X(W ), and has the same dimension as W .

To see this, we have dimW⊥ = dimX(W )⊥ ≥ n − t. Therefore, dim(W⊥ ∩X(W )⊥) ≥

n − 2t. So in the subspace W⊥ ∩X(W )⊥, we can find a subspace W ′′ of dimension n − 3t

with trivial intersections with W and X(W ). Now, since W ′′ is a formed space (possibly

degenerate), it has a totally singular subspace of dimension at least dimW ′′−2
2

= n−3t−2
2
≥ t.

So, from this totally singular space, we could simply pick any totally singular subspace of

dimension t to be the desired W ′.

Step 2:

Let Y : W → W ′ be any bijective linear map. Since both spaces are totally singular, Y

is an isometry. So we could find an extension A ∈ G.

Let Z : W ⊕W ′ → X(W )⊕W ′ be the linear map that restricts to X on W , and restricts

to the identity map on W ′. Then by our choice of W ′, this is a well-defined isometry of

totally singular subspaces, and it would have an extension B ∈ G.

Consider BA−1B−1A ∈ G′. This would restrict to X on W . So we are done.

Lemma 5.3.7. Let S be any subset of G. If the subgroup generated by S is singularly

t-transversal, then
⋃d=qnt

d=1 Sd is singularly t-transversal.
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Proof. Let H be the subgroup generated by S. Let W be any t-dimensional totally singular

subspace, and let L(W ) be the set of isometric embeddings of W into V . Then an element

g ∈ H acts on L(W ) by g(X) = (g ◦X)|W for any X ∈ L(W ). Let Γ be the corresponding

Schreier graph of this action of H on L(W ) with generating set S.

Any isometric embedding from W to V is a linear map. Therefore, there are at most qnt

vertices for Γ, where t = dimW . And since H is singularly t-transversal, the graph Γ must

be connected. So Γ must have a diameter at most qnt.

Corollary 5.3.8. Given any symmetric generating set S for G or G′, the set
⋃d=qnt

d=1 Sd is

singularly t-transversal for t ≤ n−2
5

.

5.4 The Conjugacy Expansion Lemmas

In this section, we study Schreier graphs of groups acting on their conjugacy classes. As a

result, we shall show that any small degree element will quickly generate the whole group

with any symmetric generating set.

Definition 5.4.1. The degree of a square matrix A is defined to be the rank of A−I where

I is the identity matrix with the same dimension as A.

Definition 5.4.2. Give a group G and a symmetric generating set S, then the length of

an element g of G is defined to be the smallest number ` such that g = s1s2...s` for some

s1, ..., s` ∈ S.

Lemma 5.4.3. Let S be any symmetric generating set for a subgroup H of GLn(Fq). Let

A be any matrix in H of degree k, and let B be any matrix conjugate to A in H. Then

B = MAM−1 for some M ∈ H of length at most q2nk.

Proof. Since A has degree k, we know A = I + A′ for some matrix A′ of rank k. So we can

decompose A′ as a product XY where X is an n by k matrix of full rank and Y is a k by n

matrix of full rank. So A = I +XY .
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Any conjugates of A can similarly be expressed as I + X ′Y ′ where X ′ is some n by k

matrix of full rank, and Y ′ is some k by n matrix of full rank. There are at most q2nk

possibilities for the pair (X ′, Y ′). So there are at most q2nk conjugates of A.

Now H acts on the conjugacy class of A in H by left conjugation, and the corresponding

Schreier graph must be connected. So the Schreier graph has diameter bounded by the

number of vertices, i.e., q2nk.

Theorem 5.4.4 (([LS01])). Let G be SLn(Fq), Ωn(Fq), Spn(Fq), or SUn(Fq). Let A ∈ G be

an element of degree k outside the center of G. Then every element of G is a product of at

most O(n
k
) conjugates of A.

Proposition 5.4.5. Let G be SLn(Fq), Ωn(Fq), Spn(Fq), or SUn(Fq). Let S be any symmetric

generating set for G. Suppose we have a non-trivial element A ∈ G of length d > 0 and

degree k < n. Then the diameter of G with respect to S will be O((2q2nk + d)n
k
).

Proof. For any B conjugate to A, by the Lemma 5.4.3 above, B = MAM−1 for some M ∈ G

of length at most q2nk. So B has length at most 2q2nk + d. So every conjugate of A in G has

length bounded by 2q2nk + d.

Furthermore, since A has degree < n but non-trivial, it is not a scalar matrix. Then by

[Gro02], A is not in the center of G.

Now by the resulf of Liebeck and Shalev [LS01], we know that every element of G can be

written as a product of O(n
k
) conjugates of A. So the whole group G has a diameter bound

of O((2q2nk + d)n
k
).
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CHAPTER 6

Degree Reduction in Finite Linear Groups

The goal of this chapter is to establish an algorithm to reach an element of small degree,

starting from any generating set of a linear group.

6.1 An Inequality on Primes

In this section, we shall establish an inequality on primes to be used in the next section.

Throughout this section, we shall fix a prime power q, which in the next section shall

become the characteristic and the order of a finite field.

Let p1, ..., pr be the first r primes coprime to q(q − 1). Let `q(pi) be the multiplicative

order of q in the field Z/piZ. Let M be the least common multiple of `q(p1), ..., `q(pr). Let

S be the sum of `q(p1), ..., `q(pr). Our goal for this section is the following proposition:

Lemma 6.1.1. There exist absolute constants c1 and c2 such that, if pr ≥ c1 log q0, then

S ≤ (pr)
2 ≤ c2(logM)3.

Before we prove this, let us first set up some properties of these multiplicative orders.

Lemma 6.1.2. Let E(x) := {p ≤ x : `q(p) ≤
√
p

logp
}. Then there is an absolute constant cE

such that

|E(x)| ≤ cE
x log q

(log x)3
.

Proof. For each p ∈ E(x), there is a number 1 ≤ r ≤
√
p

log p
such that p divides qr − 1.

Then by pigeon hole principal, there is a number 1 ≤ m ≤
√
x

log x
, such that qm − 1 is

divided by |E(x)|√
x/ log x

primes.
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Then we have

|E(x)|√
x/ log x

� log(qm − 1)

log log(qm − 1)
� m log q

logm
�
√
x log q

(log x)2
.

Now let us first set up more notations. Let P+ be the function that sends each pos-

itive integer to its largest prime factor. Let P = {p1, ..., pr}. For any δ > 0, let Pδ =

{prime number p : 3 ≤ p ≤ pr, P
+(p− 1) ≥ (pr)

δ}, and let P ∗δ = Pδ ∩ P − E(pr).

We start by citing an important theorem of Fouvry.

Lemma 6.1.3 ((Fouvry [Fou85])). There is an absolute constant δ > 2
3
, and an absolute

constant c0, cp, such that for pr ≥ cp, we have

|Pδ| ≥ c0
pr

log pr
.

Corollary 6.1.4. There is an absolute constant δ > 2
3
, and absolute constants c0 and c3,

such that |P ∗δ | ≥ c0
pr

log pr
− c3

log q
log log q

− cE pr log q
(log pr)3

if q > ee, and |P ∗δ | ≥ c0
pr

log pr
− 3− cE pr log q

(log pr)3

if q ≤ ee.

Proof. By prime number theorem, when log log q > 1 (i.e., q > ee ≈ 15.15), the number of

prime factors of q(q − 1) is bounded by c3
log q

log log q
for some absolute constant c3. If q ≤ ee,

then there are at most 3 prime factors of q(q − 1).

Lemma 6.1.5. Let p ≥ (pr)
δ be some prime. Then

|((P+)−1(p) + 1) ∩ P ∗δ | ≤
2pr

(log 2)(pδr − 1)
.

Proof. We assume that the left hand side of the inequality is non-zero, because otherwise

the inequality is trivial. Then p divides some pi − 1, which is not a prime. So in particular,

2p < pr.
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The set ((P+)−1(p) + 1)∩P ∗δ is contained in the set of primes ≤ pr that are congruent to

1 mod p. By the Brun-Titchmarsh theorem, combined with the fact that p ≥ (pr)
δ, we have

|(P+)−1(p) ∩ P ∗δ | ≤
2pr

φ(p) log pr
p

≤ 2pr
(log 2)(p− 1)

≤ 2pr
(log 2)((pr)δ − 1)

.

Here φ is the Euler totient function.

Lemma 6.1.6. All primes in P+(P ∗δ − 1) are factors of M .

Proof. It is enough to show that, if p ∈ P ∗δ , then `q(p) contains P+(p− 1) as a factor.

Since p ∈ P ∗δ ⊆ Pδ, we know P+(p − 1) ≥ (pr)
δ ≥ p

2
3 . On the other hand, since

p ∈ P ∗δ ∈ P − E(x), we know `q(p) ≥
√
p

log p
> p−1

P+(p−1)
.

Therefore, `q(p) must contain P+(p− 1) as a factor.

Now we have enough to prove Lemma 6.1.1.

of Lemma 6.1.1. The first inequality is straightforward

S ≤
∑

prime p≤pr

p ≤ (pr)
2.

All the primes in P+(P ∗δ − 1) are factors of M , and they are all larger than (pr)
δ. Fur-

thermore, when q0 > ee, we have

|P+(P ∗δ − 1)| ≥ |P ∗δ |
maxp≥(pr)δ |((P+)−1(p) + 1) ∩ P ∗δ |

≥(c0
pr

log pr
− c3

log q0

log log q0

− cE
pr log q0

(log pr)3
)/(

2pr
(log 2)((pr)δ − 1)

)

≥ log 2

2
((pr)

δ − 1)(
c0

log pr
− c3

pr

log q0

log log q0

− cE
log q0

(log pr)3
).
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So, if pr > c1 log q0 for an absolute constant c1 such that c3
1+log c1

c1
+ cE

log c1
< c0

2
, then we

have

logM ≥|P+(P ∗δ − 1)| log((pr)
δ)

≥ log 2

2
δ((pr)

δ − 1)(c0 − c3
log q0

log log q0

log pr
pr
− cE

log q0

(log pr)2
)

≥ log 2

2
δ((pr)

δ − 1)(c0 − c3
1 + log c1

c1

− cE
log c1

)

≥ log 2

4
δc0((pr)

δ − 1).

Since δ > 2
3
, we can pick some constant such that c2(logM)3 ≥ (pr)

2.

Now, suppose q0 ≤ ee. Then similarly we have

|P+(P ∗δ − 1)| ≥ |P ∗δ |
maxp≥(pr)δ |((P+)−1(p) + 1) ∩ P ∗δ |

≥(c0
pr

log pr
− 3− cE

pr log q0

(log pr)3
)/(

2pr
(log 2)((pr)δ − 1)

)

≥ log 2

2
((pr)

δ − 1)(
c0

log pr
− 3

pr
− cE

log q0

(log pr)3
).

So, if pr > c1 log q0 for a sufficiently large absolute constant c1 such that 3 log pr
pr

+ cE
log c1

< c0
2

,

then we have

logM ≥|P+(P ∗δ − 1)| log((pr)
δ)

≥ log 2

2
δ((pr)

δ − 1)(c0 −
3 log pr
pr

− cE
log q0

(log pr)2
)

≥ log 2

4
δc0((pr)

δ − 1).

Since δ > 2
3
, we can again pick some constant such that c2(logM)3 ≥ (pr)

2.

As a side note, for any improved value of δ in the Fouvry’s theorem, our diameter bound

in this paper would improve to qO(n(logn+log q)
2
δ ) for finite simple groups of Lie type of rank n

over Fq.

If one were to assume the Hardy-Littlewood conjucture on prime tuples, the δ could be

improved to 1− o(1). Combine this with the more efficient estimate S ≤ (pr)2

log pr
, the diameter

bound of this paper would improve to qO(n(logn+log q)2) for finite simple groups of Lie type of

rank n over Fq.
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6.2 P-Matrices and Degree Reduction

This section aims to show that, given a P-matrix, we can reduce its degree by raising it to

a large power.

Definition 6.2.1. Let Fq be a finite field of characteristic p, and let p1, p2, ..., pr be the first

r primes coprime to p(q− 1). Then a matrix A over Fq is called a P(r)-matrix if, for each

i ≤ r, it has a primitive pi-th root of unity in the algebraic closure of Fq as an eigenvalue.

Lemma 6.2.2. Let A be a matrix over Fq, a field with characteristic p. Let m be any number

coprime to p. Then if A has a primitive m-th root of unity as an eigenvalue, A must have

degree at least `q(m).

Proof. Let Φm(X) be the m-th cyclotomic polynomial. Then by Galois theory over finite

field, the polynomial Φm(X) factors into distinct irreducible polynomials of degree `q(m).

See, e.g., [Lan02].

Therefore, if A has a primitive m-th root of unity as an eigenvalue, then A must have at

least `q(m) primitive m-th roots of unity as eigenvalues, and the result follows.

Lemma 6.2.3. Let n be an integer, and let q be a power of the prime p. Then we can find

an integer r and an absolute constant c, such that the following is true:

1. Let p1, p2, ..., pr are the first r primes coprime to p(q − 1). Then lcmr
i=1 `q(pi) > n4,

and
∑r

i=1 `q(pi) < c(log n+ log q)3.

2. Let A ∈ GLn(Fq) where the field has characteristic p, and degA = k. If A is a P(r)-

matrix, then there exists ` ∈ N such that A` will be a non-identity matrix of degree at

most k
4
, and 1 is the only eigenvalue of A` lying in Fq.

Proof.

The First Statement:

Let M be the least common multiple, and let S be the sum. Let c1 be the constant as in

Lemma 6.1.1.
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Pick pr to be the smallest prime such that M > n4 and pr > c1 log q. Then the second

condition guarantees that S < c2(logM)3, according to Lemma 6.1.1.

Now, if pr ≤ 2c1 log q, then for some absolute constant c4 by the Prime Number Theorem,

we have

logM ≤
r∑
i=1

log pr

≤c4pr

≤2c1c4 log q.

So S ≤ c(log q)3 for some absolute constant c.

Suppose pr > 2c1 log q. Then by the Bertrand-Chebyshev Theorem, pr−1 > c1 log q. Let

M ′ = lcmr−1
i=1 `q(pi). Then by the minimality of pr, we must have M ′ ≤ n4. In particular, we

have

4 log n ≥ logM ′

≥(
pr−1√
c2

)
2
3 .

So, we have pr−1 ≤ 8
√
c2(log n)

3
2 . Then pr ≤ 16

√
c2(log n)

3
2 .

Furthermore, we have

logM ≤ log(M ′pr)

≤ log(n4(16
√
c2(log n)

3
2 ))

<6 log n+ log(16
√
c2).

So S < c1(logM)3 < c(log n)3 for some absolute constant c.

The Second Statement:

Let Mi denote the least common multiple of `q(p1), `q(p2), ..., `q(pi). Let t1 = `q(p1) and

ti = Mi

Mi−1
for i > 1. Then

∏r
i=1 ti = Mr > n4.

Let N = {1, 2, ..., n}. Let d1, ..., dn be the eigenvalues of A in the algebraic closure of Fq.
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For each j ∈ N , let Pj be the set of prime factors of the multiplicative order of dj among

p1, ..., pr. Then by Lemma 6.2.2, for each j ∈ N ,∏
pi∈Pj

ti ≤ lcmpi∈P `q(pi) ≤ k.

Now let n(i) denote the number of Pj that contain pi.

We take the weighted average T of these n(i) with weight log ti. The sum of the weights

is
∑r

i=1 log ti > 4 log n.

T =

∑
1≤i≤r n(i) log ti∑

log ti

=

∑
1≤i≤r

∑
j∈N(log ti)1pi∈Pj∑

log ti

=

∑
j∈N

∑
1≤i≤r(log ti)1pi∈Pj∑

log ti

≤
∑

j∈N
∑

pi∈Pj log ti

4 log n

≤ k log k

4 log n

≤ k

4
.

So there is a pi such that n(i) ≤ k
4
. So if A has order m(A), then A

m(A)
pi is the desired

non-identity matrix of degree at most k
4
. Every eigenvalue of the latter matrix not equal to

1 is a primitive pi-th root of unity, which would be outside of Fq.

6.3 Commutators and Degree Reduction

In this section, we shall use repeated commutators with elements of a t-transversal set. This

way, we repeatedly create P-matrices and raise them to a large power, and would eventually

end up with a matrix of very small degree.

Definition 6.3.1. Given any element g of a group G and a symmetric generating set S for

G, the length of g is `(g) = min{d ∈ N : g = s1...sd for some s1, ..., sd ∈ S}.
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Proposition 6.3.2. For any matrices A,B, deg(ABA−1B−1) ≤ 2 min(degA, degB).

Proof.

deg(ABA−1B−1) = rank(ABA−1B−1 − I)

= rank(AB −BA)

= rank((A− I)(B − I)− (B − I)(A− I))

≤ rank(A− I)(B − I) + rank(B − I)(A− I)

≤ rank(A− I) + rank(A− I)

= 2 rank(A− I).

Similarly, we also have deg(ABA−1B−1) ≤ 2 rank(B − I). So we are done.

Lemma 6.3.3. Fix any matrix A ∈ GL(V ) of degree k, such that the eigenvalues of A are

either 1 or outside of Fq. For any t ≤ k
2
, we can find a subspace W of V with the following

properties:

1. dimW = t;

2. W ∩ AW = {0}.

Proof. We shall proceed by induction on the dimension of W . Let VA be the subspace of

fixed points of A in V .

Initial Step: Suppose t = 1. Simply pick any vector v outside of VA, and let W be the

span of v. We have W ∩ VA = {0} by choice of v. Since A has no eigenvalue in Fq other

than 1, v and Av must be linearly independent. So W ∩ AW = {0}.

Inductive Step: Suppose we have found a subspace W of dimension t − 1 such that

W ∩ AW = {0}. I claim that, when t ≤ k
2
, we can find another vector v, such that the

desired subspace is the span of v and W .

To prove the existence of v, let us count the number of vectors to avoid. We want v to

avoid VA + W + AW . Afterwards, it is enough to let Av avoid any linear combination of v

56



and W + AW . So we need v to avoid
⋃
x∈Fq(A − x)−1(W + AW ). Here we shall interpret

(A− x)−1 as the pullback map of subsets.

Now, since A has no eigenvalue in Fq other than 1, therefore A − x is invertible when

x 6= 1. And A− 1 has kernel exactly VA, which has dimension n− k. So, we have

|(VA +W + AW ) ∪ (
⋃
x∈Fq

(A− x)−1(W + AW ))|

≤qn−k+2t−2 + qn−k+2t−2 + (q − 1)q2t−2

<qn−k+2t.

So as long as 2t ≤ k, we have qn−k+2t ≤ qn. So it is possible to choose a vector v as

desired.

Lemma 6.3.4. Let A be a matrix in the group GLn(Fq). Then the order of A is less than

qn.

Proof. By the rational canonical form of a matrix A (see, e.g., [Her75]), it is enough to prove

the case when A is a single rational jordan block.

In this case, the characteristic polynomial f(x) of A is a power of an irreducible poly-

nomial g(x). Say f = gt and the characteristic of Fq is p. Then the order of A is

(q
n
t − 1)pd

log t
log p
e < q

n
t pd

log t
log p
e.

Then it is enough to show that pd
log t
log p
e ≤ q(1− 1

t
)n. And since pd

log t
log p
e is the smallest p-

power that is larger than or equal to t, and since q is a power of p, it is enough to show that

t ≤ q(1− 1
t
)n. And this is true since q ≥ 2 and n ≥ t.

Proposition 6.3.5. For any symmetric generating set S of GLn(Fq), GLn(Fq) has a non-

trivial element of degree at most C(log n+log q)3 for some absolute constant C, of length less

than qC
′n(logn+log q)3 for some absolute constant C ′. The same statement is true with SLn(Fq)

replacing GLn(Fq).

Proof. We pick r and c according to Lemma 6.2.3. We may assume that c(log n+log q)3 < n,

because otherwise the statement is trivial.
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Let p1, ..., pr be the first r primes coprime to p(q − 1). Let fi(x) be the irreducible

polynomial over Fq for all the primitive pi-th roots of unity, and let Ci be the companion

matrix of fi(x).

Initial Step:

Let us find our first P(r)-matrix. Let T be a c(log n + log q)3-transversal set. Then by

definition, we can find A0 ∈ T that maps some subspace W of dimension c(log n + log q)3

onto itself, and that its restriction to this subspace is the matrix (
⊕r

i=1Ci) ⊕ I for some

arbitrary choices of basis on W , where I is some identity matrix of suitable size.

In particular, A0 is a P(r)-matrix. Since A0 ∈ T , by choosing T as in Corollary 5.2.4, A0

has length bounded by qcn(logn+log q)3 .

By using Lemma 6.2.3, we can raise A0 to a large power, and obtain a non-identity matrix

A1 of degree ≤ deg(A0)
4
≤ n

4
, with eigenvalues either 1 or outside of Fq. Since the order of A0

is bounded by qn by Lemma 6.3.4, the length of A1 is bounded by qcn(logn+log q)3+n.

Inductive Step:

Suppose we have obtained a non-identity matrix Aj with eigenvalues either 1 or outside

of Fq, degree at most n
2j+1 , and length at most q2cn(logn+log q)3+j(n+2). If degAj ≤ 2c(log n +

log q)3, then we stop. If not, then let us construct a non-identity matrix Aj+1 of even smaller

degree.

First we shall transform Aj into a P(r)-matrix. Find a subspace Wj of dimension at least

c(log n + log q)3 as in Lemma 6.3.3 using Aj. In particular, Wj has trivial intersection with

AjWj. Let T ′ be a 2c(log n + log q)3-transversal set, then we can find Mj ∈ T ′ that fixes

AjWj, and restricts to a map from Wj to Wj as
⊕r

i=1Ci ⊕ I for an arbitrary basis of Wj

and some identity matrix I of suitable size.

Consider the commutatorMjA
−1
j M−1

j Aj. SinceMj fixes AjWj, we see thatMjA
−1
j M−1

j Aj

restricted to Wj is identical to Mj restricted to Wj.

In particular, MjA
−1
j M−1

j Aj is a P(r)-matrix, and it has degree at most 2 deg(Aj). Now

we use Lemma 6.2.3 again, raising MjA
−1
j M−1

j Aj to a large power, and we would obtain a
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matrix Aj+1 of degree at most
2 deg(Aj)

4
, with eigenvalues either 1 or outside of Fq.

Since Mj ∈ T ′, by choosing T ′ as in Corollary 5.2.4, Mj have length bounded by

q2cn(logn+log q)3 . And since the order of MjA
−1
j M−1

j Aj is bounded by qn by Lemma 6.3.4,

the length of Aj+1 is at most

qn(2q2cn(logn+log q)3 + 2q2cn(logn+log q)3+j(n+2)) ≤ q2cn(logn+log q)3+(j+1)(n+2).

We repeat the above induction logn
log 2
− 1 times, or stop early if we hit degree 2c(log n +

log q)3. The last Aj we obtained is the desired matrix of small degree and small length.

6.4 Degree Reducing for Orthogonal, Symplectic, Unitary Groups

Lemma 6.4.1. For any non-zero singular v ∈ V , there is a vector w ∈ V such that v, w

form a hyperbolic pair.

Proof. Recall that V is a non-degenerate formed space with an alternating bilinear, sym-

metric bilinear or Hermitian form B. In the case of characteristic 2, a symmetric bilinear

form B might be degenerate, even though the formed space itself is not. Let σ be the field

automorphism of the base field F for the Hermitian form B, or identity if B is bilinear.

For any element k ∈ F , we define Tr(x) = x+ σ(x).

Now given a singular v ∈ V , since V is a non-degenerate formed space, we can find a

vector w′ ∈ V such that B(v, w′) 6= 0. By scaling w′, we can assume that B(v, w′) = 1.

Suppose we can find an element k ∈ F such that Tr(k) = B(w′, w′), then w = w′ − kv is

the desired vector forming a hyperbolic pair with v: B(v, w) = B(v, w′) = 1, and

B(w′ − kv, w′ − kv)

=B(w′, w′)− Tr(k)

=0.

Now, it remains to show that such k always exists.
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Let E be the subfield of F fixed by σ. Then obviously B(w′, w′) ∈ E. So it is enough to

show that either E = Tr(F ), or B(w′, w′) = 0 for all w′.

Now, Tr(F ) is closed under addition, and it is also closed under multiplication by elements

of E. So Tr(F ) is a E-vector space contained in E. So either E = Tr(F ), or Tr(F ) = 0.

In the case that Tr(F ) = 0, then σ(x) = −x for all x ∈ F . But since σ is a field

automorphism, we must conclude that the field F has characteristic 2, and σ is the identity.

Then the form B is alternating, and B(w′, w′) = 0 for any w′ ∈ V .

Lemma 6.4.2. If a subspace H of V is an orthogonal sum of hyperbolic planes, then H ∩

H⊥ = {0}.

Proof. The subspace H is an orthogonal sum of hyperbolic planes. Then let us assume that

these planes are the linear span of hyperbolic pairs (v1, w1), (v2, w2), (v3, w3), ..., (vt, wt).

Suppose v ∈ H ∩H⊥. Then for some scalars ai, bi ∈ F , we have

v =
t∑
i=1

aivi +
t∑
i=1

biwi.

Now, since B(v, vi) = 0, we can deduce that bi = 0. Similarly, since B(v, wi) = 0, we can

deduce that ai = 0. So v = 0.

Lemma 6.4.3. Fix any nonzero elements a, b, c ∈ Fq. Then the equation ax2 + by2 + cz2 = 0

has a non-trivial solution in Fq.

Proof. If char(Fq) = 2, then (Fq)∗ is a multiplicative group of odd order. So every nonzero

element of Fq is a square.

Find x, y, z such that x2 = a−1, y2 = b−1 and z = 0. This is a non-trivial solution of the

equation.

Suppose q is odd. Let S be the set of squares in Fq. Then |S| = q+1
2

. Then |aS|+ | − c−

bS| > |Fq|. As a result, we have aS ∩ (−c− bS) 6= ∅. So −c ∈ aS + bS.

Pick x, y ∈ Fq such that ax2 + by2 = −c. Then the triple (x, y, 1) is a non-trivial solution

to the equation.
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Lemma 6.4.4. Fix any A ∈ G. Then given any totally singular subspace W ∈ V of

dimension d, we can find a subspace W ′ of W such that W ′ is perperdicular to AW ′, and

W ′ has dimension at least d
4
− 3

2
.

Proof. We proceed by induction on the dimension of W .

Initial Step: For the base case of the induction, suppose the dimension of W is 7 or 8

or 9 or 10. Then all we need is to find a nonzero vector v ∈ W such that v ⊥ Av. Suppose

for contradiction that there is no such vector.

Pick any non-zero v1 ∈ W . Let W1 be the intersection of W and span{v1, Av1, A
−1v1}⊥.

Since v1 is not perpendicular to Av1, it is not in span{v1, Av1, A
−1v1}⊥. So v1 /∈ W1, and W1

has dimension at least dimW − 3 ≥ 4.

Pick any non-zero v2 ∈ W1. Let W2 be the intersection of W1 and span{v2, Av2, A
−1v2}⊥.

Then W2 has dimension at least dimW1 − 3 ≥ 1 and similarly v2 /∈ W2. Pick any non-zero

v3 ∈ W2.

Now, we know B(v1, Av1), B(v2, Av2), B(v3, Av3) are all in F∗q. We shall divide our dis-

cussion into two cases:

Orthogonal or Symplectic Case: Let a = B(v1, Av1), b = B(v2, Av2), c = B(v3, Av3).

Then by Lemma 6.4.3, we can find a nontrivial triple x, y, z ∈ Fq such that ax2+by2+cz2 = 0.

Let v = xv1 + yv2 + zv3, then we have

B(v,Av) =x2B(v1, Av1) + y2B(v2, Av2) + z2B(v3, Av3)

=ax2 + by2 + cz2

=0.

Unitary Case: If B is a Hermitian form for a field automorphism σ of order 2, then

let F be the fixed subfield of σ. Let N : Fq → F be the field norm, which is surjective.

Now, Fq is an F -vector space of dimension 2. So B(v1, Av1), B(v2, Av2), B(v3, Av3) cannot

be F -linearly independent in Fq. So one can find non-trivial triple a1, a2, a3 ∈ F such that

a1B(v1, Av1) + a2B(v2, Av2) + a3B(v3, Av3) = 0.
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Since the norm map is surjective, find x1, x2, x3 ∈ Fq such that N(xi) = ai. Let v =

x1v1 + x2v2 + x3v3. Then we have

B(v,Av) =N(x1)B(v1, Av1) +N(x2)B(v2, Av2) +N(x3)B(v3, Av3)

=a1B(v1, Av1) + a2B(v2, Av2) + a3B(v3, Av3)

=0.

So in either case, we could find the desired non-trivial vector v ∈ W such that v ⊥ Av.

Inductive Step: Now let us proceed for general W of larger dimension. Since the dimen-

sion of W is at least 7, by the argument in the base case of the induction, we can find v1 ∈ W

such that B(v1, Av1) = 0. Let W1 be the intersection of W and span{v1, Av1, A
−1v1}⊥. Then

W1 has dimension at least d− 3. Pick any subspace W2 of W1 linearly independent from v1.

Then W2 has dimension at least d− 4 and at most d− 1. Then by induction hypothesis, we

can find W ′
2 a subspace of W2, such that W ′

2 is perpendicular to AW ′
2, and W ′

2 has dimension

at least d−4
4
− 3

2
.

Let W ′ be the span of W ′
2 and v1. Then W ′ will be perpendicular to AW ′, and has

dimension at least d−4
4
− 3

2
+ 1 = d

4
− 3

2
. So we are done.

Lemma 6.4.5. Fix any A ∈ G where all eigenvalues of A are outside of Fq. Then there is

a t-dimensional totally singular subspace W of V such that W ∩ AW = {0}, for any t ≤ n
6
.

Proof. Fix n, which we assume to be at least 3, so that V has at least one singular vector.

We shall proceed by induction on the dimension of W .

Initial Step: Suppose t = 1. Simply pick any singular vector v, and let W be the

span of v. Since A has no eigenvalue in Fq, v and Av must be linearly independent. So

W ∩ AW = {0}.

Inductive Step: Suppose we have found a totally singular subspace W of dimension

t − 1 such that W ∩ AW = {0}. I claim that, when t ≤ n
6
, we can find another singular

vector v, such that the desired subspace is the span of v and W .

First of all, we want v to be a singular vector perpendicular to W . We know W⊥ has

dimension n − t + 1, and by Witt’s decomposition theorem, V has a totally singular space
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of dimension at least n−2
2

. This totally singular space will intersect W⊥ in a subspace of

dimension at least n−2
2
−t+1 = n

2
−t. So there are at least q

n
2
−t singular vectors perpendicular

to W .

Among these vectors, to prove the existence of a good v, we should count the number of

vectors to avoid. We need v to avoid W +AW . Afterwards, it is enough to have Av avoiding

any linear combination of v and W +AW . To satisfy the second requirement, we need v to

avoid
⋃
x∈Fq(A− x)−1(W +AW ). Here we shall interpret (A− x)−1 as the pullback map of

subsets.

Now, since A has no eigenvalue in Fq, therefore A− x are all invertible. So, we have

|(W + AW ) ∪ (
⋃
x∈Fq

(A− x)−1(W + AW ))|

≤q2t−2 + q × q2t−2

<q2t.

So as long as 2t ≤ n
2
− t, i.e., t ≤ n

6
, then it is possible to choose a vector v as desired.

Lemma 6.4.6. Fix any matrix A ∈ G of degree k, such that the eigenvalues of A are either

1 or outside of Fq. Then we can find a subspace W of V with the following properties:

1. dimW ≥ k
32
− 7

4

2. W is totally singular;

3. W ∩ AW = {0};

4. W ⊥ AW .

Proof. Let VA be the subspace of fixed points of A in V . Let Vr = VA ∩ (VA)⊥. Choose

any positive number a to be determined later. Then either Vr has dimension < a, or it has

dimension ≥ a.

Case of Large Vr:
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Suppose Vr has dimension ≥ a. Pick any non-zero singular v1 ∈ Vr, then we can find

w1 ∈ V such that v1, w1 form a hyperbolic pair. Let Vr1 be the intersection of Vr with

span{v1, w1}⊥. Pick any non-zero singular v2 ∈ Vr1, then we can find w2 in span{v1, w1}⊥,

such that v2, w2 form a hyperbolic pair. Then let Vr2 be the intersection of Vr1 with

span{v1, w1, v2, w2}⊥, and repeat.

As long as dimVri > 2, then Vri cannot be anisotropic. So we can keep going at least

ba−2
2
c times. Thus we obtained w1, ..., wba−2

2
c. They span a totally singular space Wr of

dimension at least a−3
2

. Then by Lemma 6.4.4, we can find a subspace W of Wr, such that

W ⊥ AW and W has dimension at least a−3
8
− 3

2
.

I claim that, ignoring the dimension requirement, this W satisfies all the desired prop-

erties. By construction of W , we have W totally singular and W ⊥ AW . We only need to

show that W ∩ AW = {0}.

For any vector w =
∑ba−2

2
c

i=1 aiwi ∈ W , suppose it is perpendicular to Vr. Then for each

i, since B(vi, w) = 0, we see that ai = 0. So w = 0. To sum up, W has trivial intersection

with (Vr)
⊥.

Suppose w ∈ W ∩ AW . Then w − A−1w ∈ W , and for any v ∈ Vr we have

B(v, w − A−1w) =B(v, w)−B(v, A−1w)

=B(v, w)−B(Av,w)

=B(v, w)−B(v, w)

=0.

So w − A−1w ∈ W ∩ V ⊥r = {0}. So w = Aw, and w ∈ W ∩ VA ⊆ W ∩ (Vr)
⊥ = {0}.

To sum up, this W is the space we desired, with dimension at least a−3
8
− 3

2
.

Case of Small Vr:

Suppose Vr has dimension < a.

Step 1: We want to first find a subspace WA of (VA)⊥ where WA ⊥ WA, and WA∩AWA =

Vr, and the codimension of Vr in WA is at least k−a−5
6

.
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Now, the bilinear or Hermitian form B restricted to (VA)⊥ is still bilinear or Hermitian,

with exactly Vr as the radical. So the space V ′ = (VA)⊥/Vr has an induced bilinear or

Hermitian form B′, and now B′ is non-degenerate.

So V ′ is a non-degenerate formed space with dimension at least k−a. Furthermore, since

Vr and (VA)⊥ are both A-invariant, A induces a linear map A′ on V ′. Clearly A′ has no non-

trivial fixed point in V ′, so all eigenvalues of A′ are ouside of Fq. So by Lemma 6.4.5, V ′ has a

totally singular subspace W ′ of dimension at least bk−a
6
c ≥ k−a−5

6
, such that W ′∩A′W ′ = {0}.

Let WA be the pullback of W ′ through the projection map (VA)⊥ → V ′. Since W ′ is

totally singular under B′, the form B vanishes on WA. (Note that in the orthogonal case,

the quadratic form Q might not vanish on WA, so WA might not be totally singular.)

Step 2: Now let us find a totally singular subspace Wr of WA, which intersects trivially

with Vr and has dimension at least k−a−5
6

.

If charFq 6= 2, or if we are not in the orthogonal case, then WA is totally singular. Pick

any subspace Wr of WA which has trivial intersection with Vr and has dimension at least

k−a−5
6

, and we are done.

Suppose charFq = 2, and we are in the orthogonal case, and Q vanishes on Vr. Then

the space V ′ = (VA)⊥/Vr would have an induced non-degenerate quadratic form Q′ that

corresponds to the non-degenerate bilinear form B′. So by Lemma 6.4.5, when we picked

W ′ to be totally singular, we can pick it to be totally singular with respect to the quadratic

form Q′. This way the subspace WA would be totally singular. Again pick any subspace Wr

of WA which has trivial intersection with Vr and has dimension at least k−a−5
6

, and we are

done.

Finally, suppose now that charFq = 2, and we are in the orthogonal case, and we have a

vector v0 ∈ Vr such that Q(v0) 6= 0. Since charFq = 2, the squaring map is bijective on Fq,

we can assume that Q(v0) = 1 by scaling v0.

Define a map X : WA → WA such that X(v) = v +
√
Q(v)v0. Here the square root is

well defined because charFq = 2. Then we have Q(X(v)) = 0 for all v ∈ WA.

Furthermore, X is linear. To see this, first we notice that for any v, w in WA, since B
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vanishes on WA,

Q(v + w) = Q(v) +Q(w) +B(v, w) = Q(v) +Q(w).

So we have

X(v + w) =v + w +
√
Q(v + w)v0

=v + w +
√
Q(v) +Q(w)v0

=v + w + (
√
Q(v) +

√
Q(w))v0

=X(v) +X(w).

For any scalar a ∈ Fq, we also easily have X(av) = aX(v).

Now, since X is linear, X(WA) is a subspace of WA. So X(WA) is a totally singular

subspace.

Now pick any subspace Wr of WA which has trivial intersection with Vr and has dimension

at least k−a−5
6

. Then X(Wr) is a totally singular subspace of WA. It remains to show that

this X(Wr) intersects Vr trivially and has the correct dimension.

For any vector v, if X(v) ∈ Vr, then v =
√
Q(v)v0 + X(v) ∈ Vr. So X(Wr) only has

trivial intersection with Vr. And since the kernel of X is entirely in Vr, X(Wr) has the same

dimension as Wr.

So replace Wr by X(Wr), and we are done.

Step 3: Now we construct the desired subspace W .

By Lemma 6.4.4, we find a subspace W of Wr such that W ⊥ AW , and W has dimension

at least k−a−5
24
− 3

2
.

I claim that, ignoring the dimension requirement, this W satisfies all the desired proper-

ties.

First of all, we know W is totally singular and W ⊥ AW . By construction, W is in

(VA)⊥ but has trivial intersection with Vr. Then since WA ∩ AWA = Vr, we know that

W ∩ AW = {0}.
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To sum up, this W is the space we desired, with dimension at least k−a−5
24
− 3

2
.

Find the Optimal a:

Picking the optimal a = k
4

+ 1 for both cases above, we eventually find the desired

subspace W of dimension at least k
32
− 7

4
.

Proposition 6.4.7. For any symmetric generating set S of G or G′, there is a non-trivial

element of degree at most C(log n+ log q)3 for some absolute constant C, of length less than

qC
′n(logn+log q)3 for some absolute constant C ′.

Proof. We pick r and c according to Lemma 6.2.3. Let us assume that 2c(log n+log q)3 < n−2
5

,

because otherwise the statement is trivial.

Let p1, ..., pr be the first r primes coprime to p(q − 1). Let fi(x) be the irreducible

polynomial over Fq for all the primitive pi-th roots of unity, and let Ci be the companion

matrix of Fq.

Initial Step:

Let us find our first P(r)-matrix. Let T be a singularly c(log n + log q)3-transversal set.

Let W be any totally singular subspace of dimension c(log n+ log q)3, which exists by Witt’s

decomposition theorem. Note that any bijective linear map from W to W is an isometry,

and is therefore subject to Witt’s extension lemma.

By definition of a singularly transversal set, we can find A0 ∈ T that maps the totally

singular subspace W onto itself, and that its restriction to this subspace is the matrix

(
⊕r

i=1Ci)⊕ I for some arbitrary choices of basis on W , where I is some identity matrix of

suitable size.

In particular, A0 is a P(r)-matrix. Since A0 ∈ T , by choosing T as in Corollary 5.3.8, A0

has length bounded by qcn(logn+log q)3 .

By using Lemma 6.2.3, we can raise A0 to a large power, and obtain a non-identity matrix

A1 of degree ≤ deg(A0)
4
≤ n

4
, with eigenvalues either 1 or outside of Fq. Since the order of A0

is bounded by qn by Lemma 6.3.4, the length of A1 is bounded by qcn(logn+log q)3+n.

Inductive Step:

67



Suppose we have obtained a non-identity matrix Aj with eigenvalues either 1 or outside of

Fq, degree at most n
2j+1 , and length at most q2cn(logn+log q)3+j(n+2). If degAj ≤ 56+32c(log n+

log q)3, then we stop. If not, then let us construct a non-identity matrix Aj+1 of even smaller

degree.

First we shall transform Aj into a P(r)-matrix. Find a totally singular subspace Wj of

dimension c(log n + log q)3 as in Lemma 6.4.6. In particular, Wj ⊕ AjWj is a well-defined

totally singular space. Let T ′ be a singularly 2c(log n + log q)3-transversal set, then we can

find Mj ∈ T ′ that fixes AjWj, and restricts to a map from Wj to Wj as
⊕r

i=1Ci ⊕ I for any

arbitrary basis of Wj and some identity matrix I of suitable size.

Consider the commutatorMjA
−1
j M−1

j Aj. SinceMj fixes AjWj, we see thatMjA
−1
j M−1

j Aj

restricted to Wj is identical to Mj restricted to Wj.

In particular, MjA
−1
j M−1

j Aj is a P(r)-matrix, and it has degree at most 2 deg(Aj). Now

we use Lemma 6.2.3 again, raising MjA
−1
j M−1

j Aj to a large power, and we would obtain a

matrix Aj+1 of degree at most
2 deg(Aj)

4
, with eigenvalue wither 1 or outside of Fq.

Since Mj ∈ T ′, by choosing T ′ as in Corollary 5.3.8, Mj have length bounded by

q2cn(logn+log q)3 . And since the order of MjA
−1
j M−1

j Aj is bounded by qn by Lemma 6.3.4,

the length of Aj+1 is at most

qn(2q2cn(logn+log q)3 + 2q2cn(logn+log q)3+j(n+2)) ≤ q2cn(logn+log q)3+(j+1)(n+2).

We repeat the above induction logn
log 2
− 1 times, or stop early if we hit degree 2c(log n +

log q)3. The last Aj we obtained is the desired matrix of small degree and small length.

6.5 Diameter bounds, spectral gaps and mixing time

Using results from this chapter, we can obtain the following result on diameter bounds of

finite simple group of Lie type.

Corollary 6.5.1. The diameter of a finite simple group of Lie type of rank n over Fq are at

most O(qO(n(logn+log q)3)), independent of the choice of generating sets. The implied constants

are absolute.
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Proof. Combine Proposition 5.4.5 with Proposition 6.3.5 or Proposition 6.4.7.

Given a group G and its generating set S, let Γ(G,S) be its Cayley graph, and let A

be the normalized adjacency matrix of the graph. Then A has real eigenvalues λ1, ..., λ|G|,

ordered from the largest one to the smallest one. Then the spectral gap of Γ(G,S) is

λ1 − λ2.

Let µ be the random distribution 1
2
1{e} + 1

2|S|1S. Then a lazy random walk of length k

is the random outcome of the distribution µ(k) = µ ∗ µ ∗ µ ∗ ... ∗ µ. Using the definition of

Helfgott, Seress and Zuk [HSZ15], the strong mixing time of Γ(G,S) is the least number

k such that µ(k) is at most 1
2|G| away from the uniform distribution on Γ(G,S), in the `∞

norm.

One can bound the spectral gap using a diameter bound.

Proposition 6.5.2 (([DS93], Corollary 3.1)). Given a finite group G and a symmetric gen-

erating set S, let Γ be the Cayley graph. Then the spectral gap of the Cayley graph is bounded

from below by 1
(diam Γ)2|S|

In turn, one can bound the strong mixing time by the spectral gap.

Proposition 6.5.3 (([Lov93], Theorem 5.1)). Given a finite group G and a symmetric

generating set S, let Γ be the Cayley graph, and let λ be the spectral gap. Then the strong

mixing time of the Cayley graph is bounded by O( log |Γ|
λ

).

Then our main result implies the following corollary:

Corollary 6.5.4. Let G be a finite simple group of Lie type of rank n over Fq. The spectral

gap of Γ(G,S) is bounded by |S|−1q−O(n(logn+log q)3), and the mixing time of Γ(G,S) is bounded

by |S|qO(n(logn+log q)3).
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[HSZ15] H. A. Helfgott, Á. Seress, and A. Zuk. “Random generators of the symmetric
group: diameter, mixing time and spectral gap.” J. Algebra, 421:349–368, 2015.
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[Tit57] J. Tits. “Sur les analogues algébriques des groupes semi-simples complexes.”
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