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ABSTRACT OF THE DISSERTATION

Bayesian Curve Registration and

Warped Functional Regression

by

Lu Wang

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2018

Professor Donatello Telesca, Chair

Functional data usually consist of a sample of functions, with each function observed on a discrete

grid. The key idea of functional data analysis is to consider each function as a single, structured

object rather than a collection of data points. To represent and investigate functional data, curve

registration and functional regression are two important techniques. Curve registration is used to

align random curves that display time variations. This procedure, known as functional convex

averaging, leads to phase-variance adjusted mean functions. Therefore, compared to a simple

averaged mean function, phase-variance adjusted mean function by functional convex averaging

is a more accurate representation of the inherent function from which the functional data arise.

Several curve registration methods are reviewed in this work, including landmark, self-warping

and Bayesian hierarchical curve registration (BHCR). For BHCR, when the number of random

curves is large or the sampling grid is intensive, the computational cost increases dramatically. To

solve this problem, we introduce an accelerated BHCR algorithm via a predictive process model

(PPM), known as PPM-BHCR. Tested by a simulation study and real data, this new method is

demonstrated to save large amounts of computing time, without a large sacrifice of accuracy.

Functional regression is used to explore the relationship between the outcome and the predictor,

where either or both of them are functional. In this work, several functional regression methods

are reviewed according to the function-on-scalar, scalar-on-function and function-on-function cat-

egories. Registration is traditionally performed as a data preprocessing step before regression. In
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this work, we introduce a new method called warped functional regression (WFR), which inte-

grates curve registration and functional regression into one joint model. Therefore, we are able to

provide prediction based on an unwarped predictor using this new model. The proposed method is

evaluated by simulation studies and demonstrates high accuracy. Several case studies illustrate the

key contributions of the proposed method in addressing complex scientific questions.
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CHAPTER 1

Introduction

Scientific experiments and economical activities have brought rapidly growing amounts of func-

tional data. Functional data usually consist of a sample of functions, and each function is sampled

on a discrete grid. The key idea of functional data analysis is to consider each function as a single,

structured object rather than a collection of data points. This allows for building complex models

to simultaneously explore the relationship within and between functions. In the past decades, re-

searchers have proposed a series of functional data analysis methods with significant applications

in clinical research, imaging technology, econometrics and many other emerging areas. For ex-

ample, [Goldsmith et al., 2012] used penalized functional regression to relate intracranial, white

matter tracts to cognitive disability in multiple-sclerosis patients. Furthermore, [Sood et al., 2009]

predicted the market penetration of new products using augmented functional regression.

Several perspectives on functional data analysis are to be considered when we survey its

methodology and application. The first perspective, which is also a prerequisite for functional re-

gression, is curve registration. The visualized representation of functional data often exhibits time

variations, in the sense that they have similar shapes, but different phases. Therefore, it is neces-

sary to synchronize the curves for the purpose of graphic representation or further formal inference.

This process is known as curve registration, which involves transforming the time argument t so

that curves are aligned. Existing curve registration methods include landmark registration, the

self-warping function and Bayesian hierarchical curve registration (BHCR). The MCMC sampling

process used in BHCR provides satisfactory estimation accuracy; however, it is time consuming.

It is especially problematic when the number of curves or sampling points in each curve is large.

In Chapter 2, we introduce the predictive process model-based BHCR (PPM-BHCR) to solve this

problem. The simulation study demonstrates that the new method significantly accelerates BHCR
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and does not sacrifice accuracy much. We also provide an example of using this new method to

register intracranial pressure curves from neurosurgical patients.

Functional regression is a powerful tool for investigating the relationships among functional

and scaler data. Depending on the types of outcomes and predictors, functional regression can

be categorized into three classes: functional predictor regression (scalar-on-function), functional

response regression (function-on-scalar) and function-on-function regression. These methods are

reviewed in detail in the rest of this chapter. Although much literature and work has been fo-

cused on the area of functional regression, most of it treats functional regression as a separate

step from curve registration. In Chapter 3, we propose warped functional regression (WFR) under

the Bayesian framework to incorporate registration as an intrinsic part of the regression model,

and we use the function-on-function type of functional regression to demonstrate this method.

The proposed method is evaluated by a simulation study, and it is applied to two case studies for

demonstration purposes.

The rest of this chapter reviews the fundamentals of functional data smoothing and the different

methods for curve registration. We also review the three types of functional regression, and we then

demonstrate Bayesian functional regression using two case studies.

1.1 Smoothing of Functional Data

1.1.1 Property of functional data

Functional data are usually recorded in the form y = (y(t1), ..., y(tj), ...y(tm)), where y(tj) is the

observation of an unknown function f at time tj , and it can be simply written as y(t) for general

purpose. Time is the most commonly used continuum, but it can also be other kind of scale, like

spatial position. Instead of considering y = (y(t1), ..., y(tm)) as a series of individual observations,

the basic assumption of functional data analysis is to consider ys as a complete set of reflection

of the unknown function f . Hence the functional observation y can be denoted as f(t) plus some

measurement error. This unknown function f is what we want to investigate. To estimate f we

need to make another fundamental assumption, that is the underlying function f is smooth in the
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space of t so that it can be approximated by certain combination of known continuous functions.

The data set in functional data analysis is often consisted of a group of random curves, where

the curve itself has certain practical meaning, and it is more reasonable to treat each curve as an

entity instead of treating each observation at every time point as an entity. For example, the growth

data where height is a function of age, and weather data where temperature is a function of time.

Figure 1.1 shows the heights of 54 girls measured from age 1 to 18 in Berkeley Growth Study

([Tuddenham and Snyder, 1954]). By visually examining the growth curves, it is clear that during

age 8 to 12 the height growing speed is relatively higher than during age 14 to 18. The replication

of the growth curves help us find out such height growing trend.

5 10 15

80
10

0
12

0
14

0
16

0
18

0

age

he
ig

ht

Figure 1.1: Berkeley Growth Data. Heights of 54 girls measured from age 1 to 18.
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Functional data analysis can be categorized into exploratory analysis and confirmatory analy-

sis. In exploratory functional data analysis, people concentrate on visualizing functional data and

make descriptive statement about trend in data. Two major techniques in this category are curve

registration and functional principle component analysis. In the confirmatory functional data anal-

ysis, people are more interested in using functional data to explain or predict relevant outcome.

This task can be accomplished by functional regression model. Before entering detailed descrip-

tion of these methods, we will first discuss basic technique of smoothing functional data, which is

the preliminary step of any type of functional data analysis.

1.1.2 Basis systems

Since the unknown function f is assumed to be smooth, it can be denoted by a linear combination

of known functions:

f(t) =
K∑
k=1

βkbk(t). (1.1)

Here bk(t) is called basis function. In a set of basis functions, bk(t)′s are independent with each

other. There are many options for the choice of basis function. Ideally basis function should

have properties that match the functional data so that only a small number K of basis functions is

needed to well approximate f(t). For periodic functional data, Fourier basis system is popular. It is

a set of trigonometric functions (sinωt, cosωt, sin2ωt, cos2ωt, ...). Wavelet basis system is another

popular choice for periodic data. Compared to Fourier basis, wavelet has better performance when

dealing with rapid change in random curves. By adopting the Discrete Wavelet Transformation,

estimation of basis function coefficients is much faster for wavelet than Fourier basis system.

For non-periodic functional data, spline basis functions are often used. For example, the trun-

cated power series (1, t1, t2, t3, (t− ξ1)3+, ..., (t− ξk)3+). In this kind of basis system, ξ1, ..., ξk are

called knots. They are points within the range of t and divide the range into subintervals. In each

subinterval different splines are fit to approximate f(t). Because of this flexibility, only a relative

small number of spline functions is needed. The number and location of knots determine how

accurate the approximation can be. Later on we will discuss how to determine these two factors.

Each spline function is a polynomial of order m, which is one more than the highest power of the
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polynomial. Adjacent splines join smoothly at knot. With k interior knots and cubic polynomial,

k + 4 basis functions are needed for the approximation. The most popular spline basis function

is B-spline basis function ([de Boor, 1978]) because of its good computational property. An or-

der m B-spline basis function is positive over no more than m adjacent subintervals, so that the

inner product matrix of basis functions is banded with nonzero values, and the rest large portion

of the matrix is zero valued. This property leads to the result that even the number of basis func-

tions increase to a very large value, the calculation of the inner product of design matrix is still

manageable.

1.1.3 Smoothing functional data

As we mentioned: each functional observation arises from a curve or a function; the curve being

estimated is smooth, which means it can be well approximated by a linear combination of basis

functions:

y(t) = f(t) + ε

=
K∑
j=1

βkbk(t) + ε (1.2)

where ε is white noise. f = {f(tj)} can also be expressed in matrix format: f = Bβ, where

B is the design matrix of basis functions evaluated at different time points. Smoothing functional

data is done by estimating the coefficient vector β. A simple way to do this is to use ordinary least

square (OLS) fit:

β̂ = (B′B)−1B′y (1.3)

So the smoothed functional data are:

ŷ = B(B′B)−1B′y (1.4)

OLS estimation is lack of control over the degree of smoothing and local fluctuation of curve. The

estimated function is often over-smoothed. A more sufficient method should provide appropriate

degree of smoothing and not miss significant local fluctuation. These two conflicted properties are

balanced by choosing number of knots and their locations carefully. Such methods are introduced

below.
5



1.1.4 Smoothing functional data by roughness penalty

The major challenge of smoothing functional data is how to decide the number of knots and their lo-

cations. Authors proposed two categories of methods to solve this problem. One is called smooth-

ing splines: it avoids selecting knots by using a maximal set of knots and imposing roughness

penalization ([Hastie and Tibshirani, 1990]). The criterion to minimize is:

RSS(f, λ) =
m∑
j=1

[y(tj)− f(ti)]
2 + λ

∫
T

[f ′′(t)]2dt (1.5)

where λ is the tuning parameter which controls smoothness. Larger λ brings smoother curve, and

smaller λ brings more wiggly curve. It can be shown that 1.5 has an explicit unique minimizer and

that minimizer is a natural cubic spline with knots at unique values of xi:

β̂ = (B′B + λΩ)−1B′y, (1.6)

where Ωij =
∫
B′′i (t)B′′j (t)dx, Bij = Bj(ti). Computing Ω is usually done by numerical integra-

tion. In practice it seldom requires very high accuracy. The tuning parameter λ can be found by

cross-validation. Cross-validation is common in a wide range of statistic problems. Particularly

for smoothing spline, the generalized cross-validation (GCV) developed by [Craven and Wahba,

1978] is popular. GCV avoids partitioning the data into training set and validation set. The tuning

parameter λ is chosen by calculating the following criterion:

GCV(λ) =
nSSE

[trace(I− (B′B + λΩ)−1B′)]2
(1.7)

GCV is not only more efficient than ordinary cross-validation but also more reliable in the sense

of being less possible to be under-smoothing.

1.1.5 Smoothing functional data by knot selection

Smoothing splines method has the advantage of computational easiness and simplicity to control

the smoothness. The drawback is also obvious: since it uses a global penalization parameter it is

lack of flexibility to capture local features when dealing with curve with inhomogeneous smooth-

ness. It can be over-smoothed in some area and under-smoothed elsewhere. Hence another class of
6



methods are proposed: regression splines, which does select knots and their locations. [Friedman,

1991] and [Luo and Wahba, 1997a] proposed stepwise selection of knots which adopted tradi-

tional stepwise/backward/forward variable selection methods. However these methods suffer the

inherent drawbacks of stepwise selection (inappropriate use of test and p-value, biased regression

coefficients and confounding problem). To improve, [Osborne et al., 1998] proposed knot selec-

tion via LASSO and an algorithm that allows efficient calculation of estimation. [Zhou and Shen,

2001] proposed the adaptive regression spline method: knot insertion is through guided search that

less smooth area tends to have more knot placed; spline is fitted locally with neighborhood size

defined by the spline used.

From Bayesian perspective, [Smith and Kohn, 1996] proposed a knot selection and estimation

method based on the Bayesian variable selection method by [George and Mcculloch, 1993]. Sup-

pose we use cubic power truncated splines:
{

1, t1, t2, t3, (t− ξ1)3+, ..., (t− ξk)3+
}

. To facilitate the

selection of knots, authors introduce the indicator variable γ = (γ1, ..., γk)′:

P (γj = 1) = 1− P (γj = 0) = ω. (1.8)

When γj = 0, we remove the corresponding knot ξj from ξ; when γj = 1, we add the corre-

sponding knot ξj to ξ. The number of knots currently existing in the spline can be calculated by

kγ = γ′1. So the current design matrix of basis functions B and β also depend on γ, we denote

them as Bγ and βγ . The sampling distribution of Y is:

y|β,γ, σ2 ∼ N(Bγβγ , σ
2In). (1.9)

The next thing is to assign priors on parameters β, γ and σ2. Assuming σ2 and γ are independent

with each other, we use inverse Gamma as the prior of σ2,

σ2 ∼ IG (ν/2, νλ/2) . (1.10)

where the shape and scale parameters are prespecified small values. Assuming γ′js are independent

with each other, authors use the Bernoulli distribution as the prior for each of the elements of γ:

γj|ω ∼ Bernoulli(ω) (1.11)
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and set ω to be 0.5 which represents no prior knowledge about whether a variable is included or

not (In next section we will show that actually Beta distribution can be used here as the prior for

ω, and in the joint prior distribution of ω and γ, ω can be integrated out). For β, we assign the

Zellner’s g-prior on it:

β|σ2,γ ∼ N(0, cσ2(B′γBγ)
−1) (1.12)

where c is a positive scale constant specified by user. Since the priors are all conjugate, their full

conditional posteriors are in closed form:

β|σ2,γ,y ∼ N
(
((1 + c)B′B)−1B′y, σ2(B′B + cB′B)−1

)
σ2|β,γ,y ∼ IG

n+ ν

2
,
|y −Bβ|2 + νλ

2


P (γj = 1|β, σ2,y) =

a

a+ b
(1.13)

where a = f(β|γ−j, γj = 1)ω, b = f(β|γ−j, γi = 0)(1 − ω). Gibbs sampler is used to sample

from the full conditional posteriors. At each iteration the smoothing function ˆf(x) is estimated by

the sampled parameters. After retrieving a sufficient long sequence of ˆf(x), the final estimation of

the smoothing function can be calculated by:

f̂(t) =
1

S

S∑
s=1

f(t)(s) (1.14)

This average of samples converges to the real mean of f(t).

A more adaptive method of curve-fitting with knot selection is proposed by [Denison et al.,

1998]. They use free-knot splines that both the number and location of knots were treated as

random variables. [Denison et al., 1998] avoid specifying a prior on β by plugging in its least

square estimate. [DiMatteo et al., 2001] improved this method by assigning Gaussian prior on

β and approximate the likelihood ratio by Bayesian information criterion (BIC). This improved

method has certain advantages, as will be discussed below, but we first describe the general scheme

of the free-knot curve-fitting.

In addition to the polynomial coefficient β and variance σ2, we introduce two more random

parameters: k, the number of knots for current spline, and ξ = (ξ1, ..., ξk), the location of these
8



knots, where a < t(1) < ξ1 < ... < ξk < t(n) < b. For k we can adopt a Poisson prior or discrete

uniform prior on 1, 2, ..., K. In practice, the results are not very sensitive to the choice between

these two priors. Given k, the prior of ξ is Dirichlet distribution by scaling [a, b] to [0, 1], which is

the multivariate generalization of Beta distribution. For β and σ2, we use the same prior as in 1.10

and 1.12. Involving β in the posterior distribution certainly brings computational complication.

This can be avoided by integrating out β and σ2:

p(y|k, ξ) =

∫
p(y|β, σ2, k, ξ)π(β, σ2|k, ξ)dβdσ (1.15)

The marginalized likelihood 1.15 can be well approximated by BIC. Since with changing k the

dimension of ξ is also changing. Standard MCMC sampling methods do not apply to this case

when the dimension of parameter space is changing. Authors propose to use the reversible jump

MCMC sampling by [Green, 1995] which is designed to have Markov chain samplers jump be-

tween parameter spaces of different dimensionality.

There are three possible transitions for each sampling step: addition, deletion and relocation of

knots, with following probabilities correspondingly:

bk = c min1, p(k + 1)/p(k), dk = c min1, p(k − 1)/p(k), ηk = 1− bk − dk. (1.16)

These probabilities ensure detailed balance by bkp(k) = dk+1p(k + 1). After deciding the type of

next transition, the proposal and sampling rule of each type of step are defined as below:

Birth step. Propose a new knot ξ∗ based on current knots ξk. First uniformly choose one knot

from current knots, and then generate the new knot from a distribution h(ξ∗|ξk, τ) centered at the

chosen knot with certain spread parameter τ . The proposal probability is:

q(Mk+1|Mk) = bk
1

k

∑
h(ξ∗|ξk, τ) (1.17)

Death step. Uniformly choose one knot ξ∗ from existing knots to delete. Then the proposal

probability is:

q(Mk−1|Mk) = dk
1

k
(1.18)

Relocation step Uniformly choose one knot ξ∗ from existing knots to relocate. The new location

9



of the knot is decided as in birth step. The proposal probability is:

q(Mnew|Mcurrent) = ηk
1

k
h(ξ∗|ξk, τ) (1.19)

In [Denison et al., 1998]’s method, the acceptance probability is decided by

α=min(1,likelihood ratio × prior ratio × proposal ratio)

which can be calculated for each of the three steps by formulas we have above. In [DiMatteo et al.,

2001]’s method, they take one more step to also sample β given (k, ξ) by importance reweighting.

The sampled β is used to calculate the estimation function f̂(x). Comparing these two methods,

[Denison et al., 1998] plugs least square estimate of β into the likelihood ratio, which makes the

effect of knot number k vanish as dataset gets large. On the contrast, [DiMatteo et al., 2001] uses

BIC which penalizes the likelihood ratio for dimensionality, which makes the approximation more

accurate.

1.1.6 Smoothing functional data by Bayesian P-spline

Penalized regression splines introduced by Eilers and Marx (1996) is for univariate scatterplot

smoothing. It assumes the unknown function f(·) can be approximated by a polynomial spline

written in terms of a linear combination of B-spline basis functions. The smoothness of the spline

is controlled by the number and location of knots. Small number of knots may lead to over-

smoothed function, and large number of knots may result in under-smoothed function which is

sensitive to local fluctuation. To balance between smoothness and flexibility, penalized regression

splines use a moderate number of equally spaced knots and penalize on the magnitude of basis

function coefficients. Such approach is called P-spline. Bayesian version of P-spline ([Lang and

Brezger, 2004]) replaces the penalty by their stochastic analogues, i.e. Gaussian random walk

priors. It is a common basic technique in Bayesian functional data analysis. Compared to the tra-

ditional P-spline, Bayesian P-spline is easier to be adaptive when f(·) is highly oscillating in local

area, by using locally adaptive smoothing parameter instead of global smoothing parameter. Such

extension has been introduced in [Lang et al., 2002], [Luo and Wahba, 1997b] and [Ruppert and

10



Carroll, 2000]. Bayesian P-spline is implemented through MCMC simulation. When the conjugate

Gaussian prior is used, we use Gibbs sampler to sample from full conditionals of parameters.

For P-spline, suppose we choose a moderate number of knots and have p basis functions. The

penalized likelihood is:

L = l(y, β1, ..., βp)− λ
p∑

l=k+1

(∆kβl)
2

where ∆k is the kth order difference operator of adjacent basis function coefficients, λ is the pa-

rameter for control of smoothness. Therefore, the penalty is on finite differences of the coefficients

of adjacent B-splines. It has the advantage of reducing number of differentiation operations from

number of observations to number of basis functions minus k. Such penalty is closely related to the

penalty in model 1.5 which penalizes on derivative of fitted function. Take the first order derivative

as an example:

h
∑

βlB
′
l(t; q) = −

∑
∆βl+1Bl(t; q − 1) (1.20)

where h is the space between knots, q is the degree of the B-spline, ∆βl = βl − βl−1.

In the Bayesian version of P-spline, k = 1 and k = 2 are corresponding to the first and second

order random walk. The parameters are generated by the random process:

βj = βj−1 + ej or βj = 2βj−1 − βj−2 + ej (1.21)

with Gaussian error ej ∼ N(0, τ 2). For the first order random walk, β1 ∝ const. For the second

order random walk, β1 ∝ const and β2 ∝ const. Smoothness is controlled by the additional

variance parameters τ 2’s, which corresponds to λ in P-spline. So the precision matrices of the first

order random walk and second order random walk priors on β are Ω1/τ
2 and Ω2/τ

2:

Ω1 =



2 −1

−1 2 −1
. . .

−1
. . . . . . . . .

. . . . . . . . . −1

. . . −1 2 −1

−1 1


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Ω2 =



6 −4 1

−4 6 −4 1

1 −4 6 −4 1

. . . . . . . . . . . . . . .
. . . 1 −4 6 −4 1

1 −4 5 −2

1 −2 1


Blank cells are all 0s. Gamma prior is assigned on the smoothing parameter τ 2. For full Bayesian

inference, the unknown variance parameter τ 2 is also considered as random and estimated simul-

taneously with βj . Usually we assign inverse Gamma prior on τ 2. In some applications the choice

of a global variance parameter τ 2 may not be adequate. For example, the underlying function is

highly oscillating. In such situation, we replace τ 2 by τ 2/δj where Gamma prior is assigned on the

hyperparameter δj . [Lang and Brezger, 2004] shows successful and comprehensive application of

Baysian P-spline in simulation study and multiple real data analysis. Particularly, the amount of

smoothing is estimated simultaneously with the unknown function, which is considered as a dis-

tinct advantage of Bayesian P-spline. In the following curve registration and functional regression

chapter, we also choose to use Bayesian P-spline as our primary method for smoothing functional

data.

1.2 Curve Registration

1.2.1 Introduction

Before proceeding to functional modeling, we discuss one critical problem: functional data often

exhibit variation in both phase and amplitude, and confounding these two factors leads to severe

problems. For example, the cross-sectional average does not reflect the real pattern when each

individual peak comes in different timing. Hence synchronizing the curves is necessary before

investigating the average curve. This process is called curve registration, an essential preliminary

to functional data analysis. Fig. 1.2 (from [Kneip and Gasser, 1992]) shows a motivating example

12



of curve registration. Curve registration usually involves finding a time warping function that

aligns all curves, and also estimating an average curve. In this chapter we will first discuss several

important curve registration methods, and then present the Bayesian hierarchical curve registration

developed by [Telesca and Inoue, 2008], which will be used for preprocessing functional data in

chapter 4.

Figure 1.2: Top figure shows before curve registration curves have different phase and amplitude;

middle figure shows after curve registration curves are aligned; bottom figure shows the average

curve without registration (dashed line) and with registration (solid line).
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1.2.2 Curve Registration Methods

1.2.2.1 Landmark Registration

[Ramsay and Silverman, 2005] provides a good summary of curve registration methods. The

simplest way to align curves is to shift the curve by certain shifting parameter δi for the ith curve

xi(t):

x∗i (t) = xi(t+ δi) (1.22)

The shifting parameter is estimated by minimizing certain criterion. Let µ̂(t) denote the estimated

mean function. A global registration criterion is:

RSSE =
n∑
i=1

∫
[xi(t+ δi)− ˆµ(t)]2dt

Our target function is the mean function ˆµ(t). By applying curve registration, it can be better

estimated iteratively: begin with the unregistered mean function, calculate the shift parameter,

update the mean function with registered curves. This procedure converges very fast, usually

within three iterations.

More generally, instead of using the shifting parameter, we want to estimate a warping function

hi(t) to align the curve:

x∗i (t) = xi[hi(t)] (1.23)

One possibility to estimate hi(t) is to first identify a specific feature or landmark for a curve, then

align each curve according to that landmark. A landmark is usually an extrema like maxima,

minima or zero crossing of the curve. [Kneip and Gasser, 1992] and [Gasser and Kneip, 1995]

developed the landmark registration which refers to landmark as a structural feature. Searching for

structure features is not easy due to individual dynamic variations and noise. [Gasser and Kneip,

1995] proposed to use frequencies of occurrence as the standard to identify structural features.

They defined the distribution of extrema locations as structural intensity f(t):

f(t) = lim
h→0

1

2h
E#M(ri) ∩ [t− h, t+ h] (1.24)

where ri is the ith curve, M(ri) is the collection of extremas of ri, M(ri) ∩ [t − h, t + h] is the

number of elements in M(ri) for the interval [t−h, t+h], E is the expectation operator respect to
14



the sample of curves. The modes of f(t) reflects the typical locations of structural features. f(t)

can be estimated through kernel density estimation, which involves kernel estimators for the curve

function ri(t) and structural intensity. The bandwidth of kernel estimator for ri(t) is determined by

”plug-in” bandwidth selector ([Gasser et al., 1991]). The bandwidth of kernel estimator for f(t) is

determined by a cross-validation type method suggested by [Rice and Silverman, 1991].

After the structural points are identified, a time-warping function h(t) is determined to satisfy

the following conditions:

1. Let τi = (τi1, ..., τil) denote the l structural points for the ith curve, τ̄ = (τ̄1, ..., τ̄l) denote

the averaged structural points, [a, b] is the support for all t.

2. h(t) is a continuous function and strictly monotonically increasing for all t ∈ [a, b].

3. hi(τ̄) = τi, align structural points to their average locations.

As an example, hi(t) can be determined by smooth, strictly monotonical interpolation of the points

(τi1, τ̄1), ..., (τil, τ̄l).

1.2.2.2 Self-modeling Warping Function

The landmark registration is straightforward to interpret. However, it suffers from several un-

desirable aspects: some curves may have missing or ambiguous landmarks; variations of region

outside structural area might be ignored; when sample size is large, identification of landmarks for

each curve is time consuming. Instead of using landmarks, [Gervini and Gasser, 2004] proposed

the self-modeling functions which is called continuous monotone registration without requiring

landmarks. It assumes the sample curves x1(t), ..., xn(t) follow the model:

xi(t) = aiµ{νi(t)}+ εi(t), t ∈ T ⊂ R, i = 1, ..., n (1.25)

where µ : T → R is the structural mean, νi : T → T is the monotone increasing function, and εi

is random error. The warping function wi(t) defined as wi(t) = νi(t)
−1 is modeled as:

wi(t) = t+

q∑
j=1

sijφj(t) (1.26)
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The component φj(t) is modeled as:

φj(t) = c′jβ(t) (1.27)

where β(t) = (β1(t), ..., βp(t)) is a vector of B-spline basis functions. Each φj(t) is considered as

accounting for time variability in different segments of T . It is motivated by landmark registration

that each φj(r) is associated with a ”hidden landmark”. To ensure the identifiability of φ-functions

and other coefficients, certain conditions must be satisfied.

The parameters of 1.25 and 1.26 are estimated by minimizing the following criterion:

AISE =
1

n

n∑
i=1

∫
[xi(t)− aiµ{νi(t)}]2dt

=
1

n

n∑
i=1

∫
[xi(wi(t))− aiµ(t)]2w′i(t)dt (1.28)

The estimated µ(t) is:

µ̂(t) =

∑n
i=1 âiŵ

′
i(t)x̂

∗
i (t)∑n

i=1 â
2
i ŵ
′
i(t)

(1.29)

where x̂∗i (t) = xi{ŵi(t)}. The coefficient vectors a, c and s are estimated by Newton-Raphson

method that they are updated sequentially. Notice here xi(t) is pre-smoothed. The number of

components q and the number of basis functions p are determined by cross-validation. It is proved

that under appropriate regularity conditions, the estimator â, ĉ and ŝ are consistent as the number

of curves goes to infinity.

After all, this self-modeling warping function avoids individual identification of landmarks and

makes a more efficient use of data. It also provides flexibility of exploring the curve structure and

in the mean time avoids over-fitting. Matlab programs on Dr. Gervini’s web site are provided to

implement this method. In next section, we will discuss the Bayesian curve registration ([Telesca

and Inoue, 2008]) which adopts the self-modeling idea.

1.2.3 Bayesian Hierarchical Curve Registration

1.2.3.1 Model Formulation

Let xi(t) denote the ith observed curve for one subject at time t, i = 1, .., N , t ∈ T = [a, b].

BHCR is a three-stage hierarchical model.
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Stage One.

xi(t) = mi(µi(t)) + εi

mi(t) = ci + aim(µi(t);β) = ci + aiB
′
m(µi(t))β

µi(t) = B′µ(t)φi (1.30)

where εi ∼ N(0, σ2
ε ). m(t;β) denotes a common shape function and µi(t) denotes a curve-specific

time transformation function. Bm(t) and Bµ(t) are vectors of basis functions. Here we use b-spline

basis functions ([de Boor, 1978]) because of its computational advantages.

Stage Two. Given the common shape function m(t;β), individual curves can vary by scale and

level of response. We assign Gaussian priors to these two parameters as:

ci ∼ N(c0, σ
2
c )

ai ∼ N(a0, σ
2
a)I(ai > 0) (1.31)

For the time transformation function µi(t), it needs to be strictly monotonically increasing and

confined on the support of t: t1 ≤ µ1(t) < µ2(t) < ... < µn(t) ≤ tn. We assign multivariate

Gaussian prior on the time transformation coefficient φi:

φi ∼ N(Υ,Σφ) (1.32)

where Υ is coefficient for the identity time transformation function which satisfies µ(t; Υ) = t.

For the coefficient of shape function β, we also assign multivariate Gaussian prior on it:

β ∼ N(0,Σβ) (1.33)

The estimation of φ and β is actually a curve-fitting problem. Hence the smoothness of µi(·)

and m(·) needs to be controlled. It is achieved through the use of bayesian P-splines proposed by

[Lang and Brezger, 2004]. This method places a first order random walk shrinkage prior on the

coefficient parameter:

βk = βk−1 + ek, ek ∼ N(0, λ)

We assume that β0 = 0. It can be shown that the precision matrix of priors on β is Ω/λ, where Ω
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is in a special banded pattern:

Ω =



2 −1 0 0

−1 2 −1
. . .

0 −1
. . . . . . . . .

. . . . . . . . . −1 0

. . . −1 2 −1

0 0 −1 1


A similar shrinkage prior is placed on φi

φik −Υk = (φi(k−1) −Υk−1) + ηk, ηk ∼ N(0, σ2
φ) (1.34)

Assuming φi0−Υ0 = 0 so thatφi ∼ N(Υ;σ2
φP
−1). P has the same pattern as Ω but with different

dimension. Q is the length of the vector parameter φi. Time transformation function is monotonic

increasing. It is realized by the constraint on components of φi: t1 = φi1 < φi2 < ... < φiQ = tn.

This is because according to [de Boor, 1978]:

µ′i(t) =
1

h

∑
(φik+1 − φik)Bk(t, q − 1) (1.35)

Therefore φik+1 > φik can result in monotonic increasing function µi(t).

Stage Three. We also assign priors on variances and hyperparameters:

a0 ∼ N(ma;σ
2
a0)

c0 ∼ N(mc;σ
2
c0)

1/σ2
a ∼ Gamma(aa, ba)

1/σ2
c ∼ Gamma(ac, bc)

1/σ2
ε ∼ Gamma(aε, bε)

1/λ ∼ Gamma(aλ, bλ)

1/σ2
φ ∼ Gamma(aφ, bφ) (1.36)

The restriction of fixed starting and termination time point for φi(t) brings unsatisfactory reg-

istration result. In reality, different individuals start and end at different phases. To make the regis-
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tration accomodated to such situation, we use a quantity ∆ to relax the starting and end points. So

now the time interval is T = [t1 −∆, tn + ∆].

1.2.3.2 Posterior Inference via MCMC

Let θ = (c′,a′,β′,φ′, c0, a0, σ
2
ε , σ

2
c , σ

2
a, σ

2
φ, λ) denote the vector of all parameters, then the poste-

rior distribution is:

f(θ|Y ) = f(c′,a′,β′,φ′, c0, a0, σ
2
ε , σ

2
c , σ

2
a, σ

2
φ, λ|Y )

∝ f(Y |c′,a′,β′,φ′, σ2
ε )f(c,a|c0, a0, σ2

c , σ
2
a)

×f(β|λ)f(φ|σ2
φ)f(c0|σ2

c0
)f(a0|σ2

a0
)

×f(σ2
ε |aε, bε)f(σ2

c |ac, bc)f(σ2
a|aa, ba)

×f(λ|aλ, bλ)f(σ2
φ|aφ, bφ) (1.37)

Since the joint distribution is intractable to directly sample from, then MCMC sampling method

is applied to draw samples from it. Except φi, all the other parameters have closed-form full con-

ditional distribution since they have conjugate prior. For c′,a′,β′,φ′, c0, a0, their full conditional

distribution is Gaussian distribution. For σ2
ε , σ

2
c , σ

2
a, σ

2
φ, λ, their full conditional distribution is in-

verse Gamma. So Gibbs sampler is suitable to draw samples from these distributions. For φi, the

mean function of yi(t) is ci + aiB
′
m(B′µ(t)φi)β, which is nonlinear in φi. So it is hard to find a

closed-form posterior distribution for φi. The Metropolis-Hasting algorithm is adopted to simulate

samples from the posterior of φi. The proposal density is calibrated so that the acceptance rate for

Metropolis-Hasting algorithm is between 0.25 to 0.75. In summary, this MCMC sampling method

is a mixture of Gibbs and Metropolis-Hasting algorithm. The algorithm is as below:

Let t = (t1, ..., tn)′ denote the time vector, Y = (y1(t1), ..., y1(tn), ..., yN(t1), ..., yN(tn)) denote

the vector of all the observations for one subject.

1. Update mean shape function parameter β by:

(β|Y ,θ−β) ∼ N(mβ;V β) (1.38)
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where V −1β = Σ−1β + 1/σ2
εX

′X , mβ = V β[1/σ2
εX

′(Y −C)], C = (c11
′, ..., cN1′)′, and

X = (a1Bm(µ(t;φ1))
′, ..., aNBm(µ(t;φN))′)′.

2. For i = 1, ..., N , update (ci, ai) by:

(ci, ai|Y ,θ−(ci,ai)) ∼ N(ml; Σl) (1.39)

where Σ−1l = [Σ−1c,a + 1/σ2
εW

′W ], ml = Σl × [Σ−1c,a × (c0, a0)
′ + 1/σ2

ε ×W ′Y i], Y i =

(yi(t1), ..., yi(tn))′, Σc,a = diag(σ2
c , σ

2
a),W = [1,Bm(µ(t;φi))β].

3. Update the error variance parameter σ2
ε by:

(1/σ2
ε |Y ,θ−σ2

ε
) ∼ Gamma(a∗ε , b

∗
ε) (1.40)

where a∗ε = aε+nN/2, b∗ε = bε+1/2ΣN
i=1(Y i−m̃i)

′(Y i−m̃i), m̃i = ci1+aiBm(µ(t;φi))β.

4. For i = 1, ..., N , update φi by;

(a) For j = 1, ..., Q:

i. propose φ∗ij from its support.

ii. Calculate the posterior ratio r =
L(Y i|φ

∗
i ,θ−φi )p(φ

∗
i )

L(Y i|φi,θ−φi )p(φi)

iii. Accept φ∗ij with probability min(1, r).

5. Update hyperparameters c0, a0, σ2
c , σ

2
a, λ, σ

2
φ.

After M draws of samples from posterior, the mean shape function is calculated by:

m(t) = c̄0 + ā0B
′
m(t)β̄ (1.41)

where c̄0, ā0 and β̄ are the averages over the M samples.

[Telesca and Inoue, 2008] compared BHCR with the landmark method and self-modeling warp-

ing function method by [Gervini and Gasser, 2004]. From the results of simulation study and case

study, BHCR consistently shows better performance then those two methods.

In a conclusion, the Bayesian hierarchical curve registration offers a complete Bayesian frame-

work for curve alignment. Unlike most other curve registration methods, it does not require pre-

smoothing of data. Furthermore, this method makes it straightforward to draw inference on the
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estimated parameters. The simulation and case study shows it has satisfactory or even better per-

formance than existing methods.

1.3 Functional Regression

1.3.1 Functional Principle Component Analysis

Before we jump into reviewing different types of functional regression, there is one key method

worth discussion first. This method is functional principle component analysis (FPCA). It helps to

find features in data by characterizing the ”typical” functions and presents the covariance structure

in the data. It decomposes the variation in functional data onto different directions using weighting

functions. By examining the weighting function, people are able to find out how variations are

distributed along the independent variable range (e.g., time). The monograph of [Ramsay and

Silverman, 2005] provides a comprehensive review of functional PCA.

The basic idea of FPCA is to decompose covariance function of functional data X into or-

thonormal basis functions. Such decomposition exists guaranteed by Mercer’s lemma, and realized

by Karhunen-Loève expansion. Mercer’s lemma states that assume the covariance function K is

continuous square-integrable, then there exists an orthonormal sequence φi of continuous function

and a non-increasing sequence ξi of positive numbers such that:

K(u, v) =
∞∑
i

ξiφi(u)φi(v), u, v ∈ R (1.42)

Karhunen-Loève expansion is defined as

X(u) = µx(u) +
∞∑
i

√
ξiζiφi(u) (1.43)

where {ζi} are uncorrelated random variables. ξi and φi(u) are eigenvalues and eigenfunctions

respectively of the covariance function. By Karhunen-Loève expansion, FPCA is able to obtain an

approximation of functional data X(u) by:

X̂(u) = µx(u) +
M∑
i

√
ξiζiφi(u) (1.44)
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The eigenvalue ξi can be interpreted as a measure of variation in X on the φi direction. In practice,

when people choose number of eigenfunctions M , at least 85% variation should be counted by the

first M eigenfunctions.

Functional PCA is an important way to explore functional data. However, it lacks the ability

of using functional data to explain outcome responses. The way to achieve this goal is through

functional regression. Functional regression is the area in functional data analysis that has re-

ceived the most development in methodology and application. Depending on the form of response

variable and predictor variable, functional regression can be categorized into three groups: scalar-

on-function (functional predictor regression), function-on-scalar (functional response regression)

and function-on-function regression. Among these three types of functional regression, the func-

tional predictor regression is the most widely used one, which we will introduce first.

1.3.2 Functional Predictor Regression

The idea of using functional predictor to predict scalar response originated from [Hastie and Mal-

lows, 1993]. The author noticed that in chemometrics study, people used discretized functions or

signals to predict outcome as below:

E(Yi) =

∫
Xi(t)β(t)dt

≈
p∑
j

Xijβj (1.45)

where Xi(t) is the functional predictor and β(t) is the functional coefficient. There are two major

problems with such method. It discarded the functional nature of x(t) and disregarded the fact that

Xij’s are in spatial or time order. The other problem is that the number of predictors is much larger

than the number of outcome observations, and predictors are closely related. The fitted model has

poor predictive ability and interpretability. A more appropriate solution is to retain the functional

nature of x(t) and smooth it, which involves expressing x(t) in terms of a linear combination of

basis functions. Accordingly, the coefficient β(t) is also treated as function and smoothed by basis

functions. The regression model is denoted by the following formula:

Yi = H ′iγ +

∫
T

Xi(t)β(t)dt+ εi, i = 1, ..., N (1.46)
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with both scalar predictor H i and functional predictor Xi(t). To interpret such model, the func-

tional coefficient β(t) is basically re-weighting Xi(t). This re-weighting is similar to the discrete

weights βj in 1.45 except it is a smoother transition in the weighting scheme. Notice that Xi(t) is

a subject-specific predictor, and β(t) is a population level function. Hence the weight close to zero

denotes a weak relation between the subject-level area and the outcome, and large weight denotes

a strong relation between the subject-level area and the outcome.

Functional regression with scalar response is a fast growing area and has many important ap-

plications. A sample of papers in this field includes [Ferraty and Vieu, 2002], [James, 2002],

[Müller and Stadtmüller, 2005], [James and Silverman, 2005], [James et al., 2009], [Goldsmith

et al., 2011]. To estimate β(t), a common strategy is to express Xi(t) and β(t) separately by linear

combination of basis functions. Let Xi(t) = c′iφ(t), β(t) = ψ(t)′b, φ(t) and ψ(t) are vector of

basis functions. The integral can be expressed as:∫
T

Xi(t)β(t)dt =

∫
T

c′iφ(t)ψ(t)′bdt

= c′iJφψb

where Jφψ =
∫
T
φ(t)ψ(t)′dt. In practice, ci is usually calculated in pre-smooth step ofXi(t). The

challenge is to control the smoothness of the functional predictor β(t) and make the model more

interpretable. The smoothness can be controlled by the number of basis functions. When using

b-spline basis, it is controlled through the location and number of knots. An easy-to-implement

strategy is to include a large number of basis functions, and penalize the roughness of functional

coefficient β(t). For example, in [Ramsay and Silverman, 2005] the penalized residual sum of

squares to minimize is defined as:

PENSSE =
N∑
i=1

[Yi −H ′iγ −
∫
T

Xi(t)β(t)dt]2 + λ

∫
[Lβ(t)]2dt (1.47)

whereL is a linear differential operator, and λ is the smoothing parameter, which can be determined

by cross-validation. The method simplifies the modeling part by pre-smoothing functional data

X(t). [Goldsmith et al., 2011] introduced the penalized functional regression which estimates

both X(t) and β(t). It considers the functional data X(t) as a stochastic process with observation

error, which makes this method more realistic. We will discuss this method in detail in section 5.3.
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In some applications each subject can be visited repeatedly, which brings the challenge of

analyzing longitudinal functional data. This area is quite new and limited number of methods is

available. One idea to untangle the problem through longitudinal functional principal component

analysis (LFPCA), proposed by [Di et al., 2009] and [Greven et al., 2010]. This method models the

longitudinal functional data by a two-way ANOVA model, which involves overall mean function,

visit-specific shift, subject-specific shift, and residual visit- and subject-specific shift. The first

two are treated as fixed effect. The latter two are modeled as stochastic process. This method is

an extension to the functional PCA, and it doesn’t involve using functional predictors to predict

the scalar response yi. Another available method is longitudinal penalized functional regression

proposed by [Goldsmith et al., 2012]. This method is a natural extension to model [1.46] by making

the design matrix of coefficient function β(t) consist of random effects.

Different from the scenario described above, another kind of repeatedly measured functional

data are: each subject has a series of curves with similar morphological feature, and each subject

has one single outcome. The motivating data come from the case that in intensive-care unit (ICU)

intracranial pressure (ICP) is monitored for patients who are suffering severe brain damage. ICP

is a critical measurement for diagnosing and managing these neurosurgical patients. Each ICP

pulse is a curve and can be treated as a functional predictor. It is measured repeatedly over time

(each patient has about 200 ICP pulses). Our aim is to explore the relationship between ICP pulses

and clinical outcome (e.g., living status). Given the large number of repeated measured curves for

each subject, it is impossible to include them all in the regression model. Hence it is necessary

to generate a mean curve function based on all curves available for each subject. A naive way

to achieve this goal is to average over all curves. However, ignoring the time variability from

curve to curve will cause the cross-sectional mean curve to be over-smoothed and missing certain

features. For instance, local peak and valley of each curve occur at different time points, and then

the cross-sectional mean curve may have a flat segment instead of the peak and valley. A more

appropriate way to solve this problem is through curve registration, which synchronizes curves

by time warping function. After the curves are aligned, an estimated mean function is calculated

and used in functional regression as predictor. In addition to the mean function, we also include

the variance of amplitude and phase as scalar predictor in our regression model to account for the
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variability among curves.

There are several methods available for curve registration. For example, landmark registration

by [Gasser and Kneip, 1995] identifies landmarks of curve and align all curves according to the

landmark. Self-modeling registration by [Gervini and Gasser, 2004] introduces a curve-specific

unknown time transformation function and approximates it by basis functions. In this paper, we

use the Bayesian Hierarchical Curve Registration method (BHCR) proposed by [Telesca and Inoue,

2008], which has similar idea of time transformation function as the self-modeling registration, but

conducted under bayesian framework.

1.3.2.1 Stochastic Process and Karhunen-Loève Expansion

Before introducing the penalized functional regression by [Goldsmith et al., 2011], we will first

give a brief introduction to stochastic process and Karhunen-Loève Expansion used in such case.

Stochastic process models a collection of random variables evolving over time. It is probabilistic

counterpart to deterministic process. The variability or randomness are time-dependent. A stochas-

tic process can be considered as a function of random outcomes and observed time parameter t,

and it is denoted by {X(t), t ∈ T} or simply X(t). The mean function of a stochastic process is

defined by:

µX(t) =

∫
X(t)dt

and the covariance function is defined by:

Cov(X(ti), X(tj)) =

∫
(X(ti)− µX(ti))((X(tj)− µX(tj))dt

Karhunen-Loève expansion is a representation of a stochastic process as an infinite linear com-

bination of orthonormal functions. It is an advanced mathematical algorithm to achieve both noise

filtering and data compression in processing signals.

The expansion of a deterministic periodic signal x(t) into a basis of orthonormal functions is

typified by the classical Fourier series:

x(t) =
a0

2
+
∞∑
n=1

[ancos(nt) + bnsin(nt)], (−π ≤ t ≤ π)
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It is natural to extend this deterministic case into probabilistic case, so called stochastic process.

Let X(t) denote a stochastic process, the starting formula to expand this process is

X(t) =
∞∑
n=1

Znφn(t) (1.48)

φn(t) denotes orthonormal function. It satisfies∫ T

0

φm(t)φn(t)dt = δmn (1.49)

where the δmn is the Kronecker symbol, defined by δmn = 0 for m 6= n and δnn = 1. Recall that

in Fourier series, the coefficient an and bn are computed through:

an =
1

n

∫
x(t)cos(nt)dt, bn =

1

n

∫
x(t)sin(nt)dt

For Karhunen-Loève expansion, the coefficient Zn is computed in a similar way. Considering the

randomness of X(t), its behavior is made up of two parts: the deterministic part represented by

φn(t) changing in time and the random part represented by Zn, which is a random variable (not

stochastic process). By doing this, the KLT separates the probabilistic behavior of the random

function from its behavior in time. Similar as Fourier series, Zn is obtained through:

Zn =

∫
X(t)φn(t)dt (1.50)

This equation means the random variable Zn is obtained by projecting the stochastic process X(t)

over the corresponding eigenvector φn(t).

Without loss of generality, we can assume the mean function of the stochastic process is zero:

∞∑
n=1

E(Zn)φn(t) = 0 (1.51)

Thus the random variable Zn must have mean 0 too, which leads to an equation for its variance:

σ2
Zn = E(Zn)

We introduce a sequence of positive numbers λn such that each λn is the variance of the corre-

sponding Zn. It can be proved that the orthonormal function φn(t) is the eigenfunction of the
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correlation E(X(t1)X(t2)), and λn is the corresponding eigenvalue. That means once the corre-

lation function for the stochastic process is known, the process can be represented by an infinite

linear combination of orthonormal basis. Another way to understand this property is once the

mean and covariance function of a stochastic process are determined, it can be expanded by KL

expansion.

1.3.2.2 Penalized Functional Regression

[Goldsmith et al., 2011] introduced the penalized functional regression method based on the fol-

lowing model:

Yi ∼ EF(µi, η)

g(µi) = α +

∫
Xi(s)β(s)ds+Ziγ (1.52)

Here EF(µi, η) denotes an exponential family distribution with mean µi and dispersion parameter

η. g(·) is the link funciton. This penalized functional regression is designed for the assumption

that the functional predictor Xi(t) is often measured with error. Wi(t) is used to denote the actual

observed functional predictor, Wi(t) = Xi(t) + εi(t), where εi(t) is a mean-zero white noise

process with variance σ2
ε . Thus, for subject i the data typically are of the form [Yi, {Wi(tij) :

tij ∈ [0, 1]}, Zi]. Of interest is the function β(t),which characterizes the relationship between the

transformed mean of Y and the covariate of interest X(·). Both Xi(t) and β(t) can be expanded

by linear combination of basis functions. The number of components is chosen to be large, and

the smoothness is controlled by smoothing parameter. The estimation process contains two stages:

the estimation of Xi(t) and the estimation of β(t).

Estimation of Xi(t) Consider the functional predictor Xi(t) as a stochastic process, it can be

expanded into orthonormal basis obtained from its covariance operator KW (s, t):

Xi(t) =
Kx∑
j=1

cikφk(t) (1.53)

where φ = {φ1(t), ..., φKx(t)} is the collection of the first Kx eigenfunctions of the covariance

matrix KX(s, t) = Cov{Xi(s), Xi(t)}. Assuming Xi(t) is observed with error: Wi(t) = Xi(t) +
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εi(t) where εi(t) is a mean-zero white noise process with variance σ2
ε . For the observed data Wi(t),

the covariance operator is:

KW (s, t) = KX(s, t) + σ2
ε δts (1.54)

where KW (s, t) = Cov{Wi(s),Wi(t)} is the covariance operator on the observed functions.

δts = 1 if t = s and is 0 otherwise. To estimate KX(s, t), a moment estimator of K̂W (s, t) is

constructed from observed data. Then the estimator is smoothed for s 6= t by the method intro-

duced in [Staniswalis and Lee, 1998] and [Yao et al., 2003]. Then with estimated K̂X(s, t), Xi(t)

is expanded by truncated Karhunen-Loéve expansion where cik =
∫ 1

0
Xi(t)φk(t)dt. Unbiased es-

timator of cik is obtained by Riemann sum approximation to the integral
∫
Wi(t)φk(t)dt. This

method works well when data are densely sampled. When it is not the case, a better alternative

is to obtain the best linear unbiased predictor (BLUP) or posterior modes in the following mixed

effects model:

Wi(t) =
∑Kx

k=1 cikφk(t) + εi,

cik ∼ N(0, σ2
c ), εi ∼ N(0, σ2

ε ) (1.55)

Xi(t) is estimated by plugging in estimated cik into 1.53.

Estimation of β(t) β(t) is expanded by spline basis ψ(t) = {ψ1(t), ..., ψKb(t)}:

β(t) ≈
Kb∑
k=1

bkψk(t) (1.56)

The integral becomes: ∫
Xi(t)β(t) =

∫
c′iφ

′(t)ψ(t)dt = c′iJφψb (1.57)

The basis coefficient vector b needs to be estimated. To control for smoothness, a penalty matrix

P for b is introduced. Then the model can be reformulated as:

Y |X(t) ∼ EF(µ,γ)

g(µ) = [1 CJφψ Z][α b γ]T

b ∼ N(0,P ) (1.58)
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This model is a mixed effects model. So the parameter estimation can be obtained by typical

mixed effects model estimation methods. Typical inferential technique can also produce variance-

covariance estimates, which leads to confidence interval for estimate of β(t). The number of

basis functions used in truncated KL expansion and spline expansion is Kx and Kb respectively.

They are tuning parameters and considered to be important in practice. In penalized functional

regression, they are chosen to be large. Kb is set to be 35, and Kx must be larger than Kb because

of identifiability constraint. Penalized functional regression is implemented in R package ”refund”.

[Goldsmith et al., 2011] conducted simulation study which shows this package is computationally

fast.

Longitudinal penalized functional regression [Goldsmith et al., 2012] introduced the longi-

tudinal penalized functional regression model to fit data when the functional predictor and scalar

outcome are repeatedly measured. In that paper the regression formula is based on model with

multiple functional predictors. Here for simplicity and consistency we only consider model with

one functional predictor, and it is easy to generalize to multiple functional predictor scenario.

Y ij ∼ EF(µij, η)

g(µij) =

∫
Xij(s)β(s)ds+Zijγ +W ijbi (1.59)

Here Y ij is the functional observation of the i’s subject at visit j, Zijγ is the fixed effect com-

ponent, Wijbi is the random effect component and
∫
Xij(s)β(s)ds is the functional effect. bi ∼

N(0, σ2
b I) is subject-specific random effect coefficient, which is used to account for the correlation

between repeated observations at the subject level. β(s) and γ are population level coefficient and

do not vary across visits. The estimation of the functional component is done by two steps similar

as in penalized functional regression:

1. Express the functional predictor Xij by a large number of functional principle components

obtained from a smooth estimator of the covariance matrix

2. Express the functional coefficient by penalized splines.
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These two steps are quite similar as in 1.3.2.2. The functional effect component can be finally

expressed as: ∫
Xij(s)β(s)ds = c′ijJφψg (1.60)

The regression model becomes:

Y |X(t) ∼ EF(µ,γ,u)

g(µ) = Xβ +Zu (1.61)

u ∼ N




0

0
...

0

 ,


σ2
b I 0 · · · 0

0 σ2
g1

I · · · 0
... . . . ...

0 0 · · · σ2
gK

I




X are Z are new matrices different from the previous ones. Xis the design matrix consisting of

scalar covariates and fixed effects. Z is the design matrix consisting of subject-specific random

effects and random effects in the modeling of the functional coefficient. In sum, similar as in

1.3.2.2, the model estimation can be done using standard mixed effects model technique. Both

functional coefficient and random effects can be estimated. This method is also implemented in

the R package ”refund”.

1.3.2.3 Bayesian Functional Predictor Regression

In this section we will introduce Bayesian framework for functional predictor regression. The

scalar response can be continuous or binary, and the functional predictor is formulated by B-spline.

Two case studies will also be demonstrated.

Continuous Scalar Response Let Yi denote the ith continuous response variable of the ith sub-

ject, H denote the design matrix of scalar predictor. Assuming for each subject there is one

functional predictor mi(t) associated with it. The functional predictor is assessed over time t but

it is easy to generalize over other continuum. There is also functional coefficient ν(t) associated

with the functional predictor. The complete functional regression model is as below:

Y = Hγ +

∫
M(t)ν(t)dt+ ε (1.62)
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where each row of M is the functional predictor mi(t) for subject i. mi(t) is expressed by the

following formula the same as in Chapter 3:

mi(t) = ci + aim(µi(t);β) = ci + aiB
′
m(µi(t))β (1.63)

µi(t) is time transformation function, which can be expanded by µi(t) = B′µ(t)φi. Bm(t) and

Bµ(t) are vectors of B-spline basis functions. mi(t) is estimated through the Bayesian curve

registration process. Notice that mi(t) is an estimator from curve registration, not data, to account

for this, we also add the estimated variances of scale parameters and phase parameter into the

model, which are σ2
a, σ2

c , and σ2
φ. These three variances are in the fixed effect.

The functional coefficient ν(t) can also be expanded by B-spline basis functions: ν(t) =

Bα(t)α. So the model becomes:

Y = Hγ +MBαα+ ε (1.64)

where ε has Gaussian distribution N(0, σ2
ε I).

We propose a two-stage Bayesian functional regression method. In the first stage, the Bayesian

hierarchical curve registration is performed to obtain estimation of mi(t), σ2
a, σ2

c , and σ2
φ. In the

second stage, the estimated predictors are plugged into (1.64) and the regression model parameters

are estimated by MCMC sampling. We assign Gaussian prior on γ, and use the first order random

walk on α to control the smoothness.

γ ∼ N(γ0, λγI)

α ∼ N(α0, λαΩ
−1) (1.65)

So the full conditional posterior distribution of γ is:

γ|Y ,γ0, σ
2
ε ,α, λγ, λα ∼ N(mγ,V γ)

mγ = V γ[H
′(Y −MBα)/σ2

ε + γ0/λγ)],V γ = (1/λγ + 1/σ2
ε )
−1(H ′H + I)−1 (1.66)

The full conditional posterior distribution of α is:

α|Y , σ2
ε ,γ, λγ, λα ∼ N(mα,V α)
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mα = V α(MB)′(Y −Hγ)/σ2
ε ,V α = (1/λαΩ + 1/σ2

ε (MB)′(MB))−1 (1.67)

We assign gamma distribution on σ2
ε , λγ , and λα, normal distribution on γ0. So their full condi-

tionals are:

σ2
ε |Y ,γ,α ∼ IG(aε + 1/2N, bε + 1/2

∑N
i=1(Yi −H iγ −M iBα)2)

λγ|Y , σ2
ε ,γ ∼ IG(aγ + 1/2Qγ, bγ + 1/2(γ − γ0)

′(γ − γ0))

λα|Y , σ2
ε ,α ∼ IG(aα + 1/2Qα, bα + 1/2α′Ωα)

γ0|γ ∼ N(m0,V γ0), m0 = V γ0γ/λγ, V γ0 = (1/λγ + 1/σ2
γ0)
−1I (1.68)

where Qγ and Qα are the dimensions of γ and α. Since these are all conjugate priors, Gibbs

sampler can be used to sample from the full conditionals.

Binary Scalar Response For binary outcome, Yi ∈ {0, 1}, assuming it has Bernoulli distribu-

tion, the functional model can be reformatted as:

E(Yi) = µi = g(ηi)

ηi = H iγ +M iBβ (1.69)

where g(·) is the link function. Let θ denote the vector of all parameters, then the likelihood

function becomes:

L(Y |θ) =
N∏
i=1

g(ηi)
yi(1− g(ηi))

1−yi (1.70)

We use the data augmentation method proposed by [Albert and Chib, 1993] to facilitate MCMC

sampling. This data augmentation method uses the standard Gaussian cumulative density function

Φ(·) as the link function g(·). It also introduces independent latent random variables Z1, ..., ZN .

Define Yi = 1 if Zi > 0 and Yi = 0 if Zi ≤ 0. So Pr(Yi = 1) = Pr(Zi > 0) = Φ(ηi), and

Pr(Yi = 0) = 1− Φ(ηi). Then the conditional posterior distribution of Z is a truncated Gaussian

distribution as below:

Zi|Yi = 1,θ ∼ N(ηi, 1) truncated at the left by 0

Zi|Yi = 0,θ ∼ N(ηi, 1) truncated at the right by 0 (1.71)
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The full conditional distributions of parameters other than Z are:

mγ = V γ[H
′(Z −MBα) + γ0/λγ)],V γ = (1/λγ + 1)−1(H ′H + I)−1

α|Z,γ, λγ, λα ∼ N(mα,V α)

mα = V α(MB)′(Z −Hγ),V α = (1/λαΩ + (MB)′(MB))−1

λγ|γ ∼ IG(aγ + 1/2Qγ, bγ + 1/2(γ − γ0)
′(γ − γ0))

λα|α ∼ IG(aα + 1/2Qα, bα + 1/2α′Ωα)

γ0|γ ∼ N(m0,V γ0), m0 = V γ0γ/λγ, V γ0 = (1/λγ + 1/σ2
γ0)
−1I (1.72)

The MCMC sampling algorithm is almost the same as when the response variable is continuous.

One additional step is at the beginning of each iteration Z will be sampled from its conditional

posterior on Y .

Simulation Study

Continuous Scalar Response To investigate performance of the two-stage model, we gen-

erate 100 repeated data sets. Each data set is constructed in the same way: time grid is set on the

interval [0, 1] evenly divided by 100; we simulate 50 subjects, and each subject has 10 simulated

curves in the form:

xij(t) = cij + aijm(µ(t;φij)) + εij, i = 1, ..., 50; j = 1, ..., 10

We simulate parameters from cij ∼ N(c0i;σ
2
ci

), c0i ∼ N(0, 0.01), σ2
ci
∼ IG(20, 0.2), aij ∼

N(a0i, σ
2
ai

)I(aj > 0), a0i ∼ N(1, 0.01), σ2
ai
∼ IG(20, 0.2). Notice that cij and aij are subject-

visit-specific parameter. σ2
ci

and σ2
ai

are subject-specific parameter. Curves of the same subject

have the same mean shape function m(t), and m(t) is made to be different from subject to subject

by si and ui. si creates phase variation, and ui creates amplitude variation.

mi(t) = cos[π(t− si)] + sin[3π(t− si)] + ui

si ∼ Uniform(0.4, 0.6), ui ∼ N(0, 0.16)
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The time transformation function is different among curves of the same subject, which reflects the

time variation among the repeated measurements of the same function. µij(t;φij) is the jth curve

of the ith subject:

µij(t;φij) = B′(t)φij

We use cubic b-spline with one internal knot at 0.5 to generate µij(t;φij). The coefficient φij is

generated from N(Υ, λφΩ
−1), λφ = 0.02. For the functional coefficient α(t), we simulated two

different scenarios. Under scenario 1, the functional coefficient is continuous through the whole

range of t, which means the relationship between response and functional predictor is changing

gradually. Under scenario 2, the functional coefficient is continuous function in part of the variable

range, and set to zero for the rest of the variable range, which means the response and functional

predictor do not have any relationship in that range.

α1(t) = cos(2πt)

α2(t) =

 sin(2πt) if 0 ≤ t < 0.5

0 if 0.5 ≤ t ≤ 1

The response for the ith subject is generated by:

yi =
100∑
s=1

mi(ts)α(ts)/100 + ei

where ei is generated from the Gaussian distribution N(0, σ2
e), and σ2

e ∼ IG(20, 0.2). Figure 1.3

shows the for one of the 100 data sets, the simulated real mean shape functions for the 50 subjects.

These mean curves are various in phase and amplitude, which reflect the subject level variability.

To fit the functional model to the simulated data, we first conduct Bayesian curve registration

to get estimation of the mean shape function for each subject. Figure 1.4 shows the mean shape

function estimated by BHCR for the first 4 subjects. Compared with the true mean shape function,

the estimated one has very close fit.

After achieving estimated mean function for each subject, we plug it into the functional re-

gression model as the functional predictor, and run the regression model. To compare model

performance we also fit the same model by penalized functional regression using the same set of

predictors. Penalized functional regression is implemented by the R package ”refund”. For both
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Figure 1.3: Simulated real mean shape functions

.
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Figure 1.4: Simulated functional data for the first 4 subjects. Grey curves are the simulated func-

tional data per each subject, blue curve is the estimated mean shape function, red curve is the true

mean shape function.
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Bayesian functional regression and penalized functional regression, we use the first order random

walk as the penalization method for the functional coefficient α(t), and we use 10 evenly dis-

tributed knots for its b-spline basis function. For Bayesian functional regression, we run MCMC

10000 times with the first 5000 runs as burn-in. Figure 1.5 shows the estimation results for one

data set when the true functional coefficient is a continuous function denoted as α1(t). The two

methods gave similar estimation results. The MSE for Bayesian functional regression and penal-

ized functional regression to the true α(t) is 0.012 and 0.005 respectively. Figure 1.6 shows the

95% confidence intervals of the estimated functional coefficient from the two methods based on

the 100 data sets. The penalized functional regression has narrower CI than Bayesian functional

regression in the middle area of the functional coefficient curve, but at the two ends the CI of

penalized functional regression shows instability which implies the estimation is not reliable.

Figure 1.7 shows the estimation results when the true functional coefficient is a discontinuous

function denoted as α2(t). For β2(t), Bayesian functional regression provided better estimation.

The MSE for Bayesian functional regression and penalized functional regression to the true β(t)

is 0.024 and 0.036 respectively. Both of them failed to capture the feature that the functional

coefficient is exactly zero in the area between 0.5 and 1. This is expected since they are using

polynomial basis functions to approximate a linear relationship. However, the estimated functional

coefficient by Bayesian model shows a much weaker relationship in the (0.5, 1) area, which better

estimates the trend in the true functional coefficient. On the contrary the penalized functional

regression model over-smoothed the relationship in the first half of time range and underestimated

the relationship in the second half of the time range. Figure 1.8 shows the 95% confidence intervals

from the two methods. Same as the simulation above, the penalized functional regression has

narrower CI than Bayesian functional regression in the middle area of the functional coefficient

curve, but at the two ends the CI of penalized functional regression shows instability which implies

the estimation is not reliable in those areas.

Binary Scalar Response Functional data and functional coefficient are simulated in the same

way as in 1.3.2.3. We construct 100 repeated data sets. For each data set, we simulate 1000 subjects

and 10 curves per subject. We also generate two types of functional coefficient: continuous and
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Figure 1.5: Estimation result for α1(t) by penalized functional regression and bayesian functional

regression. Solid curve: true α1(t); dashed curve: estimated β1(t) by Bayesian functional regres-

sion; dotted curve: estimated α1(t) by penalized functional regression

.
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Figure 1.6: 95% Confidence interval for α1(t) by penalized functional regression and bayesian

functional regression. Solid curve: trueα1(t); dashed curve: CI by Bayesian functional regression;

dotted curve: CI by penalized functional regression

.
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Figure 1.7: Estimation result for α2(t) by penalized functional regression and bayesian functional

regression. Solid curve: true α2(t); dashed curve: estimated α2(t) by Bayesian functional regres-

sion; dotted curve: estimated α2(t) by penalized functional regression

.
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Figure 1.8: 95% Confidence interval for α2(t) by penalized functional regression and bayesian

functional regression. Solid curve: trueα2(t); dashed curve: CI by Bayesian functional regression;

dotted curve: CI by penalized functional regression

.
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discontinuous. Let

wi =
100∑
s=1

mi(ts)α(ts)/100 + ei (1.73)

The binary outcome is generated by simulating pi from pi = φ(wi) and Yi ∼ Bernoulli(pi).

Figure 1.9 shows the estimation result for continuous functional coefficient scenario for one data

set. Bayesian functional regression gives less satisfactory fitting at the beginning of the functional

coefficient than for the rest part of the curve. Penalized functional regression method gives even

poorer fitting result. It completely fails to capture the relationship between the binary outcome

and functional predictor. For discontinuous functional coefficient scenario, both Bayesian and

penalized functional regression are unable to provide appropriate estimation result based on Figure

1.10.

Application on DTI data Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging

based modality that traces the diffusion of water in the brain. Because water diffuses anisotropi-

cally in the white matter, DTI is able to generate images of the white matter specifically. Several

measurements of water diffusion are provided by DTI, including fractional anisotropy and mean

diffusivity. Then the summary of white matter tracts called tract profile can be derived from DTI.

For neurodegeneration patients, such tract profile indicates the disease progress.

In a DTI study of multiple-sclerosis (MS), researchers hope to understand the relationship

between cognitive disability and disease progress. The data set consists of 100 subjects, 66 women

and 34 men, aged between 21 and 70 years at first visit. The number of visits per subject ranged

from 2 to 8, with a median of 3, and were approximately annual; a total of 340 visits were recorded.

At each visit full DTI scans were obtained and used to create tract profiles, accompanied by several

tests providing scalar outcome of cognitive disability.

To apply Bayesian functional regression model on DTI data, we first estimate the mean shape

function for each subject by curve registration, then use this mean function as the functional pre-

dictor, averaged cognitive score as the scalar outcome to establish a functional regression model.

Figure 1.11 shows four patients with their original DTI tracts (in gray color) and estimated mean

function. Figure 1.12 shows the 95% credible band of the estimated functional coefficient.
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Figure 1.9: Continuous functional coefficient. Upper plot: Estimation result forα1(t) by penalized

functional regression and bayesian functional regression. Solid curve: true α1(t); dashed curve:

estimated α1(t) by Bayesian functional regression; dotted curve: estimated α1(t) by penalized

functional regression. Lower plot: 95% Confidence interval for α1(t) by penalized functional

regression and bayesian functional regression.
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Figure 1.10: Discontinuous functional coefficient. Upper plot: Estimation result for α2(t) by pe-

nalized functional regression and bayesian functional regression. Solid curve: true α2(t); dashed

curve: estimatedα2(t) by Bayesian functional regression; dotted curve: estimatedα2(t) by penal-

ized functional regression. Lower plot: 95% Confidence interval for α2(t) by penalized functional

regression and bayesian functional regression.
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Figure 1.11: Profile mean function of four patients
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Figure 1.12: 95% credible band of estimated functional coefficient
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Application on ICP Data As introduced in Chapter 4, ICP is an important diagnostic standard

for neuro-surgical patients. In this application, we use functional regression model to investigate

the relationship between patient’s living status and their ICP curve. The data set contains 16 pa-

tients. Each patient has 100 to 200 ICP curves. We first use Bayesian curve registration process to

obtain the mean ICP curve for each patient. Then we use the mean shape function as functional

predictor in the regression model. Additionally, we also introduce two scalar predictors: the varia-

tion of scale parameter and amplitude parameter. Because we want to test if the variability among

ICP curves of the same patient also plays a role in effecting the patient’s living status. These two

effects come from the curve registration step. The model is written as below:

E(Y ) = g(η)

η = γ0 +Haγ1 +Hcγ2 +

∫
M (t)ν(t)dt+ ε (1.74)

where γ0 is the intercept, Ha is the effect of amplitude parameter variability, and Hc is the effect

of scale parameter variability. The mean ICP curves of different patients vary from 114/240 minute

to 238/240 minute. We use 1 minute as the full time scale. For shorter than 1 minute curve, the

missing part is made up with zero. The estimated functional coefficient is shown in Figure 1.13.

Notice in the second half of the coefficient curve, the confidence band becomes very wide due to

the fact many patients don’t have data in this area, i.e., ICP curve is set to zero.

The 95% confidence interval of scale parameter variability is [0.0029, 0.026], for amplitude

parameter variability it is [0.029, 0.069]. Both of them do not cover zero which indicates the

outcome have a significant relationship with the variability effect.

1.3.3 Functional Response Regression

Functional response regression is the regression of functional responses on a set of scalar predic-

tors:

Yi(tj) =
∑
k

XikBk(tj) + εi(tj) (1.75)

where the functional coefficient Bk(tj) represents the effect of predictor Xk on response Yi(tj)

at time tj . εi(tj) is curve-to-curve residual error, whose covariance structure C(t1, t2) describes
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Figure 1.13: 95% credible band of estimated functional coefficient
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the within function covariance. The goal of functional response regression is to estimate Bk(t)

and then test whether Bk(t) = 0. Among various frameworks proposed for functional response

regression, functional mixed effects model is the one with most applications. [Morris and Carroll,

2006] introduced functional mixed effects model as follow:

Yi(tj) =
∑
k

XikBk(tj) +
∑
h

∑
l

ZihlUhl(tj) + εi(tj) (1.76)

where h is the number of levels of random effects, Zihl are random effect covariates at level h with

corresponding random effect functions Uhl(t). Uhl(t) are iid mean zero Gaussians with covariance

Qh(t1; t2) representing the within-function covariance structure at random effect level h. These

random effect functions can induce correlation between the functions through the structure of their

design matrices. The model is fit by wavelet basis functions. [Bigelow and Dunson, 2007] intro-

duced a Bayesian approach fitting the overall mean and curve-level random effect functions using

truncated linear splines. [Thompson and Rosen, 2008] used B-spline to represent mean and random

functions under Bayesian framework. [Fox and Dunson, 2012] presented a Bayesian approach that

parameterizes the mean and random function using multi-resolution Gaussian processes.

This functional mixed effects model can be very flexible, therefore accommodating different

scientific questions. The fixed effects can be mean functions, functional main effects, functional

interactions, functional linear coefficients for continuous covariates, interactions of functional co-

efficients with other effects or any combination of these. The design matrix Z and between-curve

correlation can be chosen to accommodate different covariance structures between curves that may

be suggested by the experimental design. The random-effect portions of the model allow multiple

hierarchical levels of random effects or to allow different random-effects distributions for different

strata.

1.3.4 Function-on-Function Regression

Function-on-function regression can be formulated in the form:

Yi(t) = B0(t) +

∫
Xi(t)B(s, t)ds+ εi(t) (1.77)
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[Ramsay and Silverman, 2005] fit such model using basis function φ(s) and ψ(t) for Xi(s) and

Yi(t) respectively. The estimator can be written as B(s, t) = φ(s)′Bψ(t), where B is a Kx by Ky

matrix containing the coefficient surface in the basis space.

[Yao et al., 2005] proposed functional PCA-based method for this model, where Y (t) andX(s)

are modeled using functional PCA decomposition:

X(s) = µx(s) +
∑
j

ξjφj(s) (1.78)

Y (t) = µy(t) +
∑
k

ζkψk(t) (1.79)

where µx(s) = E(X(s)), µy(t) = E(Y (t)). Their covariance functions are:

Gx(s1, s2) = cov(X(s1), X(s2))

Gy(t1, t2) = cov(Y (t1), Y (t2))

Then the regression model becomes:

E(Y (t)|X) = µy(t) +

∫
β(s, t)(X(s)− µx(s))ds (1.80)

Such model will be used in Chapter 3 and described in more details.

For function-on-function regression model, the relationship between response and predictor is

controlled by the integration part. When it only integrates s < t in the range of X(s), such model

is called historical regression model, since only historical values of X(s) has impact on Y (t). An

extreme case is called concurrent regression model, where there is no integration in the model.

That implies only current value of X(t) has relationship with Y (t), and B(s, t) reduces to B(t).

This is a special case of varying coefficient model ([Hastie and Tibshirani, 1993]). Such model

will also be discussed in more details in Chapter 3.
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CHAPTER 2

Bayesian Curve Registration via Predictive Process Model

2.1 Introduction

In this chapter, we consider the problem of curve registration when each curve is observed over

an intensive sampling grid. These data sources are becoming common in biomedical applications

characterized by fine time resolution. Our motivating case is intracranial pressure (ICP) data anal-

ysis. ICP is monitored for patients in intensive care unit (ICU) who are suffering severe brain

damage. It is a critical measurement for diagnosing and managing neuro-surgical patients. ICP

data are in the form of pulses, where rich information related to cerebral pathophysiology em-

bedded in the morphological feature. Raw ICP data are measured with artificial noises caused by

active clinical environment. [Hu et al., 2009] established the Morphological Clustering and Analy-

sis of ICP Pulse algorithm (MOCAIP). This algorithm is able to eliminate environment noises and

extract a representative ICP pulse from an assigned time interval. Each pulse is sampled over inten-

sive time grid. Depending on the length of the pulse, each pulse curve can have up to 200 sampling

time points. During a 24-hour monitoring period, such representative ICP curves were extracted

for every 5-min interval by MOCAIP. In our ICP data set, we have 16 patients and 100 ∼ 200

ICP pulses for each one (Figure 2.1). Within each patient, the variation in amplitude and phase

between ICP pulses is observed. To obtain an overall ICP profile for every patient, it is necessary

to do curve registration here.

Under general context of curve registration, we denote the observed values of the ith curve of a

subject by vector: yi = (yti1 , . . . , ytij . . . , ytimi )
′, i = 1, . . . , n, j = 1, . . . ,mi. Particularly, we are

considering a curve registration problem when the number of time points mi and number of curves

n are both large.
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Figure 2.1: ICP Pulses Extracted by MOCAIP from 16 Patients with Brain Damage.
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The standard curve registration setting outlined in [Telesca and Inoue, 2008] using MCMC

technique is not computationally feasible in such case. In order to overcome computational lim-

itation of MCMC algorithm, [Earls and Hooker, 2015] proposed an adapted variational Bayes

procedure for approximate inference. This method is based on modeling functional data as Gaus-

sian process. Since the parameter of time transformation function have non-conjugate priors (this

is common for curve registration problem), the variational Bayes procedure is divided into two

stages. The parameters with conjugate priors are estimated through standard variational Bayes for-

mula, whereby the parameters with non-conjugate priors are estimated through maximizing a target

function. The paper approved that this adapted variational Bayes method converges to an estima-

tion where the parameters with conjugate priors are optimized as using standard variational Bayes

method. However, a global optimization for all parameters is not guaranteed. While this technique

is appealing from a computational perspective, it is likely to be most useful in exploratory analysis

rather than formal inferential settings, as variational approximations are notoriously unsatisfactory

in the characterization of uncertainty. To conquer the computational challenge and provide formal

statistical inference, we propose predictive process model (PPM) for curve registration, inspired

by the literature in Spatial statistics [Banerjee et al., 2008]. To authors’ knowledge this is the

first time an acceleration algorithm for Bayesian curve registration is proposed without sacrificing

formal inference property from MCMC simulation.

This chapter is organized as follows. Section 2 introduces the model formulation and prior

settings of this novel registration method. Section 3 describes posterior simulation and inference

via MCMC. Section 4 describes an acceleration method through fixing one of the parameter value.

In Section 5, the proposed methods are applied to simulated data and compared with existing stan-

dard method. In Section 6 we apply the proposed method to ICP data, which are computationally

challenging when using standard method. Finally in Section 7 we provide a discussion.
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2.2 Model Formulation

2.2.1 Predictive Process Model

The standard Bayesian hierarchical curve registration (BHCR) considers the following representa-

tion of a functional process

yi(t) = ci + aim(t) ◦ µi(t) + εi(t).

Basis function representation of the functional convex mean m(t) = B′m(t)β and time transforma-

tion function µi(t) = B′µ(t)φi are sought, where Bm(t) and Bµ(t) are vectors of basis functions

evaluated at time t, β and φi are the coefficient vectors. Then the model above is written as

yi(t) = ci + ai B′m(t)β ◦ B′µ(t)φi + εi(t).

Under this setting, assuming the functional process is observed with white noise εi(t) ∼ N(0, σ2
ε ),

posterior simulation is standard and, in principle, easy to implement by MCMC algorithm. The

conditional posterior distributions of both β andφi, however, rely on the re-calculation of the basis

expansion Bm(µi(t)) as one updates µi(t) in each transition of the Markov Chain, leading to the

reconfiguration of the design matrix needed to define the conditional posterior mean of β, with a

minimal flop count of order O(n2(
∑

imi)
2) in each MCMC iteration. Furthermore, updates of φi,

(i = 1, . . . , n) require a minimal number of operations of order O(
∑

imi) in each iteration. When

mi is large, this procedure is likely to be unfeasible on most computational platforms.

This observation motivates an alternative parameterization of the curve registration problem,

using predictive process models as follows. Define:

yi(t) = fi(t) + εi(t), with fi(t) = B′f (t)bi. (2.1)

If the expansion of fi(t) is based on k basis functions, then bi = (bi1, . . . , bik)
′.

The problem of curve registration can be re-formulated by representing bi as the realization of

a registration process γi(τ), defined as

γi(τ) = ci + aim(τ) ◦ µi(τ) + δi(τ) = ci + aiB′m(τ)β ◦ B′µ(τ)φi + δi(τ).
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Note that bi is not directly indexed by time, however we may proceed using the following conven-

tion. We consider an arbitrary domain for the process γi(τ), so that τ ∈ [0, 1]. Furthermore, we

let bi ∼ N(γ̃i, gσ
2
ε I), where γ̃i is the process γi conventionally evaluated at a grid of k points in

[0, 1], so that γ̃i = (γi(0), γi(
1

k−1), γi(
2

k−1), . . . , γi(
j−1
k−1), . . . , γi(1))′.

This model, while seemingly overparametrized when compared to the standard hierarchical

curve registration framework, leads to significant computational savings when assuming k <<

mini(mi). Posterior simulation is still standard, but now only requires the following set of opera-

tions:

1) nO(m2
i ) for the computation of the conditional posterior for bi, i = 1, . . . , n. Note that this

calculation only needs to be carried out once.

2) (n k)2 for the computation of the conditional posterior for β at each iteration.

3) O(nk) for the computation of the conditional posterior for φi at each iteration.

To illustrate how this predictive process model based curve registration (PPM-BHCR) com-

pared to the original Bayesian hierarchical curve registration (BHCR), we omit t from the expres-

sion and let yi denote the vector of observations of the ith subject. For PPM-BHCR, multiplying

matrix (B′fBf )−1B′f on both sides of the equation, we obtain:

(B′fBf )−1B′fyi = ci1 + aiBm(Bµ(τ)φi)β + δi1 + (B′fBf )−1B′fεi (2.2)

Let zi = (B′fBf )−1B′fyi denote the linear transformed vector of observations, and let wi = δi1 +

(B′fBf )−1B′fεi denote the vector of error terms of the new observation vector, then the PPM-BHCR

process is realized by the following equation:

zi = ci1 + aiBm(Bµ(τ)φi)β +wi (2.3)

zi is the same functional process assessed on different time grid. If we normalize the original time

grid of yi to the same range as τ , then the time transformation functions from the two registration

processes are the same. For the purpose of acceleration, we set k << m. Therefore zi is a

functional observation with much more sparse sampling grid than yi.

Figure 2.2 is an example showing how the latent process γ(τ) generates phase varying curves.

γi(τ) is simulated by ci + aim(τ) ◦ µi(τ) + δi(τ), where the time transformation function µi(τ)
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is Beta cumulative density function, and shape function is m(t) = sin(15t)exp(−10(t − 0.5)2).

y is generated by yi(t) = B′f (t)bi, where B′f (t) is the design matrix of basis functions, and bi is

realization of the registration process γi(τ). For simplicity purpose, we omit the error terms in the

example below. By using B-spline basis function, the registration process works well to generate

functional outcome with time variation. However, when using PCA basis function, the registration

process fails to generate outcome whose time variation can be recovered from γi(τ).

2.2.2 Prior and Basis Function Setting

This predictive process model based Bayesian curve registration is hierarchical and has three levels:

Level One. The observed function data are modeled as: yi(t) = fi(t) + εi(t) = Bf (t)′bi + εi(t)

where εi(t) ∼ N(0, σ2
ε ). Assign Gaussian prior on bi:

bi ∼ N(γ̃i, gσ
2
ε I), (2.4)

where g is a tuning parameter. Such prior is similar with the g-prior by [Zellner, 1986]. g deter-

mines how much variation in bi comes from random errors in y. When g goes large, the posterior

mean of bi will be close to its maximum likelihood estimator. Ideally, the estimation of registra-

tion process should be robust to different choices of g value, therefore g value can be prespecified

instead of being treated as a hyper-parameter. A sensitivity analysis of g is conducted in simulation

study 4 and it shows the robustness of g in the proposed method.

Level Two. On this level, γi(τ) is modeled as γi(τ) = ci + aim(τ) ◦ µi(τ) + δi(τ) = ci +

aiB′m(τ)β ◦ B′µ(τ)φi + δi(τ). Gaussian priors are assigned to these two parameters:

ci ∼ N(0, σ2
c )

ai ∼ N(1, σ2
a)I(ai > 0) (2.5)

For µi(τ), it needs to be strictly monotonically increasing and confined on the support of τ : τ1 ≤

µ1(τ) < µ2(τ) < ... < µn(τ) ≤ τk. Multivariate Gaussian prior is used on the coefficient φi:

φi ∼ N(Υ, λφΩ
−1
φ ) (2.6)

where Υ is coefficient for the identity transformation function which satisfies µ(τ ; Υ) = τ . For
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Figure 2.2: Registration process example. Upper left: γ(τ). Upper right: γ(τ) generated y using

B-spline basis. Lower left: γ(τ) generated y using PCA basis.
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the coefficient β, it is also assigned multivariate Gaussian prior:

β ∼ N(0, λβΩ
−1
β ) (2.7)

The estimation of φ and β is a curve-fitting problem. Their smoothness is controlled through P-

spline ([Lang and Brezger, 2004]), where the second order random walk priors are used. Ωβ and

Ωφ are special banded matrices in the form below. λβ and λφ are smoothing parameters.

Ω =



6 −4 1 0 0

−4 6 −4 1
. . .

1 −4 6 −4 1
. . .

0 1
. . . . . . . . .

. . . . . . . . . . . . . . .
. . . 1 −4 6 −4 1

. . . 1 −4 5 −2

0
. . . 1 −2 1


Level Three. Priors on hyperparameters:

1/σ2
a ∼ Gamma(aa, ba)

1/σ2
c ∼ Gamma(ac, bc)

1/σ2
ε ∼ Gamma(aε, bε)

1/λφ ∼ Gamma(aλ, bλ)

1/λβ ∼ Gamma(aλ, bλ) (2.8)
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2.3 Posterior Simulation and Inference

Let θ = (c′,a′, b′,β′,φ′, σ2
ε , σ

2
c , σ

2
a, λφ, λβ) denote the vector of all parameters, then the posterior

distribution is:

f(θ|Y ) = f(c′,a′, b′,β′,φ′, σ2
ε , σ

2
c , σ

2
a, λφ, λβ)

∝ f(Y |c′,a′, b′,β′,φ′, σ2
ε )f(c,a|σ2

c , σ
2
a)

×f(b|σ2
ε )f(β|λβ)f(φ|λφ)

×f(σ2
ε |aε, bε)f(σ2

c |ac, bc)f(σ2
a|aa, ba)

×f(λβ|aλ, bλ)f(λφ|aλ, bλ) (2.9)

Since the joint distribution is intractable to directly sample from, then MCMC sampling method is

applied to draw samples from it. Except φ, all the other parameters have standard full conditional

posterior distribution since they have conjugate priors. For c′,a′,β′, b′, their full conditional pos-

terior distribution is Gaussian distribution. For σ2
ε , σ

2
c , σ

2
a, λφ, λβ , their full conditional distribution

is inverse Gamma. So Gibbs sampler is suitable to draw samples from these distributions. For φ,

γ(τ) is nonlinear in φ and therefore the prior is non-conjugate. Metropolis-Hasting algorithm is

adopted to simulate samples from the posterior of φ. The proposal density is calibrated so that

the acceptance rate for Metropolis-Hasting algorithm is between 0.25 to 0.75. In summary, this

MCMC sampling method is a mixture of Gibbs sampler and Metropolis-Hasting algorithm. The

detailed posterior functions are listed in appendix. The algorithm is as below:

1. Simulate samples from posterior distributions for parameters with conjugate prior.

2. For i = 1, ..., N , simulate sample for φi from its posterior by;

(a) For j = 1, ..., Q:

i. propose φ∗ij from its support.

ii. Calculate the posterior ratio r =
p(bi|φ

∗
i ,θ−φi )p(φ

∗
i )

p(bi|φi,θ−φi )p(φi)

iii. Accept φ∗ij with probability min(1, r).

3. Iterate the last two steps.
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Before sampling, time grid t needs to be normalized to the same domain as τ . After M draws

of simulated samples, the time transformation function for the ith subject µi(t) is calculated by:

µ̄i(t) = Bµ(t)φ̄i (2.10)

where φ̄i is the average over the M simulated samples. φi is the coefficient for µ(τ). Bµ(t) is a

compatible design matrix evaluated over t. t and τ have the same domain. The estimated mean

function is calculated by the cross-sectional mean of aligned functions.

Because m can be very large, the posterior variance of bi is close to zero. Therefore, to further

accelerate the PPM-BHCR algorithm, we fix bi at its least square solution:

b̂i = (B′fBf )−1B′fyi (2.11)

In MCMC simulation we can skip the simulation of bi and use b̂i when bi is needed in simulation

of other parameters.

2.4 Simulation Studies

2.4.1 Simulation Study 1: Evaluate Model Fit of PPM-BHCR

To assess the estimation by the predictive process model based curve registration, we simulated

one data set as following. In this data set we simulated N = 50 random curves with each curve

generated by yi(t) = ci + aim(µ(t)) + εi, i = 1, ..., 50. The common shape function is: m(t) =

sin(15t)exp(−10(t− 0.5)2). Time transformation function is f(t;α1, α2) which is the cumulative

density function of Beta distribution. α1 and α2 are random samples from Gamma(50,50). The

time grid has m = 500 equally spaced time points.

To apply the predictive process model based curve registration, we set k = m/10, and use

relatively diffuseGamma(.1, .1) prior for the precision parameter of β andφi. We run the MCMC

simulation 2000 times with the first 1000 iterations as burn-in.

Simulation results are displayed in Figure 2.3. It shows compared to true alignment, PPM-

BHCR offers satisfactory performance on registering functions with both amplitude and phase

variability.
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Figure 2.3: Simulation study 1.1. Upper left: unregistered functions. Upper right: original time

versus registered time. Lower left: registered functions through PPM-BHCR. Lower right: Black

curve is the true mean function; red curve is the cross-sectional mean of aligned functions.
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As mentioned in the end of Section 2.3, we can fix bi at its least square estimate b̂i in the

simulation to save computation time. To validate this method, we compared the performance of

PPM-BHCR between fixing bi and not fixing it. We simulated 200 data sets and each of them was

as above. The simulation result is in Figure 2.4, which shows no difference between these two

methods. Therefore, in following study we fixed bi at its least square estimate by default.
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Figure 2.4: Simulation study 1.2. Left: 95% credible band of estimated mean function. Dashed

blue line: estimated mean by PPM-BHCR with fixed bi. Dotted red line: estimated mean by

PPM-BHCR without fixing bi. Solid black line: true mean function.

2.4.2 Simulation Study 2: Compare PPM-BHCR and Standard BHCR

To compare the predictive process model based curve registration with the standard Bayesian curve

registration, we generated 200 simulation data sets. Each simulation data set was generated as

Section 4.1. The two methods, PPM-BHCR and standard BHCR, were applied on these data

sets respectively, both with 1000 MCMC iterations and 1000 burn-in iterations. To compare their

performance, the 95% credible band for each of the estimated mean function of PPM-BHCR and

standard BHCR is plotted. The MSE of difference between the estimated mean function with true

mean function is also calculated for each of these two methods and showed in box plot (Figure
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2.5). The simulation results show very small difference between the two methods.

In terms of time efficiency, by averaging the time cost of the 200 simulations, PPM-BHCR time

cost is 36% of the time that standard BHCR costs. The larger number of time points each curve

has, the more time saving PPM-BHCR achieves.
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Figure 2.5: Simulation study 2. Left: 95% credible band of estimated mean function. Dashed blue

line: estimated mean by standard BHCR. Dotted red line: estimated mean by PPM-BHCR. Solid

black line: true mean function.

2.4.3 Simulation Study 3: Add Curves Generated by Different Function

In this simulation study we tested the robustness of PPM-BHCR when different generating func-

tions (”noise function”) exist. We generated 200 simulation data sets. In each set, we simu-

lated N = 45 curves in the same way as Simulation Study 1 did, using the generating function

m(t) = sin(15t)exp(−10(t − 0.5)2). Then we simulated another N = 5 curves generated by a

different function m(t) = cos(15t)exp(−10(t− 0.5)2). Together, in each simulated data set there

were 50 curves where 5 of them were generated by ”noise function”. PPM-BHCR and standard

BHCR were applied to such data and their performance were compared in Figure 2.6 The simula-

tion results show even with 10% curves generated by noise functions, PPM-BHCR still performs
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very well and close to standard BHCR.
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Figure 2.6: Simulation study 3. Left: 95% credible band of estimated mean function. Dashed blue

line: estimated mean by standard BHCR. Dotted red line: estimated mean by PPM-BHCR. Solid

black line: true mean function.

2.4.4 Simulation Study 4: Fixed bi with Different Choices of g

In this simulation study we tested how the value of g in the prior of bi affected model fitting results.

We set g = 0.01, 1, 100, 10000 and run the algorithm respectively.

Simulation results are displayed in Figure 2.7. With g = 0.01, 1, 100, they delivered almost the

same registration results, meaning the registration process is robust to variable g values. However,

when g increased to 10000, the registration was less than sufficient. This is as expected. Because

with large g, most of the variability of the posterior distribution of bi comes from noise εi and

dominates the MCMC algorithm.
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Figure 2.7: Simulation study 4. Upper left: g = 0.01. Upper right: g = 1. Lower left: g = 100.

Lower right: g = 10000
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2.5 Case studies

In the case study we applied PPM-BHCR method on ICP data. As described before, ICP pulses

contain morphological features related to neurological activity of patients. ICP pulses also display

amplitude and phase variations, which makes registration a necessary processing step.

For each patient, there are 100-200 highly intensively sampled ICP curves. The time grid is

normalized to the domain [0, 1]. Let k = m/5. To estimate the time transformation function µ(t),

we placed three equally spaced interior knots on [0, 1]. Figure 2.8 is the registration results for two

patients as an example. It shows the algorithm successfully align ICP curves by their peaks and

troughs. Figure 2.9 displays the the mean curves of ICP pulses for all 16 patients. Blue ICP curves

are mean shape after the curve registration process, red ones are simple averaged mean function.

Comparing the mean curves generated by the two different methods, for most patients they do not

have significant difference.

ICP is typically triphasic ([Hu et al., 2009]), and its morphology is of clinical interest. [Eide,

2006] described wave amplitude is an important quantity to analyze ICP, which is the difference

between maximum and minimum pressure value. Table 2.1 summarizes the wave amplitude in our

ICP data set. With registration, amplitude is slightly higher than mean function without registration

according to the quartile statistics. For individual patient, the mean function after registration

always has amplitude higher than mean function without registration. Though the difference is not

clinically meaningful in this case study, it can be expected if the time variation is big, registration

will help avoid underestimation of amplitude.

Functional PCA is another way to explore functional data. For the ICP case, Figure 2.10 shows

the first two functional principle components of mean ICP curves with or without registration

account for more than 90% total variation. It implies the most variable region along time axis

is from 40% to 80% of the time interval. Comparing between functional components with and

without registration, the first component are very similar except the most variable region has slight

phase difference. With registration, the most variable region comes around t = 0.6, whereas

without registration the most variable region is around t = 0.4. For the second component, with

registration it shows the region around t = 0.6 is more variable than without registration. In
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sum, for this case study registration helps recover some low variance feature which is lost without

registration.

Table 2.1: Summary Statistics of Mean Wave Amplitude.(in mmHg)

Min 1st Quartile Median 3rd Quartile Max

Registered 0.66 4.12 4.94 5.95 12.45

Unregistered 0.55 4.05 4.81 5.8 11.66
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Upper: unregistered and registered ICP curves from patient 14.
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Figure 2.9: Case study. Mean ICP shape function with and without curve registration. Red curve:

mean function without registration. Blue curve: mean function with registration.
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Figure 2.10: Case study. The first two functional principle components.Upper two plots: PC from

mean functions after registration; Lower two plots: PC from mean functions without registration.
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2.6 Discussion

In this paper we introduced a novel accelerated curve registration method when the curve is inten-

sively sampled. There are several consideration when applying this method. First, the choice of k.

The smaller k/m is, the faster the algorithm runs. How to choose k/m is a question equivalent to

the choice of number of knots in smoothing spline problem. A good balance between speed and

accuracy comes from practice. In our simulation study, letting k/m = 5 leads to satisfactory result.

Second, the choice of g. Too large g will lead to unsatisfactory alignment, as shown in our sim-

ulation study. Finally, when comparing PPM-BHCR with standard BHCR, the latter one still has

lower MSE, however much slower speed. In the case study of aligning ICP curves, PPM-BHCR

successfully obtained synchronized ICP curves, and provided mean ICP curve after the alignment.

Figure 2.8 shows example from two patients, where the original ICP curves have phase variability,

and the PPM-BHCR method aligns the curves. Figure 2.9 shows the mean ICP curve for each

patient after the ICP curves are aligned. With these mean curves, we are able to draw summary

statistics upon them for further analysis. We can also plot the functional PCA components to exam-

ine where the most variability comes from. In the ICP case study, the amplitude of mean function

and variable features are not very different between with and without registration. However, it can

be expected if the data show big phase variation, registration will help avoid underestimation of

amplitude and recover low variance features.

The ICP data used in case study is longitudinal-functional, since ICP pulses of the same patient

were measured sequentially. To model such data, the correlation between ICP curves within a

subject needs to be considered. In the current implementation, this correlation is captured through

amplitude and scale parameter ci and ai. It does not take the sequential order into consideration.

Ideally, it is expected ICP pulses measured closer to each other have stronger correlation than

pulses that are remote from each other. To model such correlation, a random effect function Ui(t)

can be added, where Ui(t) is mean zero Gaussian process with covariance Q(th, tl) representing

the within-function covariance structure.

To tackle the computing speed problem of curve registration, [Earls and Hooker, 2015] pro-

posed adapted variational Bayes procedure for approximate inference as described in introduction.
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Comparing the variational Bayes method with our predictive process method, they are fundamen-

tally different. Variational Bayes method relies on the optimization of approximating posterior

distribution, which can be very difficult depending on how complex it is. On the other hand, varia-

tional Bayes method can be much faster than predictive process method, since if the optimization

goes well, the algorithm converges within a dozen of rounds. Predictive process method is more

empirical. Its speed and accuracy are controlled by the k/m ratio. It works no matter how complex

the curve shape is. However, it may not provide satisfactory result if white noises are large in data.

2.7 Appendix: Full Conditionals

In this appendix we present the full conditionals used for PPM-BHCR. To simplify notation, we

omit t from formulation, use Si denote the design matrix Sm(µi), and usemi denote Sm(µi)β.

• Full conditional distribution for bi (bi|Y i,θ−bi) ∼ N(b∗i ;Vbi), where

Vbi = (
1

σ2
ε

S ′fSf +
1

gσ2
ε

Ik)
−1, b∗i = Vbi(

1

σ2
ε

S ′fyi +
1

gσ2
ε

γi)

• Full conditional distribution for β (β|b,θ−β) ∼ N(β∗;Vβ), where

Vβ = (
1

gσ2
ε

∑
a2iS

′
iSi +

Ωβ

λβ
)−1, β∗ = Vβ

1

gσ2
ε

∑
aiS

′
i(bi − ci1k)

• Full conditional distribution for ci (ci|bi,θ−ci) ∼ N(c∗i ;Vci), where

Vci = (
k

gσ2
ε

+
1

σ2
c

)−1, c∗i = Vci
1

gσ2
ε

1′k(bi − aimi)

• Full conditional distribution for ai (ai|bi,θ−ai) ∼ N(a∗i ;Vai), where

Vai = (
1

gσ2
ε

m′imi +
1

σ2
a

)−1, a∗i = Vai
1

gσ2
ε

(bi − ci1)′mi

• Full conditional distribution for σ2
ε (σ2

ε |Y ,θ−σ2
ε
) ∼ IG(a∗ε , b

∗
ε)

a∗ε = aε +mn/2, b∗ε = bε +
∑

(Y i − Sfbi)′(Y i − Sfbi)

• Full conditional distribution for σ2
c (σ2

c |Y ,θ−σ2
c
) ∼ IG(a∗c , b

∗
c)

a∗c = ac + n/2, b∗c = bc + 1/2
∑
c2i
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• Full conditional distribution for σ2
a (σ2

a|Y ,θ−σ2
a
) ∼ IG(a∗a, b

∗
a)

a∗a = aa + n/2, b∗a = ba + 1/2
∑

(ai − 1)2

• Full conditional distribution for λβ (λβ|Y ,θ−λβ) ∼ IG(a∗β, b
∗
β)

a∗β = aβ + p/2, b∗β = bβ + 1/2β′Ωββ, p is the length of β.

• Full conditional distribution for λφ (λφ|Y ,θ−λφ) ∼ IG(a∗φ, b
∗
φ)

a∗φ = aφ + nw/2, b∗φ = bφ + 1/2
∑

(φi −Υ)′Ωφ(φi −Υ), w is the length of φi.
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CHAPTER 3

Bayesian Warped Functional Regression

3.1 Introduction

Functional regression can model curves as functions of other curves. For example, we have a mo-

tivating data set of daily trajectories of oxides of nitrogen in the city of Sacramento, California,

on 52 summer days in the year 2005, and the corresponding trajectories of ozone concentration.

The goal is to predict ozone concentration from the concentration of oxides of nitrogen. Many

literatures and work have been accomplished to tackle such research topic. However, most of

them focus on modeling the characteristics of curve amplitude using functional principle com-

ponents. The phase variability is not widely investigated under regression setting. When phase

variability presents in data, a large number of principle components may be needed in order to

provide good fit to data. Such strategy is neither efficient nor easy to interpret. A better strategy

is to use functional principle components to model amplitude, and use warping model to model

phase variability, and combine these two models together. [Gervini, 2015] proposed a joint model

which incorporates registration as an intrinsic part of the regression model for the case of histori-

cal function-on-function regression. In addition to efficiency and easy-to-interpret, such model is

also able to predict new un-synchronized response curve. The inference is done in frequentist’s

fashion. In this chapter, we present a Bayesian framework for integrating curve registration and

regression under one model, called Bayesian Warped Functional Regression (BWFR). We consider

two types of function-on-function regression: historical and concurrent functional regression. The

functional coefficient is decomposed through functional principle components, and parameter esti-

mation is done by MCMC sampling. Simulation study is conducted to evaluate the performance of

our proposed method. The regression model is also applied to two motivating case studies. Both
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case studies have functional response and predictor which display amplitude and phase variability.

One case study is lip movement data, where the goal is to explore functional relationship between

neural activity in lip muscle and lip movement when speaking words. The other case study is the

air pollution data of Sacramento as aforementioned, where the goal is to explore the relationship

between oxides of nitrogen and ozone concentration.

3.2 Model Formulation

Consider functional predictor and response denoted by (xi, yi), i = 1, ..., n. Their mean functions

areEx(t) = µx(t) andEy(t) = µy(t) respectively. Their covariance functions are cov(x(s), x(t)) =

Gx(s, t) and cov(y(s), y(t)) = Gy(s, t) respectively. By Karhunen-Loéve expansion, these covari-

ance function can be expanded by orthogonal eigenfunctions: Gx(s1, s2) =
∑
ρkφk(s1)φk(s2),

and Gy(t1, t2) =
∑
λlψl(t1)ψl(t2) with eigenvalues ρk and λl. Then the observed predictor and

response are:

Uiu = xi(siu) + εiu = µx(siu) +
∑
k

ζikφk(siu) + εiu (3.1)

Viv = yi(tiv) + εiv = µy(tiv) +
∑
l

ξilψl(tiv) + εiv (3.2)

The errors εiu and εiv are iid white noise. ζik and ξil are functional principle component scores.

A historical functional regression model is:

E[y(t)|x] = α(t) +

∫ t

0

β(s, t)x(s)ds

Assuming x and y are square-integrable functions on a common interval [0, 1]. Let xc(t) = x(s)−

µx(s), and given that Ey(t) = µy(t) = α(t) +
∫ t
0
β(s, t)µx(s)ds, the above model becomes:

E[y(t)|x] = µy(t) +

∫ t

0

β(s, t)xc(s)ds (3.3)

Such functional regression is called historical because it is clear that future values of function x

has no impact on y.

To estimate the regression function, β(s, t) is decomposed as in [Müller et al., 2008]:

β(s, t) =

p∑
k

q∑
l

bklφk(s)ψl(t) (3.4)
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where φk(s) and ψl(t) are orthogonal eigenfunctions as introduced before. Such decomposition

avoids identifiability issues since it can be shown ([He et al., 2000]):

β(s, t) =
∞∑
k

∞∑
l

E[ζkξl]

E[ξ2l ]
φk(s)ψl(t) (3.5)

A special case of historical model is called concurrent model ([Ramsay and Silverman, 2005]),

where only current value of predictor has impact on response:

E[y(t)|x] = β0(t) + β1(t)x(t) (3.6)

In such model, β0(t) and β1(t) are usually decomposed by B-splines ([Huang et al., 2004]): β(t) =∑
r γrBr(t).

Model 3.3 and 3.6 are ordinary functional regression, and they work just fine for synchro-

nized functional observations. Suppose we have a common warping function wi(t) underlying

misaligned observed xi(t) and yi(t). To simplify notation, let xi(t) denote centered xci(t). Applied

model 3.3 to synchronized curves x̃i(t) = xi(w
−1
i (t)) and ỹi(t) = yi(w

−1
i (t)):

ỹi(t) = µy(w
−1
i (t)) +

∫ w−1
i (t)

0

β(s, t)x̃i(s)ds+ εi (3.7)

Let µi(t) = w−1i (t). In this model we want to estimate time transformation function µi(t) which

synchronize curves, and functional slope β(s, t) simultaneously. Let φk(s) and ψl(t) be eigenfunc-

tions of covariance function of x̃ and ỹ respectively. The integration part can be further derived

as: ∫ t

0

β(s, t)x̃i(s)ds =
{∫ t

0

φT (s)x̃i(s)ds
}

Bbψ(t) (3.8)

where Bb is matrix of bkl. Let γi(t) =
∫ t
0
φT (s)x̃i(s)ds, then we have:∫ t

0

β(s, t)x̃i(s)ds =
{
ψ(t)T ⊗ γi(t)T

}
vec(Bb) (3.9)

so that the estimation of β(s, t) is obtained through estimating vectorized Bb.

For estimating time transformation function µi(t), we use B-spline basis and Jupp transforma-

tion ([Jupp, 1978]). Time transformation function µi(t) needs to be strictly monotonically increas-

ing and confined on the support of t: t1 ≤ µi(t2) < µi(t3) < ... < µi(tm−1) ≤ tm. Let µi(t) be

decomposed by B-spline:

µi(t) = B′µ(t)φi (3.10)
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with constraint on the components of φi: t1 = ϕi1 < ϕi2 < ... < ϕiQ = tm to ensure the time

transformation is monotonic increasing. Define Jupp transformation as Jupp(φi) = τ i, where

τ i = (τi1, ..., τiQ):

τij =


log{(ϕi,j+1 − ϕij)/(ϕij − ϕi,j−1)}, if j = 2, ..., Q− 1

ϕij, if j = 1, Q.

τijs are unconstrained parameters and easier to draw sample from their posterior distribution. The

reverse Jupp transformation is defined as φi = Jupp−1(τ i), which is a vector of increasing ele-

ments with φi1 = τi1 and φiQ = τiQ.

We use Gaussian prior for vectorized Bb and unconstrained parameter τ i:

vecBb ∼ N(0,ΛB/g) (3.11)

where ΛB is Kronecker product of eigenvalues λφ and λψ of the covariance matrices of x and y

respectively.

τ i ∼ N(ΥJ , σ
2
τI) (3.12)

where ΥJ is the Jupp transformation of the identity transformation function which satisfies µ(τ ; Υ) =

τ . We also assign Inverse Gamma prior for hyperparameter σ2
ε and σ2

τ .

For concurrent functional regression model, the same normal prior with a first order random

walk shrinkage is assigned on the functional coefficient γ0 and γ1:

γ ∼ N(0,Σγ) (3.13)

This is similar as the coefficient for shape function in BHCR, where the covariance matrix Σγ is a

special banded matrix.

3.3 Estimation

Model parameter estimation is done by MCMC simulation. Based on model 3.7, the regression

is implemented on synchronized curves x̃ and ỹ. This is realized by first estimating the time

transformation function µi(t) for each subject, and then compute x̃ and ỹ via spline interpolation.

The algorithm is described as following:
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1. For i = 1, ..., n, simulate each τ i from their full conditional posterior via Metropolis-

Hastings algorithm. More specifically, during each iteration, the vector τ i is proposed from

a multivariate normal distribution N(τ 0, V ). τ 0 corresponds to ϕ that makes identity time

transformation. V is a matrix subject to adjustment during simulation to achieve ideal ac-

ceptance rate.

2. For i = 1, ..., n, do reverse Jupp transformation to compute µi(t) based on simulated τ i.

3. For i = 1, ..., n, compute warped response and predictor: ỹi(t) = yi(µi(t)) and x̃i(t) =

xi(µi(t)) by spline interpolation.

4. Re-compute functional PCA basis φ(t) and ψ(t) based on the warped response and predictor

ỹ and x̃

5. Simulate Bb, σε and σ2
τ from their full conditional posterior via Gibbs sampling method.

After obtaining the simulated samples, estimation for each parameter is calculated as the average

over these simulated samples. Additional statistical inference can also be drawn based on these

samples.

3.4 Simulation

3.4.1 Simulation 1

In this simulation, we examine basic performance of the proposed method for both historical and

concurrent functional regression model. For historical model, we simulate a data set with n = 30

subjects. For each subject, y(t) and x(t) are observed on the same time grid t = [0, 1], withm = 50

equally spaced time points. Functional coefficient is generated from β(s, t) = exp(−50(s −

0.4)2 − 20(t − 0.6)2). The effect of this regression function β is to shift the peak in x from 0.4

to 0.6 in y. Warping function is simulated by Beta density function wi(t) = Beta(a1, a2) where

a1, a2 are from reversed Gamma distribution. Mis-aligned functional predictor is generated from

xi(s) ◦ µi(s) = zi ∗ exp(−30 ∗ (s − 0.4)2) ◦ wi(s) where zi ∼ N(1, 0.2). Functional outcome
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is generated from yi(t) ◦ wi(t) = β(t)xi(wi(t)) ◦ wi(t) + εi where εi ∼ N(0, 0.1). The MCMC

simulation has 1500 samples with the first 500 as burn-in.

Figure 3.1 displays the unwarped and warped outcome y and x. In the upper panel, the phase

variabilities are quite obvious in both x and y. The algorithm successfully synchronized them as

shown in the middle panel. The lower panel shows the fitted response variable.
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Figure 3.1: Simulation study 1.1 historical model: upper panel: unwarped functional observations;

middle panel: warped functional observations; lower panel: fitted response variable.

For concurrent model, x is simulated from exp(−20 ∗ (s − 0.5)2), and regression function is

β(t) = exp(−20∗ (t−0.8)2−20∗ (t−0.6)2). The other settings are the same as historical model.

Figure 3.2 displays the unwarped and warped outcome y and x. The algorithm successfully aligned

response and predictor variable just like historical model.
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Figure 3.2: Simulation study 1.1 concurrent model: upper panel: unwarped functional observa-

tions; lower panel: warped functional observations.

Figure 3.3 displays the estimated β(s, t) compared to the real one. The first thing we can tell

from this figure is that the estimation by functional regression without warping is not acceptable.

From this contour plot we can tell that the regression function put heavy weight on predictor

around s = 0.4 and response around t = 0.6, making these two regions in predictor and response

positively related. Figure 3.4 shows the confidence band of β(s, t) at a specific time point. As

described before, the impact that regression function β(s, t) makes is to move the peak in x from

s = 0.4 to t = 0.6 in y. Therefore, it is of interest to see how the estimation performs at t = 0.6.

The regression function at this time point β(s, t = 0.6) can be imagined as a slice from the 3-D

surface of β(s, t). It shows at the time when y peaks, the regression function puts most weight on
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x at s = 0.4. Additionally, the confidence band shows the estimation of β(s, t) at t = 0.6 still has

some room to improve.

 

 
 

 

 

Figure 3.3: Simulation study 1.1 Contour plot of β(s, t): upper left: estimated β(s, t) by histor-

ical functional regression with warping; upper right: real β(s, t); lower left: estimated β(s, t) by

historical functional regression without warping.

Next we evaluate the prediction accuracy. We simulate 100 data sets as what we did for histor-

ical model, and fit each data set using historical warped functional regression, concurrent warped

functional regression and ordinary functional regression. Figure 3.5 shows the ordinary functional

regression without warping has the worst performance. Historical warped functional regression has
81
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Figure 3.4: Simulation study 1.1 β(s, t) at a specific time point t = 0.6; Solid line is the real value

of β(s, t), dotted line is 95% confidence band.

better performance than concurrent regression, since the model is correctly specified according to

simulation structure.

3.4.2 Simulation 2

In this simulation study, we test the sensitivity of algorithm to different values of tuning parameter

g. The value of g ranges from 0.01, 1, 100 and 10000. Based on a single simulated data set, Figure

3.6 shows when g = 0.01, the alignment of curves are not satisfactory. We then simulate 100 data

sets, and plot the MSE for fitted outcome and estimated warping function, Figure 3.7 shows g = 1

offers the best performance.
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Figure 3.6: Simulation study 2. Warped functional observations by different g values.
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Figure 3.7: Simulation study 2. Boxplot of MSE by different g values.
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3.5 Case Study

3.5.1 Case Study 1: Lip Movement

Lip movement data come from [Malfait and Ramsay, 2003]. In the experiment, a person was asked

to speak ”Bob” a few times. The lip movement and associated electromyography (EMG) curves

were recorded. Then lip acceleration curves were obtained by differentiating the smoothed lip

movement curves.

Before fit the model, we first plotted the first four eigenfunctions of predictor and response, as

shown in Figure 3.8. The first four eigenfunctions account for more than 90% if the total variations.

When we fit the historical model, it is sufficient to set the number of PCA basis functions p = q =

4.

In this case study, both historical and concurrent warped functional regression model are fitted

to the lip movement data respectively. The measure of lip acceleration is considered as outcome,

and the measure of neural activity (EMG) of lip muscle is used as predictor. Figure 3.9 shows the

curve alignment by these two models, where one does not appear superior to the other. The MSE

for fitted y is 33.67 by historical model versus 58.33 by concurrent model. We also use Watanabe-

Akaike information criterion (WAIC) to compare the prediction accuracy of these two models.

WAIC is considered as an improvement to deviance information criterion (DIC) for Bayesian mod-

els. WAIC uses the entire posterior distribution, and it is asymptotically equal to cross-validation.

Moreover, WAIC is invariant to parametrization. WAIC is calculated by:

WAIC =
∑
i

Vs(log[p(yi|θs)]) (3.14)

where Vs is the sample variance calculator, p(yi|θs) is likelihood. Applying WAIC to the above two

models, WAIC for historical model is 2819 and for concurrent model is 5180. Therefore historical

model is a better fit to this data set. The contour plot Figure 3.10 can help interpret the regression

function.

To interpret β(s, t), we first fix t at a specific time point of interest, for example, at t = 0.6,

where we see strong relationship from the contour plot. Then we look at Figure 3.11. Around

s = 0.2 and s = 0.45, the predictor is strongly negatively related to response, and around s = 0.3
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Figure 3.8: Case study 1. The first four eigenfunctions for predictor (upper four plots) and response

(lower four plots).

and s = 0.6, the relationship is positive. The confidence band of β is wide in some area. One

possible reason is for such functional predictor and response which have many fluctuation, the

FPCA may not be an ideal basis function.

3.5.2 Case Study 2: Air Pollution

The this case study, we look into the air pollution data. The data set contains daily trajectories of

oxides of nitrogen (NOX) in the city of Sacramento, California, on 52 summer days in the year
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Figure 3.9: Case study 1. Warped observations by different models.

2005, and the corresponding trajectories of ozone concentration (O3). O3 is formed by a series of

complex photochemical reactions between nitrogen oxides and volatile organic compounds in the

presence of sunlight. The goal is to explore the relationship between NOX and O3 during a cycle

of day.

Before fit the model, we first plotted the first four eigenfunctions of predictor and response, as

shown in Figure 3.12. The first four eigenfunctions account for more than 90% if the total varia-

tions. When we fit the historical model, it is sufficient to set the number of PCA basis functions
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Figure 3.10: Case study 1. Contour plot of estimated β(s, t).

p = q = 4. The plotted eigenfunctions also show where the most variation come from. For predic-

tor, most variation comes from the time interval 0− 0.4, and for response its most variation comes

from 0.4− 0.8.

We fit both historical model and concurrent model to the data, treating the square root of

O3 as response variable, and natural log transformation of NOX as predictor. The concurrent

model has much worse fit than historical model (MSEconcurrent = 101, MSEhistorical = 62;

WAICconcurrent = 70112,WAIChistorical = 45774). Therefore, we choose historical model as

our final model.
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Figure 3.11: Case study 1. Estimated mean β(s, t = 0.6) (solid line) and its 95% confidence band

(dotted line).

Figure 3.13 shows the observed data and predicted y, indicating good model fit. Figure 3.14

shows the contour plot of regression function β(s, t). For O3 between the time 10 am to 7 pm, it

has a strong positive relationship with NOX during midnight to 10 am. In other words, the effect of

NOX has about 10 hour delay on O3. Figure 3.15 shows the confidence band of regression function

at the peak time t = 0.6 (2 pm). The peak of O3 at 2pm is closely positively related to NOX

before 10 am. Such delayed association was noticed in [Agudelo-Castaneda et al., 2014], where

daily trajectories of NOX and O3 were collected from 2006 to 2009 for an urban area at Brazil. In

their data set, it was observed the concentration of O3 increases after sunrise (7 am) and reached

maximum around 3 pm. NOX level peaked around 8 am. The delayed association between O3 and

NOX is possibly due to the photochemical reaction by sunlight which transforms NOX into O3.
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Figure 3.12: Case study 2. The first four eigenfunctions for predictor (upper four plots) and re-

sponse (lower four plots).
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Figure 3.13: Case study 2. Observed and fitted data.

92



−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

t

s

Figure 3.14: Case study 2. Contour plot of estimated β(s, t). 0.4, 0.6, 0.8 correspond to 10 am, 2

pm, and 7 pm.
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Figure 3.15: Case study 2. Estimated mean β(s, t = 0.6) (solid line) and its 95% confidence band

(dotted line).
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3.6 Discussion

In this chapter we propose a new method to integrate curve registration and functional regression

under a joint model. The key idea of this new method is to build the regression model upon warped

response and predictor variables. Bayesian method is adopted for parameter estimation. We apply

the method to two different function-on-function regression models: historical and concurrent

model. The simulation results show the proposed method provides satisfactory goodness-of-fit for

these two regression models.

Followings are the key components of the proposed method. The first one is the bivariate re-

gression function β(t, s), which represents the regression surface between the functional response

and predictor. Estimation of β(t, s) is obtained through decomposing it by functional PCA basis,

which avoids identifiability issue. The second key component is the time transformation function

µi(t). It is estimated through B-spline and Jupp transformation to maintain its monotonic fea-

ture. The third key component is that in each iteration when the new µi(t) is calculated, response

and predictor variables need to be aligned according to current time transformation function. The

alignment is done by spline interpolation.

In simulation study, we show that when time variation exists in predictor or response, func-

tional regression without curve registration produces unreliable estimation. This emphasizes again

the importance of handling time variation by appropriate model instead of ignoring it. We also

compare historical model and concurrent model. They both work compatibly with the integrated

time warping component. Historical model is able to relate remote areas of predictor and response,

which can not be achieved by concurrent model. To visualize regression surface, contour plot is a

useful too as shown in Figure 3.3. Another way to plot the result is by fixing t at a specific time

point t1, and the magnitude and sign of β(s, t = t1) can indicate which part of outcome is closely

related to which part of predictor.

We apply the proposed method to air pollutant data to investigate potential relationship between

O3 and NOX. The historical model has better model fit. By examining the regression surface, we

find delayed association between NOX and O3. This finding shows the importance of historical

model when the predictor and response are remotely related. We also apply this method to the
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lip movement data. Evaluated by MSE and WAIC, historical model shows better model fit than

concurrent model. The estimated regression surface is very complicated, which makes it hard to

interpret.

The proposed method can be easily generalized to cases where multiple functional predictors

are present, or multiple predictors are available in functional and scalar form. A more compli-

cated scenario is that the predictor and response have different warping functions. [Gervini, 2014]

proposed a joint model which includes time transformation parameters as predictor to solve such

problem. It demonstrates that their method achieves good predictive power and allows unified

statistical inference about phase and amplitude components.
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3.7 Appendix: Full Conditionals

• Full conditional distribution for vectorized B

(B|Y ,θ−bi) ∼ N(Bm;VB), where

VB = (S′S/σ2
ε + Σ−1B )−1,Bm = VBS

′Y /σ2
ε

• Full conditional distribution for σ2
ε

(σ2
ε |Y ,θ−σ2

ε
) ∼ IG(a∗ε , b

∗
ε)

a∗ε = aε +mn/2, b∗ε = bε + (Y − SBB)′(Y − SBB)

• Full conditional distribution for σ2
τ

(σ2
τ |y,θ−σ2

τ
) ∼ IG(a∗τ , b

∗
τ )

a∗τ = aτ + nw/2, b∗τ = bτ + 1/2
∑

(τ i −Υ)′Ωτ (τ i −Υ), w is the length of τ i.
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CHAPTER 4

Summary and Future Development

4.1 Summary

In this work, we have presented two new methods which tackle two different aspects of functional

data analysis. The first method is focusing on accelerating Bayesian curve registration, which is

computationally demanding because of MCMC simulation. This is especially problematic if the

number of evaluating points m is large. To solve such problem, the proposed method smoothes

the curve y by k B-spline basis functions, and represents the coefficient of the B-splines by a

registration process. This method, while seemingly overparametrized compared to the standard

hierarchical curve registration model, leads to significant computational savings when k << m.

Simulation study shows time cost of the new method is 36% of the time that standard BHCR costs.

In the case study, we apply this new method to ICP data where curves are intensively sampled.

The new method successfully aligns ICP curves and provides mean function for each patient. With

these mean functions, we are able to draw summary statistics upon them for further analysis.

The second proposed method is Bayesian warped functional regression. The key idea of this

method is to build functional regression model and perform curve registration simultaneously. To

achieve this goal, in every iteration of MCMC sampling, the aligned response and predictor needs

to be re-calculated through interpolation. Simulation study shows, when misalignment exists,

warped functional regression has much better model fit than ordinary functional regression without

curve registration. We implement this method on two types of regression: historical function-on-

function regression and concurrent function-on-function regression. Simulation shows the model

fit is satisfactory for both of them. The interpretation of regression result replies on fix regression

function β(s, t) at a specific time point t1. The magnitude and sign of β(s, t = t1) indicates the how
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predictor contributes to outcome. We then apply the Bayesian warped functional regression model

on two case studies. For both of them the historical model has better model fir than concurrent

model. Historical model is able to relate remote areas of predictor and response, which can not be

achieved by concurrent model.

4.2 Future Development

An important assumption assumption in our proposed warped functional regression is that response

and predictor variables share the same warping function. This may not be true in reality. When

they have different warping functions, the estimation can be done in a joint model:

Xi(t) = X∗i (t) ◦ µi(t) + εi(t) (4.1)

Yi(t) = [B0(t) +

∫
X∗i (s)β(s, t)ds] ◦ ηi(t) + Ei(t)

where µi(t) and ηi(t) are warping functions for x and y respectively. Moreover, the current warped

functional regression can be extended from function-on-function regression to scalar-on-function:

Yi = B0 +
∫
X∗i (t)β(t)dt+ Ei and function-on-scalar: Yi(t) = [

∑p
j=1Xijβj(t)] ◦ ηi(t) + Ei(t).

Another possible extension to warped functional regression is to ease the computation cost of

time warping by Variational Bayes method or the predictive model based method introduced in

Chapter 2. Variational Bayes for curve registration problem has been introduced in [Earls and

Hooker, 2015]. Since the parameter of time transformation function have non-conjugate priors

(this is common for curve registration problem), the variational Bayes procedure is divided into

two stages. The parameters with conjugate priors are estimated through standard variational Bayes

formula, whereby the parameters with non-conjugate priors are estimated through maximizing a

target function.

A third possible future development is to account for within-subject correlation when perform-

ing curve registration. Suppose we have a data set consisting of multiple subjects, and each subject

have several trajectories observed for the same underlying unknown function. If our goal is to align

curves from all subjects and estimate the overall mean function, we need to take within-subject cor-

relation into account in terms of modeling the registration process. This is also a problem when

99



considering mixed functional regression model. We may add random functions to account for

necessary covariance structures.
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