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Chapter 1

Background and Introduction

Magnetic Resonance Imaging (MRI) has revolutionized the field of medical imag-

ing, providing non-invasive and detailed images of internal structures of the body, notably

the brain. Unlike X-rays and CT scans, MRI doesn’t rely on ionizing radiation. Instead, it

uses a strong magnetic field, radio waves, and a computer to produce detailed pictures of

the inside of the body.

Perfusion Imaging

Perfusion imaging pertains to the process of capturing the distribution of blood

flow to the organs and tissues. Perfusion is vital as it provides essential nutrients to the

tissues, ensuring their function and vitality. In the context of the brain, perfusion is crucial

to maintain cognitive functions, and any disruptions can lead to severe consequences like

strokes or cognitive impairments [1]. MRI provides a non-invasive method to study perfusion

in the brain. Traditional methods often require injecting a contrast agent to visualize blood

flow [2–5]. However, with advancements in MRI technology, it’s now possible to acquire
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perfusion images without the need for any exogenous contrast agents[6–8]. This is where

Arterial Spin Labeling (ASL) plays a pivotal role.

ASL (Arterial Spin Labeling)

ASL is a magnetic resonance imaging technique used to assess cerebral blood flow

by magnetically labeling incoming blood [7]. Instead of relying on external agents, ASL

takes advantage of the water in arterial blood as an endogenous tracer. Doing so provides a

more direct measurement of cerebral blood flow, making it particularly useful for studying

perfusion in various brain disorders [6]. ARTERIAL SPIN LABELING (ASL) is a class

of methods for magnetic resonance imaging (MRI) of tissue perfusion. The term perfusion

refers to the delivery of blood to capillary beds, and is quantified by the amount of blood

delivered to the tissue per unit time, per unit volume or mass of tissue. This quantity is

important physiologically because it determines the maximum rate of delivery of oxygen

and other nutrients to the tissue, and also the rate of clearance of waste products. In ASL,

arterial blood water is used as an endogenous diffusible tracer. Radiofrequency (RF) pulses

are used to modify the longitudinal magnetization of arterial blood water before it flows into

the target tissue, and after it reaches the tissue the label is observed as a perturbation of the

tissue magnetization. Because the label is modified longitudinal magnetization, it decays

with time constant T1, which is approx. 1350 msec in blood at 1.5T and 1650 msec at 3T

[9]. The creation of labeled blood typically occurs in the arteries leading into the tissue of

interest. In the brain, for example, labeling pulses are commonly applied in the carotid and

vertebral arteries. The time it takes blood to travel from the labeling location to the target

tissue, referred to here as the transit delay, is also on the order of 1 second. Thus, there are
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two similar but competing time constants in the ASL experiment: T1 decay of the label,

which favors a short delay between the application of the label and image acquisition, and

the transit delay, which favors a long delay to allow for complete delivery prior to image

acquisition. The balance between these two factors is a key tradeoff in the design of ASL

measurements. However, ASL imaging has its challenges. One of the major concerns is

the low Signal-to-Noise Ratio (SNR). Low SNR can decrease the image quality, leading to

potential inaccuracies in clinical diagnosis [10]. Addressing this challenge can significantly

reduce scan times, thereby enhancing patient comfort, reducing costs, and improving the

efficiency of medical imaging procedures [11].

Deep Learning and its Application in ASL

Deep learning, a subset of machine learning [12], is inspired by the structure and

function of the brain, particularly a construct known as artificial neural networks. In

recent years, deep learning has shown tremendous promise in various domains, from visual

recognition to natural language processing [13–15]. In the realm of medical imaging, deep

learning models, especially convolutional neural networks (CNNs), have achieved state-

of-the-art performance in tasks such as image classification, segmentation, and anomaly

detection [13].

Given the challenges faced by ASL imaging, particularly the low SNR, deep learn-

ing models can be employed to enhance the quality of ASL images, thus paving the way

for more accurate clinical diagnoses. By training on vast datasets, these models can learn

to extract intricate features, reduce noise, and provide clearer, high-resolution images that

can be critical for clinical decision-making [11].
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Chapter 2

Data Processing Pipeline

2.1 2.1 Experimental Design and Pipeline

Introduction

The process of acquiring, preprocessing, and processing MRI data, particularly

ASL images, is intricate and requires careful consideration at every step. This chapter

elucidates the comprehensive pipeline established for this project, ensuring the validity and

reproducibility of our results.

Data Overview

Our study comprises data from 63 subjects. The data was acquired from Open-

Neuro datasets[16]. All subjects underwent an MRI resting-state scan. Subjects were in-

structed to lie still with their eyes open, without falling asleep. Immediately after this scan,

they were asked whether they fell asleep, and none of them reported they did. The MRI ex-

amination was carried out on a 3T whole-body MRI scanner (Trio TIM), using the body coil
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as transmitter and a 32-channel phased-array head coil as receiver. The imaging protocol

included a 3D high-resolution anatomical T1-weighted MPRAGE sequence (with inversion

time (TI) = 950 ms, repetition time (TR) = 1760 ms, echo-time (TE) = 3.1 ms, resolution =

1 mm isotropic, scan time = 5:08 min). This sequence was followed by an ASL sequence that

combined pseudo-continuous labeling (PCASL) with a background-suppressed 3D GRASE

single-shot readout. The labeling parameters were as follows: Hanning-shaped RF pulses,

B1average = 1.8 microT, RFduration = 500 micro.sec, spacing = 500 micro.sec, Gaverage

= 1mT/m, Gmaximum/Gaverage = 8, labeling duration = 1600 ms, post-labeling delay =

1500 ms. The imaging parameters were as follows: TR = 3.5 sec, TE = 29 msec, resolution

= 4x4x7 mm3, FOV = 250x188x112 mm3 , 16 nominal partitions with 12.5% oversampling,

5/8 slice partial Fourier, matrix size = 64x49x11, BW = 2790Hz/pixel, gradient-echo spac-

ing = 0.4 msec (with ramp sampling), spin-echo spacing = 29 msec, read-out time = 270

msec. 50 pairs of label and control images were acquired in 6 minutes. A short scan of 5

label/control pairs was performed using the same sequence without background suppression

to acquire control images needed for calculation of CBF, this 10 images are allocated at the

beginning of each ASL sequence, so each subject ASL sequence has 110 images.

In Arterial Spin Labeling (ASL), M0 images play a significant role as a reference.

These images are acquired without any labeling or control condition. Their primary purpose

is to provide a measure of the fully relaxed magnetization of arterial blood. Given their

unique nature, M0 images possess a higher signal-to-noise ratio (SNR) than the subsequent

label or control images. This makes them invaluable for scaling perfusion-weighted images to

achieve absolute cerebral blood flow (CBF) quantification [17]. It’s worth noting, however,
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that M0 images do not directly contribute to the generation of the difference images which

provide the perfusion signal.

Difference Image Calculation

The first step in our pipeline involves computing the difference between each pair

of control and label images. The resultant set comprises 50 3D images, each with dimensions

64 × 64 × 16. Here, the number 16 denotes the number of slices in the z-direction. ASL

images inherently suffer from a low SNR. To counteract this, a two-step procedure was

adopted:

1. Each difference image was scaled by dividing it with 10× the mean value for the

respective subject. This scaling aids in normalizing the image intensity range across

subjects. To ensure reversibility, the scaling factor was saved for each subject.

2. Given that certain images can be dominated by noise, we applied a filtering step. For

each subject, the mean (µ) and standard deviation (σ) of their images were calculated.

Any image value falling outside the range [µ−2σ, µ+2σ] was set to zero. This approach

retains the significant features of the image while suppressing extreme values, often

attributed to noise.

The processed images were then averaged in various combinations, forming differ-

ent sets. Averaging helps further suppress random noise and enhance the perfusion signal.

The number and strategy for averaging were defined based on preliminary analyses to bal-

ance SNR and resolution.
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Models were also trained without any pre-processing on the input data and the

results were on par when the models were trained with pre-processed data. Hence, we

proceeded without any pre-processing because it takes into account all kinds of input data

and does not eliminate any slices or full 3D images of a scan.

Data Augmentation

To bolster the dataset’s size and introduce variability, data augmentation tech-

niques were employed as they have been shown to improve the performance of deep learn-

ing models [18]. Six distinct operations, including image flips, rotations, and shifts, were

executed on the original images, leading to an expanded dataset 6 times the initial size. En-

suring consistency in experiments is pivotal. Hence, the augmented dataset was serialized

and saved as ‘.npy‘ files. This ensures that irrespective of the model under consideration,

the same dataset is used for training, validation, and testing, guaranteeing a fair compar-

ison. Upon finalizing the dataset, we proceeded with the training of our deep learning

models. After training, the model weights were saved. This allows for reproducibility, quick

model evaluation on new data, and potential fine-tuning in future studies. The test data

underwent a processing pipeline analogous to the training set.

Monitored Metrics

Once the processed test data was fed into the trained models for predictions,

monitoring metrics were essential to quantify the model’s performance. Three key metrics

were utilized:

• PSNR (Peak Signal-to-Noise Ratio): It quantifies the ratio between the maxi-
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mum possible power of the signal and the power of the noise, providing an estimate

of the image quality.

• SSIM (Structural Similarity Index Measure): This metric assesses the perceived

quality of an image. Instead of computing absolute errors, SSIM considers changes in

structural information, luminance, and texture.

• MSE (Mean Squared Error): It computes the average squared differences between

the estimated values and the actual value.

For each test subject, error maps were generated to see if the model introduced

any artifacts in the predicted image. These maps provide a visual representation of the

difference between the model’s predictions and the ground truth. Subsequently, results for

individual subjects were aggregated to yield an average performance measure.

Post Processing

After generating predictions, we revert the images to their original scale by multi-

plying them with a scaling factor—ten times the subject’s mean. This rescaling facilitates

subsequent computations, such as Cerebral Blood Flow. Subsequently, we evaluate our

metrics, namely PSNR, SSIM, and NMSE, by comparing the input and predicted data.

For evaluation, we used NMSE (Normalized Mean Squared Error) so that the results are

comparable across subjects. The NMSE computes the average squared differences between

the estimated values and the actual value and divides that by the mean intensity of the

ground truth image.

NMSE =

∑N
i=1(Ei −Gi)

2∑N
i=1Gi

(2.1)
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where:

• Ei is the estimated value of the ith pixel in the image E.

• Gi is the actual value of the ith pixel in the ground truth image G.

• N is the total number of pixels in the image.

The results of these evaluations are presented in the tables discussed in Chapter 4.
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Chapter 3

Exploring the Models

3.1 3.1 UNET

UNET 2D

The U-Net architecture, a pioneering deep learning framework, emerged as a potent

solution for image segmentation tasks, owing to its unique design and impressive perfor-

mance. Developed by researchers Olaf Ronneberger, Philipp Fischer, and Thomas Brox in

2015 at the University of Freiburg, U-Net’s inspiration derives from its ”U” shape, formed

by a contracting path and an expansive path [19].

U-Net’s efficacy stems from its ability to tackle semantic segmentation challenges

where precise delineation of object boundaries is required. The architecture’s contracting

path, often referred to as the ”encoder,” incorporates convolutional and pooling layers to

capture context while downsampling the input image. This process enables the model to

recognize essential features, although with reduced spatial resolution.
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The expansive path, or ”decoder,” employs transposed convolutions for upsam-

pling, progressively restoring the spatial dimensions while maintaining contextual informa-

tion. Importantly, this ”skip-connection” architecture interlinks corresponding layers from

the contracting to the expansive path, facilitating the transmission of fine-grained spatial

details.

U-Net’s prominence in the medical imaging field arises from its remarkable capa-

bilities in denoising and enhancing images. Medical images, such as pulsed arterial spin

labeling (ASL) MRI brain scans, often suffer from noise artifacts that can impede accurate

diagnoses. U-Net’s capacity to discern intricate structures and fine-tune them by removing

noise positions it as a potent tool for medical image denoising.

The combination of Mean Squared Error (MSE) and Structural Similarity Index

(SSIM) as the loss function further underscores U-Net’s suitability for this task. MSE

ensures the minimization of pixel-wise differences between the predicted and ground truth

images. SSIM, on the other hand, accounts for structural information, providing a more

perceptually aligned assessment of image quality.

U-Net’s utility extends beyond denoising to encompass an array of medical imaging

tasks. Its application ranges from organ and tumor segmentation to image registration and

disease detection. The architecture’s adaptability, coupled with its consistent success, has

cemented its place as a staple in the medical imaging community.

In conclusion, the U-Net architecture, conceptualized by Ronneberger, Fischer,

and Brox, has revolutionized the field of medical image analysis. Its distinctive ”U” shape,

combining contracting and expansive paths, empowers it to excel in tasks like denoising
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ASL MRI brain images. Through its incorporation of both MSE and SSIM, U-Net ensures

not only pixel-wise accuracy but also perceptual fidelity. As the medical imaging realm

continues to evolve, U-Net stands as an indispensable asset, harnessing the power of deep

learning to enhance diagnostic precision and ultimately improve patient care.

Our Model

The U-Net architecture, originally designed for biomedical image segmentation,

was adapted and implemented for the analysis of 2D images in the current study. The

model’s architecture was tested with both four and five layers deep model.

In the first stage of the U-Net, known as the contracting path, an input image

undergoes a series of operations. Each image is convolved twice at every layer, which

essentially allows the model to learn various image features at multiple scales. Following

convolution, Batch Normalization was applied. The incorporation of this step was crucial

as, without it, the model’s loss might not converge. This was succeeded by the application

of a LeakyReLU activation function to better adapt to small negative pixel values in the

ground truth. Subsequent to these operations, max-pooling was performed to progressively

reduce the spatial dimensions of the image. To mitigate the risk of overfitting, dropout of

0.05 was incorporated at each layer. The output from each layer was then propagated to

the subsequent layer, iteratively refining the features captured.

Upon completion of the contracting path, the expansive path of the U-Net begins.

In this phase, the spatial dimensions of the image are increased using 2D transposed con-

volution operations. It’s worth noting that the kernel size was kept equal to the stride to

avoid undesirable artifacts in the form of a checkered pattern in the output. Dropout was
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incorporated in this phase as well, ensuring robustness against overfitting. This expansive

path was executed as many times as max-pooling was performed in the contracting path,

ensuring a symmetrical architecture.

The culmination of the expansive path leads to the final operation: a 2D convolu-

tion with a linear activation function. The output is an array with identical dimensions to

the original input image (64x64).

The model’s loss function was particularly crafted as a linear combination of mean

squared error (MSE) and mean structural similarity (SSIM) loss. Several ratios of these

two factors were rigorously tested to determine the optimal balance for our dataset which

assigned equal weights to the two metrics. As the model trains, it learns the weights for

the convolutional and transposed convolutional layers, gradually improving its performance.

A standout feature of our U-Net architecture is the inclusion of skip connections between

layers producing outputs of the same dimensions. These connections ensure that the model

retains spatial information, which is often lost in deeper layers. To validate the model,

a five-fold cross-validation was employed. The metrics for evaluating performance were

NMSE, SSIM, and PSNR.

The training was conducted under Python 3.7 with Tensorflow 2.10. The four-layer

model had 290, 929 trainable parameters, and the five-layer model had 783, 937 trainable

parameters. Each epoch took approximately 3 minutes to train on a batch size of 32,

given a training set size of 211,200 images. Models were trained on raw data, and also

on data pre-processed by averaging either 2% (unaveraged), 10% (average of 5 images) or

20% (average of 10 images) of the data. Post-training, all testing images were normalized
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by division with their respective mean and subsequently rescaled using this scaling factor

following predictions.

The ground truth was established by averaging images from all time points. A

unique advantage of the U-Net architecture lies in its ability to capture both local and high-

level details. While the initial layers focus on capturing minute local details, the deeper

layers, having processed the entire image, encapsulate more holistic, high-level information.

Figure 3.1: UNET 2D flow

UNET 3D

Conceived as a natural extension of its 2D predecessor, U-Net 3D addresses the

complexities inherent in volumetric data, offering a more comprehensive solution for tasks

requiring spatial understanding and depth perception. The origins of U-Net 3D can be
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traced back to the growing demand for accurate and holistic analysis of medical images,

such as CT scans and MRI volumes. As medical imaging technology progressed, the need

arose for models capable of understanding the intricate 3D structures present in these scans.

In response, researchers extended the foundational U-Net design into the third dimension,

resulting in an architecture that embraces the volumetric nature of medical data. In de-

noising tasks involving volumetric medical images, U-Net 3D logically holds an advantage

over its 2D counterpart. Noise artifacts in 3D scans can span multiple slices, necessitating

a model capable of recognizing patterns and relationships that extend across the depth of

the volume. U-Net 3D’s ability to capture volumetric context enables it to mitigate noise

more effectively and provide more accurate denoising results. As a result, U-Net 3D is not

only equipped to handle medical image denoising but also a multitude of volumetric anal-

ysis tasks, including organ segmentation, tumor detection, and disease classification. By

embracing the inherent dimensionality of medical volumes, U-Net 3D enhances the accu-

racy and reliability of analyses, ultimately improving clinical decision-making and patient

outcomes[20]. In conclusion, U-Net 3D emerges as a logical progression from U-Net 2D,

catering to the demands of volumetric medical image analysis. Its architecture, tailored to

capture 3D structures and spatial relationships, positions it as a superior choice for tasks

requiring a comprehensive understanding of volumetric data. In an era where precision

and depth perception are critical in medical imaging, U-Net 3D stands as an essential tool,

ushering in a new era of accurate and impactful diagnostic insights.
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3.2 Vision Transformers and Swin Transformer in Medical

Imaging

3.2.1 Vision Transformers (ViTs)

Over the past decade, Convolutional Neural Networks (CNNs) have been the gold

standard for a plethora of computer vision tasks. Their unparalleled capacity to process

grid-like data, predominantly images, by discerning local patterns via a cascade of filters,

has solidified their dominance in the field. However, a new protagonist has recently emerged

in the arena of image processing: the Vision Transformer (ViT) [21].

Advantages over CNNs:

1. Global Context: Unlike CNNs, which primarily capture local context in their pre-

liminary layers, transformers have the innate capability to understand global context

right from the onset.

2. Scalability: ViTs scale better with increased data and computation. When datasets

are sufficiently large, ViTs tend to outperform CNNs.

3. Parameter Efficiency: Transformers, especially when pre-trained, often require

fewer parameters than deep CNNs for the same or even superior performance.

In the realm of medical imaging, the aforementioned attributes of ViTs have shown

to be particularly beneficial. Recent works have applied ViTs to medical image classification,

segmentation, and anomaly detection, often achieving state-of-the-art results [22].
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3.2.2 Swin Transformer

Building upon the foundations of Vision Transformers, the Swin Transformer intro-

duces a hierarchical structure that permits local and global information processing, making

it particularly suited for dense prediction tasks such as semantic segmentation or object

detection.

Key Features and Advantages:

1. Hierarchical Design: Swin Transformer replaces the standard Transformer’s fixed-

size patches with overlapping windows, increasing its capacity to manage local image

features.

2. Shifted Windows: For higher layers in the network, the Swin Transformer uses

shifted windows, allowing the model to capture a broader context without increasing

computational complexity.

3. Hybrid Structure: The Swin Transformer can be initialized with CNN feature

maps, combining the strengths of CNNs and transformers.

Within medical imaging, the Swin Transformer’s unique hierarchical design has

proven especially advantageous. Its overlapping windows allow the model to focus on in-

tricate details found in medical images. In tasks such as denoising, the model’s ability to

capture both local patterns and global context means that it can understand noise patterns

and restore the original image with exceptional precision [23].
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3.3 Swin Transformer Architecture

3.3.1 Image Partitioning into Patches

The first step in the Swin Transformer pipeline is dividing the image into non-

overlapping fixed-size patches. An image with a size of H ×W is partitioned into patches

of size P × P . This effectively results in H
P × W

P patches. The idea of using patches can be

traced back to the original Vision Transformer (ViT) [21], where it was found effective in

capturing local information [24].

3.3.2 Patch Embedding

Once the patches are extracted, each patch is linearly embedded into a flat vector

of dimension D. This embedding can be seen as reshaping the patch and then multiplying

it by an embedding matrix. The result is a sequence of patch embeddings, which becomes

the input for the subsequent transformer blocks [24].

3.3.3 Multiple Swin Transformer Blocks

The core of the Swin Transformer architecture consists of several Swin Transformer

blocks stacked on top of each other. Each of these blocks has two primary layers: the shifted

window-based self-attention mechanism and a multi-layer perceptron (MLP) [24].

Shifted Window-based Self-Attention

Traditional transformers operate on the entire sequence, leading to a quadratic

complexity. Swin Transformer introduces a window-based mechanism, where the attention
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operation is limited to fixed-size local windows. These windows slide across the image

without overlap.

To ensure that the model captures global context, adjacent blocks use windows

shifted by half of the window size. This ensures that a token, over multiple blocks, interacts

with tokens outside its initial window, expanding its receptive field [24].

Masking

The term ”masking” often refers to preventing certain elements from participating

in computations, especially in the context of attention mechanisms. In transformers, a mask

is an array or tensor, typically containing ones and zeros, which defines which elements

should be considered (‘1‘) or ignored (‘0‘).

In the Swin Transformer, the importance of masking is twofold:

Permutation Invariance: Swin Transformer is designed to maintain permutation invari-

ance, meaning that the model’s output should remain consistent irrespective of the input

sequence order. This is crucial for vision tasks since images can be fed into the model in

any sequence. In the context of Swin Transformer, zero padding is added to the image if it’s

smaller than the desired input size. These zeros should not affect the model’s computations,

and thus, they are masked out during the attention calculations. By doing this, the model

is ensured to focus only on the meaningful parts of the image and not on the padded zeros

[24].

To achieve this, a binary mask is used during the dot-product attention compu-

tation. The mask has the same size as the attention scores tensor, and every position
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corresponding to a padded zero will have a very large negative value (often ‘-inf‘). When

applying the softmax function, these positions will effectively become zero, ensuring that

no attention is paid to the padded positions.

Causal Masking: Though not specifically a part of Swin Transformer, it’s worth men-

tioning causal masking, which is often used in transformers designed for sequences (like

text). The idea behind causal masking is to ensure that a token does not have access to

future tokens in a sequence. This is vital for tasks like language modeling, where the model

should predict the next word in a sequence without having seen it. A causal mask is an

upper triangular matrix filled with very large negative values (or ‘-inf‘), ensuring that when

softmax is applied during attention calculation, future tokens have zero weight.

In conclusion, masking is a strategic operation ensuring that the transformer model

remains attentive to the right parts of the input, maintaining robustness and consistency

in its predictions [24].

Attention Mechanism and Attention Scores

The attention mechanism used in the Swin Transformer follows the traditional

scaled dot-product attention. Given queries Q, keys K, and values V , the attention score

is computed as:

Attention(Q,K, V ) = softmax

(
QKT

√
d

)
V

Where d is the depth of the query/key vectors. These attention scores represent how much

attention each patch should pay to every other patch [24].
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3.3.4 Reversing Window Partition and MLP Layer

Once the self-attention mechanism is applied, the window partitions are reversed

to restore the original sequence order. Following this, the sequence is passed through an

MLP layer. This MLP is vital for introducing non-linearity into the model, which aids in

learning complex representations. It typically consists of two linear layers with a GELU

activation function in between [24].

3.3.5 Patch Merging

As the information flows through the stacked transformer blocks, the resolution

is gradually reduced using patch merging. This is done by merging adjacent patches into

larger ones, effectively reducing the sequence length by a factor of 4. This merged patch is

then linearly embedded into a vector. The purpose of this merging is to allow the model to

capture more global information as it processes deeper [24].

Post-processing in Swin Transformer

After the information has been processed through the Swin Transformer blocks,

the next step is to decode this processed data into a format suitable for the specific task

at hand. In the case of image-related tasks, it’s often about reconstructing the image or

generating a modified version of the input image. Here’s how the Swin Transformer achieves

this:

From Embedded Space to Original Patch: The initial step involves a convolution

operation. This convolution layer maps the output of the final Swin Transformer block,
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which is in an embedded space, back to the spatial dimensions of the original patch. This

process essentially transforms the rich feature representations, which the model has learnt,

back to a spatial format that resembles image patches. This is crucial as the subsequent

operations are spatial in nature [24].

Upscaling with Pixel Shuffle: Pixel shuffle is a method often used in deep learning

to upscale an image. In the context of Swin Transformer, multiple convolution operations

followed by pixel shuffling are applied. Each convolution layer refines the features, ensuring

they capture the intricate details needed for a high-resolution output.

The pixel shuffle operation involves rearranging elements in a tensor, typically

output from a convolutional layer, to achieve a higher resolution. Specifically, pixel shuffle

takes a low-resolution image with multiple channels and rearranges these channels to form a

high-resolution image with fewer channels. This operation ensures that the upscaling does

not introduce any artifacts or rely on simple interpolation methods, but rather uses the

learnt features to intelligently upscale the image.

For instance, if we have a 2x2 patch with 4 channels, pixel shuffle can rearrange

this to form a 4x4 patch with one channel. This is done without any loss of information.

The process is repeated with subsequent convolution and pixel shuffle operations to achieve

the final desired resolution.

Comparing to Ground Truth: Once the image has been upscaled to its original size,

it’s time to compute the loss for training. The upscaled image is compared to the ground

truth using a suitable loss function, which here as well is a linear combination of Mean
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Squared Error (MSE) and Structural Similarity (SSIM). The gradients from this loss are

then backpropagated through the entire network, including the Swin Transformer blocks,

to update the model’s weights [24].

In essence, the post-processing in Swin Transformer ensures that the model’s rich,

abstract feature representations are effectively translated back into spatial, interpretable

formats suitable for direct comparison with real-world images.

Conclusion

As medical imaging continues to evolve and demands higher precision and inter-

pretability, models like the Vision and Swin Transformers are set to play pivotal roles. Their

global context understanding combined with local pattern recognition makes them ideal for

complex tasks in medical imaging.
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Chapter 4

Results and Comparison

The goal of this section is to use the tools developed in the previous sections to

run experiments. We ran the basic experiment to evaluate the pipeline’s performance in

denoising images for the four models and tried to find the best parameters, such as the

cost-function ratio. In addition to the evaluation metrics, we also visualized the images

for inspection. A successful result allows future improvements by finding ways to improve

the network structure or parameters based on testing on different and larger datasets. For

evaluation, we tested the model under three distinct scenarios:

1. Using non-averaged images as the input.

2. Inputting images that were obtained by averaging over five consecutive time points.

3. Taking an average of the outputs produced over five successive time points.

By contrasting the second and third scenarios, we aim to discern the superior

approach when given five 3D images. Specifically, we investigate whether it is more advan-
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tageous to average these five images beforehand, yielding a high SNR input, or to input

the images individually and subsequently average the outputs. Intuitively, the performance

should be similar.

4.1 The UNET 2D Model

We embarked on an extensive training process using a 2D UNET architecture. Two

distinct models were developed, differentiated by their depth: one with four layers and the

other with five layers. Each model was trained on images that were captured at multiple

discrete time points. Notably, these images were utilized in their raw form, meaning no

averaging techniques were employed during the training process. The UNET 2D model

trains the fastest among all the models examined here

An interesting observation arose during the evaluation phase. For very low SNR images,

which in our case was when individual timepoint images were used as input without any

averaging, the four-layered 2D UNET model did not work well but increasing the layers to

five resulted in a well-trained model. In case the input images were averaged for five time

points resulting in higher SNR images, the loss curve of the five-layered model demonstrated

clear signs of overfitting so a four-layered model was used and it worked really well. Specif-

ically, as the training progressed for the five layered model in case of higher SNR images,

the validation loss began increasing, diverging from the continually decreasing training loss.

This disparity between training and validation metrics raised concerns about the model’s

generalization capabilities on unseen data. This can be a result of the fact that averaging

images reduces the dataset and so a five-layered model would overfit due to a higher number
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of parameters.

As mentioned, When the five-layer model was evaluated using non-averaged input images,

the results were markedly positive. The results for the same are shown in the following

tables.
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(a) UNET 2D Input (b) UNET 2D Prediction (c) UNET 2D Ground Truth

Figure 4.1: UNET 2D Results

Table 4.1: Output of UNET 2D model. Individual 2D image time points used as input

Subject Input PSNR Pred PSNR Input SSIM Pred SSIM Input NMSE Pred NMSE

Subject 1 26.5696 34.4693 0.4136 0.7353 4.9318 0.5383

Subject 2 21.7294 28.9158 0.4203 0.8478 0.221 0.0411

Subject 3 21.3676 31.3022 0.3918 0.7796 0.9124 0.0798

Subject 4 22.1386 29.7391 0.3665 0.8128 0.3155 0.0532

Subject 5 21.9045 29.0295 0.5325 0.8809 0.1842 0.0352

Subject 6 23.2819 31.708 0.4539 0.8179 0.4204 0.0571

Subject 7 24.2718 30.2382 0.4871 0.8396 0.1896 0.046

On average, across seven test subjects, for the case when unaveraged images were

used, the input PSNR(Peak Signal-to-Noise Ratio) was 23.04± 1.85 dB while the predicted

images showed a PSNR of 30.77±1.94 dB there was an improvement of approximately 7.73
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Table 4.2: Output of UNET 2D model when predicted images at five timepoints were

averaged.

Subjects Input PSNR Pred PSNR Input SSIM Pred SSIM Input NMSE Pred NMSE

Subject 1 26.5696 35.8915 0.4136 0.7166 4.9318 0.3881

Subject 2 21.7294 31.267 0.4203 0.8878 0.221 0.0235

Subject 3 21.3676 33.045 0.3918 0.8201 0.9124 0.0521

Subject 4 22.1386 32.4366 0.3665 0.8702 0.3155 0.0281

Subject 5 21.9045 31.4066 0.5325 0.9145 0.1842 0.0206

Subject 6 23.2819 33.8137 0.4539 0.8677 0.4204 0.0348

Subject 7 24.2718 32.012 0.4871 0.8773 0.1896 0.0304

Table 4.3: Output of UNET 2D model when input images at five timepoints were averaged.

Subjects Input PSNR Pred PSNR Input SSIM Pred SSIM Input NMSE Pred NMSE

Subject 1 34.4667 36.5465 0.7429 0.8157 2.3243 1.2795

Subject 2 29.1550 31.2921 0.7626 0.8928 0.0406 0.0235

Subject 3 28.3071 33.1397 0.7071 0.8305 0.1709 0.0515

Subject 4 29.4228 32.4165 0.7209 0.8707 0.0580 0.0284

Subject 5 27.4489 30.9793 0.8158 0.9112 0.0596 0.0231

Subject 6 29.8705 33.7863 0.7642 0.8704 0.0982 0.0354

Subject 7 31.4747 32.4610 0.8012 0.8898 0.0349 0.0275
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dB in the PSNR value. Similarly, the SSIM (Structural Similarity Index Measure) for the

input was 0.44±0.05 and the predicted images showed a similarity value of 0.82±0.05 hence

the value exhibited an increase by an average of 0.37. Lastly, the normalized mean squared

value saw a significant reduction, for the input NMSE was 1.02±1.74 and was 0.12±0.18 for

the output with an average decrease of 0.9. These improvements underscore the effectiveness

and potential of the five-layer UNET model in handling non-averaged images. For the case

where input images are averaged before prediction by the model, the predicted image has

PSNR of 32.94 ± 1.86 dB, SSIM of 0.87 ± 0.03, and NMSE of 0.21 ± 0.47. Conversely, in

cases where the model prediction precedes the averaging process, the PSNR is 32.84± 1.16,

the SSIM is 0.85 ± 0.06, and the NMSE is 0.08 ± 0.13. Notably, it can be inferred from

the data that pre-prediction averaging yields marginally better results in comparison to

post-prediction averaging but the results are within one standard deviation of each other.

4.2 The UNET 3D Model

The training duration of the UNET 3D model is notably longer in comparison to its

2D counterpart when provided with an equivalent volume of data. This observation aligns

well with expectations considering the inherent complexity and depth associated with a 3D

model. For the 3D model we only use a four-layered UNET structure as the five-layered

model overfits the data.

A comprehensive analysis reveals that the UNET 3D model outperforms the UNET

2D model across all evaluation metrics. Furthermore, the strategy of averaging the input

images, whether executed pre or post-prediction, appears to exert minimal influence on the
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quality of the output. As anticipated, the resultant images derived from an average of five

consecutive time points display superior attributes in contrast to those obtained from a

singular time point.

Quantitatively, this superiority is manifested in a PSNR improvement of 9.78 ±

1.23dB and an SSIM increment of 0.50±0.06 when the unaveraged 3D images are used which

had an input PSNR of 18.16 ± 1.18 dB, SSIM of 0.41 ± 0.05, and NMSE of 9.50 ± 2.47.

The output images had a PSNR of 27.95 ± 0.9 dB, SSIM of 0.91 ± 0.03, and NMSE of

2.39± 1.5 for scenarios where the outputs of five images are averaged. For the case where

input images are averaged before prediction by the model the predicted image has PSNR of

28.95± 1.09 dB, SSIM of 0.93± 0.03, and NMSE of 0.29± 0.19. Conversely, in cases where

the model prediction precedes the averaging process, the PSNR is 29.3± 0.96, the SSIM is

0.93 ± 0.02, and the NMSE is 0.34 ± 0.22. Notably, it can be inferred from the data that

pre-prediction averaging yields marginally better results in comparison to post-prediction

averaging but the results are within one standard deviation of each other.
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(a) UNET 3D Input (b) UNET 3D Prediction (c) UNET 3D Ground Truth

Figure 4.2: UNET 3D Results

Table 4.4: Output of UNET 3D model. Individual 3D image time points used as input

Subject Input PSNR Pred. PSNR Input SSIM Pred. SSIM Input NMSE Pred. NMSE

Subject 1 19.3527 29.5835 0.4804 0.9167 12.7735 1.6498

Subject 2 18.0828 27.5441 0.359 0.9173 7.3844 2.3343

Subject 3 16.3165 27.6652 0.404 0.9415 12.9322 0.8326

Subject 4 17.0942 27.2446 0.3312 0.907 9.9982 2.4626

Subject 5 18.5259 27.3979 0.4315 0.8776 8.5505 4.28

Subject 6 18.0885 28.8599 0.4333 0.9527 7.1332 0.7243

Subject 7 19.6867 27.3584 0.439 0.8836 7.7775 4.4369
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Table 4.5: Result for UNET 3D when input images at five timepoints were averaged.

Subject Input PSNR Pred PSNR Input SSIM Pred SSIM Input NMSE Pred. NMSE

Subject 1 27.0605 30.8122 0.7866 0.9382 0.1091 0.1862

Subject 2 25.5003 28.4905 0.6653 0.9295 0.1413 0.2872

Subject 3 23.1943 27.9219 0.7078 0.949 0.1069 0.1217

Subject 4 24.4219 28.7221 0.6474 0.9272 0.1813 0.28

Subject 5 24.1691 27.7195 0.721 0.875 0.3996 0.6316

Subject 6 24.7304 29.8867 0.7407 0.9636 0.088 0.0887

Subject 7 26.8535 29.1127 0.7399 0.911 0.1829 0.4668

Table 4.6: Result for UNET 3D when predicted images at five timepoints were averaged.

Subject Input PSNR Pred. PSNR Input SSIM Pred. SSIM Input NMSE Pred. NMSE

Subject 1 19.3527 31.0069 0.4804 0.9368 12.7735 0.2214

Subject 2 18.0828 29.0917 0.359 0.9327 7.3844 0.3142

Subject 3 16.3165 28.6539 0.404 0.9508 12.9322 0.1278

Subject 4 17.0942 28.9788 0.3312 0.9274 9.9982 0.3235

Subject 5 18.5259 28.4863 0.4315 0.8931 8.5505 0.647

Subject 6 18.0885 30.2875 0.4333 0.9635 7.1332 0.1003

Subject 7 19.6867 28.5719 0.439 0.9034 7.7775 0.6601

32



4.3 Analysis of Vision Transformer Models

Vision Transformer 2D

The Vision Transformer 2D, an innovative approach in the realm of image process-

ing, exhibits remarkable improvements in all evaluation metrics when individual, discrete

images are introduced as input. However, the model’s performance exhibits a decline when

images obtained by averaging are introduced, or when the outputs post-prediction are aver-

aged. This decrement in performance potentially underscores the model’s susceptibility to

overfitting and its lack of robustness in certain situations. Corroborating this hypothesis is

the observed divergence between validation and training errors during the training phase,

a classic indication of overfitting. A closer scrutiny of the model’s architecture reveals an

extensive number of parameters. Considering the volume of data available for training,

it’s plausible to infer that the dataset size might be inadequate for the model to genuinely

harness its potential and deliver consistent results.

(a) ViT 2D Input (b) ViT 2D Prediction (c) ViT 2D Ground Truth

Figure 4.3: ViT 2D Results
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Table 4.7: For model trained on 2% data. Result for 2D transformer model.

Subject Input PSNR Pred. PSNR Input SSIM Pred. SSIM Input NMSE Pred. NMSE

Subject 1 19.3527 25.2223 0.4804 0.6923 12.7735 3.3639

Subject 2 18.0828 23.5874 0.359 0.7249 7.3844 2.0705

Subject 3 16.3165 24.8106 0.404 0.7261 12.9322 1.4407

Subject 4 17.0942 23.5007 0.3312 0.6992 9.9982 0.0669

Subject 5 18.5259 24.2091 0.4315 0.7748 8.5505 0.0474

Subject 6 18.0885 24.5998 0.4333 0.7415 7.1332 0.0847

Subject 7 19.6867 23.4938 0.439 0.7249 7.7775 0.0744

We see that while there is improvement in all the metrics for unaveraged input the

model is predicting all images with a very similar PSNR and SSIM. When we average these

images we expect to get a better image but that doesn’t happen and in some cases, the

performance actually decreases and we see a decrease in value for all three metrics. This

is also apparent visually from the predicted image in Figure 4.3 where we can see a sort of

blurring effect.
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Table 4.8: Result for 2D transformer model - input images were obtained by averaging over

five consecutive time points.

Subject Input PSNR Pred. PSNR Input SSIM Pred. SSIM Input MSE Pred. NMSE

Subject 1 27.0605 25.5004 0.7866 0.7030 2.2205 3.1379

Subject 2 25.5003 23.5387 0.6653 0.7155 1.6247 2.1383

Subject 3 23.1943 25.2377 0.7078 0.7337 3.2458 1.2876

Subject 4 24.4219 23.7481 0.6474 0.6948 0.0911 0.0676

Subject 5 24.1691 24.0644 0.7210 0.7653 0.0686 0.0494

Subject 6 24.7304 24.9081 0.7407 0.7443 0.1026 0.0809

Subject 7 26.8535 23.5626 0.7399 0.7210 0.0391 0.0755

Table 4.9: Result for 2D transformer model - taking an average of the outputs produced

over five successive time points

Subject Input PSNR Pred PSNR Input SSIM Pred SSIM Input NMSE Pred NMSE

Subject 1 19.3527 28.281 0.4804 0.8084 12.7735 4.2423

Subject 2 18.0828 25.0726 0.359 0.6897 7.3844 1.7184

Subject 3 16.3165 24.0086 0.404 0.7451 12.9322 2.4182

Subject 4 17.0942 23.968 0.3312 0.7007 9.9982 2.7817

Subject 5 18.5259 24.4747 0.4315 0.6354 8.5505 1.354

Subject 6 18.0885 24.3111 0.4333 0.767 7.1332 1.1445

Subject 7 19.6867 23.3705 0.439 0.7898 7.7775 1.7523

35



Vision Transformer 3D

Paralleling the challenges faced by its 2D counterpart, the Vision Transformer

3D model grapples with similar shortcomings. Given the augmented dimensionality, the 3D

model inherently possesses an even greater number of parameters, amplifying the challenges

observed in the 2D model. This complexity is reflected not just in performance metrics,

but also in training duration. This model has 146, 006, 913 trainable parameters. Both

the Vision Transformer 2D and 3D models require approximately six times the training

time per epoch compared to conventional models. Additionally, they necessitate a greater

number of epochs to reach convergence, further emphasizing the demanding nature of these

transformer models.
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(a) ViT 3D Input (b) ViT 3D Prediction (c) ViT 3D Ground Truth

Figure 4.4: ViT 3D Results

Table 4.10: For model trained on 2% data. Result for 3D transformer model.

Subject Input PSNR Pred PSNR Input SSIM Pred SSIM Input NMSE Pred NMSE

Subject 1 15.5193 23.5549 0.4124 0.7148 14.1801 1.9909

Subject 2 18.7561 23.469 0.6197 0.7693 3.2559 2.3556

Subject 3 17.9822 23.5593 0.4813 0.7981 2.8191 2.149

Subject 4 19.9883 23.977 0.4322 0.773 6.0414 2.287

Subject 5 20.1221 25.5079 0.6184 0.8191 2.0138 1.3767

Subject 6 15.658 22.9364 0.2668 0.673 3.0397 1.7411
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Table 4.11: Result for 3D transformer model - input images were obtained by averaging

over five consecutive time points.

Subject Input PSNR Pred PSNR Input SSIM Pred SSIM Input NMSE Pred NMSE

Subject 1 20.7027 23.7088 0.6825 0.715 8.25 1.9236

Subject 2 25.5048 23.562 0.8523 0.7725 1.6829 2.3018

Subject 3 24.6308 23.4703 0.8027 0.7953 1.7503 2.2125

Subject 4 26.7896 23.7262 0.7519 0.7644 1.2336 2.4293

Subject 5 28.0855 25.6383 0.8886 0.8206 0.8281 1.3214

Subject 6 23.273 22.9496 0.6008 0.6702 1.5522 1.7342

Table 4.12: Result for 3D transformer model - taking an average of the outputs produced

over five successive time points

Subject Input PSNR Pred PSNR Input SSIM Pred SSIM Input NMSE Pred NMSE

Subject 1 15.5193 23.72 0.4124 0.7212 14.1801 1.9138

Subject 2 18.7561 23.6558 0.6197 0.7768 3.2559 2.252

Subject 3 17.9822 23.6852 0.4813 0.8018 2.8191 2.0827

Subject 4 19.9883 24.0821 0.4322 0.7761 6.0414 2.2284

Subject 5 20.1221 25.6745 0.6184 0.8239 2.0138 1.3238

Subject 6 15.658 23.1169 0.2668 0.6793 3.0397 1.6655
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4.4 Discussion

Objective Ambitions and the Quest for Ground Truth

The primary objective of this research was not only audacious but also revolution-

ary in the context of medical imaging. It sought to achieve a lofty goal: to denoise and

produce medically viable images using a meager 2% of the data that is typically required

to derive a ground truth today. A ground truth in medical imaging is quintessential, as it

forms the basis for clinical diagnoses. This endeavor to reduce the need for such extensive

data underscores not only the importance of optimizing data requirements but also the

advancement in tools and techniques that allow such audacious goals to be even considered.

The Comparative Merits of the Models

The following summarizes the efficacy of various models in enhancing image qual-

ity, as measured by the PSNR and SSIM metrics, without any averaging applied to either

input or output images:

• UNET 2D Model: This model demonstrated an average improvement in the PSNR

by 7.73± 1.24 dB and in the SSIM by 0.37± 0.04.

• UNET 3D Model: An enhancement in the PSNR by 9.78± 1.23 dB was observed

with this model, and the SSIM was bettered by 0.50± 0.06.

• 2D Vision Transformer Model: This model exhibited a PSNR improvement of

6.04± 1.40 dB and SSIM improvement of 0.31± 0.05.
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• 3D Vision Transformer Model: The average increments achieved with this model

were 5.83± 1.54 for the PSNR and 0.29± 0.09 for the SSIM.
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Figure 4.5: Comparison of model performance improvements in terms of SSIM. The bars

represent the average improvement, and the error bars indicate the standard deviation.
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Figure 4.6: Comparison of model performance improvements in terms of PSNR. The bars

represent the average improvement, and the error bars indicate the standard deviation.
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Augmentation Observations

Image augmentation is a double-edged sword. Our experiments revealed that ran-

dom rotations, especially those as drastic as between -90 to 90 degrees, negatively impacted

performance. It’s essential to ensure that augmentations mirror real-world scenarios. In

our case, minor rotations, from -10 to 10 degrees, were found to be beneficial, emphasizing

the need for a judicious choice in augmentation strategies.

Revisiting Evaluation Metrics

Finally, the metrics employed in evaluating denoising models warrant a discussion.

While PSNR or MSE are conventional choices, they might not always be the best represen-

tatives, especially when the human perception of image quality is concerned. SSIM, which

is more aligned with human visual perception, emerges as a critical metric. However, its

exclusive reliance can also be misleading since it focuses on relative pixel intensity changes

and not their absolute values. Thus, a balanced combination of metrics ensures a more

holistic evaluation.
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Chapter 5

Conclusions

Denoising medical images requires consideration of the unique characteristics of

human anatomy. While the UNET 2D model offers a significant improvement in image

quality, it lacks in capturing the 3D intricacies of structures such as the brain. The human

brain, with its intricate gyri and sulci, necessitates a more sophisticated model. The UNET

3D, which is built upon the spatial structure of the brain, naturally outperforms its 2D

counterpart in this regard. In our rigorous evaluations, UNET 3D consistently emerged

as the top performer across the three pivotal metrics, improving the PSNR by 9.78± 1.23

dB, SSIM by 0.50 ± 0.06, and NMSE by 6.46 ± 3.12. While about 1.2 times slower than

UNET 2D, it is also 5 times faster to train than the vision transformer models. This

triumphant performance reinforces the merit of considering the three-dimensional structure

in image denoising, particularly for intricate organs such as the brain. Our success with

the 3D model offers an intriguing insight: increasing the number of slices, or in other

words, increasing the resolution in the z-direction, can significantly enhance denoising. This
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observation emphasizes the importance of depth in medical imaging. Another important

observation was regarding batch normalization which if not applied resulted in divergence

during training.

Recent advances in deep learning have witnessed the rise of the Swin Transformer,

which, as recent studies including the most recent on Transformer based denoising of ASL

images[20] suggest, outperforms conventional CNN models. However, it’s pivotal to note

that its prowess is often demonstrated using a much higher volume of data. One layered

Shifted Window Vision Transformer had 1000 times more trainable parameters than UNET

model. This difference in data requirement can be a potential hindrance in certain appli-

cations, emphasizing the need for models that can deliver optimal performance even with

constrained data. In our specific case with 45 subjects for training, 12 for validation, and 6

for testing, both the 2D and 3D vision transformer models overfit indicated by their training

loss curves where validation loss stops improving within the first 10 epochs while training

loss keeps on decreasing, and also by their results where when we average the predicted

images, it results in loss of structural similarity and increase in the normalized mean square

error.

In conclusion, our journey through this research was filled with challenges, insights,

and revelations. The balance between data, model complexity, and desired outcomes is

delicate and requires constant calibration. The future of medical imaging is poised at the

cusp of significant advancements, and our research is a small step in that direction.
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The Horizon of Clinical Applications

One of the pivotal conclusions from our research is the growing promise of deep

learning in clinical applications. With the availability of high-quality data and with further

advancements in model architectures, the day might not be far when deep learning becomes

a staple in clinical imaging, bridging the gap between technology and healthcare.
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