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ABSTRACT OF THE DISSERTATION 

 

Applications of Regularization to SEM:  

Shrinking Eigenvalues to Improve Stability of Covariance Matrices 

 

 

by 

 

Erin Hilary Arruda 

Doctor of Philosophy in Psychology 

University of California, Los Angeles, 2017 

Professor Peter M. Bentler, Chair 

 

Estimation methods employed in Structural Equation Modeling (SEM) depend on asymptotic 

theory. When assumptions are violated (e.g., sample sizes are not especially large relative to the 

number of variables), methods break down, and conclusions are dubious. It has been suggested 

that ill-conditioned matrices contribute to poor performance (Huang & Bentler, 2015; Yuan & 

Bentler, 2017). In the present investigation, a Maximum a Posteriori (MAP) estimator was 

proposed and implemented for two matrices common to SEM to address conditioning: the 

sample covariance matrix and the asymptotic covariance matrix based on fourth order moments. 

This MAP estimator improves the condition of matrices by pushing down (pulling up) the over 

(under) estimated sample eigenvalues of poorly conditioned matrices, and better-conditioned 

matrices were expected to improve solution propriety as well as global model fit. Three differing 

implementations were proposed for Generalized Least Squares estimation methods (GLS and 

ADF) as well as correction methods to Maximum Likelihood solutions. Potential advantages of 
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the approaches were evaluated using three Monte Carlo simulation studies across a wide range of 

sample sizes and estimation methods. The results reveal overall solution propriety is improved, 

and regularization when applied directly to weight matrices is more effective than indirect 

application (i.e., by modifying an input matrix or using correction methods). Moreover, results 

were dramatically improved for normal theory GLS even at samples sizes as small as N = 60 and 

greatly improved for ADF/RES methods at samples as small as N = 150. Generally, advantages 

did not carry over to non-normal conditions. Potential reasons for this result are given as well as 

prospective solutions. An illustrative example demonstrates the use of regularized GLS with 

real-world data.   
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CHAPTER 1 

INTRODUCTION  

1.1 Current Problems in SEM  

Structural equation modeling (SEM) is utilized extensively in the behavioral sciences and 

across disciplines, including psychology and education. Perhaps this is the case because SEM is 

a flexible multivariate framework with many advantageous benefits ideally suited for the study 

of human behavior such as the ability to incorporate latent constructs and account for 

measurement error. One specialized variant for SEM is covariance structure analysis, reflecting a 

principal objective to compare a sample covariance matrix to a low-parameter model covariance 

matrix and find parameter estimates that minimize some measure of discrepancy between the 

data and the model. 

Global model evaluation is another advantage of SEM. The specification of a model 

translates hypotheses and graphical representations of a model into a series of equations, 

asserting SEM as a confirmatory technique. This is one of the strengths of SEM as the 

parameters of the full model are not only estimated, but the model (and constraints placed on the 

parameters of the model) are evaluated. A sample covariance matrix S is an estimator of the 

population covariance matrix Σ. Based on a user-specified model with parameter estimates, a 

reproduced or “model-implied” covariance matrix is produced. The covariance matrices are 

compared to test a hypothesis with regards to model adequacy. The test of goodness of fit 

essentially tests if a model produces an estimated population covariance matrix is that consistent 

with the observed unrestricted covariance matrix. In other words, does the model “fit” the data? 

Of course, other models may be consistent with the same data. 

 In statistical terms, the null hypothesis for model evaluation is  

H0: Σ = Σ(θ),  
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where Σ is an unstructured population covariance matrix, and if θ is a vector that comprises the 

unknown model parameters, then Σ(θ) represents the model-implied population covariance 

matrix. A fitting function is used to test the null hypothesis and also used in calculations of  

many fit indices that address the overall adequacy of the models (though see Barrett (2007), 

Hayduck et al. (2007), as well as MacCallum, Browne, & Sugawara (1996) for more discussion 

on relative merits of different types of model evaluation).  

A test statistic is computed using the minimized discrepancy function at convergence  

T = (N-1)�̂�min, 

where N is the sample size and �̂�min is the minimal value of the fit function for the parameter 

estimation used and evaluated based on the model degrees of freedom (df)1. The test statistic and 

corresponding df permit tests of the null hypothesis. Given the null hypothesis above, a non-

significant result is desirable. The question of interest is if the fit function is sufficiently small, 

given the sample size involved, and the df associated with the model. The fewer parameters (q), 

the larger the df is but of course this depends on how much “data” or unique sample variances 

and covariances (p*) are available. Additional methods of model evaluation exist such as fit 

indices and these are also typically based on the fit function, however these will not be further 

considered here. 

Although SEM is a flexible technique, there are cases when current methods are not 

ideal. Estimators rely on asymptotic theory. Beyond correct model specification, asymptotic 

theory implies a correct functional form and reasonably large samples. When violations of 

 1 If .5(p) (p+1) = p*, and q is the number of estimated parameters, the degrees of freedom (df) is 

calculated as df = p*-q + ϲ where ϲ is the number of constraints (when no constraints are 

considered, ϲ = 0 and is often dropped from notation). 
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assumptions occur, such as incorrect distributional forms and small samples, the validity of 

results are questionable. Estimators differ in that they are each characterized by their own set of 

assumptions, and the choice of an estimator should be made with theory in mind. However, often 

a method is chosen that best dampens the consequences of violations illustrated by a body of 

literature using finite simulation study. It may also be the case that users ride the default method 

in the computer program without any consideration of asymptotic theory.   

Maximum likelihood (ML) is one of the earliest and most common methods of estimation 

for SEM (Jöreskog, 1969). It is often the case in application that ML estimation based on large 

sample theory is employed, even with high dimensional, non-normal data, with small or medium 

sample sizes (e.g., MacCallum & Austin, 2000; Paxton, Curran, Bollen, Kirby, & Chen, 2001). 

Maximum likelihood also presumes that the joint distribution of variables is multivariate normal 

(MVN). The effects of non-normality on statistical inference include incorrect test statistic and 

inflated Type I error (West, Finch, & Curran, 1995; Chou & Bentler, 1995). Asymptotic 

robustness theory developed in the context of latent variable models originated by Browne 

(1987) and Anderson & Amemiya, (1988) should not necessarily be applied to every situation. 

Sometimes conditions are not able to be verified based on sample data (Bentler & Dudgeon, 

1996), and simulation results reflecting robustness are dependent upon and limited by the testing 

conditions. For example, the degree of robustness may depend on the type and degree of 

nonnormality as well as independence (Satorra & Bentler, 1990; Savalei, 2008). Although 

assumed, in practice, multivariate normality of observed variables is rarely satisfied (Micceri, 

1989). Therefore, an alternative method of estimation should be considered instead for these 

cases. 
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One such method is asymptotic-distribution free (ADF) estimation (Browne, 1982; 1984; 

Chamberlain, 1982). ADF is an extension of generalized least squares (GLS; Browne, 1974), 

therefore is sometimes referred to as arbitrary distribution GLS (AGLS), or simply weighted 

least squares (WLS). Due to the fact ADF requires fewer assumptions (requiring only eighth-

order moments are finite; Browne, 1984) it should be highly useful in order to avoid making 

strong assumptions necessary for ML estimation.  

Although such a method should be practically useful across many real life data situations, 

the method requires a large sample size to perform in a trustworthy manner, and breaks down 

when the number of variables is large. Research reveals the sample size necessary to achieve 

reasonable approximation for the distribution of the test statistic can be as large as 2500 cases, 

and in some conditions as large as 5000 (Curran, West, & Finch, 1996; Hu, Bentler, & Kano, 

1992; Muthén & Kaplan, 1985; Huang &  Bentler, 2015). These Monte Carlo simulation studies 

suggest at the smallest sample sizes, the ADF test statistic is inflated and ADF virtually always 

rejects the true model.  

Due to the fact ADF estimation requires the inversion of a large dimension matrix, 

moderate to large number of variables become computationally problematic, therefore worsens 

as p increases (Muthén & Kaplan, 1985). Convergence and improper solutions are also 

encountered when employing the classic ADF estimator. For example, in simulation research, 

Curran, Finch & West (1996) dropped 17% of data due to out of bound parameter estimates and 

non-convergence across conditions when employing ADF estimation. Small sample size 

compounds the non-normality problem (Bentler & Yuan, 1999; Hu et al., 1992; Hoogland & 

Boomsma, 1998). Because differential results are obtained by ADF and GLS under normality 

when asymptotically results should converge, it is proposed that higher order elements of the 
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weight matrix are unstable because of large sampling variability given they are estimated given a 

small amount of information (see Hu et. al., 1992). 

Recently, it was suggested that the extremity of eigenvalues of the sample covariance 

matrix in ML estimation (Yuan & Bentler, 2016) and the weight matrix in ADF estimation 

(Huang & Bentler, 2015) are related to issues of poor performance described above. It is known 

that in general larger sample eigenvalues are over estimated, smaller eigenvalues are 

underestimated, and this distortion is related to sample size as well as the dimension of the 

estimated matrix. When the matrix dimension p is larger than the number of observations the 

sample covariance matrix S is not invertible. When the ratio p/N is less than one, but by a 

negligible amount, the sample covariance matrix is invertible but numerically ill-conditioned. 

Inverting such an ill-conditioned matrix amplifies estimation error dramatically (Ledoit & Wolf, 

2004) and this in turn leads to unstable estimates. If distortion actually reflects an ill-conditioned 

matrix, it calls importance toward the development of a well-conditioned estimator particularly 

in the case of large-dimensional (large p, small N) matrices that can be typical for SEM 

estimation, especially with regards to weight matrices.  

This call for attention to the condition number (κ) of these matrices is further bolstered by 

recent research by Yuan and Bentler (2017). They found the condition number of an input 

covariance matrix (S) to be larger than the population condition number, though these decreased 

monotonically with sample size. Interestingly, condition numbers also increased with violations 

of non-normality. Huang and Bentler (2015) studied ADF estimation and found substantially 

large condition numbers of the weight matrix, even under conditions of multivariate normality at 

sample sizes used in application, (κ ≈ 25,000 & 2000 for sample sizes N = 150 & N = 250, 

respectively). Condition numbers at these sample sizes worsened greatly under non-normality 
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and dependence, and in several cases exceeded a condition number “rule of thumb” of 1000 for 

an ill-conditioned matrix 100 times over. In addition, Huang and Bentler (2015) found the 

variability of the condition number across replications was also quite large, and worsened under 

violations of normality and independence.  

1.2 Proposed Methodology  

Although these contemporary and valuable research findings reveal important relationships 

between violation of assumptions, condition numbers, and poor performance of estimation 

methods, very little methodological research addresses tackling ill conditioned matrix problem. 

Employing regularization techniques is a new avenue of research that could be quite promising. 

Of course, application of such techniques should be evaluated empirically. 

 A more thorough literature review on regularization will be provided in Chapter 2. However 

it is well known that statistical procedures can benefit from shrinkage estimation of symmetric 

matrices like the covariance matrix based on the general shrinkage principle dating back to Stein 

(1956). If eigenvalues are distorted, the matrix is ill-conditioned. If the ratio of the maximum to 

minimum eigenvalue, (termed the condition number) of the matrix is too large it reflects a poorly 

conditioned covariance matrix. It therefore seems valuable to improve these covariance matrices 

and to stabilize an estimate of the covariance matrix (and importantly it’s inverse) especially 

since these matrices are foundational to structural equation modeling. I propose to use a 

regularization method that will directly address the eigenvalue distortion and adjust the sample 

eigenvalues using a nonlinear transformation. The specific regularization approach I will use in 

this dissertation is referred to as Covariance Estimation Regularization by Nuclear Norm 

penalties (CERNN; Chi & Lange, 2014), a Maximum a Posteriori estimator (MAP).  I will refer 

to this method outlined in Chapter 2 as MAP throughout this dissertation. 
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The purpose of these studies was to develop and investigate applications of the MAP 

estimator to SEM, and evaluate them relative to one another and to traditional methods under a 

variety of conditions, including varying both sample size and normality. Details will be provided 

later but in general terms MAP estimators supplanted matrices in the following ways:  (1) In 

place of the sample covariance matrix (S) that is used in calculations of the weight matrix in 

GLS estimation (2) In place of a sample covariance matrix (S) as the input data matrix for the 

ADF estimator (3) In place of a matrix of fourth order sample moments (�̂�) for two distribution 

free methods and two correction methods. Moreover, these methods were compared to their 

traditional counterparts, as well as maximum likelihood (ML), one of the most commonly 

applied methods.  

1.3 Significance of Research 

The importance of this study is threefold.  First, even though breakdown of methods have 

been known for some time, there has not been an adequate explanation for why this is the case. 

This study seeks to shed light on potential reasons. Second, the present study is the first to 

examine this particular type of regularization of matrices important to SEM and estimators used 

in SEM. While this research builds on and extends contemporary studies regularization in 

general has moved very little beyond ML (i.e., Yuan & Chan, 2008, Yuan & Bentler, 2016, 

Jacobucci et al. 2016). Additionally, existing approaches are ridge-type approaches, which are a 

small subset of possible regularization methods. Research reveals condition numbers of weight 

matrices are quite large but they only have been examined under some, but not all, conditions 

studied here. The wide ranging sample sizes and methods in this study are chosen to further 

demonstrate the extension of earlier work. Third, beyond theoretical implications, regularization 

techniques can be implemented to address practical issues such as model convergence and 
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problems that occur when the number of variables is quite large relative to small sample size, 

allowing for more trustworthy results. 

1.4 Research Questions 

The present studies were designed to address the following research questions:   

1. Are condition numbers of commonly employed matrices inflated? If so, under what 

conditions and to what extent?  

2. Do MAP estimators improve condition numbers? If so, under what conditions and to 

what extent? 

3. Is solution propriety improved when MAP estimators are employed? If so, are there 

certain types of problems that are improved, and by how much? 

4. Is model fit improved when MAP estimators are employed? In what specific ways 

and to what extent? 

Regarding question one, previous research outlined earlier reveals condition numbers are 

inflated. Therefore, condition numbers for samples are expected to be larger than population 

values and worsen when p increases relative to N and as nonnormality increases. Magnitudes of 

bias of matrices common to SEM have only been studied under a small number of conditions and 

are generally unknown, which is one of the objectives of this study.  

Additionally, solution propriety including non-convergence, negative variances and 

problem solutions are expected to improve when MAP estimators are employed. When S is not 

full rank or near singular the iteration process for obtaining the parameter estimates can be 

unstable and may require hundreds of iterations to reach convergence (e.g., Boomsma, 1985). 

Poor conditioning not only is related to inaccuracy in the computation of the inverse of a matrix 

but also, if the computations include iterations, could cause an algorithm to fail. Additionally, 
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related research with ridge methods reflects convergence is improved (Yuan & Bentler, 2017, 

Yuan & Chan, 2008) therefore it seems likely the same improvements will result with this type 

of regularization.  

Moreover, model fit is expected to improve in regards to test statistics and rejection rates. 

Given that this is the first exploration of a MAP approach to SEM, it is unknown which under 

what conditions this approach will garner the largest improvements. Under large sample 

conditions and no misspecification, methods are expected to perform similarly and optimally.  

ML will be inflated with too many rejection rates with small sample sizes, while GLS test 

statistics will be underestimated with too few rejection rates. Additionally under normality ADF 

is expected to perform poorly until Ns reach at least 2000. Correction methods generally work 

well under normality except at the smallest of Ns, however may worsen under nonnormality. If 

MAP estimators improve matrices it seems this would translate to better, more optimal results 

given model and the estimator is not misspecified, at small sample sizes and under nonnormality.   

The remainder of this dissertation is organized as follows:  

Chapter 2. Regularization is discussed along with applications to SEM and covariance 

matrices.   

      Chapters 3-5. Simulation studies and results are provided.   

      Chapter 6. Discussion of simulation findings. 

      Chapter 7. An illustrative example is provided.  
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CHAPTER 2 

REGULARIZATION 

2.1 Regularization in Social & Behavioral Sciences 

 Regularization is a broad term referring to a class of methods, though is often referred to 

as a single technique applied in a specific context. A layperson may define regularization as “the 

condition of having been made regular” or “to cause to conform”.  Similarly, the term 

regularization is often used in mathematical context to refer to the addition of information to 

solve an ill-posed problem. These definitions relate to Bickel and Li’s (2006) informal definition 

that reflects modification of a method in order to give reasonable answers in unstable situations.  

An early use of the term regularization was by Tikhonov (1943) in the context of using a 

Tikhonov factor gamma > 0 as a regularization parameter, related to ridge regression discussed 

later.  

Regularization methods are applied with regularity in areas such as machine learning and 

statistics. Most applications address problems of multicollinearity, overfitting, or sparsity- which 

refers to the abundance of zeros in a matrix. Others regularization methods concern parsimony 

principles (e.g. smoothing, model selection, or methods to control model complexity). Relatedly, 

regularization can also be applied for the purpose of inverting a matrix or speeding up slow 

computations. These types of complications are quite typical with high-dimensional data. High-

dimensional data refers to data sets with large number of variables, p given a relatively small 

sample, N though some reserve this term for the condition for which p exceeds N exclusively 

(see for example, Pourahmadi, 2013, p. 3).  

Applications of regularization that are well-known in the social and behavioral sciences 

are typically those that are related to regression. Such types of regularization methods 
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occasionally used in psychological literature are ridge regression (Hoerl & Kennard, 1970, 

Tikhonov, 1943), and to a lesser but more recent extent, the use of Least Absolute Shrinkage and 

Selection Operator (LASSO; Tibshirani, 1996) and Elastic Net Regularization (Zou & Hastie, 

2005). These methods are used to solve the problems of prediction accuracy and dimensionality, 

respectively. In a basic sense, the coefficients are regularized. The approach is to penalize the 

sum of squared residuals that are minimized by use of a penalty term that involves the 

coefficients. This is equivalent to an inflation of variance by adding small positive quantities to 

the diagonal entries of the covariance matrix (hence the name “ridge”). The method aims to 

reduce the problem of multicollinearity for ridge regression and induces sparsity by controlling 

the length of regression parameters for LASSO. Penalty terms are discussed further in the next 

section, however resultant effects for ridge and LASSO procedures differ because the penalty 

differs. The LASSO approach drives coefficients to zero using the squared sum of absolute value 

of coefficients as a penalty, while ridge regression utilizes the sum of squared regression 

coefficients.     

Additionally, Akaike Information Criterion (AIC; formerly An Information Criterion; 

Akaike, 1971) and Bayesian Information Criterion (BIC; Schwartz Criterion; Schwartz, 1978) 

are flavors of regularization referred to as penalized likelihood methods. They use the likelihood 

function to discourage overfitting from machine learning literature also fall under the term 

regularization. Both use a penalty term based on the number of parameters in the model (larger 

for BIC than AIC). These information criteria are often used for model selection in the 

psychological literature, particularly for model comparison when models are non-nested.  

Contemporary research reveals regularized methods applied to regression are starting to 

cross over to covariance modeling. Specific to SEM methodology, some regularization 
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techniques have been recently applied and studied (Jacobucci, Grimm, & McArdle, 2016; Yuan 

& Bentler, 2016; Yuan & Chan, 2008, 2016; Yuan, Wu, & Bentler, 2011). Ridge regression and 

LASSO techniques for example have been adopted to SEM (Jacobucci, Grimm, & McArdle, 

2016; Jung, 2013). Jacobucci et al. suggests penalizing specific parameters in order to penalize 

model complexity and increase generalizability of models, naming this application regularized 

structural equation modeling or regSEM. Regularized SEM is an extension of regularization in 

the regression framework but also borrows from the principal components and exploratory factor 

analysis (PCA; EFA) literature. Further approaches of regularization to PCA and EFA 

frameworks are not detailed here and interested readers are referred to Jacobucci et al. or Liang 

(2016) for such a review. 

Furthermore, Jung (2013) introduced a regularized extension of two-stage least squares 

(2SLS) estimation, particularly for small sample cases. This method incorporates a ridge type of 

estimation of parameters in order to address problems inherent to 2SLS. Aims of this approach 

are to find stable and accurate solutions of parameter estimates with (extremely) small samples 

(Ns ranging from 5-50). An interesting feature of both approaches by Jung and Jacobucci et al. is 

the use of cross validation in order to find the ridge parameter. On the other hand, 2SLS is not a 

full information estimation procedure. Global fit is not able to be assessed with 2SLS which is 

also a main focus of this paper. In fact, several ridge parameters need to be identified given the 

way 2SLS treats the model as subsets of model equations rather than globally.  

Yuan and Chan (2008) proposed and tested a solution to non-convergence and poor 

inference when covariance matrices are singular or ill-conditioned. Their estimator for the 

covariance matrix (Sa) is a linear combination of S and aI, where a = p/N was suggested. 

Basically, this method is a ridge method that introduces bias in order to reduce mean square error 
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for parameter estimates and aims to reduce discrepancy between Sa and the estimated structural 

covariance matrix over S. Yuan and Chan employ the widely-used Maximum Likelihood (ML) 

procedure and supplant the sample covariance matrix with the augmented matrix Sa which allows 

for convergence for sample sizes as small as the number of observed variables (in this case, N = 

15, p = 15, df = 87). In comparison to ML, this method enjoys more accurate parameter estimates 

and improved convergence rates, however the distribution of the resulting test statistic is 

unknown, making inferential decisions complex for practical purposes. For inferential tests of 

overall model fit, critical values were found by simulation, and two approximations or corrected 

test statistics paralleling Satorra and Bentler’s rescaled and adjusted test statistics are offered, 

though not studied extensively in this paper. Additionally, resulting error variances are biased by 

a and need adjustment, although this simply amounts to subtracting the tuning parameter from 

the estimates.  

Yuan and Chan’s approach was extended to correlation matrices common to SEM, such 

as when data are ordinal (Yuan, Wu, & Bentler, 2011). This is an intuitive extension given 

convergence problems are typical during the popular two stage process of estimating the 

polychoric/polyserial correlation matrix then performing robust ML, particularly at small sample 

sizes. Results suggest improvements in convergence for sample sizes under N = 300, with 

solutions converging at a quicker pace and increasing the overall rate of convergence. Overall, 

findings suggest the ridge procedure (with proper a) also leads to less biased and more efficient 

accurate parameter estimates than ML. The ease of implementation is one advantage of this 

procedure given the correlation matrix is simply supplanted with the augmented matrix. Practical 

issues of this approach include calculating scaled and adjusted test statistics parallel to those put 

forth by Yuan & Chan (2008) post-hoc based on the resulting statistics from ML estimation, and 
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the problem of finding the optimal positive scalar, a. The parameter is not based on 

characteristics of the observed data, which is typically desirable.  

With this goal, another method for obtaining the shrinkage parameter (a in Yuan & 

Chan’s 2008 application) was explored by Kamada (2011) using an information criterion (IC) 

approach based on the data rather than the constant p/N. This approach is closer to finding the 

penalty based on the out of sample prediction error by cross validation. ICs are used rather than 

cross validation to lessen the computational burden and perhaps avoid sparse data problems. 

Although some difference in solution quality is found at the smallest sample size (N = 30), at 

more typical sample size (Ns of 50 &100) little difference is found. In fact, the average risk 

function across the 1000 replications were the same as Yuan and Chan’s method to the third 

decimal place. A wider range of conditions should be explored and compared to cross validation 

methods, to further understand benefits of this method.  

Yuan and Chan (2016) extended earlier work to another application of a regularization 

method.  Specifically, Yuan and Chan propose to calculate a linear combination of the identity 

matrix and the sample fourth order moment matrix 𝚪Î, a symmetric matrix that can be described 

as covariance matrix of variance and covariances further described in Chapter 4. This linear 

combination amounts to 

𝚪Î = (1 − 𝑎)�̂� + 𝑎𝐈. 

Both matrices are weighted by a tuning parameter (a) in order to harness the stability of I.  

The objective is to improve stability of the matrix �̂� that is used in calculation of the weight 

matrix. Additionally, Yuan and Chan propose correcting the resulting test statistic as an 

approximation to the correct distribution. The optimal values of the tuning parameter were 

selected empirically by simulation across a grid of candidate tuning parameters ranging from 
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zero to one. Yuan and Chan also introduced a ridge method based on Diagonally Weighted Least 

Squares though the method did not outperform RGLSI and in general produced less accurate 

solutions in terms of parameter estimates.  

Most recently, Yuan and Bentler (2017) also applied a ridge approach, as well as an anti-

ridge approach, to examine and explain a counter-intuitive finding that both increasing the ridge 

of a matrix and increasing factor loadings can lead to improved convergence rates and speed for 

the Fisher-scoring algorithm. Anti-ridge refers to modification of other elements in the sample 

covariance matrix with the focus on strengthening factor loadings and is especially applicable to 

problems where multiple indicators can be auditioned, such as with Monte Carlo simulation. 

Simulation results reflect ridge and anti-ridge methods are effective in addressing non-

convergence, though anti-ridge might be less practical for some implementation. Importantly, 

condition numbers of information matrices were reported under a variety of conditions, 

reflecting huge numbers even under normality and worsening under nonnormal and dependent 

conditions. 

 Statistical details of these and some alternative methods of regularization specific to 

improvement of covariance matrices are treated next.  

2.2 Regularized Covariance Matrix: History & Methods 

Regularization techniques are applied to estimation of the covariance matrix with the goal 

of obtaining an accurate estimate of the population covariance matrix and its inverse, the so-

called the precision matrix, particularly under non-ideal conditions. 

2.2.1 Sample Covariance Matrix  

The sample covariance matrix is sometimes referred to as the sample variance-covariance 
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matrix, the dispersion matrix or the scatter matrix. It is known that the sample covariance is an 

unbiased estimator of population covariance (𝜎𝑥𝑦)  

                                   𝑠𝑥𝑦 = 
1

𝑁−1
∑ (𝑥𝑖
𝑁
𝑖=1 − �̅�)(𝑦𝑖 − �̅� )′,                                   (2.1)                  

 

where  𝑥𝑖 and 𝑦𝑖 are the ith observations of random variables, and 

�̅� =
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

 

is the sample mean.  In the special case where x = y, the sample covariance reduces to the sample 

variance, 𝑠𝑥
2.  Moreover, in the multivariate case the matrix form of the estimator of the sample 

covariance matrix of variance and covariance of multiple variables is expressed as 

                                                         𝐒 =  𝐘′𝐘
1

𝑁−1
 ,                                      (2.2) 

where the columns of Y are centered such that Y̅𝑝 = 0) is an estimator of the population 

covariance matrix, Σ. The correction N -1 in  Eq. 2.1 and 2.2 is replaced with N if the distribution 

of the random variables is normally distributed (Gaussian) such that the estimator is now the 

maximum likelihood estimator of the covariance matrix. The differences between S calculated 

with and without the bias correction diminishes as N approaches infinity. It is also well known 

that this estimator performs poorly under high dimension conditions and can be unstable (Stein, 

1956).  

2.2.2 Problems with High Dimensional Data 

The estimators 2.1 and 2.2 above have a number of advantages including the fact the 

covariance matrix is simple to construct and unbiased such that E(S) = Σ. The calculations are 

also intuitive since they are the sample analog of the population covariance matrix. However, 

there are problems, particularly when p > N.  In high-dimensional cases such that p > N, the 
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matrix is singular and is non-invertible, even if the population covariance matrix is well 

conditioned and invertible. The rank of the matrix is no longer p but at most N and the inverse no 

longer exists which impedes estimation methods for which the inverse of the covariance matrix 

is necessary.  

Other problems occur when N is not much larger than p, or in cases of very large p which 

is sometimes referred to semi-high-dimensionality to qualitatively differentiate this case from the 

former one where p > N. Ultra-high dimensional data is a term that is sometimes reserved for the 

case when p is much greater than N, (p >> N). It is important to recognize high-dimensional does 

not necessarily mean “big data”, but instead reflects the relative size of p and N. In general, 

increasing N has the effect of improving precision and certainty of inference, whereas increasing 

p has the opposite impact as this could reduce precision and certainty (Pourahmadi, 2013, p. 4). 

In other words, covariance estimation improves with increasing N but could deteriorate when p 

increases. Donoho (2000) refers to this and other tradeoffs with high-dimensionality as a curse 

and a blessing. If sample size is small and the number of variables is large, the above empirical 

estimators for a covariance matrix are unstable. Even when N is comparable or larger than p, the 

sample covariance matrix can have a significant amount of sampling error (for example see Yuan 

& Bentler, 2017). Other estimators can improve upon the mean squared error (MSE). In addition, 

S may not be well conditioned and its inverse is a poor estimator for Σ-1.  Inversion of an ill-

conditioned matrix can induce large noise and can be computationally expensive, especially 

given large p. Penalized maximum likelihood methods and Stein-type shrinkage are some 

approaches can improve on the estimators above.  

Stein (1956) noted that the sample covariance matrix performs poorly with large p, 

particularly when p/N is large attributed this to distortion in estimation of eigenvalues. The range 
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of the sample eigenvalues increases as p/N grows. A simple simulation following Pourahmadi 

(2013, p. 27) and Chi and Lange (2014) demonstrates this by drawing independent samples from 

a 10-dimensional multivariate normal distribution,  𝑦𝑖~ 𝑁(0, 𝐼10).  Figure 1 presents results of 

this example.  

 

Figure 2.1. Boxplots of sorted eigenvalues of the sample covariance matrix. 

The sorted sample eigenvalues of the sample covariance matrix are ordered from largest 

to smallest for sample sizes N drawn from the set {5, 10, 50, 500} over 100 trials.  The boxplots 

depict the highest eigenvalues inflated upwards above the population expected value, (the 
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reference line y = 1), while the lowest eigenvalues are deflated downwards, below the population 

expected value. In general, if the sample size N and the number of components p approach ∞ in 

such a way that the ratio p/N approaches ζ ∈ (0, 1), then the eigenvalues of S tend to the  

Marčenko-Pastur law (Marčenko & Pastur, 1967), such that as p/N increases, the over- and under 

estimation of eigenvalues worsens in the interval 

 [(1 − √ ζ )2 , (1 + √ζ )2 ]  

The condition of the covariance matrix (signified as κ) can be described by the ratio of 

the maximum eigenvalue to the minimum eigenvalue, where larger condition numbers reflect 

poor or ill-conditioned matrices. More formally, condition numbers can be expressed as the 

product of norms such that the condition number of matrix A amounts to 

κ (A) = ‖𝐀 ‖ ‖𝐀−𝟏‖, 

where double bar notation  ‖ ∙ ‖  reflects any norm defined for matrices. A norm can generally be 

described as a simple unique scalar number that is always positive and defined for all matrices. It 

is basically a function such that input information, (say x) is manipulated based on the type of 

norm such that output is a (nonnegative) number that satisfies certain conditions, where ‖ 𝑥 ‖  

describes the function. Often norms grouped together as family of norms and denoted with a 

symbol or letter subscript outside the double bar (e.g. ‖ ∙ ‖𝑙2 is the popular l2-norm also 

sometimes referred to as the Euclidean norm). When the l2-norm is used for calculating κ(A), the 

result will be equivalent to the maximum to minimum eigenvalue ratio.  

Norms are often utilized in terms of calculations for penalties. For example, in the case of 

ridge regression the l2-norm is used in the calculation and in the case of LASSO the l1-norm 

norm is employed. The relationship of different types of lp norms (where p indicates a subscript 

designating which norm is employed is more succinctly described by the following equation  
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‖ 𝑥 ‖𝑝 = √∑ |𝑥𝑖|𝑝
𝑖

𝑝

 

which amounts to a p-th root of a summation of absolute value of elements to the p-th power. A 

simple example of a particular well-known norm that uses single bar notation for scalars is the 

absolute value.  

Condition numbers importantly quantify the trustworthiness of solutions. A well-

conditioned matrix has a small condition number (e.g. κ = 1/1 = 1 for the identity matrix), while 

ill-conditioned matrices will have a large condition number. Heuristics that might advise 

benchmarks for condition numbers are simply guidelines. There are no trustworthy benchmarks 

except a condition number of ∞ indicates a matrix is not invertible, and a condition number equal 

to or close to one is far from singularity. However, based on sample data the over- and under-

estimation of eigenvalues reflects a condition number that is greater than population counterpart, 

therefore the condition number is biased upward as the simulated example reveals.  

2.2.3 Shrinkage Estimators for Covariance Matrices   

Improved estimators (�̂�) can be used instead of S based using shrinkage estimators. The 

shrinkage estimator seeks the optimal tradeoff between bias and estimating variability. Though 

not directly obvious, methods discussed above such as ridge regression indirectly addresses 

improving matrix estimation by  

�̂� = 𝐒 + 𝑎𝐈𝑝 

where a is the tuning parameter and Ip is the p-dimensional identity matrix.  

 Techniques under this framework are often referred to as Steinian shrinkage estimators. 

In fact, though the more general shrinkage principle is credited to Stein due to his classic highly 

cited symposium paper in 1956 that focuses on means, much of the work was not formally 
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published until Efron and Morris (1977) published a paper on the James-Stein (1961) shrinkage 

estimator. Their paper illuminated Stein’s paradox—that shrunken estimators of means can 

perform better than a typical average, with applications surrounding familiar contexts like 

baseball. Many approaches specific to covariance shrinkage estimation stem a lecture about such 

estimators by Stein (1975). 

More recently, regularization has been further advanced by work under portfolio 

optimization by Ledoit and Wolf (2003, 2004). Optimization refers maximizing return and 

minimize risk for investments. Central to optimization is the estimation and inversion of a 

covariance matrix based on vast amounts of information, with high multicollinearity. The goal is 

to make good out of sample predictions, therefore this ill-posed problem makes regularization an 

advantageous tool.  

Seminal papers by Ledoit and Wolf (2003, 2004) applied Steinian-type methods. Closed 

form estimators were derived in order to find optimal values to weight eigenvalues from the 

sample covariance matrix and a pre-specified positive definite matrix such as the identity matrix 

is often utilized. This linear combination 

�̂� = (1 − 𝑎)𝐒 + 𝑎𝐈𝑝 

was not always ideal, especially since this adjustment of sample eigenvalues may not 

accommodate eigenvalues that are highly dispersed very well.  

There are other covariance matrix estimators either inspired by or related to these 

shrinkage approaches. Different types of shrinkage may consider treating the eigenvalues, the 

eigenvectors or both. What eigenvalues to shrink and by which method are the subject of a wide 

literature. One approach involves shrinking the eigenvalues of S toward a central value in a non-

linear fashion. This approach by Won, Lim, Kim, and Rajaratnam (2013) acknowledges the 
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condition number in their shrinkage technique, such that they limit the maximum threshold of 

eigenvalues so that the maximum condition number is not exceeded. The method is ideal in that 

it subjects a covariance matrix to a better conditioned state overall and non-linearly shrinks the 

maximum and minimum eigenvalues but may be competitive only in cases when one eigenvalue 

is much larger than others (Chi & Lange, 2014). 

Another approach developed by Chi and Lange (2014) uses nonlinear shrinkage that 

impacts all eigenvalues. Their estimator is a maximum a posteriori (MAP) estimator; they also 

refer to it as covariance estimation regularization by nuclear norm penalties (CERNN). An 

important property is that their MAP estimator is consistent and asymptotically efficient.  

2.3 MAP Covariance Matrix Estimator 

The general idea is to extract all eigenvalues from a poorly conditioned covariance matrix 

and adjust them, pushing the highest eigenvalues down and pulling the lowest eigenvalues up. If 

the spectral decomposition of a symmetric matrix S is  

𝐒 = 𝐐𝐃𝐐′,               

where Q is an orthogonal matrix containing the eigenvectors of S and D is a diagonal matrix that 

contains the eigenvalues of S, diag(d1, …  dp), then Stein (1956) suggests an alternative 

unstructured covariance matrix estimator in the form 

�̂� = 𝐐𝑑𝑖𝑎𝑔(𝑒1, … , 𝑒𝑝)𝐐′,                

where ei is a shrunken estimate of di. This method retains the same eigenvectors. The shrunken 

estimates are obtained by adding a penalty function to a standard function in order to steer the 

estimated eigenvalues toward the geometric mean of sample eigenvalues. In MAP, this is done 

by minimization the objective function  

              𝑓(𝚺) =
𝑁

2
ln|𝚺| +

𝑁

2
𝑡𝑟(𝐒𝚺−1) +

𝜆

2
[𝛼‖𝚺‖∗  + (1 −  𝛼) ‖𝚺−1‖∗].           (2.3) 
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The first two terms of Eq. 2.3 are the typical negative log likelihood function under normality. 

The penalty is the term in brackets and is an  -weighted linear combination of nuclear norms, 

here, simply trace norms of singular values. For symmetric covariance matrices, a singular value 

of a matrix is the absolute value of an eigenvalue. Naturally, their sums should be as small as 

possible given the goal to steer eigenvalues away from infinity and zero. Lambda (λ) is a 

strength or penalty parameter. As λ approaches zero, the solution approaches the maximum 

likelihood solution, and eigenvalues will equal sample eigenvalues. As λ increases, the more 

aggressively the eigenvalues are shrunk toward the geometric mean. Appropriately, as N 

approaches infinity data overwhelm the penalty.  

As is typical for regularization schemes, Chi and Lange (2014) estimate the 

regularization penalty λ by employing k-fold cross-validation where often k = 10 (Hastie, 

Tibshirani, & Friedman, 2009, p. 243). Several penalty values are auditioned and an optimal λ is 

selected. Excluding a different fixed proportion of data of the data k times, the covariance matrix 

is estimated given λ based on the remainder of the data (the training sample). Next, the estimated 

covariance matrix is evaluated based on the predictive negative log-likelihood of the estimated 

covariance matrix that was held out (the validation sample). This is done k times for each value 

of λ that is auditioned, and an average log-likelihood is calculated. The penalty with the smallest 

average predictive log likelihood is selected. 

Alpha (α) is a parameter that controls mixture between the trace and inverse trace 

penalties. This could be an a priori value such as ˆ .5  , but Chi and Lange (2014, Eq. 5) 

propose to compute it as 

 
2 1ˆ (1 )r d   ,                     (2.4)  



 
 

24 
 

where d  is the mean of the di, the eigenvalues of S . Since ˆ
r  may be susceptible to extreme 

sample eigenvalues, other suggestions may be useful such as  

2 1ˆ (1 )R d   ,                                         (2.5) 

where d is the median of the di. 

Once   and   are chosen, the eigenvalues are shrunk according to an essentially 

quadratic equation  

 2

i i4 [ (1 )] / 2e N N Nd         ,     

rejecting the negative root as this is inconsistent with the covariance matrix as positive definite. 

Other techniques that fall under the umbrella of regularization should be acknowledged 

but are not explored further here because in general they do not guarantee positive definiteness 

of the estimated covariance matrix. These include types of regularization that deal directly with 

entries of the sample covariance matrix. These techniques might include banding and tapering, or 

thresholding (see Bickel and Levina, 2008, Pourahmadi, 2013, or Tong, Wang, &Wang, 2014 for 

reviews of these types of techniques). 

Banding or tapering techniques exploit the natural ordering of variables or a specific 

distance between variables such that estimators can take advantage of the principle that the 

variables further away from other variables are weakly related relative to those closer in time or 

proximity (e.g. covariance matrix for longitudinal data). These approaches might discard 

(banding) or gradually shrink (tapering) off-diagonal elements toward zero in order to create 

sparsity. Additionally, they might also take advantage of the structure exchanging the more 

typical sample covariance matrix for the banded structured matrix. Thresholding (soft and hard; 

see pioneering work by Bickel and Levina, 2008, Donoho and Johnston, 1994, & El Karoui, 
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2008) is used to improve consistency of the sample covariance matrix, especially in high 

dimensions. Thresholding applies to every element of the covariance matrix. With this 

regularization technique, estimation of each entry in the matrix is subject to constraint.   

These descriptions of regularization techniques for estimation of covariance matrices are 

not exhaustive. In fact, many methods are hybrids of multiple types of techniques further 

blurring any distinctions between categorizes of regularization methods. In sum, the purpose of 

reviewing the literature is to give the reader a sense of the wide range of regularization methods, 

and also research that has been conducted specifically in regards to applications to SEM. This 

dissertation builds on this most recent surge in interest in regularization methods. However, 

although clearly applications of regularization to SEM is a burgeoning line of research, there is a 

paucity of literature compared to the large body of literature that already exists in other 

disciplines that utilize a large variety of regularization techniques under a wide variety of 

conditions. Most of the research on SEM applications focuses on maximum likelihood 

estimation and ridge-type regularization. Far fewer studies have explored applications of other 

regularization methods. The following chapters present three simulation studies that employ a 

different regularization approach of non-linear shrinkage to eigenvalues via the MAP estimator 

to various covariance matrices important to SEM under a wide variety of conditions, including 

wide consideration of sample sizes and estimation methods.  
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CHAPTER 3 

SIMULATION STUDY 1 

The next three chapters concern three simulation studies in order to evaluate different 

proposed applications of the MAP estimator, supplanting matrices common to SEM. The first 

simulation study investigated regularization in the context of GLS for the sample covariance 

matrix whose inverse is a fixed weight matrix for this normal theory method. The second 

simulation addressed the application of regularization to the sample covariance matrix in order to 

indirectly improve the weight matrix for ADF estimation. The third approach targeted the weight 

matrix in a more direct fashion, applying regularization directly to the asymptotic covariance 

matrix of sample fourth order moments (�̂�). This shrinkage estimator was employed for a variety 

of methods for which �̂� (or the inverse of �̂�) is used.  

3.1 A Normal Theory Regularized GLS Method 

This simulation was carried out to illustrate the performance of GLS using the MAP 

estimator relative to traditional GLS and ML methods for small sample sizes that meet 

multivariate normality. First, I describe and compare the condition of the covariance matrices of 

the S and the MAP estimator, with the aim to demonstrate MAP improvement over S. Secondly, 

given the improved condition of the MAP estimator for the fixed weight matrix in GLS, the 

number of iterations, negative variances, and convergence were evaluated to demonstrate 

expected improvement in the estimation process, especially at small sample sizes. Lastly I aim to 

demonstrate improvement for overall model evaluation in terms of the test statistics and 

empirical rejection rates particularly at small sample sizes, therefore test statistics, standard 

deviations of test statistics, and rejection rates were compared across methods. 
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3.2 Details of Method and Simulation  

Regularization is applied in the manner described in Section 2.3 to V in the following 

GLS fit function (Browne, 1974)  

                                           . 5 tr [{(𝐒 − 𝚺(𝛉))𝐕−1}
2
],                                           (3.1) 

where V is a weight matrix. With GLSF̂  the minimum of Eq. 3.1 evaluated at GLSθ̂ , Browne 

showed that GLS GLS
ˆT nF  is an asymptotic 

2 variate with ( 1) / 2df p p q    when -1
V  is a 

consistent estimator of 
 

 , that is, V estimates Ʃ. In standard GLS, V = S, but here V is 

replaced by ˆ
RΣ  resulting in a method called here, regularized GLS (RGLS) with test statistic, 

RT . For comparison purposes, we also study V = ˆ
rΣ labeling the method rGLS with test statistic 

rT  (see Eqs. 2.4 & 2.5 regarding differences of the two MAP estimators, ˆ
RΣ  and ˆ

rΣ ).  

Details of the Monte Carlo simulation study carried out to illustrate the performance of 

test statistics associated with GLS and ML methods relative to RGLS and rGLS for small sample 

sizes under the assumption of multivariate normality are presented next.  

A confirmatory factor model (x = Λξ + ε, where x is a vector of observed variables, Λ is 

a factor loading matrix, ξ is a vector of normally distributed common latent factors, and ε is a 

vector of unique unobserved factors) was employed consisting of three common latent factors, 

each with five manifest variable indicators, and 15 unique errors independent from factors and 

one another. The population covariance matrix is given by 

Σ = Σ(θ) = ΛΦ𝚲′ +Ψ, 

where Φ and 𝚿  are the covariance matrices of ξ and ε, respectively. The model factor loading 

matrix was 
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𝚲′ =

 [
0.70 0.70 0.75 0.80 0.80 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.70 0.70 0.75 0.80 0.80 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.70 0.70 0.75 0.80 0.80

].   

 

Variances of factors were set to one, with covariances between factors equal to 0.30, 0.40, and 

0.50, respectively. Variances of unique factors were set to values such that under normality, 

variances of observed variables are one. This model has been used in several Monte Carlo 

simulation studies (e.g., Hu et al., 1992, Huang & Bentler, 2015), and is used here to validate the 

simulation and as part of a recommended strategy to compare results to existing findings in 

literature (see Boomsma, 2013). 

Data generation was accomplished with R software (Version 3.2.3; R Core Team, 2015) 

using the simulation function in lavaan package (Rosseel, 2012) based on the population model 

described above with observed variables exhibiting no skewness or kurtosis. This simulation 

focused particularly on small sample sizes. Selected conditions are representative of small N 

SEM simulation studies, (60, 70, 80, 87, 90, 100, 110, and 120), with specific values related to 

this model, df = 87, p* = (15)16/2 =120. Also included were a wide range of larger sample sizes 

(250, 500, 1000, 2000, 2500, 5000, and 100,000). Results across estimators were expected to 

converge at sizable samples. Sample moments were collected to compare with population 

moments, including information with respect to matrix eigenvalues.  

Each of 1000 independent samples of each sample size was analyzed with the lavaan 

package in R by specifying the correct model with 87 df, employing GLS and ML estimation 

methods. The ability to replace the V matrix for the GLS method was not available as an option 

in this package for our regularized conditions, therefore R script was written and an optimizer 

(nlminb in the stats package) was employed to mimic the default in the lavaan package. Start 
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values were set to the lavaan simple default such that all parameter values are set to zero, except 

factor loadings which are unity, and residual variances are started at half the observed variance. 

The method was not applied to ML and GLS to save computation time, and the R script was 

verified by simulating conditions and comparing results with unmodified covariance matrices. 

All results were equivalent.  

To review, the basic steps of the simulation are as follows:  

1) A true model with population parameters is specified, and a population covariance matrix 

subject to the model is generated.   

2) Data are generated conforming to the particular sample size of the condition and a 

covariance matrix is estimated. 

3) A correct model is specified, and is fit to the sample data using traditional estimators, ML 

and GLS. 

4) Covariance matrices ( ˆ
rΣ  and ˆ

RΣ ) are estimated, (see Section 2.3 for detail). 

5)  A correct model is fit to the sample data, and V in GLS is replaced with ˆ
RΣ  (this  

6) Step 5 is repeated with V replaced with ˆ
rΣ  

The set of results from the simulation were recorded and analyzed.  

Assessing results and the impact of sample size and method.   

For each condition, minimum, maximum, means and standard deviations were calculated 

for eigenvalues and condition numbers (ratio of the largest to smallest eigenvalue) across 1000 

iterations of the following matrices: (a) the population covariance matrix, (b) the sample 

covariance matrix, and (c) the regularized covariance matrix. Poor solutions were examined 

including non convergences, the number of flagged iterations, and number of results with at least 

one negative variance. Each test statistic was averaged across the number of converged 
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replications and compared to expected values (the degrees of freedom for the model assuming a 

χ2 reference distribution, here 87). Standard deviations of test statistics for each method were 

compared to the square root of twice the degrees of freedom (variance = 2df, SD = √2𝑑𝑓 ≈ 

13.19). Empirical rejection rates were calculated by summing number of replications for which 

the model was rejected based on the nominal alpha of .05. Since the fitted model is the correct 

model, this rate should approximate .05. 

3.3 Results 

3.3.1 Condition of Matrices  

The condition number of the population covariance matrix is about 15.35. A finite sample 

size of 100,000 was first considered to demonstrate asymptotic properties. The average condition 

number of S calculated across 1,000 replications within rounding is 15.45, evidencing validation 

of the simulation. Next, a condition number for each sample covariance matrix was calculated 

and averaged across 1,000 replications for each sample size condition, ranging from 60 to 5,000. 

Table 1 reveals that average condition numbers are biased upward for each sample size 

condition, and bias decreases as sample size increases.  
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             Table 1. 

 

Upward bias of the sample covariance matrix condition number is substantial until N 

reaches at least 500 (ranging up to 178%), and not less than 10% until N = 2,000. On the other 

hand, the expectations of condition numbers for the MAP estimator ˆ
rΣ reflect negative bias at Ns 

smaller than 500, though in general bias is smaller in magnitude compared to S. Condition 

numbers change in a non-monotonic fashion as N increases. That is, as sample size increases, 

average condition number of ˆ
rΣ increase until N = 2,500, then decrease. Finally, when 

examining MAP estimator ˆ
RΣ , in general condition numbers exhibit some positive bias, yet 

approach the population condition number as N increases. The condition numbers are fairly 

stable across sample size conditions compared to the other estimators, and increments of change 

are much smaller.  

Samp        

Size

S          

Cond

             

Cond
              

Cond

S           

Cond SD

           

Cond SD
              

Cond SD

60 42.71 11.74 15.89 10.22 3.15 4.33

70 37.74 12.35 15.80 8.63 3.00 3.85

80 34.30 12.79 15.71 7.05 2.85 3.44

87 32.47 13.07 15.67 6.46 2.79 3.26

90 31.84 13.18 15.65 6.19 2.72 3.15

100 30.07 13.50 15.64 5.42 2.63 2.97

110 28.62 13.75 15.56 4.96 2.54 2.79

120 27.51 13.95 15.55 4.59 2.51 2.70

250 21.22 15.07 15.35 2.30 1.69 1.67

500 18.66 15.64 15.55 1.43 1.21 1.18

1000 17.27 15.81 15.66 0.97 0.90 0.87

2000 16.54 15.82 15.72 0.68 0.65 0.64

2500 16.36 15.79 15.70 0.58 0.56 0.55

5000 15.99 15.71 15.66 0.41 0.40 0.40

100000 15.46 15.45 15.44 0.09 0.09 0.09

Note.  Samp = Sample, Cond = Condition,  SD =  Standard Deviation,  Population

condition number is approximately 15.35.

Average Condition Number of Covariance Matrices and SDs by Sample Size

Ʃ̂ Ʃ̂ Ʃ̂ Ʃ̂ 
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Considering variability of condition numbers, the standard deviation of S condition 

numbers decreases as N increases, and the difference between the spread of sample condition 

numbers and those of ˆ
rΣ approaches zero as N increases. When N is less than 100, the spread of 

S condition numbers is about double the spread of condition numbers of ˆ
rΣ and ˆ

RΣ , and at the 

smallest N condition, was about three times as large. The magnitudes of SDs of ˆ
rΣ and ˆ

RΣ are 

fairly similar in value although when N is less than 250, are more variable, whereas the opposite 

is true at larger Ns. These differences are small compared to S especially at smaller sample sizes.  

3.3.2 Solution Propriety 

Poor solutions occurred for the traditional GLS estimator at the smallest of sample sizes 

(N < 100; see summary in Table 2). 

          Table 2. 

 

 Non convergences were fairly rare across the 1,000 replications per sample size, and 

mostly occurred at the smallest of sample size (N = 60). The number of replications resulting in 

at least one negative variance was calculated. Totals reflected these were less frequent as N 

increased. Results revealed no improper solutions were recorded for ML. Only a single case of a 

replication with a negative variance was recorded at the N = 80 condition for rGLS and RGLS. 

 

 

N Non-Conv High Iter Negative Var 

60 7 15 35

70 2 7 13

80 2 2   6*

87 0 1 2

90 0 0 1

* = 1 negative variance for RGLS and rGLS each. 

Note .  No poor solutions for  larger N  conditions,

Number of Poor Solutions by Sample Size
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3.3.3 Performance of Test Statistics  

The target mean test statistic is the degrees of freedom (here, 87), asymptotically. 

Findings for ML and GLS are similar to previous simulation research, providing evidence for 

validation of the simulation (see Bentler & Yuan, 1999 for ML results for smaller samples; for 

larger sample sizes, see the normal theory condition 1 for ML and GLS in Hu et al., 1992). In 

addition, bias is less than 1% for the N = 100,000 condition, further validating the Monte Carlo 

procedure. Results in Table 3 reveal at the smallest of sample sizes, the test statistic for ML is 

inflated, whereas both GLS and rGLS are in general downwardly biased. When sample size was 

equal to 500, the bias is quite small across estimation methods (only about 6%, or less), and 

approaches zero as N increases. In comparison, RGLS performs the best of all four methods. 

Bias of the test statistic is less than 5%, regardless of sample size.  

Table 3.

 

 

Test Statistic Simulation Results by Sample Size

Samp Size TML %Bias TGLS %Bias Tr %Bias  TR %Bias

60 99.57 14.44 78.61 9.64 55.42 36.29 90.12 3.58

70 97.55 12.13 80.30 7.70 58.40 32.88 90.40 3.91

80 95.88 10.20 80.84 7.06 60.59 30.36 90.06 3.52

87 95.74 10.04 81.77 6.01 62.36 28.32 90.44 3.96

90 95.14 9.36 81.79 5.98 62.66 27.98 90.12 3.59

100 94.57 8.70 82.77 4.86 64.67 25.66 90.43 3.95

110 93.39 7.35 82.85 4.76 65.83 24.34 89.80 3.22

120 93.62 7.61 83.59 3.92 67.35 22.58 90.09 3.56

250 89.24 2.57 84.78 2.55 75.58 13.12 88.29 1.48

500 88.87 2.15 86.64 0.41 81.59 6.22 88.49 1.72

1000 87.80 0.92 86.76 0.28 84.22 3.20 87.72 0.82

2000 87.73 0.84 87.17 0.20 85.88 1.29 87.64 0.74

2500 88.03 1.18 87.61 0.71 86.57 0.50 87.98 1.13

5000 87.11 0.13 86.88 0.13 86.36 0.73 87.06 0.07

100000 87.19 0.21 87.18 0.21 87.15 0.18 87.19 0.21

Note . Target for bias calculations = 87;  Replications for GLS N s = 60, 70, & 80, are 986, 995, &

 998, respectively.
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Variability of Test Statistics 

Asymptotically, the standard deviation of test statistics should be about 13.19. Results in 

Table 4 reveal for ML, standard deviations (SDs) are too large at the smallest sample size 

conditions, while for GLS, they are too small.  

               Table 4. 

 

The values are in line with those of previous simulation results (see earlier citations), 

although at larger sample size conditions, SDs are a bit larger in this study, perhaps owing to the 

larger number of replications in this simulation. The pattern of results (reflecting GLS SDs are 

smaller than ML) is also similar to previous research concerning larger sample sizes. Results for 

rGLS reveals test statistics have smaller variability than even GLS, although this difference 

decreases as N increases. In general, SDs for RGLS are larger than rGLS, but smaller than ML. 

The differences narrow as N increases, and overall RGLS SDs are closest to the target SD.  

Standard Deviations of Test Statistics across Replications

Samp Size SD TML SD TGLS SD Tr SD TR

60 15.48 10.92 8.72 12.84

70 14.98 12.09 9.24 13.22

80 14.26 11.65 9.22 12.73

87 14.40 12.29 9.74 13.17

90 14.51 11.93 9.58 12.93

100 14.68 12.51 10.17 13.35

110 13.97 12.54 10.12 13.00

120 14.58 13.06 10.75 13.73

250 12.83 12.26 10.95 12.65

500 12.98 12.81 12.07 13.05

1000 13.71 13.47 13.09 13.63

2000 12.89 12.68 12.67 12.93

2500 13.88 13.86 13.69 13.91

5000 12.75 12.74 12.66 12.77

100000 12.82 12.82 12.82 12.83

Note . Target is about 13.19; Replications for GLS N s = 60, 70, & 80

 are 986, 995, & 998, respectively.
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3.3.4 Rejection Rates 

Regarding empirical rejection rates given in Table 5, approximately 50 of 1,000 

replications would be an ideal number of rejections, given an alpha of .05. The number of 

rejections is given in the left part of the table, and the rates in the right part.  

Table 5. 

 

Results reveal empirical rejection rates are quite large at the smallest of sample sizes for 

ML. GLS over accepts, with rejection close to zero at the smallest of Ns, while rGLS never 

rejects at the smallest of sample sizes. When N = 500, there are more reasonable rejection rates 

for all methods except rGLS, (which needs closer to N = 2000). The RGLS empirical rejection 

rates are close to the nominal level, ranging from .04 to .08. 

3.3.5 Overall Results for Simulation 1 

Small Ns associated with poor performance are also associated with larger, and more 

variable, condition numbers of S. In contrast, even at the smallest Ns condition numbers for 

Samp Size
ML        

Sum           

GLS             

Sum

rGLS     

Sum

RGLS 

Sum

ML Emp   

Rej Rate 

GLS Emp 

Rej Rate 

rGLS Emp 

Rej Rate

RGLS Emp 

Rej Rate

60 235 2 0 65 .235 .002 .000 .065

70 199 15 0 80 .199 .015 .000 .080

80 179 14 0 67 .179 .014 .000 .067

87 172 21 0 79 .172 .021 .000 .079

90 148 22 0 67 .148 .022 .000 .067

100 146 21 0 74 .146 .021 .000 .074

110 131 24 0 62 .131 .024 .000 .062

120 125 26 2 80 .125 .026 .002 .080

250 68 29 4 53 .068 .029 .004 .053

500 60 48 20 63 .060 .048 .020 .063

1000 61 52 33 59 .061 .052 .033 .059

2000 50 44 37 49 .050 .044 .037 .049

2500 63 58 48 62 .063 .058 .048 .062

5000 47 47 41 48 .047 .047 .041 .048

100000 20/500 20/500 20/500 20/500 .040 .040 .040 .040

Note . Alpha = .05;  Replications for GLS N s = 60, 70, & 80 are  986, 995, & 998, respectively.

Simulation Results Concerning Empirical Rejection Rates
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regularized covariance matrices were closer to population counterparts. Nonetheless, rGLS 

performed with overly optimistic results, frequently over-accepting the true model. This was the 

case for GLS as well. Although rGLS performed well asymptotically, the method did not reflect 

much improvement until N = 2000. The empirical findings reflect �̅� with   is not optimal for 

SEM in the small N conditions, therefore rGLS is not recommended at these sample sizes. On the 

other hand, results clearly reflect the superiority of RGLS, as it performs well across the wide 

range of N with the mean of test statistics close to the theoretical value and rejection rates close 

to nominal levels, even at the smallest of sample sizes. RGLS noticeably outperformed ML and 

GLS at Ns of 120 and less.  
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CHAPTER 4 

SIMULATION STUDY 2 

 

4.1 Regularization of the Sample Data for ADF Estimator 

This simulation was carried out to illustrate the performance of regularization applied to 

the Asymptotically Distribution Free (ADF; Browne, 1982, 1984; Chamberlain, 1982; Dijkstra, 

1981) method via the sample covariance matrix (YRADF). This novel method, described shortly, 

is evaluated relative to the typical ADF method for a variety of sample sizes under multivariate 

normality. Additionally, nonnormal distributions were considered due to the fact ADF does not 

require any distributional assumptions yet, as reviewed earlier in the introduction, doesn’t 

perform well until sample sizes are quite large (Curran, West, & Finch, 1996; Hu, Bentler, & 

Kano, 1992; Huang & Bentler, 2015). Therefore it is important to examine whether YRADF can 

improve upon ADF performance. Moreover, this study incorporates the following methods as 

comparison conditions: Normal theory methods (GLS, ML, and RGLS from Study 1), and a 

robust method, the Satorra-Bentler mean scaled chi-square test statistic (SB, Satorra & Bentler, 

1994).   

Another contemporary regularization method, Ridge Generalized Least Squares (Yuan & 

Chan, 2016), is considered. Yuan and Chan use GLS in a broad sense to refer to a more specific 

ADF procedure (Browne, 1984). Generalized Least Squares does not directly refer to the GLS 

method considered in Study 1 that uses a fixed weight matrix estimated using S according to the 

normal distribution assumption. To avoid confusion here, Yuan and Chan’s ridge ADF/GLS will 

be referenced here as RGLSI. The “I” refers to the identity matrix used in the ridge procedure.  

This method was reviewed in Chapter 2, however a more detailed description is provided. Yuan 
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and Chan propose to calculate a linear combination of the identity matrix and the sample fourth 

order moment matrix such that  

𝚪Î = (1 − 𝑎)�̂� + 𝑎𝐈 

Both matrices are weighted by a tuning parameter (a) in order to harness the stability of I.  

The objective is to improve stability of the matrix �̂� that is used in calculation of the weight 

matrix. When a = 0 the solution is the typical ADF solution. When a = 1 the solution is the Least 

Squares solution. Their method extends previous work discussed in the introduction on ridge 

SEM (see for example, Yuan & Chan, 2008).   

Additionally, Yuan and Chan propose correcting the resulting test statistic as an 

approximation to the correct distribution. The RGLSI is a rescaled test statistic that applies a 

mean correction. The mean and variance adjusted method is referred to as AGLSI, where “A” 

refers to the fact test statistic and degrees of freedom are also adjusted. These types of 

corrections are described completely in Yuan and Bentler (2010). The optimal values of the 

tuning parameter were selected empirically by simulation across a grid of candidate tuning 

parameters ranging from zero to one. Those identified in the original paper will be employed 

here, except where noted later. Yuan and Chan also introduced a ridge method based on 

Diagonally Weighted Least Squares however this method is not studied further due to the fact 

the method yielded almost exact results as the GLSI method, and under some conditions 

produced less accurate solutions.  

The study sought the following aims: First, to demonstrate improved differences in the 

condition of the sample fourth-order moment matrix (�̂�) after regularization is applied to the 

sample covariance matrix. The elements of matrix  �̂� are functions of the variances and 

covariances of S, as well as fourth-order moments about the mean.  Therefore under normality 
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when those fourth-order moments are essentially zero, we should see improvement in condition 

numbers and furthermore perhaps some improvement under nonnormality. If this is the case it 

would be important to understand by what magnitude these matrices are improved.  

Secondly, this study also aimed to demonstrate expected improvements in solution 

propriety. Iterations, negative variances, and convergence typical for ADF under small sample 

size conditions were expected to improve given the enhanced condition of the data matrix, which 

will in turn indirectly improve the weight matrix.  

Thirdly, the simulation aimed to demonstrate YRADF improvement in model evaluation 

over ADF, given regularization improvements on S. Additionally, though generally ML and GLS 

perform well under asymptotic robustness theory under some nonnormality conditions such as in 

Case B, ML (GLS) has been found to over (under) reject at small sample sizes considered in this 

study. Furthermore, under Case C, these methods should not perform as well, since asymptotic 

theory is violated. It was unknown by how much YADF might improve or approach normal 

theory methods, especially given ADFs poor performance in comparison conditions.   

Additionally, the Satorra-Bentler (SB) scaled chi-square test statistic was included to 

compare this well-performing corrected test statistic to regularization methods. This is of interest 

particularly because the SB method doesn’t invert the matrix made up of sample fourth order 

moments and the objective of regularization methods is to better condition the matrix that is 

inverted with ADF. The SB scaled test statistic was expected to perform similar to normal theory 

methods under normality (Case A) and under nonnormal conditions (Cases B & C), the test 

statistic was expected to perform as well as ADF at larger Ns and better than ADF at small Ns 

given prior research (Bentler & Yuan, 1999; Hu, Bentler, & Kano, 1992, Tong & Bentler, 2013). 
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Again, it is unknown how much YRADF might improve on ADF therefore it is unknown if the 

method will perform better than SB.  

Moreover, this study aimed to extend Study 1 in order to investigate the performance of 

RGLS under nonnormality, and in comparison to other normal theory methods.  While certainly 

regularization was not expected to overcome misspecification in nonnormality conditions it was 

unknown if it might perform similarly to Study 1 under Case B like normal theory methods, and 

what happens under Case C.   

Furthermore, under normality, RGLSI is expected to over reject the true model until 

sample sizes of at least N = 1000, while AGLSI should perform better across the range of sample 

sizes considered, though may over accept the true model according to simulation performance 

(Yuan & Chan, 2016). Interestingly, Yuan and Chan did not consider the same nonnormality 

conditions considered here, so no conclusions can be made with great certainty as to direction of 

results. 

4.2 Details of Method and Simulation 

In this section, I first review the data regularized ADF method (YRADF), then the 

simulation methodology. First, shrink eigenvalues of the sample covariance matrix as described 

in Chapter 2 (particularly, section 2.3) and use the MAP estimator, denoted �̃� for these purposes 

and calculate a data matrix Y such that �̃� = 𝐘′𝐘𝑁−𝟏. This can be accomplished using the 

Cholesky decomposition as follows: 

                                         𝐒−𝟏 = 𝐒−.𝟓′𝐒−.𝟓                                                

                                           �̃� = �̃�.𝟓 �̃�.𝟓′ ,                                                 

then calculate Y such that  

                                      𝐘 = 𝐗𝐒−.𝟓�̃�.𝟓′                                                
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Next, employ ADF estimation using this new input data, Y.  Consider the general 

quadratic form of the GLS function 

FADF = [𝐬 − 𝛔(𝛉)]′�̂�−1[𝐬 − 𝛔(𝛉)],            

where s is a column vector of p* = p(p+1)/2 non-duplicated elements of the covariance matrix S, 

and 𝛔(𝛉)  is a vector of the same size of non-duplicated elements of the model–implied matrix, 

and �̂� is a 𝑝∗ × 𝑝∗ matrix defined by the asymptotic distribution of the residual  

√𝑛(𝐬 − 𝛔)
𝐷
→  𝒩(0, 𝚪),                     

where n = N - 1, and 𝚪  ̂-1 is the matrix of optimal weights.  The typical element of �̂� consists of 

estimates of the second- and fourth-order product moments around the mean and is calculated as 

[𝛾]𝑖𝑗,𝑘𝑙 = 𝑠𝑖𝑗𝑘𝑙 − 𝑠𝑖𝑗𝑠𝑘𝑙, i ≥ 𝑗, 𝑘 ≥ 𝑙       (4.1)  

, where the fourth order moment is calculated as 

𝑠𝑖𝑗𝑘𝑙 = 𝑁−1∑ (𝑦 𝑛𝑖 − �̅�𝑖
𝑁
𝑛=1 )(𝑦 𝑛𝑗 − �̅�𝑗)(𝑦 𝑛𝑘 − �̅�𝑘)(𝑦 𝑛𝑙 − �̅�𝑙)           

and the second order moment is calculated as 

𝑠𝑖𝑗 = 𝑁−1 ∑(𝑦 𝑛𝑖 − �̅�𝑖

𝑁

𝑛=1

)(𝑦 𝑛𝑗 − �̅�𝑗) 

while the first order moment is calculated as  

�̅�𝑖 = 𝑁−1∑(𝑦 𝑛𝑖

𝑁

𝑛=1

) 

 Next, proceed with data Y (with covariance matrix �̃�) as the input data, and traditional 

ADF estimation. This is the method is referred to here as YRADF. 

For multivariate normality conditions, a confirmatory factor model (x = Λξ + ε, where x 

is a vector of observed variables, Λ is a factor loading matrix, ξ is a vector of normally 

distributed common latent factors, and ε is a vector of unique unobserved factors) was employed 
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consisting of three common latent factors, each with five manifest variable indicators, and 15 

unique errors independent from factors and one another. The population covariance matrix is 

given by  

Σ = Σ(θ) = 𝚲Φ𝚲′+Ψ, 

where Φ and 𝚿 are the covariance matrices of ξ and ε, respectively. This model has been used in 

other Monte Carlo simulation studies (e.g. Yuan & Chan, 2016), and is used here to validate the 

simulation and as part of a recommended strategy to compare results to existing findings in 

literature (see Boomsma, 2013). Note the model factor loading matrix was slightly different than 

that of Study 1 in order to draw comparisons to recent results from Yuan and Chan (2016). 

Loadings are marginally different reflecting more variability across the loadings,  

𝚲′= 

[
0.70 0.75 0.80 0.85 0.90 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.70 0.75 0.80 0.85 0.90 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.70 0.75 0.80 0.85 0.90

]. 

Although loadings are generally about the same magnitude to those in Study 1, it is 

important to keep this difference in mind when making direct comparisons between studies.   

Variances of factors were set to one, with covariances between factors equal to 0.30, 0.40, and 

0.50, respectively. Variances of unique factors were set to values such that under normality 

variances of observed variables are one. 

Data generation was accomplished with R software (Version 3.2.3; R Core Team, 2015) 

using the simulation function in simsem package (Pornprasertmanit, Miller, & Schoemann, 2016) 

based on the population model described above with latent factor and errors exhibiting the 

following characteristics for three different cases: For Case A, no skewness or kurtosis; Case B, 

nonnormality of 3 factors with true factor kurtoses of  -1, 2, 5  and 15 errors  with true kurtoses 

of -1.0, 0.5, 2.5, 4.5, 6.5, -1.0, 1.0, 3.0, 5.0, 7.0, -0.5, 1.5, 3.5, 5.5 ,7.5, chosen to mimic 
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Condition 3 in Hu et al. (1992);  and lastly, Case C, nonnormality with the same true kurtoses 

values as Case B, but also a fixed covariance matrix for variances and covariances of factors 

such that asymptotic robustness is violated. In other words, normal theory methods that might be 

robust in Case B should no longer, at least in theory, be robust in Case C (Satorra & Bentler, 

1990; Satorra, 1992). The true kurtoses values are scaled such that zero reflects the absence of 

kurtosis. In all cases, factors and unique variates are independently distributed. These particular 

nonnormality conditions are of interest for this study because while distribution free methods 

should perform well across these cases, research reviewed in the introduction reveals this is not 

the case, except at very large sample sizes.  

  Data generation. 

Multivariate nonnormal data were simulated using the Vale and Maurelli (1983) method. 

The nonnormal data propagation included latent variable and the indicator errors rather than 

simply rescaling the indicators directly, which can remove interdependence between latent 

variables and indicators (Kock, 2016) conflating simulation results. The method used here (often 

referred to as “sequential” referring to a chained equation approach; see simsem documentation 

for further detail) generates data for latent errors and variables directly, then for indicators, better 

preserving relationships. For these simulations, both latent factor scores and residual scores used 

to generate the data were saved and examined to validate process. The resulting indicator 

variables were also examined.  

In general, the Vale and Maurelli method is one of the most common methods applied to 

simulate nonnormal data (Tadikammalla, 1980). This is a multivariate extension of the univariate 

Fleishman (1978) method. Commonly referred to as the power method, the Fleishman approach 

transforms a normally distributed variable, x, to a nonnormal by a the polynomial transformation  
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y = a + bx + cx2 + dx3, 

where coefficients a, b, c, and d are constants determined so that (univariate) y has a particular 

desired skewness and kurtosis. Fleishman determined the simultaneous equations to solve for all 

coefficients, and Vale and Maurelli extended this method to allow for multiple variables and 

intercorrelations between them.   

The general idea of the Vale and Maurelli method is as follows: After all constants are 

found for each variable as if they are univariate (via the Fleishman Polynomial), an intermediate 

matrix is calculated. This is the intermediate population matrix from which intermediate data are 

generated. It is important to remember this intermediate matrix will not be equivalent to the final 

desired matrix. This matrix is a pairwise matrix with intermediate entries found by calculating 

each correlation using Vale and Maurelli’s third degree polynomial equation, using the constants 

calculated in the first step, and the pre-specified final correlation matrix of interest. This step is 

necessary because the correlations for nonnormality will differ in value than those under 

normality. In the final step the univariate equation is applied to each data point found from 

simulating the multivariate normal data from the intermediate correlational matrix. The final data 

set will have the structure of the desired pre-specified population matrix.   

This simulation focused on sample sizes greater than 120, due to the fact p* is the lower 

bound for inversion of the weight matrix for ADF and YRADF. Sample sizes were comparable 

to several conditions of Study 1, as well as conditions used by Yuan and Chan (Ns = 150, 200, 

300, 500, 1000, 2000, 3000, & 5000). Sample moments were collected to compare with 

population moments, including information with respect to matrix eigenvalues.  
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Each of 1000 independent samples of each sample size was analyzed with the lavaan 

package in R by specifying the correct model with 87 df, for normality Cases A and B, and 93 

degrees of freedom for Case C, employing ML, GLS, and  ADF estimation methods.  

The method described previously in Study 1 was once again employed again for RGLS. 

For YRADF, the ADF method was employed as usual, given the data were the subject of 

modification rather than the weight matrix. A user-supplied weight matrix was supplanted for 

RGLSI and AGLSI methods. This matrix was the inverse of the modified matrix, �̂�I. Each test 

statistic for AGLSI was evaluated based on the appropriate degrees of freedom calculated based 

on Equation 5 in Yuan and Chan (2016) for each individual replication. For multivariate normal 

data, optimal penalty values that were empirically determined by simulation in Yuan & Chan 

were applied in order to closely mimic simulation results. Sample size conditions above 3,000 

were not tested in the original paper, so a very small tuning parameter is used in line with the 

decreasing trend across sample size for normal theory conditions (see Table 6). Due to the fact 

nonnormal conditions differ from Yuan and Chan, the exact penalty values would not necessarily 

be the exact optimal values, however interestingly values of the ridge penalty under 

nonnormality did not vary substantially across nonnormality conditions and sample size in Yuan 

& Chan (ranging .80 -.90). Therefore, the average value of all conditions was applied in this 

study for nonnormal conditions, a = .85. This value may not generalize perfectly because the 

conditions of the data, (a feature that may influence the parameter), are not exactly the same. 

However, findings demonstrated a lack of variability in the original simulation across normality 

conditions.  
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           Table 6. 

 

  A pilot simulation was conducted to ensure methodology for ridge GLS were correctly 

implemented and coded, including normal-theory results for ML and RGLSI for Ns ranging 60-

3000, and with replications equal to 500, the same number as Yuan & Chan’s simulations. 

Rejection rates are available in the Appendix. Results reflect similar outcomes, and differences 

between RGLSI are similar to differences between ML, with the exception of the smallest of 

sample size (which was not used in this study, N = 60).  

For purposes of this study, the maximum iterations for convergence was set to 1000. This 

“liberal” number of iterations was used for investigation, given the novel application of the 

regularization method. If a replication did not converge within 100 iterations, the replication was 

flagged and recorded as an extreme number of iterations but allowed to continue up to 1000 

iterations. R script was written so that number of iterations, convergence, and warnings regarding 

negative variances were recorded for each method.  

Poor solutions were examined including non-convergences, the number of flagged large 

number of iterations, and number of results with at least one negative variance. Each test statistic 

was averaged across the number of converged replications and compared to expected values (the 

Tuning Parameters for Ridge GLS 

Normal Nonnormal

150 .55 .85

200 .50 .85

300 .40 .85

500 .35 .85

1000 .25 .85

2000 .15 .85

3000 .10 .85

5000 .05 .85

10000 .01 .85

N
Distribution 
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degrees of freedom for the model assuming a χ2 reference distribution, here 87 for Cases A and 

B, and 93 for Case C). Standard deviations of test statistics for each method were compared to 

the square root of twice the degrees of freedom (variance = 2df, SD = √2𝑑𝑓 ≈ 13.19). Empirical 

rejection rates were calculated by summing number of replications for which the model was 

rejected based on the nominal alpha of .05. Since the fitted model is the correct model, this rate 

should approximate .05. 

4.3 Case A: Normal Results 

4.3.1 Condition of Matrices 

 Results are compiled in Table 7. The average condition numbers are displayed in the left 

half of the table, and standard deviations are displayed in the right half. As expected, sample 

condition numbers are larger than the population condition number (27.599). Furthermore, 

condition numbers of S are larger at smaller sample sizes and more variable. The average 

condition numbers of  �̂� are quite huge, especially at small Ns. These condition numbers are 

larger than those reported Huang & Bentler (2015), though of similar magnitude at smaller Ns. 

Average condition numbers and their associated variability decreases as sample increases for the 

unmodified matrices. When regularizing the sample covariance matrix, results reflect �̂�YR is 

somewhat improved over �̂�.  For example, at the smallest of sample sizes, condition numbers of 

�̂�YR , and the variability of κ(�̂�YR) are about half the size of the unmodified matrix. However, the 

condition numbers of  �̂�YR  are still quite large. Although condition numbers of  �̂�YR  are 

improved over �̂� across all sample sizes, this difference decreases as N increases. An interesting 

pattern emerges when examining �̂�I. The average condition numbers are quite small at small 

sample sizes, and equivalent to the original matrix at the largest sample size.   
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  Table 7. 

 

4.3.2 Solution Propriety 

All replications (1000) converged regardless of sample size or methodology. At the 

smallest sample size (N = 150) the ADF methods revealed a small number of solutions with at 

least one negative variance, (ADF = 16 & YRADF = 6). Results for other Ns, and for all other 

methods across sample sizes reflected no boundary condition issues.  

4.3.3 Performance of Test Statistics 

Test statistic results for all methods are compiled in Table 8. AGLSI is included for 

completion in all tables however this method cannot be directly evaluated in summary statistics 

or compared to other methods except in regards to empirical rejection rates because the degrees 

of freedom change across replications.  

Samp        

Size

  S        

Cond

             

Cond
              

Cond

              

Cond

  S       

Cond SD

           

Cond SD
              

Cond SD

              

Cond SD

150 40.72 38746.70 19001.46 36.41 6.24 15159.18 7226.74 10.75

200 37.34 8684.65 4766.96 43.45 4.71 2541.97 1409.90 11.07

300 34.48 3409.81 2188.62 62.60 3.57 812.44 517.27 13.12

500 32.07 1878.56 1388.10 74.44 2.56 350.37 254.67 12.29

1000 30.27 1261.02 1076.44 112.54 1.73 175.20 145.23 13.30

2000 29.29 1036.32 949.08 189.93 1.22 106.34 95.95 16.51

3000 28.86 967.17 911.51 266.86 0.98 79.01 73.81 18.84

5000 28.53 912.20 881.13 744.09 0.74 58.99 52.96 45.89

10000 28.18 867.86 854.12 867.86 0.53 40.60 39.27 40.60

Note.  Samp = Sample, Cond = Condition,  SD =  Standard deviation,  Population condition 

number is approximately 27.60.

Condition Numbers of Matrices and SDs by Sample Size (Normal Case A)

�̂� �̂� 𝚪�̂� 𝚪�̂� �̂�𝐘 �̂�𝐘 
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Table 8.

 
 

When N = 10,000, very little bias is reflected for all methods. On average, test statistics 

are close to the expected values. Additionally, results parallel the normal condition in Hu, 

Bentler, and Kano (1992) for comparable sample sizes and methods (ML, GLS, SB and ADF), 

further validating the simulation. In general ML, GLS, SB, and RGLS perform well and similarly 

at larger sample sizes (> 500). At smaller Ns, test statistics for ML and SB are slightly positively 

biased, GLS test statistics are slightly negatively biased, and RGLS reflects very little bias at 

all. These findings are also comparable to previous results from Study 1. 

Traditional ADF results parallel results from the normal theory conditions in the literature 

(Hu, Bentler, & Kano, 1992; Huang & Bentler, 2015). Bias is quite high at smaller sample sizes 

(ranging up to 164%), consistent with research. Regarding regularization methods, the test 

statistic for YRADF is positively biased. However, YRADF performs better than traditional 

ADF in terms of the magnitude of bias, especially at small Ns, though this difference decreases 

as N increases. Additionally, test statistics for RGLSI are also positively biased at smaller Ns 

though bias improves as N increases.  

Simulation Results of Test Statistics for Eight Methods by Sample Size (Normal Case A)

Samp Size ML SB GLS RGLS ADF YRADF AGLSI RGLSI

150 92.16 92.77 84.46 88.71 229.53 196.92 45.41 99.09

200 89.97 90.45 84.48 87.66 167.65 147.62 49.11 96.56

300 89.54 89.83 86.03 88.18 132.35 120.34 56.58 95.68

500 88.87 89.02 86.66 87.96 110.67 104.47 60.43 92.66

1000 87.74 87.74 86.59 87.25 97.46 94.58 68.16 90.75

2000 87.81 87.81 87.27 87.60 92.67 91.23 75.45 89.87

3000 88.09 88.13 87.64 87.87 90.98 90.15 82.24 89.89

5000 87.02 87.03 86.82 86.95 88.84 88.38 88.50 88.68

10000 87.08 87.09 86.96 87.02 88.03 87.75 88.15 88.03

Note . Model is oblique 3 factor model in Yuan & Chan (2016), Replications = 1000, RGLS =

Regularized GLS, YRADF = Y Regularized ADF, RGLSI = Ridge GLS Identity Matrix- Rescaled 

AGLSI = Ridge GLS Identity Matrix- Adjusted,  Model df  = 87, AGLSI df  differ per replication.
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Considering methods for which bias of test statistics is lower than 10% across all Ns, only 

ML, SB, and GLS methods meet this criteria. Regarding ADF methods, bias is only smaller than 

10% for RGLSI, YRADF, and ADF when Ns are fairly large: at least 500, 1000, and 2000, 

respectively. Overall, results reflect under multivariate normality RGLSI performs the best of all 

of the ADF methods, while RGLS performs the best across all methods. 

Variability of Test Statistics 

Normal theory methods displayed in Table 9 are fairly similar with respect the variability 

to each other, and to expected standard deviations (13.19). Test statistics for GLS are less 

variable than ML and SB, while variability for RGLS is greater than GLS but smaller than ML. 

This is the same pattern as resulted from Study 1.  

   Table 9. 

 

In general, ADF and YRADF methods exhibit more variability than other methods.  

While test statistics for YRADF were less variable than ADF, this difference decreases as N 

increases. RGLSI are less variable than traditional ADF and YRADF. This is especially true at 

small Ns. 

SDs of Test Statistics for Eight Methods by Sample Size (Normal Case A)

 Samp Size ML SB GLS RGLS ADF YRADF RGLSI AGLSI

150 13.97 14.01 12.73 13.27 51.92 46.48 18.86 8.57

200 13.53 13.65 12.76 13.10 34.05 30.68 18.03 9.16

300 13.46 13.53 13.14 13.40 24.62 22.97 17.37 10.27

500 13.09 13.13 12.86 13.05 19.01 17.60 16.69 10.87

1000 13.52 13.55 13.23 13.32 15.72 15.52 15.69 11.77

2000 12.93 12.94 12.96 13.00 14.22 13.91 14.32 12.13

3000 13.48 13.48 13.36 13.40 14.11 13.97 14.49 13.26

5000 12.89 12.88 12.90 12.92 13.20 13.28 13.15 13.12

10000 13.29 13.30 13.25 13.26 13.46 13.42 13.46 13.48

Note . Model is oblique 3 factor model in Yuan & Chan (2016), Replications = 1000, RGLS =

Regularized GLS, YRADF = Y Regularized ADF, RGLSI = Ridge GLS Identity Matrix- Rescaled 

AGLSI = Ridge GLS Identity Matrix- Adjusted,  Model df  = 87, AGLSI df  differ per replication.
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4.3.4 Rejection Rates   

At the largest sample size, methods perform similarly and close to the expected number 

of rejections (50, see Table 10).  

   Table 10. 

 

At smaller Ns, ML and SB rejection rates were higher than nominal rates, while GLS 

rejected models too infrequently. Rejection rates decreased (increased) as N increased for 

ML(GLS). At larger Ns, equal to or greater than 500, rejection rates were very similar for these 

two methods and close to the expected number of rejections. RGLS rejection rates are closest to 

nominal rates for most conditions, and performed optimally at small Ns. Other methods reflect 

unacceptable rejection rates especially at small Ns. When considering ADF and YRADF, almost 

all true models are rejected for Ns below 300. However, rejection rates for YRADF reflects 

improvement that is more accelerated than ADF. Rejection rates for both RGLSI and AGLSI 

were improved over ADF and YRADF, especially at small Ns. Results for these methods parallel 

findings in Yuan and Chan (2016). In general, AGLSI reflects empirical rejection rates closer to 

Rejection Rates for Eight Methods by Sample Size (Normal Case 2A)

Samp Size ML SB GLS RGLS ADF YRADF AGLSI RGLSI

150 108 115 34 74 1000 987 120 263

200 85 96 35 61 977 909 109 224

300 75 81 40 62 827 645 111 185

500 65 68 48 57 496 370 93 159

1000 58 57 46 51 209 154 87 121

2000 47 48 48 51 117 96 67 80

3000 55 57 48 48 101 92 78 90

5000 47 48 44 46 60 55 55 55

10000 52 52 50 51 64 64 52 64

Note . Model is oblique 3 factor model in Yuan & Chan (2016), Replications = 1000, RGLS =

Regularized GLS, YRADF = Y Regularized ADF, RGLSI = Ridge GLS Identity Matrix- Rescaled 

AGLSI = Ridge GLS Identity Matrix- Adjusted,  Model df  = 87, AGLSI df  differ per replication.
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expectation, performing better than RGLSI across sample sizes, however the regularization 

method with the MAP estimator, RGLS, performs better still.  

4.4 Case B: Nonnormal Results  

4.4.1 Data Distributional Characteristics  

To assess the adequacy of the nonnormal data generation process, sample characteristics 

over replications were examined. Since data were generated to a specified amount of skewnesses 

and kurtoses, sample values for latent factors and errors were averaged across replications and 

were compared to desired values. Table 11 presents these descriptive summaries to examine the 

adequacy of the method by sample size. 

      Table 11. 

 

 The multivariate normal distribution skewness is zero and kurtosis is three but commonly the 

constant of three is subtracted so that both skew and kurtosis are zero. Such is the case here. 

These descriptive statistics suggest under nonnormality, kurtoses are under estimated at small 

sample sizes, which conforms to a well-known finding that true values are dampened given 

sample data (Kock, 2016; Olvera Astivia & Zumbo, 2014). It should be noted that other methods 

Average Kurtosis by Sample Size Across Replications 

Error Kurtosis

F1 F2 F3 E15

150 -0.99 1.47 3.63 5.27

200 -0.98 1.71 3.85 5.32

300 -0.99 1.80 4.29 6.01

500 -1.00 1.88 4.64 6.54

1000 -1.00 1.92 4.86 7.00

2000 -1.00 1.96 4.76 7.08

3000 -1.00 1.98 4.82 7.22

5000 -1.00 1.97 4.81 7.31

10000 -1.00 2.00 4.92 7.53

Note.  True values: F1 = -1.0, F2 = 2.0, F3 = 5.0, E15 = 7.5,

E15 was selected as a representative for all errors.

N
Factor Kurtosis
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(e.g. Headrick, 2002; Mair, Satorra, & Bentler, 2012) could allow for a wider scope of 

nonnormality conditions, and may reveal differing results had they been employed. At this stage 

of comparison of many methods, using VM allows for comparison to other studies since Vale 

and Maurelli technique has been the ‘status quo’. 

4.4.2 Condition of Matrices 

Average condition numbers are displayed in Table 12. The average MAP estimator for 

sample covariance matrices (�̃�) are included for comparison, and since nonnormality was not 

considered in Study 1. The condition numbers of  �̂� are quite huge, and also worsened with 

nonnormality. For example, at the smallest N, the average condition number is double the 

average condition number for the same sample size in Case A. Moreover, the variability of 

condition number of �̂� is about half the size of the average condition number under sample size 

conditions ranging up to about 2,000.   

In general, �̂�YR improves upon �̂�  in two ways: Improving condition of the matrices on 

average and reducing variability. In contrast to �̂�, variability of condition numbers of  �̂�YR  are 

relatively smaller than the average condition number. However, �̂�YR condition numbers are still 

quite large, reflecting ill-conditioning even at the largest sample size condition.    
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Table 12.   

 

4.4.3 Solution Propriety 

At N = 150, the ADF condition had five replications that did not converge, six cases of 

high number of iterations and many cases of improper solution for ADF (53), though far fewer 

for YRADF (15). At N = 200, ADF had three replications of non-convergence, and 11 improper 

results.    

4.4.4 Performance of Test Statistics 

Patterns of results in Table 13 parallel Case A results for the normal theory methods. As 

expected, asymptotic properties of methods were retained under Case B. RGLSI performs 

similarly to SB, and RGLS follows suit, enjoying the least amount of bias. Traditional ADF 

results parallel results from Case A and nonnormal conditions from previous studies such that 

test statistics are still generally positively biased at small sample sizes.  Bias is quite high at 

smallest sample sizes (ranging up to150%).  Results reflect the ADF bias of test statistics 

Samp        

Size

  S        

Cond

          

Cond

             

Cond
              

Cond

              

Cond

  S       

Cond SD

           

Cond SD

           

Cond SD
              

Cond SD

              

Cond SD

150 40.05 25.79 79632.70 21506.96 59.33 5.20 3.41 41767.86 7076.98 34.93

200 37.22 26.01 18249.19 5537.31 70.85 4.37 3.08 9056.44 1810.37 31.10

300 34.53 26.41 7542.35 2537.90 111.83 3.29 2.59 3388.23 611.62 47.86

500 32.16 26.91 4154.60 1577.99 136.29 2.38 2.02 1749.41 289.05 53.48

1000 30.33 27.50 2673.06 1183.26 207.82 1.60 1.46 867.85 168.40 63.53

2000 29.22 27.76 2060.57 1036.89 345.29 1.03 0.99 424.04 139.09 68.13

3000 28.86 27.87 1888.79 993.59 488.97 0.85 0.83 310.69 110.74 76.48

5000 28.54 27.88 1744.26 960.36 773.41 0.67 0.63 238.79 68.67 99.88

10000 28.23 29.01 1635.35 944.99 1343.36 0.50 0.48 155.07 47.73 122.93

Note.  Samp = Sample, Cond = Condition,  SD =  Standard Deviation,  Population condition number of the data matrix is

 approximately 27.60.

Condition Numbers of Matrices and SDs by Sample Size (Nonnormal Case B)

�̃� �̂� �̂� 𝚪�̂� 𝚪�̂�  ̂𝐘  ̂𝐘 �̃�
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improves quickly as sample size increases. On average, in terms of test statistics, YRADF 

performs better than ADF, yet still not to expectation until Ns of at least 2,000. 

Table 13. 

 

Variability of Test Statistics 

Results in Table 14 suggest normal theory methods are fairly similar with respect the 

variability to each other, though at small Ns, test statistics for GLS are less variable than ML, 

while variability for RGLS is greater than GLS but smaller than ML, like SB. On the other hand, 

at small sample sizes ADF and YRADF exhibit more variability than all other methods, followed 

by RGLSI. 

 The variability of RGLSI is fairly constant across Ns and about half the size of ADF and 

YRADF at small sample sizes. However, this pattern does not hold at larger Ns given variability 

decreases for ADF and YRADF but in general, not for RGLSI.   

 

 

 

 

Simulation Results for Test Statistics for Eight Methods across Sample Size (Nonnormal Case B)

Samp Size ML SB GLS RGLS ADF YRADF AGLSI RGLSI

150 89.10 89.94 81.36 86.05 217.46 198.40 31.34 91.86

200 90.82 91.45 85.03 88.70 164.83 152.68 33.29 90.85

300 89.33 89.63 85.49 88.06 129.99 121.57 35.87 90.48

500 88.78 89.03 86.73 88.28 110.23 104.58 36.10 89.28

1000 87.70 87.84 86.68 87.47 97.51 94.15 39.59 87.66

2000 87.15 87.21 86.48 86.88 91.70 88.80 40.42 86.64

3000 86.62 86.87 86.23 86.49 89.45 86.81 40.70 86.26

5000 87.05 87.07 86.85 87.01 88.85 86.19 41.37 86.83

10000 87.01 87.40 87.29 87.99 88.04 85.83 85.83 88.07

Note . Model is oblique 3 factor model in Yuan & Chan (2016), Replications = 1000, RGLS 

= Regularized GLS, RGLSI = Ridge GLS Identity Matrix, YRADF = Y Regularized ADF, 

 Model df  = 87, Replications for  Ns =  150 and 200 for ADF are 995 and 997, respectively.



 
 

56 
 

      Table 14. 

 

4.4.5 Rejection Rates   

Results in Table 15 reflects that normal theory methods (ML & GLS) as well as SB 

perform well at most sample sizes. RGLS superior to these methods at the smallest of sample 

sizes, with rejection rates closest to the nominal level at N =150. 

 

       Table 15. 

 

 SD of Test Statistics for Eight Methods by Sample Sizes (Nonnormal Case B)

 Samp Size ML SB GLS RGLS ADF YRADF AGLSI RGLSI

150 14.27 14.60 12.98 13.74 48.94 45.63 6.84 19.56

200 13.78 13.92 13.39 13.70 31.38 31.80 7.05 18.77

300 12.98 12.78 12.57 12.91 22.56 22.37 7.44 18.71

500 12.85 12.89 12.58 12.81 17.73 17.36 8.36 19.65

1000 12.64 12.55 12.67 12.79 14.58 14.76 8.51 18.71

2000 13.35 13.32 13.26 13.27 14.20 14.04 8.96 19.17

3000 13.23 13.24 13.20 13.24 13.83 13.74 8.65 18.31

5000 13.16 13.16 13.16 13.16 13.67 13.29 8.91 18.64

10000 12.08 12.06 12.13 12.16 12.21 12.01 10.16 12.16

Note . Model is oblique 3 factor model in Yuan & Chan (2016), 1000 Replications, RGLS = 

Regularized GLS, RGLSI = Ridge GLS Identity Matrix, YRADF = Y Regularized ADF,

Replications for  Ns  = 150 and 200 for ADF are 995 and 997, respectively.

Rejection Rates for Eight Methods by Sample Sizes (Nonnormal Case B)

Samp Size ML SB GLS RGLS ADF YRADF AGLSI RGLSI

150 86 86 31 66 995 985 44 181

200 97 102 49 85 975 932 45 162

300 64 58 35 48 810 704 46 155

500 55 56 39 49 483 371 63 145

1000 49 44 43 51 201 139 57 121

2000 59 60 50 57 111 77 48 111

3000 51 49 52 53 74 60 41 113

5000 50 49 47 49 62 45 47 112

10000 40 40 40 40 44 44 42 112

Note . Model is the oblique 3 factor model in Yuan & Chan (2016), 1000 replications, RGLS 

= Regularized GLS, RGLSI = Ridge GLS Identity Matrix, YRADF = Y Regularized ADF, 

Replications for  N s = 150 and 200 for ADF are 995 and 997, respectively.
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Although results reflect unacceptable rejection rates at small Ns for ADF and YRADF. In 

fact, these are still worse than normal theory methods. Rejection rates greatly improve across 

sample sizes, converging toward 5%. Improvement of rejection rates for YRADF across sample 

sizes is accelerated over ADF and reaches rejection rates closer to nominal rates quicker than 

ADF, though these sample sizes are both quite large (N = 2000 for YRADF, N = 3000 for ADF). 

 Regarding other regularization methods, rejection rates of AGLSI are often improved 

over other methods. Although results reveal AGLSI tends to consistently under-reject while 

RGLSI over rejects the true model, (consistent with Yuan and Chan’s 2016 findings), AGLSI 

doesn’t under-reject to the extent of their simulation findings and actually performs well, 

especially at smaller Ns similar in performance to the regularization method RGLS.  

4.5 Case C: Nonnormal Results  

4.5.1 Condition of Matrices  

 Condition numbers in Table 16 reveal that results are essentially the same as to those in 

Case B, as expected.   

Table 16. 

 

 

Samp        

Size

  S        

Cond

             

Cond

             

Cond

             

Cond

             

Cond

  S       

Cond SD

             

Cond SD

           

Cond SD

           

Cond SD

           

Cond SD

150 40.39 25.82 81070.29 22403.57 13.67 5.32 3.46 46637.33 8059.52 6.96

200 37.41 26.02 18450.99 5626.91 13.68 4.38 3.09 9338.32 1782.62 5.89

300 34.53 26.41 7542.35 2537.90 14.21 8.25 2.04 3388.23 611.21 5.71

500 32.16 26.91 4154.59 1579.99 14.25 2.38 2.02 1749.41 289.05 5.23

1000 30.33 27.50 2673.06 1183.55 14.18 1.46 1.60 867.85 186.39 4.02

2000 29.23 27.76 2060.57 1036.89 13.80 1.04 0.99 424.04 139.09 2.54

3000 28.86 27.87 1888.80 993.59 13.83 0.85 0.83 310.69 110.74 2.01

5000 28.55 27.94 1739.52 962.85 13.75 0.67 0.66 233.53 66.23 1.52

10000 28.20 27.90 1635.38 942.32 13.85 0.47 0.46 154.38 55.10 1.17

Note.  Samp = Sample, Cond = Condition,  SD =  Standard Deviation,  Population condition number is approximately 27.60.

Condition Numbers of Matrices and SDs by Sample Size (Nonormal Case C)

�̂� �̂� 𝚪�̂� 𝚪�̂�  ̂𝐘  ̂𝐘 �̃� �̃�
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4.5.2 Solution Propriety 

All methods reached convergence for each replication. Problem solutions occurred at N = 

150 for methods concerning ADF. Negative variances occurred for 66 replications for traditional 

ADF, 19 for YRADF, and in one case for RGLSI/AGLSI. At N = 200, the number was greatly 

reduced to two cases for ADF, and one for YRADF. Additionally, there were no other issues for 

other methods or at other sample sizes.  

4.5.3 Performance of Test Statistics 

Test statistic results for all methods are compiled in Table 17. Recall for Case C, the 

degrees of freedom of the model is 93. At smaller sample sizes, biases are much more noticeable 

for normal theory methods under Case C then for other conditions. Additionally, RGLS results 

reflect upward biased of test statistics at smaller sizes. YRADF also does not improve over ADF 

except at the very smallest N. Additionally, results for RGLSI are inconsistent across sample 

sizes as results reflect positive bias at smallest sample size and negative bias at largest sample 

sizes.   

Table 17. 

 

Simulation Results for Test Statistics for Eight Methods by Sample Size (Nonormal Case C)

Samp Size ML SB GLS RGLS ADF YRADF AGLSI RGLSI

150 97.82 97.89 91.31 99.39 285.60 276.69 24.85 101.61

200 96.90 96.78 92.32 98.40 196.14 194.25 24.96 97.63

300 95.44 95.02 92.43 96.71 146.71 146.65 25.48 95.05

500 94.87 94.26 93.28 95.93 121.19 121.25 26.04 93.41

1000 93.85 93.14 93.10 94.46 105.68 106.45 26.49 91.77

2000 93.18 92.39 92.60 93.28 98.34 98.15 26.32 89.51

3000 92.75 91.95 92.42 92.88 95.82 95.52 26.51 89.62

5000 92.96 92.12 92.82 93.09 94.82 94.14 26.57 89.34

10000 92.87 92.03 92.77 92.92 93.43 92.49 26.87 90.03

Note . Model is oblique 3 factor model in Yuan & Chan (2016), Replications = 1000, RGLS 

= Regularized GLS, RGLSI = Ridge GLS Identity Matrix, YRADF = Y Regularized ADF, 

 Model df  = 93 (df  for AGLSI differs across replications).
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Variability of Test Statistics  

Similar to Cases A and B, results in Table 18 suggest normal theory methods are fairly 

similar with respect the variability to each other, though at small Ns, variability for RGLS is 

greater than both the normal theory and SB methods. On the other hand, a similar pattern occurs 

under Case C to that of Case B. Small sample sizes ADF and YRADF exhibit more variability 

than all other methods, followed by RGLSI. Here again, variability of RGLSI is fairly constant 

across Ns and about half the size of ADF and YRADF at small sample sizes. However, this 

pattern does not hold at larger Ns given variability decreases for ADF and YRADF but in 

general, not for RGLSI. Unlike Case B, under Case C variability of ADF and YRADF are quite 

similar to one another.  

 

        Table 18. 

 

4.5.4 Rejection Rates   

With regards to rejection rates, Table 19 reflects RGLS may be sensitive to Case 3 

misspecification at the smallest of sample sizes, performing in a similar manner to normal theory 

methods, with too many rejections. This is not the case for GLS and AGLSI. These methods both 

 SD of Test Statistics for Eight Methods by Sample Size (Nonormal Case C)

 Samp Size ML SB GLS RGLS ADF YRADF AGLSI RGLSI

150 14.73 14.77 14.31 15.75 70.73 69.77 7.16 29.06

200 14.44 14.42 14.23 15.15 39.74 41.44 6.63 25.52

300 13.57 13.41 13.61 14.25 25.82 27.83 6.49 24.24

500 13.28 13.25 13.25 13.66 19.34 19.44 7.03 24.97

1000 13.14 12.95 13.08 13.51 15.55 16.42 7.18 24.49

2000 13.87 13.75 13.86 13.96 15.03 15.13 7.01 23.79

3000 13.69 13.62 13.70 13.77 14.45 14.59 6.99 23.58

5000 12.95 12.82 12.93 12.97 13.58 13.35 6.69 22.41

10000 12.94 12.82 12.96 12.98 13.16 13.32 6.68 22.93

Note . Model is oblique 3 factor model in Yuan & Chan (2016), 1000 Replications, RGLS = 

= Regularized GLS, RGLSI = Ridge GLS Identity Matrix, YRADF = Y Regularized ADF.
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perform well across the sample size conditions. YRADF does not enjoy much improvement over 

ADF. Under Case C, both have about an equal number of rejection rates. Although RGLSI 

improves on ADF, it generally over-rejects across sample sizes. 

 

Table 19. 

 

4.6 Simulation 2: Overall Results 

Findings for YRADF at N =10,000 (as close to asymptotic N as considered in this 

simulation) indicate the procedure was correctly implemented as results are very close to 

theoretical values. Though YRADF improved ADF quantitatively, the two methods are 

qualitatively similar to one another in performance. The reason for this may be explained by 

examining condition numbers. Only a very modest improvement is found when examining 

condition numbers of  �̂�YR, and largely the condition values still reflect ill-conditioning. Also, 

while YRADF improves on ADF under normal conditions, this finding does is not as 

pronounced in Case B. Under Case C, little difference is found between the traditional method 

and the regularized version. Again, condition numbers gives us insight in regards to this finding, 

as the matrices are very ill-conditioned even at larger sample sizes, therefore any improvement in 

Empirical Rejection Rates for Eight Methods by Sample Size (Nonormal Case C)

Samp Size ML SB GLS RGLS ADF YRADF AGLSI RGLSI

150 99 100 53 141 1000 1000 79 246

200 96 96 61 121 993 985 59 213

300 66 60 44 83 878 868 42 165

500 59 50 40 76 563 568 47 156

1000 47 40 52 66 237 258 40 166

2000 63 51 54 60 128 109 25 122

3000 51 47 50 53 82 78 39 135

5000 46 36 46 50 60 56 40 102

10000 46 42 50 51 52 54 34 108

Note . Model is the oblique 3 factor model in Yuan & Chan (2016), 1000 replications, RGLS 

= Regularized GLS, RGLSI = Ridge GLS Identity Matrix, YRADF = Y Regularized ADF.
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the regularized S is not reflected further in the sample fourth order covariance matrix. Some 

improvement was evident in solution propriety, given fewer instances of negative variances.  

Under the normal distribution condition RGLS improved upon normal theory methods, 

even with slightly more variable factor loadings. Additionally, results revealed RGLS 

outperforms SB even at smallest of Ns.  RGLS also seems to be robust under Case B, however 

under Case C may not offer an advantage at the smallest Ns.   

This study also offers some new insights on RGLSI and AGLSI methods, which were 

examined under new nonnormal conditions and a larger range of sample sizes and number of 

replications than initial simulations. Caution should be applied to these results given tuning 

parameters were adopted from the original study for simulation efficiency. Findings overall 

suggest that under Case A, AGLSI performs similarly to SB, and perhaps even better at smaller 

sample sizes under nonnormal cases. Results also suggest AGLSI is generally preferable to 

RGLSI across conditions.   
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CHAPTER 5 

Simulation Study 3 

 

5.1 Asymptotic Distribution Free & Correction methods  

This simulation was carried out to illustrate the potential for broader application of MAP 

estimator beyond the sample covariance matrix. Here, regularization is applied to the asymptotic 

covariance matrix of sample fourth-order moments, useful for calculations of the weight matrix 

for the Asymptotic Distribution Free (ADF) method, as well as calculations of corrections to 

Maximum Likelihood test statistics. These proposed approaches will be detailed next and were 

evaluated in a large-scale simulation relative to their traditional counterparts under a variety of 

sample sizes. 

It is a strength of the ADF method that it does not require any distributional assumptions 

however as reviewed earlier, ADF methods do not perform well until sample sizes are quite large 

(Curran, West, & Finch, 1996; Hu, Bentler, & Kano, 1992; Huang & Bentler, 2015). Therefore, 

it is important to examine whether regularization can offer insight on why this method doesn’t 

achieve its desired asymptotic properties, and whether regularization can improve ADF 

performance. Thus, nonnormal conditions for the simulation study are considered as well.  

This study builds on the previous two studies. Like Study 2, the MAP estimator approach 

is once again applied to ADF methodology, however instead of indirectly affecting the weight 

matrix via the sample covariance matrix, it aims to directly improve the weight matrix like the 

approach in Simulation Study 1. In this case, the covariance matrix of interest is the asymptotic 

covariance matrix, a matrix of much larger dimension (p*x p*) than the p x p sample covariance 

matrix. Therefore, an important first step is to demonstrate the differences in the condition of this 

special kind of covariance matrix before and after regularization. Secondly, like previous 
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simulations, this study also aims to demonstrate improvements in solution propriety. High 

iterations, negative variances, and convergence problems are typical for ADF under small sample 

size conditions, and these were expected to improve given the improvement of the weight matrix.  

Third, the regularized matrix of fourth order sample moments is extended to other 

methods and studied. This includes another ADF method referred to here a Residual Test 

Statistic (Browne, 1984; RES), and correction methods including Satorra-Bentler (1994; SB) 

scaled Chi-square test statistic, as well as the mean scaled and variance adjusted statistic 

(SBMV). Detailed descriptions and equations follow below. Overall, it is expected that results 

will reveal better behaved test statistics and improved empirical rejection rates, particularly at 

small sample sizes and these results should not worsen under nonnormal conditions due to the 

same rationales presented for the similar simulation Study 2. Similar results are expected given 

the method is the same, but the application of the estimator is more direct so could be improved.  

5.2 Details of Method and Simulation  

The application of the MAP estimator is quite straightforward in this case. For the sample 

counterpart of 𝚪, (�̂�) determine the corresponding MAP estimator �̂�R for appropriate calculations 

related to test statistics of interest for the following methodologies: ADF, RES, SB, and SBMV.  

Recall the general quadratic form of the GLS function 

 

FADF = [𝒔 − 𝝈(𝛉)]′�̂� −1[𝐬 − 𝝈(𝛉)],            

 

where �̂� is a 𝑝∗ × 𝑝∗ matrix defined by the asymptotic distribution of the residual  

 

√𝑛(𝐬 − 𝛔)
𝐷
→  𝒩(0, 𝚪)                     

 

where n = N - 1. The typical element of �̂� consists of estimates of the second- and fourth-order 

product moments around the mean and is calculated as 
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[𝛾]𝑖𝑗,𝑘𝑙 = 𝑠𝑖𝑗𝑘𝑙 − 𝑠𝑖𝑗𝑠𝑘𝑙, i ≥ 𝑗, 𝑘 ≥ 𝑙                  (5.1) 

 

, where  

𝑠𝑖𝑗𝑘𝑙 = 𝑁−1∑ (𝑦 𝑛𝑖 − �̅�𝑖
𝑁
𝑛=1 )(𝑦 𝑛𝑗 − �̅�𝑗)(𝑦 𝑛𝑘 − �̅�)(𝑦 𝑛𝑙 − �̅�𝑙)          

 

Browne (1982, 1984) developed and introduced another asymptotic distribution free test statistic, 

however this alternative was not studied empirically until much later (Satorra & Bentler, 1991; 

Yuan & Bentler, 1998; Bentler & Yuan, 1999). This method is applied to the normal theory 

maximum likelihood estimator to obtain a test statistic that is asymptotically chi-square 

distributed, even under distributional violations given correct model specification.  This is a 

residual-based test statistic defined theoretically by Browne (1984; see Proposition 4) that 

includes a sandwich triple product in its calculations.  Let vech (∙) be an operator that transforms 

a symmetric matrix into a vector by selecting the non-duplicated elements in the matrix such that  

𝐬 = vech(𝐒) and  𝛔(�̂�) = vech(𝚺(�̂�)).  Designate the 𝑝∗ × 𝑞 Jacobian matrix, (where q is the 

estimated parameters) corresponding to 𝛔(�̂�) as   �̇�(�̂�). When the 𝑝∗ × 𝑝∗  matrix �̂�−1 is non-

singular,  

    TB(�̂�) = 𝑛�̂�′[�̂�−𝟏 − �̂�−𝟏�̇�(�̂�){�̇�′(�̂�)�̂�−𝟏�̇�(�̂�)}
−𝟏
�̇�′(�̂�)�̂�−𝟏]𝐞,̂               (5.2)                  

where �̂� = 𝐬 −  𝛔(�̂�) , and the discrepancy between the data and the model or residual, is 

estimated by any consistent estimator such as ML. In practice, the elements of �̂� are defined in 

Eq. 5.1. This test statistic will be referred to as Browne’s residual-based ADF test statistic, 

abbreviated here as RES, which evaluates the model based on the chosen estimates.   

Other correction methods are considered next. In the case of ML, the scaled test statistic is 

defined as 

T̅M =
TML

𝑐
                                                  (5.3)  

The scaling constant c is estimated by 
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                                                                   �̂� =
tr(�̂��̂�)

𝑑𝑓
,                                          (5.4)  

   

 , whose �̂� elements are defined in Eq. 5.1 and  �̂� is a consistent estimator for the residual weight 

matrix under the model when there are no constraints  

𝐔 = 𝐖  − 𝐖 �̇�(�̂�){�̇�′(�̂�)𝐖 �̇�(�̂�)}
−𝟏
�̇�′(�̂�)𝐖,                                                                  

where �̇� is the Jacobian matrix evaluated at �̂� and depends on the model, tr(∙) is the trace of the 

matrix product or the sum of the non-null eigenvalues, and W is a weight matrix. A consistent 

estimator for W is 

𝐖 = .5𝐊𝐏
′ (�̂�−𝟏 ⨂ �̂�−𝟏)𝐊𝐏 

, where 𝐊p is a p2 x p* transition matrix and �̂� is a matrix that converges in probability to Σ, such 

as S in the case of GLS or 𝚺(�̂�) in the case of RWLS which is asymptotically equivalent to ML 

and the estimator used here.   

In order to better approximate the Chi-square distribution, Satorra and Bentler (1994) also 

consider a variance adjustment, in addition to mean scaling. This mean scaled and variance 

adjusted test statistic is an extension of  T̅𝑀  often denoted as T̿MV, includes a Satterthwaite 

second moment adjustment to the degrees of freedom. The test statistic is defined as   

                                               T̿MV =
𝑣

𝑡𝑟(�̂��̂�)
T,                                                 (5.5)                          

,where here, T is TML and 

                                     𝑣 = [𝑡𝑟 (�̂��̂�)]
2
/𝑡𝑟[(�̂��̂�)

2
],                                     (5.6)                    

which represents the estimated degrees of freedom.  The mean and variance of  T̿MV, match a 

Chi-square distribution with the Satterthwaite estimated degrees of freedom as an 

approximation under the null hypothesis.  
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This MAP estimator �̂�R is applied and studied in the following ways:   

 

1) Use data X with covariance matrix 𝐒 as input data, and calculate �̂�. Apply shrinkage to �̂�  

resulting in MAP estimator �̂�R, and proceed with classical ADF estimation. Since  �̂�-1 is 

the matrix of optimal weights, invert the matrix �̂�R, and supplant it as the weight matrix. 

This method is referred to as RADF. 

2) Use data X with covariance matrix 𝐒 as the input data, and proceed with ML estimation. 

The residual-based ADF test statistic (TB) is considered in Eq. 5.2, now based on the 

MAP estimator �̂�R  instead of  �̂�.This methods is referred to as RRES. 

3) Use data X with covariance matrix 𝐒 as the input data, and proceed with ML estimation. 

The Satorra Bentler Mean Scaled Chi-square test statistic (T̅SB) is computed with the  

MAP estimator �̂�R in place of �̂�  in Eq. 5.4. This method is referred to as RSB. 

4) Additionally, the Satorra Bentler mean scaled and variance adjusted test statistic (T̿SB) is 

computed based on Eqs. 5.5 and 5.6 using the MAP estimator  �̂�R   in place of �̂�.  This 

method is referred to as RSBMV. 

A Monte Carlo simulation study was carried out to illustrate and compare the 

performance of these eight test statistics associated to traditional and regularized ADF and 

correction methods (ADF, RADF, RES, RRES, SB, RSB, SBMV, RSBMV). Like Study 1, the 

choice of �̂�r could just as well have considered over �̂�R instead, in turn leading to  �̂�r  instead of  

�̂�R   (i.e., rADF, rRES, etc.). Considering the good performance of alpha (�̂�R) in Study 1, we 

begin with this approach, though will return to this idea in the results section. 

 These methods are also compared to those in Study 1 (GLS and ML) under conditions of 

multivariate normality, and non-normality. For multivariate normality conditions, a confirmatory 
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factor model (x = Λξ + ε, where x is a vector of observed variables, Λ is a factor loading matrix, 

ξ is a vector of normally distributed common latent factors, and ε is a vector of unique 

unobserved factors) was employed consisting of three common latent factors, each with five 

manifest variable indicators, and 15 unique errors independent from factors and one another. The 

population covariance matrix is given by  

Σ = Σ(θ) = ΛΦ𝚲′+Ψ, 

where Φ and 𝚿 are the covariance matrices of ξ and ε, respectively. Note the model factor 

loading matrix was the same of that of Study One, 

𝚲′= 

[
0.70 0.70 0.75 0.80 0.80 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.70 0.70 0.75 0.80 0.80 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.70 0.70 0.75 0.80 0.80

] 

 

. Variances of factors were set to one, with covariances between factors equal to 0.30, 0.40, and 

0.50, respectively. Variances of unique factors were set to values such that under normality, 

variances of observed variables are one. This model has been used in other Monte Carlo 

simulation studies (e.g. Hu, et al., 1992), and is used here to validate the simulation and as part of 

a recommended strategy to compare results to existing findings in literature (see Boomsma, 

2013).  

Data generation was accomplished with R software (Version 3.2.3; R Core Team, 2015) 

using the simulation function in simsem package (Pornprasertmanit, Miller, & Schoemann, 2016) 

based on the population model described above with latent factor and errors exhibiting the 

following characteristics for three different cases: For Case A, no skewness or kurtosis; Case B, 

nonnormality of 3 factors with true factor kurtoses of  -1, 2, 5  and 15 errors  with true kurtoses 

of -1.0, 0.5, 2.5, 4.5, 6.5, -1.0, 1.0, 3.0, 5.0, 7.0, -0.5, 1.5, 3.5, 5.5 ,7.5, chosen to mimic 

Condition 3 in Hu et al. (1992); and lastly, Case C, nonnormality with the same true kurtoses 
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values as Case B, but also a fixed covariance matrix for variances and covariances of factors 

such that asymptotic robustness is violated. In other words, normal theory methods that might be 

robust in Case B should no longer, at least in theory, be robust in Case C (Satorra & Bentler, 

1990; Satorra, 1992). The true kurtoses values are scaled such that zero reflects the absence of 

kurtosis. In all cases, factors and unique variates are independently distributed. These particular 

nonnormality conditions are of interest for this study because while distribution free methods 

should perform well across these cases, research reviewed in the introduction reveals this is not 

the case, except at very large sample sizes. The multivariate nonnormal data were simulated 

using the Vale and Maurelli (1983) method described previously in Study 2.   

This simulation focused on sample sizes greater than 120, due to the fact p* is the lower 

bound for inversion of the weight matrix for ADF. Sample sizes were comparable to several 

conditions of Study 1, as well as sample size conditions in Hu et al. (Ns = 150, 200, 500, 1000, 

2000, 2500 3000, & 5000). Sample moments were collected to compare with population 

moments, including information with respect to matrix eigenvalues.  

Each of 1000 independent samples of each sample size was analyzed with the lavaan 

package in R by specifying the correct model with 87 df, employing ML, GLS, and ADF 

estimation methods. Each test statistic for the SBMV were evaluated based on the appropriate 

degrees of freedom calculated based on Eq. 5.6 for each individual replication. Therefore in the 

results section only empirical rejection rates for SBMV will be discussed and compared to other 

methods. For the nonormal Case C, the df is 93.  

For purposes of this study, the maximum iterations for convergence was set to 1000. This 

“liberal” number of iterations was used for investigation, given the novel application of the 

regularization method. If a replication did not converge within 100 iterations, the replication was 
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flagged and recorded as an extreme number of iterations but allowed to continue up to 1000 

iterations. R script was written so that number of iterations, convergence, and warnings regarding 

negative variances were recorded for each method.  

Poor solutions were examined including non-convergences, the number of flagged large 

number of iterations, and number of results with at least one negative variance. Each test statistic 

was averaged across the number of converged replications and compared to expected values (the 

degrees of freedom for the model assuming a χ2 reference distribution). Standard deviations of 

test statistics for each method were compared to the square root of twice the degrees of freedom 

(variance = 2df, SD = √2𝑑𝑓 ≈ 13.19). Empirical rejection rates were calculated by summing 

number of replications for which the model was rejected based on the nominal alpha of .05. 

Since the fitted model is the correct model, this rate should approximate .05. 

5.3 Case A: Normal Results 

A small pilot study was conducted to decide on the specification for the mixture 

parameter for the MAP estimator. In Study 1, alpha (�̂�R) was found to be favorable over alpha (�̂�r), 

therefore may also be favored across these studies. On the other hand, the matrix considered in 

this study is quite a bit larger than the sample covariance matrix in Studies 1 and 2. If the number 

of non-zero eigenvalues are equal to the number of elements on the diagonal of a square matrix, 

there are close to 10 times the number of eigenvalues for  �̂� than S in this case (120 & 15, 

respectively).  

To empirically examine potential for performance, the two mixture parameters were 

auditioned. A condition was selected that was small enough to be low cost in terms of computing 

time and to reflect differences in outcomes of interest, while at the same time would not hindered 

by problems with solution propriety (N = 250). Both mixture parameters were tested and 
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compared in terms of condition numbers of the MAP estimators. Additionally, the MAP 

estimator was inverted and employed as the weight matrix for ADF, (the regularized ADF 

method described above, rADF & RADF) and results across 1,000 replications were compared 

(see Table 20) with the goal of selecting the mixture parameter with the best potential.  

           Table 20.  

 

Results suggest that the condition number of the unmodified matrix is quite large and >> 

than 1, indicating ill-conditioning. Both MAP estimators’ condition numbers are reduced, though 

more so for  �̂�r than  �̂�R . Moreover, in terms of variability all methods are relatively similar. In 

terms of test statistics, both methods improve upon the traditional ADF method. When 

computing the MAP estimator using �̂�r the ADF rejection rate is closer to the expected 50, while 

the MAP estimator computed using �̂�R  resulted in only a small improvement, with a rejection 

rate well above the nominal value. These results are somewhat similar to results in Study 1 

suggesting �̂�r resulted in lower conditions numbers and smaller test statistics on average than �̂�R  

However, this phenomena is not as severe in this case. This could be due to several factors, since 

both the method and the size of the matrix differ across these studies. Nevertheless, based on 

these results, the �̂�r matrix calculated using �̂�r is employed next for the normal condition (Case 

A) to keep simulations manageable.  

Comparison of Alpha Mixture Parameter for Study 3

Alpha
Condition 

Number
SD ADF Emp Rej

- 2087.79 532.43 143.78 911

 442.41 83.52 140.19 903

 269.48 61.39 93.68 147

Note.  Replications = 1000, N  = 250, Case A.

 ̂𝑟

 ̂ 
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5.3.1 Condition of Matrices 

Results are compiled in Table 21. Condition numbers are displayed on the left half, while 

standard deviations, and coefficients of variation are displayed in the right half of the tabled 

results. The coefficient of variation (cv) is a relative standard deviation calculated as the ratio of 

the standard deviation to the mean. It is useful for comparing the degree of variation from one 

data series to another, especially when means are quite variable. Such is the case here, as the 

average condition numbers are quite huge at small N, especially relative to those at larger sample 

sizes making comparisons of variability using the typical SD challenging.   

An empirical condition number based on 100,000 replications for �̂�  was calculated for 

comparison benchmark and was found to be large, 254.94. Condition numbers of �̂� are quite 

huge and variable at small Ns, though these decease as sample increases for the unmodified 

matrices. The �̂�r is quite improved over �̂�, especially when at the smallest of sample sizes, 

though the difference decreases as N increases. The coefficients of variation reflect condition 

numbers are less dispersed at larger sample sizes than smaller ones, but they also indicate 

regularized matrices have smaller dispersion of condition numbers relative to the unmodified 

matrices, though differences are not very pronounced except at the smallest of sample sizes.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

72 
 

   Table 21. 

 

 

5.3.2 Solution Propriety  

At the smallest sample size, two replications for the ADF method did not converge. All 

other replications had converged results regardless of sample size or methodology. Additionally, 

there were a small number of solutions with at least one negative variance, (ADF = 22) and three 

replications with high number of iterations. Results for other Ns, and for all other methods across 

sample sizes did not reflect any problem solutions. 

5.3.3 Performance of Test Statistics 

Test statistic results for all methods are compiled in Table 22. When N = 10,000, very 

little bias is reflected. On average, test statistics are close to the expected values at that large N.   

Results parallel the normal condition in Study 2 and previous literature (e.g. Hu, Bentler, and 

Kano, 1992) for comparable sample sizes and methods including ML, GLS, SB and ADF 

validating the simulation. In general, ML and GLS perform similarly to previous results in Study 

1 and will not be reviewed again here except in relation to new methods.  

Average Condition Numbers,  SDs,  and Coefficient of Variations of                

  by Sample Size (Normal Case A)

Samp        

Size

             

Cond
              

Cond

                  

SD Cond

                  

SD Cond c v c v

150 18459.87 181.84 7160.42 53.79 0.39 0.30

250 2087.80 269.48 532.43 61.39 0.26 0.23

500 742.46 317.04 132.13 51.20 0.18 0.16

1000 455.46 307.77 59.74 38.12 0.13 0.12

2000 352.19 290.06 33.89 27.03 0.10 0.09

2500 332.16 284.42 28.78 23.80 0.09 0.08

3000 318.75 279.98 24.96 21.53 0.08 0.08

5000 294.96 272.82 18.27 16.71 0.06 0.06

10000 275.68 265.03 12.75 12.20 0.05 0.05

Note.  Samp = Sample, Cond = Condition,  SD =  Standard Deviation, c v = 

 Coefficient of Variation, Emprical Condition Number = 254.94. 

�̂� �̂� �̂��̂�

�̂� and �̂� 

�̂� �̂� 
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Table 22. 

 

 

ADF results are consistent with the literature reflecting large and positive bias at smaller 

sample sizes, ranging up to 164%. Positive bias of test statistics is large across small and 

moderate sample sizes until at least sample sizes of 2000. Although test statistics for rADF are 

positively biased at smaller Ns, rADF is improved over traditional ADF. For example, at N = 

150, bias is only 4% and ranges up to 8.1% across all sample sizes. The other distribution free 

test statistic for RES performs comparably to ADF across the range of sample sizes and is biased 

upward, ranging up to 177% at the smallest of sample size. In parallel to ADF results, the 

regularized RES test statistic performs like rADF, with only a small amount of positive bias 

(ranging up to 7.79%). As expected at small sample sizes, test statistics for SB were inflated and 

results for rSB reveal the test statistic is negatively biased. Compared to normal theory methods, 

rADF is performing similarly and even better than the normal theory and SB methods under a 

few conditions, especially at N = 150.  

 

 

 

Simulation Results for Test Statistics for Ten Methods by Sample Size (Normal Case A)

Samp Size ML GLS ADF rADF SB rSB SBMV rSBMV TRES rRES

150 92.08 84.43 229.50
a

90.42 92.70 69.36 49.57 48.62 241.31 89.78

250 89.24 84.78 143.38 93.68 89.52 74.11 58.68 55.47 143.55 93.22

500 88.87 86.64 110.78 94.06 89.07 80.49 70.50 66.56 110.51 93.78

1000 87.80 86.76 97.73 91.42 87.92 83.48 77.70 74.72 97.57 91.27

2000 87.73 87.17 92.56 89.82 87.76 85.49 82.33 80.47 92.47 89.74

2500 88.03 87.61 91.74 89.62 88.05 86.22 83.64 82.08 91.68 89.55

3000 88.24 87.77 91.20 89.47 88.29 86.75 84.57 83.23 91.14 89.42

5000 87.11 86.88 88.94 87.95 87.13 86.23 84.90 84.05 88.90 87.91

10000 86.67 86.59 87.62 87.14 86.68 86.22 85.55 85.11 87.60 87.12

Note . Model is oblique 3 factor model in Hu et al. (1992), Replications = 1000,
 a
 Replications = 998,

 df  = 87, df s for SBMV and rSBMV differ across replications.
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Variability of Test Statistics 

In general, ADF and RES test statistics exhibit more variability than all other methods 

(see Table 23). Test statistics of rADF and rRES are less variable than their traditional 

counterparts. This is especially true at small Ns for which variability for rADF and rRES are 

about a third of the size of ADF and RES. By Ns of 2000 variability of all methods are fairly 

comparable to each other and to expected standard deviations (13.19).   

  Table 23. 

 

5.3.4 Rejection Rates   

Empirical rejection rates for all ten methods are displayed in Table 24. Even at N = 

10,000 there is some variability in performance across methods.  Both rADF and rRES methods 

produce exactly 50 rejections.  ADF and RES both have the highest number of rejections (both 

58), while regularized SB methods have the fewest (both 38).  At smaller Ns, ML rejection rates 

were higher than nominal rates, and GLS rejected models too infrequently, while ADF and RES 

reflect unacceptable rejection rates. Almost all true models are rejected at the smallest of sample 

size conditions for these methods. However, rejection rates for rADF reflects a huge 

improvement over ADF, as does rRES over RES.  Importantly, these methods reflect 

 Standard Deviations of Test Statistics for Ten Methods by Sample Size (Normal Case A)

Samp Size ML GLS ADF rADF SB rSB SBMV rSBMV RES rRES

150 14.23 12.75 50.71
a

16.47 14.23 11.51 7.22 7.43 60.02 16.51

250 12.83 12.26 27.16 15.86 12.83 10.98 8.08 7.83 27.60 15.84

500 12.98 12.81 18.58 15.33 13.05 11.89 10.04 9.58 18.58 15.31

1000 13.71 13.47 16.00 14.89 13.72 13.06 11.91 11.50 15.98 14.87

2000 12.89 12.86 14.13 13.67 12.90 12.56 12.00 11.73 14.12 13.66

2500 13.49 13.41 14.18 13.90 13.51 13.28 12.86 12.66 14.17 13.90

3000 13.88 13.86 14.76 14.38 13.87 13.57 13.07 12.83 14.75 14.37

5000 12.75 12.74 13.09 12.93 12.75 12.62 12.37 12.25 13.09 12.93

10000 13.01 12.98 13.22 13.15 13.01 12.94 12.82 12.75 13.21 13.14

100000 12.81 12.82 12.83 12.82 12.82 12.80 12.79 12.79 12.83 12.82

Note . Model is oblique 3 factor model in Hu et al. (1992), SD = Standard Deviation,  Replications = 1000, 
a
 Replications = 998.
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improvement over ML and SB at the smallest sample sizes, (but not SBMV which performs next 

to perfect).  

On the other hand, the regularized versions of SB methods did not perform well. These 

methods over accept at small Ns not reaching acceptable reject rates until at least 2,500. 

Rejection rates of SB and SBMV were the best performing overall methods: SBMV 

outperformed SB at the smallest sample size condition.   

Table 24. 

 

5.4 Case B: Nonnormal Condition Results 

A small pilot study was conducted to decide on the specification for the mixture 

parameter for the MAP estimator for nonnormal conditions (Case B and C).    

To empirically examine potential for performance, the two mixture parameters were 

auditioned. A condition was selected that was small enough to be low cost in terms of computing 

time and to reflect differences in outcomes of interest, while at the same time would not hindered 

by problems with solution propriety (N = 250). Both mixture parameters were tested and 

compared in terms of condition numbers of the MAP estimators. Additionally, the MAP 

estimator was inverted and employed as the weight matrix for ADF, (the regularized ADF 

Rejection Rates for Ten Methods by Sample Size (Normal Case A)

Samp Size ML GLS ADF rADF SB rSB SBMV rSBMV RES rRES

150 112 37 998
a

109 126 0 46 0 1000 109

250 68 29 911 147 68 2 33 0 911 139

500 60 48 504 152 61 12 45 8 491 147

1000 61 52 207 119 63 29 48 27 204 119

2000 50 44 125 79 49 28 48 26 125 79

2500 63 58 125 87 64 47 58 38 124 86

3000 64 56 101 78 63 49 61 48 100 77

5000 47 47 68 58 48 38 47 37 68 58

10000 40 43 58 50 41 38 39 38 58 50

Note . Model is oblique 3 factor model in Hu et al. (1992). Replications = 1000, 
a
 Replications = 998.
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Comparison of Alpha Mixture Parameter for Study 3

Alpha
Condition 

Number
SD ADF Emp Rej

- 4443.25 945.25 140.4 907

 569.52 136.83 137.01 896

 174.21 43.41 69.23 1

Note.  Replications = 1000, N  = 250, Case B.

 ̂𝑟

 ̂ 

method described above, rADF & RADF) and results across 1,000 replications were compared 

(see Table 25) with the goal of selecting the mixture parameter with the best potential.  

                     Table 25.   

 

 

 

 

 

 

Results suggest that the condition number of the unmodified matrix is quite large and 

quite a bit larger than 1, indicating ill-conditioning (see Table 25). Both MAP estimators’ 

condition numbers are reduced, though more so for �̂�r  than  �̂�R.  Moreover, in terms of 

variability all methods are relatively similar (Cv =.211-.249). In terms of test statistics, both 

methods improve upon the traditional ADF method. When computing the MAP estimator using 

�̂�r the ADF rejection rate over-accepts compared to the expected 50, while the MAP estimator 

computed using �̂�R resulted in only a small improvement, with a rejection rate well above the 

nominal value. These results are somewhat similar to results in Study 1 suggesting �̂�r resulted in 

lower conditions numbers and severely smaller test statistic compared to �̂�R. This could be due to 

several factors, since both the method and the size of the matrix differ across these studies. 

Additionally the normality changes between Case A and B, and we also see differences in 

results. The pattern of results is similar but here we see a more severe penalty creates an over 

acceptance. Nevertheless, based on these results, the �̂�R matrix was calculated using �̂�R. Although 

results reflect neither method is ideal, choosing the more conservative result might help uncover patterns 
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to further understand relationships between condition of matrices and solutions rather than choosing �̂�r 

resulting in continued over-acceptance. 

5.4.1 Condition of Matrices  

Results are compiled in Table 26. Condition numbers are displayed on the left half, while 

standard deviations, and coefficient of variations are displayed in the right half of the tabled 

results. The empirical condition number based on 100,000 replications for �̂�  was 516.43, larger 

than the condition number under normality. Condition numbers of �̂� are quite huge and variable 

at small Ns, and larger than condition numbers for normal condition (ranging up to about 

265,000). The coefficient of variation (CV) reveals variability of condition numbers of �̂� exceeds 

the average condition number for �̂�  at the smallest sample size. Moreover, the variability is 

about equal to the average for N = 200. Condition number and variability decreases as sample 

sizes increase for the unmodified matrices. CVs reflect the decrease of variability is more 

accelerated than the average condition number.  

Similar to the normal condition, the �̂�R is well improved over �̂� especially the smallest of 

sample sizes, though the difference decreases as N increases. Interestingly the condition numbers 

of �̂�R do not increase monotonically across sample size conditions. Rather, both the average 

condition number and variability of condition numbers increase until Ns of about 2000 and 2500 

then decrease, though CVs reflect the variability does decrease relative to the signal across N. 
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     Table 26. 

 

 

5.4.2 Solution Propriety 

 Under nonnormality, no convergence issues emerged for any of the methods except ADF. 

Five replications had analyses that did not converge for the traditional ADF method. At the 

smallest sample size the ADF method also had 21 high number of iterations and results for 47 

replications revealed improper solutions. At N = 250, only one replication for ADF resulted in at 

least one negative variance.  

5.4.3 Performance of Test Statistics 

The normal theory and ADF methods performed as expected based on past research and 

Studies 1 and 2 (see Table 27). As in previous conditions, test statistics for the RES condition 

continued to perform very similarly to ADF. Regarding regularization methods, both RADF and 

RRES improve upon traditional methods at the smallest Ns however both methods reflect huge 

positive bias until Ns of about 3,000. SB is positively biased at the smallest of Ns, while the 

regularized version actually worsens the positive bias.  

Average Condition Numbers,  SDs,  and Coefficient of Variations of                 by 

Samp        

Size

             

Cond

             

Cond

                  

SD Cond

                  

SD Cond c v c v

150 37892.69 1343.28 21554.27 412.52 0.57 0.31

250 4444.25 569.52 1935.42 136.83 0.44 0.24

500 1601.97 235.42 642.65 56.47 0.40 0.24

1000 953.67 624.80 296.47 309.41 0.31 0.50

2000 697.74 632.13 139.03 159.57 0.20 0.25

2500 649.49 589.05 113.58 113.33 0.17 0.19

3000 624.30 572.26 99.68 99.38 0.16 0.17

5000 562.75 531.30 73.27 72.90 0.13 0.14

10000 514.47 499.63 50.08 49.79 0.10 0.10

Note.  Samp = Sample, Cond = Condition Number,  SD = Standard Deviation, Empirical 

 condition number  is approximately 476.03 (N  = 100,000).

Sample Size (Nonnormal Case B)

�̂� �̂� �̂��̂�

 ̂ and  ̂ 

�̂� �̂� 
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Table 27. 

 

 

Variability of Test Statistic 

 When examining the variability in Table 28, ADF and RES methods are similar in 

regards to the spread of test statistics and at the smallest of sample size they are the most variable 

of all methods. On the other hand, the regularized versions of these methods reflect variability is 

relatively smaller especially at smaller sample sizes. Additionally, RADF and RRES are less 

variable than SB and across all sample sizes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simulation Results for Test Statistics for Ten Methods by Sample Size (Nonnormal Case B)

Samp Size ML GLS ADF RADF SB RSB SBMV RSBMV RES RRES

150 91.24 83.50 219.91 200.93 91.90 108.73 43.31 63.86 231.45 200.95

250 88.97 84.72 140.40 137.00 89.38 98.81 52.70 64.56 140.56 136.30

500 88.81 86.76 110.18 110.20 88.81 94.45 65.24 74.67 109.95 109.84

1000 87.69 86.69 97.46 97.93 87.84 88.44 74.01 74.89 97.32 97.78

2000 87.17 86.48 91.69 91.76 87.23 87.30 79.67 79.77 91.61 91.40

2500 87.84 87.43 91.59 91.65 87.90 87.96 81.71 81.78 91.53 91.58

3000 86.77 86.37 89.59 89.64 86.81 86.85 81.63 81.69 89.53 89.58

5000 86.52 86.29 88.36 88.38 86.54 86.56 83.35 83.38 88.32 88.35

10000 87.12 87.02 88.06 88.06 87.14 87.14 85.51 85.50 88.05 88.06

Note . Model is oblique 3 factor model in Hu et al. (1992), Replications = 1000,  ADF had 995 replications at 

 N  = 150,  df  = 87, dfs  for SBMV and RSBMV differ across replications.
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 Table 28. 

 

5.4.4 Rejection Rates 

According to Table 29, ADF and RES methods perform similarly in that reject almost 

every true model under smaller sample sizes. As sample size increases they perform closer to 

normal theory methods in terms of rejections, however not at acceptable levels until Ns of at 

least 2500. The regularized counterparts are not improved. Neither RADF nor RRES reach 

acceptable rejection rates until Ns of at least 2,500 like their traditional counterparts. Moreover, 

results for the regularized methods RSB reflect performance is worse than SB. On the other 

hand, RSBMV over “improves” upon SBMV. While SBMV over accepts models at the smallest 

of sample sizes, RSBMV over rejects, and does not reach nominal rejection rates until Ns of 

1,000.  

 

 

 

 

 

 

 

 

 

 

 

 Standard Deviations of Test Statistics for Ten Methods by Sample Size (Nonnormal Case B)

Samp Size ML GLS ADF RADF SB RSB SBMV RSBMV RES RRES

150 14.05 12.79 46.82 39.19 14.00 16.84 7.23 8.94 54.98 40.01

250 13.53 12.98 25.24 23.48 13.50 15.03 8.24 9.50 25.70 23.49

500 12.79 12.52 17.58 17.01 12.79 13.65 9.65 10.67 17.56 16.96

1000 12.52 12.58 14.49 14.56 12.44 12.53 10.41 10.53 14.47 14.53

2000 13.40 13.30 14.23 14.24 13.37 13.38 12.09 12.11 14.22 14.23

2500 12.72 12.71 13.61 13.61 12.75 12.76 11.80 11.81 13.60 13.61

3000 13.15 13.11 13.72 13.73 13.15 13.16 12.32 12.33 13.71 13.72

5000 13.06 13.02 13.41 13.42 13.03 13.04 12.51 12.52 13.41 13.41

10000 14.01 13.97 14.17 14.17 14.01 14.01 13.71 13.71 14.16 14.16

Note . Model is oblique 3 factor model in Hu et al. (1992), Replications = 1000,  ADF had 995 replications at 

N  = 150.
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Table 29. 

 

5.5 Case C: Nonnormal Results 

5.5.1 Condition of Matrices 

Condition numbers in Table 30 reveal that results are essentially the same as to those in 

Case B, as expected. Refer to Section 5.4.1.  

      Table 30.  

 

Rejection Rates for Ten Methods by Sample Size (Nonnormal Case B)

Samp Size ML GLS ADF RADF SB RSB SBMV RSBMV RES RRES

150 103 27 995 1000 100 455 30 261 1000 1000

250 72 37 907 896 71 230 28 122 906 891

500 57 38 481 482 55 126 33 95 471 473

1000 48 45 203 212 47 51 35 43 200 209

2000 64 56 117 117 62 65 53 54 114 115

2500 47 45 98 100 50 51 47 47 98 98

3000 53 52 73 73 54 54 50 50 73 73

5000 40 42 57 57 42 42 38 39 57 57

10000 53 52 65 65 53 53 52 52 65 65

Note . Model is oblique 3 factor model in Hu et al. (1992), Replications = 1000, ADF had 995 replications

at N  = 150, 

Average Condition Numbers, SDs,  and Coefficient of Variations of                   by 

Samp        

Size

                  

Cond

             

Cond

                  

SD Cond

                  

SD Cond c v c v

150 37892.69 1343.28 21554.21 412.52 0.57 0.31

250 4443.25 569.52 1935.42 136.83 0.44 0.24

500 1601.97 235.42 642.61 56.47 0.40 0.24

1000 953.68 624.79 296.37 309.41 0.31 0.50

2000 697.73 625.72 139.02 139.11 0.20 0.22

2500 649.49 589.05 113.58 113.33 0.17 0.19

3000 624.31 572.62 99.68 99.38 0.16 0.17

5000 560.73 529.02 73.01 72.29 0.13 0.14

10000 515.59 500.68 47.95 47.63 0.09 0.10

Note.  Samp = Sample, Cond = Condition,  SD =  Standard Deviation, c v = coefficient of 

variation.

Sample Size (Case C)

�̂� �̂� �̂��̂�

�̂� and �̂� 

�̂� �̂� 
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5.5.2 Solution Propriety 

 All replications converged for all methods. Additionally, no replications exceeded 100 

iterations but at N = 150 results included improper solutions (53 for ADF, 3 for RADF). 

Furthermore, results for two other methods reflected problems at N = 150: GLS had one 

replication that reflected non-convergence, one with high iterations, and a replication with an 

improper solution. Although at N = 250 all replications reflected convergence for ADF, 19 

solutions had at least one negative variance.  

5.5.3 Performance of Test Statistics 

Results in Table 31 reflect typical findings under severe nonnormality for ML, GLS, 

ADF and SB methods (Model df = 93). As reflected in other conditions, RES performed closely 

to ADF.  Regularization methods are all positively biased at most sample sizes except at the 

largest sample sizes. This positive bias worsened under these severe nonnormality conditions.  

 

Table 31. 

 

Variability of Test Statistics  

When examining the variability in Table 32, findings reflect that ADF and RES methods 

Simulation Results for Test Statistics for Ten Methods by Sample Size (Nonnormal Case C)

Samp Size ML GLS ADF RADF SB RSB SBMV RSBMV RES RRES

150 97.79 91.08 282.60 242.90 97.92 119.58 44.55 62.99 288.64 241.84

250 95.16 91.77 161.04 158.11 94.97 108.37 54.35 69.53 160.77 157.23

500 94.87 93.22 120.91 124.69 94.29 103.64 67.38 80.58 120.63 124.27

1000 93.80 93.03 105.47 106.49 93.14 94.65 77.05 94.65 105.32 106.32

2000 93.13 92.53 98.23 98.40 92.39 92.66 83.33 83.77 89.89 90.01

2500 93.92 93.56 98.05 98.21 93.16 93.40 85.59 85.97 97.99 98.14

3000 92.83 92.49 95.87 96.01 92.07 92.28 85.64 85.96 98.15 98.32

5000 92.98 92.83 94.79 94.88 92.19 92.32 87.98 88.19 94.76 94.85

10000 92.87 92.76 93.40 93.44 92.08 92.15 89.62 89.73 93.39 93.43

Note . Model is oblique 3 factor model in Hu et al. (1992), Replications = 1000, df  = 93, df  for SBMV and 

RSBMV differ across replications,.
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are similar in regards to the spread of test statistics and at the smallest of sample size. Both of 

these methods are the most variable of all methods. On the other hand, the regularized versions 

of these methods reflect variability that is relatively smaller, especially at smaller sample sizes. 

Additionally, RADF and RRES are less variable than even RSB and traditional SB across all 

sample sizes.  

 

Table 32. 

 

5.5.4 Rejection Rates  

As Table 33 reflects, the RES method once again parallels the ADF results. Empirical 

rejection rates for regularization methods are similar to results under nonnormality Case B. That 

is, at the smallest sample sizes these methods do not reject any true models. Although rejection 

rates improved as N increased, they do not reach nominal rejections until the largest of sample 

sizes.  

On the other hand, regularization applied to correction methods (SB/SBMV) actually 

increase the rate of rejections at the smallest sample size. The goal is to decrease rejections at 

small N for SB, not increase them. On the other hand, although inflating SBMV is desired, the 

inflation is too severe. By Ns of 1000 both regularized methods return reasonable rejection rates.  

 

 SDs of Test Statistics for Ten Methods by Sample Size (Nonnormal Case C)

Samp Size ML GLS ADF RADF SB RSB SBMV RSBMV RES RRES

150 14.84 14.21 70.38 52.76 14.86 14.86 7.54 9.44 75.76 53.41

250 14.02 14.08 29.86 27.70 14.06 16.05 8.61 9.95 30.13 27.66

500 13.20 13.16 19.09 19.28 13.12 14.42 9.98 11.12 19.09 19.25

1000 13.17 13.18 15.40 15.57 12.83 13.84 10.77 11.06 15.38 15.55

2000 13.92 13.89 15.07 15.09 13.80 13.84 12.39 12.44 15.06 15.08

2500 13.07 13.06 14.09 14.11 12.97 13.01 11.97 11.93 14.08 14.10

3000 13.58 13.57 14.07 14.09 13.50 13.53 12.57 12.61 14.06 14.08

5000 12.92 12.88 13.48 13.49 12.80 12.82 12.20 12.23 13.46 13.49

10000 12.93 12.95 13.16 13.17 12.84 12.85 12.48 12.50 13.16 13.17

Note . Model is oblique 3 factor model in Hu et al. (1992).
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Table 33. 

 

5.6 Simulation 3: Overall Results 

The average condition number at a sample size of 100,000 (254.94) worsened at under 

nonnormality (516.43), though this number was still under 1,000 (one heuristic for ill-

conditioning) for all three conditions. For a summary of condition numbers of unmodified 

matrices across conditions see Table 34.   

Table 34. 

 

Rejection Rates for Ten Methods by Sample Sizes (Nonnormal Case C)

Samp Size ML GLS ADF RADF SB RSB SBMV RSBMV RES RRES

150 110 47 1000 1000 113 543 28 339 1000 1000

250 67 49 957 955 67 299 23 183 957 954

500 52 39 557 624 49 191 22 141 555 636

1000 49 50 236 257 42 59 40 26 232 254

2000 64 53 131 136 53 56 44 46 128 133

2500 58 55 95 97 54 56 38 39 95 96

3000 51 51 78 80 48 48 40 42 78 79

5000 46 44 58 58 40 42 36 38 58 58

10000 40 40 48 48 34 34 34 34 48 48

Note . Model is oblique 3 factor model in Hu et al. (1992).

Condition Numbers, SDs, and Coefficients of Variation of       by Sample Size and Normality

             

Cond

                

SD  Cond
c v

             

Cond

                

SD  Cond
c v

150 18459.87 7160.42 0.39 37892.69 21554.21 0.57

250 2087.80 532.43 0.26 4443.25 1935.42 0.44

500 742.46 132.13 0.18 1601.97 642.61 0.40

1000 455.46 59.74 0.13 953.68 296.37 0.31

2000 352.19 33.89 0.10 697.73 139.02 0.20

2500 332.16 28.78 0.09 649.49 113.58 0.17

3000 318.75 24.96 0.08 624.31 99.68 0.16

5000 294.96 18.27 0.06 560.73 73.01 0.13

10000 275.68 12.75 0.05 515.59 47.95 0.09

Note.   Cond = Condition Number,  SD =  Standard Deviation,  c v = Coefficient of Variation.

Sample        

Size

Normal  Nonnormal

 ̂  ̂ ̂  ̂

 ̂
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In general, the average condition number and SDs for unmodified matrices increased as N 

decreased. Additionally, average condition numbers were quite large at small Ns for the normal 

condition, and even greater still under nonnormality. In general they were about double the size 

of normal condition numbers, and discrepancy was largest at smaller sample sizes. Results also 

reveal high variability of condition numbers at small sample sizes especially under nonnormal 

conditions.  

 Regarding solution propriety in Table 35, poor solutions worsened under nonnormality at 

small sample sizes for ADF. These issues greatly improved under regularization, and were 

essentially zero accept a few negative variances (4 for Case B & 3 for Case 3 at N = 150) 

especially for both normal and nonnormal conditions.  

 

    Table 35. 

 

Test statistics under regularization in normal conditions reflect rADF and rRES are 

greatly improved, with rRES having a slight advantage over rADF. Both methods exhibit small 

positive bias at small Ns, with somewhat inflated variability. These inflations are reflected in 

rejection rates that are too high at the smallest Ns. On the other hand, under nonnormality the 

pilot study revealed at N = 250 the test statistic was severely negatively biased, reflecting too few 

Improper Solutions Results for each Normality Condition at 

Ns of 150 and 250

Non-Conv High Iter Neg Var

150 Normal 2 3 22

Nonnormal B 5 21 47

Nonnormal C 0 0 53

Note . Model is oblique 3 factor model in Hu et al. (1992), 1000 

replications attempted; ADF = 1 Neg Var for N =250, Case C

condition, GLS = 1 Non-Conv, High Iter, & Neg Var at N =150.

N Nonnormality
ADF
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rejections (1 of 1000 replications). Yet, RRADF and RRES did not improve on ADF and RES 

under nonnormal conditions, performing on par with the traditional methods.  

Findings for regularization applied to SB reflect similar results with SBMV more 

severely impacted- while rSB recovers at larger sample sizes rSBMV does not, consistently over 

accepting the true model. As expected, under normality the typical scaled SB method performs 

similarly to ML at small N conditions but improves as N increases, while the typical SBMV 

performs quite well even at small N conditions and in general outperforms other methods.    

Under nonnormality SBMV loses the advantage and over-accepts the true model across a wide 

range of sample sizes, while SB performs well under moderate and severe nonnormality at most 

sample sizes except the smallest. Under nonnormality, SB and SBMV worsened under 

regularization and did not recover until Ns of 1000. 
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CHAPTER 6 

DISCUSSION 

6.1 Summary of Findings and Conclusions 

Major objectives of these studies included the application of regularization to SEM in 

order to improve results of existing estimators that are known to break down under finite 

conditions, and to conduct systematic simulation studies to elucidate potential mechanisms for 

the poor performance. In particular, ill-conditioned matrices were examined as culprits, and a 

MAP approach was proposed and applied. The idea to employ a shrinkage estimator that 

modifies the eigenvalues of offending matrices, improving the “data”, but not modifying the 

method itself, allowed for great flexibility in application. The form of the target matrix to 

regularize differed across the simulation studies, however the overall goal remained the same—

to stably estimate a covariance matrix in order to improve SEM results that depend upon these 

matrices (or their inverse). 

Major findings include the following- poorly conditioned matrices play a role in 

problems in SEM that arise under non-ideal circumstances. Condition numbers reflect ill-

conditioning, especially when sample sizes are small, as well as under conditions of 

nonnormality. Since there are no cutoffs or guidelines for what constitutes an “worse” ill-

conditioned matrix, the magnitude can be assessed in a qualitative manner, such that it is 

conservative to say condition numbers are large under small sample size, larger for nonnormal 

than normal data, and quite huge for higher dimensional matrices. Additionally, these factors 

(tend to) interact creating conditions where the magnitude of condition numbers were even 

higher than these reported in recent literature. While most findings were very similar to Huang & 

Bentler (2015), condition numbers decreased at a much slower decent across sample size under 

the nonnormal conditions in Study 2, and still were quite large at sizes typical for SEM use (Ns 
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of 200 and 300). Basically, these condition numbers were more pronounced. One difference 

between the two studies is that the true factor loadings were more variable, (and therefore so 

were the associated error variances), which may be another basis for ill-conditioning of matrices.    

The proposed regularization methods always improved condition numbers, while RGLS 

also improved small sample performance of test statistics. In fact, the RGLS method was found 

to be quite a well performing method for such finite samples. RGLS outperformed traditional 

estimators at these small N conditions. As expected by previous literature reviewed in the 

introduction (e.g. Bentler & Yuan, 1999) conventional test statistics of ML(GLS) break down 

under less than asymptotic conditions, over (under) estimating the test statistics associated with 

too many (few) rejections. Therefore, the superior performance of RGLS is valuable given the 

more common practice of intensive data collection. Researchers now have access to data sets that 

do not fit into the classical statistical framework used in SEM, that of asymptotic theory 

requiring large samples on a relatively small number of variables.   

Additionally, under normal conditions ADF methods were improved when regularization 

was applied to both the sample covariance matrix and the asymptotic covariance matrix (though 

much less for the former than the latter). Other methods outperformed RADF and RRES 

however at the smallest of sample size there was a notably improved difference. More 

importantly, beyond performance results, these findings provide empirical evidence to support 

the idea that estimating a large amount of information (e.g. elements in sample covariance 

matrices) based on little information (such as small N), leads to instability and degenerate cases 

(when the number of elements is quite large in the matrix) and are at least partially to blame for 

problems. Additional evidence of this included results concerning solution propriety. When 

matrices were regularized and applied to SEM convergence was improved, number of iterations 
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for reaching convergence was reduced, and fewer cases of improper solutions emerged. The 

findings add to research examining similar phenomena (e.g. Yuan & Bentler, 2017). 

Although findings support that under some conditions regularization techniques greatly 

improve upon traditional ones, unexpectedly, the choice of tuning and mixture parameters added 

complexity to the methodology. When aiming to fix problems, other issues can arise and 

sometimes a better solution will come with trade-offs. For example, while there are many 

approaches for cross validation for the penalty parameter, it is not intuitive as to what data would 

best be supplied for the folds for the asymptotic matrix. This process was made possible here by 

using the n x p* “data” matrix, which is a type of sum of cross products matrix, yet this may not 

be the only, or best approach. Other methods reviewed in the introduction like that of Kamada 

(2011) may be useful for these types of matrices because using information criteria has lower 

cost. This possible solution should be studied comparatively.  

Additionally, finding the penalty and relative weight independent of one another may not 

be ideal. Fixing one parameter while finding the other is an ad-hoc method. When multiple 

parameters need to be estimated this common practice eases complexity. Yet, this can come at a 

cost. For the RGLS case, the suggested estimator of the mixture parameter (α) was not ideal 

which motivated another proposition put forth in Study 1 that worked well. On the other hand, 

this suggestion may not generalize. Given results from Simulation 3, a parameter that depends on 

features of the data may be more fruitful in terms of results, especially given the application to a 

much larger, complex matrix. Chi and Lange (2014) suggest a choice of α to match the scale of 

the data. If large sample eigenvalues are inflated, the mean may also be too large, leading to an α 

that is too small, which was the case for Study 1. It is important to investigate this idea further. 
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Of course, one could run a simulation study to identify the ideal value to use, but this is not very 

efficient, or practical for users.  

A next step towards better penalty parameters for the MAP estimator will be devoted to 

finding a rationale for selection or even simpler, finding good tools to select the optimal 

parameters, empirically. One possibility might include extending cross validation for finding the 

mixture-parameter α though this adds potential complexity. A way to ameliorate this might be to 

adjust the number of folds for cross validation.  

Furthermore the Elastic Net (Zou & Hastie, 2005) regularization method for regression 

might be a good source for a possible solution. Elastic Net is a hybrid between ridge regression 

and LASSO, and uses a convex linear combination of the l1 and l2 norms. A typical scheme for 

finding the necessary parameters with Elastic Net is to employ a cross validation scheme using a 

grid of candidate α values within [0,1] representing the proportion of l1 versus l2 penalty, a 

parallel to our problem. A naïve approach that is sometimes taken is to fix the alpha to some 

value and use cross validation for lambda. However, this ad hoc approach is simple but not 

always ideal for Elastic Net.  Zou and Hastie (2005) recommend to cross validate on a two 

dimensional surface which may point to a solution for our similar issue. There is a literature 

around such methods (e.g. Hastie, Tibshirani, & Friedman, 2009; Lorbert & Ramadge, 2010). 

While not extrinsically obvious, parameters assign relative weights to different characteristics of 

the data.  Therefore it is reasonable that performance not only relies on choice of regularization 

to some degree but also choice of these types of parameters. 

The present study adds to existing regularization literature reviewed in Chapter 2 

particularly for SEM. Just in the past few years there have been several publications in SEM 

journals surrounding regularization techniques. This work adds to that contemporary research but 
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also extends the literature given this is a novel approach for other matrices beside the sample 

covariance matrix, and applications of estimators beyond ML (though also see Yuan & Chan, 

2016). Moreover, these findings as a whole contributes to the growing body of literature about 

the condition of matrices. This has implications for both methodologists and practitioners.   

6.2 Significance and Implications 

6.2.1 Implications for Methodologists: Future Research 

The identification of some ill-conditioned matrices used in SEM, and their impact on 

results, points toward the consideration of why matrices are poorly conditioned and how this ill 

conditioning is impactful to different methodologies. For researchers who use Monte Carlo 

simulation as a tool, these results might encourage a practice of reporting condition numbers of 

important matrices alongside typical reporting of methods and/or results, even if regularization is 

not the focus of the study. This will not only add to the body of understanding of condition 

numbers over a wider range of conditions than those considered here, but also identifies potential 

problems before a simulation gets underway. Additionally, findings here open up new avenues of 

research.  

Simulation conditions considered in these studies were limited. This is typical for a first 

application of any technique like MAP to SEM. Constricting conditions allowed for greater 

control (i.e. internal validity), but this of course has the opposite effect on generalizability. It is a 

strength of these studies that a model that has been tested in several papers was utilized allowing 

for verification of the simulation. Extensions of conditions such as inclusions of different 

nonnormality conditions and possibly others not considered here (e.g. misspecification or 

missing data) could be reasonable next steps. Additionally, many extensions of the approach can 
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be considered, including drawing from the rich bank of regularization techniques outlined in 

Chapter 2.   

Finally, findings could also inspire developers of programs for SEM analyses to either 

inform the user about the condition of the matrices used in the analyses. This could be in the 

form of descriptive information commonly reported at the beginning of output, or even some sort 

of warning message.  

6.2.2 Implications for Practitioners: Applications 

Study results also indicate a clear need to educate SEM users about the benefits of 

regularization as applied to SEM. Given the fact as reviewed in introductory chapters, the actual 

usage of regularization in the social and behavioral sciences is fairly limited relative to the huge 

amount of literature of applications that exists in other areas. Perhaps little is known about the 

usefulness of such techniques to address problems. Key findings here suggest poor matrices 

could be culprits of problems of convergence, high number of iterations and improper solutions, 

encountered by SEM users. For one such example, consider Mark and Belyea (2009) who do not 

report SEM results, stating a lack of convergence of the model moving from a univariate to 

bivariate model, doubling the number of manifest variables. Although other problems could be 

the culprit besides high dimensionality, it points to the disadvantage of not being able to employ 

a model that might be more in line with theory and settling for another that might be less-ideal, 

or even biased. A suggestion based on findings from these studies is to evaluate matrices as part 

of ones data screening and model building process. Although poor solution propriety can also be 

indicators of a variety of other issues such as a poorly hypothesized models, or an identification 

problem, evaluating relevant matrices can point the analyst toward the problem (or at least rule 

one out).  
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Of course, any limitation can hinder wide-spread adoption of practice or use of a novel 

procedure, even a beneficial one. However, calculations of condition numbers are fairly simple, 

and condition number estimators can be found in freeware. For example in R, an open source 

software, one such package exists called kappa. This package uses the l2 norm in calculations, 

equivalent to the intuitive definition of the ratio of largest to smallest eigenvalue. For data that 

are “ultra high-dimensional”, such as fMRI data or large scale data often associated with 

educational research for a small subset of participants, these calculations may not be cheap in 

terms of time or computing resources, though advances of computer memory may mitigate these 

concerns. Further, cheaper approximations are available, even in the kappa package, if 

necessary.  

Reporting condition numbers will have a two-fold impact (1) it is a part of best practice 

for understanding your data and points researchers toward the selection of an appropriate method 

to analyze data and (2) it grows the body of knowledge for what might be considered “typical” in 

terms of conditions of matrices, perhaps even quicker than large number of simulations with far-

reaching conditions. Moreover, this practice could provide more authentic information about 

characteristics of real-world data. Furthermore, reporting this information might identify issues 

with particular matrices more common to specific lines of research and in a didactic pattern, 

inspire new methods, informing methodologists about areas fruitful for research. 

6.3 Concluding Remarks  

First, a brief overview of well-known problems in SEM was given. These problems have 

been longstanding, and while they are frequently acknowledged, little has been done to fix issues 

such as ill-conditioned matrices that might have a role in creating such problems. Additionally, a 

review of regularization methods was provided, including contemporary work in the SEM, as 
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well as of other techniques lesser known to social and behavioral scientists. Details were 

delineated for one such method, the MAP estimator, as well as plans for its applications to SEM.  

The idea of fixing the covariance matrix is not necessarily a brand new idea. One such 

case is reviewed in a paper by Tanaka (1987) thirty years ago. Borrowing from economics, the 

Minimum Entropy Estimator (ME2; Vinrod, 1982) matrix was proposed in order to estimate a 

sample covariance matrix whose diagonal was adjusted for measurement error for small sample 

problems. This method proved not to be a consistent estimate of the population matrix, and 

therefore, was not useful. However the MAP estimator considered in this present investigation is 

importantly a consistent estimator and ideal for such a purpose. 

In sum, the proposed MAP method was subjected to Monte Carlo simulation study where 

true parameters and conditions could be controlled so that performance could be evaluated in 

three large-scale studies. Importantly, studies included both normal and nonnormal conditions 

and a wide ranging number of sample sizes to create contexts for which matrices would be ill-

conditioned, and moreover, model fit breaks down. In addition, the MAP approach was 

compared to other methods originally designed to ameliorate but not directly address these long-

standing problems, including such methods as asymptotic distribution free methods, correction 

methods, and another contemporary regularization method using a ridge approach.  

In the following chapter, the well-performing RGLS estimator is employed with real-

world data. Broadly speaking, one goal of regularization is to change a system so it obeys laws – 

regularization may be one key to fixing problems in structural equation modeling under non-

ideal finite circumstances, such that they perform like they are obeying asymptotic properties. 
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Chapter 7 

AN APPLICATION OF REGULARIZED GLS 

7.1 Background and Related Literature  

This illustrative example is presented in order to study the application of regularization 

methods using real-world data. This example is particularly instructive given the small sample 

size relative to the number of items on a measure of parental motivational practices for 

encouragement of children’s academic motivation.  

In addition to school based factors, home based factors including attitudes, beliefs, and 

behaviors of parents play an important role in children’s educational success (Fan & Chen, 

2001). For example, mothers’ encouragement of task endogeny has been shown to be positively 

related to children’s intrinsic academic motivation (A. E. Gottfried, Fleming, & Gottfried, 1994).  

Furthermore, research suggests rewarding children contingent upon performance can discourage 

autonomy, and has been shown to be negatively related to future academic achievement.  

Though research abounds in respect to mothers’ educational involvement, less is known 

about paternal involvement. This illustration focuses specifically on fathers’ task intrinsic and 

task extrinsic motivational practices. Task intrinsic practices comprise parental encouragement 

of children’s pleasure in the learning process, curiosity, persistence, and task involvement. On 

the other hand, parental task extrinsic practices comprise external control using external rewards 

and consequences contingent on children’s performance.  In general, research of motivational 

practices surround mothers’ practices and relatively less is known about fathers’ practices. This 

is not unusual in educational and developmental research. In fact, as a whole in comparison to 

mothers, the importance on the role of the father and his influence on the development and 

growth of his child is often neglected or assumed equivalent to mothers, (though there are 

exceptions, see Flouri, 2005 and other research by Flouri & Buchanan, 2003, 2004 for example). 
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Although the subject of studies in educational or developmental research is parents, often 

mothers are the typical respondent, not fathers. Relatively fewer parent-child studies specifically 

investigate fathers’ roles. Additionally, even when responses surround paternal involvement, 

responses are often reported by children’s mother in regards to fathers rather than collecting data 

directly from fathers.  Therefore, these analyses begin with examining a measurement model, an 

important first step toward examining parent motivational practices with father-reported data.    

7.2 Methods 

7.2.1 Participants 

The present study employed data from the Fullerton Longitudinal Study (FLS; e.g., A.W. 

Gottfried, Gottfried, & Guerin, 2006), a contemporary ongoing long-term longitudinal 

investigation in which 130 children and their families were followed from infancy (age 1-year) 

through adulthood. The infants were selected from notifications of all births from hospitals 

surrounding the university. Families were invited to participate just prior to the infants’ 1-year 

birthday.  Infants free of neurological and visual problems and of normal birth weight were 

eligible to enter the study.  Socioeconomic status (SES) of families was determined by the 

Hollingshead Four-Factor Index of Social Status (see Hollingshead, 1975). This index is based 

on both mothers’ and fathers’ level of education and occupational ranking.  SES varied ranging 

from semi-skilled workers with no high school degree through professionals.   

Over the course of study, participants’ retention was high with at least 80% returning for 

any assessment and with no evidence of attrition bias (A. W. Gottfried, Gottfried, Bathurst, 

Guerin, & Paramore, 2003).  For further details concerning sample characteristics and study 

design, see A. W. Gottfried and Gottfried (1984), as well as A.W. Gottfried, Gottfried, Bathurst, 

and Guerin (1994). In the course of investigation, participants were administered a battery of 
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standardized tests in the university laboratory.  Additionally, parents responded to standardized 

home environmental inventories.  These analyses concern 72 fathers of FLS children at the 16 

and 17 year waves.    

7.2.2 Measures 

Parental motivational practices  

 Parental motivational practices for encouragement of their children’s academic 

motivation were assessed with the Parental Motivational Practices Survey (PMPS; A.E. Gottfried 

et al., 1994). Psychometric properties can be found in A.E. Gotffried et al. (1994) and A. E. 

Gottfried, Marcoulides, Gottfried, and Oliver (2009). The instrument consists of 10 item 

subscales, named Task Intrinsic and Task Extrinsic. The items were responded to using a 6 point 

Likert-type scale, where 6 = not at all true to 1 = very true. Examples of items for tasks fostering 

intrinsic motivation include “I encourage my child to be persistent in school work.” and “I try to 

expose my child to new experiences”.  Examples of task-extrinsic PMPS items include “Reward 

him/her with money” and “Provide child with learning materials”.  For the purposes of 

demonstration these items are treated as continuous. With six response categories the items could 

be represented as ordered categories, though descriptive results presented later reflect evidence 

of multivariate normality, important for methods employed here. Items that were not appropriate 

to adolescence were removed (e.g., items having to do with toys or teachers), such that 11 total 

items were retained, with seven Task-Intrinsic items and four Task-Extrinsic items. 

7.2.3 Hypothesized Model  

The proposed model (see Figure 6.1) was fit to the data using R (R Core Team, 2017). A 

two factor solution for each wave is proposed based on both theoretical rationale highlighted 

briefly in the introduction and previous research outlined already using maternal report. It should 
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be noted that response choice is not forced between extrinsic and intrinsic items. Although 

previous research reflected factors were distinguishable and correlation between factors was 

nonsignificant (r = .10), given the longitudinal nature of the data and the fact the earlier finding 

was based on maternal report the traditional inclusion of covariances between factors was 

followed. Errors of the same items across wave are also allowed to covary. The model degrees of 

freedom were 203 (22*23/2 =253 - 61 = 192). The model was fit with Maximum Likelihood 

(ML), Generalized Least Squares (GLS), rGLS as well as RGLS methods.  

 

 

 

Figure 6.1. CFA model for parental motivational practices.  
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7.3 Results  

Descriptive statistics including means and standard deviations of items are presented in 

Table 37. On average, means for Intrinsic items were slightly higher than average scores for 

Extrinsic items. Results suggest a similar amount of variability across items. Though some items 

are slightly negatively skewed and fewer items exhibited mild positive kurtosis (i.e., Items 1 and 

13), Mardia's normalized multivariate kurtosis coefficient (1970, 1974) evidenced multivariate 

normality (2.16) given the estimate is smaller than a benchmark of 3 (Bentler, 2006).  When 

examining zero-order correlations, items of the Task Intrinsic practices subscale reflect moderate 

to strong relationships, ranging up to .74. Correlations for Task Extrinsic practices reflected 

similar inter-relationships, ranging up to .71. As expected the same items across waves enjoyed 

moderate to strong relationships, though more so for indicators of the Extrinsic (up to r = .71) 

than the Intrinsic (r = .57) factor.  Generally, most items between the two subscales are not 

related, though a very few number items reflect somewhat small to moderate relationships, with 

correlations ranging up to .31. The condition number of the sample covariance matrix was 

100.79. The condition numbers for MAP estimators �̂�r   and  �̂�R were 16.66 and 20.33, 

respectively, reflecting improvement from the original condition number.  

All models converged. The methods had similar numbers of iterations (ML = 42, 

Regularization methods = 41 each), while GLS had the highest number (46). The test statistics 

for the four methods and associated p-values are displayed in Table 36. ML has the largest test 

statistic, followed by RGLS then GLS and finally rGLS. When examining p-values, ML rejects 

the model, while RGLS, GLS and rGLS retain the model, given the traditional benchmark of .05. 
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       Table 36. 

 

Parameter estimates are displayed in Table 37.  Naïve standardized estimates based on 

the product of the estimate and the square root of the variance of the associated latent factor the 

item loaded on was calculated in order to allow for comparisons across method. In general GLS 

estimates are smaller than ML with RGLS/rGLS estimates falling between the two (see bolded 

entries in Table to demonstrate how often this occurred). RGLS and rGLS estimates are quite 

similar, or in some cases even identical.  

 

Model Results for Test Statistics by Method 

Method T df
T /df 

Ratio
p

ML 253.66 192 1.32115 <.001

GLS 201.79 192 1.05099 .299

rGLS 142.18 192 0.74052 .997

RGLS 217.11 192 1.13078 .104

Note. N  = 72
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Table 37. 

 Est Std.lv Est Std.lv Est Std.lv Est Std.lv

1 Persist 4.03 1.21 Int 16 1 - 1 - 1 - 1 -

2 Find Out 4.49 0.99 .55 .52 .75 .72 .45 .44 .55 .53

3 New Exp 4.44 1.22 .85 .81 .98 .94 .69 .68 .84 .81

4 Effort 4.51 1.31 .98 .93 .99 .95 .91 .90 .97 .93

5 Indep 4.31 1.16 .92 .88 1.01 .97 .53 .52 .89 .86

6 Enjoy 4.73 1.15 .99 .94 .95 .91 .94 .93 .98 .94

7 Mastery 4.51 1.21 .91 .87 .96 .92 .67 .66 .89 .86

8 Privilege 3.79 1.64 Ext 16 1 1 1 1 -

9 Gift 3.33 1.76 .88 .81 .97 1.04 .90 .68 .88 .82

10 Material 2.89 1.43 .55 .51 .59 .63 .43 .33 .56 .52

11 Money 2.61 1.55 .80 .74 .92 .98 .72 .55 .82 .76

12 Persist 4.59 1.29 Int 17 1 - 1 - 1 - 1 -

13 Find Out 4.16 1.01 .75 1.04 .69 .92 .59 .76 .74 1.02

14 New Exp 4.38 1.25 .85 1.18 .85 1.13 .61 .78 .84 1.16

15 Effort 4.35 1.14 .96 1.33 .89 1.18 1.14 1.47 .95 1.31

16 Indep 4.46 1.24 .80 1.11 .86 1.14 .54 .69 .78 1.08

17 Enjoy 4.29 1.15 .79 1.09 .81 1.08 .65 .84 .79 1.09

18 Mastery 4.82 1.11 .60 .83 .65 .86 .51 .66 .59 .81

19 Privilege 3.49 1.62 Ext 17 1 - 1 - 1 - 1 -

20 Gift 3.07 1.57 1.29 1.38 1.28 1.39 1.23 1.25 1.31 1.38

21 Material 2.51 1.51 .80 .86 .86 .94 .59 .60 .81 .85

22 Money 2.61 1.59 1.19 1.27 1.28 1.39 .95 .97 1.21 1.27

Note.  Est = unstandardized estimate, Std.lv = Est standardized by latent  factor variance, Bolded estimates reflect RGLS Std.lv estimates that are > GLS and < ML. 

rGLS

Descriptive Statistics and Loadings for Items from the Parental Motivational Practices Survey

RGLS  ML   GLS   
FactorSDMeanDescription Item
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7.4 Conclusions and Implications 

Regularized methods improve upon GLS in regards to solution propriety. Additionally, 

with regards to model evaluation both regularized solutions are superior to the traditional method 

ML, with respect to smaller test statistics and ratios, though rGLS should not be trusted given 

simulation results in Study 1. ML is known to in general over-reject true models while GLS is 

known to under-reject models at small sample sizes such as this (e.g., Bentler & Yuan, 1999), 

therefore those test statistics and model evaluation results should not be trusted. In fact, the 

pattern of results closely also reflect the same patterns of results demonstrated in Study 1. 

If a researcher used the default ML as the estimation method, entering into an exploratory 

mode via model modification would most likely be a next step and could very well improve the 

outcome for ML. For example, a typical next step might be to investigate the potential for cross 

loadings, or residual correlations. This was not the point of this illustration therefore will not be 

further explored, but this points to another potential benefit of regularization—fewer model 

modifications may improve generalizability of the model to other samples rather than overfitting 

a model to sample characteristics as may occur when trying to get a poor model to fit. As of now, 

because the method is novel and coding does not take advantage of a built package, model 

modifications are difficult because the model matrices have to be reparametrized manually for 

each change. While this is not practical for the typical user of a black box program, certainly 

another next step would be to modify the process to be more accessible, efficient, and user-

friendly.  

With the ability to fit the model to a smaller sample, follow-up analyses that may have 

been impossible before may be possible. For example, additional analyses might examine 

ecological validity of the scale via inclusion of an outcome of interest, such as children’s 
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intrinsic and extrinsic motivation or academic achievement. Given the usual practice of parceling 

or using a composite to maintain manageable number of ps relative to small Ns, the new 

regularization methodology may allow for the retention of and inclusion of additional latent 

factors with indicators that fully account for measurement error and furthermore, better reflect 

the construct of interest.  

More broadly, as researchers are interested in studying questions surrounding non-

traditional groups that may be much smaller than majority groups (e.g., non-biological fathers, or 

fatherhood among gay men) and the number of data points collected are increased given more 

efficient avenues of data collection, regularization techniques like these are especially relevant 

given the small N/large p problems. Moreover, self-identifying categories allow for inclusion and 

acknowledgement of diversity, but these same categories create problems for analyses given 

such interest in smaller sub-samples. Rather than collapsing categories or wasting data collected, 

these new techniques may allow for more flexible analyses and allow researchers to retain the 

benefits that SEM affords.   
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APPENDIX 

Table A. 

 

Replication of Yuan & Chan 2016 results: Rejection rates for Larger N Conditions of Three Test Staistics

Y & C Sim Dif Y & C Sim Dif Y & C Sim Dif Y & C Sim Dif Y & C Sim Dif Y & C Sim Dif Y & C Sim Dif

TML 30 55 25 35 43 8 36 42 6 30 36 6 21 32 11 21 21 0 24 28 4

TRML 33 58 25 38 46 8 34 44 10 31 38 7 21 32 11 21 22 1 26 28 2

TRGLSI 104 128 24 103 110 7 95 96 1 65 84 19 47 62 15 38 35 -3 40 41 1

N  = 2000 N = 3000 

Note. Three factor oblique model, 500 Replications, a = Tuning Parameter, Y & C = Yuan & Chan (2016), Sim = Simulation, Dif = Difference.

Method
N  = 150 N  = 200 N  = 300 N = 500 N = 1000 
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