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ABSTRACT OF THE THESIS

Prostate Cancer Diagnosis from

Multi-parametric Magnetic Resonance Imaging

via Deep Learning

by

Ruiming Cao

Master of Science in Computer Science

University of California, Los Angeles, 2019

Professor Fabien Scalzo, Chair

Prostate cancer (PCa) is one of the most common cancer-related diseases among men in

the United States. Multi-parametric magnetic resonance imaging (mp-MRI) is considered

the best non-invasive imaging modality for diagnosing PCa. The core components of mp-

MRI include T2-weighted imaging (T2w), diffusion-weighted imaging (DWI), and dynamic

contrast-enhanced imaging (DCE), each of which provides distinct anatomical or functional

information. However, mp-MRI for PCa diagnosis is currently limited by the qualitative or

semi-quantitative interpretation criteria, leading to inter-reader variability and a suboptimal

ability to assess lesion aggressiveness. Deep learning is a class of methods designed to

automatically learn multi-layer artificial neural networks from the training data for various

tasks, including image classification, object detection, and segmentation. Here, deep learning

methods specific to multi-parametric imaging were proposed to detect, segment PCa lesion

and assess the lesion aggressiveness. In addition, an alternative learning method using

unannotated dataset was designed, due to the inaccessibility of accurate annotated dataset

in many institutions.
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CHAPTER 1

Introduction

Prostate cancer (PCa) is one of the most common cancer-related diseases among men in

the United States [SMJ19]. While the incidence is high, PCa presents with a wide range

of aggressiveness and in many cases does not develop into life-threatening cancer [EZS16,

SMJ19]. The best assessment of lesion aggressiveness is the use of histologically assigned

Gleason score (GS) [EEA16]. The general strategy for the diagnosis of PCa relies on non-

targeted transrectal ultrasound (TRUS) guided biopsy. TRUS-guided biopsy is an invasive

procedure and commonly suffers from over-detections of indolent PCa and under-detections

of clinically significant PCa (csPCa) [WFG07, YVM12]. Therefore, there is an urgent need

to achieve non-invasive detection and classification of PCa.

With recent advances in medical imaging technologies, multi-parametric magnetic res-

onance imaging (mp-MRI) provides a powerful combination of anatomical and functional

information for PCa [YVM12]. As illustrated in Fig.1.1, the core elements of mp-MRI in-

clude T2-weighted (T2w) imaging, diffusion-weighted imaging (DWI), and dynamic contrast-

enhanced (DCE) imaging, each of which provides distinct information.

The current diagnostic interpretation of mp-MRI is guided by Prostate Imaging Reporting

and Data System version 2 (PI-RADS v2) [WBC16]. In PI-RADS v2 guideline, each element

of mp-MRI is accessed and scored from 1 to 5 in a qualitative or semi-quantitative manner

which causes inter- and intra-reader variations [SQA13]. Besides, PI-RADS v2 also has

limited ability to assess the PCa aggressiveness or to distinguish csPCa from indolent PCa,

which does not help for the active surveillance [SPG15].

Computerized analysis of prostate mp-MRI is an active research area to overcome lim-

itations of current interpretation. Previous studies developed machine learning methods
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(a) T2-weighted image (b) ADC map (c) Ktrans

Figure 1.1: The common components of prostate mp-MRI. The apparent diffusion coefficient

(ADC) map is calculated from DWI, and the volume transfer constant (Ktrans) is quantitative

measurement from DCE.

to automate the PCa detection and classify for the lesion aggressiveness [OLL10, VBK12,

PJY13,LWT13,TKM13,LDB14,FVW15,KXW15,CKH16,KNT17,TLW17,YLW17,PPC17,

SZY18,RAE18]. Lematre et al. [LMF15] and Wang et al. [WBT14] provide good overviews

of the previous development. As the interpretation of prostate mp-MRI is highly challenging,

the performance from the conventional machine learning models is often suboptimal due to

the insufficient information extracted using the predefined features from mp-MRI and con-

ventional machine learning models’ limited capacity of representing non-linear relationships.

Deep learning has shown great promise in various tasks [LBH15, Sch15]. In particular,

the convolutional neural network (CNN) can automatically learn the optimal image features

from the training data, without the need for conventional handcrafted features [LBH15]. The

CNN was first proposed in 1989 [LBD89], but at that time it was restricted because of the

limited computational capability, the absence of large datasets, and the immature network

structure and training algorithm. The renascence of CNN started since 2012 by [KSH12,

DDS09], and the CNN soon became popular in computer vision, machine learning, and

artificial intelligence communities. Many techniques have been proposed to improve the

robustness of CNNs [IS15,SHK14], and CNNs have achieved state-of-the-art performance in

object detection [Gir15], segmentation [LSD15], and classification [HZR16] in natural images.

Recent works also applied deep learning for computer-aided diagnosis on medical imaging,

e.g., X-ray [RIZ17], CT [ACE16,TB16], MRI [SS13,AGH17].
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In this thesis, I will focus on improving the existing deep learning techniques in the

specific context of prostate cancer diagnosis of mp-MRI to satisfy the unmet clinical needs.

This thesis is organized as follows. Firstly, Chapter 2 introduces to use CNN and conditional

random field to detect and segment PCa lesion in mp-MRI. Secondly, in Chapter 3, FocalNet,

a CNN for ordinal label classification in multi-parametric imaging, is proposed for the joint

detection and aggressiveness assessment of PCa. Thirdly, Chapter 4 discusses an alternative

deep learning solution for PCa detection when no PCa lesion annotations are available for the

training. Lastly, Chapter 5 discusses the potential usage of the proposed systems, limitations

of the systems, and future research directions.
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CHAPTER 2

Prostate cancer detection and segmentation in

multi-parametric MRI via CNN and conditional

random field

Multi-parametric MRI (mp-MRI) is a powerful diagnostic tool for prostate cancer (PCa).

However, interpreting prostate mp-MRI requires high-level expertise, causing significant

inter-reader variations. Convolutional neural networks (CNNs) have recently shown great

promise for various tasks. In this study, we propose an improved CNN to jointly detect

PCa lesions and segment for accurate lesions contours. Specifically, we adapt focal loss to

overcome the imbalance between cancerous and non-cancerous areas for improved lesion de-

tection and design selective dense conditional random field (SD-CRF), a post-processing step

to refine the CNN prediction into the lesion segmentation based on a specific imaging com-

ponent of mp-MRI. We trained and validated the proposed CNN in 5-fold cross-validation

using 397 pre-operative mp-MRI exams with whole-mount histopathology-confirmed lesion

annotations. In the free-response receiver operating characteristics (FROC) analysis, the

proposed CNN achieved 75.1% lesion detection sensitivity at the cost of 1 false positive per

patient. In the evaluation for lesion segmentation, the proposed CNN improved the Dice

coefficient by 20.6% from the baseline CNN.

2.1 Introduction

Prostate cancer (PCa) is the most diagnosed cancer among men in the United States [SMJ19].

Multi-parametric MRI (mp-MRI) provides a powerful combination of anatomical and func-
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Whole-mount specimen

Lesion groundtruth

Figure 2.1: The lesion groundtruth was retrospectively annotated using whole-mount

histopathology as the reference.

tional information and serves as a non-invasive imaging tool for the diagnosis of PCa. Com-

puterized analysis of mp-MRI is an active research area to complement and overcome lim-

itations of the current qualitative interpretation of mp-MRI [LDB14, WBT14]. Tsehay et

al. [TLW17] and Kiraly et al. [KNT17] demonstrated the improved performance over imag-

ing feature-based methods using convolutional neural networks (CNNs), but the tasks were

focused on detection and classification only. Although it is highly desirable to jointly detect

and segment the PCa lesions since the location, size, and shape of the lesion play important

roles in the diagnosis and treatment planning of PCa [TMA12], the methods that can jointly

detect and segment PCa lesions were not well investigated, mainly due to challenges such

as the highly imbalanced number of normal and cancerous voxels and difficulties associated

with different intensity and contrast patterns in the multi-parametric imaging.

Here, we describe the novel CNN model to jointly detect and segment PCa lesions, over-

coming the challenges. Firstly, when the number of normal voxels is much higher than the

number of cancerous voxels (e.g., only 1.6% of all voxels are annotated as cancerous in our

5



study), adequate training of CNNs becomes difficult because the total loss is mostly com-

posed of normal voxels. We use focal loss (FL), a modified cross-entropy loss, to adaptively

controls the weights for each voxel [LGG17] and thus achieve balanced training from both

normal and cancerous voxels. Secondly, as CNNs predict the probability map using multiple

imaging components of mp-MRI, when a lesion shows different size or shape across imaging

modalities, the probability map does not reflect the same intensity and contrast pattern

shown in the component that best defines the lesion. We design the selective dense condi-

tional random field (SD-CRF) 1) to select a certain imaging component in which the lesion

is clearly observable, and 2) to fit the predicted probability into lesion segmentation with

respect to the intensity pattern of the selected imaging component, instead of simply thresh-

olding the predicted probability map. In addition, mutual finding loss (MFL) is developed

and deployed in training, to enable the imaging component selection.

Our contributions are summarized as the proposed CNN model using 1) FL to overcome

imbalanced data for improved lesion detection and 2) SD-CRF to fit the CNN prediction

into a specific imaging component of mp-MRI for the refined lesion segmentation. The lesion

detection is achieved by finding local maxima [LDB14] from the pixel-level lesion probability

map, while the segmentation is obtained by combining the probability map into the intensity

pattern from mp-MRI imaging components. We train and validate the proposed CNN model

using 397 pre-operative mp-MRI exams with whole-mount histopathology-confirmed lesion

annotations in 5-fold cross-validation.

2.2 Materials and methods

2.2.1 MRI data & lesion annotation

Under IRB approval, we collected 397 pre-operative MRI exams from patients after radical

prostatectomy, satisfying that 1) whole-mount histopathology is available and 2) at least

one lesion with Gleason score (GS)>6 or lesion diameter≥10mm was identified in histologic

examinations. All imaging was performed in 3T scanners (Siemens Healthcare) using the

6
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standardized mp-MRI protocol. T2-weighted (T2w) images and apparent diffusion coefficient

(ADC) from diffusion-weighted images were used as inputs for the CNN [TLW17,WBC16].

Genitourinary (GU) radiology research fellows, supervised by a senior GU radiologist,

retrospectively annotated lesions in mp-MRI with whole-mount specimens available for ref-

erence as in Fig. 2.1. Lesions with GS=6 and histologic lesion diameter<10mm were excluded

in this study since mp-MRI was reported limited detectability for those lesions [TML15]. In

total, we have annotated 546 lesions, including 112 (20%) GS=6 lesions, 266 (49%) GS 3+4

lesions, 109 (20%) GS 4+3 lesions, and 59 (11%) GS≥8 lesions.

2.2.2 Imaging pre-processing

For both training and validation, the intensity of T2w images was linearly normalized to

[0, 1] using the intensity value of bladder as the reference for the upper threshold and zero

intensity as the lower threshold. Since ADC intensity value was suggestive for cancerous

tissues [SNN05], we used fixed thresholds to normalize ADC intensity. The imaging pre-

processing pipeline and the CNN were built with 16-bit integers or floating-point numbers so

that the numeric precision of imaging intensity was preserved. Moreover, ADC images were

registered to T2w images using rigid transformation based on the coordinate information

stored in imaging files. An 80mm×80mm window centered at the prostate was cropped for

each case [KNT17], and we only used slices with annotated lesions for training and validation

as in [KNT17,WLC18].

2.2.3 CNN with imbalanced data

We build the CNN using the 101-layer deep residual network [HZR16, CPK18] to predict

the pixel-level lesion probability map from ADC and T2w images. As in Fig. 2.2, focal loss

(FL) [LGG17] is adapted to train for the lesion probability map from both ADC and T2w.

FL balances the loss contributed from cancerous and non-cancerous areas by adding a focal

weight to the regular cross-entropy loss, such that, for each pixel,

FL = (1− p)2 y log (p) + p2 (1− y) log (1− p) , (2.1)
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where p ∈ [0, 1] is the predicted lesion probability and y ∈ {0, 1} is the groundtruth label. FL

adjusts the penalty based on the predicted probability. E.g., for an obvious non-cancerous

pixel with p = 0.05, the FL is only 1/400 of the corresponding cross-entropy loss; for a

cancerous pixel with p = 0.2, the FL remain 16/25 of the cross-entropy loss. In this way,

the CNN training can concentrate on cancerous or suspicious pixels.

2.2.4 Mutual finding loss for multi-parametric imaging

In addition to FL which trains with respect to both ADC and T2w, mutual finding loss

(MFL) is designed to train for the individual imaging components of mp-MRI.

MFL =
1

N
min{d (y ⊗ f (IADC, IT2w) , y ⊗ f (IADC, ·)) ,

d (y ⊗ f (IADC, IT2w) , y ⊗ f (·, IT2w))},
(2.2)

where d is the L2-distance, f denotes the CNN output, ⊗ is the element-wise product, and

N is the number of pixels in the image. Specifically, the L2-distance between the CNN

output from both imaging components and the output from either ADC or T2w alone is

calculated on cancerous areas. MFL selects the individual imaging component, in which

lesions are more observable, by choosing the component with the smaller L2-distance. Then,

in training, MFL minimizes the L2-distance for the selected component so that the lesions

can be equivalently observed from an individual component as from both components. Since

MFL aims to train for the individual component, MFL does not back-propagate to the CNN

output using both components as in Fig. 2.2.

FL and MFL are combined into the total loss during the training, such that Loss =

FL + λ ·MFL, where λ is set to the inverted fraction of cancerous pixels to balance between

FL and MFL.

2.2.5 Selective dense conditional random field

Selective dense conditional random field (SD-CRF) is a non-parametric post-processing step

to fit the CNN probability map into the intensity pattern of a specific imaging component for

the lesion segmentation. SD-CRF first determines whether ADC or T2w defines the lesion

9



Figure 2.3: The FROC analysis for lesion detection under 5-fold cross-validation. The false

positives per patient (x-axis) are shown in log scale.

better using the component selector shown in Fig. 2.2. The component selector compares

the L2-distance on cancerous areas with either of the imaging components as in (2.2) and

chooses the component resulting in a smaller L2-distance. I.e., the selected component,

ISel = arg minc∈{IADC,IT2w} d (ŷ ⊗ fout, ŷ ⊗ fc), where fout and fc are the CNN outputs from

both components and from the specific imaging component c. ŷ = [f (IADC, IT2w) > 0.5]

approximates for the groundtruth y, as y is not available in testing.

Then, a conditional random field is built for the refined lesion segmentation y∗ with

regard to the intensity pattern in the selected imaging component and the CNN output.

Specifically, as in [KK11], y∗ is inferred by minimizing the energy E such that

E (y∗) =
N∑
i=1

φu (y∗i |IADC, IT2w) +
N∑
i<j

φp

(
y∗i , y

∗
j |ISel

)
, (2.3)

where φu is the unary potential from the negative log-likelihood of the CNN predicted prob-

ability map, and φp is the pairwise potential from ith and jth pixels. In particular, the

pairwise potential is defined as φp

(
y∗i , y

∗
j |ISel

)
= − exp

(
−d2i,j −∆2

i,j

)
, where di,j and ∆i,j

respectively are the spatial distance and the intensity difference between the ith and jth

pixels. y∗ is optimized via the iterative approach in [KK11].
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2.3 Results

2.3.1 Experiment setup

Our experiment was performed under 5-fold cross-validation. Each fold contained 317 or 318

cases for training and 79 or 80 cases for validation. We experimented four different settings in

the same CNN architecture: focal loss only (FL), focal loss and mutual finding loss together

(FL+MFL), FL+MFL with SD-CRF for segmentation (FL+MFL+CRF ), and the regular

cross-entropy loss (Cross-ent.) as the baseline. For each setting, pre-trained network weights

were used as the weight initialization, and the L2-normalization with a weight of 0.0001 was

added to the total loss [HZR16]. Furthermore, common image augmentations, including

random image shifting, scaling, and flipping, were applied during the training.

2.3.2 Lesion detection

Lesion detection is evaluated by the free-response receiver operator characteristics (FROC)

analysis [LDB14,TLW17]. FROC measures the lesion detection sensitivity versus the number

of false positive detections per patient. Given a predicted lesion probability map, detection

points are located by finding the local maxima [LDB14]. A detection point is considered to

be either true positive if it is in or within 5mm of an annotated lesion contour in the same

slice [PNK17], or otherwise false positive.

As shown in Fig. 2.3, FL demonstrated its effectiveness in lesion detection, compared with

Cross-ent. At 0.5 false positives per patient, FL and FL+MFL had a sensitivity of 56.0%

and 60.6%, 5.5% and 10.1% higher than Cross-ent. Similarly, at 1 false positive per patient,

FL and FL+MFL had 72.4% and 75.1% sensitivity, compared to the 65.7% sensitivity from

Cross-ent. Moreover, for 80% detection sensitivity, FL andFL+MFL require 1.28 and 1.35

false positives per patient, reducing 28.7% and 25.3% of false positives from Cross-ent.
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FL+MFL FL+MFL+CRF

(a)

(b)

(c)

Groundtruth - ADCGroundtruth - T2w

Figure 2.4: Examples for lesion segmentation.

Table 2.1: Evaluation for lesion segmentation under 5-fold cross-validation. Numbers are

reported as avg±std.

Dice(%) Dice-all(%) HD-95 (mm)

Cross-ent. 36.7 ± 1.6 18.0 ± 1.4 7.19 ± 0.15

FL 50.0 ± 2.3 34.6 ± 2.1 5.63 ± 0.09

FL+MFL 53.8 ± 1.8 39.7 ± 2.0 5.24 ± 0.15

FL+MFL+CRF 57.3 ± 1.5 39.9 ± 1.7 5.38 ± 0.21
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FL+MFL FL+MFL+CRF Groundtruth - ADC Groundtruth - T2w

(a)

Figure 2.5: Another example of lesion segmentation. The ADC image is used as the back-

ground.

2.3.3 Lesion segmentation

Lesion segmentation is evaluated by Dice coefficient (Dice) and Hausdorff-95 distance (HD-

95) defined in the brain tumor segmentation challenge [MJB15]. Dice assesses the similarity

between the predicted and groundtruth regions, and HD-95 measures the closeness of the two

contour boundaries. However, compared with brain tumors, PCa lesions have highly variable

detectability [RWB12]. Thus, for the evaluation of lesion segmentation, we only focus on

lesions that are roughly on target, to reduce the impact from misdetection. As in [LDB14],

we consider predicted lesions, whose centers of mass are within 10mm of centers of mass

of any groundtruth lesions, as the predicted lesions on target. Similarly, the groundtruth

lesions within 10mm of predicted lesions are considered as groundtruth lesions being targeted.

For Dice and HD-95, we evaluate based on predicted lesions on target and groundtruth

lesions being targeted, so that the various lesion detection performance (e.g., groundtruth

lesions being missed or false positive predicted lesions) does not affect the evaluation for

segmentation. We also include Dice-all to evaluate based on all predicted and groundtruth

lesions.

The results for lesion segmentation are shown in Fig. 2.4 and TABLE 2.1. SD-CRF

improved the segmentation by refining the lesion contours and/or rejecting some noise pre-

dictions. As in TABLE 2.1, FL+MFL+CRF received higher Dice than FL+MFL and FL.

However, FL+MFL had HD-95 marginally lower than FL+MFL+CRF. This is because all
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groundtruth lesion contours were annotated in T2w images, while SD-CRF sometimes fits the

prediction into ADC, in which some lesions have different appearance causing this variation

as in Fig. 2.5.

2.4 Conclusion

We proposed the improved CNN model to jointly detect PCa lesions and segment lesion

contours. The CNN was trained by focal loss (FL) to overcame the imbalance between

cancerous and non-cancerous areas, and we designed selective dense conditional random

field (SD-CRF) to refine the CNN prediction into the lesion segmentation based on the

intensity pattern of a specific imaging component of mp-MRI. We trained and validated the

CNN under 5-fold cross-validation using 397 pre-operative mp-MRI exams with groundtruth

lesion contours confirmed by whole-mount histopathology. In the experiment, the proposed

CNN achieved 75.1% lesion detection sensitivity at 1 false positive per patient, 9.4% higher

than the baseline CNN. For lesion segmentation, the proposed CNN received 57.3% Dice

coefficient, compared to the baseline CNN with only 36.7% Dice coefficient.
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CHAPTER 3

Joint Prostate Cancer Detection and Classification

Multi-parametric MRI (mp-MRI) is considered the best non-invasive imaging modality for

diagnosing prostate cancer (PCa). However, mp-MRI for PCa diagnosis is currently lim-

ited by the qualitative or semi-quantitative interpretation criteria, leading to inter-reader

variability and a suboptimal ability to assess lesion aggressiveness. Convolutional neural

networks (CNNs) are a powerful method to automatically learn the discriminative features

for various tasks, including cancer detection. We propose a novel multi-class CNN, Fo-

calNet, to jointly detect PCa lesions and predict their aggressiveness using Gleason score

(GS). FocalNet characterizes lesion aggressiveness and fully utilizes distinctive knowledge

from mp-MRI. We collected a prostate mp-MRI dataset from 417 patients who underwent

3T mp-MRI exams prior to robotic-assisted laparoscopic prostatectomy (RALP). FocalNet

is trained and evaluated in this large study cohort with 5-fold cross-validation. In the free-

response receiver operating characteristics (FROC) analysis for lesion detection, FocalNet

achieved 89.7% and 87.9% sensitivity for index lesions and clinically significant lesions at

1 false positive per patient, respectively. For GS classification, evaluated by the receiver

operating characteristics (ROC) analysis, FocalNet received the area under the curve (AUC)

of 0.81 and 0.79 for the classifications of clinically significant PCa (GS≥3+4) and PCa with

GS≥4+3, respectively. With the comparison to the prospective performance of radiologists

using the current diagnostic guideline, FocalNet demonstrated comparable detection sen-

sitivity for index lesions and clinically significant lesions, only 3.4% and 1.5% lower than

highly experienced radiologists without statistical significance.
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3.1 Introduction

The challenge in diagnosing prostate cancer (PCa) is how to detect and distinguish indo-

lent PCa from potentially clinically significant PCa. The current best assessment of lesion

aggressiveness is the use of histologically assigned Gleason score (GS) [EEA16]. The cur-

rent diagnosis of PCa in general medical practice still relies on non-targeted template driven

transrectal ultrasound-guided (TRUS) biopsy, which results in under-detection of clinically

significant PCa [YVM12]. 3 Tesla-based multi-parametric MRI (3T mp-MRI) provides a

powerful combination of anatomical and functional information for PCa and plays a piv-

otal role in the diagnosis of PCa by reducing unnecessary biopsies [KRB18] and adding

treatment options in active surveillance [DAB12] and focal therapy [VAE14]. The core com-

ponents of mp-MRI include T2-weighted imaging (T2w), diffusion-weighted imaging (DWI),

and dynamic contrast-enhanced imaging (DCE-MRI), each of which provides distinct infor-

mation. Current diagnostic practice for mp-MRI follows the Prostate Imaging Reporting

and Data System: Version 2 (PI-RADS v2) [WBC16], which evaluates radiologic findings in

a qualitative or semi-quantitative manner. However, PI-RADS v2 still has limited ability to

detect and distinguish between indolent and clinically significant PCa, with a wide range of

sensitivity and specificity [RWB12], mainly due to inter-reader variability and suboptimal

analysis.

Computer-aided diagnosis (CAD) using mp-MRI for PCa is being actively investigated for

lesion detection and classification [OLL10,VBK12,PJY13,LWT13,TKM13,LDB14,WBT14,

FVW15,LMF15,KXW15,CKH16,KNT17,TLW17,SZY18,RAE18]. The lesion detection ap-

proach typically extracts voxel- and/or region-level features from mp-MRI and predicts either

PCa localization points or lesion segmentation masks. With recent advances in deep learning,

convolutional neural networks (CNNs) are a powerful tool for image classification [KSH12]

and segmentation [LSD15]. Recent studies also showed the feasibility of training CNNs to

detect cancer from mp-MRI. Zhang et al. [ZSZ18] designed hierarchical coarse-to-fine CNNs

to segment voxel-level tumor masks and suggest biopsy locations for breast cancer from

DCE-MRI. Song et al. [SZY18] built a patch-based CNN to classify between biopsy-proven

16



PCa lesion and non-lesion regions of interest (ROIs). Kiraly et al. [KNT17] proposed to pre-

dict voxel-level labels of clinically significant PCa (GS>6) and non-clinically-significant PCa

(GS≤6) using CNN with two output channels to enable both detection and classification at

the same time.

Interpreting prostate mp-MRI generally requires a high level of expertise as radiologic

findings are qualitative, relying on T2 morphology and non-quantitative assessment of diffu-

sion restriction and lesional enhancement [WBC16]. Thus, radiologic findings in one compo-

nent of mp-MRI are more observable than in others. Common approaches to utilize multiple

components of mp-MRI in CNNs are to stack them as different imaging channels (e.g., RGB

channels for a color image) [ZLD15, PPA16, KNT17, TLW17, SZY18]. This enables CNNs

to learn common knowledge across mp-MRI components from groundtruth annotations but

may fail to learn the distinct information from each component of mp-MRI. As a result,

some features appearing in only one or certain components of mp-MRI are difficult to be

trained, especially when the number of training data is limited. Inspired by the clinical

interpretation of prostate mp-MRI [WBC16], we design the mutual finding loss (MFL) to

selectively train for different imaging components of mp-MRI. MFL identifies which subset of

components would contain more observable information for a given PCa finding and defines

the lesion-specific training objective as to observe the PCa finding from only the subset of

imaging components.

A stratification of clinically significant PCa becomes important as differentiating between

low- and intermediate/high-grade PCa is highly correlated with clinical outcomes [SPS09,

DAB12]. The correlation between mp-MRI and GS has been studied [PJY13], but to our

knowledge, no prior study has explored the use of mp-MRI to predict fine-grained GS groups

via CNNs. Even though multi-class classification using CNN is widely available via one-hot

encoding, different classes are usually assumed to be equally distanced, which ignores the

progressiveness of GS groups (e.g., the difference between low- and intermediate-grade PCa

is assumed to be the same as the difference between low- and high-grade PCa). Instead,

we develop the ordinal encoding for different GS groups to adopt the lesion aggressiveness

relationship into the encoded vectors. Unlike one-hot encoded vectors, ordinal encoded
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vectors are not mutually orthogonal and can suggest for the similarities and differences

between different GS groups.

Recent CAD systems for PCa are generally trained and validated by using mp-MRI exams

with biopsy-confirmed lesion findings [LDB14,KNT17,TLW17,SZY18]. However, the biopsy-

confirmed lesion annotations are weighted towards MRI-positive lesions since biopsy cores

are mostly based on MRI-positive findings (PI-RADS≥3). As PI-RADS≥3 has a limited

ability to detect all PCa lesions [LTS15,RSW16,VHG16], clinically significant lesions can be

missed and multi-focal lesions can be highly underestimated at mp-MRI [BGG18, LTS15],

resulting in an overestimation of the performance of the CAD systems. Also, there exists

a significant risk of the inaccurate lesion annotations since GS between prostate biopsy

and radical prostatectomy specimens is occasionally discordant [LSB14, GBM15, EFT12].

Epstein et al. reported that more than one-third of the biopsy cases with GS≤6 were

upgraded to GS≥7, and one-fourth of GS 3+4 in biopsy were downgraded after checking with

whole-mount histopathology [EFT12]. To overcome these limitations, we use pre-operative

mp-MRI exams before undergoing robotic-assisted laparoscopic prostatectomy (RALP) for

our training and validation. The whole-mount histopathology analysis after RALP would

provide the best definition of the GS groups and minimize the underestimation of the multi-

focal lesions.

Here, we present a novel multi-class CNN, FocalNet, that jointly detects PCa lesions and

predicts their GS. We arrange GS into five fine-grained GS groups [EZS16], i.e., GS 3+3,

GS 3+4, GS 4+3, GS=8, and GS≥9. FocalNet encodes six labels, the five GS groups and

normal tissue, into ordinal encoded vectors, and predicts the label for each pixel using mp-

MRI. FocalNet is also designed to selectively train distinctive features in one or certain

imaging components of mp-MRI using mutual finding loss during the training.

We summarize our contributions as follows. Firstly, we propose FocalNet, an improved

multi-class CNN to jointly detect PCa lesions and predict their Gleason score groups from

mp-MRI. Secondly, in FocalNet, we design ordinal encoding to characterize lesion aggres-

siveness and mutual finding loss to fully exploit knowledge in the multi-parametric imag-

ing. Thirdly, to our knowledge, this is the first study that trained or validated a CNN-
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T2w

ADC

Annotate PCa lesions on 
whole-mount histopathology 

into mp-MRI

3T mp-MRI Radical 
prostatectomy

within 6 months

GS 3+3
GS 3+4
GS 4+3

GS = 8  
GS ≥ 9

Whole-mount specimen

Lesion groundtruth

Figure 3.1: Data preparation pipeline. 278 out of 400 prospectively missed (false negative)

lesions were retrospectively identified and annotated in mp-MRI, referring to whole-mount

histopathology. In the shown example, the lesion in the left anterior (GS 3+4, index lesion)

was prospectively missed and retrospectively identified.

based PCa detection and diagnosis system using lesion findings confirmed with whole-mount

histopathology in a large study cohort.

This paper is organized as follows: In Section 3.2, we describe the MRI data and an-

notation process, the technical framework for FocalNet, and the experimental setups for

pre-processing, training and validation. Section 3.3 presents PCa lesion detection and GS

prediction results. In Section 3.4, we discuss potential implications and extensions of Focal-

Net, followed by concluding remarks.
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Lesion 
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Figure 3.2: The workflow of FocalNet for training and validation. Image registration and

intensity normalization are performed with 3D image volumes. As FocalNet operates with

2D images, the corresponding T2w and ADC slices are grouped and fed into FocalNet for

pixel-level predictions.

3.2 Materials and Methods

3.2.1 MRI data

Pre-operative mp-MRI exams from 417 patients who later underwent RALP were included

in the study. Patients with prior radiotherapy or hormonal therapy were not included.

All imaging was performed on one of the four different 3T scanners (126 patients on Trio,

255 patients on Skyra, 17 patients on Prisma, and 19 patients on Verio; Siemens Healthcare,

Erlangen, Germany) with the standardized clinical mp-MRI protocol, including T2w and

DWI. We excluded the DCE-MRI for our study because of the limited role in the current

diagnostic practice [WBC16, VHG16, KCJ18]. We used axial T2w turbo spin-echo (TSE)

imaging and maps of the apparent diffusion coefficient (ADC) using echo-planar imaging

(EPI) DWI sequence. For T2w, the repetition time (TR) and echo time (TE) of the T2w

TSE were 3800-5040 ms and 101 ms, respectively. With a 14 cm FOV and a matrix size of 256

× 205, we acquired and reconstructed T2w TSE images with 0.55 mm × 0.68 mm in-plane

resolution and 3 mm through-plane resolution with no gaps. For DWI, we used TR and TE

of 4800 ms and 80 ms. With FOV of 21 cm × 26 cm and matrix of 94 × 160, DWI images

were reconstructed with in-plane resolution of 1.6 mm2 and a slice thickness of 3.6 mm. The

ADC maps were obtained by using linear least squares curve fitting of pixels (in log scale)

in the four diffusion-weighted images against their corresponding b values (0/100/400/800

s/mm2).

The mp-MRI exams were reviewed by three genitourinary (GU) radiologists (10+ years
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of clinical prostate MRI reading) as part of the standard clinical care. The findings with

PI-RADS score≥3 were reported and considered to be MRI-positive findings. The rest of

the findings with PI-RADS≤2 were considered to be MRI-negatives in this study.

3.2.2 Whole-mount histopathology matching & annotation

As in Fig. 3.1, the groundtruth of this study was lesion confirmation on whole-mount

histopathology after RALP. The excised prostate was sliced from apex to base with 4-5

mm increment at the approximated mp-MRI orientation. Histopathology examinations of

whole-mount specimens were performed by GU pathologists, blinded to all MRI information.

Later, at least one GU radiologist and one GU pathologist re-reviewed mp-MRI and

histopathology examinations together at a multidisciplinary meeting scheduled monthly.

Each ROI in MRI was matched to the corresponding location on the specimen through

visual co-registration. MRI-positive findings were considered to be either true positive if

they were in the same quadrant (left and right, anterior and posterior) and in the appro-

priate segment (base, midgland, and apex) on both mp-MRI and histopathology, or false

positive if no corresponding lesions were found on the histopathology.

After the multidisciplinary meeting, GU radiology research fellows, supervised by GU ra-

diologists, retrospectively reviewed each mp-MRI exam, referring to whole-mount histopathol-

ogy, and annotated all MRI-visible lesions. 69.5% (278 out of 400) of prospectively missed

(false negative) lesions were retrospectively identified in the review and were annotated. The

MRI non-visible lesions were not included in this study due to the difficulty of the annotation.

Overall, we have annotated 728 lesions, consisting of 286 GS 3+3 lesions, 270 GS 3+4

lesions, 110 GS 4+3 lesions, 30 GS=8 lesions, and 32 GS≥9 lesions. Among these, 93 GS 3+3

lesions, 204 GS 3+4 lesions, 98 GS 4+3 lesions, 26 GS=8 lesions, and 29 GS≥9 lesions were

prospectively identified by radiologists. All annotations were on T2w. The index lesion was

defined as the lesion with the highest GS or the largest diameter when multiple lesions had

the same grade on the histopathology, and clinically significant lesions were lesions with

GS≥7 [PEM11].
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Table 3.1: Gleason score encoding for multi-class CNNs.

Label Class One-hot encoding Ordinal encoding

Non-lesion 0 1 0 0 0 0 0 0 0 0 0 0

GS 3+3 1 0 1 0 0 0 0 1 0 0 0 0

GS 3+4 2 0 0 1 0 0 0 1 1 0 0 0

GS 4+3 3 0 0 0 1 0 0 1 1 1 0 0

GS = 8 4 0 0 0 0 1 0 1 1 1 1 0

GS ≥ 9 5 0 0 0 0 0 1 1 1 1 1 1

3.2.3 FocalNet for PCa detection and Gleason score prediction

FocalNet is an end-to-end multi-class CNN to jointly detect PCa lesions and predict their

GS. As shown in Fig. 3.2, FocalNet takes the corresponding T2w and ADC slices into two

imaging channels of the input and predicts for the pixel-level labels of the six classes: non-

lesion, GS 3+3, GS 3+4, GS 4+3, GS=8, and GS≥9. As in Fig. 3.3, the lesion groundtruth

is first converted into a 5-channel groundtruth mask via ordinal encoding, and FocalNet

predicts the groundtruth mask via its backbone CNN architecture. FocalNet is trained

simultaneously by focal loss (FL) with regard to both T2w and ADC and mutual finding

loss (MFL) for PCa features in either of the imaging components.

3.2.3.1 Ordinal encoding for Gleason scores

A conventional multi-class CNN encodes each label into a one-hot vector and predicts the

one-hot vector through the multi-channel output [KSH12]. The six different labels can be

converted into 6-bit one-hot vectors as in TABLE 3.1. One-hot encoding assumes that

different labels are unrelated to each other, and thus the cross-entropy loss penalizes mis-

classifications equally. However, the progressiveness between different GS, such that the

treatment prognosis of a GS 4+4 PCa is more similar to GS 4+3 than to GS 3+3 [EZS16],

cannot be accounted for in one-hot encoding. In addition, by dividing lesions into separate

classes, the number of samples in each class is very limited.
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We instead convert labels from six classes into 5-bit ordinal vectors using ordinal encoding

[CWP08, GPS16]. As shown in TABLE 3.1, each bit of an ordinal vector identifies a non-

mutually-exclusive condition, such that the k-th bit indicates whether the label is from a

class greater or equal to k. In this way, the groundtruth is encoded into a 5-channel mask,

e.g., the first channel is the mask for all lesions, the second channel is the mask for clinically

significant lesions, etc. Then, the CNN predicts for the encoded mask using the 5-channel

output, and a sigmoid function is applied on top of each output channel to normalize the

output into the prediction probability from 0 to 1. I.e., the first output channel naturally

predicts for lesion detection probabilities.

Given the predicted ordinal encoded vector for a pixel, ŷ =
(
ŷ1, ŷ2, ŷ3, ŷ4, ŷ5

)
∈ {0, 1},

the predicted class is the highest class k such that ŷi = 1 ∀i ≤ k, or non-lesion if ŷi = 0 ∀i.
The predicted class is written alternatively as max1≤k≤5

(∏k
i=1 ŷi

)(∑k
i=1 ŷi

)
.

The ordinal encoding characterizes the relationships between different labels. E.g., GS=8

shares 4 bits in common with GS 4+3, while only 1 bit with non-lesion. The commonness and

differences between labels are represented as the shared and distinct bits in ordinal vectors.

As a result, ordinal encoding allows the multi-class CNN to learn the commonness of all

lesions and the distinctions between different GS at the same time. Besides, even though

ordinal encoding does not increase the number of samples directly, it groups different labels

so that each channel has a larger joint population of lesions compared with one-hot encoding.

3.2.3.2 Focal loss for ordinal encoding

PCa lesion and non-lesion labels are very imbalanced in the pixel-level groundtruth. In our

dataset, non-lesion pixels outnumber lesion pixels by 62:1. After ordinal encoding for GS, the

positive bit ratio of the groundtruth mask is only 0.77%. As a result, by accounting for lesion

and non-lesion pixels evenly, the cross-entropy loss is occupied by the overwhelming amount

of non-lesion terms, many of which are from easily predicted non-lesion pixels. Lesion-related

terms, on the other hand, have little emphasis.

Alternatively, we deploy focal loss (FL) [LGG17] to balance the learning between lesion
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Legend

Figure 3.3: FocalNet for joint PCa detection and Gleason score prediction. The lesion

groundtruth is converted into a 5-channel groundtruth mask using ordinal encoding. The

CNN predicts the mask via its multi-channel pixel-level output. Focal loss (FL) trains the

CNN with respect to fout using both ADC and T2w inputs. Meanwhile, mutual finding

loss (MFL) computes L2ADC and L2T2w in the forward-propagation and trains the imaging

component of the smaller L2.
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and non-lesion pixels. FL adds a focal weight of (1− pT )2 to the binary cross-entropy loss,

where pT is the prediction probability for the true class. Thereby, true predictions with

high confidence contribute much less to the total loss [LGG17]. A common scenario during

the training is that a clear non-lesion pixel (e.g., with high ADC intensity, or outside of

prostate gland) receives 0.95 prediction probability for being non-lesion, which contributes

0.022 to the standard cross-entropy loss while only 5.6 × 10−5 to FL. By down-weighting

easily predicted pixels, the training can be focused on suspicious or hard-to-predict pixels.

FL is further adapted to the ordinal encoding. For a given pixel, let ~y =
(
y1, y2, y3, y4, y5

)
∈

{0, 1} be the groundtruth encoded vector corresponding to the 5-channel prediction proba-

bility vector ~p =
(
p1, p2, p3, p4, p5

)
∈ [0, 1]. Then, the FL for each pixel is

FL (~p) = q (~p)
5∑

i=1

−αyi log (pi)− (1− α) (1− yi) log (1− pi) . (3.1)

q is the focal weight defined as the largest margin between the prediction probability and

the groundtruth among the five channels, such that

q (~p) = max
1≤j≤5

yj (1− pj)2 + (1− yj) p2j . (3.2)

In this way, high-grade lesions receive large focal weights if they are missed or downgraded,

so that high-grade lesions can receive better attention for lesion detection as well.

Moreover, α is a constant that controls the penalty between false negative and false

positive predictions. We find it is desirable to have a smaller penalty for false positives in PCa

detection, since benign non-lesion findings, such as benign prostatic hyperplasia and benign

adenomas, sometimes have a similar appearance to PCa lesions [MFI07]. Consequently, a

large penalty for false positives hinders the learning of true positive PCa features. Besides, a

max spatial pooling filter is applied to the focal weight q before the calculation of FL, in order

to maintain consistent weights for positive and negative pixels around lesion boundaries. In

our practice, α is set to 0.75 for better sensitivity, and the max pooling filter is sized to 3×3.
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3.2.3.3 Mutual finding loss for multi-parametric imaging

During the interpretation of prostate mp-MRI, a radiologic finding is initially identified from

a single component and later consolidated or rejected after referencing to other imaging com-

ponents. The PI-RADS v2 score is then assessed primarily based on the finding’s suspicious-

ness in the specific imaging component which describes the finding clearly [WBC16]. Hence,

it is desirable for a CAD system to also determine PCa lesions from an individual imaging

component as well as from the correspondence between multiple components of mp-MRI.

The underlying challenge is that different components of mp-MRI capture distinct infor-

mation and only a portion of the information is shared across all components. As a result,

findings observable in one component may be partially-/non-observable in the others. Dur-

ing the end-to-end training, a CNN with stacked imaging components can effectively learn

the common features across components, but there is no mechanism to train for features

observable only in a specific imaging component.

Mutual finding loss (MFL) is designed to identify the specific imaging component that

contains distinct PCa features and train for the PCa features in the identified component.

Firstly, given a training slice, MFL determines whether T2w or ADC alone can provide

more information for the groundtruth lesion. As shown in Fig. 3.3, T2w and ADC are

individually passed into the same CNN with a blank image with all zeros to substitute for

the other component. We compare the CNN prediction output from ADC or T2w alone,

fADC = f (IADC, Iblank), fT2w = f (Iblank, IT2w), with the output using both components,

fout = f (IADC, IT2w). The component resulting in a prediction output more similar to fout

on the groundtruth lesion region is considered to contain more PCa features. In this way,

MFL selects a component to train for each slice.

Then, MFL trains the CNN so that lesion findings can be equivalently observed from

the selected imaging component alone. Specifically, MFL minimizes the L2-distance on

groundtruth mask y between fout and the output using the selected component. I.e.,

L2ADC = ‖y ⊗ (fout − fADC)‖2 or L2T2w = ‖y ⊗ (fout − fT2w)‖2, where ⊗ is the element-

wise product. The L2-distance is calculated on the groundtruth lesion region while not on
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non-lesion regions, as MFL aims to train for PCa features. Since non-lesion regions are more

likely to have the appearance similar to lesions from the observation of a single component

than from both components, enforcing fADC or fT2w to have the same non-lesion finding of

fout may counteract the training for PCa features. Moreover, fout is utilized as a “soft” and

adaptive truth reference to train for the specific component, compared with the groundtruth

y. When the CNN cannot detect a barely visible lesion even with both components, fout

does not expect the CNN to learn the lesion using a single imaging component. Conversely,

the CNN is trained for the certain PCa features in a single component if a lesion is clearly

detected using both components.

As shown in Fig. 3.3, the process of MFL is summarized into a loss term for the end-to-end

learning such that

MFL =
1

N
min{L2ADC, L2T2w}, (3.3)

where N is the total number of pixels of an image.

3.2.3.4 FocalNet training

FocalNet is trained by the combined loss from FL and MFL,

L = E~p∼S(fout)FL (~p) + λ ·MFL, (3.4)

where S is the sigmoid function and λ = 1
positive bit ratio

is a constant weight to balance between

FL and MFL. Besides, as in Fig. 3.3, the orange arrows indicate the back-propagation paths

of FL, and the red arrows are back-propagation paths of MFL. MFL does not pass the

gradient to fout to train with respect to both imaging components, since fout serves as a

truth reference for fADC or fT2w in MFL.

3.2.4 Pre-processing & Training

3.2.4.1 Registration

ADC images were registered to T2w images via rigid transformation using scanner coordinate

information, as in [LWT13]. Since ADC and T2w sequences are temporally close to each
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other in our scanning protocol, we found minimal patient motion between ADC and T2w.

Hence, as suggested in [WBT14], we did not utilize additional non-rigid registration. After

the registration, for each patient, an 80 mm × 80 mm region centered on the prostate was

identified manually and later resized to 128 × 128 pixels [KNT17].

3.2.4.2 Intensity normalization & variation

There are large intensity variations between mp-MRI exams with and without the usage of

the endorectal coil, and, as a result, the commonly used normalization via histogram [TLW17]

cannot work consistently. Instead, we clip the T2w intensity value by a lower threshold with

the intensity of air and an upper threshold based on the intensity of bladder since 1) bladder

is easy to locate programmatically, and 2) the intensity of bladder depends on water and is

relatively consistent across patients. Then, we linearly normalize the clipped T2w intensity

into [0, 1] using the lower and upper thresholds. Moreover, as ADC is quantitative imaging

and its intensity value is indicative of lesion detection and classification [VAF11,HSH11], we

clip ADC intensity by patient-independent thresholds and normalize to [0, 1]. During the

training, T2w intensity variation is applied to improve the CNN robustness to variable image

intensity caused by the endorectal coil in some scans [RFB15]. The T2w upper-intensity

threshold is randomly fluctuated in the estimated range that PCa lesions are detectable

after the intensity normalization, which is empirically from -15% to +20%.

3.2.4.3 Implementations

The backbone CNN architecture of FocalNet is implemented using Deeplab [CPK18] with the

101-layer deep residual network [HZR16] on 2D image inputs. In the preliminary experiment,

we also tested U-Net [RFB15] as the backbone CNN, but the training with U-Net commonly

failed in early stages due to the model diverging, presumably caused by the incompatibility

between FL and U-Net skip connections. Furthermore, pre-trained CNN weights from object

classification task are applied as a weight initialization [HRG16]. The total loss is optimized

by stochastic gradient descent with momentum 0.9 and L2-regularizer of weight 0.0001.
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The learning rate starts at 0.001 with 0.7 decay every 2000 steps. The CNN is trained for

200 epochs with batch size 16. In addition to the T2w intensity variation, common image

augmentations, including image shifting, scaling, and flipping, are also applied during the

training. We did not apply image rotation, as a small angle rotation creates blurriness during

interpolation. The image augmentations are performed for each batch of the training images

and not for the validation images.

The image registration is implemented using the statistical parametric mapping tool-

box [FHW94], and the pre-processing steps take around one minute for the images of each

case. FocalNet is implemented using TensorFlow machine learning framework (Google;

Mountain View, CA) [ABC16]. The average training time is 3-4 hours for each fold us-

ing a NVIDIA Titan Xp GPU with 12GB memory, and the prediction is relatively quick,

about 0.5-1 second for each patient, due to the non-iterative nature of CNNs.

3.2.5 Validation

3.2.5.1 Cross-validation

We train and validate this study using 5-fold cross-validation. Each fold consists of 333

or 334 training cases and 84 or 83 cases for validation. In both training and validation,

only annotated slices are included as in [KNT17], in order to minimize the chance for miss-

annotated lesions. Each case contains 2 to 7 slices, and each fold of training and validation

sets has around 1400 and 350 slices, respectively.

3.2.5.2 Lesion localization

For PCa detection, we extract lesion localization points from CNN pixel-level detection

output as in [LDB14, WLC18]. For each case, we find 2D local maxima from the detection

output of the slices. The trade-off between detection sensitivity and false detections is

controlled by thresholding on the detection probabilities of the local maxima.
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3.2.5.3 FROC for lesion detection

The lesion detection performance is evaluated through free-response receiver operating char-

acteristics (FROC) analysis due to PCa’s multi-focality [LDB14,TLW17]. FROC measures

the lesion detection sensitivity versus the number of false positives per patient. True positive

detections are localized points in or within 5 mm of lesion ROIs since PCa lesion diameters

on the whole-mount specimen are roughly 10 mm greater than the corresponding ROIs in

mp-MRI [PNK17]. False positive detections are localized points that are not true positive

detections. Since our lesion groundtruth is annotated in 2D slices without the consideration

of the 3D lesion volume, a localized point must be in the same slice of an ROI to be con-

sidered as a true detection. Lesion detection sensitivity is the number of detected lesions

divided by the total number of visible lesions, including both the prospectively identified

lesions and the prospectively missed lesions identified in the retrospective review described

in Sec. 3.2.2. Because of the availability of whole-mount histopathology, the definition of

true or false detection is more accurate than the studies only using biopsy cores.

Moreover, the lesion detection performance is further studied in fine-grained lesion groups

as they have different detectabilities, i.e., FROC for lesion detection of each specific GS group.

Under this setting, lesion detection sensitivity considers only lesions in a specific GS group.

Lesions with GS=8 and GS≥9 are grouped together since 1) either of them have very limited

quantity in each fold of validation, and 2) the difference between their treatment is minimal.

3.2.5.4 ROC for Gleason score prediction

The GS prediction is evaluated by receiver operative characteristic (ROC) analysis. We

group the multi-class classification into four binary classification tasks [FVW15]: 1) GS≥7

vs. GS<7, 2) GS≥4+3 vs. GS≤3+4, 3) GS≥8 vs. GS<8 and 4) GS≥9 vs. GS<9. A voxel-

level ROC is assessed for each task. Specifically, to mimic biopsy setting, twelve detection

voxels were sampled for each case by finding the localized points as in Sec. 3.2.5.3. In a

joint model for detection and classification, this setting evaluates classification performance

without being affected by lesion misdetection, since if a lesion is completely missed by the
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Table 3.2: False positives per patient (FP) at given detection sensitivity (Sen) for index

lesions. avg±std.

Index lesions

FP@Sen80% FP@Sen90%

U-Net-Mult 1.19±0.39 1.74±0.49

U-Net-Sing 1.16±0.37 1.61±0.26

Deeplab 1.38±0.40 2.20±0.64

FocalNet 0.61±0.25 1.02±0.37

Table 3.3: False positives per patient (FP) at given detection sensitivity (Sen) for clinically

significant lesions. avg±std.

Clinically significant lesions

FP@Sen80% FP@Sen90%

U-Net-Mult 1.39±0.36 2.15±0.60

U-Net-Sing 1.21±0.20 1.75±0.55

Deeplab 1.45±0.43 2.44±0.80

FocalNet 0.65±0.15 1.13±0.35

model, the classification result for the lesion is meaningless as well.

3.2.5.5 Comparison to radiologists

We compare FocalNet with the prospective clinical performance of radiologists for lesion

detection. Radiologist performance is assessed on the entire 417 cases grouped by the five

validation sets. Radiologist’s findings were determined to be true or false positives as de-

scribed in Sec. 3.2.2. The sensitivity is calculated on the number of true positive findings

versus the total number of MRI-visible lesions.
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Figure 3.4: From top to down shows T2w images, ADC images, and whole-mount specimens.

Lesion detection points from FocalNet are shown as the orange cross signs. Groundtruth

lesion contours overlay on T2w images with the colors corresponding to their Gleason score

groups.

3.3 Results

3.3.1 Baseline methods

Deeplab, U-Net-Mult, and U-Net-Sing are the three baseline methods in this study. Deeplab

[CPK18] is the base model of FocalNet, which has the same backbone CNN architecture
32



Figure 3.5: FROC analysis for detection sensitivity for index lesions, based on 5-fold cross–

validation. The number of false positives per patient (x-axis) is shown on log-scale. The

transparent areas are 95% confidence intervals estimated by two times of the standard devi-

ation. The green markers indicate radiologist’s performance with a 95% confidence intervals

also estimated by two times of the standard deviation.

Figure 3.6: FROC analysis for detection sensitivity for clinically significant lesions, based on

5-fold cross-validation.
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Figure 3.7: FROC analysis for detection sensitivity for all lesions, based on 5-fold cross-val-

idation.

Table 3.4: False positives per patient (FP) at given detection sensitivity (Sen) for all lesions.

avg±std.

All lesions

FP@Sen60% FP@Sen80%

U-Net-Mult 1.38±0.41 3.53±0.41

U-Net-Sing 1.29±0.39 2.98±0.18

Deeplab 1.55±0.46 3.70±1.04

FocalNet 0.80±0.21 2.30±0.61

of FocalNet with one-hot encoding for six classes, i.e., five GS groups and non-lesion. The

same pre-trained weight initialization is applied for Deeplab as for FocalNet. U-Net [RFB15]

is a popular CNN architecture for various biomedical imaging segmentation tasks. Multi-

class U-Net (U-Net-Mult) is trained to detect and classify lesions using one-hot encoding

as in Deeplab. Single-class U-Net (U-Net-Sing) is trained for a simplified task to detect

lesions only, regardless of their GS. To enable a fair comparison, the training and validation

workflows in Fig. 3.2, consisting of image pre-processing, intensity normalization & variation
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Figure 3.8: FROC analysis for detection sensitivity of FocalNet for each specific Gleason

score group. Transparent areas are 95% confidence intervals estimated by two times of the

standard deviation. The results of baseline methods are reported in TABLE 3.5.

and image augmentation procedures, are applied equally to all methods. Under the cross-

validation setting, the p-values are obtained by two-sample Welch’s t-test, with the alpha

level adjusted by Bonferroni correction for multiple comparisons.

3.3.2 Lesion detection

Fig. 3.7 shows the FROC analysis for index lesions, clinically significant lesions, and all le-

sions, respectively, and examples for lesion detection are shown in Fig. 3.4. As in TABLE 3.2,

FocalNet achieved 90% sensitivity for index lesion at the cost of 1.02 false positives per pa-

tient, while U-Net-Sing and Deeplab triggered 54.3% and 116.8% more false detections, re-

spectively, for the same sensitivity. Furthermore, as in Fig. 3.2.5.5, FocalNet detected 87.9%

clinically significant lesions at 1 false positive per patient, outperforming the best baseline,

U-Net-Sing , by 11.1%. The partial area under the curve between 0.01 to 1 and 0.1 to 3 false

positives per patient for FocalNet are 0.685±0.056 and 2.570±0.101, respectively, which are

higher than U-Net-Sing (0.596±0.061, 2.402±0.106). Moreover, as in Fig. 3.2.5.5, the sensi-

tivity for all PCa lesions detection is 64.4% at 1 false positive per patient, while U-Net-Sing

required 1.65 false positives per patient for the same sensitivity. FocalNet reached its maxi-

mum sensitivity of 89.3% at 4.64 false positives per patient, in comparison to U-Net-Sing ’s

maximum sensitivity of 84.7% at similar false positives per patient.
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(a) GS≥7 vs. GS<7 (b) GS≥4+3 vs. GS≤3+4

(c) GS≥8 vs. GS<8 (d) GS≥9 vs. GS<9

Figure 3.9: ROC analysis for Gleason score classification. Transparent areas are 95% confi-

dence intervals estimated by two times of the standard deviation. U-Net-Sing is not in this

comparison since U-Net-Sing does not classify for Gleason scores.

The radiologist performance is shown in Fig. 3.7 as green markers. Radiologists achieved

83.9% sensitivity for index lesions, 80.7% sensitivity for clinically significant lesions, and

61.8% sensitivity for all lesions, with 0.62 false positives per patient. The radiologist detection

sensitivity for index lesions, clinically significant lesions, and all lesions is, respectively, 3.4%,

1.5%, and 6.2% higher than FocalNet at the same false positives per patient.

Lesion detection sensitivity for lesions of each specific GS group is reported in Fig. 3.8

and TABLE 3.5. Both FocalNet and baseline methods had high sensitivity for lesions with

GS≥4+3. FocalNet reached 95.3% and 96.8% sensitivity for GS 4+3 and GS≥8 at 0.231 and

0.377 false positives per patient, respectively. FocalNet outperformed baseline methods for

the detection of GS 3+4 lesions. At 0.5 and 1 false positive per patient, FocalNet respectively

received 76.4% and 91.0% sensitivity for GS 3+4, which are 7.7% and 6.3% higher than

U-Net-Sing , 15.1% and 16.9% higher than U-Net-Mult , and 16.1% and 14.3% higher than

Deeplab.
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3.3.3 Gleason score prediction

Fig. 3.9a and Fig. 3.9b show the ROC analysis for GS≥7 vs. GS<7 and GS≥4+3 vs.

GS≤3+4. FocalNet achieved ROC area under the curve (AUC) 0.81±0.01 and 0.79±0.01, re-

spectively in 5-fold cross-validation, in comparison to U-Net-Mult (0.72±0.01 and 0.71±0.03)

and Deeplab (0.71±0.02 and 0.70±0.02). FocalNet achieved AUC significantly higher than

U-Net-Mult (p<0.0005) and Deeplab (p<0.01) for clinically significant lesion (GS≥7) clas-

sification. However, as in Fig. 3.9c and Fig. 3.9d, both FocalNet and baseline methods

exhibited limited capabilities of classifying GS≥8 vs. GS<8 and GS≥9 vs. GS<9. Focal-

Net has ROC AUC 0.67±0.04, and 0.57±0.02 respectively, not significantly different from

U-Net-Mult (0.60±0.03, and 0.60±0.03) and Deeplab (0.59±0.01, and 0.60±0.04).

3.3.4 Loss contribution

We trained FocalNet with different loss combinations to understand their contributions to

PCa detection performance. Under the same setting, we specifically compared three different

losses: cross-entropy loss (CE ), focal loss (FL), and the combined loss from FL and MFL

(FL+MFL) described in 3.2.3.4. As shown in Fig. 3.10, CE had only 62.9% lesion detection

sensitivity at 1 false positive per patient, as the cross-entropy loss was dominated by non-

cancerous pixels during the training. FL showed its effectiveness for the imbalanced labels

and improved the detection sensitivity by more than 15% from CE in range of 0.05 to 1.42

false positives per patient. The combination of FL and MFL (FL+MFL) further improved

the lesion detection sensitivity from CE and FL respectively by 30.3%, 14.2% at 0.5 false

positives per patient and by 25.0%, 8.1% at 1 false positive per patient. We also noted that

the detection performance of CE was marginally lower than Deeplab reported in Fig. 3.2.5.5,

as the ordinal encoding strategy caused the labels to become more imbalanced for CE.

3.3.5 Image augmentation

As image augmentation is non-trivial for training a CNN when the number of training data is

limited, we compared three different augmentation strategies in the context of PCa detection:
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Figure 3.10: FROC analysis for the detection of clinically significant lesions using three

different loss combinations during the training: cross-entropy loss (CE ), focal loss (FL),

and the combined loss from focal loss and mutual finding loss (FL+MFL). The number of

false positives per patient (x-axis) is shown on log-scale. The transparent areas are 95%

confidence intervals estimated by two times of the standard deviation.

training without augmentation, with basic augmentation, and with advanced augmentation.

The basic augmentation included image shifting, scaling, and flipping, while the advanced

augmentation additionally includes intensity variation as described in Sec. 3.2.4.2. As shown

in Fig. 3.11, the advanced augmentation strategy became effective as false positives per

patient become higher (>0.24), and the basic augmentation was ineffective when the number

of false positives per patient was greater than 0.75. The sensitivity with the advanced

augmentation strategy was 9.8% higher than the one with the basic augmentation at 1 false

positive per patient. This suggests that applying random intensity variation during training

improves the detection of hard-to-spot lesions rather than easy-to-spot lesions. This would be

particularly important when there exist strong intensity variations caused by the endorectal

coil.
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3.4 Discussion

We compared FocalNet with the prospective clinical performance of radiologists for lesion

detection and did not find differences with statistical significance. The radiologists following

PI-RADS v2 achieved 83.9% and 80.7% sensitivity for the detection of histopathology-proven

index lesions and clinically significant lesions. FocalNet had slightly lower, 80.5% and 79.2%

sensitivity at the same false positives per patient, which were not significantly different

from the radiologist performance (p=0.53 and p=0.66). Our prostate mp-MRI exams were

interpreted and scored by expert GU radiologists who have 10+ years of post-fellowship

experience and read more than 1,000 prostate MRI exams yearly. Hence, the reported

radiologist performance is expected to reflect or to be close to the upper limit of prostate MRI

reading quality under the current guideline. As prostate MRI reading quality largely varies

according to reader’s experience [RWB12], FocalNet can potentially assist less experienced

readers or augment the PCa detection task for non-experts. In addition, the direct numerical

comparisons between FocalNet and the radiologist performance may include some bias due

to their different definitions for true and false detection. The true positives for FocalNet are

defined as localized detection points in or within 5mm of the lesion ROIs, while the true

positives for the radiologist performance are defined as lesions in the same quadrant and

in the appropriate segment, as described in Sec. 3.2.2. This is mainly because PI-RADS is

designed for the clinical interpretation, not for the specific detection task.

The handling of multi-parametric imaging information was previously explored. Wang et

al. [WLC18] proposed to use separate CNNs for individual imaging components of mp-MRI

and enforced the consistency between different outputs of the imaging components. Fidon et

al. [FLG17] designed the ScaleNet block to extract multi-component features and single-

component features. In comparison, MFL does not rely on the strong assumption of the

consistency across all imaging components. Instead, inspired by the clinical interpretation of

prostate mp-MRI, MFL identifies the most distinctive imaging features from one or certain

components of mp-MRI and trains the CNN together with FL for both single and multiple

imaging component knowledge at the same time, with minimal changes to the existing CNNs
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Figure 3.11: FROC analysis for the detection of clinically significant lesions under three

different augmentation strategies during the training: with no augmentation, with basic

augmentation (image shifting, scaling and flipping), and with advanced augmentation (ba-

sic augmentation + intensity variation). Transparent areas are 95% confidence intervals

estimated by two times of the standard deviation.

and no additional parameters to train.

We demonstrated FocalNet with two imaging components of mp-MRI. MFL can be ex-

tended to multiple imaging components, such that

MFL = min
1≤i≤m

‖y ⊗ (fout − fi)‖2, (3.5)

where fout is the CNN output with all components, m is the number of imaging component

subsets, and fi is the CNN output using the i-th subset of imaging components. However,

each additional imaging component will require extra GPU memory and create considerable

computation overhead during the training, since every imaging component subset requires

one forward-propagation of the CNN for the calculation of MFL as shown in Fig. 3.3. It

is hence impractical to account for a large number of imaging components. An alternative

approach to reducing the computational cost would be to utilize pre-determined combinations

of imaging components, similar to PI-RADS v2 [WBC16], and to consider only these as

possible subsets of imaging components to train with MFL.

Furthermore, FocalNet can be adapted for the PCa lesion segmentation task [OLL10].
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As the first output channel of the FocalNet predicts for lesion vs. non-lesion, additional

post-processing methods (e.g., simple thresholding, fully-connected conditional random field

[KK11], etc.) can be applied on the predicted probabilities for the lesion segmentation.

We used a 2D CNN instead of a 3D CNN for prostate mp-MRI since 1) the imaging

is non-isotropic in our protocol, 2) 3D PCa lesion annotations are error-prone due to the

difficulty of prostate mp-MRI interpretation, and 3) a 3D CNN has more parameters and

thus requires more training samples. Nevertheless, FocalNet is not limited to 2D CNNs. In

some other domains (e.g., brain imaging), 3D CNNs may be more suitable for lesion detection

or segmentation as 3D CNNs can fully benefit from the volumetric spatial information.

FocalNet can be further improved by combining the voxel-level predictions with a region-

level GS classifier. Similar to previous works [TKM13,FVW15], we can build the region-level

classification models to classify GS for candidate regions provided by the output from Focal-

Net’s lesion detection. This hybrid approach can potentially improve the GS classification

performance since region-based classifiers provide additional robustness to pixel-level classi-

fications.

The prediction of fine-grained GS groups is an early attempt to apply multi-class CNN

models to explore the correlation between mp-MRI and PCa aggressiveness. The ordinal

encoding for GS is used under the assumption that different PCa aggressiveness on micro-

scopic tumor structure exhibit both similarities and distinctions in mp-MRI as suggested

by [PJY13,VAF11]. Further study is needed to consolidate the correlation between mp-MRI

and PCa aggressiveness, particularly with available molecular subtypes of PCa [LLH04].

The accurate groundtruth lesion annotation is one of the key challenges for PCa CAD

systems. Many studies used mp-MRI exams with biopsy-confirmed lesion findings as the

groundtruth [OLL10, WBT14, KXW15], which could potentially include some inaccuracies

because of the discrepancy between prostate biopsy and radical prostatectomy in histologic

findings. Recently, the ProstateX Challenge [LDB14] has attempted to improve the inac-

curate lesion annotations by using MR-guided biopsy as the groundtruth. This will reduce

the chances of lesion misdetection and GS upgrading/downgrading due to the biopsy nee-
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dle misplacement, but the MR-guided biopsy confirmations may still include the inaccurate

histologic finding [LSB14] and do not provide the information of the exact shape, location,

and size of the lesions. Here, we annotated lesions based on whole-mount histopathology

specimens from radical prostatectomy, providing the most accurate lesion characterizations.

Our study did not include MRI non-visible lesions because 1) they are difficult to annotate

via visual co-registration from whole-mount histopathology, and 2) it is hard to confirm

whether the imaging plane sufficiently contains the lesion information at the time of MRI

scan. Future study may investigate rigid registration between whole-mount slices and mp-

MRI imaging, which enables a direct correlation between histopathology and mp-MRI. The

discovery of lesions not detectable by human eyes from mp-MRI can further extend the

utility of machine learning in clinical practice.

In conclusion, we proposed a novel multi-class CNN, FocalNet, consisting of mutual

finding loss to fully utilize distinctive knowledge from multi-parametric MRI and ordinal

encoding to preserve the progressiveness between labels in a multi-class CNN. We used Fo-

calNet to jointly detect prostate cancer and predict the fine-grained Gleason score groups.

We trained and validated FocalNet under 5-fold cross-validation using 417 pre-operative mp-

MRI exams with annotations of all MRI-visible PCa lesions on whole-mount histopathology.

For the detection of histopathology-proven index lesions and clinically significant lesions,

FocalNet achieved 89.7% and 87.9% sensitivity at 1 false positive per patient and received

sensitivity only 3.4% and 1.5% lower than experienced radiologists using PI-RADS v2. Fo-

calNet also outperformed all three CNN-based baseline methods, with an AUC of 0.809 for

the classification of clinically significant PCa.
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CHAPTER 4

Prostate Cancer Inference via a Large Collection of

Negative Prostate Multi-parametric MRI

Multi-parametric MRI (mp-MRI) is the best non-invasive diagnostic tool for prostate cancer

(PCa). However, the computer-aided diagnosis systems for PCa are often constrained by the

limited access to accurate lesion groundtruth annotations for training. Here, we propose the

baseline MRI model to alternatively learn the appearance of mp-MRI that is negative for

PCa. The baseline MRI model is trained by MRI-negative scans only, without any PCa an-

notations. After training, the baseline MRI model synthesizes specified image regions based

on an input image, and the synthesized regions are negative for PCa. We then utilize the

baseline MRI model to infer the pixel-wise suspiciousness map of PCa for the testing image.

We trained the baseline MRI model with 1095 negative prostate mp-MRI scans. For the

evaluation, we collected a separated dataset of 116 pre-operative mp-MRI scans with anno-

tated lesion regions of interest (ROIs) confirmed with post-surgical whole-gland specimens.

The suspiciousness map was evaluated by receiver operating characteristic (ROC) analysis

for PCa lesions versus non-PCa regions classification and free-response receiver operating

characteristic (FROC) analysis for PCa localization. Our proposed method received 0.84

area under the ROC curve and 77.0% sensitivity at 1 false positive per patient in FROC

analysis.

4.1 Introduction

Prostate cancer (PCa) is one of the most common cancer-related diseases among men in

the United States [SMJ19]. Multi-parametric MRI (mp-MRI) is a powerful, non-invasive
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diagnosis tool for PCa, and T2-weighted imaging (T2W) and diffusion-weighted imaging

(DWI) are the key components containing structural and functional information for the

PCa diagnosis. However, the interpretation of mp-MRI is highly challenging because of the

qualitative or semi-quantitative assessment of the imaging [WBC16].

Recent studies have explored quantitative interpretations of mp-MRI by training machine

learning models [LDB14,SZY18,TLW17,WLC18,FVW15]. Most of the models were trained

under strong supervision using the lesion annotations as the groundtruth, and thus the per-

formance of the models is dependent on both quantity and quality of training data associated

with groundtruth annotations. However, the findings from mp-MRI are not easy to be fully

integrated with histologic findings due to misregistration or insufficient histologic informa-

tion, resulting in a limited number or quality of groundtruth annotations available. Litjens

et al. used MR-guided biopsy dataset to identify biopsy-confirmed lesions in MRI [LDB14],

and Fehr et al. annotated PCa region of interest (ROI) using post-surgical whole-gland

specimens as a reference [FVW15]. Nevertheless, both of these studies use limited numbers

of cases (348 and 147 cases, respectively) due to the availability of histologic results.

Despite the difficulty of obtaining accurate lesion annotations, the number of mp-MRI

scans has been increased in years as mp-MRI gains clinical acceptance for PCa diagnosis.

A large portion of mp-MRI scans are reported as negative for PCa, and the MRI-negative

is shown to be reliable without the need for histologic confirmations [HDW15]. Thus, the

collection of negative prostate mp-MRI scans in a large quantity is more plausible than

having a large number of MRI-positive scans with accurate lesion annotations. While the

MRI-negative scans are vastly available, the existing PCa detection models cannot solely

learn from the MRI-negative scans since they need to be trained with PCa lesion annotations

to differentiate between PCa lesions and non-PCa regions.

Alternatively, we propose the baseline MRI model that learns the appearance of the

prostate from the MRI-negative scans. The baseline MRI model is implemented as a convo-

lutional neural network (CNN), and it synthesizes a region of an image using the rest of the

image as the input. As the baseline MRI model is trained with only MRI-negative scans, the

synthesized region is also MRI-negative for PCa given any input image. The region to syn-
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thesize is specified by a collection of ROI candidates, which describes the common locations

and shapes of PCa lesions, so that the baseline MRI model can focus on the normal tissue

appearance in the areas prone to PCa. Then, we use the trained baseline MRI model to infer

the PCa suspiciousness map. Given a testing image, the baseline MRI model synthesizes for

different regions from the collection of ROI candidates, and then the suspiciousness map is

summarized by comparing the original image regions and the synthesized image regions.

We summarize our contributions as follows. We proposed the baseline MRI model to

infer the pixel-wise suspiciousness map of prostate cancer in mp-MRI through unsupervised

learning, without the need for PCa annotations during training. We trained the baseline

MRI model using 1095 mp-MRI scans negative for PCa, which were identified from 3127

total collected mp-MRI scans. We evaluated the proposed prostate cancer inference in a

separate dataset of highly curated 116 pre-operative mp-MRI scans with annotated PCa

ROI confirmed with histologic whole-gland specimens. Our method achieved similar lesion

localization performance as the previously reported fully-supervised methods.

4.2 Materials and methods

4.2.1 Negative prostate MRI dataset

With IRB approval, we collected 3127 3 Tesla (3T) prostate mp-MRI scans from 2016 to

2018 at a single institution. The mp-MRI scans were prospectively reported by genitourinary

(GU) radiologists following the standardized clinical guideline. We excluded the scans 1)

with the endorectal coil, 2) immediately after biopsy, and 3) for patients underwent prior

radiotherapy, hormonal therapy, or surgery. We parsed the plain text radiology reports and

identified MRI-negative cases having 1) no suspicious target in the finding section and 2)

no more than mildly suspicious in the impression section. We manually examined a random

subset of reports to ensure the correctness of the identification. A total of 1261 MRI-

negative scans were identified, and we divided them into training, validation, and testing

sets containing 1095, 50, and 116 cases, respectively.
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Figure 4.1: The baseline MRI model synthesizes for the region M (shown in orange) unob-

served in the input.

Figure 4.2: The prevalence map of PCa from the collection of ROI candidates [JRM18].

For each scan, the axial turbo spin-echo (TSE) T2W (TR/TE, 3800-5040/101ms; FOV,

14×14cm2; matrix, 256×205; slice thickness, 3 mm; no gap) and maps of apparent diffu-

sion coefficient (ADC) single-shot echo-planar imaging (SS-EPI) DWI (TR/TE, 4800/80ms;

FOV, 21×26cm2; matrix, 130×160; slice thickness, 3.6 mm; b-values, 0/100/400/800 s/mm2)

were used. ADC was registered into T2W, with 0.625×0.625mm2 in-plane resolution and

3mm through-plane resolution. Both T2W and ADC were cropped into a small field-of-view

(8×8cm2) to improve the model convergence. Four consecutive slices around mid and base

gland were selected for each scan, resulting in the total of 4380 slices for training.
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4.2.2 Baseline MRI model

The proposed baseline MRI model aims to synthesize the mp-MRI negative for PCa, with

respect to an input image. Instead of generating for an entire MRI-negative image at once,

each time the baseline MRI model, f , synthesizes for a specified region of an image, MI,

using the rest of the image, (1−M) I, observed as the input, where M is the region in binary

mask form and I is the input image. Specifically, as in Fig. 4.2.1, Mf
(

(1−M) I; θ
)
→MI,

where I = (IT2W, IADC) is the combined image of the corresponding T2W and ADC stacked

as in different image channels, and θ is the trainable weights of the baseline MRI model. A

collection of ROI candidates is used to specify M . We train the baseline MRI model using

only MRI-negative scans. In this way, the baseline MRI model learns the various appearance

of mp-MRI negative for PCa in training.

We use a U-Net CNN structure [RFB15] for the baseline MRI model since the encoder-

decoder design of U-Net helps to summarize the global anatomical information [DGS18], and

the skip connections from U-Net simplify the training for observed regions, s.t., the observed

input feeds directly into the last decoding layer without going through the encoder-decoder.

Besides, we use partial convolutional layers instead of conventional convolutional layers to

compensate for the unobserved input region during encoding [LRS18]. The baseline MRI

model operates with 2D inputs and outputs due to the non-isotropic resolution.

We want the baseline MRI model to focus on learning the negative mp-MRI appearance

of the PCa-prone areas, rather than irrelevant areas in the images (e.g., muscle, fat, bone).

We collected 1055 annotated 2D ROIs for PCa (without the corresponding mp-MRI) from a

separate study cohort without any case overlapping [JRM18]. For each 2D ROI, the in-plane

location relative to the center of the prostate is maintained, and the through-plane position

is ignored. Each ROI is converted into a binary mask for the baseline MRI model as an ROI

candidate to specify a region M to synthesize. As all the ROI candidates are considered in

one plane, the collection of ROI candidates, M, can account for the common locations and

shapes of PCa. M is visualized as a prevalence map, P , s.t., P =
∑

M∈MM , as shown in

Fig. 4.2.1.
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Figure 4.3: The inference of the PCa suspiciousness map using the trained baseline MRI

model given an input testing image. The baseline MRI model synthesizes regions specified

from the collection of ROI candidates. dist is the distance function for the original image

region and the synthesized image region.

4.2.2.1 Training for the baseline MRI model

We train the baseline MRI model using the combination of L1 loss, perceptual loss, and

style loss [GEB16]. The VGG-19 network pre-trained for image classification is used for the

calculation of perceptual loss and style loss. We only take the feature map from the first

convolutional layer for perceptual loss and style loss, since the network is trained for natural

images and the higher-level features are not applicable to our context. The same weighting

for loss terms is used as in [LRS18].

The baseline MRI model is trained for 4000 epochs using a mini-batch of eight 128× 128

training images. The learning rate is set to 0.0002 in first 1000 epochs, and it is reduced to

0.00005 in the remaining 3000 epochs with the batch normalization for the encoder turned

off as suggested in [LRS18]. Common image augmentations, including shifting, left-right

flipping, and gray value variations [RFB15], are applied. We also randomly combine mul-

tiple ROI candidates together to accelerate training. The training took two days using one

NVIDIA Titan Xp GPU.
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4.2.3 Inference via the baseline MRI model

The trained baseline MRI model is utilized to infer the pixel-wise PCa suspiciousness map

given a testing image. Since the baseline MRI model synthesizes a specified region negative

for PCa, the synthesized image region is expected to be similar to the region in the original

image if it is MRI-negative for PCa. Conversely, if the specified region in the testing image is

MRI-positive for PCa, the synthesized image region will be different from the original image

region. In other words, the region is considered to be suspicious when the difference between

the synthesized image region and the original region is nontrivial.

In each time, we specify a region to synthesize from the collection of ROI candidates, M ∈
M, and the synthesized image region from the baseline MRI model is Mf ((1−M) I t; θ)

where I t = (I tT2W, I
t
ADC) is the testing image. By synthesizing different image regions with

different ROI candidates, we can obtain the suspiciousness map by

Susp
(
I t
)

=
1

P

∑
M∈M

dist
(
MI t,Mf

(
(1−M) I t; θ

))
, (4.1)

where dist (Iori, Isyn) is the distance function measuring the pixel-wise difference between

the original image region and the synthesized image region, and P is the prevalence map to

normalize the suspiciousness map.

Two distance functions are tested individually: T2W SSIM and ADC Increment. Firstly,

since T2W mainly contains structural information, we evaluate the variation of T2W by

T2W SSIM, s.t., dist (Iori, Isyn) = 1 − SSIM
(
IoriT2W, I

syn
T2W

)
, where SSIM is the structural

similarity. Secondly, ADC is quantitative imaging, and PCa lesion usually has lower ADC

intensity than normal tissues [PJY13]. The suspicion for PCa is high if the ADC intensity in

the original region is lower than in the synthesized MRI-negative region. Hence, we measure

the ADC intensity increment of the synthesized region compared with the original region.

ADC Increment is defined as dist (Iori, Isyn) = max
(
IsynADC − IoriADC, 0

)
,
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Figure 4.4: The PCa suspiciousness maps with different distance functions for testing images.

The red contours on T2W and ADC are the groundtruth ROIs.

4.3 Experiments

4.3.1 Evaluation dataset

A separate dataset was collected with PCa lesion annotations for the evaluation. The eval-

uation dataset consisted of pre-operative 3T mp-MRI exams prior to prostatectomy from

2013 to 2015, and patients with prior treatment or scanned with endorectal coil were ex-

cluded. For the 116 eligible cases, the FOV and slice were determined in the same way as

in 4.2.1. Clinical research fellows used whole-gland surgical specimens and pathology reports

to retrospectively identify confirmed clinically significant PCa lesions (Gleason Score≥3+4)

in mp-MRI and annotated their groundtruth ROIs on T2W. Apart from these MRI-positive

cases, the 116 testing cases from the negative prostate MRI dataset were used as the MRI-

negative testing cases.
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Figure 4.5: ROC analysis for the classification between PCa lesions and non-PCa regions.

4.3.2 Evaluation metrics

The suspiciousness map by the baseline MRI model is used to distinguish between PCa

lesions and non-PCa regions [SZY18,WLC18]. The PCa lesions are given by the groundtruth

ROIs, and non-PCa regions are defined as the same groundtruth ROIs in the MRI-negative

testing cases. The average value over the region on the suspiciousness map is calculated

as the predictive value for each ROI. The performance is evaluated by receiver operating

characteristic (ROC) analysis.

We also evaluate the lesion localization performance using free-response receiver oper-

ating characteristic (FROC) analysis [LDB14, WLC18]. The PCa localization points are

determined by the local maximums of the suspiciousness map [WLC18]. A localization

point is considered as a true positive if it is within 5mm of a groundtruth lesion ROI, or it is

otherwise a false negative [PNK17]. FROC measures the lesion detection sensitivity versus

the average number of false positives for each patient.
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Figure 4.6: FROC analysis for lesion localization performance.

4.3.3 Results

Fig. 4.4 shows representative examples of the inferred suspiciousness map. The ROC analysis

for the classification between PCa lesions and non-PCa regions is shown in Fig. 4.3.2. ADC

Increment (ADC Incre.) achieved the area under the curve (AUC) of 0.84, while the suspi-

ciousness map using T2W SSIM exhibited limited predictability for PCa. Compared with

ADC, T2W has a more diverse appearance for the normal tissues, causing the inconsistent

inference for the suspiciousness map.

The FROC analysis for lesion localization is shown in Fig. 4.3.2. ADC Increment and

T2W SSIM had 77.0% and 33.8% detection sensitivity for clinically significant PCa lesions

with 1 false positive per patient, respectively, and 89.5% and 48.8% detection sensitivity at

2 false positives per patient. ADC Increment received 95% sensitivity at 2.44 false positives

per patient, and T2W SSIM reached its maximum sensitivity of 66.0% at 3.54 false positives

per patient.
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4.4 Discussion

The PCa detection systems from previous studies reported lesion detection sensitivity from

38.8% to 89.8% at 1 false positive per patient in FROC analysis [LDB14,TLW17,WLC18].

Despite the difference in the dataset and lesion definition, our proposed unsupervised learning

method, without using lesion annotations in training, shows similar performance to the

fully-supervised methods. Compared with the fully-supervised methods trained with lesion

annotations, the proposed method requires only MRI-negative scans in training, which is

more approachable to institutions without a large annotated prostate MRI collection and

suitable for multi-site, multi-vendor collaborations.

In conclusion, we proposed the baseline MRI model for the unsupervised inference of

prostate cancer in multi-parametric MRI without using any PCa annotations. The baseline

MRI model was trained using 1095 negative mp-MRI scans. In the evaluation using a sepa-

rate dataset consisting of 116 mp-MRI scans with histologically confirmed lesion annotations,

the proposed method achieved 0.84 AUC in ROC analysis and 77.0% detection sensitivity

at 1 false positive per patient in FROC analysis.
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CHAPTER 5

Discussion & Future Work

5.1 Potential usage

A deep learning-based detection system can act as a preliminary reader or quality checker

complementary to radiologists under the current workflow of mp-MRI interpretation. As a

preliminary reader, the system will propose a number of lesion detection points or regions

based on a certain sensitivity threshold set by the reader prior to the interpretation. During

the reading, readers will confirm or reject each of the detections. Since the systems in

Chapter 2 and Chapter 3 received high lesion detection sensitivity with a relax threshold

setting, readers can only check the proposed detection candidates instead of reading the entire

volumetric imaging, which potentially will boost the interpretation efficiency. Nevertheless,

the system needs to go through strict validations under the clinical settings as well as the

approval from oversight committees and regulators for this usage into the practice. It is hard

to predict how long it would take to realize this usage, but this is unlikely to happen in a

short period of time.

On the other hand, using proposed detection systems as quality checkers could be po-

tentially easier to translate into clinical practice. In this scenario, the readers will interpret

prostate mp-MRI using the existing workflow. The system meanwhile will find out detection

points with high confidence for the higher specificity. Right after the reader’s interpretation,

the detection system will check if the system’s detection with high confidence is contained in

the reader’s findings. In case if a detection point with high confidence is not in the findings,

the system will notify the reader to re-check the detected region by the system to make sure

it is not a mis-detection.
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I want to note that the usage of detection systems is highly dependent on the clinical his-

tory and clinical objective, which is often the case for radiologists’ interpretation. By setting

different sensitivity threshold values, the user will receive detection proposals customized by

clinical considerations.

In addition, the detection or diagnosis systems can potentially work together with radiol-

ogists. I.e., the systems’ outputs can be utilized as a quantitative measurement incorporated

into the existing PI-RADS system if the systems can thoroughly demonstrate their effec-

tiveness in clinical evaluations. In particular to this usage, as mentioned in [CLP19], it is

critical to investigate the development of user interface and user interaction. The systems

need to be embedded into the commercial image viewers. Although the computation load is

not very heavy for the predictions or inferences, parallel computing or cloud computing is

highly desirable due to the increasing total number of scans. Also, the processing time for

a system needs to be short to ensure the minimum delay for users. Real-time detection will

be important to the potential usage of automated targeting for in-bore biopsy.

5.2 Future works

This thesis has extensively discussed the deep learning-based methods for PCa detection,

segmentation, and classification from mp-MRI. During my study, I have identified some

future directions to further improve the proposed systems for PCa diagnosis.

Firstly, although the proposed systems were evaluated using the existing metrics, clinical

validation of the detection and classification is needed. For the clinical validation, a testing

set of cases should be prospectively collected with proper IRB approval. Retrospectively

collected cases, such as those in this thesis, shall be used as the training and validation

sets. The model needs to be fixed before evaluated using the testing set, and the evaluation

on the testing set can only be performed once to avoid model’s implicit overfitting to the

testing data [CLP19]. In addition to the FROC and ROC analyses in 3.2.5.3 and in 3.2.5.4,

the systems can also be scored qualitatively by experienced radiologists with a well-defined

condition and scoring rubric.
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Secondly, besides the detection and classification of PCa lesions, the identification of

PCa-negative cases is also important due to a large number of negative mp-MRI scan caused

by the low specificity of PSA test [GP03]. The total radiologists’ workload could be reduced

if some negative cases can be identified by a system with high confidence. Identifying PCa-

negative cases is a task related to PCa detection, i.e., an mp-MRI scan can be identified as

PCa-negative if a detection system does not detect any lesion in the scan. As the evaluation

cohort for the detection systems only consists of patients underwent prostatectomy in this

thesis, further investigations are needed with a study cohort similar to the actual screening

population.

Thirdly, multi-modal information, such as electronic medical record and genomics, can

be incorporated into the system in addition to mp-MRI. Lab results (e.g. PSA level) and

previous prostate mp-MRI scans can be retrieved from the electronic medical record, to

stratify patient’s risk level before the interpretation of the current image. This will be

especially helpful for patients in active surveillance [KVS14]. Also, genomics information

was shown to be related to PCa [RVW15]. As there exist associations between genomics

and mp-MRI features [SPT16], adding genomics information into the system can potentially

make the system more robust.
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[KK11] Philipp Krähenbühl and Vladlen Koltun. “Efficient inference in fully connected
crfs with gaussian edge potentials.” In Proceedings of Advances in Neural Infor-
mation Processing Systems, pp. 109–117, 2011.

60



[KNT17] Atilla P Kiraly, Clement Abi Nader, Ahmet Tuysuzoglu, Robert Grimm, Berthold
Kiefer, Noha El-Zehiry, and Ali Kamen. “Deep Convolutional Encoder-Decoders
for Prostate Cancer Detection and Classification.” In Proceedings of International
Conference on Medical Image Computing and Computer-Assisted Intervention,
pp. 489–497. Springer, 2017.

[KRB18] Veeru Kasivisvanathan, Antti S Rannikko, Marcelo Borghi, Valeria Panebianco,
Lance A Mynderse, Markku H Vaarala, Alberto Briganti, Lars Budäus, Giles
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