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Professor Thomas G. Mason, Chair 

 

 Emulsions are an interesting class of soft materials and have a wide range of practical 

applications in industry and in consumer goods. To design and tailor the mechanical properties 

of concentrated emulsions at high droplet volume fractions for specific applications and products, 

it is helpful to have a good quantitative understanding of emulsion rheology. In this dissertation, 

we describe the improvements that we have made in the quantitative description of the linear 

plateau elastic shear modulus, G'p, of jammed monodisperse colloidal emulsions that are 

stabilized by ionic surfactant molecules.  

 We have created an improved analytical model, which accurately describes the G'p of 

jammed monodisperse micro- and nano-scale emulsions. We incorporate entropic, electrostatic, 

and interfacial (EEI) contributions into a quasi-equilibrium free energy while retaining key 

aspects of random jamming of deformable droplets, and we calculate G'p via free energy 
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minimization. This analytical EEI model successfully describes the empirically measured 

volume-fraction dependent G'p() for microscale emulsions and nanoemulsions without any ad 

hoc adjustments to the empirically measured  and with very few adjustable parameters that 

appear to be universal. In addition, we use this EEI model to identify different -regimes of 

jamming caused by electrostatic repulsions and droplet interfacial deformations.  

 Using jammed monodisperse emulsions as model system, we have improved diffusing 

wave spectroscopy (DWS) microrheology analysis for quantifying the rheological properties of 

dense colloidal systems, particularly G'p() of jammed repulsive emulsions. We show that we 

can correct for collective light scattering effects present in highly scattering concentrated 

colloidal systems through an empirically determined average structure factor and thereby obtain 

corrected mean square displacements (MSDs), which lead to accurate values of G'p through the 

generalized Stokes-Einstein relationship (GSER) of passive microrheology. This advance 

enables accurate optical microrheology measurements of concentrated emulsions over a wide 

range of frequencies beyond the capabilities of traditional mechanical rheometers. This approach 

of correcting DWS MSDs for collective scattering is general and can be applied to other types of 

highly scattering concentrated colloidal dispersions, not just emulsions. 

 Motivated by advances in DWS microrheology for repulsive emulsions, we perform 

DWS microrheology studies on depletion-induced attractive emulsions near and below the 

jamming volume fraction of hard spheres. By adapting the analytical approach developed for 

repulsive emulsions, we show that in some limits DWS microrheology of attractive emulsions 

can be extracted and compare accurately with macroscopic mechanical measurements. We reveal 

systematic features in an excess MSD that is present only for the attractive emulsions, and we 

attribute this excess MSD to additional dynamics of clusters of droplets that are only loosely 
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attached to the main stress-bearing struts of the main gel network of droplets. More theoretical 

attention is needed in attractive emulsion systems in order to determine how to analyze DWS 

MSDs and predict the excess MSDs. Interestingly, these measured excess MSDs can be fit using 

an empirical modified bound Brownian particle equation that we created to describe these extra 

fluctuations in the DWS signals. This application of DWS microrheology to attractive emulsions 

herein serves as a basis from which additional DWS microrheology studies of attractive soft 

colloidal systems can be performed and analyzed. 
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Chapter 1 – Introduction 

 

Reprinted/Adapted from “Advances and Challenges in the Rheology of Concentrated Emulsions 

and Nanoemulsions.” Adv. Colloid Interface Sci., 247, Kim, H.S. and Mason, T. G.  pages 397 - 

412 (2017), with permission from Elsevier. 

 

1.1 Emulsions 

 Emulsions are soft materials composed of droplets of one liquid dispersed in a different 

immiscible liquid
1
; emulsions are used in many industrial applications and in consumer products

2
. 

One of the most interesting and appealing aspects of emulsions is that, while being composed 

entirely of viscous liquids or solutions, they can be made into soft solids that have tunable 

rheological properties which depend upon their compositions and flow histories. These solid-like 

properties emerge through the crowding, which can lead to glassy behavior, and ultimately 

jamming of droplets when the droplet volume fraction  is raised.  

 Emulsions are typically made through an emulsification process in which an externally 

applied energetic flow does work against the interfacial tension, , causing larger droplets to 

elongate and rupture via a capillary instability into smaller droplets
3
; emulsification under 

extreme high-flow conditions can lead to formation of nanoemulsions, which contain droplets 

having an average radius a < 100 nm
4-6

. During emulsification, some of the applied energy is 

stored through the creation of additional interfacial area of the droplets which also leads to an 

increase in the interfacial surface area to volume ratio and also the Laplace pressure L = 2/a of 

undeformed droplets. Hence, emulsions and nanoemulsions are technically thermodynamically 

metastable dispersions and susceptible to droplet coalescence
7
. Nevertheless, the addition of 
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strong stabilizers, such as amphiphilic surfactants, can eliminate changes in the droplet size 

distribution over many years or even decades. Such long-lived metastable emulsions and 

nanoemulsions can serve as idealized soft materials for scientific studies. By contrast, lyotropic 

liquid crystalline phases or "microemulsions" which can contain nanoscale droplets are made by 

a different pathway than emulsification; such pathways include spontaneous equilibrium self-

assembly of droplets that are in effect swollen micelles
8-11

 which is a pre-existing form of low-

energy emulsification
12

. The "microemulsion" nomenclature is a historical oddity given that the 

characteristic droplet radii in these equilibrium microemulsion phases have always been in the 

nanoscale regime
5
. Amphiphilic surfactants, which inhibit droplet coalescence, can be added to 

emulsions to stabilize droplet interfaces via adsorption, thereby making certain emulsion 

compositions stable even in the presence of thermal-entropic Brownian excitations. Furthermore, 

by selecting a liquid for the dispersed droplet phase that is highly immiscible in the continuous 

liquid phase, Ostwald ripening
7
 can be suppressed to a negligible rate; so, some emulsions can 

remain stable for many years or even decades, making the application of near-equilibrium 

thermodynamic principles reasonable.  

1.2 Factors Affecting Rheology of Concentrated Emulsions 

 Many different rheological properties of stable model concentrated emulsions have 

already been explored
13-15

. An emulsion's composition plays a key role in its rheological 

behavior, not only by influencing the long-term stability of droplets, but also by affecting the 

kinds of interfacial interactions that exist between droplets as well as the emulsion's overall 

interfacial structure
16

 (see Figure 1.1). In particular, for oil-in-water (O/W) emulsions, the 

choices of the surfactant and electrolyte concentrations can strongly influence such interactions. 

All of these factors, in turn, can influence the emulsion's rheological properties. For example, 
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ionic surfactants, such as sodium dodecyl sulfate (SDS), are a very important class of stabilizers 

which     adsorb    at    droplet     interfaces    and    typically     provide     short-ranged     screened   

 
Figure 1.1. A complex array of factors can influence the rheological properties of 

concentrated emulsions. Traditional non-equilibrium emulsions and nanoemulsions are made 

by selecting a certain initial composition and imposing a flow that causes larger droplets to be 

ruptured via interfacial instabilities into smaller droplets. After emulsification, a starting point for 

describing the interfacial structures in an emulsion is the distribution of droplet volumes which is 

often expressed as a radial "size" distribution of undeformed spherical droplets. The average size 

and polydispersity of this distribution, as well as the droplet volume fraction , can strongly 

influence the rheological properties of the resulting emulsion. Other factors that can play 

important roles are: the interactions between droplet interfaces, which typically fall into 

categories of repulsive or attractive-repulsive, which are often linked strongly to the composition; 

the prior imposed flow-history and the instantaneous flow conditions during rheological testing; 

and the droplet positional structure and interfacial deformations of individual droplets. Figure 

reprinted with permission by Elsevier, Ha Seong Kim, and Thomas G. Mason, copyright 2018. 
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electrostatic repulsions that yield excellent stabilization against coalescence. Compared to hard 

interactions at the same , these electrostatic repulsions lead to an increase of the osmotic 

pressure; such repulsions also mediate the deformation of droplet interfaces in concentrated 

emulsions. Additives, such as salts
17-18

, can be incorporated into an emulsion’s composition and 

later electrostatic interaction potentials to cause significant interdroplet attractions. Other 

additives, such as polymers
19-21

 or surfactant molecules
15, 22-24

 can give rise to clusters and gels of 

droplets through depletion attractions. An emulsion's droplet size distribution is also of a concern 

as small droplets are known to induce attractions via depletion effects, as has been shown in 

idealized binary emulsion systems
25

, illustrating the entropic depletion attraction originally 

predicted by Asakura and Oosawa
26-27

. When secondary attractions, such as those induced by 

electrostatic or depletion effects, are significantly greater than kBT, where kB is Boltzmann’s 

constant and T is temperature, then droplets can flocculate or even gel without coalescing. Such 

gelation can significantly alter the emulsion's rheological properties
15, 23, 28-29

. In summary, an 

emulsion's composition can influence its different properties, including its droplet size 

distribution after emulsification and also droplet-droplet interactions which can affect the 

emulsion's stability as well as its interfacial structure. These, in turn, can have a very significant 

influence on the emulsion's rheological properties. 

 The positional and interfacial structures of droplets in a concentrated emulsion, which are 

inherently linked to the droplet size distribution through prior emulsification and to the applied 

flow history, are crucial aspects that govern an emulsion's rheological properties. Here, we define 

the emulsion’s positional structure to be the set of centers of mass of all droplets, and we define 

the emulsion’s interfacial structure to be the set of surfaces of droplet interfaces corresponding to 

those centers of mass. In the simplest case, the elasticity of concentrated emulsions is mostly 
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affected by packing or jamming structure, which depends on As  is increased by crowding 

droplets, which can be achieved by applying an osmotic pressure, the droplet interfaces begin to 

significantly deform, leading to elasticity. Historically, hard spheres that have been rapidly 

concentrated form a disordered positional structure known as random close packing (RCP)
30

. 

However, the volume fraction associated with RCP, RCP, has been more precisely defined in 

recent work, leading to the concept of maximal random jamming (MRJ)
31

. The volume fraction 

associated with MRJ of hard monodisperse spheres is MRJ ≈ RCP ≈ 0.646. For disordered, ionic, 

monodisperse emulsions, the onset of elasticity has been associated with MRJ, after correcting 

for screened electrostatic repulsions
32-35

. Polydispersity, which is defined as Pa = a/a where a 

is the standard deviation of the radial size distribution, is known both experimentally
32-33, 35-39

 

and through simulation
40

 to increase MRJ, showing that an emulsion's droplet size distribution is 

interrelated to both its microscopic structure and its rheological properties. The prior flow history 

of an emulsion, even at flow rates well below those used for emulsification, can also influence its 

structure as well as its rheological properties. Certain disordered emulsions of uniformly sized 

droplets have been shown to order under applied flow through shear-induced ordering
41-43

. The 

volume fraction associated with jamming in such ordered structures is significantly higher than 

MRJ; hexagonal close packing is known to have HCP ≈ 0.74 
44

. Also, application of strong flow 

in certain rheological measurements (e.g. steady shear at high shear rates) can actually induce 

further emulsification of larger droplets into smaller droplets
45-46

 and affect polydispersity. Thus, 

for some types of emulsions, it may not even be possible to probe certain rheological properties 

without actually changing the fundamental interfacial structures within the emulsion. 
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1.3 Monodisperse Emulsions and Nanoemulsions 

 Monodisperse emulsions and nanoemulsions, which exhibit relatively low 

polydispersities, have led to significant improvements in the quantitative understanding and 

description of emulsion rheology
5, 32-33, 35, 46-47

. By carefully controlling composition and 

measuring rheological properties, a reasonable quantitative understanding of the linear 

rheological properties of disordered uniform O/W emulsions and nanoemulsions, which have 

screened charge interfacial repulsions through ionic surfactants, has been achieved
32, 48-49

. 

 Only a handful of emulsification methods provide direct approaches for making 

monodisperse emulsions having low polydispersity Pa ≤ 0.1. Some examples of direct methods 

include controlled shear rupturing
50-51

, membrane or porous glass emulsification
52-53

, and classic 

Bragg extrusion of a dispersed phase through a capillary
54-55

, which is now effectively used in a 

wide range of more complex microfluidic and lab-on-a-chip platforms
56-58

. For some of the 

above methods, the gap or channel sizes, as well as the peak flow rate, often limit the smallest 

attainable droplet sizes to the microscale range, and relatively small volumes are produced at 

high droplet volume fractions. 

 Size fractionation of emulsions produced from traditional emulsification approaches, 

which typically have larger polydispersities but offer larger processing volumes, offers an 

alternative route in preparing monodisperse emulsions in large enough volumes to be studied 

through traditional mechanical rheometry. Depletion flocculation
59

 is effective for size-

fractionating larger colloidal droplets, but ultracentrifugal droplet fractionation
46-47

 is typically a 

more useful and practical method for nanoemulsions having a  < 100 nm, provided that a mass 

density mismatch between the dispersed phase and the continuous phase exists to drive 

sedimentation or creaming of the droplets. In this latter method, uniform nanoemulsions, which 
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have Pa ≈ 0.10 - 0.15, have been obtained from a crude polydisperse nanoemulsion by repeatedly 

ultracentrifuging, splitting the concentrated elastic plug that forms, and diluting
46

.  

 Whether nanoscale or microscale, monodisperse colloidal emulsions that are dilute can 

then be subsequently concentrated in a rapid manner using applied osmotic pressure  If a mass 

density difference exists between the continuous and dispersed phases, then centrifugation or 

ultracentrifugation may be preferred; alternatively, if a mass density difference does not exist, 

then dialysis using solutions having high , for instance a polymer solution, can also be used to 

concentrate the emulsion and raise its . If  is applied rapidly to quench-in disorder, which is 

often relatively simple to do with centrifugal methods, then even monodisperse droplets (i.e. 

having Pa ≈ 0.1 or less) commonly go through a glass transition and then a jamming transition 

while retaining a disordered droplet positional structure, as the droplet volume fraction  is 

raised.   

1.4 Linear Viscoelasticity of Concentrated Repulsive Emulsions 

1.4.1 Linear Shear Elastic Moduli of Disordered Concentrated Emulsions 

 In this section, we consider the linear shear viscoelastic response of relatively simple 

concentrated emulsions in which the interfaces of all droplets have short-range repulsive 

interactions with the interfaces of other nearest neighboring droplets; emulsions composed of 

attractive droplets will be addressed in a later section. Highly concentrated emulsions subjected 

to a small strain, below the yield strain, are known to exhibit elasticity which arises from the 

work done against the interfacial tension as the droplets deform. 

 This shear elasticity can be quantified by measurements of frequency-dependent complex 

linear modulus G*) = G') + iG''(), where G')  is the storage modulus and G''() is the 

loss modulus. A mechanical rheometer (Figure 1.2(a)), often the instrument of choice in 
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measuring viscoelasticity, can be used to measure G*) by performing a linear oscillatory 

frequency sweeps at small strain amplitudes 0. In the measurement, the mechanical rheometer 

applies a small-amplitude sinusoidal strain (t) = 0sin(t) to the emulsion and measures the 

sample response of the perturbation in the form of sinusoidal stress (t) which lags the input 

strain signal by some phase  as shown in Figure 1.2(b).  This sinusoidal stress is related to the 

applied strain where (t) = 0[G')sin(t) + G''()cos(t)], such that non-negative G')  and 

G'') can be obtained. For concentrated emulsions, G') exhibits a dominant plateau well 

above G''() at intermediate , and it is possible to define a plateau elastic shear modulus G'p. 

 
 

Figure 1.2. Mechanical rheometer geometry and oscillatory rheology test. (a) A schematic 

representation of cone and plate rheometer geometry in a strain-controlled rhometer, which was 

used for oscillatory rheology test of concentrated emulsions. (b) Typical input and output signal 

of oscillatory rheology test. A sinusoidal strain signal (solid line) of a fixed frequency is applied 

to the sample and the sample response is measured in terms of sinusoidal stress signal (dashed 

line) with a phase lag  with respect to the input. Using the amplitude and the phase lag 

information, components of the complex shear modulus G* can be found. 

 

 In early work, Princen et al.
36-39

 measured the complex linear shear modulus of 

concentrated polydisperse emulsions and attempted to fit G'p() using empirical models. 

However, no direct link could be easily made to theory or microscopic models because of the 
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uncontrolled polydispersity in the droplet size distribution. Measurements, performed by Mason 

et al.
15, 32-33, 35

, of the -dependence of linear plateau shear elastic modulus G'p() of disordered 

concentrated depletion-fractionated emulsions led to a better understanding of the observed 

elasticity. They showed that colloidal monodisperse repulsive polydimethylsiloxane (PDMS) 

O/W emulsions stabilized by SDS having four different radii a could be described by a semi-

empirical G'p(eff) ~ (/a)eff(eff –c) for  > c 
32-33, 35

where the critical volume fraction c is 

MRJ  ≈ 0.646 for monodisperse spheres
31, 60

. To account for screened electrostatic repulsions 

between the anionically stabilized droplets, Mason et al. used an effective volume fraction eff ≈ 

[1 + (hf/2a)
3
], where hf is a -dependent film thickness between the two droplet surfaces having 

values ranging from a few to about ten nanometers. This effective volume fraction crudely 

accounted for the contribution of the electrostatic screened charge contribution around the 

interfaces of the spherical droplets which also had a Debye screening length D of a few 

nanometers. The specific -dependence of hf was chosen in an ad hoc manner to cause data for 

G'p(eff) taken at four different droplet sizes to overlap onto a master curve
32-33, 35

 and was not 

clearly linked to a fundamental theory. However, this way of accounting for the stabilizing 

repulsions was reasonable as an empirical analytical approach, and the resulting master curve 

linked the onset of emulsion elasticity to the jamming of disordered droplets at MRJ. In 

comparison with Princen's earlier measurements, the lower volume fraction associated with the 

onset of elasticity found by Mason et al. highlighted the importance of effects of droplet size 

polydispersity on a concentrated emulsion's elasticity. Furthermore, the frequency dependence of 

Mason's measured shear moduli G*() at eff near but below c closely resembled that of glassy 

hard-sphere colloids
61

, highlighting the importance of entropy and thermal excitations in 

colloidal emulsion systems. 
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1.4.2 Glass Transition versus Jamming of Droplets in Colloidal Emulsions 

 The following brief discussion emphasizes the consequences of entropic excitations in 

concentrated monodisperse emulsion systems in which the droplet volume fraction has been 

raised rapidly so the system of droplets remains disordered, precluding equilibrium entropic 

crystallization via the colloidal disorder-order transition
62

. Based on measurements of G*() for 

colloidal monodisperse disordered concentrated emulsions having eff near but below MRJ, 

Mason et al.
61

 transferred the notion of the colloidal glass transition in entropic systems of hard 

spheres
63

 to the elasticity of concentrated emulsions
32, 35

. Even after accounting for charge-

screened electrostatic repulsions, Mason observed that a dominant plateau shear modulus G'p 

persisted to the lowest frequencies measured for eff just below MRJ. Ultimately, G*() of 

concentrated emulsions developed a low-frequency relaxation visible in the measurement range 

for eff below g ≈ 0.58, where g is the volume fraction associated with the ergodic-nonergodic 

glass transition
16

. Thus, Mason's measurements were consistent with the notion of a zero-

frequency elastic shear modulus that is dominantly entropic in origin for g < eff < MRJ
32, 35

. 

Here, we refer to this range of eff, below jamming but above the glass transition where droplet 

dynamics are non-ergodic yet droplets are not yet jammed, as the glass regime. In addition, a 

well-defined G'p at a non-zero frequency still was measured even for eff somewhat below g, 

although only a portion of the slow glassy relaxation appeared in the measurement range of , 

ultimately cutting off the reported G'p(eff) towards low eff. Here, we refer to this range of eff as 

the near-glass regime. Even in the absence of applied mechanical excitations, slow structural 

evolution (i.e. annealing) and aging of concentrated emulsions over a relatively narrow range of 

eff can exist as a consequence of entropic excitations and local variations in the structure
64-65

; 

these effects are most pronounced in the near-glass regime, where dynamical heterogeneities are 
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frequently and readily observed
66

. Thus, in the glass and near-glass regime, G'p arises from 

excluded volume effects and increases with  as a consequence of increased caging of droplets 

by their neighbors without significant droplet deformation
35

. In the near-glass regime, entropic 

effects dominate, and entropically driven changes in the positional structure of the droplets, 

analogous to hard-sphere colloids, leads to a low frequency glassy relaxation that has been 

modeled by glassy power laws inspired by mode coupling theory
67

. For eff well below g, the 

elastic shear response due to entropic excluded volume effects in dense systems of droplets 

becomes small compared to the viscous response of the liquids in the emulsion, and ultimately 

G'' dominates. While the above discussion refers to volume fractions for perfectly monodisperse 

spheres, these volume fractions may not be the same when significant droplet size polydispersity 

exists. The way in which polydispersity influences all of the quantitative aspects of the glassy 

behavior and the jamming behavior of dense systems of droplets remains as one of the most 

interesting and difficult challenges in emulsion rheology. 

1.4.3 Entropic-Interfacial Model 

 To model the measured G'p() of disordered uniform colloidal emulsions, Mason 

introduced a quasi-equilibrium approach of free energy minimization
32

, which has been more 

recently highlighted in a journal article by Mason and Scheffold
48

. Prior models related to the 

elasticity of colloidal dispersions had established relations that were limited to either disordered 

hard spheres
68

, in which deformation of the interfaces of the spheres was not allowed, or to 

perfect crystals of droplets, respectively, without regard to entropy or stabilizing interfacial 

repulsions
69

. Using basic notions from equilibrium statistical mechanics and prior studies of 

concentrated colloidal hard spheres, Mason developed expressions for entropic and interfacial 



12 

 

free energy per droplet (Fent/N and Fint/N)while neglecting electrostatic interactions. The two 

free energy expressions are:  

  2
ent B c d/ 3 ln +      F N k T  (1.1)

 
2 2

int d/ 4 F aN  (1.2) 

where d is a deformation volume fraction arising from weak deformations of the droplet 

interfaces, N is the number of droplets in the emulsion system,  is the shear strain amplitude, 

and  and  are dimensionless parameters related to shear and configurational effects, 

respectively
32, 48

. The entropic contribution to the free energy per droplet given by equation (1.1) 

was obtained by considering the free volume expressions for hard colloidal spheres near 

jamming
68

. The interfacial contribution to the free energy per droplet given by equation (1.2) was 

obtained by assuming an average deformed droplet structure caused by crowding of neighboring 

droplets. In this approach, the emulsion's linear elastic shear modulus can be modeled by 

considering an average local microstructure and an effective number of regions of closest 

approach of a given droplet's interface with the interfaces of neighboring droplets or an average 

coordination number, ⟨zc⟩ ≈ 6, for disordered systems
60

. Mason et al. proposed that G'p() can be 

deduced by minimizing a total free energy per droplet, the sum of the two free energies above, 

with respect to the deformation volume d and then minimizing the resulting free energy 

expression with respect to the shear strain  . The obtained expression for G'p() is:  

 

2 2
p T( ) 6 [( ) ( ) ]


            c cG

a    (1.3) 

where T
2
 = (3kBT/a

3
)/(2/a) is defined as the square of the dimensionless volume 

representing ratio of entropic and interfacial energy density scales
32, 48

. Good agreement with 
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measurements were achieved using model adjusted parameter values of  = 0.74 ± 0.32 and  = 

0.14 ± 0.06. In the athermal limit where entropy becomes unimportant (i.e. T → 0 as T → 0 or 

for non-colloidal systems), equation (1.3) reduces to G'p() = 12(/a)(-c), which is 

consistent with the semi-empirical formula used to fit G'p(eff) for eff ≥ RCP ≈ 0.64 beyond the 

jamming limit
32-33, 48

. Furthermore, the inclusion of the entropic term provides a smooth 

crossover to the shear modulus of the colloidal glass of droplets, which later Ikeda et al. has also 

shown when describing glassy systems of colloidal soft uniform objects
70-71

. 

1.4.4 Electrostatic-Interfacial Model 

 While the effects of the short-range stabilizing screened charge repulsion were already 

apparent in G'p() of microscale colloidal emulsions, additional experiments with fractionated 

nanoemulsions showed that the effect of this repulsion could become extremely pronounced, 

such that strong elasticity could be obtained in O/W emulsions that are mostly composed of 

water at  far below MRJ
46

. This finding is consistent with the higher surface-area-to-volume 

ratio of nanoemulsions, as the droplet radius more closely approaches the Debye screening 

length D, which is fixed by composition. By shifting the measured G'p() of the nanoemulsions, 

causing it to overlap onto the known master curve for G'p(eff), and using a simple model that 

connected the interfacial interactions to the elastic shear modulus using ⟨zc⟩ ≈ 6, Wilking and 

Mason
46

 deduced the distance-dependent interaction potential, U(h), showing a repulsive Debye 

form: U(h) ~ exp(-h/D)/(h), where h is the separation between proximate droplet interfaces. 

Thus, they effectively turned a macroscopic rheometer into a surface forces apparatus, provided 

a series of rheological measurements covering a range of  are made. Moreover, the 

measurements and model presented by Wilking and Mason set the stage for eliminating the prior 

ad hoc assumptions related to the -dependent film thickness and treating the electrostatic 
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contributions in ionically stabilized emulsions properly.  

 Expanding on the model introduced by Wilking and Mason that deduced U(h) from 

G'p(), Scheffold et al. considered the problem in reverse by predicting G'p() given a screened-

charge U(h) through a similar kind of near-equilibrium energy minimization approach that had 

been previously employed to link interfacial and entropic energetic contributions to G'p. This 

model involved a free energy that incorporated both a screened-charge repulsive electrostatic 

energy and an elastic interfacial energy arising from weak deformations above the onset of 

elasticity near the jamming point yet for  ≤ 0.85, below the bi-liquid foam-like limit
49

. By 

combining the two energies and taking the electrostatic pair potential to be Uelec(h) = 

2a00rexp(-h), where  is the inverse Debye length D
-1

, 0 is the electrostatic surface 

potential, and 0 is the permittivity of vacuum
62

, Scheffold et al. calculated G'p() of 

nanoemulsions and micro-scale emulsions. These calculations matched the experimental results 

without any need to create an effective volume fraction, eff, for volume fractions  ≥ c beyond 

jamming. This marked an important improvement over a limited range of , yet predictions for 

G'p() for colloidal emulsions in the glassy regime, below jamming, could not be made because 

entropic effects from thermal fluctuations were omitted from that model. 

1.4.5 Structural Aspects: Simulations and Measurements 

 Although the analytical models describing macroscopic rheometry measurements of 

G'p() for ionically stabilized, disordered, uniform, oil-in-water emulsions have been developed, 

it nevertheless assumes a relatively simple local average structure around a given droplet. For 

instance, the local coordination number ⟨z⟩ has been assumed to be independent of , and the 

separation distance h between droplet interfaces near the regions of closest approach is only an 

average, rather than a distribution
32, 48

. Despite these simplifications, the analytical model does 
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well in describing the measured trends over a very wide range. Early simulations by Lacasse et 

al.
35, 72

, which described disordered concentrated emulsions using a local coordination number z-

dependent anharmonic pair-potential, have also been used to explain the shear viscoelasticity of 

concentrated emulsions. Lacasse et al.
35, 72

 demonstrated a good agreement between the 

measured G'p(eff) and simulations for  beyond RCP ≈ MRJ, yet these simulations neglected 

electrostatic interactions and entropic contributions. These simulations by Lacasse et al. also 

predicted the non-affine motion of the disordered droplets under small shear strain
72

, which 

recently has been observed using confocal microscopy on sheared emulsion droplets
73

. While 

Lacasse et al. established that non-affine motion of droplet centers at small shear strains was 

consistent with the observed increase G'p() above jamming, a later model, which accounts for 

the contribution by the droplet’s non-affine and affine displacement to the emulsion’s moduli, 

has also been developed
74

. However, this later model does not account for entropic excitations, 

which were also left out of Lacasse et al.'s simulations; such entropic excitations can be 

important for emulsions of colloidal droplets in the glassy regime and weakly jammed limit, and 

entropic excitations are captured in near-equilibrium energy minimization models. 

 Measurements of droplet microstructures in concentrated emulsions have been obtained 

and verified through experimental measurements, particularly through the use of confocal 

microscopy and light scattering in quiescent states and also under flow. Real-space 3D imaging, 

as exemplified by the confocal fluorescence micrograph in Figure 1.3(a)
75

, is providing 

increasingly more 3D interfacial and positional structural information for both jammed
75-79

 and 

glassy
80

 emulsion systems. From the 3D micrograph, Voronoi tessellation, which is a set of 

Voronoi cells or convex polyhedron formed by planes perpendicularly bisecting the vectors 

joining the center of a given droplet to other neighboring droplets, can be constructed as seen in 
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Figure 1.3(b), to determine characteristics of the local droplet positional structure using known 

analytical methods
81

. Using the Voronoi tessellation methods, the probability distributions of 

local coordination number, PDF(z), and average local number of contacts ⟨z⟩ for jammed 

emulsions at  > c shown in Figure 1.3(c) and (d), have also been measured. This 

experimentally determined PDF(z) reveal a peak for  near and just above MRJ, but this does not 

exactly match the peak predicted by simulation for disordered jammed systems (see Figure 

1.3(c)). Such differences are likely a consequence of polydispersity in the experiments, and also 

differences in the effective interactions between droplet interfaces, which is not completely hard 

in the experiments. However, the measured ⟨z()⟩ as a function of droplet volume fraction from 

confocal microscopy has been found to closely match to prior simulation results by Lacasse et al. 

for disordered monodisperse emulsions
35, 82

. These experiments reasonably match the simulated 

(- MRJ)
1/2

 dependence for  > MRJ of ⟨z⟩ above the zc ≈ 6 at MRJ (see Figure 1.3(d)). However, 

⟨z⟩ itself only ranges from about 6 at MRJ to about 12 for highly concentrated droplets 

approaching the bi-liquid foam regime, so any -dependent rheological properties, such as elastic 

shear modulus or yield stress, that have ⟨z⟩ as contributing factor are typically only very weakly 

modified by the -dependence of ⟨z⟩ at and above c. Other measurements that have been 

obtained via real-space imaging include: force distributions
76

, droplet deformations
76

, and droplet 

movements as a consequence of shear
73, 83

. 
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Figure 1.3. Quiescent 3D structures and structural characteristics of concentrated 

emulsions from optical microscopy experiments and simulations. (a) Confocal micrograph 

section of a concentrated monodisperse emulsion having a = 1.05 m with Pa ≈ 0.15 at  ≈ 0.646 

± 0.014 from Zhang et al.
75

  (b) 3D reconstruction and analysis of the droplet positions with lines 

representing edges of Voronoi cells around the droplet centroids. Scale bars in (a) and (b) are ≈ 

10 m. (c) Normalized probability distribution function (PDF) of local coordination number z 

(i.e. number of contacts, number of faces on Voronoi cells) per droplet above the jamming 

volume fraction c ≈ MRJ. Black circles represent measurements from Zhang et al.
75

  and blue 

squares represent measurements from emulsions with a = 3.3  ± 0.74 m at  ≈ 0.664
79

, both 

near the jamming point. Lines guide the eye. Simulations by Lacasse et al.
35, 72

 at  = 0.66, 

slightly above the jamming point,  preceded measurements by Jorjadze et al.
79

 and Zhang et al
75

. 

(d) Average local coordination number ⟨z⟩ as a function of - c. Red open circles are simulation 

results for deformable monodisperse spheres at  = 0.66, slightly above the jamming point, from 

Mason et al.
35

 and Lacasse et al.
72

, fitted by a red line, showing the ( - MRJ)
1/2

 dependence of 

the difference of the average local coordination number with that at jamming, ⟨z⟩ - ⟨zc⟩, beyond 

the jamming point, where ⟨zc⟩ = 6 at MRJ. Blue squares represent measurements as in part (c). 

Figure reprinted with permission by Elsevier, copyright 2018. 
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1.4.6 Optical Microrheology Measurements  

 Measurements of G*() have been made using diffusing wave spectroscopy (DWS), an 

optical microrheological technique, and have enhanced measurements at high . DWS measures 

time-dependent mean square displacements of droplets in concentrated emulsions, from which 

approximate values of G*() can be obtained using generalized Stokes-Einstein relation
67, 84

.  

Using DWS, G*() can be measured at high frequencies that are many orders of magnitude 

beyond the limit of mechanical rheometers which are often limited to  ≤ 10
2
 rad/s. 

Measurements of G*() on monodisperse emulsions using DWS showed G'() ~ 1/2
 at high 

frequencies. This scaling relation has been ascribed to an anomalous viscous loss effect
85

, but 

recent theory, based on analyzing relaxation modes of jammed emulsions, was also found to give 

the scaling relation
86

. In the future, quantitative comparisons of the predicted magnitudes of G' at 

different , not just its 1/2
 scaling with experiments are therefore necessary in order to 

determine the extent of the applicability of these two different models. Moreover, the low-

frequency relaxation behavior and loss modulus of concentrated emulsion systems over a wide 

range of droplet volume fractions and interactions are still interesting to investigate. 

1.5 Rheology of Attractive Emulsions 

 For some emulsion compositions, the interaction potential between droplet interfaces can 

have a strong secondary attractive well, typically deeper than thermal energy kBT, yet there still 

remains a shorter-range repulsion that effectively prevents droplet coalescence. Such attractive 

emulsions can form isolated flocs or clusters, or, for very deep secondary attractive wells, they 

can even gel, yielding highly interconnected networks of droplets depending on . Gelation of 

droplets in emulsions has been observed over a wide range of , including at very low through 
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diffusion limited or reaction limited processes
18, 87-88

. In attractive emulsions, if a deep well 

exists in the potential as a consequence of the secondary attraction, neighboring droplets remain 

proximate even when  drops well below MRJ. This can lead to important differences in 

rheological properties of attractive emulsions compared to purely repulsive ones. Due to the 

fundamental differences in droplet interactions and structures formed, which can be very 

sensitive to the history of applied flow and even gravitational effects, attractive emulsions have 

been observed to have significantly different rheological behavior than their purely repulsive 

counterparts
15, 23, 89-90

. 

1.5.1 Linear Plateau Elastic Storage Modulus of Attractive Emulsions 

 A key initial comparative study of attractive and repulsive emulsions in the concentrated 

regime was made by Mason et al. on fractionated monodisperse O/W emulsions (a = 250 nm, Pa 

≈ 0.1). Their linear viscoelastic behaviors, including G'p(), were measured at lower SDS 

concentrations (~ 10 mM) very close to the critical micelle concentration (CMC), corresponding 

to purely screened-charge repulsions, and also at very large SDS concentrations (~ 200 mM) 

well above the CMC, leading to strong secondary attractive well via surfactant micelle-induced 

depletion, as shown in Figure 1.4
15, 23

. A dominant G'p() of attractive emulsions extended down 

to  well below that of the repulsive emulsions that had the same size distribution. At larger , 

G'p() of attractive and repulsive emulsions were about the same, although the G'p of the 

attractive systems were observed to be slightly smaller over a range of  between about MRJ and 

HCP, potentially as a result of a reduction in the Debye screening length that would be expected 

to occur at higher electrolyte concentrations. However, at even higher , towards the bi-liquid 

foam limit, the data for G'p() for both attractive and repulsive emulsions largely overlapped, 

indicating that droplet deformations, overcoming the Laplace pressure of the droplets, in very 
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dense emulsions systems governs the G'p of both. Although other rheological measurements, 

such as strain and frequency sweeps, were made on depletion-induced attractive emulsion 

systems at the same time as G'p() by Mason et al., this data was not published until later
23

. 

Overall, Mason showed that depletion-induced attractions in emulsions, which could in principle 

be created by a wide range of depletion agents, could have a very important impact on their 

rheological properties. 

 
Figure 1.4. Linear plateau shear elastic moduli of attractive emulsion systems. Linear 

plateau elastic shear moduli G'p in units of Laplace pressure scale σ/a as a function of droplet 

volume fraction  of attractive (solid symbols) and repulsive (open symbols) silicone emulsions. 

Red triangle points are a set of experiments with SDS-stabilized PDMS emulsions dispersed in 

water, whereas other black points are measurements from non-ionic Pluronic P105 stabilized 

silicone emulsions suspended in formaldehyde. The attractive emulsions are denoted in open 

symbols while the non-attractive emulsions are denoted by solid symbols. The average radii a in 

nm of emulsions are:  250 (triangles), 128 (circles), 106 (squares), 100 (diamond). The attractive 

energies Uattr are: 21 kBT (triangles), 9 kBT (circles), 7 kBT (squares), 9 kBT (diamonds). Figure 

data is adapted from Mason et al.
15

 and Datta et al.
23

 Figure reprinted with permission by 

Elsevier, copyright 2018. 

 

 Later, in a similar set of experiments, Datta et al. measured G'p() of polymer micelle-

induced depletion-induced attractive emulsions (a ~ 100 nm, Pa  = 0.30 ~ 0.35) at  = 1 rad/s 

and also found attractive emulsions to exhibit large elasticities below  < c using Uattr = 7 - 9 
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kBT  as shown in Figure 1.4(a)
23

. While the data for the repulsive emulsion systems by Datta et al. 

and Mason et al. overlap reasonably well, there are significant differences in the behavior of 

G'p() between these two different attractive emulsions at lower , even as both have dominant 

G'p that extend to  far below MRJ as a consequence of the attractions. There are many potential 

reasons for the observed differences: the polydispersities of the two systems were different, the 

shapes of the interfacial interaction potentials were not identical in all regards, the methods of 

gelling and loading the samples into the rheometer were not entirely the same, and even 

gravitational effects could have played a role, since attractive emulsions that are not density 

matched can readily compact (causing evolution of G'p due to the resulting compositional 

inhomogeneity) after loading into a rheometer.  

 In other work, Erramreddy and Ghosh
91

 report a rise and then a drop in G' as a function 

of increasing SDS concentrations used in emulsification of = 0.4 O/W silicone nanoemulsions, 

but quantitative interpretation of this is somewhat difficult by polydispersity and uncertainties in 

the remaining concentration of SDS in the continuous phase and droplet sizes in the emulsified 

sample. For a different emulsion system in which gelation is induced by thermoresponsive 

oligomeric chemical linkers, Helgeson et al. reported significant values of G'p() for  >  0.14 

for a = 21 nm emulsions
29

, further indicating attractive emulsions can exhibit elasticity in at 

lower concentrations due to gelation networks. Modeling the elasticity of attractive systems is 

challenging because the nature of the range of the attractions, as well as the changes in droplet 

structure and local heterogeneities in the density of droplets, could alter the results. Pre-shear 

conditions after introducing the attractions and sample handling effects (e.g. creaming for non-

density matched droplets) could be very important for these systems and make comparisons 

between measurements of different groups difficult. However, the effect of attractions on shear 
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elasticity of concentrated emulsions have not fully been explored quantitatively and contrasted 

against that of repulsive emulsions. Further work is thus necessary to understand the elasticity of 

attractive emulsions. 

1.6 Overview 

 Rheological measurements of concentrated monodisperse emulsions have led to key 

advances in the basic scientific understanding of dense glassy and jammed systems of 

deformable objects. Simulations and theoretical models are now in agreement with some of the 

simplest rheological properties of certain well-controlled emulsions and nanoemulsions that have 

highly uniform size distributions yet are disordered. Optical microrheology measurements have 

enabled understanding of high frequency rheology of monodisperse emulsions, such as the 1/2
 

scaling of shear elasticity of concentrated emulsions. It is also shown that depletion-attracted 

emulsions exhibit a different behavior from the repulsive counterpart in G'p() near the jamming 

point, which can be attributed to the formation of gels.  

 Despite these achievements, there still exist improvements to the quantitative 

understanding of monodisperse emulsion rheological properties which can further aid 

understanding of jammed emulsions. A model which can describe measurements using 

empirically measured  while simultaneously describing the glassy entropic affects are needed. 

Improvements to DWS microrheology method, which go beyond showing qualitative trends and 

1/2
 scaling relation and enable quantitatively accurate measurements of G' at different , are 

desirable for quantitative understanding of high-frequency rheology beyond the limit of 

traditional mechanical rheometers. 

 In the following chapters, we present recent studies, which have led to an improved 

quantitative rheological understanding of jammed ionic monodisperse emulsions.   In Chapter 2, 
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we introduce a new analytical model which combines the three dominant interactions (entropy, 

electrostatic, and interfacial deformation) present in jammed ionic colloidal emulsions. This 

model marks an improvement from prior models that have only incorporated a combination of 

two of the three dominant interactions at most. This combined model enables accurate 

comparison with mechanically measured G'p over the range of glassy regime to jammed regime 

while using empirically determined , rather than ad hoc adjusted eff. In Chapter 3, we present 

an improved analysis for DWS microrheology which allows accurate measurements of G'p 

through the generalized Stokes-Einstein relation. The improved analysis furthermore opens up 

possibility for accurate quantitative investigation of high-frequency rheological properties of 

highly scattering colloidal systems, including jammed emulsion systems. Lastly, in Chapter 4, 

we perform DWS measurements on concentrated emulsions in the presence of depletion 

attractions. We compare these results to the repulsive emulsions near the jamming regime to 

investigate the role of depletion attractions in the linear mechanical properties of emulsions.  
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Chapter 2 - Entropic-Electrostatic-Interfacial Model for the 

Plateau Shear Elasticity and Osmotic Pressure of Disordered 

Jammed Monodisperse Emulsions 

 

Reprinted by permission from Springer Nature: Springer Rheologica Acta “Entropic, 

Electrostatic, and Interfacial Regimes in Concentrated Disordered Ionic Emulsions”, 55 (8), 

pages 683-697 by Kim, H.S., Scheffold, F., Mason, T. G. (2016). 

 

2.1 - Introduction 

 Emulsions are one of the most important classes of soft materials. A first liquid is 

dispersed as droplets in a second immiscible liquid phase; the first liquid and second liquid are 

known as the dispersed phase (DP) as the continuous phase (CP), respectively. Typically, a 

surface-active agent, or surfactant, which is soluble in the CP but not in the DP, is added to 

inhibit coalescence of the droplets after they have been formed. Amphiphilic surfactants 

preferentially adsorb at the interfaces of the droplets, thereby providing repulsive forces that 

reduce or eliminate droplet recombination. Provided that the DP is highly insoluble in the CP, 

slow coarsening of the droplet size distribution via Ostwald ripening is negligible over practical 

measurement time scales ranging up to years
7
, so such surfactant-stabilized emulsions can have 

droplet size distributions that are effectively time-independent. Many emulsions are stabilized 

using ionic surfactants, such as anionic SDS, which are highly soluble in an aqueous or polar CP 

but not significantly soluble in a non-aqueous or non-polar DP. For such ionic emulsions, short-

range screened-charge repulsions between droplet interfaces, imparted by adsorbed amphiphilic 

ions, inhibit droplet coalescence, even when the droplets are concentrated through the application 
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of an osmotic pressure  to high droplet volume fractions  approaching and beyond the point at 

which droplets begin to deform as they interact with neighboring droplets.  

 For colloidal ionic emulsions, during the process of osmotic compression from a dilute 

gas-like dispersion of droplets, work is done against entropy, which is the origin of the osmotic 

pressure of Brownian droplets at low . As  is increased further, work is done against 

electrostatic screened-charge repulsions and also against the interfacial tension  of droplet 

interfaces populated with adsorbed ionic amphiphilic molecules. This interfacial tension sets the 

scale of the energetic cost of deforming droplets and creating additional interfacial area in the 

emulsion. Thus, there are three essential contributions to the free energy that are required to 

describe colloidal ionic emulsions: entropic, electrostatic, and interfacial. For emulsions having 

droplet radii larger than a few micrometers, the entropic term is typically negligible, and even the 

electrostatic term can often be neglected, if the Debye screening length D is much smaller than 

the average droplet radius a. However, for colloidal emulsions, which have droplet radii ranging 

from several nanometers to several micrometers, accounting for all three terms is necessary when 

predicting their equilibrium properties, such as osmotic pressure  and the linear plateau elastic 

shear modulus G'p. 

 For uniform emulsions that have highly peaked monomodal size distributions, the 

positional structure of the droplets in the emulsion also plays an important role. When rapidly 

concentrated by applying a substantial osmotic pressure, for instance through ultracentrifugation, 

droplets in these monodisperse emulsions remain disordered even as the emulsion solidifies
33

. 

Thus, the colloidal disorder-order transition
62

 is bypassed, and the droplets remain in a 

disordered structure as a consequence of quenching  in the presence of Brownian excitations, 

which leads to a glassy ergodic-nonergodic transition
92

 and then to jamming and isotropic 
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viscoelastic emulsions that have statistically reproducible macroscopic physical properties. The 

maximally probable jamming point
31, 82

, a more precisely defined notion related to random close 

packing
60

, for monodisperse spheres occurs at a critical volume fraction of c ≈ 0.646. Going 

beyond earlier work of Princen
38

, Mason
32-33, 35

 measured G'() of disordered microscale 

monodisperse emulsions stabilized by an ionic surfactant and previously established that this c 

effectively set the beginning of the rise in measurements of G'() after accounting for 

electrostatic repulsions between droplets in an ad hoc manner. Later rheological measurements 

by Wilking and Mason
46

 on uniform repulsive ionic nanoemulsions showed that jamming can be 

seen at  well below c, thereby revealing the increasing importance of electrostatic repulsions 

for nanoemulsion systems as the droplet radius gets closer to the Debye screening length.  

 Although analytical models
32, 48, 69, 93

 and numerical studies
35, 49, 70-72, 82, 94

 have had some 

success in describing certain limited regimes of emulsion rheology, none have treated ionic 

colloidal emulsions by combining all three energetic contributions (i.e. entropic, electrostatic, 

and interfacial) into a total free energy that is minimized in a near-equilibrium approach to 

provide thermodynamic  and G'p. For uncharged colloidal emulsions, an energy minimization 

approach using a microscopic parameter describing average droplet deformation has been 

introduced by Mason
32, 49

; this model involved only entropic and interfacial terms. Exploring 

smaller colloidal emulsions, Wilking and Mason
46

 measured G'p() of uniform disordered 

nanoemulsions and interpreted this data using a model based on two energetic contributions from 

repulsive electrostatic interactions and interfacial droplet deformation, linked by droplet 

jamming at c. Through this interpretation, they deduced the electrostatic interaction potential as 

a function of average separation between droplet interfaces, essentially creating a macroscopic 

rheological form of a surface-forces measurement
95

. By keeping these same two energetic 
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contributions in an electrostatic-interfacial model that involved energy minimization, Scheffold 

et al. 
49

 took this idea further and predicted G'p() for disordered, ionic emulsions while 

neglecting entropy, which was assumed to be a constant value of several kBT, where T is the 

temperature. Following on initial simulations
72

, recent numerical work on the jamming transition 

of soft spheres has been carried out in the zero-temperature limit neglecting entropic 

contributions
79, 82, 96-98

. In this jamming work, where entropic excitations are absent, important 

scaling relations have been discovered, and these can be employed to derive measurable 

quantities such as the shear modulus or pressure based on the excess number of soft particle 

contacts and the pair interaction potential. However, none of these prior models of disordered 

uniform droplets, whether analytical or numerical, have combined all three relevant energetic 

terms in a near-equilibrium energy minimization approach. 

 Here, to overcome these limitations, we present a near-equilibrium free energy model for 

disordered colloidal ionic emulsions that includes all three terms and connects them using a 

model of nearest-neighboring droplet interactions that includes the disordered structure of 

jammed monodisperse droplets. This connection is made geometrically by introducing an 

average droplet deformation parameter, d, as has been done previously in a two-term entropic-

interfacial model
32, 49

 for non-ionic emulsions. The three-term free energy is minimized with 

respect to d for different droplet volume fractions  relative to c, yielding predictions of the 

emulsion's osmotic equation of state (). By further introducing a shear strain  into this model, 

performing energy minimization, and then taking appropriate thermodynamic second derivative 

with respect to , we predict the plateau elastic shear modulus G'p as a function of . We show 

that these predictions closely match measurements of  and G'p of model disordered colloidal 

ionic emulsions of silicone O/W taken at a fixed aqueous concentration of amphiphilic SDS 
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electrolyte. Moreover, we show that this model also explains measurements of G'p() of 

nanoemulsions in which a non-amphiphilic salt (sodium chloride, NaCl) has also been added. 

From this, we reveal that the surface potential on the droplets increases when the concentration 

of added NaCl begins to exceed that of the SDS. While distributions of microscopic properties, 

such as coordination number, are not taken into account explicitly, this entropic-electrostatic-

interfacial (EEI) model, through a near-equilibrium energy minimization approach, reasonably 

predicts the shear modulus and osmotic pressure of Brownian, ionic, screened-charge, uniform, 

disordered, colloidal emulsions. 

2.2 - Materials and Methods 

2.2.1 - Nanoemulsion Preparation, Fractionation, and Characterization 

 We first create a polydisperse microscale O/W premix emulsion by emulsifying 

trimethyl-terminated polydimethylsiloxane (PDMS) silicone oil (viscosity 10 cSt, mass density 

0.935 g/cm
3
, Gelest) at  = 0.3 into a 20 mM aqueous SDS solution (MP Biomedicals, 

Ultrapure)
6
. We process this premix emulsion at a liquid pressure of 10,000 psi through a 75 

micron Y-type diamond interaction chamber using a Microfluidics M-110P homogenizer, 

recirculating for three passes using a cooling coil immersed in an ice-water bath. The resulting 

sub-microscale emulsion is fractionated via ultracentrifugation to reduce the polydispersity in the 

droplet size distribution. To size-fractionate the resulting polydisperse nanoemulsion, we dilute it 

to  = 0.15 using a 10 mM SDS solution and ultracentrifuge at 15,000 rpm for 9 hours (L8-55 

Beckman, SW 28 TI Rotor). We recover cylindrical elastic plugs at the top of the ultracentrifuge 

tubes and divide these into three disk-like sections (i.e. top, middle, and bottom sections) having 

equal lengths using a stainless steel blade. Similar sections of the plugs from different centrifuge 

tubes are combined to create three concentrated emulsions, yielding a first size-fractionation step. 
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We then separately dilute each of these three concentrated emulsions with 10 mM SDS solution 

to set  = 0.15, and we perform two additional ultracentrifugal size-fractionation steps (15,000 

rpm for 6 hours, and 12,000 rpm for 8 hours). Repeated dilution of these concentrated emulsions 

with 10 mM SDS during size-fractionation ensures that the final SDS concentration in the CP is 

fixed to 10 mM, irrespective of the SDS concentration used to make the initial polydisperse 

emulsion. By taking the top sections of the first step, the middle sections of the second step, and 

the middle sections of the third step, we obtain a fractionated emulsion that has an average 

droplet radius that lies between larger sub-micron and micron-scale droplets
35

 and smaller 

nanoscale emulsions
46

 at [SDS] = 10 mM in prior published results. This concentration is only 

slightly higher than the critica micelle concentration of SDS near 8 mM, so energies associated 

with micellar-driven depletion attractions and between droplets are all much less than thermal 

energy and can be neglected for microscale and nanoscale droplet radii
62

. 

 We measure the average hydrodynamic radius of this fractionated emulsion using 

dynamic light scattering (DLS) (90 deg, laser wavelength 633 nm, temperature 295 K, diluted 

using a 10 mM SDS solution to  ~ 10
-4 

– 10
-5

), yielding an average hydrodynamic radius of a = 

104 ± 2 nm. The polydispersity in the size distribution of these fractionated droplets is ≈ 20%, as 

inferred from small angle neutron scattering experiments on other emulsions that have been 

fractionated in a similar manner
47

. We also measure  of the fractionated concentrated emulsion 

by evaporating the water from about 150 mg of emulsion at room temperature, since the oil and 

SDS are non-volatile
99

. To obtain smaller volumes of concentrated emulsion at desired , we 

dilute this stock fractionated concentrated emulsion with 10 mM aqueous SDS solutions and stir 

gently to avoid introducing air bubbles.  
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2.2.2 - Linear Shear Mechanical Rheometry 

 We load approximately 150 µL of the fractionated emulsion into a cone-and-plate shear 

rheometer (Rheometrics RFS II, controlled strain, 25 mm diameter, 0.1° cone angle, titanium). 

We perform a frequency sweep from 1.0 × 10
2
 rad/s down to 1.0 × 10

-2
 rad/s at a peak shear 

strain amplitude of  = 1.0 × 10
-2

 and then a strain sweep at a frequency of  = 1.0 rad/s from  

2.0 × 10
-3

 to  2.0. The shear strain amplitude used in the frequency sweep is below the yield 

shear strain of all emulsion samples. We determine the plateau elastic shear moduli using the 

inflection point of the G'() curve on the frequency sweep. If no inflection point can be 

identified on the G'() curve, then G' at 1.0 rad/s is reported. We use an enclosing vapor trap 

filled with water to prevent water evaporation from the emulsion during the measurements. 

Residual torques arising from the vapor trap are much less than the torques due to the loaded 

emulsions for all measurements. We have tested for the possibility of wall slip, and it is not 

present for these fractionated nanoemulsions in the small shear strain limit. 

2.2.3 - Interfacial Tension Measurements 

 We measure the interfacial tension between the aqueous 10 mM SDS solution, into which 

different concentrations of NaCl have been added, and the PDMS oil using a du Nouy ring
100-101

. 

Before each measurement, we clean the du Nouy ring (CSC Scientific, platinum-iridium, 

circumference = 5.996 cm; R/r = 55.6, where R is the radius of the ring and r is the radius of the 

platinum wire) by rinsing it with de-ionized water and flaming it with a methanol flame. We 

pour the aqueous solution, which has a higher mass density, into a small crystallization dish (80 

mm diameter) and then slowly pipette the PDMS oil on top of the aqueous layer. The du Nouy 

ring is attached to a custom bottom-hole surface tensiometer and submerged through the PDMS 

oil into the aqueous phase. This tensiometer has been previously calibrated by measuring the air-
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liquid surface tension of deionized water, obtaining the reported value to within ±5%. After 

waiting 5 minutes while the ring is fully submerged, we command the tensiometer to lower the 

crystallizing dish using a LabVIEW-controlled motor, and we digitally record the force on the 

ring by the bottom hook of the balance as the ring is slowly pulled through the interface at a rate 

of 0.10 mm/s until the interface detaches from the ring. We use the peak force and the mass 

densities to calculate the interfacial tension. All surface tension measurements have been 

performed at room temperature, T = 298 K, the same as has been used for the rheometry 

measurements. 

2.3 – Entropic-Electrostatic-Interfacial (EEI) Model 

We consider a disordered colloidal emulsion system of soft, deformable, uniform droplets 

composed of a first viscous liquid, the dispersed phase, that effectively form a Brownian 

suspension in a second immiscible liquid, the continuous phase, at a temperature T. Each droplet 

has a fixed volume, Vdrop = 4a
3
/3, where a is its undeformed radius. The number of droplets in 

the system is N, the system's total volume is V, and the droplet volume fraction is  = NVdrop/V. 

Droplet stability is assured by adding an adequate concentration of an ionic amphiphilic 

surfactant, presumed to be present in only the continuous phase, some of which has adsorbed 

onto droplet interfaces. Thus, screened-charge electrostatic repulsions exist between the 

interfaces of droplets, and ions only reside in the continuous phase and at the surfaces of the 

droplets where the charged head groups of adsorbed ionic surfactant molecules are located. 

Droplet interfaces can deform near regions of closest approach (ROCAs) with nearest 

neighboring droplets. Such volume-preserving deformation of a droplet necessarily implies that 

work has been done against interfacial tension  to increase its surface area. A characteristic 

Laplace pressure scale of an undeformed droplet is therefore /a, and an applied osmotic 
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pressure  must approach this Laplace pressure scale to cause any significant droplet 

deformation. 

 In a dilute system of droplets at low , entropy dominates the free energy because the 

average separation h between neighboring droplets’ interfaces at ROCAs, on average, is 

significantly larger than the characteristic thickness of the Debye layers, D, of the screened-

charge repulsion, represented schematically by blue boundaries around droplets as shown in 

Figure 2.1(a). At higher  in the near-glass regime where  is still below the ergodic-nonergodic 

glass transition, the droplets form cages around each other but the cages are transient due to 

entropic fluctuations; the system remains ergodic, exhibiting a low-frequency relaxation. As the 

system is further concentrated (Figure 2.1(b)), neighboring droplets no longer form transient 

cages, and the system becomes a non-ergodic glass; the low-frequency relaxation disappears, yet 

the droplets are not strictly jammed and Brownian fluctuations of droplets can still be significant. 

As  is further increased, the separation between the droplets’ interfaces becomes small enough 

that adjacent Debye layers of neighboring droplets begin to overlap, and the droplets begin to 

repulsively jam through screened-charge repulsions as shown by the electrostatic regime in 

Figure 2.1(c). This electrostatic repulsion also leads to tiny interfacial deformations near ROCAs 

of neighboring droplets in order to increase the separation between the charged droplet interfaces. 

Droplets experience greater electrostatic repulsion upon further concentration, so this leads to 

greater deformation of the droplets’ surfaces to create facet-like areas of reduced curvature at 

ROCAs. At even larger , work is primarily done against interfacial tension and droplet 

deformation, and droplet deformation can become significant, as shown by the interfacial regime 

in Figure 2.1(d). 
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Figure 2.1.  Rapidly concentrating uniform ionic O/W emulsions at high droplet volume 

fractions beyond glassy regime. Rapidly increasing the volume fraction  of uniform colloidal 

droplets in ionic O/W emulsions leads to a disordered structure and a shear elasticity that arises 

from a combination of entropic, electrostatic, and interfacial forces. Dispersed-phase oil droplets 

(green) and surfaces populated with ionic surfactant molecules, which cause charge-screened 

repulsions between droplet interfaces. The aqueous continuous phase (white) contains ions, 

leading to a Debye screening length D (blue coronas). A central droplet (red outline) is 

surrounded by its nearest neighbors (black outline), and these are surrounded by second nearest 

neighbors (dashed outline). Osmotic compression raises  from the dilute limit into the following 

regimes: (a) the entropic near-glass regime, which is ergodic, so cages of nearest neighbors are 

transient, as a result of entropic fluctuations; (b) the entropic glass regime, which is non-ergodic; 

(c) the electrostatic jammed regime, in which Debye layers of the droplet begin to overlap 

significantly and screened electrostatic repulsive forces dominate as the droplets are jammed 

together; and (d) the interfacial jammed regime, in which droplets become increasingly deformed, 

but still weakly deformed, and work is predominantly done against interfacial tension. 

 

As a fluid-like, dilute, Brownian dispersion of disordered droplets is concentrated by an 

applied , we assume that  passes rapidly through the colloidal disorder-order transition
102-103

, 

corresponding to 0.495 ≤  ≤ 0.545 for hard spheres, thereby suppressing crystallization, and into 

the near-glass regime, just below the glass transition volume fraction, corresponding to g ≈ 0.56 

- 0.58 for hard spheres, associated with an ergodic-nonergodic transition and the disappearance 

of a low-frequency relaxation. As  is further raised through and beyond g into the glass regime, 

and beyond that into the jamming regime, the system remains disordered.  Thus, in a colloidal 

ionic emulsion system, as  is raised, work is done against a combination of entropy, screened-

charge electrostatic interfacial repulsions, and droplet interfacial tension and deformation. 

Consequently, we construct a model of the system's total free energy, which includes these three 



34 

 

contributions, and we calculate the osmotic pressure  and the linear shear elastic plateau 

storage modulus G'p, of this system by minimizing its total free energy in the limits of small 

droplet deformation and infinitesimal shear strains. As  is raised, we assume that the most 

probable out of equilibrium states of disordered droplet configurations in the highly jammed 

system are effectively sampled by a near-equilibrium approach to the jammed regime through 

the glassy regime
48

. Inherent in this near-equilibrium approach is the implicit assumption that the 

particular disordered state of the colloidal emulsion at a given , even if only one manifestation 

of a large ensemble of microscopic droplet positional and interfacial structures that could arise 

from one trial to the next in preparing the emulsion, still gives rise to highly reproducible 

average macroscopic properties, including G'p and . Thus, the dominant contribution to the free 

energy progresses from an entropic regime to an electrostatic regime, and then to an interfacial 

regime, in which more substantial droplet deformation can occur.  

 As a first step in building a suitable model for the free energy of a dense ionic emulsion, 

we consider a simpler disordered system of N uniform spheres having volume Vsphere = 4a
3
/3 in 

which the only contributions are entropic and all interactions between the spheres are purely hard. 

When  is raised rapidly enough to avoid crystallization that could otherwise be caused by the 

entropic disorder-order transition, these disordered spheres can pass through the glass regime, 

characterized by a glass transition volume fraction g ≈ 0.56 - 0.58
63, 68, 104

, and jam in a 

disordered configuration at a critical volume fraction c, where  diverges. Randomly jammed 

or packed hard spheres are known to have c = MRJ = RCP ≈ 0.646
31, 60

. For  just below c, the 

time- and ensemble-average free volume corresponding to accessible translational microstates of 

the center of mass of a sphere has been found to be proportional to the product of the volume per 

sphere with the cube of the volume fraction difference away from jamming
68

. This implies that 
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the number of translational microstates in the three-dimensional (3D) system is ~ (c - )
3N

 for 

 < c. Thus, according to Boltzmann’s law, the 3D translational entropy of the hard-sphere 

system for  near but below c can be estimated as: SHS = kB ln  ≈ kB ln(c - )
3N

 = 3NkB ln(c - 

). Thus, for a disordered system of hard spheres, it can be inferred that the entropic translational 

free energy scales as: Fent,HS  = -TSHS = -3NkBT ln(c - ).  

 We next consider the entropic free energy of a system of disordered uniform colloidal 

particles that have hard interactions, yet are not completely spherical in a special manner that we 

describe as follows. Starting with spherical particles in a dense jammed system, we imagine 

slightly deforming all particles while conserving their internal volumes, in a manner that creates 

tiny facet-like areas, which locally have smaller curvature, near all ROCAs of all particles. The 

result of such selective tiny deformations causes the particles in the jammed system to lose 

contact with each other, and thus, unjam. Thus, this procedure of deformation at ROCAs 

increases the free volume available for translational motion of the particles. For irreversible 

deformations, the system of deformed particles, if further compressed, would jam at a slightly 

higher critical volume fraction c' compared to c of perfect spheres. The difference between c' 

and c can be connected to an effective deformation volume fraction d related to translational 

motion: d = c' - c, where d > 0, but d is still small, far from the limit of strong droplet 

deformation. Since the spherical particles have only been slightly deformed, the entropic 

contribution to the free energy of a disordered system scales in a similar manner as for spheres, 

but diverges at a higher c' instead of c: Fent /N ≈ -3kBT ln(c' - ) ≈ -3kBT ln(c + d - ). In the 

dense system, the slightly deformed particles cannot easily re-orient because of their neighbors, 

so we ignore rotational contributions to the entropic term in the free energy.  



36 

 

 Next, we construct the interfacial free energy of deformable spheres based on a simplified 

model of droplet compression above the jamming point by its nearest neighbors for a certain 

applied osmotic pressure . We assume that the emulsion is an isotropic effective medium and 

therefore that there is an average near-equilibrium separation between centers of neighboring 

droplets as well as average local geometrical features at all ROCAs. For simplicity of 

representation in the schematic, we show a middle cross-section of a single cubic box (see Figure 

2.2), implying six nearest neighboring droplets in 3D; the scaling form resulting from the 

following argument can also be generalized to a disordered configurational structure for the real 

emulsion system even if numerical prefactors differ. We define rto be an average deformation 

length along the centerline between adjacent droplets normal to a small circular facet; each facet 

has an area of rd
2
, where rd is the average radius of the facet (see Figure 2.2). We assume weak 

deformation near and above the jamming point, implying r << a. As a consequence, there is a 

gain in accessible translational microstates resulting from these deformations at ROCAs, which 

is directly related to d
48

. For  near the jamming point, each droplet in a disordered system of 

spheres also has ≈ 6 nearest neighboring droplets on average; we assume that changes in 

coordination number around the jamming point play only a minor role in the free energy near the 

jamming point. In going from an uncompressed to a weakly compressed state, the osmotic 

pressure effectively causes a small change in volume of an imaginary box around a droplet of 

6(2a)
2
r. Dividing this change in volume by the box's original volume gives the deformation 

volume fraction d = 24a
2
r/(2a)

3
 = 3r/a, so d is linearly proportional to r. Using the 

Pythagorean theorem, a
2
 = rd

2
 + (a - r)

2
, so the area of a deformed facet is rd

2
 ≈ a

2
[1 - (1 - 

r/a)
2
] ≈ a

2
(2r/a) ≈ 2ar to leading order in r in the weak compression limit. The linear 

dependence of the facet area on r and therefore d is a key geometrical result, but six times this  
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Figure 2.2. Schematic two-dimensional cross-section of a single oil droplet (green) in an 

aqueous surfactant solution (white) that is deformed by applying a uniform osmotic 

compression through a small reduction in the volume of an enclosing, rigid, semi-

permeable cube (dashed lines). (a) Prior to deformation, the droplet is spherical and has radius 

a; the cube's edge length is 2a. (b) After deformation, the enclosed droplet is isotropically 

compressed by a length 2r from the original cube. Small circular facets having radii rd form at 

regions where the droplet interface is deformed. The droplet volume is conserved. 

 

facet area does not represent the excess surface area of a droplet as a result of the osmotic 

compression, since volume conservation of the droplet must be respected. 

 To obtain the connection between the interfacial free energy and d, we use force balance 

to obtain  in terms of d and then we integrate. By Newton's law, the force given by the weakly 

deformed droplet's Laplace pressure exerted over the area of one of its facets, on average, must 

be equal to the force given by the applied osmotic pressure over a face of the cube where that 

facet is located: (2/a)(rd
2
) ≈ (2a)

2
. Thus, the osmotic pressure is linearly proportional to the 
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deformation volume fraction d:  ≈ (a2
)r ≈ (/3)(a)d. We define the interfacial free 

energy fint associated with deformation of a single droplet to be a function of d (i.e. the volume 

fraction above the jamming point of droplets with neighboring droplets: d = c' - c). We obtain 

fint from  using the differential equation
35

  = [2
/(4a

3
/3)]∂fint/∂, which, when converted 

to be a function of d, is approximately (d) ≈ [c'
2
/(4a

3
/3)]∂fint/∂d, assuming that d is 

significantly smaller than c for weak droplet deformation. Using the force balance result (d) ~ 

d and integrating, we obtain fint ~ a
2d

2
 , which is quadratic to leading order in d, where d ≥ 0. 

Thus, the change in a droplet's surface area resulting from a uniform osmotic compressional 

deformation is ~ a
2d

2
 to leading order. Here, as a convenient convention, we omit a constant 

term related to the area of an undeformed droplet in fint; this convention does not influence 

calculated values of  and G'p. In addition, for simplicity, we ignore small variations in the local 

coordination number that can occur around the jamming point, recognizing that this could be 

incorporated later into a more complex model.  

 In a real disordered material, the prefactor associated with fint could be different than the 

one we have calculated from the cubic model, so we simply generalize the interfacial free energy 

per droplet to be: fint = Fint/N ≅ 4a
2d

2
. We have introduced a dimensionless numerical 

parameter  to bridge between the cubic model and a real isotropic disordered emulsion system; 

 is related to the distribution of facet sizes and local neighbor configurations of the real 

emulsion system
48

, and it could even depend on real polydispersity in the droplet size 

distribution. This simple model of energy associated with droplet deformation in a disordered 

concentration emulsion captures the most relevant main feature. We recognize that other 

refinements, such as the known logarithmic correction to the harmonic dependence of the free 
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energy
69

, changes in local coordination number near and above c
72

, and changes in the effective 

values of c for disordered systems of spheres having differing polydispersities
40

, could be 

incorporated into more complex models in the future. Such adjustments would refine the main 

result of the simple deformation model for Fint/N near and just above the jamming point. 

 

Figure 2.3. Schematic showing deformation of charged interfaces of two ionically stabilized 

droplets (green: oil) in a concentrated O/W emulsion at a region of closest approach 

(ROCA) for osmotic compressions approaching the Laplace pressure scale /a. The radius 

of an undeformed droplet is a and its interfacial tension is. Debye screened-charge layers 

having a screening length D (blue) overlap significantly near the ROCA. The distance between 

the centers of the droplets is L, the length along the centerline of droplet deformation is r, and 

the separation between the oil-water interfaces at the ROCA is h. Ions (not shown) are present in 

the continuous aqueous phase, and charged amphiphiles (not shown) populate droplet surfaces. 

 

 Next, we consider the contribution to the free energy per droplet associated with 

electrostatic interactions, Felec/N, via screened-charge electrostatic repulsions between the 

surfactant-coated interfaces of the deformed droplets. In the limit of weakly deformed droplets 

that have pairs of opposing deformed facets near all ROCAs, we assume that the dominant 

contribution to the electrostatic interactions arises primary from screened repulsions between 

these proximate facets, which are separated by an average distance of closest approach h as seen 
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in Figure 2.3. The high density of droplets having charged surface regions and counterion 

screening layers precludes the use of simple formulae developed for pair interactions of isolated 

spheres that have charged surfaces. The screened electrostatic potential between two disks (i.e. 

proximate deformed facets of neighboring droplets) separated by a distance h in a dilute solution 

having an ionic strength I is: Felec/N ≈ 2ar00 exp(-h/D)/h, where the effective surface charge 

potential over all ROCAs is 0, the Debye screening length is D = (r0kBT/(2e
2
I))

1/2
,  0 is the 

permittivity of vacuum, r is the relative dielectric constant of the continuous phase, and e is the 

elementary charge
62, 105

. Here, 0 is negative for anionic surfactants; for simplicity we report and 

plot only the magnitude of 0. For common concentrations of ionic surfactants used to stabilize 

emulsions, D is typically on the scale of few nanometers. This form for the free energy is 

identical to that used in a model that has successfully scaled nanodroplet elasticity
46

, and it 

differs only slightly from a form used to model screened electrostatic interactions between 

isolated charged droplets that does not include the factor of 1/h 
49

. Inherent in the expression for 

Felec/N is the use of a linearized Poisson-Boltzmann model in the Debye-Hückel limit
62

, so the 

surface potential on the droplets is fixed and the ionic strength is assumed to be relatively small. 

In the limit of small droplet deformation, changes in the total droplet surface area, which could 

influence the equilibrium adsorbed density and therefore the surface potential, are small and so 

we assume that 0 does not depend on . Thus, the assumed electrostatic free energy 

contribution does not attempt to treat complex effects, including surfactant adsorption equilibria, 

high ionic strengths, and local variations in surfactant density on droplet interfaces near and in 

between ROCAs. These more complex effects related to electrostatic interactions could be 

potentially relevant for a subset of ionic emulsions; treatment of such effects lie beyond the 

scope of this simplified model.  



41 

 

 To connect the electrostatic free energy with the rest of the EEI model, we must 

determine the dependence of h on the deformation volume fraction d. We define the average 

center-to-center distance L between neighboring droplets to be: L = h + 2(a -r) ≈ h + 2a since 

the droplets are weakly deformable. At the shifted jamming point c', we envision a deformed 

droplet enclosed by a larger, effective spherical shell having volume Veff = 4(L/2)
3
/3. Our 

definition of the shifted volume fraction at the critical jamming volume fraction implies that Vc' 

= NVeff = N[4(L/2)
3
/3]. At the shifted jamming point, the true "bare" droplet volume fraction 

must still satisfy V = NVdrop = N(4a
3
/3). Since N and V are fixed, dividing these two equations 

implies that c' /  = L/(2a)
3
, where c' = c + d. Solving for h in terms of , d, and the universal 

jamming point c, we find h = 2a [(c' /)
 1/3

 – 1], leading to: 

 h = 2a ( c + d)
1/3

 [ -1/3
 – ( c + d)

-1/3
] (2.1). 

For weak deformations around and near the jamming point, d << c so d will make only a 

minor modification to the ( c + d)
1/3

 factor present in the expression for h in equation (2.1), but 

it can still make a significant impact on the difference in brackets. Consequently, we further 

simplify the expression for h to: 

 h ≈ 2a  c
1/3

 [ -1/3
 – ( c + d)

-1/3
] (2.2). 

 We modify this model of the near-equilibrium free energy of an ionic colloidal emulsion 

so that it can also be used to calculate the linear plateau elastic shear modulus G'p, a rheological 

property based on an applied perturbative shear strain . The shear deformation changes the 

positional configurations of the droplets such that the shifted jamming point of the sheared 

system is lowered by a quadratic term proportional to 2
, since the free energy cannot depend on 

the sign of , from the shifted jamming point of the unsheared system,c'. Consequently, we 
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substitute c' - 
2 = c + d - 

2 into the above expressions for Fent/N and Felec/N (i.e. into h in 

equation (2.2)) wherever c' occurs. Here, we have introduced  as a dimensionless parameter 

that describes the average shear effects to the configurations of the droplets, and effectively 

incorporates non-affine local displacements that can occur in such systems during osmotic 

compression and shear
72, 82

. Thus, the complete set of equations for the free energy per droplet 

contributions to the sheared emulsion system are: 

 
2 2

int d/ 4 F aN  (2.3) 

  2
ent B c d/ 3 ln +      F N k T  (2.4) 

  2
elec 0 0

2
Dr/ 2 exp     F N ha h  (2.5), 

where the separation at closest approach  is 

  
1/3

1/3 1/3 2
c c d2 +    


 

   
 

h a  (2.6). 

The total free energy per droplet is simply Ftot/N = (Fint + Fent + Felec)/N, and d is a parameter 

that must be minimized in order to satisfy the near-equilibrium condition of free energy 

minimization, consistent with the second law of thermodynamics.  

  To obtain  in the absence of shear and G'p for an applied perturbative shear, we first 

minimize the total free energy: 

 
tot

d *
d d

0
F

 







 ,  (2.7) 

from which we determine d*, the deformation volume fraction satisfying the minimization 

condition, in terms of other parameters, including  in the case when a shear has been applied. A 

transcendental equation arises from the minimization condition, so FindRoot function in 
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Mathematica (Wolfram Research Inc.) is used to solve numerically for the one positive real root 

of d* that corresponds to a meaningful physical value. Once we have obtained this d*, we 

substitute it back into the expression for the total free energy wherever d occurs to obtain the 

minimized total free energy Ftot*. We then take appropriate thermodynamic derivatives of Ftot* 

to determine  and G'p
48

: 

 
   2

drop tot *, 0d d  
 

 
    
 

NV F
 (2.8) 

 
  *

d d

2 2

p drop tot , 0  
 

 
       

G NV F
  (2.9). 

To obtain the osmotic pressure , solutions of d* are found for a range of  values at  = 0, such 

that the local slope of Ftot* with respect to  can be calculated and used in equation (2.8). The 

plateau elastic shear modulus G'p is found numerically as follows. For a particular  value, 

solutions of d* are found over a small range of  values from 0 to about 0.01, below the 

measured yield strain of concentrated disordered emulsions, corresponding to the linear 

rheological regime. At each , the curvature ∂
2
Ftot*/∂ 2

 is obtained by finding the least-squares 

fit of parabolic Ftot*() centered around  = 0 for small . The parabolic coefficient from the fit is 

then used to determine G'p. This process is repeated for different , yielding G'p as a function of 

. We have verified this approach using a high density of  and  values (i.e. Δ = 0.009 and Δ 

= 0.0005 intervals), and we find excellent agreement with a prior analytical solution
48

 when 

electrostatic forces have been eliminated (i.e. when 0 = 0 V). By first solving the transcendental 

equation for d* to determine the minimized Ftot* and then finding slopes and curvatures of Ftot* 

numerically, we obtain the thermodynamic properties and G'p for a system of uniform 

deformable ionic droplets as a function of  below, through, and above the jamming point. 



44 

 

However, the EEI model is not expected to be appropriate in limits as  → 1, away from the 

weak deformation limit where d* would become large, and as  → 0, where the scaling form 

used for the entropic term for  near c would be inappropriate. 

2.4 - Results and Discussion 

2.4.1 – EEI Model Comparison to Mechanically Measured G'p 

 We compare the predictions of the EEI free energy minimization model with five sets of 

G'p() measured for uniform, disordered, ionic, O/W emulsions having microscale, sub-

microscale, and nanoscale droplet radii, as shown in Figure 2.4. We fix T = 298 K, since 

measurements have been made at room temperature, and we also fix c = 0.646, based on the 

known ideal limit of maximal random jamming of perfectly monodisperse spheres, recognizing 

that residual polydispersity in a real emulsion could shift this value somewhat
40, 75

. We use a 

Debye screening length of D ≈ 3.4 nm, predicted from D = [r0kBT/(2e
2
I)]

1/2
, where the ionic 

strength I of the SDS solution is I ≈ 8.2 mM, corresponding to the known critical micelle 

concentration (CMC) of SDS. This value of D is only about 10% larger than the calculated 

Debye length using I = 10 mM, disregarding micelle formation and the CMC. Because the 

diameter of SDS micelles (i.e. ≈ 4 nm) is larger than the Debye length and the SDS concentration 

is very close to its CMC, any small residual concentration of SDS micelles would not be 

expected to contribute significantly to the screening length. We fix the surface tension to be  = 

9.8 mN/m based on a prior measured value for PDMS oil and 10 mM SDS solution.  

 We determine the remaining parameters by optimizing the global fit of the EEI model to 

all sets of measurements in Figure 2.4, yielding  = 0.15,  = 0.85, and |0| = 270 mV. These 

values  lie  within  uncertainty  limits  of  separate  entropic-interfacial  and  electrostatic-interfacial  
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Figure 2.4. Plateau elastic shear moduli G’p, in units of Laplace pressure scale /a, as a 

function of droplet volume fraction for uniform microscale and nanoscale 10 cSt 

trimethyl terminated PDMS O/W emulsions stabilized by a 10 mM SDS solution. Points 

represent measurements by mechanical shear rheometry and solid lines are obtained via 

calculation using equation (2.9). Droplet radii are (from left to right) a (nm): 28 (33) [red circles], 

47 (47) [orange squares], 73 (67) [green diamonds], 104 (108) [blue up-triangles], and 530 (530) 

[black down-triangles] at T = 298 K. Values for a listed in parenthesis are used in the calculation. 

Data for a < 100 nm are from, for a = 530 nm are from, and for a = 104 nm are from the herein 

work. We fix the jamming point to be c = 0.646 and temperature T = 298 K. We also fix = 9.8 

mN m
-1

. Calculation parameters (see text) that yield the best overall fits to all data are:  = 0.15, 

 = 0.85, D = 3.4 nm, and 0 = 270 mV. 

 

models
48-49

, where we have made minor modifications to measured droplet hydrodynamic radii 

within the range of polydispersity (i.e. ≈ ±15%) to improve the global agreement. The value of 

0 obtained from the global fit is reasonably close to an estimated value of |0| ≈ 210 mV using 

Grahame’s equation 0 = [(2kBT)/(ze)]sinh
-1

[e/(8coroRT)
1/2

], which is based on Gouy-

Chapman theory
62

, where c0 is the bulk molar concentration of the counterions in the CP, z = 1 is 

appropriate for monovalent ions arising from dissociated SDS. In this calculation we have used a 

measured and reported value of e ≈ 2 e/nm
2
 for the adsorbed surface density of dodecyl sulfate 

anions (DS
–
) at the interface of decane and water at c0 = [SDS] = 10 mM 

106
. Differences in the 

dispersed phase compositions and differences in the experimental system from the assumed 
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boundary conditions inherent in Grahame’s equation could account for at least some of the 

difference between the estimated and fitted values of 0. Overall, the EEI model matches the 

measurements over a wide range of radii from nanoscale to microscale emulsions. It captures 

features including the interfacial contributions to G'p at high  as well as electrostatic and 

entropic contributions at lower . Variations in residual droplet polydispersity, which for the 

measured emulsions is typically is about 10 - 20%, between different G'p() could account for at 

least some part of small deviations of the data from the model. At the lowest  shown, the 

reported G'p values do not necessarily correspond to a zero-frequency G', so the frequency 

dependence of the storage modulus could play a role in any departures of the EEI model from the 

data there. 

2.4.2 – EEI Model Comparison to Osmotic Pressure Measurements 

 The same parameters can be used with the EEI model to describe the measured osmotic 

equation of state () of a uniform disordered microscale O/W PDMS emulsion having a = 480 

nm and stabilized using 10 mM SDS, as shown in Figure 2.5 
32, 35, 48

. Given the large scatter in 

the data for  at lower , and the higher difficulty in measuring precise values of  using an 

ultracentrifugation technique
35

, the comparison of measured and calculated () using 

parameters that had been optimized only using G'p() data represents good agreement. If the five 

sets of G'p() are disregarded, even better agreement with the measured  could be obtained 

using a slightly higher value of  = 0.22 in the model. Because c = 0.646 is used in our current 

calculations, rather than an effective jamming volume fraction of c,eff ≈ 0.62 in prior work
48

, in 

which electrostatic effects had only been accounted for in an ad hoc manner, the EEI model 

represents an improvement over prior analyses and is consistent with existing data describing the 
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Figure 2.5. Osmotic pressure  in units of Laplace pressure scale /a, for SDS-stabilized 

PDMS O/W emulsions having average radius a = 480 nm. Points represent measurements by 

centrifugation and solid lines are obtained via calculation using equation (2.8) using same 

parameter values as for G'p in Figure 2.4. The calculated deformation volume fraction,  d
*
, as a 

function of volume fraction  for a = 480 nm is shown in the inset. The osmotic pressure data are 

from Mason et al
32, 35

. 

 

osmotic equation of state of disordered uniform emulsions. Furthermore, the largest values of d
*
 

(see Figure 2.5 inset) shows the relative change in surface area per droplet in any of our 

calculations, d*
2
, is at most few percent; thus, the droplets are only weakly deformed over the 

intermediate range of  where we compare the EEI model with measurements. 

2.4.3 – EEI Model G'p Comparison to Nanoemulsions with Added NaCl 

 Adding a solution of a non-amphiphilic salt, such as NaCl, to the aqueous continuous 

phase can be used to effectively melt and liquify elastic ionic nanoemulsions over a certain range 

of 46, 49
. The measured G'p() of monodisperse emulsions having a = 47 nm at [SDS] = 10 mM 

for several different added [NaCl] are shown in Figure 2.6. At larger [NaCl] the onset of 

elasticity, corresponding to the rise in G'p, occurs at larger . To explain the origin of this effect, 

we consider the influence of [NaCl] on several parameters in the EEI model, as follows. 
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 The interfacial tension between an oil and an aqueous surfactant solution is typically 

reduced when soluble salts are added to the aqueous solution
107

. We have measured the 

interfacial tension  between the oil and an aqueous solution containing fixed [SDS] = 10 mM 

while varying [NaCl] added. The results are plotted relative to 0 between PDMS oil and a 10 

mM SDS aqueous solution in Figure 2.7(a) (squares). The measured reduction in /0 can be fit 

using a semi-empirical function, /0 = 1 + A(exp(-[NaCl]/[NaCl]*) – 1), yielding A = 0.338 ± 

0.007 and [NaCl]* = 28 ± 2 mM with a correlation coefficient of R
2
 = 0.998. This reduction in 

interfacial tension by the added non-amphiphilic electrolyte indicates that DS
–
 have been driven 

from the continuous phase onto the interfaces of the oil droplets. 

  

 

Figure 2.6. Plateau elastic shear moduli G'p as a function of droplet volume fraction for a 

= 47 (46) nm, 10 cSt PDMS O/W emulsions stabilized by 10 mM SDS with varying NaCl 

concentrations at T = 298 K. Points represent measurements by mechanical shear rheometry 

and solid lines are obtained via calculation using equation (2.9). The concentrations of added 

NaCl (mM) (from left to right) are: 0 (red circles), 10 (green squares), 40 (blue diamonds), and 

90 (black triangles). Surface tension and electrostatic parameters used to calculate the 

corresponding lines are shown in Figure 2.7; all others are the same as in Figure 2.4. Data from 

Wilking et al
46

. 
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Figure 2.7. Parameter values used to fit G'p() data of emulsions to which salt NaCl has 

been added in Figure 2.6, for uniform, concentrated, disordered PDMS emulsions in 

aqueous 10 mM SDS solution. (a) Experimental measurements of interfacial tension, measured 

using a du Nouy ring method, are plotted as relative surface tension 0, referenced to the 

interfacial tension of 0 = 9.8 mN m
-1

, between 10 mM SDS and PDMS oil are shown as blue 

squares. An empirical exponential model (black line) for the relative interfacial tension is shown 

(see text). Red points on the fitted line are used for the calculations. (b) Debye lengths, D, used 

in the fits (red points) follow the predicted Debye length in an electrolyte: D = (r0kBT/(2e
2
I))

1/2
 

(black line). (c) Surface potential, 0 values that give the best fits reveal that 0 increases with 

[NaCl] once [NaCl] approaches and exceeds the fixed [SDS] ≈ 10 mM. Reported uncertainties in 

0 (error bars correspond to one standard deviation) have been determined using minimization of 

chi-square values of the fits to G'p(). 

 

 The increased ionic strength in the aqueous phase also affects the electrostatic 

interactions between the droplets by reducing D = [r0kBT/(2e
2
I)]

1/2
, where this formula is valid 

only in the limit of dilute electrolyte concentrations
49, 62

. Values of D for added [NaCl] = 0, 10, 

40, and 90 mM used in the model are 3.4, 2.3, 1.5, and 1.1 nm, respectively (see Figure 2.7(b)). 

These values of D yield good agreement with the measured G'p() and deviate only slightly 
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from the Debye screening equation at higher [NaCl]. Because the activities of ionic species can 

deviate from the ideal dilute Debye limit, slight departures of D from the ideal prediction at 

higher [NaCl] could be anticipated. 

 Using the measured reduction in /0 and the predicted reduction in D with [NaCl], we 

adjust 0 to obtain the best overall agreement for each G'p() curve in Figure 2.6; the results for 

0([NaCl]) are shown in Figure 2.7(c). For [NaCl] ≤ 10 mM, which is comparable to or smaller 

than [SDS], 0 does not change much within the uncertainties obtained from the fits. However, 

for [NaCl] ≥ 40 mM, there is a marked increase in 0, indicating a greater surface charge. At 

least some of this increase in 0([NaCl]) is likely to arise from additional adsorbed DS
– 

on the 

surfaces of droplets, caused by the higher concentration of additional non-amphiphilic anions in 

the continuous phase. This increased adsorption is qualitatively consistent with the reduction in 

surface tension related additional DS
–
 on the droplet surfaces, a consequence of a shift in the DS

–
 

adsorption equilibrium caused by the addition of NaCl to the continuous phase. However, 

considering the mass balance of free and adsorbed surfactant, we find that increased adsorption 

of DS
–
 from the CP onto the surfaces of the droplets cannot be solely responsible for the increase 

in the value of 0. This suggests that non-ideal ionic effects, such as the development of a 

secondary attractive minimum in the droplet pair potential at high added non-amphiphilic salt 

concentrations is likely to also be happening
32, 87

. Such secondary minima are not captured by the 

electrostatic term in our model, so a more complex model is most likely needed to describe the 

regime of high concentrations of added non-amphiphilic salts. Overall, the calculated values of 

G'p() agree well with the measured data using the parameters shown in Figure 2.7. Thus, we 

have used the EEI model in combination with the existing macroscopic measurements for 

G'p(,[NaCl]) to estimate the microscopic 0([NaCl]). 
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2.4.4 – EEI Model Predictions of Linear Rheological Behavior 

 Having determined appropriate parameters for the EEI model, which yield good 

agreement with a large number of measurements of G'p() over a wide range of droplet radii and 

added [NaCl], we vary certain parameters while fixing others in order to predict the linear 

rheological behavior of disordered ionic emulsion systems over a wide range of conditions. 

Figure 2.8 shows the systematic variation of predicted G'p() for various radii, fixing other 

parameters to match with PDMS O/W emulsions stabilized at [SDS] = 10 mM. The smaller the 

droplet radii are, the more likely the crossover behavior occurs towards lower , below the 

maximally random jamming point c = 0.646, as a consequence of the screened-charge 

electrostatic repulsion. As the characteristic droplet radius becomes closer to D, the droplets 

effectively jam at much lower volume fractions. The EEI model appropriately captures this 

jamming effect as well as the entropic modulus scale for  below the effective jamming point.  

 

Figure 2.8. Calculated plateau elastic shear moduli G’p, in units of Laplace pressure scale 

/a, as a function of droplet volume fraction , based on the EEI model describing colloidal 

ionic emulsions for various droplet radii a in a 10 mM aqueous SDS solution. For model 

parameters, see Figure 2.4 caption. 
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Figure 2.9. Calculated dependence of plateau elastic shear modulus G'p as function of 

droplet volume fraction  on electrostatic parameters for O/W emulsions in aqueous 10 

mM SDS solution.  Droplet radii a (nm) are: (a,d) 30, (b,e) 270, and (c,f) 2430. For (a,b,c) the  

Debye length is varied, D (nm):  5, 4, 3, 2, and 1 (lines from left to right) at a fixed surface 

potential 0 = 270 mV. For (d,e,f) the surface potential is varied 0 (mV) = 810, 270, 90, 30, and 

0 (lines from left to right) at fixed D = 3.4 nm. All other parameters are fixed and the same as 

those in Figure 2.4.   

 

In Figure 2.9, we show how G'p is influenced by different values for electrostatic 

parameters D and 0. For nano- and micro-scale emulsions (a = 30 nm, 270 nm, and 2430 nm), 

at a given droplet size and fixed surface potential, the rapid rise in G'p associated with disordered 

jamming shifts towards lower  as D is increased, as shown in Figures 2.9(a) - 2.9(c). The limit 

D → 0 effectively turns off the electrostatic term in the free energy, so G'p() in that limit 

reflects only entropic and interfacial contributions. Increasing the surface potential while fixing 

D for the same set of ionic emulsions causes this rapid rise to shift towards lower , as shown in 

Figures 2.9(d) - 2.9(f). Setting 0 = 0 mV also corresponds to an absence of electrostatic effects, 

so interactions between neighboring surfaces of deformable droplets are effectively hard. 
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Figure 2.10. Calculated free energies per droplet F as function of droplet volume fraction  

for uniform disordered emulsions having a = 270 nm oil droplets in 10 mM aqueous SDS 

solution. Same parameters as from Figure 2.4 are used. (a) entropic (Fent, dashed line), 

electrostatic (Felec, dashed-dotted line), interfacial (Fint; dotted line), and total F = Fent + Felec + 

Fint (black solid line). (b) Percent relative contributions of Fent, Felec, and Fint to the total F.   

 

 We next calculate the relative contributions of entropic, electrostatic, and interfacial 

terms to Ftot, G'p, and using the EEI model. Figures 2.10 - 2.12 show the absolute and relative 

contributions for PDMS emulsions having a = 270 nm at [SDS] = 10 mM over a range of .  The 

relative percent graphs, shown in Figures 2.10(b) - 2.12(b), obtained from free energy 

minimization, are consistent with the qualitative regimes depicted in Figure 2.1. Furthermore, 

Figure 2.10(a) shows that the entropic free energy per droplet remains about ≈ 5 kBT above the 

crossover to the electrostatic regime. This value resulting from free energy minimization of the 

EEI model is close to an assumed value in the electrostatic-interfacial energy model
49

.  
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Figure 2.11. Calculated plateau elastic shear moduli G'p for a = 270 nm oil droplets in 10 

mM aqueous SDS solution as a function of droplet volume fraction Same parameters as 

used in Figure 2.4. (a) Entropic (G'p,ent, dashed line); electrostatic (G'p,elec, dash-dot line); and 

interfacial (G'p,int, dotted line); total (G'p = G'p,ent + G'p,elec + G'p,int, solid black line). (b) Percent 

relative contributions of G'p,ent, G'p,elec, and G'p,int to the total G'p.  

 

 Using parameter values that correspond to PDMS droplets in 10 mM aqueous SDS 

solutions, we determine the two values of  corresponding to crossover in G'p between the 

entropic and electrostatic regimes and between the electrostatic and interfacial regime for a given 

droplet radius. We repeat this process for a wide range of droplet radii and show the results as 

lines separating the dominant contributions to G'p in Figure 2.13. The labeled areas in the plots 

indicate which of the three terms contribute the most to G'p. The two lines in Figure 2.13 

converge to the critical jamming point c in the limit of very large, macroscopic droplets, and the 

electrostatic regime effectively disappears.  

 The dependence of G'p on temperature has also been explored. Temperature mostly 

affects   the   magnitude   of   the   entropic   term,   although   temperature   also   affects   D   in   the  
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Figure 2.12. Calculated contributions to the osmotic pressure  for a = 270 nm oil droplets 

in 10 mM aqueous SDS solution as a function of droplet volume fraction  Same parameters 

as used in Figire 2.4. (a) Entropic (ent, dashed line); electrostatic (elec, dash-dot line); and 

interfacial (int, dotted line); total ( = ent + elec + int, solid black line). (b) Percent relative 

contributions of ent, elec, and int to the total osmotic pressure. 

 

electrostatic term. In the entropic regime, the calculated G'p from the numerical minimization 

procedure is found to increase linearly with respect to increasing temperature, consistent with G'p 

~ kBT/Vf 
62, 68

. In principle, if the temperature T could be tuned to approach 0 K while preserving 

the CP in a liquid state, then the entropic contribution to the free energy would be effectively 

turned off, and the two-term electrostatic interfacial free energy would lead to the jamming 

result
46, 49

. Given the narrow range of temperatures over which the aqueous phase exists in a 

liquid state (e.g. from about 273 K to 373 K), varying temperature over this range only makes a 

minor change in the osmotic equation of state and in the linear viscoelastic modulus. Thus, for 

O/W emulsions, the most effective means of investigating the entropic regime is not by varying 

temperature, but rather by reducing the droplet radius and also the Debye screening length. 
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Figure 2.13. Calculated regimes of dominant contributions by entropic, electrostatic, or 

interfacial terms to the plateau elastic shear moduli G'p for 10 cSt PDMS oil droplets 

stabilized by 10 mM SDS for varying radii a and droplet volume fraction  at a Debye 

screening length of D = 3.4 nm (green lines). Other parameter values are the same as in Figure 

2.4. The dotted line represents equal relative contributions of entropic and electrostatic terms; the 

dashed line represents equal relative contributions of the electrostatic and interfacial terms. Inset: 

lowering D to 1.8 nm (red lines) reduces the electrostatic and interfacial zones; whereas raising 

D to 5.0 nm (blue lines) expands the electrostatic and interfacial zones (all other parameters are 

fixed). 

 

2.4.5 – Initial EEI Model Comparison to DWS Microrheology 

 This section is adapted with permission (Creative Commons License 4.0) from the 

following journal article: Braibanti, M., Kim, H. S., Senbil, N., Pagenkopp, M. J., Mason, T.G., 

Scheffold, F. “The Liquid-glass-jamming Transition in Disordered Ionic Nanoemulsions”. Sci. 

Rep., 7, 13879 (2017). 

 The EEI model is also used to compare against DWS measurements of nanoemulsion’s 

plateau elastic shear moduli G'p at T = 295 K (i.e. 22°C). The G'p of PDMS O/W nanoemulsions, 

having a = 130 nm and stabilized by 10 mM SDS containing varying concentrations of NaCl, are 

calculated by relating the DWS-measured plateau mean square displacement ⟨r
2⟩p to the long-

time limit of the generalized Stokes-Einstein relation: G'p = kBT/(a⟨r
2⟩p). 
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Figure 2.14. Comparison of EEI model to diffusing wave spectroscopy microrheology 

determined nanoemulsion plateau shear elastic moduli G'p at varying concentration of 

NaCl. The PDMS O/W nanoemulsions having radius a = R = 130 nm are stabilized by 10 mM 

SDS containing 0, 10, 20, 40, and 90 mM NaCl (left to right) to vary the ionic strength of the 

system. The spherical dots indicate G'p determined from the extracted mean square droplets from 

diffusing wave spectroscopy at  T = 22 °C and the lines indicate G'p determined by the EEI 

model as a function of effective packing fraction and different ionic strengths indicated by (/R)
2
 

where  is the Debye length.  The EEI model predictions are made using 0 = 230 mV and 

otherwise the same parameters were used as determined by Figures 2.4 and 2.7.  The effective 

packing fractions are determined as (g/g
(1)

) for the experimental data and (c/J,e) for the EEI 

model calculations. The variables are: g = 0.58, c = 0.646, J,e is defined where Felec = 5 kBT in 

the EEI model, and g
(1)

 is determined by determining fitting to the -relaxation time master 

curve for hard spheres taken from prior work by Brambilla et al
108

. The grey line shown without 

the data points indicates the athermal (T → 0 K) limit. Figure adapted from Braibanti et al.
109

 

 

 The EEI model values of G'p can be matched to achieve good agreement with DWS 

measured values of G'p over a wide range of NaCl concentrations set by ionic strength length 

scale (/R) as shown in Figure 2.14. This good agreement is only achieved through the use of 

effective packing or volume fractions rather than the determined parameters used to match the 

mechanical measurements shown in Figure 2.6.  The effective droplet packing fractions for these 

measurements are adjusted to be (g/g
(1)

)were g = 0.58 is the glass transition volume fraction 

for hard spheres and g
(1)

 is an adjustable parameter determined from fitting the light scattering 
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data to α-relaxation time collapse on a master curve for hard spheres, determined from a prior 

result
108

. The data can be described by the EEI model after adjusting the droplet volume fraction 

values to a new effective packing fractions calculated in the EEI model to (c/J,e)The 

parameters used are: c = 0.646 and J,e is defined as the volume fraction at which the 

electrostatic free energy contribution Felec calculated by the EEI model from parameters found in 

Figure 2.7, except for a fixed effective surface potential of 0 = 230 mV, is 5kBT. The set of J,e 

points determined from the data is close to the  values at which EEI model predicts the 

electrostatic term to dominate for the all sets of different ionic strengths investigated here. Thus, 

we identify J,e as the electrostatic jamming point, at which droplets experience repulsive force 

arising from the overlap of the electrostatic core-shells defined by the Debye layer.  

 Although good agreement of the EEI model with DWS measurements is demonstrated, 

the use of an effective packing fraction to corroborate DWS results indicates that the discrepancy 

between the DWS optical measurements and the mechanical measurements is present. The 

discrepancy between the two measurements is explored in Chapter 3 of this dissertation, in 

which we also show EEI model can be matched the DWS measurements using same parameters 

used to describe the mechanically measured G'p without this ad hoc correction. 

2.5 - Conclusion 

 We have shown that minimizing a total free energy with respect to an average 

microscopic droplet deformation parameter accounts well for the shear elasticity and osmotic 

pressure of concentrated disordered ionic emulsions and nanoemulsions for droplet volume 

fractions below, near, and above c. The EEI model connects three principle energetic terms, 

entropic, electrostatic, and interfacial, of this total free energy using a near-equilibrium approach 
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that assumes disordered jamming of monodisperse deformable droplets while conserving droplet 

volume. Simultaneous fitting of measured G'p() curves for a wide range of droplet radii 

establishes the values of two universal parameters,  and , that essentially set the relative 

strengths of the terms and are based fundamentally on complicated geometrical aspects of the 

disordered system. It is remarkable that such a simple free energy, when minimized, can properly 

capture such a wide range of measurements without resorting to a highly detailed microscopic 

description. Rapidly quenching uniform deformable objects to jam them in the presence of 

Brownian fluctuations creates a reproducibly statistically similar disordered structural state, so 

the emulsion system is technically out-of-equilibrium. Nevertheless, we have shown that near-

equilibrium free energy minimization of the relatively simple EEI model, based on disordered 

jamming at c, can serve surprisingly well in describing the collective behavior of ionic colloidal 

emulsions. 

 This EEI model, in combination with the two universal fit parameters that we have 

determined, can be used to predict rheological regimes of a wide variety of ionic emulsions. 

These entropic, electrostatic, and interfacial regimes reflect the dominance of a particular term in 

the free energy, and we have mapped boundaries of these regimes as a function of droplet radius 

and volume fraction for different Debye screening lengths. Moreover, we have explicitly shown 

the relative contributions to the free energy, osmotic pressure, and shear modulus that each of 

these terms makes. Although this EEI model provides a powerful predictive platform for 

emulsion rheology, it nevertheless must be used with discretion; as we have shown, introduction 

of non-amphiphilic salt can alter important parameters, such as the interfacial tension and the 

surface potential, in addition to the Debye screening length. Polydispersity can also affect the 

shape of G'p and we have not attempted to include it in our description. 
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 In future work, it would be interesting to test the utility of the model's predictions for 

monodisperse disordered microscale and nanoscale emulsions that have a wider range of ionic 

amphiphile and non-amphiphile concentrations. Likewise, it would be interesting to perform 

multi-scale Brownian or molecular dynamics simulations, which can incorporate complex 

behavior such as entropy contribution of ions, on dense disordered systems of constant-volume 

droplets stabilized by ionic surfactants to arrive at predictions for the two universal parameters. 

A more sophisticated model or simulation could be developed to incorporate the microscopic 

details of the system, such as the local coordination number and the distribution of the degree of 

deformation of constituent droplets, into predictions for () and G'p(). The EEI model could 

further be advanced into the regime of attractive ionic emulsions by incorporating the effects of 

secondary minima in the interactions between proximate surfaces of neighboring droplets
15, 23, 29, 

87
. Moreover, the EEI model at present does not explicitly treat polydispersity, which can alter c 

and also change the shape of G'() and () of emulsions. While challenging, extending the EEI 

model and simulations to include polydispersity, such as a peaked monomodal droplet size 

distribution, would also be useful. 
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Chapter 3 – Diffusing Wave Microrheology of Disordered 

Jammed Monodisperse Emulsions 

 

Reproduced with permission from  Kim, H.S., Şenbil, N., Zhang, C., Scheffold, F., Mason, T. G. 

“Diffusing Wave Microrheology of Highly Scattering Concentrated Monodisperse Emulsions”, 

Proc. Natl. Acad. Sci. U.S.A., 116 (16), 7766-7771 (2019). 

 

3.1 - Introduction 

 Diffusing wave spectroscopy (DWS)
110-111

 is a light scattering technique that can be used 

to measure time-dependent mean square displacements (MSDS), ⟨r
2
(t)⟩, of uniform spherical 

probe particles in opaque, highly scattering colloidal dispersions. In DWS, the transport of light 

is modeled as a random walk having an optical transport mean free path ℓ∗. The diffusion 

equation is then applied to a specific sample-cell geometry, which typically has a thickness far in 

excess of ℓ∗, while taking into account the illumination and detection configuration used. DWS is 

a powerful approach because it is capable of measuring colloidal dynamics over a wide range of 

time scales, and it is also sensitive to very small probe displacements approaching 1 Å
110-114

. 

Provided that the scattering probes are well dispersed and dilute, their self-motion MSDs can be 

accurately inferred from the measured DWS intensity autocorrelation function
110-114

.  

 By contrast, for probes at densities well beyond the dilute limit, collective light-scattering 

effects could significantly influence decays and plateaus in DWS correlation functions, 

particularly when probes are at high-volume fractions  and have diameters comparable to or 

smaller than the wavelength of the illuminating light
112

. Because the standard analytical 

framework of DWS neglects collective scattering of colloidal probes at high densities, DWS 
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MSDs extracted for such dense colloidal systems do not necessarily represent the true self-

motion of the probes. Consequently, using DWS MSDs for thermal-entropic passive 

microrheology
84, 115

 of dense dispersions, including concentrated emulsions, would likely lead to 

inaccurate predictions of their linear viscoelastic moduli, since passive microrheology requires 

accurate self-motion MSDs in the generalized Stokes-Einstein relation (GSER)
67, 84

. 

 Despite these potential issues related to collective scattering, DWS MSDs have been used 

since the inception of passive microrheology to infer the linear viscoelastic response of 

numerous soft materials, such as hard spheres
67, 84

, emulsions
67, 84

, polymer solutions
41, 84, 116-117

, 

DNA solutions
118-120

, actin solutions
121-123

, microgels
124

, and micellar solutions
125-127

. For at least 

some of these systems, and particularly for concentrated emulsions, collective scattering could 

play a significant role. In addition, early DWS studies of nonergodic soft materials
84

, including 

concentrated emulsions, were taken using a simple DWS apparatus that did not force a final 

long-time decay
128

. As a consequence, for such nonergodic materials, the values of the plateaus 

varied significantly from run to run, precluding accurate comparisons of shear elastic moduli 

obtained using DWS-GSER microrheology with mechanical rheometry
67

. 

 To alleviate this undesirable variability in DWS correlation functions of nonergodic 

materials, one effective solution involves introducing a second cell
129-130

  or a slowly moving 

rigid scatterer
131-132

 (e.g., etched glass having a rough surface) into the light path that includes the 

nonergodic soft material. The motion of this additional moving scatterer forces the DWS 

correlation function to decay fully at a certain long time, which can be controlled by the rate of 

its motion, without significantly affecting the correlation function at earlier times. This 

improvement in technique effectively ensures that early-time behavior and plateau values of the 

DWS correlation function, obtained by the digital correlator’s hardware and software, are 
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reproducible from run to run both for ergodic and for nonergodic soft materials, at least over 

time scales significantly shorter than those associated with the time scale of the final forced 

decay
130-132

. Moreover, if the slowly moving rigid scatterer is rotated at a fixed angular frequency, 

such that identical scatterers of this rigid object move into the illuminating beam periodically 

every cycle, then DWS echo signals
133

 can also be collected at times longer than the forced 

decay. Such DWS echo signals are useful because they extend the temporal range of the DWS 

correlation function and extracted MSDs to time scales of tens of seconds while keeping the total 

measurement time short, on the order of minutes. 

 Motivated by these improvements in DWS techniques for nonergodic systems and also 

by the need to rectify collective scattering effects in DWS of dense colloidal systems, which can 

adversely affect passive microrheology, we present a systematic experimental comparison of the 

plateau elastic shear moduli, G'p, measured using both mechanical rheometry and modern DWS 

microrheology, of disordered, jammed, microscale monodisperse emulsions, as a function of . 

Because uncertainties in G'p can be large in the jamming regime even for small uncertainties in , 

we perform both DWS and mechanical rheometry experiments on exactly the same emulsion 

samples, each of which has a highly controlled . By using a high-viscosity oil inside our 

droplets, we suppress entropic interfacial fluctuations that can otherwise be detected by DWS at 

very early times for less viscous droplets
134

, and, to avoid complications introduced by inertia, 

we focus on time scales longer than inertial time scales
84, 113

 when making microrheological 

interpretations. Here, we show that long-time plateau MSDs measured using DWS, when 

corrected for the -dependent average structure factor and used in the GSER, yield G'p() which 

matches that of macroscopic mechanical rheometry, as well as an analytical model of droplet 

jamming, over about three orders of magnitude as droplets jam. Our study represents a major 
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improvement over earlier microrheological measurements made using a simpler and less refined 

DWS technique
67, 84

 that was not as accurate, did not account for the -dependent average 

structure factor, and demonstrated only a qualitative trend in G'p() in the jamming regime 

compared with mechanical rheometry. Moreover, our study goes beyond recent light-scattering 

work on concentrated nanoemulsions that did not include a direct comparison with a measured 

G'p() and that used an ad hoc -independent correction factor to rescale the microrheological 

G'p()
109

. Given the strikingly accurate quantitative comparison that we have obtained for 

jammed emulsions, we anticipate that our experimental and analytical approaches could serve as 

a basis for improving quantitative DWS-GSER passive microrheology of other jammed 

disordered systems of highly scattering colloidal objects. 

3.2 – Materials and Methods 

3.2.1 – Monodisperse O/W Emulsions Preparation and Characterization 

 We make emulsions using SDS (Fisher Scientific; electrophoresis grade 99% purity), 

PDMS (Gelest Inc.; viscosity 350 cSt), and deionized water (Millipore Milli-Q; resistivity 18.2 

M·cm). We prepare 500 mL of a crude microscale premix emulsion having oil droplet volume 

fraction  = 0.20 in 2.5 mM aqueous SDS solution using a mixer (Fisher Scientific, PowerGen 

1000 S1, speed 3). After allowing any residual foam to disappear, we process this premix 

emulsion using a high flow rate microfluidic homogenizer (Microfluidics, M-110P; 75 µm 

diameter Y-chamber) at a liquid pressure of ~70 MPa. We process the resulting emulsion 

through this homogenizer 4 additional times before collecting and diluting the resulting emulsion 

in 500 mL of 60 mM aqueous SDS solution after the final pass. We repeat the above procedure 

until we obtained a large volume of polydisperse emulsion (~20 L). We prepare a master sample 

of concentrated monodisperse emulsions by performing size-fractionations on obtained large 
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batch of polydisperse emulsions. We use size-fractionation steps developed by Bibette et al.
59

 to 

decrease the polydispersity and form relatively monodisperse emulsions. We concentrate the 

resulting uniform emulsions to a higher  via centrifugation (Beckman L8-55 ultracentrifuge, 

SW-28 swinging bucket, 10k rpm, 1.25 h). When these uniform droplets are rapidly concentrated 

to high droplet volume fractions, PDMS emulsions form a dense plug of cream, which is a soft 

viscoelastic solid
15, 33, 35

, at the top of a rigid polycarbonate centrifuge tube that can be readily 

separated from the relatively clear solution below. After removing this dense plug of cream with 

a thin spatula, we dilute it with a much larger volume of 10 mM SDS solution to reach  ~ 0.1. 

We repeat these centrifugation and dilution steps for a total of 4 times, thereby setting the SDS 

concentration in the aqueous bulk continuous phase to 10 mM. After the final centrifugation, we 

collect the concentrated elastic emulsion, mix it thoroughly so that any size-separation which 

might have occurred during the final centrifugation step is no longer present, and label this 

resulting monodisperse emulsion as the master uniform emulsion sample (~55 mL total volume). 

We store this master emulsion sample in a temperature-controlled chamber set at 20°C to avoid 

evaporation-condensation of water vapor onto the walls and lid of the container that can occur if 

the temperature is not fixed, thereby avoiding changes in . Moreover, we have used a container 

size to ensure that only a very small volume for such vapor is available above the master 

emulsion. We have characterized the droplet volume fraction of this master emulsion using a 

gravimetric evaporation method
99

, m = 0.729 ± 0.006. 

 Samples of emulsions at different near but below m have been prepared by diluting the 

master emulsion sample with 10 mM SDS solution using an analytical balance (Denver 

Instruments APX-200, 0.1 mg precision). The resulting  of each different sample can be 

calculated from these measured masses using measured densities of the SDS solution and of the 



66 

 

PDMS
99

. Each emulsion having  < m has been stirred with a small spatula for minutes to 

ensure complete mixing before measurements made using mechanical rheometry and DWS. At 

each , approximately 0.5 mL of emulsion is used for mechanical rheometry, and 1.5 mL of the 

exact same emulsion is used for DWS. The sample for DWS has been stored in a small vial with 

almost no headspace to prevent potential changes in  that could result from water evaporation. 

The master emulsion is also diluted in 10 mM SDS to  ~ 10
−4

 and then characterized by 

multiangle DLS (LS Spectrometer; LS Instruments) over 60°- 120° scattering angles, yielding an 

average hydrodynamic droplet radius a = 459 ± 15 nm. The polydispersity is a/a ≈ 0.176, where 

a is the standard deviation of the radial droplet size distribution. 

3.2.2 – Mechanical Shear Rheometry 

 Before making measurements on emulsions, we ensured that our rheometer was 

calibrated by using a polymeric viscoelastic standard in an oscillatory frequency sweep; both the 

magnitude and frequency associated with the crossover matched reported values for the standard 

to within ±10%. At each , the loaded emulsion was subjected to a pre-shear at a strain rate ̇ = 

100 s
-1

 for a duration of 60 s. After this pre-shear, the emulsion was allowed to relax for 300 s 

prior to starting the oscillatory rheological tests. At a shear strain  = 0.01, a frequency sweep 

was performed from an angular frequency  = 10 rad/s down to 0.01 rad/s. A strain sweep at  = 

1 rad/s from  = 0.002 up to 2 was also performed, and we verified that the strain of 0.01 selected 

for the frequency sweep was below the yield strain, ensuring that reported |G
*
| and G'p values 

correspond to the linear regime. In the reported frequency sweeps, at lower , the reliable range 

of is limited by the rheometer’s torque transducer at low  and by the inertia of the cone at high  
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Figure 3.1. Measured frequency-dependent shear modulus of fractionated PDMS O/W a = 

459 nm emulsion stabilized using 10 mM SDS. The magnitude of the complex shear modulus 

|G
*
()| (solid circles, lines guide the eye) as a function of frequency  at droplet volume 

fractions,  ranging from 0.729 to 0.562 (top to bottom, on left at a fixed peak shear strain of  = 

0.01 is shown. Measured plateau values of the mechanical shear storage modulus G'p,mech (open 

squares at 1 rad/s) are almost equal to |G
*
()| over the frequency range explored. 

 

, so reported frequency sweeps at the lowest do not cover as wide a range in as at higher. The 

temperature T during all measurements using mechanical rheometry was regulated by a 

circulating water bath to T = 20 ± 1 °C. The magnitudes of the linear complex shear modulus 

|G
*
()| for the set of 10 mM SDS-stabilized PDMS O/W monodisperse emulsions, which all 

have an average droplet radius of a = 459 nm, are characterized by mechanical rheometry at 

room temperature T = 20 °C. The frequency dependent behavior of |G
*
()| for 0.562 <  < 0.729 

is shown in Figure 3.1. Over the range of  measured, the emulsions are dominantly elastic and 

exhibit a nearly frequency-independent dominant elastic storage modulus G'p,mech, which spans 

about three orders of magnitude. At the lowest  for which torques are above the lower limit of 

the rheometer’s transducer, we find that the rise in both |G
*
| and G'p,mech is very rapid as  is 
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increased only slightly, consistent with prior linear rheological measurements on similar 

monodisperse emulsions that have different average a 
35

. 

3.2.3 – Diffusing Wave Spectroscopy 

 We perform DWS measurements (DWS RheoLab III; LS Instruments) to obtain the 

intensity correlation functions for emulsions at different . Each emulsion sample is loaded into 

an L = 5 mm path-length glass cuvette. After the initial loading, each cuvette is very gently 

centrifuged to remove the air bubbles without creating gradients in ; after removing air bubbles, 

each emulsion is then allowed to equilibrate for 1 day before any DWS measurements are 

performed. At all times, the temperature is controlled and maintained at T = 20 ± 0.1 °C. A 

coherent light source (wavelength λDWS = 687 nm) is directed to the surface of a rotating ground-

glass diffuser so that the speckle beam from the rotating glass diffuser can provide an efficient 

ensemble-averaged signal from the recorded correlation echoes
133

. The scattered light is 

collected in a transmission or in a backscattering geometry to obtain normalized intensity 

autocorrelation function g2(t) in the homodyne limit. The values of ℓ∗ of each emulsion samples 

were also determined by comparing time-averaged transmission intensities from these emulsions 

with transmission intensities measured for a set of polystyrene latex reference samples having 

different sizes with known ℓ∗ using the DWS instrument’s software
114

. A total of 5 - 10 runs of 

300 s were performed and averaged for each emulsion sample
112

. DWS echo data are also 

acquired at longer times over 60 s for each run.  

3.2.4 – Entropic-Electrostatic-Interfacial Emulsion Model 

 We use the EEI model
135

 to calculate the predicted G'p for our emulsions as described in 

Chapter 2 of this dissertation. For our specific fractionated emulsion system and measurement 

conditions,  we  use  the  following  parameter  values:  average  radius  a =  459 nm  and  temperature  
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Figure 3.2. EEI Model comparison and results for plateau elastic shear moduli of measured 

emulsion sample. (a) Measured mechanical plateau elastic shear moduli, G'p,mech(), of a 

monodisperse emulsion having an average droplet radius a = 459 nm (red solid circles). Red 

solid line: prediction of G'p,EEI() based on a model of disordered, uniform, concentrated, 

ionically stabilized droplets that has entropic, electrostatic, and interfacial terms in its free energy 

[i.e., the EEI model
135

; main text]. Regimes in  having different dominant contributions to G'p 

in the EEI model are indicated by background colors: entropic (blue), electrostatic (green), and 

interfacial (yellow). (b) Predicted relative uncertainty in G'p, given by G'p/ G'p, associated with 

different uncertainties in  given by ∆ (Upper Right Inset). 

 

T = 293 K. Other parameters that we use in the EEI model have been obtained for SDS-stabilized 

PDMS O/W emulsions having the same bulk SDS concentration of 10 mM: surface tension  = 

9.8 mN/m, effective surface potential 0 = 270 mV, Debye screening length D = 3.4 nm, 

disordered hard sphere jamming point c = 0.646, and dimensionless pre-factor parameters  = 

0.85 and  = 0.15. We identified the range of  at which the contributions to G'p are dominated 
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by the entropic, electrostatic, and interfacial contributions to the free energy per droplet, and 

labeled these regimes entropic, electrostatic jamming, and interfacial jamming regimes, 

respectively (see Figure 3.2). 

3.3 – Results and Discussion 

3.3.1 – Mechanical Plateau Shear Modulus and Entropic-Electrostatic-Interfacial Model 

 In Figure 3.2(a), we compare the mechanically measured plateau elastic shear moduli 

G'p,mech of the monodisperse emulsion in this study, which has an average droplet radius a = 459 

nm to predicted values of G'p,EEI obtained by the EEI model
135

  for concentrated, ionically 

stabilized, disordered monodisperse O/W emulsions near and above the jamming point. The EEI 

model assumes that minimization of a quasi-equilibrium free energy, which includes terms 

related to entropic crowding, screened electrostatic repulsions, and droplet interfacial 

deformation, is a reasonable approximation for disordered emulsions in the weak jamming limit. 

The parameter values that we use here in the EEI model are those that have been shown to 

describe the mechanically measured G'p,mech() of other similar polydimethyl siloxane (PDMS) 

O/W monodisperse emulsions having nano- and microscale radii at the same 10 mM bulk SDS 

concentration
135

. By determining the dominant contribution to G'p,EEI at different 135
, we find 

that 0.562 <  < 0.592 corresponds to the electrostatically jammed regime (i.e., screened charge 

repulsion dominates) and  ≥ 0.592 corresponds to the interfacially jammed regime (i.e., droplet 

interfacial deformation dominates). The entropic regime lies below the  range that we have 

explored here. We find that G'p,mech() is in excellent agreement with G'p,EEI() using a = 459 nm. 

Thus, G'p,mech() of this emulsion is highly consistent with past mechanical measurements on 

other fractionated emulsions that have similar compositions. 
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 Since the EEI model smoothly captures the steep rise in G'p(), we use it to demonstrate 

that even relatively small experimental uncertainties in  of emulsion samples can lead to very 

large uncertainties in G'p at the onset of jamming. We first numerically calculate the first partial 

derivative of G'p,EEI with respect to . In Figure 3.2(b), we plot the predicted relative magnitude 

of the variation in G'p(), which is proportional to this first partial derivative and also 

proportional to the magnitude of the uncertainty in the droplet volume fraction, . Even for 

small  significantly less than 1%, measured values of G'p near the onset of jamming could 

exhibit significant scatter and uncertainty of a factor of 2 or more. This highlights the need to 

control  very carefully in all studies of mechanical properties of jammed emulsions, irrespective 

of whether these measurements are based on mechanical rheometry or on light scattering. Here, 

we have controlled  to a high degree and have kept  very low. Moreover, we have ensured a 

direct comparison between mechanical and light scattering measurements on exactly the same 

emulsion at the same set of  values, thereby avoiding the large uncertainties in G'p highlighted 

by the peaks in Figure 3.2(b), which adversely affected a prior comparison near and above the 

jamming point
67

. 

3.3.2 – Diffusing Wave Spectroscopy: Intensity Autocorrelation Function 

 To facilitate comparison with mechanical results, we performed DWS studies on the 

same emulsion at identical . The measured, normalized, time-averaged intensity autocorrelation 

functions, g2(t) - 1, for each different  are shown for DWS transmission (Figure 3.3(a)) and 

backscattering (Figure 3.3(b)). In these measured g2(t) - 1, after initial decays, we observe long-

time plateaus over at least several orders of magnitude in t, except at the lowest . Such plateau 

behavior indicates that droplets in the emulsion are confined by other surrounding droplets. The  
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Figure 3.3. Normalized, averaged temporal DWS intensity correlation functions, g2(t) - 1, of 

a monodisperse emulsion having a = 459 nm. The droplets have the same set of  (values on 

right) as in Figure 3.2(a) using (a) transmission and (b) backscattering configuration of the DWS 

as described in section 3.2.3. DWS echo data are indicated by arrows in the range t ≳ 0.2 

seconds. Lines guide the eye. 

 

magnitudes of these plateaus increase systematically toward unity for larger , indicating greater 

droplet confinement. For  ≥ 0.574, transmission g2(t) – 1 curves remain above the baseline 

even for long times extending into the echo regime. By contrast, for  < 0.574, g2(t) - 1 becomes 

unresolvable from the baseline at long times; so, plateau behavior, if present, cannot be readily 

determined using transmission DWS for such low . To overcome this limitation, we also 

measure g2(t) - 1 using backscattering DWS. We also test several larger  to compare 

backscattering plateaus with clearly resolved transmission plateaus. For  > 0.616, the 
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backscattering DWS correlation functions do not decay sufficiently to be readily analyzed. For 

the two lowest , g2(t) - 1 are similar; this is likely caused by experimental uncertainties when 

setting . 

3.3.3 – Extracting Apparent Mean Square Displacements of Dense Probes 

 At each , we use ℓ∗ and details of the scattering geometries to extract apparent MSDs 

⟨r
2

a(t)⟩ from DWS g2(t) - 1 using standard procedures
136

. We extract the normalized field 

correlation function g1(t) using the Siegert relation g2(t) = 1 + g1
2
(t), where   ~ 0.95 is the 

instrument-specific coherence factor that can be obtained experimentally (5) by extrapolation to t 

→ 0. We then determine dimensionless x(t), describing the ensemble- and time-average droplet 

translational dynamics, in the transmission slab geometry using
112

: 
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where k = 2ns/DWS is the wavenumber in the solvent and x(t) = k
2⟨r

2
a(t)⟩. In the 

backscattering geometry, we independently determine the VH factor for cross-polarized detection 

and also the photon loss parameter c using 910 nm diameter polystyrene spheres, which have ℓ∗ 

~ 200 µm similar to the emulsion samples, by matching backscattering g1(t) with transmission 

g1(t) using: 

  1 VH

2
( ) exp ( ) 1 ( )

3


 
     

 
g t x t c x t c  (3.2) 

The photon loss parameter c accounts for light leakage out of the cuvette’s side walls or via 

transmission
114

. Using these independently determined values, c = 0.07 and VH = 1.95, the 

MSDs for droplets in the backscattering geometry are then calculated. We find that MSDs 
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obtained from transmission and backscattering experiments for the same emulsions overlap. The 

transmission experiment probes longer light paths and thus are more accurate for smaller 

displacements (i.e. short times, high concentrations), whereas backscattering experiments 

perform better at larger displacements, extending the range of long-time plateau displacements 

that can be probed by DWS. 

3.3.4 –True Self-Motion Mean Square Displacements of Probes 

 For passive DWS microrheology using tracer probes at low  ~ 1 - 2% 
84, 119, 127

, 

collective scattering effects are negligible and ⟨r
2

a(t)⟩ reduces to the true ⟨r
2
(t)⟩ associated 

with probe self-motion. However, for higher probe concentrations, as in the emulsions here, the 

individual scattering processes are modulated by the microstructure. In single scattering, this 

leads to the well-known de Gennes narrowing of the intensity-spectrum I(q, ), where q is the 

magnitude of the scattering wavevector and  is the frequency of quasi-elastically scattered 

coherent radiation, near the peak of the structure factor of simple liquids
137

. The experimental 

collective diffusion coefficient of colloids Dc ∝ 1/S(0) measured by dynamic light scattering 

increases with concentration, where the structure factor at low q, S(0), drops sharply
137-139

. In 

DWS, collective scattering effects contribute at all scattering wavevectors; consequently, to 

obtain the self-motion MSD of probes, it is necessary to correct the apparent MSD by 

multiplying it with the average structure factor ⟨S(q)⟩ of the emulsion: ⟨r
2
(t)⟩ = ⟨S(q)⟩⟨r

2
a(t)⟩. 

⟨S(q)⟩ is defined by the integral of S(q), over all q ∈ [0, 2k], weighted by the scattering power 

P(q) and normalizing: 
2 2

3 3

0 0

( ) ( ) ( ) ( )  
k k

S q q P q S q dq q P q dq , where P(q) denotes the form 

factor of the scatterers and k = 2πns/DWS is the wavenumber in the solvent with refractive index 

ns = 1.33 for water
136, 140

. In correcting the apparent MSD, we have neglected a possible 
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contribution by an additional possible q-dependent term due to hydrodynamic interactions, 

known as the distinct part of the hydrodynamic function Hd(q)
136, 139, 141

, because the distinct part 

of the hydrodynamic function is small in comparison. The contribution of Hd(q) is secondary to 

⟨S(q)⟩, and over the range of densities previously studied, it exhibits relatively weak q-dependent 

oscillations ± 20%, which largely cancel out when taking the average over all scattering vectors. 

For q ≫ qmax it vanishes completely. Moreover, hydrodynamic effects would not be expected to 

influence the measured long-time plateau MSD of a solid emulsion. 

 To quantify ⟨S(q)⟩, we determine the 1/ℓ∗() for the emulsion with a = 459 nm over a 

wide range of  from the measured ℓ∗() (Figure 3.4(a)). Collective scattering also influences 

static light scattering and thus ℓ∗. Typically, this leads to an increase of ℓ∗, although in some 

particular cases it can also lead a reduction, e.g. close to a photonic pseudo-gap or for high 

refractive index scatterers
142-143

. In Figure 3.4(a) we plot the calculated 1/ℓ∗ISA ∝  (dashed line) 

in the absence of collective scattering, also known as the independent scattering approximation 

(ISA). Using ns = 1.33 for water, we infer that the refractive index of the oil inside the droplets is 

n = 1.401 using the criterion that 1/ℓ∗ISA and 1/ℓ∗ must merge as  → 0. This oil refractive index 

is in excellent agreement with refractometry measurements that we have made (n = 1.40 at λ ∼ 

580 nm) and also the supplier’s reference data (n = 1.403). Knowing ℓ∗ISA, we determine ⟨S(q)⟩ 

directly by taking advantage of a local collective scattering approximation (CSA) for spherical 

scatterers: ⟨S(q)⟩  = ℓ∗ISA/ℓ∗ 
140

 (Figure 3.4(b)). The validity of this relation has been 

demonstrated for micron sized Mie scatterers, polystyrene spheres with n ≃ 1.6 in water, up to 

concentrations of  ~ 0.5 
140

. We emphasize however, that in the Rayleigh-Gans-Debye limit,

s s

2
1 1






n
a

n n
,  CSA is  not  restricted  to   < 0.5.  It  is  strictly  valid  as  long  as  the  scatterers  
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Figure 3.4. Mean free path of optical transport ℓ∗ and the average structure factor ⟨S(q)⟩. (a) 

Measured inverse mean free path of optical transport, 1/ℓ∗ (circles), for a monodisperse emulsion 

having a = 459 nm as a function of . Colored solid circles encode  of elastically jammed 

droplets (Figure 3.3). Solid line guides the eye. Straight dashed line corresponds to the ISA 

(main text) and approaches the measured 1/ℓ∗ at low . (b) Measured average -dependent 

structure factor ⟨S(q)⟩ (squares) determined by dividing 1/ℓ∗ by the extrapolated dashed line 

1/ℓ∗ISA in (a). Line guides the eye. Solid squares are color coded as in (a). 

 

retain their spherical shape, and it is independent of any prior knowledge about S(q). In our case, 

s s

2
1 0.3




 

n
a

n n
 and we thus expect the CSA to hold quantitatively up to concentrations  ~ 

0.75, beyond which droplets start to deform. Based on the EEI model
135

, we calculate that the 

average surface area per droplet has changed by only ≈ 2% at the largest  = 0.729 we probe, so 

the droplets remain nearly spherical for all  in our study. Interestingly, ⟨S(q)⟩ is reduced by 

nearly a factor of 4 at the highest  we explore. Thus, accounting for collective scattering 

necessitates substantial -dependent corrections to DWS MSDs in concentrated probe systems, 

as we have demonstrated for concentrated emulsions. 
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Figure 3.5. Ensemble-averaged temporal mean square displacements, ⟨r
2
(t)⟩. Self-motion 

mean square displacement ⟨r
2
(t)⟩ in a jammed monodisperse emulsion are extracted from g2(t) - 

1 (Figure 3.3) using 1/ℓ∗ values (Figure 3.4(a)) after correcting with -dependent ⟨S(q)⟩ (Figure 

3.4(b)) measured from (a) transmission DWS and (b) backscattering DWS. Solid lines are least-

squares fits to an emulsion MSD model in equation (3.11); labels for each  are color coded as in 

Figure 3.3. Right axes show shear creep compliance J(t) ~ ⟨r
2
(t)⟩ obtained via passive 

microrheology using the GSER. In (a), we display only the portions of the transmission MSDs 

for  = 0.562 and 0.566 that can be reliably extracted above the baseline of g2(t) - 1. 

 

 We correct ⟨r
2

a(t)⟩ using the empirically determined ⟨S(q)⟩, yielding ⟨r
2
(t)⟩ 

corresponding to true droplet self-motion. DWS transmission results are shown in Figure 3.5(a). 

The measured MSDS increase nearly linearly at short times (t ≲ 10
-5

 s), gradually bend, and 

saturate to plateau values at long times (t ≳ 10
-1

 s). The transmission MSDs for  = 0.562 and 

0.566 have been truncated at longer times because g2(t) - 1 becomes indistinguishable from the 

baseline there. For lower backscattering DWS g2(t) - 1 [cross-polarized detection, denoted 

VH
114

] provides a more reliable result for ⟨r
2
(t)⟩ (Figure 3.5(b)). Backscattering MSDs have 
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nearly the same shapes and long-time plateau values as transmission MSDs, yet backscattering 

MSDs at early times are noisier because light paths are shorter overall and there is less averaging 

than in transmission. As  is raised, the long-time plateau MSDS ⟨r
2⟩p decrease, indicating 

higher droplet confinement. 

3.3.5 – DWS-GSER Microrheology 

 We analyze these droplet self-motion MSDs by developing a time-domain fitting 

function that accounts for the gradual bend in the shape of the dense emulsion MSDs, in addition 

to the short-time linear rise associated with a high-frequency viscosity ∞ and a long-time G'p. 

 The generalized Stokes-Einstein relation (GSER) for the frequency-dependent 

viscoelastic shear modulus using a 3D MSD, assuming stick boundary conditions, and ignoring 

inertia is given by
84

: 

 
B

2
( )

( )




k T
G s

as r s
, (3.3) 

where s is the Laplace frequency, a is the radius of a probe sphere, kB is Boltzmann’s constant, 

and T is the temperature. We re-write this, solving for the MSD in the Laplace domain in terms 

of the s-dependent shear modulus G :  

 2 B( )
( )

 
k T

r s
asG s

. (3.4) 

We assume that a suitable model for the viscoelastic modulus of dense emulsions includes 

constant and linear terms appropriate for a harmonically bound Brownian particle as well as a 

term proportional to s
1/2  67, 85

: 

 
1 2

p( ) [1 ( ) ] 
  G s G s s . (3.5) 
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This gradual bend for dense emulsion systems can be attributed to an s
1/2

 contribution to the 

frequency-dependent viscoelastic modulus in the Laplace frequency s domain
67, 85

. We have 

introduced a time scale  , associated with the s
1/2

 power-law term. We reason that the magnitude 

of this s
1/2

 term is most appropriately set by G'p, since either electrostatic or interfacial 

contributions to the quasi-equilibrium free energy can dominate G'p over the range of  that we 

explore in our study. We substitute this model into the equation for the Laplace-domain MSD 

and re-express the result using factors in the denominator that can be readily separated: 

 2 B

1 2 1 2

1
( )

( )( ) 

 
 

k T
r s

a s s y s z
, (3.6) 

where we have defined y and z such that 

 
1 2

p 
 y z G  (3.7) 

and 

 p 
yz G . (3.8) 

Here, the value of G'p is related to the long-time plateau value of the MSD through the GSER in 

that limit: 

  2
p B

p
  G k T a r . (3.9) 

The prefactor in this equation for plateau values differs from the prefactor proposed in earlier 

work (see equation (16) of reference by Mason et al.
67

), and the above equation for plateau 

values is completely self-consistent with the broader framework of the GSER. The complete 

time-domain MSD is given by the inverse Laplace transform operation, L
−1

, acting on the 

frequency domain MSD: 

  2 1 2( ) ( )  r t L r s . (3.10) 



80 

 

Using Mathematica functions Apart and InverseLaplaceTransform, we obtain the time-domain 

MSD involving the complementary error function, erfc: 

 
   

2 2

2 B

2 2

( ) erfc erfc
( )

 

  
 



y t z ty z ze y t ye z tk T
r t

a y z yz
. (3.11) 

Using this equation (3.11), which has three fitting parameters, ∞, G'p, and a time scale  

associated with the s
1/2

 power law, we least-squares fit both transmission and backscattering 

MSDs (lines in Figure 3.5). We denote the values of G'p obtained by equation (3.11) as G'p,GSER 

to distinguish them from mechanical results.  For all , we find excellent agreement between the 

fits and measured MSDs. 

 In addition, because the MSDs are proportional to the linear viscoelastic shear creep 

compliance, J(t), we directly report the measured and fitted J(t) (Figure 3.5, right axes). 

Assuming stick boundary conditions for the GSER
115

: 
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which after substitution of the MSD yields: 
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Considering the long-time limit, the plateau creep compliance Jp is proportional to the long-time 

plateau MSD: 

  2
p p B

p
1   J G a r k T . (3.14) 
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3.3.6 – Comparison: DWS-GSER and Mechanical Plateau Shear Moduli 

 In Figure 3.6, we plot the microrheological G'p,GSER() obtained as fit parameters to DWS 

self-motion MSDs and compare these directly to the macroscopic mechanical G'p,mech()  and the 

predicted G'p,EEI() of the EEI model. Over the entire range of , we find excellent agreement 

between DWS microrheological and mechanical G'p measurements without applying any 

arbitrary correction factors, which had been previously applied to dense emulsion systems on an 

ad hoc and -independent basis
67, 109

. Accounting for collective scattering effects in DWS MSDs 

by using -dependent ⟨S(q)⟩, based on the measured ℓ∗(), is necessary to achieve such 

quantitative agreement. 

 

 

Figure 3.6. Comparison of plateau shear elastic moduli G'p of jammed a = 459 nm 

monodisperse emulsion. G'p,mech() was measured using mechanical shear rheometry (solid red 

circles) (Figure 3.1). G'p,GSER() was measured using the ⟨S(q)⟩-corrected plateau DWS MSDs at 

long times t in Figure 3.5 through the GSER of passive microrheology: transmission (open black 

triangles) and backscattering (open blue squares). Red solid line shows G'p,EEI() predicted by the 

EEI model. 
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3.3.7 – Plateau Shear Moduli and s
1/2

 Viscoelastic Response 

 We find also that () decreases strongly as droplets jam toward larger  (Figure 3.7(a)). 

In addition, by plotting G'p,GSER vs.  (Figure 3.7(b)), we find that an empirical power-law 

relationship G'p,GSER ~  -
, where  = 0.86 ± 0.02, holds through the jamming regime over many 

orders of magnitude in both G'p,GSER and . Thus, the low-frequency plateau viscoelastic moduli 

of jammed emulsions appear to be correlated in a nontrivial manner to the time scales associated 

with the higher-frequency s
1/2

 viscoelastic response. 

 

Figure 3.7. Volume fraction dependent  -values for a = 459 nm jammed monodisperse 

emulsion determined from DWS-GSER. (a) Characteristic time scale of the (s)
1/2

 term in 

the viscoelastic emulsion model given in equation (3.11), obtained from fits to DWS MSDs in 

Figure 3.5, as a function of  measured in transmission (open black triangles), and backscattering 

(open blue squares). (b) Plateau elastic storage modulus G'p,GSER as a function of , both obtained 

as fit parameters of DWS MSDs in Figure 3.5. Symbols are as in (a). Dashed line: fit using a 

power law, G'p,GSER ~ , yielding an exponent  = 0.86 ± 0.02. 
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3.3.8 – DWS MSDs at Very Short Sub-s Times 

 Several different effects make the interpretation of DWS g2(t) - 1 at very short times 

particularly challenging. Backscattering DWS creates a much shorter overall distribution of light 

paths, and this complicates analysis at very short times; so, our discussion here largely centers on 

transmission DWS. Besides the simple translational motion of the probes associated with an 

effective high frequency viscosity ∞, the two most prominent influences on DWS g2(t) - 1 are 

the effective inertia of the droplet-probes
84, 113

 as well as their shape fluctuations
134

. We have 

largely suppressed shape fluctuations by using a PDMS oil inside droplets that has a higher 

viscosity, over one order of magnitude, compared to the oil viscosity at which shape fluctuations 

of similarly sized oil droplets in water have been readily observed
134

. However, the influence of 

the inertia of the droplet-probes in our study can still be seen for time scales shorter than the 

characteristic inertial time
113

, and we find that DWS MSDs of droplets in our system have log-

slopes greater somewhat larger than one for these very early times (i.e. extracted MSDs appear 

super-diffusive). Inertial effects are most evident at the few lowest values of  we have studied. 

Although we only fit DWS self-motion MSDs for times greater than the characteristic inertial 

time to obtain rheological parameters, the influence of probe inertia on the fit parameter ∞ 

becomes evident at these lower values of .  

 In Figure 3.8, we report the values of the fit parameter ∞() for the emulsions in our 

study. For large enough  ( > 0.60) beyond which short-time noise does not adversely influence 

the MSDs, we find that ∞() rises with increasing . The rise in ∞() for  > 0.60 could 

potentially be explained in the future by a model that considers the complex viscous flows in the 

continuous phase of a jammed and weakly deformed emulsion at high . Since the quasi-

equilibrium EEI model does not include any hydrodynamic contributions, it can only be used to 
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compare with experimental G'p. However, for  < 0.60 the fit parameter values for ∞() in 

Figure 3.8 cannot be taken literally as rheological values because of inertial effects. We find that 

the other two longer-time parameters G'p and  do not strongly depend on deviations in ∞ 

needed to make ∞() behave as a monotonically increasing function, which would be expected 

rheologically. Exploring the very early time corrections for both inertia and shape fluctuations 

that would be required to extract translational DWS self-motion MSDs of droplet-probes over a 

wide range of emulsion compositions represents an interesting direction for future studies. 

 

Figure 3.8. Volume fraction dependent high-frequency viscosity, ∞, values for a = 459 nm 

jammed monodisperse emulsion determined from DWS-GSER.  High-frequency viscosity, 

∞, found by fitting DWS self-motion MSDs (open triangles: transmission DWS; open squares: 

backscattering DWS) to the viscoelastic emulsion model given in equation (3.11) at droplet 

volume fractions,  ranging from 0.562 to 0.729, for a fractionated and concentrated O/W 

emulsion having average radius a = 459 nm, stabilized using 10 mM SDS. For  < 0.60, symbols 

for ∞ have been lightened to emphasize that inertial effects are likely influencing these values 

strongly. Dashed horizontal line represents the viscosity of water ∞(). 
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3.4 – Conclusions 

 Since the advent of passive microrheology, apparent DWS MSDs have been used in 

combination with the GSER to show trends in G'p() of dense glassy and jammed colloidal 

systems, including emulsions, yet until now a highly accurate quantitative match with 

macroscopic mechanical measurements has not been obtained over a wide range of . In past 

experiments, the lack of conversion of apparent MSDs into true self-motion MSDs has led to the 

introduction of various correction factors to rescale microrheological measurements into 

mechanical measurements as well as theoretical speculations about appropriateness of boundary 

conditions and other assumptions inherent in the GSER. Here, we have shown that invoking such 

ad hoc correction factors is unnecessary, and we have presented and demonstrated a well-defined 

empirical method for correcting DWS MSDs in dense, highly scattering systems using -

dependent ⟨S(q)⟩ to account for collective scattering. Although the q
3
 weighting inherent in DWS 

does favor self-motion in the extracted MSDs, such extracted MSDs still require significant -

dependent corrections for collective scattering from probes at high densities, up to a factor of 4 

or more, as we have demonstrated for jammed emulsions. The excellent agreement we find 

between G'p() measured using both modern DWS-GSER microrheology and mechanical 

rheometry implies that the GSER does work very well for dense emulsion systems if the DWS 

MSDs have been properly corrected for collective scattering. In addition, the microrheological 

G'p() matches the predicted G'p() of the EEI model as droplets become jammed, which enables 

us to identify that the GSER is applicable when both screened electrostatic repulsions and droplet 

interfacial deformations dominate G'p(). Moreover, we have derived a time-domain equation for 

MSDs of droplets in dense emulsions, based on the GSER and a model that has an s
1/2

-dependent 
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contribution to the linear viscoelasticity, and have used this equation to fit measured DWS self-

motion MSDs, yielding excellent agreement. From these fits, we have determined the -

dependent time scale  associated with the (s)1/2
 term in the viscoelastic model. In future 

theoretical investigations, it would be useful to determine quantitative predictions for () and 

the power-law scaling identified for G'p() that could be compared with our measurements. We 

also note that similar s
1/2

-contributions to the linear viscoelastic shear modulus can arise from 

hydrodynamic interactions in dense suspensions of hard spheres
144

, so the equations we have 

developed might also be applicable to these dense systems as well. These equations might also 

potentially apply to certain elastic polymer systems that are in a viscous solvent. We anticipate 

that broader application of the method we have demonstrated for correcting DWS MSDs of 

jammed emulsions with the -dependent ⟨S(q)⟩ could lead to improved quantitative accuracy of 

passive microrheology using the GSER in other dense colloidal soft materials that are highly 

scattering. 
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Chapter 4 – Diffusing Wave Microrheology of Attractive 

Disordered Monodisperse Emulsions 

 

4.1 – Introduction 

 We apply DWS to explore the microrheological behavior of an attractive disordered 

monodisperse emulsion at droplet volume fractions  near and somewhat below the volume 

fraction MRJ associated with maximal random jamming of hard spheres. This emulsion is 

characterized by a secondary attractive interaction potential between droplets that has a 

controllable well depth yet also a strongly repulsive barrier compared to thermal energy kBT at 

very short range (see Figure 4.1 inset), such that droplets do not come into contact with each 

other under entropic excitations and remain stable against coalescence. The depth of the 

secondary well can be controlled through the addition of a nanoscale depletion agent. Because 

droplets are smooth to the molecular scale, a convenient and suitable depletion agent consists of 

self-assembled surfactant micelles at higher surfactant concentrations than those that are 

necessary to stabilize droplets against coalescence. Thus, depending on the magnitude of the 

secondary attractive interaction, the droplets can flocculate, form clusters, or gel without any size 

evolution of droplet radius via coalescence. By contrast, droplets in a purely charge-screened 

repulsive system are repelled from each other at short range. Because this secondary attraction in 

the interaction potential can cause droplets to adhere and because such adhesion can also alter 

the emulsion's structure, the rheological properties between attractive and repulsive systems can 

highly differ. 
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  Such depletion-induced attractive emulsion systems were first created and studied using 

mechanical rheometry by Mason et al.
15, 23, 32

 and later by Datta et al.
23

. The monodisperse 

emulsion system that we investigate in this chapter is very similar in composition and in average 

droplet radius to the monodisperse emulsion system used by Mason et al. Each of these studies 

by Mason et al. and Datta et al. explored a different depletion-induced emulsion system at high  

yet below MRJ, and both found a two-step yielding behavior, related to the presence of strong 

attractions between droplets that were many times thermal energy kBT. Furthermore, large 

differences in the behavior of the -dependent plateau shear moduli, G'p(), between repulsive 

and attractive emulsions were found. The comparison of G'p() between attractive versus 

repulsive emulsions showed that attractive emulsions can exhibit a dominant G'p() for  well 

below MRJ. This effect of attraction was attributed to the formation of space-spanning networks 

of aggregated and gelled droplets which can support shear stress. By contrast, the repulsive 

microscale emulsions were marked by a sharp drop in G'p() for  below MRJ. While the 

consequences of a strong depletion attraction clearly confers to a dominant elastic plateau shear 

modulus down to significantly lower  than for emulsions having hard or short-range repulsive 

interactions, the quantitative behavior of G'p() as a function of the magnitude of the attractive 

well depth Uattr is still not well characterized and understood for weaker attractions. A prior 

attempt has been made to investigate this
91

, but the behavior could not be understood 

quantitatively due to the high droplet size polydispersity in the emulsion used in that study. 

  In this chapter, we present diffusing wave spectroscopy (DWS) microrheology 

measurements investigating the effect of the strength of the depletion attraction on the behavior 

of G'p of monodisperse emulsion near and below  associated with jamming of disordered hard 

spheres that have hard interactions. Given the advances in quantitative DWS of dense highly 
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scattering emulsions in Chapter 3, DWS might also be suitable for quantitatively studying 

attractive emulsions because no external perturbation, such as an imposed shear strain by a 

mechanical rheometer, might potentially cause alteration of the fragile aggregated structures of 

networks of droplet aggregates formed in certain attractive emulsions. This method, furthermore, 

is sensitive to probe displacements approaching 1 Å
110-114

, is capable of providing rheological 

information at short time scales (i.e. high frequency) beyond traditional mechanical rheometers. 

Thus, diffusing wave microrheology can potentially reveal interesting information with regards 

to short time dynamics. In our experiments, as in previous chapters, we use sodium dodecyl 

sulfate (SDS) stabilized poly-dimethylsiloxane oil-in-water (O/W) emulsions; SDS micelles 

serve as depletion agents. The use of SDS micelles is also advantageous since we avoid 

introducing additional chemical compositional complexity, and since the magnitude of the 

depletion attraction |Uattr| can be conveniently tuned by adjusting the SDS concentration. By 

adapting and extending the improved DWS analysis developed in Chapter 3 to these DWS 

measurements on attractive emulsions, we reveal interesting rheological in the light scattering 

signatures and microrheology of attractive emulsions that are not present in repulsive emulsions. 

4.2 – Materials and Methods  

4.2.1 – Monodisperse O/W Emulsion System 

 We recover the sodium dodecyl sulfate (SDS; Fisher Scientific; electrophoresis grade 99% 

purity) stabilized poly-dimethylsiloxane (PDMS; Gelest Inc.; viscosity 350 cSt) oil-in-water 

(O/W) monodisperse emulsions having a = 459 nm used in the non-destructive DWS 

microrheology study from Chapter 3. We prepare a 10 mM SDS solution using SDS and 

deionized water (Millipore Milli-Q; resistivity 18.2 M·cm) to dilute the recovered emulsion to 

roughly  ≈ 0.15 while simultaneously washing the emulsion to set [SDS] = 10 mM. This diluted 
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emulsion is then concentrated via centrifugation (Beckman L8-55 ultracentrifuge, 6 SW-28 

swinging buckets of ≈ 30 mL capacity, 10k rpm, 1.25 h) into a dense elastic plug of cream at 

higher . We repeat the dilution and centrifugation steps for two more times to ensure that the 

surfactant concentration in the aqueous continuous phase is set at [SDS] = 10 mM. We combine 

the dense plugs of cream from the last centrifugation step and store the master concentration 

emulsion in a jar. This jar is then  stored in a temperature controlled chamber (T = 20 °C) for 

later use; the constant temperature environment of this chamber prevents evaporation-

condensation issues that can cause  of this master sample to evolve and that normally occur if 

the jar of emulsion is stored on the lab bench without such control. 

4.2.2 – Diffusing Wave Spectroscopy and Mechanical Rheometry: Varying  at fixed [SDS] 

 We re-adjust the emulsion SDS concentration to 20 mM by repeatedly washing and 

centrifuging the recovered emulsion. We dilute the recovered emulsion with 20 mM SDS to 

volume fraction  ~ 0.15 and centrifuge the resultant dilution at 10k rpm for 1.25 h to higher   

to wash the emulsion to [SDS] = 20 mM. We repeat the washing procedure for a total of three 

times. We then combine the dense plugs from last centrifugation step to form a master 

monodisperse emulsion sample having [SDS] = 20 mM. This master emulsion is stored in a T = 

20 °C controlled chamber. The average droplet radius in the master emulsion is verified by 

dynamic light scattering to be unchanged from prior studies that found a = 459 nm. We have 

characterized the droplet volume fraction of this master emulsion using a gravimetric 

evaporation method
99

, yielding m,20mM = 0.737. From this particular master sample, we prepare 

samples of emulsions at different , near but below m,20mM by diluting this master emulsion 

sample with a 20 mM SDS solution using an analytical balance (Denver Instruments APX-200, 

0.1 mg precision). The resulting  of each different sample can be calculated from these 
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measured masses using measured densities of the SDS solution and of the PDMS
99

. We perform 

DWS and mechanical rheometry on the prepared samples to characterize this emulsion’s 

rheological properties. The measurements are conducted using similar conditions described in 

sections 3.2.2 and 3.2.3. We perform mechanical rheometry (Rheometrics RFS II) using a 

frequency sweep with a peak shear strain of  = 0.005. We also perform DWS  (Rheolab III, LS 

Instruments) using 5 mm pathlength glass sample cuvettes with a correlation run time of 300 s 

and an echo setting of 60 s.  

4.2.3 – Diffusing Wave Spectroscopy and Mechanical Rheometry: Varying [SDS] at fixed  

 We re-use and readjust emulsions used in section 4.2.2 to [SDS] = 10 mM by following 

procedures described in 4.2.1. We characterize the droplet volume fraction of this new master 

emulsion set at 10 mM SDS using a gravimetric evaporation method
99

 and find m,10mM  = 0.737 

± 0.006. We prepare emulsion samples to have a nearly fixed , but different final SDS 

concentration, by diluting the 10 mM SDS master emulsion with different aqueous SDS 

solutions having a range of SDS concentrations. The mass of the added SDS solution and the 

mass of the master emulsion used to prepare each of the samples are measured using an 

analytical balance. From these recorded masses, we calculate the resulting  of each different 

sample using the measured mass densities of the SDS solution and of the PDMS
99

. We explore 

two  values that are near but below the jamming limit of hard spheres:  = 0.584 and  = 0.592. 

 We perform DWS measurements and mechanical rheometry to characterize the 

microscopic dynamics of droplets in these attractive emulsions as well as their macroscopic 

rheological properties. The measurements are conducted using similar conditions described in 

section 4.2.2. For  = 0.584, we perform mechanical rheometry (Rheometrics RFS II) using a 

frequency sweep with a peak shear strain of  = 0.005, and we use DWS (Rheolab III, LS 
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Instruments) with a correlation run time of 100 s and an echo setting of 60 s. For  = 0.592, 

DWS measurements are made using same procedures; no mechanical rheometry have been taken. 

4.3 – Results and Discussion 

4.3.1 – Behavior of Attractive Emulsions: Varying  at Fixed [SDS] 

 We perform DWS measurements of attractive PDMS O/W emulsions at [SDS] = 20 mM 

to investigate the effect of weak depletion attractions in concentrated monodisperse emulsions 

having average droplet radius a = 459 nm. We estimate the magnitude of the depletion attraction, 

|Uattr|, using a formula derived in a prior work
32

: 

 
,
 (4.1) 

where Cm is the concentration of micelles, N0 is Avogadro’s number, kB is Boltzmann's constant, 

T is the temperature, and am is the radius of an SDS micelle. Since an SDS micelle, which has am 

= 2 nm, is composed of vm ≈ 70 dodecyl sulfate monomers, we can relate the micelle 

concentration Cm to [SDS] by:  

 

 ,

 (4.2) 

where the critical micelle concentration of SDS is C* ≈ 8.1 mM. We calculate |Uattr| for 

emulsions having a = 459 nm as a function of [SDS], shown in Figure 4.1. For these emulsions 

washed at [SDS] = 20 mM, we calculate |Uattr| ≈ 2.4 kBT. While the primary effect of raising 

[SDS] is to induce a depletion attraction that can cause droplets to form attractive networks, a 

secondary effect, reducing the Debye screening length through higher overall ionic content in the 

continuous phase, is also expected. With both of these potential effects in mind, we have 
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explored attractive emulsions at fixed [SDS] = 20 mM for 0.573 ≤  ≤ 0.647 near yet below 

hard-sphere jamming. 

 In Figure 4.2, we present the measured average normalized intensity correlation functions, 

g2(t) - 1, of the emulsions having fixed [SDS] = 20 mM. Beyond the features in the repulsive 

emulsion’s g2(t) - 1 curves (see Figure 3.3), the weakly attractive emulsion’s g2(t) - 1 exhibits  an 

additional decay to a plateau at long times, as seen in both transmission and backscattering 

configurations (see Figure 4.2). This additional decay is much more accentuated in the 

transmission signal. This deviation from a simple decay to a plateau to what appears to be a two-

step decay  to  a  final  long-time  plateau  is  weak  for   towards  the  hard-sphere  jamming limit  at    

 
 

Figure 4.1. Estimated magnitude of the potential energy at contact between two droplets 

caused by a micellar depletion attraction as a function of SDS concentration. The magnitude 

of the depletion attraction, |Uattr|, caused by SDS micelles, present for [SDS] > C
*
, where C

*
 is 

the critical micelle concentration, is given in equation (4.1). Red solid line: |Uattr| (in units of 

thermal energy kBT) for droplets having average radius a = 459 nm. Inset: idealized sketch of the 

droplet pair interaction potential U(r) as a function of center-to-center separation between the 

droplets. The secondary attractive well, caused by depletion, has a well-depth |Uattr|. At slightly 

smaller separation r, there is a repulsive barrier, created by stabilizing surfactant. For even 

smaller r, the primary attractive well associated with van der Waals interactions dominates, and 

these attractions would cause droplet coalescence. 
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Figure 4.2. Averaged normalized DWS intensity autocorrelation functions, g2(t) - 1, of 

attractive emulsions at fixed [SDS] = 20 mM. Emulsions having radius a = 459 nm with 

varying  (listed on left; top to bottom) are measured using DWS at a temperature T = 20 °C: (a) 

transmission and (b) backscattering geometries. The g2(t) – 1 signals are averaged over 10 

individual runs. The transmission g2(t) - 1 for  = 0.584 have been smoothed out with an 

interpolated fit through original data to more smoothly connect correlation and echo 

measurements. The measurements are made 10 days after the sample preparation, except for the 

 = 0.573 sample, which was measured 1 day after sample preparation.  

 

≈ 0.64, but then becomes progressively accentuated towards lower . Interestingly, the time 

scales over which this additional decay occurs are around 10
-2

 s ≲ t ≲ 10
-1 s, independent of . 

 We then attempt to extract the measured true self-motion mean square displacements, 

⟨r
2
(t)⟩, of the depletion-induced attractive emulsion droplets to investigate further how DWS 

response   of   attractive   emulsions   differs   from   that   of   repulsive   emulsions.   Although   the  
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Figure 4.3. Inverse optical transport mean free path as a function of  for depletion-

induced attractive emulsions. Open squares: measured 1/ℓ∗ for PDMS O/W emulsions (average 

radius a = 459 nm) that have been washed to set [SDS] = 20 mM. Colored circles (see Figure 

3.4(a) for color designations): measured 1/ℓ∗ for the same PDMS O/W emulsions that have been 

washed to set [SDS] = 10 mM. 

 

emulsions experience weak depletion attractions, we assume here that the collective scattering 

effects present in DWS intensity correlation function g2(t) – 1 can still be corrected in the same 

manner as that of repulsive emulsions as discussed in Chapter 3. We use the measured inverse 

optical transport mean free path 1/ℓ∗ (open squares, Figure 4.3) to calculate the average structure 

factor ⟨S(q)⟩ and thereby correct for collective scattering effects. The measured 1/ℓ∗ for 

depletion-induced attractive emulsions compare well to the measured 1/ℓ∗ determined for the 

repulsive case  (circles, Figure 4.3) within the measurement error of the DWS instrument. 

Moreover, at [SDS] = 20 mM, the micellar depletion only induces inter-droplet attractions of 

|Uattr| ≈ 2.4 kBT, that are somewhat larger than thermal energy. Thus, we assume the method of 

correcting for collective scattering effects at this SDS concentration is reasonable. Using the 

improved DWS analysis outlined in sections 3.3.3 - 3.3.4, we obtain the mean square 

displacements, ⟨r
2
(t)⟩, corrected for collective scattering effects, from the DWS measurements 

using  transmission  and  backscattering  geometries  as  shown  in  Figures  4.4  and  4.5  respectively.  
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Figure 4.4. Transmission mean square displacements ⟨r
2
(t)⟩ measured by DWS of 

attractive emulsions at different  and fixed [SDS] = 20 mM. The mean square displacements 

⟨r
2
(t)⟩ (circles; displayed every 1 in 3 data points for clarity), measured in transmission DWS, 

are fitted to the time-domain MSD function for the repulsive emulsions, given in equation (3.11) 

through: (a) all points and (b) a partial set of early time ⟨r
2
(t)⟩ to yield an early-time optimized 

fit. The fits are shown as lines. The droplet volume fractions  are listed for curves from top to 

bottom. The optimized early-time fit parameters are described in Table 4.1. 

 

 
Figure 4.5. Backscattering mean square displacements ⟨r

2
(t)⟩ measured by DWS of 

attractive emulsions at different  and fixed [SDS] = 20 mM. The mean square displacements 

⟨r
2
(t)⟩ (circles; displayed every 1 in 3 data points for clarity), measured in backscattering DWS, 

are fitted to the time-domain MSD function for the repulsive emulsions, given in equation (3.11) 

through (a) all points and (b) a partial set of early time ⟨r
2
(t)⟩ for an early-time optimized fit. 

The fits are shown as lines. The droplet volume fraction  are listed for curves from top to 

bottom. The optimized early-time fit parameters are described in Table 4.1. 



97 

 

Inspection of the corrected MSDs, ⟨r
2
(t)⟩, reveals a slight upward trend in the mean-square 

displacement near intermediate times (t ~ 10
-2

 s), which correspond to the observed additional 

decay in the g2(t) - 1 signals. Moreover, a final long-time plateau is observed for t > 10
-1

 s, 

mostly in the echo region. 

 We analyze the more complex ⟨r
2
(t)⟩ of attractive emulsions to quantify how the 

depletion attraction caused by the additional micelles at [SDS] = 20 mM impact the DWS results, 

as compared to repulsive emulsions. We first try fitting the ⟨r
2
(t)⟩ to the time-dependent MSD 

for repulsive emulsion determined in equation (3.11) through all points determined by 

transmission and backscattering DWS, as shown in Figures 4.4(a) and 4.5(a). Upon comparison, 

we find that this fitting procedure yields poor results, and there are large systematic deviations of 

the measurements from the fitted lines. The deviations from the fit become more pronounced as 

 decreases away from jamming to lower . There is an excess decay in the correlation decay of 

these attractive emulsions at long times compared to repulsive emulsions, and this excess decay 

for the attractive emulsions also leads to long-time excesses in the MSDs caused by additional 

droplet dynamics that are not present in the repulsive emulsions.  

 We hypothesize that only a portion of the dynamics seen in the attractive emulsions 

relates to droplets in space-filling networks that can support macroscopic shear stress; the excess 

dynamics at long times relates to Brownian excitations of clusters of droplets that are dangling 

and not well integrated into the primary shear-stress-bearing networks of droplets. Furthermore, 

we hypothesize that the non-excess portion of the MSDs at early times in these attractive systems 

can be described by the same equations as for repulsive emulsions. To test these hypotheses, we 

optimize the fits to the early-time data for ⟨r
2
(t)⟩, as shown in Figures 4.4(b) and 4.5(b). To fit, 

we use equation (3.11) yet restrict the range of the fit to early time points, which correspond to 
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short and intermediate time scales, before the additional decay observed in g2(t) - 1. During the 

early-time fit optimization process, we have found very small oscillating signal present at early 

times, likely resulting from slight mechanical vibrations and resonances in the DWS instrument, 

which makes optimization of the fit through minimization of residuals less precise. Despite these 

minor oscillations, we restrict our early time fit range such that the oscillating residual signals are 

minimized in magnitude and only positive residuals result beyond the fitted time range. 

 By restricting and optimizing these fits to early and intermediate times, we capture the 

average single droplet MSD contributions well there; moreover, at longer times, we begin to 

reveal additional features in the DWS signal that arise from Brownian excitations of collections 

of attractive droplets as a consequence of the imposed micellar depletion effect. As shown in 

Figures 4.4(b) and 4.5(b), we find the measured ⟨r
2
(t)⟩ at long times are always higher in 

magnitude than the early-time optimized fit. This additional MSD signal likely arises from 

thermal-entropic excitations of clusters and dangling ends of the gel networks formed in 

attractive emulsions. Unlike repulsive emulsions, in which all droplets are equally likely to 

contribute to an elastic response to an imposed shear stress, only a fraction of droplets in 

attractive emulsions are well incorporated into space-spanning, shear-stress-bearing gel networks. 

Other droplets, which are not part of these networks, can form clusters and become loosely 

attached to the struts of the shear-stress-bearing gel networks. The vibrational motion of these 

weak, loosely attached clusters would cause an additional decay in g2(t) - 1 and thereby provide 

an additional excess contribution to the mean-square displacement.  

 We quantify this additional signal in MSD that appears at longer times by calculating the 

differences between the DWS ⟨r
2
(t)⟩ and the early-time optimized fit MSD, ⟨r

2
(t)⟩fit. While 

recognizing that these excess fluctuations at longer times should not necessarily be interpreted as 
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single droplet motion, we define an excess MSD function as: ⟨r
2
(t)⟩xs = ⟨r

2
(t)⟩ - ⟨r

2
(t)⟩fit. We 

show the measured ⟨r
2
(t)⟩xs in Figure 4.6. From Figure 4.6, we find ⟨r

2
(t)⟩xs is largest for the 

lowest  explored at long times and rapidly decreases almost 3 orders in magnitude as  

approaches MRJ. This trend is consistent with the notion that droplets would be much more 

confined with less space to move in void regions at higher , such that dynamics of dangling 

clusters would be restricted. 

 We can further quantify the behavior by fitting this ⟨r
2
(t)⟩xs using an empirical equation, 

motivated in part by the harmonically bound Brownian particle (HBBP). We create a new fitting 

function that for simplicity we call a modified bound Brownian particle (MBBP): 

 ⟨r
2
(t)⟩xs = ⟨r

2⟩xs,p {1 – exp[(-t/tD)

]}, (4.3) 

 

 
 

Figure 4.6. Excess mean square displacements ⟨r
2
(t)⟩xs as a function of  for fixed [SDS] = 

20 mM. The temporal excess MSD signal ⟨r
2
(t)⟩xs, for a = 459 nm emulsions are determined by 

taking the difference between the measured MSD and the early-time optimize fits to equation 

(3.11), shown in Figures 4.4(b) and 4.5(b). The excess MSDs are determined for: (a) 

transmission and (b) backscattering DWS geometries. The droplet volume fractions  are listed 

on the right for data shown (top to bottom). All sets of data have been fit to an equation 

describing a modified bound Brownian particle (MBBP): ⟨r
2
(t)⟩xs = ⟨r

2⟩xs,p {1 – exp[-(t/tD)

]}. 

The fit parameters are given in Table 4.2. 
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Figure 4.7. Plateau excess mean square displacements ⟨r
2⟩xs,p  as a function of  for fixed 

[SDS] = 20 mM.  The determined fit parameter ⟨r
2⟩xs,p for a = 459 nm emulsions are plotted as 

a function of volume fraction . Transmission: black triangles. Backscattering: blue squares.  

Empirically, the -dependence of ⟨r
2⟩xs,p can be described by an exponential decay function: 

⟨r
2⟩xs,p = Axs,p exp[ (MRJ/(xs,p)], where MRJ ≈ 0.646 and determined fit parameters are 

Axs,p = (6.6 ± 2.1) x 10
-8

 m
2
 and xs,p = (1.01 ± 0.06) x 10

-2
.  

 

where ⟨r
2⟩xs,p describes the maximum plateau MSD of the Brownian object, tD is the time scale 

associated with diffusion, and is the exponent which describes the sub-diffusive power-law 

rise to a long-time plateau MSD when   < 1. In the limit  = 1, the more general MBBP 

becomes the simpler HBBP. If  < 1, it indicates that Brownian objects contributing to the 

excess MSD signal are not freely diffusing, which would be consistent for loose dangling 

clusters of droplets trapped within the main stress-bearing gel network of droplets. The results of 

the fits to ⟨r
2
(t)⟩xs are described in Table 4.2. In general, we observe that  < 1 (average  = 

0.46 ± 0.09 for  points below MRJ ≈ 0.646), which provides further support that this excess 

signal arises from sub-diffusion processes. Furthermore, we notice that  decreases as  

increases, except at the highest = 0.647 which shows a much significantly higher , although 

there is much less excess MSD signal at this particular , so this change in the behavior of  is 
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less certain. We also note that the plateau fit parameter ⟨r
2⟩xs,p increases as  decreases below 

MRJ, as seen in Figure 4.7. This is consistent with the notion that there is more available 'void' 

space for loosely bound dangling clusters of droplets to move in less dense void regions in 

attractive emulsions as  is reduced below the jamming point. We find empirically that this 

observed -dependence of ⟨r
2⟩xs,p can be well described by an exponential decay function: 

⟨r
2⟩xs,p = Axs,p exp[ (MRJ/xs,p], where MRJ is fixed to be 0.646 (see Figure 4.7). From 

the fit, we determine the fit parameters: Axs,p = (6.6 ± 2.1) x 10
-8

 m
2
 and xs,p = (1.01 ± 0.06) x 

10
-2

.  Lastly, we note that tD ≈ 0.1 s for all  points explored at [SDS] = 20 mM; this result from 

fitting the excess MSD signal is directly connected to the observation that the secondary decays 

in g2(t) – 1 all occur for 10
-2

 s ≲ t ≲ 10
-1 s. 

 
Figure 4.8. Mechanical measurements and comparison of plateau shear elastic moduli G'p. 

(a) Mechanically measured magnitude of the complex shear modulus |G*()| (squares, lines 

guide the eye) as a function of frequency  at droplet volume fractions,  ranging from 0.729 to 

0.573 (top to bottom) from a oscillatory test with a fixed peak shear strain of  = 0.005 is shown. 

Measured values of the shear elastic storage modulus G' (not shown) are almost equal to |G
*
()| 

over the frequency range explored. (b) G'p,mech values are extracted from the frequency sweep at 

 = 1 rad/s and compared against G'p,DWS values, obtained from the G'p parameter from the 

early-time optimized fit of equation (3.11) shown in Figures 4.4 and 4.5. DWS transmission: 

(black triangles). DWS backscattering: (blue squares). The diagonal solid line indicates a 1-to-1 

match between G'p,mech and G'p,DWS.  



102 

 

 We also compare the DWS early-time optimal fit G'p values to the mechanically 

measured values of G'p, as shown in Figure 4.8. The mechanical frequency sweeps of the same 

exact samples, taken immediately after the DWS measurements shown, are plotted in Figure 

4.8(a). For 10
-1

 rad/s ≤  ≤ 10
2
 rad/s, the mechanical frequency sweeps display relatively flat 

plateau values of |G*()| which are mostly dominated by the linear shear elastic storage modulus 

G'. We select the mechanically measured value of G' at  = 1
 
rad/s and label it as G'p,mech. This 

value is compared against the early-time optimal fit G'p parameter values, denoted as G'p,DWS in 

Figure 4.8(b). Within the run-to-run uncertainties of both mechanical and DWS measurements, 

the values of G'p obtained by using the two different techniques lie reasonably close to the 1-to-1 

line, implying that removing the additional long-time decay associated with dangling clusters 

and the excess MSD signal is appropriate in order to make a valid microrheological 

interpretation of these attractive emulsions that quantitatively connects with macroscopic 

rheometry. The deviation for the lower values of G'p ~ 100 Pa, which correspond to  = 0.573 

and  = 0.583, may be explained by the sensitivity of G'p in this  range for the repulsive 

emulsions as shown in Figure 3.2(b). For the larger G'p,DWS  data points (i.e. higher  points) 

where G'p is not as sensitive, G'p,DWS appears to be only 10% higher than G'p,mech; however, this 

small departure from the 1-to-1 line could be due to the difference between time of sample 

handling and the time when the sample was measured in the two measurements. The DWS 

measurements were taken after 10 days after significant sample handling while the 

corresponding mechanical measurements only used 5 minutes of wait time after loading the 

sample and applying the pre-shear. This disparity of the time scales may have slightly biased the 

measurements towards a certain direction since the attractive systems could be dependent on the 

sample handling procedures such as aging. Nevertheless, reasonable agreement between G'p,DWS 
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and G'p,mech provides reasonable support for our approach of using the early-time optimized fits 

to extract the MSDs of the droplets involving stress supporting network while revealing 

additional MSD signals that may be related to other dynamics within the network that do not 

directly influence the macroscopic rheology of these attractive emulsions. 

4.3.2 – Depletion-Induced Attractive Emulsions: Varying Attraction Strengths at Fixed 

 To investigate the effect of the SDS depletion attraction strengths on highly concentrated 

emulsions, we perform DWS measurements on concentrated emulsions which are set to a 

constant  but diluted with different concentrations of SDS solutions. We explore the effect of 

SDS concentration at two volume fractions:  = 0.584 and  = 0.592. Without any depletion 

effects, these  values lie within the electrostatically jammed regime or lie near the boundary of 

the electrostatic and interfacially jammed regimes predicted by the EEI model. The measured 

average normalized intensity correlation functions g2(t) - 1 are shown at different concentrations 

for  = 0.584 and  = 0.592 in Figures 4.9 and 4.10, respectively, and their respective measured 

optical mean free paths ℓ∗ as a function of [SDS] are also presented (see Figure 4.11). In the 

following sections, we discuss the results at each of the two fixed  values individually. 

4.3.2.1 – Depletion-Induced Attractive Emulsions: Varying [SDS] at Fixed  = 0.584 

 The measured g2(t) - 1 curves for  = 0.584 at various SDS concentrations are shown in 

Figure 4.9. Starting from the repulsive emulsions at [SDS] = 10.0 mM, we notice that there is a 

non-zero long-time plateau value of g2(t) - 1 for both transmission and backscattering geometries. 

Upon increasing the SDS concentration to 20.0 mM, the non-zero long-time g2(t) - 1 signal 

disappears for the same measurement conditions used.  On the surface, this might be interpreted 

to indicate that the emulsion at 20.0 mM SDS displays a significantly weaker elasticity than 

emulsions  at  10.0  mM  SDS.  This  type  of  behavior  could  be   similar   to  adding  ionic  salt,  such  as  
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Figure 4.9. Averaged normalized intensity autocorrelation functions, g2(t) - 1, for different 

[SDS] of attractive emulsions at  = 0.584. The g2(t) - 1 signals (lines) are measured for a = 

459 nm emulsions by DWS (a) transmission and (b) backscattering geometry using 5 mm optical 

cuvettes at temperature T = 20 °C, 1 day after the sample preparation. The emulsions are diluted 

to different final [SDS] as listed on the left for correspondingly colored curves. The long time 

transmission g2(t) - 1 data for 20 mM SDS was unreliable and have been truncated to short times. 

 

 

 
Figure 4.10. Averaged normalized intensity autocorrelation functions, g2(t) - 1, for different 

[SDS] of attractive emulsions at  = 0.592. The g2(t) - 1 signals (lines) are measured for a = 

459 nm emulsions by DWS transmission geometry using 5 mm optical cuvettes at temperature T 

= 20 °C, 1 day after the sample preparation. The emulsions are diluted to different final [SDS] as 

listed on the right, color-coded to the curves.  
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NaCl, which decreases the effective Debye screening length, such that the emulsion's elasticity 

could be lowered due to the decreased range of repulsive interactions. More interestingly, we 

observe that the g2(t) – 1 signals from 20.0 mM SDS here are significantly different from g2(t) - 

1 signals obtained from emulsions prepared in a different manner to the same  and [SDS] (see 

section 4.3.1). This observed difference in g2(t) - 1 for what appears to be similar compositions 

suggests that the different routes of preparing and handling these attractive emulsions can 

potentially significantly affect DWS correlation functions. 

 As we increase [SDS] further, we notice interesting and non-monotonic trends in the 

values of the measured g2(t) - 1 at longer times in both transmission and backscattering DWS 

configurations, as shown in Figure 4.9. For attractive emulsions having [SDS] > 20.0 mM, we 

observe the reappearance of a non-zero long-time g2(t) - 1 value again, starting at [SDS] = 27.5 

mM (i.e. |Uattr| ≈ 3.9 kBT). This indicates that the emulsion system is becoming more strongly 

elastic, which is likely due to the formation of networks of gelled droplets resulting from the 

increased attraction strength. The long-time g2(t) - 1 values continue to rise up to [SDS] = 89.9 

mM (i.e. |Uattr| ≈ 16.2 kBT), indicating that these attractive emulsions are becoming more strongly 

elastic as the attractive depletion interactions between droplets are increased.  

 We also observe, at intermediate times (t ~ 10
-2

 s), the appearance of a two-step decay 

signal to a final non-zero long-time plateau, which we had identified in previously in section 

4.3.1. We had attributed this signal to dynamics of loose dangling clusters of droplets that are not 

well incorporated into the shear-stress-bearing regions of the main gel networks of droplets. As 

we increase [SDS] to induce stronger attractions, we find that this two-step decay to a non-zero 

plateau  becomes  more  complicated  and  difficult  to  interpret.  The  time  scales  associated  with  the  
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Figure 4.11. Measured [SDS]-dependent mean optical transport mean free paths ℓ∗ at fixed 

 = 0.584 and = 0.592. The values of ℓ∗ for  = 0.584 (red circle) and  = 0.592 (black square) 

correspond to the set of DWS measured g2(t) -1 data shown in Figures 4.9 and 4.10.  

 

second decay signal are seen to shift towards longer times with increasing [SDS], and sometimes 

the long-time plateau is not seen. 

 Using the measured ℓ∗
 
values, shown in Figure 4.11, we obtain the mean square 

displacements, ⟨r
2
(t)⟩,  corrected for collective scattering via the average structure factor ⟨S(q)⟩, 

as shown in Figure 4.12. The values of ℓ∗ are at most slightly increasing as [SDS] increases and 

this trend may be related to the aggregated structures that are formed in the gel networks of 

droplets. We first try fitting these ⟨r
2
(t)⟩ to the time-dependent MSD function for repulsive 

emulsions, given by equation (3.11), and we find that this equation fits measured ⟨r
2
(t)⟩ well 

over all measured time ranges for the repulsive emulsion at [SDS] = 10 mM as expected. 

Surprisingly, we find that the temporal MSD function also describes our ⟨r
2
(t)⟩ data well for 

emulsions at [SDS] = 89.9 mM  (i.e. |Uattr| ≈ 16.2 kBT) over all measured t. These fits can be seen 

in  Figure  4.12.  The  surprisingly  good  agreement at  [SDS] =  89.9  mM  is  interesting  since  it  
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Figure 4.12. Measured mean square displacements ⟨r
2
(t)⟩ and early-time optimized fits at 

 = 0.584. The mean square displacements ⟨r
2
(t)⟩ (circles; displayed every 1 in 3 data points for 

clarity) are determined through (a) transmission and (b) backscattering DWS geometries. The 

⟨r
2
(t)⟩ values are optimized to fit early-time MSDs using equation (3.11). The fits are shown as 

line. The fits for [SDS] = 10.0 mM transmission and both [SDS] = 89.9 mM transmission and 

backscattering match the data well and no excess MSD can be readily detected. The [SDS] 

associated to each set of ⟨r
2
(t)⟩  are listed (see right, color-coded to the data and fits). The 

optimized early-time fit parameters are described in Table 4.3. 

 

suggests that ⟨r
2
(t)⟩ signals purely arise from droplets within macroscopic stress supporting 

networks and that what would otherwise have been loose clusters are effectively incorporated by 

the very strong attraction into the main stress-bearing struts of these gel networks. There are no 

measurable dynamics associated with dangling clusters because they do not influence ⟨r
2
(t)⟩ 

values over the time scale explored, as shown in Figure 4.12. This observation may indicate that 

the droplets are so strongly attracted that even the dangling clusters, which are responsible for 

the additional MSD signal, are attracted to the network and cannot be thermally excited. This 

causes a decrease in the population of mobile clusters, and it also arrests the dynamics of these 

clusters to time scales beyond those explored in our DWS measurements. For other sets of data 

at  intermediate  [SDS]  =  27.5,  40.4,  and  64.7  mM,  the  quality  of  fit  of  all  data  using  equation  
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Figure 4.13. Excess mean square displacements ⟨r
2
(t)⟩xs for different [SDS] at  = 0.584. 

The calculated excess MSDs ⟨r
2
(t)⟩xs (circles), are determined at different [SDS] for: (a) 

transmission and (b) backscattering DWS measurements. Data (backscattering, [SDS] = 64.7 

mM) are excluded due to noisy background signal from mechanical vibrations. The 

corresponding [SDS] are listed (see legend, color-coded to data and fits). All sets of the data are 

fitted to a power law equation obtained in the early-time limit of the modified bound Brownian 

particle (MBBP): ⟨r
2
(t)⟩xs = ⟨r

2⟩xs,1s (t/tD)

, where tD is fixed to be 1 s. The obtained fit 

parameters are described in Table 4.4.  

 

(3.11) are poor, and no fit can be achieved for [SDS] = 20.0 mM given its very different shape, 

which could be caused by the proximity of the backscattering plateau in g2(t) - 1 to the baseline.  

 We further analyze ⟨r
2
(t)⟩ for intermediate [SDS] (i.e. 27.5 mM to 64.7 mM) using the 

early-time optimized fit approach discussed in section 4.3.1. The optimized fit results for the 

[SDS] = 20.0 mM backscattering curve are not shown because the fit simply only matches the 

earliest time values, and the intermediate and long-time fitting parameters become ill-defined. 

The optimized fits for these [SDS] are shown in Figure 4.12. Fitting the early-time behavior of 

the ⟨r
2
(t)⟩ reveals the presence of the excess MSDs at long-times. We quantify the excess MSD 

at long times through ⟨r
2
(t)⟩xs and present the results in Figure 4.13. In both the transmission 

and backscattering signals, we find that the magnitude of ⟨r
2
(t)⟩xs decreases with increasing 

[SDS] (i.e. increasing strength of the depletion attraction) for a given time scale. This indicates 
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that the existence of or movement of dangling loose clusters of droplets becomes more highly 

restricted as the attractive interactions are increased. This reasoning provides additional support 

for the earlier explanation made for emulsions at [SDS] = 89.9 mM, which hypothesized that 

stronger attractions effectively cause binding of these droplet clusters to the gelled networks and 

effectively eliminate the dynamics of collections of droplets that create the excess MSD signal. 

We also fit the ⟨r
2
(t)⟩xs signals shown in Figure 4.13 using the early-time approximation 

describing dynamics of MBBP clusters. The early-time limit of the MBBP equation is given by a 

power law rise: ⟨r
2
(t)⟩xs = ⟨r

2⟩xs,1s  (t/tD)


, where here we fix tD = 1 s and ⟨r
2⟩xs,1s is the excess 

MSD value at t = 1 s. We find that ⟨r
2⟩xs,1s decreases as stronger attractions are induced at 

higher [SDS]. This is consistent with our hypothesis that droplet clusters are effectively attached 

to the stress supporting droplet networks in strong attraction limit. The fit analysis also showed 

that the all excess MSDs are sub-diffusive since  < 1 (average  = 0.45 ± 0.10), and indicates 

that these clusters are being restrained by a gel network instead of freely diffusing in solution ( 

= 1 limit). 

 We have also compared our G'p,DWS extracted from early-time optimized fit to 

mechanical measurements for  = 0.584. We confirmed for the repulsive emulsion at [SDS] = 10 

mM that the mechanically measured G'p is within 20% of G'p,DWS, which is within reasonable 

limits of uncertainty based on the sensitivity of G'p to empirical inaccuracies in   (see Figure 

3.2). However, for the higher [SDS] measurements, a quantitative match of G'p,DWS with the 

mechanical measurements could not be obtained, even at [SDS] = 20.0 mM. Possible reasons for 

this relate to the differences in the sample preparation, difference in the time elapsed between the 

last sample handling and measurements for the two techniques, and that DWS imposes no 
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perturbation to the sample, whereas mechanical rheometry measurements require imposing an 

external shear strain which could cause re-arrangement of the gelled networks.  

4.3.2.2 – Depletion-Induced Attractive Emulsions: Varying [SDS] at  = 0.592

 We observe similar trends in the g2(t) - 1 and the ℓ∗ values (Figures 4.10 and 4.11) as a 

function of [SDS] for  = 0.592 as we have already reported for  = 0.584. Similar to the 

behavior found for  = 0.584, the long-time values of g2(t) - 1 at  = 0.592 initially decrease 

when [SDS] is increased to ≈ 20 mM. Thereafter, as [SDS] is raised, the long-time values of g2(t) 

- 1 rise again as [SDS] is further increased up to [SDS] = 91.0 mM. This suggests that even 

emulsions at  = 0.592 may undergo initial melting due to addition of ionic SDS molecules 

before stronger depletion induced attractions give rise to elastic networks. One difference 

between the two data sets is that we can still measure a non-zero g2(t) - 1 signal for emulsions at 

 = 0.592 with [SDS] ≈ 20 mM using the exact same DWS measurement configuration. This 

suggests that the emulsion having  = 0.592 at 20 mM is more elastic than the emulsion having  

= 0.584 at [SDS] = 20 mM, consistent with the approach towards MRJ. The trends of the two-

step decay to non-zero long-time plateau that are observed in g2(t) -1 signals at  = 0.584 are also 

observed for g2(t) -1 at  = 0.592. With increasing [SDS], the second decay becomes more 

accentuated and delayed towards longer time scales, when compared with the g2(t) - 1 at  = 

0.584. We notice that the measured ℓ∗
 
values for  = 0.592, shown in Figure 4.11 with the  = 

0.584, lie close together so corrections to the DWS MSDs for collective scattering effects are 

similar. Over the range of [SDS] explored, there is some scatter in the measured ℓ∗ values, and 

some of this scatter may be related to the absence of a high degree of homogeneity in the 

attractive emulsions and sensitivity to handling and loading. 
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Figure 4.14. Measured mean square displacements ⟨r
2
(t)⟩ and early-time optimized fits for 

different [SDS] at  = 0.592. The mean square displacements ⟨r
2
(t)⟩ (circles; displayed every 1 

in 3 data points for clarity) are determined through transmission DWS geometry. The ⟨r
2
(t)⟩ 

values are optimized to fit early-time MSDs using equation (3.11). The fits are shown as line. No 

improvement to the fits (lines) could be found for 10.0 and 91.0 mM, so fit shown here goes 

through all available data. The [SDS] associated with each set of ⟨r
2
(t)⟩  are listed (right) for 

data shown at long time t ~ 10 s (top to bottom). The optimized early-time fit parameters are 

described in Table 4.5. The fits and the ⟨r
2
(t)⟩ are divided by the indicated factor next to the 

curve for visual clarity. 

 

 We analyze the measured g2(t) - 1 and obtain the ⟨S(q)⟩-corrected mean square 

displacements, ⟨r
2
(t)⟩, shown in Figure 4.14.  We find that the time-dependent MSD function 

for repulsive emulsions (equation (3.11)) describes the measured ⟨r
2
(t)⟩ obtained from both the 

repulsive [SDS] = 10 mM and attractive emulsions at [SDS] ≈ 90 mM. For the samples at 

intermediate [SDS] between these limits, the fit does not describe all of our measured ⟨r
2
(t)⟩ for 

all times well, akin to the results we showed for  = 0.584. So, we perform an early-time ⟨r
2
(t)⟩ 

optimized fit to [SDS] = 20.7, 27.2, 39.9, and 65.7 mM (lines in Figure 4.14) and obtain the 

excess residual MSD signals ⟨r
2
(t)⟩xs as displayed in Figure 4.15. 

 We fit the excess MSD ⟨r
2
(t)⟩xs to the MBBP equation and extract sub-diffusive 

behavior  of  ⟨r
2
(t)⟩xs,  as  shown  in  Figure  4.15.  The  emulsion  at  [SDS]  =  20.7  mM  SDS  has  a  
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Figure 4.15. Excess mean square displacements ⟨r
2
(t)⟩xs for different [SDS] at  = 0.592. 

The calculated excess MSD signal ⟨r
2
(t)⟩xs (circles), are determined from transmission DWS. 

The corresponding [SDS] are listed on the right for data shown (top to bottom). Data for 20.7 

mM is fit to MBBP model shown in equation (4.3) and other sets of the data are fitted to a power 

law equation obtained in the early-time limit of the MBBP equation: ⟨r
2
(t)⟩xs = ⟨r

2⟩xs,1s (t/tD)

, 

where tD is fixed to be 1 s.The obtained fit parameters are described in Table 4.6.  

 

distinguishable plateau and the corresponding ⟨r
2
(t)⟩xs is fit to the total MBBP equation. Excess 

MSDs at other [SDS] are fitted to the early-time approximation of the MBBP equation. The 

obtained fit parameters are summarized in Table 4.6. We confirm that the excess MSDs are sub-

diffusive (average  = 0.36 ± 0.08). However, unlike the results discussed for  = 0.584, we 

notice that the magnitude of the ⟨r
2
(t)⟩xs at long-times may not be monotonically decreasing as 

a function of increasing [SDS]. At long times around t ≈ 1 s, the ⟨r
2
(t)⟩xs signals for emulsions 

at [SDS] = 20.7 mM and 27.2 mM are almost identical in value. Emulsions with [SDS] = 20.7 

mM have a ⟨r
2
(t)⟩xs signal which has already plateaued to a value ⟨r

2⟩xs,p = (2.54 ± 0.02) x 10
-5

 

m
2
. For emulsions at [SDS] = 27.2 mM, ⟨r

2
(t)⟩xs appears to extend beyond the value ⟨r

2⟩xs,p 

found for [SDS] = 20.7 mM, as suggested by the extrapolation of the fit (shown in Figure 4.15). 

Due to the lack of ⟨r
2
(t)⟩xs at longer times, it is difficult to reach accurate conclusions, but the 

extrapolated trend does suggest that the magnitude of ⟨r
2
(t)⟩xs at long-times may be 
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monotonically decreasing only beyond a certain threshold [SDS].  Further experiments would be 

necessary to confirm this possibility. 

4.3.2.3 – Depletion-Induced Attractive Emulsions: Elastic Shear Modulus and Excess MSD

 In this section, we highlight two additionally observed trends that are seen both for  = 

0.584 and  = 0.592. As emphasized previously, these  points are within or near the 

electrostatically jammed regime for repulsive emulsions. From the early-time optimized fit 

analysis, we identify trends in G'p,DWS as a function of [SDS]. These values exhibit a rise and a 

plateau behavior with increasing [SDS] for both  = 0.584 and  = 0.592. This [SDS]-dependent 

behavior in G'p,DWS is well captured by an empirical sigmoid equation given by: G'p,DWS([SDS]) 

= G'p,max/{1+exp[-([SDS]-[SDS]0)/B]} + G'p,0. Since the elasticity of repulsive emulsions will 

remain essentially unchanged at low [SDS], below 10 mM, we weighted the empirical sigmoidal 

equation by adding (unseen) points at [SDS] = 1 mM and 5 mM which corresponded to the 

G'p,DWS values obtained at [SDS] = 10 mM. By fitting each set of G'p,DWSat each  to the 

sigmoidal curve, we obtain the following parameters: G'p,max = 460 ± 37 Pa, [SDS]0 = 10.5 ± 2.2 

mM, B = 32 ± 2 mM, and G'p,0 = 45 ± 28 Pa for  = 0.592 and G'p,max = 482 ± 155 Pa, [SDS]0 = 

8.3 ± 2.4 mM, B = 25 ± 2 mM, and G'p,0 = 206 ± 44 Pa for  = 0.584.  

 We also quantify the time scale associated with the onset of the excess MSD signal as 

function of attractive interaction potential for droplets in this electrostatically jammed regime. 

We define the onset time of the excess MSD, txs, to be the time at which the measured ⟨r
2
(t)⟩ 

deviates from the early-time optimized ⟨r
2
(t)⟩fit by more than 10% in value (e.g. txs represents 

the time beyond which ⟨r
2
(t)⟩xs/⟨r

2
(t)⟩fit becomes larger than 0.1).   This criterion was chosen 

since the oscillating early-time signals due to vibrations present in the measurement have on 

average a maximum of ≈ 5% deviation when the fit to equation (3.11) is optimized. We combine  
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Figure 4.16. Dependence of DWS plateau shear elastic moduli G'p,DWS on [SDS] for 

attractive emulsions. The G'p,DWS
 parameter values at  = 0.584 (red) and  = 0.592 (black) are 

determined from G'p parameter from the early-time optimized fit to equation (3.11). The fits 

performed can be found in Figures 4.12 and 4.14. G'p,DWS are determined from transmission 

(triangles) and backscattering (squares) signals. G'p,DWS([SDS]) values at each  are fit through 

an empirical sigmoidal curve G'p,DWS([SDS]) = G'p,max/{1+exp(-([SDS]-[SDS]0)/B)} + G'p,0 and 

shown as lines. The determined parameters from the sigmoidal fit are G'p,max = 460 ± 37 Pa, 

[SDS]0 = 10.5 ± 2.2 mM, B = 32 ± 2 mM, and G'p,0 = 45 ± 28 Pa for  = 0.592 and are G'p,max = 

482 ± 155 Pa, [SDS]0 = 8.3 ± 2.4 mM, B = 25 ± 2 mM, and G'p,0 = 206 ± 44 Pa for  = 0.584. 

 

the results from  = 0.584 and  = 0.592 and co-plot txs as a function of [SDS], as shown in 

Figure 4.17. Interestingly, we observe that all set of txs can be well described by an exponential 

function: txs = Atxs exp([SDS]/[SDS]txs), where Atxs and [SDS]txs are fit parameters. We find that 

Atxs = (2.2 ± 1.0) x 10
-5

 s and [SDS]txs = 5.7 ± 0.4 mM from the fit. It is worth noting that txs is 

proportional to exp([SDS]). Since [SDS] is linearly proportional to |Uattr| in units of kBT, such 

scaling relation implies that the onset time of the excess MSD signals, which may be related to 

thermal excitations of loose clusters, could be related to an attractive energy relative to a thermal 

energy in a Boltzmann factor.  
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Figure 4.17. Excess MSD onset time txs as a function of [SDS]. The excess MSD onset time txs 

is the time at which the measured ⟨r
2
(t)⟩ deviates from the early-time optimized fit of (3.11) by 

more than 10% in value. The data from transmission (triangles) and backscattering (squares) are 

color coded red ( = 0.584) and black ( = 0.592). All results shown are fitted to a [SDS]-

dependent exponential function (blue line): txs = Atxs exp([SDS]/[SDS]txs). The determined 

parameters are: Atxs = (2.2 ± 1.0) x 10
-5

 s and [SDS]txs = 5.7 ± 0.4 mM. The attractive energies 

|Uattr| associated with the given [SDS] are labeled along the top horizontal axis. 

 

4.4 – Conclusions and Future Directions 

 We have investigated the microrheological behavior of depletion-induced attractive 

emulsions using DWS. We have begun by assuming that the MSD contributions from droplets in 

the main stress supporting structures, which are present in attractive emulsions, can be quantified 

through the temporal MSD equation developed for repulsive emulsions, yet fit only to early and 

intermediate time MSD data. Using weakly attractive emulsions as a starting point, we have 

demonstrated that this adaptation of the improved DWS microrheology analysis yields a 

reasonable agreement with mechanical measurements. By effectively removing the primary 

MSD signals, related to the stress supporting gel network of droplets, we have obtained excess 



116 

 

MSD signals, which we have attributed to excess dynamics of less highly bound clusters of 

droplets. Interestingly, the excess MSDs are described empirically by a MBBP equation. From 

fits using this MBBP equation, we have determined these excess MSDs are characterized by sub-

diffusive dynamics at early times. Moreover, we have clearly shown that increasing |Uattr| from ≈ 

2.4kBT to ≈ 16kBT in depletion-induced attractive emulsions results in increases in the measured 

G'p at fixed  near but below MRJ. Thus, we have shown that we can begin to quantify dynamic 

features associated with attractive emulsions via DWS and to make meaningful microrheological 

interpretations of the more complex dynamics found for attractive emulsions. 

 Based on the success of the adaptation in the weak attraction limit, we have expanded our 

analytical approach to emulsions experiencing stronger attractive interaction potentials. We have 

identified trends and quantified dynamics associated with droplet clusters inside gelled network 

of droplet as a function of [SDS] (i.e. strength of depletion induced attractions). Despite the 

revelation of interesting DWS microrheological features in attractive emulsions shown here, we 

have not validated against mechanical measurements. Therefore, further experimentation is 

needed to verify the validity of this analytical approach or to modify this approach in order to 

describe strongly attractive emulsions. Moreover, it is not clear whether the DWS analysis can be 

extended to attractive emulsions for  far below MRJ. To corroborate this DWS analysis, a more 

refined experimental protocol, which emphasizes strict control of sample handling and pre-

treatment, may be required. Nonetheless, we believe the analytical approach described herein 

serves as a starting point for investigating attractive emulsions, since we have established 

quantitative agreement between DWS microrheology results and mechanical rheometry using 

weakly attractive emulsions that have been washed repeatedly to set [SDS] = 20 mM. 
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4.5 – Tables 

Table 4.1. Parameters used for optimized early-time MSD fit: 20 mM SDS emulsions. 

 DWS geometry G'p (Pa) (s) ∞ (Pa s) 

0.584 Transmission 113 ± 3 0.1370 ± 0.0008 0.026 ± 0.001 

0.592 Transmission 476 ± 11 0.1079 ± 0.0004 0.0139 ± 0.0001 

0.601 Transmission 584 ± 8 0.0097 ± 0.0002 0.0137 ± 0.0001 

0.616 Transmission 909 ± 13 0.0081 ± 0.0002 0.0148 ± 0.0002 

0.629 Transmission 1386 ± 12 0.0071 ± 0.0002 0.0172 ± 0.0003 

0.647 Transmission 1897 ± 11 0.0064 ± 0.0001 0.0192 ± 0.0003 

0.573 Backscattering 93 ± 4 0.0339 ± 0.0019 0.0160 ± 0.0001 

0.584 Backscattering 119 ± 4 0.0248 ± 0.0012 0.0156 ± 0.0001 

0.592 Backscattering 430± 10 0.1160 ± 0.0005 0.0145 ± 0.002 

0.601 Backscattering 620 ± 20 0.0097 ± 0.0005 0.0144 ± 0.0002 

0.616 Backscattering 972 ± 15 0.0081 ± 0.0003 0.0159 ± 0.0001 

0.629 Backscattering 1417 ± 13 0.0070 ± 0.0002 0.0176 ± 0.0002 

0.647 Backscattering 1973 ± 14 0.0063 ± 0.0001 0.0194 ± 0.0003 

  

 

Table 4.2. MBBP fit parameters to excess MSDs: 20 mM SDS emulsions. 

 DWS geometry ⟨r
2⟩xs,p (m

2
) tD (s)  

0.584 Transmission (5.5 ± 0.05) x 10
-5

 (1.5 ± 0.05) x 10
-1

 (6.0 ± 0.5) x 10
-1

 

0.592 Transmission (7.15 ± 0.01) x 10
-6

 (1.24 ± 0.02) x 10
-1

 (4.23 ± 0.03) x 10
-1

 

0.601 Transmission (4.47 ± 0.01) x 10
-6

 (1.39 ± 0.03) x 10
-1

 (4.12 ± 0.04) x 10
-1

 

0.616 Transmission (1.37 ± 0.01) x 10
-6

 (1.49 ± 0.05) x 10
-1

 (3.95 ± 0.06) x 10
-1

 

0.629 Transmission (2.80 ± 0.02) x 10
-7

 (4.1 ± 0.3) x 10
-1

 (4.7 ± 0.1) x 10
-1

 

0.647 Transmission (7.71 ± 0.09) x 10
-8

 (2.1 ± 0.2) x 10
-1

 (8.3 ± 0.8) x 10
-1

 

0.573 Backscattering (9.85 ± 0.03) x 10
-7

 (2.07 ± 0.05) x 10
-1

 (5.7 ± 0.1) x 10
-1

 

0.584 Backscattering (6.05 ± 0.01) x 10
-5

 (1.21 ± 0.02) x 10
-1

 (5.54 ± 0.08) x 10
-1

 

0.592 Backscattering (8.01 ± 0.02) x 10
-6

 (8.9 ± 0.3) x 10
-2

 (4.44 ± 0.07) x 10
-1

 

0.601 Backscattering (4.96 ± 0.02) x 10
-6

 (9.8 ± 0.4) x 10
-2

 (3.82 ± 0.07) x 10
-1

 

0.616 Backscattering (1.84 ± 0.02) x 10
-6

 (8.7 ± 0.9) x 10
-2

 (3.2 ± 0.1) x 10
-1
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Table 4.3. Parameters used for optimized early-time MSD fit:  = 0.584 emulsions. Data sets 

marked with * indicate obtained MSD fit parameters through entire set since fit could not be 

optimized. 

 

[SDS] (mM) DWS geometry G'p (Pa) (s) ∞ (Pa s) 

10.0 Transmission* 80.7 ± 0.3 0.0414 ± 0.0001 0.0141 ± 0.0002 

20.0 Transmission N/A N/A N/A 

27.5 Transmission 230 ± 10 0.015 ± 0.0004 0.013 ± 0.001 

40.4 Transmission 360 ± 15 0.0128 ± 0.0002 0.0145 ±  0.0001 

64.7 Transmission 461 ± 6 0.0108 ± 0.0003 0.0134 ± 0.0001 

89.9 Transmission* 470 ± 1 0.0114 ± 0.0001 0.0137 ± 0.0001 

10.0 Backscattering 81 ± 4 0.034 ± 0.002 0.0141 ± 0.0001 

20.0 Backscattering N/A N/A N/A 

27.5 Backscattering 233 ± 5 0.0162 ± 0.0007 0.0139 ± 0.0001 

40.4 Backscattering 336 ± 5 0.0126 ± 0.0004 0.0134 ± 0.0001 

64.7 Backscattering 516 ± 7 0.011 ± 0.003 0.0159 ± 0.0001 

89.9 Backscattering* 516 ± 2 0.0131 ± 0.0002 0.0173 ± 0.0001 

 

 

Table 4.4. Early-time MBBP approximation fit parameters:  = 0.584 emulsions. 

[SDS](mM) DWS geometry ⟨r
2⟩xs,1s (m

2
)  

27.5 Transmission (2.54 ± 0.02) x 10
-5

 (4.00 ± 0.06) x 10
-1

 

40.4 Transmission (4.29 ± 0.01) x 10
-6

 (5.23 ± 0.01) x 10
-1

 

64.7 Transmission (4.37 ± 0.06) x 10
-7

 (5.80 ± 0.08) x 10
-1

 

27.5 Backscattering (2.43 ± 0.01) x 10
-5

 (3.76 ± 0.03) x 10
-1

 

40.4 Backscattering (4.72 ± 0.03) x 10
-6

 (3.73 ± 0.04) x 10
-1

 

 

 

 

Table 4.5. Parameters used for optimized early-time MSD fit:  = 0.592 emulsions. Data sets 

marked with * indicate obtained MSD fit parameters through entire set since fit could not be 

optimized. 

 

[SDS] (mM) G'p (Pa) (s) ∞ (Pa s) 

10.0* 249 ± 1 0.0236 ± 0.0003 0.0118 ± 0.0002 

20.7 410 ± 7 0.0114 ± 0.0003 0.0134 ± 0.0001 

27.2 482 ± 10 0.01051 ± 0.0004 0.0133 ± 0.0001 

39.9 609 ± 17 0.0092 ± 0.0004 0.0129 ± 0.0002 

65.7 720 ± 60 0.0085 ± 0.005 0.0155 ± 0.0005 

91.0* 662 ± 14 0.0099 ± 0.0005 0.0129 ± 0.0003 
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Table 4.6. MBBP model fit parameters:  = 0.592 emulsions. 

 

[SDS](mM) ⟨r
2⟩xs,p * or 

 ⟨r
2⟩xs,1s (m

2
) 

tD (s)  

20.7 * (1.056 ± 0.002) x 10
-5

 (2.68 ± 0.06) x 10
-1

 (4.39 ± 0.03) x 10
-1

 

27.2 (4.92 ± 0.03) x 10
-6

 - (2.88 ± 0.03) x 10
-1

 

39.9 (1.425 ± 0.007) x 10
-6

 - (2.99 ± 0.02) x 10
-1

 

65.7 (3.16 ± 0.06) x 10
-7

 - (4.23 ± 0.06) x 10
-1
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Chapter 5 – Conclusions and Future Directions 

 

 Through this dissertation research, we have improved the quantitative description and 

diffusing wave microrheology measurements of jammed ionic monodisperse emulsions. In 

particular, we have explored the rheological properties of these systems, particularly the linear 

plateau shear elastic modulus G'p. Starting with short-range repulsive emulsions, we have 

developed an analytical EEI model, and we have improved the DWS microrheology analysis by 

accounting for collective scattering effects, so that it is now possible to predict accurately G'p 

values that match with macroscopic mechanical rheometry. We have also extended this 

improved DWS analysis for repulsive emulsions to DWS measurements of depletion-induced 

attractive emulsions in a certain limited range of  near but below jamming. By extending this 

analysis to attractive emulsions, we have quantitatively identified DWS characteristics that are 

associated with such attractive emulsions, including additional -dependent features in the 

decays of the correlation functions g2(t) - 1 and in the extracted mean square displacements as a 

function of the attractive interaction potential.  

 In Chapter 2, we have developed the EEI model that now provides predictive capabilities 

of a colloidal, ionic, disordered monodisperse emulsion’s G'p and  below, through, and above 

the jamming regime in the weak droplet deformation limit. Expanding on prior models, we have 

developed an analytical model, which accounts for all three main contributions to a quasi-

equilibrium free energy (entropy, electrostatic repulsions, and interfacial deformation energies) 

for the first time. For model SDS-stabilized PDMS O/W emulsions, using only three universal 

adjustable parameters, we have demonstrated that the EEI model can accurately describe many 

sets of mechanical measurements of G'p(), which span over three decades, for both micro- and 
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nano-scale droplets. This approach obviates the need for an ad hoc adjustment to the droplet 

volume fraction  in order to create an effective volume fraction eff, which has been the case for 

decades in the experimental literature on emulsion rheology. Furthermore, we have used this EEI 

model to distinguish between different regimes of jamming, such as electrostatically jammed and 

interfacially jammed regimes, and consequently there is now better physical insight into the 

fundamental origins of the jamming elasticity of such charge-stabilized repulsive emulsions. 

Given the success and simplicity of the EEI model, we believe that it will serve as an excellent 

prototype for generalization to other types of colloidal soft materials composed that contain 

monodisperse disordered jammed soft constituents other than droplets. 

 In Chapter 3, we have developed an improved DWS microrheology analysis for highly 

concentrated colloidal dispersions that yield accurate passive thermal-entropic microrheology 

measurements of G'p for jammed emulsions. At high concentrations of droplets, as in jammed 

emulsions, we show that collective scattering effects can do much more than merely perturb 

DWS analysis, so the extracted MSDs, obtained using the standard DWS analysis protocol, do 

not yield single-probe self-motion MSDs that are necessary for accurate microrheology 

predictions via the GSER. We have performed mechanical and DWS measurements on the same 

exact jammed monodisperse emulsion samples prepared at different  to facilitate direct 

corroboration of the mechanical and microrheology measurements and to investigate the effect of 

collective scattering in DWS measurements and analysis. The apparent DWS MSDs are 

corrected for collective scattering effects using an empirically determined average structure 

factor ⟨S(q)⟩. This ⟨S(q)⟩ is -dependent and can be readily determined from measurements of 

the optical transport mean free paths ℓ∗ from dilute to concentrated . Moreover, we have derived 

a fitting function for the time-dependent mean square displacement of a single droplet in the 
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jammed regime using the GSER. From the fits to MSDs corrected for collective scattering, we 

extract DWS measurement values for G'p(), as we have demonstrated by comparing these 

against mechanical measurements of G'p(). Thus, we have shown that there is a straightforward 

and viable route for correcting for collective scattering effects when performing DWS 

microrheology of highly concentrated homogeneous dispersions, including emulsions. 

Furthermore, we have extracted the -dependence of interesting high-frequency rheological 

properties of jammed emulsions, such as a power-law scaling expression describing the s
1/2

 

dependent anomalous viscous loss in jammed emulsions. We believe that this improved analysis 

route opens up many possibilities for accurately quantifying microrheological properties of other 

highly concentrated dispersions or soft matter, such as hard spheres and microgels. 

 Motivated by the advances in DWS microrheology for repulsive emulsions, we have 

performed DWS measurements on depletion-induced attractive emulsions by controlling the 

SDS micelle concentration. By using the improved DWS analysis and also the time-dependent 

MSD fitting function for average single droplet behavior in a jammed emulsion (developed in 

Chapter 3), we reveal new and interesting DWS features in the correlation functions and MSDs 

associated with attractive emulsions. Using weak attractions at 20 mM, we have established a 

method for extracting time-dependent excess MSDs ⟨r
2
(t)⟩xs, which we believe are associated 

with some loose or dangling clusters of droplets that move through Brownian excitations in 

lower-density void spaces between higher density stress-supporting struts in gelled networks of 

attractive droplets. We have quantified ⟨r
2
(t)⟩xs as a function of  and depletion attraction 

strengths near and below the jamming limit of hard spheres; this identification of an excess MSD 

has enabled us to identify that the dynamics of the loose aggregated structures is sub-diffusive in 

nature at early times. Although much more careful experiments and comparisons with 
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mechanical rheometry, theory, and simulation are needed to further explore the meaning of these 

findings, we anticipate that this approach will likely be useful in studying rheological properties 

of attractive emulsions and other attractive systems in the future. 
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