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Abstract

Theoretical Advances in Gravitational Microlensing Guided by Artificial Intelligence

by

Keming Zhang

Doctor of Philosophy in Astrophysics

University of California, Berkeley

Professor Joshua S. Bloom, Chair

Three decades have passed since the technique of gravitational microlensing was proposed
as a means for exoplanet detection, and nearly 200 microlensing exoplanets have been dis-
covered to date. Previously, theoretical studies of the two-body point-mass gravitational
lens have primarily focused on the properties of caustics, which are the singularities in the
magnification map. The invariances and symmetries of microlensing caustics have led to
the identification of physical degeneracies that cause distinctly different lens configurations
to give rise to nearly identical observations. Nevertheless, inconsistencies in the application
of existing degeneracy theories to observed events indicate that our current theoretical un-
derstanding of binary-lens gravitational microlensing, which was largely laid out in the late
twentieth century, may in fact be incomplete.

This thesis introduces a novel approach to utilizing Artificial Intelligence as a driver for
theoretical explorations, which represents a departure from its traditional role in accelerat-
ing empirical discoveries. First, a scalable inference framework is developed for binary-lens
microlensing using the technique of Neural Posterior Estimation, which is then applied to
model hundreds of simulated microlensing light-curve observations. By examining the large
numbers of multi-modal modeling solutions, I propose and subsequently prove the offset de-
generacy, which is shown to be ubiquitous in the interpretation of planetary microlensing ob-
servations, and unifies two leading types of caustic degeneracies as limiting cases. Motivated
by properties of the offset degeneracy, I subsequently propose the generalized perturbative
picture for planetary microlensing, which states that the planet can be considered to act as
a variable-shear Chang-Refsdal lens on one of the images produced by the host star, leaving
the other image largely unaffected. The analytic nature of the Chang-Refsdal lens indicates
that the proposed formalism would allow for full magnification maps of the planetary lens
to be derived analytically, thereby facilitating the accelerated modeling of observed events.
The methodologies and results presented in this thesis may substantially benefit the analysis
of the deluge of data expected from the first space-based microlensing survey of the Roman
Space Telescope.
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Chapter 1

Introduction

1.1 Historical Background of Gravitational Lensing
In his seminal 1936 paper “Lens-Like Action of a Star by the Deviation of Light in the

Gravitational Field,” Einstein (1936) introduced a simple model describing how light from a
distant star could be bent by the gravitational field of a massive foreground object, leading
to the magnification of the background star’s brightness. In this paper, Einstein presented
a simple formula relating the magnification factor to the projected separation between the
two objects:

q =
l

x

1 + x2/2l2√
1 + x2/4l2

, (1.1)

where x is the projected lens-source separation and

l =

√
4GM

Drelc2
, (1.2)

where G is the gravitational constant, M is the lens mass, c is the speed of light, and
D−1

rel = D−1
lens − D−1

source is related to the relative distance between the lens and source. This
quantity is now commonly referred to as the Einstein ring radius of the lens star.

The simple expression of Equation 1.1 has been frequently re-derived over the past cen-
tury, including in Refsdal (1964), Liebes (1964), and notably later in Paczyński (1986b),
Equation 5:

A =
u2 + 2

u
√
u2 + 4

=
1

u

1 + u2/2√
1 + u2/4

, (1.3)

where u is the projected lens-source separation in units of the lens-star Einstein radius, and
thus u = l/x. The point-lens point-source (PSPL) light curve is often attributed to Equation
1.3 and therefore commonly referred to as the “Paczyński light curve” in the literature.
However, as I have shown, the correct PSPL magnification was first given in Einstein (1936)
in essentially the identical form. Therefore, I contend that despite its popularity, the term
“Paczyński light curve” may not be warranted.
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In the same paper, Einstein also famously stated that “there is no great chance of observ-
ing this phenomenon,” arguing that the required alignment of the background source star,
the foreground lens star, and the observer was highly improbable. One year later, Zwicky
(1937) presented the case of gravitational lensing by distant galaxies, where he showed that
such a phenomenon is very likely to be observed on an extragalactic scale. Given the lim-
itation of observing techniques at the time, the topic of gravitational lensing then faded
into oblivion for nearly three decades, and was only briefly picked up by Refsdal (1964) and
Liebes (1964), who presented detailed and systematic treatments of gravitational lensing by
stars as well as the feasibility of observing them. Refsdal (1964) concluded that “[due] to
progress in experimental technique we find, contrary to Einstein, that the effect may be of
practical interest,” a conclusion that was shared by Liebes (1964).

A relevant development at the time was the discovery of quasars in the late 1950s, with
the increasing popularity of radio astronomy. As anticipated by Zwicky (1937), the first
observational evidence of gravitational lensing came as QSO 0957+561 (Walsh et al. 1979;
Pooley et al. 1979), which, at the time of its discovery, was correctly speculated as two
images of a quasar produced by a massive foreground galaxy acting as a foreground lens.
The discovery of QSO 0957+561 then marked the transition of gravitational lensing from
a theoretical concept into an observable phenomenon. Shortly after its discovery, Chang
& Refsdal (1979) suggested that individual stars in the halo of the lensing galaxy could
perturb one of the two QSO images into two or four images, which will cause short-term
perturbations with timescales of-order months or years that would manifest in only one of the
quasar images. The collective effect of multiple stars within the lensing galaxy was explored
in later works such as Gott (1981) and Chang & Refsdal (1984).

The first observational evidence of this time-variable lensing effect caused by stars—
nowadays referred to as microlensing (Paczyński 1986a)—came a decade later in the case of
QSO 2237+0305 (Huchra et al. 1985), where significant brightness variations in the brightest
of the four quasar images were considered the first observed microlensing event (Irwin et al.
1989). It should be noted that the term “microlensing” was first introduced in Paczyński
(1986a), which also employs the term “macrolensing” to distinguish between the lensing ef-
fects of a galaxy as a whole and the effects of individual stars within that galaxy. The scope
of the term microlensing was later extended to the time-variable lensing phenomenon pro-
duced by stars in our own galaxy in Paczyński (1986b), who proposed to utilize microlensing
to test the hypothesis that the dark matter halo of the Milky Way Galaxy is composed of
MAssive Compact Halo Objects (MACHOs) — a class of hypothetical dark matter con-
stituents consisting of massive, non-luminous objects, such as brown dwarfs, black holes, or
even rogue planets. Such a scenario would suggest a microlensing optical depth1 of τ ∼ 10−6

(Paczyński 1986b), requiring the monitoring of millions of stars to yield meaningful statistical
constraints.

While the simultaneous monitoring of millions of stars would have been improbable when
Einstein (1936) first conceived of this phenomenon, the advent of CCD technology and the

1The microlensing optical depth is defined as the fraction of solid angle that is covered by the Einstein
rings of all lensing objects along the line of sight to the source.
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development of large-scale astronomical surveys allowed Galactic microlensing to become a
practicality. The Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC)
were then identified to be favorable targets to detect MACHOs given their high stellar surface
densities. Massive microlensing surveys took off in the early 1990s, including the Optical
Gravitational Lensing Experiment (OGLE; Udalski et al. 1993), the MACHO project (Alcock
et al. 1996), and the Expérience pour la Recherche d’Objets Sombres (EROS; Aubourg et al.
1993). In particular, MACHO discovered 13 – 17 microlensing events by monitoring 11.9
million stars in the LMC during its operation from 1992 to 1998 (Alcock et al. 2000). OGLE-
II, which operated from 1996 to 2000, detected only two candidate events (Wyrzykowski
et al. 2009) towards the LMC. The number of events observed was far fewer than what
would be expected if MACHOs were the primary source of dark matter in the Milky Way’s
halo. The microlensing optical depth derived from OGLE observations towards the SMC
was τ ∼ 1.3±1.01×10−7 (Wyrzykowski et al. 2011), which was consistent with the expected
contribution from Galactic disc and SMC self-lensing, leading to the conclusion that “there
is no need for introducing any special dark matter compact objects in order to explain the
observed event rates.”

An alternative scenario of microlensing of Galactic bulge stars by galactic disk stars in
our own galaxy was envisioned by Paczyński (1991), which was used by OGLE-I as a proof
of concept because the distribution of galactic disk stars is well understood, thus creating
a scenario where microlensing must operate. In the same year, Mao & Paczyński (1991)
considered the effects of a secondary body of the galactic disk lens and suggested that a
“massive search for microlensing of the Galactic bulge stars may lead to a discovery of the
first extra-solar planetary systems.” The practicality of microlensing as a method for planet
detection was studied in more detail in later works such as Gould & Loeb (1992), Gaudi &
Gould (1997), and Griest & Safizadeh (1998).

As the focus of this thesis concerns the theoretical aspects of gravitational microlensing,
the exciting history of microlensing planet discovery is omitted, and the interested reader
is referred to Gaudi (2012) for a comprehensive review. Instead, let us now focus on the
theoretical foundations for interpreting observations of planetary microlensing events. A
prominent feature of the two-body point-mass gravitational lens, including star-planet lenses,
is the existence of extended caustics, which are the singularities in the source plane associated
with infinite magnification. The properties of binary-lens caustics have been extensively
studied in (e.g., Schneider et al. 1992), which have led to the identification of physical
degeneracies (Gaudi & Gould 1997; Griest & Safizadeh 1998) under planetary mass ratios
(q = M⊙/M⊕ ≪ 1).

In particular, Gould & Loeb (1992) and Gaudi & Gould (1997) considered the similarity
between the planetary lens and the lens formalism first introduced in Chang & Refsdal (1979),
later referred to as the Chang-Refsdal lens. In both cases, the secondary object is orders of
magnitude less massive than the primary object, where the vicinity of the secondary object
may be described by a point-mass lens perturbed by uniform external shear. Therefore,
a planetary lens companion would effectively act as a Chang-Refsdal lens on one of the
two images produced by the host star. This physical picture is subsequently referred to
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as the perturbative picture of planetary microlensing. In this context, Gaudi & Gould
(1997) then pointed out that the Chang-Refsdal formalism would lead to an ambiguity in the
interpretation of observed planetary microlensing events as to “whether the planet lies closer
to or farther from the star than does the position of the image that it is perturbing,” which
is commonly referred to as the “inner-outer degeneracy” for planetary caustics, following
the nomenclature of Han et al. (2018). Such an effect has been invoked to interpret the bi-
modality of the parameter posterior of a multitude of observed planetary events. Fortunately,
the perturbative picture requires that the image being perturbed lies close to the secondary
object in order of its Einstein radius (Gould & Loeb 1992), and thus the resulting degenerate
parameters would only have a marginal difference in the projected star-planet separation.
The reader may refer to Chapter 6 for details regarding this topic.

However, an alternative degeneracy first identified by Griest & Safizadeh (1998) results
in solutions to the projected star-planet separation that could differ by several astronomical
units, and thus is of greater practical concern. Such degeneracies occur for high-magnification
events, where planets with projected separations of s and 1/s in units of the angular Einstein
radius of the primary star give rise to similar light-curve features associated with central
caustics. This ambiguity is commonly referred to as the “close-wide” degeneracy, whose
theoretical origins as the invariance of central caustics under the s ↔ 1/s transformation
was studied in detail in Dominik (1999) and An (2005), among others.

While the two aforementioned types of degeneracies have been invoked to interpret the
great majority of multi-modality of model parameter posteriors for observed planetary mi-
crolensing events, many empirical degeneracies in observed events are in fact outside the
regime in which these degeneracies are derived (Yee et al. 2021). In brief, both types of
degeneracies require that the planet exist far from the Einstein radius of the host star, which
is equivalent to requiring that the central and planetary caustics be well separated. Nev-
ertheless, this requirement is not even satisfied in MOA-2016-BLG-319 (Han et al. 2018),
where the reference to the two solutions as inner and outer are first used. In fact, the outer
solution had the planetary and central caustics merged as a single resonant caustic.

The primary focus of the field of planetary microlensing promptly transitioned from
theory to observation at the turn of the century, with the definitive detection of the first
microlensing planet in 2004: OGLE-2003-BLG-235Lb (Bond et al. 2004). To date, nearly 200
exoplanets have been discovered through microlensing2, which has been steadily increasing
at a rate of two to three dozens of planet discoveries per year (e.g., Gould 2022). In the
two decades of observational campaign, there is often an implicit understanding that our
theoretical framework of microlensing by two point-masses has long been mature. The
above discussion indicates that this assumption may be untrue, and it is now opportune to
undertake a renewed investigation of the problem at hand.

2NASA Exoplanet Archive (https://exoplanetarchive.ipac.caltech.edu). Retrieved May 2023.
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1.2 Machine Learning in Time-Domain Astronomy
The novel approach taken in this thesis work is to apply Artificial Intelligence (AI) and

Machine Learning (ML) methods to guide theoretical studies in microlensing as a time-
domain phenomenon. Precedents of adapting AI for theoretical studies were rather rare, as
AI and ML have traditionally been applied to accelerate empirical discoveries. Therefore, it
is necessary to first review the role AI and ML has played in the time domain.

The initial use of ML in the time domain has been focused on variable stars, which
early microlensing surveys have identified in large numbers as a by-product. In particular,
the OGLE experiment alone has identified over half a million eclipsing or ellipsoidal binary
stars (Soszyński et al. 2016), ∼25000 RR Lyrae Stars (Soszyński et al. 2009), among others.
These numbers and the phenomenological diversity of variable stars greatly outweigh those
for microlensing. More recent surveys, such as the Palomar Transient Factory (PTF; Law
et al. 2009) and the Zwicky Transient Facility (ZTF; Bellm et al. 2018), have continued to
expand the catalog of variable stars. Nearly a million periodic variables have been identified
in the ZTF Data Release 2 alone, including around 350,000 eclipsing binaries, 100,000 long-
period variables, and about 150,000 rotational variables (Chen et al. 2020).

Initial efforts for the systematic classification of periodic variable stars employed color-
magnitude diagrams (CMDs), period-luminosity relations, and period-color diagrams to clas-
sify them based on their specific properties (e.g., Soszyński et al. 2008, 2009). Given that
only basic light-curve properties such as color and period are employed, some manual inspec-
tion and visual analysis of light curves remained necessary to filter out mis-classifications.
As the volume of data continued to grow, it became increasingly apparent that relying on
limited sets of features and manual inspection was not sustainable for efficient and accurate
classification of the dozens of types of variable stars. Researchers began to recognize the
need for more comprehensive feature sets and automated techniques that could better cap-
ture the underlying properties of variable stars. This marked the beginning of a new era in
time-domain astronomy, where machine learning methods were introduced to revolutionize
the process of variable star classification.

A pioneering contribution to this new approach was Debosscher et al. (2007), which was
the first work to tackle many-class (>20) classification with supervised machine learning.
Following this work, Richards et al. (2011) introduced tree-based methods for variable star
classification for the first time, and demonstrated their superior performance based on a
comprehensive set of 52 features carefully chosen to represent various aspects of light curves
(Naul et al. 2016). Random forests (Breiman 2001) are ensembles of decision trees, which
is rather analogous to traditional methods imposing boundaries in phase diagrams. Unlike
traditional methods that require manually determining boundaries based on limited features,
random forests take advantage of large sets of features, where decision boundaries are learned
from the training data automatically.

Following Richards et al. (2011), numerous studies have adopted random-forest-based
classification for variable stars (e.g., Dubath et al. 2011; Nun et al. 2014; Miller et al. 2015;
Kim & Bailer-Jones 2016). However, the random forest and feature engineering approach
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has its own set of challenges and limitations. One of the main issues is the need for domain
expertise to create relevant and effective features that capture the essential properties of
variable stars. This can be time-consuming and does not guarantee optimal performance, as
the features may still miss some crucial information contained within the light curves, and
with the addition of more features also comes the increase in computation time.

Around the same time as the Richards et al. (2011) work, there was tremendous progress
in the field of AI and computer vision, which are primarily driven by the advancement of deep
convolutional neural networks (CNNs), such as AlexNet (Krizhevsky et al. 2012). AlexNet is
a neural network architecture that achieved a top-5 error rate of 15.3% in the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) in 2012, which was a significant improvement
over the previous best performance of a top-5 error rate of 25.8% — based on traditional
CV algorithms and shallow neural networks — that has been long plateauing. The success
of AlexNet marked a turning point in the field of computer vision, as it demonstrated the
capabilities of deep neural networks for representation learning, allowing for low-dimensional
feature representations to be acquired from high-dimensional raw data automatically without
the need for explicit feature engineering.

This progress in deep learning eventually found its way into variable star classification,
as first demonstrated by the work of Naul et al. (2018), who proposed a recurrent neural
network (RNN) for feature extraction on variable-stars light curves. It was demonstrated that
the feature space automatically learned by the RNN enables comparable, and often superior
random forest classification results as compared to multiple sets of previously published hand-
crafted features, including the Richards et al. (2011) and Kim & Bailer-Jones (2016) sets of
features. A critical issue in applying deep learning to light curves is astronomical light curves
are characterized by periodicity, heterogeneous noise, irregular time sampling, and multiple
channels that do not align with each other, which are uncommon in real-world applications
of ML. Naul et al. (2018) addressed some of these challenges, but other issues remain wide
open (e.g., Jamal & Bloom 2020). A specialized network architecture for periodic irregular
light curves is developed in Chapter 2.

1.3 Likelihood-Free Inference
The growing maturity of efficient classification techniques for light-curve data obtained

from time-domain surveys has led to the compilation of extensive, well-classified time-domain
datasets, which have enabled the study of time-domain phenomena at scale. One of the fun-
damental challenges to the modeling of observed phenomena is the lack of inverse models.
Indeed, the intricate physical forward models, which describe both the astrophysical pro-
cesses and the instrumental effects underlying observed phenomena, are rarely invertible.
As a result, statistical inference algorithms such as MCMC (e.g., Goodman & Weare 2010)
and Nested Sampling (Skilling 2006) are required to extract model parameters and the asso-
ciated uncertainties from observed datasets by means of iterative data-model comparisons,
sometimes requiring millions of iterations. Here, the high information content from the high



1.3. LIKELIHOOD-FREE INFERENCE 7

S/N data acquired by modern facilities has necessitated the development of detailed forward
models, at the expense of much increased computational cost. Moreover, the scale of current
and future survey experiments indicates that such analysis would be performed for millions
of stellar objects simultaneously, which often renders our current tool-set intractable.

Likelihood-Free Inference (LFI), also known as Simulation-Based Inference (SBI), presents
a powerful solution to this imminent inference crisis faced by time-domain astronomy. LFI
comprises a diverse set of methods that circumvent the need for explicit likelihood calcula-
tions, making them particularly advantageous for inference problems where exact likelihood
evaluation is infeasible or computationally intensive. These methods were initially developed
to address inference problems with intractable likelihood functions, often due to the presence
of a high-dimensional nuisance parameter space, situations that are especially common in
cosmology. In comparison, the inference problems in the time domain are often blessed with
tractable likelihood functions, where the primary obstacle is the computational cost of the
forward model and effective strategies to fully explore the parameter space. For this reason,
LFI methods have been less relevant for the time domain until very recently.

Nevertheless, a classical LFI method known as Approximate Bayesian Computation
(ABC) should be briefly mentioned for the sake of the completeness of this discussion. The
reader is referred to Cranmer et al. (2020) for a complete overview of LFI methods and their
use cases. In the ABC framework, summary statistics are calculated for both the observed
data and the forward model, which are compared in terms of distance metrics in place of
the raw, high-dimensional data. For example, summary statistics for light-curve data could
be the mean, median, standard deviation, skew, etc. These summary statistics effectively
reduce the dimensionality of the data while still retaining the essential information needed
for parameter estimation.

Thus, the use of summary statistics in ABC is rather analogous to the use of engineered
features for random-forest classification of variable star data, as previously discussed. How-
ever, the primary goal of the summary statistics is to enable an effective marginalization over
the intractable parameter space. For example, the two-point correlation function (2PCF) is
a measure of the excess probability of finding two galaxies at a given separation compared
to a random distribution, which serves to quantify the clustering of galaxies in the universe.
By using the 2PCF or the power spectrum (its Fourier transform) as a summary statistic
for cosmological inference, one is effectively marginalizing over the intractable space of the
initial cosmological conditions. Applications of ABC include supernova cosmology, (Weyant
et al. 2013), galaxy demographics (Cameron & Pettitt 2012), exoplanet occurrence rates
(Hsu et al. 2018), studies of the galaxy-halo connection (Hahn et al. 2017), among others.

While inference problems with tractable likelihoods do not generally benefit from ABC
methods, new types of LFI methods driven by advances in deep learning have become increas-
ingly relevant to problems that are otherwise amenable to asymptotically exact inference.
First, representation learning with deep neural networks can substitute for expert-crafted
summary statistics for automatic “featurization.” Second, Neural Density Estimators (NDEs;
e.g., Papamakarios et al. 2017) have been developed as specialized neural networks that are
capable of modeling probability distributions with arbitrary and complex shapes and co-



1.4. AI-GUIDED THEORETICAL EXPLORATION 8

variances. These two aspects combined have given rise to a new technique called Neural
Posterior Estimation (NPE), where the NDE is employed to learn the Bayesian posterior
parameter distribution purely as a conditional distribution (Papamakarios & Murray 2016).
The conditional is given to the NDE as the output of the “featurizer network” in the form
of a low-dimensional feature vector. By training on parameters and simulations produced
using the forward model, NPE essentially enables the creation of surrogate inverse models for
otherwise non-invertible physical models. The inverse models parameterized by neural net-
works can generally be evaluated in less than a few seconds, thus enabling the amortization
of inference.

The concept of amortization refers to a computational approach in probabilistic modeling
where the cost of performing inference is spread out or “amortized” over multiple tasks, rather
than being computed individually for each instance. For NPE, the cost of inference is largely
incurred upfront, which includes the computational cost of generating a training set using
the physical forward model, as well as the cost of training the neural network. Once the
inverse model is acquired, one can then produce accurate Bayesian model posteriors for any
number of observations at marginal cost. In contrast to traditional inference approaches,
where the cost of inference grows linearly with the number of tasks, the computational cost
for NPE—training a surrogate inverse model—is largely independent of the scale of the
downstream task.

The amortization of inference is particularly advantageous in the context of large-scale
time-domain surveys with high data fidelity. In the context of microlensing, the Galactic-
Bulge time-domain survey of the future Roman Space Telescope (Spergel et al. 2015) is
expected to observe approximately 50,000 microlensing events, including around 1,400 two-
body planetary events (Penny et al. 2019) and at least a few thousand stellar-binary events.
Thus, Roman is expected to push the number of planets detected by microlensing by nearly
an order of magnitude. The prevalence of degeneracies (Section 1) indicates that the mi-
crolensing inverse problem is intrinsically difficult even at the current scale. Thus, an NPE
framework will provide a powerful solution to solving the Roman microlensing inverse prob-
lem, and such a framework is presented in Chapter 3. As the scale of astronomical surveys
expands, the development of NPE analysis approaches will be crucial for fully leveraging the
wealth of data these surveys provide.

1.4 AI-Guided Theoretical Exploration
With the development of the NPE microlensing framework in Chapter 3, the natural

next step would have been to adopt such a framework for the analysis of current datasets,
potentially leading to new statistical constraints on certain microlensing populations. Indeed,
the use of NPE for theoretical studies in microlensing represents an unexpected yet fortuitous
development of this thesis. The genesis of this idea came from an attempt to test the limits
of the NPE framework to produce complex multi-modal posteriors. The events OGLE-2011-
BLG-0950 and OGLE-2011-BLG-0526 (Choi et al. 2012) became excellent test cases, each of
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Figure 1.1: Schematic illustration of the use of Neural Posterior Estimation for phenomeno-
logical and theoretical studies.

which has a complex four-fold degenerate posterior that includes both stellar-binary solutions
and planetary solutions.

In brief, the NPE framework not only recovered the expected posterior modes, but also
produced an additional stellar-binary solution (Figure 3.5) that has not been reported in
the original analysis. The question of the completeness of the Choi et al. (2012) analysis
aside, this serendipitous revelation immediately pointed to a novel pathway for searching for
new types of degeneracies, simply by using NPE to produce large numbers of examples and
finding out the interesting ones. Indeed, new types of degeneracies are occasionally reported
in the analysis of observed events, including the four-fold degeneracy3 in Choi et al. (2012),
along with a more recent discovery reported by Yang et al. (2022). The use of NPE to
produce the parameter posterior distributions for a large number of simulated observations
as examples of degeneracies, would then potentially produce these serendipitous discoveries
systematically and at scale.

In Figure 1.1, I illustrate how neural surrogate inverse modeling may serve to guide
theoretical studies. The first step is to acquire the surrogate inverse model by training a
conditional NDE on simulated data, which is illustrated as the three boxes on the left-hand
side of the figure. The lower-right corner of Figure 1.1 containing three boxes is the key to
this AI-guided approach and is where the human agent interfaces with the AI agent. Here,
a clustering algorithm automatically identifies the discrete solution modes for the NDE-
produced parameter posterior distribution of each simulated observation. Those with two

3While Choi et al. (2012) reported on the degeneracy between stellar-binary and planetary lenses as “a
new type ambiguity” in its title, it should, in fact, be seen as an extension of the Han (2008) degeneracy.
In both cases, stellar-binary and planetary lenses can produce suppressed magnification in between central
caustic cusps, which manifest either as a double-peak or a flat-peak light-curve.
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or more posterior modes are then visually inspected by the human agent with the question:
is this multi-modality predicted by existing theories of degeneracies? Those that do not
conform to existing theories are then collected, which would then serve as the basis for the
conjecture of new theories and further follow-up studies, as indicated in the top right box
of Figure 1.1. In this process, one may also find certain regions of parameter space that are
of particular interest, where one may then acquire additional degeneracy examples in this
targeted region to clarify different hypotheses (arrow with dashed lines in Figure 1.1).

The execution of this new framework then quickly lead to the discovery that the close-
wide and inner-outer types of degeneracies are in fact limiting cases of a general theory,
presented as the offset degeneracy in Chapter 4. In retrospect, inconsistencies with the
close-wide and inner-outer degeneracies were already apparent in the three example NDE
posteriors in Chapter 3, which are purposefully chosen to be representative of the diversity
of degeneracies in the literature. In Figure 3.3, the two solution modes were stated to
follow the s ↔ 1/s relationship of the close-wide degeneracy (Chapter 3.4.1). However, a
retrospective closer look reveals that swide > 1/sclose instead, which is exactly expected from
the offset degeneracy as the source trajectory passes to the right of the caustic. The initial
NDE posterior example shown in the earliest appearance of Chapter 3 as a NeurIPS ML4PS
workshop paper (Zhang et al. 2020) shared a similar deviation from s ↔ 1/s.

On the other hand, the example of Figure 3.4 has been intended to replicate OGLE-
2018-BLG-0677 (Herrera-Martín et al. 2020) for which both solutions to the actual event
have s < 1, allowing an interpretation with the inner-outer degeneracy. However, the actual
test light curve used for Figure 3.4 was set to exactly s = 1 (as opposed to s = 0.985),
for was chosen simply for convenience. For Figure 3.4, the caustic topologies of the two
degenerate solutions are rather similar to OGLE-2018-BLG-0677 and thus I have also stated
it as a manifestation of the inner-outer degeneracy, but this bi-modality have nearly already
violated the premise of the inner-outer degeneracy, which was that the both solutions should
be either in the close regime (s < 1) or in the wide regime (s > 1) (see the Appendix of
Han et al. 2018). Had I picked another value ever slightly greater than s = 1 with the
remaining parameters held constant, then perhaps this inconsistency would have already
been impossible to miss in this earlier Chapter.

Specifics aside, I now discuss how the approach of AI-guided phenomenological study as
illustrated in Figure 1.1 and exemplified by the offset-degeneracy discovery may be more
broadly applicable to other sub-fields. Prior to designing observational experiments, one
would often wish to first conduct feasibility studies to answer questions such as: to what
extent could my experiment place meaningful constraints on the desired properties of the
physical system of interest? However, the actual question that gets answered is more of-
ten: does the desired property of my physical system generate a detectable signal? These
questions could often be interchangeable, but sometimes the second could not substitute
for the first, especially in the presence of continuous and discrete degeneracies that are not
well understood. The reason that the first question is cast into the second is precisely the
non-invertibility of our physical forward models. Therefore, the use of NPE to develop sur-
rogate inverse models may in fact be a useful tool for such phenomenological studies of broad
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appeal.
I end this Chapter with an overview of this thesis. This thesis is composed of two

components. The first component (Chapters 2 – 3) is the development of AI methodologies
that led to the theoretical results of the second component (Chapters 4 – 6). The development
of cyclic-permutation invariant neural networks is presented in Chapter 2, which is shown to
achieve state-of-the-art performance for the classification of variable stars. A Likelihood-Free
Inference framework for binary-lens microlensing is presented in Chapter 3, which partially
utilizes the neural network architecture developed in Chapter 2.

In the second component, Chapter 4 reports on the discovery of the offset degeneracy. A
follow-up analytical study is presented in Chapter 5, which also explored the generalization
of the offset degeneracy to higher-order lenses. These theoretical insights then led to a
careful reexamination of the seminal works for planetary microlensing published in the 1990s,
particularly Gould & Loeb (1992), Gaudi & Gould (1997), and Dominik (1999), which led
to the conclusion that the scope of the perturbative picture and the Chang-Refsdal lens
approximation is much broader than laid out in these papers. In Chapter 6, I propose a
generalized perturbative picture for planetary microlensing, which states that the planet can
be considered to act as a variable-shear Chang-Refsdal lens on one of the images produced
by the host star, leaving the other image largely unaffected. The analytic nature of the
Chang-Refsdal lens indicates that the proposed formalism would allow full magnification
maps of the planetary lens to be derived analytically, thereby allowing for the accelerated
modeling of observed events.
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Chapter 2

Cyclic-Permutation Invariant Neural
Networks for Periodic Irregular Light
Curves

Neural networks (NNs) have been shown to be competitive against state-of-the-art fea-
ture engineering and random forest (RF) classification of periodic variable stars. Although
previous work utilising NNs commonly operated on period-folded light-curves, no approach
to date has taken advantage of the fact that network predictions should be invariant to the
initial phase of the period-folded sequence. Initial phase is exogenous to the physical origin
of the variability and should thus be immaterial to the downstream application. Here, we
present cyclic-permutation invariant networks, a novel class of NNs for which the output
is invariant to phase shifts by construction. We implement this invariance by means of
“Symmetry Padding.” Across three different datasets of variable star light curves, we show
that two implementations of the cyclic-permutation invariant network: the iTCN and the
iResNet, consistently outperform non-invariant baselines and reduce overall error rates by
between 4% to 22%. Over a 10-class OGLE-III sample, the iTCN/iResNet achieves an aver-
age per-class accuracy of 93.4%/93.3%, compared to RNN/RF accuracies of 70.5%/89.5% in
a recent study using the same data. Finding improvement on a non-astronomy benchmark,
we suggest that the methodology introduced here should also be applicable to a wide range
of science domains where periodic data abounds due to physical symmetries.

2.1 Introduction
Periodic variability arises across the Hertzsprung-Russell diagram and manifest through

stellar pulsation, rotation, and/or binarity. The identification of dozens of distinct phe-
nomenological sub-classes (e.g., Gaia Collaboration et al. 2019) reflects the richness of the
underlying physical processes giving rise to observable changes in brightness and colour. Pe-
riodic variables can also serve as precision probes of distance (Paczyński 1997), line-of-sight
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dust extinction (Kunder et al. 2008), and Galactic structure (Skowron et al. 2019). As such,
the systematic discovery and classification of periodic variables in large time-domain surveys,
some with billions of stars monitored, remains paramount.

At scale, human expert labelling of variability catalogues of light curves has naturally,
in the past decade, given way to automated classification approaches with machine learning.
Random forest (RF; Breiman 2001) classification, while performant, requires computation-
ally expensive, hand-crafted feature engineering as part of data preprocessing (Richards
et al. 2011; Kim & Bailer-Jones 2016). More recently, deep representation learning has fur-
ther pushed the boundaries by learning not only decision rules on features of raw data, but
also the low-dimensional feature representation itself. This approach has advanced many
fields in astronomy (e.g., Kim & Brunner 2017; Shallue & Vanderburg 2018; Agarwal et al.
2020; Zhang & Bloom 2020).

For variable star classification, both convolutional neural networks (CNNs; LeCun et al.
2015) and recurrent neural networks (RNNs; Hochreiter & Schmidhuber 1997; Cho et al.
2014) have been shown to be competitive to the traditional RF-based methods. Naul et al.
(2018) used an RNN autoencoder network to learn low-dimensional representations of period-
folded light-curves in an unsupervised fashion. This representation was then, in a supervised
context, used as feature inputs to a RF classifier. They showed that the learned features are
at least as good as, and often better than, two sets of state-of-the-art hand-crafted features
(Richards et al. 2011; Kim & Bailer-Jones 2016), in terms of downstream classification ac-
curacy. Becker et al. (2020) used an RNN for which instead of period-folding, each input
light curve is grouped with a moving window of size 50 and stride 25. Although period-
folding improves performance (Naul et al. 2018), Becker et al. (2020)’s time-space RNN
does not require the period to be calculated, and is thus less computationally expensive in
terms of preprocessing. Again, they found similar performance to a RF classifier with the
Nun et al. (2015) features over three datasets, although lower accuracy was seen for many
sub-classes with the OGLE dataset (Table 2.2; see Section 2.3.3 for data description). More
recently, Jamal & Bloom (2020) systematically benchmarked the performance of different
configurations of RNN and CNN network architectures on variable star classification. Aside
from other work (e.g., Tsang & Schultz 2019; Aguirre et al. 2018) evaluating neural network
performance retrospectively on previously labeled datasets, Dékány & Grebel (2020) used
an RNN classifier to identify a new sample of fundamental-mode RR Lyrae (RRab) stars.
Similarly, Dékány et al. (2019) found Classical and Type II Cepheids with a CNN classifier,
also using the VISTA Variables in the Via Lactea (VVV) survey (Minniti et al. 2010) and
using period-folded light curves.

While the compact phase-space (i.e., period-folded) light-curve representation has been
widely adapted in the aforementioned studies, none of the neural networks used therein guar-
antees the same prediction under phase-shifts, or cyclic-permutations, of the same period-
folded light curve. Since the initial-phase of the phase-space sequence is experimentally
determined and exogenous to the physical origin of the variability, it could be seen as a nui-
sance parameter which should not affect classification. In the limit where a classification task
is non-trivial—either due to the inherent difficulty of class separability or low signal-to-noise
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Figure 2.1: Schematic illustration of the effect of polar coordinate convolutions in preserving
cyclic-permutation invariance. The input and output sequences are shown in polar coordi-
nates for iTCN (top), and in Cartesian coordinates for TCN (bottom). The input sequence is
a sine curve with two full oscillations in both cases. In the upper diagram, 1-D feature maps
of the periodic input remains periodic; rotational symmetry is preserved. These periodic
feature maps are also shown in Cartesian coordinates of the lower plots in red dashed lines
for comparison. As demonstrated by the discrepancy, feature maps are distorted for the first
full oscillation in the non-invariant network, which is shown in solid black lines.

data—some degree of domain knowledge can, in principle, be injected into the network ar-
chitecture through known symmetries and conservation laws (Carleo et al. 2019; Mattheakis
et al. 2020). Neural networks for computer vision tasks, for example, have been developed
that are scale, rotation, and translation invariant (Jaderberg et al. 2015). Specialised net-
works for particle physics inference preserve known properties of quantum chromodynamics
(Louppe et al. 2019). For periodic time series, we seek a network architecture with built-in
invariance to cyclic-permutation to improve performance.

Here, we present cyclic-permutation invariant convolutional networks. We describe spe-
cific implementations with 1-D residual convolutional networks (ResNets), and with dilated
1-D convolutional networks (TCN) that have been shown to achieve state-of-the-art for a
variety of sequence modeling tasks (Bai et al. 2018). The cyclic-permutation invariant net-
work is descried in Section 2.2, whereas the variable star datasets used in benchmarking
the invariant network against previous methods are discussed in Section 2.3. Finally, the
performance of the invariant networks in various scenarios are discussed in Section 2.4. To
facilitate applications of the cyclic-permutation invariant networks, we are releasing code at
https://github.com/kmzzhang/periodicnetwork.

2.2 Method
The cyclic-permutation invariant networks that we introduce here refer to any neural

network satisfying the following condition. Given an input sequence x ∈ RN, a neural

https://github.com/kmzzhang/periodicnetwork
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Figure 2.2: (a) Simplified illustration of the cyclic-permutation invariant Temporal Convolu-
tional Network (iTCN). Numbers refer to the ordering of the period-folded sequence. Dilated
convolutions are represented by arrows where the dilation factor is indicated to the right of
each layer. Gray arrows in the final two layers represent operations which are present only
in the iTCN not the TCN. The classification layer consists of two convolutions of kernel
size 1. (b) The residual block, which is the actual hidden layer used in the iTCN. Residual
connections are to be replaced with k = 1 convolutions when consecutive layers have differ-
ent hidden dimensions.

network f : x → y is invariant to cyclic-permutations if

∀i ∈ [2, N ], f(x1:N) = f(concat(xi:N ,x1:i−1)) (2.1)

We first offer a high-level overview of cyclic-permutation invariant networks before dis-
cussing implementation details. Under the cyclic-permutation invariant network framework,
the multi-cycle periodic time series is first period-folded into a single cycle by transforming
from temporal space (t,m) into phase space (ϕϕϕ,m): ϕϕϕ = t mod p, where mi is the magni-
tude (or flux) measurement at phase ϕi and p, the period, is determined with periodogram
analysis (Lomb 1976; Scargle 1982). The period is first used to fold the light-curve into
phase-space and then concatenated to the output of the last convolution layer as an auxil-
iary input. We then make the observation that under polar coordinates, the period-folded
sequence is essentially wrapped in a “closed ring” (Figure 2.1: Input Sequence, top row)
where phase shifts simply become “rotations” which allows outputs to remain periodic (Fig-
ure 2.1: output feature). Phase-averaging the output feature map then results in a feature
vector that is invariant to the initial phase (ϕ0), rendering it a nuisance parameter. On the
other hand, for the usual Cartesian-coordinate CNNs, phase shifts result in different input
sequences and therefore different outputs. Polar coordinate convolution is implemented by
replacing zero-padding of length (kernel size − 1) in ordinary Cartesian-coordinate CNNs
with “Symmetry Padding,” which pads the input or hidden sequence not with zeros, but
with the sequence itself (Figure 2.2a).
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Based on the above framework, we present two particular implementations of the cyclic-
permutation invariant network: the invariant Temporal Convolutional Network (iTCN) and
the invariant Residual Convolutional Network (iResNet). The iTCN is based on the Tem-
poral Convolutional Network (TCN; Bai et al. (2018)), and is composed of “residual blocks”
(Figure 2.2b) of 1D dilated convolutions (Figure 2.2a), where the input to each “residual
block’ is concatenated to the output, creating a “gradient highway” for back-propagation,
thus allowing for improved network optimization. Dilated convolutions refer to convolutions
where the convolution kernel is applied over a region larger than the kernel size by skip-
ping input values with a step of 2n−1 for the n-th layer. This dilation allows the network to
achieve an exponential increase in the receptive field — the extent of input data accessible
with respect to a particular output neuron — with network depth. The receptive field is
calculated as

R = (K − 1)×
D∑

n=1

2× 2n−1 = (K − 1)× (2D+1 − 2), (2.2)

where K is the kernel size, D the number of layers, 2n−1 the dilation factor for the nth layer,
and the additional factor of 2 due to the fact that each residual block consists of two dilated
convolutions. Network depth is required to be large enough for the receptive field to be
larger than the input sequence length, such that each feature vector in the output layer has
complete information over the input sequence. Simultaneous predictions are then made for
every possible initial phase of the input sequence (Figure 2.2a: “classification” layer) by first
concatenating the period to each vector in the output layer, which serves as the feature vector
for each phase. Each feature vector is then fed into a simple 2-layer feed-forward network
that returns a vector with the same dimension as the number of classes. The outputs for
the different phases are finally averaged with a global mean pooling layer as input to
the softmax function for normalized class probabilities. By averaging predictions from all
possible initial phases, the invariant network makes more robust predictions, as compared to
non-invariant CNNs and RNNs, which can only predict for one particular initial phase with
one network forward pass.

As a demonstration, for the toy iTCN network shown in Figure 2.2a, the last time-step of
the output sequence (gray circle “8”; forth row bottom to top) is connected by arrows across
the layers to the first time-step of the input sequence, and therefore has a receptive field
of R = 8. Applying a cyclic-permutation to the input sequence (e.g. 2, 3, 4, 5, 6, 7, 8, 1)
would result in the same cyclic-permutation to the output sequence, which does not change
the final classification because classification from each time-step is averaged, thus making
the network invariant to such permutations.

To visualise the effects of cyclic-permutation invariance on modelling periodic sequences,
we compare output sequences produced by the iTCN and the TCN in Figure 2.1. We create
an iTCN and a TCN with the same weights and the same receptive field of R = 30 at
a network depth of 4 with kernel size 2. The input sequence is a length-60 sine function
with two full oscillations (0 to 4π radian). As seen in the figure, while output feature maps
produced by the iTCN remain symmetrical in polar coordinates, the first half of the output
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sequence produced by the TCN is distorted by zero-padding, thus degrading the fidelity of
output feature maps.

The second implementation, the iResNet, is also composed of stacks of “residual blocks,”
but is different from the iTCN in that the exponential receptive-field increase is achieved
through max pooling layers, instead of dilated convolutions. A max pooling layer of kernel
size 2 and stride 2, which combines every two adjacent feature vectors into one by selecting
the maximum value, is added after every “residual block” to distil information extracted.
After every such operation, the temporal dimension is reduced by half, while the number
of hidden dimension is doubled until a specified upper limit. Unlike the iTCN, the feature
vectors in the iResNet output layer do not have a one-to-one correspondence to the input
sequence because the temporal dimension of the output feature map is reduced by a factor of
2D−1, where D is the network depth. Because of this discreteness of featurisation, the iResNet
is only invariant to phase shifts of 2D−1 steps (when the input sequence length is divisible
by the same factor). Nevertheless, the iResNet potentially benefit from data augmentation
of the input-sequence initial phase, as could non-invariant networks (see Appendix 2.8).

2.3 Benchmark Data
We assembled benchmarking datasets from three publicly available datasets of variable

star light curves: All-Sky Automated Survey for Supernovae (ASAS-SN; Jayasinghe et al.
2018, 2019), Massive Compact Halo Object (MACHO; Alcock et al. 1996), and Optical
Gravitational Lensing Experiment (OGLE-III; Udalski 2003). The datasets are described
below.

2.3.1 All-Sky Automated Survey for Supernovae (ASAS-SN) Data

The ASAS-SN dataset consists of 282,795 light curves from eight classes of variable stars:
288 WVirginis (p > 8 day), 102 WVirginis (p < 8 day), 941 Classical Cepheids, 297 Classical
Cepheids (Symmetrical), 1,631 Delta Scuti, 25,314 Detached Eclipsing Binaries, 12,601 Beta
Lyrae, 43,151 W Ursae Majoris-type, 2,149 High Amplitude Delta Scuti, 9,623 Delta Scuti,
14046 Rotational Variables, 26,956 RR Lyrae type A/B, 7,469 RR Lyrae type C, 364 RR
Lyrae type D, and 137,847 Semi-regular Variables. The class label of each variable star is
classified by Jayasinghe et al. (2019) and only those with class probability greater than 99%
are used. The maximum number of full light curve per class is capped at 20,000 to reduce
the number of light curves of the dominant classes. Finally, segmenting into L = 200 chunks
results in 106,005 fixed-length light curves.

2.3.2 Massive Compact Halo Object (MACHO) Project data

The MACHO dataset, taken directly from Naul et al. (2018), consists of 21,470 red band
light curves from eight classes of variable stars: 7,403 RR Lyrae AB, 6,833 Eclipsing Binary,
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3,049 Long-Period Variable Wood (sub-classes A–D were combined into a single super-class),
1,765 RR Lyrae C, 1,185 Cepheid Fundamental, 683 Cepheid First Overtone, 315 RR Lyrae
E, and 237 RR Lyrae/GB Blend. Segmenting into L = 200 chunks has resulted in 80,668
fixed-length light curves.

2.3.3 Optical Gravitational Lensing Experiment: OGLE-III

The OGLE-III dataset is identical to that used in Becker et al. (2020), except for the
selection of OSARGs. The OGLE-III data consists of 357,748 light curves from ten classes
of variable stars: 6862 Eclipsing Contact Binaries, 21503 Eclipsing Detached Binaries, 9475
Eclipsing Semi-detached Binaries, 6090 Miras, 234,932 OGLE Small Amplitude Red Giants
(OSARG), 25943 RR Lyrae type A/B, 7990 RR Lyrae type C, 34835 Semi-regular Variables,
7836 Classical Cepheids, 2822 Delta Scuti. Of the 234,932 OSARGs, 40,000 random ones
are selected. Absent of a fixed random seed in their relevant code section, we have not
been able to procure their exact selection, although the number selected is large enough
for the difference to be small. Finally, segmenting into L = 200 chunks results in 540,457
fixed-length light-curves.

2.4 Results
We first study the evaluation metrics of the iTCN/iResNet architectures compared to the

TCN/ResNet architectures to identify the gains made solely by cyclic-permutation invari-
ance. Such “ablation” studies—applying a single change to the network architecture during
training and testing to isolate the effect of that change—are common in deep learning. Input
data is given in phase-space in all cases as the advantages compared to time-space have been
demonstrated in previous studies (e.g. Naul et al. 2018). RNN baselines of GRU (Cho et al.
2014) and LSTM (Hochreiter & Schmidhuber 1997) are also included as additional baseline
methods for comparison. We also note that cyclic-permutation invariance is forbidden in
RNNs because of its acyclic topology.

The networks are trained on fixed-length light-curve segments (L = 200) from the three
datasets described in Section 2.3. We apply randomised, stratified 60/20/20 train/valida-
tion/test splits for each dataset. To properly account for dataset boot-strapping noise—
accuracy variations due to the particular choices of data splits—the same random splits are
used to test every network, whose accuracies are compared pairwise in splits. We emphasise
that the standard deviation of the accuracy differences, rather than the standard deviation
of the accuracy themselves, should then serve as the basis for comparison of the accuracies.
This is because accuracy variations for a given network and dataset are largely dominated by
the boot-strapping noise due to train/test partitioning, and thus would be an overestimation
of the variances solely attributed to the networks. Within each split, each full light-curve is
divided into sequences of length 200 in temporal order and transformed into phase-space with
respect to the period provided in the catalogs. Compared to random sampling, subdividing
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Model MACHO OGLE-III ASAS-SN

iTCN 92.7% ± 0.43% 93.7% ± 0.09% 94.5% ± 0.14%
TCN 92.0%± 0.35% 92.9%± 0.11% 93.0%± 0.20%

diff 1 (−0.58%+0.05%
−0.17%) (−0.75%+0.04%

−0.02%) (−1.52%+0.12%
−0.09%)

iResNet∗ 92.6%± 0.45% 93.7% ± 0.09% 93.9%± 0.14%
ResNet 92.1%± 0.34% 93.4%± 0.11% 93.2%± 0.22%

diff 1 (−0.48%+0.05%
−0.13%) (−0.25%+0.03%

−0.02%) (−0.64%+0.01%
−0.07%)

GRU 92.3%± 0.37% 92.8%± 0.19% 93.6%± 0.42%

diff 2 (−0.34%+0.05%
−0.02%) (−0.86%+0.17%

−0.13%) (−0.71%+0.07%
−0.12%)

LSTM 91.7%± 0.53% 92.6%± 0.61% 93.5%± 0.23%

diff 2 (−0.93%+0.45%
−0.16%) (−0.85%+0.17%

−0.48%) (−1.00%+0.11%
−0.06%)

Table 2.1: Ablation study test accuracies demonstrating gains afforded by cyclic-
permutation invariance. The network with the top accuracy for each dataset is shown in
bold. Test accuracies are the mean values for 8 different data splits. Median test accuracy
differences of the different data partitions are shown in parentheses with the uncertainty
interval corresponding to 1-σ range of test accuracy differences calculated pair-wise for the
same random partitions of data. Negative accuracy differences indicate better performances
of the invariant network.
1Compared to the invariant version of the same network.
2Compared to the best performing network.
∗Semi-invariant due to use of discrete max-pooling layers.
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by temporal order preserves the irregular samplings which resemble how data is accumu-
lated. Each segment is then individually normalised (zero-mean and unit variance) while
measurement times are rescaled by the period into phase ([0, 1]). The measurement phase
intervals ∆ϕϕϕ between successive data points are fed together with the rescaled light curve as
inputs to the network. The mean and standard deviation of each light curve segment, along
with log(p), are concatenated to the network output layer as auxiliary inputs. We perform
extensive hyperparameter optimisation for each pair of network and dataset (see Appendix
2.7).

As shown in Table 2.1, the improvements of the iTCN and the iResNet from their re-
spective non-invariant baselines, as well as the RNNs, are significant by more than 5-σ in
most cases, demonstrating the advantages of enforcing cyclic-permutation invariance. The
improvements in classification accuracies correspond to reductions in overall error rates by
between 4% to 22%, depending upon the non-invariant baseline and the dataset.

2.4.1 Comparison to published methods and results

We first consider the time-space RNN and RF results recently published in Becker et al.
(2020). Becker et al. (2020) presents OGLE-III classification results with their time-space
GRU and an RF baseline with the Nun et al. (2015) features. The Becker et al. time-space
GRU work groups each full OGLE-III light curve with a moving window of size 50 and
stride 25, whereby the effective sequence length is reduced by a factor of 25. This reduction
alleviates the so-called vanishing gradient problem (Hochreiter & Schmidhuber 1997) which
limits the sequence length that the RNN could be effectively trained on. To facilitate this
comparison, we have used the same OGLE-III data selection as their work (Section 2.3.3).
Since a L > 300 requirement has been applied to their OGLE-III data selection, we trained
the iTCN/iResNet on L = 300 segments, and average classifications on L = 300 segments
for each full light curve during testing. As seen in Table 2.2, the cyclic-permutation invariant
networks outperform both results. The invariant network accuracies are significantly higher
for most classes, reducing error rates by as much as 69% for the minority classes. We find
this result to be critically important, as the hard-to-classify minority classes tend to be the
least well-understood and often are the most interesting to identify for further study. In
particular, the largest error rate reductions against RF are seen in Eclipsing Binaries, Delta
Scuti, and Semi-Regular Variables, which are important both for accurate tests of stellar
evolution models (e.g. Guinan et al. 2000; Torres & Ribas 2002) and for precision probes of
distance (e.g. Bonanos et al. 2006; McNamara et al. 2007; North et al. 2012).

Additionally, Naul et al. (2018) published RF benchmark accuracies for the MACHO
dataset of 90.50% with the Richards et al. (2011) features and 88.98% with the Kim & Bailer-
Jones (2016) features. While we have use the same MACHO dataset as Naul et al. (2018),
our results are not directly comparable because Naul et al. (2018) preformed randomised
train/test split on the L = 200 segmented light curves, which have caused different versions
of the same light curve to exist in both training and test split, resulting in information
leakage and thus a higher accuracy.
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Class iTCN iResNet GRU RF
Cep 98.3%±0.3% 98.4%±0.7% 72% 97%
RRab 99.7%±0.1% 99.7%±0.4% 85% 99%
RRc 99.0%±0.2% 99.1%±0.1% 30% 98%
Dsct 97.6%±0.8% 97.8%±0.6% 72% 93%
EC 87.9%±0.9% 87.8%±0.7% 54% 79%
ED 95.0%±0.3% 94.8%±0.4% 93% 92%
ESD 68.7%±1.0% 70.7%±0.9% 24% 61%
Mira 97.1%±0.6% 96.8%±0.3% 92% 97%
SRV 96.0%±0.4% 95.9%±0.2% 93% 82%
OSARG 93.2%±0.4% 93.4%±0.2% 90% 97%
Mean 93.4% 93.3% 70.5% 89.5%

Table 2.2: Test accuracies for OGLE-III full-length light curves compared to clas-
sifications results in Becker et al. (2020). For all but one subclass, the cyclic-permutation
invariant networks outperform previous results. Similar to Table 2.1, we note that uncertain-
ties are dominated by the bootstrapping noise arising from randomized data partitioning,
and as such, are only upper limits to uncertainties in the accuracy differences for each class.

2.4.2 Adapting to variable-length sequences

Although none of the networks tested are restricted to fixed-length inputs, we emphasise
that fixed-length sequence trained networks should not be naively applied to test sequences
of different lengths because doing so results in degraded accuracy: different sequence lengths
correspond to a different effective sampling frequency in phase space. The neural network is
essentially asked to extrapolate, not interpolate, beyond the training function domain.

In Table 2.2, we showed a segment-and-classify scheme which is shown to be effective for
OGLE-III full light curves. Here, we provide examples to show how the invariant networks
could be directly trained on variable length sequences. A random sequence length in between
16 < L < 200 is selected for each mini-batch during training. The optimal hyper-parameters
for L = 200 networks are used, though each network could potentially benefit from increased
complexity due to the increased task difficulty. As seen in Figure 2.3, high accuracy is
maintained across a wide range of sequence lengths within the training range of 16 < L < 200.
Beyond the training range 16 < L < 200, the ability of the networks to generalise is dataset
dependent.

Furthermore, we note that the optimal range of training sequence length depends on the
ratio of the period to the cadence. If the cadence is short compared to the periods, then
the training sequence length should have a longer upper limit for each training light curve
to cover at least one oscillation period. Figure 2.3 also suggests a way by which the training
sequence length upper limit could be determined. As accuracy only increase marginally for
MACHO beyond L ∼ 100, a shorter upper limit could be selected whereby each full-length
light curves is cut into more segments whose results are combined. On the other hand,
the training sequence length upper limit could be increased for ASAS-SN, as classification
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Figure 2.3: iResNet/iTCN test accuracy as a function of test sequence length for MACHO,
ASAS-SN, and OGLE-III. Shaded region indicates the range of training sequence length:
16 < L < 200

accuracy is still on the rise at L = 200, which suggests that the networks are still gaining
additional information with increasing sequence length near the L = 200 cutoff.

2.5 PP-MNIST: Periodic Permuted MNIST
To examine the effectiveness of the cyclic-permutation invariant networks for classifica-

tion tasks in other domains, we have created an additional benchmarking dataset, “periodic
permuted MNIST” (hereafter PP-MNIST), which is derived from the “sequential MNIST”
and “permuted MNIST” classification tasks (Figure 2.4). MNIST is a classic image dataset
(LeCun et al. 1998) consisting of 70,000 28× 28 images of hand-written digits in 10 classes
(0 to 9). Under the sequential MNIST task, the 2D MNIST images are unwrapped into a
1D sequence of L = 784. Sequential MNIST is frequently used to test a recurrent network’s
ability to retain long-range information (Le et al. 2015; Wisdom et al. 2016; Krueger et al.
2017). For the more challenging permuted MNIST (P-MNIST) task, a fixed random per-
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Table 2.3: Periodic permuted MNIST (PP-MNIST) classification accuracies.

iResNet 96.0% iTCN 94.8%
ResNet 95.1% TCN 77.4%

mutation is applied to each sequence (Le et al. 2015; Wisdom et al. 2016; Krueger et al.
2017; Arjovsky et al. 2016) so that any spatial/temporal structure is removed. It has been
shown in Bai et al. (2018) that TCNs outperform RNN baselines for both sequential MNIST
and P-MNIST. Here, we introduce periodicity to P-MNIST by introducing a random cyclic-
permutation to each P-MNIST sequence. Because any of the 784 locations could be the zero
index after permutation, only the relative, cyclic ordering of the sequence remains meaning-
ful. Just as the case of periodic variable star classification, doing so essentially wraps each
P-MNIST sequence in a ring whereby the “initial phase” of the sequence becomes a nuisance
parameter and is no longer relevant for the classification.

We test the iResNet and the iTCN against their non-invariant counterparts to show
improvements enabled by cyclic-permutation invariance. A hyper-parameter search is done
for iResNet/ResNet over depth (9, 10), initial hidden dimension (24, 48), maximum hidden
dimension (120, 200), and for iTCN/TCN over depth (8, 9), kernel size (3, 7), and hidden
dimension (24, 48, 96). We present the PP-MNIST test accuracies in Table 2.3. Both
invariant networks outperform their non-invariant counterparts, especially in the case of the
iTCN/TCN. The poor performance of TCN can be partially attributed to the exceptionally
large (784) number of possible initial phases for each sequence, four times more than the
L = 200 sequences for periodic variable star classification. On the other hand, the regular
ResNet performed relatively well. This is not surprising as the ResNet is by design different
from the TCN — the ResNet is based on localised feature extraction where features are
condensed through pooling layers, but the TCN is a sequential model subject to the causal
condition, which requires it to memorize features extracted in temporal order.

2.6 Conclusions
Large scale time-domain surveys have both generated the need for, and enabled the

training of, effective data-driven classification techniques for both periodic and non-periodic
variable sources. In this work, as in other fields with established benchmark datasets, we
have decoupled methodology from data and shown that the cyclic-permutation invariant net-
works achieve state-of-the-art accuracies for periodic variable star classification on datasets
previously acquired. While the networks perform well on light curves with few data-points,
we did not test the efficacy of such networks in a streaming context, where the period is
not known a priori. Future work could explore how the invariant networks can be used in a
streaming context, as well as efficient neural and non-neural ML methods for non-periodic
data (Tachibana et al. 2020; Möller & de Boissière 2020; Narayan et al. 2018), which when
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Figure 2.4: Construction of the PP-MNIST experiment. Pixel value is color coded with blue
(0) transitioning to yellow (255). (top) The original 28×28 MNIST image and the same
image with a fixed pixel order permutation. (middle) The P-MNIST 1D sequence, where the
red vertical dashed lines indicate that no phase-shift is applied. (bottom) The PP-MNIST 1D
sequence, which is the same sequence as the middle row, but with a phase-shift. The vertical
red dashed lines indicate the initial-phase of the PP-MNIST sequence, whose numerical value
is indicated in the bottom left corners.
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combined with the methodology for periodic sources introduced here, can serve as the basis
of a generalised classification framework for modern time-domain surveys.

2.7 Neural Network Hyper-Parameter Optimization
We search for optimal hyper-parameters independently for each network and for each

dataset with the validation set in a fixed train/validation/test split. For all networks, among
possible combinations of input features: phase interval (∆ϕϕϕ), magnitude (m), magnitude
change (∆m), and gradient (∆m/∆ϕϕϕ), we find the combination of (∆ϕϕϕ,m) to yield the
highest validation accuracy. For iTCN/TCN, we perform a hyper-parameter search over
network depth (6, 7), hidden dimension (12, 24, 48), dropout (0, 0.15, 0.25), and kernel
size (iTCN/TCN: 2, 3, 5). For iResNet/ResNet, we perform a grid search over initial hidden
dimension (16, 32), maximum hidden dimension (32, 64), network depth (4, 5, 6), and kernel
size (3, 5, 7). For GRU/LSTM, we search over network depth (2, 3), hidden dimension (12,
24, 48), and dropout rate (0, 0.15, 0.25). We find that a dropout rate of 0.15 works best for
both GRUs and LSTMs across all three datasets, while no dropout works best for all other
networks.

All networks are trained with the ADAM optimiser (Kingma & Ba 2015) with initial
learning rates of 0.005, which are scheduled to decrease by a factor of 0.1 when training loss
does not decrease by 10% for 5 epochs. Models are saved at the best validation accuracy for
testing.

2.8 Data augmentation
Both the semi-invariant iResNet and non-invariant baseline networks potentially benefit

from data augmentation of the initial-phase during training. Using cyclic-permutations of
the input sequence as training-time data augmentation, we trained iResNets and ResNets
on the three datasets, after redoing hyperparameter optimisation. As seen in Table 2.4,
classification accuracies of both the iResNet and the ResNet are increased in most cases; the
iResNets still hold a statistically significant advantage over the ResNets.
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Table 2.4: Classification accuracies for networks with and without data augmentation. Ac-
curacies without data augmentation is identical to Table 2.1.

Model MACHO OGLE-III ASAS-SN
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−0.13%) (−0.25%+0.03%

−0.02%) (−0.64%+0.01%
−0.07%)

with phase data-augmentation
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Chapter 3

Likelihood-Free Inference of Roman
Binary Microlensing Events with
Amortized Neural Posterior Estimation

Fast and automated inference of binary-lens, single-source (2L1S) microlensing events
with sampling-based Bayesian algorithms (e.g., Markov Chain Monte Carlo; MCMC) is
challenged on two fronts: high computational cost of likelihood evaluations with microlens-
ing simulation codes, and a pathological parameter space where the negative-log-likelihood
surface can contain a multitude of local minima that are narrow and deep. Analysis of 2L1S
events usually involves grid searches over some parameters to locate approximate solutions
as a prerequisite to posterior sampling, an expensive process that often requires human-in-
the-loop domain expertise. As the next-generation, space-based microlensing survey with
the Roman Space Telescope is expected to yield thousands of binary microlensing events, a
new fast and automated method is desirable. Here, we present a likelihood-free inference
(LFI) approach named amortized neural posterior estimation, where a neural density esti-
mator (NDE) learns a surrogate posterior p̂(θθθ|x) as an observation-parametrized conditional
probability distribution, from pre-computed simulations over the full prior space. Trained
on 291,012 simulated Roman-like 2L1S simulations, the NDE produces accurate and precise
posteriors within seconds for any observation within the prior support without requiring a
domain expert in the loop, thus allowing for real-time and automated inference. We show
that the NDE also captures expected posterior degeneracies. The NDE posterior could then
be refined into the exact posterior with a downstream MCMC sampler with minimal burn-in
steps.

3.1 Introduction
When the apparent trajectory of a foreground lens star passes close to a more distant

source star, the gravitational field of the lens will perturb the light rays from the source
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which results in a time-variable magnification. Such are single-lens, single-source (1L1S)
microlensing events. Binary microlensing events occur when the lens is a system of two
masses: either a binary star system or a star-planet configuration. Observation of such
events provides a unique opportunity for exoplanet discovery as the planet-to-star mass
ratio may be inferred from the light curve without having to detect light from the star-
planet lens itself (see Gaudi 2010 for a review). A next-generation microlensing survey with
the Roman Space Telescope (Spergel et al. 2015; hereafter Roman) is estimated to discover
thousands of binary microlensing events over the duration of the 5-year mission span, many
with planetary-mass companions (Penny et al. 2019), which is roughly an order of magnitude
more than events previously discovered (see Gaudi 2012 for a review).

While single-lens microlensing events are described by a simple analytic expression, binary
microlensing events require numerical forward models that are computationally expensive. In
addition, binary microlensing light-curves exhibit extraordinary phenomenological diversity,
owing to the different geometrical configurations for which magnification could take place.
This translates to a parameter space for which the likelihood surface suffers from a multitude
of local minima that are disconnected, narrow, and deep; this issue significantly hampers any
attempt of direct sampling-based inference such as MCMC where the chains are initialized
from a broad prior. As a result, binary microlensing events thus far have generally been
analyzed on a case-by-case basis.

For some planetary-mass-ratio events, heuristics could be used to “read off” an approxi-
mate solution from the planetary anomaly in the light curve (Gaudi & Gould 1997; Gould
& Loeb 1992). Khakpash et al. (2019) applied the heuristics described in Gaudi & Gould
(1997) on simulated Roman light-curves and found that the projected binary separation can
be recovered very well for low-mass-ratio events, and the binary mass-ratios within an order
of magnitude for events with wide and close caustic topologies.

More generally, an expensive grid search is usually conducted over a subset of parameters
to which the magnification pattern is hyper-sensitive: i.e., binary separation, mass ratio, and
the source trajectory angle of approach (e.g. Herrera-Martín et al. (2020)). At each grid-
point, the remaining parameters are searched for with simple Nelder-Mead optimization
(Nelder & Mead 1965) or MCMC. The fixed-grid solutions are then used to seed full MCMC
samplings to refine solutions and sample the posteriors. This status quo approach, which
is both computationally expensive and requires domain expertise in the loop, thus presents
a great challenge to analyze the thousands of binary microlensing events expected to be
discovered by Roman.

Recent progress in deep learning provides a promising path for a solution. In particu-
lar, both Convolutional (CNN; LeCun et al. 2015) and Recurrent Neural Networks (RNN
Hochreiter & Schmidhuber 1997; Cho et al. 2014) have emerged as powerful alternatives
to feature engineering of astronomical time-series (e.g. Naul et al. 2018). Given sufficient
training data, CNN/RNNs could learn to compress the “high-dimensional” raw observations
into “low-dimensional” feature vectors—automatically learning to produce features that are
useful for downstream tasks such as classification or regression. Vermaak (2003) applied a
more basic form of the neural network — the multilayer perceptron (MLP) — to predict
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for 2L1S parameters on simulated noise-free light-curves, and achieved a success rate of 68%
when the MLP results were further refined with Nelder-Mead optimization (Nelder & Mead
1965). However, there remains a large gap between the proof-of-concept work of Vermaak
(2003) and application to real data due to the omission of noise and restrictions in param-
eter space. Additionally, machine learning has also been previously applied to discover and
classify microlensing events (Wyrzykowski et al. 2015; Godines et al. 2019; Mróz 2020).

In addition to advances in this “representation learning,” neural networks have also en-
joyed significant progress in modeling probability distributions, otherwise known as neural
density estimation, where the fundamental task is learn distributions from samples of that
distribution. Both autoregressive models (Germain et al. 2015; Oord et al. 2016) and flow-
based models (Papamakarios et al. 2017; Dinh et al. 2017) are NDEs that are highly capable of
modeling complicated and multi-modal distributions, which can not only evaluate probabil-
ity densities, but also sample from that distribution. NDEs thus allow for flexible uncertainty
quantification and degenerate solutions which were not possible in Vermaak (2003).

The advancement in feature learning and NDE has allowed for accelerated progress in the
field of likelihood-free inference (LFI), also known as simulation-based inference (SBI), which
has been motivated by inference problems without a tractable likelihood. LFI is an umbrella
term that encompasses a wide range of inference algorithms that do not require explicit
evaluation of the likelihood. Under our particular LFI approach called amortized neural
posterior estimation, an NDE learns a surrogate posterior as an observation-parametrized
conditional probability distribution, from pre-computed simulations over the full prior space.
A “featurizer” neural network is employed to compress raw observation into a feature vector
which parametrizes the NDE. Inference is amortized in that all of the computation cost
of simulation is paid upfront—likelihood evaluation with the slow forward simulator is no
longer required, thus allowing for fast inference. For other neural LFI instances, neural net-
works could learn the likelihood (Papamakarios et al. 2019) or the likelihood-ratio (Thomas
et al. 2022) as surrogates to accelerate sampling-based inference algorithms like MCMC (see
Cranmer et al. 2020 for an overview).

In this paper, we present a likelihood-free inference approach for binary microlensing
where an NDE learns a surrogate posterior p̂(θθθ|x) as an observation-parametrized conditional
distribution from (xi, θθθi) samples of simulated microlensing light-curves with the associated
microlensing parameters. After training, the NDE can automatically generate posterior
samples for future observations effectively in real-time. Because of the speed and performance
without supervision by domain experts, the approach we introduce here has great potential
for batch inference tasks such as those posed by Roman. Our preliminary results were
reported as an extended abstract in Zhang et al. (2020). The work herein supersedes and
expands upon that work.

We first lay out our inference framework in Section 3.2. Training set construction under
the context of Roman is discussed in Section 3.3. In Section 3.4, we demonstrate the ability
of the NDE to capture degenerate solutions and also present a systematic evaluation of the
NDE performance over a large number of test events. In Section 3.5, we suggest future
directions including a potential addition of a down-stream MCMC algorithm to refine the
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Figure 3.1: Schematic illustration of the inference framework based on conditional NDE. The
bottom left shows a microlensing light-curve in arbitrary units which is abstracted into the
length-7200 vector (x) above. The featurizer composed of a combination of ResNet and GRU,
shown in the trapezoid, compresses the light-curve into a low-dimensional feature vector h.
The masked autoregressive flow (MAF), composed of K blocks of masked autoencoder for
density estimation (MADE), is shown in the dashed box. Each MADE block takes in the
feature vector h and predicts scaling (ααα) and shifting (µµµ) factors, which parameterizes an
invertible affine transformation between adjacent random variables (e.g., z0 and z1) shown in
the dotted box. The left-most random variable is the mixture-of-Gaussian base distribution
whereas the right-most random variable (zK) is the posterior (θθθ).

NDE posterior into the exact posterior, with minimal additional computation time.

3.2 Method
NDEs are neural networks that are capable of learning distributions from samples. We

train an NDE to learn a surrogate posterior p̂(θθθ|x) as an observation-parametrized condi-
tional distribution from (xi, θθθi) samples of simulated microlensing light-curves, where θθθi are
the physical parameters and xi ∈ RN is the light curve with N data-points. The training
objective is to minimize the Kullback–Leibler (KL) divergence (DKL), or relative entropy,
which is a measure of how one probability distribution (Q) is different from a reference
probability distribution (P ):

DKL(P ||Q) = Ex∼p(x)

[
log

(
p(x)

q(x)

)]
(3.1)
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In this case, we would like to minimize the KL divergence from the NDE surrogate posterior
p̂(θθθ|x) to the true posterior p(θθθ|x):

ϕ = argmin(DKL(p(θθθ|x))||p̂ϕ(θθθ|x)))
= argmin(Eθθθ∼p(θθθ),x∼p(x|θθθ)[log(p(θθθ|x))− log(p̂ϕ(θθθ|x))])
= argmax(Eθθθ∼p(θθθ),x∼p(x|θθθ)[p̂ϕ(θθθ|x)]), (3.2)

where ϕ represents the neural network parameter, and E denotes the mathematical expec-
tation over the specified distribution.

In light of Equation 3.2, the NDE is therefore trained through Maximum Likelihood
Estimation (MLE) on a training set with physical parameters drawn from the prior p(θθθ)
and light-curves drawn from the likelihood function, which is the Poisson measurement noise
model on top of the noise-free microlensing light curve g(θθθ) (in the number of photons)
which, for simplicity, is assumed to be in the Gaussian limit:

p(x|θθθ) = N
(
µ = g(θθθ), σ =

√
g(θθθ)

)
. (3.3)

The noise-free light-curve, in turn, is determined by the baseline source flux (Fsource),
the magnification time-series produced by the microlensing physical forward model A(θθθ),
and the constant blend flux, which is the flux from the lens star and any other star that is
unresolved from the source star:

g(θθθ) = A(θθθ) · Fsource + Fblend. (3.4)

We use a 20-block Masked Autoregressive Flow (MAF) (Papamakarios et al. 2017) to
model p̂(θθθ|x), and a ResNet-GRU network to extract features (h) from the light curve (x).
We do not distinguish between p̂(θθθ|x) and p̂(θθθ|h) where the former is meant to refer to the
“featurizer+NDE” model and the latter is meant to refer to the NDE model alone that is
explicitly conditioned on h. Figure 3.1 presents a diagram of our neural posterior estimation
framework. The ResNet-GRU network is comprised of a 18-layer 1D ResNet (Residual
Convolutional Network; He et al. 2016) and a 2-layer GRU (Gated Recurrent Network; Cho
et al. 2014). We describe the neural networks in detail below.

3.2.1 Masked Autoregressive Flow

The masked autoregressive flow (MAF) belongs to a class of NDE called normalizing
flows, which models the conditional distribution p̂(θθθ|x) as an invertible transformation f
from a base distribution πz(z) to the target distribution p̂(θθθ|x). The base density πu(z)
is required to be fast to evaluate and is typically chosen to be either a standard Gaussian
or a mixture of Gaussians for the MAF. The basic idea is that if the MAF, conditioned
on the observation x, could learn to map the posterior to a standard Gaussian, then the
inverse transformation could enable sampling of the posterior by simply sampling from that
standard Gaussian.
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As binary microlensing events often exhibit degenerate, multi-modal solutions, we use
a mixture of eight standard multivariate Gaussians, each with 8 dimensions, as the base
distribution. The posterior probability density p̂(θθθ|x) is evaluated by applying the inverse
transformation f−1 from θθθ to z:

p̂(θθθ|x) = πz

(
f−1(θθθ)

) ∣∣∣∣det(∂f−1

∂θθθ

)∣∣∣∣ , (3.5)

where πz(f
−1(θθθ)) represents the probability density for the base distribution (πz) evaluated

at f−1(θθθ), while the second term—the determinant of the Jacobian—corresponds to the
“compression” of probability space.

The MAF is built upon blocks of affine transformations where the scaling and shifting
factors for each dimension are computed with a Masked Autoencoder for Distribution Esti-
mation (MADE; Germain et al. 2015). For a simple 1-block case, the inverse transformation
from θθθ to z is expressed as:

zi = (θi − µi) · exp (−αi), (3.6)
In the above equation,

µi = fµi
(θθθ1:i−1;x) (3.7)

αi = fαi
(θθθ1:i−1;x) (3.8)

are the scaling and shifting factors modeled by MADE subject to the autoregressive condition
that the transformation of any dimension can only depend on those prior to it according to
a predetermined ordering. This allows the Jacobian of f−1 to be triangular, whose absolute
determinant can be easily calculated as:∣∣∣∣det(∂f−1

∂θθθ

)∣∣∣∣ = exp
(
−
∑

i
αi

)
, (3.9)

where αi = fαi
(θθθ1:i−1;x).

To sample from the posterior, the forward transformation θθθ = f(z) where z ∼ πz is
applied:

θi = zi · expαi + µi, (3.10)
where µi and αi are computed in the same manner as the inverse transformation.

The MAF is built by stacking many such affine transformation blocks, M1,M2, . . . ,MK ,
where MK models the invertible transformation fK between the posterior (zK) and inter-
mediate random variable zK−1, MK−1 models that between intermediate random variables
zK−1 and zK−2 and so on, and finally the base random variable z0 is modeled with the
mixture-of-Gaussian distribution. M1 also computes the mixture weights. The composite
transformation can be written as f = f1 ◦ f2 ◦ . . . ◦ fK and the posterior probability density
is now:

p̂(θθθ|x) = πz

(
f−1(θθθ)

) K∏
i=1

∣∣∣∣det( ∂f−1
i

∂zi−1

)∣∣∣∣ (3.11)
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where it is understood that zK := θθθ. The log-probability of the posterior is then, by Equation
3.9,

log p̂(θθθ|x) = log[πz

(
f−1(θθθ)

)
] +

K∑
i=1

log

∣∣∣∣det(∂f−1
i

∂zi−1

)∣∣∣∣
= log[πz

(
f−1(θθθ)

)
]−

K∑
i=1

N∑
j=1

αi
j,

(3.12)

where αi
j is the jth component of the scale factor in Mi, as in Equation 3.6. This serves as

the optimization objective (see Section 3.3.3).
Autoregressive models are sensitive to the order of the variables. The original MAF

paper uses the default order for the autoregressive layer closest to θθθ and reverses the order
for each successive layer. In this work, we adopt fixed random orderings for each MAF block
which we find to allow for better expressibility. The random seed of the ordering serves as a
hyper-parameter to be optimized on.

3.2.2 Featurizer Network

A custom 1D ResNet with a down-stream 2-layer GRU is used as the light curve featurizer
which takes preprocessed light curves (x) as input and outputs a low-dimensional feature
vector (h). The ResNet used in this study shares the identical architecture as Zhang &
Bloom (2021) (Chapter 2; except for hyper-parameters) and consists of 9 identical residual
blocks, each of which is composed of two convolutions followed by layer normalization (Ba
et al. 2016). A residual connection is added between each adjacent residual block, which
acts as a “gradient highway” to assist network optimization. A MaxPool layer is applied
in between every two ResNet layers, where the sequence length is reduced by half and the
feature dimension doubled until a specified maximum. This results in an output feature
map of length L = 56 and dimension D = 256, when is then fed into the GRU network
that sequentially processes information across the temporal dimension and outputs a single
vector of D = 256 which then serves as the conditional input to the MAF.

3.3 Data
Training data is generated within the context of the Roman Space Telescope Cycle-7

design (see Penny et al. 2019). We first simulate 106 2L1S magnification sequences with the
microlensing code MulensModel (Poleski & Yee 2019); each sequence contains 144 days at a
cadence of 0.01 day, corresponding to the planned Roman cadence of 15 minutes (Penny et al.
2019). These sequences are chosen to have twice the length of the 72-day Roman observation
window to facilitate sampling from a t0 ∼ Uniform(0, 72) prior (see Section 3.3.1). We then
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fit each simulated magnification time-series with a Paczyński single-lens-single-source (1L1S)
model (assuming S/Nbase = 200 and fs = 1; see Section 3.3.2) and discard those that are
consistent with 1L1S (χ2/dof < 1). This results in a final dataset of 291,012 light curves,
among which 95% (276,461) are used as training set and the remaining 5% (14,551) as test
set.

3.3.1 Prior

Assuming rectilinear relative motion of the observer, lens, and source, binary microlensing
(2L1S) events are characterised by eight parameters: binary lens separation (s), mass ratio
(q), angle of the source trajectory with respect to the projected binary lens axis (α), impact
parameter (u0), time of closest approach (t0), Einstein ring crossing timescale (tE), finite
source size (ρ), and source flux fraction (fs). α is the angle between the vector pointing from
the primary to the secondary and the source trajectory vector, measured counterclockwise in
degrees. u0 and t0 are defined with respect to the binary lens center-of-mass (COM). Where
applicable, the parameters are normalized to the Einstein ring length-scale or the Einstein
ring crossing time-scale of the total mass of the lens system. t0 and tE are in units of days.
We simulate 2L1S events based on the following analytic priors:

s ∼ LogUniform(0.2, 5)

q ∼ LogUniform(10−6, 1)

α ∼ Uniform(0, 360) (3.13)
u0 ∼ Uniform(0, 2)

t0 ∼ Uniform(0, 72)

tE ∼ TruncLogNorm(1, 100, µ = 101.15, σ = 100.45)

ρ ∼ LogUniform(10−4, 10−2)

fs ∼ LogUniform(0.1, 1)

We note that because of the χ2
1L1S/dof < 1 cutoff, the effective prior is the parameter

distribution for the 276,461 training set simulations, different from the prior above. As
shown in Figure 3.2, large log q and small u0, which otherwise have flat priors, are strongly
preferred.

During training, a random 72-day segment is chosen on the fly from each 144-day mag-
nification sequence, equivalent to prescribing a uniform prior on t0. The truncated normal
distribution for tE is an approximation of a statistical analysis based on OGLE-IV data
(Mróz et al. 2017). The lower limit of q = 10−6 corresponds to the mass ratio between
Mercury and a low-mass (M ∼ 0.1M⊙) M-dwarf star, highlighting the superb sensitivity of
Roman. The source flux fraction is defined as the ratio between the source flux and the total
baseline flux

fs =
Fsource

Fsource + Fblend

. (3.14)
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Figure 3.2: Fraction of the 106 simulations passing the χ2
1L1S/dof > 1 cutoff as a function

of each parameter, shown in the gray histograms. The original analytic priors used to
generate the 106 simulations are shown in red-dashed lines up to a normalization factor. For
parameters with a flat original prior, the gray histogram is also the effective training set
prior up to a normalization factor. The t0 and fs distributions follow the original priors as
they are sampled on the fly during training.
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3.3.2 Light-curve realization

The magnification sequences are converted into light-curves during training on the fly
by multiplying with the baseline pre-magnification source flux before adding the constant
blend flux and applying measurement noise. For simplicity, we only consider photon-counting
noise from the lens and fixed blend flux, assumed to be in the Gaussian limit of the Poisson
noise (Equation 3.3), where the standard deviation of each photometric measurement is the
square root of flux measurement in photon counts. Studies of the bulge star population
show that the apparent magnitude largely lies within the range of 20 mag to 25 mag (Penny
et al. 2019: Figure 5). The Roman/WFIRST Cycle 7 design has the zero-point magnitude (1
count/s) at 27.615 mag for the W149 filter. With exposure time at 46.8 s, the aforementioned
magnitude range corresponds to signal-to-noise (S/Nbase) ratios between 230 and 23 for the
baseline flux, which we randomly and uniformly sample during training. On-the-fly sampling
of S/Nbase and fs also serves as data augmentation, which refers to the process of expanding
the effective size of the training set.

3.3.3 Pre-processing and Training

Network optimization is performed with ADAM (Kingma & Ba 2015) at an initial learning
rate of 0.001 and batch size 512, which decays to 0 according to a cosine annealing schedule
(Loshchilov & Hutter 2017) for 250 epochs, at which point the training terminates. To ensure
that there is no over-fitting, we first reserved 20% of the training set as a validation set. After
confirming the absence of over-fitting, we then proceed with the full training set. We apply
data augmentation on α by changing the direction of the source trajectory: the temporal
order of each sequence is reverted and α becomes −(α+180) mod 360. Each training epoch
takes ∼ 6 minutes on four NVidia GTX 2080 Ti GPUs with a total training time of around
25 hours. As an evaluation metric, the final average negative log-likelihood (NLL) is −16.316
on the training set and −16.177 on the test set, where a lower value represents a better model
fit to the data.

3.4 Results
The trained model is able to generate accurate and precise posterior samples at a rate

of 105 per second on one GPU, effectively in real-time. This is much faster compared to the
∼ 1 per second simulation speed of the forward model MulensModel on one CPU core. In
this section, we first highlight the ability of the NDE to capture multi-modal solutions by
providing NDE posteriors of representative events where we set the baseline S/Nbase = 200.
Then, the quality of NDE posteriors is systematically analyzed by examining the accuracy
and calibration properties on a test set of 14,511 simulated light-curves.
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Figure 3.3: (a) NDE posterior for a central-caustic passing event. tE and t0 are in units of
days, α in degrees, u0, s, and ρ in units of θE. Filled contours show 1/2/3σ regions. The
ground truth close solution is marked with orange cross-hairs. The close and wide solutions
are marked with a red cross and a blue diamond, respectively. (b) Close-up view of the
light-curve realizations normalized to the minimum fluxes for both solutions, in the same
color-coding as the left panel. The 0.01 day cadence and measurement noise is negligibly
small on the scale of the figure, and therefore not shown. (c) Caustic structures as well as
trajectories for the two solutions in the same color-coding, centered on the center of caustic.
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Figure 3.4: Resonant-caustic-passing event; same figure caption as Figure 3.3. Here, a
degenerate solution is seen at s < 1, whose two triangular caustics cause a similar suppression
pattern as the resonant caustic.
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Figure 3.5: Example event exhibiting a blunt and flat light-curve near the peak, which has
a 5-fold degenerate NDE posterior; same figure caption as Figure 3.3 for (a) and (b). (c)
Caustic structures and source trajectories for the five solutions. The same color-coding is
shared across the three panels.
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Table 3.1: Solutions for the example central-caustic passing event. tE and t0 are in units of
days, α in degrees, u0, s, and ρ in units of θE. Uncertainties are 1σ marginal uncertainties.

truth close wide

log10(s) −0.200 −0.1923+0.0034
−0.0036 0.2301+0.0049

−0.0040

log10(q) −2.000 −2.0252+0.0144
−0.0147 −1.9761+0.0177

−0.0155

α 300.000 299.8524+0.2457
−0.2658 299.5919+0.2469

−0.3139

u0 0.050 0.0505+0.0002
−0.0002 0.0403+0.0007

−0.0010

t0 26.000 26.0027+0.0051
−0.0063 26.1054+0.0131

−0.0075

log10(tE) 1.301 1.2993+0.0007
−0.0008 1.3020+0.0010

−0.0009

log10(ρ) −2.301 −2.2075+−0.0044
−0.1133 −2.3421+0.0737

−0.0210

fs 0.120 0.1211+0.0003
−0.0003 0.1214+0.0004

−0.0003

Table 3.2: Solutions for the example resonant-caustic passing event. Same units as Table
3.1. Uncertainties are 1σ marginal uncertainties.

truth close resonant

log10(s) 0.000 −0.0484+0.0017
−0.0006 0.0018+0.0010

−0.0003

log10(q) −3.301 −3.3008+0.0098
−0.0201 −3.2858+0.0194

−0.0121

α 110.000 109.7839+0.2044
−0.1526 109.9666+0.1657

−0.2093

u0 0.100 0.1004+0.0003
−0.0003 0.1003+0.0003

−0.0003

t0 26.000 25.9980+0.0048
−0.0064 26.0014+0.0047

−0.0062

log10(tE) 1.301 1.3012+0.0007
−0.0008 1.3012+0.0008

−0.0007

log10(ρ) −2.301 −2.5335+0.0492
−0.2505 −2.5325+−0.0041

−0.4117

fs 0.200 0.1996+0.0006
−0.0005 0.1995+0.0006

−0.0005
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Table 3.3: Degenerate solutions for the binary-planetary degenerate event shown in Figure 3.5. Same units as Table
3.1. Uncertainties are 1σ marginal uncertainties.

truth planetary A planetary B binary A binary B binary C

log10(s) −0.350 −0.3520+0.0037
−0.0049 0.3242+0.0035

−0.0035 −0.6373+0.0037
−0.0047 −0.6450+0.0026

−0.0030 −0.6267+0.0046
−0.0043

log10(q) −1.700 −1.6849+0.0275
−0.0140 −1.6464+0.0190

−0.0110 −0.3729+0.0250
−0.0273 −0.0813+0.0297

−0.0250 −0.0609+0.0162
−0.0244

α 80.000 80.0207+0.2170
−0.3531 79.0411+0.2682

−0.3430 209.7867+0.8607
−0.8053 304.7107+0.6110

−0.6557 123.4429+0.2513
−1.3218

u0 0.100 0.1027+0.0009
−0.0006 0.1390+0.0022

−0.0016 0.1082+0.0010
−0.0011 0.1160+0.0012

−0.0011 0.1197+0.0009
−0.0013

t0 26.000 25.9926+0.0084
−0.0070 26.3604+0.0245

−0.0169 25.8701+0.0089
−0.0080 26.2091+0.0065

−0.0128 26.2230+0.0102
−0.0101

log10(tE) 1.699 1.6874+0.0035
−0.0016 1.6927+0.0024

−0.0022 1.6824+0.0038
−0.0025 1.6550+0.0037

−0.0030 1.6443+0.0045
−0.0022

fs 0.200 0.2048+0.0018
−0.0010 0.2065+0.0015

−0.0011 0.2114+0.0027
−0.0014 0.2280+0.0030

−0.0015 0.2357+0.0023
−0.0021
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3.4.1 Central-Caustic Passing Event

Figure 3.3a shows the NDE posterior for an example central-caustic-passing event where a
classic “close-wide” degeneracy is clearly exhibited by the s-1/s behavior (Griest & Safizadeh
1998; Dominik 1999). Table 3.1 presents the ground truth 2L1S parameters of this event
as well as the “close” and “wide” solutions, calculated as the modes of their respective dis-
tributions. The fact that fs is slightly underestimated is related to a systematic effect as
discussed in Section 3.4.4. Although the source is expected to pass the caustic center at
the same distances for the two cases, Figure 3.3a shows a bimodal solution for u0 as well
because u0 has been defined with respect to the center-of-mass (COM), rather than the
caustic center. While the caustic center is centered on the COM for close-separation events,
for wide-separation events there is an offset from the COM of

δ =
s · q
1 + q

− q

s · (1 + q)
(3.15)

where the first term accounts for the offset of the caustic center from the location of the
primary (Han 2008), and the second term, the offset of the primary from the center of mass.
Positive offsets are directed toward the companion and vice versa. Plugging in the wide
solution, we expect an offset of ∆u0 = 0.0116, which is close to the actual ∆u0 = 0.0099.
Magnification curves of the two solutions, as well as the ground truth are plotted in Figure
3.3b, which are hardly distinguishable from one another. Figure 3.3c shows the caustic
structures of the two degenerate solutions.

3.4.2 Resonant-Caustic Passing Event

We also highlight an example of a resonant-caustic passing event, whose parameters and
solutions are shown in Table 3.2. As illustrated in Figure 3.4, the NDE finds an additional so-
lution at s < 1, whose triangular caustics are causing a similar weak de-magnification as the
resonant caustics (also see Figure 7 in Gaudi 2010). This type of degeneracy has been pre-
viously observed in the microlensing event OGLE-2018-BLG-0677Lb (Herrera-Martín et al.
2020). Additionally, strong covariances are seen among u0, tE, and fs, as is also seen in
the previous example (Section 3.4.1). As first observed by Woźniak & Paczyński (1997),
in the fs ≪ 1 and u0 ≪ 1 regime where the baseline flux is dominated by the blend flux,
there is strong degeneracy between the three parameters for 1L1S events. While the binary
perturbations break some of that degeneracy, strong covariances remain.

3.4.3 Binary-Planetary Degeneracy

We also provide a fascinating 5-fold-degenerate example that is similar to the degeneracy
reported in Choi et al. (2012) where a light curve that is blunt and flat near the peak can
be explained by either a binary case or a planetary case. Here, we simulate a close-topology,
planetary mass ratio (q = 10−1.7) event where the source trajectory passes through the
negative perturbation region towards the back end of the arrowhead-shaped central caustic
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as in the case of the “planetary A/B” caustic in Figure 3.5. Choi et al. (2012) noted that a
similar perturbation can occur for the binary case when the source trajectory passes through
the negative perturbation region between two adjacent cusps of the astroid-shaped central
caustic, as in case of the “binary A/B/C” caustics in Figure 3.5; also see Figure 1 in their
paper.

As shown in Figure 3.5, all five degenerate solutions cause magnification patterns that
are hardly distinguishable. The two planetary solutions exhibit a close-wide degeneracy.
For the three binary solutions, the “binary B/C” solutions suggest two possible trajectories
(∼ 90/270 deg) for the same lens system configuration whereas “binary A” solution exhibits
a smaller mass ratio and a wider binary separation than “binary B/C”. We note that this
additional degeneracy in the mass ratio for the binary case was not reported in Choi et al.
(2012). It is not clear if this is a discrete or continuous degeneracy, nor if it is an “acciden-
tal degeneracy” that arises because of the relatively weak perturbation, or is due to some
underlying symmetry in the binary lens equation (e.g. Dominik 1999).

On the other hand, wide solutions for the binary case are largely absent from the NDE
posterior, apart from an inkling of density near log10(s) ∼ 0.69 which points to the expected
close-wide degeneracy for the binary solution. We note that the reason those degenerate
solutions are excluded is that, because of the offset between the COM and the central caustic
(Equation 3.15), wide-binary solutions would require t0 < 0, which has a prior probability
of zero.

3.4.4 Evaluating Performance

We present a systematic evaluation of all 14,551 test set events in the form of predicted
vs. truth scatter plots (Figure 3.6). Each test event light-curve is realized in the same fashion
as training time. As the NDE returns potentially multi-modal posteriors of arbitrary shape,
we compute the mode(s) for the marginal 1D distributions of the posterior and consider the
mode closest to the ground truth as the “predicted” value. The mode(s) is computed by first
fitting each with a 1D histogram of 100 bins and then searching for local maxima defined
as any bin count higher than that of the 20 adjacent bins. This limits the number of modes
to 5. Considering the purpose of the NDE posterior is to allow ultra-fast convergence of
a downstream sampling-based algorithm like MCMC to determine the exact posterior, as
long as the correct solution has substantial density in the NDE posterior, it should not raise
alarm if an alternative mode is mistakenly favored. Any degeneracies can be easily resolved
downstream. Therefore, it is sensible to allow the correct mode to be used as the predicted
value, even if another degenerate mode is incorrectly preferred.

As shown in the upper-left corner of each subplot in Figure 3.6, all parameters are
constrained at a rate of close to 100% except for the finite source effect for which only 14.2%
is constrained, as the source trajectory is required to either cross or pass close to a caustic for
ρ to be determined.1 We consider a parameter to be constrained if the probability density of

1Formally, effects on the light curve due to the finite size of the source are only significant if the gradient
of the magnification across the source has a significant second derivative. In practice, this condition is only
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Figure 3.6: Predicted vs. ground truth 2L1S parameters for 14,551 test-set 2L1S events.
tE and t0 are in units of days, α in degrees, u0, s, and ρ in units of θE. Single-mode
NDE posteriors are shown in black dots. For multi-model NDE posteriors, we color-code
the solution as follows: those for which the global mode is closest to the ground truth are
plotted in black; for cases where a minor mode is closest to the true value, this correct, minor
mode is plotted in orange whereas the incorrect global mode is plotted in blue. Red shadows
indicate 32–68th percentile (1σ) and 5–95 percentile (2σ) regions. Red-dashed lines show
the diagonal. In the upper left of each subplot, “constrain” refers to the percentage of events
whose NDE posterior poses sufficient constraint—the peak posterior probability must be at
least twice the prior probability. “Correct” refers to the percentage of constrained events
whose true parameter lies closest to the global mode.
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Figure 3.7: Corner plot for the marginal NDE posterior of an 1L1S event showing strong
degeneracy among the three 1L1S parameters: u0 in units of θE, tE in units of days, and fs.
Filled contours show 1/2/3/4σ regions. Small u0 and fs are strongly favored because of the
effective priors (Section 3.3.1) and a marginally informative likelihood.
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the 1D marginal distribution is more than twice the prior probability density at the global
mode.

The second row in each upper-left corner shows the frequency for which the correct mode
is preferred by NDE, that is, the ground truth is the closest to the major mode compared to
the minor modes(s), if any. If the ground truth is closer to a minor mode, the major mode is
plotted in blue while the major mode is shown in orange. We see clear degeneracy patterns
in log10(s) and α. For log10(s), the “wide-close” degeneracy is exhibited by the cluster around
the upper-left to lower-right diagonal. For α, there is also a cluster of events along the same
diagonal, indicating a degeneracy between α and −α. Such a degeneracy may happen for
nearly symmetrical central caustics along the direction perpendicular to the lens axis.

The 1-σ and 2-σ ranges of prediction, shown in red shadows, are clustered closely
around the diagonal for most parameters. We emphasize that the loose 1L1S-fitting cut-
off (χ2

1L1S/dof ∼ 1) means many of the test-set light-curves are only weakly perturbed by
the binary nature of the lens, and should explain a number of cases in which the mass-ratio
is poorly constrained. Interestingly, we find that there is a tendency to overestimate the
mass ratio in these cases. In addition, we notice that u0 and fs are underestimated for a
large number of cases while tE is correspondingly overestimated, though hardly visible in
Figure 3.6. This bias could be explained by the combined effect of a known degeneracy for
1L1S events and a distribution mismatch.

First, there exists a well-known degeneracy between u0, fs, and tE for single-lens events
which in our case, applies to events that are only weakly perturbed by the binary nature of
the lens. As demonstrated by Woźniak & Paczyński (1997), this degeneracy is most severe
for low magnification events (u0 ≫ 1), which is precisely where the biases occur as seen in
Figure 3.6. Indeed, restricted to test events with u0 < 0.15, the bias in fs and tE is largely
removed. Figure 3.7 shows the NDE posterior for an example u = 1.5 1L1S event which
demonstrates the strong degeneracy among u0, fs, and tE.

In the presence of strong degeneracies as such, the effective likelihood implicitly provided
by the featurizer is only marginally informative. In other words, the featurizer cannot dis-
tinguish among solutions within the continuous degeneracy, and only prescribes a region in
parameter space where the observation is about equally likely. Therefore, the posterior is
essentially dominated by the prior, which strongly favors small u0 and fs, as seen in Figure
3.7. Had the parameters for the weakly perturbed events in the test-set been drawn from the
same effective prior as the full training set, there would be little bias (under/over-estimation)
at all in Figure 3.6. However, quite the contrary, the distribution of the weakly-perturbed
is weighted towards the exact opposite direction of effective prior, e.g., towards large u0

and small log10(q)—those more likely to be excluded from the χ2
1L1S/dof > 1 cutoff. Be-

cause of this distribution mismatch, large u0 and small log10(q) occur much more often than
expected by prior belief, thus resulting in the under/overestimation bias. And because of
the strong covariances among u0, fs, and tE, the under-estimation of u0 translates into an
under-estimation of fs and an over-estimation for tE (Figure 3.7), which explains the biases

satisfied if the source passes within a few angular source radii of a caustic.
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Figure 3.8: Calibration plot showing the test-set distributions of the ground truth quantile
for the 1D marginal NDE posteriors. Dashed lines indicated the uniform distribution as
expected for a perfectly calibrated posterior.

seen in Figure 3.6.

3.4.5 Calibration Properties

A perfectly calibrated posterior knows how often it is right or wrong. In other words, the
quantile of the ground truth parameter under the NDE posterior should be expected to be
distributed uniformly. Figure 3.8 shows the quantile distribution for the 1D marginal NDE
posterior distributions for the same 14,551 test set inferences. The quantile distribution for
log10(q), log10(α), and t0 is concave-up, indicating that the NDE uncertainty is overestimated
and the true value lies closer to the center of the posterior more often than expected. This
suggests that the NDE finds it hard to contract the posterior in those dimensions, possibly
due to numerical optimization difficulties or insufficient neural network expressibility. On



3.5. DISCUSSION AND CONCLUSIONS 48

the other hand, distributions for the three parameters in the second row—log10(tE), u0, and
fs—demonstrate the systematic under/over-estimation as seen in Figure 3.6, where log10(tE)
is systematically overestimated and u0 and fs are underestimated. The quantile distributions
for log(s) and log10(ρ) are consistent with uniform distributions and are thus well-calibrated.

3.5 Discussion and Conclusions
We have demonstrated that amortized neural posterior estimation, a likelihood-free in-

ference method which uses a conditional NDE to learn a surrogate posterior, p̂(θθθ|x), greatly
accelerates binary microlensing inference—an approximate posterior could be produced in
seconds without the need for an expert in the loop. Our new approach is capable of capturing
a variety of degeneracies. For future work, it is straightforward to extend to higher-level ef-
fects such as parallax and binary motion by introducing additional parameters. Application
to more complex systems such as 3L1S may be fruitful, where the physical forward model is
orders of magnitude slower. In addition, the photometric noise model adapted in our study
is somewhat simplistic, and future work can explore how to adapt models trained with ideal
noise properties to fully realistic data with the help of image-based simulation pipelines such
as ones used in Penny et al. (2019). We discuss two additional aspects of our work below.

3.5.1 A hybrid NDE-MCMC framework

The NDE posterior is easily validated and/or refined by a downstream MCMC sampler.
While the NDE posterior is precise enough to allow for fast convergence of downstream
MCMC typically within hundreds of steps, we do notice that the precision of the exact
MCMC posterior could be more than order-unity higher in many cases. The precision of the
NDE posterior is determined by two kinds of uncertainty: data uncertainty and the model
uncertainty of the inference algorithm, the latter of which is negligible for MCMC. As neural
networks in practice are not infinitely expressive, in the limit of the highest-quality data,
the NDE model uncertainty is expected to dominate over data uncertainty. This is the case
for Roman data. Applied to much noisier and more sparsely sampled ground-based data,
we expect that data uncertainties will dominate over model uncertainties, thus allowing the
NDE posterior to converge towards the exact posterior.

3.5.2 Choice of Coordinate System

For all events in this work, we have adopted the center-of-mass (COM) coordinate system,
which is the default in MulensModel but not the most efficient reference frame in the sense
that more than 70% of the 1 million simulations turn out to be consistent with a 1L1S
model. For example, most 2L1S configurations with large u0 do not pass close to either
the central caustics or the planetary caustics. For parts of the parameter space, alternative
reference coordinates may be more descriptive or useful. For example, the caustic-center



3.5. DISCUSSION AND CONCLUSIONS 49

frame is preferred for binary and/or wide-separation events for which there is an offset of the
caustic-center from the COM. Doing so recovers the missing wide/binary solution in Section
3.4.3 without the need to expand the prior to include negative t0. Additionally, planetary-
caustic passing events are also rare; for source trajectories far from the central caustics, most
do not pass close to the planetary caustic and as a result, the magnification is frequently
indistinguishable from 1L1S. For future work, a hybrid and self-consistent coordinate system
could be used.
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Chapter 4

A Ubiquitous Unifying Degeneracy in
Two-Body Microlensing Systems

While gravitational microlensing by planetary systems (Mao & Paczyński 1991; Gould &
Loeb 1992) provides unique vistas on the properties of exoplanets (Gaudi 2012), observations
of a given 2-body microlensing event can often be interpreted with multiple distinct phys-
ical configurations. Such ambiguities are typically attributed to the close–wide (Griest &
Safizadeh 1998; Dominik 1999) and inner–outer (Han et al. 2018) types of degeneracies that
arise from transformation invariances and symmetries of microlensing caustics. However,
there remain unexplained inconsistencies (e.g., Yee et al. 2021) between aforementioned the-
ories and observations. Here, leveraging a fast machine learning inference framework (Zhang
et al. 2021) (Chapter 3), we present the discovery of the offset degeneracy, which concerns a
magnification-matching behaviour on the lens-axis and is formulated independent of caustics.
This offset degeneracy unifies the close–wide and inner–outer degeneracies, generalises to
resonant topologies, and upon reanalysis, not only appears ubiquitous in previously published
planetary events with 2-fold degenerate solutions, but also resolves prior inconsistencies. Our
analysis demonstrates that degenerate caustics do not strictly result in degenerate magni-
fications and that the commonly invoked close–wide degeneracy essentially never arises in
actual events. Moreover, it is shown that parameters in offset degenerate configurations are
related by a simple expression. This suggests the existence of a deeper symmetry in the
equations governing 2-body lenses than previously recognised.

4.1 Discovery
In search for new types of microlensing degeneracies, we analysed the posterior param-

eter distribution of a large number of simulated 2-body microlensing events that exhibited
multi-modal solutions. With over 100 planetary microlensing events observed so far, new
degeneracies have indeed been serendipitously found in routine data analysis (e.g., Choi
et al. 2012). However, while an exhaustive search on examples of multi-modal event pos-
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teriors to constrain the existence of unknown degeneracies is plausible, such an endeavour
has been computationally prohibitive with the current status-quo microlensing data analysis
approaches. Thankfully, the recent application of likelihood-free inference (LFI) (see Cran-
mer et al. 2020 for an overview) to 2-body microlensing (Zhang et al. 2021) (Chapter 3)
has accelerated calculation of microlensing posteriors to a matter of seconds, thus allowing
posteriors for a large number of simulated events to be acquired with minimal computational
cost.

The key to the accelerated inference is the use of a Neural Density Estimator (NDE),
which is a particular type of neural network capable of modelling distributions that are
complex and multi-modal. Here, the NDE learns a mapping from microlensing light-curves
directly to posteriors, allowing future inferences to be done with the NDE alone in mere
seconds. Following Zhang et al. (2021) (Chapter 3), we trained an NDE on 691,257 events
simulated in the context of the Roman Space Telescope microlensing survey (Penny et al.
2019) so that our results would be directly relevant. The posteriors for a large number of
randomly generated events are then produced with the NDE. To identify events with multi-
modal solutions, we applied a clustering algorithm (Campello et al. 2013) which separates
each posterior into discrete modes. The exact maximum likelihood solution within each
posterior mode is then calculated with an optimisation algorithm (see Methods).

Visual inspection of multi-modal NDE posteriors revealed three apparent regimes of
degeneracy: the inner–outer degeneracy, the close–wide degeneracy, and degeneracies that
involve the resonant caustic which have also been previously observed (e.g., Herrera-Martín
et al. 2020; Yee et al. 2021) and studied (An 2021). The close-wide degeneracy states that
the central caustic shape is invariant under the s ↔ 1/s transformation for |1−s| ≫ q1/3 (An
2021) and q ≪ 1 (Figure 4.4a;c), where q refers to the planet-to-star mass ratio, and s refers
to their projected separation normalised to the angular Einstein radius (θE =

√
κMπrel),

which is the characteristic microlensing angular scale. Here, κ = 4G/(c2AU), M is the total
lens mass, and πrel =AU/Drel is the lens-source relative parallax. Interestingly, we found
that most cases of apparent close-wide degeneracies do not exactly abide by the expected
s ↔ 1/s relation even though most are in the |1 − s| ≫ q1/3 regime where it is expected
to hold. We also noticed that for degenerate events involving one resonant caustic, the
source trajectory always passed to the front end of the resonant caustic for wide-resonant
degenerate events, and the back end for close-resonant degenerate events.

To explore potential connections among these apparently discrete regimes of degeneracies,
and to better understand the reason why the expected s ↔ 1/s relation of the close-wide
degeneracy is almost never satisfied, we examined maps of magnification differences between
pairs of lenses with the same mass-ratio (q = 2× 10−4), keeping lens B fixed at sB = 1/1.1
and changing the projected separation sA of lens A. The sequence of magnification difference
maps in Fig. 4.1a–h immediately reveals the continuous evolution of a vertically-extended ring
structure where the magnification difference vanishes (also see Figure 4.5, 4.6). This null ring
originates near the primary star and grows increasingly large with increasing deviation from
the close-wide degenerate configuration of sA = 1/sB, at which point the null contracts
to a singular point (see Extended Figure 4.7 for a zoom-in). We may thus expect null-
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passing trajectories (cyan arrows in Fig. 4.1a–h) to have degenerate magnifications, which is
confirmed by light curves shown in Fig. 4.1i–p.

It is also immediately clear from Fig. 4.1f why the close-wide pair of configurations
(sA = 1/sB) does not result in degenerate magnifications for any trajectory shown: the
magnification differs everywhere on the lens-axis except for the singular null point. Thus for
any given trajectory, close to or far from the central caustic, one can always move the null to
the location of the source by shifting the planet location, to have the magnifications match
exactly on the lens axis. For caustic crossing trajectories, the vertical extension of the null,
located within the caustic (Figure 4.7c), also allows the width of the caustic to be matched
(Figure 4.1f). We also found that both location and shape of the null are independent of
q for q ≪ 1, thus allowing the above discussion to also hold in the |1 − s| ≫ q1/3 regime
(see Figure 4.8) of the close-wide degeneracy. This demonstrates that the above localised
degeneracy does not arise due to the imperfect matching of the central caustic shapes, but
is an fundamental behaviour of the lensing system in the limit of q ≪ 1.

We name this phenomenon the offset degeneracy to refer to the source-null matching
principle where the null is created by an offset of the planet location on the binary axis.
Notably, we found that the location of the null on the star-planet axis is well described by
a simple expression:

xnull =
1

2
(sA − 1/sA + sB − 1/sB) , (4.1)

Numerically determined xnull (Figure 4.2) shows that deviations from this analytic prescrip-
tion is consistently less than 5% except for extreme separation (| log10(s)| ≳ 0.5) cases where
sources do not pass close to either caustic and therefore do not yield substantial planetary
perturbation to be of practical interest. This expression can be interpreted as the midpoint
between the locations xc = sA,B − 1/sA,B of the planetary caustics, which arises from the
perturbative picture of planetary microlensing (Gould & Loeb 1992). However, the fact that
such an expression holds well into the resonant regime for which there are no planetary
caustics at all, and persists through caustic topology changes, likely suggests the existence
of much deeper symmetries in the gravitational lens equation for mass ratios of q ≪ 1 than
had previously been appreciated, and should be explored in future work.

We now consider the relationship between the offset degeneracy and the two previously
known mathematical degeneracies. Firstly, the offset degeneracy is a magnification degener-
acy while the two previous degeneracies are caustic degeneracies. Our analysis demonstrates
that degenerate caustics do not strictly result in degenerate magnifications. Furthermore,
by setting xnull = 0 in Equation 4.1, one immediately recovers the sA = 1/sB relation of
the close-wide degeneracy. This suggests that the close-wide degeneracy is more suitably
viewed as a transition point of the offset degeneracy where the central caustics happen to
be degenerate. On the other hand, while the inner-outer degeneracy implies an expression
similar to Equation 4.1 (Han et al. 2018), it arises from the symmetry of the Chang-Refsdal
(Chang & Refsdal 1979) approximation to the planetary caustics (Gaudi & Gould 1997).
However, cases attributed to the inner-outer degeneracy are often not in the pure Chang-
Refsdal regime (Yee et al. 2021) in which case the planetary caustics are asymmetrical.
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Also, even in the Chang-Refsdal regime, in observed events the source trajectory is fixed
and passes equidistant to two different planetary caustics, rather than two sides of the same
caustic. Therefore, the offset degeneracy not only resolves inconsistencies and unifies the two
previously known degeneracies into a generalised regime, but also relaxes the |1− s| ≫ q1/3

condition required by both cases.
Because of this unifying feature, we expected the offset degeneracy to be ubiquitous in

past events with 2-fold degenerate solutions and speculate that a large number of cases may
have been mistakenly attributed to the close-wide degeneracy. Therefore, we systematically
searched for previously-published events with two-fold degenerate solutions satisfying qA ≃
qB ≪ 1 (see SI). We found 23 such events, and then first compared the intercept of the
source trajectory on the star-planet axis to the location of the null predicted with Equation
4.1. We also invert Equation 4.1 to predict one degenerate sA from the other sB:

sA =
1

2

(
2x0 − (sB − 1/sB) +

√
[2x0 − (sB − 1/sB)]

2 + 4

)
, (4.2)

where x0 = u0/ sin(α) is the intercept of the source trajectory on the binary axis, u0 is the
impact parameter, and α is the angle of the source trajectory with respect to the binary axis.
As shown in Figure 4.3, the source trajectory always passes through the null location on the
star-planet axis as predicted by Equation 4.1. Additionally, Equation 4.2 accurately predicts
one degenerate solution from the other. The fact that Equation 4.1 applies for a wide range of
α confirms that the offset degeneracy accommodates oblique trajectories, although proximity
to planetary caustics might break the degeneracy (e.g., KMT-2016-BLG-1397 (Zang et al.
2018)). Thus we conclude that Equations 4.1,4.2 will be useful in the analysis of future
events with offset-degenerate solutions.

Given its apparent ubiquity, it is reasonable to ask why the offset degeneracy has only
been discovered over two decades after the first in-depth explorations of degeneracies in two-
body microlensing events (Gaudi & Gould 1997; Griest & Safizadeh 1998; Dominik 1999).
One reason may be the early strategic focus on high-magnification (u ≪ 1) events (Griest &
Safizadeh 1998; Gould et al. 2010), where deviations from s ↔ 1/s were small, whose cause
was not explored in detail. Recently, deviations from s ↔ 1/s in semi-resonant topology
events have led to explicit discussions on the applicability of the close-wide degeneracy in
the resonant regime and potential connections to the inner-outer degeneracy (Yee et al.
2021; An 2021). Nevertheless, as we have shown, the resonant condition itself does not cause
the deviation from s ↔ 1/s, but only allows it to be noticeable (see Methods). To our
advantage, the novel ML-based technique of Zhang et al. (2021) (Chapter 3) presented us
with a large number of degenerate events in non-resonant |1−s| ≫ q1/3 regime that deviated
from the s ↔ 1/s expectation, but also did not conform to the inner-outer degeneracy. These
‘intermediate’ offset-degenerate events ultimately allowed us to recognise the continuous and
unifying nature of the offset degeneracy, showcasing another instance of ML-guided discovery
of new theoretical insight (c.f. Davies et al. 2021). As the next-generation surveys further
expand the sensitivity limit from space (Bennett & Rhie 2002), the offset degeneracy will
increasingly manifest.
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4.2 Methods

4.2.1 The Z21 fast inference technique

Zhang et al. (Zhang et al. 2021) (Chapter 3; Z21 hereafter) presented a likelihood-
free inference (LFI) approach to binary microlensing analysis that allowed an approximate
posterior for a given event to be computed in seconds on a consumer-grade GPU, compared
to the hours-to-days timescales on CPU clusters that are typically required for status-quo
approaches. We summarise the Z21 approach at the high level here, and refer the reader to
the original paper for details.

The Z21 method is likelihood free in that it does not iteratively perform simulations to
compute the likelihood, which is typical for sampling-based inference methods. Instead, Z21
directly learns the posterior probability as a conditional distribution p̂ϕ(θ|x) with an NDE,
where ϕ are the NDE parameters, θ the binary microlensing (2L1S) parameters, and x the
input light curve. The NDE is essentially a mapping that takes a light curve as input and
produces a specified number of discrete posterior samples. Such a mapping is trained on a
large number of simulations (xi, θi) with parameters drawn from a wide prior, and the NDE
parameters (ϕ) are optimised to maximise the expectation of that conditional probability
under the training set data distribution. The mapping learned can thus be applied to any
given event unseen during training as long as it is within the pre-specified prior.

This specific approach to LFI is called amortised neural posterior estimation, where
“amortised” refers to the process of paying all simulation cost upfront so that inferences
of future events do not require additional simulations. After training, the NDE alone gener-
ates posterior samples for any future event at a rate of ∼ 106 s−1 on a consumer grade GPU,
or ∼ 105 s−1 on a 8-core CPU, effectively doing inference in real time. Z21 demonstrated
that, although not exact, the neural posterior places accurate constraints on all parameters
nearly 100% of the time, except for the parameter that quantifies the effect of a finite-sized
source. This is because substantial finite source effects only occur when the source approaches
sufficiently close to the caustics, which is satisfied by only a small subset of events.

With a focus on the next-generation, space-based (Bennett & Rhie 2002) microlensing
survey planned on the Roman Space Telescope (Penny et al. 2019), here we generated a
training set in a similar fashion as the Z21 training set, but with a caustic-centred coordinate
system rather than a centre-of-mass (COM) coordinate system. This is because the COM
coordinate system is highly inefficient for producing planetary-caustic passing events with
randomly drawn source trajectories with respect to the COM. In addition, for wide binary
(s > 1; q ∼ 1) events, the time-to-closest-approach (t0) to the COM could have an arbitrarily
large offset from the time of peak magnification, which can lead to the missing of solution
modes (see Section 4.3 of Z21). The caustic-centred coordinate system, on the other hand,
efficiently spans the entire 2L1S parameter space that allows for substantial deviation from
a single-lens light curve.

We generated a total of 228,892 events centred on the planetary caustic and 960,000
events centred on the central caustic, and further remove those that are consistent with a



4.2. METHODS 55

single lens model by fitting each light curve to such a model and adopting a ∆χ2 = 140
cutoff (see Z21). This resulted in a training set of 691,257 simulations, including 137,644
planetary caustic events and 553,863 central caustic events.

For planetary caustic events, u0 is randomly sampled from 0 to 50 times the caustic size.
For central caustic events, u0 is randomly sampled from 0 to 2. Compared to Z21, we ex-

panded the source flux fraction, defined as fs =
Fsource

Fsource + Fblend

, to fs ∼ LogUniform(0.05, 1),

to probe deeper into the severely blended regime. Other aspects of event simulation are the
same with Z21 and the reader is referred to Section 3 of Z21 for details.

4.2.2 Identifying degeneracies in Z21 posteriors

Z21 provided three example events with degenerate posteriors where light curve realisa-
tions from each degenerate mode are almost indistinguishable from one another, a confir-
mation of the effectiveness in modelling light curves with degenerate solutions. While the
posterior modes in Z21 were identified manually, in this work we automate the degeneracy-
finding process.

To work with posterior distributions that vary in scale, position, and shape, we first fit and
apply a parametric, monotonic “power” transformation (Yeo 2000) to the LFI-generated pos-
terior samples for each simulated light curve. This transformation normalises each marginal
parameter distribution to an approximate Gaussian. To automatically identify degenerate
posteriors, we used the HDBSCAN algorithm (Campello et al. 2013) to perform clustering
on the transformed posterior samples. The HDBSCAN algorithm is a density-based, hier-
archical clustering method which required, for our task, minimal hyperparameter tuning.
The output of HDBSCAN is a suggested cluster label for each posterior sample, including
the labelling for outlier/noise samples. Events with more than one cluster are identified as
degenerate events.

Although the NDE posteriors are accurate enough for a qualitative study of degeneracies,
we nevertheless refined each solution mode to the maximum likelihood value. The approxi-
mate posterior allows us to make use of bounded optimisation algorithms to quickly locate
the exact solution. We use a parallel implementation (Gerber & Furrer 2019) of the L-BFGS-
B optimisation algorithm (Byrd et al. 1995) to quickly solve for the best fit solutions. The
entire process from light curve to degenerate exact solutions takes a few minutes for each
event, with the last refinement step costing the most time.

4.2.3 Comparison to events in the literature

We demonstrate the ubiquity of the offset degeneracy by performing a thorough inves-
tigation of 2L1S events in the literature with reported degenerate posteriors. We first filter
through events on the NASA microlensing exoplanet archive which contains 112 planets and
306 entries with reported 2L1S parameters (retrieved August 23rd, 2021). Each entry reports
one solution for a given event.
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Entries from adaptive-optics follow-up papers of published events, as well as duplicate
entries with identical 2L1S solutions are first removed. Triple lens events with detections
of two planets — OGLE-2006-BLG-109 and OGLE-2018-BLG-1011 — are also removed.
Planets with reported higher-order effects (parallax, xallarap) are also removed, as such
effects often exhibit additional degeneracies and may complicate the application of the offset
degeneracy. We further remove 2-fold degenerate events with ∆χ2 > 10 where one solution
is significantly favoured. This leaves us with 20 planets with exactly two solutions and 12
with more than two solutions.

Among the 20 planets with exactly two solutions (Skowron et al. 2018; Janczak et al.
2010; Hirao et al. 2016; Nagakane et al. 2017; Suzuki et al. 2013; Dong et al. 2009; Herrera-
Martín et al. 2020; Rattenbury et al. 2017; Bond et al. 2017; Han et al. 2018; Bennett et al.
2017; Hirao et al. 2017; Han et al. 2017; Hwang et al. 2019; Han et al. 2020a; Ranc et al.
2019; Nucita et al. 2018; Han et al. 2021; Kim et al. 2021; Han et al. 2020c) six are excluded:
KMT-2016-BLG-1107 (Hwang et al. 2019) because it is a different type of degeneracy: two
distinct source trajectories crossing the s < 1 planetary caustic, one of which is parallel to
and does not intersect with the binary axis, OGLE-2017-BLG-0373 (Skowron et al. 2018)
because it is an accidental degeneracy without complete temporal coverage of the caustic
entrance/exit, and KMT-2019-BLG-0371 (Kim et al. 2021) because of the large mass-ratio
(q ∼ 0.1) and that the offset degeneracy only strictly manifests when q ≪ 1. We also
exclude OGLE-2016-BLG-1227 (Han et al. 2020c) and OGLE-2016-BLG-0263 (Han et al.
2017) because in both cases smin,max ∼ 4 makes difficult to include in Figure 3 scale-wise,
and because both cases are deep in the |1 − s| ≫ q1/3 limit, and are thus already well-
characterised by the inner-outer degeneracy. Similarly, MOA-2007-BLG-400 (Dong et al.
2009) is also deep in the |1 − s| ≫ q1/3 limit and represents one of the few instances where
the source passes almost exactly the location of the primary star, thus allowing a degenerate
pair of central caustics to manifest. However, the large uncertainty of swide = 2.9 ± 0.2
translate into an uncertainty in xnull that is orders-of-magnitude larger than the size of the
central caustic, and makes it uninformative to include here.

We also inspected events with more than two degenerate solutions, and found that the
solutions of KMT-2019-BLG-1339 (Han et al. 2020b) and MOA-2015-BLG-337 (Miyazaki
et al. 2018) both consist of two pairs of degeneracies, each with their distinct shared mass-
ratios. For both events, we include the pairs of solutions with planetary mass-ratios (q ≪ 1).

Beyond the total 16 degenerate events retrieved from the NASA microlensing exoplanet
archive and discussed above, we further looked for relevant events in the literature that
are not included in the NASA exoplanet archive. Additions include the pairs of solutions
with planetary mass-ratios for OGLE-2011-BLG-0526 (Choi et al. 2012) and OGLE-2011-
BLG-0950 (Choi et al. 2012), as well as the four events with degenerate solutions recently
reported in Hwang et al. (2022). We also include OGLE-2019-BLG-0960 (Yee et al. 2021).
This results in a final sample of 23 degenerate events.
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4.2.4 Range of applicability of the offset degeneracy

When considering larger mass ratios q, we find the qualitative structure of the null persists
through q → 1 (Figure 4.6, 4.8), suggesting that some form of the offset degeneracy may
manifest even for q ≳ 0.1 events. In this regime, there should also be a transition point
similar to the close-wide degeneracy that results in xnull = 0, but qA = qB may not hold,
nor sA = 1/sB. For example, in the quadrupole and pure-shear approximation, the analogy
to the close-wide degeneracy requires Q̂ = γ, where Q̂ = s2c · qc/(1 + qc)

2 is the quadrupole
moment of the close central caustic, and γ = (1/sw)

2 · qw/(1 + qw) is the shear of the wide
central caustic (Dominik 1999). Furthermore, it is not clear if the values of qA,B at the
xnull = 0 close-wide-equivalent transition point remains constant when one of sA and sB
undergoes offset. A notable example in the literature is KMT-2019-BLG-0371 (Kim et al.
2021) where the source trajectory passes through the null created by the two degenerate
solutions but qA = 0.123 and qB = 0.079 are substantially different. The exact behaviour of
the offset degeneracy for q → 1 should be studied in future work.

We also note that offset-degenerate, caustic crossing events usually require nearly-vertical
trajectories because of the additional constraint on the caustic-crossing length. However,
oblique trajectories are allowed if the change in caustic width near xnull is small for both
solutions (e.g., OGLE-2019-BLG-0960 Yee et al. 2021).

4.2.5 Relevant prior work

Inconsistencies of the close-wide and inner-outer degeneracies with degeneracies in ob-
served events have recently been pointed out in the literature. In the analysis of the semi-
resonant topology event OGLE-2019-BLG-0960, Yee et al. (2021) noticed that while the
close-wide degeneracy is expected to break down as s → 1, there are large numbers of
resonant and semi-resonant topology events invoking the close-wide degeneracy, where one
solution has sclose > 1 and the other swide < 1, but do not satisfy sclose = 1/swide. They
further noted the conceptual similarity to the inner-outer degeneracy for these events, but
again noted that this type of degeneracy too is expected to break down in the resonant
regime. Based on these observations, they speculated that the two degeneracies merge as
s → 1.

While Yee et al. (2021) pointed out inconsistencies for resonant events (|1 − s| ≲ q1/3),
here we found that inconsistencies with sclose = 1/swide persists even within the |1−s| ≫ q1/3

regime in which the two degeneracies are derived and the caustics are well separated. We
claim that this inconsistency is fundamentally because caustic degeneracies are only approx-
imately correct in describing magnification degeneracies, irrespective of caustic topology.
While small deviations from sclose = 1/swide in early high-magnification events tend to go
unnoticed, resonant events do allow the asymmetry from log(s) = 0 to be immediately no-
ticeable. For OGLE-2019-BLG-0960, log10(sclose) ≃ −0.001 differs from log10(swide) ≃ 0.01
by an order of magnitude.

The theoretical follow up work of An (2021) studied the behaviour of the close-wide
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degeneracy in the resonant regime. They first clarified that rather than | log(s)| ≫ 0, the
exact condition of the close-wide degeneracy is |1 − s| ≫ q1/3, which is dependent on the
mass ratio. Furthermore, even for |1 − s| ≲ q1/3, the central caustic could still be locally
invariant under s ↔ 1/s for parts of the caustic satisfying |1 − seiϕ| ≫ q1/3, where ϕ is a
parametric variable that describes the position along the caustic. We note that this fact has
also been observed in the earlier work of Bozza (1999). They concluded by suggesting that
slight changes to sA,B and qA,B may create a local pair of degenerate models, which in some
sense anticipated our discovery.
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Figure 4.1: The manifestation of the offset degeneracy in source-plane magnification dif-
ferences maps (top) and light curves (bottom). (a)–(h): Maps of magnification differences
from lens B with fixed sB = 1/1.1 to lens A with changing sA specified in each subplot.
The mass-ratio is fixed at q = 2 × 10−4 for all configurations. All magnification difference
maps are shown on the same scale, specified in the colour-bar to the right. Lens A caus-
tics are shown in green and lens B caustics are shown in blue. The black, oval-shaped ring
with first decreasing and then increasing sizes in (a)–(h) is the null where the magnification
difference between lens A/B vanishes. The evolution of the null ring is continuous with the
progression of the lens A caustic into the resonant regime (e, f, g) and further into a wide
topology (h). (i)–(p): Light curves for null crossing trajectories (cyan arrows in (a)–(h)), un-
der lens A (blue), lens B (green), and the sA = 1/sB = 1.1 solution (red) expected from the
close-wide degeneracy. Light curves are shown as relative deviations from the corresponding
point-source point-lens (PSPL) model. Subplot (n) is shown for sA = 1.11 instead of the
sA = 1/sB value of (f) to demonstrate the offset degeneracy for caustic crossing events: both
caustic-crossing length and magnification patterns are matched for the offset solution but
not for the close-wide solution.
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Figure 4.2: Deviation (∆xnull) of numerically-derived, exact null position from the analytic
form (Equation 4.1) for changing sA against three values of fixed sB < 1, normalised to the
separation between the two (implied) planetary caustics: |(sA−1/sA)− (sB −1/sB)|. ∆xnull

is calculated for q = 2× 10−4 but was found to be independent of q for q ≪ 1 (Figure 4.8).
The x-axis shows log10(sA) scaled to log10(sB) such that −1 corresponds to the close-wide
degenerate case of sA = 1/sB (gold star), 0 corresponds to sA = 1, and 1 corresponds to the
asymptotic inner-outer degenerate case where sA = sB (brown hexagon). The coordinate
origin is set to sq/(1+q) from the primary for s < 1 and s−1q/(1+q) for s > 1, which describe
the location of the central caustic and accounts for the non-differentiability at sA = 1.
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Figure 4.3: Offset degeneracy reanalysis of 23 systematically selected events in the literature
with two-fold degenerate solutions. (a) confirms that the source trajectory always passes
close to the null intercept on the star-planet axis (xnull) as predicted by Equation 4.1. The
x-axis shows the source trajectory intercept on the star-planet axis, calculated from the
impact parameter (u0) and trajectory angle (α). The y-axis shows the prediction for xnull

using Equation 4.1 and reported values of sA and sB. Event labels as shown in the legend are
the event abbreviations: for example, KMT162397 means KMT-2016-BLG-2397. The inset
shows zoom-in of the central boxed region. (b) The x and y-axis show the smaller and larger
value of the degenerate solutions referred to as smin,max. Circles are reported values of smin,max

whereas triangles are smax values predicted with Equation 4.2 of the offset degeneracy and
smin, α, and u0. The same colour coding follows from the legend in (a). Circles and triangles
largely coincide for all cases, demonstrating the predictive power of the offset degeneracy.
Sizes of circles and triangles are scaled to the expected null location: x0 = u0/ sin(α) to
show the correlation between larger size and greater distance from the dash-dotted diagonal
line that represents the exact close–wide degeneracy where smin = 1/smax. Cases typically
understood as inner–outer —sA,B > 1 or sA,B < 1 — are found outside the box bounded by
the dashed lines. Cases close to the dashed lines but far from their conjunction correspond
to resonant–close/wide degeneracies. Cases within the dashed box and not on the diagonal
line do not belong to either close–wide or inner–outer degeneracies. The inset shows zoom-
in of the region boxed by solid lines. Error-bars are marginalised 1–σ posterior intervals.
Uncertainties for the predicted xnull are propagated from the uncertainties of only one of
smin and smax that give rise to a smaller uncertainty on xnull.
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Figure 4.4: Caustics shown in green atop of maps of magnification differences from a 1-body
lens, for wide (top), resonant (middle), and close (bottom) caustic topologies. Red dots
indicate locations of the planet, with separations s = 1/0.8, 1, 0.8 from the host star, located
at the origin. Blue dashed lines represent the Einstein ring θE, the angular size to which the
projected separation (s) is normalised. Caustic topologies are delineated by values of s for
a given q. In the wide regime (s ≳ 1 + (3/2)q1/3), there is one central caustic located near
the host star and one asteroid-shaped “planetary” caustic towards the location of the planet.
In the close regime (s ≲ 1 − (3/4)q1/3), there are two small, triangular shaped “planetary”
caustics in addition to the central caustic that appears similar to the wide central caustic,
due to the close-wide degeneracy. For values of s in between these regimes, there is one six-
cusped “resonant” caustic. For all cases, there are lobes of excess magnification compared to
a point lens near caustic cusps, and lobes of de-magnification towards the back-end of the
central/resonant caustic.
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Figure 4.5: Similar to Figure 4.1, but for fixed sB = 1.18 > 1. This completes the resonant-
close (b) and wide-topology inner-outer (d) cases.
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Figure 4.6: Magnification difference maps similar to Figure 4.1, but for fixed sB = 1. (i)–(p)
shows logarithmic deviations from PSPL on arbitrary scales, where green dashed curves are
the changing lens A and sold blue curves are for fixed lens B. (a)–(d) and (e)–(h) show the
same sequence of sA but for q = 10−3 and q = 10−2 to illustrate how the offset degeneracy
generalises to larger mass-ratios. (a,e) reveals that the ring structure of the null is com-
posed of two distinct null segments, where one appears to originate from the centre of the
central/resonant caustic and the other from the left two cusps of the same caustic. Closer
inspection shows that the null rings for (a) and (e) have different topologies: for (a) it is
the left part of the null that intersects on the star-planet axis but for (e) it is the right
part. This disjoint topology of the null is also seen in Figure 4.1 and Figure 4.7 & 4.8.
The topology transition point, presumably a function of s and q, may have mathematical
implications for the offset degeneracy. Furthermore, we observe that the null segment near
the star-planet axis becomes increasingly curved for | log(s)| ≫ 0 and q → 1, which may
explain how Equation 4.1 and the offset degeneracy in general, may break down in those
limits.
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Figure 4.7: Magnification difference maps zoomed-in on the central caustic. Same sB = 1/1.1
as Figure 4.1. Cyan arrows indicate the location of the null. For (b)–(c), the null always
crosses the two caustics at their intersection.
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Figure 4.8: Magnification difference maps which demonstrates the offset degeneracy inde-
pendence on q for q ≪ 1. Lens B shares the same fixed sB = 1.1 as in Figure 4.1. Each
row shows cases of sA = 0.95, 1, 1.16 for q = 10−2, 10−4, 10−6. The null location predicted
from Equation 4.1 is shown in cyan crosses. For q = 10−4 and q = 10−6, the null shape
largely remains constant where the null intersection on the star-planet axis is well predicted
by the analytic prescription (Equation 4.1). The three cases of q = 10−2 demonstrate how
the behaviour of the null changes as q → 1. In the case of sA = 1.16, the null is split into
two disconnected segments inside and outside of the caustic, where the analytic prediction
is close to their mean location. For sA = 0.95, the discrepancy from the analytic prediction
may be attributed to the curvature of the null near the star-planet axis.
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Chapter 5

A Mathematical Treatment of the Offset
Microlensing Degeneracy

The offset microlensing degeneracy, recently proposed by Zhang et al. (2022) (Chapter
4), has been shown to generalize the close-wide and inner-outer caustic degeneracies into
a unified regime of magnification degeneracy in the interpretation of 2-body planetary mi-
crolensing observations. While the inner-outer degeneracy expects the source trajectory to
pass equidistant to the planetary caustics of the degenerate lens configurations, the offset
degeneracy states that the same mathematical expression applies to any combination of the
close, wide, and resonant caustic topologies, where the projected star-planet separations dif-
fer by an offset (sA ̸= sB) that depends on where the source trajectory crosses the star-planet
axis. An important implication is that the sA = 1/sB solution of the close-wide degeneracy
never strictly manifests in observations except when the source crosses a singular point near
the primary. Nevertheless, the offset degeneracy was proposed upon numerical calculations,
and no theoretical justification was given. Here, we provide a theoretical treatment of the
offset degeneracy, which demonstrates its nature as a mathematical degeneracy. From first
principles, we show that the offset degeneracy formalism is exact to zeroth-order in the mass
ratio (q) for two cases: when the source crosses the lens-axis inside of caustics, and for
(sA − sB)

6 ≪ 1 when crossing outside of caustics. The extent to which the offset degeneracy
persists in oblique source trajectories is explored numerically. Finally, it is shown that the
superposition principle allows for a straightforward generalization to N -body microlenses
with N − 1 planetary lens components (q ≪ 1), which results in a 2N−1-fold degeneracy.

5.1 Introduction
Photometric observations of planetary microlensing events are commonly subject to a

2-fold-degenerate interpretation where the projected planet location differs (sA ̸= sB) but
the planet-to-star mass ratio remains the same (qA = qB). The close-wide degeneracy (e.g.,
Griest & Safizadeh 1998; Dominik 1999; An 2005) is commonly invoked for such events with
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source stars passing close to the central caustic, while the inner-outer degeneracy (Gaudi &
Gould 1997; Han et al. 2018) is cited for events which have source stars passing close to the
planetary caustic. The close-wide degeneracy arises from the invariance of the shape and size
of the central caustic under the s ↔ 1/s transformation for |1−s| ≫ q1/3, a condition which is
equivalent to the lens system being far from the resonant regime (An 2021). The inner-outer
degeneracy arises from the Chang-Refsdal (Chang & Refsdal 1979) approximation to the
planetary caustics (Gaudi & Gould 1997; Dominik 1999), which describes a point-mass lens
with uniform shear. Chang-Refsdal caustics are symmetric both along the star-planet axis
(referred to as the lens axis hereafter), and along the line perpendicular to the star-planet
axis that runs through the center of the caustic.

Recently, Yee et al. (2021) and Zhang et al. (2022) (Chapter 4) noted various inconsis-
tencies of the two aforementioned degeneracies with those seen in real and simulated events.
Yee et al. (2021) noted the large number of semi-resonant topology events that cite the
close-wide degeneracy, for which the degenerate solutions do not exactly follow s ↔ 1/s nor
satisfy |1− s| ≫ q1/3. They went on to suggest that there may be a continuum between the
close-wide and inner-outer degeneracies in the resonant regime. Subsequently, Zhang et al.
(2022) (Chapter 4) pointed out that the s ↔ 1/s relationship is also not exactly followed
even within the |1−s| ≫ q1/3 regime in which the close-wide degeneracy is expected to hold.
They pointed out that the close-wide and inner-outer degeneracies are fundamentally caustic
degeneracies which do not necessarily translate to magnification degeneracies that manifest
in light-curves.

The offset degeneracy (Zhang et al. 2022; Chapter 4) is then proposed independently
of caustics as a magnification degeneracy, which both relaxes the non-resonant condition
(|1 − s| ≫ q1/3) and resolves the aforementioned inconsistencies. A key observation in the
offset degeneracy is that for two planetary (q ≪ 1) lenses that differ only by an offset to
the projected star-planet separation (sA ̸= sB) on the same lens-axis, their locus of equal
magnification — referred to as the null — intersects with the lens-axis at

ξnull,0 =
sA − 1/sA + sB − 1/sB

2
, (5.1)

where the subscript “0” indicates to zeroth-order in q, which we prove to be the correct
form in Section 5.2. The intersection between the null and the lens-axis is referred to as the
lens-axis null hereafter as a shorthand. Given that planetary anomalies primarily occur on
and near the lens-axis, source trajectories crossing the lens-axis null

u0

sin(α)
= ξnull,0 (5.2)

are then expected to result in similar light-curves under the null-forming lens configurations.
In the above equation, u0/sin(α) ≡ uanom is where the source crosses the lens-axis, which is
usually also the source-star separation around the midpoint of the planetary anomaly, u0 is
the impact parameter to the coordinate origin (see Section 5.2.1 for detailed considerations),
and α is the angle between the source trajectory and the lens axis.
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Crucially, the above formalism is continuous over caustic topology transitions for q ≪ 1,
and thus generalizes the close-wide and inner-outer degeneracies to the resonant regime. One
major implication is that the close-wide degeneracy only strictly manifests for the singular
case of u0 = 0, and elsewhere the offset degeneracy predicts a deviation from s ↔ 1/s. We
thus refer to the close-wide degeneracy as the central caustic degeneracy, in line with An
(2021). While Zhang et al. (2022) (Chapter 4) verified that the above formalism accurately
describes the degenerate solutions in 23 observed events in the referred literature, it was
found numerically and no theoretical justification was given. Subsequently, an alternative
formalism for the unification of degeneracies was proposed in Gould et al. 2022, whose the
relationship to the offset degeneracy will be discussed in Section 5.5.

In this work, we provide a mathematical treatment of the offset degeneracy. In Section
5.2, the location of the lens-axis null is derived from the lens equation, which proves the
formalism proposed in Zhang et al. (2022) (Chapter 4). In Section 5.3, conditions on the
source trajectory orientation is discussed. Finally, a generalized N -body offset degeneracy
based on the superposition principle is discussed in Section 5.4, whereas Section 5.5 concludes
our work.

5.2 Derivations
The goal of this section is to answer the question: given two planetary lenses with the

same mass-ratio (qA = qB ≪ 1) but different projected star-planet separations (sA ̸= sB),
where on the lens axis does their magnifications equal?

Let us begin by defining the lens equation. With the primary star on the origin and the
planet on the real-axis at a distance s from the primary, the two-body complex lens equation
(Witt 1990) states

ζ = z − 1−m

z̄
− m

z̄ − s
, (5.3)

where ζ = ξ + iη and z = z1 + iz2 are the complex source and image locations, m is the
planetary mass normalized to the total lens mass (Mtot), and s is the projected star-planet
separation normalized to the angular Einstein radius θE =

√
4GMtot/(Drelc2) where Drel is

the source-lens relative distance defined as D−1
rel = D−1

lens −D−1
source.

Witt & Mao (1995) showed that the lens equation can be transformed into a 5th-order
polynomial in z by substituting the conjugate of Equation 5.3,

z̄ = ζ̄ +
1−m

z
+

m

z − s
, (5.4)

back into itself, whereby conjugates in z̄ are cleared. The resulting polynomial is

p5(z; ζ,m, s) =
5∑

i=0

ai(ζ,m, s) · zi = 0, (5.5)
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where

a0 =(1−m)2s2ζ

a1 =(1−m)s[ms− (2 + s2)ζ + 2sζζ̄)]

a2 =ζ + 2s2ζ −ms(1 + sζ)

− s(s− 2ms− 2(m− 2)ζ + s2ζ)ζ̄ + s2ζζ̄2

a3 =− s(ms+ ζ) + (−2(m− 1)s+ s3 + 2ζ + 2s2ζ)ζ̄

− s(s+ 2ζ)ζ̄2

a4 =ms− (1 + 2s2 + sζ)ζ̄ + (2s+ ζ)ζ̄2

a5 =(s− ζ̄)ζ̄ .

The magnification of each individual image j located at zj is given by the absolute value
of the inverse of the Jacobian determinant of the lens equation:

µj =
pj

detJ |z=zj

(5.6)

= pj

(
1− ∂ζ

∂z̄

∂ζ

∂z̄

)−1
∣∣∣∣∣
z=zj

, (5.7)

where pj = ±1 denotes the parity of the image.
Witt & Mao (1995) further demonstrated how one may acquire the individual image

magnifications µj without solving for the image locations zj. Evaluating ∂ζ/∂z̄ with Equation
5.3, clearing conjugates in z with Equation 5.4, and clearing fractions, one obtains a 8th-order
polynomial in z whose coefficients are parameterized by µj. From here on, let us restrict
our discussion to the lens-axis, i.e., the real-axis (ζ = ξ). The common variable z in this
8th-order polynomial and 5th order polynomial associated with the lens equation (Equation
5.5) can be eliminated by calculating their resultant, which results in a lengthy 5th-order
polynomial in µ:

p5(µ; ξ,m, s) =
5∑

i=0

bi(ξ,m, s) · µi = 0. (5.8)

whose coefficients are parametrized by ξ, m, and s. The above polynomial can be further
factored into linear and cubic polynomials:

p5(µ; ξ,m, s) =

(
1∑

i=0

ci · µi

)2

·

(
3∑

i=0

di · µi

)
= 0. (5.9)

Of the five solutions µj, the equal-magnification solutions (µ1 = µ2 = −c0/c1) for the
linear equation correspond to the two off-axis images that only exist when the source is
inside of a caustic and are positive in parity. The cubic polynomial has three real roots
which correspond to three negative parity images (µ3,4,5 < 0) when the source is inside
of caustics, but one positive and two negative parity images when the source is outside of
caustics (Witt & Mao 1995). Let us now consider these two cases separately.
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5.2.1 Inside Caustics

When the lens-axis null — the intercept of the locus of equal magnification on the lens
axis — is located inside of caustics (Figure 5.1), images for each of the two polynomials
in Equation 5.9 are respectively equal in parity and the total magnification can be derived
directly from the polynomial coefficients:

µtot,in(ξ,m, s) =(µ1 + µ2)− (µ3 + µ4 + µ5)

=− 2c0/c1 + d2/d3

µtot,in(ξ,m, s) =
3m2s2 − ξ2A2 + 2msB

m2s2 + ξ2A2 − 2msξC
, (5.10)

where

A =1− s2 + sξ

B =− 2s+ (1 + s2)ξ − 3sξ2 + 2ξ3

C =1 + s2 − 3sξ + 2ξ2.

The location of the lens-axis null can be derived by solving µtot,in(sA) = µtot,in(sB). Since
for planetary microlenses m ≪ 1, the m2s2 term can be dropped in both the numerator and
the denominator, and we can substitute the planet-to-star mass ratio q = m/(1 − m) for
m. Clearing fractions in µtot,in(sA)− µtot,in(sB) = 0, we obtain a quadratic polynomial in ξ.
Taking the zeroth-order Taylor expansion in q, one of the roots simplifies to

ξnull,in =
sA − 1/sA + sB − 1/sB

2
+O(q), (5.11)

where the other root is reduced to 0. We have thus shown that the empirically derived ξnull,0
(Equation 5.1) is exact for null-in-caustic to zeroth-order in q.

To see how ξnull,in may deviate from the zeroth-order term (ξnull,0) for finite value of q, let
us now consider the first-order term in q and its dependence on sA,B. In particular, for sA =
1/sB, we should expect the first-order term to not diverge to infinity in the sA,B → {0,∞}
limit, in order to be consistent with the central caustic degeneracy. Here, it is important
to adapt a coordinate origin that is consistent with caustic degeneracies. An (2021) noted
that while the central caustic degeneracy breaks down near the resonant regime, a pair of
resonant caustics with sA = 1/sB still resembles each other locally towards the back end of
the caustic (near the primary star). This suggests that one should choose a coordinate origin
that consistently aligns the back-end of the central/resonant caustic for a pair of lenses with
an arbitrary difference in separation (sA,B).

We therefore opt to use the effective primary star location (Di Stefano & Mao 1996; An
& Han 2002; Chung et al. 2005) as the coordinate origin, which is given by

ξ → ξ +
q

(1 + q) · (s+ s−1)
, (5.12)
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Figure 5.1: Top: fractional magnification difference between (sA = 1, q = 10−4) and (sB =
1.04, q = 10−4), with color-scale shown to the right in log10. Black contours illustrate the
locus of equal magnification. The x and y axes are in units of θE. Middle: a zoom-in of
the dashed-line boxed region in the top panel. The location of the lens-axis null expected
from ξnull,0 is marked with the gold star in the center. Source trajectories with α = 30◦, 60◦

are shown in green and blue dashed lines. Bottom: differences to single-lens light-curves
for null-crossing trajectories. Dashed lines corresponds to sA = 1 whereas solid lines are
for sB = 1.04. Trajectory orientation is marked in the subplot upper-right corners with the
same color coding as the middle plot. The α = 30◦ case is seen to have different caustic
entry-exit times but similar caustic-crossing durations.
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Figure 5.2: Deviation of ξnull,0 from the exact null location, normalized to |(sA−1/sA)−(sB−
1/sB)|, where the exact null location is derived numerically with q = 10−4. Three solid curves
show this relative error for changing sA against three values of fixed sB ≃ (1/1.3, 1/1.8, 1/2.5).
The two dashed lines with darker colors show the alternative expression ξnull,hm which is exact
for ξnull ≪ 1 (see Section 5.2.2), or equivalently sA ∼ 1/sB, shown only for |ξnull| < 0.5 and
|sA − sB| > 1.

and indeed achieves the aforementioned alignment. Note that the effective primary location
reduces to

ξ →

{
ξ + sq/(1 + q) s ≪ 1

ξ + s−1q/(1 + q) s ≫ 1,

which are the central caustic locations (Han 2008) that were used in Zhang et al. (2022)
(Chapter 4) as the coordinate origin for their numerical calculations. We point out that the
∼ 2% error at sA = 1 and sB = 0.4 in Figure 2 of Zhang et al. (2022) (Chapter 4) is a direct
result of their coordinate choice, which is inaccurate in describing resonant caustic locations
and causes a misalignment between the resonant and central caustics. Figure 5.2 reproduces
that same figure, but with the effective primary (Equation 5.12) as the origin, and shows
that the error of ξnull,0 at sA = 1 and sB = 0.4 is reduced to 0.1% and remains < 0.1% for
| log(sA,B)| < 0.25, or 1/1.8 < sA,B < 1.8.
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Applying the above coordinate transformation to the previous derivation, we find that
while the zeroth-order term remains ξnull,0 as expected, the first-order term (f · q) is rather
involved. There are only two special cases that are relevant here.

If the null is located within the central caustic, we should expect sA ∼ 1/sB, which
simplifies the first order term f · q to

f ∼ −s(3 + 2s2 + 3s4)

(1 + s2)3
. (5.13)

Note that the above expression is symmetrical under s ↔ s−1. Since f → 0 for s → {0,∞},
f does not diverge and is typically of order unity. However, if we had defined the lens-
equation (Equation 5.3) in units of the Einstein radius of the primary mass, then f diverges
to infinity for both s → {0,∞}, justifying our choice of parameterization with the Einstein
radius of the total mass.

On the other hand, if the null is within the resonant or the wide-planetary caustic, we
should expect sA ≃ sB ≳ 1, which results in

f ∼ − 2

s+ s3
, (5.14)

and is also order unity. One may thus expect ξnull,in ≃ ξnull,0− q, that is, a deviation of order
q, which is in agreement with the slight deviation seen in the middle panel of Figure 5.1.

5.2.2 Outside Caustics

For sources outside caustics (Figure 5.3 & 5.4), there are three images which are different
in parity, and we can no longer obtain the total magnification directly from the polynomial
coefficients. The sum of the absolute value of the cubic roots is also difficult to simplify.
However, keeping coefficients up to first order in q, the cubic part of Equation 5.9 is reduced
to a quadratic polynomial with two roots that are in a much simpler form compared to
the cubic roots. The total magnification is then the absolute difference between the two
roots representing one positive and one negative parity image. Indeed, when the source is
away from the planetary caustic, the image closest to the planet typically has negligible
magnification. As for the alternative scenario, we should already expect ξnull,0 to hold in
the immediate vicinity of planetary caustics, given that the location of the lens-axis null
transitions continuously from inside to outside of caustics.

Equating the total magnification for sA and sB, clearing fractions, further taking the first
order expansion in q and simplifying, we acquire a quartic polynomial

pnull(ξ; sA, sB) =
4∑

i=0

ei(sA, sB) · ξi = 0, (5.15)
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whose coefficients are

e0 =− 16(sAsB − 1)(s2A + sAsB + s3AsB + s2B + s4As
2
B + sAs

3
B + s3As

3
B + s2As

4
B)

e1 =− 2(sA + sB)(3− 4s2A + s4A − 16sAsB − 4s2B + 8s2As
2
B − 4s4As

2
B − 16s3As

3
B + s4B − 4s2As

4
B + 3s4As

4
B)

e2 =− 4(sAsB − 1)(s4A − 3sAsB + 5s3AsB + 6s2As
2
B + 5sAs

3
B − 3s3As

3
B + s4B)

e3 =− (sA + sB)(1 + s2A − 8s3AsB + s2B − 14s2As
2
B + s4As

2
B − 8sAs

3
B + s2As

4
B + s4As

4
B)

e4 =2sAsB(sAsB − 1)(1 + s2A + 2sAsB + s2B + s2As
2
B).

This polynomial could be solved for the lens-axis null outside of caustics for any arbitrary
pair of sA,B satisfying q ≪ 1.

To examine the conditions for ξnull,0 to be the exact form to zeroth-order in q, let us
directly plug ξnull,0 into pnull as an ansatz, which reduces the polynomial to

−(sA − sB)
6(sAsB − 1)(sAsB + 1)2

4s2As
2
B

= O
(
(sA − sB)

6
)
. (5.16)

Given non-zero first order derivative p′null and bounded higher order derivatives, pnull → 0
implies ξ → ξnull,0, that is, the ansatz is indeed a root. Thus ξnull,0 is exact for (sA − sB)

6 ≪
1 to zeroth-order in q. Note that this condition is substantially more relaxed than the
|sA − sB| ≪ 1 condition (e.g., 0.56 ≃ 0.015). Furthermore, the condition of the lens being
near the resonant regime (|1−s| ≲ q1/3) is a sufficient condition for (sA−sB)

6 ≪ 1, allowing
ξnull,0 to be essentially exact for semi-resonant events.

Numerical calculations (Figure 5.2) show that the error on ξnull,0 remains less than 1%
for 1/2.5 < sA,B < 2.5 and should be sufficiently accurate for practical purposes. Larger
deviations of a few percent are found near sA ∼ 1/sB where |sA − sB| ≳ 3. As a theoretical
exercise, an alternative expression for these high-magnification (ξnull ≪ 1) events can be
immediately acquired by linearizing pnull in ξnull, which results in:

ξnull,hm = −e0/e1, (5.17)

where the coefficients can be found in Appendix A. Figure 5.2 shows ξnull,hm for |ξnull| < 0.5
(dashed lines), which verifies that ξnull,hm indeed describes the local behavior at sA ∼ 1/sB.

5.3 Source trajectory orientation
Technically, the above derivation only guarantees exact magnification matching on the

lens-axis. It was shown in Zhang et al. (2022) (Chapter 4) that vertical null-crossing trajec-
tories result in nearly identical light-curves, which was also noted in Gaudi & Gould (1997)
for the inner-outer degeneracy. Indeed, Figures 5.1, 5.3, 5.4 all demonstrate that the locus of
equal magnification is vertically extended near the lens-axis. Here, we consider the extend
to which oblique trajectories could remain degenerate.
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Figure 5.3: Top row: magnification difference in log-scale for three pairs of lens configurations indicated in the subplot
titles. q = 10−3 for all cases. Color-bar to the right shows the difference scale in log10. The oval-shaped contours are
the loci of equal magnification (null). Three null-crossing source trajectories with α = 15◦, 45◦, 90◦ are shown with
the two-segment solid lines, with direction going from upper-right to lower-left. The green central caustics are for the
changing sB. Second row: magnifications (µ) for null-crossing trajectories in the same color coding as the top row. Solid
lines are for sA and dashed lines for sB. The x-axis (time) is centered on the lens-axis null and scaled to |ξnull|. Bottom
three rows: planetary perturbation shown as the difference to a single lens model in unit of magnitudes. The maximum
deviation is indicated in the second-to-last row.
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Figure 5.4: Same as Figure 5.3 but for three different configurations.
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Let us first consider the case where the lens-axis null is located outside of caustics.
Figure 5.3 shows three examples where the null gradually moves away from the central
caustic. Figure 5.4 shows three additional cases where sB approaches sA from sB = 1.
Note how in Figure 5.4 |ξnull| is greater than the examples in Figure 5.3. In both cases,
vertical trajectories essentially give rise to identical light-curves. As the trajectory becomes
more oblique, the magnifications under the two degenerate lenses begin to differ in the
“wings” of the planetary perturbation, and thus sufficiently precise photometry can break
the degeneracy. By comparing Figure 5.3 and 5.4, one may see that the trajectory angle can
be as oblique as α = 15◦ while the light-curves remain largely the same when the null is close
to the central caustic (|ξnull| ≪ 1). Elsewhere, the differences on the perturbation “wings”
become a significant fraction of the peak planetary perturbation for α ≲ 45◦. While not
shown, close approaches to the off-axis cusps of the planetary caustic with oblique trajectories
will decisively break the degeneracy, as the time-of-approach will be either before or after
crossing the lens-axis.

For the lens-axis null inside of caustics, there is notably an additional constraint on the
caustic entry-exit times and duration. Figure 5.1 illustrates how the vertical null direction-
ality implies that the caustic height is automatically matched at the lens-axis null, allowing
the caustic entry-exit times and duration to be the same for vertical null-crossing trajec-
tories. Essentially, intersections of caustics are the set of points in the source plane where
magnifications for the two lenses diverge simultaneously, and by definition, must occur on
the locus of equal magnification.

For oblique trajectories, note how the two resonant caustics are approximately the reflec-
tion of one another along the vertical null (black broken line in Figure 5.1) and appears like
large planetary caustics. Because of this symmetry, the caustic-crossing duration remains
approximately the same, but the caustic entry-exit times begin to differ, the extent of which
depends on how quickly the caustic height changes (dηcaus/dξcaus|ξ=ξnull,0

) near the lens-axis
null. Fine tuning of the lensing parameters (e.g., the event timescale) may reduce the dif-
ference in the caustic entry-exit times. Additionally and similarly to non-caustic-crossing
events, close approaches to the off-axis cusps (not shown in Figure 5.2) will be asymmetrical
for oblique trajectories and would categorically break the degeneracy. Finally, for the lens-
axis null inside of central caustics (|1− s| ≪ q1/3), the central caustics are close to identical
due to the central caustic degeneracy and thus the aforementioned constraints on the caustic
entry-exit times are less relevant.

Recent examples in the literature of caustic-crossing offset-degenerate events include,
among others, KMT-2019-BLG-0371 (Kim et al. 2021), KMT-2019-BLG-1042 (Zang et al.
2022), and OGLE-2019-BLG-0960 (Yee et al. 2021). In the case of OGLE-2019-BLG-
0960, the trajectory was quite oblique (α ≃ 15), yet still resulted in very degenerate
solutions because the caustic height in this particular case changes slowly near the null
(|dηcaus/dξcaus|ξ=ξnull,0

≪ 1), allowing the caustic entry-exit times to remain approximately
the same even for very oblique trajectories.
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5.4 Generalization to N-body lens
The superposition principle (Bozza 1999; Han et al. 2001) states that planetary pertur-

bations from an N -body lens satisfying qi ≪ 1 is well approximated by the superposition of
perturbations from each individual planet. This allows a straightforward generalization of
the offset degeneracy to N -body lenses, which has N − 1 number of lens-axes, and thus the
number of null to match, resulting in a 2N−1 number of degenerate configurations.

Figure 5.5 shows an example of the offset degeneracy generalized to triple lens systems,
where the source passes close to the back end of the self-intersecting central caustics. We
have adapted the same configuration in Figure 2 of Song et al. (2014) to facilitate comparison
to the extension of the central caustic degeneracy to triple-lens discussed therein. The mag-
nification difference between the wide/wide and close-close configurations is shown to be the
sum of the residuals from the two singly-offset (close/wide and wide/close) configurations,
which confirms the superposition picture. Additionally, as expected the 3-body offset degen-
eracy also serves as a correction to the 3-body central caustic degeneracy. The light-curve
difference between the close/close and wide/wide configurations is greater near the null on
the horizontal lens-axis (s1) than the other because the source crosses the horizontal axis at
α = 30 but α = 90 for the s2 axis. This is in agreement with discussions in Section 5.3.

Interestingly, a detailed inspection of Figure 5.5 reveals that the central caustic cusps
at the ‘tips’ of the central caustics are actual slightly off the two lens-axes, which can be
attributed to the influence of one planet on the other’s caustic. This indicates that techni-
cally one may have to apply the source-null matching principle to an “effective lens axis.”
Moreover, the superposition principle is expected to break down when the planets are close
to being aligned on the same axis. Indeed, for a triple lens for which the two planets are
aligned on the same axis, there is only one null that depends on the offset of both plan-
ets. We suggest that the simplest case of the axis-aligned triple planetary lens with equal
mass-ratios may be analytically tractable by studying the following lens equation:

ζ = z − 1− 2m

z̄
− m

z̄ − s1
− m

z̄ − s2
. (5.18)

Details of the generalized N -body offset degeneracy should be explored in future work.

5.5 Discussion
In this work, we have provided a mathematical treatment of the offset degeneracy by

deriving the intercept of the equal-magnification locus on the lens-axis — the lens-axis null
— directly from the lens-equation in the limit of q ≪ 1. The numerically found ξnull,0
expression (Zhang et al. 2022; Chapter 4) is shown to be the exact form of the lens-axis null
location inside of caustics, and outside of caustics subject to (sA− sB)

6 ≪ 1, to zeroth-order
in q. The derivations in this work demonstrate the nature of the offset degeneracy as a
mathematical degeneracy deeply rooted in the lens equation itself.
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Figure 5.5: Example of the offset degeneracy generalized to triple lens systems. Top: mag-
nification difference between triple lens configurations of (s1, s2, ϕ)=(1.2, 1.25, 60◦), referred
to as the wide/wide configuration whose central caustic is shown in blue, and the close/close
configuration of (0.8189, 0.7938, 60◦) whose central caustic is shown in green. ϕ is the an-
gle between the two lens-axes (dashed lines), with the horizontal one corresponding to s1.
The two resulting lens-axis nulls are marked with cyan dots, which coincide with the source
trajectory (solid line). Bottom: light-curves for the null-crossing trajectory. In the legend,
s ↔ 1/s refers to the (1/1.2, 1/1.25, 60◦) configuration expected from the central caustic
degeneracy. The designations “close” and “wide” refer to the caustic topology rather than
the close-wide degeneracy. The bottom panels show light-curve residuals of the degenerate
configurations to the wide/wide configuration in units of magnitudes. Light-curves result-
ing from the central caustic degeneracy (green curves) are shown to have greater residual
than that from the offset degeneracy (red curves). The horizontal axis is the source location
projected to the x-axis and the cyan dots indicate the nulls allowing for a straightforward
comparison to the top figure.
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The relationship between the offset degeneracy and the central caustic (close-wide) and
inner-outer degeneracies has been discussed in Zhang et al. (2022) (Chapter 4). To sum-
marize, the offset degeneracy relaxes the non-resonant (|1 − s| ≫ q1/3) condition required
by the two caustic degeneracies and generalizes them to a unified regime of magnification
degeneracy. For sources passing close to central caustics, the offset degeneracy serves as a
correction to the s ↔ 1/s relationship of the central caustic degeneracy, which only strictly
manifests when u0 = 0. For this reason, we advocate that the close-wide degeneracy should
be more appropriately referred to as the central caustic degeneracy (e.g., An 2021), which
also serves to discourage its misuse as a magnification degeneracy.

On the other hand, the inner-outer degeneracy expects the source star to pass equidis-
tant to the planetary caustics located at ξp = sA,B − 1/sA,B, and thus results in the same
mathematical expression as the offset degeneracy. However, the Chang-Refsdal approxima-
tion to planetary caustics fails near the resonant regime (Dominik 1999), and thus the offset
degeneracy provides a more accurate conceptual explanation. In a subsequent paper, Zhang
(2023) (Chapter 6) offered an alternative interpretation by showing how planetary lenses
can be decomposed into Chang-Refsdal lenses with variable shear, which results in the offset
degeneracy as a direct consequence. While the terms inner and outer were originally coined
to refer to “the inner[/outer] region of the planetary caustic with respect to the planet host”
(Han et al. 2018), the idea of a generalized perturbative picture (Zhang 2023) (Chapter 6)
suggests that they remain meaningful labels for the offset degeneracy if they refer to the
lens-plane instead — the location of the planet being inside or outside of the image being
perturbed, with respect to the primary star.

The applicability of the central caustic degeneracy to the resonant regime was previously
studied in An (2021), which found that the back-end of the central/resonant caustic remains
locally degenerate into the resonant regime (|1 − s| ≲ q1/3) but the front end becomes
different. They further suggested that in this case, slight adjustments to the qA = qB and
sA = 1/sB pair of solutions may result in a locally degenerate model. This work directly
responds to their suggestion: qA = qB should remain the same whilst sA,B should be adjusted
such that the location of the lens-axis null coincides with the source trajectory. Strictly
speaking, the qA = qB condition is an assumption made in this work which is known to be
true for the caustic degeneracies. The fact that vertical trajectories give rise to identical
light-curves (Figures 5.1, 5.3, 5.4) validates the qA = qB assumption, but a formal proof
would require examining the magnification off the lens-axis.

While examining the magnification-matching behavior on the lens-axis is a direct way of
deriving the offset degeneracy formalism, there is a potential pathway to derive the ξnull,0
formalism for the null-in-caustic case by studying caustic resemblances, which was proposed
by An (2021). In Section 5.3, we found that the caustic height for the offset-degenerate pair
of lenses matches exactly at the lens-axis null, but such a claim is based on the observation
that the null is vertically-directed near the lens-axis. Therefore, studying the intersection
between caustics of lenses with equal mass-ratios may be not only be an independent pathway
to deriving the offset degeneracy formalism, but also a verification of the equal mass-ratio
condition.



5.5. DISCUSSION 82

3 2 1 0 1 2 3
log10(sA) / log10(sB)

-5%

0%

5%

10%

re
la

tiv
e 

er
ro

r

s = sA sB

log10(sB) = 0.10
log10(sB) = 0.25
log10(sB) = 0.40

Figure 5.6: Error on the s† =
√
sA · sB heuristic, defined as the difference between the

predicted value of uanom = s†− 1/s† from sA,B, and the exact location of equal magnification
on the lens-axis. Solid curves are for the s† heuristic and dashed curves are for the offset
degeneracy (uanom = ξnull,0) for comparison. Quantities are defined similarly to Figure 5.2.



5.5. DISCUSSION 83

Subsequent to the proposal of the offset degeneracy, Ryu et al. (2022) and Gould et al.
(2022) proposed an alternative formalism for unifying the close-wide and inner-outer degen-
eracies, referred to as the “s† heuristic”. The quantity s† is defined by

s† = (
√
u2
anom + 4 + uanom)/2, (5.19)

which is a solution to uanom = s† − 1/s†, and thus the solution for planetary-caustic-crossing
events. Here, we have defined uanom as the signed location of where the source crosses the
binary axis to avoid a sign ambiguity in the original expression. This quantity was initially
used in Hwang et al. (2022) for the heuristic analysis of events subject to the inner-outer
degeneracy, where the solutions are approximately related by sA,B = s†±∆s. More recently,
Gould et al. (2022) proposed that an alternative expression, s† =

√
sA · sB, would lead to

the unification of the two degeneracies.
The derivations in this work show that the s† =

√
sA · sB expression does not correctly

unify the close-wide and inner-outer degeneracies, but nevertheless provides approximate
solutions in the s → 1 limit. By substituting ξnull,0 for uanom in Equation 5.19, we find that
the first order Taylor expansion of (s†)2 at sA,B = 1 is indeed sA · sB. Figure 5.6 shows that
although the s† =

√
sA · sB heuristic captures the boundary cases of sA = 1/sB with s† = 1

(and uanom = 0), and sA = sB = s†, it is only approximately correct in the intermediate
regime. Finally, we note that both the s† heuristic and the offset degeneracy formalism
require solving one quadratic equation to derive one solution from the other based on the
source trajectory, which indicates that the exact form given by Equation 5.1 & 5.2 is equally
convenient to use for heuristic analysis.
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Chapter 6

On the Perturbative Picture and the
Chang-Refsdal Lens Approximation for
Planetary Microlensing

Under the perturbative picture of planetary microlensing, the planet is considered to
act as a uniform-shear Chang-Refsdal lens on one of the two images produced by the host
star that comes close to the angular Einstein radius of the planet, leaving the other image
unaffected. However, this uniform-shear approximation is only valid for isolated planetary
caustics and breaks down in the resonant regime. Recently, the planetary-caustic degeneracy
arising from the above formalism is found to generalize to the regime of central and resonant
caustics, indicating that the perturbative picture and Chang-Refsdal lens approximation
may have been under-explored in the past. Here, I introduce a new variable-shear Chang-
Refsdal lens approximation, which not only supports central and resonant caustics, but also
enables full magnification maps to be calculated analytically. Moreover, I introduce the
generalized perturbative picture, which relaxes the required proximity between the planet
and the image being perturbed in the previous work. Specifically, the planet always perturbs
the image in the same half of the lens plane as the planet itself, leaving the other image largely
unaffected. It is demonstrated how this new framework results in the offset degeneracy as
a consequence of physical symmetry. The generalized perturbative picture also points to
an approach to solve the two-body lens equation semi-analytically. The analytic and semi-
analytic microlensing solutions associated with this work may allow for substantially faster
light-curve calculations and modeling of observed events.
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6.1 Introduction
In the simplest microlensing scenario, a foreground lens star splits a background source

star into two images that are located inside and outside the Einstein radius of the lens star,

θE =

√
4GM

Drelc2
, (6.1)

where G is the gravitational constant, M is the lens mass, c is the speed of light, and
D−1

rel = D−1
lens − D−1

source is related to the relative distance between the lens and source. The
image outside the Einstein ring is usually referred to as the major image and the inside
image as the minor image. The locations of the major/minor images, along with their
magnifications, can also be expressed as simple closed-form expressions of the source location.

A two-body lens, on the other hand, splits a source star into either three or five images,
depending on whether the source is inside or outside of caustics. The locations of the images
are found by solving the lens equation in its complex form (Witt 1990)

ζ = z − 1

z̄
− q

z̄ − s
, (6.2)

where ζ = ξ + iη is the true source location, z = z1 + iz2 is the image location, q is the
mass ratio between the two lens components, and s their projected separation in units of
the Einstein ring radius of the more massive lens component. The above equation can be
transformed into a quintic polynomial that can only be solved numerically. As pointed out
in Witt & Mao (1995), the fact that the binary lens equation is not analytically tractable
presents a major obstacle in further analytical studies. Additionally, when finite source effects
are considered, this quintic polynomial generally has to be solved repeatedly to account for
the variance of magnification over the source area, thereby creating a computationally non-
trivial problem for the modeling of observed events.

The resemblance between the two-body lens with planetary mass ratios (q ≪ 1) and
the Chang-Refsdal lens has provided one pathway toward analytic studies of planetary mi-
crolensing. Both the planetary lens and the Chang-Refsdal lens consist of two components
with extreme mass ratios. The Chang-Refsdal lens describes a point-mass lens perturbed
by uniform external shear, and was introduced by Chang & Refsdal (1979) to describe the
action of an individual star on the outskirts of a massive galaxy acting as a gravitational
lens on a background quasar. For a Chang-Refsdal lens, a star lying close to a given quasar
image could produce a time-variable magnification to that image due to the relative proper
motion between the galaxy and quasar. This has led to the “perturbative picture” of plane-
tary microlensing (Gould & Loeb 1992; Gaudi & Gould 1997), where a planetary-mass body
acts as a uniform-shear Chang-Refsdal lens on one of the major/minor images produced by
the primary star that comes close to it of order its angular Einstein radius, leaving the other
image unaffected.

One advantage of the Chang-Refsdal lens approximation is that the Chang-Refsdal lens
equation can be transformed into a quartic polynomial, which is the highest-order polynomial
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that can be solved analytically. The Chang-Refsdal lens equation in its complex form is
written as

ζ = z − 1

z̄
+ γz̄, (6.3)

where γ denotes the shear. This property has allowed for extensive analytic studies of the
Chang-Refsdal lens, notably in An & Evans (2006).

However, there are important differences between the planetary lens and the Chang-
Refsdal lens, which substantially limit the validity of the approximation of the former by the
latter. While the star-galaxy mass ratio for the Chang-Refsdal lens is often below q = 10−12,
the mass ratio for planetary lenses could range anywhere between q ∼ 10−2 for Jovian planets
and q ∼ 10−5 for terrestrial planets. The

√
M scaling (Equation 6.1) of the Einstein ring

radius suggests the Einstein radius of the planet may be a substantial fraction of that of
the primary star. Thus, the effects of the primary star often can hardly be considered as a
uniform background shear over the sphere of influence of the planet. Indeed, Dominik (1999)
pointed out that the Chang-Refsdal approximation is only valid for planets sufficiently far
from the Einstein ring of the primary star, where the effect of the planetary caustics can be
considered in isolation and as a Chang-Refsdal caustic.

Moreover, the appreciable mass ratio of the planetary microlens has allowed for the
existence of central and resonant caustics, which are not allowed under the Chang-Refsdal
lens formalism. Additionally, planetary caustics in practice are usually elongated towards the
host star along the real axis, whereas the Chang-Refsdal caustic is completely symmetrical.
There exist other analytical studies that take advantage of the planetary mass ratio (q ≪ 1),
which has led to interesting results (e.g. Bozza 1999, 2000; An 2005). Nevertheless, to date,
there has been an absence of an analytic framework for planetary microlensing that holds
for all types of caustic topologies. As a result, modeling of current observations still relies
on numerically solving the full lens equation, for which optimized quintic solvers have been
developed that provide order-unity speed up (Skowron & Gould 2012; Fatheddin & Sajadian
2022) compared to a baseline ZROOTs routine from Numerical Recipes.

Recent results in microlensing degeneracy indicate that the Chang-Refsdal approxima-
tion and the perturbative picture may have been under-explored in the past. Specifically, an
important consequence of the Chang-Refsdal approximation is the existence of light-curve
degeneracies for planetary caustic perturbations (Gaudi & Gould 1997), commonly referred
to as the inner-outer degeneracy (Han et al. 2018). Here, the source trajectory is expected
to pass equidistant to the planetary caustics (located at s− 1/s) of the degenerate lens con-
figurations, owing to its symmetry under the Chang-Refsdal lens approximation. However,
observed degeneracies that reference the inner-outer degeneracy rarely have well-isolated
planetary caustics (Yee et al. 2021), although the degenerate light curves often have excel-
lent resemblance. Recently, the offset degeneracy proposed by Zhang et al. (2022) found the
equidistance relationship underlying the inner-outer degeneracy to also apply to bi-modal
solutions usually attributed to the close-wide degeneracy for central caustics, along with
degeneracies involving two resonant topology solutions (cf. Gould et al. 2022).

The condition that the source trajectory shall pass equidistant to the locations s −
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1/s of the degenerate solutions regardless of the caustic topology was recently proved in
Zhang & Gaudi (2022). However, the interpretation of the s − 1/s term as the location of
the planetary caustic is rather unsatisfactory, especially for light-curve anomalies primarily
associated with central and resonant caustics. Under the perturbative picture, the s − 1/s
term describes the coordinate origin of the Chang-Refsdal lens approximation. The fact that
the equidistance relationship with respect to s−1/s persists for central and resonant caustics
therefore suggests the possibility that the perturbative picture and the Chang-Refsdal lens
approximation may also be generalized beyond the planetary caustic, which is studied in the
current work.

This paper is organized as follows. In Section 6.2, I introduce the generalized perturba-
tive picture, which relaxes the required proximity between the planet and the image being
perturbed in the previous work. Specifically, the planet always perturbs the image in the
same half of the lens plane as the planet itself, leaving the other image largely unaffected.
In Section 6.3, I propose a new variable-shear Chang-Refsdal lens approximation that quan-
tifies the generalized perturbative picture. I show that the offset degeneracy becomes a
consequence of physical symmetry under this variable-shear approximation. Crucially, the
proposed Chang-Refsdal formalism enables full magnification maps to be derived analyti-
cally, whose accuracy is examined in Section 6.4. Section 6.5 shows that this variable-shear
Chang-Refsdal lens formalism recovers known caustic properties of the planetary lens. In
Section 6.6, I introduce a semi-analytic approach to solve the lens-equation exactly that
is associated with the generalized perturbative picture. The results of this paper are re-
viewed in Section 6.7, where I discuss how they may be employed to substantially accelerate
the modeling of observed events. A Python implementation of the exact semi-analytic and
approximate analytic microlensing solutions presented in Sections 6.4 & 6.6 is provided1.

6.2 The Perturbative Picture
The perturbative picture for planetary microlensing was initially laid out in Gould & Loeb

(1992), which states “[a] planet of mass m affects appreciably the microlensing image only if
the planet and the unperturbed image are separated by or order the planet’s own Einstein
radius,” and that “at most one image is significantly affected and that the perturbed images
lie near the unperturbed image[.]” Subsequent work then showed that the planet could also
appreciably affect the microlensing image even if the planet lies far from the unperturbed
image2, namely via central caustics for high magnification events (Griest & Safizadeh 1998).
The question that remains is whether the condition “at most one image is significantly
affected” holds when the source passes close to central and resonant caustics.

To answer this question, it is illuminating to consider the lens plane of microlensing as
opposed to the source plane. The lens plane describes the perturbing lens masses, the result-

1https://github.com/kmzzhang/analytic-lensing
2In this work, the term perturbation is used solely with respect to the planet. Thus, the unperturbed

image refers to the major/minor images resulting from the primary star alone.
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Figure 6.1: Illustration of the generalized perturbative picture for (a) central, (b) planetary,
and (c,d) resonant caustic perturbations. (a,b,c) show major image perturbations and (d)
shows minor image perturbation. The sphere of influence of the planet in the lens plane is
indicated by the non-shaded region to the right with z1 > 0. In the legend, 1L refers to the
single-lens major/minor images resulting from the primary star alone, and 2L refers to the
five images produced by the star-planet binary lens. In each case, the image in the shaded
region is shown to be largely unaffected by the presence of the planet, as the 1L and 2L
images coincide. The critical curves and caustics are shown in red, and the angular Einstein
ring radius for the star and planet are shown in black dashed lines for comparison. The
source star (black dot) is inside the caustics for all three cases. The mass ratio is q = 0.01
and the projected separation is s = 1.4 for (a,b) and s = 0.95 for (c,d).



6.2. THE PERTURBATIVE PICTURE 89

14

17

M
ag

0.04 0.00 0.04
[ E]

0.3%

0.0%D
iff

Exact vs. C-R

100

200

300

M
ag

0.02 0.01 0.00 0.01 0.02
[ E]

1%
0%

-1%

D
iff

Exact vs. C-R

0.04
0.00
0.04

(b) Planetary Lens (s=0.9; s=1.05)

0.04
0.00
0.04

[
E
]

Chang-Refsdal Approx. for s=0.9

0.2 0.1 0.0 0.1 0.2
[ E]

0.04
0.00
0.04

Chang-Refsdal Approx. for s=1.05

0.05
0.00
0.05

(a) Planetary Lens (s=0.92; s=1.1)

0.05
0.00
0.05

[
E
]

Chang-Refsdal Approx. for s=0.92

0.3 0.2 0.1 0.0 0.1 0.2 0.3
[ E]

0.05
0.00
0.05 Chang-Refsdal Approx. for s=1.1

Figure 6.2: Illustration of the Chang-Refsdal lens approximation in the context of the Offset
Degeneracy for (a) the generalized major image perturbation and (b) the generalized minor
image perturbation. The top panel of (a,b) shows the caustics of two lens configurations
overlaid in red (s < 1; left) and blue (s > 1; right), which give rise to degenerate light
curves (second-from-bottom panel) for the source trajectory (vertical arrow) that crosses
equidistance to the locations s − 1/s (dashed lines) of the two lens configurations. The
2nd and 3rd panels from the top illustrate the Chang-Refsdal lens approximation for each
lens configuration, which are shown to be exactly symmetrical with respect to the source
trajectory. The bottom panels show the differences from the approximate Chang-Refsdal
light curve to the two exact point-source light curves, shown in the same color coding. The
mass ratio is q = 5× 10−4 for both subplots.
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ing images, and the critical curves, whereas the source plane describes magnification maps
along with caustics resulting from all contributing images. Thus, the lens plane describes the
cause and the source plane describes the effect. In the source plane, the proximity between
the source and caustics correlates with higher magnifications. Analogously, the proximity
between images and critical curves serves a similar purpose. For example, for a single lens,
there exists one point-like caustic exactly at the lens mass itself. As the source approaches
this singularity, both major/minor images approach the critical curve, leading to increased
magnification. When the source coincides with the caustic, the image also coincides with the
critical curve as an Einstein ring, which results in infinite magnification for a point source.

Let us now consider how the presence of the planet as an additional lens mass causes
the critical curve to deviate from the Einstein ring of the primary mass. As illustrated in
Figure 6.1(a, b), in the non-resonant regime, there is an isolated “planetary” critical curve
centered on the planet with spatial scale θE,p. Parts of the “primary” critical curve (θE,⋆)
near its intersection with the positive real axis are elongated towards the planet, which is
associated with the existence of central caustics. In the resonant regime (Figure 6.1c,d), the
primary and planetary critical curves merge.

From these examples, it can be seen that the planet only affects parts of the critical
curve in the positive lens plane, leaving the negative lens plane (shaded regions in Figure
6.1) largely unaffected. By considering the proximity of the unperturbed image locations
to the critical curves as a proxy for magnification, we may then conclude that the planet
also only perturbs the single-lens image in the positive lens plane, leaving the image in the
negative lens plane unaffected. As illustrated in Figure 6.1, this is indeed the case regardless
of the proximity between the planet and the image being perturbed.

While the original perturbative picture considers the sphere of influence of the planet
as limited to its angular Einstein radius, the above discussion indicates a generalized per-
turbative picture: the sphere of influence of the planet is constrained to one-half of the
lens plane, where it splits one of the major/minor images into two or four images, leav-
ing the other image largely unaffected. This generalized perturbative picture then allows
for a unified classification of planetary perturbations into major-image perturbations and
minor-image perturbations. Under the original perturbative picture, the distinction between
major and minor-image perturbations has been restricted to planetary-caustic perturbations
(Figure 6.1b). Thus, major-image perturbations have been restricted to wide-separation
planets (s > 1) and vice versa3. The present discussion shows that the distinction between
major/minor image perturbations should be made not by the location of the planet, but
by the location of the source instead. Specifically, major-image perturbations occur when
the source is in the positive source plane (ζ > 0), and vice versa. This would then allow
major-image perturbations to be generalized to s < 1 planets, as illustrated in Figure 6.1(c).

3See the Appendix in Han et al. (2018): “Types of Planetary Perturbations”
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6.3 The Chang-Refsdal Lens Approximation
The uniform-shear Chang-Refsdal lens approximation quantifies the action of the planet

under the original perturbative picture of Gould & Loeb (1992). Here, I introduce a variable-
shear Chang-Refsdal lens approximation that quantifies the generalized perturbative picture,
which accurately describes all of the central, resonant and planetary caustics.

6.3.1 Uniform-Shear Approximation

Since past works have adapted slightly different conventions on the uniform-shear Chang-
Refsdal lens approximation, let us first re-examine the relevant works using a uniform nota-
tion of the complex two-body lens equation (Equation 6.2). To consider the lensing behavior
near the planetary lens companion, let us first transform the complex lens equation from
the primary frame (ζ, z) to the planetary frame (ζ [2], z[2]), which has units of the planetary
Einstein radius θE,p =

√
qθE,⋆, and coordinate origins at the location of the planet (z = s)

for the lens plane, with the corresponding location in the source plane (ζ = s − 1/s). The
latter is often interpreted as the location of the planetary caustic. Applying the coordinate
transformation

ζ =
√
qζ [2] + s− 1/s

z =
√
qz[2] + s, (6.4)

and rearranging, the two-body lens equation becomes

ζ [2] = z[2] − 1

z̄[2]
+

z̄[2]

s · (√qz̄[2] + s)
. (6.5)

In the limit of q → 0, the above equation is reduced to the Chang-Refsdal lens with
uniform shear γ = 1/s2 (Dominik 1999). For finite q ≪ 1, the Chang-Refsdal lens with
γ = 1/s2 is the first order Taylor expansion of Equation 6.5 around z̄[2] = 0 (Dominik 1999;
Bozza 2000), which can also be interpreted as a power-series in √

q

ζ [2] = z[2] − 1

z̄[2]
+

∞∑
i=1

(−1)i+1 · q(i−1)/2 · (z̄
[2])i

si+1
. (6.6)

On the other hand, the original Chang-Refsdal approximation of the earlier work of Gaudi
& Gould (1997) adopted a slightly different shear definition. Instead of the planet location,
the shear is evaluated at the location of the image being perturbed at the mid-point of the
perturbation, which occurs when the source crosses the star-planet axis. Recall that the
original perturbative picture requires the image being perturbed to pass the planet closer
than O(θE,p). Therefore, the location of the image being perturbed would approach the
planet location for q → 0, and the two shear definitions would become equivalent.
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6.3.2 Variable-Shear Approximation

In this subsection, I introduce a new variable-shear Chang-Refsdal lens approximation
that holds for all three caustic topologies. The shear is defined to be real positive γ = 1/z2+,
where

z+ =

√
ξ2 + 4 + ξ

2
. (6.7)

For sources on the real axis (ζ = ξ), the shear definition is identical to Gaudi & Gould
(1997), which is nevertheless formulated within the original perturbative picture that requires
|z+− s| ≲ O(θE,p). Under the generalized perturbative picture, Equation 6.7 corresponds to
the unperturbed location of the image that is assumed to be perturbed by the planet, which
is the major image for ξ > 0 and the minor image for ξ < 0. The image being perturbed is
always in the positive lens plane, and thus the “+” subscript. For sources off the real axis
(η ̸= 0), the shear is evaluated by projecting the source location onto the real axis. Thus
the lines of constant shear (LCS) are perpendicular to the real axis by construction.

The proposed approximation is different from the variable-shear approximation of Gould
& Loeb (1992), which evaluates the shear directly at unperturbed image location rather than
its projection on the real axis. The formalism of this earlier work was derived by Taylor
expanding the time-delay surface at the unperturbed image location, which was motivated
by the condition where “the perturbed images lie near the unperturbed image[.]” Again,
this assumption only holds for isolated planetary caustics, as can be seen in Figure 6.1. As
noted in footnote 3 of Gould & Loeb (1992), this approximation also results in a leftward
arching of the planetary caustics that is not present in the exact calculation, nor the new
variable-shear formalism proposed here (see Section 6.4).

In contrast, the requirement of the shear to be real and the LCS to be perpendicular to the
star-planet axis is motivated by conditions of the offset degeneracy. As illustrated in Figure
6.2, vertical source trajectories result in nearly identical light curves under the degenerate
lens configurations (Zhang et al. 2022). Now, if one were to apply a literal reading of the
uniform-shear approximation of Gaudi & Gould (1997) and hold the shear fixed on the
star-planet axis, one would find that the resulting light curve under the Chang-Refsdal lens
approximation nearly perfectly resembles both of the degenerate light curves. In fact, the
extent to which the Chang-Refsdal light curves deviate from the exact light curves is similar
to the extent to which the two degenerate light curves deviate from one another.

The above findings may appear rather surprising, since the uniform-shear approxima-
tion of Gaudi & Gould (1997) is known to fail for resonant and central caustics (Dominik
1999). However, an implicit assumption made in the previous works is that the uniform-
shear approximation fails as a global approximation. As we have seen from Figure 6.2,
the uniform-shear Chang-Refsdal lens serves as an excellent local approximation along the
vertical direction in the source plane, despite the absence of global caustic resemblance. Con-
sequently, for oblique trajectories, one can derive equally accurate light-curve approximations
by evaluating the shear at the projection of the source onto the lens axis.

As I will show, this variable-shear Chang-Refsdal lens approximation not only leads
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to accurate magnification maps (Section 6.4), but also recovers known caustic properties
of the planetary lens (Section 6.5). However, the accuracy of the proposed variable-shear
approximation in the source plane contrasts sharply with the fact that it does not recover
the correct image locations. This can be easily seen by considering a hypothetical source
at infinity, where the major image overlaps with the true source location. Here, the shear
goes to zero and the Chang-Refsdal lens is reduced to the point lens, but the origin of the
Chang-Refsdal lens is located at 1/s, thus placing the major image at the wrong location.
This behavior indicates that the variable-shear lens should be considered degenerate with
the exact planetary lens because they share similar source-plane but not lens-plane behavior.
This intriguing behavior deserves further analytical study in future works.

6.4 Analytic Magnifications
Given that the Chang-Refsdal lens equation can be transformed into a quartic polyno-

mial, we may now calculate full magnification maps for the planetary lens analytically. To
acquire analytic magnifications, one first takes the complex conjugate of Equation 6.3, and
substitutes the expression for z̄ back into Equation 6.3 itself. After clearing fractions, we
arrive at a quartic polynomial,

p(z[2]) =
4∑

i=0

ai(ζ
[2], ζ̄ [2], γ) · (z[2])i = 0, (6.8)

where, with γ = 1/z2+ (Equation 6.7),

a0 =γ

a1 =− ζ [2] + 2γζ̄ [2]

a2 =− 2γ2 − ζ [2]ζ̄ [2] + γζ̄ [2]
2

a3 =γζ [2] + ζ̄ [2] − 2γ2ζ̄ [2]

a4 =− γ + γ3.

Note that not all roots of the quartic polynomial are solutions to the original lens equa-
tion, and each solution should be verified by plugging back into Equation 6.3. The total
magnification is the sum of the magnification of each individual image, which is given by the
absolute value of the inverse Jacobian determinant,

µγ =
∑
j

∣∣∣∣∣1− ∂ζ [2]

∂z̄[2]
∂ζ

[2]

∂z̄[2]

∣∣∣∣∣
−1

z
[2]
j

, (6.9)

where the derivatives are evaluated using Equation 6.3 at the valid image solutions z
[2]
j .
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Figure 6.3: Magnification maps calculated using the variable-shear Chang-Refsdal lens approximation and the exact
lens formalism (with the semi-analytic solver of Section 6.6), as well as their fractional differences. The magnification
maps are visualized as the deviation from the point-lens point-source magnification map, where excess magnification is
shown in red and suppressed magnification is shown in blue, with consistent color scale across subplots. The horizontal
axis for variable shear is re-parameterized with shear (γ) using the definition in Equation 6.7. The coordinate origin for
the exact calculation is offset to the primary cusp. The color coding in the difference maps indicates differences of less
than 0.1%, 1%, 10%, as labeled in the middle panel except for the light-green central region of <10%. The caustics are
overlaid in red in the difference maps for reference. The mass ratio is q = 10−3 for all subplots.



6.4. ANALYTIC MAGNIFICATIONS 95

The variable-shear lens provides the magnification perturbation by the planet through,

∆µ = µγ − µ∞ (6.10)

= µγ −
1

|γ2 − 1|
, (6.11)

where µ∞ is the terminal magnification (|ζ [2]| → ∞). With u = |ζ|, the full magnification for
the total of three or five images can be found by adding back the single-lens magnifications,

µ =
u2 + 2

u
√
u2 + 4

+∆µ. (6.12)

Although lengthy when expressed as a function of (ζ, s, q), Equation 6.12 is indeed closed-
form and may offer substantial speed-up in the calculation of planetary microlensing light
curves and the modeling of observed events. Let us now examine the accuracy of magnifica-
tion maps under the variable-shear Chang-Refsdal approximation. It is already known from
previous works that the Chang-Refsdal lens provides excellent approximation near isolated
planetary caustics. Therefore, let us first examine the accuracy of the variable-shear mag-
nification maps near resonant and semi-resonant caustics, before examining magnification
maps near central caustics.

Figure 6.3 shows the variable-shear and the exact calculations of magnification maps for
lenses in or near the resonant regime, which appear nearly identical. The magnification
difference maps reveal two major regimes where the two calculations differ by > 1%. First,
there is a dumbbell-shaped structure along the imaginary axis of size ∆η ∼ 0.1, the inter-
pretation of which will be clear with the discussion of Figure 6.4 in the next paragraph.
Deviations greater than 1% also occur along the excess magnification ridges straddling the
suppressed magnification zone between the close-planetary caustic and the central caustic,
as seen in the top panel of Figure 6.3. This type of deviation concerns the exact shape of the
excess magnification ridges. One example is already seen in Figure 6.2(b) where, with a mass
ratio of q = 5× 10−4, the maximum deviation is merely 0.5%. Therefore, the variable-shear
approximation is in excellent agreement with the exact calculation outside of a small central
region, which we turn our attention to now.

Both of the aforementioned types of discrepancies become more pronounced in the high-
magnification regime. In Figure 6.4, one immediately notices the discontinuity across the
imaginary axis for the variable-shear calculation, which accounts for the dumbbell-shaped
structure seen in Figure 6.3. For sources near the imaginary axis and the primary star, the
two unperturbed image locations are about equidistant to the planet and both images are
substantially affected by the planet. In other words, the generalized perturbative picture is no
longer accurate in the high-magnification regime near the imaginary axis. The magnification
near the imaginary axis is overestimated for minor-image perturbations and underestimated
for major-image perturbations. Given that this discontinuity is known in advance and does
not usually coincide with true planetary features, one may apply post-hoc corrections when
applying the analytic magnification to the modeling of observed events, for example, by
reducing the weights of photometric data points near the imaginary axis.
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Figure 6.4: Similar to Figure 6.3, but zoomed into the central region and shown for s = (1, 1.5, 2). The color scale is
consistent across subplots, but different from Figure 6.3. The coordinate origin for the exact calculation is offset to
the primary cusp. The uncolored regions in the difference maps indicate negative magnifications resulting from the
variable-shear approximation.
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Figure 6.5: Magnification slices (light curves) along the vertical direction for s = (1.5, 2),
which are associated with the lower two panels of Figure 6.4. As shown in the subplot titles,
the impact parameters of the magnification slices are in units of the central-caustic size,
which is ∆ξc ∼ 0.006 for s = 1.5 and ∆ξc ∼ 0.002 for s = 2. The exact calculation is shown
in solid lines and the variable-shear calculation in dashed lines. The vertical axes are in units
of the fractional deviation from the point-source point-lens magnification.

On the other hand, the discrepancy along the excess magnification ridge becomes promi-
nent for high-magnification minor-image perturbations, where high magnification means the
immediate vicinity of central caustics with impact parameters of u0 ∼ q. Figure 6.5 shows
magnification slices along the vertical direction with various impact parameters in units of
the central-caustic size (Equation 6.15). The left two columns show that the variable-shear
calculation substantially overestimates the strength of the excess magnification ridge. The
middle panel of Figure 6.5 shows that this deviation diverges in the immediate vicinity of the
two off-axis central-caustic cusps, where minuscule differences in the caustic shape becomes
important. The magnification difference maps in Figure 6.3 also reveal limited regions of
spatial scale O(q) with unphysical negative magnifications under the two caustic folds to-
wards the back end, which is also reflected in the double dips in the middle panels of Figure
6.5. The interpretation of these behaviors will become clearer with the discussion of caustics
in Section 6.5.

In contrast, the right two panels of Figure 6.5 show that variable-shear magnifications are
much more accurate in this ultra high-magnification regime for major-image perturbations,
including inside of central and resonant caustics (also see Figure 6.2a). Lastly, despite
these anomalous behaviors in the regime of u0 ∼ q, Figure 6.6 shows that the variable-
shear calculation is nearly identical to the exact calculation on the real axis in the high-
magnification regime. This behavior may be straightforwardly derived using the resultant
method (Witt & Mao 1995), which was adopted in Zhang & Gaudi (2022) to derive closed-
form magnifications for the planetary lens on the real axis.
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Figure 6.6: Real-axis magnifications under the variable-shear (solid lines) and exact (dotted
lines) calculations. The top panel corresponds to the lens configurations in Figure 6.3 and
the bottom panel corresponds to the configurations in Figure 6.4. The vertical axes show
magnification on log scale.
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6.5 Caustics
Let us first examine the interpretation of central and resonant caustics under the variable-

shear Chang-Refsdal lens approximation, which will also assist the interpretation of Figure
6.4. Imagine a hypothetical source on the real axis moving across the primary star from ξ > 0
to ξ < 0. Here, the shear changes from γ < 1 to γ > 1, and the underlying Chang-Refsdal
caustic splits into two (compare Figure 6.2a/b). Since the horizontal size of the γ > 1 Chang-
Refsdal caustic diverges to infinity in the limit of γ → 1, this hypothetical source transitions
from the inside to the outside of caustics in the above scenario, thus resulting in a cusp
exactly at the primary star, which is referred to the primary cusp. Moreover, since the two
caustic folds originating from the primary cusp are parts of γ > 1 Chang-Refsdal caustics,
the back ends of the central/resonant caustic are restricted to the negative source plane. In
comparison, there is always a small offset between the primary cusp and the primary star
under the exact calculation, where the primary folds are also allowed to traverse into the
positive source plane (see Figure 6.4).

For the remainder of this section, I will examine how the variable-shear Chang-Refsdal
lens approximation recovers known caustic properties of the two-body planetary lens. Caustic
cusp locations can be derived under the variable-shear approximation by recognizing that
Chang-Refsdal cusp locations are expressed as simple analytic expressions of the shear (e.g.,
An & Evans 2006), which are related back to the cusp locations themselves via Equation 6.7.
Here, I will examine two special cases: the central caustic and the s = 1 resonant caustic.

Since the primary cusp is always located at the primary star and coordinate origin under
the variable-shear formalism, the length of the central caustic is given by the location of its
other cusp on the real axis located at ξc. Since ξc ≪ 1, the shear at ξc is

γc =
1

z2+(ξc)
≃ 1− ξc, (6.13)

which is illustrated in the variable-shear axis labels in Figure 6.4. The real-axis cusps for
γ < 1 Chang-Refsdal caustics are located at ±2γ/

√
1− γ in the planetary frame. Equating

its locations in the primary and planetary frames (Equation 6.4) and substituting in the
shear in Equation 6.13, we arrive at

√
q

(
s− 1

s
− ξc

)
= ± 2γc√

1− γc
= ±2(1− ξc)√

ξc
, (6.14)

where the plus sign corresponds to the wide topology and the minus sign for the close
topology. The above equation can be rearranged into a cubic polynomial in

√
ξc. We may

then Taylor expand the valid cubic root in q and acquire

ξc =
4q

(s− 1/s)2
− 32q2s4(s2 − s− 1)

(s2 − 1)5
+O

(
q3
)
. (6.15)

The first order q term is invariant under s ↔ 1/s and is in agreement with the exact
planetary lens (e.g., An 2005; Chung et al. 2005). However, the second-order term disagrees
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(e.g., An 2021; Eq. 13), indicating higher-order differences. Note that by clearing fractions
in Equation 6.14 and dropping the highest order term in ξc, Equation 6.14 itself becomes
invariant under s ↔ 1/s, allowing one to directly acquire the first-order-q term without the
Taylor expansion.

For the s = 1 resonant caustic, the origins for the primary and primary coordinates
coincide (s − 1/s = 0), indicating that the “planetary cusps” are exactly on the imaginary
axis of the primary frame, where the shear becomes γ = 1. Therefore, the imaginary-axis
cusps are located at η[2] = ±2γ/

√
1 + γ = ±

√
2 in the planetary frame, and ηr = ±

√
2q in

the primary frame. The vertical size of the s = 1 caustic is therefore ∆ηr = 2
√
2q.

The horizontal size of the s = 1 caustic may be derived in a similar manner as the central
caustic via Equation 6.14. With the location of the real-axis resonant-caustic cusp written
as ξr with shear γr,

√
q · ξr =

2γr√
1− γr

. (6.16)

Substituting in Equation 6.7 and expanding up to first order in ξr, we have

2√
ξr

− 3
√
ξr

2
− ξr√

q
= 0. (6.17)

For ξc ≪ 1 and q ≪ 1, the
√
ξc term may be dropped, which result in ξr = 3

√
4q, and this is

the length of the resonant caustic. The above results also show that the vertical-to-horizontal
width ratio of the resonant caustic scales as

ηr/ξr ∝ q1/6, (6.18)

which does not appear to be well-known in the literature.

6.6 Semi-Analytic Solutions
In this section, I demonstrate how the generalized perturbative picture allows the full

two-body lens equation to be solved semi-analytically. Given that the image in the negative
lens plane is only weakly affected by the planet, its unperturbed location

zPSPL =
ζ

2
·
(
1±

√
1 + 4|ζ|−2

)
(6.19)

can be used as an initial guess to Newton’s or Laguerre’s method to quickly solve for one
quintic root of the lens equation. Here, PSPL refers to point-source point-lens. In the above
equation, the plus sign represents the major image location that is chosen for minor image
perturbations, and vice versa. Once one quintic root is found and divided out, the resulting
quartic polynomial can be solved in closed form. The quartic roots can then be verified
with the full quintic equation and, depending on the requested precision, may be optionally
refined by Newton’s method to reduce the numerical noise from the initial root division.
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This noise is nevertheless expected to be small for well-isolated roots (e.g. Skowron & Gould
2012). Indeed, the weakly perturbed image is also generally the most isolated image (Figure
6.1), and thus the final refinement may not be necessary.

Note that the closed-form quartic solution discovered by Lodovico Ferrari is known to
suffer from certain round-off errors for cases with large root spread (e.g. Strobach 2010),
defined as the ratio between the largest and smallest root magnitudes. Therefore, the co-
ordinate origin is defined at the primary star, as only the minor image becomes close to
the origin for very faraway sources. In comparison, other frameworks such as VBBL (Bozza
et al. 2018) have also considered coordinate origins at the planetary location, which may
induce large root spread as one image is usually very close to the planet. In future work,
an improved quartic solver proposed by Orellana & Michele (2020) may also be explored,
which is robust against these errors but only costs twice the computational time as Ferrari’s
solution.

The initial root-refinement step may benefit from a combination of Newton’s and La-
guerre’s methods depending on the polynomial residual (Skowron & Gould 2012), which is
larger for sources near the imaginary axis in our case. As an illustration, in the case of the
s = 1 magnification map in Figure 6.3, it only took 2/4 iterations with Laguerre’s/Newton’s
method to refine from the PSPL location of the weakly affect image location to a polynomial
residual less than 10−14 for 99.9% of the pixels. In comparison, using the PSPL location
of the strongly perturbed image, the planet location, and the primary location takes 7/16,
5/16, and 9/23 iterations4 with Laguerre’s/Newton’s method to locate the first quintic root
subject to the same precision requirements, which demonstrates the comparative advantage
of starting from the weakly affected image.

A basic benchmark test of a vectorized python implementation provided in the code
repository of this paper shows that s = 1 magnification map in Figure 6.3 with 2.5 × 105

pixels is calculated in merely 0.6s with the semi-analytic method, with the two steps of
finding the initial root and solving the quartic polynomial in closed-form taking around 0.3s
each. Since the total cost is only twice the cost of a few iterations of Newton’s method to
solve for the initial root, we may expect the semi-analytic method to be substantially faster
than the standard numerical approach (e.g. Skowron & Gould 2012). However, we do not
attempt to quantify the factor of speed-up here, which involves the delicate task of holding
the level of optimization consistent across all methods tested. In comparison, the analytic
variable-shear solution of Section 6.4 costs only 0.2s for the same s = 1 magnification map.
The semi-analytic solver also applies to binary mass ratios, which takes a slightly longer 1s
for q = 0.9 and s = 1 given the reduced accuracy of Equation 6.19 as the initial guess. The
above numbers will be dependent on the computational device and may be rerun with the
code-base provided.

4These numbers also suggest an alternative and potentially useful approach to first find and divide out
three roots initializing from the two PSPL locations and the planet location, where the resulting quadratic
equation after root division could then be solved in closed form.
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6.7 Conclusions
In this paper, I have introduced the idea of a generalized perturbative picture for plane-

tary microlensing, which states that the planet acts as a variable-shear Chang-Refsdal lens
on one of the unperturbed images in the positive lens plane, leaving the other image largely
unaffected. The proposed framework generalizes upon the original perturbative picture of
Gould & Loeb (1992) and the uniform-shear Chang-Refsdal lens approximation of Gaudi &
Gould (1997), by relaxing both the required proximity between the planet and the image
being perturbed and the condition of isolated planetary caustics.

Under the generalized perturbative picture, the action of the planet can be classified
into major image perturbations and minor image perturbations, which are distinguished by
whether the source is in the positive (ξ > 0) or negative (ξ < 0) source plane, as opposed to
the location of the planet being inside (s < 1) or outside (s > 1) the Einstein ring of the pri-
mary star (cf. Appendix in Han et al. 2018). Moreover, the generalized perturbative picture
demonstrates that the existence of a unified regime of light-curve degeneracy independent of
caustic topologies can be explained by the symmetry of the Chang-Refsdal lens. Therefore,
the offset degeneracy can be interpreted as a generalization of the inner-outer degeneracy for
planetary caustics, both of which describe an ambiguity as to “whether the planet lies closer
to or farther from the star than does the position of the image that it is perturbing” (Gaudi
& Gould 1997).

It should be noted that the variable-shear Chang-Refsdal lens approximation is proposed
without formal derivation in this paper. Instead, I have demonstrated that the proposed
formalism not only produces accurate magnification maps (Section 6.4), but also recovers
known caustic properties of the full planetary lens (Section 6.5). An interesting property
of the variable-shear lens is that it does not recover the correct image positions, despite its
accuracy in the source plane. This intriguing behavior deserves further analytical study in
future works.

Moving forward, it is beneficial for the two analytic prescriptions (Section 6.4 & 6.6)
together with finite-source algorithms (e.g. Dominik 1998; Gould 2008; Bozza 2010) to be
implemented5 in automatic-differentiation frameworks such as jax (Bradbury et al. 2018)
or julia (Bezanson et al. 2017), which allows the gradient of the likelihood function to be
acquired without deriving explicit expressions. This allows for the use of gradient-based
inference algorithms, particularly Hamiltonian Monte Carlo (HMC) methods including the
No-U-Turn Sampler (NUTS; Hoffman & Gelman 2014), which utilize gradient information
to avoid the random walking behavior of common Markov chain Monte Carlo (MCMC)
samplers such as Metropolis-Hastings. For the exact semi-analytic approach, it is also not
necessary for the gradient to be “back-propagated” through the root-refinement step for
planetary mass ratios, where the location of the weakly affect image is insensitive to the
planetary parameters.

5I note that one such differentiable microlensing code named caustics (Bartolić & Dominik, in prep), is
currently under development.
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